
Cost-effective Designs for Supporting Correct

Execution and Scalable Performance in Many-core

Processors

by

Bogdan Florin Romanescu

Department of Electrical and Computer Engineering
Duke University

Date:

Approved:

Daniel J. Sorin, Advisor

Alvin R. Lebeck

Christopher Dwyer

Romit Roy Choudhury

Landon Cox

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Electrical and Computer Engineering

in the Graduate School of Duke University
2010



Abstract
(Computer engineering)

Cost-effective Designs for Supporting Correct Execution and

Scalable Performance in Many-core Processors

by

Bogdan Florin Romanescu

Department of Electrical and Computer Engineering
Duke University

Date:

Approved:

Daniel J. Sorin, Advisor

Alvin R. Lebeck

Christopher Dwyer

Romit Roy Choudhury

Landon Cox

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Electrical and Computer

Engineering
in the Graduate School of Duke University

2010



Copyright c© 2010 by Bogdan Florin Romanescu
All rights reserved



Abstract

Many-core processors offer new levels of on-chip performance by capitalizing on the

increasing rate of device integration. Harnessing the full performance potential of

these processors requires that hardware designers not only exploit the advantages,

but also consider the problems introduced by the new architectures. Such challenges

arise from both the processor’s increased structural complexity and the reliability

issues of the silicon substrate. In this thesis, we address these challenges in a frame-

work that targets correct execution and performance on three coordinates: 1) toler-

ating permanent faults, 2) facilitating static and dynamic verification through precise

specifications, and 3) designing scalable coherence protocols.

First, we propose CCA, a new design paradigm for increasing the processor’s life-

time performance in the presence of permanent faults in cores. CCA chips rely on a

reconfiguration mechanism that allows cores to replace faulty components with fault-

free structures borrowed from neighboring cores. In contrast with existing solutions

for handling hard faults that simply shut down cores, CCA aims to maximize the

utilization of defect-free resources and increase the availability of on-chip cores. We

implement three-core and four-core CCA chips and demonstrate that they offer a cu-

mulative lifetime performance improvement of up to 65% for industry-representative

utilization periods. In addition, we show that CCA benefits systems that employ

modular redundancy to guarantee correct execution by increasing their availability.

Second, we target the correctness of the address translation system. Current

iv



processors often exhibit design bugs in their translation systems, and we believe one

cause for these faults is a lack of precise specifications describing the interactions

between address translation and the rest of the memory system, especially mem-

ory consistency. We address this aspect by introducing a framework for specifying

translation-aware consistency models. As part of this framework, we identify the

critical role played by address translation in supporting correct memory consistency

implementations. Consequently, we propose a set of invariants that characterizes

address translation. Based on these invariants, we develop DVAT, a dynamic veri-

fication mechanism for address translation. We demonstrate that DVAT is efficient

in detecting translation-related faults, including several that mimic design bugs re-

ported in processor errata. By checking the correctness of the address translation

system, DVAT supports dynamic verification of translation-aware memory consis-

tency.

Finally, we address the scalability of translation coherence protocols. Current

software-based solutions for maintaining translation coherence adversely impact per-

formance and do not scale. We propose UNITD, a hardware coherence protocol

that supports scalable performance and architectural decoupling. UNITD integrates

translation coherence within the regular cache coherence protocol, such that TLBs

participate in the cache coherence protocol similar to instruction or data caches.

We evaluate snooping and directory UNITD coherence protocols on processors with

up to 16 cores and demonstrate that UNITD reduces the performance penalty of

translation coherence to almost zero.

v



To my grandparents

Bunicilor mei

vi



Contents

Abstract iv

List of Tables xi

List of Figures xii

List of Abbreviations xv

Acknowledgements xvi

1 Introduction 1

1.1 Processor Availability in the Presence of Hard Faults . . . . . . . . . 3

1.2 Checking Correctness of Address Translation and Translation-Aware
Memory Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Scalable Translation Coherence Protocol Design . . . . . . . . . . . . 7

1.4 Thesis Statement and Contributions . . . . . . . . . . . . . . . . . . . 9

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Improving Lifetime Performance of Many-core Processors in the
Presence of Hard Faults 12

2.1 Baseline System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Core Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Core Shutdown Design . . . . . . . . . . . . . . . . . . . . . . 15

2.2 CCA Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 CCA Design Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 CCA Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vii



2.4.1 Baseline CS and CCA Cores . . . . . . . . . . . . . . . . . . . 19

2.4.2 CCA3: 3-Core CCA Implementation . . . . . . . . . . . . . . 20

2.4.3 CCA4: 4-Core CCA Implementations . . . . . . . . . . . . . . 22

2.4.4 Many-core CCA Chips . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 CCA Chip Area Overhead . . . . . . . . . . . . . . . . . . . . 28

2.5.2 Lifetime Performance . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.3 Performance of Chips Using TMR/DMR . . . . . . . . . . . . 37

2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.1 Multicore-Specific Self-Repair . . . . . . . . . . . . . . . . . . 39

2.6.2 Self-Repair for Superscalar Cores . . . . . . . . . . . . . . . . 39

2.6.3 Pooling of Core Resources . . . . . . . . . . . . . . . . . . . . 40

2.6.4 Lifetime Reliability . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Address Translation-Aware Memory Consistency 42

3.1 AT Fundamentals and Assumptions . . . . . . . . . . . . . . . . . . . 43

3.2 Memory Consistency Levels . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Specifying PAMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Specifying VAMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1 Synonyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.2 Mapping and Permission Changes . . . . . . . . . . . . . . . . 52

3.4.3 Load/Store Side Effects . . . . . . . . . . . . . . . . . . . . . 53

3.5 AT-aware VAMC Specifications . . . . . . . . . . . . . . . . . . . . . 54

3.6 Commercial VAMC Models . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 57

viii



4 Dynamically Verifying Address Translation 59

4.1 AT Model: ATSC , a Provably Sufficient Sequential AT Model . . . . . 60

4.2 A Framework for Specifying AT Correctness . . . . . . . . . . . . . . 61

4.2.1 Page Table Integrity . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.2 Translation Coherence . . . . . . . . . . . . . . . . . . . . . . 63

4.3 DVAT: Proposed Solution for Dynamic Verification of Address Trans-
lation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.2 DVATSC Overview . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.2 Error Detection Ability . . . . . . . . . . . . . . . . . . . . . . 72

4.4.3 Performance Impact . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.4 Hardware Cost . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 78

5 Unified Instruction, Data and Translation Coherence Protocol 80

5.1 Existing Solutions for Maintaining Address Translation Coherence . . 81

5.1.1 TLB Shootdown . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.2 Performance Impact of TLB Shootdown . . . . . . . . . . . . 84

5.2 UNITD Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.1 Issue 1: Discovering the Physical Address of a Translation’s PTE 88

5.2.2 Issue 2: Augmenting the TLBs to Enable Access Using a PTE’s
Physical Address . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Platform-Specific Issues, Implementation Issues, and Optimizations . 94

ix



5.3.1 Interactions with Speculative Execution . . . . . . . . . . . . 94

5.3.2 Handling PTEs in Data Cache and TLB . . . . . . . . . . . . 95

5.3.3 UNITD’s Non-Impact on the System . . . . . . . . . . . . . . 97

5.3.4 Reducing TLB Coherence Lookups . . . . . . . . . . . . . . . 100

5.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 UNITD Hardware Cost . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 113

6 Conclusions 116

Bibliography 121

Biography 134

x



List of Tables

1.1 Examples of Published Address Translation Design Bugs. . . . . . . . 6

2.1 Number of Inputs/Outputs per Stage for OR1200. . . . . . . . . . . . 21

3.1 SC PAMC. Loads and stores are to physical addresses. An X denotes
an enforced ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Weak Order PAMC. Loads and stores are to physical addresses. Mem-
Bar denotes a memory barrier. An X denotes an enforced ordering.
An A denotes an ordering that is enforced if the operations are to the
same physical address. Empty entries denote no ordering. . . . . . . . 49

3.3 SC VAMC. Loads and stores are to synonym sets of virtual addresses.
An X denotes an enforced ordering. . . . . . . . . . . . . . . . . . . . 55

3.4 Weak Order VAMC. Loads and stores are to synonym sets of virtual
addresses. MemBar denotes a memory barrier. An X denotes an
enforced ordering. An A denotes an ordering that is enforced if the
operations are to the same physical address. Empty entries denote no
ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Address Translation in Commercial Architectures. . . . . . . . . . . . 56

4.1 Target System Parameters for DVATSC Evaluation. . . . . . . . . . . 71

4.2 Scientific Benchmarks for DVATSC Evaluation. . . . . . . . . . . . . . 72

5.1 Target System Parameters for UNITD Evaluation. . . . . . . . . . . . 101

5.2 Microbenchmarks for UNITD Evaluation. . . . . . . . . . . . . . . . . 101

xi



List of Figures

2.1 3-core CS Chip. Generic cores have five pipe stages: Fetch, Decode,
Execute, Memory, and Writeback. Each core has one fault (Core 1
in the Execute stage, Core 2 in Writeback and Core 3 in Decode),
rendering the chip useless. . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 3-core CCA Chip. Cores 1 and 3 are NC, Core 2 is a CC. The 2 NCs
are functional leading to a non-zero chip performance. . . . . . . . . . 16

2.3 CCA3(2/1) Chip. Cores 1 and 3 are NCs, Core 2 is a CC. Arrows
indicate the CC that provides spare components for each NC. . . . . 21

2.4 CCA4 Chips. CCs are colored. Arrows indicate the CCs that provide
spare components for each NC. . . . . . . . . . . . . . . . . . . . . . 23

2.5 Input Buffering for CC’s Execute Stage. . . . . . . . . . . . . . . . . 26

2.6 Output Buffering for CC’s Fetch Stage. . . . . . . . . . . . . . . . . . 27

2.7 CCA Designs Area Overhead. Results are normalized with respect to
the areas of CS designs with the same number of cores. . . . . . . . . 28

2.8 Performance of CCA Cores. . . . . . . . . . . . . . . . . . . . . . . . 31

2.9 Relative Delay for Accessing Cannibalized Stages Function of Tech-
nology Node. Results are normalized with respect to the clock periods
of the baseline core for the corresponding technology. . . . . . . . . . 32

2.10 Lifetime Performance of 3-core Chips. . . . . . . . . . . . . . . . . . . 33

2.11 Lifetime Performance of CCA4-clock(2/2) Chips. . . . . . . . . . . . 34

2.12 Lifetime Performance of CCA4-clock(3/1) Chips. . . . . . . . . . . . 35

2.13 Lifetime Performance of CCA4-pipe(3/1) Chips. . . . . . . . . . . . . 35

2.14 Lifetime Performance of Equal-Area Chips. . . . . . . . . . . . . . . . 36

xii



2.15 Lifetime Performance of TMR Chips . . . . . . . . . . . . . . . . . . 37

2.16 Lifetime Performance of DMR Pair Chips . . . . . . . . . . . . . . . . 38

3.1 Pseudo-code for a Generic MRF. . . . . . . . . . . . . . . . . . . . . 44

3.2 Address Translation-Oblivious Memory Consistency. . . . . . . . . . . 46

3.3 Address Translation-Aware Memory Consistency. Shaded portions are
the focus of this chapter. . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Example of Synonym Problem. Assume VAMC sequential consistency
and that VA1 and VA2 map to PA1. Assume that PA1 is initially zero.
A naive VAMC implementation incorrectly allows (x,y)=(2,1). . . . . 51

3.5 Power ISA Code Snippets to Illustrate the Need to Consider MRF
Ordering. Initially, VA1 is mapped to PA1, and the value of PA1
is A. Enforcing MRF serialization through tlbsync (right-hand side)
eliminates result ambiguity (left-hand side). . . . . . . . . . . . . . . 52

3.6 Code Snippet to Illustrate the Need to Consider Load/Store Side Ef-
fects. If the two instructions are reordered, a Dirty bit set by the store
could be missed and the page incorrectly not written back. . . . . . 54

4.1 DVATSC ’s Fault Detection Efficiency. . . . . . . . . . . . . . . . . . . 73

4.2 DVATSC ’s Bandwidth Overhead Compared to Baseline System. . . . 74

4.3 DVATSC ’s Performance Impact. Results are normalized to baseline
system. Error bars represent standard deviation. . . . . . . . . . . . . 75

5.1 TLB Shootdown Routines for Initiator and Victim Processors. . . . . 82

5.2 Average TLB Shootdown Latency on Xeon Processors/Linux Platform. 85

5.3 TLB Shootdown Performance Overhead on Phoenix Benchmarks. . . 86

5.4 3-level Page Table Walk in IA-32. UNITD associates PTE1 with the
VP1→PP1 translation. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 PCAM’s Integration with Core and Coherence Controller. UNITD
introduced structures are colored. . . . . . . . . . . . . . . . . . . . . 92

5.6 PCAM Operations. PA represents physical address. . . . . . . . . . . 93

5.7 UNITD Speedup Over Baseline System for Single unmap Benchmark. 104

xiii



5.8 Runtime Cycles Eliminated by UNITD Relative to Baseline System
for Single unmap Benchmark. . . . . . . . . . . . . . . . . . . . . . . 105

5.9 UNITD Speedup Over Baseline System for Multiple unmap Benchmark.106

5.10 UNITD Relative Bandwidth Consumption For Multiple unmap Bench-
mark with Snooping Coherence. Results are normalized to the baseline
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.11 UNITD Speedup Over Baseline System for Single cow Benchmark. . . 108

5.12 UNITD Speedup Over Baseline System for Multiple cow Benchmark. 109

5.13 UNITD Relative Bandwidth Consumption for Multiple cow Bench-
mark with Snooping Coherence. Results are normalized to the base-
line system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.14 UNITD Speedup on Real Benchmarks. . . . . . . . . . . . . . . . . . 110

5.15 Percentage of TLB Coherence Lookups Filtered with a Simple JETTY
Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xiv



List of Abbreviations

AT Address translation

CC Cannibalizable core

CS Core shutdown

DMR Dual modular redundancy

MRF Map/remap function

NC Normal core

PTE Page table entry

TLB Translation lookaside buffer

TMR Triple modular redundancy

SC Sequential consistency

xv



Acknowledgements

First and foremost, I want to thank my parents for their support throughout my

graduate studies.

My advisor, Prof. Daniel Sorin, has been a continuous source of motivation and

mentoring. I learned from Dan the art of abstracting concepts, analyzing problems

rigorously, and meaningful communication. I thank Dan for his patience and guid-

ance in my development as a researcher. I am grateful to Prof. Alvy Lebeck for

the decision to join our research, as his vast experience on architecture and systems

proved invaluable.

I benefited from being part of a great computer architecture group at Duke. The

reading group discussions helped me become a better critic and a sharper thinker.

I was also fortunate to have two fantastic mentors during my summer internships,

Jaidev Patwardhan and Anne Bracy. Both Jaidev and Anne showed me the impor-

tance of being a good mananger in addition to being a skillful engineer.

My student life would have certainly been duller if it weren’t for my colleagues

and friends. In particular, Vincent Mao has been a great office mate and I thank

him for all the time spent discussing not just research. I am also grateful to Ionut

Constandache for sharing memories and thoughts.

Finally, I am forever in debt to Prof. Călin Caşcaval from TU Iaşi for introducing

me to research and supporting me in pursuing my graduate studies.

xvi



1

Introduction

Architects look ahead to many-core designs as the next standard of cost-effective

performance [53]. Leveraging the still increasing rate of on-die transistor integra-

tion, many-core processors are expected to feature hundreds to thousands of cores

[24]. This order of magnitude increase in core count over existing processors offers

tremendous performance opportunities, but also introduces new challenges for hard-

ware designers [15]. Consequently, architects must address issues such as scalability,

power-efficiency, and unreliability of the device substrate.

This thesis proposes architectural solutions for some of these problems that af-

fect a processor’s correct execution and performance. In particular, we focus on

dependability and scalability issues. Dependability encompasses a vast area of top-

ics, including reliability, maintanability, and security. We restrict our dependability

approach to two aspects, availability and error detection. Thus, we address the chal-

lenges of many-core processors on three directions: 1) availability in the presence of

permanent faults, 2) supporting error detection through precise specifications, and

3) designing scalable coherence protocols.

Availability characterizes a system’s capacity to function properly at a specific

1



time, and is a function of the resources the system can provide to support correct

execution. Availability is a primary concern for many-core processors given the in-

creased impact of permanent hardware faults (i.e., hard faults) and manufacturing

defects for deep-submicron technologies [25]. Considering the increased density of

on-chip transistor integration, these types of faults are expected to impact multiple

processor resources. Designers must assume that such faults will occur during the

processor’s lifetime, and propose architectural solutions to maximize the available on-

chip resources. In Section 1.1, we describe a case for increasing processor availability

by tolerating hard faults in cores. We propose handling such faults through a recon-

figuration mechanism that aggregates functional units from neighboring faulty cores.

Our solution provides sustained availability and increases the processor’s expected

lifetime performance.

A fundamental prerequisite for our availability solution is the system’s ability to

detect incorrect execution in any of the processor’s components. Incorrect execution

can be caused by either hardware faults, or design faults which are introduced during

the design process. Several efficient solutions exist for detecting faults in cores and

parts of the memory system [16, 86, 89]. However, in Section 1.2, we identify address

translation as one system for which no error detection solutions are currently avail-

able. One possible cause for this lack of error detection mechanisms is the absence

of precise specifications of how the address translation system interacts with the rest

of the memory system, and especially memory consistency. We address this lack of

specifications by proposing a framework for specifying translation-aware consistency

models. The critical role played by address translation in supporting memory con-

sistency motivates us to propose a set of invariants that characterizes the address

translation system. Based on these invariants, we develop a dynamic verification

solution for address translation which facilitates the runtime verification of memory

consistency.

2



The last part of the thesis addresses the issue of scalable performance, arguably

one of the most critical aspects of many-core processors design. Integrating hundreds

of cores on the same die requires scalable interconnects and inter-core communication

mechanisms such as coherence protocols [15]. Although architects have proposed scal-

able solutions with respect to these components [96, 50, 8, 84], we identify translation

coherence as one area that has been generally neglected. Software-based solutions

for maintaining translation coherence are performance costly and non-scalable, and

no alternatives are currently available. Section 1.3 argues that the time has come to

move translation coherence into hardware. We propose one such solution by integrat-

ing translation coherence into the regular cache coherence protocol. We implement

our solution on systems with both snooping and directory cache coherence protocols,

and demonstrate that it reduces the performance penalty associated with translation

coherence to almost zero.

Next, we discuss in detail the motivation for the three research directions of this

thesis.

1.1 Processor Availability in the Presence of Hard Faults

Deep-submicron technologies are characterized by an increased likelihood of hard

faults [42, 120]. Smaller transistors and wires are more susceptible to permanent

faults. For pre-90nm technologies, the degradation caused by such faults was small

enough to be accounted for in the component’s testing margin such that it would not

affect the device functionality [25]. However, Srinivasan et al. [120] demonstrated

that there is a sharp decrease in reliability beyond 90nm due to physical wearout

induced by time-dependent dielectric breakdown, electromigration, and stress migra-

tion. Furthermore, as we continue to add more transistors and wires, there are more

opportunities for hard faults to occur either during fabrication or in the field [25].

Although current chips already incorporate mechanisms for addressing hard faults,

3



most of them target SRAM structures. This is a consequence of the memory cells

being more prone to faults than regular logic for pre-90nm technologies [52]. Such

solutions for tolerating hard faults in memory structures include error correcting

codes and provisioning spare rows/columns [77, 26]. The spare components can be

used to replace or remap few memory blocks transparently to the software such that

processor’s performance is virtually unaffected.

In contrast, processors have few, if any, solutions for tolerating hard faults in

cores. The most common method of handling such faults is to disable either the

affected component or the entire core. The former requires however that the faulty

component can be precisely identified, and that the core contains replicas of the

unit. The latter condition is difficult to satisfy even by superscalar cores as few

structures are replicated within the core [97]. Consequently, chip designers prefer

disabling the entire core, a technique that is prevalently used by industry to increase

the chip’s manufacturing yield. For example, IBM markets Cell processors for Sony

Playstations with just 7 out of 8 functional SPEs [80].

The main drawback of disabling cores is that it reduces the availability of on-chip

resources, leading to decreased overall processor performance. Thus, highly-available

systems rely instead on spare cores for delivering performance in the presence of

hard faults [17]. Unfortunately, spare components (either cold or hot) [10, 117]

consume hardware resources that provide no performance benefit during fault-free

operation. If we provision spares for all components, then we achieve approximately

half the fault-free performance of an equal-area chip without spares. The sparing cost

increases for systems that must tolerate multiple hard faults such as triple modular

redundant (TMR) systems [68].

In this thesis, we address the inefficiencies of current solutions in providing cost-

effective availability in the presence of hard faults in cores by proposing the Core

Cannibalization Architecture (CCA). The CCA concept builds on the observation

4



that despite multiple hard faults in cores, a chip provides enough fault-free resources

that can be aggregated to yield functional cores. In Chapter 2, we propose and evalu-

ate various CCA designs that reuse components at the granularity of pipeline stages.

We demonstrate that CCA significantly improves lifetime chip performance com-

pared to processors that rely on disabling cores. In addition, CCA can be combined

with solutions using redundant cores for increased processor availability.

1.2 Checking Correctness of Address Translation and Translation-
Aware Memory Consistency

In addition to permanent faults, many-core processors face dependability concerns

due to transient faults and design faults [42, 25]. Similar to permanent faults, tran-

sients are a consequence of the smaller transistor sizes which render chips more

susceptible to faults caused by neutrons and alpha particles [42]. In contrast, design

faults represent human errors, and are ”facilitated” by increased design complexities,

reduced testing time and imperfect coverage of random testing [66]. Despite different

causes, both types of faults have the same effect on a circuit, resulting in incorrect

behavior.

One of the systems that is currently vulnerable to these faults is address trans-

lation (AT). Representative of AT’s vulnerability is the disproportionate fraction of

published bugs in shipped processors [2, 3, 4, 59, 61, 62, 63] that involve AT hard-

ware, including the infamous TLB coherence bug in AMD’s quad-core Barcelona

processor [131]. Table 1.1 lists a few examples of these bugs.

We believe that one of the underlying causes for AT’s reliability problems is the

designers’ tendency to over-simplify memory consistency and to neglect AT’s impact

on consistency models. Current specifications do not provide a precise description

of the interactions between AT and the rest of the memory system. Such clear

specifications of correctness are a fundamental prerequisite for detecting incorrect

5



Table 1.1: Examples of Published Address Translation Design Bugs.

Processor Design Bug Effect

AMD Athlon64/
Opteron [2]

TLB flush filter may cause co-
herency problem in multicore sys-
tems

Unpredictable system
failure (possible use of
stale translations)

AMD Athlon64/
Opteron [2]

INVLPG instruction with address
prefix does not correctly invali-
date the translation requested

Unpredictable system
behavior (use of stale
translation)

Intel Core Duo
[62]

One core is updating a page ta-
ble entry while the other core is
using the same translation entry
may lead to unexpected behavior

Unexpected processor
behavior

Intel Core Duo
[62]

Updating a PTE by changing
R/W, U/S or P bits without TLB
shootdown may cause unexpected
processor behavior

Unexpected processor
behavior

behavior.

In Chapter 3, we propose a framework for precise, implementation-independent

specification of AT-aware memory consistency. We discuss in depth the memory con-

sistency levels that closely interact with the AT system. We identify one particular

level that requires AT support and analyze the AT aspects that affect the consistency

specifications at this level.

Our framework benefits both hardware designers and programmers. Precisely

specifying the interactions between AT and the memory system reduces the proba-

bility of designers introducing design faults at this interface. Second of all, our spec-

ifications help system programmers in writing software that involves AT by clearly

stating the requirements for correct execution. Finally, the proposed framework

facilitates static verification and allows architects to develop checkers for runtime

verification of address translation.

The important role that AT plays in supporting some levels of memory consis-

tency implies that a correct AT system is required for correct memory consistency

implementations. To facilitate checking AT correctness, we propose a framework

6



for AT specifications (Chapter 4). Based on this framework, we create DVAT, an

efficient dynamic verification scheme for AT coherence that can detect errors due to

design bugs and runtime faults. We demonstrate that DVAT detects design bugs sim-

ilar to the ones reported in processor errata, and supports comprehensive dynamic

verification of memory consistency.

1.3 Scalable Translation Coherence Protocol Design

Our analysis of the AT system reveals that maintaining translation coherence has

a significant performance cost even for systems with few cores. Translation caches

are just one of multiple types of caches that shared memory processors or multi-

processor systems must maintain coherent, including instruction and data caches.

While instruction and data cache coherence has been the focus of extensive research

on scalable coherence protocols [96, 50, 8, 1, 84, 9], few solutions have been proposed

for scalable translation coherence [125]. Designing a scalable protocol for translation

coherence requires us to first understand what essentially differentiates translation

coherence from instruction/data coherence.

For caches that hold instructions or data, coherence is almost generally main-

tained with an all-hardware cache coherence protocol. Hardware controllers at the

caches coordinate amongst themselves using snooping or directories to ensure that

instructions and data are kept coherent, and this coherence is not software-visible.

However, for caches that hold address translations (i.e., TLBs), coherence is almost

always maintained by an OS-managed software coherence protocol. Even for archi-

tectures with hardware control of TLB fills and evictions, when an event occurs that

affects the coherence of TLB entries (e.g., eviction of a page of virtual memory), the

OS ensures translation coherence through a software routine called TLB shootdown

[19].

Performing cache coherence in hardware provides two major advantages: per-

7



formance and microarchitectural decoupling. Performance-wise, hardware is much

faster than software. For coherence, this performance advantage grows as a function

of the number of caches. Although using software for local activities (e.g., TLB fills

and replacements) might have acceptable performance, even some architectures that

have traditionally relied on software for such operations (e.g., SPARC) are now tran-

sitioning to hardware support for increased performance [95]. In contrast, activities

with global coordination are painfully slow when performed in software. For example,

Laudon [75] mentions that for a page migration on the SGI Origin multiprocessor,

the software routine for TLB shootdown is three times more time-consuming than

the actual page move. The second reason for performing cache coherence in hardware

is to create a high-level architecture that can support a variety of microarchitectures.

A less hardware-constrained OS can easily accommodate heterogeneous cores as it

does not have to be aware of each core’s particularities [71]. Furthermore, hardware

coherence enables migrating execution state between cores for performance, thermal,

or reliability purposes [34, 51] without software knowledge.

Given that hardware seems to be an appropriate choice for cache coherence,

why has TLB coherence remained architecturally visible and under the control of

software? We believe that one reason architects have not explored hardware TLB

coherence is that they already have a well-established mechanism that is not too

costly for systems with a small number of processors. For previous multiprocessor

systems, Black [19] explains that the low overhead of maintaining TLB coherence in

software on current machines may not justify a complete hardware implementation.

As we show in the Section 5.1.2, this conclusion is likely to change for future many-

core chips.

This motivates us to consider a hardware approach for translation coherence. A

hardware TLB coherence protocol provides three primary benefits. First, it dras-

tically reduces the performance impact of TLB coherence. While this performance

8



benefit is worthwhile on its own, it also lowers the threshold for adopting features that

incur a significant amount of TLB coherence activity, including: hardware transac-

tional memory (e.g., XTM [40]), user-level memory management for debugging [43],

and concurrent garbage collection [39]. Second, hardware TLB coherence provides

a cleaner interface between the architecture and the OS, which could help to reduce

the likelihood of bugs at this interface, such as the recent TLB coherence bug in

the AMD Barcelona chip [131]. Third, by decoupling translation coherence from

the OS, hardware TLB coherence can be used to support designs that use TLBs in

non-processor components such as network cards or processing elements [82, 102].

This might facilitate a globally-shared address space among all components of a

computing system.

Considering these advantages, in Chapter 5 we propose UNITD, a hardware co-

herence protocol that integrates translation coherence within the regular cache co-

herence protocol. UNITD ”snoops” TLBs on regular coherence requests, such that

any change to the page tables automatically triggers TLB coherence. Relying on

small additional hardware, UNITD successfully eliminates the performance cost as-

sociated with the TLB shootdowns routines. In addition, UNITD does not affect the

complexity or performance of the regular cache coherence protocol.

1.4 Thesis Statement and Contributions

The imminent adoption of many-core processors as the next computing standard will

make these designs ubiquitous in our daily lives. Such processors will have to support

a wide variety of applications, ranging from systems that require correct execution

above all, to applications that demand performance. This observation motivates the

following thesis statement:

The characteristics of many-core processors enable the design of cost-effective

solutions for supporting correct execution and performance, given the reliability and

9



scalability challenges of these processors.

To support this statement, this thesis makes the following contributions in the

context of many-core processors:

• Proposes a solution to improve processor’s lifetime performance in

the presence of hard faults. The dissertation introduces a low-cost and

efficient self-repair mechanism for many-core processors with simple cores by

enabling sharing of resources. The reconfiguration solution provides sustained

performance and availability, that outweigh the slight performance overhead in

fault-free scenarios over the processor’s lifetime.

• Develops a framework for specifying address translation-aware mem-

ory consistency models. The framework analyzes the consistency levels

that closely interact with the address translation system, and identifies the

translation-related aspects that impact consistency models. Providing a thor-

ough, multi-level specification of consistency enables programmers, designers,

and design verifiers to more easily reason about the memory system’s correct-

ness.

• Proposes a dynamic verification scheme for address translation. We

support the dynamic verification solution with an implementation-independent

framework for specifying address translation. In addition to checking the cor-

rectness of the address translation system, the proposed mechanism facilitates

comprehensive verification of memory consistency.

• Introduces a hardware coherence protocol for translation coherence.

The proposed protocol integrates translation coherence into the existing cache

coherence protocol, with TLBs participating in the protocol like instruction or

data caches. Our hardware coherence protocol provides scalable performance

10



compared to existing software-based solutions for maintaining translation co-

herence.

1.5 Thesis Structure

Chapter 2 describes CCA, our solution for improving the lifetime performance of

many-core processors in the presence of hard faults. Chapter 3 introduces the frame-

work for specifying translation-aware consistency models, and analyzes the impact

of address translation on virtual address memory consistency. Chapter 4 proposes

a framework for specifying address translation and details DVAT, a dynamic veri-

fication mechanism for checking the correctness of the address translation system.

Chapter 5 describes UNITD coherence, a unified hardware coherence framework that

integrates instruction, data and translation coherence in the same coherence protocol.

Finally, Chapter 6 summarizes the thesis’ contributions.

11



2

Improving Lifetime Performance of Many-core

Processors in the Presence of Hard Faults

Technology trends are leading to an increasing likelihood of hard (permanent) faults

in processors [120]. Traditional approaches to this problem include provisioning spare

components or simply disabling cores. Unfortunately, spare components (either cold

or hot) consume hardware resources that provide no performance benefit during

fault-free operation. If we provision spares for all components, then we achieve

approximately half the fault-free performance of an equal-area chip without spares.

In turn, core shutdown (CS) disables an entire core if any of its components has a

hard fault and thus wastes much fault-free circuitry.

Motivated by the deficiencies of existing solutions, our goal is to tolerate hard

faults in many-core processors without sacrificing hardware for dedicated spare com-

ponents. There are two aspects to many-core processors that distinguish the issue

of self-repair from the case for single-core processors. First, power and thermal con-

straints motivate the use of simple, in-order cores, perhaps in conjunction with one

or two superscalar cores. Examples of chips with simple, narrow cores include the

UltraSPARC T1 [70] and T2 [112], Cray MTA [31], empowerTel MXP processor [54],

12



Renesas SH-2A-Dual [122], and Cisco Silicon Packet Processor [41], and we expect

this trend to continue for many-core processors. Unfortunately, simple cores have

little intra-core redundancy of the kind that has been leveraged by superscalar cores

to provide self-repair [27, 113, 119]. Just one hard fault in the lone ALU or in-

struction decoder renders a simple core useless, even if the entire rest of the core is

fault-free. The second aspect of self-repair that is distinct to many-core processors

is the opportunity to use resources from fault-free cores.

We propose the Core Cannibalization Architecture (CCA), the first design of a

low-cost and efficient self-repair mechanism for many-core processors with simple

cores. The key idea is that one or more cores can be cannibalized for spare parts,

where parts are considered to be pipeline stages. The ability to use stages from other

cores introduces some slight performance overhead, but this overhead is outweighed

by the improvement in lifetime chip performance in the presence of multiple hard

faults. Furthermore, CCA provides an even larger benefit for many-core chips that

use cores in a triple modular redundancy (TMR) or dual modular redundancy (DMR)

configuration, such as Aggarwal et al.’s approach [10]. CCA enables more cores to

be operational, which is crucial for supporting TMR or DMR.

We develop several concrete implementations of CCA in the context of processors

that consist of up to four simple OpenRISC 1200 cores [74]. We also present a

straightforward extension of these designs to many-core processors. We show that

CCA achieves better performance than CS over the chip’s lifetime. After only 2 years,

CCA chips outperform CS chips. Over a lifetime of 12 years, CCA achieves a 63%

improvement in cumulative performance for 3-core chips and a 64% improvement for

4-core chips. Furthermore, if cores are used redundantly (e.g., TMR or DMR), then

CCA’s improvement is 70% for 3-core chips and 63% for 4-core chips.

In this chapter, after describing the baseline system model (Section 2.1), we detail

the CCA concept (Section 2.2) and discuss design-related aspects (Section 2.3). We

13



describe our CCA implementations in Section 2.4. We then evaluate CCA (Section

2.5) and compare it to prior research (Section 2.6). Finally, we draw conclusions in

Section 2.7.

2.1 Baseline System Model

In this section, we present our core model and discuss core shutdown, the natural

design point against which we compare.

2.1.1 Core Model

In our analysis we focus on simple, in-order cores with little redundancy. We present

CCA in the context of 1-wide (scalar) cores, but CCA also applies to many cores

that are wider but still have numerous single points of failure. There are many k -

wide cores that cannot tolerate a fault by treating the core as being k-1 -wide. For

example, the Renesas SH-2A [122] is dual-issue, but it has only one shifter and one

load/store unit. Any fault in either of those units renders the entire core unusable.

Other simple cores are susceptible to numerous single faults (e.g., in the PC update

logic) that affect all lanes of the processor. Many commercial cores fit our core model

[70, 112, 31, 41]. In addition, Powell et al. [97] show that non-redundant structures

represent the vast majority of core area even for superscalar cores.

Our model assumes that the core has mechanisms for detecting errors and di-

agnosing hard faults (i.e., identifying the locations of hard faults). Detection and

diagnosis are orthogonal issues to self-repair, and acceptable schemes already exist,

such as the built-in self-test (BIST) used by the BulletProof pipeline [114]. CCA

may require additional BIST test vectors than a baseline system to distinguish faults

that are in different pipeline stages and that would otherwise be exercised by the

same test vector. CCA can also rely on software-based diagnosis solutions such as

the ones proposed by Hari et al. [110], which eliminate the need for additional test

14



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

������ ������ ������

Figure 2.1: 3-core CS Chip. Generic cores have five pipe stages: Fetch, Decode, Execute,
Memory, and Writeback. Each core has one fault (Core 1 in the Execute stage, Core 2 in
Writeback and Core 3 in Decode), rendering the chip useless.

vectors.

2.1.2 Core Shutdown Design

As mentioned in the chapter’s introduction, a multicore processor with C simple

cores can tolerate hard faults in F (F<C ) distinct cores by simply not using the

faulty cores. A single fault in a core renders the entire core useless. Additional faults

in the same core (e.g., multiple faults can occur during the manufacturing process)

do not matter, since the core has already been shut off. The performance of a chip

with CS is proportional to the number of fault-free cores, C -F. Figure 2.1 illustrates

a 3-core processor with core shutdown. In the presence of three hard faults, one

in each core, the processor achieves zero performance because none of its cores are

operable.

2.2 CCA Concept

The CCA concept is based on the tight integration of the neighboring cores in a

many-core processor. The key idea is that cores can be cannibalized for spare parts

by on-die adjacent cores to replace their own defective components, and thus become

15



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

������ ������ ������

������������

������������

	 � �� 	 �
Figure 2.2: 3-core CCA Chip. Cores 1 and 3 are NC, Core 2 is a CC. The 2 NCs are
functional leading to a non-zero chip performance.

fault-free. Thus, a CCA system consists of a number of normal cores (NCs) that

cannot be cannibalized as well as some number of cannibalizable cores (CCs). We

use the notation CCAX(Y/Z) to refer to a CCA chip with a total of X cores, out

of which Y are NCs and Z are CCs, where X=Y +Z. Similarly, we use the notation

CSX to refer to a CS chip with X cores.

At a high level, a CCA processor resembles the system in Figure 2.2. The figure

illustrates a CCA system with three cores, where Core 2 is a CC. CCA enables Core

1 to overcome a faulty Execute stage and Core 3 to overcome a faulty Decode stage,

by cannibalizing these stages from Core 2. The cannibalization process is facilitated

by a dedicated interconnect. The result is that, despite the presence of three hard

faults (including the fault in Core 2’s Writeback stage), Core 1 and Core 3 continue

to function correctly.

The performance of both cores is somewhat degraded, though, because of the

delay in routing to and from the cannibalized stages. However, comparing the chips

in Figures 2.1 and 2.2, which both have three faults, we see that CS offers zero

performance, yet CCA provides the performance of two slightly degraded cores.

16



In general, as the number of faults increases, CCA outperforms CS. For chips

with zero or very few faults that do not allow CCA-type reconfigurations, a pro-

cessor with CS outperforms CCA because CCA’s reconfigurability logic introduces

some performance overhead into the cores. This performance overhead is similar to

that incurred by schemes that provide spare components. However, as the number

of faults increases, CCA can tolerate more of them and provide a graceful perfor-

mance degradation. We demonstrate in Section 2.5 that over the chip’s lifetime, the

expected performance of CCA chips exceeds the expected performance of CS chips.

2.3 CCA Design Decisions

There are three important issues involved in a CCA design: the granularity at which

to cannibalize cores, the sharing policy between CCs and NCs, and the assignment

of the chip’s cores to be either an NC or a CC. After analyzing the first two issues,

spare granularity and sharing policy, we make fixed decisions for both of them. For

the third issue, chip layout, we explore several options.

Spare Granularity. We cannibalize cores at the granularity of pipeline stages.

The coarsest possible granularity is spare cores (i.e., CS), but coarse granularity

implies that a single fault in a core renders the entire core useless. Finer granularity

avoids wasting as much fault-free hardware, but it complicates the design, especially

the routing to and from spare components. For example, one recent scheme for fine-

grain redundancy [93] has an area overhead that is greater than 2x. We choose a

granularity of pipeline stages because it offers a good balance between complexity

and performance. Our choice is confirmed by Gupta et al. [48] that, in a concept

similar to CCA, determined that providing spares at pipeline stages granularity offers

the most cost-effective performance.

Sharing Policy. Another issue to resolve is whether to allow multiple cores to

simultaneously share a given component (i.e., pipeline stage for our implementation).

17



There are three options. First, at one extreme, a core with a faulty component of

type Z ”borrows” (time multiplexes) a component of type Z from a neighboring core

that continues to function (i.e., is not cannibalized). A second option is to allow

multiple cores to time multiplex a single cannibalized component. Both of these first

two options introduce resource contention, require arbitration logic, and complicate

pipeline control logic. For these reasons, we choose a third option, in which any

given component can only be used by a single core.

Chip Layout. Categorizing the chip’s cores into CCs and NCs is crucial for the

increased performance of the CCA chip. There are two aspects that influence CCA’s

performance given a fixed core count. The first is the number of cores that are CCs.

Underprovisioning CCs leaves NCs without spare components, while overprovisioning

CCs can lead to wasteful allocation of resources, as the interconnection required for

providing access to CCs increases in complexity and size. The second aspect is the

arrangement of NCs and CCs such that we minimize the distance between NC stages

and potential CC spare stages. We must carefully balance the two aspects in order

to provide the best area-performance tradeoff. Consequently, we implement several

CCA designs based on different CCs-NCs configurations and compare them in terms

of performance and cost.

2.4 CCA Implementations

In this section, we first describe the cores used in our CS and CCA chips (Section

2.4.1). We then describe two concrete CCA implementations, with three cores (Sec-

tion 2.4.2) and four cores (Section 2.4.3), respectively. Based on these designs, we

discuss how to extend CCA to chips with greater numbers of cores (Section 2.4.4).

A fundamental aspect in any CCA implementation is the latency of the intercon-

nect required for cannibalizing components. The characteristics of this interconnect

are a function of low-level issues such as chip layout and wire delay. Therefore, a

18



proper evaluation of CCA requires us to implement the designs at a low level de-

tail. We construct Verilog models for all designs we evaluate, including systems with

and without CCA. To evaluate area and delays, we floorplan and layout chips using

Synopsys Design Compiler [123] and Cadence Silicon Ensemble [28]. We use a pro-

prietary TSMC 90nm standard cell library for the synthesis flow. Unfortunately, the

library does not include memory cells, and using regular flip-flops in synthesis creates

unrealistically large RAM structures and diminishes the impact of our changes. In

order to provide a fair evaluation, we estimate the size of the memory structures

using CACTI [92].

2.4.1 Baseline CS and CCA Cores

The core of the baseline CS processor is the OpenRISC 1200 (OR1200) [74]. The

OR1200 core is a scalar, in-order, 32-bit core with 4 pipeline stages: Fetch, Decode,

Execute, and Writeback. Each core has 32 registers and separate instruction and

data L1 caches (I-cache and D-cache). Implemented in our 90nm technology, we can

clock the core at a maximum frequency of roughly 400MHz.

The analysis of CCA cores is impacted by the implications of stage borrowing.

An NC’s use of a cannibalized CC’s stage introduces issues that are specific to that

particular stage, so we discuss next the cannibalization of each stage.

Fetch. The Fetch stage involves I-cache accesses. If an NC uses a CC’s Fetch

stage, it also uses the CC’s I-cache instead of its own cache.

Decode. The Decode stage is responsible for instruction decoding, accessing the

register file and determining the destination address for jump/branch instructions.

A particularity of this stage is the branch destination (BD) block. The OR1200

core has a one-instruction delay slot for branches and jumps, and the BD block is

responsible for computing the address during the delay slot and communicating the

destination to the Fetch stage. This block is tightly coupled with the Fetch stage

19



while operating independently from the rest of the decode logic. Therefore, due to

this tight coupling, we consider the BD block as part of the Fetch stage. An NC that

reuses the Fetch stage of a CC also reuses the CC’s BD block. In addition to the BD

block, the Decode stage includes the register file such that an NC that uses a CC’s

Decode stage also uses that CC’s register file. In this case, the NC must route back

to the CC’s register file during Writeback.

Execute. The Execute stage is where computations occur and where loads and

stores access the D-cache. An NC that uses a CC’s Execute stage also uses that CC’s

D-cache; the NC no longer uses its own D-cache.

Writeback. CCA does not require modifications for the Writeback logic, but

it motivates a small change for register writing. Because the register writing logic

is extremely small, it is preferable, in terms of area and performance, to simply

replicate it (as a cold spare) in the original Writeback stage. Intuitively, forcing an

NC to go to a CC for a tiny piece of logic is not efficient. If replication is not possible

due to possible area constraints, this logic can be considered to be a component of

the Decode stage.

2.4.2 CCA3: 3-Core CCA Implementation

We first consider a 3-core chip that we refer to as CCA3(2/1): 2 cores are NCs and

1 is CC. Our CCA3(2/1) implementation arranges the cores as shown in Figure 2.3,

and we designate only the middle core, Core 2, as a CC. By aligning the cores in the

same orientation, we facilitate routing from an NC to a CC. By provisioning one CC,

we obtain better chip performance than if we had implemented CCA3(1/2), which

would have 1 NC and 2 CCs. With more than one CC, the fault-free performance of

each core decreases, due to added wires and multiplexing, and the ability to tolerate

more faults does not increase much.

If a single fault occurs in either Core 1 or Core 3, it is preferable to just not

20



������

� �� � �	

�����


� �� � �	

������

� �� � �	

� 
 ��� 
 � �

Figure 2.3: CCA3(2/1) Chip. Cores 1 and 3 are NCs, Core 2 is a CC. Arrows indicate
the CC that provides spare components for each NC.

Table 2.1: Number of Inputs/Outputs per Stage for OR1200.

Stage # Input signals # Output signals

Fetch 56 65
Decode 38 115
Execute 110 61
Writeback 87 52

use that core, rather than cannibalize Core 2. Not using a core leads to a total

chip performance of an NC and a CC combined, while borrowing a stage yields a

chip performance of an NC and a borrowing NC. As we show in Section 2.5.2, the

performance of an NC borrowing a stage is always lower than a fault-free CCA core,

which is why we favor not using the faulty core.

CCA3(2/1)’s reconfigurability requires some extra hardware and wires, similar

to the overhead required to be able to use spare components. Each NC (Core 1

and Core 3) has multiplexors (muxes) at the input to each stage that allow it to

choose between signals from its own other stages (the majority of which are from the

immediate predecessor stage) and those from the CC (Core 2). Similarly, Core 2 has

multiplexors at the input to each stage that allow it to choose between signals from

its other stages and signals from the two NCs. Table 2.1 shows the number of wires

that are the inputs and outputs of each stage.

In CCA3(2/1)’s chip layout, the distance to route from Core 1 or Core 3 to Core

21



2 and back is short. The cores are small, and the distance each way is approximately

1mm in 90nm technology. Furthermore, because these simple cores are designed for

power efficiency rather than for maximum clock frequency, we do not expect them to

be clocked aggressively. Thus, given a clock frequency in the 400 MHz range and such

short wires, the penalty of routing to and from a cannibalized stage is a relatively

small fraction of the clock period (as we show in Section 2.5.2). Rather than add

wire delay pipe stages to avoid lengthening the clock period (which we consider for

our 4-core implementations in Section 2.4.3), we simply slow the clock slightly. For

chips with larger cores, adding wire delay pipe stages may be preferable.

One way to mitigate the impact of lengthening the clock period is to use clock

borrowing [129]. Consider a fault in Core 1. If Core 1’s normal clock period is T

and its extra wire delay to and from Core 2 is W (for our CCA chips W is twice the

distance to access a spare component), then a simplistic solution is to increase Core

1’s clock period to T’=T+W. Clock borrowing can mitigate this performance impact

by amortizing time sharing W across the two neighboring stages [129]. By sharing

this delay, we can reduce the clock period penalty to 1/3 of W, i.e., T’=T+W /3.

As a concrete example, if Core 1 has a 50ns clock period (T=50ns) when fault-free

and W =15ns, then we can use time borrowing to achieve a clock cycle of T’=55ns.

We borrow 5ns from both of the neighboring stages, pushing them from 50ns to 55ns.

Thus, we have 65ns-10ns=55ns for the longer stage.

2.4.3 CCA4: 4-Core CCA Implementations

For the 4-core CCA chips we consider two viable CCA4 arrangements as illustrated

in Figure 2.4. CCA4(3/1) chips are natural extensions of the CCA3(2/1) chip. In

addition, we also propose the CCA4(2/2) configuration, which has two cannibalizable

cores, and differs from CCA4(3/1) in how CCs share stages. In CCA4(2/2) Core 1

can use a stage from Core 2 or Core 3, Core 2 and Core 3 can use stages from each

22



������

� �� � �	

�����


� �� � �	

������

� �� � �	

������

� �� � �	

� 
 ��
 � � �

(a) CCA4(2/2)

������

� �� � �	

�����


� �� � �	

������

� �� � �	

������

� �� � �	

� 
 ��
 � � �

(b) CCA4(3/1)

Figure 2.4: CCA4 Chips. CCs are colored. Arrows indicate the CCs that provide spare
components for each NC.

other, and Core 4 can use a stage from Core 3 or Core 2. This sharing policy allows

CCs to share with each other, and it allows the NCs to share from their more distant

CCs.

An important distinction between CCA3 and CCA4 chips (of any kind) is that, in

a CCA4 chip, an NC may have to borrow a stage from a CC that is not an immediate

neighbor. For example, in Figure 2.4(b), Core 4 is approximately twice as far from

a CC as Core 3 is. Furthermore, as shown in Figure 2.4(a), a given NC might have

different distances to the two CCs (e.g., Core 4’s distance to Core 2 and Core 3).

The increase in distance from an NC to a CC may, for some core microarchi-

tectures, discourage the simple approach of lengthening the clock period of an NC

that is using a cannibalized stage. In Figure 2.4(a), for example, there might be

an unacceptable clock frequency penalty if we slow Core 1 to accommodate using a

cannibalized stage from Core 3. Based on this clock penalty, we consider two ap-

proaches: the clock period lengthening we have already discussed and adding clock

cycles to the pipeline. The first approach sacrifices clock frequency while the second

approach sacrifices IPC and chip area. The preferred approach, in terms of overall

performance, depends on the details of the core, so we discuss both configurations

next.

23



CCA4-clock

The CCA4-clock design relies on increasing the clock period for distant CC accesses.

This design is advantageous when the performance penalty of slowing the clock is

preferable to adding pipeline stages. The only new issue for CCA4-clock, with respect

to CCA3, is that it is possible that we want to have different pipeline stages of the

same CC operate at different frequencies. For example, in Figure 2.4(b), if Core 1

is using Core 2’s Decode stage and Core 4 is using Core 2’s Execute stage, then we

want Core 2’s Decode stage to be at a higher frequency than its Execute stage. This

difference results from Core 4 being further from the CC than Core 1 is from the

CC. Prior work has shown how to provide different clocks within a single core [67].

However, if such a solution is considered too costly, then Core 2’s clock frequency

must be lowered to match the lowest frequency needed, such as the one imposed

by Core 4 in the example. We use the CCA4-clock design for both CCA4(2/2) and

CCA4(3/1) configurations. We refer to the latter as CCA4-clock(3/1) to differentiate

it from its CCA4-pipe implementation that we describe next.

CCA4-pipe

The CCA4-pipe design, like CCA3, assumes that routing from an NC to an imme-

diately neighboring CC can be efficiently accommodated by lengthening the clock

period of the NC and the CC. However, it allows routing from an NC to a CC that is

not an immediate neighbor to take one additional cycle, and routing back from the

CC to the NC to account for another cycle. We do not lengthen the clock, because

the wire and mux delays fit well within a cycle for a simple, relatively low-frequency

core. To avoid adding too much complexity to the NC’s control, we do not allow a

single NC to borrow more than one stage that requires adding cycles.

When we add wire delay pipeline stages to a core’s pipeline, we must add extra

pipeline latches and solve four problems:

24



1. Conditional Branch Resolution. In the OR1200, the decision to take a branch

is determined by a single signal, BranchFlag, that is continuously propagated

from Execute back to Fetch. This BranchFlag is explicitly set/unset by instruc-

tions. Because the OR1200 has a single delay slot, the Fetch stage expects to

see a BranchFlag signal that corresponds to the instruction that is exactly

two instructions ahead of the current instruction in program order. However,

adding cycles between Fetch and Execute can cause the BranchFlag signal seen

by Fetch to be stale because it corresponds to an instruction that is more than

two cycles ahead of it. To address this issue, we slightly modify the pipeline

to predict that the stale BranchFlag value is the same as the value that would

have been seen in the unmodified pipeline. We add a small amount of hardware

to remember the program counter of a branch in case of a misprediction. If the

prediction is correct, there is no penalty. A misprediction causes a penalty of

two cycles.

2. Branch/Jump Target Computation. The target address is computed using a

small piece of logic in the Decode stage, and having this unit close to the Fetch

stage is critical to performance. As mentioned in Section 2.4.1, we treat this

logic separately from the rest of the Decode stage, and we consider it to be

logically associated with Fetch. Thus, if there is a fault in the rest of the NC’s

Decode stage, it still uses its original target address logic. This design avoids

penalties for jump address computation.

3. Operand Bypassing. When an NC uses a CC’s Execute stage, there are some

additional bypassing possibilities. The output of the CC’s Execute stage may

need to be bypassed to an instruction that is in the wire delay stage of the

pipeline right before Execute. Instead of adding a bypass path, we simply

latch this data and bypass it to this instruction when it reaches the usual

25



� � � �

�

�
�
�

�
�
�

�
�
���
��
�

��

��
����������	


� � �

��
��
�

��
��
�

��
��
�

� �� �
 	� 	� �� �� �����	
	� �� ����
Figure 2.5: Input Buffering for CC’s Execute Stage.

place to receive bypassed data (i.e., when it reaches the Execute stage). We

also slightly modify the Decode stage to set the correct values for the signals

selecting the sources of the instruction’s operands.

4. Pipeline Latch Hazards. The extra stages introduce two structural hazards for

pipeline latches. First, if a cannibalized stage can incur an unexpected stall,

then we must buffer this stage’s inputs so they do not get overwritten. For the

OR1200, Fetch and Execute require input buffering as illustrated in Figure 2.5,

due to I-cache and D-cache misses, respectively. Second, if a cannibalized stage

is upstream from (closer to Fetch than) a stage that can incur an unexpected

stall, then the stall will reach the cannibalized stage late. To avoid overwriting

the output of that stage, we buffer its output. For the OR1200, the Fetch and

Decode stages require output buffering (Figure 2.6), because the Execute stage

can stall on D-cache misses.

If the area costs of buffering are considered unacceptably high, it is possible to

squash the pipeline to avoid the structural hazards. For example, a D-cache

miss triggers a squash of younger instructions. In our evaluation of CCA’s

area, we pessimistically assume the use of buffering rather than squashes, even

26



� � �� �

��

�
��

�
��

�
��

��
��
�

��

��

�������� �� � � 	

� �

��
��
�

��
��
�

�


 �� �� � 
 � � �� � � �� �� � � 	 � � �� �����

Figure 2.6: Output Buffering for CC’s Fetch Stage.

though squashing on D-cache misses would have no IPC impact on the OR1200

because the pipe would refill before the D-cache miss resolves.

2.4.4 Many-core CCA Chips

Although we described until now CCA configurations with just three or four cores,

CCA is easily extendable to many-core chips. One feasible and straightforward way

to apply CCA to chips with more cores is to design these chips as groups of CCA3

or CCA4 clusters. We leave for future work the exploration and evaluation of un-

clustered designs for chips with greater numbers of cores.

2.5 Evaluation

Evaluating CCA designs requires us to consider two aspects. First, what is CCA’s

design impact over the baseline chip in terms of area and clock period? Second, how

well do processors consisting of CCA3 and CCA4 clusters perform, compared to CS

processors? In this section, we address both of these issues.

27



�

�� � �

�� � �

� � � � 	 
 � � 
 
 � � � �� � � � � 	 
 � � 
 
 � � � � � � � � � 	 
 � � 
 
 � � � �� � � � � 	 � � � � � � � ��

��
��

��
��	


�
��
	�

���������	
Figure 2.7: CCA Designs Area Overhead. Results are normalized with respect to the
areas of CS designs with the same number of cores.

2.5.1 CCA Chip Area Overhead

CCA’s area overhead is due to the logic and wiring that enable stages from CCs

to be connected to NCs. In Figure 2.7, we plot the area overheads (compared to

a CS chip with same number of cores) for various CCA chip implementations in

90nm technology. These areas include the entire chip: cores and the L1 I-caches

and D-caches, which are both 8KB and 2-way set-associative (we do not consider L2

caches for our chips). We consider all of the following CCA designs: CCA3(2/1),

CCA4-clock(3/1), CCA4-pipe(3/1), and CCA4-clock(2/2).

We observe that no CCA chip has an area overhead greater than 3.5%. CCA3(2/1)

incurs less than 2% overhead, which is a difference so small that it requires more than

50 cores on the chip (i.e., approximately 18 CCA3(2/1) clusters), before the addi-

tional area is equivalent to a single baseline core. The CCA4 overheads are compara-

ble to the CCA3 overhead, except for CCA4-pipe, which requires some input/output

buffering and modified control logic in the cores.

28



2.5.2 Lifetime Performance

The primary goal of CCA is to provide better lifetime chip performance than CS. We

demonstrate in this section that CCA achieves this goal, despite the small per-core

performance overheads introduced by CCA. To better understand these results, we

first present our fault model, then evaluate fault-free single core performance (for

both NCs and CCs) and the performance of an NC using a cannibalized stage.

We evaluate the performance for all cores and chips using the MediaBench bench-

mark suite [76] on the OpenRISC simulator [74]. We consider a core’s performance

to be the average runtime for all benchmarks in the suite relative to a baseline fault-

free OR1200 core (i.e., the relative average instructions per second (IPS)). Thus,

the performance of a core is dictated by its frequency and the average IPC across

benchmarks. We consider the performance of a fault-free OR1200 core to be 1. A

CCA core that yields the same average IPC, but has a frequency of 10% less than

the baseline core, has an overall performance of 0.9. The same performance charac-

terizes a core operating at the same frequency as the baseline OR1200, but that has

an average IPC degradation of 10%.

Fault Model

We consider only hard faults, and we choose fault rates for each pipeline stage that

are based on prior work by both Blome et al. [20] and Srinivasan et al. [119]. Blome

et al. [20] decomposed the OR1200 core into 12 structures (e.g., fetch logic, ALU,

load-store unit, etc.) and, for each structure, determined its mean time to failure

in 90nm technology. Their analysis considered the utilization of each structure, and

they studied faults due only to gate oxide breakdown. Thus, actual fault rates are

expected to be greater [119] due to electromigration, NBTI, thermal stress, etc.

Srinivasan et al. [119] assume that fault rates adhere to a lognormal distribution

with a variance of 0.5. The lognormal distribution is generally considered more

29



realistic for hard faults due to wearout because it captures the increasing rate of

faults at the end of a chip’s expected lifetime. The variance of 0.5 is a typical value

for wearout phenomena. By combining these two results, we compute fault rates for

each pipeline stage. We also consider faults in CCA-specific logic (including added

latches and muxes), and we assume that these faults occur at a rate that is the

average of the pipeline stage fault rates.

As industrial data regarding failure rates is not publicly available, in our experi-

ments we consider the above-mentioned fault rates to be the nominal fault rates, and

we also explore fault rates that are both more pessimistic (2x and 4x nominal) and

less pessimistic (1/4x and 1/2x nominal). We assume that there are no faults present

at time zero due to fabrication defects. The presence of fabrication defects would

improve the relative lifetime performance of CCA with respect to CS by reducing

the time until there are enough faults that CCA outperforms CS. We also do not

consider faults in the cache interface logic, which CCA could handle, and thus we

slightly further bias our results against CCA.

Fault-Free Single Core Performance

A fault-free NC or CC pays a modest performance penalty due to the multiplexors

that determine from where each stage chooses its inputs. These muxes, which affect

every pipeline stage, require a somewhat longer clock period to accommodate their

latency. Also, CCA’s additional area introduces some extra wiring delays, but the

CAD tools revealed that this effect on the clock frequency is less than 0.3%. The

mux delays are identical for NCs and CCs, and they are not a function of the number

of cores or number of CCs. In CCA3(2/1), each NC is choosing from among two

inputs (itself or the CC). The CC is choosing from among three inputs (itself and

both NCs), and thus has a 3-to-1 mux. However, at least one of those inputs is not

changing, so the critical path of this 3-to-1 mux is the same as that of a 2-to-1 mux.

30



����

���

��� �

��� �

��� �

��� �

��
��

��
��	


�
�

��
��
��
��

�
��	

���
	�
�





����

����

����

�������� � � 	

 � � � �


 � � � � � � � 	
� ��� � 	 	 	 	 	 	 	

� � � �� �� � �


 � � � � � � � 	
�� �� � 	 	 	 	 	 	 	

� � � �� � � �


 � � � � � � � 	
� � � � � � 	
� � � �� � � �


 � � � � � � � 	
� � � � ��� 	 	
� � � �� � � �


 � � � � � � � 	
� � � �� � �� � 	
� � � �� � � �

��
��

��
��	


�
�

��
��
��
��

�
��	

���
	�
�





��������
Figure 2.8: Performance of CCA Cores.

In the other CCA chips, the NC and CC muxes are either 2-to-1 or 3-to-1, but we

can leverage the same observation about non-changing inputs. Thus, in all CCA

chips, each NC and each CC has a clock period penalty that is equal to the latency

of one 2-to-1 mux. This clock period penalty is 4.5% in 90nm technology.

Single NC Performance When Using CC

An NC’s use of cannibalized stages introduces some performance degradation. In

Figure 2.8, we plot the performance of an NC in several situations: fault-free, using

any immediate neighbor CC’s stage and extending the clock period, and using a CC’s

stage and adding pipeline stages (i.e., for CCA4-pipe). Results are normalized to

the performance (instructions per second) of a single baseline core that has none of

CCA’s added hardware. We compute wire delays based on prior work by Ho et al.

[58], and we assume that the wires between NCs and CCs are routed using middle

and upper metal layers. We use a modified version of the OpenRISC simulator to

evaluate the IPC overhead for CCA4-pipe as a function of the cannibalized stage.

The results show that, when an NC borrows a CC’s stage, the NC’s slowdown

is between 5% and 13%. Most slowdowns are in the 10-13% range, except when

31



����

����

���

��
��

���
�	

��

��

���

	�
��


� � � � � 	 
 � � � 
 

� � � �	 � � � � 	 
 � � � 
 


�

��� �

��� �

�� � � � � � � �

��
��

���
�	

��

��

���

	�
��


��������	
���
������

� � � �	 � � � � 	 
 � � � 
 


Figure 2.9: Relative Delay for Accessing Cannibalized Stages Function of Technology
Node. Results are normalized with respect to the clock periods of the baseline core for the
corresponding technology.

we add pipeline stages to borrow a Writeback stage; extending the Writeback stage

incurs only a miniscule IPC penalty because exceptions are rare. The performance

when slowing the clock to accommodate a borrowed stage (the second bar from

the left in Figure 2.8) is a function of the technology node. In Figure 2.8, we as-

sume a 90nm technology. For larger/smaller CMOS technologies, the wire delays are

smaller/greater [58]. Figure 2.9 shows the delay to access a borrowed stage across

different technologies. Even at 45nm, the delays remain under 15% and 19% for im-

mediate and non-immediate neighbors, respectively. Even the worst-case 19% clock

degradation for a core is still preferable to disabling the core.

Lifetime Processor Performance

CCA addresses faults that occur over the lifetime of the processor, and that have

a probabilistic rate of occurrence. Therefore, we consider in our evaluation a chip’s

expected lifetime performance as a consistent measure unit. We extend the perfor-

mance definition for a single core, and define chip performance as the aggregated

performance of the chip’s functioning cores. A CS3 chip with no faults has an ex-

pected performance of 3. CCA3(2/1) with no faults has an expected performance

32



�

�� �

�

�� �

��
��
���

�	

��

�

��

� � �
� � � ��	 
 � 	 � 
 �� ��

�

�� �

�

�� �

� � � � ��

��
��
���

�	

��

�

��

���������	
�

(a) Lifetime performance for nominal fault
rate

��
� �
� �
� �
� �
� �

��
�
��
��
��	


�	
�
�

��
��

�	

�
��

��
��
�	

��

�

� � 	 
 � � 

� � � 	 
 � � 


�� �
�

� �
� �
��

� �� � � � �� � � � � � � � � � � � �

��
�
��
��
��	


�	
�
�

��
��

�	

�
��

��
��
�	

��

�

��������	�
�

(b) CCA3-clock(2/1)’s cumulative perfor-
mance advantage compared to CS3

Figure 2.10: Lifetime Performance of 3-core Chips.

of 2.85, due to CCA3(2/1)’s clock penalty for mux delays. For brevity, we refer to

”expected performance” as simply ”performance”.

To determine the aggregate chip performance in the presence of faults, we use

Monte Carlo simulation. We develop Petri Net models of the CS and CCA chips that

compute the expected performance of a chip as a function of time. We model each

chip at the same 12-structure granularity as Blome et al. [20]. To evaluate a given

chip, the Petri Net uses one million Monte Carlo simulations in which we inject hard

faults in each of the processor structures (including CCA logic and latches), using

the distributions previously specified (the million runs allow the results to converge).

Once a fault occurs in a structure, the corresponding stage is considered unusable.

For example, a fault in the ALU triggers the failure of the Execute stage. We do

not consider the time needed to detect failures and reconfigure the chip. For each

experiment we report values after 6 and 12 years, respectively, since we consider that

a common industrial usage for a chip is between these time intervals.

We first evaluate chips with an equal number of cores, then compare performance

of equal-area chips.

3-core Chips. Figure 2.10 plots performance over the lifetime of the chips. Fig-

33



���
�

���
�

���

��
��
��
��
	

��

�

��

� � �
� � � �	
 � � 
 
 � �� ��

�
���
�

���
�

� � � � ��

��
��
��
��
	

��

�

��

���������	
�

(a) Lifetime performance for nominal fault
rate

��
� �
� �
� �
� �

��
�
��
��
��	


�	
�
�

��
��

�	

�
��

��
��
�	

��

�

� � � 	 
 � �

 � � � 	 
 � �

�
 �
�


 �
� �
� �

� �� � � � �� � � � � � � 
 � � � � �

��
�
��
��
��	


�	
�
�

��
��

�	

�
��

��
��
�	

��

�

��������	�
�

(b) CCA4-clock(2/2)’s cumulative perfor-
mance advantage compared to CS4

Figure 2.11: Lifetime Performance of CCA4-clock(2/2) Chips.

ure 2.10(a) shows the performance of 3-core chips, assuming the nominal fault rate.

The difference between the curves at time zero reflects CCA’s fault-free performance

overhead. We observe that the crossover point (i.e., the time at which the perfor-

mances of CS3 and CCA3(2/1) are identical) is at a little under 2 years. After this

early crossover point, CCA3(2/1)’s performance degradation is far less steep than

CS3’s. The CCA3 chip does not become instantaneously more advantageous, as it

still has to recoup the performance loss during the fault-free case. For example, after

6 years, CCA3(2/1) outperforms CS3 by one fault-free baseline core.

To better illustrate the importance of the gap between the curves in Figure

2.10(a), Figure 2.10(b) shows the cumulative performance for a variety of fault rates.

The two bars for each fault rate represent the cumulative performance after 6 and

12 years, respectively. The cumulative performance is the integral (area under the

curve) of the performance in Figure 2.10(a). For nominal fault rates or greater,

CCA3(2/1) provides substantially greater cumulative lifetime performance. After

only 6 years at the nominal fault rate, CCA3(2/1) has a 30% advantage, and this

advantage grows to over 60% by 12 years. Even at only half of the nominal fault

rate, CCA3(2/1) has achieved a 30% improvement at 12 years. For very low fault

34



���
�

���
�

���

��
��
��
��
	

��

�

��

� � �
� � � �	
 � � 
 
 � �� ��

�
���
�

���
�

� � � � ��

��
��
��
��
	

��

�

��

���������	
�

(a) Lifetime performance for nominal fault
rate

��

� �

� �

� �

��
�
��
��
��	


�	
�
�

��
��

�	

�
��

��
��
�	

��

�

� � � � 	 
 �
� 
 � � � 	 
 �

�� �

�

� �


 �

� �� 
 � � �� � � � � � � 	 � � 
 � �

��
�
��
��
��	


�	
�
�

��
��

�	

�

��������	�
�

(b) CCA4-clock(3/1)’s cumulative perfor-
mance advantage compared to CS4

Figure 2.12: Lifetime Performance of CCA4-clock(3/1) Chips.

�
�� �
�

�� �
�

�� �
�

�� �
�

�� �

� � � 	 ��

��
��
���

�	

��

�

��

���������	
�


 � �

 
 � �
 � � � � � �� ��

(a) Lifetime performance for nominal fault
rate

��

� �

� �

� �
��

�
��
��
��	


�	
�
�

��
��

�	

�
��
��

��
�	

��

� � � � � 	 
 �
� 
 � � � 	 
 �

�� �

�

� �


 �

� �� 
 � � �� � � � � � � 	 � � 
 � ���
�
��
��
��	


�	
�
�

��
��

�	

�
��
��

��
�	

��

�

����������

(b) CCA4-pipe(3/1)’s cumulative perfor-
mance advantage compared to CS4

Figure 2.13: Lifetime Performance of CCA4-pipe(3/1) Chips.

rates, CCA3(2/1) has slightly less cumulative performance after 6 years and slightly

more cumulative performance after 12 years, but neither difference is substantial.

4-core Chips. We present the results for 4-core chips in Figures 2.11, 2.12

and 2.13, respectively. Similar to the CCA3 results, the crossover point when CCA

chip outperforms CS is around 2 years for all CCA configurations (Figures 2.11(a),

2.12(a), and 2.13(a)). Figure 2.12(b) shows that CCA4-clock(3/1) achieves a greater

than 50% improvement in cumulative lifetime performance for the nominal and twice-

35



��
� �
� �
� �
� �

��
�
���

���
	
�

	�

�
��

��
�	

�
��

��
��
�	

��

�

� � � �	 
 � � 

� � � � �� � � � � 	 
 � 
 

� � � � �� � � � � 	 �� � 

� � � � �� � � � 	 �� � 


�� �
�

� �

 �

� �� 
 � � �� � � � � � � � � � 
 � �

��
�
���

���
	
�

	�

�
��

��
�	

�
��

��
��
�	

��

�

��������	�
�

(a) 6-year cumulative results

��
� �
� �
� �
� �

��
�
���

���
	
�

	�

�
��

��
�	

�
��

��
��
�	

��

�

� � � �	 
 � � 

� � � � �� � � � � 	 
 � 
 

� � � � �� � � � � 	 �� � 

� � � � �� � � � 	 �� � 


�� �
�

� �

 �

� �� 
 � � �� � � � � � � � � � 
 � �

��
�
���

���
	
�

	�

�
��

��
�	

�
��

��
��
�	

��

�

��������	�
�

(b) 12-year cumulative results

Figure 2.14: Lifetime Performance of Equal-Area Chips.

nominal fault rates. The results for the CCA4-pipe(3/1) are similar (Figure 2.13(b)).

CCA4-clock(2/2) achieves the best performance improvement over CS, by taking

advantage of the two CCs (Figure 2.11(b)). CCA4-clock(2/2) outperforms both

CCA4(3/1) configurations, yielding improvements of 35% and 65% for the nominal

fault rates over 6 years and 12 years, respectivelly.

Equal-Area Comparisons. The three-core and four-core results presented thus

far are not equal-area comparisons. CCA chips are slightly (less than 3.5%) larger

than CS chips. To provide another comparison point, we now compare chips of equal

area. The ratio of the chips’ performances is independent of the chip size. Figure

2.14 plots the cumulative performance advantages of the CCA chips. The figure

demonstrates that the CCA3(2/1) and CCA4-clock(2/2) configurations are the most

cost-effective designs for 90nm technology. These results are quite similar to the

earlier results, because CCA’s area overheads are fairly small. In addition, we bias

the results against CCA by not considering L2 caches.

36



���

���

�

���

��
��
���

�	

��

�

��

� � 	 
 � � 

� � 	 
 � � � 
�� � � � � � � � ��

�

���

���

���

� 
 � � ��

��
��
���

�	

��

�

��

���������	
�

(a) Performance for nominal failure rate

��
� �
� �
� �
� �

��
�
��
��
��	


�	
�
�

��
��

�	

�
��
��

��
�	

��

�

� � � 	 
 � �

 � � � 	 
 � �

�
 �
�


 �
� �
� �

� �� � � � �� � � � � � � 
 � � � � �

��
�
��
��
��	


�	
�
�

��
��

�	

�
��
��

��
�	

��

�

��������	�
�

(b) CCA3-clock(2/1)’s cumulative perfor-
mance advantage compared to CS3 for
TMR configurations

Figure 2.15: Lifetime Performance of TMR Chips

2.5.3 Performance of Chips Using TMR/DMR

We demonstrated that CCA outperforms CS chip by increasing core availability. Sus-

tained availability is especially desired in fault tolerant architectures that use DMR

or TMR configurations to provide resilience against failures. If multiple cores are

used to provide error detection with DMR or error correction with TMR, then CCA

is beneficial as it allows for more cores to be available. We consider the performance

of a chip to be the performance of the slowest core in a DMR or TMR configuration.

If fewer than 2 cores are available, the chip has zero performance (we assume the

user is unwilling to use the processor without at least DMR to detect errors).

TMR. We plot the performance of 3-core chips that are being used in a TMR

configuration in Figure 2.15. The crossover point is at about 2 years, similar to

the comparison between CCA3 and CS3 in non-TMR configurations. However, the

difference in cumulative performance is even greater. CCA3 provides more than 50%

more cumulative performance for nominal and higher fault rates, even after only

6 years. At just half of the nominal fault rate, which is an optimistic assumption,

CCA3 still has a 45% edge. The intuition for CCA’s large advantage is that it greatly

37



���

�

���

��
��
��
��
	

��

�

��

�� � � � 	 
 �
�� � � � 	 	 � � 
� � � � � � �� ��

�

���

�

� � � � ��

��
��
��
��
	

��

�

��

���������	
�

(a) Performance for nominal failure rate

��

� �

� �

� �

� �

��
�
��
��
��	


�	
�
�

��
��

�	

�
��

��
��
�	

��

�

� � � 	 
 � �

 � � � 	 
 � �

�
 �

�


 �

� �

� �� � � � �� � � � � � � 
 � � � � �

��
�
��
��
��	


�	
�
�

��
��

�	

�
��

��
��
�	

��

�

��������	�
�

(b) CCA4-clock(2/2)’s cumulative perfor-
mance advantage compared to CS4 for
DMR configurations

Figure 2.16: Lifetime Performance of DMR Pair Chips

prolongs the chip’s ability to operate in DMR mode. This analysis also applies to

chips with more cores where the cores are grouped into TMR clusters.

DMR. We consider the performance of 4-core chips that comprise of two DMR

pairs of cores (i.e., 4 cores total). The first fault in any core leads to the loss of one

core, and thus one DMR pair, for both CS4 and CCA4. Additional faults, however,

are often tolerable with CCA4. Figure 2.16 shows the results for CCA4-clock(2/2),

which is the best CCA4 design for this situation. Between approximately 2 and 2.5

years, CS4 and CCA4-clock(2/2) have similar performances. After that, though,

CCA4-clock(2/2) significantly outperforms CS4. The cumulative results show that,

for nominal and greater fault rates, CCA4-clock(2/2) provides lifetime advantages

greater than 35% over 6 years and greater than 63% over 12 years.

Therefore, CCA is especially beneficial in supporting the high-availability require-

ments of TMR and DMR configurations.

38



2.6 Related Work

We compare CCA to prior work in self-repair, pooling of core resources, and lifetime

reliability.

2.6.1 Multicore-Specific Self-Repair

Multicore processors are inherently redundant in that they contain multiple cores.

Aggarwal et al. [10] proposed a reconfigurable approach to using multiple cores to

provide redundant execution. When three cores are used to provide TMR, a hard

fault in any given core will be masked. This use of redundant cores is related to

the traditional fault tolerance schemes of multi-chip multiprocessors, such as IBM

mainframes [117]. CCA is complementary to this work in that CCA enables a larger

fraction of on-chip cores to be available for TMR or DMR use. Concurrently with our

work, Gupta et al. [48] developed the StageNet multicore processor that is similar

to the CCA concept [106], and in which the cores’ pipeline stages are connected by

routers. The StageNet chip enables greater flexibility in sharing resources than CCA,

but incurs a greater performance overhead for this flexibility. Thus, CCA processors

outperform StageNet ones for medium chip lifetimes of up to 10-12 years, while the

latter outperform CCA chips over longer lifetimes.

2.6.2 Self-Repair for Superscalar Cores

Numerous researchers have observed that a superscalar core contains a significant

amount of redundancy. Bower et al. [27] diagnose where a hard fault is–at the gran-

ularity of an ALU, reservation station, ROB entry, etc.–and deconfigure it. Shivaku-

mar et al. [113] and Srinivasan et al. [119] similarly deconfigure components that

are diagnosed by some other mechanism (e.g., post-fabrication testing). Rescue [111]

deconfigures an entire ”way” of a superscalar core if post-fabrication testing uncovers

a fault in it. CCA differs from all of this work by targeting simple cores with little

39



intra-core redundancy. Finally, Powell et al. [97] proposed thread migration if a hard

fault precludes the thread from executing on a core. The fault-and-migrate technique

is efficient if the faulty unit is rarely used (i.e., the fault impacts only a rarely ex-

ecuted set of instructions), such that migration does not occur often. Thus, their

solution is targeted mostly towards multi-scalar cores and has limited applicability

to simple cores.

2.6.3 Pooling of Core Resources

There have been proposals to group cores together during phases of high ILP. Both

Voltron [134] and Core Fusion [65] allow cores to be dynamically fused and un-fused

to accommodate the software. These schemes both add a substantial amount of

hardware to allow tight coupling of cores, in the pursuit of performance and power-

efficiency. CCA differs from this work by being less invasive. CCA’s goals are also

different in that CCA seeks to improve lifetime performance.

2.6.4 Lifetime Reliability

Srinivasan et al. [118, 119] have explored ways to improve the lifetime reliability of a

single superscalar core. These techniques include adding spare components, exploit-

ing existing redundancy in a superscalar core, and adjusting voltage and frequency

to avoid wearing out components too quickly. CCA is complementary to this work.

2.7 Conclusions

For many-core processors with simple cores, there is an opportunity to improve life-

time performance by enabling sharing of resources in the presence of hard faults.

The Core Cannibalization Architecture represents a class of designs that can retain

performance and availability despite such faults. Although incurring slight perfor-

mance overhead in fault-free scenarios, the CCA’s advantages over the course of

40



time outweigh this initial disadvantage. From among the CCA designs, we believe

that CCA-clock designs are preferable to CCA-pipe designs. Even in those situations

when CCA-pipe designs might yield a slightly better performance, it is not clear that

their added complexity is worth this slight performance benefit. However, for future

CMOS technologies, other core models, or cores with faster clocks, the CCA-pipe

design may be worth its complexity.

Based on our results, we expect CCA (or similar designs) to excel in two domains

in particular. First, for many embedded applications, the key metric is availability

at a reasonable performance, more so than raw performance. Many embedded chips

must stay available for long periods of time–longer than the average lifetime of a

desktop, for example–and CCA improves this availability. Second, the CCA’s signif-

icant benefits for chips that use cores in TMR and DMR configurations suggest that

the design is a natural fit for chips using redundant cores to provide reliability.

41



3

Address Translation-Aware Memory Consistency

Current processors are vulnerable to design bugs in their address translation (AT)

systems [2, 3, 4, 59, 61, 62, 63]. Possible causes for the multitude and constant

occurrence of these design faults include the increased complexity of AT operations,

as well as a lack of complete specifications for the interactions between the AT and

the rest of the memory system. Such lack of precise specifications increases the

difficulty of AT’s pre-deployment testing and runtime verification. Consequently, we

are unaware of any existing dynamic verification solutions that target AT. The result

is that the AT system is vulnerable to design bugs, and any such design fault leads

to costly processor deployment delays as in the recent case of the TLB coherence

bug in the AMD Barcelona processor [131].

We believe that AT-related design bugs in modern processors are a direct re-

sult of designers’ tendency to over-simplify memory consistency, and not account

for how it is impacted by AT. Thus, memory consistency is considered a mono-

lithic AT-independent interface between hardware and software. In this chapter, we

address this problem by developing a framework for specifying AT-aware memory

42



consistency models. We expand and divide memory consistency into 1) the physical

address memory consistency (PAMC) model that defines the behavior of operations

on physical address and 2) the virtual address memory consistency (VAMC) model

that defines the behavior of operations on virtual addresses. As part of this expan-

sion, we show what AT features are required to bridge the gap between PAMC and

VAMC.

This chapter is structured as follows. We first describe the characteristics of the

AT system that we consider in our analysis (Section 3.1). We continue by discussing

the various levels of memory consistency that a system presents to its programmers

(Section 3.2). We then focus on the two consistency models that are closely related to

AT: PAMC (Section 3.3) and VAMC (Section 3.4), and formalize the crucial role of

address translation in supporting a VAMC model. We then show how AT-operations

can be integrated within a complete specification of VAMC models (Section 3.5), and

describe how commercially available systems handle AT-related operations (Section

3.6). Finally, we discuss conclusions and future work (Section 3.7).

3.1 AT Fundamentals and Assumptions

Address translation is a level of indirection that regulates a software entity’s (i.e.,

thread or process) access to physical memory given a virtual address. We restrict our

discussion to page-based AT systems and leave as future work other virtual memory

paradigms such as segmentation. Architectures facilitate this level of indirection

through translations, which are supported by a set of software managed structures

called page tables.

A translation is a tuple <mapping(VP,PP), permissions, status>, where the map-

ping converts the virtual page VP to a physical page PP. PP, permissions, and status

information are specified by the page table entry (PTE) defining the translation and

that is uniquely identified by the VP. This association is unique within the virtual

43



generic MRF{
acquire page table lock(s);
create/modify the translation;
enforce translation coherence (e.g., send TLB invalidations to other cores);
release page table lock(s);
}

Figure 3.1: Pseudo-code for a Generic MRF.

memory context of the corresponding software entity. The permission bits include

whether the page is owned by the user or the kernel and whether the page is readable,

writeable, or executable. The status bits denote whether the page has been accessed

or is dirty. In addition to these metadata bits, translations also contain a Valid bit

that indicates if cores can access them in the page tables (i.e., the translations are

valid within the software’s context). With respect to our analysis, all operations

on this bit can be treated identically to operations on the mapping. Therefore, for

simplicity, we do not consider separately the Valid bit in this chapter.

Accessing a translation is on the critical path of a memory access for most systems.

Consequently, cores cache copies of the translations in private or shared translation

caches (i.e., translation lookaside buffers–TLBs) to speed up translation accesses.

Changes to the PTEs result in translations being modified or invalidated in the

page tables, and coherence must be maintained between the cached copies of the

translations and the page table defined translations.

Translation updates. To create or delete a translation, or to modify a trans-

lation’s mapping and/or permission bits, the privileged software (i.e., kernel) relies

on dedicated software routines that we refer to as map/remap functions (MRFs).

An MRF typically assumes the operations illustrated in Figure 3.1. Some of the

activities in an MRF require complicated actions to be performed by the software

or hardware. For example, ensuring translation coherence may require invalidating

copies of the translation from all TLBs. This can be implemented by delivering TLB

44



invalidations through either inter-processor interrupts or a global TLB invalidation

instruction that relies on hardware for distributing the invalidations. We discuss in

depth translation coherence in Chapter 5, while Section 5.1 describes the procedure

typically used for ensuring translation coherence.

Status bits updates can be performed either explicitly by the kernel (i.e., priv-

ileged programmer), or implicitly by the system (i.e., hardware and possibly soft-

ware). Status bits updates are usually not performed in MRFs as they do not

require translation coherence, and occur atomically for the TLB-cached translation

with respect to the memory PTE defining the translation. In an architecture with

hardware-managed TLBs, the hardware is responsible for eventually updating the

status bits. If the TLBs are software-managed, status bits updates occur in exception

handlers.

AT’s System Impact. AT encompasses both hardware and system software,

and supports a system’s virtual addresses memory operations. By sustaining the

virtual address memory interface, AT can impact two aspects that determine the

functionality of the memory system: memory coherence and memory consistency.

While memory coherence refers to the visibility of writes to a single memory location

by all cores in the system, memory consistency specifies the order in which a core’s

accesses to different locations in memory are observed by cores. The focus of this

chapter is exclusively on AT’s impact on memory consistency, motivated by the high

number of AT design faults that are related to this aspect.

3.2 Memory Consistency Levels

A memory consistency specification defines the legal software-visible orderings of

loads and stores performed by multiple threads. The consistency models serves as

a contract between the system and the programmer. This contract is defined for

a specific memory interface and is valid only for the programmer operating at this

45



�

���������
	���


� 	������
	���


��������� �
�

� ������� ��� ����!"�
�
���$#%�'&

�

Figure 3.2: Address
Translation-Oblivious
Memory Consistency.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�����������
��	 �
 �

� � 
 � ��������
��	 �
 �� ��� � 
 ���

� � 
 � �
 � �� � � 
 �
�� � � � � ��

� � ���
 �
 �
 �
� � � � �� �� �

�������������	�	��
�������
���
��������

�� ���� �� ��
� � � �	�	��
�
�
�
�	���� 
� � ���

� 
� ���	� ���� �
�
�
�	���� 
� � ���

� ��
� � � �� � � �����	�	��
�������
���
��� � ����

�� �	 � � ���

��	� ���� �� ��
� � � �
	�	��
��
�
�	���� 
� � ���

� 
� ���� �	� ���� �
�
�
�	���� 
� � ���

��	� ���� � � �� ��  	� ��� ���	! � 
���� ��

�� 
���� � �� � � �����	�	��
�������
���
���� ����

Figure 3.3: Address Translation-Aware Memory
Consistency. Shaded portions are the focus of this
chapter.

interface. Therefore, before specifying a consistency model, it is crucial to determine

the interface at which the model applies to. Given this observation, in order to

understand AT’s impact on memory consistency, we must consider the different levels

at which memory consistency specifications are defined and identify the ones that

are impacted by AT.

The traditional view of memory consistency is that of one monolithic interface

between the hardware and the software, as illustrated in Figure 3.2. Memory con-

sistency, however, is a set of interfaces between the hardware and various levels of

software, as illustrated in Figure 3.3. These memory consistency layers are a di-

rect consequence of the different levels of abstractions that hardware and software

support in a computing system [115].

46



Although Adve and Gharachorloo previously explained the multi-level nature of

memory consistency [5], this more comprehensive definition of memory consistency

is not always adopted in the community. For example, classical architecture books

do not specify whether the model refers to virtual or physical addresses [54, 115].

In addition, existing consistency models such as sequential consistency (SC), proces-

sor consistency, weak ordering, release consistency, etc., do not distinguish between

virtual and physical addresses. Lamport’s original definition of SC [73] is typical

in that it specifies a total order of operations (loads and stores), but it does not

specify whether the loads and stores are to virtual or physical addresses. Implicitly,

most existing consistency models assume either unmapped software or software with

a fixed one-to-one mapping from virtual to physical addresses. We refer to these

consistency models as AT-oblivious.

In contrast with AT-oblivious models, understanding the impact of AT on mem-

ory consistency requires considering the hierarchical levels of memory consistency

models described in Figure 3.3 and identifying which of these levels are impacted by

AT. At each of these levels, the consistency model defines the legal orderings of the

memory operations available at that level. We position hardware below all levels,

as the microarchitecture represents the lowest level that provides mechanisms that

can be used to enforce consistency models at various levels (e.g., the core provides

in-order instruction commit). We limit our discussion to four levels relevant to pro-

grammers that are present in most current computing systems. These consistency

models are necessary interfaces that are included in the specifications of the ISA,

ABI, and API. However, for the purposes of our current analysis, we do not need

to consider which interfaces belong in which specifications. We discuss these levels,

starting at the lowest level:

• Physical address memory consistency (PAMC ): Some software such as un-

47



mapped code or boot code, as well as the code managing the AT system, rely

exclusively on PAMC. Implementing PAMC is the hardware’s responsibility

and, as such, is specified precisely and completely in the architectural manual

(i.e., ISA).

• Virtual address memory consistency (VAMC ): VAMC is the level just above

the PAMC. All mapped software (i.e., software that executes using virtual ad-

dresses) relies upon VAMC, including mapped system software. VAMC builds

upon PAMC, and requires support from both hardware and, usually, AT soft-

ware (we are unaware of a system that currently relies exclusively on hardware

for supporting VAMC, although such a system might prove feasible to build

considering the increasing number of on-die available transistors). Perhaps one

non-intuitive aspect of VAMC is that mapped virtual memory system software

both relies upon VAMC and helps to support it.

• User process memory consistency (UPMC ). UPMC is specified by the software

whenever additional ordering is required on memory accesses beyond VAMC.

Thus, UPMC may either be identical to VAMC, or it could differ, as in the

case of software transactional memory or software distributed shared memory.

• High-level language consistency : At the highest level, user-level programmers

see the consistency model specified by the high level language [6], such as

the consistency models provided by C++ [23] or Java [83]. These models

are supported by the compilers, runtime systems, and lower level consistency

models.

As shown in Figure 3.3, PAMC and VAMC are important interfaces that support

different layers of software. Correct PAMC is required for unmapped code to work

correctly, and correct VAMC is required for mapped code to work correctly. The AT

48



Table 3.1: SC PAMC. Loads and stores are to physical addresses. An X denotes an
enforced ordering.

Operation 2
Load Store

Operation 1
Load X X
Store X X

Table 3.2: Weak Order PAMC. Loads and stores are to physical addresses. MemBar
denotes a memory barrier. An X denotes an enforced ordering. An A denotes an ordering
that is enforced if the operations are to the same physical address. Empty entries denote
no ordering.

Operation 2
Load Store MemBar

Operation 1
Load A X
Store A A X
MemBar X X X

system intermediates the transition between the two consistency levels, and directly

impacts the upper layer, VAMC. Without a correct AT system, a system with virtual

memory cannot enforce any VAMC model.

In the next sections, we focus on these two consistency layers and explain how to

adapt well-known existing consistency models to these levels. We present a VAMC

specification and show how it differs from PAMC, discuss how AT bridges the gap

between PAMC and VAMC, and describe how AT impacts both system programmers

and verification.

3.3 Specifying PAMC

We specify consistency models at all levels using a table-based scheme like those of

Hill et al. [56] and Arvind and Maessen [14]. The table specifies which program

orderings are enforced by the consistency model. Some consistency models have

atomicity constraints that cannot be expressed with just a table (e.g., stores are

atomic as is the case for TSO). We can specify these models by augmenting the table

with a specification of atomicity requirements, as in prior work [14], although we do

49



not consider such models in this chapter.

The specifications for PAMC can be straightforwardly adapted from the AT-

oblivious consistency model specifications, by precisely stating that PAMC rules are

applicable to physical addresses only. Thus, for a sequentially consistent PAMC

model (SC PAMC), the specifications would state that (a) there must exist a total

order of all loads and stores to physical addresses that respects the program orders

of the threads, and (b) the value of each load is equal to the value of the most

recent store to that physical address in the total order. Table 3.1 presents the

specifications for the SC PAMC, while Table 3.2 presents the adaptation for a Weak

Ordering PAMC, respectively. Under SC, all physical address memory operations

must appear to perform in program order. Under Weak Ordering, memory operations

are unordered.

3.4 Specifying VAMC

VAMC extends the PAMC specifications to also include mapped instructions. Al-

though adapting an AT-oblivious consistency model for PAMC is straightforward,

there are three challenges when adapting an AT-oblivious consistency model for

VAMC: 1) synonyms, 2) mapping and permission changes, and 3) load/store side

effects. These challenges are based on AT aspects that directly impact VAMC or-

derings, and we discuss both their impact on the programmer as regulated through

the VAMC interface, as well as on the verification of the VAMC level.

3.4.1 Synonyms

The first challenge is the possible existence of synonyms, i.e. multiple virtual ad-

dresses (VAs) that map to the same physical address (PA). Consider the example in

Figure 3.4, in which VA1 and VA2 map to PA1. SC requires a total order in which

the value of a load equals the value of the most recent store to the same address.

50



Thread 1 Thread 2

Store VA1=1
Store VA2=2
Load y=VA1

Load x=VA2

Figure 3.4: Example of Synonym Problem. Assume VAMC sequential consistency and
that VA1 and VA2 map to PA1. Assume that PA1 is initially zero. A naive VAMC
implementation incorrectly allows (x,y)=(2,1).

Unfortunately, naively applying SC at the VAMC level allows an execution in which

x=2 and y=1. The programmer expects that the loads in both threads will be as-

signed the value of the most recent update to PA1. However, a naive definition of

VAMC that did not consider the level of indirection introduced by AT, would allow

x to receive the most recent value of VA2 and y to receive the most recent value of

VA1, without considering that they both map to PA1. To overcome this challenge,

we re-formulate AT-oblivious consistency models for VAMC by applying the model

to synonym sets of virtual addresses rather than individual addresses. For example,

we can define SC for VAMC as follows: there must exist a total order of all loads

and stores to virtual addresses that respects program order and in which each load

gets the value of the most recent store to any virtual address in the same virtual ad-

dress synonym set. Similar modifications can be made to adapt other AT-oblivious

consistency models for VAMC.

Impact on Programming. Programmers that utilize synonyms generally ex-

pect ordering to be maintained between accesses to synonymous virtual addresses.

Incorporating synonyms explicitly in the consistency model enables programmers to

reason about the ordering of accesses to virtual addresses.

Impact on VAMC Verification. Explicitly stating the ordering constraints of

synonyms is necessary for verification. An error in the address translation hardware

could result in a violation of ordering among synonyms that might not be detected

51



Buggy Code Correct Code

Thread 1 Thread 2 Thread 1 Thread 2

MRF {map VA1 to PA2; MRF {map VA1 to PA2;
tlbie VA1; // invalidate tlbie VA1; // invalidate

// translation // translation
// (VA1→PA1) // (VA1→PA1)

} }
tlbsync // fence for MRF

sync; // memory barrier for sync; // memory barrier for
// regular memory ops // regular memory ops

Store VA2 = B Store VA2 = B
sync while (VA2!=B) sync while (VA2!=B)

{spin} {spin}
sync sync
Store VA1 = C Store VA1 = C
sync sync
Store VA2 = D Store VA2 = D

while (VA2 != D) {spin} while (VA2 != D) {spin}
sync sync
Load VA1 // can get C or A Load VA1 // can only get C

Figure 3.5: Power ISA Code Snippets to Illustrate the Need to Consider MRF Ordering.
Initially, VA1 is mapped to PA1, and the value of PA1 is A. Enforcing MRF serialization
through tlbsync (right-hand side) eliminates result ambiguity (left-hand side).

without the formal specification.

3.4.2 Mapping and Permission Changes

The second challenge is that there is a richer set of memory operations at the VAMC

level than at the PAMC level. User-level and system-level programmers at the VAMC

interface are provided with OS software routines to map and remap or change per-

missions on virtual memory regions (i.e., MRFs), such as the mk pte() (”make new

page table entry”) or pte mkread() (”make page table entry readable”) functions in

Linux 2.6.

Impact on Programming. The code snippet in the left-hand side of Figure 3.5,

written for a system implementing the Power ISA, illustrates the need to consider

MRFs and their ordering. We expect that the load by Thread 1 should return the

value C written by Thread 2, because that appears to be the value of the most recent

write (in causal order, according to the Power ISA’s weak ordered memory model).

However, this code snippet does not guarantee when the translation coherence re-

quest (i.e., tlbie instruction) will be observed by Thread 2 and thus Thread 2 could

52



continue to operate with the old translation of VA1 to PA1. Therefore, Thread 2’s

Store to VA1 could modify PA1. When Thread 1 performs its load to VA1, it could

access PA2 and thus obtain B’s old value.

The problem with the code is that it does not guarantee that the invalidation

generated by the tlbie instruction will execute on Thread 2’s core before Thread

2’s store to VA1 accesses its translation in its TLB. Understanding only the PAMC

model is not sufficient for the programmer to reason about the behavior of this

code; the programmer must also understand how MRFs are ordered. We show a

corrected version of the code on the right-hand side of Figure 3.5. In this code,

Thread 1 executes a tlbsync instruction that is effectively a fence for the MRF and

the associated translation coherence operation. Specifically, the tlbsync guarantees

that the tlbie instruction executed by Thread 1 has been observed by other cores as

for Power ISA the memory barriers (i.e., sync) only order normal load and stores,

and not MRFs.

Impact on VAMC Verification. Similar to the above programming example,

a runtime hardware error or design bug could cause a TLB invalidation to be dropped

or delayed, resulting in TLB incoherence. A formal specification of MRF orderings

is required to develop proper verification techniques, and PAMC is insufficient for

this purpose.

3.4.3 Load/Store Side Effects

The third challenge in specifying VAMC is that loads and stores to virtual addresses

have side effects. The AT system includes status bits (e.g., Accessed and Dirty bits)

for each page table entry. These status bits have an informative aspect for the kernel

and are part of the architectural state, and the ordering of updates to those bits

must thus be specified in VAMC. To achieve this we add two new operations to the

specification tables: Ld-sb (load’s impact on status bits) and St-sb (store’s impact

53



Store VA1=1; // VA1 maps to PA1
Load VA2; // VA2 maps to the page table entry of VA1

/* The load is used by the VM system to determine if
the page mapped by VA1 needs to be written back to
secondary storage. */

Figure 3.6: Code Snippet to Illustrate the Need to Consider Load/Store Side Effects. If
the two instructions are reordered, a Dirty bit set by the store could be missed and the
page incorrectly not written back.

on status bits).

Impact on Programming. Consider the example in Figure 3.6. Without

knowing how status updates are ordered, the OS cannot be sure what state will

be visible in these bits. It is possible that the load of the page table entry occurs

before the first store’s Dirty bit update. The OS could incorrectly determine that a

writeback is not necessary, resulting in data loss.

Impact on VAMC Verification. Without a precise specification of status bit

ordering, verification could miss a situation analogous to the software example above.

A physical fault could lead to an error in the ordering of setting a status bit, and

this error could be overlooked by dynamic verification hardware and lead to silent

data corruption.

3.5 AT-aware VAMC Specifications

Considering the AT aspects that influence VAMC, we present two possible VAMC

adaptations of SC and Weak Ordering in Table 3.3 and Table 3.4, respectively. These

specifications include MRFs and status bit updates, and loads and stores apply to

synonym sets of virtual addresses (not individual virtual addresses). The weak order-

ing VAMC allows status bits to be reordered with respect to loads, stores, and other

status bit updates. These specifications provide both a contract for programmers

and enable development of techniques to verify correct memory system operation.

54



Table 3.3: SC VAMC. Loads and stores are to synonym sets of virtual addresses. An X
denotes an enforced ordering.

Operation 2
Ld Ld-sb St St-sb MRF

Operation1

Ld X X X X X
Ld-sb X X X X X
St X X X X X
St-sb X X X X X
MRF X X X X X

Table 3.4: Weak Order VAMC. Loads and stores are to synonym sets of virtual addresses.
MemBar denotes a memory barrier. An X denotes an enforced ordering. An A denotes an
ordering that is enforced if the operations are to the same physical address. Empty entries
denote no ordering.

Operation 2
Ld Ld-sb St St-sb MemBar MRF

Operation1

Ld A X X
Ld-sb X X
St A A X X
St-sb X X
MemBar X X X X X X
MRF X X X X X X

Alternative VAMC Models

The two VAMC models that we presented in the previous section are clearly not the

only possibilities. For example, both of these adaptations strictly order MRFs, but

other MRF orderings are possible. We are unaware of any current system that relaxes

the ordering between MRFs that modify mappings and other memory operations, but

at least one ISA (Power ISA) allows MRFs that upgrade permissions to be reordered

with respect to certain memory operations. For example, an MRF that adds write

permission to a region that currently only has read permission can be reordered with

respect to loads since they are unaffected by the permission change [125]. However,

we expect most VAMC models to order this type of MRF with respect to stores.

Another example of an alternative VAMC model is one in which all MRFs can be

reordered unless an explicit fence-like instruction for MRFs is used, which could be a

55



Table 3.5: Address Translation in Commercial Architectures.

AT Mechanisms Architecture’s Impact
on VAMC

ISA PAMC TLB
Mgmt.

TLB Coherence
Mechanisms

Invalidation
Processing

Permissions
Consistency

MIPS SC software inter-processor in-
terrupt (IPI)

immediate strict

IA-32,
Intel64

processor consis-
tency

hardware IPI immediate relaxed

IA-64 release consis-
tency

hardware
& software

IPI and global
TLB invalidation

deferred relaxed

AMD64 processor consis-
tency

hardware IPI immediate relaxed

SPARC TSO, PSO, RMO software IPI (sent directly
to the MMU)

immediate strict

PowerISA weak consistency hardware IPI and global
TLB invalidation

deferred strict

Memory Barrier (MemBar) or a dedicated instruction for ordering MRFs. Analogous

to relaxed memory consistency models, software uses a serializing instruction, like the

Power ISA’s tlbsync, to enforce order when it wishes to have order, but the default

situation allows a core to defer invalidations due to MRFs.

3.6 Commercial VAMC Models

In Table 3.5, we compare the PAMC models and AT systems of six currently avail-

able commercial architectures. There is a considerable diversity in PAMC models

and hardware support for AT. For example, while all platforms implement TLB co-

herence, some architectures provide inter-processor interrupts for maintaining TLB

coherence, whereas other architectures support TLB coherence by providing privi-

leged instructions for invalidating TLB entries on other cores.

Current architectures cannot specify VAMC because their VAMC models require

software support. As mentioned in Section 3.2, this is not a fundamental constraint,

and a hardware-only AT implementation might allow future ISAs to also specify

VAMC. An architecture can state what software should do to achieve a particular

VAMC model (e.g., as part of the ABI). Some commercial architectures consider AT’s

56



impact on memory consistency to a limited extent. For example, SPARC v9 [128]

assumes that a store to one virtual address modifies the values of all other synonyms.

Intel’s IA-64 model [60] assumes a one-to-one mapping between virtual and physical

addresses. In the rightmost two columns of Table 3.5 we list, for each architecture, its

impact on two aspects of VAMC: (a) whether a TLB invalidation must be processed

immediately or can be deferred and (b) whether translation permission bits must be

strictly coherent. Thus, PAMC and the AT mechanisms impact the VAMC model

that can be supported by a platform. For example, an architecture with relaxed

permissions coherence might not be able to enforce some of the orderings in VAMC

tables like Tables 3.3 and 3.4.

3.7 Conclusions and Future Work

In this chapter we have developed a framework for specifying a system’s memory con-

sistency at two important levels: PAMC and VAMC. Having a thorough, multi-level

specification of consistency enables programmers, hardware designers, and design

verifiers to reason easily about the memory system’s correctness.

The current analysis represents a first step to the exploration of AT’s impact

on the memory system. We foresee future research into VAMC models and AT

systems, as well as the relationship between them. One important aspect of future

work is to explore AT models and determine what is required to yield weaker VAMC

models. More relaxed VAMC specifications are only viable if designers and verifiers

can convince themselves that these models are correct. Our framework for specifying

VAMC enables these explorations.

The incentive to explore weaker VAMC models is that, similar to weaker PAMC

models, they might lead to increased performance. Such performance gains depend

on what VAMC aspects can be relaxed, as well as the frequency of these serialization

points in current applications. A first direction to pursue is to reduce the overly

57



constraining requirement of MRF serialization with respect to other MRFs, as well

as regular instructions. Current models do not distinguish between MRFs to different

translations and require MRF serialization with respect to all instructions, even if

they are unaffected by the MRF. Such weaker VAMC models might prove beneficial,

especially for systems that rely heavily on MRFs.

Another possible research direction is the implementation of a hardware-only AT

system. The increasing number of available transistors allows us to consider the de-

sign of an AT coprocessor that handles page table management, memory allocation

and paging. This coprocessor would allow the ISA to fully specify VAMC, and the

system to perform AT operations faster than using software routines. An in-depth

analysis is required to establish if the hardware can perform all required functions

more efficiently than software, considering the complex data structures used by vir-

tual memory management or the per-process paging bookkeeping.

Finally, the framework we introduced in this chapter can be extended to incor-

porate segmentation and virtualization aspects. Including these aspects results in

a complete specification of virtual address memory consistency. In this context,

segmentation can be approached analogously to paging, both concepts representing

levels of indirection from virtual to physical addresses.

58



4

Dynamically Verifying Address Translation

Although dynamic verification schemes exist for AT-oblivious memory systems [29,

87, 88], no such solutions exist for AT-aware models. The framework we proposed

in the previous chapter allows us to consider such solutions by decomposing the

verification procedure into PAMC and AT-related mechanisms. Because there are

no existing solutions for checking AT correctness, we develop DVAT, a scheme to

dynamically verify AT. We demonstrate that for a particular AT model, combining

DVAT with an existing scheme for dynamic verification of PAMC [29, 87, 88] is

sufficient for dynamic verification of VAMC.

In this chapter, we first discuss the AT model we consider in our evaluation,

ATSC , that can be formally proven to bridge the gap between two specific PAMC

and VAMC models (Section 4.1). We then construct a framework for specifying AT

systems (Section 4.2) that helps architects to reason about correct AT functionality

and to develop checkers for runtime verification of AT. Based on this framework, we

propose a dynamic verification mechanism for ATSC (Section 4.3). When combined

with PAMC dynamic verification and timeouts, our AT dynamic verification solution

59



can capture the AT-related design bugs mentioned in Section 1.2. We experimen-

tally evaluate DVAT’s fault detection efficiency and performance impact using a full

system simulator (Section 4.4). We then compare our work to prior work (Section

4.5), and discuss conclusions and future work (Section 4.6).

4.1 AT Model: ATSC , a Provably Sufficient Sequential AT Model

In our analysis we consider an AT model that, when combined with SC PAMC

(PAMCSC - see Table 3.1), is provably sufficient for providing SC VAMC ( VAMCSC

- Table 3.3). This AT model, which we call ATSC , is quite similar, but not identical,

to the model characterizing current Linux platforms. Compared to existing AT

models, ATSC is more restrictive and conservative. Nevertheless, ATSC is realistic

as, for example, the AT system of the Sequoia machines [107] fits this model.

ATSC is a sequential model of an AT system. Because it is a model, it is a

logical abstraction that encompasses the behaviors of a variety of possible physical

implementations. The three key aspects of this model are:

• MRFs logically occur instantaneously and are thus totally ordered with respect

to regular loads and stores and other AT operations. For example, Linux

enforces this aspect of the model using locks.

• A load or store logically occurs instantaneously and simultaneously with its

corresponding translation access (accessing the mapping, permissions, and sta-

tus bits) and possible status bit updates. A core can adhere to this aspect of

the model in many ways, such as by snooping TLB invalidations between when

a load or store executes and when it commits. A snoop hit forces the load

or store to be squashed and re-executed. Another possibility to enforce this

behavior is for the core to flush the pipeline before executing a TLB translation

invalidation or a full TLB flush.

60



• A store atomically updates all the values in the synonym set cached by the core

executing the store, and a coherence invalidation atomically invalidates all of

the values in the synonym set cached by the core receiving the invalidation. To

our knowledge, current systems adhere to this aspect of the model either by

using physical caches or by using virtual caches with same index mapping for

synonym set virtual addresses.

These properties ensure that ATSC bridges the gap between PAMCSC and VAMCSC .

PAMCSC + ATSC = VAMCSC

PAMCSC specifies that all loads and stores using physical addresses are totally or-

dered. ATSC specifies that a translation access occurs instantaneously and simul-

taneously with the load or store. Under ATSC , all MRFs are totally ordered with

respect to each other and with respect to loads and stores. ATSC also specifies that

accesses to synonyms are ordered according to PAMCSC (e.g., via the use of physical

caches). Therefore, all loads and stores using virtual addresses are totally ordered.

Finally, ATSC specifies that status bit updates are performed simultaneously with

the corresponding load or store, and thus status bit updates are totally ordered with

respect to all other operations. Hence, PAMCSC plus ATSC results in VAMCSC ,

where ordering is enforced between all operations (see Table 3.3).

4.2 A Framework for Specifying AT Correctness

ATSC is just one possible model for AT and thus one possible bridge from a PAMC

model to a VAMC model. In this section, we present a framework for specifying AT

models, including AT models that are more relaxed than the one presented in Section

4.1. A precisely specified AT model facilitates the verification of the AT system and,

in turn, the verification of VAMC. We have not yet proved the sufficiency of AT

models other than ATSC (i.e., that they bridge any particular gap between a PAMC

61



and VAMC), and we leave such analysis for future work. However, the framework

that we propose is applicable to most currently available AT models, including ATSC .

Our framework consists of two invariants that are enforced by a combination of

hardware and privileged software:

• The page table is correct (Section 4.2.1).

• Translations are ”coherent” (Section 4.2.2). We put quotes around coherent,

because we consider a range of definitions of coherence, depending on how

reordered and lazy the propagation of updates is permitted to be. All systems

of which we are aware maintain translation mapping coherence and coherence

for permissions downgrades, either using software routines, an all-hardware

protocol [105], or a combined hardware/software approach. Systems may or

may not specify that status bits and/or permissions upgrades are also coherent.

In our analysis, without loss of generality, we assume that translations in their

entirety are coherent.

4.2.1 Page Table Integrity

For AT to behave correctly, the contents of the page table must contain the correct

translations. This definition of correctness includes aspects such as: translations

have the correct mappings (e.g., the physical page exists), the metadata bits are

consistent (e.g., a translation is writeable, but not readable), and the translation’s

mappings maintain a correct page table structure as specified by the ISA, if the ISA

specifies such a structure.

The page table is simply a data structure in memory that we can reason about

in two parts. The first part is the root (or lowest level of the table) of the page

table. The root of the address space is at a fixed physical address and uses a fixed

mapping from virtual to physical address. The second part, the page table content,

62



is dynamically mapped and thus relies on address translation.

To more clearly distinguish how hardware and software collaborate in the AT

system, we divide page table integrity into two sub-invariants:

• [PT-SubInv1] The translations are correctly defined by the page table data

structure.

This sub-invariant is enforced by the privileged code that maintains the page

table.

• [PT-SubInv2] The root of the page table is correct.

Cores rely on a correct root to access PTEs during page table walks. This

sub-invariant is enforced by hardware (as specified by PAMC), since the root

has a fixed physical address.

4.2.2 Translation Coherence

Translation coherence is similar but not identical to cache coherence for regular mem-

ory. All cached copies of a translation (in TLBs) should be coherent with respect

to the page table. The notion of TLB coherence is not new [125], although it has

not previously been defined precisely, and there have been many different implemen-

tations of AT systems that provide coherence (we detail these implementations in

Chapter 5). Briefly, there are many possible definitions of translation coherence. The

differences between these definitions of coherence are based on when translation up-

dates must be made available to other cores (e.g., immediately or lazily) and whether

updates may be reordered. Our focus in this work is on a specific definition of coher-

ence that is consistent with ATSC , where translation updates are immediately made

visible to other cores, and updates cannot be reordered.

We specify AT correctness using a set of invariants that an AT system must main-

tain to provide translation coherence. These invariants are independent of the proto-

63



col that is implemented to maintain the invariants, and provide an implementation-

transparent correctness specification. We choose to specify the translation coherence

invariants in a way that is similar to how cache coherence invariants were specified in

Martin et al.’s Token Coherence [84] paper, with AT-specific differences highlighted.

We have chosen to specify the invariants in terms of tokens, as is done in Token

Coherence, in order to facilitate our specific scheme for dynamically verifying the in-

variants, as explained in Section 4.3. This framework is just one possible approach.

Depending on the purpose they serve, other AT models might rely on a different set

of invariants.

We consider each translation to logically have a fixed number of tokens, T, asso-

ciated with it. Ideally, for a translation, there should be one token for each active

(i.e., running) thread in the system that can access the translation. However, for

multithreaded processors, threads share the processor’s TLB and thus we require one

token per TLB. Hence, T must be at least as great as the number of TLBs in the

system. Tokens may reside in TLBs or in memory. The following three sub-invariants

are required:

• [Coherence-SubInv1] At any point in logical time [72], there exist exactly T

tokens for each translation.

This ”conservation law” does not permit a token to be created, destroyed, or

converted into a token for another translation.

• [Coherence-SubInv2] A core that accesses a translation (to perform a load

or store) must have at least one token for that translation.

• [Coherence-SubInv3] A core that performs an MRF to a translation must

have all T tokens for that translation before completing the MRF (i.e., before

releasing the page table lock - see Figure 3.1) and making the new translation

64



visible.

This invariant can be interpreted as, conceptually, each MRF destroys a trans-

lation and creates a new one. All old tokens must be destroyed alongside the

old translation, and a new set of tokens must be created for the new transla-

tion. The invariant ensures that there is a single point in time at which the

old (pre-modified) translation is no longer visible to any cores.

The first two sub-invariants are almost identical to those of Token Coherence

(TC). The third sub-invariant, which is analogous to TC’s invariant that a core

needs all tokens to perform a store, is subtly different from TC because an MRF

is not an atomic write. In TC, a core must hold all tokens throughout the entire

lifetime of the store, but an MRF only requires the core to hold all tokens before

releasing the page table lock.

As with normal cache coherence, there are many ways to implement AT coherence

such that it obeys these three sub-invariants. For example, instead of using explicit

tokens, an AT system could use a snooping-like protocol with global invalidations or

inter-processor interrupts for maintaining translation coherence. In our evaluation,

we use a system that relies on inter-processor interrupts for maintaining translation

coherence.

4.3 DVAT: Proposed Solution for Dynamic Verification of Address
Translation

To check the correctness of the AT system at runtime, we propose DVAT, a mecha-

nism that dynamically verifies the invariants described in our AT framework. In this

section, we develop a first DVAT implementation that targets ATSC . We refer to

this implementation as DVATSC . When used with existing methods to dynamically

verify PAMCSC [36, 87, 88], DVATSC supports the dynamic verification of VAMCSC

65



per Section 4.1.

4.3.1 System Model

Our baseline system is a cache-coherent multicore chip. Similar to most modern pro-

cessors, each core uses virtually-indexed, physically-tagged caches. Physical caches

ensure a store’s atomicity with respect to loads from the same synonym set. Cores

have hardware-managed TLBs, and updates to the status bits occur atomically in

both the TLB and the page table when the corresponding load or store commits.

The MRF procedure is slightly conservative and restricts parallelism. A core that

performs an MRF locks the page table for the entire duration of the MRF, changes

the PTE, triggers the inter-processor interrupt, waits for the acknowledgments from

all other cores (instead of lazily collecting acknowledgments), and then signals the

other cores that they may continue. All other cores flush their entire TLBs (in-

stead of invalidating only affected translations), and spin after sending interrupt

acknowledgments (instead of continuing immediately) until they receive the signal

from the MRF initiator. In contrast, some current AT systems allow the other cores

to continue their regular executions once they acknowledge the TLB flush.

We assume the existence of a checkpoint/recovery mechanism [98, 116] that can

be invoked when DVATSC detects an error. The ability to recover to a pre-error

checkpoint enables us to take DVATSC ’s operations off the critical path; an error can

be detected somewhat lazily as long as a pre-error checkpoint still exists at the time

of detection.

4.3.2 DVATSC Overview

To dynamically verify ATSC , we must dynamically verify both of its invariants: page

table integrity and translation mapping coherence.

66



Checking Page Table Integrity

PT-SubInv1 is an invariant that is maintained by software. Fundamentally, there is

no hardware solution that can completely check this invariant because the hardware

does not have semantic knowledge of what the software is trying to achieve. Hard-

ware could be developed to perform some ”sanity checks”, but, software checking is

fundamentally required. One existing solution to this problem is self-checking code

[21].

To check that PT-SubInv2 is maintained, we can adopt any of the previously

proposed dynamic verification schemes for PAMC [36, 87, 88].

Checking Translation Coherence

The focus of DVATSC is the dynamic verification of the three translation coherence

sub-invariants (Section 4.2.2). Because we have specified these sub-invariants in

terms of tokens, we can dynamically verify the sub-invariants by adapting a scheme

called TCSC [89] that was previously used to dynamically verify cache coherence.

TCSC’s key insight is that cache coherence states can be represented with token

counts that can be periodically checked; this same insight applies to translation co-

herence. Even though the specification of coherence is in terms of tokens, the coher-

ence protocol implementation is unrestricted; the protocol simply needs to maintain

the invariants. For example, Martin et al. [84] showed that snooping and directory

cache coherence protocols can be viewed as maintaining the token invariants. Thus,

any DVAT solution, including DVATSC , are not architecturally visible, nor are they

tied to any specific TLB coherence protocol.

Similar to TCSC, but for TLBs instead of normal caches, DVATSC adds explicit

tokens to the AT system. Each translation has T tokens that are initially held by

the translation’s home memory and physically collocated with the translation’s PTE.

Because PTEs usually have some unused bits (e.g., 3 for IA-32 and 4 for the Power

67



ISA), we can use these bits to store tokens. If we need more than the number of

unused bits to hold T tokens, then we extend the memory block size to hold the extra

bits. Because translations are dynamic and DVATSC does not know a priori which

blocks will hold PTEs, we must extend every memory block. A core that brings a

translation into its TLB acquires one token corresponding to the PTE defining the

translation. This token is held in the corresponding TLB entry, which requires us to

slightly enlarge every TLB entry. The token is relinquished by the core and returned

to memory once the translation is evicted from the TLB due to a replacement. In

the case of a TLB invalidation, the token is sent to the core that requested the

invalidation.

Each ”node” in the system (i.e., either a core/TLB or the memory) maintains

a fixed-length signature of its token transfer history. This signature is a concise

representation of the node’s history of translation coherence events. Whenever a

token is acquired or released, the signature is updated using a function that considers

the physical address of the PTE to which the token corresponds and the logical time

[72] of the transfer. Because extracting the translation mapping’s virtual address

from a TLB entry would require re-designing the TLB’s CAM, the signature function

operates on the PTE’s physical address instead of its virtual-to-physical mapping.

The PTE’s physical address is a unique identifier for the translation. The challenge

is that we now require that the SRAM portion of each TLB entry be expanded to

hold the physical address of the PTE (this address does not need to be added to

the page table PTEs). Thus, signaturenew = function (signatureold, PTE’s physical

address, logical time).

In a correctly operating ATSC system, the exchanges of tokens will obey the three

coherence sub-invariants of ATSC that we presented in Section 4.2.2. DVATSC thus

checks these three sub-invariants at runtime in the following fashion:

Coherence-SubInv1. Periodically, the signatures of all nodes are aggregated

68



at one central verification unit that can check whether the conservation of tokens

has been maintained. Updating signatures and checking them are off the critical

path because we assume that we can recover to a pre-error checkpoint if an error

is detected. The signature update function should be chosen so that it is easy to

implement in hardware and avoids aliasing (i.e., hashing two different token event

histories to the same signature) as best as possible. We use the same function as

TCSC [89] because it achieves these goals, but other functions could be chosen. Any

basis of logical time can be used as long as it respects causality, and thus we use a

simple one based on loosely synchronized physical clocks, similar to one used in prior

work [116]. It is critical for DVATSC to consider the mapping (as represented by its

PTE’s physical address) and the time of the transfer in order to detect situations

in which errors cause tokens to be sent for the wrong translations or tokens to be

transferred at the wrong times.

Coherence-SubInv2. Checking this sub-invariant is straightforward. All that

needs to be done is for each core to check that a token exists for a translation that

it accesses in its TLB. This check can be performed in parallel with the TLB access

and thus does not impact performance.

Coherence-SubInv3. Checking this sub-invariant is similar to checking Coher-

ence-SubInv2. In parallel with completing an MRF for a translation, a core checks

that it has all T tokens for that translation.

4.3.3 Implementation Details

DVATSC must address three challenges related to PTEs and token handling. The first

issue is how to identify memory locations that contain PTEs. One simple option is

to have the kernel mark pages that hold PTEs. Another option would be to monitor

page table walks performed by the dedicated hardware; the first page table walk

performed on a PTE marks the location accordingly and assigns it T tokens.

69



The second issue is determining where to send tokens when evicting a TLB entry

to make room for a new translation (i.e., not in response to an invalidation). With

a typical TLB, we would not be able to identify the home node for an evicted trans-

lation. However, because we already hold the physical address of the PTE in each

TLB entry for other purposes (as explained in Section 4.3.2), we can easily identify

the translation’s home node.

The third problem is related to which tokens need to be sent to the initiator of

a full TLB flush. Many ISAs, such as the Power ISA, specify that the ability to

invalidate specific translations is an optional feature for implementations, and thus

implementations without this feature rely on full flushes of TLBs. As a consequence,

a core that is requested to flush its TLB is unlikely to know which translations, if any,

are actually being modified by the MRF that triggered the flush. One solution to this

situation is for the core to send the tokens for all of its TLB entries to the initiator of

the flush. The initiator keeps the tokens it wants (i.e., tokens for the translations it is

modifying) and forwards the rest of them to their home nodes. Considering the case

of full TLB flushes rather than single translation invalidations maximizes DVATSC ’s

impact on systems’s performance. Thus, our evaluation provides an upper bound for

DVATSC ’s performance impact.

If the AT system behaves safely (i.e., does not behave incorrectly) but fails to

make forward progress (e.g., because a node refuses to invalidate a translation that is

required by another node), then DVATSC will not detect this situation. Fortunately,

timeout mechanisms are a simple approach for detecting liveness problems, and we

have added such timeouts to our DVATSC implementation.

4.4 Evaluation

In this section, we evaluate DVATSC ’s error detection ability, performance impact,

and hardware cost.

70



Table 4.1: Target System Parameters for DVATSC Evaluation.

Parameter Value

Cores 2, 4, 8, 16 in-order scalar cores
L1D/L1I 128KB, 4-way, 64B block, 1-cycle hit
L2 cache 4MB, 4-way, 64B block, 6-cycle hit
Memory 4GB, 160-cycle hit
TLBs 1 I-TLB and 1 D-TLB per core, all 4-way set-

assoc.; 64 entries for 4K pages and 64 entries
for 2/4MB pages

Coherence MOSI snooping
Network broadcast tree
DVATSC tokens each PTE has T = 2C tokens
DVATSC signature 64 bits

4.4.1 Methodology

System Model and Simulator

Because AT involves system software, we use full-system simulation in our experi-

ments. We use Simics [81] for functional simulation of an IA-32 multicore processor

augmented with a TLB module (for controlling TLB behavior and fault injection)

and GEMS [85] for timing simulation of the memory system. The operating system

is Fedora Core 5 (kernel 2.6.15). Our target system, described in Table 4.1, is one

particular implementation that satisfies the system model presented in Section 4.3.1.

Because our target system conforms to the IA-32 architecture, TLB management

and page walks are performed in hardware, and inter-processor interrupts are used

to communicate translation invalidations. The interrupt handler at the invalidated

node performs the invalidation.

Benchmarks

We evaluate DVATSC using several scientific benchmarks and one microbenchmark.

The five scientific workloads, described briefly in Table 4.2, were developed as part of

the Hood user-level threads library [22]. We wrote the microbenchmark specifically

71



Table 4.2: Scientific Benchmarks for DVATSC Evaluation.

Benchmark Description

knary spawn tree of threads
mm dense matrix multiplication
lu LU factorization of dense matrix
msort Merge-Sort of integers
barnes-hut N-body simulation

to stress DVATSC ’s error coverage, which is difficult to do with typical benchmarks.

This microbenchmark has two threads that continuously map and remap a shared

memory region, thus forcing translation coherence events to occur.

Error Injection

We inject faults into the AT system, many that correspond to published bugs [2, 3,

4, 59, 61, 62, 63], including: corrupted, lost, or erroneously delayed TLB coherence

messages, TLB corruptions, TLB invalidations that are acknowledged but not ap-

plied properly (e.g., flushes that do not flush all TLB entries), and errors in DVATSC

hardware itself. These fault injection experiments mimic the behavior of real proces-

sor bugs, since identically modeling these bugs is impossible for an academic study.

Because our simulation infrastructure accurately models the orderings of translation

accesses with respect to MRFs, we can accurately evaluate DVATSC ’s error detection

coverage.

4.4.2 Error Detection Ability

Prior work has already shown how to comprehensively detect errors in PAMC [36,

87, 88]. Thus we focus on the ability of DVATSC to detect errors in ATSC . We can

evaluate its error coverage both empirically and analytically.

Empirical Evaluation. When DVATSC is combined with PAMC verification

(e.g., TCSC) and timeouts, it detects errors that mimic published AT bugs. Figure

72



���

� ��

� ���

��
���

��
��	


��
��

���

���
�

�����������	
��

��

� ��

� ��

��������� 	 
 ���� � 
 � � � 
 �

��
���

��
��	


��
��

���

���
�

�����������	
��
� 
 
�� ����	
��

Figure 4.1: DVATSC ’s Fault Detection Efficiency.

4.1 demonstrates how DVAT is efficient in detecting all injected faults in both the

AT system and the DVAT hardware. For example, the four bugs in Table 1.1 are

detected when they violate the following Coherence Sub-invariants, respectively: 1

or 2 (the bug violates both sub-invariants and will be detected by the checker for

whichever sub-invariant it violates first), 1 or 2, 3, and 3. Some of the injected faults

are masked, and do not result in erroneous execution. Consider the case when a core

is not included in the MRF’s translation coherence procedure (i.e., corresponding

interrupt is not delivered to the core). It is possible however that the excluded core

does not contain a copy of the translation, and thus the MRF can successfully finish.

In such cases, the fault is silent (i.e., does not lead to an error).

Analytical Evaluation. Like TCSC, DVATSC detects all single errors (and

many multiple-error scenarios) that lead to violations of safety and that are not

masked by signature aliasing. This error coverage was mathematically proved and

experimentally confirmed for TCSC [89]. With a 64-bit signature size and a rea-

sonable algorithm for computing signature updates, the probability of aliasing ap-

proaches 264. We have performed some fault injection experiments to corroborate

73



���

���

���

���

��
���

��
��	


���
�



�
	
�

���
��

��� � � 	 
 � � 
 � � � � � �
� � � � � � � �

�

���

� � � �� � � � �� � � � �� � � � �� � � � ��

� � � � � � � � � � � � � � � � � � � �

��
���

��
��	


���
�



�
	
�

���
��

���

���������	
��
���
Figure 4.2: DVATSC ’s Bandwidth Overhead Compared to Baseline System.

this result, but the number of experiments necessary to draw conclusions about such

an extremely unlikely event is prohibitive.

4.4.3 Performance Impact

Checking PAMC has been shown to have little performance impact [36, 87, 88]. The

rest of DVATSC ’s actions are off the critical path because we use checkpoint/recovery

to handle a detected error. DVATSC can impact performance by increasing inter-

connection network congestion due to token exchanges, sending the physical address

of a PTE along with the translation, and the periodic aggregation of signatures at

a central verifier. With respect to checking the tokens before the end of the MRF

procedure, there is enough slack in the Linux MRF procedure at the initiating core

from starting the translation coherence events such that DVATSC does not interfere

with regular execution. We describe an MRF-independent method for ensuring that

DVATSC does not directly impact the regular execution flow in the future work sec-

74



����

�

����

���

��
��

��
��	


�
�

	�
��
��
��
��
�
	

����� � � � 	 


���

��� �

���

� � 	 
 � � 
 
 � 	 � � � � � � 	 � � �

��
��

��
��	


�
�

	�
��
��
��
��
�
	

��������	

Figure 4.3: DVATSC ’s Performance Impact. Results are normalized to baseline system.
Error bars represent standard deviation.

tion (Section 4.6). DVATSC aggregates and checks signatures at fixed intervals of

logical time; in our experiments, we use an interval length of 10,000 snooping coher-

ence transactions because this interval corresponds to our checkpointing interval.

In Figure 4.2, we plot the average link utilization in the interconnection network,

both with and without DVATSC . For each benchmark data point, we plot the highest

overhead observed across 100 runs that are perturbed to have slightly different tim-

ings to avoid underestimating utilization due to a particularly fortuitous timing. We

observe that, for all benchmarks and all numbers of cores, the increase in utilization

due to DVATSC is small, below 2%.

The extra bandwidth consumption required by DVATSC has a negligible impact

on performance as shown in Figure 4.3. DVAT incurs a slowdown of less than 2.5%

on average, with the most affected application being matrix multiply. Thus, DVAT

provides error-coverage with minimal system intrusion.

75



4.4.4 Hardware Cost

DVATSC has five hardware costs: the hardware required to dynamically verify PAMC

(shown in prior work [36, 87, 88] to be small), the storage for tokens, the extension

to each TLB entry to hold the address of the PTE, the hardware to hold and update

signatures (shown in TCSC [89] to be small), and the small amount of logic for

checking the Coherence sub-invariants. The most significant hardware cost is the

storage for tokens. For a system with C cores and 2 TLBs per core (I-TLB and

D-TLB), DVATSC adds 2C tokens to each PTE, thus requiring log22C bits. For

systems with few cores, these bits are likely to fit in the unused bits of the PTE.

For systems with many cores, one way to reduce the token storage cost is to extend

the coherence sub-invariants to the coarser granularity of a memory block (instead

of a PTE), i.e., associate T tokens with a memory block. For a 128-core system

with 8 PTEs per memory block, we can keep the storage cost to only 11 bits per

block (minus those bits that can be fit into unused PTE bits). The overhead is

thus only 4.3% and 2.1% for 32 and 64 byte blocks, respectively. As with any error

detection mechanism, DVATSC benefits from the existence of a checkpoint/recovery

mechanism [98, 116] to recover from detected errors. The cost of checkpoint/recovery

depends on the specific implementation and is decoupled from the DVAT cost.

4.5 Related Work

We discuss prior work in specifying and dynamically verifying correctness, as well as

ad-hoc detection of design bugs.

We categorize this prior work based on which part of the system it considers.

Memory Systems. Meixner and Sorin [87, 88] and Chen et al. [36] dynamically

verified AT-oblivious memory consistency models. These schemes apply directly to

PAMC, and they can be applied to VAMC if one assumes a one-to-one mapping

76



from VA to PA (i.e., no synonyms). Similarly, Chen et al. [37] dynamically verified

the consistency of AT-oblivious transactional memory systems. Cain and Lipasti

also developed algorithms for checking AT-oblivious memory consistency [29], but

they did not pursue a full implementation. Other work has developed checkers for

AT-oblivious cache coherence, which is a necessary sub-invariant of AT-oblivious

memory consistency [30, 89]. Our work differs from this prior work by considering

address translation.

Processor Cores. The ISA specifies the correct behavior of the processor core,

including the exact semantics of every instruction, exception, interrupt, etc. The

first dynamic verification scheme for processor cores is DIVA [16]. The insight behind

DIVA is that we can check a complicated, superscalar core with a simple, statically

verifiable core that has the same ISA. The checker core is so simple that its design

can be statically verified (e.g., using a model checker), and thus it detects all design

bugs in the superscalar core. Another approach to specification and verification is

Argus [86]. Argus is based on the observation that a core’s behavior can be verified by

checking the correctness of three tasks: control flow, dataflow, and computation. The

Argus-1 implementation uses checkers for each of these tasks to dynamically verify

the core. Other work by Reddy and Rotenberg [101] has specified microarchitectural

invariants that can be dynamically verified. These invariants are necessary but not

sufficient for correctness (as defined by the ISA). Our work differs from Reddy and

Rotenberg by considering architectural correctness.

Ad-Hoc Bug Detection. Rather than formally specify correctness and then

dynamically verify it, another option is for the system to look for known buggy

states or anomalies that might indicate that a bug has been exercised. Wagner et

al. [127] use a pattern matching technique to detect when the system is in a known

buggy state. Work by Narayanasamy et al. [94] and Sarangi et al. [109] proposes to

detect design bugs by monitoring a certain subset of processor signals for potential

77



anomalies. If a bug is detected, the authors propose patching it with a piece of

programmable hardware. Li et al. [79] take a similar approach to detecting errors

(due to physical faults, but the same approach applies to hardware design bugs),

but instead of observing hardware anomalies they detect anomalies at the software

level. Our work differs from this work in anomaly detection by formally specifying

correctness and dynamically verifying that specification, rather than observing an

ad-hoc set of signals.

4.6 Conclusions and Future Work

This chapter proposed an AT dynamic verification method that can, at runtime,

detect errors due to design bugs and physical faults, including AT-related design

bugs we identified in processors errata. We demonstrated the scheme’s efficiency in

detecting AT errors, and its low impact of application performance. In addition, we

proved that for a specific AT model, this method can be used in conjunction with

PAMC verification to guarantee VAMC correctness.

An interesting future direction of research is to further analyze the connection

between PAMC, AT, and VAMC models. The AT framework we proposed in this

chapter satisfies most current AT models. However, a formal proof is required to

demonstrate more generally that just AT correctness is sufficient for a correct PAMC

to guarantee a correct VAMC. Nevertheless, understanding the complex interactions

between PAMC and AT is crucial for designing future virtual memory based systems.

DVATSC represents an initial exploration of the DVAT solutions. There are

several aspects that can be considered for extending the current implementation

to cover more relaxed AT systems. The most important constraint that current

systems relax is the requirement that all cores wait for the MRF to finish, even if

they acknowledge the translation coherence events. DVATSC can be extended to

support such systems by relying on two sets of logical tokens: an ”old” set that is

78



gathered by the core triggering the MRF and corresponds to the old translation,

and a ”new” set that corresponds to the new translation. These logical tokens can

be supported by simply extending the token holding locations with an additional

bit that indicates the token’s type. A core that releases the old token is allowed

to acquire a new token, such that it can access the new translation as soon as it is

created.

Finally, another research avenue is represented by the incorporation of the Page

Table Integrity invariants in the DVAT mechanism. As specified in Section 4.3.2,

hardware can support checking these invariants only with additional information

provided by software. A possible solution is for the software to embed ”sanity checks”

in the page table translation’s when translations are created. These properties can

be later checked by the hardware during page table accesses (i.e., page table walks),

and thus provide guarantees about the integrity of the page table.

79



5

Unified Instruction, Data and Translation

Coherence Protocol

Current systems rely on different protocols for maintaining coherence of translation

caches, and instruction and data caches, respectively. Thus, systems rely on software

procedures for maintaining translation coherence, while instruction/data coherence

is invariably maintained by a hardware-based protocol. Unfortunately, the TLB

shootdown routine, the software procedure for enforcing translation coherence, is

performance costly and non-scalable [44, 75, 121].

In this chapter, we propose UNified Instruction/Translation/Data (UNITD) Co-

herence, a hardware coherence framework that integrates translation coherence into

the existing cache coherence protocol. In UNITD coherence, the TLBs participate

in the cache coherence protocol just like instruction and data caches. UNITD is

more general than the only prior work in hardware TLB coherence [126], which re-

quires specific assumptions about allowable translation caching (e.g., copy-on-write

is disallowed).

This chapter is organized as follows. Section 5.1 discusses translation coherence,

by focusing on TLB shootdown (Section 5.1.1), the procedure generally used for

80



maintaining translation coherence, and its impact on application runtime (Section

5.1.2). We describe the UNITD coherence protocol in Section 5.2. In Section 5.3, we

discuss implementation issues, including platform-specific aspects and optimizations.

In Section 5.4, we evaluate snooping and directory-based UNITD coherence protocols

on multicore processors and show that UNITD reduces the performance penalty

associated with TLB coherence to almost zero, performing nearly identically to a

system with zero-latency TLB invalidations. We discuss related work in Section 5.6

and conclude in Section 5.7.

5.1 Existing Solutions for Maintaining Address Translation Coher-

ence

Maintaining coherence between the TLBs and the page tables has historically been

named ”TLB consistency” [126], but we will refer to it as ”TLB coherence” due to

its much closer analogy to cache coherence than to memory consistency.

One important difference between cache coherence and TLB coherence is that

some systems do not require maintaining TLB coherence for each datum (i.e., TLBs

may contain different values for the same translation). Such incoherence is allowed

with respect to permission and status bits, but never for the mapping. Thus, these

architectures require TLB coherence only for unsafe changes [125] made to address

translations. Unsafe changes include mapping modifications, decreasing the page

privileges (e.g., from read-write to read-only), and marking the translation as in-

valid. The remaining possible changes (e.g., increasing page privileges, updating the

Accessed/Dirty bits) are considered to be safe and do not require TLB coherence.

Consider one core that has a translation marked as read-only in the TLB, while a

second core updates the translation in the page table to be read-write. This trans-

lation update does not have to be immediately visible to the first core. Instead, the

first core’s TLB data can be lazily updated if the core executes a store instruction.

81



Initiator Victim

• disable preemption and acquire page
table lock
• construct list of victim processors
• construct list of translation(s) to in-
validate
• flush translation(s) in local TLB
• if (victim list not empty) send inter-
rupts to victims

• service interrupt & get list of trans-
lation(s) to invalidate

• while (victim list not empty) wait; • invalidate translation(s) from TLB
• acknowledge interrupt & remove self
from victim list

• release page table lock and enable
preemption

Figure 5.1: TLB Shootdown Routines for Initiator and Victim Processors.

The execution of the store leads to either an access violation (i.e., page fault) or

an attempt to update the translation as read-write. In either case, the second core

detects that the page table translation has already been marked accordingly and

updates the TLB cached copy.

Systems usually enforce translation coherence through TLB shootdowns, a proce-

dure that we discuss in depth in Section 5.1.1. However, there are some architectures

that rely on alternative mechanisms, and we discuss these in the related work section

(Section 5.6).

5.1.1 TLB Shootdown

TLB shootdown [19, 35, 107] is a software routine for enforcing TLB coherence that

relies on inter-processor interrupts (considering the present multicore processors, the

procedure is more precisely an inter-core interrupt; for consistency, we use ”proces-

sor” instead of ”core” when referring to this type of interrupts) and has the generic

structure presented in Figure 5.1. The shootdown is triggered by one processor (i.e.,

82



initiator) that programs an inter-processor interrupt for all other processors shar-

ing the same address space (i.e., victims). In the interrupt handler, these processors

invalidate the translation(s) from their TLBs. Because managing the address transla-

tion system is the responsibility of privileged software, TLB shootdowns are invisible

to the user application, although shootdowns directly impact the user application’s

performance. This performance impact depends on several factors, including the po-

sition of the TLB in the memory hierarchy, the shootdown algorithm used, and the

number of processors affected by the shootdown (victim processors). We discuss the

first two factors in this section, and we analyze the impact of the number of victim

processors on the TLB shootdown cost in Section 5.1.2.

TLB position. TLBs can be placed at different levels of the memory system

between the core and the physical memory [99]. Most microarchitectures implement

per-core TLBs associated with virtually-indexed physically-tagged caches, as this im-

plementations simplifies the cache management (i.e., it eliminates the need to address

synonyms, as discussed in Section 3.4.1). These designs, however, pose scalability

problems for many-core systems because the performance penalty for the shootdown

initiator increases with the number of victim processors, as we show in Section 5.1.2.

The initiator must wait for more cores to acknowledge the interrupt, while the vic-

tims contend for updating the variable defining the cores who acknowledged the

interrupt. Because this solution is most common, we also assume per-core TLBs in

this chapter. Another option is to position the TLB at the memory [126], such that a

translation occurs only when a memory access is required. This design might appear

attractive for many-core chips, since TLB coherence must be ensured only at mem-

ory controllers, whereas cache coherence is ensured using virtual addresses. However,

virtual caches suffer from the well-known problem of virtual synonyms [32, 33].

Shootdown algorithm. The TLB shootdown procedure can be implemented

using various algorithms that trade complexity for performance. Teller’s study [125]

83



is an excellent description of various shootdown algorithms. In this chapter, we as-

sume the TLB shootdown routine implemented in Linux kernel 2.6.15, which follows

the generic structure described in Figure 5.1. The procedure leverages Rosenburg’s

observation that a shootdown victim can resume its activity as soon as it has ac-

knowledged the shootdown (i.e., has removed itself from the shootdown list) [107].

The algorithm thus reduces the time spent by victims in the shootdown interrupt.

5.1.2 Performance Impact of TLB Shootdown

In this section, we analyze the extent to which TLB coherence affects the performance

of an application in current systems. This impact depends on two factors: the penalty

associated with TLB shootdown routines as dictated by the OS and supporting hard-

ware, and the frequency that these routines are utilized by the application, respec-

tively. The former is platform-dependent while the latter is application-dependent.

We perform these experiments on a real machine consisting of 32-Xeon processors

with 64GB RAM running Suse Enterprise Linux Server Edition 10 (kernel 2.6.15).

We study systems with fewer cores by disabling cores in the system such that the

functional cores are the most closely located (i.e., physically) cores in the machine.

Figure 5.2 shows the latency of a single TLB shootdown for both the initiator

and victims as a function of the number of processors involved in the shootdown. We

measure the latency by instrumenting the kernel such that we read the processor’s

timestamp counter at the beginning and end of the shootdown routines. This allows

us to determine the latency of the operations with minimal system intrusion.

The latency of a shootdown is application-independent and is determined by

the microarchitectural characteristics, the number of processors involved, and the

OS. Figure 5.2 shows that the latency of a shootdown increases roughly linearly

with the number of processors involved for both the initiator as well as the victim

cores. This latency does not capture the side effects of TLB shootdowns such as the

84



�

��� ���

��� ���

� �� ���

��� ���

� ��� ���

� ��� ���

� � � � � �� � �

��
���

�

�����

	 
 � � � 
 � � � � � � � � � � � � �

	 
 � � � 
 � � � � � � � � � �

Figure 5.2: Average TLB Shootdown Latency on Xeon Processors/Linux Platform.

TLB invalidations that result in extra cycles spent in repopulating the TLB with

translations after the shootdown. This additional cost depends on the applications’s

memory footprint, as well as the position of the corresponding cache blocks in the

memory hierarchy. For an Intel 64 architecture, filling a translation in the TLB

requires two L1 cache accesses in the best-case scenario; the worst-case scenario

requires four main memory accesses. On x86/Linux platforms, this additional cost is

sometimes increased by the fact that, during shootdowns triggered by certain events,

the OS forces both the initiator and the victims to flush their entire TLBs rather

than invalidate individual translations.

The experiment reveals that as the number of cores increases, maintaining TLB

coherence is likely to have an increasingly significant impact on performance if it is

enforced through the current TLB shootdown routine. To alleviate this performance

impact, architects need to either change the way pages are shared across threads or

change the mechanism for maintaining TLB coherence. The solution that we propose

in this chapter is the latter, by maintaining TLB coherence in hardware.

85



�

�

�

�

�

� �

� �

� � � �� � �

��
���

��
��
�	


�	�

�

���
�	�

��

�����

� 	 
 � � 	 
 � �

 � � � 
 � � � � � � � �
� � � � � �
� � � 
 � � � � 
 � � � � � �
� � 
 � � � � � � � � �

Figure 5.3: TLB Shootdown Performance Overhead on Phoenix Benchmarks.

Our second experiment analyzes the impact of TLB shootdowns on real appli-

cations. For this study, we choose several benchmarks from the Phoenix suite [100]

that cover a wide range in terms of the number of TLB shootdowns incurred within

a given amount of application code. We use Oprofile [78] to estimate the percent

of total runtime spent by the applications in TLB shootdowns. We consider this

number to be the percent of the total Oprofile samples that are reported to be taken

within either the shootdown initiator or victim routines. Figure 5.3 shows the frac-

tion of total runtime associated with the TLB shootdowns, which becomes significant

for applications that require translation coherence more often. It is also important

to observe that there are applications, such as matrix multiply, that do not make

changes to the page tables and thus do not exercise TLB shootdowns. Nevertheless,

there is a class of applications, such as wordcount and the software mentioned in

Section 1.3, that rely heavily on the shootdowns and for which these routines can

represent a major fraction of the total runtime. Considering these large variations

in the usage patterns of TLB shootdowns across applications, we evaluate UNITD

86



across a wide range of shootdown frequencies (Section 5.4).

5.2 UNITD Coherence

In this section, we introduce the framework for unifying TLB coherence with cache

coherence in one hardware protocol, as well as describing the details of UNITD, the

proposed unified protocol. At a high level, UNITD integrates the TLBs into the

existing cache coherence protocol that uses a subset of the typical MOESI coherence

states (we assume a MOSI coherence protocol in our UNITD implementations; we

discuss in Section 5.3.3 how to extend UNITD to protocols that implement the Ex-

clusive state). Fundamentally, TLBs are additional caches that participate in the

coherence protocol like coherent, read-only instruction caches. In the current imple-

mentation, UNITD has no impact on the cache coherence protocol and thus does not

increase its complexity. In addition, we design UNITD to be easily integrated with

existing microarchitectural components.

With respect to the coherence protocol, TLBs are read-only caches similar to the

instruction caches: TLB entries (i.e., translations) are never modified in the TLBs

themselves. Thus, only two coherence states are possible: Shared (read-only) and

Invalid. When a translation is inserted into a TLB, it is marked as Shared. The

cached translation can be accessed by the local core as long as it is in the Shared

state. The translation remains in this state until either the TLB receives a coher-

ence message invalidating the translation, or the translation is invalidated through a

coherence-independent mechanism (e.g., the execution of a specific instruction that

invalidates translations such as invlpg for Intel 64 ISA or the replacement of the

translation). The translation is then Invalid and thus subsequent memory accesses

depending on it will miss in the TLB and reacquire the translation from the memory

system. Given that a translation is valid for core accesses while in the Shared state,

UNITD uses the existing Valid bit of the cached translation to maintain a TLB en-

87



try’s coherence state. This Valid bit is specific to the translation cached by the TLB

and is independent of the Valid bit for the translation present in the memory page

tables, which restricts TLBs from accessing and caching the respective translation if

the bit is not set.

Despite the similarities between TLBs and instruction and data caches, there is

one key difference between caches and TLBs: cache coherence is based on physical

addresses of data, but a datum cached in a TLB (i.e., a translation) is not directly

addressable by the physical addresses on which it resides (i.e., the physical address

of the PTE defining the translation, not to be confused with the physical address

to which the translation maps a virtual address). This is a consequence of current

implementations that rely on the TLB being content-addressable and not address-

accessible. For the TLBs to participate in the coherence protocol, UNITD must be

able to perform coherence lookups in the TLB based on the physical addresses of

PTEs. The association between the PTE address and the translation provides a

unique physical address for each translation, as each translation is uniquely defined

by a translation (Section 5.2.1 discusses the case when a translation is defined by

multiple PTEs). To overcome this key difference between TLBs and caches, we must

address two issues:

Issue 1: For each translation in a TLB, UNITD must discover the physical

address of the PTE associated with that translation at runtime.

Issue 2: UNITD must augment the TLBs such that they can be accessed with

a physical address.

We discuss UNITD’s solutions to these two issues in the following two subsections.

5.2.1 Issue 1: Discovering the Physical Address of a Translation’s PTE

We start by describing the concept behind discovering the PTE associated with a

translation, followed by a description of how to determine the physical address of the

88



rd

nd

st

Figure 5.4: 3-level Page Table Walk in IA-32. UNITD associates PTE1 with the
VP1→PP1 translation.

PTE in practice.

Concept. The issue of associating a translation with its PTE’s physical address

assumes there is a one-to-one association between translations and PTEs. This

assumption is straightforward in systems with flat page tables, but less obvious for

systems using hierarchical page tables.

For architectures that implement hierarchical page tables, a translation is defined

by a combination of multiple PTEs in the hierarchy. Figure 5.4 illustrates the trans-

lation, on an IA-32 system, from virtual page VP1 to physical page PP1, starting

from the root of the page table (i.e., CR3 register) and traversing the intermediate

PTEs (i.e., PDPE and PDE). Conceptually, for these architectures, translation co-

herence should be enforced when a modification is made to any of the PTEs on which

the translation depends. Nevertheless, we can exploit the hierarchical structure of

the page tables to relax this constraint to a single-PTE dependency by requiring

that any change to a PTE propagates to a change of the last-level PTE. Thus, a

translation is identifiable through the last-level PTE address, and we thus guarantee

89



a unique translation-physical address assignment.

To understand why such an assumption is justifiable, consider the case of a mod-

ification to an intermediary PTE. PTE modifications can be divided into changes to

mappings and changes to the metadata bits. In the case of mapping changes, the

previous memory range the PTE was mapping to must be invalidated. Moreover, for

security reasons, the pages included in this space must be cleared such that whenever

this memory space is reused, it does not contain any previous information. With re-

spect to the metadata bits, any unsafe changes (i.e., to the permission bits) must be

propagated down to the last-level PTE. In both cases, we can identify when trans-

lation coherence is required by determining when changes are made to the last-level

PTE that the translation depends on.

Therefore, independent of the structure of the page tables, a translation is identi-

fiable through the last-level PTE address. Of course, this requires the identification

of the last-level PTEs associated with each translation.

Implementation. How the last-level PTE’s physical address is identified de-

pends on whether the architecture assumes hardware or software management of

TLB fills and evictions. Designs with hardware-managed TLBs rely on dedicated

hardware (”page table walker”) that walks iteratively through the page table levels

in case of a TLB miss. The number of iterative steps in a walk depends on the

architecture (i.e., structure of the page table) and the values stored at each level’s

PTE. As a consequence, the walker knows when it is accessing the last-level PTE

and can provide its physical address to the TLB (i.e., this is the address from where

the state machine will read the physical address of the translation’s mapping).

For architectures with software-managed TLB fills/evictions, UNITD requires

software support for notifying the hardware as to the last-level PTE associated with

a translation. The software can easily identify the PTE since the software follows the

same algorithm as the hardware walker. Once the PTE address is found, it can be

90



written to a dedicated memory address such that the hardware associates it with the

translation that will be inserted in the TLB. An alternative solution for systems with

software-managed TLBs is for the software to explicitly insert this physical address

in the TLB through a dedicated instruction. Because our evaluation targets an x86

system with hardware management of TLB fills/evictions, in our analysis we assume

a system with hardware-managed TLBs, but UNITD is equally applicable to systems

with software-managed TLBs.

5.2.2 Issue 2: Augmenting the TLBs to Enable Access Using a PTE’s Physical
Address

Concept. To perform coherence lookups in the TLBs, UNITD needs to be able to

access the TLBs with physical addresses and invalidate the translations associated

with the PTEs that reside at those physical addresses, if any. In this discussion,

we assume a one-to-one correspondence between translations and PTEs as discussed

in the previous subsection. Thus, a TLB translation moves to the Invalid state

whenever the core receives a coherence invalidation request for the translation (i.e.,

PTE defining the translation is modified).

Implementation. To render the TLB accessible by physical address, we record

the physical addresses of PTEs associated with the translations cached by the TLB.

As these addresses must be stored as long as the translations are present in the

TLB, we associate with each TLB an additional hardware structure. We refer to

this structure that intermediates between TLBs and the coherence protocol as the

Page Table Entry CAM (PCAM ). The PCAM has the same number of entries as the

TLB, and it is fully-associative because the location of a PTE within a set-associative

TLB is determined by the TLB insertion algorithm and not by the PTE’s physical

address.

Figure 5.5 shows how the PCAM is integrated into the system, with interfaces

91



����

� � � �� 	 � 
 � ��
� � � 
 ��

� � � �

� � � � �
�� � � ��

��� ���� � ��
��� � ��� � ��

	 � � � �� �

� � � ��� � � 	 � � � � � ��� �

� � � � �  � � � ��
� ��
 ! "

� � � � �  � � � �� � ��
 ! "
# � � ���� �� � $ %

� � � � �  � � � �
�� � � �� �
� � ��" � �  � �

�� �� �� � � � �� � 	 
 � � � � 
 


& � ! � � � 	 � � � �� � �$

� � � � 	 � � � �� � �$

Figure 5.5: PCAM’s Integration with Core and Coherence Controller. UNITD introduced
structures are colored.

to the TLB insertion/eviction mechanism (for inserting/evicting the corresponding

PCAM entries), the coherence controller (for receiving coherence invalidations), and

the core (for a coherence issue discussed in Section 5.3.2). The PCAM is off the

critical path of a memory access; it is not accessed during regular TLB lookups

for obtaining translations, but only at TLB insertions and coherence invalidation

lookups.

The PCAM is logically a content addressable memory and could be implemented

with a physical CAM. For small PCAMs, a physical CAM implementation is prac-

tical. However, for PCAMs with large numbers of entries (e.g., for use with a 512-

entry 2nd-level TLB), a physical CAM may be impractical due to area and power

constraints. In such situations, the PCAM could be implemented with a hardware

data structure that uses pointers to connect TLB entries to PCAM entries. Such a

structure would be similar to the indirect index cache [47], for example. Henceforth,

we assume a physical CAM implementation, without loss of generality.

Maintaining coherence on physical addresses of PTEs requires bookkeeping at a

fine granularity (e.g., double-word for a 32-bit architecture). In order to integrate

92



TLB PCAM TLB PCAM
VP PP Valid PA VP PP Valid PA

VP3 PP1 1 12 Insert translation
VP1→PP9 which
is at PA 12

VP3 PP1 1 12
VP2 PP6 1 134 VP2 PP6 1 134
VP6 PP0 0 30 VP1 PP9 1 12
VP5 PP4 0 76 =⇒ VP5 PP4 0 76

(a) Inserting an entry into the PCAM when a translation is inserted into the TLB

TLB PCAM TLB PCAM
VP PP Valid PA VP PP Valid PA

VP3 PP1 1 12 Process coherence
invalidation for
PA 12

VP3 PP1 0 12
VP2 PP6 1 134 VP2 PP6 1 134
VP1 PP9 1 12 VP1 PP9 0 12
VP5 PP4 0 76 =⇒ VP5 PP4 0 76

(b) Processing a coherence invalidation for a physical address (two PTEs reside at the cor-
responding block address)

Figure 5.6: PCAM Operations. PA represents physical address.

TLB coherence with the existing cache coherence protocol with minimal microarchi-

tectural changes, we relax the correspondence of the translations to the memory block

containing the PTE rather than the PTE itself. Maintaining translation granularity

at a coarser grain (i.e., cache block, rather than PTE) trades a small performance

penalty for ease of integration. This performance penalty depends entirely on the ap-

plication’s pattern of modifying translations. Because multiple PTEs can be placed

in the same cache block, the PCAM can hold multiple copies of the same datum. For

simplicity, we refer to PCAM entries simply as PTE addresses. A coherence inval-

idation request for the same block address leads to the invalidation of all matching

translations. A possible solution for avoiding false-invalidations is extending UNITD

to a sub-block coherence protocol for translations only, as previously proposed for

regular cache coherence [38].

Figure 5.6 shows the two operations associated with the PCAM: (a) inserting an

entry into the PCAM and (b) performing a coherence invalidation at the PCAM.

93



PTE addresses are added in the PCAM simultaneously with the insertion of their

corresponding translations in the TLB. Because the PCAM has the same structure

as the TLB, a PTE address is inserted in the PCAM at the same index as its

corresponding translation in the TLB (physical address 12 in Figure 5.6(a)). Note

that there can be multiple PCAM entries with the same physical address, as in Figure

5.6(a). This situation occurs when multiple cached translations correspond to PTEs

residing in the same cache block.

PCAM entries are removed as a result of the replacement of the corresponding

translation in the TLB or due to an incoming coherence request for read-write access.

If a coherence request hits in the PCAM, the Valid bit for the corresponding TLB

entry is cleared. If multiple TLB translations have the same PTE block address,

a PCAM lookup on this block address results in the identification of all associated

TLB entries. Figure 5.6(b) illustrates a coherence invalidation of physical address 12

that hits in two PCAM entries.

5.3 Platform-Specific Issues, Implementation Issues, and Optimiza-
tions

In this section, we discuss several implementation issues that target both functional

and performance aspects of UNITD, including: the integration with speculative ex-

ecution in superscalar cores (Section 5.3.1), the handling of translations that are

currently in both the TLB and data cache of a given core (Section 5.3.2), UNITD’s

compatibility with a wide range of system models and features (Section 5.3.3), and

a method of reducing the number of TLB coherence lookups (Section 5.3.4).

5.3.1 Interactions with Speculative Execution

UNITD must take into account the particularities of the core, especially for super-

scalar cores. Many cores speculatively execute a load as soon as the load’s address

94



is known. In a multithreaded or multicore environment, it is possible for another

thread to write to this address between when the load speculatively executes and

when it becomes ready to commit. In an architecture that enforces sequential con-

sistency (i.e., obeys a sequentially consistent VAMC model), these situations require

that the load (and its consumers) be squashed. To detect these mis-speculations,

cores adopt one of two solutions [46]: either snoop coherence requests that invalidate

the load’s address or replay the load at commit time and compare the replayed value

to the original.

With UNITD, an analogous situation for translations is now possible. A load can

read a translation from the TLB before it is ready to commit. Between when the load

reads the translation and is ready to commit, the translation could be invalidated

by a hardware coherence request. This analogous situation has analogous solutions:

either snoop coherence requests that invalidate the load’s translation or replay the

load’s TLB access at commit time. Either solution is more efficient than the case for

systems without UNITD; in such systems, an invalidation of a translation causes an

interrupt and a flush of the entire pipeline.

5.3.2 Handling PTEs in Data Cache and TLB

UNITD must consider the interactions between TLBs and the core when a page table

walk results in a hit on a block present in the Modified state in the local core’s data

cache. This scenario requires special consideration because it leads to data being

present in apparently incompatible coherence states in both the data cache and the

TLB. Consider the following example, when the data cache contains an exclusive

copy of the translation in Modified state, and the core performs a page table walk

on the translation. This will lead to the data cache block remaining in Modified,

while also being present in Shared in the TLB. A subsequent write by the core might

find the data block in Modified and perform a translation change without triggering

95



any coherence invalidations. Thus, the TLB will contain an invalid copy of the

translation.

We present three viable solutions to this situation.

Solution #1. Because the page table walk results in the TLB having this block

Shared, we can maintain the coherence invariant of ”single writer or multiple readers”

(SWMR) by having the block in the core’s data cache transition from Modified to

Shared. The drawback of this solution is that, because the page table walker uses the

core’s regular load/store ports to insert requests into the memory system, the cache

controller must distinguish between memory accesses of the same type (e.g., loads)

originating from the core’s pipeline. For example, a regular (non-page-table-walk)

load leaves the data cache block in the Modified state, whereas a page-table-walk

load transitions the data cache block to Shared.

Solution #2. We can introduce an additional coherence state for cache blocks:

Modified-TLBCached. A block transitions to this state from Modified following a

page table walk. As long as the block remains in this state, a copy of the translation

it contains might be cached in the TLB (it is possible that the TLB evicted the

translation since the access). Consequently, a store on a data block in this state

requires a local TLB coherence invalidation. The main disadvantage of this solution

is that it modifies the original cache coherence protocol, although it minimizes the

required TLB invalidation accesses.

Solution #3. Because Solutions #1 and #2 require changing the coherence

controller, we instead adopt an alternative solution that does not affect the cache

coherence protocol. If a page table walk results in a hit on a block in the Modified

state in the data cache, we leave the block in the Modified state in the data cache,

while inserting the block in the Shared state in the TLB. Despite the apparent viola-

tion of the SWMR invariant, UNITD ensures that the TLB always contains coherent

data by probing the TLB on stores by the local core. This situation is the only case

96



in which UNITD allows a combination of seemingly incompatible coherence states.

Because cores already provide mechanisms for self-snoops on stores for supporting

self-modifying code [64], UNITD can take advantage of existing resources, which is

why we have chosen Solution #3 over the other two in our UNITD implementations.

5.3.3 UNITD’s Non-Impact on the System

UNITD is compatible with a wide range of system models, and we now discuss some

system features that might appear to be affected by UNITD.

Cache Coherence Protocol

We have studied UNITD in the context of systems with both MOSI snooping and

directory coherence protocols. UNITD has no impact on either snooping or direc-

tory protocols, and it can accommodate a MOESI protocol without changing the

coherence protocol.

Snooping. By adopting the self-snooping solution previously mentioned in Sec-

tion 5.3.2, no change is required to the cache protocol for a snooping system.

Directory. It might appear that adding TLBs as possible sharers of blocks would

require a minor change to the directory protocol in order to maintain an accurate

list of block sharers at the directory. However, this issue has already been solved for

coherent instruction caches. If a core relinquishes ownership of a block in its data

cache due to an eviction and the block is also present in its instruction cache or TLB,

it sets a bit in the writeback request such that the directory does not remove the

core from the block’s list of sharers. Also, the coherence controller must be enhanced

such that it allows invalidation acknowledgments to be sent if the address is found

in the PCAM.

97



MOESI Protocols

UNITD also applies to protocols with an Exclusive state (i.e., MOESI protocol)

without modifying the protocol. For MOESI protocols, the TLBs must be integrated

into the coherence protocol to determine if a requestor can obtain a block in the

Exclusive state. Once again, the TLB behaves like a coherent instruction cache; it

is probed in parallel with the cores’ caches and contributes to the reply sent to the

requestor.

Memory Consistency Model

UNITD is applicable to any memory consistency model. Because UNITD’s TLB

lookups are performed in parallel with cache snoops, remote TLB invalidations can

be guaranteed through the mechanisms provided by the microarchitecture to enforce

global visibility of a memory access, given the consistency model.

Virtual Address Synonyms

UNITD is not affected by synonyms because it operates on PTEs that uniquely define

translations of virtual addresses to physical addresses. Each synonym is defined

by a different PTE, and changing/removing a translation has no impact on other

translations corresponding to virtual addresses in the same synonym set.

Superpages

Superpages rely on ”coalescing neighboring PTEs into superpage mappings if they

are compatible” [124]. The continuity of PTEs in physical addresses makes TLB

snooping on superpages trivial with simple UNITD extensions (e.g., the PCAM can

include the number of PTEs defining the superpage to determine if a snoop hits on

any of them).

98



Virtual Machines

Virtualization does not affect UNITD. UNITD operates on PTEs using physical

addresses, and not machine addresses. A PTE change will affect only the host for

which the PTE defines a translation. If multiple VMs access a shared physical page,

they will access it using their own physical PTEs, as assigned by the host OS. In fact,

we expect UNITD performance benefits to increase on virtualized systems because

the TLB shootdown cost (which is eliminated by UNITD) increases due to host-guest

communication for setting up the procedure.

Status Bits Updates

As discussed in Section 5.1, some systems do not require translation coherence for

safe changes. In the current implementation, UNITD does not distinguish between

safe and unsafe changes and enforces coherence on all translation updates. In theory,

this can adversely impact the application, as the UNITD system will incur additional

TLB translations invalidations compared to the system relying on TLB shootdowns.

In reality, the impact of treating all translation updates as unsafe depends on the

application’s behavior.

Consider the case of the update of a translation’s Dirty bit by Core 1, where Core

2 has the translation cached as read-only. On the translation update, the UNITD

system invalidates the translation cached by Core 2. Thus, Core 2 incurs a page table

walk penalty when trying to access the translation, that will be then acquired with

the Dirty bit set. Thus, a subsequent Store by Core 2 incurs no additional penalty.

Under the same series of events, in the baseline system relying on shootdowns, Core

1’s update leaves Core 2’s cached translation unaffected. Thus, a store by Core 2

results in a page fault which also includes a page table walk. However, it is possible

that Core 2 never writes to the page and only reads from it. In this case, UNITD’s

penalty over the baseline is the page walk incurred by Core 2.

99



Therefore, UNITD yields a smaller penalty than the baseline system in the first

case, while it downgrades performance in the second situation. The overall impact

on the application is thus determined by the prevalence of either of the two scenarios.

We believe that the first case that benefits UNITD is more frequent for most ap-

plications, as these synchronize threads that exhibit a consumer-producer behavior.

The consumer thread does not try to read the data until the producer writes it (oth-

erwise, the consumer reads stale data). This approach guarantees that the consumer

thread’s Dirty bit update precedes any translation accesses by other threads.

5.3.4 Reducing TLB Coherence Lookups

Because UNITD integrates TLBs into the coherence protocol, UNITD requires TLB

coherence lookups (i.e., in the PCAM) for local stores and external coherence re-

quests for ownership. The overwhelming majority of these lookups result in TLB

misses, since PTE addresses represent a small, specific subset of the memory space.

To avoid wasting power on unnecessary TLB coherence lookups, UNITD can easily

filter out these requests by using one of the previously proposed solutions for snoop

filters [91].

5.4 Experimental Evaluation

In this section, we evaluate UNITD’s performance improvement over systems relying

on TLB shootdowns. We also evaluate the filtering of TLB coherence lookups, as

well as UNITD’s hardware cost.

5.4.1 Methodology

We use Virtutech Simics [81] to simulate an x86 multicore processor. For the mem-

ory system timing simulations we use GEMS [85]. We extend the infrastructure to

accurately model page table walks and TLB accesses. We do not model the time to

100



Table 5.1: Target System Parameters for UNITD Evaluation.

Parameter Value

Cores 2, 4, 8, 16 in-order scalar cores
L1D/L1I 128KB, 4-way, 64B block, 1-cycle hit
L2 cache 4MB, 4-way, 64B block, 6-cycle hit
Memory 4GB, 160-cycle hit
TLBs 1 I-TLB and 1 D-TLB per core; all 4-way set-

assoc.; 64 entries for 4K pages and 64 entries for
2/4MB pages

Coherence MOSI snooping and directory protocols
Network broadcast tree (snooping); 2D mesh (directory)

Table 5.2: Microbenchmarks for UNITD Evaluation.

single initiator multiple initiators

COW single cow multiple cow
Unmap single unmap multiple unmap

deliver interrupts, an approximation that favors the systems with shootdowns, but

not UNITD. As the Simics infrastructure updates the status bits in the background

(i.e., status bits are not part of the simulated system’s visible state), we do not

simulate their updates.

The parameters of our simulated system are given in Table 5.1. The baseline

OS consists of a Fedora Core 5 distribution with a 2.6.15 SMP kernel. For the

UNITD systems, we use the same kernel version recompiled without TLB shootdown

procedures (e.g., flush tlb mm(), flush tlb range(), smp invalidate interrupt()). We

report results averaged across twenty simulated executions, with each simulation

having a randomly perturbed main memory latency as described by Alameldeen et

al. [11].

Benchmarks

Ideally, we would like to test UNITD on a set of real applications that exhibit a wide

range of TLB shootdown activity. Unfortunately, we are bound to the constraints

101



imposed by running the applications on a simulator, and not the real hardware, and

therefore the real time that we can simulate is greatly decreased. For example, the

wordcount results presented in Figure 5.3 were obtained for an input file of size 1GB.

However, the Simics infrastructure crashed when trying to run the benchmark with

an input file of just 100MB, an order of magnitude smaller.

In addition, with the exception of the wordcount benchmark from the Phoenix

suite [100], we are unaware of existing benchmarks that exercise TLB shootdown

mechanisms. We also do not have access to any of the applications mentioned in

Section 1.3 that exercise translation coherence. As a consequence, we created a set

of microbenchmarks that spend various fractions of their runtime in TLB shootdown

routines triggered by one of two OS operations: copy-on-write (COW) and page

unmapping.

The microbenchmarks are modeled after the map phase of the wordcount bench-

mark. They consist of one or multiple threads parsing a 50 MB memory-mapped

file and either performing stores to the mapped pages (this triggers the kernel’s

COW policy if the file is memory-mapped with corresponding flags set) or unmap-

ping pages. For the benchmarks in which multiple threads trigger shootdowns, the

number of threads equals the number of cores in the system. The pairing of how

many threads can trigger shootdowns (one or more shootdown initiators) with the

two types of operations (COW/unmap) leads to a total of four types of microbench-

marks as shown in Table 5.2. For the benchmarks with multiple shootdown initiators,

we divide the workload evenly across the threads. This yields a runtime between 150

million and 1.5 billion cycles per thread.

The frequency of COW/unmap operations is parameterizable and allows us to test

UNITD’s efficiency across a range of TLB shootdowns counts. We use the shootdown

count as our parameter rather than the time spent in shootdowns because the latter

varies with the number of cores in the system, as shown in Section 5.1.2. Thus,

102



we can use the shootdown count as a constant unit of measure for performance

improvements across systems with different number of cores. In our experiments, we

vary the number of shootdowns between 0 and 12,000 (the 50MB input file allows

for up to 12,500 4KB pages). Varying the number of TLB shootdowns reveals the

benefits of UNITD, as well as creating a correspondence between the possible benefits

and the time spent by the baseline system in shootdowns.

In addition to these microbenchmarks, we study UNITD’s performance on appli-

cations that exhibit no shootdowns, including swaptions from the Parsec suite [18]

and pca, string-match, and wordcount (with a much smaller input file than the one

used in Figure 5.3, leading to a negligible number of shootdowns) from the Phoenix

suite [100]. We perform these experiments to confirm that UNITD does not degrade

common-case performance.

5.4.2 Performance

In all performance experiments, we compare UNITD to two systems. The first com-

parison is to a baseline system that relies on TLB shootdowns. All results are

normalized with respect to the baseline system with the same number of cores. For

each benchmark, the x -axis shows both the number of shootdowns present in the

baseline execution and the number of cores.

The second comparison is to a system with ideal (zero-latency) translation in-

validations. This ideal-invalidation system uses the same modified OS as UNITD

(i.e., with no TLB shootdown support) and verifies that a translation is coherent

whenever it is accessed in the TLB. The validation is done in the background and

has no performance impact. If the cached translation is found to be incoherent, it

is invalidated and reacquired; the re-acquisition of the translation is not ideal (i.e.,

it has non-zero latency). We do not refer to this system as ”ideal translation coher-

ence” because such a system would be one that updates the TLB cached translations

103



���

�

���

���

���

���

���

��	

��


� � � �	 � � � �	 � � � �	 � � � �	 � � � �	

� �� �� �� ���

��
��

��
�

����������	�
��


 � � � �
� � � � � � � � � � � � � � � � � � � � � � �

(a) Snooping protocol

���

�

���

���

���

���

���

��	

��


� � � �	 � � � �	 � � � �	 � � � �	 � � � �	

� �� �� �� ���

��
��

��
�

����������	�
��


 � � � �
� � � � � � � � � � � � � � � � � � � � � � �

(b) Directory protocol

Figure 5.7: UNITD Speedup Over Baseline System for Single unmap Benchmark.

rather than invalidating them. Besides demonstrating UNITD’s efficiency, the com-

parison with the system with ideal TLB invalidations reveals if UNITD incurs any

performance degradation due to ensuring coherence on PTE’s block addresses rather

than full addresses.

Single unmap

Figure 5.7 shows UNITD’s performance on the single unmap benchmark as a function

of the number of shootdowns and number of cores on systems with both snooping

and directory protocols. For this benchmark, the application’s runtime is determined

by the thread performing the unmaps. Thus, the impact of TLB shootdowns on the

runtime is represented by the shootdown initiator routine’s effect on the application.

With respect to this microbenchmark, there are three main conclusions.

First, UNITD is efficient in ensuring translation coherence, as it performs as well

as the system with ideal TLB invalidations. In a few cases, UNITD even outperforms

the ideal case although the performance gain is a statistically insignificant artifact

of the invalidation of translations in the TLB, which aids the set-associative TLBs.

In the ideal case, the invalidation occurs if the invalid translation is accessed. Thus,

104



����������
�

���������
� ���������
� ���������
����������
����������
� ���������
� ���������
����������

� � 	 � 
 � � 	 � 
 � � 	 � 
 � � 	 � 
 � � 	 � 
 � � 	 � 


� ��� � � �� 	� � ��

��
���

�

����������	�
��

� 
 � � � � � � � � � � � � � � � �
� � � � � � � � � � � �  � !  ! � ! � � � " � � � � � � �

(a) Snooping protocol

����������
�

���������
� ���������
� ���������
����������
����������
� ���������
� ���������
����������

� � 	 � 
 � � 	 � 
 � � 	 � 
 � � 	 � 
 � � 	 � 
 � � 	 � 


� ��� � � �� 	� � ��

��
���

�

����������	�
��

� 
 � � � � � � � � � � � � � � � �
� � � � � � � � � � � �  � !  ! � ! � � � " � � � � � � �

(b) Directory protocol

Figure 5.8: Runtime Cycles Eliminated by UNITD Relative to Baseline System for Sin-
gle unmap Benchmark.

it is possible for the system to evict a useful translation (i.e., one that will be soon

accessed) because it is the least recently used translation, although there is a more

recently-accessed translation that became stale after the access.

Second, UNITD speedups increase with the number of TLB shootdowns and with

the number of cores. If the shootdown count is large, the performance benefits scale

accordingly, up to 68% speedup for the 16-core configuration for the snooping system

and up to 50% for the directory protocol. In addition, even for the same number of

shootdowns, UNITD’s improvements increase with the increasing number of cores.

For 4000 shootdowns, UNITD’s speedup increases from 3% for 2 cores to 9% for 16

cores. The difference increases for 12000 shootdowns, from 25% for 2 cores to 68%

for 16 cores. Therefore, we expect UNITD to be particularly beneficial for many-core

systems.

Third, as expected, UNITD has no impact on performance in the absence of

TLB shootdowns. UNITD can impact performance only through invalidations of

TLB cached translations. In the absence of such invalidation requests, we expect the

runtime to be identical.

Understanding UNITD’s Performance Benefit. To better understand the

105



����

����

� ���

� ���

� �� �

� �� �

� ���

� � � � 	 � � � � 	 � � � � 	 � � � � 	 � � � � 	

� � 
 �
 �
 � �


��
��

��
�

����������	�
��

� � 
 � �

 � � � � � � � � � � � � � � � � � � � � � �

(a) Snooping protocol

����

����

� ���

� ���

� �� �

� �� �

� ���

� � � � 	 � � � � 	 � � � � 	 � � � � 	 � � � � 	

� � 
 �
 �
 � �


��
��

��
�

����������	�
��

� � 
 � �

 � � � � � � � � � � � � � � � � � � � � � �

(b) Directory protocol

Figure 5.9: UNITD Speedup Over Baseline System for Multiple unmap Benchmark.

performance benefits of UNITD, Figure 5.8 shows a comparison for the single unmap

benchmark between UNITD’s runtime and the time spent triggering the TLB shoot-

downs routines in the baseline system. UNITD’s runtime is shorter than the base-

line’s runtime by a number of cycles that is greater than the cycles spent by the

baseline in TLB shootdowns. As mentioned in Section 5.1.2, the latency associated

with the TLB shootdowns on the baseline x86/Linux system is increased by the full

flush of the TLBs during certain shootdowns because full flushes lead to subsequent

page table walks. UNITD avoids this extra penalty, thus resulting in a runtime

reduction greater than the number of TLB shootdown cycles.

Multiple unmap

Figure 5.9 shows the speedup when there are multiple threads unmapping the pages

for snooping and directory systems, respectively. For this benchmark, we measure

the time required by all threads to finish their work. The impact of TLB shootdown

on execution time of the baseline system is represented by both the time spent by

threads in triggering shootdowns, as well as the time they spend in servicing other

threads’ shootdowns.

106



����

����

��� �

��� �

� ���

� ���

� �� �

� � � � 	 � � � � 	 � � � � 	 � � � � 	 � � � � 	 � � � � 	

� � �� � 
 �
 �
 � �


��
���

���
�	
�


��
��
�

���


�
��

��
��



����������	�
��

� � 
 � �

 � � � � � � � � � � � � � � � � � � � � � �

Figure 5.10: UNITD Relative Bandwidth Consumption For Multiple unmap Benchmark
with Snooping Coherence. Results are normalized to the baseline system.

UNITD once again matches the performance of the system with ideal TLB in-

validations. Moreover, UNITD proves beneficial even for a small number of TLB

shootdowns. For just 1000 shootdowns, UNITD yields a speedup of more than 5%

for 8 cores. Compared to single unmap, UNITD’s speedups are generally lower,

particularly for greater numbers of shootdowns and cores. The reason for this phe-

nomenon is contention among the multiple initiators for locks, which decreases the

percent of overall runtime represented by the shootdown routines.

We also observe small speedups/slowdowns for the executions with zero shoot-

downs. These are artifacts caused by the differences between the baseline kernel

and our modified kernel, as evidenced by UNITD’s trends also being exhibited by

the system with ideal TLB invalidations. These differences are likely caused by the

placement of the kernel instructions/data at different addresses from the baseline

configuration.

Because UNITD reduces both the number of instructions executed and the num-

ber of page table walks, an additional UNITD benefit is lower interconnect network

bandwidth traffic compared to the baseline system. Figure 5.10 presents the relative

bandwidth consumption, compared to the baseline, during the execution of mul-

tiple unmap on a snooping system. UNITD consistently requires less bandwidth,

107



����

����

�

����

����

����

����

���	

� � � �
 � � � �
 � � � �
 � � � �
 � � � �


� �� �� �� ���

��
��

��
�

����������	�
��

� 
 � � �
� � � � � � � � � � � � � � � � � � � � � � �

(a) Snooping protocol

����

����

�

����

����

����

����

���	

� � � �
 � � � �
 � � � �
 � � � �
 � � � �


� �� �� �� ���

��
��

��
�

����������	�
��

� 
 � � �
� � � � � � � � � � � � � � � � � � � � � � �

(b) Directory protocol

Figure 5.11: UNITD Speedup Over Baseline System for Single cow Benchmark.

yielding up to a 12% reduction in bandwidth consumption for 16 cores.

Single cow

Figure 5.11 shows the performance when a single thread triggers shootdown by re-

lying on the COW procedure. In this case, the TLB shootdown is a smaller per-

centage of runtime for COW (due to long-latency copy operations) than unmap, and

therefore there is less opportunity for UNITD to improve performance. For this mi-

crobenchmark, the baseline runtime is affected only by the time the initiator spends

in triggering the shootdowns. This leads to neglegible improvements for the UNITD

system, of less than 2%. Nevertheless, UNITD performs as well as the system with

ideal invalidations.

Multiple cow

The application behavior changes with multiple threads executing the COW oper-

ations. Performance is affected by the time spent by threads in TLB shootdown

initiation, as for single cow, but also by the time to service TLB shootdown in-

terrupts triggered by other threads. The cost of executing the interrupt handler

increases with the number of cores as shown in Section 5.1.2.

108



����

����

� ���

� ���

� �� �

� �� �

� ���

� ���

� � � � 	 � � � � 	 � � � � 	 � � � � 	 � � � � 	

� � �� � � �� 
 � �� � ��

��
��

��
�

����������	�
��

� 
 � � �
� � � � � � � � � � � � � � � � � � � � � � �

(a) Snooping protocol

����

����

� ���

� ���

� �� �

� �� �

� ���

� ���

� � � � 	 � � � � 	 � � � � 	 � � � � 	 � � � � 	

� � �� � � �� 
 � �� � ��

��
��

��
�

����������	�
��

� 
 � � �
� � � � � � � � � � � � � � � � � � � � � � �

(b) Directory protocol

Figure 5.12: UNITD Speedup Over Baseline System for Multiple cow Benchmark.

����

����

����

����

��� �

��� �

� ���

� ���

� �� �

� 	 � � 
 � 	 � � 
 � 	 � � 
 � 	 � � 
 � 	 � � 


� � �� � � �� �� �� � ��

��
���

���
�	
�


��
���


��
�


��
�
��
��


����������	�
��
Figure 5.13: UNITD Relative Bandwidth Consumption for Multiple cow Benchmark with
Snooping Coherence. Results are normalized to the baseline system.

As a consequence, performance is greatly affected by TLB shootdowns for mul-

tiple cow, as shown in Figure 5.12, which reveals the differences with respect to the

single cow microbenchmark. This trend is especially clear for 16 cores. In this case,

UNITD outperforms the base case by up to 20% for the snooping protocol.

Similar to the results shown for multiple unmap benchmark, UNITD’s benefits

translate in a direct reduction of the interconnect bandwidth consumption as shown

in Figure 5.13. In this case, UNITD yields up to a 24% reduction in bandwidth

consumption.

109



����

����

� ���

� ���

� ���

� ���

� � � � � � � � � � � � � � � � � � � �

	 
 � � 
 � � � 	 � � � 	 
 � � � � � � � 
 � � 
 � � � � � � � 


��
��

��
�

��������	


Figure 5.14: UNITD Speedup on Real Benchmarks.

Real Benchmarks

For applications that perform no TLB shootdowns when run on the baseline system,

we expect UNITD to have negligible performance impact. UNITD’s only perfor-

mance impact occurs in situations when there are stores to PTEs that invalidate

TLB entries. Figure 5.14 presents the results for such benchmarks. All of the appli-

cations, including wordcount (because of its smaller input size), spend a negligible

amount of time in TLB shootdowns (less than 0.01% of total execution time). The

results are as expected: for these applications, UNITD performs as well as the base-

line, with small, statistically insignificant variations that are caused by the difference

between the baseline kernel and the UNITD one.

TLB Coherence Lookup Filtering

Despite UNITD’s performance transparency, UNITD’s TLB coherence lookups result

in wasted PCAM power, as most lookups miss in the PCAM. As described in Section

5.3.4, a large fraction of these lookups can be avoided by using a simple filter. We

evaluate the efficiency of this solution by implementing a small include-JETTY filter

[91]. The filter consists of 2 blocks of 16 entries each, indexed by bits 19-16 and 15-12

of the physical address. We use bits 19-12 for filtering in order to isolate the pages

that contain PTEs and that are likely to not be accessed by the applications. Using

110



�
� �
��
� �
��
� �
� �
� �
	�

 �

� ��

� � 	 � � � � 	 � � � � 	 � � � � 	 � �

� � 
 � � � � � � � � 
 � � � � � � � � 
 � � � � � � � � � � � �

��
���

��
��
�	


�	�





�
��
	��

�
��������	


Figure 5.15: Percentage of TLB Coherence Lookups Filtered with a Simple JETTY
Filter.

the upper address bits will result in increased filter accuracy, but will also increase

the size of the filter. Even with this simple filter, we can filter around 90% of the

coherence lookups for most systems, as Figure 5.15 shows.

We must note however that any filtering mechanism must take advantage of the

specific placement of page table entries in memory. Although most operating systems

adopt common placement of the page tables (e.g., in the lowest memory pages), this

information is system-specific. Consequently, the operating system could provide the

filter with hints about the regions of physical memory where it stores the page tables.

5.5 UNITD Hardware Cost

The hardware and power costs associated with UNITD are almost entirely repre-

sented by the PCAM and depend on its implementation. Conceptually, the PCAM

can be viewed as a dual-tag extension of the TLB. Thus, for a 32-bit system with

64-byte cache blocks, the PCAM tags require 26 bits compared to the 20 bits of

the TLB tags (for 4-Kbyte pages). For a 64-bit system, the PCAM tags increase to

38 bits due to the 44-bit physical addresses. The hardware and power costs for a

PCAM with a small number of entries (e.g., 64 or fewer) are comparable to those

for a core’s store queue with the same number of entries. For a PCAM with a large

111



number of entries, a physical CAM may exceed desired area and power budgets. In

this case, one could use an alternate, lower-cost implementation for a logical CAM,

as described in Section 5.2.2.

Independent of the implementation, accesses to the TLB for TLB coherence pur-

poses (rather than accesses for translation lookups) are off the critical path of a

memory access. Therefore, the PCAM implementation can be clocked at a lower

frequency than the rest of the core or can be implemented as a 2-level structure with

pipelined accesses. The latter case supports a filtering of the invalidation lookups,

as not finding a match at the first level implies that the PCAM does not contain

the address. For example, if the first level consists of bits 19-12 of the physical ad-

dress, most lookups can be filtered after the first level as shown by our JETTY filter

experiment.

5.6 Related Work

Section 5.1.1 described the software TLB shootdown routine as the most common

technique of maintaining TLB coherence. Previous research on translation coher-

ence has focused on three areas: speeding up the shootdown procedure by providing

dedicated hardware support, reducing the number of processors involved in the shoot-

down, and proposing alternative solutions for maintaining translation coherence.

Hardware support for shootdowns. Shootdown’s complexity and latency

penalty can be reduced by using mechanisms other than inter-processor interrupts.

Among current commercial architectures, both Power ISA and Intel IA64 support

microarchitectural mechanisms for global TLB invalidations. These hardware designs

are still architecturally visible and thus provide less flexibility than UNITD.

Reducing the number of shared translations. Several OS implementations

have indirectly reduced the impact of TLB shootdowns on application performance,

by reducing the number of shared translations. Tornado [45] and K42 [12] introduce

112



the concept of clustered objects that are associated with each thread, thus reducing

the contention of the kernel managed resources. Corey [130] follows the same concept

by giving applications the power to decide which PTEs are core-private and thus

eliminate shootdowns for these PTEs.

Alternative translation coherence mechanisms. Teller has proposed several

hardware-based mechanisms for handling TLB coherence [126], but they restrict the

system model in significant ways, such as prohibiting the copy-on-write policy. Wood

et al. [132] proposed a different approach to handling translations, by using virtual

caches without a memory-based TLB. Translations are cached in the data cache

and thus translation coherence is maintained by the cache coherence protocol. A

drawback of this approach is that it requires special handling of the status and

protection bits that must be replicated at each data block [133]. The design also

complicates the handling of virtual memory based optimizations such as concurrent

garbage collection or copy-on-write [13].

5.7 Conclusions and Future Work

We believe the time has come to adopt hardware support for address translation

coherence. We propose UNITD, a unified hardware coherence protocol that in-

corporates address translation coherence together with cache coherence. UNITD

eliminates the performance costs associated with translation coherence as currently

implemented through TLB shootdown software routines. We demonstrate that, on

systems with 16 cores, UNITD can achieve speedups of up to 68% for benchmarks

that make frequent changes to the page tables. We expect the benefits yielded by

UNITD to be even greater for many-core systems. Finally, we demonstrate that

UNITD has no adverse performance impact for other applications, while incurring a

small hardware cost.

One of the challenges to address in the current implementation of UNITD is the

113



power consumption of the PCAM structure. Although we demonstrated that filtering

can eliminate many of the coherence lookups, the filtering mechanisms adds its own

power consumption to the system. Next, we briefly describe a possible solution to

reduce the number of PCAM accesses by modifying the coherence protocol such that

the PCAM is probed only when translation coherence is required. The key concept

of the solution is to mark blocks containing PTEs and probe the PCAM only on

coherence requests for these blocks. Cache or memory blocks are marked as PTE

holders once the first page table walk occurs on a resident PTE. If no such table walk

exists, then no TLB contains a cached copy of the corresponding translation. The

”PTE holder” information is maintained by the owner of the block. If the protocol

does not have an Owned state, the information resides with the valid copies of the

block, either at memory or with the cache that has block in the Modified state.

A core specifically marks coherence requests that require PCAM lookups once it

determines that the block it operates on is a ”PTE holder”. This information might

become available to the core once it receives the block, which requires the core to

lock the block and issue a coherence request targeting only PCAMs. The solution

guarantees the reduction of PCAM lookups to only coherence requests for cache

blocks containing PTEs, and trades power consumption for increased complexity of

the coherence protocol.

We expect future research to extend beyond improvements to the UNITD frame-

work. One of the key aspects facilitated by UNITD is the integration of I/O devices

and other non-processor components in a single shared-address memory space. Ar-

chitects can take advantage of this opportunity to explore new performance-oriented

design paradigms. Previous research showed the advantages of supporting transla-

tions in network cards [102]. We envision that these improvements can be extended

to other devices too. For example, supporting translations in graphics processors al-

lows the hardware to migrate threads between main cores and graphics cores without

114



software intervention for increased performance.

115



6

Conclusions

Harnessing the full performance potential of many-core processors requires hardware

designers to consider not only the advantages, but also the problems introduced

by these new architectures, and design and provision resources accordingly. The

hardware challenges arise from both the processor’s increased structural complexity

and the reliability problems of the silicon substrate. In this thesis, we addressed these

challenges on three coordinates: tolerating permanent faults, facilitating static and

dynamic verification through precise specifications, and designing scalable coherence

protocols.

We introduced the Core Cannibalization Architecture, a design paradigm for

increased processor availability and performance in the presence of hard faults in

cores. Relying on a novel reconfiguration mechanism, CCA allows cores to replace

faulty components with structures borrowed from neighboring cores. To support

the cannibalization process, CCA exploits the on-chip locality of cores. Therefore,

CCA benefits if cores are clustered in small groups (we used three-core and four-core

groups in our experiments), as these configurations reduce the performance cost of

borrowing components.

116



The evaluation of the four-core CCA processors confirmed our initial hypoth-

esis about CCA’s performance, which is determined by the time required to ac-

cess remote resources, as well as the partitioning of cores in CCs/NCs. For 90nm

technology, slowing down the clock to accommodate the access to a cannibalized

structure is preferable to adding an extra pipeline stage, as demonstrated by the

CCA4-clock(3/1) design outperforming the CCA4-pipe(3/1) configuration. For fu-

ture technologies, this trend might be reversed as the wire delays for the remote

access become a larger fraction of the clock period. Nevertheless, for the CCA4-pipe

configurations to become cost-effective, architects must propose solutions to reduce

the buffering required by the extra pipe stage and, in particular, the buffers used to

avoid pipeline hazards.

With respect to assignment of cores as NCs and CCs, we demonstrated that

supporting more reconfiguration possibilities by assigning multiple cores to be CCs

provides cost-effective performance gains. The CCA4-clock(2/2) design has an area

overhead of 1% compared to CCA4-clock(3/1), but takes advantage of the 2 CCs

to yield significantly better performance especially over longer periods of time–12%

better for 12 years assuming our expected failure rate.

Maximizing the performance of any CCA configuration also depends on mini-

mizing the penalty during fault-free execution, especially if the expected utilization

period for the chip is small (e.g., 3-4 years). In such situations, the CCA proces-

sors might not benefit from the reconfiguration mechanism and will underperform

regular processors. In this respect, the tight integration between cores assumed by

CCA gives CCA chips an advantage over more flexible solutions such as StageNet

[48]. Processors based on the latter concept incur a bigger fault-free penalty, and

thus need a longer period of time to become advantageous. For common industrial

lifetimes of 10-12 years, CCA offers a better compromise between reconfiguration

flexibility and performance gains given the expected failure rates for future silicon

117



technologies.

We also identified address translation as a system that is prone to design faults

and that currently lacks solutions for detecting incorrect behavior. We believe one

cause of these correctness problems is the designer’s tendency to over-simplify mem-

ory consistency and especially to neglect translations’ impact on memory consis-

tency. We addressed this issue by proposing a framework for precise specifications

of translation-aware memory consistency models. Our framework emphasizes the

importance of considering the hierarchical structure of memory consistency models,

as previously described by Adve and Gharachorloo [5]. As part of this framework,

we discussed in detail two levels of memory consistency, PAMC and VAMC, and

described the AT aspects that impact VAMC.

The precise specifications of VAMC models simplify the programmer’s reasoning

about correctness of AT-related code, support static and dynamic verification, and

facilitate designing hardware that involves AT. In addition, the framework allows

architects to evaluate more easily the tradeoffs between design decisions and the

hardware/software support required for a specific VAMC model. Consider the case

of status bits updates. In a system with software managed TLBs, these updates

occur in exception handlers and, consequently, are serialized with respect to any

other user-level instruction (i.e., instructions outside the handler), including the

instruction triggering the update. If the designer’s intention is to support a VAMC

model that relaxes the orderings between status bits updates and memory operations,

then the system should rely on hardware rather than software to manage the TLBs,

or at least to handle the updates.

To support checking correctness of VAMC implementations, we proposed a set

of implementation-independent invariants that characterize AT, and we developed

DVAT, a mechanism for dynamic verification of AT. The AT correctness framework

is applicable to all commercial AT systems that we are aware of. Representative

118



of the framework’s coverage is that all AT-related design bugs described in recent

processor errata [2, 3, 4, 59, 61, 62, 63] break at least one of the framework’s invari-

ants. Consequently, we expect DVAT to detect all such design faults, as successfully

demonstrated in our DVAT error detection experiments.

The current DVAT implementation assumes a specific AT model. However, DVAT

can be extended to check correctness of more relaxed AT models. As long as archi-

tects prove that the AT model bridges the gap between a specific PAMC-VAMC

pair, DVAT can be used in association with previous solutions for checking PAMC

[89] to provide runtime error detection for the VAMC implementations.

The last direction of this thesis addressed scalable translation coherence protocols.

We proposed to take advantage of the hardware’s benefits, such as speed and archi-

tectural decoupling, and move translation coherence into hardware. Our solution,

UNITD, integrates translation coherence into the regular cache coherence protocol.

By having TLBs participate in cache coherence such as instruction/data caches,

UNITD reduces the performance penalty associated with translation coherence to

almost zero. In addition, compared to TLB shootdown routines, UNITD avoids ad-

ditional performance penalties due to cache pollution (i.e., due to shootdown-related

instructions/data), pipeline flushes for servicing shootdown interrupts, or page table

walks caused by full TLB flushes.

UNITD’s performance benefits depend on how often the running application re-

quires translation coherence. Moreover, our microbenchmark analysis reveals that

translation coherence has a higher performance impact if it is triggered by page un-

mapping rather than COW operations. Thus, for a single thread generating 12,000

translation coherence operations on a 16-core system, UNITD yields speedups of

68% for page unmap, compared to less than 3% for COW. For COW, translation

coherence operations are a smaller fraction of the total runtime, compared to the

associated page copying operations. Even for COW, translation coherence has a

119



higher performance impact on systems with TLB shootdowns if multiple cores are

involved in the procedure, as cores must service shootdown interrupts. We expect

UNITD’s speedups for COW to increase on systems relying on copying accelerators

[69], where there is a larger performance opportunity that UNITD can exploit.

Nevertheless, UNITD would benefit applications that rely heavily on transla-

tion coherence, such as hardware transactional memory (e.g., XTM [40]), user-level

memory management for debugging [43], and concurrent garbage collection [39].

Our solutions cover a small subset of the challenges related to correct execution

and performance in many-core processors design. CCA increases processor availabil-

ity by targetting faults in cores, and future research should evaluate the feasibility of

extending the concept to other processor structures. The framework we propose for

translation-aware memory consistency specifications supports not only static or dy-

namic verification of consistency, but also the exploration of new VAMC models and

the analysis of possible performance benefits of translation-relaxed consistency mod-

els. UNITD bridges the gap to a single-address memory-shared space that extends

beyond the conventional processor to include graphics processors and I/O devices.

These directions represent just a few possible avenues of future research exploring the

space of dependability and performance of many-core processors that are facilitated

by the research contributions described in this thesis.

120



Bibliography

[1] M. E. Acacio, J. González, J. M. Garćıa, and J. Duato. Owner Prediction
for Accelerating Cache-to-cache Transfer Misses in a cc-NUMA Architecture.
In Proceedings of the 2002 ACM/IEEE Conference on Supercomputing, pages
1–12, 2002.

[2] Advanced Micro Devices. Revision Guide for AMD Athlon64 and AMD
Opteron Processors. Publication 25759, Revision 3.59, September 2006.

[3] Advanced Micro Devices. Revision Guide for AMD Family 10h Processors.
Technical Report 41322, September 2008.

[4] Advanced Micro Devices. Revision Guide for AMD Family 11h Processors.
Technical Report 41788, July 2008.

[5] S. V. Adve and K. Gharachorloo. Shared Memory Consistency Models: A
Tutorial. IEEE Computer, 29(12):66–76, December 1996.

[6] S. V. Adve, V. S. Pai, and P. Ranganathan. Recent Advances in Memory
Consistency Models for Hardware Shared Memory Systems. In Proceedings of
the IEEE, volume 87, pages 445–455, March 1999.

[7] A. Agarwal, R. Bianchini, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz,
B-H. Lim, K. Mackenzie, and D. Yeung. The MIT Alewife Machine: Archi-
tecture and Performance. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 2–13, June 1995.

[8] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. An Evaluation of
Directory Schemes for Cache Coherence. In Proceedings of the 36th Annual
International Symposium on Computer Architecture, pages 280–298, May 1988.

[9] N. Agarwal, L. Peh, and N. K. Jha. In-network Coherence Filtering: Snoopy
Coherence Without Broadcasts. In Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, pages 232–243, December 2009.

121



[10] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith. Configurable
Isolation: Building High Availability Systems with Commodity Multi-Core
Processors. In Proceedings of the 34th Annual International Symposium on
Computer Architecture, pages 470–481, June 2007.

[11] A. R. Alameldeen, C. J. Mauer, M. Xu, P. J. Harper, M. M.K. Martin, D. J.
Sorin, M. D. Hill, and D. A. Wood. Evaluating Non-deterministic Multi-
threaded Commercial Workloads. In Proceedings of the 5th Workshop on
Computer Architecture Evaluation Using Commercial Workloads, pages 30–38,
February 2002.

[12] J. Appavoo, D. D. Silva, O. Krieger, M. Auslander, A. Waterland, R. W.
Wisniewski, J. Xenidis, M. Stumm, and L. Soares. Experience Distributing
Objects in an SMMP OS. ACM Transactions on Computer Systems, 25(3):6,
2007.

[13] A. W. Appel and K. Li. Virtual Memory Primitives for User Programs. SIG-
PLAN Notices, 26(4):96–107, 1991.

[14] Arvind and J. Maessen. Memory Model = Instruction Reordering + Store
Atomicity. In Proceedings of the 33rd Annual International Symposium on
Computer Architecture, pages 29–40, June 2006.

[15] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,
D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick. The
Landscape of Parallel Computing Research: A View from Berkeley. Technical
Report UCB/EECS-2006-183, December 2006.

[16] T. M. Austin. DIVA: A Reliable Substrate for Deep Submicron Microarchi-
tecture Design. In Proceedings of the 32nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 196–207, November 1999.

[17] D. Bernick, B. Bruckert, P. D. Vigna, D. Garcia, R. Jardine, J. Klecka, and
J. Smullen. NonStop Advanced Architecture. In Proceedings of the Interna-
tional Conference on Dependable Systems and Networks, pages 12–21, June
2005.

[18] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark Suite:
Characterization and Architectural Implications. In Proceedings of the Interna-
tional Conference on Parallel Architectures and Compilation Techniques, pages
72–81, October 2008.

122



[19] D. L. Black, R. F. Rashid, D. B. Golub, and C. R. Hill. Translation Lookaside
Buffer Consistency: A Software Approach. In Proceedings of the 3rd Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, pages 113–122, April 1989.

[20] J. Blome, S. Feng, S. Gupta, and S. Mahlke. Self-calibrating Online Wearout
Detection. In Proceedings of the 40th Annual IEEE/ACM International Sym-
posium on Microarchitecture, pages 109–122, December 2007.

[21] M. Blum and S. Kannan. Designing Programs that Check Their Work. In
ACM Symposium on Theory of Computing, pages 86–97, May 1989.

[22] R. D. Blumofe and D. P. Papadopoulos. Hood: A User-Level Thread Library
for Multiprogramming Multiprocessors. Technical report, University of Texas
at Austin, 1998.

[23] H. Boehm and S. V. Adve. Foundations of the C++ Concurrency Memory
Model. In Proceedings of the Conference on Programming Language Design
and Implementation, pages 68–78, June 2008.

[24] S. Borkar. Thousand Core Chips: A Technology Perspective. In Proceedings
of the 44th Annual Design Automation Conference, pages 746–749, 2007.

[25] S. Borkar, N. P. Jouppi, and P. Stenstrom. Microprocessors in the Era of
Terascale Integration. In Proceedings of the Conference on Design, Automation
and Test in Europe, pages 237–242, 2007.

[26] F. A. Bower, P. G. Shealy, S. Ozev, and D. J. Sorin. Tolerating Hard Faults
in Microprocessor Array Structures. In Proceedings of the International Con-
ference on Dependable Systems and Networks, pages 51–60, June 2004.

[27] Bower, F.A. and Sorin, D.J. and Ozev, S. A Mechanism for Online Diag-
nosis of Hard Faults in Microprocessors. In Proceedings of the 38th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 197–208,
November 2005.

[28] Cadence Design Systems. Silicon Ensemble PKS datasheet. Online, December
2003. http://www.cadence.com/datasheets/sepks_ds.pdf.

[29] H. W. Cain and M. H. Lipasti. Verifying Sequential Consistency Using Vector
Clocks. In Revue in conjunction with Symposium on Parallel Algorithms and
Architectures, pages 153–154, August 2002.

123

http://www.cadence.com/datasheets/sepks_ds.pdf


[30] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Dynamic Verification of Cache
Coherence Protocols. In Workshop on Memory Performance Issues, June 2001.

[31] L. Carter, J. Feo, and A. Snavely. Performance and Programming Experi-
ence on the Tera MTA. In Proceedings of the SIAM Conference on Parallel
Processing, March 1999.

[32] M. Cekleov and M. Dubois. Virtual-Address Caches Part 1: Problems and
Solutions in Uniprocessors. IEEE Micro, 17(5):64–71, September 1997.

[33] M. Cekleov and M. Dubois. Virtual-Address Caches, Part 2: Multiprocessor
Issues. IEEE Micro, 17(6):69–74, November 1997.

[34] K. Chakraborty, P. M. Wells, and G. S. Sohi. Computation Spreading: Employ-
ing Hardware Migration to Specialize CMP Cores On-the-Fly. In Proceedings
of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 283–292, October 2006.

[35] M. Chang and K. Koh. Lazy TLB Consistency for Large-Scale Multiproces-
sors. In Proceedings of the 2nd Aizu International Symposium on Parallel
Algorithms/Architecture Synthesis, pages 308–315, March 1997.

[36] K. Chen, S. Malik, and P. Patra. Runtime Validation of Memory Ordering Us-
ing Constraint Graph Checking. In Proceedings of the 13th International Sym-
posium on High-Performance Computer Architecture, pages 415–426, February
2008.

[37] K. Chen, S. Malik, and P. Patra. Runtime Validation of Transactional Memory
Systems. In Proceedings of the International Symposium on Quality Electronic
Design, pages 750–756, March 2008.

[38] Y.S. Chen and M. Dubois. Cache Protocols with Partial Block Invalidations. In
Proceedings of 7th International Parallel Processing Symposium, pages 16–23,
April 1993.

[39] P. Cheng and G. E. Blelloch. A Parallel, Real-time Garbage Collector. ACM
SIGPLAN Notices, 36(5):125–136, May 2001.

[40] J. Chung, C. C. Minh, A. McDonald, T. Skare, H. Chafi, B. D. Carlstrom,
C. Kozyrakis, and K. Olukotun. Tradeoffs in Transactional Memory Virtual-
ization. In Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 371–381,
October 2006.

124



[41] Cisco Systems. Cisco Carrier Router System. Online, Octo-
ber 2006. http://www.cisco.com/application/pdf/en/us/guest/products/

ps5763/c1031/cdccont_0900aecd800f8118.pdf.

[42] C. Constantinescu. Trends and Challenges in VLSI Circuit Reliability. IEEE
Micro, 23(4):14–19, 2003.

[43] D. Dhurjati and V. Adve. Efficiently Detecting All Dangling Pointer Uses in
Production Servers. In Proceedings of the International Conference on Depend-
able Systems and Networks, pages 269–280, 2006.

[44] A. Erlichson, N. Nuckolls, G. Chesson, and J. Hennessy. SoftFLASH: Analyzing
the Performance of Clustered Distributed Virtual Shared Memory. SIGOPS
Operating Systems Review, 30(5), 1996.

[45] B. Gamsa, O. Krieger, and M. Stumm. Tornado: Maximizing Locality and
Concurrency in a Shared Memory Multiprocessor Operating System. In Pro-
ceedings of the 3rd Symposium on Operating Systems Design and Implementa-
tion, pages 87–100, 1999.

[46] K. Gharachorloo, A. Gupta, and J. Hennessy. Two Techniques to Enhance
the Performance of Memory Consistency Models. In Proceedings of the Inter-
national Conference on Parallel Processing, volume I, pages 355–364, August
1991.

[47] M. Gschwind. Optimizing Data Sharing and Address Translation for the Cell
BE Heterogeneous Chip Multiprocessor. In Proceedings of the IEEE Interna-
tional Conference on Computer Design, pages 478–485, October 2008.

[48] S. Gupta, S. Feng, A. Ansari, J. Blome, and S. Mahlke. The StageNet Fabric
for Constructing Resilient Multicore Systems. In Proceedings of the 41st An-
nual IEEE/ACM International Symposium on Microarchitecture, pages 141–
151, November 2008.

[49] S. Gupta, S. Feng, J. Blome, and S. Mahlke. StageNetSlice: A Reconfigurable
Microarchitecture Building Block for Resilient CMP Systems. In International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems,
pages 1–10, October 2008.

[50] D. B. Gustavson. The Scalable Coherent Interface and Related Standards
Projects. IEEE Micro, 12(1):10–22, 1992.

125

http:// www.cisco.com/application/pdf/en/ us/guest/ products/ps5763/ c1031/ cdccont_0900aecd800f8118.pdf
http:// www.cisco.com/application/pdf/en/ us/guest/ products/ps5763/ c1031/ cdccont_0900aecd800f8118.pdf


[51] E. G. Hallnor and S. K. Reinhardt. A Fully Associative Software-Managed
Cache Design. In Proceedings of the 27th Annual International Symposium on
Computer Architecture, pages 107–116, June 2000.

[52] T. Heijmen. Soft Error Rates in Deep-Submicron CMOS Technologies. In
Proceedings of the 12th IEEE International Symposium on On-Line Testing,
page 271, 2006.

[53] J. Held, J. Bautista, and S. Koehl. From a Few Cores to Many: A Tera-scale
Computing Research Overview. White Paper. Intel Corporation, 2006.

[54] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach, Fourth Edition. Morgan Kaufmann Publishers Inc., 2006.

[55] S. Heo, K. Barr, and K. Asanovic. Reducing Power Density Through Activity
Migration. In Proceedings of the 2003 International Symposium on Low Power
Electronics and Design, pages 217–222, 2003.

[56] M. D. Hill, A. E. Condon, M. Plakal, and D. J. Sorin. A System-Level Specifi-
cation Framework for I/O Architectures. In Proceedings of the 11th ACM Sym-
posium on Parallel Algorithms and Architectures, pages 138–147, June 1999.

[57] M. D. Hill, J. R. Larus, S. K. Reinhardt, and D. A. Wood. Cooperative
Shared Memory: Software and Hardware for Scalable Multiprocessor. ACM
Transactions on Computer Systems, 11(4):300–318, November 1993.

[58] R. Ho, K.W. Mai, and M.A. Horowitz. The Future of Wires. In Proceedings of
the IEEE, volume 89, pages 490–504, April 2001.

[59] IBM. IBM PowerPC 750FX and 750FL RISC Microprocessor Errata List
DD2.X, version 1.3, February 2006.

[60] Intel Corporation. A Formal Specification of Intel Itanium Processor Family
Memory Ordering. Document Number 251429-001, October 2002.

[61] Intel Corporation. Intel Pentium 4 Processor Specification Update. Document
Number 249199-065, June 2006.

[62] Intel Corporation. Intel Core Duo Processor and Intel Core Solo Processor on
65nm Process Specification Update. Technical Report 309222-016, February
2007.

126



[63] Intel Corporation. Intel Core2 Extreme Quad-Core Processor QX6000 Se-
quence and Intel Core2 Quad Processor Q6000 Sequence Specification Update.
Technical Report 315593-021, February 2008.

[64] Intel Corporation. Intel Processor Identification and the CPUID Instruction.
Application Note 485, March 2009.

[65] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez. Core Fusion: Accommo-
dating Software Diversity in Chip Multiprocessors. In Proceedings of the 34th
Annual International Symposium on Computer Architecture, pages 186–197,
June 2007.

[66] ITRS. The International Technology Roadmap for Semiconductors 2009 - De-
sign. Technical report, ITRS, 2009.

[67] A. Iyer and D. Marculescu. Power Efficiency of Voltage Scaling in Multiple
Clock, Multiple Voltage Cores. In Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, pages 379–386, November 2002.

[68] D. Jewett. Integrity S2: A Fault-Tolerant UNIX Platform. In Proceedings of
the 21st International Symposium on Fault-Tolerant Computing Systems, pages
512–519, June 1991.

[69] X. Jiang, Y. Solihin, L. Zhao, and R. Iyer. Architecture Support for Improv-
ing Bulk Memory Copying and Initialization Performance. In Proceedings of
the 18th International Conference on Parallel Architectures and Compilation
Techniques, pages 169–180, September 2009.

[70] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-Way Multi-
threaded SPARC Processor. IEEE Micro, 25(2):21–29, 2005.

[71] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen.
Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Proces-
sor Power Reduction. In Proceedings of the 36th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 81–92, December 2003.

[72] L. Lamport. Time, Clocks and the Ordering of Events in a Distributed System.
Communications of the ACM, 21(7):558–565, July 1978.

[73] L. Lamport. How to Make a Multiprocessor Computer that Correctly Executes
Multiprocess Programs. IEEE Transactions on Computers, C-28(9):690–691,
September 1979.

127



[74] D. Lampret. OpenRISC 1200 IP Core Specification. Online, Dec. 2006. http://
www.opencores.org.

[75] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scalable
Server. In Proceedings of the 24th Annual International Symposium on Com-
puter Architecture, pages 241–251, June 1997.

[76] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBench: A Tool
for Evaluating and Synthesizing Multimedia and Communicatons Systems. In
Proceedings of the 30th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, pages 330–335, December 1997.

[77] H. Lee, S. Cho, and B. R. Childers. Performance of Graceful Degradation for
Cache Faults. In Proceedings of the IEEE Computer Society Annual Symposium
on VLSI, pages 409–415, 2007.

[78] J. Levon et al. Oprofile. Online. http://oprofile.sourceforge.net.

[79] M. Li, P. Ramachandran, S. K. Sahoo, S. Adve, V. Adve, and Y. Zhou. Un-
derstanding the Propagation of Hard Errors to Software and Implications for
Resilient System Design. In Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating Systems,
pages 265–276, March 2008.

[80] M. Linklater. Optimizing Cell Core. Game Developer Magazine, pages 15–18,
April 2007.

[81] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. H̊allberg,
J. Högberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A Full Sys-
tem Simulation Platform. IEEE Computer, 35(2):50–58, February 2002.

[82] K. Magoutis. Memory Management Support for Multi-Programmed Remote
Direct Memory Access (RDMA) Systems. In Proceedings of the IEEE Inter-
national Conference on Cluster Computing, volume 0, pages 1–8, September
2005.

[83] J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model. In Proceedings
of the 32nd Symposium on Principles of Programming Languages, pages 378–
391, January 2005.

[84] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token Coherence: Decoupling
Performance and Correctness. In Proceedings of the 30th Annual International
Symposium on Computer Architecture, pages 182–193, June 2003.

128

http://www.opencores.org
http://www.opencores.org
http://oprofile.sourceforge.net


[85] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifacet’s Gen-
eral Execution-driven Multiprocessor Simulator (GEMS) Toolset. Computer
Architecture News, 33(4):92–99, September 2005.

[86] A. Meixner, M. E. Bauer, and D. J. Sorin. Argus: Low-Cost, Comprehensive
Error Detection in Simple Cores. In Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 210–222, December 2007.

[87] A. Meixner and D. J. Sorin. Dynamic Verification of Sequential Consistency.
In Proceedings of the 32nd Annual International Symposium on Computer Ar-
chitecture, pages 482–493, June 2005.

[88] A. Meixner and D. J. Sorin. Dynamic Verification of Memory Consistency in
Cache-Coherent Multithreaded Computer Architectures. In Proceedings of the
International Conference on Dependable Systems and Networks, pages 73–82,
June 2006.

[89] A. Meixner and D. J. Sorin. Error Detection via Online Checking of Cache
Coherence with Token Coherence Signatures. In Proceedings of the 12th Inter-
national Symposium on High-Performance Computer Architecture, pages 145–
156, February 2007.

[90] MIPS Technologies. The MIPS32 1004K Product Brief. Online, April 2008.
http://www.mips.com/media/files/$$1004k/MIPS32%5F1004K%5Frev1.pdf.

[91] A. Moshovos, G. Memik, A. Choudhary, and B. Falsafi. JETTY: Filtering
Snoops for Reduced Energy Consumption in SMP Servers. In Proceedings of
the 17th IEEE Symposium on High-Performance Computer Architecture, pages
85–96, January 2001.

[92] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. Architecting Effi-
cient Interconnects for Large Caches with CACTI 6.0. IEEE Micro, 28(1):69–
79, 2008.

[93] T. Nakura, K. Nose, and M. Mizuno. Fine-Grain Redundant Logic Using
Defect-Prediction Flip-Flops. In Proceedings of the International Solid-State
Circuits Conference, pages 402–611, February 2007.

[94] S. Narayanasamy, B. Carneal, and B. Calder. Patching Processor Design Er-
rors. In Proceedings of the International Conference on Computer Design, pages
491–498, October 2006.

129

http://www.mips.com/media/files/$ $1004k/MIPS32%5F1004K%5Frev1.pdf


[95] U. G. Nawathe, M. Hassan, K. C. Yen, A. Kumar, A. Ramachandran, and
D. Greenhill. Implementation of an 8-Core, 64-Thread, Power-Efficient SPARC
Server on a Chip. IEEE Journal of Solid-State Circuits, 43(1):6–20, 2008.

[96] B. W. O’Krafka and A. R. Newton. An Empirical Evaluation of Two Memory-
efficient Directory Methods. In Proceedings of the 17th Annual International
Symposium on Computer Architecture, pages 138–147, May 1990.

[97] M. D. Powell, A. Biswas, S. Gupta, and S. S. Mukherjee. Architectural Core
Salvaging in a Multi-core Processor for Hard-error Tolerance. In Proceedings
of the 36th Annual International Symposium on Computer Architecture, pages
93–104, June 2009.

[98] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive: Cost-Effective Architectural
Support for Rollback Recovery in Shared-Memory Multiprocessors. In Proceed-
ings of the 29th Annual International Symposium on Computer Architecture,
pages 111–122, May 2002.

[99] X. Qiu and M. Dubois. Options for Dynamic Address Translation in COMAs.
In Proceedings of the 25th Annual International Symposium on Computer Ar-
chitecture, pages 214–225, June 1998.

[100] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Eval-
uating MapReduce for Multi-core and Multiprocessor Systems. In Proceedings
of the 12th IEEE Symposium on High-Performance Computer Architecture,
pages 13–24, February 2007.

[101] V. K. Reddy and E. Rotenberg. Coverage of a Microarchitecture-level Fault
Check Regimen in a Superscalar Processor. In Proceedings of the International
Conference on Dependable Systems and Networks, pages 1–10, June 2008.

[102] S. K. Reinhardt, J. R. Larus, and D. A. Wood. Tempest and Typhoon: User-
Level Shared Memory. In Proceedings of the 21st Annual International Sym-
posium on Computer Architecture, pages 325–337, 1994.

[103] Renesas Technologies. Renesas Microcomputers. General Presentation. Online,
2008. http://documentation.renesas.com/eng/products/mpumcu/rej13b0001_

mcu.pdf.

[104] B. F. Romanescu, A. R. Lebeck, and D. J. Sorin. Specifying and Dynamically
Verifying Address Translation-Aware Memory Consistency. In Proceedings of
the 15th International Conference on Architectural Support for Programming
Languages and Operating Systems, March 2010.

130

http://documentation.renesas.com/eng/products/mpumcu/rej13b0001_mcu.pdf
http://documentation.renesas.com/eng/products/mpumcu/rej13b0001_mcu.pdf


[105] B. F. Romanescu, A. R. Lebeck, D. J. Sorin, and A. Bracy. UNified In-
struction/Translation/Data (UNITD) Coherence: One Protocol to Rule Them
All. In Proceedings of the 15th International Symposium on High-Performance
Computer Architecture, pages 199–210, January 2010.

[106] B. F. Romanescu and D. J. Sorin. Core Cannibalization Architecture: Im-
proving Lifetime Chip Performance for Multicore Processors in the Presence of
Hard Faults. In Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques, pages 43–51, October 2008.

[107] B. Rosenburg. Low-synchronization Translation Lookaside Buffer Consistency
in Large-scale Shared-memory Multiprocessors. In Proceedings of the 12th
ACM Symposium on Operating Systems Principles, pages 137–146, December
1989.

[108] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end Arguments in System
Design. ACM Transactions on Computer Systems, 2(4):277–288, 1984.

[109] S. Sarangi, A. Tiwari, and J. Torrellas. Phoenix: Detecting and Recovering
from Permanent Processor Design Bugs with Programmable Hardware. In
Proceedings of the 39th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, December 2006.

[110] S. K. Sastry Hari, M. Li, P. Ramachandran, B. Choi, and S. V. Adve. mSWAT:
Low-cost Hardware Fault Detection and Diagnosis for Multicore Systems. In
Proceedings of the 42nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture, pages 122–132, December 2009.

[111] E. Schuchman and T.N. Vijaykumar. Rescue: A Microarchitecture for Testa-
bility and Defect Tolerance. In Proceedings of the 32nd Annual International
Symposium on Computer Architecture, pages 160–171, June 2005.

[112] M. Shah, J. Barreh, J. Brooks, R. Golla, G. Grohoski, N. Gura, R. Hethering-
ton, P. Jordan, M. Luttrell, C. Olson, B. Saha, D. Sheahan, L. Spracklen, and
A. Wynn. UltraSPARC T2: A Highly-Threaded, Power-Efficient, SPARC SoC.
In Proceedings of the IEEE Asian Solid-State Circuirts Conference, November
2007.

[113] P. Shivakumar, S. W. Keckler, C. R. Moore, and D. Burger. Exploiting Mi-
croarchitectural Redundancy For Defect Tolerance. In Proceedings of the 21st
International Conference on Computer Design, pages 481–488, October 2003.

131



[114] S. Shyam, K. Constantinides, S.Phadke, V. Bertacco, and T. M. Austin. Ultra
Low-Cost Defect Protection for Microprocessor Pipelines. In Proceedings of
the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 73–82, October 2006.

[115] J. Smith and R. Nair. Virtual Machines: Versatile Platforms for Systems and
Processes. Morgan Kaufmann Publishers Inc., 2005.

[116] D. J. Sorin, M. M.K. Martin, M. D. Hill, and D. A. Wood. SafetyNet: Improv-
ing the Availability of Shared Memory Multiprocessors with Global Check-
point/Recovery. In Proceedings of the 29th Annual International Symposium
on Computer Architecture, pages 123–134, May 2002.

[117] L. Spainhower and T. A. Gregg. IBM S/390 Parallel Enterprise Server G5
Fault Tolerance: A Historical Perspective. IBM Journal of Research and De-
velopment, 43(5/6), September/November 1999.

[118] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The Case for Lifetime
Reliability-Aware Microprocessors. In Proceedings of the 31st Annual Interna-
tional Symposium on Computer Architecture, pages 276–287, June 2004.

[119] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. Exploiting Structural
Duplication for Lifetime Reliability Enhancement. SIGARCH Computer Ar-
chitecture News, 33(2):520–531, 2005.

[120] J. Srinivasan, S.V. Adve, P. Bose, and J.A. Rivers. The Impact of Technology
Scaling on Lifetime Reliability. In Proceedings of the International Conference
on Dependable Systems and Networks, pages 177–186, June 2004.

[121] R. Stets, H. Dwarkadas, N. Hardavellas, G. Hunt, L. Kontothanassis,
S. Parthasarathy, and M. Scott. Cashmere-2L: Software Coherent Shared Mem-
ory on a Clustered Remote-Write Network. In Proceedings of the 16th ACM
Symposium on Operating Systems Principles, pages 170–183, 1997.

[122] Y. Sugure, T. Seiji, A. Yuichi, Y. Hiromichi, H. Kazuya, T. Akihiko, H. Kesami,
K. Takeshi, and S. Takanori. Low-Latency Superscalar and Small-Code-Size
Microcontroller Core for Automotive, Industrial, and PC-Peripheral Applica-
tions. IEICE Transactions on Electronics, E89-C(6), June 2006.

[123] Synopsys Inc. Design Compiler Technology Backgrounder. Online, April 2006.
http://www.synopsys.com/products/logic/design_comp_tb.pdf.

132

http://www.synopsys.com/products/logic/design_comp_tb.pdf


[124] M. Talluri and M. D. Hill. Surpassing the TLB Performance of Superpages
With Less Operating System Support. In Proceedings of the 6th International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems, pages 171–182, October 1994.

[125] P. J. Teller. Translation-Lookaside Buffer Consistency. IEEE Computer,
23(6):26–36, June 1990.

[126] P. J. Teller, R. Kenner, and M. Snir. TLB Consistency on Highly-Parallel
Shared-Memory Multiprocessors. In Proceedings of the 21st Annual Hawaii
International Conference on Architecture Track, pages 184–193, 1988.

[127] I. Wagner, V. Bertacco, and T. Austin. Shielding Against Design Flaws with
Field Repairable Control Logic. In Proceedings of the Design Automation Con-
ference, pages 344–347, July 2006.

[128] D. L. Weaver and T. Germond, editors. SPARC Architecture Manual (Version
9). PTR Prentice Hall, 1994.

[129] N. H. E. Weste and K. Eshraghian. Principles of CMOS VLSI Design: A
Systems Perspective. Addison-Wesley Longman Publishing Co. Inc., 1985.

[130] S. B. Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris,
A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang. Corey: An Op-
erating System for Many Cores. In Proceedings of the 8th USENIX Symposium
on Operating Systems Design and Implementation, December 2008.

[131] A. Wolfe. AMD’s Quad-Core Barcelona Bug Revealed. InformationWeek,
December 11, 2007.

[132] D. A. Wood, S. J. Eggers, G. Gibson, M. D. Hill, and J. M. Pendleton. An
In-Cache Address Translation Mechanism. In Proceedings of the 13th Annual
International Symposium on Computer Architecture, pages 358–365, June 1986.

[133] D. A. Wood and R. H. Katz. Supporting Reference and Dirty Bits in SPUR’s
Virtual Address Cache. In Proceedings of the 16th Annual International Sym-
posium on Computer Architecture, pages 122–130, May 1989.

[134] H. Zhong, S.A. Lieberman, and S.A. Mahlke. Extending Multicore Architec-
tures to Exploit Hybrid Parallelism in Single-thread Applications. In Proceed-
ings of the 13th IEEE International Symposium on High Performance Com-
puter Architecture, pages 25–36, February 2007.

133



Biography

Bogdan Florin Romanescu was born on October 9th, 1980 in Iaşi, Romania. He received his B.

Eng. summa cum laude, Valedictorian, in automatic control and computer engineering from ”Gh.

Asachi” Technical University of Iaşi in 2005. He earned a M. Sc. degree in electrical and computer

engineering from Duke University in 2007. He received his Ph.D. in electrical and computer engi-

neering from Duke University in 2010. He is the recipient of an Excellence Fellowship in 2004 and

2005.

Selected Publications

• B. F. Romanescu, A. R. Lebeck, and D. J. Sorin. Specifying and Dynamically Verifying Address
Translation-Aware Memory Consistency. In Proceedings of the 15th International Conference

on Architectural Support for Programming Languages and Operating Systems, March 2010.
• B. F. Romanescu, A. R. Lebeck, D. J. Sorin, A. Bracy. UNified Instruction/Translation/Data

(UNITD) Coherence: One Protocol to Rule Them All, In Proceedings of the 15th International

Symposium on High-Performance Computer Architecture, pages 199-210, January 2010.
• B. F. Romanescu and D. J. Sorin. Core Cannibalization Architecture: Improving Lifetime

Chip Performance for Multicore Processors in the Presence of Hard Faults. In Proceedings of

the 17th International Conference on Parallel Architectures and Compilation Techniques, pages
43-51, October 2008.

• B. F. Romanescu, M. E. Bauer, D. J. Sorin, S. Ozev. Reducing the Impact of Intra-Core
Process Variability with Criticality-Based Resource Allocation and Prefetching, In Proceedings

of the 5th ACM International Conference on Computing Frontiers, pages 129-138, May 2008.
• B. F. Romanescu, M. E. Bauer, S. Ozev, D. J. Sorin. VariaSim: Simulating Circuits and

Systems in the Presence of Process Variability. Computer Architecture News, 35(5):45-48,
December 2007.

• B. F. Romanescu, M. E. Bauer, D. J. Sorin, S. Ozev. Reducing the Impact of Process Variability
with Prefetching and Criticality-Based Resource Allocation. Poster and extended abstract in
Proceedings of the 16th International Conference on Parallel Architectures and Compilation

Techniques, page 424, September 2007.
• B. F. Romanescu, M. E. Bauer, D. J. Sorin, S. Ozev. A Case for Computer Architecture

Performance Metrics that Reflect Process Variability. Duke University, Dept. of Electrical and
Computer Engineering, Technical Report #2007-2, May 2007.

• B. F. Romanescu, S. Ozev, D. J. Sorin. Quantifying the Impact of Process Variability on
Microprocessor Behavior. In Proceedings of the 2nd Workshop on Architectural Reliability,
December 2006.


	Abstract
	List of Tables
	List of Figures
	List of Abbreviations
	Acknowledgements
	1 Introduction
	1.1 Processor Availability in the Presence of Hard Faults
	1.2 Checking Correctness of Address Translation and Translation-Aware Memory Consistency
	1.3 Scalable Translation Coherence Protocol Design
	1.4 Thesis Statement and Contributions
	1.5 Thesis Structure

	2 Improving Lifetime Performance of Many-core Processors in the Presence of Hard Faults
	2.1 Baseline System Model
	2.1.1 Core Model
	2.1.2 Core Shutdown Design

	2.2 CCA Concept
	2.3 CCA Design Decisions
	2.4 CCA Implementations
	2.4.1 Baseline CS and CCA Cores
	2.4.2 CCA3: 3-Core CCA Implementation
	2.4.3 CCA4: 4-Core CCA Implementations
	2.4.4 Many-core CCA Chips

	2.5 Evaluation
	2.5.1 CCA Chip Area Overhead
	2.5.2 Lifetime Performance
	2.5.3 Performance of Chips Using TMR/DMR

	2.6 Related Work
	2.6.1 Multicore-Specific Self-Repair
	2.6.2 Self-Repair for Superscalar Cores
	2.6.3 Pooling of Core Resources
	2.6.4 Lifetime Reliability

	2.7 Conclusions

	3 Address Translation-Aware Memory Consistency
	3.1 AT Fundamentals and Assumptions
	3.2 Memory Consistency Levels
	3.3 Specifying PAMC
	3.4 Specifying VAMC
	3.4.1 Synonyms
	3.4.2 Mapping and Permission Changes
	3.4.3 Load/Store Side Effects

	3.5 AT-aware VAMC Specifications
	3.6 Commercial VAMC Models
	3.7 Conclusions and Future Work

	4 Dynamically Verifying Address Translation
	4.1 AT Model: ATSC, a Provably Sufficient Sequential AT Model
	4.2 A Framework for Specifying AT Correctness
	4.2.1 Page Table Integrity
	4.2.2 Translation Coherence

	4.3 DVAT: Proposed Solution for Dynamic Verification of Address Translation
	4.3.1 System Model
	4.3.2 DVATSC Overview
	4.3.3 Implementation Details

	4.4 Evaluation
	4.4.1 Methodology
	4.4.2 Error Detection Ability
	4.4.3 Performance Impact
	4.4.4 Hardware Cost

	4.5 Related Work
	4.6 Conclusions and Future Work

	5 Unified Instruction, Data and Translation Coherence Protocol
	5.1 Existing Solutions for Maintaining Address Translation Coherence
	5.1.1 TLB Shootdown
	5.1.2 Performance Impact of TLB Shootdown

	5.2 UNITD Coherence
	5.2.1 Issue 1: Discovering the Physical Address of a Translation's PTE
	5.2.2 Issue 2: Augmenting the TLBs to Enable Access Using a PTE's Physical Address

	5.3 Platform-Specific Issues, Implementation Issues, and Optimizations
	5.3.1 Interactions with Speculative Execution
	5.3.2 Handling PTEs in Data Cache and TLB
	5.3.3 UNITD's Non-Impact on the System
	5.3.4 Reducing TLB Coherence Lookups

	5.4 Experimental Evaluation
	5.4.1 Methodology
	5.4.2 Performance

	5.5 UNITD Hardware Cost
	5.6 Related Work
	5.7 Conclusions and Future Work

	6 Conclusions
	Bibliography
	Biography

