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Abstract 

Although evolution results from differential reproduction and survival at the 

level of the individual, most research in evolutionary genetics is concerned with 

comparisons made at the level of divergent populations or species. This is particularly 

true in work focused on the evolutionary genetics of natural populations. While this level 

of inquiry is extremely valuable, in order to develop a complete understanding of the 

evolutionary process we also need to understand how traits evolve within populations, 

on the level of differences between individuals, and in the context of natural ecological 

and environmental variation. A major difficulty confronting such work stems from the 

difficulty of assessing interindividual phenotypic variation and its sources within 

natural populations. This level of inquiry is, however, the main focus for many long-term 

field studies. Here, I take advantage of one such field study, centered on the wild 

baboon population of the Amboseli basin, Kenya, to investigate the possibilities for 

integrating functional, population, and evolutionary genetic approaches with behavioral, 

ecological, and environmental data. First, I describe patterns of hybridization and 

admixture in the Amboseli population, a potentially important component of 

population structure. Second, I combine field sampling, laboratory measurements of gene 

expression, and a computational approach to examine the possibility of using allele-

specific gene expression as a tool to study functional regulatory variation in natural 

populations. Finally, I outline an example of how these and other methods can be used 

to understand the relationship between genetic variation and naturally occurring 

infection by a malaria-like parasite, Hepatocystis, also in the Amboseli baboons. The 

results of this work emphasize that developing genetic approaches for nonmodel genetic 

systems is becoming increasingly feasible, thus opening the door to pursuing such studies 
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in behavioral and ecological model systems that provide a broader framework for 

genetic results. Integrating behavioral, ecological, and genetic perspectives will allow us 

to better appreciate the interplay between these different factors, and thus achieve a 

better understanding of the raw material upon which selection acts. 

 

 

 



 

 

vi 

Contents 

Abstract ...............................................................................................................................................iv 

List of Tables....................................................................................................................................... x 

List of Figures..................................................................................................................................... xi 

Acknowledgements .........................................................................................................................xiii 

1. Introduction..................................................................................................................................... 1 

1.1 Genetic research on wild nonhuman primates: motivations and challenges ........... 4 

1.2 The Amboseli baboon population..................................................................................... 8 

1.3 Chapter 2: hybridization and admixture in the Amboseli baboons........................10 

1.4 Chapters 3 and 4: measuring and predicting allele-specific gene expression in 
primates .......................................................................................................................................15 

1.5 Chapter 5: evolution of a malaria resistance gene in wild baboons ........................20 

1.6 Conclusions ..........................................................................................................................22 

2. Genetic evidence reveals temporal change in hybridization patterns in a wild baboon 
population..........................................................................................................................................25 

2.1 Background...........................................................................................................................25 

2.2 Materials and methods......................................................................................................30 

2.2.1 Samples and genotyping..............................................................................................30 

2.2.2 Assignment of genetic hybrid scores .........................................................................34 

2.2.3 Comparison with morphological hybrid scores......................................................36 

2.2.4 Assessment of the consistency of genetic hybrid scores using pedigree data .37 

2.2.5 Assessment of the robustness and replicability of genetic hybrid scores using 
simulation..................................................................................................................................38 

2.2.6 Analysis of temporal changes in hybridization patterns .....................................42 

2.3 Results ...................................................................................................................................43 

2.3.1 Genetic hybrid score assignments in Structure........................................................43 



 

 

vii 

2.3.2 Agreement between genetic hybrid scores and morphological hybrid scores ..45 

2.3.3 Consistency within the dataset..................................................................................46 

2.3.4 Simulation results ..........................................................................................................47 

2.3.5 Changes in patterns of hybridization over time.....................................................48 

2.4 Discussion ............................................................................................................................51 

2.4.1 Robustness in the genetic hybrid score assignments..............................................51 

2.4.2 Dynamic patterns of hybridization among the Amboseli baboons ...................53 

2.4.3 Nonselective processes.................................................................................................55 

2.4.4 Selective processes ........................................................................................................56 

2.5 Conclusions ..........................................................................................................................57 

3. Allele specific gene expression in wild nonhuman primates ..............................................58 

3.1 Background...........................................................................................................................58 

3.2 Materials and methods......................................................................................................62 

3.2.1 Study subjects ................................................................................................................62 

3.2.2 Candidate gene assay development .........................................................................63 

3.2.3 ASGE measurements via pyrosequencing................................................................66 

3.2.4 Robustness of pyrosequencing-based ASGE results for samples collected in 
the field ......................................................................................................................................67 

3.2.5 Assessment of allele-specific gene expression for each locus .............................70 

3.2.6 Sequencing of gene regulatory regions .......................................................................70 

3.2.7 Association between ASGE data and regulatory variants ..................................71 

3.2.8 GEI effects on gene expression ...................................................................................72 

3.3 Results ...................................................................................................................................74 

3.3.1 Allele-specific gene expression measurements are robust to field sampling 
conditions..................................................................................................................................74 

3.3.2 Allele-specific gene expression is common in the Amboseli baboons ...............76 



 

 

viii 

3.3.3 Associations between ASGE measurements and cis-regulatory genetic 
variation.....................................................................................................................................77 

3.3.4 GEI analysis ....................................................................................................................79 

3.4 Discussion ............................................................................................................................80 

3.4.1 ASGE in the Amboseli baboon population .............................................................80 

3.4.2 ASGE measurements and genetic studies of natural populations .....................82 

3.5 Conclusions ..........................................................................................................................86 

4. Genomic features that predict allelic imbalance in humans suggest patterns of 
constraint on gene expression variation ......................................................................................88 

4.1 Background...........................................................................................................................88 

4.2 Materials and methods......................................................................................................91 

4.2.1 Allelic imbalance training set ......................................................................................91 

4.2.2 Feature extraction..........................................................................................................93 

4.2.3 Wilcoxon summed ranks tests....................................................................................95 

2.2.4 Support vector machine (SVM) classification and recursive feature selection95 

4.2.5 Non-negative matrix factorization (NMF) ..............................................................96 

4.2.6 Validation using an external dataset ........................................................................99 

4.2.7 Annotation of the AI factor ......................................................................................100 

4.3 Results .................................................................................................................................102 

4.3.1 Prediction of commonly imbalanced genes............................................................102 

4.3.2 Dimension reduction in the feature set ...................................................................107 

4.3.3 Validation using an external dataset ......................................................................108 

4.3.4 Annotating the “AI factor” .......................................................................................110 

4.4 Discussion ..........................................................................................................................113 

4.4.1 Prediction of common allelic imbalance .................................................................113 

4.4.2 Selective constraints on gene expression................................................................117 



 

 

ix 

5. Evolution of a malaria resistance gene in wild primates...................................................123 

5.1 Introduction........................................................................................................................123 

5.2 Background.........................................................................................................................124 

5.3 Materials and methods....................................................................................................125 

5.3.1 DNA and RNA sampling..........................................................................................125 

5.3.2 Sequencing.....................................................................................................................125 

5.3.3 Hepatocystis screen and association with FY ......................................................126 

5.3.4 Pyrosequencing.............................................................................................................127 

5.3.5 Transfection assays ....................................................................................................129 

5.3.5 Signature of selection..................................................................................................129 

5.4 Results .................................................................................................................................132 

5.4.1 Hepatocystis prevalence and association with the FY cis-regulatory region....132 

5.4.2 Genetic variation in the FY cis-regulatory region influences gene expression .134 

5.4.3 The FY cis-regulatory region may have been a target of natural selection.......137 

5.5 Discussion ..........................................................................................................................139 

Works Cited.....................................................................................................................................142 

Biography .........................................................................................................................................163 

 



 

 

x 

List of Tables 

Table 1: Masai Mara sample information...................................................................................32 

Table 2: Summary statistics for microsatellite genotyping data............................................33 

Table 3: D values for pairwise one-tailed Kolmogorov-Smirnov tests comparing the 
distribution of hybrid scores across temporal datasets within Amboseli...........................51 

Table 4: Genes included in this study..........................................................................................64 

Table 5: Correlations between CCL5 measurements obtained under different sample 
storage conditions. ...........................................................................................................................74 

Table 6: Classification accuracy and precision and recall by class for the full feature set 
and the six possible feature subsets...........................................................................................104 

Table 7: Loci used for comparisons of Tajima’s D.................................................................131 

 

 



 

 

xi 

List of Figures 

Figure 1: The dominant aspect of population structure in the Amboseli baboons arises 
from social grouping patterns, not anubis-yellow admixture.................................................14 

Figure 2: Genetic hybrid scores (i.e., percent anubis ancestry) for each of the 450 
individuals in the analysis, averaged over three Structure runs and shown as the 
cumulative proportion of the sampled population. .................................................................44 

Figure 3: Pedigrees showing a subset of the hybrid crosses and backcrosses that we have 
observed in the Amboseli population..........................................................................................46 

Figure 4: Simulation results. ...........................................................................................................48 

Figure 5: Patterns of admixture over time...................................................................................50 

Figure 6: ASGE measurements are consistent across sample handling treatments. ..........75 

Figure 7: Example ASGE ratios for cDNA and genomic DNA (gDNA) for six genes. ....76 

Figure 8: Heterozygotes at ASGE-associated SNPs exhibit more extreme levels of ASGE 
than homozygotes at a) CCL5 (p < 0.0001) and b) FY (p = 0.0002). ...................................78 

Figure 9: Maternal rank at conception influences allelic imbalance in heterozygotes at the 
CCL5 putative functional cis-regulatory site (p < 0.001), but not homozygotes (p = 
0.464). .................................................................................................................................................80 

Figure 10: NMF consensus clustering matrices for varying number of clusters k. ..............98 

Figure 11: The distribution of p-values from Wilcoxon summed-ranks test on each 
feature.. .............................................................................................................................................103 

Figure 12: Genes with more extreme predicted values are more likely to be predicted 
correctly. ...........................................................................................................................................106 

Figure 13: Results of recursive feature elimination..................................................................107 

Figure 14: Raw predictions from the full model for genes that exhibit allelic imbalance in 
the Cheung et al. (2008) dataset are significantly different from predictions for the non-
AI gene set (p = 4.70 x 10-6) derived from Serre et al. (2008), but not significantly 
different from predictions for the AI gene set from Serre et al. (p = 0.506). .....................109 

Figure 15: Smoothed distributions of genes that exhibit common allelic imbalance 
included in a second validation dataset (Cheung et al. 2008) and 3,908 genes from the AI 
factor annotation analyses chosen without respect to allelic imbalance...........................110 

Figure 16: Genes that reside in more gene-dense neighborhoods exhibit lower values of 
the AI factor (p << 1 x 10-16; R2 = 0.159)...................................................................................113 



 

 

xii 

Figure 17: Differences by study group.. .....................................................................................132 

Figure 18: Schematic of the baboon FY gene (not to scale).. .................................................133 

Figure 19: Genotype at the FY cis-regulatory A/G SNP is associated with Hepatocystis 
infection. The proportion of uninfected individuals is shown in grey, and the proportion 
of infected individuals is shown in white. Left side shows results for the entire sample 
set (n = 174; p < 0.012); right side shows results only for members of the six groups with 
high prevalence (> 75%) of Hepatocystis infection (n = 111; p < 0.004). Numbers below 
each genotype show the number of individuals for the given genotype.............................133 

Figure 20: Allelic imbalance associates with FY cis-regulatory genotype...........................135 

Figure 21: FY cis-regulatory variation drives differential expression in vitro.. ..................137 

Figure 22: Comparison of genetic variation in and around the FY cis-regulatory region in 
relationship to other loci. ..............................................................................................................139 

 

 



 

 

xiii 

Acknowledgements 

I owe thanks to many people for their assistance, collaboration, support, and 

wisdom while I completed this work. First, many thanks to the staff of the Amboseli 

Baboon Research Project: Bernard, Gideon, Chris, Nkii, Moonyoi, Longida, Bro, Vivian, 

and Tim. Thanks especially to Raphael Mututua, Serah Sayialel, and Kinyua Warutere, 

who not only aided in the collection of samples used directly in these projects, but also 

have been instrumental in collecting behavioral and environmental field data for many 

years. They have been wonderful teachers. Thanks also to Mercy Akinyi, the veterinarian 

who supported us during our sample collection efforts, and to Tom Kariuki and the 

Institute of Primate Research in Karen for seconding her to us. Acknowledgements are 

also due to the Kenya Wildlife Service, the National Museums of Kenya, the Office of 

the President, Republic of Kenya, and the members of the Amboseli-Longido pastoralist 

communities for permission to conduct research in Amboseli.  

Thanks for aid in obtaining samples from outside of Amboseli are due to the 

Integrated Primate Biomaterial and Information Resource and the Coriell Institute, as 

well as Robert Sapolsky for providing DNA from Masai Mara anubis baboons and Jeff 

Rogers for providing DNA from Mikumi yellow baboons. 

Although the chapters contained within this dissertation are “mine”, 

collaboration has played a deeply important role during my graduate training, and all of 

the work represented here benefited form close collaboration with others. Because their 

names cannot go on the title page, I would like to acknowledge here the contributions of 

Marie Charpentier, David Garfield, Samson Mutura, Olivier Fedrigo, Ralph Haygood, 

Alex Primus, and Andrew Bouley, among others mentioned on this page. My colleagues 

in the Alberts and Wray labs at Duke University, and in Jeanne Altmann’s lab at 



 

 

xiv 

Princeton, have been vital for informing and challenging my viewpoints on baboons, 

evolution, behavior, and genetics and genomics. Thanks also to David Lowry, for 

consistently excellent feedback and conversation about evolutionary genetics throughout 

the last six years. And thanks to Sayan Mukherjee, who has been the embodiment of 

support in so many different ways, and to whom I owe a great deal for getting me over 

the statistical and computational roadblocks in my head. 

Outside of the world of science, I owe thanks to my parents, Wae-hai and Ming 

Tung, and my sister, Wenny Tung Katzenstein, for their support and appreciation of my 

work, even though no one’s kids that they know go off to Africa every summer to look at 

monkeys. 

Finally, thanks to my co-advisors, Susan Alberts and Greg Wray, and my 

committee members, David Goldstein, Paul Magwene, Mohamed Noor, and Carole 

Ober, for shepherding me through this process. Although not formally in this group, 

many thanks also to Jeanne Altmann, for the long-term vision she has brought to bear in 

shaping the Amboseli Baboon project and for her support in allowing me to work in the 

field and with these data. Susan deserves an infinite amount of credit for her keen 

editorial eye, the many things she has taught me about the scientific process, and the 

general inspiration she offers as a successful female scientist. Greg reminds me to try 

always to see the bigger picture, and why that is such an important component of being 

a scientist.  



 

1 

1. Introduction 

Although evolution results from differential reproduction and survival at the 

level of the individual, most research in evolutionary genetics is concerned with 

comparisons made at the level of divergent populations or species. This is particularly 

true in work focused on the evolutionary genetics of natural populations, which are often 

aimed at understanding differences between populations or species that may have been 

the result of natural selection (Nachman et al. 2003; Abzhanov et al. 2004; Shapiro et al. 

2004; Colosimo et al. 2005; Gompel et al. 2005; Hoekstra et al. 2005; Abzhanov et al. 

2006; Steiner et al. 2007; Jeong et al. 2008). Such work is extremely valuable for 

explaining the genetic basis of differences that are already fixed. However, in order to 

develop a complete understanding of the evolutionary process, we also need to 

understand how traits evolve within populations, on the level of differences between 

individuals, and in the context of natural ecological and environmental variation. 

Assessing interindividual phenotypic variation in natural populations is 

challenging in the best of cases, and may be impossible for some genetic model systems. 

This level of inquiry is, however, the main focus for many long-term field studies. Several 

such studies explicitly focus on how ecological and environmental variation influences 

variation in adaptive traits (e.g., Grant 1986; Altmann and Alberts 2003; Altmann and 

Alberts 2003; Kruuk and Hill 2008). These efforts have provided some of the best 

estimates of both reproductive fitness in the wild and the environmental selective 

pressures that influence adaptively important traits. Data and analyses of this type 

therefore provide a rich foundation for genetic studies in the same populations. For 

example, recent quantitative genetic work on red deer and Soay sheep in the Scottish 

isles, both subjects of long-term field observation, have yielded unique new insights into 
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how sexual antagonism (Foerster et al. 2007) and changing environmental conditions 

(Wilson et al. 2006) constrain the evolution of adaptive traits within wild populations. 

Genetic studies and field-based ecological and behavioral studies yield 

complementary levels of insight into the evolutionary process. When taken together, they 

can provide a more complete picture of evolution in natural populations than when 

considered independently. For instance, while population history can be traced through 

genetic data, these patterns themselves are the results of individual behavior, movement 

across the landscape, and reproductive success—characteristics that have historically 

been of great interest to field researchers. Hence, the combination of behavioral and 

ecological data with genetic data provides an opportunity to explain patterns of 

population dynamics embedded in genetic data using known patterns of individual 

behavior and life history, and to estimate how these individual-level effects have 

changed over time (Pope 1992; Nussey et al. 2005; Archie et al. 2008; Tung et al. 2008). 

For example, Pope (1992) used classical F statistics to dissect patterns of population 

genetic diversity in Venezuelan red howler monkeys (Alouatta seniculus). Because the 

demography and dispersal patterns of her study subjects had been intensively 

monitored for more than ten years, she was able to interpret these results in the light of 

known levels of reproductive skew, female philopatry, and male dispersal. Indeed, the 

measured genetic differentiation from the marker data matched very well with 

predictions made from the behavioral data: howler monkeys exhibited high levels of 

genetic differentiation between social groups, but low levels of inbreeding within groups, 

due to a social structure that combined small sets of related females with one or two 

unrelated males (Pope 1992). These outbred, substructured groups may act as reservoirs 

for allelic variation, making howler monkey populations and other, similarly structured 

populations more successful at retaining genetic variation than predicted by their 

relatively small census sizes. 
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Similarly, having access to genetic data as well as to behavioral and ecological 

data makes it possible to examine both the genetic and environmental contributions to 

traits of interest, as well as context-dependence between the two. Indeed, while studies 

conducted in the lab can reveal whether genetic variation has functional potential in 

controlled environments, complementary studies on natural populations are needed to 

establish whether this variation is ecologically and evolutionarily relevant. For example, 

a recent study in red wolves demonstrates that gene expression levels of hundreds of 

transcripts significantly differ between free-ranging animals and captive animals, 

particularly for genes involved in the stress response (Kennerly et al. 2008). Such results 

strongly imply that individuals sampled under natural conditions (especially when these 

conditions are well described) need to be included in functional genetic studies. Studies 

focused on natural populations may also be important for capturing functional effects 

that never manifest themselves in captivity, including genetic effects that are only 

measurable within certain kinds of environments (i.e., gene-environment interactions). A 

recent study in yeast, for example, estimated that as many as 47% of gene expression 

phenotypes exhibited evidence for GEI across two different environments (Smith and 

Kruglyak 2008). Additionally, specific cases of gene-environment interaction for 

organism-level complex traits have been well documented across many species, including 

Drosophila (Leroi et al. 1994; Gurganus et al. 1998; Leips and Mackay 2000), C. elegans 

(Shook and Johnson 1999), humans (reviewed in Hunter 2005), and non-human primates 

(Barr et al. 2003; Barr et al. 2004; Newman et al. 2005). The extensive behavioral and 

ecological data available for long-term field populations may provide important clues to 

the types of environmental effects that play a role in GEIs in nature. 

Finally, field data can complement sequence-based signatures of selection by 

confirming the fitness effects of a given trait and providing a mechanism for selection on 

that trait. For example, most species of New World monkeys exhibit “allelic 
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trichromacy” conferred by a set of X-linked polymorphisms for dichromatic (i.e., red-

green color blind) or trichromatic vision (Surridge et al. 2003). The phenotypic 

consequences of this variation for color vision are well established, and genetic evidence 

strongly suggests that these polymorphisms have been maintained by natural selection 

(Surridge and Mundy 2002; Hiwatashi et al. 2009). However, the actual selective 

advantages that produced these patterns have been difficult to understand (Melin et al. 

2008). Recent field studies have shed important new light on this question, 

demonstrating for the first time that dichromats and trichromats experience different 

kinds of foraging advantages in the wild (Melin et al. 2007; Vogel et al. 2007; Melin et al. 

2008). Results of this kind are exciting because they embody one of the first cases of a 

tantalizing possibility: that by combining field data and genetic data, we might one day 

understand not only the genetic and environmental architecture of a trait, but also its 

adaptive relevance within natural populations.  

For most systems and for most traits, moving towards this direction will require 

significant groundwork in the coming years. My thesis work has been focused on laying 

this groundwork for one such system, the well-studied baboon population of the 

Amboseli basin, Kenya. In this introduction, I describe the background context in which 

this work has taken place, including the motivation to focus on this system. I then 

summarize how each of the subsequent four chapters is situated within this overall 

framework. Finally, I provide my perspective on the work as a whole, taking the 

opportunity to consider possible directions that genetic work on both this system and 

other similar populations may take in the near future. 

1.1 Genetic research on wild nonhuman primates: motivations 
and challenges 

Our closest living relatives, the nonhuman primates, are perennial subjects of 

public and scientific fascination because they occupy a unique place in evolutionary 
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biology and ecology. The striking similarities we share with other primates make them 

important models for human physiology, behavior, and health. At the same time, 

variation among primate species provides a rich basis for comparative work. Such work 

is critical for both explaining the common threads that tie primates together and the 

differences that make specific branches of the primate tree, including the human lineage, 

unique.  

Three separate motivations position primates as good systems for integrating 

genetic data with behavioral and ecological work. First, detailed observational field 

studies have a long history within nonhuman primates. Many of these studies have 

focused on variation between known individuals within a larger population. As a result 

of these efforts, extremely fine-grained information on the behavior, life history, and 

environmental milieu of each individual are now available for some species (and for a 

few species, these kinds of information are available for multiple populations). These 

data provide an excellent context for genetic studies. Second, genetic and genomic 

resources for primates are increasing at a rapid rate (Enard and Paabo 2004; Siepel 

2009). With the upcoming release of a set of new primate genomes, primates will soon be 

one of the most genomic data-dense clades among all animals, especially considering the 

relatively recent divergence times in this group (compared with, for instance, 

drosophilids, for which the sequenced species last shared a common ancestor at a time 

comparable to the radiation of mammals: Clark et al. 2007). These resources have 

already improved, and will continue to improve, the feasibility of genetic studies. 

Finally, as alluded to above, because nonhuman primates are our closest living relatives, 

conducting such studies within natural primate populations will provide important keys 

to understanding the evolutionary history of our own species. This will hold particularly 

true for closely related species, such as the other great apes, and for species that share a 
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similar ancestral ecology to humans, such as baboons and other African savannah 

primates (Jolly 2001). 

The development of tools for conducting genetic work on nonhuman primate 

populations is still in progress. Thus, with a few notable exceptions (reviewed in 

Vigilant 2009; Vigilant and Guschanski 2009), genetic studies of population history and 

functional genetic variation have largely progressed along parallel tracks from behavioral 

and ecological studies of wild primates. Within functional genetics, most nonhuman 

primate research has been based on either comparisons between aligned sequenced 

genomes (Bustamante et al. 2005; Nielsen et al. 2005; Pollard et al. 2006; Prabhakar et al. 

2006; Haygood et al. 2007; Prabhakar et al. 2008) or on comparisons of gene expression 

profiles from a small number of captive individuals in a small number of species (Enard 

et al. 2002; Khaitovich et al. 2005; Gilad et al. 2006; Blekhman et al. 2008; Babbitt et al. 

2010). In contrast, most genetic work on nonhuman primate populations has been 

focused on noninvasive sampling and genotyping techniques aimed at assigning 

parentage and estimating relatedness, an approach usually aimed at answering 

outstanding questions in behavioral ecology, not in genetics (see for example Vigilant et 

al. 2001; Buchan et al. 2003; Alberts et al. 2006; Archie et al. 2006). More recently, 

population genetic and genomic studies have become more closely aligned with the 

dynamics of natural populations. Genetic data have recently been leveraged to estimate 

historical patterns of hybridization, gene flow, and population contraction and 

expansion for gorillas (Yu et al. 2004; Thalmann et al. 2007), chimpanzees (Yu et al. 2003; 

Won and Hey 2005; Becquet et al. 2007; Becquet and Przeworski 2007), and macaques 

(Hernandez et al. 2007; Stevison and Kohn 2009), providing a novel perspective on the 

long-term evolution of these species. However, even for species in which substantial 

genomic information is already available, existing information on population genetic 

variation largely does not overlap with those populations that are best characterized 
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from an ecological and behavioral point of view. Hence, the contribution of wild 

primates to this work often extends no further than the contribution of the DNA 

samples themselves.  

In order to exploit the potential of natural primate populations for genetic work, 

then, several obstacles need to be overcome. First, for field populations of interest, a 

basic understanding of population structure and its sources should be developed. 

Population structure defines the distribution of genetic variation in the population, and 

therefore influences its evolutionary capacity. For primates, population structure may be 

highly dynamic (for example, due to change in rates of hybridization and admixture: 

Tung et al. 2008). Many primates exhibit socially complex and ecologically flexible 

behavioral patterns that govern social grouping patterns, dispersal between groups, and 

rates of reproductive skew within groups (Altmann et al. 1996). These factors will 

influence both the analysis and results of population genetic and functional genetic 

work. Second, methods that are applicable to studying functional genetics in natural 

populations need to be developed. Studying the genetics of natural primate populations 

is challenging, as conventional approaches involving controlled crosses or forward 

genetics cannot be applied. Neither are the resources and data in place to conduct the 

very large scale mapping and resequencing studies currently being conducted in humans, 

the most closely related “model system.” Finding appropriate technical and analytical 

methods for meeting this challenge will therefore be crucial in order to develop these 

model ecological and behavioral field systems into ecological and evolutionary genetic 

and genomic systems as well. 

The work presented in this thesis addresses these challenges using a combination 

of field-based, lab-based, and computational methods. It also provides a window into 

the types of findings that can result from applying these methods to well-studied field 

populations. I have structured this work into four chapters. In chapter 2, I describe one 
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aspect of recent efforts to understand population structure and its sources in the 

Amboseli baboon population. Chapter 2 focuses on the contribution of admixture 

between the dominant species in Amboseli, the yellow baboon (Papio cynocephalus) and 

its congener, the anubis baboon (P. anubis). In chapters 3 and 4, I investigate the 

possibility of using measurements of allele-specific gene expression (i.e., allelic 

imbalance) as a tool to study functional regulatory variation in natural populations. 

Finally, in chapter 5, I outline an example of how these and other methods can be used 

to understand the relationship between genetic variation and phenotypic variation in an 

ecologically relevant complex trait.  

1.2 The Amboseli baboon population 

Most of the work presented here, with the exception of chapter 4, explicitly 

focuses on a natural population of baboons (Papio cynocephalus) that ranges in the 

Amboseli basin of southern Kenya. This population represents one of the most extensive 

field studies of nonhuman primates, and indeed of any animal system, to date (Altmann 

and Altmann 1970; Altmann et al. 1996; Buchan et al. 2003; Silk et al. 2003; Alberts et al. 

2006); see also www.princeton.edu/~baboon). Initial work on the population 

commenced in the early 1960’s, and continuous monitoring of individual baboons began 

in 1971. The resulting data set includes over 1500 unique, individually recognized 

animals across five to six baboon generations. As a direct result of this work, we now 

know a great deal about the behavior, physiology, and life history of these animals, 

including many of the social and abiotic environmental effects that shape lifetime fitness 

within the population (Alberts and Altmann 1995; Alberts and Altmann 1995; Alberts 

et al. 2003; Altmann and Alberts 2003; Altmann and Alberts 2003; Silk et al. 2003; 

Alberts et al. 2006; Beehner et al. 2006; Charpentier et al. 2008; Charpentier et al. 2008). 



 

9 

Currently, five social groups of baboons are intensively monitored within 

Amboseli; a few additional “non-study” groups are observed on a less regular basis. 

Social groups (synonymous with “breeding groups” in the population genetics literature: 

(Chesser 1991; Sugg et al. 1996) are the major unit of organization among baboons, and 

comprise a mixed set of adult males, adult females, and juveniles and infants of both 

sexes. Whereas males disperse from their natal groups upon maturity, females remain in 

the same social group throughout their lives, barring relatively rare group fission events 

(Van Horn et al. 2007). Both male baboons and female baboons are organized in 

hierarchical, sex-specific linear dominance hierarchies. Females inherit their dominance 

ranks from their mothers, making the matriline the major unit of organization for females 

within groups (Hausfater et al. 1982). In contrast, males directly compete to improve 

their dominance ranks. A male’s dominance rank therefore depends on his health and 

competitive fighting abilities, and tends to increase after maturation, to reach its peak 

during his prime, and then to decrease afterwards as he ages (Packer et al. 2000; Alberts 

et al. 2003). Male rank plays an important role in determining reproductive opportunities 

with estrus females (Alberts et al. 2003; Alberts et al. 2006; Charpentier et al. In prep). 

Female philopatry, male dispersal, and (primarily male-mediated) reproductive skew 

therefore all influence the distribution of phenotypic variation and genetic variation in 

the Amboseli population. 

Prior genetic work in the Amboseli baboon population has largely focused on 

making paternity assignments or estimating relatedness using genotypes obtained from 

noninvasive sampling (Alberts et al. 2003; Buchan et al. 2003; Alberts et al. 2006). These 

efforts have provided important resources for the work presented here, particularly for 

the estimates of hybridization and admixture presented in Chapter 2, and for outlining 

other sources of population structure within the Amboseli population (not presented 

here). Several earlier population genetic and functional genetic studies have also been 
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conducted on the baboons. Storz et al. used a panel of highly variable microsatellite 

markers to obtain estimates of current and ancestral effective population sizes, Ne, and 

of change in population size over time during the Pleistocene (Storz et al. 2002; Storz et 

al. 2002). Loisel et al. (Loisel et al. 2006; Loisel 2007) conducted the first functional 

genetic work on the Amboseli baboons, focusing on cis-regulatory genetic variation and 

coding sequence variation in the DQA1 and DQB genes of the baboon major 

histocompatibility complex. Their results demonstrated high levels of genetic diversity 

within the population at these two loci, and long-term trans-specific selection on 

functionally variable regions in the DQA1 cis-regulatory region. These earlier analyses 

made significant contributions to the present work through logistical contributions to 

DNA sample curation (Loisel et al. 2006; Loisel 2007), by supplying useful estimates for 

population genetic parameters (particularly Storz et al. 2002), by helping to lay early 

emphasis on the possibilities for cis-regulatory sequence and gene expression analysis in 

this population.  

1.3 Chapter 2: hybridization and admixture in the Amboseli 
baboons 

Hybridization between closely related primate species has long been recorded in 

captivity, and observations of hybridization in the wild have now also been made for all 

of the major primate lineages (Arnold and Meyer 2006). Indeed, hybrid or partially 

hybrid origins have been suggested for at least three extant primates: the bear macaque 

(Macaca arctoides) (Tosi et al. 2000), the kipunji (Rungwecebus kipunji) (Burrell et al. 2009; 

Zinner et al. 2009), and most provocatively, for either humans or chimpanzees 

(Patterson et al. 2006), but see McVicker et al. 2009; Presgraves and Yi 2009). These 

claims have varying degrees of support, but highlight the possibility that hybridization 

may facilitate creative evolutionary processes within primates, as has already been 

demonstrated in other taxa, most notably sunflowers (Rieseberg 1997; Rieseberg et al. 
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2003) and butterflies (Mavarez et al. 2006). Contributions of hybridization could include 

introgression of advantageous alleles across taxon boundaries or assimilation of 

incipient species by secondary contact. These scenarios predict that admixture would 

make a measurable contribution to population structure within hybridizing species, and 

especially within hybrid zones. 

The Amboseli basin is located along the border between the range of yellow 

baboons, which extends to the east and to the south, and the range of anubis baboons, 

which extends to the north and to the west (see Figure  1 in Zinner et al. 2009). 

Interestingly, at the outset of long-term fieldwork in Amboseli, no evidence of admixture 

was detected. The recent wave of hybridization in Amboseli, characterized by 

immigration of anubis baboon males into the basin, began in the early 1980’s (Samuels 

and Altmann 1986). Anubis baboons and yellow baboons are morphologically distinct 

as well as geographically distinct, and may also exhibit important behavioral and 

ecological niche differences (Jolly 1993). Hence, this population provides an opportunity 

to study the effects of hybridization on phenotypic variation over time, as well as the 

behavioral and demographic patterns that influence hybridization events themselves. 

Additionally, it raises a question about the degree to which admixture between yellow 

baboons and anubis baboons contributes to overall population structure within the 

Amboseli basin. Establishing an objective genetic identification system for hybrid 

admixture would greatly aid in these analyses. 

Prior work on hybrids in Amboseli produced a morphological hybrid score index 

based on a series of seven morphological characteristics (all of which could be scored 

through noninvasive observation) that generally differ between yellow and anubis 

baboons (Alberts and Altmann 2001). Chapter 2 builds on this work by developing and 

validating a complementary system for assessing admixture using highly variable 

microsatellite markers. These markers exhibit significant levels of differentiation between 
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yellow baboons and nearby anubis baboon populations, much higher than between 

yellow baboon populations at comparable distances (St George et al. 1998). The 

advantages of this approach lay in its freedom from observer bias and from the use of 

morphological characteristics that may reflect ancestry at one or a few loci in the 

genome, but which may not provide good genome-wide estimates. Additionally, because 

the resulting “genetic hybrid score” is based on a Bayesian mixture modeling approach 

(Pritchard et al. 2000; Falush et al. 2003), it provides direct estimates of uncertainty in 

the hybrid score (based on the posterior distribution for each individual’s estimate) that 

could not be obtained using morphological traits. 

As described in chapter 2, I was able to assign genetic hybrid scores to 450 

individual baboons born in Amboseli between the late 1960’s and the early 2000’s (Tung 

et al. 2008). The distribution of these scores revealed how hybridization has altered the 

composition of the Amboseli population over the last several decades; in particular, 

individuals that exhibit a detectable level of anubis admixture have rapidly increased 

during this time. Admixture levels correlate with life history timing (more anubis-like 

animals reach social and physical maturation earlier, especially males: (Charpentier et al. 

2008) and influence mating behavior in Amboseli (anubis-like males have a general 

advantage is obtaining mates, although assortative mating by genetic background also 

occurs: Charpentier et al., in prep). The rapid increase in hybrids within Amboseli may 

therefore reflect underlying selective effects on introgressed “anubis” alleles. Hence, 

although the original motivation for this work was to tease out the contribution of 

admixture to (neutral) population structure, it has since made an important contribution 

to understanding the genetics of adaptively important traits in Amboseli as well. 

In an interesting twist, although the results described in Chapter 2 reveal that 

hybridization has changed the population genetic landscape of Amboseli over the last 

few decades, they also demonstrate that admixture is in fact not the main source of 
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population structure within Amboseli. Indeed, in order for the genetic hybrid scores to 

accurately reflect admixture proportions, I had to constrain the mixture model analysis 

to make assignments for animals of unknown background using genotype data from 

anubis baboons of known provenance. When using only unlabeled data, neither a 

mixture model approach nor a principal components approach for identifying 

population structure strongly reflect patterns of hybridization and admixture (Figure 1). 

Rather, the social group is the dominant source of genetic structure in this population, 

although this effect varies depending on recent rates of reproductive skew, dispersal, 

and group fission events. This result roughly confirms theoretical predictions that 

emphasize that, in socially complex animals like baboons, behavioral, life history, and 

demographic factors will strongly inform patterns of population structure (Chesser 

1991; Sugg et al. 1996). Additionally, because these factors themselves can change over 

time, population structure will tend to be a dynamic phenomenon. In the long run, then, 

the contribution of anubis admixture to population structure may be more observable 

through its influence on adaptively important phenotypic variation than through neutral 

processes alone. Indeed, admixture has already altered the distribution and underlying 

sources of variation in maturation timing and mating behavior in this population 

(Charpentier et al. 2008; Charpentier et al. In prep). 



 

14 

 

Figure 1: The dominant aspect of population structure in the Amboseli 
baboons arises from social grouping patterns, not anubis-yellow admixture. a) 

Output from K = 2 runs in Structure for individuals born in the population in the 
1990’s (top; n = 229) and 2000’s (bottom; n = 116), based on 14 polymorphic 

microsatellite loci. Each colored vertical line represents one individual; thin black 
lines divide different social groups. The dominant pattern of structure in the 1990’s 
comes from low rates of immigration and emigration from a few social groups colored 
primarily in gray; the dominant pattern of structure in the 2000’s comes from recent 
group fission of a single group into two smaller groups (colored primarily in purple), 

roughly along matrilineal lines. Hybrid individuals occurred in all social groups at 
this time. b) Results from a principal components analysis of 232 SNPs (n = 155 

individuals) also do not separate hybrids from yellow baboons. c) However, the SNP 
data do contain information about hybrid background, based on a PCA-like analysis 

(sliced inverse regression) of the same data set that focuses explicitly on ancestry-
informative genetic variation. 
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1.4 Chapters 3 and 4: measuring and predicting allele-specific 
gene expression in primates 

Functional genetic studies conducted in natural populations test the relevance of 

genetic variation to phenotype within a natural context. In well-studied long-term 

populations like the Amboseli baboons, they also permit individual-specific 

environmental effects to be included in functional analyses. Such work contributes to our 

understanding of how traits evolve in the context of complex social structures that 

influence both the distribution and propagation of functional variation, and also the 

manner in which it is expressed. Functional data are useful additions to genotype-

phenotype work in natural populations because sample sizes for these systems are 

generally relatively small. Thus, functional data offer an additional layer of support to 

suggestive associations between genotype and phenotype. Unfortunately, most 

established functional genetic methods applied in laboratory settings cannot be 

translated directly to natural populations because of the need for invasive 

manipulations and/or controlled crosses. 

One approach for extending functional genetic work to such populations is to 

focus on the contributions of regulatory genetic variation, which has a natural functional 

read-out, gene expression. Cis-regulatory genetic variation, which refers to regulatory 

sequence that influences only the copy of the gene on the same physical chromosome, is 

of particular interest because such variation can be more readily localized than its trans-

regulatory counterpart (which influences both alleles of the gene and can reside 

anywhere in the genome: Yan et al. 2002; Wittkopp et al. 2004; a commonly cited 

example is functional variation within the coding sequence for an upstream transcription 

factor). Methods for measuring the proximal functional consequences of cis-regulatory 

variation, gene expression, are well established and generalize well across systems. 

Additionally, it has long been proposed that regulatory genetic variation plays an 
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important role in the evolution of adaptively relevant traits, and explicitly in the 

evolution of our own species (King and Wilson 1975; Wray 2007). These hypotheses 

have garnered some empirical support in recent years, with findings that illustrate a 

direct connection between regulatory genetic variation, gene expression, and 

evolutionarily important trait variation (Abzhanov et al. 2004; Shapiro et al. 2004; 

Colosimo et al. 2005; Gompel et al. 2005; Abzhanov et al. 2006; Prud'homme et al. 2006; 

Steiner et al. 2007; Tishkoff et al. 2007; Jeong et al. 2008). Thus, functional genetic work 

conducted on gene expression traits may, in some cases, serve as a connection to 

downstream, organism-level phenotypes. Indeed, several of the success stories in genetic 

work on ecologically well-characterized populations have revealed an important role for 

regulatory genetic variation. For example, beak shape in Darwin’s finches appears to be 

in part determined by allelic variation that influences gene expression in two genes, 

calmodulin and BMP4 (Abzhanov et al. 2004; Abzhanov et al. 2006).  

 Because gene expression is influenced by environmental effects as well as genetic 

effects, and because the environment largely cannot be controlled in field studies, direct 

measurements of total gene expression can be challenging to interpret. Additionally, the 

proximity of a field site to a laboratory in which genetic analyses can be conducted, as 

well as the availability of adequate facilities for temperature control, can influence the 

storage and transport of genetic samples. These factors may in turn influence the quality 

of the resulting expression profile. One approach for resolving these issues is to measure 

allele-specific gene expression (also known as allelic imbalance) in place of total gene 

expression. Allele-specific gene expression (ASGE) measures the relative contribution to 

total expression of one allele of a gene versus the alternative allele of the same gene, 

within individuals (Cowles et al. 2002; Yan et al. 2002; Bray et al. 2003; Lo et al. 2003; 

Pastinen and Hudson 2004; Wittkopp et al. 2004; Cheung et al. 2005; de Meaux et al. 

2005; de Meaux et al. 2006; Pant et al. 2006; Milani et al. 2007; Campbell et al. 2008; 
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Gruber and Long 2008; Serre et al. 2008; Wittkopp et al. 2008; Zhang and Borevitz 

2009). Thus, unlike most types of gene expression measurements, ASGE assays 

unambiguously indicate a causal basis for gene expression variation that lies in cis to the 

gene. This is because a cis-acting effect influences only the copy of the gene on the same 

physical chromosome, whereas effects that influence both alleles of the gene, such as 

environmental or genetic background effects, are trans-acting. In comparisons between 

alleles of a gene within individuals, the trans genetic and trans environmental 

backgrounds are held constant, while the cis-regulatory genetic context for an allele is 

free to vary. ASGE assays therefore provide methodological controls for otherwise 

uncontrolled environmental, trans-genetic, and sampling related variance. Additionally, 

ASGE can be treated as a phenotype itself and linked to cis-regulatory genetic variation, 

or measured across known environments in order to identify gene-environment 

interactions (de Meaux et al. 2005; Tao et al. 2006; Zhu et al. 2006; Milani et al. 2007; 

Babbitt et al. 2009; Tung et al. 2009; von Korff et al. 2009). 

ASGE measurements have been used as a tool to disentangle the global 

contributions of cis- and trans-acting factors to gene regulation (Yan et al. 2002; Morley et 

al. 2004; Pastinen and Hudson 2004; Zhang and Borevitz 2009), to investigate the 

relationship between cis-regulatory variation and genetic divergence within and between 

species (Wittkopp et al. 2004; Gruber and Long 2008; Wittkopp et al. 2008), and to test 

specific hypotheses about functional genetic variation that influences a specific locus of 

interest (de Meaux et al. 2005; de Meaux et al. 2006; Tao et al. 2006; Zhu et al. 2006; 

Babbitt et al. 2009; Tung et al. 2009). With the exception of studies in humans, however, 

most work on ASGE has been conducted on model systems, or at least systems in which 

controlled crosses can be made. Even in the human literature, the largest studies have 

been conducted using RNA derived from cell lines rather than in vivo, from normal 

human tissue (Cheung et al. 2005; Serre et al. 2008). As a result, although ASGE assays 
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have some natural advantages for work on natural systems, their utility for this kind of 

research has not been explored. In chapter 3, I describe an ASGE study in the Amboseli 

baboons that explores the applicability and robustness of this approach for measuring 

allelic imbalance in samples obtained directly from members of a wild population. I 

show that, using ASGE as a starting point, it is possible to both identify the presence of 

allelic imbalance and, in some cases, identify the probable underlying cis-regulatory 

variants. In addition, I explore the possibility of using these measurements in conjunction 

with observational field data to dissect how environmental variation interacts with cis-

regulatory effects.  

The results of these analyses are promising. However, a limitation of this 

approach lies in the fact that many genes will either never exhibit significant allelic 

imbalance within a population, suggesting that no segregating cis-regulatory variation 

influences expression of those loci, or will exhibit allelic imbalance only rarely, making 

identification of putative causal variants difficult. As exemplified by the work described 

in chapter 3, most investigators working within natural populations are likely to be most 

interested in common allelic imbalance, which reflects cis-regulatory variation that is 

common enough to produce allelic imbalance in multiple individuals. Because both 

resources and sample quantities are often limited, it would therefore be desirable to 

focus one’s measurements on loci that are likely to exhibit this pattern. In Chapter 4, I 

investigate whether it is possible to predict which loci are likely to exhibit common 

ASGE versus those that never exhibit ASGE. Using two published data sets in humans 

(Cheung et al. 2005; Serre et al. 2008), and given sequence information, polymorphism 

data and divergence data in and around a set of several hundred genes, I used a 

machine learning approach (Cortes and Vapnik 1995; Joachims 2005; Joachims 2006) to 

attempt to classify these genes into one of these two categories. The results suggest that 

a coarse level of prediction appears to be feasible, although a substantial amount of 
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noise remains unaccounted for by the model. Interestingly, the variables that contribute 

to the model’s predictive accuracy in turn correlate with gene density around the focal 

gene, evenness of gene expression across different human tissues, and an estimate of 

negative selection on the cis-regulatory region (Haygood et al. 2007). These results suggest 

possible biological biases that influence which genes are likely to functionally vary within 

populations. 

On the whole, the findings reported in Chapters 3 and 4 suggest that 

measurements of allelic imbalance may be of some utility in studies of natural 

populations. One application is towards understanding the general architecture of gene 

expression in these populations, using expression as a model for other types of complex 

traits. For example, variation in allele-specific expression across environments is 

indicative of gene-environment interaction (de Meaux et al. 2005; Zhu et al. 2006; von 

Korff et al. 2009). Because the expression of many genes can be measured using the 

techniques described here, allele-specific measurements could be used to better 

understand, for example, the relative contributions of different kinds of environmental 

variation to these interactions. This possibility is particularly intriguing given the ability 

to measure allele-specific expression variation using new high-throughput sequencing 

techniques, methods for which are currently in development (Degner et al. 2009; Heap et 

al. 2010). For targeted studies of specific phenotypes, however, allele-specific expression 

measurements are likely to be of greatest use in combination with other types of data 

that implicate the involvement of a specific gene or set of genes. This means that, while 

the results reported here represent a practical first step towards thinking about 

functional genetics and genotype-phenotype relationships in natural populations, other, 

complementary methods will also need to be applied. Some possibilities, such as 

expression quantitative trait locus mapping, admixture mapping, or linkage analyses, 

have already been well developed for other systems. However, adapting these methods 
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for use in field populations will not necessarily be straightforward, and will require 

careful development in each individual case. 

1.5 Chapter 5: evolution of a malaria resistance gene in wild 
baboons 

The results of chapters 2 and 3 make available both basic information about 

population structure within the Amboseli baboons, and a methodology for accessing the 

functional effects of regulatory variation within these animals. These tools represent a 

useful starting point for further investigations of population history and gene expression 

variation in this population. An outstanding question, however, is whether they also can 

make a contribution to understanding traits expressed on the organism level, which 

include most phenotypes of known adaptive significance from field studies. 

In the Amboseli baboons, as for most other field studies of natural populations, 

genome-scale work on the genotype-phenotype relationship is not yet possible. 

However, the close relationship between baboons and humans makes it possible to 

leverage known information in humans to investigate a trait of potential evolutionary 

relevance in the baboons. Because blood samples can be gathered from these animals, 

but generally not other tissues, I became particularly interested in studying genes 

expressed in blood, many of which are relevant to immunity and disease. Chapter 2 

reflects some of this work. In chapter 4, I present additional pieces of data for one 

specific gene, the Duffy antigen receptor for chemokines (FY; also known as DARC). 

In humans, genetic variation in the cis-regulatory region of the FY gene has been 

well studied with respect to its effects on malaria infection. FY encodes a cell surface 

chemokine receptor that is expressed on the erythrocyte surface, as well as in several 

other tissues in the body. In erythrocytes, this receptor is the entry point for Plasmodium 

vivax, one of the most deadly forms of the four Plasmodium species that infect humans.  
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Humans homozygous for the derived allele (a C) at a single functional site in the 

FY cis-regulatory region do not express FY in their red blood cells, thus conferring a high 

degree of protection from P. vivax infection (Miller et al. 1976; Tournamille et al. 1995). 

This protective effect has been implicated in the near-fixation of this variant in some 

malaria-endemic parts of the world, although patterns of genetic variation around FY on 

a worldwide scale are complex (Hamblin and Di Rienzo 2000; Hamblin et al. 2002), 

possibly due to the pleiotropic effects of variation in this gene (He et al. 2008; Reich et al. 

2009). Heterozygotes for the functional cis-regulatory variant are afforded a lower level 

of protection (Zimmerman et al. 1999), suggesting that expression level of the gene may 

correlate with rates of red blood cell infection in a quantitative manner. Indeed, levels of 

antibodies to P. vivax in the blood are also correlated with genotype at this site (Herrera 

et al. 2005). 

 The unusual evolutionary history of this locus in humans led me to investigate 

the pattern of genetic variation in its baboon homologue, and to explore the possibility 

that it might also explain phenotypic variation in parasite infection in the Amboseli 

baboons. This effort also gave me the opportunity to apply some of the tools outlined 

elsewhere in this work. While P. vivax does not infect baboons in the wild, a closely 

related parasite, Hepatocystis kochi, is common in Amboseli (Myers and Kuntz 1965; 

Tung et al. 2009). Hepatocystis is nested within the primate clade of the Plasmodium 

genus (Perkins and Schall 2002), and like Plasmodium is a vector-borne pathogen that 

infects the red blood cells of its mammalian hosts. In chapter 5, I used a PCR-based 

assay for Hepatocystis to phenotype infection status for 190 known individuals from 

Amboseli. Using a combination of allele-specific gene expression data, which test for 

functional cis-regulatory effects in vivo, and a set of experiments in cell culture, I show 

that, as in humans, cis-regulatory genetic variation influences FY gene expression in 

baboons. Susceptibility to Hepatocystis infection also correlates with variation in the 
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same region, which may be evolving non-neutrally in East African baboon populations. 

Taken together, these results suggest striking parallels, but not identical patterns, in the 

relationship between FY gene regulation and blood parasite infection in humans and 

baboons. Given that baboons and humans share a similar ancestral ecology (Jolly 2001), 

they highlight how work on natural nonhuman primate systems may help shed light on 

the environmental selection pressures that shaped the evolution of our own species. 

1.6 Conclusions 

One of the most exciting aspects of genetic research on primates lies in the fact 

that both the quality and quantity of field-based observational data and the scope of 

genetic and genomic resources are maturing to the point where the two approaches can 

be profitably combined. My hope is that this kind of integrative research will foster new 

interdisciplinary collaborations between geneticists and field biologists, and that the 

results of these collaborations will provide a new perspective for evolutionary genetic 

research. Such a research agenda will take time to develop. However, the results 

reported here are encouraging. In particular, they emphasize two more general results. 

First, developing genetic approaches for unconventional nonmodel systems is 

becoming increasingly feasible. Indeed, it is likely to become even more so when the use 

of new methods and technologies become practical for these kinds of systems: high-

throughput sequencing technologies, for example, not only allow whole-genome gene 

expression to be interrogated, but also uncover genome-wide patterns of genetic 

variation and epigenetic variation (Gilad et al. 2009). This is promising, because as 

exemplified by the results of Chapter 5, several complementary layers of evidence 

together make the strongest cases. In the short term, the field studies that will be most 

able to take advantage of these approaches will be those that are not limited to 

noninvasive sampling and those that focus on systems that are genomically well 
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characterized or have a well characterized near relative. For example, work on natural 

variation in the deer mouse genus Peromyscus has benefited from its close similarity to 

the classical laboratory mouse model, Mus (e.g., Turner and Hoekstra 2008; Linnen et al. 

2009). Encouragingly, many nonhuman primates also exhibit high levels of genetic 

similarity to species that are already sequenced (although New World monkeys and 

prosimians are less well represented). Along with further methodological development 

for these systems, another challenge will be therefore lie in extending genetic methods for 

studying populations that lay outside these confines. In particular, making the new 

generation of genomic tools available for systems in which only noninvasive samples can 

be collected will be crucial. 

Second, even at the level of laying initial groundwork and conducting early 

studies, the availability of extensive behavioral, ecological, and demographic data for a 

study system yields rapid payoffs. For instance, these kinds of data allowed the 

admixture analysis described in Chapter 2 to be placed within a broader context, 

making it clear that, although admixture does not make a major contribution to 

population structure measured within a static period of time, it does influence fitness-

related traits in significant and detectable manner. By combining genetic estimates of 

admixture and gene flow with observational field data, the evolutionary contributions of 

hybridization to this population and to the larger set of East African baboon 

populations will become much better understood. With regard to functional work, field 

data can help define the phenotypes that may be of interest, as in the case of 

Hepatocystis infection, and can suggest ecological and environmental factors that may 

also play a role. The environmental effects incorporated in the allele-specific gene 

expression analysis reported in Chapter 3, for example, were suggested by prior 

analyses in the same population that demonstrated their phenotypic importance. While 

on one hand, these factors introduce additional complexity, this complexity reflects the 
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situation experienced by individual animals in the field. Appreciating the interplay 

between social behavior, ecological and environmental variation, and genetic variation 

will therefore allow us to better understand the raw material upon which selection acts. 
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2. Genetic evidence reveals temporal change in 
hybridization patterns in a wild baboon population1 

2.1 Background 

Naturally occurring interspecific hybrids have been of long-standing interest in 

evolutionary biology because of their importance in helping to understand the processes 

of introgression, speciation, and reproductive isolation (Mayr 1942; Anderson and 

Stebbins 1954; Arnold 1992; Arnold and Hodges 1995; Barton 2001). Depending on the 

adaptive consequences of hybridization, hybrids can reveal strong selective boundaries 

between species when hybrids are selected against, or can illustrate how increased 

heterozygosity and genetic diversity may lead to a hybrid fitness advantage. 

Additionally, hybridization is itself an important mechanism of evolutionary change. 

Through the introduction of new genetic variation and new allelic combinations, 

hybridization may influence the evolutionary trajectory of the hybrid population, the 

parental populations, or both (Anderson and Stebbins 1954; Lewontin and Birch 1966; 

Arnold 1992; Rieseberg 1997; Rieseberg et al. 2003). 

 The evolutionary consequences of hybridization are related to the frequency of 

interspecific mating, the genetic distance between parental species, and the fitness 

effects of hybridity. Studies on hybridization, particularly within hybrid zones, have 

largely focused on this last component, especially on the classification of hybrids as 

either more or less fit than one or both of their parental species. Hybrids with relatively 

high fitness suggest hybrid advantage or hybrid superiority; this is often associated with 

hybridization that occurs in specialized ecological circumstances (e.g., temporal or clinal 

ecological transitions). In contrast, hybrids with relatively low fitness suggest that 

                                                        
1 The contents of this chapter have been previously published in: J Tung, MJE Charpentier, DA Garfield, J 
Altmann, and SC Alberts (2008). Genetic evidence reveals temporal change in hybridization patterns in a wild 
baboon population. Molecular Ecology 17: 1998 – 2011. 
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selection against hybrids in a “tension zone” helps to maintain species boundaries and 

counteracts the effect of regular gene flow (Barton and Hewitt 1985; Grant and Grant 

1992; Barton 2001); reviewed in Arnold and Hodges 1995). Alternatively, if hybrid 

fitness is equivalent to that of parental species and independent of ecological context, 

hybrids may represent a snapshot of species fusion in process (Rhymer and Simberloff 

1996; Salzburger et al. 2002). This framework provides three mutually exclusive 

predictions about the consequences of hybridization, differentiated by the direction of 

relative fitness differences between hybrids and the parental species (Moore 1977; 

Arnold and Hodges 1995). However, while these predictions suggest that the conditions 

surrounding hybridization and the fitness consequences of hybridization are static, the 

rate and consequences of hybridization within a population may in fact fluctuate over 

time.  

 Here, we describe a dynamically changing pattern of hybridity in a wild 

population of savanna baboons from the Amboseli basin of southern Kenya, a known 

baboon hybrid zone (Maples and McKern 1967; Samuels and Altmann 1986; Alberts 

and Altmann 2001). The focal population has been under continuous observation on a 

near-daily basis since 1971, resulting in a data set representing up to six generations of 

individually known animals. DNA samples are available for a large number of these 

individuals (Altmann et al. 1996; Alberts et al. 2006; Loisel et al. 2006). The Amboseli 

baboon population is comprised primarily of yellow baboons (Papio cynocephalus). It 

represents one of the type examples of the widespread "ibean" morphotype of yellow 

baboons (Jolly 1993), which shares more morphological similarities with anubis baboons 

than do the two other yellow baboon morphotypes (the "typical" and “kinda” 

morphotypes), possibly because of anubis admixture that has occurred in the ibean 

lineage over the course of evolutionary history (Jolly 1993). In addition, hybrids are 

found in the population due to the occasional immigration of anubis (olive) baboons (P. 
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anubis) from outside the basin (Alberts and Altmann 2001). Specifically, six anubis 

males have immigrated into study groups in the basin over the course of the study, and 

one small (ca.18) mixed-sex group of anubis baboons also entered the basin in the early 

1980's (Samuels and Altmann 1986). Hybrids now occur in both study groups and in 

non-study groups in the basin, and they have resulted not only from these anubis 

immigrations, but also from the movement and successful reproduction of hybrid males 

between and within study and non-study groups. The status of Amboseli as a hybrid 

zone is consistent with the geographical distribution of baboon species: this population 

is situated on the boundary between the ranges of yellow and anubis baboons, with 

yellow baboons roughly to the south and east and anubis baboons to the north and west 

(Jolly 1993; Newman et al. 2004). These two species represent two of the five commonly 

recognized baboon species (or subspecies: see discussion in Jolly 1993) within the genus 

Papio (also including P. hamadryas, P. papio, and P. ursinus), all of which exhibit 

moderate geographical separation, are readily distinguished morphologically, and 

represent a range of distinct patterns of social structure and behavior (Jolly 1993; Jolly 

2001; Henzi and Barrett 2003; Newman et al. 2004). Nevertheless, all baboon species 

can interbreed with their neighboring congeners to produce viable, fertile hybrid 

offspring, and several naturally occurring hybrid zones have been described near the 

geographical boundaries between species (Maples and McKern 1967; Nagel 1973; 

Phillips-Conroy and Jolly 1986; Alberts and Altmann 2001; Jolly and Phillips-Conroy 

2007). Hybrid anubis-yellow baboons have also been documented in captivity 

(Ackermann et al. 2006).  

 Intriguingly, in both the well-described anubis-hamadryas hybrid zone in 

Ethiopia and in the Amboseli anubis-yellow hybrid zone, morphological estimates of 

hybridity indicate that patterns of hybridization and introgression have changed over 

time (Phillips-Conroy and Jolly 1986; Alberts and Altmann 2001). In Ethiopia, the 
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original pattern described by Nagel (1973) based on work in the late 1960’s was 

characterized by spatially distinct anubis, hybrid, and hamadryas groups, with hybrids 

confined to a narrow intermediate zone between the two parent species. Between the 

late 1960’s and 1973, the anubis-hamadryas hybrid zone expanded and gave way to a 

graded clinal pattern, suggesting that hybrids enjoyed success in backcrossing into both 

parent populations (Phillips-Conroy and Jolly 1986). Hybrids have also been 

reproductively successful within Amboseli. Based on morphological estimates of 

hybridity, the frequency of hybrid births in Amboseli increased from the 1960's and 

1970's, when no anubis and few possible hybrid baboons were observed, to the 1990's, 

when hybrids made up an estimated 10% of births (Alberts and Altmann 2001). These 

changes may reflect either increasing anubis baboon gene flow into the predominantly 

yellow baboon-occupied basin, the selective outcome of fitness differences between 

hybrid baboons and yellow baboons, or a combination of both. Analyses based on 

morphological scoring of hybrids indicated that hybrid males tend to undergo natal 

dispersal earlier in life than do yellow males (Alberts and Altmann 2001). Dispersal 

represents a major life history marker for male baboons, and variation in the timing of 

this event is correlated with the timing of other important social and reproductive 

milestones, including age at physical maturation and age at first mate guarding episode, 

a proxy for first reproduction (Alberts and Altmann 1995; Charpentier et al. 2008). 

Therefore, if the benefits of earlier dispersal are not offset by costs later in life, earlier 

dispersal may result in a selective advantage. We hypothesized that a selective 

advantage would therefore accrue to hybrids, mediated by early maturation and 

dispersal in males, and that this advantage would be reflected in changes in the 

frequency of hybrid individuals in the population. This possibility motivates a more in-

depth, genetically based analysis of hybridity within the Amboseli population. 
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 Towards that end, here we extend our previous analysis of hybridization 

patterns in Amboseli by assessing multilocus microsatellite genotypes for evidence of 

admixture in this population. This genetic analysis of hybridity is an important 

extension of our previous morphological analysis of hybridity. First, genetic marker-

based analyses do not depend on observer-defined phenotypes (e.g., pelage color or 

body size) identified a priori to differentiate the parental species. Second, relying on 

specific phenotypes can be misleading because phenotypic differences may reflect 

variation at only one or a few loci, whereas hybridization is a genome-wide 

phenomenon. In cases involving dominant and recessive variants, the degree of 

hybridization inferred from the trait is particularly vulnerable to overestimation or 

underestimation because heterozygotes may not express the mean parental phenotype. 

Third, credible intervals can readily be assigned to genetic marker-based hybridity 

estimates, permitting interpretation of these estimates in the light of quantitative 

uncertainty. Finally, genetic assignments of hybridity lend themselves directly to 

analyses of admixture-mediated changes in population genetic structure, which can help 

address questions about the possible fitness consequences of hybridity and 

introgression. We also compare our results to previously collated morphological 

hybridity estimates. Such comparisons help identify any systematic biases that 

differentiate the morphological and genetic hybrid scoring methods, and particularly 

increase confidence in those assignments for which morphological and genetic estimates 

are congruent.  

 We assigned genetic hybrid scores with data from 14 unlinked microsatellites 

typed in 450 Amboseli baboons born from 1968 – 2004, using the Bayesian clustering 

algorithm implemented in the program Structure 2.0 (Pritchard et al. 2000; Falush et al. 

2003). These hybrid scores estimate the proportion of each individual’s genome derived 

from P. anubis ancestry. Similar approaches have been previously applied towards the 
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identification of introgression in European wildcats (Beaumont et al. 2001; Pierpaoli et 

al. 2003; Lecis et al. 2006), characterization of hybrid zone dynamics in Baltic fish 

(Beaumont et al. 2001; Nielsen et al. 2003; Pierpaoli et al. 2003; Nielsen et al. 2004; Lecis 

et al. 2006), and confirmation of the genetic integrity of endangered species, such as the 

black-faced impala (Lorenzen and Siegismund 2004). We assessed the robustness of our 

results by checking for consistency of the hybrid score assignment in families using 

pedigree data, and through simulations that tested the sensitivity of our results to 

different conditions. 

 Our analyses suggest that, even with a modest number of genetic markers, we 

have good power to identify the signature of hybridity within individual baboons. Using 

these data, we describe how hybridization patterns within the Amboseli population – 

both changes in the abundance of hybrids and in the distribution of hybrid scores – have 

changed over time. We evaluate these results in the light of known and inferred patterns 

of anubis immigration into this population, and speculate on the resulting implications 

for the evolutionary dynamics of this hybrid zone. 

2.2 Materials and methods 

2.2.1 Samples and genotyping 

We assigned genetic admixture scores to 450 Amboseli baboons born between 

1968 and 2004. All subjects were born in or immigrated into groups subject to long-term 

monitoring by the Amboseli Baboon Research Project, with continuous observation 

starting in 1971 and continuing to the present (Altmann and Alberts 2003; Alberts et al. 

2006). Those born into study groups had birth dates known to within a few days. Birth 

dates for immigrants were estimated using morphological and behavioral evidence and a 

set of criteria calibrated to baboons of known age, such as pelage condition and canine 

wear (Alberts and Altmann 1995; Alberts et al. 2003). One of the study groups began 
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feeding at a refuse pit associated with a tourist lodge in the 1980’s (Altmann and 

Muruthi 1988; Muruthi et al. 1991; Altmann and Alberts 2005). Because this alternative 

foraging pattern influenced immigration and emigration in this group, we excluded from 

our analysis all individuals born into this group after 1979.  

In order to capture change in hybridity within the population over time, we 

partitioned the total dataset into four non-overlapping data partitions, or “cohorts,” 

corresponding to individuals born in the late 1960’s or 1970’s (the “1960’s/1970’s” 

data partition: n = 31), the 1980’s (“1980’s:” n = 117), the 1990’s (“1990’s:” n = 187), 

and the 2000’s (“2000’s:” n = 115). The ten-year span of these partitions is somewhat 

arbitrary, but is a convenient method of dividing the dataset and allows for one to two 

generations (~6 years in this population) to pass between reevaluations of the data.  

As part of previous analyses of paternity and relatedness, all 450 Amboseli 

baboons included in this analysis were genotyped at 14 polymorphic microsatellite loci. 

Genomic DNA was available for all individuals based on either extractions from blood 

samples obtained during infrequent dartings or from noninvasively collected faecal 

samples (Buchan et al. 2005; Alberts et al. 2006). The methods used for genotype 

assignments and data on the performance of the 14 microsatellite primer pairs have been 

reported elsewhere (Buchan et al. 2005; Alberts et al. 2006). Importantly for these 

analyses, no two loci were located on the same chromosome, ensuring that there was no 

physical linkage between any of the 14 markers (Rogers et al. 2000). Infrequent PCR 

failure and inconsistent genotyping results, which may occur during noninvasive 

genotyping, led to missing data for 2.48% of the total Amboseli genotyping dataset (i.e., 

for a small subset of individuals at a few loci). 

In order to help generate estimates of yellow-anubis hybridity, we also produced 

genotypes from the same set of microsatellite markers for a total of 13 P. anubis 

individuals. Three of these were anubis males that immigrated into Amboseli study 
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groups from anubis source populations; they were designated as anubis based on their 

morphology and coat color as assessed by experienced observers. The other ten P. anubis 

samples were from Masai Mara National Reserve, Kenya, about 250 km to the 

northwest of Amboseli and far from the range of yellow baboons, as well as from any 

hybrid zone (Jolly 1993; Kingdon 1997). All Masai Mara samples were collected in 

August 2004 and were obtained as extracted DNA from the Integrated Primate 

Biomaterial and Information Resource, IPBIR (courtesy of R. Sapolsky; sample numbers 

are provided in Table 1). Due to PCR failure or inconsistent genotyping, 2.14% of the 

total set of individual-by-locus genotypes for Masai Mara individuals were missing in 

this analysis.  

Table 1: Masai Mara sample information. Ten Papio anubis samples were 
obtained as extracted DNA from the Integrated Primate Biomaterial and Information 

Resource (IPBIR), courtesy of R. Sapolsky. All samples originated from the Masai 
Mara National Reserve, Kenya, and were originally sampled in August 2004. 

IPBIR Repository # Date of original sampling Local Identification 
BP00232 12 August 2004 York 
BP00234 13 August 2004 Manda 
BP00236 14 August 2004 Oscar 
BP00237 16 August 2004 Stefano 
BP00242 19 August 2004 Rocket 
BP00243 21 August 2004 Leakey 
BP00244 22 August 2004 Puck 
BP00245 22 August 2004 Julius 
BP00246 23 August 2004 Facko 
BP00247 25 August 2004 Duke 

 

Summary statistics on heterozygosity at the 14 microsatellite markers for the 

Amboseli population (including the three anubis males that immigrated into Amboseli) 

and for the Masai Mara population are provided in Table 2. Twelve of 14 loci 

conformed to expected levels of heterozygosity in Amboseli, but two loci (Table 2, 

shown in bold) showed significantly elevated levels of heterozygosity in Amboseli. These 

two loci showed elevated levels of heterozygosity in all four temporal subsets, with one 
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exception for each locus (data not shown). In contrast, all loci in Masai Mara conformed 

with expected levels of heterozygosity. This result – higher than expected levels of 

heterozygosity at a modest number of loci in Amboseli but not the Masai Mara – is 

consistent with the expectation of some hybridization in Amboseli, but a pure anubis 

population in Masai Mara. 

Table 2: Summary statistics for microsatellite genotyping data. Bonferroni 
corrected p-values (within populations) are provided corresponding to the 

probability of obtaining the observed levels of heterozygosity under the assumption 
of Hardy-Weinberg equilibrium. 

Population Locus No. alleles Obs. Het. Exp. Het. p 
Amboseli AGAT006 10 0.866 0.830 0.988 
 D1s1656 10 0.852 0.804 0.176 
 D2s1326 9 0.828 0.816 0.00322 
 D3s1768 10 0.824 0.814 1.00 
 D4s243 7 0.805 0.814 0.855 
 D5s1457 8 0.811 0.792 1.00 
 D6s501 15 0.806 0.800 1.00 
 D7s503 11 0.841 0.808 0.291 
 D8s1106 8 0.759 0.778 1.00 
 D10s611 12 0.817 0.818 1.00 
 D11s2002 8 0.865 0.831 0.00140 
 D13s159B 8 0.839 0.803 1.00 
 D14s306 8 0.785 0.771 1.00 
 D18s851 8 0.784 0.738 1.00 
Masai Mara AGAT006 4 0.600 0.595 1.00 
 D1s1656 5 0.778 0.739 1.00 
 D2s1326 5 0.667 0.797 1.00 
 D3s1768 6 0.700 0.826 1.00 
 D4s243 7 0.800 0.863 1.00 
 D5s1457 6 0.900 0.837 1.00 
 D6s501 7 0.800 0.863 1.00 
 D7s503 6 0.800 0.763 1.00 
 D8s1106 7 1.000 0.811 1.00 
 D10s611 6 0.500 0.742 1.00 
 D11s2002 6 0.700 0.805 0.574 
 D13s159B 3 0.875 0.660 1.00 
 D14s306 7 0.900 0.726 1.00 
 D18s851 5 0.900 0.795 1.00 
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2.2.2 Assignment of genetic hybrid scores 

For the 450 Amboseli baboons included in this study, we generated an estimate 

of the proportion of each individual’s genome attributable to anubis (as opposed to 

yellow) baboon heritage (i.e., a “genetic hybrid score”) using the admixture analysis 

implemented in the program Structure 2.0 (Pritchard et al. 2000; Falush et al. 2003). 

Structure uses a Bayesian model-based clustering algorithm to estimate the allele 

frequency distributions for each marker locus for each source population, K, that 

contributes to the admixed population. The program probabilistically assigns each 

genotyped allele for each individual to one of these populations. The result is an 

estimate of the amount of genetic material contributed from each source population to 

each individual. Importantly, this method allows individual-specific admixture 

estimates to be produced even when most alleles are shared between source 

populations, and does not require prior specification of allele frequencies in these 

populations. Rather, it draws on genotype data for all individuals in the dataset (n = 

463 total individuals, including 13 individuals of known genetic background) in order to 

assign estimates of admixture. The degree to which the assignments maximize linkage 

equilibrium and Hardy-Weinberg equilibrium within populations determines the 

likelihood of a particular set of assignments.   

We ran Structure under the F model, which allows allele frequency spectra 

between the source populations to be correlated and allows admixture within 

individuals (Falush et al. 2003). All individuals were analyzed in a pooled analysis 

because temporal variation across the sample sets accounted for a very small 

component of overall genetic variation in the sample (data not shown). We flagged the 

13 anubis baboons (10 Masai Mara baboons and 3 anubis immigrants into Amboseli) as 

members of a single identified population and flagged the 450 Amboseli baboons as 
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unassigned to a population. We set the total number of populations, K, equal to 2. Thus, 

the 450 Amboseli individuals could have been assigned to the anubis cluster (made up 

of the Masai Mara baboons and the 3 anubis immigrants), to an alternative cluster 

distinct from the anubis cluster, which we interpret as characteristic of a yellow baboon 

genetic make-up, or as hybrids between the two clusters. Ideally we would have drawn 

more of the anubis sample from the population of origin for anubis immigrants into 

Amboseli, but sampling constraints prevented us from pursuing this strategy both 

because the identity of this population is uncertain, and because sampling from 

unhabituated baboons is logistically difficult. Hence, we also examined the effects of our 

small anubis sample size using three different sets of simulations, described below.  

Each analysis was run with a burnin length of 100,000 MCMC iterations and a 

run length of 1,000,000 iterations. We altered several of the default parameters in 

Structure in order to reflect known biological aspects of the Amboseli baboon system. 

First, we set the migration prior ν to 0.015 and the GENSBACK parameter to 2, 

corresponding to the probability that a given individual was himself an immigrant 

between populations or that he or she had an immigrant ancestor in the last 2 

generations. This prior was based on estimates from field observations of the number of 

anubis immigrants into Amboseli study groups during the last 35 years, relative to the 

total number of immigrant males in the same time period. We also allowed α, the 

parameter for admixture, to vary between populations. This allows the total 

contribution of each of the two source populations (anubis and yellow) to the overall 

dataset to be asymmetrical. All other parameters were set to the defaults recommended 

in Pritchard et al. 2000 or Falush et al. 2003), and/or the documentation for the Structure 

program.   
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To obtain a final genetic hybrid score for each individual, we reran the entire 

analysis three times and averaged the proportion of each Amboseli individual’s genome 

assigned to the anubis population over these three runs. 

2.2.3 Comparison with morphological hybrid scores 

Morphological hybrid scores were assigned prior to genetic analysis, based on 

observation and scoring of seven phenotypic characteristics that distinguish anubis and 

yellow baboons: coat color, body shape, hair length, head shape, tail length and 

thickness, tail bend, and muzzle skin appearance (Alberts and Altmann 2001). Three to 

four experienced observers independently assigned separate morphological hybrid 

scores, which were then averaged into one composite hybrid score (Alberts and Altmann 

2001). We re-scaled these morphological hybrid scores to correspond to the scale of the 

genetic hybrid scores, with 0 representing pure yellow and 1 representing pure anubis. 

Interobserver agreement and agreement between morphological scores assigned at 

different life stages were both high (data not shown). In all comparisons of 

morphological hybrid scores and genetic hybrid scores, we used the average of the 

composite scores assigned during adulthood as the morphological point estimate of 

hybridity. For those individuals that had yet to reach adulthood by the end of data 

collection or that died before reaching adulthood, we used the average of composite 

scores assigned as juveniles instead (n = 84). In all, morphological hybrid scores were 

available for 315 of the 450 Amboseli baboons used in the genetic analysis.  

In order to assess agreement between the morphological scores and the genetic 

hybrid scores assigned in this study, we calculated the Pearson correlation between the 

two scores for the same individuals (n = 315). However, because the Amboseli 

population is predominantly yellow, a large proportion of these scores fall at or near 0. 

We therefore calculated a p value for this correlation using a nonparametric approach. 
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We randomly permuted the genetic hybrid scores 10,000 times against constant 

morphological hybrid scores, using the R statistical package (Team 2007). We ranked the 

observed correlation coefficient, r, from the actual data among the 10,000 r values 

calculated from these permutations. The significance of the observed correlation was 

defined as the proportion of larger r values observed in the permutation tests.  

2.2.4 Assessment of the consistency of genetic hybrid scores using 
pedigree data 

In order to test whether our method of assigning genetic hybridity was consistent 

across individuals, we correlated the genetic hybrid score for individuals with the 

midpoint value for their parents, when all three baboons were included in the study (n = 

272 offspring-parent triads, including the offspring-parent triads that included anubis 

immigrants). Because Structure infers the population of origin for each allele copy for 

each individual (not the probability of population of origin for each allele across 

individuals) and has no prior information on pedigree relatedness, a strong correlation 

between the parental mean and the offspring hybrid score is not a necessary outcome of 

the program, and should occur only when it is performing consistently for the whole 

dataset. For comparison, we conducted the same analysis using morphological hybrid 

scores (n = 151 offspring-parent triads). Because of the large number of 0 or near zero 

values in both datasets, significance values for these analyses were assigned by repeated 

permutations of parental midpoint values on constant individual hybrid scores; this 

approach was identical to the method we used to assign significance in the 

morphological hybrid score-genetic hybrid score comparison. A high correlation between 

parents and offspring for the genetic hybrid scores would indicate that assignments were 

made in a consistent manner; it would not independently validate these scores, because 

paternity assignments were made using the same microsatellite loci used for the 

hybridity analysis. However, this method does act as an independent measure of the 
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validity of the morphological scores, because the morphological hybrid scores were 

assigned using a completely different dataset than that used to generate pedigrees. 

2.2.5 Assessment of the robustness and replicability of genetic 
hybrid scores using simulation 

We used three sets of simulations to assess whether the genetic hybrid scores we 

assigned were robust to replication and/or different estimates of the allele frequency 

spectra for the known anubis baboons. Because we use a relatively small number of 

known anubis in the analysis, the estimated allele frequencies based solely on the known 

anubis will approximate the “true” allele frequency spectra in the anubis source 

population, but are almost certainly inexact. The purpose of these simulations is to test 

whether the genetic hybrid score assignments remain stable within a realistic range of 

uncertainty surrounding these allele frequency estimates.  

2.2.5.1 Simulation 1: Replicability of hybrid scores given observed allele frequencies 

We generated 100 simulated baboon datasets that were of the same size (450 

individuals) as the empirical dataset and that exhibited a similar distribution of genetic 

hybrid scores as inferred from the observed genetic data. We asked how well the 

inferred hybrid score for a simulated individual matched with the known degree of 

hybridity for the same individual, given (1) the observed degree of genetic differentiation 

between yellow and anubis baboons, (2) the number of markers used in this study and 

the observed allelic diversity for each marker, and (3) the number of individuals in the 

dataset. This analysis assessed the replicability of our results, given the same model of 

allele frequency distributions for both source populations. 

First, we created a "yellow" pool of alleles from the genotypes of 120 Amboseli 

individuals with the lowest genetic hybrid scores (range = 0.029 – 0.058 in the empirical 

dataset), and an "anubis" pool of alleles from the ten Masai Mara baboons and the 3 
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anubis immigrants into Amboseli, for all 14 markers. These pools of alleles were used to 

create all 450 simulated individuals in the 100 simulated datasets in Simulation 1. 

Second, to create each individual within a simulated dataset, we randomly drew a 

genetic hybrid score from the 450 actual (i.e., not simulated) genetic hybrid scores in the 

empirical dataset. Third, simulated genotypes were created for each of these simulated 

individuals by sampling twice from the anubis pool of alleles at a probability equal to 

the value of the genetic hybrid score previously assigned for that individual, or else from 

the yellow pool of alleles, for each of the 14 marker loci. For example, if a genetic hybrid 

score of 0.60 was randomly drawn from the observed dataset, then for each of the 2 

alleles at each of the 14 marker loci, the simulated individual would have a 60% 

probability of being assigned an allele from the anubis pool of alleles, and a 40% chance 

of being assigned an allele from the yellow baboon pool of alleles. The proportion of the 

total genotypes drawn from the anubis baboon pool of alleles following this step 

represented the ‘known’ hybrid score for that simulated individual. All sampling was 

conducted with replacement, so that for each draw of a genetic hybrid score for each 

new individual in the simulated population, and for each draw of an allele from the 

anubis or yellow baboon pools, the original probabilities still obtained. We repeated this 

procedure 100 times to create 100 simulated datasets, each containing 450 individuals. 

The resulting datasets were run in Structure using the parameter set chosen for the 

original assignment of genetic hybrid scores to produce the ‘inferred’ genetic hybrid 

scores for the simulated individuals. In order to assess the accuracy of hybrid score 

assignment, we evaluated the difference between this inferred genetic hybrid score and 

the known genetic hybrid score for each simulated individual (n = 45,000). 



 

40 

2.2.5.2 Simulation 2: Sensitivity of hybrid scores to incorrect estimates of anubis 
allele frequency distributions 

 Assignment of individual genetic hybrid scores depends in part upon the inferred 

allele frequency distributions for the 14 marker loci in the two source populations; these 

are drawn from a large sample in the case of the Amboseli population, but from a small 

sample in the case of anubis baboons. This small sample size could potentially affect the 

accuracy of our inferences due to incorrect estimation of the anubis allele frequency 

distributions for the marker loci. 

 In Simulation 2, we investigated this possibility by randomly simulating 10 

individuals from the genotype pool of the 13 anubis baboons, as in simulation 1. We 

used this subset of 10 individuals as the full set of anubis baboons in the analysis, in 

combination with the actual empirical genotype data for the 450 Amboseli baboons, 

which we designated of unknown ancestry for the simulation. Each run therefore drew 

on true genotype data for 450 unknown Amboseli individuals and simulated data for 10 

anubis baboons instead of 13 known anubis baboons. We then produced genetic hybrid 

scores in Structure using the same parameter set chosen for the original assignment of 

genetic hybrid scores. This subsampling routine created modest run-to-run fluctuations 

in allele frequencies within the pool of anubis. We also repeated this set of simulations 

using a sample of only five anubis baboons, which created much larger fluctuations in 

the allele frequencies for the anubis. We repeated both sets of simulations 100 times each 

and then analyzed the difference between the hybrid scores assigned to individuals in 

the subsampled, simulated datasets and the hybrid scores assigned to the corresponding 

individuals in the actual dataset. The results of these simulations provide an estimate of 

the threshold at which small sample sizes of anubis will cause large errors in the inferred 

allele frequency distributions for the anubis source population, which would also affect 

hybrid score assignment.  
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2.2.5.3 Simulation 3: Sensitivity of hybrid scores to the detection of rare alleles 

 A small sample size of anubis baboons may also impact genetic hybrid score 

assignment due to a failure to sample rare alleles in the anubis population. In such cases, 

allele frequency distributions will not be greatly affected, but rare alleles that are 

actually shared between both anubis and yellow populations will then look like private 

alleles found only in yellow baboon populations. Individuals that carried these alleles 

would therefore be assigned genetic hybrid scores that are biased towards lower values. 

 In Simulation 3, we asked how the small sample size of anubis individuals may 

have impacted our results due to a failure to sample rare anubis alleles. First, we 

randomly selected one of the 14 marker loci. Then, we randomly removed one of the 

three rarest alleles for that locus from the dataset. Designation of rare alleles was based 

on observed allele frequencies among the pool of 13 anubis baboons. We readjusted the 

frequencies of the other alleles upwards to compensate for the missing allele by 

uniformly allocating the number of times the missing allele was originally observed 

across the remaining set of alleles. This process simulated the resulting genotype data if 

we had failed to sample one rare allele at one of the 14 marker loci. We then produced 

genetic hybrid scores in Structure using this altered dataset. After 100 iterations of this 

simulation, we asked how well the resulting hybrid scores correlated with the hybrid 

scores produced in the full analysis. We repeated the same procedure in two additional 

sets of simulations, in which we simulated a failure to sample one rare allele at each of 

five marker loci and one rare allele at all of the marker loci, respectively. If the 

differences between the results of these simulations and the results from the whole 

dataset are small, then the genetic hybrid scores we have assigned are robust to missing 

rare alleles within the anubis dataset. This test is in fact conservative, because the 

definition of “rare allele” we use here encompasses alleles that actually were sampled in 



 

42 

the anubis dataset, and are therefore unlikely to be extremely rare among true anubis 

populations. 

2.2.6 Analysis of temporal changes in hybridization patterns 

 We used three metrics to assess potential changes in hybridization patterns over 

time. First, we asked about increase, decrease, or stability in the percentage of hybrid 

baboons born in the population from the late 1960’s/1970’s to the present. We defined 

hybrid individuals as all Amboseli baboons in the dataset for which the lower bound of 

the 90% credible interval for their genetic hybrid score was greater than or equal to 0.05. 

This cutoff is a conservative threshold that assures that we have counted as hybrids 

only the individuals for which a genetic hybrid score of 0, corresponding to a pure 

yellow genomic composition, could be ruled out with high confidence. We calculated the 

percentage of hybrids born into the population separately for the 1960’s/1970’s, 1980’s, 

1990’s, and 2000’s data partitions. 

 Second, we asked whether the degree of hybridization among hybrids showed 

any trend up or down over time. We defined degree of hybridization as the average of 

genetic hybrid scores in a data partition, considering only hybrids. Changes in the degree 

of hybridization reveal information about introgression, gene flow, and the success of 

anubis and/or hybrid baboons in reproducing within the Amboseli population. For 

example, if all hybrids in every data partition had hybrid scores around 0.50, with no 

change over time, we would infer that although anubis baboons could successfully mate 

within Amboseli, F1 hybrids generally suffered from poor reproductive success. In 

contrast, if the degree of hybridization among hybrids decreased over time but the 

number of hybrids (as revealed by the categorical analysis described above) did not, we 

would infer that backcrosses and hybrid-hybrid matings were common in the population 

due to hybrids reproducing in the population. 
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 Third, we examined the frequency distribution of hybrid scores of individuals 

born in different decades to ask whether the frequency distribution of hybrid scores 

shifted down over time; this analysis included both hybrid and non-hybrid individuals 

(i.e., the full set of individuals in the study). We conducted two-sample one-tailed 

Kolmogorov-Smirnov tests comparing the distribution of hybrid scores among the 

cohorts represented by each pair of temporal data partitions. A significant result would 

indicate that a random draw from the more recent cohort would be significantly more 

likely to correspond to a lower hybrid score than would a random draw from the earlier 

cohort. This third metric is closely related to the above analysis of changes in 

hybridization among hybrids, but also tests whether the patterns of change among 

individuals with high genetic hybrid scores (those for whom anubis ancestry can be 

inferred with very high confidence) are reflected in the hybrid dynamics in the 

population as a whole. Because we did not identify any hybrids in the 1960’s/1970’s 

dataset, we excluded those individuals from this component of our analysis.  

2.3 Results 

2.3.1 Genetic hybrid score assignments in Structure 

 Our analysis generated a mean hybrid score (± 90% credible interval) for each of 

the 450 Amboseli baboons. Individual hybrid scores showed very close run-to-run 

agreement (mean standard deviation across runs for the same individual = 0.0025). 

Figure 2 shows the cumulative distribution of genetic hybrid scores for all Amboseli 

individuals. 90% credible intervals were largest for baboons with mean hybrid scores in 

the midrange values, as has also been the case for similar analyses of admixture in other 

systems (Beaumont et al. 2001; Pierpaoli et al. 2003). 99 of 450 individuals were deemed 

to have anubis ancestry based on their genetic hybrid scores, using the criterion of 

credible intervals with a lower bound > 0.05.  
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Figure 2: Genetic hybrid scores (i.e., percent anubis ancestry) for each of the 
450 individuals in the analysis, averaged over three Structure runs and shown as 

the cumulative proportion of the sampled population. Each black point represents 
the mean hybrid score for one individual. Individuals are ordered along the y axis 

from lowest (least anubis ancestry) to highest (most anubis ancestry) genetic hybrid 
scores. Flanking lines show 25%, 50%, 75%, and 90% credible intervals. Individuals 
with lower 90% credible intervals > 0.05 (boundary indicated by solid vertical line) 

were considered hybrids for the purposes of this analysis. 
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2.3.2 Agreement between genetic hybrid scores and morphological 
hybrid scores 

 In general, we observed good agreement between morphological hybrid scores 

and the genetic hybrid scores assigned in this study (n = 315, r = 0.484, p < 0.0001). 

Permutation tests yielded p < 0.0001 in 10,000 permutations, demonstrating that the 

observed correlation was not a product of the structure of the dataset but actually 

reflected significant concordance between these two metrics. However, the cumulative 

distribution of genetic hybrid scores was right-shifted (towards more anubis ancestry) 

relative to the cumulative distribution of morphological scores (compare Figure 2 with 

Figure 3 in Alberts and Altmann 2001). Discrepancies in the scores originated primarily 

from individuals who were assigned higher genetic hybrid scores than morphological 

hybrid scores. This bias is clear when the two metrics are compared in subsets. 

Individuals with low genetic scores (< 0.25) almost invariably had morphological scores 

that were also lower than 0.25 and similar to the genetic scores (only 5 of 200 animals in 

this category violated this pattern). However, individuals with genetic hybrid scores 

above 0.25 generally had morphological scores that were lower (more yellow) than their 

genetic scores: specifically, 68 of the 77 individuals with genetic scores between 0.25 and 

0.5 and for whom we had both scores had morphological hybrid scores lower than their 

genetic scores. Only 9 had morphological scores higher than their genetic scores. 

Similarly, 28 of the 36 individuals with genetic hybrid scores between 0.5 and 0.75 had 

morphological hybrid scores lower than their genetic scores, whereas only 8 had 

morphological hybrid scores higher than their genetic scores. 

 These comparisons suggest that differences between the two metrics were not 

random, but were caused almost entirely by cases in which genetic estimates indicated 

some anubis admixture, but morphological assessments did not. In other words, the 

individuals inferred as predominantly yellow by the genetic analysis were almost always 
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assessed as predominantly yellow in morphological analyses, and individuals assessed 

as hybrids in the morphological analyses were almost always assessed as hybrids in the 

genetic analyses, but individuals assessed as hybrids in the genetic analyses were 

frequently assigned morphological scores that suggested lower levels of anubis ancestry. 

2.3.3 Consistency within the dataset 

 Comparisons of individual genetic hybrid scores with the midpoint values of the 

parents showed that the assignment of genetic hybrid scores was extremely consistent 

with predictions from previously constructed pedigrees, such that the distance between 

the scores of parents and the scores of offspring were in agreement with Mendelian 

inheritance at the 14 microsatellite markers (n = 272, r = 0.905; p < 0.0001). As an 

example, Figure 3 shows the genetic hybrid scores of offspring of several different types 

of crosses that we observed in the study population, including yellow x anubis crosses, 

both types of backcrosses, and hybrid-hybrid crosses.  

 

Figure 3: Pedigrees showing a subset of the hybrid crosses and backcrosses 
that we have observed in the Amboseli population. All genotyped offspring and 
some grandoffspring of two anubis male immigrants (GIZ and PIS) are shown, as 
well as crosses between other hybrids in the population. Note that four of PIS’ 

offspring are GIZ’s grandoffspring. The genetic hybrid score for each individual is 
shown in italics below the three-letter ID. Circles represent females and squares 

represent males; yellow, F1 hybrid, and backcrossed individuals (based on pedigree 
relationships and genetic hybrid score) are represented as different colors. 
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These results suggest that an individual's genetic hybrid score is a good 

representation of genome wide hybridization. The same analysis conducted on a distinct 

dataset, the morphological hybrid scores, yielded r = 0.588 (n = 151, p < 0.0001). 

Parent-offspring resemblance in hybrid scores based on morphological traits, although 

high, is apparently not as consistent a metric as one based on genetic markers. Both 

measures indicate a general ability to assign hybrid scores across a wide range of degrees 

of admixture. 

2.3.4 Simulation results 

 The results of all three simulations are summarized in Figure 4. Together, they 

showed that the genetic hybrid scores we assigned were 1) highly repeatable given the 

parameters of the observed data (Figure 4a); 2) robust to modest errors in measuring 

allele frequencies (but less so to the more extreme errors that would result if, for 

example, we had sampled only 5 individuals) (Figure 3b and c); and 3) robust to cases 

in which rare alleles were not sampled (Figure 3d, e, and f). In particular, the results of 

Simulation 2 suggest that increasing the number of anubis individuals in the analysis 

tends to stabilize the point estimates of genetic hybridity, but that we have achieved 

much of this stability already by sampling 13 individuals. Interestingly, Simulation 3 

suggests that rare alleles in the anubis population provide very little information about 

hybridity in the Amboseli population. 
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Figure 4: Simulation results. Arrows show the value of the median error for 
each simulation. a) Results from Simulation 1, showing the distribution of the 
margin of error between inferred genetic hybrid scores and known, simulated 

admixture proportions for each of 450 individuals in 100 simulated datasets (n = 
45,000). Margins of error were calculated as the absolute value of the difference 
between the inferred hybrid score from Structure runs and the actual simulated 

degree of anubis ancestry for each individual. b) and c) Results from Simulation 2, 
showing the distribution of the absolute value of the difference between inferred 

genetic hybrid scores for runs in which 10 anubis individuals were included and for 
runs in which 5 anubis individuals were included, respectively, and corresponding 

hybrid scores assigned to the same individuals in the full analysis. d), e), and f) 
Results from Simulation 3, showing the distribution of the absolute value of the 

difference between inferred genetic hybrid scores for runs in which a rare allele was 
not sampled at 1, 5, and all 14 loci, respectively, and corresponding hybrid scores 

assigned to the same individuals in the full analysis. All Structure runs were 
conducted using the same parameters we applied to the observed data. 

2.3.5 Changes in patterns of hybridization over time 

 The percentage of individuals born into the Amboseli population with hybrid 

ancestry increased in the study groups over the time period we considered (Figure 5a). 

Whereas none of the baboons in the sample born from 1968 – 1979 had anubis ancestry 

based on our criterion, 12.8% of the genotyped individuals born during the 1980's (15 of 

117 animals), 25.1% of animals born during the 1990's (47 of 187), and 31.3% of those 
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born from 2000 – 2004 (36 of 115) had anubis ancestry based on our criterion. This 

suggests that the proportion of individuals with anubis ancestry increased in the 

Amboseli population throughout the study, but that the rate of increase slowed after the 

year 2000.  

 In contrast to the increase in the percentage of hybrids born over time, our results 

suggest that the mean genetic hybrid score assigned to hybrid individuals actually 

decreased in the population over time (Figure 5b). The mean hybrid score among hybrids 

decreased by 0.055 between animals born in the 1980’s (0.522 ± 0.099 SD) and those 

born in the 2000’s (0.467 ± 0.131 SD), and the variance in hybrid scores within data 

partitions increased. This suggests that the hybrids we detected were increasingly 

offspring of backcrosses and crosses between hybrids (see Figure 3 for examples), and 

not first generation F1 hybrids.  
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Figure 5: Patterns of admixture over time. a) Broken line showing the 
proportion of hybrid baboons born in the Amboseli population during different 

decades, based on genetic hybrid scores (left y-axis; hybrids are defined as 
individuals for whom the lower bound of the 90% credible interval on the genetic 

hybrid score is > 0.05), and scatterplot of the genetic hybrid scores of all 450 
Amboseli individuals used in the analysis (right y-axis), plotted against year of birth. 

The number of hybrid individuals has increased over time, as has variation in the 
amount of anubis admixture among hybrids. b) Mean genetic hybrid score among 

hybrids born in Amboseli over the same period of time.  

This trend was further supported by the results of pairwise Kolmogorov-Smirnov 

tests (Table 3) comparing the frequency distributions of all hybrid scores (including both 

hybrids and non-hybrids) across the sequential datasets. We observed a subtle but 

significant decrease in the distribution of hybrid scores among individuals born in the 

1980’s and the 2000’s, but no significant differences between sequential decades, which 

was unsurprising given that the decrease in average hybrid score among hybrids was 

also only detectable on this scale. The overall pattern suggests that, while the 

representation of hybrids in the population has increased, hybrids born today are likely 
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to have a smaller proportion of anubis ancestry relative to hybrids born 15 – 20 years 

ago. This trend has changed the distribution of hybrid scores in the population as a 

whole.  

Table 3: D values for pairwise one-tailed Kolmogorov-Smirnov tests 
comparing the distribution of hybrid scores across temporal datasets within 

Amboseli. Significance values are given in parentheses; significant values (p < 0.05) 
are indicated in bold. Comparisons against the 1960’s/1970’s were not conducted 

due to the small sample size of individuals in that data partition, which included a 
single anubis individual and no apparent hybrids. 

 1980’s 1990’s 2000’s 
1980’s *   
1990’s 0.130 (0.089) *  
2000’s 0.196 (0.012) 0.082 (0.386) *  

2.4 Discussion 

2.4.1 Robustness in the genetic hybrid score assignments 

Using the clustering method implemented in Structure, we were able to assign 

estimates of anubis ancestry to 450 individuals in the Amboseli baboon population, and 

to identify 99 of the 450 individuals as highly probable hybrids. Although we used only 

a modest number of markers and a small number of anubis individuals for this analysis, 

the results of the simulations suggest that our scores are robust and reliable measures of 

genetic hybridity. Additionally, the agreement we observed within parent-offspring 

triads shows that the genetic hybrid score assignments are consistent with expectations 

from pedigree data. Most importantly, although the 90% credible intervals surrounding 

many of the genetic hybrid score estimates are large (but comparable to those in other 

similar studies: see Beaumont et al. 2001; Pierpaoli et al. 2003), the lack of strong genetic 

differentiation between temporal datasets suggests that year of birth and error in genetic 

hybrid score assignment are unlikely to be correlated. Thus, while this uncertainty adds 

noise to the dataset, it is unlikely to have created or significantly altered the trends over 

time we have identified. 
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We also observed good agreement between the genetic hybrid scores assigned 

here and previous morphologically based estimates of hybridity, especially given the 

complete independence of the two metrics and the subjectivity inherent in assigning 

morphological hybrid scores. Our results are comparable to the results of Beaumont et al 

(2001), who also compared morphological methods and genetic methods of assessing 

hybridity in wildcat-domestic cat hybrids. They report a “strong correlation” between 

these methods based on a significant Spearman rank correlation (Spearman’s rho = 

0.372, p < 0.01); this is similar to the significant correlation we report of r = 0.484. 

Because genetic and morphological scores represent two completely independent 

methods of assessing yellow-anubis ancestry, this result provides strong support for the 

assertion that we are accurately identifying hybridity in our study population. Much of 

the discrepancy between the two scores occurred when genetic estimates indicated a 

hybrid background but morphological scores suggested these individuals were yellow. 

Such results are similar to those of Pierpaoli et al. (2003) in wildcats and Noren et al. 

(2005) in foxes, in that they also identified probable hybrids that show no clear 

morphological signature of hybridity (“cryptic hybrids”).    

These differences may reflect a greater sensitivity to detecting hybridity using 

genetic markers than with phenotypic traits in some cases. However, because of the 

modest number of loci used here and the conservative threshold we used to classify 

hybrids, it is also likely that genetic assignments will produce some false negatives and 

false positives. Increased confidence in a genetic hybrid score can be conferred when 

independent assessments of hybridity, such as morphologically based hybrid scores, 

corroborate the genetic hybrid score. Overall, the results of our simulations, comparisons 

with morphological scores, and pedigree analysis suggest that, in general, the majority of 

individual estimates do not strongly differ from the “true” proportion of anubis ancestry 

for those individuals.  
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2.4.2 Dynamic patterns of hybridization among the Amboseli baboons 

The results of our analyses suggest that patterns of hybridization are changing in 

Amboseli over time. Specifically, the number of hybrids born into the population 

increased from the late 1960’s and 1970’s through the early 2000's, although the rate of 

increase seems to have slowed in the final decade of the analysis. While individuals with 

anubis ancestry were rare in the 1960’s and 1970’s, hybrids were born with increasing 

frequency in Amboseli beginning in the 1980’s, and individuals with some degree of 

anubis ancestry comprised more than one quarter of the baboons born into the study 

population by the 2000's. At the same time, the level of anubis ancestry among hybrids 

born into the population appears to have gradually decreased within this period, 

reflecting gradual introgression of “anubis-like” genetic material into the still 

predominantly yellow baboon population. This pattern was also apparent in the shift of 

the distribution of genetic hybrid scores towards lower values over the last two and a 

half decades.  

These results indicate that the pattern of hybridization in Amboseli has been 

dynamic over time. This argues for the importance of observing hybrid zones over 

multiple time points, either by repeated sampling or by assigning individuals observed 

together to different age cohorts (Albert et al. 2006), in order to capture the magnitude 

and direction of these changes (see also Verardi et al. 2006). Understanding the 

dynamics of hybridization is critical because hybridization can alter population genetic 

patterns over time, thus impacting related evolutionary processes such as adaptation 

and speciation (Moore 1977; Arnold 1992; Rieseberg et al. 2003). 

The most commonly described hybrid zone patterns do not appear to pertain to 

Amboseli. The rapid increase over time in the abundance of hybrids within Amboseli, 

despite the low level of observed P. anubis immigration, suggests that hybrids were not 
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selected against, as would be the case if hybrids exhibited reduced fitness relative to the 

yellow baboon parental species. Instead, hybrid individuals have clearly reproduced 

successfully within the Amboseli population, and have done so over multiple 

generations to create descendant crosses and backcrosses, as the broad distribution of 

the genetic hybrid scores indicates (Figure 2). In fact, both previous and current analyses 

suggest that hybrid males in this population mature and disperse at an earlier age than 

yellow males (Alberts and Altmann 2001; Charpentier et al. 2008) and this may confer a 

selective advantage on hybrid males (see discussion in Charpentier et al. 2008).  

 However, the possibility of hybrid advantage runs counter to our observation 

that the distribution of hybrid scores has shifted downwards through time. A simple 

pattern of consistent anubis immigration and subsequent anubis and hybrid advantage 

over yellow baboons would lead one to predict higher rather than lower average anubis 

ancestry in the population over time, while an alternative pattern of hybrid superiority 

over both parental types would predict the maintenance of a steady intermediate level 

of anubis ancestry. These two conflicting pieces of evidence lead us to hypothesize that 

the dynamics of the Amboseli hybrid zone are driven by both non-selective processes – 

specifically, stochasticity in the immigration rate of anubis males into Amboseli – and 

selective processes – specifically, an advantage experienced by hybrids relative to 

yellow males. Such an advantage, coupled with a low rate of anubis immigration, would 

account for the increase over time in the number of hybrids in the population and the 

simultaneous decrease in anubis ancestry among hybrids, as well as the unchanged 

genetic distance between Amboseli and the Masai Mara anubis population during the 

study period. 
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2.4.3 Nonselective processes 

 With respect to stochasticity in the rate of anubis immigration, we envision a 

scenario in which chance plays a large role in whether anubis males immigrate into 

Amboseli. All of the nearest possible anubis source populations are moderately far from 

Amboseli, and are separated from it by physical obstacles, particularly a large stretch of 

waterless land inhospitable to baboons. The severity of these physical obstacles will 

presumably fluctuate over time due to local changes in habitat or weather, resulting in a 

low rate of anubis male immigration that varies stochastically over time. These barriers 

create a moderate degree of geographically-mediated prezygotic isolation between these 

populations.  

 Existing data on the Amboseli baboon population indicate that anubis male 

baboons have immigrated into the population at a mean rate of about once every six 

years (Alberts and Altmann 2001). How far do they have to travel to do this, and is this 

within the typical range of dispersal distances for male baboons? If the necessary travel 

distance is on the extreme end of dispersal distances, then this would account for the 

low and variable rate of anubis immigration into Amboseli. Although most male baboons 

disperse to neighboring baboon groups during both natal and secondary dispersal 

(Samuels and Altmann 1986; Alberts and Altmann 1995), males occasionally disperse 

much farther: currently, several males natal to the Amboseli study groups are resident in 

groups up to 30 km from their natal home range (Alberts & Altmann, unpublished data). 

(Rogers and Kidd 1996) used Wright’s isolation by distance model (Wright 1946) to 

estimate that two-thirds of male yellow baboons in the Mikumi region of Tanzania 

dispersed less than 15 – 22 km from their natal groups, based on the effective 

population size of the Mikumi population and estimates of population density. We 

applied Wright’s model to the Amboseli data in a similar manner, using an effective 
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population size of 1037 – 3456 (estimated from genotype data presented in (Storz et al. 

2002) and a population density of 1.5 baboons/km2 in the late 1980’s and early 1990’s 

(Samuels and Altmann 1991). The resulting estimate suggests that about two-thirds of 

Amboseli males dispersed less than 10.5 – 19.1 km from their natal groups during this 

time. If members of the source P. anubis population show a similar pattern of dispersal, 

and if the proportion of anubis immigrants into the Amboseli population is 

approximately 0.025 (~6 immigrant males over the 30-year study period were anubis), 

then these individuals would potentially have to travel some 20.6 – 37.5 km to reach the 

Amboseli basin. As noted above, the degree to which the physical environment in this 

stretch of land operates as a barrier to crossing this distance would introduce an 

additional degree of stochasticity to these events. 

2.4.4 Selective processes 

 However, those anubis males that immigrate successfully into Amboseli do 

successfully reproduce (Samuels and Altmann 1991; Alberts and Altmann 2001) and 

the number of hybrids in the population has in fact increased over time. These 

observations support the hypothesis, posed above, that selective processes might be 

acting alongside stochastically varying rates of gene flow to influence the dynamics of 

this hybrid zone. Specifically, we hypothesize that early hybrid male maturation relative 

to yellow males reflects a selective advantage that has contributed to the increase over 

time in the number of animals with anubis ancestry (see discussion in Charpentier et al. 

2008). 

 The hypothesis that hybrids are advantaged relative to yellow baboons is also 

supported by the geographic patterning of genetic variation in Papio in the wild 

(Newman et al. 2004; Wildman et al. 2004), which has led C.J. Jolly (personal 

communication) to argue that anubis baboons represent an “invasive” phenotype 
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relative to other members of the genus Papio. According to this hypothesis, the anubis 

phenotype is engaged in a gradual process of range expansion driven by dispersal of 

anubis males into other Papio populations. The patterns of earlier dispersal and earlier 

maturation observed among hybrid males (Alberts and Altmann 2001; Charpentier et al. 

2008) may represent one mechanism by which this invasive tendency is manifested.   

2.5 Conclusions  

 We report changing patterns of hybridization in the Amboseli baboon population 

over the past three and a half decades. Specifically, we observed an increased 

abundance of hybrids during this time, coupled with a shift in the population to a 

decreased level of hybrid ancestry among hybrid individuals. These patterns emphasize 

the utility of long-term observations on hybrid zone dynamics; we would not have been 

able to identify these trends using samples from any single point in time. By utilizing 

longitudinal data, we not only identified the presence of trends over time, but also began 

to identify the evolutionary and demographic influences that have shaped the particular 

hybrid zone dynamics within this population. Our results suggest that some selective 

advantage among hybrids may combine with low gene flow and stochastic variance in 

dispersal to produce the patterns we have observed. These hypotheses are amenable to 

additional testing, using both empirical data on life history markers and reproductive 

success within the study population, and detailed theoretical population genetic models. 
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3. Allele specific gene expression in wild nonhuman 
primates 

3.1 Background 

The relationship between genetic variation and phenotypic variation is a 

fundamental component of evolutionary change. Because many of the phenotypes of 

greatest evolutionary and ecological interest are complex traits, dissecting the genotype-

phenotype relationship for these traits continues to be a substantial challenge. This is 

especially true in studies of nonmodel systems in the wild, for which inbred lines cannot 

be constructed and for which extensive genomic resources are not yet available. 

Nevertheless, some of the most ecologically and evolutionarily well characterized 

systems on the phenotypic level fall in this category (e.g., Grant 1986; Clutton-Brock 

1989; Clutton-Brock and Pemberton 2004; Kruuk and Hill 2008). In these cases, prior 

knowledge about trait variation and its fitness impact in the wild would doubly reward 

efforts to link genetic variation to phenotypic variation. For instance, while the finding 

that variation in the calmodulin and BMP4 genes influences beak shape in Darwin’s 

finches (Geospiza sp.) was itself a major contribution to evolutionary genetics, its 

significance was greatly expanded by the existence of long-term observational work on 

the relationship between beak morphology, feeding behavior, and ecological niche 

differentiation (Grant 1986). 

However, studying the functional genetics of natural populations remains 

challenging. Many of the tools that have helped reveal functional genetic variation in the 

laboratory (knock-out and knock-in models, gene silencing, transgenics) are not 

applicable to organisms in the wild. Additionally, gathering large sample sizes can be 

challenging, particularly for endangered or long-lived organisms, and controlled breeding 
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experiments may not be possible or desirable, especially if the goal of the study is to 

evaluate genotype-phenotype relationships in a natural ecological context. 

Allele-specific gene expression (ASGE) assays, also known as allelic imbalance 

assays, directly assay genome function and can be broadly applied to both laboratory 

model systems (Wittkopp et al. 2004; de Meaux et al. 2005; de Meaux et al. 2006; 

Campbell et al. 2008; Gruber and Long 2008; Wittkopp et al. 2008; Zhang and Borevitz 

2009) and nonmodel systems (Yan et al. 2002; Morley et al. 2004; Pastinen and Hudson 

2004; Cheung et al. 2005; Guo et al. 2005; Schaart et al. 2005; Serre et al. 2008; Tung et al. 

2009; von Korff et al. 2009; Heap et al. 2010). These assays measure the relative 

contribution of the two alleles of the same gene to total gene expression within the same 

individual. When one allele drives significantly higher expression than the other allele, 

that gene shows evidence of ASGE. Thus, unlike most types of gene expression 

measurements, ASGE assays unambiguously indicate a causal basis for gene expression 

variation that lies in cis to the gene (a cis-acting effect influences only the copy of the gene 

on the same physical chromosome; effects that influence both alleles of the gene, such as 

environmental or genetic background effects, are trans-acting). This is because, in 

comparisons between alleles of a gene within individuals, the trans genetic and trans 

environmental backgrounds are held constant. 

The requirements for developing allele-specific expression assays are minimal: in 

principle, any gene that harbors a single nucleotide polymorphism (SNP) in its 

transcribed sequence can be assayed for ASGE. In addition, ASGE can be measured 

from samples obtained directly from organisms in the field (Tung et al. 2009). Thus, 

unlike in vitro assessments of functional genetic variation, the functional relevance of this 

variation to organisms under natural environmental conditions is indisputable. Both 

theoretical arguments (King and Wilson 1975; Carroll 2005; Wray 2007) and empirical 

data (Tournamille et al. 1995; Steiner et al. 2007; Jeong et al. 2008; Hofmann et al. 2009; 
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Linnen et al. 2009; Tung et al. 2009; Wittkopp et al. 2009) indicate that cis-regulatory 

genetic variation can be an important factor in shaping downstream phenotypes, 

including fitness-related traits. Using ASGE assays to identify the presence of functional 

cis-regulatory variants can therefore serve as an important first step in connecting 

genotype and phenotype. The approach is particularly powerful because, in combination 

with regulatory sequence data, ASGE measurements can also be used to identify the 

causal functional variants themselves (de Meaux et al. 2005; Milani et al. 2007; Serre et 

al. 2008; Babbitt et al. 2009; Tung et al. 2009). 

ASGE measurements have been used as a tool to disentangle the global 

contributions of cis- and trans-acting factors to gene regulation (Yan et al. 2002; Morley et 

al. 2004; Pastinen and Hudson 2004; Zhang and Borevitz 2009), to investigate the 

relationship between cis-regulatory variation and genetic divergence within and between 

species (Wittkopp et al. 2004; Gruber and Long 2008; Wittkopp et al. 2008), and to test 

specific hypotheses about functional genetic variation that influences a given locus (de 

Meaux et al. 2005; Tao et al. 2006; Zhu et al. 2006; Babbitt et al. 2009; Linnen et al. 2009; 

Tung et al. 2009; Wittkopp et al. 2009). With the exception of studies in humans, most of 

this work has been conducted on model systems, or at least systems in which controlled 

crosses can be made. ASGE assays have generally not been brought to bear in studies of 

natural populations, despite several advantages of this approach. First, ASGE 

measurements control for trans-acting variation, which is particularly important when 

working with systems for which inbred lines cannot be constructed, and where sampling 

conditions in the field cannot be standardized. Second, ASGE studies require relatively 

small sample sizes. For example, Milani et al (2007) used a sample size of only 13 cell 

lines to identify functionally variable sites in eight cancer-related genes (Milani et al. 

2007). Even some of the most comprehensive studies in humans have relied on modest 

sample sizes on the order of 30 – 100 individuals (Cheung et al. 2008; Serre et al. 2008). 
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This is an important advantage when studying organisms in natural field conditions, for 

which sampling RNA can be challenging. 

Here, we present evidence that, using allele-specific expression measurements, 

we can reliably detect allelic imbalance in samples taken directly from individuals in a 

natural population. Our results suggest that this strategy is a useful method for 

investigating functional cis-regulatory genetic variation and its reaction norms in the field 

as well as in the laboratory, as demonstrated by the concrete examples arising from this 

work. 

Specifically, we focused on a wild population of savanna baboons (Papio 

cynocephalus) that have been monitored continuously since 1971 as the focus of a long-

term study in the Amboseli basin of southern Kenya (Altmann and Altmann 1970; 

Altmann et al. 1996; Buchan et al. 2003; Alberts et al. 2006). This research has produced 

a large body of knowledge on environmental and phenotypic variation in this population 

(Altmann and Alberts 2003; Silk et al. 2003; Beehner et al. 2006; Charpentier et al. 2008; 

Charpentier et al. 2008), making it an ideal candidate system for integrating genetic data 

into an existing ecological framework. We analyzed expression data on ten genes 

expressed in whole blood, and reanalyzed data on one gene (FY) that we previously 

characterized in another study (Tung et al. 2009), for a total gene set of eleven genes. 

These genes were chosen because they are all known to harbor functional genetic 

variation in humans (McKusick-Nathans Institute of Genetic Medicine and National 

Center for Biotechnology Information 2010), suggesting that they might also be 

functionally variable in baboons.  

We were able to (1) validate the use of allele-specific expression measurements 

on samples obtained under field conditions; (2) estimate the proportion of genes that 

exhibit common functional cis-regulatory variation in the Amboseli population; (3) 

identify specific variants that associate with allele-specific expression for two of these 
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genes by combining ASGE data with cis-regulatory sequence data; and (4) test for gene-

environment interactions (GEIs) involving cis-regulatory variation by combining ASGE 

results for these two genes with behavioral and ecological data on the same individuals. 

Together, our results indicate that measuring allele-specific expression differences can 

serve as a practical method for exploring functional regulatory genetic variation in wild 

populations, even when sampling conditions cannot be highly controlled, and even with 

modest sample sizes. 

3.2 Materials and methods 

3.2.1 Study subjects 

The Amboseli basin is a semi-arid short-grass savanna in southern Kenya, 

bordering Tanzania on the south. The Amboseli baboon population consists of primarily 

yellow baboons (Papio cynocephalus) with some hybrid admixture from immigration of 

anubis baboons (Papio anubis) from outside the basin (Samuels and Altmann 1986; 

Alberts and Altmann 2001; Tung et al. 2008). Five study groups composed of 

individually recognized animals are currently monitored on a near-daily basis within the 

larger population: life history, behavioral, and physiological data are recorded for all 

individuals, maternal pedigrees are available for all natal individuals, and paternal 

pedigrees are available for many (Buchan et al. 2003; Alberts et al. 2006). The 

individuals used in this study were 101 adult baboons (55 females and 46 males) 

representing all five main study groups and one group that is monitored for demographic 

information only, on a monthly basis. Samples were collected between 2005 and 2009. 

All study subjects were anesthetized with a Telazol-laden dart using a handheld 

blowgun. Darting occurred in the morning (0700 to 1200), when animals descended from 

known sleeping sites. In order to minimize disruption to the study groups, darting only 

occurred when no individuals within the group would observe the actual dart delivery, 
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and we darted no more than two animals per day, no more than three days a week. 

Anesthetized baboons were quickly removed to a processing site distant from the rest of 

the group. We collected RNA samples by drawing two 2.5 mL samples of whole blood 

into PaxGene Vacutainer tubes (BD Vacutainer), which protect RNA from environmental 

degradation and prevent further transcription post-draw. We also collected blood 

samples for DNA extraction. Upon regaining consciousness, study subjects were placed 

into a covered holding cage until fully recovered from the effects of the anesthetic (~ 3 – 

4 hours). They were then released in the vicinity of their group. All subjects rejoined their 

social groups quickly upon release and without incident. 

Blood samples were stored for no more than 3 days in an evaporatively cooled 

charcoal structure at Amboseli, which maintains a temperature at about 10 °C below 

ambient. They were then shipped to Nairobi, where they were either preserved frozen at 

-20 °C until they could be hand couriered to the United States, or, in a few cases, 

immediately extracted at the Institute of Primate Research in Nairobi (see Section 3.2.4). 

RNA extractions were conducted using the PaxGene RNA kit (Qiagen) and RNA was 

reverse transcribed into cDNA (High Capacity cDNA Archive Kit; Applied Biosystems) 

for subsequent pyrosequencing. DNA samples were extracted for each study subject 

using the DNEasy DNA Extraction kit (Qiagen). 

3.2.2 Candidate gene assay development 

All eleven candidate loci used in this study are well studied in humans with 

respect to disease risk and progression, and all contain segregating genetic variants in 

human populations that have been associated with disease-related phenotypes, many of 

which are cis-regulatory (McKusick-Nathans Institute of Genetic Medicine and National 

Center for Biotechnology Information 2010). Additionally, either intraspecific sequence 

data or interspecific comparisons in humans or nonhuman primates have suggested 
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interesting selective patterns for several of these loci (Hamblin and Di Rienzo 2000; 

Bamshad et al. 2002; Hamblin et al. 2002; Hughes et al. 2005).  

Table 4: Genes included in this study. 

Gene Gene name Role n ASGE 
range1 p-value2 

CCL5 chemokine (CC motif) 
ligand 5 

pro-inflammatory 
chemokine  36 0.201 – 

3.32 < 0.0001 

CCR5 chemokine (CC motif) 
receptor 5 

membrane-bound 
chemokine receptor; T-cell 

entry point for HIV 
25 -0.960 – 

0.518 0.1651 

CD14 
monocyte 

differentiation 
antigen CD14 

monocyte cell surface 
marker; recognizes 

bacterial 
lipopolysaccharide 

7 0.112 – 
0.425 0.0923 

CXCR4 chemokine (CXC 
motif) receptor 4 

membrane-bound 
chemokine receptor; T cell 

entry point for HIV 
50 -0.420 – 

0.418 0.0001 

FY 
Duffy antigen 

receptor for 
chemokines 

non-specific chemokine 
receptor; erythrocyte 

receptor for Plasmodium 
vivax malaria 

38 -0.002 – 
2.13 < 0.0001 

IL10 interleukin 10 anti-inflammatory 
cytokine 31 -0.491 – 

0.108 < 0.0001 

IL1B interleukin 1-beta pro-inflammatory cytokine 33 -0.111 – 
0.104 0.7103 

IL6 interleukin 6 pro-inflammatory/anti-
inflammatory cytokine 13 -0.741 – 

0.001 0.0011 

LTA lymphotoxin alpha 

lymphocytic cytokine 
involved in the 

inflammatory and antiviral 
response 

36 -0.429 – 
0.463 0.5798 

TAP2 

transporter, ATP 
binding cassette, 

major 
histocompatibility 

complex, 2 

MHC cluster gene 
involved in antigen 

presentation to T cells 
15 -0.481 – 

0.402 0.4512 

TNF tumor necrosis factor 
pro-inflammatory 

cytokine, also involved in 
apoptosis 

8 -0.125 – 
0.039 0.0781 

1Range refers to the range of mean log2-transformed corrected ASGE values for each 
individual, across all replicate measurements. CCL5, CXCR4, FY, and IL10 reflect 

samples collected from 2005 – 2009; all other genes include samples from 2005 – 2008. 
2Uncorrected p-values for common ASGE were derived from 10000 random 

permutations of the data, as described in the Methods section. 
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All methods of measuring ASGE depend on the presence of one or more 

segregating SNP variants in the transcribed region of a target gene. Allele-specific assays 

are applied to individuals who are heterozygous for this variant, because by 

discriminating between the two alleles at the transcribed SNP, the two gene transcripts 

(and, by proxy, their linked cis-regulatory regions) can also be differentiated. We 

identified common transcribed SNPs segregating in the Amboseli baboon population by 

sequencing transcribed regions of the eleven candidate loci in an ascertainment panel of 

10 – 12 unrelated baboons. We focused specifically on identifying intermediate 

frequency SNPs. These SNPs are the most useful variants for constructing ASGE assays 

because multiple individuals are likely to be heterozygous at these sites. Thus, we 

designed ASGE assays only around transcribed SNPs with an estimated minor allele 

frequency of at least 10%. We identified suitable transcribed SNPs for all eleven loci, 

and designed one assay each for all genes except for FY, for which we designed two 

assays as reported in Tung et al. (2009). 

We then genotyped these SNPs using pyrosequencing (using the PyroMark Q96 

MD instrument and PyroGold reagents, Biotage) or direct sequencing (using an ABI 

3730xl sequencer and Big Dye Terminator reagents, version 3.1, Applied Biosystems) for 

all individuals sampled from 2005 – 2007. 1.05% of the genotypes are missing in this 

dataset due to failed genotyping or sequencing reactions. For those genes that suggested 

interesting patterns of allelic imbalance based on this subset of the overall sample set, 

we also genotyped and assayed individuals sampled in 2008 – 2009 (0.09% missing 

genotypes in this total set). At least 7 heterozygotes (range: 7 – 37 heterozygotes per 

gene, mean: 25.1) were assayed for each of the genes in this study (Table 4). 

All sequences were visually inspected for ascertainment of variable sites in the 

population and identification of heterozygous individuals using Sequencher 4.8 

(GeneCodes). Pyrosequencing genotypes were assigned by calculation of relative peak 
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heights at the variable site and/or by automated assignment using PyroMark MD 

software.  

3.2.3 ASGE measurements via pyrosequencing 

Allele-specific expression assays were conducted using pyrosequencing on a 

PyroMark Q96 MD instrument. Briefly, pyrosequencing is a genotyping/cycle sequencing 

approach that produces light emissions upon the successful addition of a 

complementary base to a sequencing template. When the template contains a 

heterozygous SNP, as in ASGE assays, the amount of light produced upon addition of 

one complement versus the alternative complement at that SNP reflects the relative 

prevalence of the two templates (e.g., Yan et al. 2002; Wittkopp et al. 2004). We 

conducted pyrosequencing-based ASGE assays for individuals heterozygous at the 

transcribed assay SNP for each candidate locus. For each gene-individual combination, 

we ran four replicates produced from four independent initial PCR reactions on each of 

two replicate plates. Thus, a total of eight measurements were obtained for each 

individual for each candidate gene. For IL6, greater technical variance in the assay led us 

to measure each individual twelve times (across three plates). Each measurement 

corresponds to the ratio of expression of one allele of the gene versus the alternative 

allele of the same gene. For example, if two alleles could be discriminated based on a 

C/T transcribed SNP, allele-specific differences in expression would be represented as 

the signal for the allele carrying the “C” variant divided by the signal for the allele 

carrying the “T” variant. 

PCR assays sometimes preferentially amplify one allele of a gene over the 

alternative allele. In order to control for this source of technical bias, we ran 

corresponding assays using genomic DNA extracted from the same individuals in 

parallel with the expression assays (as in Wittkopp et al. 2004; Tung et al. 2009). Two 
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independent replicates were run on each plate, for a total of four genomic DNA controls 

per individual per gene (six for IL6). Both alleles of a gene should be equally represented 

in genomic DNA; thus, any differences identified from the genomic controls can be used 

to generate a correction factor for technical bias equal to 1/b, where b represents the 

ratio measured in the genomic DNA. Except where noted, we analyzed ASGE by 

multiplying the average correction factor over the two genomic DNA controls per 

individual per gene in a plate with all parallel measurements of gene expression for the 

same individual-gene combination on the same plate. These corrected ratios were then 

log2-transformed for downstream analyses.  

3.2.4 Robustness of pyrosequencing-based ASGE results for 
samples collected in the field 

RNA is less stable than DNA, and RNA profiles have been known to change 

post-sampling, depending on the quality of storage conditions and the timeliness of 

follow-up analyses. ASGE measurements are less likely to be vulnerable to these 

problems than total gene expression measurements because they focus on the relative 

expression of the two alleles of a gene, not the total absolute expression of the gene. 

Additionally, comparisons are made within individuals, so both alleles are exposed to 

the same environmental conditions in vivo, during sampling, and during post-sampling 

transport. These qualities should make ASGE measurements well suited to studies for 

which sampling must be conducted under field conditions. To test this hypothesis, we 

investigated whether field sampling protocols compromise the quality of ASGE results 

through experimental validation.  

Specifically, we conducted a comparison of ASGE measurements for three of the 

genes (CCL5, CXCR4, and TAP2) in our gene set under three different storage conditions, 

ranging from ideal conditions to substandard conditions. The genes chosen for this 

analysis include a gene for which strong common ASGE was detected (CCL5), a gene for 
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which weak common ASGE was detected (CXCR4), and a gene for which no signature of 

common ASGE was detected (TAP2). This allowed us to assess whether sampling 

condition either exaggerates or reduces ASGE estimates for genes that show ASGE, or 

whether it can introduce false positives for genes that do not show ASGE.  

We darted 8 individuals in Amboseli in March 2009 and collected blood in 

PaxGene RNA tubes for later RNA extraction. We then shipped the blood samples via a 

half hour flight to Nairobi, Kenya, 20 – 24 hours after collection, the earliest transport 

time possible. Each sample was taken directly to the Institute of Primate Research (IPR), 

which maintains a molecular biology lab equipped for RNA extraction. At IPR, each 

sample was subdivided into three parts, so that the first subsample could be extracted 

at IPR, and the second and third subsamples could be transported to the United States 

following our normal protocols for comparison.  

Subsample set 1 reflected ideal conditions, in that the samples were never frozen 

and were extracted at the earliest possible time point, the day after samples were 

collected in the field. Indeed, waiting 24 hours post-sampling has been recommended for 

clinical samples collected in PaxGene tubes in order to improve cell lysis and increase 

overall RNA yield (Wang et al. 2004); our own experience with samples collected from 

captive animals is in agreement (unpublished data). 

Subsample set 2 followed our standard protocols, as outlined above. These 

samples were frozen in Nairobi, beginning approximately 24 hours after collection, until 

they could be hand-couriered to the United States on ice. They were then kept at 4° C 

for less than 3 days prior to RNA extraction. 

Subsample set 3 reflected poorer conditions than in our standard protocol, and 

also poorer conditions than recommended by the PaxGene tube manufacturers. These 

samples were frozen in Nairobi, hand-couriered to the US on ice, and then kept at 4° C 

for 10 full days prior to RNA extraction, twice the amount of time recommended by the 
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PaxGene manufacturers. By including this treatment in our validation experiment, we 

tested whether we could induce biased allele-specific gene expression measurements by 

using substandard RNA storage protocols. 

Six additional animals were darted and sampled in December 2008 or January 

2009 for other purposes. RNA samples in PaxGene tubes for these animals had been 

stored at -20º C in Nairobi. We also divided these samples in three parts (subsample set 

1: extracted at IPR; subsample set 2: extracted in the United States < 3 days after 

arrival; subsample set 3: extracted in the United States 10 days after arrival) and 

included them in a second tier of comparisons, after our analyses showed no significant 

differences in sample quality between these samples and those collected in March 2009. 

We genotyped the test subjects for the validation experiment at all three test loci. 

We then evaluated ASGE for assay SNP heterozygotes for these genes. These assays 

followed our normal protocols, except that in each case, each individual was 

represented by three separate cDNA samples: one extracted in subsample set 1 (ideal 

conditions), one extracted in subsample set 2 (standard conditions), and one extracted 

in subsample set 3 (poor conditions). We repeated each set of assays across two 

independent plates. We then used general linear mixed models to model the log2-

transformed value for ASGE, treating sampling condition as a fixed effect and plate 

identity and individual as random effects. Models were fit using the lmer function in the 

lme4 package in R; p-values were assigned using the pvals.fnc function in the languagesR 

package in R (Team 2007). If measurements of allele-specific expression were robust to 

field sampling conditions, then we expected to see no significant effect of sampling 

condition within this model. Because measurements for all individuals at CCL5 

suggested ASGE, we also assessed the correlation between CCL5 measurements for the 

same individuals across the three conditions.  
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3.2.5 Assessment of allele-specific gene expression for each locus 

In order to identify functional cis-regulatory variants in the Amboseli population, 

we focused on genes that commonly exhibited ASGE within our sample (i.e., those for 

which ASGE occurred in multiple individuals, not in one or a few individuals; rare cases 

of ASGE are more likely to reflect rare genetic variants that would be difficult to 

associate with cis-regulatory genetic variation). We assessed common ASGE by 

comparing the measurements made on cDNA for a given gene to the control genomic 

DNA measurements for the same gene, using raw log2-transformed values for both sets 

of measurements.  

We evaluated the significance of common ASGE for each gene by randomly 

permuting the labels (cDNA or gDNA) over these values. Because more cDNA 

measurements were made for each individual than gDNA measurements, we first 

randomly subsampled the number of cDNA measurements for each individual to equal 

the number of gDNA measurements. We repeated this subsampling routine 10,000 times. 

We then calculated a p-value for each subsampled data set using a two-tailed 

nonparametric Wilcoxon summed ranks test, which tested whether the cDNA values 

were significantly different than the values for the gDNA set. We took the mean of this 

set of p-values to be the nominal p-value for the gene. This value was then compared to 

a distribution of p-values derived from random permutations, which provided a null 

distribution on p-values for each gene.  

3.2.6 Sequencing of gene regulatory regions 

In order to identify genetic variants associated with ASGE, we focused on the 

four genes that exhibited the strongest evidence for common allelic imbalance. We 

sequenced 0.65 – 0.82 kilobases upstream of the transcription start site for the set of 

individuals assayed for each of these genes. For IL10, we also sequenced 0.72 kilobases 
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in the 3’ untranslated region and 3’ flanking region because our analyses suggested that 

the upstream sequence did not explain observed ASGE patterns and because the assay 

SNP used for this gene is located in its last exon (which also contains the 3’ UTR). These 

regions were identified based on close sequence similarity to the annotated 

promoter/cis-regulatory region in humans and macaques. Variable sites were identified 

by visual examination of the resulting sequence traces, and genotype assignments were 

produced for each individual-gene combination based on the sequence data.  

3.2.7 Association between ASGE data and regulatory variants 

ASGE is caused by cis-regulatory genetic variants that functionally differ in their 

abilities to drive gene expression. Because ASGE reflects the ratio of gene expression 

between alleles within individuals, only individuals that are heterozygous at these 

variants will therefore exhibit significant ASGE. This leads to the expectation that 

heterozygotes at a functional cis-regulatory variant will exhibit more extreme values of 

ASGE than homozygotes for the same variant. We used this expectation to test for an 

association between the cis-regulatory variants detected in the sequenced regulatory 

regions of the four commonly imbalanced genes, and the pyrosequencing data. For these 

genes, we expanded the original dataset (individuals darted in 2005 – 2007) to include 

an additional set of 32 individuals darted in 2008 – 2009, as indicated above. 

We used general linear mixed models to analyze variation in allelic imbalance in 

all assayed individuals. Genotypes were coded as heterozygous or homozygous at 

known cis-regulatory variable sites (excluding singletons in the sample, which are too 

rare to account for common ASGE and also impossible to analyze in this context) and 

treated as fixed effects within the model. For perfectly linked cis-regulatory sites, we 

analyzed genotype at only one representative site. Year of sampling was treated as a 

random effect. Parameter estimates for all model effects were conducted using the lme4 
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package in R 2.8.1 (Team 2007). For two genes, CXCR4 and IL10, the distribution of 

ASGE included a large number of both negative and positive values (i.e., imbalance was 

detected at the assay SNP in both directions; Table 4). This effect may result from 

incomplete linkage between an assay SNP and a causal cis-regulatory SNP, leading to a 

case in which heterozygotes at the regulatory site exhibit both more negative and more 

positive values of ASGE than homozygotes. To avoid misidentifying the genes that 

exhibited increased variance as genes for which cis-regulatory genotype has no effect, we 

therefore used “unsigned” ASGE values (i.e., the absolute value of the log2-transformed 

ASGE values; see for example Babbitt et al. 2009) for these two genes. 

We assigned p-values for each model effect using random permutations of the 

allelic imbalance measurements for a given individual against individual identity (as in 

Tung et al. 2009). We then used a backwards model selection procedure to sequentially 

eliminate the model effect with the highest p-value, until all p-values were below 0.10. 

For each gene, several individuals in the data set were close relatives; to ensure that 

genetic correlations between these individuals did not produce a false signal of 

association, we also analyzed the data after eliminating individuals in the data set so 

that no close relatives were included. In each case, eliminating different sets of 

individuals could produce this outcome; however, in no case did elimination of close 

relatives qualitatively change the results. 

3.2.8 GEI effects on gene expression 

A significant correlation between ASGE and environmental effects suggests the 

presence of a gene-environment interaction in which the trans-acting environment 

modifies the effect of the cis-regulatory variant(s) (de Meaux et al. 2005; von Korff et al. 

2009). Understanding GEIs that influence evolution in the wild may prove to be a 

particularly important contribution of evolutionary genetic work on natural populations. 
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To explore this possibility, we tested for the presence of GEIs involving cis-regulatory 

variation in the two genes for which significant common ASGE was detected and could 

be associated with a known cis-regulatory genotype. We focused on an environmental 

effect of known importance in the Amboseli population: the social rank of an 

individual’s mother, at the time of that individual’s conception (i.e., maternal dominance 

rank), which is known to exert long-term effects on maturation timing and stress 

hormone profiles in this population (Alberts and Altmann 1995; Charpentier et al. 2008; 

Onyango et al. 2008).  

To investigate the possibility of GEIs that influence ASGE, we analyzed the 

residuals from the previous model of ASGE on genotype in the context of a general linear 

model. We stratified the data by genotypic class at the associated SNP (heterozygous or 

homozygous) based on the expectation that, if an environmental effect modifies the 

effect of a functional cis-regulatory variant, a relationship between ASGE and the 

environment should be observed in heterozygotes for this variant, but not in 

homozygotes. This expectation arises because an environmental interaction with cis-

regulatory variation should not be observable via ASGE measurements if the two alleles 

for an individual are not functionally differentiated (i.e., homozygous).  

P-values for this analysis were assigned by running the same analysis after 

permuting the response variable (residuals of a model taking into account year of 

sampling and the genotype effect) with respect to the explanatory environmental 

variable. A null distribution of effects was obtained from 1000 random permutations, 

and the probability of observing an effect size greater than the estimated effect from the 

unpermuted data was taken as the p-value for the test (equivalent to a two-tailed test).  
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3.3 Results 

3.3.1 Allele-specific gene expression measurements are robust to 
field sampling conditions 

We were able to analyze variation in ASGE measurements in three individuals 

darted in the main validation set for CCL5 and CXCR4, and two individuals darted in 

the main validation set for TAP2. Sampling condition was not a significant effect within 

the model for any of the three genes (CCL5: n = 9 sets of individual by treatment 

measurements, p = 0.837; CXCR4: n = 9, p = 0.677; TAP2: n = 6, p = 0.194); nor was 

sampling condition significant when including measurements made for the five 

individuals darted in January 2009, which increased the sample size for CCL5 to 7 

baboons and for CXCR4 to 6 baboons (CCL5: n = 21 sets of individual by treatment 

measurements, p = 0.501; CXCR4: n = 18, p = 0.941). Additionally, for CCL5, the 

correlation across sampling conditions was high and significant in all three pairwise 

comparisons (Table 5). A summary of the results for all three genes is depicted in Figure 

6. 

Table 5: Correlations between CCL5 measurements obtained under different 
sample storage conditions. Values of r are given for each cell with associated p-

values from 1000 random permutations in parentheses. 

 Subsample 1 Subsample 2 Subsample 3 
Subsample 1 

* 0.986 (0.001) 0.998 (0.007) 

Subsample 2 
* * 0.993 (0.007) 

Subsample 3 
* * * 
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Figure 6: ASGE measurements are consistent across sample handling 
treatments for (a) CCL5 (n = 7 individuals), a gene that exhibits common, large-scale 

ASGE; (b) CXCR4 (n = 6 individuals), a gene that exhibits significant ASGE at 
smaller scales; and (c) TAP2 (n = 2 individuals), for which we detected no significant 
common ASGE. Each line represents a sample from a single individual, subdivided 

into the three subsample sets, where Set 1 refers to the subsample set treated 
under ideal conditions; Set 2 refers to the subsample set treated under our standard 

protocol; and Set 3 refers to the subsample set treated under substandard 
conditions, as described in the Methods. Points on each line correspond to the mean 

log2-transformed ASGE value for that subsample for that individual. 
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3.3.2 Allele-specific gene expression is common in the Amboseli 
baboons 

Of the eleven loci included in this study, five (45.4%) exhibited significant 

evidence for common allele-specific gene expression in the Amboseli baboon population; 

four of the five (36.4%) remained significant at p < 0.01 following Bonferroni correction 

for multiple testing (CCL5, CXCR4, FY, IL10; Table 4, Figure 7). 

 

Figure 7: Example ASGE ratios for cDNA and genomic DNA (gDNA) for six 
genes. a) CCL5; b) FY; c) CXCR4; and d) IL10 illustrate significant differences in 

log2-transformed ASGE ratios between cDNA samples and gDNA samples 
(indicated by the red asterisk); whereas, for comparison, e) CCR5 and f) LTA 

illustrate cases of statistically indistinguishable cDNA and gDNA measurements. 

Among the four genes with the greatest support for ASGE, we detected a range 

of effect sizes. For example, cDNA measurements almost never overlapped with 

genomic DNA measurements for any individual for the gene CCL5 (Figure 7). The 
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average corrected, log2-transformed ASGE measurement for an individual assayed at 

CCL5 was 1.38 (range: 0.201 – 3.32), corresponding to a foldchange difference in gene 

expression for the higher expressing allele of 2.60. In contrast, the average corrected 

ASGE measurement for an individual assayed at CXCR4 was 0.112 (range: -0.420 – 

0.418; 1.08 foldchange difference between alleles).  

3.3.3 Associations between ASGE measurements and cis-regulatory 
genetic variation 

Of the four genes we investigated further (CCL5, CXCR4, IL10, and FY), two 

genes exhibited an association between heterozygosity/homozygosity at a putative cis-

regulatory genetic variant and magnitude of ASGE, such that heterozygotes exhibited 

more extreme ASGE than homozygotes (Figure 8). As in the case of ASGE itself, we 

observed considerable variation in effect sizes for these loci. For CCL5, genotype at the 

associated variant explains 66.5% of the variance in the overall set of ASGE 

measurements, after taking into account the effects of year of sampling (p < 0.0001, n = 

14 heterozygotes and 22 homozygotes). Additionally, we observed no overlap between 

the range of ASGE for heterozygotes at this site (range of mean per individual log2-

transformed ratios: 1.77 – 3.32) and the range of ASGE for homozygotes at this site 

(range of mean per individual log2-transformed ratios: 0.201 – 1.52). In contrast, the 

variant associated with ASGE for FY explained a more modest proportion of the overall 

ASGE variance, 22% (p = 0.0002, n = 18 heterozygotes and 20 homozygotes), and the 

ranges for ASGE measurements overlapped between heterozygotes and homozygotes 

(heterozygotes: 0.203 – 2.131; homozygotes: -0.002 – 1.46). In both cases, the SNPs we 

identified were the closest SNPs in each set to the transcription start site. Also in both 

cases, our results suggest that additional functional variants and/or cis-by-trans 

regulatory interactions also influence expression of these genes. In particular, for CCL5, 

even the homozygotes for the associated cis-regulatory variant exhibited strong signals of 
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ASGE, although the magnitude of allelic imbalance for these animals was attenuated 

relative to heterozygotes. 

 

Figure 8: Heterozygotes at ASGE-associated SNPs exhibit more extreme 
levels of ASGE than homozygotes at a) CCL5 (p < 0.0001) and b) FY (p = 0.0002). 

We were unable to identify an association between SNP genotypes in the 

immediate cis-regulatory region and ASGE levels at CXCR4 and IL10. Both of these genes 

exhibited more modest levels of ASGE than CCL5 and FY (Table 4) and were 

characterized by variation in ASGE that encompassed both positive log2-transformed 

ratios and negative log2-transformed ratios, probably reducing the power to detect an 

association. Additionally, we surveyed only a small region of sequence in which cis-

regulatory variants may occur. For IL10, we analyzed both variation upstream of the 

gene and downstream of the end of the protein-coding region. We did identify a SNP in 

the 3’ untranslated region of this gene with weak evidence of a possible role (p = 0.08), 

but only two heterozygotes at this SNP were contained within our data set, eliminating 

the possibility of a well-powered analysis and strongly suggesting that this variant, even 

if it is indicative of a real effect, cannot account for the variation observed in the full 

sample. 
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3.3.4 GEI analysis 

We identified an effect of maternal rank at the time of an individual’s conception 

on gene expression of CCL5, such that high maternal rank is correlated with more 

pronounced ASGE in individuals that are heterozygous for the putative functional cis-

regulatory site, after controlling for the direct effect of genotype on ASGE and year of 

sampling (p < 0.001; Figure 9). No such effect was detected for homozygotes at the cis-

regulatory site (p = 0.464), as expected if maternal rank interacts with genetic variation 

captured by this site. Because maternal rank can sometimes predict the adult rank of 

individuals later in life, we also checked whether the maternal rank effect we identified 

was a proxy for the rank of the individuals themselves at time of sampling. Indeed, 

maternal rank was significantly correlated with rank at time of sampling for individuals 

assayed at CCL5 (Spearman’s rho = 0.492, p = 0.008, n = 28 individuals because the 

ranks at time of sampling for individuals that are no longer members of the five 

intensively observed study groups are not known). However, we found no evidence that 

an individual’s own rank at sampling influences ASGE in CCL5 cis-regulatory variant 

heterozygotes (p = 0.918). Together, these results suggest that maternal dominance rank 

at the time of an individual’s conception exerts a long-term effect on CCL5 expression, 

effectively modifying the functional impact of cis-regulatory genetic variation. In 

contrast, we found no evidence for GEI involving maternal rank on FY expression (p = 

0.766). 
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Figure 9: Maternal rank at conception influences allelic imbalance in 
heterozygotes at the CCL5 putative functional cis-regulatory site (p < 0.001), but not 

homozygotes (p = 0.464), after taking into account year of sampling and the direct 
effect of the ASGE-associated SNP. High ranking individuals have low rank 

numbers (rank 1 is highest); low ranking individuals have high rank numbers.  

3.4 Discussion 

3.4.1 ASGE in the Amboseli baboon population 

The presence of common ASGE was well supported for four of the eleven genes 

included in this study. Although it is difficult to compare rates of ASGE across studies, 

given different kinds and numbers of samples, different measurement platforms, and 

different statistical methods, this frequency falls well within the rather broad range of 

previous estimates for different taxa given in the literature (from 5% - 70% in humans, 

mice, Drosophila, and Arabidopsis: Yan et al. 2002; Pant et al. 2006; Milani et al. 2007; 
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Campbell et al. 2008; Gruber and Long 2008; Serre et al. 2008; Zhang and Borevitz 2009; 

Heap et al. 2010).  

The four genes that exhibited evidence for common ASGE varied in both the 

range of ASGE detected across individuals and in our ability to map them onto genetic 

variants. Notably, the two genes that we were able to link to cis-regulatory genetic 

variants were those that exhibited the greatest magnitude of ASGE, and the most 

consistent direction of imbalance. These results imply, perhaps unsurprisingly, that 

genes that exhibit more pronounced functional differentiation between alleles and tighter 

linkage between functional cis-regulatory variation and the transcribed region of a gene 

will be the most tractable subjects for ASGE studies in natural populations. 

Additionally, our results suggest that prior functional studies in model and/or 

laboratory organisms can inform the choice of candidate genes in natural populations, 

and may in fact lend themselves to work on parallel genetic evolution across species, as 

exemplified by work incorporating ASGE measurements species in Drosophila (Wittkopp 

et al. 2009), mice (Linnen et al. 2009), and primates (Tung et al. 2009). 

Our failure to associate ASGE with cis-regulatory variation at two loci that 

exhibit common allelic imbalance, CXCR4 and IL10, highlights the fact that, in some 

cases, associating ASGE with putative causal regulatory variants will be difficult. This is 

particularly true for species like baboons, for which relatively little is known about 

segregating genetic variation. Indeed, in rare cases, cis-regulatory variants actually occur 

many kilobases away from the transcribed sequence (reviewed in Wray et al. 2003), 

outside the scope of surveys of sequence close to the gene. Thus, even if a distant causal 

variant is genotyped, it is much less likely to be in strong linkage disequilibrium with a 

transcribed assay SNP. Either or both of these conditions may have held in the cases of 

CXCR4 and IL10. However, recent evidence from humans suggests that most functional 

cis-regulatory variants probably do lie close to either the transcription start site or the 
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transcription end site (Veyrieras et al. 2008). Given that we surveyed only a small 

amount of cis-regulatory sequence for the genes in this study, such findings are promising 

for future studies that adopt a similar approach but incorporate more detailed genotype 

data. In particular, resequencing tens to hundreds of kilobases of contiguous sequence 

will become increasingly feasible in the near future, with the development of improved 

sequence capture and high throughput sequencing methods. 

Indeed, an expanded search space for functional cis-regulatory variants would 

likely also benefit genes like CCL5 and FY. Although we identified significant 

associations between ASGE at these genes and cis-regulatory variation, in both cases 

substantial variation in ASGE measurements remained unexplained. In the case of CCL5, 

all homozygotes at the associated cis-regulatory SNP also exhibited strong evidence of 

allelic imbalance, although it was reduced relative to heterozygotes at this site. In 

agreement with results from humans (Tao et al. 2006) and Drosophila (McGregor et al. 

2007; Gruber and Long 2008), then, our findings suggest that ASGE is a complex trait 

influenced by multiple genetic variants, and that cis-regulatory interactions with trans-

acting environmental or regulatory genetic effects may also play a role. More extensive 

characterization of additional regulatory variants around these genes would aid in 

identifying some of these effects.  

3.4.2 ASGE measurements and genetic studies of natural populations 

Our results lead us to conclude that measuring allele-specific gene expression, 

whether via pyrosequencing or other methods (e.g., Heap et al. 2010), is a practical 

method for identifying functional cis-regulatory genetic variation in nonmodel systems, 

including in organisms sampled from natural populations. One of the major advantages 

of this method is that allele-specific measurements appear to be largely robust to 

sampling and transport conditions in the field. Even samples that were pushed beyond 
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the boundaries of our normal protocol yielded results very similar to samples from the 

same individuals that were maintained under ideal conditions. Additionally, 

identification of genes for which ASGE appears to be common sets up a natural strategy 

for pinpointing the underlying causal variants. First, because ASGE implies a cis-acting 

mechanism, the search space for such variants is constrained to regions that are likely to 

be linked to the gene in question (i.e., sequence in or close to the transcribed sequence 

used in the assay). Second, heterozygotes for a functional variant are expected to exhibit 

a greater magnitude of ASGE than homozygotes, providing a statistical framework in 

which to test the correlation between genotype and expression. Third, independent, well 

established tests for functional regulatory variation that influences gene expression, 

including electrophoretic mobility shift assays and in vitro cell culture assays, can be 

applied for further validation if good candidates are identified (e.g., Kurreeman et al. 

2004; Tao et al. 2006; Zhu et al. 2006; Babbitt et al. 2009; Tung et al. 2009). Finally, 

ASGE measurements can be readily scaled from one gene to dozens of genes (and 

possibly thousands of genes, if using next-generation high-throughput sequencing 

methods: dealing with such data will likely require a sequenced genome, however 

(Degner et al. 2009). While this scale is modest relative to methods for high-throughput 

gene expression, it means that studies that utilize ASGE do not require initial high cost 

investments that may be challenging for field investigators.  

 As for all methods, however, using ASGE-based approaches will have several 

limitations. Most obviously, ASGE measurements are specifically relevant to regulatory 

variation, not structural variation. For traits for which genetic variation in protein-coding 

sequence makes the primary contribution to phenotypic variation (for example, in some 

cases of pelage coloration: Nachman et al. 2003; Hoekstra et al. 2005), ASGE assays will 

have little utility. An additional major challenge for studies in the wild is that ASGE 

measurements require RNA samples. While immense progress has been made in 
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noninvasive sampling of DNA, collecting RNA requires live tissue samples, which can be 

difficult to gather for some species. However, because the sample sizes required for 

measuring ASGE are modest, opportunistic sampling of tissues from recently dead 

individuals may sometimes be able to address this issue. For difficult systems, studying 

functional regulatory variation in tissues that are easier to collect, like skin and blood, 

will represent the most feasible approaches for the foreseeable future.  

 Where applicable, though, ASGE assays have potential to be of value in several 

regards for studies of wild populations. For example, ASGE-based surveys of many 

genes can be used to assess levels of functional genetic diversity within populations, the 

raw material for evolution. The four genes in this study that exhibited the best evidence 

for common ASGE in the Amboseli population (CCL5, CXCR4, FY, and IL10), for 

example, are linked by their functional roles in the primate immune system. All four 

genes are involved in cytokine or chemokine signaling and play a part in mediating the 

inflammatory response. Controlling inflammation is a crucial component of the immune 

response, and likely important for wild baboons, which are subject to a wide array of 

both pathogen infections and physical insults; we have noted enlarged and inflamed 

lymph nodes on many of the baboons sampled in this population during darting efforts 

(unpublished data). Functional differences that vary the expression levels of these genes 

may therefore prove important in fine-tuning this response, and suggest that substantial 

genetic variation is segregating in the Amboseli baboons that could impact phenotypic 

evolution in this population.  

 Indeed, for some genes, evidence from other types of analyses may indicate a 

relationship between genetic variation at those loci and organism-level traits of interest. 

In these cases, ASGE can be used to test whether the basis for this link is functional cis-

regulatory variation, suggesting that gene expression variation is the mechanistic link 

between genotype and phenotype. This approach has already been applied to work on 
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morphological trait variation within and between Drosophila species (Wittkopp et al. 

2009) and between subspecies of deer mice (Linnen et al. 2009), both of which used 

ASGE measurements to follow up a possible link between color patterning and 

candidate genes suggested by other data. In the case of this study, several of the genes 

for which we identified common ASGE in the baboons have also been associated with 

organism-level susceptibility to pathogens in humans, including possible links with 

HIV/AIDS (Liu et al. 1999) and with malaria (Tournamille et al. 1995). This kind of 

prior information may inform downstream strategies for exploring whether functional 

cis-regulatory variation in these genes also influences similar traits in nonhuman primates 

(e.g., Tung et al. 2009). 

 Finally, ASGE analyses can be used to help reveal how cis-regulatory effects can 

be modified by environmental variation, a phenomenon that may play an important role 

in shaping the genetic architecture of complex traits in natural populations (Qvarnstrom 

1999; Wilson et al. 2006). This approach is likely to be most informative where 

environmental effects that play an important role in the population of interest have 

already been identified. Our results for CCL5 provide an example of such a case: we 

found evidence that the dominance rank of an individual’s mother, at the time of that 

individual’s conception, appears to exert long-term effects on the magnitude of ASGE 

for this gene.  Long-term effects of maternal dominance rank on phenotypic variation 

have already been documented for this population (Onyango et al. 2008), and early life 

effects involving social status and access to resources are well known in humans and 

other animals (Ravelli et al. 1976; Altmann 1991; Lindstrom 1999; Qvarnstrom 1999; 

Godfrey and Barker 2000; Reifsnyder et al. 2000; Barker 2002; Barker et al. 2002; Weaver 

et al. 2004; Hoffjan et al. 2005; Meaney and Szyf 2005; St Clair et al. 2005). To our 

knowledge, however, these data represent the first evidence of a GEI involving an early 

life effect in wild primates. With respect to this specific case, they suggest the possibility 
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that early social environment in baboons may help shape the baboon immune system 

over the long-term, such that the same environmental exposure produces different 

consequences for different individuals. This result echoes findings in humans that early 

life environment, including exposure to other children, influences the risk of asthma and 

allergy in a context-dependent manner (Hoffjan et al. 2005; Ober and Thompson 2005); 

indeed, CCL5 attracts and stimulates histamine release in basophils, an important 

component of the pro-inflammatory allergic response (Laing and Secombes 2004). With 

respect to the broader phenomenon of GEIs, our results also suggest a strategy for 

further work aimed at revealing how common such effects may be, and whether GEIs are 

enriched for specific types of environmental exposures or for particular classes of genes. 

For such studies, the availability of fine-grained environmental data from field studies 

will be invaluable.  

3.5 Conclusions 

Natural populations have long served as important models for behavior, 

demography, evolution, and speciation. Recently, interest has been building in bringing 

complementary genetic perspectives to bear on the same systems. Indeed, the 

availability of nongenetic data for these systems can provide important insight into the 

evolutionary significance of genetic analyses. Here, we explore one method of integrating 

functional genetic work into research on natural populations by extending allele-specific 

gene expression studies from the laboratory to the field. In agreement with studies in 

humans, mice, and other model systems, we found that functional cis-regulatory 

variation is common in wild baboons, but that the degree of ASGE detectable for 

different genes and the power to detect associated genetic variants varies across loci. 

Our results also demonstrate that measuring allele-specific gene expression is a viable 

method for identifying functional cis-regulatory variation and exploring gene-
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environment interactions in natural populations, including those like the Amboseli 

baboons for which genetic manipulations and controlled breeding are impossible. 

Importantly, ASGE measurements appear to be largely robust to RNA sampling in the 

field, which makes this strategy generalizable to a wide variety of systems and types of 

studies. Because cis-regulatory variants can make important contributions to 

downstream organism-level traits, measuring ASGE may therefore open a window onto 

further functional genetic studies in wild populations.  
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4. Genomic features that predict allelic imbalance in 
humans suggest patterns of constraint on gene 
expression variation1 

4.1 Background 

A growing number of studies illustrate that variation in non-coding regions of the 

genome has important consequences for organismal phenotypic variation, including 

traits of adaptive importance (Boffelli et al. 2004; Wray 2007). As first suggested over 

thirty years ago (King and Wilson 1975), many of these relationships are mediated by 

effects on gene regulation. Hence, many studies now focus on regulatory DNA and its 

proximate molecular phenotype, gene expression, as a strategy for identifying relevant 

variation in organism-level morphological, physiological, and behavioral traits. Variation 

in gene expression is predictive of phenotypic traits both globally, as demonstrated by 

genome-wide expression profiling studies (Golub et al. 1999; West et al. 2001; Whitfield 

et al. 2003), and on an individual gene basis, as shown by studies connecting cis-

regulatory genetic variation in specific genes to variation in adaptively important traits 

(Tournamille et al. 1995; Shapiro et al. 2004; Colosimo et al. 2005; Gompel et al. 2005; 

Prud'homme et al. 2006; Tishkoff et al. 2007; Jeong et al. 2008). 

While identification of either genetic variation or gene expression variation alone 

is now straightforward, establishing a causal relationship between them remains 

challenging. For example, genetic effects on a gene’s expression may be located in cis to 

the gene (such that they influence only the linked allele of the gene, in a nearby region of 

the same physical chromosome) or in trans to the gene (such that they influence both 

alleles of the gene, regardless of linkage), a distinction that has both practical and 

                                                        
1 The contents of this chapter have been previously published as: J Tung, O Fedrigo, R Haygood, S Mukherjee, 
and GA Wray (2009). Genomic features that predict allelic imbalance in humans suggest patterns of constraint 
on gene expression variation. Molecular Biology & Evolution 26: 2047-2059. 
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biological implications. From a practical perspective, the distinction between cis and 

trans is important for establishing the likely physical location of the causal variant: cis 

acting variants tend to lie close to the gene of interest, whereas trans acting effects can 

reside almost anywhere in the genome (e.g., Morley et al. 2004; Cheung et al. 2005). From 

a biological perspective, the functional and evolutionary significance of cis and trans 

effects may differ. For instance, recent work has suggested that cis-acting effects tend to 

act more additively than trans-acting effects (Lemos et al. 2008); that cis-effects tend to 

be more pronounced in explaining interspecific differences than intraspecific differences, 

while the reverse may be true for trans effects (Wittkopp et al. 2004; Wittkopp et al. 

2008); and that cis-effects may have more restricted consequences than trans-effects, 

thus mitigating adaptive conflicts arising from pleiotropy across tissues (Blekhman et al. 

2008; Campbell et al. 2008), splice variants (Campbell et al. 2008), and/or 

environmental contexts (de Meaux et al. 2005; Zhu et al. 2006).  

One method of discriminating between cis-acting effects and trans-acting effects 

involves measuring gene expression in an allele-specific manner, generally known as 

assaying allele-specific gene expression or “allelic imbalance” (Cowles et al. 2002; Yan et 

al. 2002; Bray et al. 2003; Lo et al. 2003; Pastinen and Hudson 2004; Wittkopp et al. 

2004; de Meaux et al. 2005; de Meaux et al. 2006; Pant et al. 2006; Milani et al. 2007; 

Campbell et al. 2008; Cheung et al. 2008; Gruber and Long 2008; Serre et al. 2008; 

Wittkopp et al. 2008; Tung et al. 2009). Allelic imbalance describes the relative ability of 

the two alleles of a cis-regulatory region to drive expression of a linked gene within 

individuals: a gene is “imbalanced” when one allele drives significantly higher expression 

than the alternative allele. Because both alleles experience identical trans-acting genetic 

and environmental backgrounds, deviations from the null expectation (equal 

contribution of both alleles to total expression) unambiguously identify cis-acting genetic 
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effects (although cis x trans interaction effects can also be detected: Wittkopp et al. 2004; 

Wittkopp et al. 2008).  

Allelic imbalance has been well documented in many systems, including human, 

mouse, and Drosophila (Cowles et al. 2002; Yan et al. 2002; Wittkopp et al. 2004; 

Campbell et al. 2008; Gruber and Long 2008). However, studies that have evaluated 

allelic imbalance in large, population-based sets of individuals suggest that common 

allelic imbalance, as opposed to imbalance that sporadically occurs in one or only a few 

individuals, affects only about 10 - 20% of expressed genes (Milani et al. 2007; Serre et 

al. 2008; Verlaan et al. 2009). In other words, genes that harbor functional cis-regulatory 

variation common enough to produce allelic imbalance in multiple individuals in a 

population (or that harbor many distinct functional cis-regulatory variants) are the 

minority, at least in humans. Given that surveying allelic imbalance in a large number of 

genes de novo is cost- or sample-prohibitive for many populations, identification of 

patterns that predict which genes are likely to be commonly imbalanced could therefore 

serve as a useful tool. Such patterns might also shed light on the molecular basis for cis-

regulatory variation by identifying what types of genomic characteristics co-segregate 

with common imbalance, and what evolutionary processes produce these characteristics. 

Towards that end, we applied a machine learning approach, the support vector 

machine (SVM) (Cortes and Vapnik 1995), to fit a predictive model for data generated 

in a published study of allelic imbalance in humans (Serre et al. 2008). Serre and 

colleagues (2008) validated a novel, high-throughput method of assaying allelic 

imbalance that produced measurements for several hundred genes, in one of the most 

comprehensive studies of allelic imbalance to date. Because the original study subjects 

were members of the HapMap CEU analysis panel, we were able to combine 

polymorphism data with human genome sequence data and with divergence data from 

human-chimpanzee comparisons to fit the model. We found that a signal of common 
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allelic imbalance can be extracted from these data, and that this signal predicts common 

imbalance with a modest, but potentially useful, level of accuracy. Further, our results 

were consistent when applied to a second dataset of imbalanced genes in humans 

identified using different methods (Cheung et al. 2008), suggesting that the model 

captures aspects of some broader biological phenomena. Hence, we explored the 

biological basis for the predictive ability of our model by investigating the sources of 

variance in the main component that contributes to the model’s predictive accuracy. We 

found a strong explanatory effect of gene density in this analysis, suggesting that genes 

that reside in gene-dense regions are less likely to exhibit allelic imbalance than genes in 

less dense regions of the genome. Our results suggest that the important features we 

identified are proxies for evolutionary constraint, such that genes that exhibit common 

imbalance are significantly more likely to evolve under relaxed selective constraint than 

genes that do not exhibit imbalance.  

4.2 Materials and methods 

4.2.1 Allelic imbalance training set 

We stratified genes into one of two mutually exclusive classes based on the 

dataset of Serre et al. (2008): genes that exhibited common allelic imbalance (the ‘AI’ 

class) and genes that never exhibited allelic imbalance (the ‘non-AI’ class). We chose to 

use the data presented in Serre et al. (2008) rather than other published surveys of 

imbalance for three reasons. First, this study surveyed allelic imbalance in a large number 

of genes (n = 643 that exhibited expression levels above background noise). Second, a 

relatively large number of individuals (n = 83) were included in the study, meaning that 

the authors were able to impose a more stringent cut-off criterion: for any given gene in 

the final dataset, allelic imbalance measurements were made on multiple heterozygotes 

(at least three individuals). Because this sampling scheme provided an actual 
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distribution of allelic imbalance for each gene, we were therefore able to distinguish 

commonly imbalanced genes from those that exhibit imbalance as a result of a rare 

mutation. We defined AI genes following the methods of the authors: these genes were 

characterized by high mean allelic imbalance across individuals or higher variance in 

imbalance measurements than under null expectations. Non-AI genes included those loci 

for which the mean imbalance across individuals was exactly 0 (equal expression of 

both alleles), and for which the variance across individuals was not significantly greater 

than expected by chance. Finally, the subjects in the Serre et al. (2008) study were 

members of the CEPH pedigrees included in the HapMap CEU panel, allowing us to 

include polymorphism-based features in the predictive models we developed. Our initial 

focus on the Serre et al. (2008) dataset also allowed us to conduct further validation of 

our model using data from a different published dataset, as described below. 

We restricted our analysis to autosomal genes in order to avoid the confounding 

effects of X inactivation. In order to maintain consistency in our definition of coding 

regions, flanking regions, and exon/intron boundaries, we further restricted the dataset 

to those genes that have a current consensus annotation curated by the Consensus 

CoDing region Project (CCDS) for Build 36.3 of the human genome 

(http://www.ncbi.nlm.nih.gov/projects/CCDS/). For genes with multiple entries in the 

CCDS database, we always chose the annotation that maximized the size (end base 

pair – start base pair) of the gene in question. After filtering for autosomal CCDS-

curated genes, our final training set included 103 AI genes (16% of the original 643 gene 

dataset) and 184 non-AI genes. We extracted genome sequence data for each gene from 

human genome build 36 (hsap18: http://genome.ucsc.edu/, Kent et al. 2002), based on 

the CCDS annotations for exon-intron boundaries and coding region start and stop 

sites. 
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4.2.2 Feature extraction 

We modeled allelic imbalance using three sets of features: genome sequence, 

polymorphism data for the CEPH samples, and divergence data based on differences 

between the human genome and the chimpanzee genome. All feature extraction was 

handled using publicly available software appropriate to the different types of features, 

and/or custom Ruby code. The full list of features is provided in the supplementary 

materials for Tung et al. 2009. 

The sequence features set included data on the presence, distribution, and 

abundance of four feature subsets: (1) repeat families; (2) 5-mer sequence motifs; (3) 

CpG islands; and (4) gene composition (i.e., exon/intron content). Except where noted 

below, or where not applicable, features were extracted for several different partitions 

of sequence around the gene: the annotated conserved coding sequence (from start of 

translation to end of translation), the 2 kb flanking regions, the 5 kb flanking regions, 

and the 10 kb flanking regions (see Supplementary Materials Table S2 for Tung et al. 

2009). Repeat features were identified using RepeatMasker v 3.2.0 (Smit et al. 1996-

2004). Five-mer sequence motifs and CpG features were identified using the compseq 

and newcpgreport programs, respectively, in the EMBOSS v 5.0.0 software package 

(Rice et al. 2000). Due to the large number of possible five-mers, we restricted the 

sequence feature set for the full model to five-mers in the flanking regions of the gene (5 

kb upstream and downstream of the coding region) based on preliminary analyses that 

suggested that five-mers in the coding region contained relatively little information about 

allelic imbalance. Number and proportion of exon content for gene coding regions were 

extracted directly from the genome sequence data and the CCDS annotations for each 

gene. 
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Polymorphism features were identified using publicly available data on the 

CEU/CEPH samples for HapMap release 18 (http://www.hapmap.org). These 

features included data on the abundance, distribution, and proportion of different types 

of polymorphisms (i.e., all six possible mutations, transitions/transversions), and a 

dn/ds-like calculation of the relative number of nonsynonymous changes to synonymous 

changes within each gene. 

The divergence features set was generated by aligning probable homologues for 

each locus of interest between human and chimpanzee (panTro2), and calculating the 

abundance, distribution, and proportion of different types of divergent sites between the 

two species (including unalignable sites and gaps). Probable homologues were identified 

using the LiftOver tool from the UCSC Genome Browser (http://genome.ucsc.edu/: 

Kent et al. 2002), and alignments were conducted using the program TBA v 12 

(Blanchette et al. 2004). For flanking regions, the position of the chimpanzee homologue 

(relative to the chimpanzee gene coding sequence) is not always identical to the position 

of the original sequence in humans (relative to the human gene coding sequence). For 

example, the 5 kb upstream sequence for human for a given gene might not be precisely 

equivalent to the 5 kb upstream sequence for the gene homologue in chimpanzee, even 

when the extracted sequence itself is the correct homologue for the original human 5’ 

sequence. 

Missing features (from unalignable regions across species or from “intronic” 

regions of single exon genes) were imputed by the following procedure: 1) we calculated 

the sum of the squared difference for all features between the gene containing missing 

data and every other gene in the dataset; 2) we identified the five genes that were most 

similar to the gene containing missing data, based on the sum of squares metric; and 3) 

we assigned a value for the missing feature equal to the mean of the values for the five 

most similar genes for the same feature. Any features that resulted in a value of 0 for all 
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genes were removed from the dataset for downstream numerical stability. The final full 

feature set consisted of 2,269 features. Values for all features were scaled on the interval 

[0,1] based on dividing the value for each feature by the maximum value for that feature 

in the entire dataset. 

4.2.3 Wilcoxon summed ranks tests 

We applied a nonparametric Wilcoxon summed ranks test to each feature in the 

feature set. This analysis tested whether the values of the feature for genes in the AI 

class tended to be significantly different from values of the same feature for genes in the 

non-AI class. Under the null hypothesis of no difference between the two classes for any 

of the features we examined, the p-values for this series of tests should be uniformly 

distributed along the interval [0,1]. We compared the actual distribution of p-values to 

this expectation using a Kolmogorov-Smirnov test. 

2.2.4 Support vector machine (SVM) classification and recursive 
feature selection 

All SVM model fitting was conducted using SVMperf (Joachims 2005; Joachims 

2006): 
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intercept. The cost function was set to minimize overall error rate (the ‘-l 2’ option in 

SVMperf). The regularization parameter C, was set to 0.05 for the full feature set, based 

on exploratory analyses. In analyses of the smaller feature subsets (i.e., sequence 

features alone, polymorphism features alone, etc.), C = 1. All final analyses were 
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conducted using a linear kernel; exploratory analyses using a radial basis kernel function 

did not improve model performance. Generalization error was estimated by leave-one-

out cross-validation. Specifically, we sequentially removed one gene from the dataset, fit 

the model on the remaining n – 1 genes, and then used the resulting model to predict 

allelic imbalance class for the gene that was initially removed. We asked about the 

concordance between the model prediction and the true value for each gene over the 

whole dataset, producing a measure of overall error and recall and precision for both the 

AI class and the non-AI class.  

 Recursive feature selection was also conducted in a leave-one-out framework. We 

removed one gene from the dataset and used n – 1 genes to fit sequential SVMs, where 

the results of each sequential model were used to calculate the weights for each feature 

and used to remove (1) first, the 300 least informative features until fewer than 1000 

features remained in the model; (2) second, the 100 least informative features until fewer 

than 100 features remained; and (3) finally, the 20 least informative features until fewer 

than 20 features remained. At each step, we asked whether the model accurately 

predicted the allelic imbalance class of the gene that was initially removed. We repeated 

this procedure over all 287 genes in the dataset, resulting in a 287 x 15 matrix, where the 

columns represent progressively smaller model sizes (2269, 1969, 1669, 1369, 1069, 769, 

669, 569, 469, 369, 269, 169, 69, 49, and 29 features respectively), and each cell takes 

the value 0 or 1, where 0 reflects correct prediction of the imbalance state for that gene, 

and 1 reflects an incorrect prediction. We used this information to evaluate the 

relationship between the number of features in the model and predictive accuracy. 

4.2.5 Non-negative matrix factorization (NMF) 

We ranked all features by frequency of occurrence in the 469-feature model over 

the 287 different iterations of recursive feature selection. We identified the 500 features 
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that occurred most often in the 469-feature model. We then factored this set of 500 

features into k factors using NMF (Brunet et al. 2004). The reason for using NMF rather 

than spectral based methods (e.g., singular value decomposition) is that factors 

computed via NMF tend to be sparser and more localized (i.e., fewer non-zero features 

are contained in each factor) than those computed via spectral methods. The input to 

NMF was the data matrix 

! 

G  with element 

! 

Gij  corresponding to the j-th feature in the i-

th sample (gene). The algorithm factors G into two matrices 

! 

F and M with the property 

that  

! 

G " FM,  and  Fij ,  Mij # 0, 

where 

! 

F  is a matrix of n rows and k columns and 

! 

M  is a matrix of k rows and p 

columns, where n equals the number of genes, p equals the number of features, and k 

equals the number of factors. Methods for choosing the number of factors k and for the 

least squares implementation to solve for F and M followed (Brunet et al. 2004). For our 

data, we obtained k = 4 factors (Figure 10).  
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Figure 10: NMF consensus clustering matrices for varying number of clusters 
k. The matrix displays the frequency that the 500 features are found to be in the 

same cluster when the NMF algorithm is applied with different random initialization 
values. 

We then tested whether each of the four factors that resulted from the NMF 

analysis individually associated with imbalance status by conducting a Wilcoxon 

summed ranks test comparing the distribution of factor values between the AI class and 
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the non-AI class. Only one factor significantly explained variation in allelic imbalance 

class: we termed this factor the “AI factor.” 

4.2.6 Validation using an external dataset 

If the overall model and the AI factor identified within the model reflect general 

biological characteristics associated with allelic imbalance, then the results obtained on 

the Serre et al. (2008) dataset should also generalize well to unseen data (i.e., data that 

was not involved in the original model fit). Cheung et al. (2008) used genotyping 

microarrays to measure allelic imbalance in 21 sets of monozygotic twins and 10 

members of the HapMap CEU panel. They identified 163 SNPs that revealed significant 

allelic imbalance in genes in their sample, after restricting this set to those SNPs assayed 

in at least 5 individuals (counting members of a monozygotic twin set only once). This 

dataset is therefore similar to that of Serre et al. (2008) in that it captures common 

imbalance in Caucasian populations. However, Cheung et al. (2008) used a different 

technology to measure gene expression (microarrays instead of the Illumina genotyping 

platform), and different statistical thresholds to call imbalance. Hence, cross-validation 

of our model on the Cheung et al. (2008) data represents a conservative test of the 

generalizability of our results. 

From the Cheung et al. (2008) dataset, we were able to obtain data for 122 

commonly imbalanced genes that were not included in the gene sets derived from Serre et 

al. (2008) (the list of genes that did not exhibit allelic imbalance were not provided in the 

Supplementary Materials for their paper). We then tested two hypotheses. First, we 

reasoned that the probability of observing allelic imbalance estimated by our model 

should be significantly greater for genes in the Cheung et al. (2008) dataset than genes in 

the original non-AI gene set, but should be no different from genes in the original AI gene 

set (where predictions for the AI and non-AI genes were obtained from leave-one-out 
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cross-validation, as described above). We therefore compared the predictions for the 

Cheung dataset with predictions from the non-AI set and predictions from the AI set 

using Wilcoxon summed ranks tests. Second, if the relationship between the AI factor 

and allelic imbalance generalizes well, we hypothesized that the values of the AI factor 

for the Cheung dataset would be enriched for high values compared to those for a set of 

genes for which AI status is unknown. We tested this hypothesis by comparing the 

Cheung dataset with the 3,908 genes used in the AI factor annotation analyses described 

below, again using Wilcoxon summed ranks tests. 

4.2.7 Annotation of the AI factor 

In order to annotate the AI factor, we cross-referenced it to publicly available 

datasets on gene expression, negative and positive selection on gene regulatory regions, 

and gene density. 

To measure evenness of gene expression around the genome, we summarized 

data available from 73 non-cancerous human tissues in the Novartis Gene Expression 

Atlas (Su et al. 2004) following the method of Haygood et al. (in review). To compute 

evenness scores, we analyzed gene expression in the 73 non-cancerous human tissues 

included in the Novartis Gene Expression Atlas (Su et al. 2004). We first took the mean 

of gene expression for each gene over multiple (replicate) arrays per tissue, and then 

extracted the maximum expression over the multiple probes available per gene to obtain 

a single value for the expression of each gene in each tissue. Each gene was therefore 

associated with 73 values for gene expression (one per tissue). We then regarded the 73 

values as a 73-dimensional vector and considered the angle between this vector and a 

vector representing perfectly even expression (i.e., a vector for which all components 

took the same value).  The evenness score of the gene is the squared cosine of this angle, 
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which ranges from 1 (for perfectly even expression) to 1/73 (for expression exclusive to 

a single tissue). 

To measure negative selection and positive selection, we used the product of the 

estimate of the fraction of sites under selection in the 5 kb region upstream of a gene (f1 

in the case of negative selection and f3 in the case of positive selection) and the estimate 

of the strength of selection on the same region (1 - ζ1 for negative selection, ζ3 for positive 

selection). Estimates of f and ζ were available for three discrete regulatory regions 

around each gene: the 5 kb upstream of the gene (Haygood et al. 2007), the 5’ 

untranslated region, and the 3’ untranslated region (G.A. Wray., unpublished data); we 

used the average over these three estimates in the analysis, excluding missing data for 5’ 

or 3’ UTR regions when no UTR scores were available. In this analysis, ζ is analogous to 

ω in a branch-specific dn/ds test, so that ζ = 1 is indicative of neutral evolution, very 

small values of ζ are indicative of strong negative selection, and ζ >> 1 is indicative of 

strong positive selection. Because ζ1 is evaluated between 0 and 1, in our analysis the 

product of (1 - ζ1) and f also ranges between 0 and 1, where 0 corresponds to the least 

evolutionary constrained and 1 to the most evolutionary constrained. 

To measure gene density in the region around a focal gene, we used the entries in 

the CCDS database to count the number of genes within 100 kb upstream and 100 kb 

downstream of the coding region of the focal gene. If the length of a gene spanned the 

100 kb cutoff, we included it in this count.  

We were able to extract the value of the AI factor and values for evenness, 

negative and positive selection, and gene density for 3,908 genes in the human genome. 

We then modeled variation in the AI factor according to the following linear model: 
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where y represents the value of the AI factor; β0 represents the model intercept; e 

represents the evenness score; s1 represents the product of f1 and 1 - ζ1 (i.e., the 

magnitude of negative selection); s3 represents the product of f3 and ζ3 (i.e., the 

magnitude of positive selection); g represents gene density; and ε represents model error. 

Model fitting was conducted using the lm function in R (Team 2007). P-values for 

each effect are taken directly from the model fit based on the estimated effect size and 

standard error around the estimate. R2 values for single effects were calculated as the 

percentage of variation explained in the residuals of y regressed on all other model 

effects by the given single effect.  

4.3 Results 

4.3.1 Prediction of commonly imbalanced genes 

Using the full set of sequence, polymorphism, and divergence based features 

(2,269 features), we were able to fit a predictive model for allelic imbalance that 

accurately classified 68.3% of the 287 genes in the dataset (103 of which exhibit 

common allelic imbalance in the Serre et al., 2008, dataset). This level of classification 

accuracy corresponds to an area under the curve (AUC) value of 0.66. In agreement with 

this result, when we conducted Wilcoxon summed ranks tests comparing the distribution 

of values for commonly imbalanced genes versus non-imbalanced genes for each feature, 

the resulting distribution of p-values was strongly skewed towards low p-values, in 

contrast to the null expectation of a uniform distribution of p-values (as would be 

observed if no signal of imbalance was contained within our feature set: p << 10-16; 

Figure 11).  
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Figure 11: The distribution of p-values from Wilcoxon summed-ranks test on 
each feature. Each test compared the value of the feature for genes in the AI class 

and genes in the non-AI class; a low p-value indicates that the AI class and the non-
AI class were significantly differentiated by values of the feature. The dashed line 

gives the expected uniform distribution of p-values for a case in which no such 
signal could be detected in the feature set. The distribution is strongly skewed 
towards the left (low p-values), demonstrating that a signal of allelic imbalance 

status is embedded within the original 2,269 feature set (comparison between the 
observed and the expected distribution: p << 1 x 10-16 from a Kolmogorov-Smirnov 
test). The inset shows a Q-Q plot of the same results (with p-values depicted as –

log(p)), with the cumulative distribution function for a uniform distribution on the x-
axis and the cumulative distribution function of the p-values for all features on the 

y-axis. 

The estimated generalization error of this model, 31.7%, was obtained using 

cross-validation, a method that controls for model overfitting. Specifically, we removed 

one gene from the dataset, fit the model on the remaining data, and asked whether the 

prediction from the resulting model for the missing gene matched the actual class for that 

gene (either common allelic imbalance, hereafter referred to as “AI,” or non-imbalanced, 

hereafter “non-AI”). Our results indicated that accurate classification of genes in the AI 
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class was much more difficult than classification of genes in the non-AI class. Recall for 

the non-AI class (proportion of true members of the class that were correctly identified 

by the model) was 88.0%, compared to only 33.0% for the AI class. Similarly, precision 

for the non-AI class (proportion of those genes identified by the model as members of a 

class that are truly members of the class) was also higher than precision for the AI class 

(non-AI: 70.1%; AI: 60.7%). We could obtain more equivalent results for the two classes 

if we allowed the generalization error to increase slightly (corresponding to decreasing 

the value of the regularization term): for example, as overall error increased to 35.5%, 

non-AI recall and AI recall values were 75.5% and 44.7% respectively. In either case, 

model prediction worked reasonably well—we were able to correctly predict the status 

of over 2/3 of genes in the dataset—but together these results suggest that the AI class is 

fundamentally more heterogeneous with respect to our feature set than the non-AI class 

(Table 6).  

Table 6: Classification accuracy and precision and recall by class for the full 
feature set and the six possible feature subsets. The regularization parameter c was 
set to 1 in all cases except for the full feature set, where c = 0.05. Results for the full 

feature set with c = 1 are also shown for comparison. 
 Full  

(c = 
0.05a) 

Full  
(c = 1) 

Seq Poly Div Seq + 
Poly 

Seq + 
Div 

Poly + 
Div 

Overall 
accuracy 

68.3% 64.5% 62.7% 62.0% 65.8% 64.1% 62.7% 58.9% 

AI precision 60.7% 50.5% 47.8% 45.6% 54.1% 50% 47.8% 41.0% 
AI recall 33.0% 44.7% 42.7% 30.1% 32.0% 46.6% 42.7% 33.0% 
Non-AI 
precision 

70.1% 70.9% 69.7% 67.1% 69.0% 71.2% 69.7% 66.2% 

Non-AI 
recall 

88.0% 75.5% 73.9% 79.9% 84.8% 73.9% 73.9% 73.4% 

One possible source of this heterogeneity is inclusion of genes that exhibit AI due 

to imprinting instead of due to cis-regulatory genetic variation. However, only 4 of the 

genes included in the 287 genes used to fit the model are known, provisionally known, or 

computationally predicted to be imprinted in humans (based on the curated set 

available at www.geneimprint.com). One of these genes never exhibited detectable allelic 
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imbalance in the Serre et al. (2008) dataset, suggesting that imprinting for at least this 

gene is specific to other tissues. In this case, removal of those genes from the analysis 

produced model predictions that were highly correlated with the full data set (p < 2.2 x 

10-16, Spearman’s rho = 0.993), and did not appreciably alter the model’s predictive 

accuracy (generalization error was 31.1% when the four genes were moved). Hence, we 

retained all 287 genes for the downstream analyses. 

Although classification in this analysis is binary, model predictions are made as 

continuous real numbers, where positive predictions correspond to an assignment to the 

AI class and negative predictions correspond to an assignment in the non-AI class. The 

more extreme a predicted value, the greater the certainty behind that prediction, given 

the fit model. This certainty can be directly expressed as a probability by passing the 

predicted value through a logit link function. Genes that received a more extreme 

predicted value, corresponding to a higher probability of common imbalance on the 

positive end and a lower probability of common imbalance on the negative end, tended 

to be classified more accurately than genes with a value closer to 0 (Figure 12). 
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Figure 12: Genes with more extreme predicted values are more likely to be 
predicted correctly. Predictions from the full model were passed through a logit link 
function to produce a predicted probability of common imbalance at each gene. All 

287 probability values are plotted, ranked from lowest probability of common 
imbalance to highest probability of common imbalance. True imbalance class is 

reflected by the color bar: yellow represents non-AI genes and blue represents AI 
genes. The color for each dot represents the degree to which model predictions were 
correct for a window size of eight genes around a given gene, in the list ordered by 

probability. Non-AI genes are predicted as commonly imbalanced with lower 
probability (lower left of the figure); AI genes are predicted as commonly 

imbalanced with higher probability (upper right of the figure). For comparison, 
perfect prediction would produce yellow dots below probability = 0.5 and blue dots 

above probability = 0.5, with a small region of green dots at the transition point 
around probability = 0.5. 

Characteristics of the full feature set were generally recapitulated when using 

only one feature subset or only two feature subsets (of the three classes of features: 

sequence, polymorphism, and divergence; see Table 6). Interestingly, predictions 

generated from the polymorphism data set alone and the divergence data set alone were 

significantly correlated with each other (Spearman’s ρ = 0.248, p = 2.18 x 10-5), 
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suggesting that the information about imbalance contained within these two data sets 

was somewhat redundant; in contrast, neither of these sets of predictions were 

correlated with predictions from the sequence data set alone (sequence predictions 

versus polymorphism predictions: Spearman’s ρ = 0.051, p = 0.389; sequence 

predictions versus divergence predictions: Spearman’s ρ = 0.085, p = 0.150). All three 

single subset models performed approximately as well, and, as was the case for the full 

dataset, more extreme predicted values tended to reflect more accurate classification of 

the gene. 

4.3.2 Dimension reduction in the feature set 

In order to reduce the dimensionality of the full model, we recursively eliminated 

features that provided the least predictive power from the model. The predictive 

accuracy of the model remained stable as the number of features in the model decreased 

from the full feature set (n = 2,269) to approximately 500 features, but dropped rapidly 

as the number of features grew smaller than 500 (Figure 13).  

 

Figure 13: Results of recursive feature elimination. Predictive accuracy of the 
SVM decreases as the number of features in the model drops below about 500. A 

rapid drop in AI recall, such that true AI genes are consistently predicted as non-AI 
genes, predominantly drives this effect (the corresponding rise in AI precision is due 

to the very small number of genes still predicted as AI at small model sizes). 
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This result suggested that the signal of allelic imbalance in our feature set is 

diffuse, making interpretation of the effect of individual features in the model difficult. 

In order to analyze these features, we used non-negative matrix factorization (NMF: 

Brunet et al. 2004, reviewed in Devarajan 2008), a method that is analogous to principle 

components analysis but typically produces much sparser factors. We extracted four 

factors that summarize the 500 top features in the model (Figure 10). Each factor 

represents a weighted linear combination of the individual features. Most of the features 

in our model contributed to several or all of the resulting factors, indicating that the four 

factors were not completely orthogonal to each other, and none of them could be readily 

interpreted as, for example, a “polymorphism” factor or a “repeat” factor. However, we 

found that only one of these factors, which we refer to as the “AI factor,” significantly 

differentiates between the AI class and non-AI class of genes (Wilcoxon summed ranks 

test: p = 3.87 x 10-5). Specifically, a higher value of the AI factor corresponds to an 

increased probability that the associated gene will be subject to common imbalance.   

4.3.3 Validation using an external dataset 

Model predictions for genes that exhibited significant allelic imbalance in Cheung 

et al. (2008) were significantly different from the non-AI genes extracted from the Serre et 

al. (2008) dataset (one-tailed Wilcoxon summed ranks test, p = 4.70 x 10-6) but were not 

significantly different from the AI genes from the Serre et al. (2008) dataset (p = 0.506). 

In other words, commonly imbalanced genes identified through two different methods 

were indistinguishable through our model, but both of these gene sets were predicted as 

more likely to be imbalanced than a third set of genes known to exhibit no common 

imbalance (Figure 14). 
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Figure 14: Raw predictions from the full model for genes that exhibit allelic 
imbalance in the Cheung et al. (2008) dataset are significantly different from 

predictions for the non-AI gene set (p = 4.70 x 10-6) derived from Serre et al. (2008), 
but not significantly different from predictions for the AI gene set from Serre et al. 

(p = 0.506). 

Additionally, genes from the external Cheung et al. dataset were significantly 

enriched for high values of the AI factor (which correspond to a higher likelihood of 

common allelic imbalance) compared to a background distribution of the AI factor 

derived from 3,908 genes of unknown status (p = 6.23 x 10-11; Figure 15).  This result 

suggests that the AI factor, and hence annotations of the AI factor, retains explanatory 

power for genes not included in the original dataset derived from Serre et al. (2008).  
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Figure 15: Smoothed distributions of genes that exhibit common allelic 
imbalance included in a second validation dataset (Cheung et al. 2008) and 3,908 

genes from the AI factor annotation analyses chosen without respect to allelic 
imbalance. The genes known to be imbalanced are enriched for higher values of the 

AI factor (p = 6.23 x 10-11). 

4.3.4 Annotating the “AI factor” 

Our results made it difficult to explain the predictive ability of our model 

through direct assessment of the features within the model: too many features were 

required for the model to perform well, and these features do not neatly reduce into 

orthogonal factors. In order to better understand why the feature set we identified 

contains information about allelic imbalance, we attempted to annotate the “AI factor” 

using external datasets. Specifically, we incorporated estimates of natural selection on 

gene regulatory regions from the work of Haygood et al. (2007); a metric of tissue 
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specificity in gene expression derived from the Novartis Gene Expression Atlas (Su et al. 

2004), which we refer to as expression “evenness;” and a metric of gene density around 

the focal genes based on annotations from the Consensus CoDing Sequence Project 

(http://www.ncbi.nlm.nih.gov/projects/CCDS/). This approach allowed us to 

investigate the possible biological significance underlying the model using a much larger 

dataset, because the AI factor can be extracted for genes that lack allelic imbalance 

measurements in the original dataset. Our aim was to understand why the AI factor, 

which is derived entirely from sequence, polymorphism, and divergence data, had 

explanatory power with regards to allelic imbalance at all. 

We hypothesized that the regulatory regions of genes that exhibit common allelic 

imbalance evolve under less selective constraint than the regulatory regions of genes that 

do not exhibit common imbalance, and that this relationship could be captured by 

analyzing sources of variance in the AI factor. If so, an increased estimate of negative 

selection on a gene’s likely regulatory region might be correlated with a decrease in the 

value of the AI factor. As a corollary to this hypothesis, we did not expect to observe a 

relationship between the AI factor and estimates of positive selection, which were 

available for the same genes.  

Given that statistical tests of natural selection have somewhat low power, we 

also attempted to model variation in the AI factor using two other variables that have 

been connected with gene regulation in the literature. We asked whether the number of 

neighboring genes in the region surrounding a focal gene or the degree of tissue specificity 

in the expression of a focal gene explain variation in the AI factor. Neighboring genes 

tend to exhibit more correlated patterns of expression than sets of randomly distributed 

genes (Kruglyak and Tang 2000; Lercher et al. 2002; Gierman et al. 2007). Thus, if cis-

regulatory mutations potentially disrupt a neighborhood of genes instead of one or a few 

genes, genes in gene-dense regions may exhibit significantly lower AI factors due to 
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stronger negative selection in these regions of the genome. Similarly, when genes are 

broadly expressed, regulatory genetic changes may be subjected to increased 

evolutionary constraint due to deleterious effects introduced by pleiotropy. If so, genes 

that are broadly and evenly expressed in human tissues may also be associated with 

lower levels of the AI factor. 

We modeled variation in the AI factor for 3,908 genes in the human genome for 

which estimates of negative and positive selection, tissue specificity (expression 

“evenness”), and positional information on nearby gene density were available. The 

overall model was highly significant and explained an appreciable amount of variation 

in the AI factor (p < 2.2 x 10-16; R2 = 0.178 for the full model). Within the full model, we 

identified significant effects of the average strength of negative selection, the density of 

neighboring genes, and the evenness of gene expression across tissues, but not the 

strength of positive selection on the upstream region.  

Specifically, genes subject to greater evolutionary constraint (i.e., a higher 

magnitude of negative selection in their putative regulatory regions) were also 

characterized by smaller AI factors, although this effect was very small (p = 2.72 x 10-9, 

R2 = 0.009). Similarly, we also observed a very small, but significant effect of tissue 

specificity on the AI factor (p = 9.08 x 10-8, R2 = 0.007): genes that are more evenly 

expressed across tissues exhibit on average smaller AI factors, corresponding to a lower 

likelihood of common allelic imbalance, than genes that are expressed much more 

strongly in one or a few tissues than in others. By contrast, the magnitude of positive 

selection did not explain a significant amount of variation in the value of the AI factor (p 

= 0.062). 

We found that the density of neighboring genes had by far the strongest 

explanatory effect (p << 1 x 10-16; R2 = 0.159), accounting for more than an order of 

magnitude more of the overall variance in the AI factor than estimated for the direct 
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effect of negative selection. Thus, as the number of neighbors within a 100 kb flanking 

region on either side of the gene (200 kb of total sequence) increased, the AI factor 

decreased (Figure 16). The interpretation of this result in the light of allelic imbalance is 

that genes in gene-rich regions of the genome are somewhat less likely to exhibit common 

imbalance than genes with fewer neighbors.   

 

Figure 16: Genes that reside in more gene-dense neighborhoods exhibit 
lower values of the AI factor (p << 1 x 10-16; R2 = 0.159). The line running through 

the graph shows the estimated slope for the number of genes within 100 kb 
flanking when this effect is estimated by itself (i.e., not within the full linear model). 

4.4 Discussion 

4.4.1 Prediction of common allelic imbalance 

Our results indicate that the signature of allelic imbalance is detectable in the 

human genome, and that this signature can, at least diffusely, be captured using support 

vector machine (SVM) models of features extracted from sequence, polymorphism, and 
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divergence data. While the classification accuracy of our model exhibits a detectable 

improvement over random assignment to the AI or non-AI class (the set of genes that 

commonly exhibit allelic imbalance and the set of genes that do not exhibit allelic 

imbalance, respectively), the level of overall accuracy we were able to achieve is modest 

relative to that observed for other biological phenomena. For example, Wang et al. (2006) 

were able to differentiate between X-inactivated genes and genes that escape from X-

inactivation in humans with over 80% accuracy (Wang et al. 2006), and Luedi et al. 

(2005) were able to distinguish between imprinted and non-imprinted genes in mice with 

about 94% accuracy (Luedi et al. 2005). Both of these studies used approaches similar to 

those we applied here, including some overlap in feature types (although neither 

included data on polymorphism or divergence). However, while SINE and LINE repeat 

elements were important features in both Luedi et al. (2005) and Wang et al. (2006), they 

were not strongly highlighted in our analysis: although repetitive elements did appear in 

the 500 features identified through recursive feature elimination, none of them were 

weighted very heavily in the AI factor (see Supplementary Materials for Tung et al., 

2009). These comparisons suggest that allelic imbalance is a more difficult phenotype to 

classify, at least using readily available genomic features. 

The likely reason for this comparative difficulty is that allelic imbalance is a 

complex quantitative trait (e.g., Tao et al. 2006), although we dichotomized it for the 

purposes of this study. Gene expression has a multifactorial basis, including both genetic 

and environmental effects, and also can vary temporally and spatially across different 

tissues. Indeed, our results are comparable to those from the handful of studies that 

have attempted to analyze other complex traits in a predictive framework (Khoury et al. 

2008; Lango et al. 2008; van Hoek et al. 2008; Jakobsdottir et al. 2009; Liu et al. 2009); 

but see Lee et al. 2008). For example, recent whole genome association studies have 

identified multiple susceptibility loci for type 2 diabetes, and the replicability and strong 
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statistical support for these loci have made type 2 diabetes one of the relative success 

stories of the genome-wide approach (Prokopenko et al. 2008). However, when assessed 

in a predictive context, these loci exhibit only modest predictive ability for the disease: 

area under the curve (AUC), a metric that summarizes the trade-off between true 

positive and false positive rates (random prediction is 0.50; perfect prediction is 1.0; 

values below 0.50 reflect prediction that is worse than random), was estimated at 0.60 

in two different studies (Lango et al. 2008; van Hoek et al. 2008). By way of comparison, 

AUC for our dataset was 0.66, even though, unlike the diabetes studies, we did not 

have prior information about specific variants that were highly associated with the trait. 

Additionally, our results suggest that there is heterogeneity within classes: for 

example, genes in the AI class include genes for which allelic imbalance is substantial as 

well as genes for which allelic imbalance is modest (but detectable and replicable in 

multiple individuals). In contrast, prediction for non-AI genes appears to be easier. 

These findings are also in agreement with other attempts to predict complex traits. For 

example, Liu et al. (2009) attempted to predict eye color using up to 24 SNPs previously 

implicated in eye color differences. While they were able to achieve prediction of brown 

eyes and blue eyes at AUC levels of 0.88 – 0.93, prediction of “intermediate” colored 

eyes ranged from 0.63 – 0.73, suggesting that this phenotypic class is more difficult to 

accurately predict than the other two classes. We were not able to detect a robust effect 

of magnitude of imbalance on classification accuracy (data not shown). However, 

magnitude of imbalance is difficult to take into account because all allelic imbalance 

datasets thus far focus on a relatively small set of individuals (n = 83 in Serre et al., 

2008), and, even within these datasets, appreciable variation is observed among 

individuals that exhibit imbalance, suggesting that imbalance magnitude may be context-

dependent on trans genetic variation or environmental factors.  
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Finally, the genetic variation that produces allelic imbalance arises and is 

maintained by a complex combination of mutation, recombination, selection, and 

demographic history. For example, because allelic imbalance is only detectable within 

individuals that are heterozygous at a transcribed site, the allele frequency spectrum for 

the causal cis-regulatory polymorphism, along with population structure, is a critical 

component of the frequency with which allelic imbalance will be detected. Unlike for 

phenomena like X-inactivation or imprinting, then, no gene will always exhibit allelic 

imbalance, even if these polymorphisms are very common. Further, the rate at which 

allelic imbalance arises may vary due to differences in the underlying mutation rate, and 

the frequency with which it is expressed may differ across tissues (Campbell et al. 2008) 

and across environments (de Meaux et al. 2005; Zhu et al. 2006). Across populations, 

variation in the extent of cis-regulatory polymorphism between genes may be due to 

differences in the occurrence and strength of balancing selection (e.g. at MHC loci: Loisel 

et al. 2006; Tan et al. 2006) or, as suggested by our results, could reflect variation in 

selective constraint on gene expression profiles. Additional genome-wide measurements 

of allelic imbalance in more of these contexts would increase the accuracy of the labels 

we used here, and likely improve the classification ability of the resulting models.  

For the preceding reasons, it is perhaps surprising that the features used here are 

predictive of common allelic imbalance at all, especially given that, unlike other 

predictive studies (Lango et al. 2008; van Hoek et al. 2008; Liu et al. 2009), we could not 

filter our feature set for features that were a priori known to be involved in producing 

allelic imbalance for these genes. Predictive models derived from machine learning have 

been frequently used in molecular and cancer genetics (Mukherjee et al. 1999; Brown et al. 

2000; Guyon et al. 2002; Zhang et al. 2003), and have been applied to a handful of 

problems in ecology (Guo et al. 2005; Drake et al. 2006). To our knowledge, however, 

they have rarely been used to interrogate differences in the degree of variation in specific 
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molecular phenotypes, as we have done here. Our results suggest that this general 

approach may have some applicability to these kinds of problems, and may therefore be 

useful as an additional tool for investigating problems in biological fields specifically 

interested in variation, including genetic epidemiology and evolution (e.g., Roettger et al. 

2009). Given that the features used in these models are becoming available for more and 

more systems, including non-traditional, non-model systems, they could be of particular 

use when informed prediction is an important step to take prior to conducting empirical 

measurements.  

4.4.2 Selective constraints on gene expression 

The initial SVM model fitting for allelic imbalance did not rely on careful 

hypothesis generation or modeling of the process by which imbalance arises. However, 

understanding the biological meaning behind its predictive ability demands that such 

methods be applied. We attempted to do so here by annotating a factor that contains 

many of the features responsible for our model’s predictive ability, and that is itself 

significantly correlated with allelic imbalance class, using additional publicly available 

data and the results of prior work incorporating a formal modeling perspective. 

These analyses allowed us to test hypotheses to account for the apparent 

nonrandom distribution of allelic imbalance around the genome. We reasoned that, if 

gene expression is frequently under negative selection in the primate lineage, as has been 

suggested by others (Khaitovich et al. 2005; Gilad et al. 2006; Gilad et al. 2006), genes 

that exhibit common imbalance may be those that are evolving under less evolutionary 

constraint than genes that do not exhibit common imbalance. This possibility has also 

been suggested by Campbell and colleagues (2008) to explain the observation that genes 

that are imbalanced in humans also tend to be imbalanced in mice, despite the 

substantial evolutionary time separating these two species (Campbell et al. 2008). 



 

118 

Alternatively, if natural selection has little to do with imbalance, then the distribution of 

commonly imbalanced genes around the genome may have more to do with variation in 

local mutation rates. Currently, genome-wide datasets that estimate the strength of 

selection and evolutionary constraint on gene regulatory regions are available at the 

resolution of single genes; in contrast, fine-scale estimates of mutation rate variation 

across the genome are not yet available. Hence, we focused largely on the currently more 

tractable hypothesis that variation in allelic imbalance across the genome is related to 

evolutionary constraint. Specifically, we examined the relationship between the “AI 

factor,” a linear combination of variables that predicts allelic imbalance, and three other 

effects that are directly or indirectly related to evolutionary constraint. We found that 

the value of the AI factor increases (corresponding to a higher probability of common 

imbalance in the gene) with decreased negative selection on the upstream regulatory 

region of a gene, decreased evenness of expression across human tissues, and decreased 

density of genes in the region surrounding the focal gene.  

By far, the strongest effect we identified was that of density of genes around the 

focal gene: genes in gene-dense regions are associated with lower values of the AI factor, 

corresponding to a lower likelihood of common allelic imbalance. At least two 

mechanisms can account for this observation. First, the presence of nearby genes 

evolving under negative selection could reduce the proportion of nearby sites that are 

likely to harbor common segregating genetic variation. Under this scenario, negative 

selection on neighboring genes (even if only in the coding regions) means that fewer 

variants with potential cis-regulatory effects on the focal gene will reach frequencies high 

enough to produce common allelic imbalance. Second, functional cis-regulatory variants 

that arise in gene-dense regions could be more likely to produce deleterious pleiotropic 

effects on gene expression. Genes that cluster together in the same physical location tend 

to exhibit correlated patterns of gene expression (Kruglyak and Tang 2000; Lercher et al. 
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2002; Gierman et al. 2007). If these effects are due to shared cis-regulatory sequence or to 

shared patterns of chromatin condensation, changes in the expression of one gene may 

ramify outwards to also affect neighboring loci. Consequently, functional cis-regulatory 

variation that arises in gene-dense regions might alter the expression of not one, but 

several (or many) linked genes, and therefore be subject to greater constraint than cis-

regulatory variants near physically isolated genes. Although both of these mechanisms 

invoke patterns of evolutionary constraint, only the second requires negative selection on 

the gene expression profile itself. Given that they are not mutually exclusive, however, it 

is possible that the combination of both mechanisms acting together accounts for the 

strong signal of gene density on the AI factor.  

Pleiotropy may also influence the observed relationship between allelic imbalance 

and evenness of expression. Genes that are more evenly expressed across tissues in the 

human body have, on average, lower values of the AI factor, although this effect is very 

small. One of the main arguments in favor of the importance of cis-regulatory variants in 

complex trait evolution is that changes in cis-acting gene regulation can evade pleiotropic 

constraints by altering gene expression in a tissue- or condition-dependent manner 

(Wray 2007; Blekhman et al. 2008; Smith and Kruglyak 2008). Recent evidence strongly 

suggests that tissue-specific changes in expression have been important during human 

evolution (Blekhman et al. 2008; Kosiol et al. 2008); for example, a selectively 

advantageous change in the DARC cis-regulatory region abolishes expression of the gene 

on red blood cells, conferring strong protection against infection by malarial parasites, 

but does not interfere with DARC expression elsewhere in the body (Tournamille et al. 

1995). However, tissue-specificity may be more difficult to achieve when a gene is truly 

evenly expressed across many tissues. Hence, mutations influencing these genes may be 

subject to a slightly increased level of constraint, in this case due to pleiotropy across 

tissues as opposed to pleiotropy across genes. 



 

120 

As in the case of evenness of expression, the relationship between negative 

selection and the AI factor was weak but in the direction predicted by our hypothesis. 

Genes subject to greater negative selection, as measured by the comparison between the 

rate of evolution in the region upstream of the gene and the rate of evolution in 

downstream introns (Haygood et al. 2007), tend to have lower values for the AI factor, 

suggesting that these genes are less likely to exhibit common allelic imbalance. Perhaps 

surprisingly, if gene density is a proxy for evolutionary constraint, the relationship 

between imbalance and this direct measure of negative selection was much weaker than 

the relationship between allelic imbalance and gene density. This discrepancy may be 

due to the limited scope of the measure of negative selection (functional cis-regulatory 

elements can further upstream, downstream, or within a gene, so we therefore averaged 

over the three regions for which data were available; however, it is possible that these 

regions accumulate functional cis-regulatory differences at different rates, and with 

different downstream effects), the inherent lack of power in estimating the strength of 

selection, and/or differences between patterns of selection on the gene expression 

phenotype itself and patterns of selection on the associated cis-regulatory sequence.  

Overall, our results suggest that evolutionary constraint plays an important role 

in determining whether a gene is likely to accumulate functional cis-regulatory variation 

at moderate to high frequencies within human populations. The role of mutational biases 

in this process remains an important outstanding question, however. Our results do not 

preclude the possibility that genes that are more likely to exhibit common imbalance 

might also fall, with some greater probability, in mutational “warmspots.” What then 

are the relative contributions of mutation and selection to allelic imbalance within human 

populations? Measures of GC content (except in the coding sequence itself) were not 

included in the set of 500 features that were most predictive of common allelic 

imbalance in our analyses. Given that the mutation rate at CpG dinucleotides is 
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estimated to be over an order of magnitude higher than background (Nachman and 

Crowell 2000), this result circumstantially suggests that mutational bias might not play 

as important of a role as selective constraint in determining the distribution of allelic 

imbalance. In the next several years, we anticipate that next-generation sequencing 

technologies will produce much more fine-scaled estimates of mutation rate across the 

genome than are currently available. At that point, it will be worth revisiting the relative 

role of selection and mutation in determining segregating functional cis-regulatory 

variation in human populations. 

Taken together, our analyses support the hypothesis that the nonrandom 

distribution of common allelic imbalance in the human genome, as demonstrated by the 

ability to classify and predict which genes are subject to common imbalance, is the 

product of weak negative selection. Specifically, commonly imbalanced genes tend to be 

subjected to less evolutionary constraint than genes that are never (or rarely) 

imbalanced. We were able to detect this effect only by analyzing a large number of genes, 

most of which were not actually included in the initial dataset on allelic imbalance. This 

result suggests that the machine learning-based approach we applied here might be 

useful not only for exploratory analyses, but also for producing a proxy for a phenotype 

of interest (here, the AI factor) that can be used to expand the size of the dataset to be 

analyzed. It also suggests that negative selection on gene expression, as has been 

documented in both primates (Gilad et al. 2006; Gilad et al. 2006) and model systems 

(Rifkin et al. 2003; Denver et al. 2005), may translate into negative selection on functional 

cis-regulatory variants. As in the case of other molecular characteristics with 

evolutionary implications, such as codon usage bias (Akashi 1995; dos Reis and 

Wernisch 2009) or mutation to spurious transcription factor binding sites (Hahn et al. 

2003), the effect of negative selection on allelic imbalance appears to be weak.  
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Further work needs to be done in order to understand whether the results we 

describe are typical of functional genetic changes in gene expression in general or are 

specific to cis-regulatory genetic effects, and whether the predictive models developed 

here extend to other taxa. Additionally, the greater difficulty we encountered in 

classifying genes in the AI class than genes in the non-AI class suggests that the category 

of genes subject to common allelic imbalance is somewhat heterogeneous. Further 

exploration may reveal possible sources of this heterogeneity. It would be interesting if 

genes that exhibit imbalance in a context-dependent manner (those sensitive to 

developmental timing or tissue-dependent effects, or those influenced by epistasis 

and/or gene-environment interactions) behave quantitatively or qualitatively differently 

from genes for which the architecture of allelic imbalance is more simple. Functional 

regulatory effects make important contributions to organism level phenotypic variation 

of both medical and evolutionary import. Understanding how these effects are 

distributed across the genome, and in particular when and in what genes they may 

persist, is therefore critical to developing a better understanding of how trait variation 

arises within populations. 
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5. Evolution of a malaria resistance gene in wild 
primates1 

5.1 Introduction 

The ecology, behaviour and genetics of our closest living relatives, the nonhuman 

primates, should help us to understand the evolution of our own lineage. Although a 

large amount of data has been amassed on primate ecology and behaviour, much less is 

known about the functional and evolutionary genetic aspects of primate biology, 

especially in wild primates. As a result, even in well-studied populations in which 

nongenetic factors that influence adaptively important characteristics have been 

identified, we have almost no understanding of the underlying genetic basis for such 

traits. Here, we report on the functional consequences of genetic variation at the malaria-

related FY (DARC) gene in a well-studied population of yellow baboons (Papio 

cynocephalus) living in Amboseli National Park in Kenya. FY codes for a chemokine 

receptor normally expressed on the erythrocyte surface that is the known entry point for 

the malarial parasite Plasmodium vivax (Miller et al. 1975; Miller et al. 1976; Barnwell et 

al. 1989). We identified variation in the cis-regulatory region of the baboon FY gene that 

was associated with phenotypic variation in susceptibility to Hepatocystis, a malaria-like 

pathogen that is common in baboons (Myers and Kuntz 1965; Garnham 1966). Genetic 

variation in this region also influenced gene expression in vivo in wild individuals, a 

result we confirmed using in vitro reporter gene assays. The patterns of genetic variation 

in and around this locus were also suggestive of non-neutral evolution, raising the 

possibility that the evolution of the FY cis-regulatory region in baboons has exhibited 

both mechanistic and selective parallelisms with the homologous region in humans 

                                                        
1 The contents of this chapter have been previously published as: J Tung, A Primus, AJ Bouley, TF Severson, 
SC Alberts, and GA Wray (2009). Evolution of a malaria resistance gene in wild primates. Nature 460: 388 – 
392. 
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(Hamblin and Di Rienzo 2000; Hamblin et al. 2002; Sabeti et al. 2006). Together, our 

results represent the first reported association and functional characterization linking 

genetic variation and a complex trait in a natural population of nonhuman primates. 

5.2 Background 

In humans, a transition from the wild-type T variant to a C variant at a single 

polymorphic site in the FY cis-regulatory region causally abolishes all expression of this 

gene in erythrocytic precursors. As a result, C homozygotes at this site are strongly 

protected from infection by P. vivax (Tournamille et al. 1995), and a lower level of 

protection is also conferred on C/T heterozygotes (Zimmerman et al. 1999; Michon et al. 

2001). The C variant has apparently arisen independently at least twice in 

geographically distinct human populations (in Africa and in Papua New Guinea: Miller 

et al. 1976; Zimmerman et al. 1999), and has been driven to high frequencies on at least 

two haplotypic backgrounds within Africa (Hamblin and Di Rienzo 2000). 

Additionally, the pattern of variation in the cis-regulatory region as a whole strongly 

indicates a historical pattern of natural selection in different populations around the 

world, probably as the product of directional selection in some populations (for 

example, local positive selection), and a complex mix of selection and demographic 

history in others (Hamblin and Di Rienzo 2000; Hamblin et al. 2002; Sabeti et al. 2006). 

The unusual evolutionary history of this locus led us to investigate the pattern of genetic 

variation in its baboon homologue, and to explore the possibility that it might also 

explain phenotypic variation in parasite infection in a wild primate population, the 

well-studied baboon population of the Amboseli basin in East Africa (Buchan et al. 

2003; Alberts et al. 2006; Tung et al. 2008). 

Baboons are not generally infected by Plasmodium in the wild, but are vulnerable 

to infection by several closely related haematoprotozoans (Myers and Kuntz 1965; 
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Garnham 1966) including Hepatocystis kochi, a blood parasite nested within the 

paraphyletic Plasmodium genus (Perkins and Schall 2002). Hepatocystis parasites do not 

produce the cyclical fever spikes typical of malaria in humans, but do produce anaemia 

and visible merocyst formation, followed by scarring on the liver (Garnham 1966). The 

similarities between P. vivax and Hepatocysis therefore prompted us to investigate 

whether regulatory genetic variation linked to the FY gene influences incidence of 

Hepatocystis infection in Amboseli, expression of the gene, or both, in a manner parallel 

to that observed in humans. 

5.3 Materials and methods 

5.3.1 DNA and RNA sampling 

Blood samples for DNA extraction and Hepatocystis screening were collected 

from 190 Amboseli baboons between 1989 and 2008 (Altmann et al. 1996). DNA was 

extracted using standard methods. DNA for some individuals was whole genome 

amplified (Qiagen Repli-G Kit). Blood samples for RNA extraction were collected in 

PaxGene RNA tubes from 101 adult Amboseli baboons darted between 2004 and 2008. 

RNA was extracted using the PaxGene RNA Blood kit (Qiagen), and reverse transcribed 

into complementary DNA (ABI High Capacity cDNA Archive Kit). 

5.3.2 Sequencing 

We amplified and sequenced the region homologous to the annotated FY cis-

regulatory region in humans in 174 individuals and sequenced or genotyped the two 

pyrosequencing assay SNPs in 150 individuals. To assess congruence between the in 

vitro and in vivo gene expression results for the C/T SNP, we inferred haplotype 

phasing using PHASE 2.1.1 (Stephens et al. 2001). 
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5.3.3 Hepatocystis screen and association with FY 

We screened for Hepatocystis in all 190 baboons using Hepatocystis mtDNA 

specific primers, which produced a band of approximately 251 base pairs on an agarose 

gel in the presence of Hepatocystis. High rates of infection were found in groups sampled 

in 2004-8 as well as in groups sampled in the late 1980’s and early 1990’s, indicating 

that our ability to detect Hepatocystis infection did not markedly decrease with the age 

of the sample. However, to rule out the possibility that a failure to amplify Hepatocystis 

was due to poor quality DNA, we eliminated from subsequent analyses any individuals 

for whom we were not able to generate high quality genomic DNA sequence from other 

regions, including the FY cis-regulatory region. 

We also used Plasmodium-genus specific primers  (Rougemont et al. 2004) as a 

secondary confirmation of infection for 103 individuals (Hepatocystis is phylogenetically 

nested within the Plasmodium species that infect primates: (Perkins and Schall 2002). 

All individuals included in this study had concordant results with both the Hepatocystis 

mtDNA primers and the Plasmodium genus-specific primers. 

We then fitted the following generalized linear mixed model for 150 individuals, 

using a binomial error structure: 
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where y is Hepatocystis infection status (y = 1 corresponds to infected; y = 0 

corresponds to uninfected), individuals are indexed by i, and study group is indexed by 

j. β is a fixed effect of genotype, Gij; vu is the fixed effect of the projection Diu on the uth 

principal component of population structure; Sj is a random effect of study group; b is 

the intercept; and ε represents model error. We used two approaches to control for 

possible population structure in our sample. First, we included social group as a random 
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effect when modeling Hepatocystis infection on genotype (infection rate was clearly 

structured by social group: see Figure 17). In baboons, sex-biased dispersal and 

philopatry predict that social group (‘breeding group’) will be the most important unit of 

population structure. We have also used this approach to take account of social group 

in previous studies of the Amboseli baboon population (e.g., Charpentier et al. 2008). 

Second, we applied a principle components-based analysis to identify the major axes of 

population structure using genotype data from 47 unlinked loci (33 SNPs and 14 

microsatellites) from around the baboon genome. Estimates of population structure were 

obtained following the method of (Price et al. 2006), using custom MATLAB code. 

Missing genotype data (9% of the overall data matrix) were imputed using two different 

methods: local least squares regression (Kim et al. 2006) and k nearest neighbors, with k 

= 3 (Troyanskaya et al. 2001); exploratory analyses with k = 1 – 7 produced very similar 

results. Results based on the k nearest neighbors approach are reported in the main text, 

but the results were qualitatively identical regardless of imputation method. In our final 

model, we incorporated projections from the first five eigenvectors obtained through 

PCA (these explained approximately 60% of the overall genetic variation in population). 

The final analysis was run using the lmer function in the R package lme4, version 

0.99875-9 (Team 2007). We evaluated the significance of βg, the SNP effect, as evidence 

for association between infection and cis-regulatory variation. 

5.3.4 Pyrosequencing 

We designed pyrosequencing assays based on two variable SNPs in the 

transcribed region of the FY gene. 38 individuals for which cDNA samples were 

available were also heterozygous at one or both of these sites. For each of these 

individuals, we performed six to eight pyrosequencing reactions across two plates (mean 

number of measurements per individual = 7.05, range = 3–8, excluding failed reactions). 
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The resulting values were expressed as the log2 transformed ratio of the expression of 

transcripts carrying one versus the other allele at one of the assay SNPs (values based 

on the alternative assay SNP were converted on the basis of linkage between the two 

sites). 

We identified an effect of one of the upstream cis-regulatory sites by modelling 

variation in allelic imbalance using the following general linear mixed model: 

yij = βGij + Yj + b + ε 

where y is allelic imbalance, indexed by individual i and year of sampling j; βg is 

a fixed effect of homozygous or heterozygous genotype, Gij; Yj is a random effect of year 

of sampling (2006, 2007 or 2008; one individual was sampled in 2005 and grouped with 

the 2006 samples); b is the intercept; and ε is the model error. We assessed the 

significance of β using a permutation test: all measurements for an individual were 

grouped as a block and permuted 1,000 times over individual identity. We assigned a P 

value to the original SNP parameter estimate by ranking it among the corresponding 

estimates for the permuted data sets. The estimate of variance explained by the C/T 

site is based on modelling the residuals of allelic imbalance on year of sampling, using 

the C/T site alone. 

Three pairs of individuals in the allelic imbalance analysis were related at r = 0.5; 

removing any set of three individuals so that no individuals were closely related did not 

qualitatively change our results. Simulations based on data from both related and 

unrelated individuals showed that dyads related at r < 0.5 were only about 10 – 14% 

more likely than random dyads to share genotypes, and unrelated dyads were about 1% 

less likely than random dyads to share genotypes (reflecting the outbred nature of the 

population and the accuracy of the pedigree data). 
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5.3.5 Transfection assays 

Human erythroleukaemic cells (HEL 92.1.7) were maintained using the ATCC 

protocol. The wells of 24-well cell culture plates were seeded with 2 × 105 cells in 500 µl 

media, transfected, incubated for 48 h, and lysed. Cells were co-transfected with 

experimental constructs or empty firefly luciferase vector as control (pGL4.10; 180 ng 

per well) and the CMV Renilla normalization construct (pGL4.75, 20 ng per well; 

Promega) using Fugene 6 (Roche). Expression levels were measured with a dual-

luciferase reporter assay (DLR1000 assay kit, Promega) and reported as relative ratios 

of luminescence (firefly:Renilla). Eight replicate wells were transfected for each 

experimental and control vector within an assay, with the assay repeated three times 

(n = 24 total measurements per construct). 

We compared the measurements for each pair of constructs (A versus G for the 

Hepatocystis-associated SNP and C versus T for the SNP associated with allelic 

imbalance) separately using the following model: 

yijk = βCj + Ek + b + ε 

where y is the relative ratio of luminescence for replicate i of construct j in 

experiment k; β is a fixed effect of construct, Cj; Ek is a random effect of experiment; b is 

the intercept; and ε is model error. 

5.3.5 Signature of selection 

5.3.5.1 Fst-based comparisons 

For comparison of the Fst values, we genotyped up to 36 polymorphic 

microsatellite loci in ten baboons from the Masai Mara Reserve, Kenya; 20 baboons from 

Mikumi National Park, Tanzania; and 12 baboons from Amboseli National Park. One 

locus is a polymorphic microsatellite located ~3.7 kb upstream of the sequenced FY cis-

regulatory region (Seixas et al. 2002); the other 35 loci reside in putatively neutral sites 
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dispersed around the baboon genome (Buchan et al. 2003; Alberts et al. 2006). We 

calculated Fst values for each of these loci independently using Arlequin 3.1 (Excoffier et 

al. 2005), and compared the Fst value for the FY-linked microsatellite locus with the Fst 

values for the 35 neutral loci. Specifically, we modeled the distribution of Fst values for 

the 35 neutral markers as a gamma distribution, and asked about the likelihood of 

observing the value of Fst for the FY-linked marker or a more extreme value, given this 

model. However, because our inference was based on a modest number of markers, we 

formally tested the stability of our p-value estimate given uncertainty in the model (i.e., 

under other parameterizations of the gamma, including some parameter settings that 

might also be highly consistent with the data, but could potentially provide weaker 

support for the hypothesis of non-neutral evolution).   

We therefore calculated the p-values for 10,000 other possible combinations of 

parameters for the gamma distribution and weighted these values by the likelihood of 

these parameter combinations, given the data. We sampled the values of the two 

parameters independently, in each case from a uniform distribution bounded by two 

standard deviations above or below the maximum likelihood estimate, where the 

standard deviations were based on the estimated marginal distribution for that 

parameter. This approach is equivalent to sampling from the posterior of a probability 

distribution, an approach that gives both the expectation of the true p-value (the mean 

of the posterior probability distribution), and the variance of the p-value across all the 

alternative parameterizations. We used random subsamplings of the data from n = 10 to 

n = 35 to examine how the variance decreases with increasing n, and averaged the mean 

and Var(p) over multiple random subsamples of the same size. 

Analyses were conducted using custom scripts in Ruby and R, and a 

modification of freely available code for estimating maximum likelihood parameters for 

gamma distributions (Wessa 2008). 
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5.3.5.2 Tajima’s D comparisons 

For comparison of Tajima’s D, we resequenced 21 other regions in and around 

genes in the same or a subset of the individuals resequenced at the FY cis-regulatory 

region (Table 7). We calculated Tajima’s D for all loci using the program DnaSP version 

4.9 (Rozas et al. 2003), assuming no recombination. 

Table 7: Loci used for comparisons of Tajima’s D. Short segments were 
resequenced within the transcribed region of each locus or 5’ of the transcription 

start site in the putative cis-regulatory region for each locus given above. Haplotype 
was inferred using the program PHASE v. 2.1.1. In all cases, the individuals that 

were resequenced were included in the main set of individuals sequenced at the FY 
cis-regulatory region. N gives the number of alleles (2 per individual) in the final 

sample, S is the number of segregating sites identified in each region, pi gives the 
mean pairwise distance between alleles, theta is Watterson’s estimate of theta for 

nucleotide diversity, and D is the estimated value of Tajima’s D for each locus. 

Locus N ungapped length S pi theta/site D 
FY 344 636 6 0.00245 0.00147 1.260 
CCL5 318 648 4 0.00036 0.00097 -1.046 
CCR5 320 633 8 0.00130 0.00199 -0.722 
CD58 304 161 2 0.00088 0.00197 -0.713 
CD59 314 623 7 0.00217 0.00178 0.450 
CXCR4 202 583 4 0.00070 0.00117 -0.709 
CYP1A1 330 580 6 0.00166 0.00162 0.042 
CYP1B1 302 682 15 0.00131 0.00350 -1.527 
ESR1 242 415 1 0.00032 0.00040 -0.201 
IFNGR1 332 488 5 0.00115 0.00161 -0.512 
IL1A 342 514 6 0.00123 0.00182 -0.614 
IL4R 332 461 5 0.00257 0.00170 0.924 
IL6 286 602 6 0.00070 0.00160 -1.093 
IL10 162 716 3 0.00015 0.00074 -1.312 
IL12B1 322 589 6 0.00204 0.00160 0.515 
IL19 338 272 5 0.00259 0.00287 -0.177 
LTA 242 550 3 0.00070 0.00090 -0.339 
MEFV 326 524 11 0.00381 0.00330 0.350 
MPO 330 376 4 0.00006 0.00167 -1.600 
MSR1 336 281 8 0.00901 0.00445 2.122 
PHF11 332 318 4 0.00281 0.00197 0.711 
TAP2 204 584 14 0.00478 0.00407 0.437 
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5.4 Results 

5.4.1 Hepatocystis prevalence and association with the FY cis-
regulatory region 

We tested for the presence of Hepatocystis parasites by screening DNA samples 

extracted from baboon blood for 190 individuals in the Amboseli baboon population. 

We found a high incidence of Hepatocystis infection in the Amboseli population (61.9%), 

although rates of infection varied substantially between different social groups and over 

time (Figure 17), possibly because of differences in home range and hence exposure to 

the vector, a biting midge (Garnham et al. 1961). 

 

Figure 17: Differences by study group. The top bar graph shows differences 
in the proportion of individuals infected in each of the 9 study groups included in 
this study; the bottom bar graph shows the allele frequencies for the Hepatocystis 

associated FY cis-regulatory SNP. The x-axis label (study group) is given in the 
space between the two graphs, and is the same for both of them. Also given in 
parentheses are the range of years from which samples were obtained for each 

group (above the group ID), and the number of individuals sampled in each group 
(below the group ID). 
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In 174 of 190 baboons that we screened for Hepatocystis, we also sequenced the 

region of baboon DNA homologous to the annotated human FY cis-regulatory region. We 

identified six single nucleotide polymorphisms (SNPs) in the baboon FY cis-regulatory 

region (Figure 18; the malaria-associated SNP documented in humans was invariant in 

the baboons). Hepatocystis infection was significantly associated with an A/G variable 

site in the FY cis-regulatory region, in a model that took social group (a significant source 

of variance in infection) and genetic background into account. The risk of infection 

decreased as the number of G alleles an individual carried increased (p < 0.012, n = 174; 

Figure 19). 

 

Figure 18: Schematic of the baboon FY gene (not to scale). Boxed regions: 
regions of the gene present in mature mRNA (open boxes: untranslated regions; 
black boxes: protein coding sequence). Gray lines: untranscribed regions. Bent 

arrow: start of transcription. Downward arrows: two baboon SNPs used as markers 
for the pyrosequencing assays. Vertical black bars: cis-regulatory SNPs in baboons, 
with the Hepatocystis-associated SNP labeled as “A/G” and the allelic imbalance-
associated SNP labeled as “C/T.” Dashed vertical bar: location of the functional 

SNP known in humans. Dashed horizontal lines provide relative distances and/or 
sizes of features. Location of the (CA)n microsatellite used in the Fst analyses is also 

shown upstream. 

 

Figure 19: Genotype at the FY cis-regulatory A/G SNP is associated with 
Hepatocystis infection. The proportion of uninfected individuals is shown in grey, 

and the proportion of infected individuals is shown in white. Left side shows results 
for the entire sample set (n = 174; p < 0.012); right side shows results only for 

members of the six groups with high prevalence (> 75%) of Hepatocystis infection (n 
= 111; p < 0.004). Numbers below each genotype show the number of individuals for 

the given genotype. 
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5.4.2 Genetic variation in the FY cis-regulatory region influences gene 
expression 

We also investigated whether FY cis-regulatory variation in baboons causally 

influences gene expression, as the C/T variant does in humans. We collected 101 

samples of RNA-preserved blood from adults in six baboon social groups between 2004 

and 2008, and used these samples to measure allele-specific expression at the FY locus 

using pyrosequencing. Specifically, we investigated whether the level of FY expression 

driven by one cis-regulatory FY allele differed from the level of FY expression driven by 

the other cis-regulatory FY allele, within the same individual. Because allele-specific 

expression compares the relative amounts of gene expression within individuals, it 

controls for effects on gene expression operating in trans, such as those produced by 

genetic background or by environmental main effects (Yan et al. 2002; Wittkopp et al. 

2004). If the two alleles within an individual drive expression differently (allelic 

imbalance), that individual is likely to harbour a functional cis-regulatory variant that 

influences gene expression. 

We measured allele-specific expression in 38 individuals (all the individuals 

among the 101 RNA-sampled baboons that were heterozygous at a transcribed 

pyrosequencing assay SNP: see Figure 18). Average log2 fold-change differences in 

expression between alleles within heterozygous individuals ranged from −0.002 (no 

difference between alleles) to 2.13 (substantial difference between alleles). This 

suggested that one or more common functional cis-regulatory variants influenced 

expression of the baboon FY gene in the Amboseli population. We predicted that if a cis-

regulatory variant contributes to variation in gene expression, then individuals 

heterozygous at the cis-regulatory site would show significantly higher levels of allelic 

imbalance than individuals homozygous for the same variant. 
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Genotypes at four of the six SNPs in the baboon FY cis-regulatory region were 

sufficiently variable to test for an association with allelic imbalance. Genotype at the 

SNP closest to the start of transcription, a C/T transition, was significantly associated 

with allelic imbalance in the predicted direction: heterozygotes exhibited higher levels of 

allelic imbalance than homozygotes (P < 0.002, n = 38; Figure 20). However, this site 

explained only 22.0% of the overall variance in the allelic imbalance samples, after 

taking into account year of sampling. These results suggested that this C/T SNP 

functionally influences gene expression of the FY gene within the baboon population, but 

that additional cis-regulatory variants probably also play a part. 

 

Figure 20: Allelic imbalance associates with FY cis-regulatory genotype. 
Height of the bars shows the mean for each genotypic class (heterozygotes: 0.329 ±  
0.116 SEM; homozygotes: -0.285 ±  0.086 SEM). The y-axis gives the residuals of log2-
transformed allelic imbalance on year of sampling (n = 38). Heterozygotes at the C/T 
SNP exhibit high values of allelic imbalance relative to homozygotes at the C/T SNP 
after controlling for the effect of year of sampling. High values indicate that the two 

alleles of the FY gene are transcribed at different levels within individuals, and 
suggest a functional cis-regulatory role for this SNP. 

We next investigated the A/G SNP in the FY cis-regulatory region that we had 

associated with Hepatocystis infection risk. Of the 38 individuals for whom we measured 

allele-specific expression, 37 were heterozygous for this A/G SNP. Hence, we could not 
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compare allelic imbalance levels between heterozygotes and homozygotes at this site. 

We therefore tested this variant for possible functional effects using an in vitro approach 

in cell culture. We also used this framework to test further whether the C/T variant that 

was associated with allelic imbalance causally influenced FY expression. For each of 

these two regulatory SNPs (A/G and C/T), we built two plasmid constructs consisting 

of the FY cis-regulatory region linked to the firefly luciferase gene, such that the two 

constructs differed only at the variable site. We then tested the ability of these 

constructs to drive gene expression in a human erythroleukaemic (HEL) cell line. For the 

C/T SNP, the T allele construct drove significantly higher levels of expression than the 

alternative C allele construct (P < 0.0001; Figure 21a). Similarly, for the A/G SNP, the G 

allele construct drove significantly higher levels of expression than the alternative A 

allele construct (P < 0.0001; Figure 21b). These results suggest that both SNPs have the 

capacity to drive differential expression of the FY gene. In the case of the C/T SNP, for 

which both in vivo and in vitro analyses were possible, the T allele was associated with 

higher levels of expression in both experiments. Unlike the human case, in which one 

regulatory SNP results in null expression, all the baboon haplotypes we tested drove 

robust expression of the gene. 
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Figure 21: FY cis-regulatory variation drives differential expression in vitro. 
(a) The C/T SNP identified through the allelic imbalance measurements and (b) the 
A/G SNP that associates with Hepatocystis infection (right) drive differential gene 

expression compared to the alternative allele of the same SNP in cell culture. Values 
on the y-axis give the relative ratio of firefly luciferase luminescence to a control 

renilla luciferase reporter. Human constructs from a normal expressing individual 
(haplotype from the CEPH/Utah HapMap panel) and a null expressing individual 
(Luhya) and an empty vector are shown for comparison. Error bars show SEM for 

each construct. 

5.4.3 The FY cis-regulatory region may have been a target of natural 
selection 

Baboons, like humans, may also exhibit evidence of non-neutral evolution at the 

FY cis-regulatory region. We detected an increased level of population differentiation 

among East African baboon populations around FY, by comparing a FY-linked 

microsatellite with 35 neutral microsatellites (Fst = 0.31, P < 0.029; range of Fst, a metric 

describing genetic divergence between populations based on allele frequency differences 

at variable sites, for the neutral markers was 0.008–0.346, Figure 22). We also detected 

a higher value for the Tajima’s D statistic (D = 1.26) in this region relative to nine of nine 

other resequenced putative cis-regulatory regions in the Amboseli population and 11 of 

12 resequenced transcribed regions (range of D for all other loci was −1.60 to 2.12). The 

only locus with a higher value of D, a transcribed portion of the gene MSR1, exhibited an 

even more extreme value than that identified for the MHC DQA1 promoter in baboons 
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(Loisel 2007), which is known to evolve under strong trans-specific balancing selection 

(Loisel et al. 2006).  

Interestingly, a sliding window analysis showed that the peak values of D 

corresponded well with the Hepatocystis and allelic-imbalance-associated SNPs (Figure 

22). Given that rates of Hepatocystis infection appear to vary across different 

populations (30% in the Masai Mara Reserve, Kenya, n = 10; 90% in Mikumi National 

Park, Tanzania, n = 20), these results suggest that the baboon FY cis-regulatory region 

may be subject to a complex selective history similar to the case described in humans 

(Hamblin et al. 2002; Seixas et al. 2002) in which differing levels of pathogen pressure 

across populations are associated with high levels of population differentiation around 

the FY gene, and varying signatures of selection within populations. 
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Figure 22: Comparison of genetic variation in and around the FY cis-
regulatory region in relationship to other loci. Between population variation is 

shown in a) the distribution of Fst values between the Amboseli, Mikumi, and Masai 
Mara baboon populations for the FY linked microsatellite and 35 putatively neutral 

microsatellites around the genome. Within population variation in Amboseli is 
shown in b) the distribution of Tajima’s D values within Amboseli from 22 loci in the 
baboon genome. Tajima’s D was calculated using resequencing data for each locus 

and implemented using the DNAsp v. 4.9, assuming no recombination; and c) 
results of a sliding window analysis of Tajima’s D for the FY cis-regulatory region 
within Amboseli, where window size = 100 bp and window interval = 50 bp. The 

locations of SNPs in the region are shown in red. 

5.5 Discussion 

Together, these data indicate that the FY cis-regulatory region is associated with 

parasite infection in a wild population of baboons, and that functional sequence 

variants within this region causally influence the level of expression of the FY gene. As in 

humans, variation in gene expression at the FY locus may therefore be important in 

parasite susceptibility, either through altering the direct access of Hepatocystis to baboon 

erythrocytes or, as has recently been demonstrated in humans, by altering a more general 
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property of the immune system, such as relative white blood cell counts (Reich et al. 

2009).  

These results suggest that the genetic basis of phenotypic variation in different 

primate species can exhibit a remarkable degree of parallelism. In this case, not only are 

these similarities present on the molecular level or on the level of trait association, as 

shown by previous work (Loisel et al. 2006; Wooding et al. 2006), but they also extend to 

the mechanism that links molecular and phenotypic variation (which is probably gene 

expression). 

In spite of the parallelisms that we have documented for baboon and human FY, 

the functional variants we have identified in baboons are not homologous to the known 

functional variant in humans, which reveals that phenotypic variation in different 

primate species may show similar, but not precisely convergent, patterns of evolution. 

Indeed, while in humans the FY–malaria relationship is Mendelian, both FY expression 

and infection by Hepatocystis in baboons are clearly complex traits: even individuals 

homozygous for the Hepatocystis ‘resistance’ variant (the G allele at the A/G SNP) suffer 

from parasitism, albeit at a lower rate (52.2% of GG homozygotes were infected, versus 

67.9% of AA homozygotes, across all study groups: see Figure 19). Additionally, the in 

vitro cell culture experiments suggest that the G allele of this variant actually drives 

higher expression of FY than the alternative A allele, even though the G allele is 

associated with a lower risk of Hepatocystis infection. The relationship between FY gene 

expression and Hepatocystis in baboons is therefore clearly different from that in 

humans, perhaps owing to balancing the cost of infection by other blood parasites, some 

of which are not known to co-occur with, and might be excluded by, Hepatocystis (Moore 

and Kuntz 1975). Alternatively, while the in vitro data on the A/G variant strongly 

suggest that this site has the capacity to influence FY gene expression, the direction and 

magnitude of its effects may differ in its natural cellular context. 
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This possibility is supported by the differences in magnitude of the effect of the 

C/T cis-regulatory variant in the in vitro transfection assays and the in vivo allelic 

imbalance measurements. In vivo gene expression measurements are complicated by 

variation in genetic background and in the environment, both of which can modify 

functional cis-regulatory effects (Brem et al. 2005; Smith and Kruglyak 2008). Indeed, our 

results show that even baboons that are homozygotes at the C/T site sometimes exhibit 

allelic imbalance in FY expression, suggesting that other, unidentified functional cis-

regulatory variants are also segregating in the population. In contrast, in the in vitro 

comparisons, only a single cis-regulatory site differed between the experimental 

constructs, thus controlling for both environment and genetic backgrounds. Using both 

approaches in tandem can be synergistic: while in vitro experiments can help pin down 

specific functional sites, in vivo results demonstrate that these effects are relevant to the 

biology of individuals in the wild. 

Thus, although identifying the genetic basis for phenotypic variation in wild 

primates poses substantial challenges, we present this study as a model to motivate 

additional evolutionary genetic research on natural primate populations. This work is 

essential if we hope to integrate an evolutionary and functional genetic perspective into 

the rich tradition of organismal research on these species. Our results demonstrate that 

patterns of variation in nonhuman primates can provide unique insights into the 

influence of ecological and environmental factors on genetic and trait variation in 

humans. Integrative research on nonhuman primates should also help us develop a better 

understanding of the evolution of our own species. 
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