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Abstract

Drylands, comprising arid and semi-arid areas and the dry subtropics, cover some

40% of the world’s land area and support approximately 2 billion people, including

at least 1 billion who depend on dryland agriculture and grazing. 10-20% of dry-

lands are estimated to have already undergone degradation or desertification, and

lack of monitoring and assessment remains a key impediment to preventing further

desertification. Change in vegetation cover, specifically in the spatial organization

of vegetation may occur prior to irreversible land degradation, and can be used to

assess desertification risk. Coherent spatial structures arise in the distribution of

dryland vegetation where plant growth is localized in regular spatial patterns. Such

“patterned vegetation” occurs across a variety of vegetation and soil types, extends

over at least 18 million hectares, occurs in 5 continents and is economically and

environmentally valuable in its own right.

Vegetation patterning in drylands arises due to positive feedbacks between hy-

drological forcing and plant growth so that the patterns change in response to trends

in mean annual rainfall. Mathematical models indicate that vegetation patterns col-

lapse to a desertified state after undergoing a characteristic set of transformations,

so that the condition of a pattern at any point in time can be explicitly linked to

ecosystem health. This dissertation focuses on the mathematical description of veg-

etation patterns with a view to improving such predictions. It evaluates the validity

of current mathematical descriptions of patterning for the specific case of small-
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scale vegetation patterns and proposes alternative hypotheses for their formation. It

assesses the significance of seed dispersal in determining pattern form and dynam-

ics for two cases: vegetation growing on flat ground with isotropic patterning, and

vegetation growing on slopes and having anisotropic (i.e. directional) patterning.

Thirdly, the feedbacks between local biomass density and infiltration capacity, one

of the positive feedbacks believed to contribute to patterning, are quantified across

a wide range of soil and climatic conditions, and new mathematical descriptions of

the biomass-infiltration relationship are proposed. Finally the influence of land sur-

face microtopography on the partitioning of rainfall into infiltration and runoff is

assessed.
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1

Introduction

Semi-arid landscapes are characterized by sparse and patchy vegetation cover, in-

terspersed by areas of essentially bare ground. Vegetation cover in these landscapes

correlates strongly with areas in which resources such as nutrients, soil organic car-

bon, and soil moisture are concentrated, in so-called: ‘islands of fertility’ [Schlesinger

et al., 1996]. The spatial arrangement of vegetation in semi-arid landscapes varies

from random to fractal (i.e. a power-law distribution of vegetation patch sizes) to

highly organized [Caylor et al., 2004, Scanlon et al., 2007, Valentin and d’Herbes,

1999]. The explanation of this variation in spatial structure, and determining whether

such structures offer meaningful insight into the condition and management of dry-

lands, has drawn increasing attention [Kefi et al., 2007a]. Indeed, as the management

of the global drylands comes under increasing scrutiny, efforts to monitor and diag-

nose the ecological, social and economic status of semi-arid ecosystems are being

highlighted as critical scientific needs [Dryland Science for Development Consortium

Working Group 1, 2009]. Remote sensing is an attractive tool for assessing the health

of drylands, but simple measures of greeness such as NDVI are increasingly viewed

as “blunt instruments”, so that additional diagnostics of dryland status are desir-
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able [Herrmann et al., 2005]. The broad objective of the research in this thesis is to

progress towards a detailed understanding of highly organized vegetation patterns,

and to develop components of the framework that will be needed to allow the in-

terpretation of these patterns in terms of underlying ecosystem dynamics. If this

aim can be achieved, then vegetation patterns may be used as indicators of regional

ecosystem condition, adding a new diagnostic and potentially prognostic tool for

improved monitoring and prediction in semi-arid environments.

A review of periodic vegetation patterning and the variety of theory proposed to

describe it was published recently providing an excellent outline of the state of the

field [Borgogno et al., 2009]. Given the recent publication of this review, this intro-

duction focuses on providing a broad overview and motivation for the work under-

taken in this dissertation, rather than repeating another detailed literature review.

Thus, this introductory section will firstly introduce what is meant by vegetation

patterns and outline their appearance, characteristics and global distribution. The

potential value of monitoring vegetation patterns as a means of forecasting change in

dryland ecosystems will be discussed with reference to modeling frameworks that are

currently being employed. The value of numerical models of patterned vegetation

will be highlighted, along with the rationale for focusing on model development in

this thesis. Finally, a conceptual model for the use of vegetation patterns as indica-

tors of ecosystem health in drylands will be presented, and the individual chapters

of this thesis outlined with reference to this ultimate conceptual goal.

1.1 What are vegetation patterns?

Vegetation patterns, most broadly, refer to the spatial organization of vegetation in

a landscape. This organization may be determined by species type, as observed in

changing dominant species down a watershed catena [Hwang et al., 2009]; by bulk

presence or absence of vegetation, as observed in the case of abrupt switches from

2



1500 m

A B C

Figure 1.1: Examples of the different forms taken by vegetation spatial patterns.
A) Coherent, regular patterns with a dominant wavelength. This example is from
near Fort Stockon, Texas. B) Random patterns overlain on an optimal distribution
of vegetation type determined by the river network (see Caylor et al. for details
[Caylor et al., 2004]) in the Rio Salada River Basin, New Mexico. C) The size of
vegetation patches in the Kalahari Desert has been shown to conform to a power law
distribution. All examples taken from Google Earth.

trees to shrubs associated with changes in aspect in dryland catchments [Gutierrez-

Jurado et al., 2006]; or by the spatial pattern of the matrix of perennial vegetation

across otherwise bare, or annual dominated landscapes [Caylor et al., 2004, Puigde-

fabregas, 2005] (See Figure 1.1).

Vegetation patterns are of interest to a diverse community of ecologists, hydrol-

ogists, geomorphologists and micrometeorologists, because the structure imposed by

the pattern feeds back on landscape-scale biological and physical processes [Puigde-

fabregas, 2005, Aguiar and Sala, 1999, Bergkamp, 1998, Bracken and Kirkby, 2005,

Bracken and Croke, 2007, Dekker et al., 2007]. Here the focus will be upon a specific

subset of vegetation patterns: those which have a well-defined wavelength and are or-

ganized into coherent, periodic structures. From this point onwards, when the term

‘vegetation pattern’ or ‘pattern’ is used it will refer specifically to such organized

periodic structures.

3



500 m 1500 m

A B C

Figure 1.2: Examples of some of the morphologies adopated by patterned vegeta-
tion. A) Spotted patterns in southern Niger. B) Broken striped patterns in eastern
Mali (same scale as A). C) A complex patterned landscape in which gapped patterns,
labyrinthine patterns and striped patterns are all shown to locally coexist. The large
circular feature at the top left of the image is a village, highlighting that these land-
scapes are anthropogenically influenced. The landscape is found in southern Niger.
All examples taken from Google Earth.

1.1.1 Coherent periodic vegetation patterns

Coherent periodic vegetation patterns are characterized by having one, or several,

dominant wave-vectors (wavenumbers) when viewed in the frequency domain. The

vegetation pattern is typically formed by perennial trees, shrubs, chenopods or

grasses overlying a matrix composed of bare soil, annually-colonized areas, or a con-

trasting vegetation type [D’Herbes et al., 2001]. Vegetation patterns may consist

of largely linear features (stripes, also known as Tiger Bush, Mulga or Mogote),

typically arrayed along slope contours, or they may have an imperfect three-fold

symmetry and consist of spots, bare gaps within a vegetated matrix, or labyrinthine

patterns [Lefever and Lejeune, 1997, Dunkerley, 2002b] (See Figure 1.2).

1.1.2 Distribution and typical characteristics of vegetation patterns

Vegetation patterns have a global distribution in semi-arid ecosystems, suggesting

that rather than being a species- or area-specific trait, the phenomenon of vege-

tation patterning arises as a response to environmental conditions in these regions

4



[Deblauwe et al., 2008]. Vegetation patterns have been studied in the field in East-

ern Africa (Somalia, Ethiopia, Sudan) [Boaler and Hodge, 1964, Wickens and Collier,

1971, Worrall, 1959, Deblauwe et al., 2008], in the Sahel (Niger, Mali, Mauritania

and Senegal), Australia (Western Australia, the Northern Territory, western New

South Wales and south-western Queensland), Mexico (Chihuahuan desert) and Texas

(northern Chihuahuan desert) [Valentin and d’Herbes, 1999, Barbier et al., 2006,

Leprun, 1999, Deblauwe et al., 2008, Dunkerley, 2002b, Dunkerley and Brown, 1999,

Tongway and Ludwig, 1990, McDonald et al., 2009, Cornet et al., 1992, Anderson

and Hodgkinson, 1997, Mabbutt and Fanning, 1987].

A recent biogeographic study by Deblauwe et al. [2008] verified that vegetation

patterning arises on at least 0.4% of the global drylands, although this figure is almost

certainly an underestimate since the study excluded patterns with wavelengths of

less than 60m. This study was also able to identify several major determinants of

the biogeography of vegetation patterns, namely the degree of aridity (as quantified

with a humidity index), and high seasonality in either temperature or precipitation

(although not both) [Deblauwe et al., 2008].

Beyond the climatic factors identified above, a number of consistent trends have

been noted in sites containing periodic vegetation patterns. Patterned sites all expe-

rience periods of water stress generated by either highly seasonal rainfall or uniformly

low rainfall rates. Patterns tend to occur on areas of low slope (< 2%), with rel-

atively fine textured soils (patterns have been observed to fail when sandy soils,

deposited by wind erosion, were introduced to a previously patterned landscape),

and are often associated with biological soil crusts [Rietkerk et al., 2002, Valentin

and d’Herbes, 1999, Gilad, 2004]. A less commonly reported feature of patterned

sites is the presence of a shallow confining layer, identified broadly in Niger [Barbier

et al., 2006] and recently shown to occur in banded sites in Texas [McDonald et al.,

2009].
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Figure 1.3: Deblauwe et al. predictions for the global distribution of coherent vege-
tation patterns based on a biogeographic analysis. The darker the shading the higher
the predicted confidence (tending to a maximum of 1) that periodic patterns would
occur in this region. Green areas indicate local verification of periodic patterning via
remote sensing studies [Deblauwe et al., 2008].

1.1.3 Why do dryland vegetation patterns arise?

Arid vegetation patterns represent an example of a Turing instability [Turing, 1952],

also known as a reaction-diffusion or activator-inhibitor instability [Murray, 2003b].

Such instabilities arise in the presence of at least two components which can move

through space, and which have opposing effects on the generation of a pattern, with

one component tending to cause growth in the pattern-forming medium (the activa-

tor), and the other tending to oppose growth (the inhibitor). If the rate at which

these components moves through space differs, with the inhibitor moving faster than

the activator, then conditions for pattern formation are established: the local growth

of a pattern will be damped at its margins by the presence of the more rapidly mov-

ing inhibiting component. In a traditional framework, “movement” takes the form

of diffusion, as appropriate to the chemical systems where Turing instabilities were

initially studied [Borgogno et al., 2009].

Translating the Turing framework to the case of vegetation patterns is not en-
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tirely straightforward, because rather than a particular state variable acting as an

activator or inhibitor, the pattern formation arises from activating and inhibiting

interactions between state variables [Borgogno et al., 2009]. If water is presumed

to be a limiting resource, then mechanisms that increase water availability to plants

are activating processes, and mechanisms that decrease its availability are inhibiting.

Activation is associated with a number of mechanisms including increased infiltra-

tion rates in the proximity of plants compared to bare soil areas [Dunkerley, 2002b,

Valentin and d’Herbes, 1999] and increased shading of the soil surface [Zeng et al.,

2005, 2004, Scholes and Archer, 1997]. Inhibition is associated with plant compe-

tition for water, both locally (within individual vegetated patches) and globally, in

terms of the ability for vegetated areas to intercept surface moisture resources that

might otherwise infiltrate elsewhere. The relative importance of above- and below-

ground competition for water is stressed differently in different models, with some

explicitly accounting for extensive lateral root distributions [Gilad, 2004]. Recent

field experiments have confirmed that the lateral extent of root systems in Niger ex-

ceeds 8m, largely confined to the surface soils by a shallow impervious layer [Barbier

et al., 2006, 2008]. Thus, vegetation patterns are associated with a global constraint

on water availability that is spatially modified by extensive rooting systems and/or

significant runoff, leading to concentration of the soil moisture resource at vegetated

sites.

1.2 Why are vegetation patterns important?

Other than their beauty and intriguing self organization, vegetation patterns are

viewed as important for three reasons:

• The information contained in a spatial pattern may allow inference of important

features of a system’s ecology and hydrology;

7



• Models suggest that the existence of vegetation patterning is an indicator of

a bistable system. Such systems may exhibit thresholds in their dynamical

behaviour and encode the possibility of hysteresis; and

• Models further suggest that a predictable sequence of change in vegetation

pattern morphology is encountered as the ecosystem transitions towards a

nonlinear threshold (often referred to as a ‘catastrophic ecosystem shift’ i.e.

desertification).

1.2.1 Observations of change in vegetation patterns

The best observational evidence of change in vegetation patterns associated with

stressors including drought and grazing is presented in a study by Barbier et al.

[2006]. These authors compared aerial photographs of vegetation in the vicinity of

the Parc W Biosphere Reserve in southern Niger over a 45 year period. During this

period, all vegetation experienced a drought; vegetation outside the Reserve was also

subject to increased grazing. At all sites, the formerly homogeneous vegetation cover

showed evidence of fragmentation over the 45 year period, including the formation of

bare gaps. The most dramatic change was at a site that experienced heavy grazing

in addition to the drought, where vegetation fragmented into a labyrinthine pattern

(c.f. Figure 1.2, C) of interconnected bare and vegetated patches.

1.2.2 Simple models of vegetation patterns

The sequence of vegetation change observed in the study by Barbier et al. [2006]

corresponds well to that predicted by several models of the dynamics of macro-

scopic vegetation patterns [Rietkerk et al., 2002, von Hardenberg et al., 2001]. These

models firstly predict the existence of a bistability where ecosystems may exist in

a patterned state or a desertified state essentially void of vegetation. Bifurcations

between the steady states arise under very different climatic and land use conditions.
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Figure 1.4: Schematic of the bistability in the desert ecosystem and the potential
for abrupt transitions to and from desertified and vegetated states. The typical
sequence of vegetation pattern change (for an isotropic case) is shown. The figure is
adapted from Rietkerk et al. [2002].

The implication of this separation is that ecosystem change is strongly hysteretic, so

that desertification is difficult to reverse. Finally, models predict that as a vegetated

state is driven towards the desertification threshold, the morphology of the vegeta-

tion pattern will undergo a series of predictable changes. As the system desertifies,

homogeneous states decay into gapped patterns, then labyrinths, then spots and

finally bare soil. Similarly, under increased water stress the wavelength of banded

patterns tends to increase, while the width of the vegetated bands decreases.
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1.3 A conceptual approach for interpreting vegetation patterning

Given this background regarding vegetation patterns, it is possible to clearly articu-

late a process that capitalizes on the “important” properties of vegetation patterns

outlined above to use vegetation patterns to learn about and forecast the behaviour

of dryland ecosystems. This goal is schematically represented in Figure 1.5 below.

Firstly, one or multiple observations of a vegetation pattern are combined with a

process model to obtain estimates of the parameters that govern the pattern evolu-

tion. Physical and biological constraints on these parameters, as well as information

regarding sensitivity of the model to these parameters can be used to simplify the

parameter estimation problem. Having obtained parameter estimates, a working

model of the ecosystem of interest can be constructed, and subjected to projections

about future changes in land use, rainfall, temperature, CO2 concentrations or other

forcing variables. By running the model across multiple realizations of these projec-

tions, changes in resilience of the ecosystem (for instance as measured by the width

of the bistable region) and the probability of desertification can be computed. This

information can then be used to prioritize land use or management interventions.

A robust and reliable model of the pattern-forming ecohydrological interactions

is a critical component of this conceptual approach. The model must be parame-

terized by “measurable” quantities (e.g. water use efficiency) for which reasonable

projections can be made. Progressing towards such a model is the ultimate aim of

the work presented in this dissertation. Although the contributions detailed here do

not provide “closure” on the issue, they are necessary first steps towards improved

understanding and prediction of vegetation patterning. The final section of this in-

troduction will introduce an existing state-of-the-art model for vegetation patterning,

highlight areas where progress is needed, and explain how the chapters of this thesis

extend our understanding and the utility of the modeling approach.
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Figure 1.5: A conceptual model for assimilating information obtained from obser-
vations of vegetation patterns into a framework that can be used to project ecosystem
resilience and desertification probabilties as a guide for land managers and decision
makers.

1.3.1 Definition of the problem

The starting point for much of this work is the numerical model first proposed by

HilleRisLambers et al. [2001] and refined by Rietkerk et al. [2002]. This model

consists of three coupled differential equations linking surface water, soil moisture

and biomass dynamics. The equations are:

∂P

∂t
= cgmax

W

W + k1

P − dP +Dp∇2P, (1.1)

where P is the plant biomass in gm−2.

∂W

∂t
= αO

P + k2Wo

P + k2

− gmax
W

W + k1

P − rwW +Dw∇2W, (1.2)
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Parameter Definition
c water uptake to plant growth relation, g mm−1m−2

gmax maximum specific water uptake, mm m2 g−1 day−1

k1 half saturation constant of water uptake, mm
d death rate, day−1

Dp biomass diffusion coefficient, m2 day−1

Dw soil moisture diffusion coefficient, m2 day−1

Do surface water diffusion coefficient m2 day−1

Dp mean surface water velocity m day−1

α maximum infiltration rate day−1

Wo the rate of infiltration in the absence of plants, [ ]
rw timescale of water loss due to evaporation and drainage, day−1

R precipitation, mm day−1

∇2 The Laplacian, ∂2/∂x2 + ∂2/∂y2

x and y Cartesian spatial coordinates

Table 1.1: Parameters of the HilleRisLambers / Rietkerk model

where W is the soil water depth in mm; and

∂O

∂t
= R− αOP + k2Wo

P + k2

+
(
Do∇2O

)
or

(
Vo
∂O

∂x

)
, (1.3)

where O is the surface water depth in mm. The parameters are defined in Table 1.1.

This is the model that was used to generate the pattern sequence in Figure 1.4.

1.3.2 Refining the models

Examination of the model output (as shown in the examples in Figure 1.4) reveals a

curious feature, in that by simply rescaling the process parameters, identical pattern

morphologies could be produced spanning a range of cm to many 100s of meters.

Indeed, von Hardenberg et al. [2001] have proposed a strongly analogous model

intended to reproduce observed patterns at the scale of cm, in contrast to the much

larger scale patterns discussed to date. This rescaling was largely achieved through

consideration of systems with very high subsurface redistribution of soil moisture.

Thus, the range of spatial scales over which these models can be meaningfully applied,
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and verification of whether the mechanisms of pattern formation are truly scale

invariant over many orders of magnitude must be clarified. Assessing the mechanism

of pattern formation at very small scales (where the Turing model approach has not

been verified by field measurements to date) forms the subject of Chapter 2 of this

dissertation.

Examining the mathematical form of the model in Equations 1.1, 1.2, 1.3 reveals

the largely phenomenological nature of its construction. Indeed, there are several

features of the model construction that could be refined to improve the realism of

the process representation. This dissertation focuses on three key areas:

• The representation of biomass transport processes;

• The form of the infiltration feedback; and

• The implications of micro-topography on overland flow.

Biomass transport

In the existing model biomass transport is represented as diffusive (the ‘green slime’

approach [Borgogno et al., 2009]). As such, biomass transport is isotropic (or at

least based on an isotropic kernel) and driven strongly by local gradients of vege-

tation biomass. There are several issues associated with this representation. First,

diffusion coefficients are difficult to estimate or measure based on field data, mak-

ing parameterization of this term problematic [Okubo and Kareiva, 1980]. Second,

the biomass gradients that drive diffusion exist only at the boundary of vegetated

sites. However, vegetation reproduces at all locations, generating seed which may be

transported nonlocally [Borgogno et al., 2009]. Finally, the assumption of isotropic

biomass transport encoded in a diffusive representation is questionable, in light of

measured seed bank distributions and preliminary modeling by Saco et al. [2007] that
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Figure 1.6: The chapters of this dissertation can be explicitly related to process
issues associated with various components of the HilleRisLambers/ Rietkerk model.

suggest that a net downslope transport of seeds might be associated with overland

flow, at least on sloping sites. Thus, three separate issues associated with biomass

transport have been addressed: how to estimate a diffusion coefficient appropriately

in the diffusive representation (Chapter 3); the effects of adopting a more realistic

depiction of seed dispersal in the models (Chapter 4) and finally, the implications of

anisotropy in seed dispersal behaviour (Chapter 5).

Feedback processes

The key feedback considered in Equations 1.1, 1.2, 1.3 is the feedback between infil-

tration rate and local biomass density, which is represented as a saturating Michaelis-

Menten-type function. Despite numerous site-specific studies that demonstrate the

14



existence of biomass-infiltration relationships, the mathematical form of such rela-

tionships have not been confirmed. Nor has the sensitivity of a biomass-infiltration

relationship to soil type or climate been elucidated. These issues are addressed in

Chapter 6.

Challenges for hydrology

The final issue explored in this thesis is the potential for micro-topographic variations

on the land surface to alter the behaviour of overland flow and infiltration in arid

landscapes. Naturally, overland flow and micro-topography are not the only topic

that frame these hydrologic challenges. However, in line with the main theme of this

thesis, this Chapter was motivated by the observation that on the gently sloping

landscapes where vegetation patterns arise, local micro-topography may provide a

greater driver for surface water flow than does the mean slope. As a precursor to

developing a process representation that specifically relates micro-topography to veg-

etation patterning, Chapter 7 develops an extension to existing hydrological theory

that can account for the influence of micro-topography on rainfall-runoff partitioning

under idealized circumstances.

Future Directions

While the number of eco-hydrologic processes to be explored in the context of pat-

terned vegetation can be extended indefinitely, the final chapter of this thesis focuses

on the next steps building on this work. They include a combination of proposed

field experiments and novel facilities, a data assimilation framework to move towards

forecasting ecosystem health using available remote sensing products, and further

assessment of the coupling between the ecological, hydrological, and geomorphic at-

tributes of patterned landscapes.

15



2

A porous convection model for small-scale grass
patterns

2.1 Introduction

Ecological pattern formation occurs in a wide array of contexts [Rietkerk and van de

Koppel, 2008], but the hypothesized mechanisms have focused on scale dependent

feedback or reaction-diffusion processes. Mechanisms of this sort, where growth of

the pattern is enhanced at small scales but suppressed at large scales, produce what

are known as Turing patterns [Turing, 1952]. An alternative class of hydrodynamic

pattern-forming mechanisms, arising from instabilities in the motion of fluids [Cross

and Hohenberg, 1993], has been largely omitted from discussions of ecological pat-

terns. Patterns arising due to Turing or hydrodynamic processes are not generally

distinguishable on the basis of morphology alone.

Short wavelength (λ) vegetation patterns comprised of brown and green bands

with λ ≈ 10 cm have been observed in short-canopy warm season grasses [von Hard-

enberg et al., 2001, Meron et al., 2004, Miller, G. L. pers. com.] and were previously

hypothesized to arise due to Turing-type effects based on water scarcity (as per
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Valentin et al., 1999). Thus, they would form part of a scale-invariant spectrum of

vegetation patterning along with patterns of λ ≈ 50 to 100 m commonly occurring in

deserts [Deblauwe et al., 2008, Rietkerk et al., 2004]. The small-scale grass patterns

are morphologically similar to both Turing patterns and those produced by thermal

convection of a fluid [Cross and Hohenberg, 1993, Shattuck et al., 1995].

We present a new hypothesis to explain these patterns: that a thermal gradient

between warm ground and cool air is unstable to thermal convection, generating

a pattern of rising warm air and falling cold air. Chilling injuries associated with

the falling cold air then produce characteristic brown bands of ‘dead’ vegetation.

This hypothesis is consistent with several features of small-scale vegetation patterns,

including their length scale, rapid onset and transient nature. In contrast, for a

Turing process driven by soil moisture availability to generate coherent, small-scale

patterns would require a remarkable degree of organization within the soil, opposing

the tendency of redistribution and root activity to homogenize soil moisture on short

length scales [Katul et al., 1997]. In this paper we draw on established models of

thermal convection to predict the conditions under which convection rolls might lead

to patterning in a vegetation canopy. These quantitative predictions are then tested

against field observations of a naturally occurring instance of grass patterning.

2.2 Thermal convection hypothesis

When a fluid-saturated porous medium is heated from below, heat is transported

by thermal conduction. Although this heating results in the base layer of fluid

being more buoyant than the overlying fluid, viscous drag and thermal diffusivity

both oppose its upward motion. As the temperature at the base of the fluid column

increases, the buoyancy overcomes these stabilizing effects and the conducting regime

gives way to convection. The convective state is characterized by regions of rising

warm fluid, adjacent to regions of falling, cold fluid [Ball, 2001, e.g.]. The resulting
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Figure 2.1: Schematic of parameters used in porous convection model (not to
scale).

convection rolls are shown schematically in Figure 2.1, along with a definition of key

parameters. Typically, convection rolls form locally-parallel stripes (which can bend

to form labyrinthine patterns) or spots; in the case of convection within a porous

medium [Howle et al., 1993, Shattuck et al., 1995], the patterns are morphologically

similar to those observed in vegetation.

We hypothesize that small-scale grass patterns can be formed by this hydrody-

namic process: the observed pattern of green and brown grasses could arise from the

combination of convection and chill damage if falling air was cold enough to damage

grass, and rising air warm enough to protect it. The rapid formation and transient

nature of grass patterns is suggestive of chill-damage as a possible cause: such dam-

age occurs when ambient temperatures drop too rapidly for plants to acclimate, and

results in usually non-fatal tissue damage such as browning and death of leaves [Taiz

and Zeiger, 2005]. Warm-season grasses can be damaged by less than an hour of

exposure to near-freezing temperatures [Atwell et al., 1999].

The onset of porous medium convection occurs when buoyancy overcomes the

stabilizing forces of viscosity and heat conduction. This balance is quantified by a

ratio known as the Rayleigh number, where the buoyancy terms are in the numerator

and the stabilizing terms in the denominator:

Ra =
Kαg∆Td

κν
, (2.1)
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Here, α is the thermal expansion coefficient of the fluid, g is the acceleration due

to gravity, ∆T is the difference in temperature between the solid bottom and the

fluid at the upper boundary, d is the thickness of the porous medium, and ν is the

kinematic viscosity of the fluid. Two parameters, the permeability K and the thermal

conductivity κ, depend on the details of the porous medium, including the porosity φ

and the geometry of the pores. When Ra exceeds a critical threshold Rac, convection

begins [Lapwood, 1948]. In an isotropic medium, the critical Rayleigh number is

given by Rac = 4π2. However, the permeability of the voids in a vegetation canopy

depends on whether the fluid is moving vertically (parallel to the grass blades) or

horizontally (intercepting multiple grass blades). Thus, the canopy is anisotropic

and the Rayleigh number must be redefined to account for directional effects:

Rac = π2

[(
κ⊥/κ‖
K⊥/K‖

)1/2

+ 1

]2

. (2.2)

The subscripted parameters (see Figure 2.1) indicate the material properties parallel

and perpendicular to the temperature gradient and K‖ and κ‖ are used in Eq. 1. in

place of the average values [Straus, 1974, Straus and Schubert, 1978, Kvernvold and

Tyvand, 1979].

A grass canopy may be modeled as a series of upright cylindrical rods (grass

blades) of radius a spaced a distance 2b apart, as shown in Figure 2.1. Using this

approximation, we can estimate the permeabilities K‖ and K⊥ using the approach

of Happel [1959]. The permeability in the lateral direction K⊥ can be computed

directly from the geometry:

K⊥ =
b2

4

[
ln
b

a
− 1

2

b4 − a4

b4 + a4

]
. (2.3)

To estimate the vertical permeability K‖, the Carmen-Kozeny equation for K is

equated to the solution for viscous flow about a cylinder to give K‖ = φm2/k‖.
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The geometric parameter m is analogous to the hydraulic radius and is given by

m = (b2 − a2)/2a. The Kozeny constant k‖ parametrizes the morphology of the

porous medium and is estimated [Happel, 1959] as:

k‖ =
2φ3

(1− φ)
[
2 ln( 1

1−φ)− 3 + 4(1− φ)− (1− φ)2
] . (2.4)

The porosity φ is determined from the grass blade radius a and blade density ρ via

the relation φ = 1− ρ(πa2). To estimate the thermal diffusivity of the grass canopy,

we average the component materials (water, grass) in proportion to their volumetric

presence (φ and (1 − φ), respectively), taking grass to be composed of 85% water

and 15% cellulose. Given the high porosity of the canopy, we assume that κ‖ ≈ κ⊥.

Thus, for known or measurable properties of a grass canopy, it is possible to calculate

the value of ∆Tc required for the onset of convection (Ra > Rac).

For anisotropic media, the critical wavenumber of the convection pattern at onset

is

qc = π/d

[
K⊥
K‖

κ⊥
κ‖

]−1/4

(2.5)

[Kvernvold and Tyvand, 1979]. Based on this analysis, we can determine the neces-

sary conditions for the convection-chill hypothesis to hold, given measured values of

a, d, ρ and ambient meteorological conditions. The requirements are a large enough

temperature gradient (∆T > ∆Tc), air temperature cold enough (e.g. . 0◦C) to

cause chill damage, and no wind or turbulence to disrupt convection. Secondly, we

can predict the expected pattern wavelength given these conditions and compare

with observations. Figure 2.2 (a,b) shows the dependence of ∆Tc and wavelength

λc = 2π/qc (measured in units of d) on a and ρ. While ∆Tc is quite sensitive to

the particular porosity (set by a and ρ), λc ≈ 1.8d over the full range of reasonable

characteristics.
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Figure 2.2: Contour plots of numerically computed values of ∆Tc and λc for a
range of appropriate vegetation sizes (a, d) and densities (ρ). (a,b) Values computed
for observed lawn grass parameter regime (see Figure 2.3). Gray bars indicate uncer-
tainty in stem radius a and density ρ measurements, while the thin curves associated
with each contour of ∆Tc indicate the uncertainty in the measurement of height d.
(c) Critical temperature difference computed as function of a and d for a range of
realistic vegetation densities: ρmoss ≈ 50 (red), ρgrass,heather ≈ 5 blades/cm2 (green),
ρbunchgrass ≈ 0.5 blades/cm2 (blue), very low ρ = 0.05 blades/cm2 (black). For each ρ,
contours show ∆Tc = 1, 6 and 20◦C, and shaded rectangles denote the approximate
range of a and d values for the corresponding vegetation type (indicated by color).
Gray shaded area indicates a realistic regime for terrestrial plants based on typical
scaling laws for woody and non-woody species [Rich et al., 1986].

2.3 Field observations

Grass patterning with a labyrinthine morphology and wavelength λ ≈ 10 ± 2 cm

was fortuitously observed on a lawn at Duke University (Durham, NC, USA) on

12 November 2008. The relevant geometric factors required to calculate the critical

Rayleigh number Rac (Eq. 1) were measured in situ and confirmed using high reso-

lution photographs of the patterns, allowing us to estimate ∆Tc and λc for the lawn.

Meteorological data were obtained for the night of 10 November, the only recent,

preceding night when a frost occurred. These data are presented in the Appendix

A. The two day delay corresponds to the typical timeframe for symptoms of chill

damage to appear [Atwell et al., 1999]. Meteorological data were obtained from the

North Carolina State Climate Service [Office, 2008] for the six weather stations sur-
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rounding Durham, NC that report both ground and air temperature (stations SILR,

REED, OXFO, KTDF, KIGX and KRDU) and averaged to obtain an estimate of

∆T . Wind data were obtained from sonic anemometer instrumentation overlying a

50 cm tall grass field located at the Duke Forest, approximately 16 kilometers from

the patterned site (see Novick et al. [2005] for site details). Immediately after the

observation of the patterns we also measured volumetric soil moisture (θ) content in

the root-zone (top 12 cm), taking a total of 52 measurements until rain commenced

and further measurements were deemed unreliable.

2.4 Results

The measured geometric properties of the lawn were: grass blade radius a = 0.1 ±

0.025 cm, canopy depth d = 6 ± 1 cm, and lawn density ρ = 5.2 ± 0.7 blades/cm2;

these values are typical for dense lawns [Brede, 1999, Hamilton and Waddington,

1999]. As shown in Figure 2.2(a,b), using these values in the thermal convection

model predicted a value for ∆Tc = 6.3 ± 3.6◦ C and λc = 10.9 ± 1.8 cm. The

wavelength of the pattern was measured from photographs to be λ = 10 ± 2 cm,

in agreement with the model results for the measured lawn parameters. Figure 2.3

shows all measured field parameters.

The meteorological data showed that on 10 November 2008 ground tempera-

tures dropped from 12.6◦C to 11.3◦C from midnight to 7am, while air temperatures

dropped from 4.3◦C to −0.4◦C over the same period. Thus, ∆T ranged from 8.2◦C

to 12◦C throughout the night, with the greatest ∆T coinciding with the coldest air

temperatures close to dawn. An uncertainty of 2◦C is associated with the measured

∆T due to variation across the six weather stations, however even when this is in-

corporated, the ambient ∆T exceeded the model estimate for ∆Tc. Wind conditions

overnight were calm. The vertical momentum flux was 3× 10−3 m2/s2 and the hor-

izontal shear velocity was 0.06 m/s, indicating that the potential for production of
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Figure 2.3: Sampling of soil water content θ at 52 points. (a) Measurements
of θ within a labyrinthine pattern, printed within image. (b) Measurements of θ
along a transect perpendicular to a striped pattern, plotted in (c). (d) All 52 θ
measurements made on the site, sorted by brown/green location. Dashed line θf
indicates the field capacity and dotted line θ∗ indicates the wilting point [Rodriguez-
Iturbe and Porporato, 2004]. Table: Parameters used to calculate ∆Tc and λc for
grass canopy.
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turbulence near ground level was negligible.

Two examples of the soil water content (θ) measurements as a function of brown/

green locations within the pattern are shown in Figure 2.3. No correlation between

grass condition and θ could be discerned. All moisture readings exceeded the perma-

nent wilting point θ∗ at which plants begin to experience water stress. The mean θ

for the brown patches was θ̄brown = 41.4%, slightly lower than θ̄green = 44.3%. This

difference is comparable to the error in the instrument, and was not statistically sig-

nificant (p = 0.24), nor, given that θ̄ > θ∗, was it large enough to be physiologically

important [Rodriguez-Iturbe and Porporato, 2004].

2.5 Discussion and conclusions

Based on the observations of this occurrence of grass patterns, all data (∆T > ∆Tc,

λ ≈ λc, still air conditions and θ̄green ≈ θ̄brown > θ∗) support the interpretation

that convection and chill damage generated patterning. An unusually large ∆T two

nights prior to the observation exceeded the predicted value of ∆Tc = 6.3±3.6◦C and

coincided with air temperatures near freezing, which are low enough to cause chill

damage to plants, but ground temperatures sufficiently warm to generate convective

motion within the grass canopy and locally buffer grass from chill damage. Still

atmospheric conditions suggest that thermal convection, not wind, was the major

driving force for flow within the grass canopy.

The porous convection model is consistent with the observations of the grass

patterning and provides an explanation for the transience of observed grass pat-

terns, since chill damage is not fatal and plants recover rapidly. The infrequent

observation of the phenomenon is explained by the specificity of the required non-

biological and biological factors coinciding with the presence of plants susceptible

to chill damage. The length scales of the observed patterning, along with length

scales reported by other authors for similar grass patterns [von Hardenberg et al.,
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2001], correspond well with predictions from the convection model. Thus, we find

that the porous convection model explains multiple, independent aspects of the grass

patterning phenomenon. Conversely, the lack of any discernible correlation between

the grass pattern and water content is contrary to the predictions of a Turing model

based on water availability. Unlike the Turing models [Rietkerk et al., 2002, von

Hardenberg et al., 2001], the bifurcation to a patterned state is a simple, forward

bifurcation with no bistability. Because chill damage does not change the porous

properties of the vegetation there is no feedback between the pattern and the hydro-

dynamics, and thus no hysteresis.

The thermal convection mechanism could apply to a range of vegetation types,

as shown in Figure 2.2(c), but in practice a realistic regime of terrestrial plants (gray

shaded) coincides with reasonable temperature differences (∆Tc ≈ 6◦C) only in a

limited regime with stem density 1 . ρ . 10 blades/cm2 and small stem diameter

(a . 1 cm). For higher densities (e.g. mosses), ∆Tc becomes unrealistically large.

Where densities are low and canopies tall, not only do wind-driven flows become more

likely, but ∆Tc can be very small and thus unlikely to cause any chill-damage. A sec-

ond consideration is that the vegetation must be of a type sensitive to chill-damage.

Warm season grasses are ideal target species, but other ground-covering herbaceous

species, or even small, low-growing woody species could sustain this mechanism.

Because our model applies to canopy geometries which can be approximated by an

array of cylinders, Figure 2.2(c) highlights mosses, lawn grasses, and bunch grasses.

However, similar results would apply for other low and dense canopy geometries,

such as heaths. More generally, we may conceive of other scenarios where hydrody-

namic pattern formation structures ecological communities. Convection can occur

whenever buoyant fluid underlies denser fluid, such as in shallow lakes, where bottom

sediments heat faster than overlying water, lake or ocean floors subject to geothermal

heating, or strong salinity clines. Because convection results in efficient and spatially
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partitioned transport, it could establish microclimates relatively enriched or depleted

in resources, with implications for the structure of organismal assemblages.

Hydrodynamic mechanisms for pattern formation are morphologically indistin-

guishable from Turing processes, yet they result from fundamentally different mech-

anisms and imply different dynamics. The thermal convection/chill damage hypoth-

esis appears to explain multiple aspects of observed short wavelength vegetation pat-

terns, and suggests that ecological patterns can arise from hydrodynamic processes.

In addition, hydrodynamic instabilities should be more generally incorporated into

thinking about ecological patterns to prevent similarity in pattern morphology from

being equated with similarity in pattern formation mechanisms.
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3

Plant propagation fronts and wind dispersal: An
analytical model to upscale from seconds to

decades using super-statistics

3.1 Introduction

Vegetation migration in response to environmental drivers is now receiving signifi-

cant attention in studies of species invasion and climate change, and has been ele-

vated to a fundamental discipline in spatial ecology [Neilson et al., 2005, Neuhauser,

2001, Okubo and Levin, 2001]. The basic challenge confronting models of vegeta-

tion movement is the large timescale separation between seed dispersal processes

(seconds-hours) and vegetation growth (months-years). For wind-dispersed seeds,

the scale separation is exacerbated by the importance of turbulence (which varies

over fractions of seconds) governing seed uplifting and subsequent long distance seed

dispersal [Horn et al., 2001, Nathan et al., 2002, Soons et al., 2004a,b, Tackenberg,

2003]. The contemporary approach to overcoming this “dimensionality curse” is to

represent plant movement by wind as a diffusive process [HilleRisLambers et al.,

2001, Klausmeier, 1999, Lejeune, 2002, Rietkerk et al., 2004]. An advantage to this
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representation is that an explicit relationship between the diffusion coefficient (D),

the intrinsic growth rate (r), and the speed of propagation of the biomass front (c)

can be derived. For instance, for the prototypical case of the Fisher-Kolmogoroff

equation with a constant D, the front speed is given by c = 2
√
rd [Fisher, 1937,

Kolmogoroff et al., 1937, Murray, 2003a]. However, the fact that D cannot be read-

ily inferred from seed attributes (e.g. terminal velocity, release height, etc.) and

wind conditions prevents prognostic use of such a result. Furthermore, represent-

ing plant migration via diffusion remains questionable, and dispersal data suggest a

“super-diffusive” aspect to species migration and spread, which requires an alterna-

tive treatment. Comparisons between measured vegetation spread rates and those

predicted by diffusion models show that diffusion underestimates the propagation

speed of vegetation movement [Clark, 1998, Clark et al., 1998, 2001, 1999, Higgins

et al., 2003, Nathan and Katul, 2005, Neilson et al., 2005]. To match the observed

speeds of vegetation movement requires adopting a dispersion kernel with “fat tails”

in comparison to the Gaussian kernel underpinning classical diffusion processes. To

circumvent this limitation, several dispersion kernels have been proposed in mod-

els of c, based on empirical [Clark, 1998, Dauer et al., 2007, Robledo-Arnuncio and

Gil, 2005], phenomenological [Kot et al., 1996, Lewis and Pacala, 2000, Neubert

et al., 1995] and mechanistic grounds [Nathan and Katul, 2005, Neubert et al., 1995,

Williams et al., 2006]. To date however, simultaneously preserving mathematical

simplicity and prognostic capability remains elusive, and is the subject of this work.

Recent studies have suggested that “up-scaling” the effects of turbulent transport

processes on seed dispersal kernels from fractions of seconds to 1/2 hourly time

scales can be achieved analytically via a mechanistic Wald Analytical Long-distance

Dispersion (WALD) model [Katul et al., 2005], the kernel of which resembles an

Inverse-Gaussian or a Wald distribution. The primary inputs to the WALD model

are mean half hourly wind speeds (U), basic seed attributes (e.g. terminal velocity),
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and release heights. Furthermore, a number of studies have already shown that the

distribution of U , sampled over seasonal to annual time scales, can be approximated

by a Weibull distribution, and wind atlases document these Weibull wind parame-

ters spatially across continents for wind energy harvest [Troen and Peterson, 1989].

Building on these two findings for wind and its effect on seed dispersal, we propose

to replace the diffusive term in the Fisher-Kolmogoroff equation by the scaled ef-

fect of the Wald and Weibull kernels and develop a novel analytical solution for the

vegetation front speed. As a case study, order of magnitude predictions of c from

the analytical solution are then compared to reported vegetation migration rates of

the early Holocene period in the USA during the period of post-glacial expansion.

Finally, the broader implications of the proposed modelling approach for assessing

vegetation spread rates are presented in light of recent developments in the field of

“super-statistics”, which is now gaining attention in complex systems science [Beck

and Cohen, 2003].

3.2 The model

3.2.1 The basic equations

The one-dimensional Fisher-Kolmogoroff equation, which describes the local increase

and spread in space of a logistically growing population, is given by

∂P (x, t)

∂t
= rP (x, t)

(
1− P (x, t)

K

)
+D

∂2P (x, t)

∂x2
,

where the total biomass of the species per unit area (P (x, t), [ML−2]) grows logisti-

cally at rate r [ML−2T−1] before growth saturates at a carrying capacity K, [ML−2];

x is distance [L], and t is time. To consider the spread of a plant species due to seed

dispersal, the equation can be generalized to
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∂P (x, t)

∂t
= rP (x, t)

(
1− P (x, t)

K

)(
P (x, t) + α

∫
Ω

W (x′)P (x′, t) dx′
)
, (3.1)

Here x′ is a dummy variable denoting distance [L]. At each time step (dt), a pro-

portion (a, [T−1]) of the biomass is spatially distributed according to a dispersal

kernel W (x), applied over a spatial domain, Ω. All parameters (r,K, a) are assumed

to be constant in space and time. The r and K parameters follow their standard

interpretations from logistic growth models. The “spread and survival” parameter,

α , is related to fecundity. For each timestep, and each point in space, it defines the

biomass that is spread as seed from that point, and subsequently germinates and

grows: i.e. the spreading and surviving biomass. In this formulation, α is defined as

a proportion of P (x, t), and it is assumed that a << 1. This treatment of movement

contrasts to the original Fisher-Kolmogoroff equation in which biomass spread rates

depend on the local spatial variation in biomass ∂2P/∂x2 and a diffusion coefficient

D [L2T−1]. Equation 3.1 recovers the steady state solution of the traditional Fisher-

Kolmogoroff equation if W (x) is a Gaussian kernel (see Appendix B). In the case of

wind dispersed biomass, fast turbulent processes must be resolved. For integrating

across these processes to arrive at hourly time scales, the WALD model kernel is

used and is given by

W (x) =

√
λ

2πx3
e
−λ(x−µ)2

2µ2x , (3.2)

where

λ1/2 ≈ zr√
κh (2θ)

,

and
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µ =
zrU

Vt
.

The parameters relate to the characteristics of the applied half hourly mean wind

speed field (U ) and θ, (defined below), the seed release height of the plants (zr)

and the height of the surrounding canopy (h), and other than U are assumed to be

constant in space and time. θ is defined as σw/U , where σw is the standard deviation

of the wind velocity in the vertical direction. The θ represents the importance of

turbulence in lifting seed from the canopy versus the action of the mean wind speed

in moving the seed horizontally; Vt, is the terminal velocity of the seeds, that is the

steady velocity at which they fall; and κ is a proportionality constant relating the size

of turbulent eddies within the canopy to the canopy height [Katul et al., 2005], where

is of order 1, taken as 0.6 for the purposes of this study. In a standard boundary layer,

where eddies scale with the height from the ground, κ = 0.4 and is Von Karman’s

constant; for within canopy flow conditions, however, κ is expected to be > 0.4 due to

wake generation, and the fact that the seed-carrying eddies no longer scale with height

from the ground. σw and U are strongly correlated, and θ can be approximated as a

constant at near neutral atmospheric conditions just above the canopy (when heating

or cooling of the air does not impact turbulent generation). The µ parameter defines

the mean dispersal distance, while λ defines a scaling parameter. As evidenced from

Equation 3.2, the WALD kernel yields a multiplicative combination of a power law

term describing the dispersal kernel tails, “censored” by an exponential distribution

that accounts for gravity. For high terminal velocities, the WALD kernel approaches

a simple ballistic model. If seed terminal velocities are much less than the mean

wind speed, then the kernel tails decay according to a power law (≈ x−3/2) and

at a slower rate than in many comparable dispersal kernels such as the bivariate

student t-distribution [Clark et al., 1999]. For finite terminal velocities and mean
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wind speeds, the WALD kernel is bounded, ensuring that asymptotic approaches to

constant propagation speeds exist [Kot et al., 1996, Mollison, 1991].

3.2.2 The wave speed

The motion described by the generalised Fisher-Kolmogoroff equation generates a

travelling wave front of expanding biomass. To recover the velocity of plant move-

ment, the velocity of the nonlinear wave front is needed. To derive this velocity, the

approach outlined in Kot et al. [1996] is used, beginning with the “linear conjecture”

that the velocity of the nonlinear wave front is equivalent to that of its linearisation.

This conjecture is valid for populations that do not exhibit an Allee effect, i.e. the net

growth rate is independent of population density [Mollison, 1991]. The differential

equation is linearised by assuming that at the leading edge of the wave, P/K << 1

(i.e. the population is very much less than the carrying capacity), resulting in

∂P

∂t
= r

(
P + α

∫ ∞
−∞

P (x′)W (x− x′) dx′
)
, (3.3)

and in discrete form, this equation becomes

Pt+1 = rdt

(
Pt + α

∫ ∞
−∞

P (x′)W (x− x′) dx′
)

+ Pt, (3.4)

where dt is the time step. By appropriately rescaling the rate terms r and a, dt can

be set to unity and cancelled. If a steady travelling wave solution exists, then:

Pt+1 (x) = Pt (x− c) , (3.5)

where c is the front speed to be determined next.

Assuming a solution of the form P ∝ e−sx for the linearised equation, and sub-

stituting Equation 3.4 into Equation 3.5 gives:
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e−s(c−x) = r

(
e−sx + α

∫ ∞
−∞

e−sxW (x− x′) dx′
)

+ e−sx, (3.6)

esc = r

(
1 + α

∫ ∞
−∞

e−s(x−x
′)W (x− x′) dx′

)
+ 1. (3.7)

Let u = x− x′.

esc = r

(
1 + α

∫ ∞
−∞

e−suW (u) du

)
+ 1. (3.8)

This expression gives the characteristic equation for the wave front speed c. The

component

∫
e−suW (u) du is the moment generating function of the WALD distri-

bution, hereafter referred to as MG(s), which, for a finitely bounded WALD kernel,

is differentiable and defined as:

MG (s) = exp

[
λ

µ

[
1−

(
1− 2µ2s

λ

) 1
2

]]
(3.9)

∂MG (s)

∂s
=

µ exp

[
λ
µ

[
1−

(
1− 2µ2s

λ

) 1
2

]]
(

1− 2µ2s
λ

) 1
2

=
µMG (s)(
1− 2µ2s

λ

) 1
2

(3.10)

The solution for the wave front must be real and positive, and therefore exists at the

double root of the characteristic equation, given by its derivative:

cesc = rαMG′ (s) (3.11)

.

Equation 3.11 combined with Equation 3.8 provides a parametric description of c

and r:
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c =
rαMG′ (s)

r (1 + αMG (s)) + 1
, (3.12)

r =
exp

[
s
(

rαMG′(s)
r(αMG(s))+1

)]
− 1

(1 + αMG(s))
. (3.13)

Using a known value of r to solve Equation 3.13 for s allows the direct determina-

tion of c. The solution is primarily dictated by the values of r, α, λ, and µ. Due

to the implicit nature of the equation, a numerical root finding method is required.

The linear conjecture implies that a number of more complicated models also have

an asymptotic wave speed represented by equations 3.12 and 3.13. For instance,

incorporating a time delay to maturity in the plants does not necessarily impact the

asymptotic wave speed although the time to reach the asymptote increases. The

results in equations 3.12 and 3.13 were derived by including the most basic pro-

cesses of growth and dispersion, but neglecting retarding factors such as predation,

inter-specific competition and landscape heterogeneity. Thus, the propagation rate

predicted by such analysis can be taken as an upper bound on realistic values.

3.2.3 Up-scaling using super-statistics

Up to this point the model has assumed that all parameters are fixed in space and

time. However, there are many sources of variability that impact these parameters

over time scales commensurate with biomass growth and the spatial scales of migra-

tion. In the time domain, the most pervasive is the variation in mean half hourly

ambient wind speed, which changes on hourly timescales, over a typical range of 0-12

ms−1, i.e. several orders of magnitude, in the Eastern USA [Van der Hoven, 1957].

This exceeds variability in mean growth rate, or spread and survival rate, which vary

by at most a single order of magnitude on seasonal to inter-annual scales. Resolving

the effect of the rapid variation in half hourly mean wind speed is necessary before
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attempting to understand variability in the slower processes, and is the focus of the

analytical upscaling attempts in this paper. Despite the focus on the mean wind

speed temporal variability, variability in other parameters can be considered via nu-

merical simulations. The detailed consideration of variation in multiple parameters,

however, confounds analytic tractability. Instead, a sensitivity analysis is presented

to show the impact of variability in ecological and forcing parameters on c.

The distribution of hourly (or half hourly) mean wind speeds, U , has been well

studied, and is often represented as a Weibull distribution with scale parameter b

and shape parameter k, i.e.

p
(
U = y

)
=
kyk−1

bk
e(

y
b )
k

, (3.14)

typically expressed as p
(
U
)

= Weib (b, k) [Conradsen et al., 1984, Garcia et al.,

1998, Takle and Brown, 1978]. Hence, variations in mean half hourly wind speed

over long timescales (seasonal to inter-annual) are accounted for by drawing U from

a Weibull distribution. This approach is known as “super-statistics”, and is currently

gaining considerable interest in complex systems science, whereby the statistics gov-

erning variability in distributional parameters are used to evaluate variation that is

extensively spread in space or time. The resulting distributions are analogous to

using “mixture models”, analytical composites of the distributions describing long

and short timescale processes [Beck and Cohen, 2003, Porporato et al., 2006]. The

significance of turbulent transport is clearly seen in the super-statistical framework

by constructing the dispersal kernels, at an annual timescale, for a purely ballistic

scenario (i.e. in the absence of turbulence, using the Weibull distribution but not the

Wald) and for a turbulent transport scenario, using the Weibull as a super-statistical

input to the Wald kernel. Turbulence causes seed transport to be extended by up to

two orders of magnitude over purely ballistic cases. The resulting dispersal kernels
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Figure 3.1: Comparison of Wald and Ballistic kernels on log-log plot. Kernels are
shown for annual time scales and Fraxinus pennsylvanica parameters. The Ballistic
kernel considers only advection of a seed falling with terminal velocity Vt and being
advected by the mean wind speed, whose distribution is taken from the Weibull
parameters. The Wald kernel accounts for turbulence in addition to advection, and
results in finite probabilities of dispersion at length scales two orders of magnitude
greater than those of the Ballistic kernel.

are shown in Figure 3.1.

The construction of the dispersal kernel as a mixture of the Weibull distribution

and the Wald distribution also bears close analogy to existing phenomenological

treatments of vegetation dispersion. For instance, the widely used 2Dt kernel is a

mixture of a normal and exponential distribution [Clark et al., 1999], although in

the current case the mixture is based upon the statistics of mechanistically derived

processes. In summary, the model achieves an up-scaling from turbulent timescales

to half hourly timescales via the WALD kernel, from half hourly timescales to annual

timescales via the Weibull distribution of wind speeds, and can be further up-scaled
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by consideration of inter-annual variability of Weibull parameters (Figure 3.2).

To use the analytical result in equations 3.12 and 3.13, a parameterisation that

accounts for the Weibull variations in U and their interaction with the turbulent

transport described by the Wald kernel is needed. What we seek is the appropri-

ate (or effective) wind speed with which to parameterise a Wald dispersal kernel for

wind-transported seeds over annual time-scales. Numerical simulations indicate that

simple moments of the Weibull distribution (mean, mode etc.) grossly underestimate

this wind speed. This is because the interaction of the Wald and the Weibull ampli-

fies the effect of the tails of the distribution. There is no simple way to parameterise

this effect, because that the marginal distribution arising from a Wald forced by the

Weibull distribution cannot be obtained analytically. Given a realisation of the plant

front velocity c, however, it is possible to work backwards (by using equations 3.12

and 3.13 in an inverse sense) to infer a single value for which would reproduce this

c value from the numerical simulation. Determining this value for an ensemble of

realisations of c, as generated by Monte Carlo analysis, a distribution of such “effec-

tive wind speeds” (Ueff ) can be generated. The mean of Ueff
(
Ueff

)
reproduces the

mean of the plant front velocities when applied to the numerical model. To proceed

by defining Ueff preserves the flexibility of the model, which can be parameterised

with Ueff (the determination of which is addressed in the following section) and ap-

propriate WALD parameters for any combination of forest type and wind climate.

A realisation of Ueff can be obtained from an empirically measured seed dispersal

kernel over annual timescales by fitting the WALD parameterisation to this kernel.

The difficulties associated with measuring the tails of the dispersal kernel, however,

would likely cause this sample of Ueff to be underestimated, while reconstructing

the distribution of Ueff would be highly labour intensive [Bullock et al., 2006]. The

disparity between the applied Weibull distribution and the distribution of resulting

from its application to the logistic-Wald model is shown in Figure 3.3.

37



Having defined Ueff , we proceed by constructing a relationship between the

Weibull parameters and the effective velocity to allow prognostic usage. A wide

range of wind distributions and their effect on c were explored by varying the pa-

rameters of the Weibull distribution in a range of b ∈ [1, 3] , k ∈ [1, 4] (covering the

range of plausible values for winds). Distributions of c were obtained from a Monte

Carlo simulation with 500 realisations for each combination of Weibull parameters

(see Appendix B for details of numerical simulations), and distributions of computed

from these using equations 3.12 and 3.13 in an inverse sense. Weibull, gamma and

normal distributions were fitted to the resulting Ueff distribution, and goodness of

fit assessed using the Akaike Information Criterion (AIC) [Akaike, 1974]. A relation

between the distribution of Ueff and the distribution of mean applied wind speeds

was empirically derived, using a curve fitting algorithm that tested multiple func-

tional forms of the fitting functions and returned those with the least square error

[Phillips, 2007]. Tenth and 90th bounds on the parameters were derived numerically

from the fitted distribution and used to provide bounds on the estimate of Ueff .

The combination of the analytical results and these regression equations provided

a closed-form semi-analytical model combining information about the wind climate

and the vegetation properties to predict a likely range of wave speeds for vegetation

dispersal.

3.2.4 Case study: North American post glacial expansion

The palynological record from the early Holocene epoch provides an ideal case study

of vegetation migration as trees expanded their range in the wake of retreating

glaciers [Delcourt and Delcourt, 1987, McDonald, 1993]. This record is useful be-

cause it extends over a sufficient temporal and spatial area to allow spread rates

to be clearly determined, and, unlike contemporary records, is not confounded by

anthropically enhanced dispersion. We used the analytical version of the logistic-
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WALD model to examine the migration of eight wind-dispersed species (four Acer

(maple) sp., two Fraxinus (ash) sp., one Pinus (pine) sp., and one Betula (birch) sp.).

Our intent was not to obtain a one-to-one comparison but rather to demonstrate that

the order of magnitude of spread rates could be independently derived from what is

currently known about these species and assumed wind conditions. Seed terminal

velocity data were obtained from the literature [Green, 1980, Matlack, 1992, 1987,

Nathan et al., 2002, Williams et al., 2006], however biomass growth rates were not

available. We estimated the biomass at maturity using allometric equations [Jenkins

et al., 2003], in conjunction with diameter at breast height and stand age at matu-

rity [United States Department of Agriculture, 1990] and used these as first order

estimates of growth rate. For the smaller tree Acer negundo (Boxelder), which was

outside the range of species considered by Jenkins et al., we adopted species specific

allometric equations [Schlaegel, 1982]. The constants used are shown in Table 3.2.

The vegetation expansion consisted of two phases: an initial replacement of low tun-

dra by boreal forests, followed by replacement of boreal forest with deciduous forests

[Delcourt and Delcourt, 1987]. Selection of wind data therefore needs to consider

both the expansion into open tundra, most applicable to Betula and Pinus sp., and

the later expansion into forested areas, applicable to Acer and Fraxinus sp. Acer

sp. also expanded their range significantly into prairies in the Midwest, and thus the

open conditions may apply to this genus as well. Accordingly, the mean, 10th and

90th percentile bounds on Ueff were estimated from a long-term 1/2 hourly mean

wind speed records collected at the Duke Forest (near Durham, North Carolina) in

a grass-covered forest clearing and above a hardwood canopy, and front propagation

data are presented for both these conditions for all species (Appendix B). The θ

was determined by assuming that the wind statistics should be derived from above

the forest canopy. An estimate of θ = 0.36 was obtained from typical wind statis-

tics above a dense canopy. These estimates were then used in the semi-analytical
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model to calculate the vegetation wave front propagation speed. Calculated wave

speeds were divided by 2π to convert between the 1D analytical result and the 2D

spread rates given by the pollen data, assuming random wind direction. A sensitivity

analysis on the endogenous variables in the logistic-WALD model was undertaken

(Appendix B). The major findings of this sensitivity analysis, (discussed further in

the results section), were that the front speed is linear in Ueff , and that for small

values of the spread and survival parameter a (< 0.01) the choice of a does not signif-

icantly alter c, but only the time taken to reach the asymptote. Accordingly, a was

set to 5× 10−6, an order of magnitude estimate at half hourly timescales. To assess

the suitability of using the Duke Forest wind data as a surrogate for data across the

range of the post-glacial expansion, a further sensitivity analysis was undertaken on

the Weibull parameters. This analysis indicated that the likely variability in across a

sample of forested sites in North Carolina, Indiana, Massachusetts and Maine was of

the order of 8%, and that this was directly comparable to the likely variation associ-

ated with changes in land cover type (9%). Given the linearity of the front speed in

Ueff , the geographic variability in the Weibull statistics is expressed as uncertainty

of less than 10% in the biomass front speed.

3.3 Results

3.3.1 Generation of effective wind velocity from Weibull wind parameters

Based on the AIC, a gamma distribution was the best fit to the Ueff distribution

arising from the Monte Carlo simulations. Hence, in a first-order estimate of Ueff , a

gamma distribution was used, with the distribution gamma(ω, ν) described as:

p (x|ω, ν) =
1

νωΓ (ω)
xω−1e−x/ν , (3.15)

where Γ is the gamma function. The non-linear regression between the Weibull (b, k)

40



Parameter Regression Equation Regression Coefficients r2

Ueff Ueff = ς0 tanh (k) + ς1
(

b
k1.5

)
+ ς2 ς0 = 0.8187 0.99

ς1 = 3.4233
ς2 = 0.0963

ωgamma ω = γ0 (arctan (b) k2) + γ1

(
k2

b

)
+ γ2 γ0 = 8.3426 0.99

γ1 = 6.3476
γ2 = 10.900

νgamma ν = ϕ0
tan(b)
k2 + ϕ1 tanh(b)

k2 + ϕ2 ϕ0 = −0.0086 0.88
ϕ1 = 0.4172
ϕ2 = −0.0184

Table 3.1: Regression equations and r2 (coefficient of determination) values for Ueff ,
ω and ν as a function of the Weibull parameters b and k.

parameters for U and the effective wind speed Ueff generated functions to predict

the mean of Ueff (denoted Ueff ) given the wind statistics. The gamma parameters

ω and ν, which are required to specify the distribution of Ueff were also determined.

High coefficients of determination (r2), were achieved for all regressions (Table 3.1,

Figure 3.4).

3.3.2 Applications to the case study

The mean speed of vegetation movement predicted in the case study was within a

factor of five or better of that in the palynological record, for all species considered

(Table 3.2). The sensitivity analysis of the wind statistics indicated that there is a

linear correlation between the Weibull parameters when compared across multiple

sites, and that this correlation damps the effect of changes in the wind statistics.

Over the area of interest, this resulted in a near-linear sensitivity of Ueff to the

Weibull parameters, and constrained the error associated with geographic variation

to the order of 10% (see Appendix B). This uncertainty did not greatly alter the

quality of the predictions by comparison to the mean cases. The sensitivity analysis

of endogenous parameters indicated that the dependence of the predicted wave speeds
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was approximately linear in the growth rate (r) and the wind speed applied (Ueff ),

near linear in the canopy height (h) and the vertical velocity standard deviation

(σw), and nonlinear in terminal velocity (Vt), release height (zr), and the spread

and survival parameter (α). In particular, for values of α of less than 0.01, the

propagation speed was almost insensitive to further decreases in α over several orders

of magnitude (Appendix B).

3.4 Discussion

By linking the Weibull mean wind statistics to the description of the WALD pa-

rameters through Ueff , the half hourly timescale of wind variability is scaled up to

the timescales of biomass growth. In analysing the numerical results to achieve this

scaling, our goal was to ensure that direct analytical implementation was achievable.

This motivated the approximation of the distribution of Ueff as gamma(ω, ν). In

reality, the distribution of Ueff is a transformation of the Weibull via the WALD

kernel and the logistic equation with no known analytical representation and cannot

be fully represented via a two-parameter approximation such as the gamma distribu-

tion. As such, the quality of the gamma distribution in describing Ueff varies with

the parameters of the Weibull function, resulting in some inevitable error. How-

ever, the linear dependence of the wave speed on Ueff ensures that the impact of

these errors is first order only, meaning that the achieved fit is acceptable given the

aims of the model to provide a tractable approach to estimating spread rates. If

greater accuracy is needed, Ueff should be calculated more precisely via numerical

simulations.

The logistic-WALD model reproduced vegetation propagation speeds to a good

approximation without invoking isolated extreme events (e.g. hurricanes) as the

mechanism promoting long distance dispersal. Rather than relying on such phenom-

ena the logistic-WALD model implies that long distance dispersal is an expected
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outcome of the interaction between seed movement and the complex wind statistics

across a range of timescales. Mathematically, this is the result of the interaction

between the tails of the Weibull (whose genesis is meso-scale and weather related

variation about U) and WALD (whose genesis is turbulent dispersion) distributions,

as outlined in Figure 3.2.

Several limitations to the data used in the post-glacial expansion case study

prevented a one-on-one comparison between predicted and recorded biomass prop-

agation speeds. While terminal velocity data were measured for all species, other

parameters, particularly the growth rate, were estimated based on generic allomet-

ric equations and basic assumptions such as a constant growth rate throughout the

plant’s lifespan. Results presented for wind data collected both from a forest clearing,

most applicable to early colonising species, and from a forest canopy, as applicable

to later succession species, were both within the order of magnitude limits sought.

The linear impact on c of changing land cover type or geographic location was small,

at ≈ 10%, and by comparison to the uncertainties associated with approximating

the paleoclimatological record with contemporary wind statistics this variation can

be considered negligible. For contemporary applications of the model, results could

be improved through appropriate spatial averaging of wind statistics. However, it

should be noted that errors remain in approximating the post-glacial expansion wind

statistics by current wind distributional properties of the Weibull.

The logistic-WALD model is a simplified representation of some of the complex

processes that govern species migration and which currently constitute an active

topic of research [Lewis and Pacala, 2000, Moorcroft et al., 2006]. Despite the sim-

plicity of the model, it contains an appropriate treatment of the multi-scale processes

involved, and its results hold clear analogies to more complex representations. As

outlined in the introduction, the omission of retarding processes, such as competi-

tion, from the process description allows us to consider the derived speed to be a
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maximum, obtained under ideal conditions for invasion. As such it is analogous to

the concept of “invasion by extremes”, in which the most rapidly transported seeds

become responsible for invasion and population establishment [Clark et al., 2001].

Using fat-tailed dispersal kernels, Clark et al. were unable to reproduce the Holocene

invasion speeds for a range of species without artificially increasing seed survival rates

(the α parameter in our formulation). Our finding that c loses sensitivity to α as α

becomes arbitrarily small allows the logistic-WALD model to recover the appropriate

order of magnitude of the spread rates without such artificial increases in survival.

Provided dispersal occurs over a sufficiently long period to allow the asymptotic

speed to be reached, low seed viability does not necessarily restrict the vegetation

front movement, just the timing at which the maximum front speed occurs. Note

that the α parameter addresses the distribution and establishment of seed biomass

only; increasing seedling mortality effectively reduces the growth rate parameter r

in the logistic-WALD model, with resulting linear reductions in the wave speed.

Stochastic studies of plant movement via long range dispersal events have high-

lighted the importance of the “outlier - expansion” effect, in which outlier populations

establish remotely from the main population, remain effectively stationary for some

period of time, and then expand to close the gaps between the populations, often with

remarkable speed [Clark, 1998, Clark et al., 1998, 2001, 1999, Kawasaki et al., 2006,

Neilson et al., 2005, Shigesada et al., 1995]. In continuous terms, the logistic-WALD

model accomplishes this expansion by a very similar mechanism. Small quantities

of biomass are distributed at long distances from the established population, and

the biomass associated with these populations remains small (in comparison to the

carrying capacity) for a considerable period of time. These small quantities can be

conceptualised as representing a distribution of potential outlier populations away

from the starting point. As the wave front passes these points, a large and rapid

increase in biomass occurs, analogous to the expansion phase of the outlier-expansion
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model.

Within the many diffusion models of biomass movement, parameterisation of the

diffusion coefficient remains a challenge and source of uncertainty [Murray, 2003a,

Okubo and Kareiva, 1980]. Exemplified by “Reid’s paradox” [Clark et al., 1998], the

effective diffusion coefficients needed to reproduce typical biomass migration rates

exceed those derived from experimental observations relying on spread distance and

time scale arguments (i.e. approximations of diffusion coefficients D as L2/T ) by

orders of magnitude. For wind-dispersed plants, the logistic-WALD model offers a

way to improve the parameterisation of such “effective” diffusion coefficients. The

WALD kernel can be parameterised using local wind statistics and the characteristics

of the dominant plant species under consideration. The semi-analytical solution can

then be used to give the asymptotic wave speed, c. An effective diffusion coefficient,

should it be needed, can then be determined using the relationship D = c2/4r.

The use of the logistic-WALD model to derive an effective diffusion coefficient in

these cases provides a new, and defensible approach to parameterisation of existing

diffusion based models.

3.5 Conclusion

Our aim in formulating a biomass dispersal model based upon the WALD kernel

was to mimic the simplicity of diffusion as a description of biomass movement,

that is an expression approaching the simplicity of c = 2
√
rD, while avoiding the

anomalous results produced by diffusion, and improving spread rate parameterisa-

tion. This approach required that, with the exception of the mean wind speed,

parameters be treated as constant in space and time. The logistic-WALD model

achieves the improvements for wind-dispersed biomass in three ways. Firstly, the

up-scaling from turbulent transport timescales to biomass growth timescales is now

explicit and mechanistic, rather than assumed or empirically fitted to one particu-
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lar site. Secondly, the logistic-WALD model can be completely parameterised from

independent data: knowing sufficient information about the species’ growth rate,

the wind climate in which it grows, and the seed attributes provides sufficient infor-

mation to estimate upper bounds on the speed of the biomass front. Thirdly, the

logistic-WALD model is shown to provide reasonable estimates of known biomass

dispersal rates for the early Holocene expansion - circumstances in which diffusion-

based estimates are known to grossly underestimate such data. The super statistical

approach adopted here, in which processes are related across scales through deriving

relationships between their statistical descriptors, is now showing promise in many

applications including the prediction of rainfall on inter-annual timescales [Porpo-

rato et al., 2006] or improved descriptions of turbulent motion [Beck and Cohen,

2003]. Future application of such approaches could allow a similarly simple model

to account for variability at the inter-annual scale. Long time series data of wind

measurements are starting to become available which capture several decades of vari-

ability at multiple spatial scales [Kalnay et al., 1996], providing appropriate datasets

for examination of inter-annual variability in a “normal” setting, and thus baselines

against which to evaluate future trends in the wind climate. Studies of potential

changes to the wind climate show an emerging trend of change in the extremes of

wind climate ranging from fewer extreme events associated with weakening of the

Asian monsoon, to expectation of increasing severity of hurricane activity associated

with warmer sea surface temperatures [Emanuel, 1987, Knutson and Tuleya, 1999,

Lun and Lam, 2000, Pryor et al., 2006, Walsh, 2004, Webster et al., 2005, Xu et al.,

2006, Yan et al., 2006]. The sensitivity of wind dispersal to extremes of the wind

regime means that these changes have important implications for plant migration,

which can now be accounted for within a proposed framework of “hierarchical super-

statistics”. Here the superstatistics of the Weibull distribution would be evaluated

from time series data and scaling relationships developed to predict Ueff over longer
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timescales, as depicted conceptually in Figure 3.2. Such hierarchical superstatistical

models are expected to find broad applicability in a wide range of ecological mod-

elling problems in which the “dimensionality curse” impairs predictive capacity and

important processes span a range of timescales from fractions of seconds to multiple

years.
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Figure 3.2: Conceptual model for scaling of biomass growth and dispersal. The
Weibull and (conceptually) a lognormal distribution generate U values that force
the WALD kernels at different time scales (A). The WALD kernel (showing the
pdf of seed dispersal distances) results from a distribution of seed trajectories and
provides the scaling between turbulent and half hourly timescales (B). At longer
time scales the increasing variability results in “fatter” tails in the WALD kernel
(C). Computation of the vegetation front speed may proceed numerically via Monte
Carlo simulation, where a mean wind speed is repeatedly sampled from the Weibull
distribution, the hourly WALD kernel computed and the process repeated until the
asymptotic front speed is reached. This is repeated ≈ 500 times to predict the
front speed. More expediently, the Ueff parameter can be computed (D) and used
to directly describe the annual (or, conceptually, the interannual) WALD kernels,
which are then solved analytically for the vegetation front speed.
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Figure 3.3: Distribution of mean half-hourly wind speeds (U), with the mean of
the distribution shown. b. Distribution of effective wind speeds (Ueff ), derived from
numerical simulations of the Logistic-Wald model, for the forcing shown in a. Note
that the mean of the forcing wind speed (dashed line) under-predicts the distribution
of effective wind speeds.

49



Figure 3.4: Pairwise plot of Ueff predicted via regression and Ueff
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ACRU 8.9 21 2.6 0.67 10 17.2 126-200 218 134-334 262 238-384
ACSA 19 143 3.6 1.0 10 17.2 126-200 131 81-201 158 143-231
ACNE 60 114 1.9 0.92 9.5 19 126-200 94 58-144 113 102-165
ACSC 29.7 341 7.9 0.87 12.5 25 126-200 581 359-888 696 634-1021
BELE 20.1 137 3.4 1.6 15 20 212 59 37-90 71 65-105

FRAM 15.8 91 2.5 1.4 13.1 18.7 123 52 31-78 62 56-91
FRPE 20 162 7.7 1.6 11.9 17 123 111 69-170 133 121-195
PITA 23 164 8.2 0.7 11.7 14.6 81-400 542 335-829 650 591-953

Mean 169 224 268

Table 3.2: Data used to parameterise the logistic-WALD model, front speed results
from the pollen record and the predicted speeds from the logistic-WALD model. The
error bounds shown incorporate the 10th and 90th percentile estimates of Ueff and
an 8% error associated with geographic variation in wind properties. κ was set to
0.6 for the simulations. ACRU - Acer rubrum, ACSA - Acer saccharum, ACNE -
Acer negundo, ACSC - Acer saccharinum, BELE - Betula lenta, FRMA - Fraxinus
americana, FRPR - Fraxinus pennsylvanica, PITA - Pinus taeda
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4

Role of biomass spread in vegetation pattern
formation within arid ecosystems

4.1 Introduction

Self-organization of vegetation into regular patterns has been observed in arid and

semiarid ecosystems worldwide, across a wide variety of plant species and forms, and

on a range of soil types [Tongway and Ludwig, 2001, Rietkerk and van de Koppel,

2008]. Patterned vegetation was first noticed by air in the 1950s [Clos-Arcedue,

1956], and the intriguing landforms generated extensive field studies that identified

many of the important commonalities of patterned landscapes: an arid to semiarid

climate, high-intensity rainfall, minimal soil type differences between vegetated and

bare zones beyond those immediately attributable to the presence of vegetation,

noticeable crusting in the bare zones, and a dependence on a topographic gradient

that resulted in a transition from anisotropic banding patterns to isotropic labyrinth,

gap, and spotted patterns as the slope declined to less than 0.2% [D’Herbes et al.,

2001, Tongway and Ludwig, 2001, Rietkerk et al., 2002, Galle et al., 2001]. These

features suggest that patterns arise as an emergent feature of nonlinear plant-water
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interactions, where water availability increases beneath vegetation, as a result of the

suppression of growth of biological soil crusts [Belnap and Lange, 2001], the presence

of roots and macropores increasing infiltration rates and potentially plant canopies

shading the soil surface, reducing soil evaporation [Scholes and Archer, 1997]. The

net result is a locally elevated soil moisture resource in the proximity of vegetation

[Bromley et al., 1997, Valentin et al., 1999]. An extensive literature has examined

the importance of patterned landscapes as resource harvesting structures [Greene

and Valentin, 2001, Mauchamp et al., 2001, Thiery et al., 1995, Rietkerk and van de

Koppel, 2008], but only in the last decade has theoretical attention been given to

these landscapes as dynamic nonlinear systems in which the self organization of

vegetation can be generically studied despite large differences in ecosystem types

[Thiery et al., 1995, Klausmeier, 1999, HilleRisLambers et al., 2001, von Hardenberg

et al., 2001, Lejeune, 2002, Rietkerk et al., 2002, Gilad, 2004, Rietkerk et al., 2004].

Initially this approach was driven by phenomenological models of facilitation and

competition between vegetation structures [Lefever and Lejeune, 1997] then through

coupling biomass and soil moisture budgets explicitly [Klausmeier, 1999, von Hard-

enberg et al., 2001]. However, it has largely been the inclusion of surface water

transport in these models that reproduced realistic patterning length scales, and

these three-component models represent the current state of the art with respect to

process simulation of patterned landscapes [Rietkerk et al., 2002, Gilad, 2004, Yizhaq

et al., 2005]. The existing model frameworks have been refined with respect to the

importance of stochasticity in rainfall [D’Odorico et al., 2006a, Ursino and Contarini,

2006] and aspects of plant physiology [Ursino, 2007] pertinent to photosynthesis, res-

piration, and stomatal response to mean vapor pressure deficit [Kefi et al., 2008]; as

well as soil properties [Ursino, 2005]. A critical finding from this effort has been that

patterned landscapes are bistable states that may undergo “catastrophic ecosystem

shifts” to a desertified state from which the previous patterned condition cannot be
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recovered [Rietkerk et al., 2004, Kefi et al., 2007a,b]. Research into patterned land-

scapes has therefore shifted perspective from the original questions concerning the

maintenance and function of these intriguing systems to research that aims to use

the condition of the emergent patterns as an indicator of ecosystem health. A critical

component of research into these patterns involves developing the capacity to infer

the state of the ecosystem given “observable” patterns of vegetation. Such inference

is of necessity based upon models that contain the appropriate representation of the

key processes occurring within the ecosystem.

In evaluating the state of the science in this manner, two observations can be

made about key knowledge gaps. The first is that despite extensive refinement of

the models used, an evident difference remains between modeled and real vegetation

patterns, in that the former are smooth, while the latter display a conspicuous degree

of disorder (Figures 4.1a and 4.1e). The second is that the representation of plant

movement, critical to the formation of a pattern, has not been considered in de-

tail, but instead has been represented via diffusion in almost all models formulated,

or accounted for phenomenologically by representation of long-range interactions

[D’Odorico et al., 2006a]. Diffusion results in a representation of biomass movement

that is localized and depends upon biomass gradients to determine the relative rate

of transport. In contrast, real plant population movement, assuming sexual repro-

duction, is driven by the production and transport of seeds. These observations lead

to an initial question, namely, is the disorder observed in real patterns representative

of underlying randomness at small scales as is known to exist in soil properties, or

might it arise because biomass movement is less diffusive than its representation in

current models?

To answer this question, we couple a “dispersal kernel”, defined as the probability

distribution of seed distances from their parent source [Clark, 1998, Clark et al., 1998,

1999] to existing pattern formation models as an alternative to diffusion. Dispersal
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Figure 4.1: (a) An image taken from Google Earth at 12◦19′55.40′′N and
3◦10′49.90′′E in Niger on 28 January 2006. (b) A subsampling and smoothing of
the image, which was then used as the initial condition for the simulation results
(Figures 1c1e). (c) The results from the dispersion model, (d) the diffusion model
with stochastic soil properties, and (e) the original diffusion model. The parameter
values used were c = 10, gmax = 0.05, k1 = 5, Dp = 0.1, α = 0.2, k2 = 5, Wo = 0.2,
rw = 0.2, Dw = 0.1,Do = 100, R = 1, d = 0.23.

kernels describe both local and nonlocal movement and are independent of biomass

gradients. The use of a dispersal kernel differs somewhat from previous kernel-based

models [Lefever and Lejeune, 1997, D’Odorico et al., 2006a] in which the kernel en-

codes the interactions responsible for local facilitation and long-range inhibition of

vegetation growth, i.e., the genesis of pattern formation [Murray, 2003b]. Instead,

the dispersal kernel approach solely dictates the rates and spatial scales of biomass

transport, while the facilitative and inhibitory processes are determined by the in-

teractions of biomass and water, just as in the diffusion-based model. The coupling

of seed dispersal kernels with pattern-forming models can address several questions
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fundamental to understanding vegetation patterns in arid and semiarid systems: Can

patterns be maintained in the absence of a diffusive representation of biomass? What

is the “direction” of pattern evolution, toward or away from more continuous cover?

Finally, could feedbacks exist between dispersal ecology, soil moisture redistribution,

and pattern formation in these highly organized ecosystems? The paper proceeds by

outlining the basic features of dispersal ecology in arid ecosystems first, then address-

ing the incorporation of a seed dispersal kernel into a model of pattern formation,

which is used to address the questions outlined above.

4.2 Seed dispersal

The dispersal of seed determines ecological characteristics of plants and their commu-

nities, such as gene flow and the genetic structure of populations [Cain et al., 2000,

van der Pijl, 1972], the survival and success of subsequent generations of plants,

rates of expansion into new terrain and the spatial distribution of plants at multiple

spatial scales in terms of habitat, range, and spatial organization within the land-

scape [Clark, 1998, Clark et al., 1998, 2001]. Dispersal is broadly characterized by a

canonical length scale over which seeds move and by a dispersal vector that trans-

ports them. The length scales of dispersal vary from highly localized (< 1 m) to long

distance (LDD, 100-102 m). Transporting vectors change the statistical properties of

kernels, with exponential kernels induced by simple ballistics, longer range and often

leptokurtic kernels associated with wind or water dispersal, and with the stochastic,

anisotropic and potentially nonrandom transport by insects, birds, or animals often

difficult to represent via kernel approaches [van der Pijl, 1972, Ellner and Shmida,

1981, Fragoso, 1997, Russo et al., 2006], and see Chapter 3. Dispersal in desert plants

typically occurs over short length scales [Davidson and Morton, 1984, Chambers and

MacMahon, 1994] with many species seeds lacking adaptations to promote dispersal

(atelechory) or exhibiting adaptations that limit dispersal (antitelechory) [van der
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Pijl, 1972, Ellner and Shmida, 1981]. Many desert perennial species rarely propagate

from seed, and asexual reproduction is common [Abrams, 1988, Thiombiano et al.,

2003] . The dispersal ecology of species comprising patterned vegetation is variable,

and has not been comprehensively studied [Montana et al., 2001]. Some species, such

as Combretum micranthum (West Africa), appear to have adaptations for secondary

wind dispersal, with roundwinged seeds that “tumble” along the ground [Midgley,

1998]. Other species, such as Acacia aneura (Australia), are dispersed primarily

by ants [Davidson and Morton, 1984]. Several of the species involved in pattern

formation have the capacity to reproduce asexually (e.g., Combretum micranthum,

Guiera senegalensis, Pleuraphis (formerly Hilaria) murtica) [Couteron and Lejeune,

2001, Thiombiano et al., 2003, Uchytil, 1988]. However, seedling recruitment is of-

ten described within patterned sites suggesting that seed dispersal is an important

process in these landscapes. Where soil crusts are well formed, they may pose an

obstruction to seedling recruitment [Prasse and Bornkamm, 2000] and indeed Mon-

tana et al. [2001] show that where the slope of the ground is significant(> 0.2%) the

seed bank tends to lie within vegetated areas, as a result of secondary transport by

runoff from the interband. This study, however, considers only cases where there is

no significant slope, so the velocities of surface water and seed transport by water are

relatively low and oriented toward local vegetated sites. Secondary transport thus

effectively shortens dispersal length in this scenario and is not considered explicitly

here. For the case of a slope grade large enough to impose a preferential direction of

flow, alternative and anisotropic descriptions of seed transport are needed.

4.3 Methods

4.3.1 Ecohydrological model

The study is based on an adaptation of a simple spatial model of arid ecosystem

vegetation-water relations developed by HilleRisLambers et al. [2001] and Rietkerk
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et al. [2002]. The original model equations are:

∂P

∂t
= cgmax

W

W + k1

P − dP +Dp∇2P, (4.1)

where P is the plant biomass in gm−2.

∂W

∂t
= αO

P + k2Wo

P + k2

− rwW − gmax
W

W + k1

+Dw∇2W, (4.2)

where W is the soil water depth in mm; and

∂O

∂t
= R− αOP + k2Wo

P + k2

+Do∇2O, (4.3)

where O is the surface water depth in mm. The model parameters are c (water

uptake to plant growth relation, g mm−1 m−2, gmax (maximum specific water uptake

mm m2 g−1 day−1), k1 (half saturation constant of water uptake, mm), d (death

rate, day−1), Dp (biomass diffusion coefficient m2 day−1), α (maximum infiltration

rate day−1), Wo (the rate of infiltration in the absence of plants, [ ]), rw (timescale

of water loss due to evaporation and drainage, day−1), R (precipitation, mm day−1),

and ∇2 = ∂2/∂x2 + ∂2/∂y2 , where x and y are the Cartesian coordinates.

The model represents a positive feedback between water and carbon where infil-

tration relates to biomass density in a Michaelis-Menten sense [Briggs and Haldane,

1925]. Soil water uptake increases with vegetation biomass, resulting in a negative

feedback due to competition for the limited available water. Spatial movement of

water and biomass is represented as diffusion. The model produces spatial patterns

with a characteristic wavelength following the typical spot-labyrinth-gap sequence as

water availability increases. This pattern sequence is shown in Figure 4.2c for the

original model equations.
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Figure 4.2: Simulation results of dimensionless biomass along a gradient of de-
creasing water stress for (a) the dispersion model with random initial conditions,
(b) the dispersion model with random point initial conditions, and (c) the original
diffusion model. The initial condition (IC) for each set of models is given. Length
scales are shown on the left and the colors indicate the dimensionless biomass den-
sity (nondimensionalized by the biomass saturation constant for water infiltration).
Increasing R/d (rainfall to death rate) decreases soil moisture stress on growth. Note
that the color scale differs between plots. The parameter values used were c = 10,
gmax = 0.05, k1 = 5, Dp = 0.1, α = 0.2, k2 = 5, Wo = 0.2, rw = 0.2, Dw = 0.1,
Do = 100, R = 1.

To refine the representation of biomass transport, the diffusion term in the P

equation is replaced by a convolution of a dispersion kernel and standing biomass,

defining the seed rain about a parent plant (see Chapter 3). This adjustment to

the biomass equation removes the dependence of the spatial movement on biomass

gradients and allows for a variable length scale for dispersal, giving:

∂P

∂t
=

(
cgmax

W

W + k1

P − dP
)

(1− φ) + φ

∫ ∫
ν (x− x′, y − y′)P (x′, y′) dx′dy′,

(4.4)

where ν is the dispersal kernel (that can account for secondary dispersal mechanisms
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if known), φ represents the proportion of standing biomass dispersed per unit time,

and x′ and y′ define the distance seeds move from the parent, integrated over the

domain.

Determining φ is problematic, as fecundity values vary strikingly between indi-

viduals and species, may change with environmental conditions, and are not typically

reported as a percentage of biomass. The proportion of biomass that is allocated

to reproduction can be as much as 50% for annuals, but is far less for many species

[Aronson et al., 1993]. Determining the duration over which dispersal occurs com-

plicates the conversion of this allocation to a rate. Assuming that the period during

which a plant disperses seed ranges from 1 month to 1 year, and that 1-50% of

the standing biomass is allocated to seed, then f can be considered to range from

10−4−10−2 day−1. A plausible value in this range, 2.5×10−3, was used for numerical

simulations.

A number of process- and timescale-related limitations apply to the model. Many

of these have been addressed explicitly in other studies (see, e.g., Ursino [2005,

2007], Ursino and Contarini [2006]) and are also discussed in Appendix C. The most

significant concern is that representing the dynamics of a highly stochastic system

using a deterministic model may misrepresent the systems drivers. This concern was

addressed by linearizing the model equations at steady state and showing that the

mean rainfall predicts the temporally averaged biomass response under stochastic

rainfall conditions. This result is subject to limitations, as sporadic rainfall can

annihilate the vegetation patterns and render further predictions or inference moot,

but justifies the use of mean rainfall as a driver for this simple model at the timescales

on which biomass changes. Details of the linearization are presented in Appendix C.

Other studies addressing the question of stochasticity and its relationship to pat-

terning have concluded that stochastic rainfall may be a driver of pattern formation

[D’Odorico et al., 2006a, 2007] and that while stochasticity changes the type of pat-
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tern formed for a given mean rainfall, it does not influence the overall shape of

the patterns [Ursino and Contarini, 2006]. Finally, the hydrological processes rep-

resented in the model are also simplistic and based upon diffusion. Improvement

of process representation in the hydrology and their integrated effects to timescales

commensurate with biomass changes is an outstanding problem in this research field.

4.3.2 Dispersal kernels

A Wald kernel, defined by a Wald or Inverse Gaussian distribution was used for the

simulations here. The kernel is given in radial coordinates by:

νWald =
1

4πdr

√
λ

2π (r − r′)3 exp

[
−λ ((r − r′)− µ)2

2µ2 (r − r′)

]
(4.5)

where µ > 0 is the mean of the distribution, λ > 0 is a scale parameter, r =
√
x2 + y2,

dr =
√
dx2 + dy2 and r′ =

√
x′2y′2. The variance of the this distribution is given

by σ = µ3/λ. The Wald kernel can be used to represent any dispersion length

scale. In the local limit, it approximates a ballistic spread of seed about the parent

and replicates the scale and spatial pattern of a Laplacian (i.e., the spatial term

responsible for diffusion). In the nonlocal limit, the kernel allows for wind-dispersed

seeds to travel long distances [Katul et al., 2005].

4.3.3 Numerical simulations and methods of analysis

The numerical simulations performed are summarized in Table 1. All simulations

were run on a 100× 100 m grid with 2× 2 m cells and periodic boundary conditions

with a timestep of 0.008 days. Simulations initialized with a remote sensing image

were run on a 550× 700 m grid with 2.8× 2.8 m cells. Numerical calculations were

performed using an Euler forward difference scheme, and the convolution between

the biomass and the dispersal kernel was performed in the Fourier domain using
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Research Question Kernel Initial Conditions Parameter Notes1

Where does small- diffusion and binary filter R/d = 4.4 mm;
scale disorder square wave of remotely Dp= 0.01;
come from (Qu. 1)? sensed image one run with k2

randomized, 5± 0.5

Can patterns be square wave point and death rate
maintained without randomized d = 0.17− 0.27 day−1

diffusion (Qu. 2a)?

What is the square wave point and death rate
influence of initial randomized d = 0.17− 0.27 day−1

conditions (Qu. 2b)?

Does a kernel square wave point and dispersal allocation
model admit randomized (φ = 10−4 − 0.3 day−1

bifurcations (Qu. 3)? d = 0.17− 0.27 day−1

What is the impact Wald randomized Wald variance
of dispersal σ2 = 0.5 = 0.32
length scale on death rate
patterns (Qu. 4)? d = 0.17− 0.27 day−1

Table 4.1: Details of numerical simulations and the scientific questions addressed.
1. The parameter values used for all simulations were c = 10, gmax = 0.05, k1 = 5,
Dp = 0.1,a = 0.2, k2 = 5,Wo = 0.2,rw = 0.2,Dw = 0.1,Do = 100, R = 1.

a fast Fourier transform algorithm for two-dimensional convolutions [Rosa, 2004].

Simulations were run until the steady state biomass was reached, typically 2000 days

(determined as the point where the rate of change in biomass, normalized by the

standing biomass, was less than 1× 10−4). Unless shown otherwise in Table 4.1, all

model parameters are those used by Rietkerk et al. [2002]. Table 4.1 shows five differ-

ent model runs, addressing the 4 key research questions outlined in the introduction

(and elaborated upon next), as well as important tests of model validity, specifi-

cally with respect to identifying bifurcations in model behavior. The methodological

details are below.
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4.3.4 Question 1: Does small-scale disorder in vegetation patterns arise from ex-
trinsic randomness or intrinsic processes?

To address this question, three cases were considered: a basic diffusion model, the

kernel model using a square wave kernel, and the diffusion model running on a grid

where the soil parameter k2 (the half saturation constant for the infiltration rate)

was treated as an uncorrelated Gaussian random field varying by 10% around its

mean. Extensive studies into the nature and scaling of soil heterogeneity support

the notion that variability in soil properties is uncorrelated on scales of 1–100 m, those

relevant to this model, and thus support the treatment of small-scale randomness

as uncorrelated in space [Buchter et al., 1991]. To remove uncertainty regarding

the initial conditions, the models were initialized with an image taken from remote

sensing and passed through a binary filter. Runs were initialized by holding the

biomass constant in time until the water terms reached steady state. Biomass was

then allowed to adjust to this new soil moisture spatial distribution. This approach

avoided creating transient artifacts that might disrupt the initial biomass conditions

while the water terms equilibrated. The model was run with different rainfall values

until an optimal approximation of the original biomass pattern was reached (tested

by the absolute difference and RMS difference between steady state results and the

initial condition). A water availability measure of R/d = 4.4 mm was adopted for

all simulations. Power spectra of the steady state solutions were calculated using a

twodimensional Fourier transform. For clarity, the most energetic modes, normalized

by the area under the spectrum, were plotted against wavelength.

4.3.5 Question 2: Can vegetation patterns be generated withour treating vegetation
transport as diffusion? What are the influences of the initial conditions?

These questions were addressed in concert by running comparisons of the original

diffusion model and the square wave kernel based model across a gradient of water
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stress for different initial conditions and comparing the results. The initial conditions

used consisted first of a perturbation about continuous biomass cover in the range

of 0 – 50 g m−2 (“random” initial conditions), broadly analogous to a drying climate

fragmenting initially continuous vegetation cover. Other ranges of variability in the

random initial condition were also tested. The second initial condition used was

a random seeding of an otherwise unvegetated landscape (5% of cells initiated at

a biomass density of 50 g m−2, other cells at 0 g m−2, “point” initial conditions),

broadly analogous to the revegetation of a desertified region via random germination

from a seedbank or randomly dispersed individual seeds. The initial conditions are

shown as the leftmost column in Figure 4.2.

4.3.6 Question 3: Does the kernel-based model admit bifurcations?

The possibility of bifurcations existing in the new model was explored by changing

the dispersion allocation parameter φ over the biologically realistic range for varying

values of plant stress.

4.3.7 Question 4: What is the impact of the dispersion length scale on the biomass
steady state?

The dependence of the steady state biomass characteristics on the length scale of

dispersal was evaluated by varying the plant stress term and the dispersal length

scales concurrently. Dispersal length scales were varied from 0.5 to 32 m, encom-

passing scales both smaller and greater than the typical length scales of vegetation

patterns. The characteristics of the biomass were evaluated in terms of the total

standing biomass at steady state (nondimensionalized by k2) and the site occupancy,

expressed as a percentage of the domain size. A site was defined as occupied if the

scaled biomass density (P/k2) > 1. This threshold was set to exceed the biomass

density within “bare patches” and to encapsulate all biomass within occupied patches

over all simulations. Trends in the characteristic length scales of the patterns as eval-
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uated from power spectra, and in the amplitude of the patterning were also recorded.

4.4 Results and discussion

From the simulations in Table 4.1, the results are presented thematically following

the questions outlined previously. It should be emphasized here that the simulation

results are generic and are not intended to represent a particular ecosystem.

4.4.1 Question 1: Does small-scale disorder in vegetation patterns arise from ex-
trinsic randomness or Intrinsic Processes?

Initiating the model with a vegetation pattern taken from a remote sensing image

allows an evaluation of the models capability to preserve real features of patterned

vegetation, and permits a direct comparison of the fine-scale features of different

model results in terms of two dimensional power spectra. Encouragingly, for appro-

priate choices of the rainfall/mortality forcing, the models used preserved many of

the spatial features of the initial condition. A comparison of the patterns generated

by the diffusion model, a diffusion model with random soil properties, and a dis-

persion model showed that the dispersion model best preserved the energetic length

scales found in field data (Figure 4.3b and 4.3c). A comparison of the power spectra

of these cases showed good correspondence between the remotely sensed image and

the dispersion model. The addition of random soil properties through randomiza-

tion of the k2 term generated new energetic length scales and spread the energy out

over this range, reducing the distinctiveness of the pattern (Figure 4.3c), while the

diffusion model alone constrained the range of energetic length scales (Figure 4.3d).

Preservation of the energetic length scales of real data is a necessary but not suffi-

cient condition upon which to evaluate the models performance; these results provide

encouraging but not conclusive support for the use of the kernel-based model.
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Figure 4.3: Comparison of measured and modeled power spectra, represented here
by a scalar wavelength. The spectra are normalized by their respective areas. (a) The
full spectrum obtained from the remote sensing image (Figure 1a). (b) Magnification
of area indicated by insert in Figure 3a. (c) The spectrum from the dispersion
model for the same range in wavelengths. (d) The analogous spectrum arising from
the diffusion model runs with stochastic soil properties. (e) The spectrum from
a diffusion model assuming homogeneous soil/vegetation parameters in space. The
dotted vertical line indicates the most energetic length scale observed from the Google
Earth image.
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4.4.2 Question 2a: Can patterns be maintained in the absence of diffusion?

The model results indicate that pattern formation can persist without requiring

biomass to diffuse. This is an important confirmation that the proposed mecha-

nisms for pattern formation, which until now have been demonstrated only with

idealized descriptions of vegetation transport, are compatible with realistic vege-

tation movement processes. The results obtained via a dispersal kernel contrast

to those obtained from previous kernel and diffusion based models by increasing

the steady state biomass density and decreasing the regularity of the steady state

biomass patterns. Despite differences in pattern appearance, the disordered patterns

generated by the dispersion model recapitulated the trends with water stress seen

in the diffusion model. Linear stability analysis supported the interpretation that

dispersion destabilized the pattern formation properties of the model, as the range

of unstable wavelengths increased markedly [Murray, 2003b] (see also Appendix C).

The outcomes from using kernels in pattern-forming models depend on the shape

and purpose of the kernel. Lefever and Lejeune [1997] use a kernel to encode the

feedbacks that result in pattern formation to generate smooth, regular patterns.

By contrast, our kernel purely results in transport of biomass and has the effect of

removing sensitivity of that transport to biomass gradients, a sensitivity that was

maintained in the Lejeune and Lefever model. The kernel in this model is indepen-

dent of biomass gradients. It is thus less diffusive and admits disordered solutions

that diffusion would tend to smooth out. In fact, some of the patterns generated

by the dispersion model appear less regular than those observed in nature, rais-

ing the possibility that biomass movement might preserve some diffusive features.

A potential source of such behavior might lie in vegetative reproduction (through

clonal growth), which is known to occur in several of the species that form patterned

vegetation (e.g., Combretum micranthum, Guiera senegalensis, Pleuraphis (formerly
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Hilaria) murtica) [Couteron and Lejeune, 2001]. The prevalence of vegetative versus

sexual reproduction, however, is not clear [Thiombiano et al., 2003, Uchytil, 1988].

Another possible explanation for the models less regular patterns is that the cou-

pling in time between rainfall and seed production or dispersal, as is common in

arid ecosystem [Ellner and Shmida, 1981], may act to smooth patterns by subsum-

ing smaller scales during periods of vegetation expansion or consuming them during

periods of water stress. These two effects do “smooth out” biomass fronts.

4.4.3 Question 2b: What is the influence of initial conditions on pattern formation?

The dependence on ICs between the diffusion model and the kernel-based model was

quite different. The final pattern form was largely independent of the ICs in the dif-

fusion model, but was highly sensitive to ICs in the dispersion case, shifting from a

frozen state generated by point ICs where biomass expanded about the initial points

until the expansion was halted by water depletion at the boundary of the vegetation

patches, as in Figure 4.2b, to the “disordered” patterns generated from random ICs,

as in Figure 4.2a. The sensitivity of the final pattern to the degree of randomness

imposed in the random initial condition was also tested. The patterns displayed less

disorder as the magnitude of the initial disturbance declined, but remained highly

disordered in comparison to a diffusion model. This dramatic change in spatial orga-

nization and sensitivity to initial conditions in contrast to diffusion-based models can

be understood as a combination of two factors: the stabilization of sharp biomass

fronts, and the importance of connectivity between vegetation patches in moderating

the plant-water spatial dynamics. While diffusion acts to erode sharp biomass fronts,

these fronts remain stable in the kernel-based model, and are susceptible to being

“pinned” by equally abrupt water limitation at the expanding edge, preventing the

growth and establishment of dispersed seed ahead of the front. Under such circum-

stances, isolated patches expand outward symmetrically until the growth is halted
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by water limitation. These patches do not fragment but remain cohesive within the

pinned boundary, generating the “frozen state”. When the model is initiated with

continuous vegetation cover, the vegetation patterning is not driven by the expansion

and pinning of patches but by the disintegration of the initial vegetation cover due to

the surface water dynamics. The point initiation case can be viewed as being driven

by the expansion of the biomass, and the random initial conditions case by the real-

location of soil moisture, with different results for the ultimate spatial organization.

The unrealistic form of the patterns generated by the point diffusion case suggests

that vegetation patterns are unlikely to have resulted from colonization of sites by

dispersed seed, and lends support to the possibility that patterns originate from the

fragmentation of homogeneous vegetation cover under increasing water stress.

4.4.4 Question 3: Does the dispersion kernel model admit bifurcations?

Bifurcations between disordered patterns, ordered patterns, and homogeneous vege-

tation occurred with changes in φ, however these were located at values of φ > 1×

10−2 day−1, outside the biologically realistic range of φ ∈ (1×10−4−1×10−2 day−1).

Realistic φ values generated disordered patterns or homogeneous biomass. These re-

sults provide confidence that the variations observed in the dispersion model output

were independent of the choice of φ.

4.4.5 Question 4: What is the impact of dispersal length scale on observed patterns?

Trends in spatial organization, biomass, occupancy (P/k2 > 1), pattern amplitude

and pattern length scale were evident with changing dispersion length scales and

water stress. Trends in pattern length scale and amplitude appeared to be specific

to the pattern type. Length scales of gaps (i.e., bare sites) and spots (i.e., vege-

tated sites) declined as the dispersion length increased, while the length scales of

labyrinthine patterns were largely unchanged. The trends in amplitude reflected the
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trends in length scale, with biomass generally increasing as vegetation cover declined.

Overall the magnitude of these changes was on the order of 10-15% while dispersal

length changed over 2 orders of magnitude. Despite the trends, it was difficult to

identify any signal of changing dispersion length in power spectra of the patterns.

This is rather encouraging from the perspective of inverse modeling, as it suggests

that the dispersal length parameter, which is difficult to estimate a priori, will have

only a minimal influence on the remainder of the pattern form.

The impact of the trends in total biomass and site occupancy was evaluated us-

ing an index that combined the total biomass and the degree of site occupancy by

multiplying the standing biomass (normalized by the maximum standing biomass

achieved under the environmental conditions) by the percentage of occupied cells,

and normalizing again by the highest value of this index for each set of environmental

conditions tested. Trends in the index (Figure 4.4a), as well as for the amplitude

(Figure 4.4b) and pattern length scale (Figure 4.4c), are shown in Figure 4.4 for

the random initial conditions case. The index decreased with increased dispersion

distance, with the greatest decreases associated with the highest water stress and

approaching zero as the water stress was reduced. The use of a simple multiplicative

index to capture the variations in standing biomass and its distribution was based

upon a simplified assumption that plants in general should seek to maximize both

their standing biomass and their extent. This assumption neglects the subtleties of

real ecological responses and should be treated with caution: nonetheless the trends

found are intriguing and suggest that there may indeed be a feedback between the

pattern formation in these systems and dispersal strategy selection. The trends fur-

thermore agree with empirical evidence of a preponderance of anti telechory and

atelechory (localized dispersal) in desert ecosystems, and suggest that there may be

a link between water availability and seed dispersal length scales. Within the model

framework, the decline in the index with dispersal length can be attributed to the
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increased probability of seeds being dispersed to regions with an impoverished soil

moisture resource as the dispersal length increases. At short dispersal distances a

greater proportion of seeds germinate in a region of relatively high water availability

near the parent. We note that although we did not explicitly incorporate the inhi-

bition of seedling germination over crusted soils into this model, that this would be

a further feedback enhancing plant success when seed dispersal preferentially routed

seeds to vegetated sites. This might also lead to more regular vegetation patterns

(see above). This simple description is intriguing, and while obviously limited by lack

of explicit consideration of genetics, intergenerational competition and other factors

needed to evaluate optimal reproductive strategies for plants, it indicates that the

links between plant dispersal strategies, organizing features in the environment, and

other edaphic drivers deserves more detailed theoretical treatment.

4.5 Conclusions

While extensive effort has been invested in understanding the nonlinear interactions

between plants and water in pattern-forming vegetation within the last decade or

so, the role of vegetation transport has been less studied. It appears, however, that

the description of spatial movement of the plant population has the capacity to sig-

nificantly alter the steady state spatial patterns in these systems, through changing

sensitivity to initial conditions and destabilizing the patterns formed over a wider

range of length scales. Indeed, the increased range of length scales may result in

improved representations of steady state biomass, on the basis of a comparison with

measured spatial power spectra of vegetation density. These results suggest that

spatial heterogeneity, for example in soil properties, need not be the source of disor-

der in vegetation patterns, but that the decoupling between biomass gradients and

dispersion terms may also act to introduce a broader spectrum of length scales of

variability. To further evaluate this hypothesis, studies of the dispersal ecology of
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pattern forming species are needed, to quantify modes of reproduction (sexual versus

asexual), length scales of dispersal and the relationship between soil moisture avail-

ability and seedling success and survival. In an environment limited by the soil water

resource, such studies may allow the separation of the roles of biomass movement

and water supply as the processes determining patterns of spatial organization.

4.6 Further implications

The apparent interaction of water availability and dispersal length scales in deter-

mining steady state biomass parameters remains intriguing and warrants further

investigation. In particular, it raises the question of whether environmental controls

upon dispersal behavior can be identified more generally across ecosystem types.

Studies of the interaction between dispersal strategy and environment at the ecosys-

tem level suggest that factors such as climate and disturbance play important roles

in selecting dispersal mechanisms [Ellner and Shmida, 1981, Fragoso, 1997, Fragoso

et al., 2003, Reichman, 1984, Abrams, 1988, Clauss and Venable, 2000], while broad

trends can be identified between ecosystems. To view such trends through an eco-

hydrological lens, the classical Budyko Curve [Budyko, 1974] provides a tantalizing

starting point toward a conceptual framework (Figure 4.5). A survey of typical

modes of dispersal across biomes suggests that there is a predominance of short-

range dispersal in arid ecosystems, longer-range wind- and animal-driven dispersal

in grasslands and temperate ecosystems, and long-range animal dispersal (with lit-

tle wind dispersal) in tropical ecosystems [Chambers and MacMahon, 1994, Howe

and Smallwood, 1982]. The findings in this study suggest that it may be possible

to quantify the linkage between an edaphic forcing term (such as precipitation) and

dispersal optimization in arid ecosystems. We speculate that, given the control of

hydraulics on plant height, resource availability on canopy densities, and energy in-

puts on disturbance, it may be possible to establish a general framework relating

72



optimal ecosystem dispersion strategies to the processes, patterns, and organizing

principles that drive their physical environments.
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Figure 4.4: Variations in pattern properties with changing length scales of seed
dispersal. (a) Changes in the combined biomass/occupancy index for random initial
conditions. (b) Trends in the amplitude of the patterns, with the amplitude shown
normalized against the σ2 = 0.5 case. (c) Changes in the characteristic length scale
(as interpreted from power spectra) of the patterns, with the length scale shown
normalized against the σ2 = 0.5 case. Increasing R/d indicates decreasing water
stress.
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Figure 4.5: Trends in dispersal length and strategy broadly vary along the Budyko
Curve. The abscissa value, Budykos “radiative index of dryness” represents the
ratio of potential evapotranspiration to precipitation, and as such is a measure of
water limitation (Ep/P > 1, i.e., more water can be removed from the landscape
via evapotranspiration than is delivered to it) or energy limitation (Ep/P < 1, i.e.,
more water is delivered to the landscape than evapotranspiration can remove). The
ordinate value is the ratio of actual evaporation to precipitation.
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5

Secondary seed dispersal and its role in landscape
organization

5.1 Introduction

Banded vegetation, consisting of interspersed bands of vegetation and bare soil, oc-

curs in arid ecosystems worldwide in association with biological soil crusts, intense,

infrequent rainfall, and slopes of 0.2-2% [Valentin et al., 1999]. Vegetation patterns

are thought to arise from a positive feedback between soil moisture availability and

biomass density, emergent properties of coupled hydrological and ecological processes

[D’Herbes et al., 2001]. The dynamics of these systems have attracted interest due

to their occurrence in areas prone to desertification [Goutorbe et al., 1997], their

importance as a source of forage [Safriel and Adeel, 2003], and numerical predic-

tions suggesting the patterns are indicators of desertification [Rietkerk et al., 2002,

2004]. Numerical models repeatedly predict upslope migration of vegetated patches

due to increased facilitation at the upslope edges of the bands, encouraging expan-

sion at rates of 10-100 m/year in many models [Klausmeier, 1999, Rietkerk et al.,

2002, Thiery et al., 1995, von Hardenberg et al., 2001]. This prediction remains one
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of the most debated questions regarding band dynamics [Seghieri and Dunkerley,

2001, Worrall, 1959]. Measures of upslope vegetation movement at rates of 0.10

to 0.15m/year have been reported [Leprun, 1999], but other studies found no evi-

dence of migration over 5-8 years [Cornet et al., 1992, Montana, 1992]. Over short

observation windows, systematic upslope migration is difficult to distinguish from

temporary expansion/contraction of bands [Tongway and Ludwig, 2001]. Increas-

ingly, field studies are concluding that spatial variation of band vegetation reflects

niche partitioning and not upslope migration [Couteron et al., 2000]. Mathemati-

cal models of banded systems predict an unequivocal and rapid (10 - 100 m/year)

migration of the vegetation bands, 2-3 orders of magnitude faster than observations

[Klausmeier, 1999, Rietkerk et al., 2002, Thiery et al., 1995, von Hardenberg et al.,

2001]. This is a key point of disagreement between theory and observation. It is ar-

gued here that this disagreement can be resolved by consideration of seed transport,

or more precisely, its representation in the modelling framework used in previous

studies. Although seed dispersal is critical for migration of vegetation communities,

these processes are only now being incorporated into models of patterned vegetation

[Pueyo et al., 2008] (and see Chapter 4). We hypothesise that the rapid band mi-

gration generated by contemporary models arises from the failure of diffusion-based

representations of biomass migration to capture important features of seed dispersal

in these systems. Seed banks in banded systems are concentrated within vegetated

bands, where the seed density can be 180 times greater than in the bare interband

[Mauchamp et al., 1993, Seghieri et al., 1997]. Seeds are transported down slope

from bare sites by runoff [Aerts et al., 2006]. This advection can be the dominant

dispersal mechanism for some species, even in dry environments [Friedman and Stein,

1980]. Recruitment of seedlings on the biological crusts in the interband is minimal

[Montana et al., 2001, Prasse and Bornkamm, 2000], and this exaggerates tendency

for recruitment to occur within the bands rather than at their edges. Two different
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approaches are taken to incorporate secondary dispersal of seed. The first approach

adds advection of seeds to a process-based model that couples water and biomass

dynamics to predict upslope migration of vegetation bands [Rietkerk et al., 2002].

Promisingly, previous qualitative examination of secondary seed dispersal by similar

mechanisms suggests that it may alter band migration dynamics [Saco et al., 2007].

The second uses a kernel-based approach (see Chapter 4) to improve the realism

of dispersal modelling. In this kernel based model framework, an anisotropic seed

dispersal kernel parameterises the combined effect of isotropic primary dispersal and

directional (downslope) secondary seed dispersal. The use of the two different mod-

els of seed transport allows conclusions about secondary dispersal to be decoupled

from the exact treatment of seed movement. It should be understood that the un-

derlying ecological and hydrological representation of banded vegetation dynamics

is equivalent between the two models, which differ only in their precise depiction of

seed transport.

5.2 Model

The starting point is Rietkerk et al. [2002] reaction-diffusion model on a slope:

∂P

∂t
= cgmax

W

W + k1

P − dP +Dp∇2P, (5.1)

where P is the plant biomass in gm−2.

∂W

∂t
= αO

P + k2Wo

P + k2

− gmax
W

W + k1

− rwW +Dw∇2W, (5.2)

where W is the soil water depth in mm; and

∂O

∂t
= R− αOP + k2Wo

P + k2

+ Vo
∂O

∂x
, (5.3)
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where O is the surface water depth in mm. The remaining terms in this model are

given in Table 1. The modification consists of the addition of a term representing

down slope advection of seeds to the biomass equation. This term is the spatial

derivative of the advective biomass flux, a product of the mobile biomass (κP ) and its

advection velocity Vp. To first order, it is assumed that the proportionality constant κ

and the biomass velocity are spatially uniform, so that
∂VpκP

∂x
= Vpκ

∂P

∂x
. Advection

in surface runoff is assumed to be primarily responsible for seed transport down-

slope, so Vp ≤ Vo. In this refined model seed dispersal is a two-stage process. The

first stage of isotropic primary dispersal of seed from the plant to the ground is

parameterized by D′p, and subsequent, directional secondary dispersal in overland

flow occurs with rate V ′p . Selection of an appropriate value of κ is problematic given

that the continuous model allows biomass movement to occur continuously rather

than seasonally. Plants commit a wide range of biomass to reproduction, up to 50%

for some annuals [Aronson et al., 1993]. An intermediate value of κ = 0.2 was used

for all simulations. The revisions can be incorporated in other models of banded

vegetation and the Rietkerk model is used here primarily as a case study.

The model was nondimensionalized to facilitate numerical investigations. The

nondimensional equations are (see Table 1 for definition of parameters):

∂P ′

∂t′
=

W ′

W ′ + 1
P ′ − bP ′ +D′p∇2P ′ + V ′pκ

∂P ′

∂x′
, (5.4)

∂W ′

∂t′
= O′

P ′ +Wo

P ′ + 1
− k′ W ′

W ′ + 1
− rW ′ +D′w∇2W ′, (5.5)

γ
∂O′

∂t′
= R′ −O′P

′ +Wo

P ′ + 1
+
∂O′

∂x′
, (5.6)

The properties of the original model are examined in several other papers [Hil-
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leRisLambers et al., 2001, Rietkerk et al., 2002] and are not repeated here. Instead

the focus is on band migration and the related control parameters V ′p and D′p. The

impact of varying V ′p and D′p on band migration, while holding all other parameters

constant (Table 1), was investigated in a 1D model, following the observation that

patterns tended towards a 1D steady state. V ′p was varied with D′p = 8× 10−4, while

D′p was varied while holding V ′p = 0.1, corresponding to realistic dimensional pa-

rameters [Rietkerk et al., 2002]. Initial conditions consisted of equally spaced bands

of varying wavelength k. The premise that biomass movement is diffusive remains

questionable given the non-Gaussian nature of many dispersal kernels. The kernel-

based model outlined in Chapter 4 was used as a reference to test if the retardation

of upslope band movement is linked with biomass diffusion. This model represents

biomass movement processes in a seed dispersal kernel that captures the statistics of

seed transport from an individual plant. This model modifies the biomass equation

as follows:

∂P

∂t
=

(
cgmax

W

W + k1

P − dP
)

(1− φ) + φ

(∫∫
ν (x− x′, y − y′)P (x′, y′) dx′dy′

)
,

(5.7)

Here ν is the dispersal kernel (that can account for secondary dispersal processes if

known), φ represents the proportion of standing biomass dispersed per unit time (on

the order of 4×10−4 g/m2day, see Chapter 4) and x′ and y′ define the distance seeds

move from the parent, integrated over the domain. integrated over the domain. No

measured dispersal kernels J accounting for both primary and secondary transport

in banded systems were available. A qualitative approach was adopted by taking

an isotropic Wald or Inverse Gaussian kernel, often used to represent wind dispersal

of seed (see Chapter 4). The anisotropy associated with secondary dispersal was

incorporated by weighting the upslope half of the kernel to one fiftieth of the value
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of the downslope half (a conservative value compared to the 180-fold discrepancy

observed in seed bank density) and normalized. The precise treatment of all eco-

hydrological processes in both modelling approaches can be criticized ad infinitum.

However, to address the study objective here, it suffices to demonstrate that banded

vegetation migration rates can be significantly retarded when a primitive treatment

of secondary dispersal is included. The model results here should not be viewed as

providing finality to the migration of banded vegetation problem but are logical first

steps highlighting processes that require further consideration.

5.3 Results

Band migration velocities produced by the unmodified Rietkerk model [Rietkerk

et al., 2002] were on the order of 20 - 200 m/year, depending on the band wavenum-

ber, with the parameter values in Table A.1. The isotropic kernel-based model gen-

erated velocities of approximately 10 m/year. Both models in their unmodified form

therefore generated band migration at rates at least an order of magnitude greater

than field observations could support, although we emphasise that the models have

not been calibrated to a specific ecosystem, and that these results are included solely

to provide a frame of reference for typical model output. The hypothesis that band

migration is inhibited by the inclusion of anisotropy in seed dispersal was explored

through the advection-diffusion and a kernel-based model. The band velocities for

varying degrees of secondary dispersal are presented as a ratio of the band velocity

when dispersal was purely isotropic in Figure 5.1. Snapshots of the band evolution

for the two models in isotropic and anisotropic modes are provided in Figure 5.2. In

the case of the advection diffusion model, systematic variation of the parameters V ′p

and D′p slowed and eventually reversed the band migration velocity (Figure 5.1a).

The band velocity was also found to depend upon the wavenumber of the pattern,

with upslope movement favoured at low wavenumbers. Downslope movement of the
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Figure 5.1: Band velocities shown as ratios between the anisotropic test cases and
the equivalent isotropic model. The same initial conditions are used for each set of
data points on a given line. (a) Decline and eventual reversal of the velocity ratio
with increasing downslope advection. (b) Decline of the velocity ratio as the degree
of anisotropy in the kernel is increased from a factor to 2 to a factor of 50.

bands occurred at large values of the dimensionless seed advection velocity V ′p , and

small values of the dimensionless seed diffusion coefficient D′p. As will be elaborated

on in the discussion, the prediction of bands downslope band migration should be

treated with caution. These results should be interpreted as indicating the regime

in which upslope migration is precluded. For the kernel-based model, an increasing

degree of anisotropy in the kernel slowed and eventually halted band evolution in the

direction of the slope gradient, so that band migration dynamics occurred primary

across the slope. In the absence of information to constrain the possible forms of

the anisotropic kernel, only the effects of upslope-downslope anisotropy were tested,

generating the velocity ratio data shown in Figure 5.1 b.

5.4 Discussion and conclusions

The model results indicate that a down-slope flux of biomass associated with sec-

ondary dispersal of seeds in overland flow is sufficient to freeze or even reverse the

upslope migration of vegetation bands. This result can be physically understood
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by relating the model parameters V ′p and D′p to more commonly used measures of

seed and dispersal properties. Seed transport in overland flow can be described as

saltation [Bagnold, 1973], in which Vp equals Vo minus a thrust term accounting for

particle re-suspension. This thrust approximately equals the seed terminal velocity

Vg, that may be estimated from gravity (g), the seed drag coefficient Cd, diameter

d, and specific gravity γg of a seed. So:

V ′p =
1

γ

Vp
Vo

=
1

γ

Vo − Vg
Vo

=
1

γ

(
1− 1

Vo

√
4gd

3Cd
γg

)
. (5.8)

Dimensional analysis offers an interpretation of D′p. Firstly a definition of Dp =

C2
p/4r, where r is the average growth rate of the population is used. Cp, the migration

velocity of the vegetation population, can be derived from the properties of most seed

dispersal kernels using the procedure described in Chapter 3. Substituting for Dp

and γ,

D′p =
C2
pα

4rV 2
o

α

cgmax
. (5.9)

When water is plentiful r ⇒ cgmax, and so D′p = (Cp/2γVo)
2. The control parameters

thus give the ratio of biomass transport induced by primary seed dispersal to the rate

of water transport (D′p) and of seed to flow velocity (V ′p). Upslope band migration

ceases when Cp < Vo or as Vp → Vo. The effect of wavenumber on band migration

can be understood in terms of resource delivery to the upslope edge of the band,

which is maximised for low wavenumbers and declines as wavenumbers increase. At

low wavenumbers the increased availability of resources upslope of the band results

in high survival and rapid growth of the relatively few seeds dispersed there. As

resource availability and upslope survival declines (higher wavenumbers), the higher

density of the downslope seed bank becomes the dominant driver of band migra-
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tion. Although the model results predict downslope migration of the bands, this is

probably a consequence of the simple representation of dispersal. Vegetation bands

are effective in trapping particles and slowing the velocity of water. The difference

in the seed bank density within and outside bands [Seghieri et al., 1997] suggests

that bands are effective at trapping seeds. Advection of seeds in runoff is likely to

transport seed to, but not through, the bands. Down-slope migration should be

interpreted as indicative of a regime where upslope migration is prevented. Models

of banded vegetation have consisted of primarily hydrological models focused upon

surface water dynamics with minimal representation of vegetation [Ludwig et al.,

1994, 1999, Mauchamp et al., 1994], or reaction-diffusion models coupling simpli-

fied vegetation and hydrological dynamics (as used in this study) [Barbier et al.,

2008, Klausmeier, 1999, Rietkerk et al., 2002]. This distinction is not surprising

given the timescale separation between the fast hydrologic and slow biomass move-

ment dynamics. The results here suggest that a reconciliation of these approaches is

needed to formally scale up over the fast timescales determining water and seed re-

distribution, to the slower timescales determining vegetation growth. This averaging

approach will require stochastic treatment of input parameters, particularly rainfall

distributions, to evaluate infiltration and biomass responses. It may be facilitated

by tracer studies in the vadose zone [Allison et al., 1994, Allison and Hughes, 1978,

Scanlon, 2000], offering insight into soil moisture residence time, transport paths,

and the water sources used by plants. New approaches should also extend the use

of kernel-based descriptions of seed dispersal dynamics. This work suggests that the

heretofore little studied process of secondary seed dispersal in overland flow may alter

the macroscopic spatial dynamics of vegetation communities. This process is phys-

ically mediated and readily amenable to physical analysis. Detailed studies of such

processes, in combination with relevant field measurements of primary and secondary

dispersal (e.g., through release of buoyant tracers [Boedeltje et al., 2004, Merritt and

84



Wohl, 2002]) would allow the elucidation of the full anisotropic seed dispersal kernel,

and the quantitative use of kernel based models.
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Dimensional Parameters Value Nondimensional Value
Parameter

c(g mm−1 m−2) Water uptake: 10 b =
d

c gmax
0.8

plant growth ratio

gmax (mm m2g−1 day−1) Maximum 0.05 r =
rw

c gmax
0.2

specific water uptake

R (mm day−1) Precipitation 0.75 R′ =
R

k1 c gmax
0.5

k1 (mm) Half saturation 3 k =
k2

k1 c
0.167777

constant of water uptake

k2 (g m2) Half saturation 5 D′p =
Dpα

2

V 2
o c gmax

0.00002 - 0.008

constant of infiltration

Dp (m2 day−1) Biomass 0.004-1.6 D′w =
Dwα

2

V 2
o c gmax

0.00008

diffusion coefficient

α (day−1) Maximum 0.1
Vp
Vo

α

c gmax
0.08-0.2

infiltration rate

Vo (m day−1) Surface water 2 γ =
c gmax
α

5

velocity

Dw (m2 day−1) Soil- 0.01 x′ =
xα

Vo
y′ =

yα

Vo
0.2

water diffusion coefficient
Vp (m day−1) Seed 0.4-0.2 t′ = t c gmax 0.5
advection velocity
dx, dy (m) Cartesian increments 1
dt (day) Time increments 1
d (day−1) Mortality rate 0.1
rw (day−1) Water loss to 0.1
drainage / evaporation

Table 5.1: Model parameters (dimensional and nondimensional) used in analysis
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Figure 5.2: Snapshots in time of the modelled spatial biomass density. The same
initial condition was used in each case. (a) Results from the reaction-diffusion model
with diffusive biomass transport. The bands move rapidly upslope. (b) Model output
when a downslope biomass velocity of 0.46 m/s was added. Band migration rates
approach zero, and the bands evolve towards a 1D pattern. (c) Kernel model output
with an isotropic kernel. Bands rapidly migrate upslope. (d) Same model in which
the kernel is weighted by a factor of 50:1 downslope. Band migration is essentially
confined to the crossslope direction.
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6

Biomass-infiltration relationships across climate
and soil type gradients

6.1 Introduction

Vegetation feedbacks to the water cycle have drawn increased interest in the past

thirty years [Bosch and Hewlett, 1982, Jackson et al., 2000, Gerten et al., 2004].

Processes such as stomatal optimization with respect to water availability [Cowan,

1978, 1986, Makela et al., 1996]; hydraulic lift [Richards and Caldwell, 1987, Dawson,

1993, Caldwell et al., 1998]; and the constraints imposed by water stress on carbon

allocation [Porporato et al., 2001, Schwinning and Ehleringer, 2001, Givnish, 1986]

have become foci of research and theoretical development, and their consequences

are now being up-scaled from the leaf, root and plant level to communities and catch-

ments [Schymanski et al., 2009, Caylor et al., 2004]. There are, however, feedbacks

between vegetation and the water cycle that do not directly result from plant activ-

ity. One such feedback is the alteration of the infiltration capacity of soils through

biotic processes. This positive feedback (i.e. the presence of vegetation increases

infiltration capacity) is well documented in arid ecosystems where it can lead to spa-
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tial organization [Bromley et al., 1997, Couteron and Kokou, 1997, D’Herbes et al.,

2001, HilleRisLambers et al., 2001, Rietkerk et al., 2002, D’Odorico et al., 2006b,

Saco et al., 2007]. The processes that generate vegetation-infiltration capacity feed-

backs have been widely explored in drylands [Lyford and Qashu, 1969, Schlesinger

et al., 1996, Bergkamp, 1998, Dunkerley, 2000, 2002a, Wainwright et al., 2002]. They

include physical factors, such as protection of the soil surface, and biological factors,

such as the creation of habitat for soil macrofauna. Vegetation - infiltration relation-

ships are starting to be incorporated into hydrological models of arid ecosystems to

predict rainfall-runoff partitioning, soil moisture distribution, vegetation dynamics

and geomorphology of drylands [Ludwig et al., 1999, Couteron and Lejeune, 2001,

Mauchamp et al., 2001, Ursino, 2005, Zeng et al., 2005, Bracken and Croke, 2007,

Mayor et al., 2008]. Unlike stomatal conductance, infiltration capacity is not under

the direct control of plants on short timescales. However, water can be the limiting

resource for plant growth and consequently reproduction, and infiltration into the

soil is unquestionably a key process that replenishes the root-zone soil moisture. Re-

gardless of climate or soil type, many plant systems have a marginal safety factor

when the minimum observed leaf pressure is compared with pressures needed to in-

duce cavitation in the plant hydraulic system [Sperry, 2000]. That is, the hydraulic

apparatus of the soil-plant system appears to function near the ‘edge’. On long

timescales, it is therefore plausible that plants have evolved strategies that enhance

infiltration of water. It is logical to ask whether vegetation-infiltration relationships

represent the cumulative effects of plant strategies that affect water availability in the

root zone. Before this question can be effectively explored, several key uncertainties

regarding vegetation-infiltration feedbacks must be addressed, specifically:

• Does vegetation modify infiltration capacity at the soil surface in mesic and

hydric climates, and if so, what processes contribute to this modification?
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• Based on available data, is there a canonical relationship that describes the

interaction between vegetation indices and infiltration rates (in arid and humid

climates)?

• How does this relationship change across climates?

These questions are important in the predictive modelling of runoff-infiltration par-

titioning and water balance as well as in addressing the question of plant strategy.

The first question explores the generality of the postulated vegetation-infiltration

feedback, which has not been established either in humid climates, nor generalized

between multiple arid sites. It is unclear if and how vegetation alters infiltration

capacity in wetter climates. Given the relative scarcity of vegetation and infiltration

studies in these climates, new field results are needed that can delineate the role of

vegetation when water is not necessarily limiting.

The second question asks if it is reasonable to express infiltration rates as a func-

tion of vegetation biomass or cover. Such an expression, if identified, is not intended

to negate the complexity of the feedbacks between vegetation and soil that result in

a vegetation-infiltration relationship. Instead, it parameterizes the cumulative effect

of these feedbacks, allowing general and large scale predictions to be made without

requiring detailed site specific parameters. The nature of the nonlinearity of such a

relationship is also important, and determines whether the relationship saturates or

generates threshold-type responses with respect to vegetation cover. The third ques-

tion relates to the strength of the relationship and its sensitivity to climatic drivers.

Note that there is no expectation that infiltration capacity itself would respond to

climate, but only the nature of the relationship between infiltration capacity and

local vegetation.

This work addresses these questions in two different ways. Firstly, infiltration

capacity was measured in a humid field site in Duke Forest, North Carolina, where a
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pine plantation, a hardwood forest and a grass field are all co-located on the same soil

series and experience the same climatic regime. Secondly the results from this field

study were combined with a meta-analysis of studies measuring infiltration capacity

and vegetation biomass. The meta-analysis gathered information from 21 studies

spanning 32 different locations, 32 different soil types spanning the full range of

texture classes, and 48 vegetation communities across North and South America,

Europe, Africa, Asia and Australia and ranging from hyper-arid to tropical climates.

To allow meaningful comparison between sites, above-ground biomass density

(i.e. mass biomass per area of ground) was adopted as the independent variable.

Unlike other measures such as percentage vegetation cover, biomass density does not

saturate as climates become wetter and canopies close. Above-ground biomass is also

likely to be correlated to important latent variables such as below-ground biomass

[Clark et al., 1986, Naidu et al., 1998] and leaf biomass [McCarthy and Enquist,

2007] that are expected to affect the vegetation-infiltration relationship but are not

commonly measured in studies of infiltration.

The three questions guiding this research may have different answers depend-

ing on the scale at which they are considered. We distinguish between biomass-

infiltration relationships that arise within a single vegetation/ecosystem type (‘within

site variation’) and those arising between vegetation/ecosystem types (‘between site

variation’). The former affects hillslope-scale processes such as runoff generation

[Bergkamp, 1998, Fiedler et al., 2002, Ludwig et al., 2005, Puigdefabregas, 2005],

while the latter is important for large-scale hydrological modelling over different

land uses [Kirkby et al., 2002, Singh and Woolhiser, 2002]. Accordingly, biomass-

infiltration trends are assessed both within and between sites.
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6.2 Methods and materials

The two components of the study, namely the field research and the meta-analysis

are addressed separately.

6.2.1 Field study

Site description

The study ecosystems are co-located in the Blackwood Division of the Duke Forest

near Durham, NC (351980N, 79180W, 163 m a.s.l.). The study sites consisted of plots

in three vegetation types: a grass field, a pine plantation and an 80-100 years old

hardwood site. Details of the soil series, climate and species found in the study sites

are provided in Table 6.1. The soil profile of all ecosystems is dominated by a clay

pan at a depth of ca. 30-50 cm, which largely confines root growth to the surface

soils [Stoy et al., 2008]. Within each vegetation type three 20 x 20 m plots were

subdivided into 2 x 2 m subplots. For each large plot, four subplots were selected at

random to perform infiltration measurements, giving a total of 36 infiltration sites,

12 for each vegetation type. Each infiltration measurement required an undisturbed

site 20 cm in diameter. An optimal site for infiltration measurements was selected

within each subplot, avoiding steep slopes, impermeable surfaces (i.e. rocks) and

large trees.

Infiltration measurements

At each site, an infiltration measurement was made using a 20 cm diameter tension

disk infiltrometer (Soil Measurement Systems, Arizona). Tensions were manually set

using a Mariotte bottle at -8, -4, -1 and 1 cm. The infiltration rate was measured

by monitoring the water level changes in the infiltrometer reservoir. The sites were

prepared by placing a 20 cm diameter ring on the ground and trimming all litter

and standing vegetation within the ring. Trimmed litter was removed and stored
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Table 6.1: Species, soil and meteorological properties of the Duke Forest infiltration
locations. Data from: 1) Pataki and Oren [2003], Palmroth et al. [2005], Stoy et al.
[2005], 2) Oren et al. [2001], Stoy et al. [2006], 3) Novick et al. [2005]

Hardwood1 Pine2 Grass3

Mean annual 1145 mm
rainfall

Mean annual 1076 mm
pan evap.

Mean annual 15.5◦ C
temperature
Soil series Iredell (sandy clay loams)

Dominant species Quercus (oak) and Pinus taeda Festuca
Carya (hickory) sp. arundinacea

Other species P. taeda and Diverse Forbs,
Juniperus virginiana understorey other grasses

Canopy height 30 m 19 m 0-1.5m
harvested annually

for determination of biomass. Care was taken to leave the soil surface intact during

this removal. Where a thick O horizon was present (in the pine plantation), organic

mulch was removed until the surface of the mineral soil was exposed. A thin layer

of contact sand (Pavestone ‘all purpose’) was used to create a level soil surface, and

dampened with water. The infiltrometer was levelled against the sand pad prior to

commencing the infiltration measurements. These measurements were made starting

from the highest tension (-8 cm). Infiltration ran for a minimum of 30 minutes. If

a steady state rate had not been reached at this time, infiltration continued until a

near-steady state was reached (typically 45 minutes).

Soil coring

Following the infiltration measurements, the contact sand was removed and four

5cm diameter, 30 cm deep soil cores were taken from within the 20 cm diameter

infiltration ring. The cores were separated into three components by depth: 0-5

cm, 5-15 cm and 15-30 cm. Two of the four cores were bulked for estimating root
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density, and two were bulked for laboratory analysis. Rocky subsoils prevented a

complete sample set from being obtained at every site. Within each vegetation type

one infiltration site was trenched, rather than cored, and intact soil samples taken

for further analysis (reported elsewhere).

Saturated hydraulic conductivity estimation

Wooding’s solution for three dimensional infiltration was used to infer the satu-

rated hydraulic conductivity of the soil [Wooding, 1968, Smettem and Smith, 2002].

Firstly, a curve was fitted to the measurements of infiltration rate to estimate the

steady state infiltration value. Wooding’s solution was applied to a pair of steady

state infiltration values measured at two different tensions, which allowed an esti-

mate of Gardner’s parameter α (arising from a simplified exponential model of the

unsaturated conductivity given as K = Ksate
αh), where h is the tension. The satu-

rated hydraulic conductivity we report is based on the estimates at the two lowest

tensions, namely -1 and +1 cm. The formulation is given by:

Ksat =
Q

πr2eαh
(
1 + 4

πrα

) , (6.1)

and

α =
ln (Q (h1) /Q (h2))

h2 − h2

, (6.2)

where Q is the measured steady-state flow rate into the soil, h is the tension and r is

the radius of the infiltrometer plate. Theoretically, Gardner’s parameter (α) should

be constant across multiple tensions; however, we found that the estimates of α varied

depending on which pairs of tensions were considered. Accordingly, we computed

Ksat based on piecewise regression between successive data points [Smettem and

Smith, 2002].
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Macropore flux estimation

The capillary equation determines the radii (rmin) of conducting soil pores under

a given tension based on the tension (h, cm), the contact angle θ (which may be

estimated as 0), the density of water ρ (0.998 g/cm2), the air-solid surface tension σ

(0.0073 cm/s2) and gravity g (0.0981 cm/s2) [Batchelor, 1967] given as:

rmin = −2σ cos θ

ρgh
≈ −0.15

h
, (6.3)

for h in cm. The estimates of hydraulic conductivity obtained at different tensions

increase as the tension applied approaches zero. If this increase in flow is attributed

to the activation of macropores with radii too large to have been conducting under

the previous (higher) tension, then the change in Ksat may be used as an estimate

of the conductivity of macropores of a given radius ‘activated’ at each reduction in

tension [Watson and Luxmoore, 1986, Buttle and McDonald, 2000, Holden, 2009].

The additional flow arising due to the activation of these macropores is referred to

as the ‘macropore flux’, which is reported as a percentage of Ksat estimated at zero

tension.

Hydrophobicity estimation

Infiltration measurements suggested that soils in the pine plantation were hydropho-

bic. To assess hydrophobicity, drop penetration tests were conducted in the field and

on subsamples of oven dried soil. Drop penetration tests are conducted by placing a

drop of de-ionized water on the soil surface and measuring the time interval in which

it remains beaded on the soil surface. Penetration times of more than 1 s were taken

as indicative of some degree of hydrophobicity (c.f. Dekker et al. [1998] who used a

threshold of 5 s). Three drop penetration tests were conducted per soil sample in

the lab. Field drop penetration tests were undertaken in the pines following removal
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of the O horizon.

Root measurements

Root mass within the soil cores was estimated by washing each core in a 2 m water

column through which compressed air was blown. Washed cores were decanted into

0.5 mm sieves and the roots removed with tweezers. Roots were picked out until

at least 95% of the root mass was removed from the sample. Roots were washed

clean of all soil particles, wrapped in absorbent paper and oven dried at 70oC for

48 hours. Roots were weighed and the mass of all fragments greater than 2 mm

diameter (coarse roots) recorded separately from the mass of smaller fractions (fine

roots).

Laboratory measurements

Several standard soil analyses were performed in the laboratory. Bulk density mea-

surements were made based on oven-dried weights of the bulked soil samples and the

known volume of the soil cores. Sub samples of soil were tested for total carbon and

nitrogen. The sub-samples were homogenized by pulverizing in a shatterbox (Spex

Inc., Edison NJ) and analyzed by dry combustion on a Flash EA1112 elemental an-

alyzer (ThermQuest, Rodano Italy). Sand, silt, and clay fractions of the sampled

soils were determined gravimetrically by the pipette method [Gee and Or, 2002].

Replicate samples allowed quantification of the error at approximately 2%.

Biomass and litter measurements

The litter removed from each site prior to the infiltration measurements was bagged

and dried at 70◦C for 48 hours before being weighed. Aboveground biomass estimates

in the forests were conducted by measuring the diameter at breast height (dbh) of all

trees with dbh > 1 cm located within a 3 m radius of the infiltration site. Allometric

equations (Naidu et al. [1998] for pines and Clark et al. [1986] for hardwoods) were
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used to estimate the mass of these trees, allowing an estimate of the standing biomass

within a 3 m radius of the infiltration site and thus an estimate of local above-ground

biomass density. Within the grass sites, live and dead grasses were trimmed together

and a single estimate of biomass made.

Data analysis

Within each vegetation type multiple step-wise regression was used to obtain the

best fit between covariates and infiltration rates measured. Infiltration rates were

log transformed prior to this analysis. When considering goodness of fit, we report

the unbiased coefficient of determination (i.e. ‘adjusted r2’ value), which allows

meaningful comparisons between models with 1 or 2 predictive variables (unlike a raw

r2, this parameter may adopt negative values). The adjusted r2 is computed using

the residual degrees of freedom (v = n −m), where n is the number of data points

and m is the number of total fitted coefficients. The adjusted r2 is then computed

as 1 − r2 × (n − 1)/(v) where r2 is the standard coefficient of determination. The

adjusted r2 only increases if additional parameters increase the predictive capacity

of a model relative to a single parameter model, and as such compensates against

spurious over-parameterization [Wooldridge, 2009].

Between sites, a non-parametric analysis of variance (one way Kruskal-Wallis

test [Gibbons, 1985, Hollander and Wolfe, 1999]) was used to determine whether

significant differences in infiltration and other explanatory covariates were in place.

6.2.2 Meta-analysis

The meta-analysis consisted of data gathering, standardization and analysis.

Data gathering

A literature survey was conducted to assemble a database of co-located measurements

of infiltration capacity and biomass. Studies were chosen to meet the following
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criteria:

• Reported direct measurements of biomass, or sufficient information to allow

biomass estimates to be made (e.g. through allometry of the dominant species).

• Reported sufficient information to derive a robust estimate of infiltration ca-

pacity or saturated hydraulic conductivity. Studies that reported cumulative

infiltration, sorptivity or a runoff coefficient, rather than steady state runoff or

infiltration rates, were excluded.

• Studies where the effect of vegetation could not be separated from disturbance

were excluded. The majority of infiltration studies in mesic climates have been

undertaken in the context of agricultural and tillage research, and consequently

were excluded from the meta-analysis. Due to the paucity of data in mesic sites,

we included data from three tropical agroforesty sites.

After these criteria were applied, 21 studies were retained for analysis. Combined,

these studies yielded 261 infiltration and biomass measurements. These data are

summarized in Appendix E, which also details the specific references used to arrive

at biomass estimates, and where applicable (see below) the sources used to obtain

climatic and soil properties, if these were not explicitly reported in the original

studies.

Data standardization

Unsurprisingly, there was considerable variety in data gathering methods, the nature

of the data reported and the format of reporting across the 21 studies reviewed. Data

were standardized with the aim of obtaining an estimate of infiltration capacity (or

equivalently the saturated hydraulic conductivity of the undisturbed soil surface) in

mm/hr; an estimate of above-ground biomass in g/m2; average annual precipitation
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and pan evaporation; and soil textural properties in terms of the sand, silt and clay

fractions. Infiltration and biomass estimates were of primary importance, and some

studies with incomplete soil or meteorological data were retained for analysis.

Biomass estimates

Standing biomass was the most problematic parameter to standardize, as it is not

widely reported. Biomass estimates were available directly for 13 of the 21 stud-

ies [Branson et al., 1962, Johnston, 1962, Rhoades et al., 1964, Kelly and Walker,

1976, Blackburn et al., 1992, Hulugalle and Ndi, 1993, Nicolau et al., 1996, Spaeth

et al., 1996, Hester et al., 1997, Mwendera and Saleem, 1997, Chirwa et al., 2003,

Boone Kauffman et al., 2004, Bowen et al., 2005]. Aboveground biomass was com-

puted allometrically for the Duke Forest sites as reported above. For the remaining

studies, biomass was estimated by:

• regression between a subset of site biomass estimates reported in the study and

the reported percentage vegetation cover (for example in shrubland in Burkina

Faso [Rietkerk et al., 2000] and woodland in Australia [Loch, 2000]),

• estimates of biomass density in similar vegetation types at the same or similar

locations (for example the estimates of forest biomass in Ecuador, the Southern

Appalachians and Puerto Rico [Harden and Scruggs, 2003])

• application of allometric equations to site specific parameters such as tree den-

sity, age and height (for example in a teak plantation in Sri Lanka [Mapa,

1995], and the Khalenberg forest in Germany [Buczko et al., 2006])

• application of allometric equations to dominant species, combined with site-

specific measures such as percentage canopy cover, vegetation volume or height.

For example in the North American deserts allometry for Larrea tridentata,
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Prosopsis glandulosa and Bouteloua eriopoda was used to estimate biomass

based on percentage cover and other measures of the geometry of the vegetation

distribution [Castellano and Valone, 2007, Bedford and Small, 2008], and in the

degraded sites in the Andes, biomass density estimates for Cynodon dactylon,

Holcus latanus, Vulpia myuros, Trifolium sp. and Pennisetum clandestinum

were made based on available literature, averaged to obtain an estimate of

biomass density for fully vegetated sites, and then the percentage vegetation

cover at individual sites was used to estimate biomass as a proportion of the

estimated biomass density [Molina et al., 2007].

Infiltration capacity estimates

There are many different methods to measure infiltration capacity, which agree with

each other to differing extents. Unfortunately, there is no consensus position in the

literature for normalizing these different measurement techniques. This is not surpris-

ing considering that tension infiltrometers, for example, have been found to underes-

timate infiltration by comparison to ring or rainfall simulators [Reynolds et al., 2000],

to overestimate infiltration compared to ring infiltrometers while being comparable

to rainfall simulators [Gomez et al., 2001], to provide a better estimate of infiltra-

tion capacity than (underestimating) ring or rainfall simulators [Pott and De Maria,

2003], or to provide comparable estimates [Bagarello et al., 2000]. Site-specific details

are often the determinants of which method is most applicable [Smettem and Smith,

2002]. Given this uncertainty, no correction to measured infiltration rates has been

applied on the basis of methodology. Where multiple estimates of the infiltration

rate were made at a site, we report those estimates made by ring infiltrometers or

rainfall simulators. This choice simply reflects that the preponderance of available

data was gathered using these methods and is an attempt to limit variability in the

data set arising from infiltrometer type.
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Soil texture estimates

When no specific soil textural data were available, the average sand, silt and clay

fractions were estimated based on reported site soil type or soil series. For four sites,

soil data were not available.

Climatic data

Annual rainfall estimates were reported for almost all of the study sites. Pan evap-

oration, and where necessary, annual rainfall, were taken from the nearest weather

station providing pan evaporation rates. In some cases, particularly for African,

Asian and South American sites, estimates of pan evaporation were made on the

basis of other studies at nearby sites. For two studies, pan evaporation data was not

available. In one study, excellent biomass and infiltration data were available, but

site locations were reported only to the level of the state (within the USA) in which

the sites were located. For this study, meteorological data are omitted. These sites,

located in US rangelands, were grouped with the dry sites.

Data analysis

Prior to analysis, the data were divided into mesic-hydric sites and arid sites, based

on the ratio of annual evaporative demand (estimated as pan evaporation) to annual

precipitation: Ep/P . The formulation Ep/P is comparable to the dryness index

used in the Budyko Curve [Budyko, 1974], and other climatic classification schemes.

Because of the somewhat arbitrary nature of the classification, we did not correct

the pan evaporation estimates to estimates of potential evapotranspiration (PET).

Sites where Ep/P > 1 were treated as arid, and were analysed separately from

mesic-hydric sites where Ep/P < 1.

We used linear regression to assess the following relationships within and be-

tween sites: log biomass and log infiltration, log biomass and soil texture, and log
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infiltration and soil texture. For several sites, only a single estimate of biomass or

of soil texture fraction was available for multiple infiltration rates. To account for

this, we took the geometric mean of the measured infiltration capacities to obtain a

single representative data point for a given biomass or soil texture estimate, prior to

log-transformation.

The choice of a power-law regression in this case is a reasonable approximation

for characterising infiltration as a porous media flow problem. Vegetation-biomass

relationships arise from flow through a fractal network of pore spaces, modified by

the likewise-fractal root network. Given the suitability of power laws for describing

flow through fractal media [Neuman, 1995], they represent a reasonable model to

fit. Note, however, that the use of power laws is not intended to indicate a known

mechanistic model for the observed biomass-infiltration relationships.

We re-evaluated the biomass-infiltration relationship after controlling for the ef-

fect of soil type. Two different controls were adopted: a statistical control in which

the effect of soil type was accounted for via linear regression; and a mechanistic

control in which the effect of soil type was accounted for by normalization against

empirical hydraulic conductivity properties documented by Clapp and Hornberger

[Clapp and Hornberger, 1978].

Within-site variability was assessed using all data points to determine statistical

agreement between log biomass and log infiltration capacity within a given site.

Finally, the strength of the within-site biomass infiltration relationship, as quantified

by the slope of the log-log regression, was assessed for those sites where:

• There were at least three data points available (to avoid spurious regressions

between two points),

• Regression relationships were significant at an 80% confidence level (this rel-

atively low threshold for assessing significance was chosen to reflect the large
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degree of variability associated with most of the data analyzed), and

• There was an estimate of Ep/P (i.e. reliable climatic data).

Variation in the slope of the biomass-infiltration regression was examined as a

function of Ep/P as a surrogate for climate type.

6.3 Results

The results section will again present results separately for the field and meta-

analytical components of this work. The links between the results and the three

driving questions that motivated this study are addressed in the Discussion.

6.3.1 Field Study

The data gathered from the Duke Forest field study and subsequent laboratory anal-

yses are presented in Appendix D.

Infiltration rates between sites

Mean infiltration capacity (f) was ≈ 20% greater in the hardwood forest, where

the mean infiltration rate was 14.4 (15.15) mm/hr, standard deviation is shown in

brackets; than in the grass field (11.77(11.6) mm/hr). The pine plantation had

substantially lower infiltration rates of 5.3(4.9) mm/hr. These differences were not

significant at the 95% confidence level as assessed by non-parametric Kruskal-Wallis

analysis of variance (see Figure 6.1).

The low infiltration rates observed in the pine plantation were attributed to hy-

drophobicity in the soil there. Drop penetration tests conducted on samples of surface

soils from the pine plantation found that 7 of 10 sampled soils had a drop penetration

time exceeding 1 s and three of the samples had drop penetration times exceeding

1 minute. In one sample, drop penetration time repeatedly exceeded 5 minutes.
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Figure 6.1: Box plot of infiltration values in the three vegetation types. Letters (A)
indicate no significant difference (at 95% confidence level) between sites as evaluated
with a non-parametric Kruskal-Wallis test. Note that HW indicates the hardwood
site.

Field drop penetration tests indicated that the degree of hydrophobicity varied at

the centimeter scale. Hydrophobicity is known to confound interpretation of tension

infiltrometer readings [Clothier, 2001], so the pine infiltration data were excluded

from the meta-analysis. No hydrophobicity was identified in the hardwood or grass

sites. Hydrophobicity of soils is widely reported for evergreen species including pines.

Water repellency in the soil is associated with the presence of hydrophobic organic

compounds such as cuticular waxes in pine needles [Doerr et al., 2000]. The ac-

cumulation of these compounds in the soil is associated with relatively low rates of

decomposition, leading to deep litter layers as observed in the Duke Forest pines, and
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with low intensity fires, leading to the accumulation of hydrophobicity in the organic

and mineral surface soils respectively. Although an ecological role for hydrophobicity

as analogous to allelopathy has been proposed [Ens et al., 2009], it remains unclear

whether hydrophobicity should be considered primarily as a byproduct of plant-soil-

environment interactions, or whether it confers competitive advantage and may as

such be considered to be a plant strategy. These complex interactions are beyond

the scope of this study and will not be further addressed.

Infiltration capacity within sites

Infiltration trends in the hardwood site were explained by significant (p= 0.04) neg-

ative correlations to the soil clay content and the coarse root mass (CRM), which

determined 60% of the variance in log transformed infiltration rates. The relevant

regression equation was:

Log(f) = −47.4761(%clay)− 1.4608(CRM) + 8.0333 (6.4)

No significant relationships to the measured covariates were identified in the pine

plantation, presumably due to the hydrophobicity. An infiltration-soil relationship

was identified for the grass site, although it was weaker than the relationship for the

hardwood site and not significant (r2 = 0.21, p= 0.1787):

Log(f) = −43.3948(%clay) + 7.7738. (6.5)

Factors varying between sites

With the exception of the total root mass and the soil nitrogen content, significant

differences were found between all covariates at all sites (Table 6.2). The pine site

differed from the grass and hardwood sites in having higher carbon and sand content,

more litter mass, and lower bulk densities. Lower macropore fluxes arose on the pine
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Table 6.2: Average value of covariates between sites. Superscript letters indicate
that there is no significant difference between measures.

Factor Hardwood Mean Pines Mean Grass Mean
Biomass 56.8025 a 17.0808a 0.2425
Litter 0.2330 a 0.4636 0.2416a

Bulk Density 0.7997 a 0.6217 0.7548a

Surface Nitrogen 0.21 %a 0.19%a 0.18%a

Surface Carbon 3.24 % 4.88% 2.49%
Macropore Flux (%Ksat) 10%a 15%a,b 15%b

Fine Roots 0.8694 a 0.8137 a 1.8134
Coarse Roots 0.6188 a 0.4364 a 0.0185
Total Roots 1.4882 a 1.2501 a 1.8319a

% Sand 0.4500 a 0.5356 0.4840a

% Silt 0.4318 0.3356 a 0.3800a

% Clay 0.1182 a 0.1300 a,b 0.1360b

site than in the other vegetation types. The total macro-pore flux was similar between

the grass and hardwood sites, but macro-pore flow represented a greater proportion

of the total flux on the grass site than in the hardwoods. As expected, the grass and

hardwood sites differed significantly in terms of biomass and root properties, with

significantly more root biomass occurring in the form of coarse roots in the hardwood

site than the grass site. The soil properties varied significantly between all sites, but

all soils could be classified as loams.

6.3.2 Meta-analysis

Soil type-biomass relationship

The various soil fractions (% sand, silt and clay) were regressed against the log

transformed biomass values. In the mesic-hydric sites ( where Ep/P < 1), none

of the soil fractions were related to biomass (for each fraction, adjusted r2 < 0,

p> 0.05). In the arid sites, there were no significant relationships between biomass

and soil type (p> 0.05 for all fractions).
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Soil type - infiltration relationship

Regression analysis was performed between the sand/silt/clay fractions and the log

transformed infiltration values. In the hydric sites, a relationship was found between

the clay fraction and the log of infiltration (adjusted r2 = 0.630 and p< 0.05 respec-

tively), but there were no significant relationships with the sand and silt fractions

(adjusted r2 = 0.12, 0.02, respectively, and p> 0.05). In the xeric sites, no signifi-

cant relationship could be discerned between soil type and infiltration measurements

(p> 0.05 for all soil fractions).

Biomass - infiltration relationship

Mesic-hydric sites: between site variation

Biomass was not related to infiltration capacity on hydric sites (adjusted r2 < 0

for the log biomass - log infiltration regression). Nor did biomass explain the vari-

ance in infiltration capacity after controlling for soil type via a multiple regression.

This result was verified using the empirical values of Ksat published by Clapp and

Hornberger (hereafter C&H) to ‘normalize’ the measured values of Ksat based on

soil type. Log biomass did not explain the variance in the transformed variable

log [Ksat (measured) /Ksat (C&H)].

Mesic-hydric sites: within site variation

With the exception of a single agro-forestry study in Sri Lanka (‘Map’, see Figure

6.2), the within-site biomass-infiltration dependence was also weak. Controlling for

the effects of soil improved the relationship between biomass and infiltration in some

sites (Duke Forest sites and Kahlenberg Forest, Germany), but worsened it in others

(Andes highland sites and the Sri Lankan agroforestry site). No clear trends in

infiltration capacity with respect to variation in biomass could be ascertained within

or between the mesic-hydric sites (see Figure 6.2 and Table 6.3).

Xeric sites: between site variation
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Figure 6.2: Biomass-Infiltration relationships between (upper panel) and within
(lower panel) mesic-hydric sites (the slopes shown are those from a multiple regression
between % sand, biomass and infiltration). Site names, slope values, correlation
coefficients and p values are shown in Table 6.3
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Table 6.3: Regression parameters for all sites with > 1 data point. Regression is
for log (infiltration) against log biomass, excluding soil type in the xeric sites, and
controlling for soil type in the mesic sites.

Site Label Slope r2 p value
Within Xeric Sites

BS Bedford and Small -0.4753 0.0072 0.8730
Bla Blackburn 0.2988 1 (only 2 sites) NA
Bow Bowen 1.3782 0.8180 0.0956
BK Boone Kauffman -3.5011 1 (only 2 sites) NA
Bra Branson 1.0094 1 (only 2 sites) NA
Cas Castellano -0.0780 0.0125 0.8328
Chi Chirwa 0.0054 0 0.9780
Hes Hester 0.1156 0.8836 0.0600
KW Kelly and Walker -0.2551 0.0318 0.6463
Loc Loch 0.5440 0.8697 0.0001
Mwe Mwendera -5.8608 1 (only 2 sites) NA
Nic Nicolau 0.5045 0.3467 0.0164
Rk Rietkerk 0.1773 0.2017 0.0213
Spa Spaeth 0.0712 0.0098 0.6526

Between Xeric Sites 0.4293 0.3552 0.00
Within Mesic-Hydric Sites

Buc Buczko 0.0099 0.0067 0.9179
DG Duke Grass 0.2271 0.0249 0.6633

DHW Duke Hardwood -0.2530 0.0905 0.3982
Map Mapa 0.1417 0.77 0.3176
Mol Molina 0.1826 0.09 0.1418

Between Mesic-Hydric Sites 0.1315 0.65 0.0282

Biomass was significantly related to infiltration capacity without controlling for soil

on arid sites with r2 = 0.35 and p≈ 0.00 (see Figure 6.3 and Table 6.3). Including

soil type caused a large increase in r2, which appeared to be largely due to the

averaging procedure, whereby single, averaged biomass and infiltration values were

used for each soil type measurement. Other averaging procedures (including all

biomass-infiltration measurements, or averaging on a site, rather than soil-type basis)

while controlling for soil type resulted in r2 values of ≈ 0.3. Controlling for soil

type via the C&H values resulted in an r2 of ≈ 0.3 for the transformed variable
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Figure 6.3: Biomass-Infiltration relationships between (left panel) and within (right
panel) xeric sites (the slopes shown are those from a regression between biomass and
infiltration). Site names, slope values and correlation coefficients given in Table 6.3

log [Ksat (measured) /Ksat (C&H)].

Xeric sites: within site variation

Within individual arid sites, the relationship between biomass and infiltration varied

from strong (e.g. in the Australian woodland site measured by Loch, r2 = 0.86,

p< 0.01, ponderosa pine stands measured by Hester, r2 = 0.88, p< 0.1, and Arizona

desert plots measured by Bowen r2 = 0.81, p< 0.1); to moderate (e.g. in Burk-

ina Faso shrublands measured by Rietkerk, r2 = 0.2, p< 0.05 in Spanish badlands

measured by Nicolau r2 = 0.34, p< 0.05), or very weak (see Figure 6.3 and Table

6.3). Several studies reporting only 1 or 2 data points were included in the overall

between-site regressions but are not of value for understanding relationships within

sites.

Trends with climate

There were six sites within which the regression relationship:

log (f) = a log (B) + b, (6.6)

was significant at an 80% confidence level. Amongst these sites, there was an in-
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Figure 6.4: Hypothesized relationships between the power law exponent character-
izing the biomass-infiltration relationship, and the dryness index. The relationship is
suggestive of ordering on the Budyko Curve. The linear fit between the dryness index
and the power law exponent for all sites is shown as an inset (within site biomass-
infiltration relationship adjusted r2 > 0.05, sites where p> 0.2 are shown in grey).
Site name abbreviations are defined in Table 6.3. Images sourced from [Schoch, 2005,
Kell, 2005, Hillewaert, 2005, Temsabuita, 2007, Bureau of Land Management, 2008]

creasing trend in the slope a (i.e. the exponent of the power-law with Ep/P ). When

a linear regression was taken between Ep/P and a, climate explained some 58% of

the variance in the values, with the slope of the Ep/P - a relationship being 0.15.

Because the significance criterion resulted in relatively few sites being included in

this analysis, we broadened the analysis to include all sites where the regression ex-

plained more than 5% of the variance in the data set. This lead to eight sites being

included, an r2 value of 0.65, and again a slope of 0.15 (see Figure 6.4).
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6.4 Discussion

Three goals motivated this study: to examine whether the known trends in veg-

etation biomass and infiltration extended outside of arid climates; to determine a

mathematical relationship between infiltration and biomass, and to evaluate the cli-

matic sensitivity of that relationship and the processes contributing to it.

6.4.1 Biomass-infiltration trends in mesic-hydric climates

Biomass-infiltration trends did not appear to occur within sites in mesic-hydric cli-

mates, in contrast to the existence of strong and significant within-site trends in

arid climates (ref. Table 6.3). Nor did biomass values correlate to infiltration rates

between sites. Instead, soil type was the dominant factor in determining infiltration

rates in mesic-hydric sites. Thus, we conclude that the infiltration-biomass relation-

ship does not generally persist in wetter climates. The processes contributing to the

biomass-infiltration feedback are presumed to either saturate under humid conditions

or the driver for plants to develop features that enhance infiltration rates is too weak

to allow for the feedback to be observed. In well-watered sites it is likely that light

and nutrient limitation are co-limiting with water and are thus additional drivers

of allocation. Consequently, large shifts in the allocation ratio above and below-

ground may be observed depending on relative nutrient status [Oren et al., 2001].

The use of the above-ground biomass as an independent variable in humid sites may

be problematic if these allocation ratios are highly variable. Further measurements

to relate infiltration capacity to root distributions and density in mesic-wet climates

would provide insight not only into the relative effects of changing root biomass and

distribution on infiltration properties, but also on how these links feed back to water

or nutrient limitation and plant allocation strategy.
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Figure 6.5: Hypothesized causal relationships between soil, biomass and infiltration
in arid and mesic sites. The former is consistent with the effect of surface processes
decoupling infiltration rates (to a large extent) from the underlying soil type. The
latter is consistent soil type being the primary determinant of infiltration capacity.

6.4.2 Nature and strength of biomass-infiltration trends

The observed statistical relationships amongst soil, biomass and infiltration in this

study support the interpretation that biomass constitutes a primary influence on

infiltration capacity in water limited ecosystems. TThe data contradict a plausible

hypothesis that improved soil texture increases infiltration capacity which leads to

higher above-ground biomass.Instead, in mesic-hydric climates, biomass was decou-

pled from the trend in infiltration behavior, and in xeric sites infiltration and soil

type were uncorrelated (ref Fig. 6.5).

Note that the potential links between below-ground biomass and infiltration ca-

pacity, however, cannot be assessed with the available data, and remain as an area

where additional future work is required. In water limited climates power-law rela-

tionships were relatively successful in describing the biomass-infiltration relationship

(ref Figs. 6.2 and 6.3). Power-law biomass-infiltration relationships between sites de-

scribed approximately 35% of the variance in the infiltration values across an aridity

gradient. Infiltration capacity is not under the direct physiological control of plants,

and therefore the coupling between vegetation and infiltration is unlikely to be ‘first

order’ in nature. Thus, finding that biomass explained such a large proportion of
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variance in infiltration rate over such a broad range of sites is somewhat surprising.

Throughout the study the use of aboveground biomass has been motivated in part

by an expected order-of-magnitude relationship between aboveground biomass and

root extent. While this may be suitable for discerning between-site variability, there

is considerable scope for variation in the shoot:root ratio within individual species

or sites [Pallida et al., 2009, Martre et al., 2002, Gerard et al., 1982]. Consequently,

belowground biomass might be expected to exert important controls on infiltration

behaviour, and further data are needed to constrain such relationships.

6.4.3 Climatic sensitivity of biomass-infiltration relationship

Two broad trends were observed with changes in climate as measured by the dryness

index. The first was that the slope of the log biomass - log infiltration regression

declined as climates became wetter. A linear trend emerged in the power exponent

of individual sites where biomass-infiltration relationships existed (ref. Figure 6.4).

The second trend was the influence of soil type on infiltration. Soil type increased

in importance from being weakly related to infiltration in arid sites, to explaining

some 60% of the variance in infiltration in wet sites. Furthermore, in examining the

factors influencing infiltration in one particular location, where the climate and soil

type were the same (e.g. the Duke Forest sites), it was evident that soil texture and

coarse root mass, but not aboveground biomass, were correlated with infiltration

capacity.

6.5 Conclusions and future work

The influence of vegetation on soil properties and soil formation (i.e. pedogenesis)

has been studied since the late 1800’s when V.D. Dokuchaev introduced the concept

of dynamic soils that evolve under the influence of climate and vegetation. Ex-

ploring biomass-infiltration trends extends this conceptual framework to emergent
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properties of the soil-climate-vegetation system. Future work is needed to discrim-

inate the generality of processes that result in the large-scale biomass-infiltration

relationships identified in this study. In particular, it remains to be determined

whether the trend observed in arid sites is a passive response to increased soil cover,

or whether it is strongly influenced by adaptive features and dynamics of vegeta-

tion. The strongest ‘within site’ biomass-infiltration trends occurred on sites with

patchy vegetation cover, suggestive of a binary presence/absence relationship be-

tween infiltration and vegetation cover. Certainly physical and biological processes

including the prevention of physical crusts or seals and the ‘resource island’ effect

which concentrates ecological processes near vegetation [Schlesinger et al., 1996] are

consistent with such a binary relationship. However, spatially explicit studies of infil-

tration in the proximity of Australian mulga (Acacia aneura) found that infiltration

capacity increased with proximity to the mulga trunk, and declined smoothly with

distance from the trunk over distances of up to 10m. The absence of a discontinu-

ity in infiltration capacity at the canopy edge (2-3m from the trunk) suggests that

the modification of infiltration capacity is associated with root properties and not

simply surface cover [Dunkerley, 2002b]. Consequently, further research to elucidate

the links between belowground biomass characteristics and infiltration response is

needed. Similarly, a study by Spaeth (1996) concluded that plant species effects

significantly improved prediction of infiltration capacity compared to purely phys-

ically based predictions. These observations are suggestive of a complex suite of

processes affecting infiltration into the rooting zone. Manipulative experiments that

can discriminate between presence/absence effects induced by natural or artificial

soil protection, as well as further studies of infiltration processes at a species specific

level are needed to resolve this question.
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7

The role of microtopography in rainfall-runoff
partitioning: an analysis using idealized geometry

7.1 Introduction

The small-scale profile of surfaces, or their microtopography, is of interest across

many diverse disciplines including micro-fluidics, metallurgy, biophysics, and mate-

rials science. It is particularly important in determining the interactions of a sur-

face with other substances and its immediate environment [Costa, 2004, Hale and

Mitchell, 2002, Jager et al., 2007, Lloyd, 2003, Semler et al., 2006, Vananckevort,

1984]. Microtopography is also important in the geosciences, where it refers to to-

pographic variation about a mean surface trend with amplitudes much smaller than

hillslope or basin scales.

In arid and semi-arid environments, the partitioning of rainfall between infil-

tration and runoff at the soil surface is particularly important, since water lost to

Hortonian runoff processes cannot contribute to sustaining vegetation at a site (al-

though it may contribute to the growth of vegetation at sites downslope) [Descroix

et al., 2007, Lehmann et al., 2007, Noy-Meir, 1979, Kirkby and Chorley, 1967]. Mi-
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crotopography is anticipated to play an important role in ecohydrological processes

of arid and semi-arid systems.

Hydrologically, microtopography may be characterized by two distinguishing fea-

tures: (1) the vertical variations are on the same order of magnitude as the flow

depth during runoff events (i.e. mm to cm), and (2) the horizontal variation of the

microtopographic features are 2-3 orders of magnitude smaller than the hillslope

length (i.e. 10 to 100 cm). The geometric attributes of these features can be vari-

able as shown in Figure 7.1, and may be produced by biogenic or physical processes

(e.g. Figure 7.1, case b). The statistical and scaling properties of microtopography

on natural hillslopes have rarely been quantified. Data from tillage research sug-

gests that much of the natural variation of the soil surface is fractal [Pardini and

Gallart, 1998, Perfect and Kay, 1995, Vazquez et al., 2005, Burrough, 1983], while

larger scales of topographic variation (i.e. 2-5 m scales associated with dunes and

vegetation mounding) also display power law scaling [Pachepsky and Ritchie, 1998,

Pachepsky et al., 1997].

Despite its ubiquity, microtopography is rarely incorporated into hydrological

analyses except in the parameterization of roughness coefficients. The effects of mi-

crotopography have been investigated in tillage research and largely considered the

consequences of tillage on slowing runoff and erosion [Allmaras et al., 1966, DeLima

et al., 1989, Gayle and Skaggs, 1978, Hansen et al., 1999, Linden and Vandoren,

1986, Mitchell and Jones, 1976, Mohamoud et al., 1990, Onstad, 1984, Planchon

et al., 2002, Van Oost et al., 2006, Zobeck and Onstad, 1987]. The results have been

equivocal: many studies indicate a reduction in erosion and runoff in the presence

of increased microtopographic variation [Johnson et al., 1979, Steichen, 1984], while

other studies found that roughness increased erosion rates, presumably by concen-

trating the flow [Darboux and Huang, 2005, Helming et al., 1998]. Microtopography

has been investigated in the context of ‘interactive infiltration’ studies, which ex-
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Figure 7.1: i) Examples of microtopographic variation - a) terracette formation
on hillslopes in Idaho (formed by interaction of vegetation, erosion and flow), b)
prairie dog mounds (formed by fauna), c) stony desert pavement (formed by aeolian
erosion) and d) mounding associated with vegetation in semi-arid woodlands (formed
by aeolian and rain-splash erosion). ii) Definition of geometric parameters describing
the hillslope and microtopography. Images (a, b) are courtesy of Ciaran Harman,
image c) [Deschodt, 2003] and image d) [Deschodt, 2003].

plicitly account for variability in infiltration and runoff behaviour when the two

processes are coupled across a hillslope, resulting in: “an areal hydrologic [runoff]

response not typified by classical point-scale infiltration theory ” [Fiedler et al., 2002].

A few studies have shown significant perturbations in infiltration and runoff response

when surface elevation variation is accounted for, compared to microtopographically

smooth surfaces [Fiedler et al., 2002, Esteves et al., 2000].

The governing equations that may be used to describe hillslope hydrology are

the shallow water equations for surface runoff flow and Richards’ equation for infil-

tration and soil moisture redistribution. Accounting for microtopography requires

that these equations be coupled across all spatially variable boundaries. This cou-

pling problem was confronted via brute-force numerical simulations [Esteves et al.,

2000, Fiedler and Ramirez, 2000, Tayfur et al., 1993], but such an approach has

several drawbacks. First, the spatial scales that must be resolved span the finest

micro-topographic detail to the entire hillslope length. Similar scale issues arise in
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the temporal domain, with scales ranging from seconds-minutes for the activation of

overland flow, to several months over which subsurface redistribution determines soil

moisture conditions. This high dimensionality in space and time, coupled with the

need for high-resolution characterization of the microtopography and soil properties

as well as site specific calibration [Esteves et al., 2000, Fiedler and Ramirez, 2000,

Tayfur et al., 1993], prohibits a general treatment of microtopography through direct

simulations of the governing equations, and indeed the effects of microtopography

on hydrological response have largely resisted a generalizable theoretical treatment.

An exception is a study by Dunne et al. [1991], that considered the effects of tillage-

like microtopography where flow occurred in channels between ’hills’. Dunne et al.

showed how correlations between the height of these features and their infiltration

capacity resulted in a nonlinear scaling of hillslope-scale infiltration capacity with

the depth of flow. Here, ‘first-order’ effects of microtopography on runoff-infiltration

partitioning for simplified cases are analyzed. Our goal is to provide a complemen-

tary approach to that adopted by Dunne et al. in complexity and ease of making

generalizations. Given the focus on arid and semi-arid environments we target the

storm event scale and treat storm events as essentially independent.

7.2 Conceptual view

Consider a sloping surface with microtopographic variability consisting of mounds

and depressions of different sizes. If this surface is exposed to persistent rainfall,

and rainfall intensity (I) exceeds the infiltration capacity (f(t)), then a number of

different regimes can be defined (Figure 7.2) [Horton, 1945]. Prior to ponding, water

infiltrates without surface redistribution. Following surface ponding, ponded water

collects in depressions, delaying the onset of runoff from the immediate catchment of

each depression (A). As the smallest depressions overtop, runoff establishes flow and

hydrologic connectivity between upslope and downslope locations (B). Eventually,
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this connectivity links runoff flow paths to the channel, allowing export of surface

water from the hillslope. As the depth of flow on the surface increases, some of

the microtopographic features are submerged, creating a complex 2-3 dimensional

”mixed flow” regime around emergent microtopographic mounds (C). Further in-

creases in water depth ”drown” these features, leading to a sheet flow condition (D).

Conceptualising these cases separately allows for different simplifications to be made

to the governing equations. Replacing a ”real” microtopographic surface with an

idealized version permits further simplifications. For instance, on an idealized one-

dimensional hillslope with uniform sinusoidal microtopography, cases B and C do not

occur since depressions fill and over-top uniformly, immediately generating sheet flow

(Case D). In such an ideal case, a ”toy model” describing rainfall-runoff partitioning

requires only three components: a model of the surface prior to ponding, the filling

of the surface store as described in case A and sheet flow over the microtopography

as described in case D. Although simple, this sinusoidal microtopography offers some

key advantages. Firstly, any general theory for complex microtopography, must, in

the limit, recover this idealized set up. Second, the orientation of microtopography

here is at 90o to that utilized in the study by Dunne et al., allowing the two cases

to be considered as ’end members’ that constrain plausible flow behaviour on mi-

crotopographically varying landscapes. Finally, a large number of studies already

consider the problem of how a wavy surface affects bulk flow properties [Poggi et al.,

2007]. Hence this representation of microtopography allows us to draw from a rich

literature in fluid mechanics when describing flow responses [Belcher and Hunt, 1998,

1993, Finnigan and Belcher, 2004, Patton and Katul, 2009, Poggi et al., 2008]. In

short, a sinusoidal topography provides a parsimonious and tractable representation

of the variable surface and its effects on infiltration and surface runoff.
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Figure 7.2: Separation of the storm event into multiple flow regimes depending on
the degree of inundation of the microtopographic features. Our focus here is on the
’end-member’ cases A and D.

7.3 Idealized model and assumptions

As outlined above, the idealized model consists of a 1-D hillslope on which micro-

topographic variation is represented as sinusoidal excursions with fixed amplitude A

and fixed wavelength λ as shown in Figure 7.1(ii). Soil properties, specifically the

hydraulic conductivity Ksat and sorptivity (χo, a measure of the soil’s tendency to

imbibe water due to matric effects) are initially assumed to be homogeneous across

the entire hillslope length (L >> λ). We address the case where the soil is uniformly

dry at the onset of a storm, and where rainfall can be treated as having a uniform
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intensity (I) for the storm duration, and where overland flow mechanisms rather

than water table responses dominate runoff production (i.e. arid rather than humid

systems, c.f. Freeze [1972, 1974]). It is assumed that the microtopography is fixed

and no erosion or accretion occurs. These assumptions are not generally met on real

hillslopes. In the discussion, some of the implications of relaxing the assumption

of homogeneity, specifically for the dynamically relevant cases where heterogeneities

correlate with microtopographic features, are investigated. The range of plausible

variability in soil hydraulic properties, roughness, macroporosity, vegetation growth

and initial water content, however, means that addressing heterogeneity is an es-

sentially unconstrained problem, lying beyond the scope of a single study, and its

implications on upscaling the effects of microtopography are therefore discussed in

general terms only.

Two research questions were selected to guide the investigation of this simplified

surface:

• Does microtopography change the partitioning of rainfall into runoff and infil-

tration compared to a ’background’ state without microtopography (i.e. having

A = 0)? and,

• How do soil, slope, storm and microtopographic dimensions influence the degree

of this change?

As outlined above, this one-dimensional surface focuses the analysis on the two

“end-member” cases A and D. Extensions of this approach by allowing for two-

dimensionality and for hydro-eco-geomorphological feedbacks are outlined in the

Discussion. Subscripts of “m.t.” for microtopography, and “b.g.” for the background

reference case will be used to distinguish between background (A = 0) and microto-

pographically variable surfaces (A > 0) in the following description of the model.
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7.3.1 Infiltration prior to ponding

In dry soils, the water potential gradient imposed by the soil matrix dominates infil-

tration and gravitational effects may be neglected. As soils approaching saturation,

matric potential effects are insignificant and infiltration is primarily driven by the

gravitational potential or a unit gradient, resulting in essentially vertical flow [Philip,

1957]. Thus, the early stages of infiltration should respond to increases in infiltrat-

ing surface area (SA) regardless of its orientation, while the latter, vertical stages of

infiltration would be dictated by the horizontal projection of SA. Thus, microtopog-

raphy would increase the rate at which water is sorbed by the soil surface relative to a

background state covering the same horizontal area. This behaviour can be captured

in the magnitude of the soil sorptivity [Brutsaert, 2005]. Where microtopographic

variation is significant, the sorptivity measured at a point χo should underestimate

the sorptivity at the hillslope scale (= χo m.t.), unless a scaling factor is included to

adjust for the increased surface area. We refer to this scaled value as the “effective

sorptivity”. Using Philip’s solution for infiltration from hemispherical depressions

[Philip, 1955, 1969, 1991] and a numerical model of infiltration based on Richard’s

equation over a sinusoidal depression, we verified that the effective sorptivity scaled

in an almost one to one fashion with the infiltrating surface area (SA) (Figure 7.3).

Based on these results, it follows that

χo m.t. =
SAm.t.
SAb.g.

χo. (7.1)

The major implication of the increased effective sorptivity is that the time to ponding

(tp), which is related to the square of the sorptivity, tends to increase. A Smith and

Parlange estimate of the time to ponding was adopted [Parlange and Smith, 1976],
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tp =
χ2
o

2IKsatlog (I/ (I −Ksat))
, (7.2)

where I is, as before, the rainfall intensity assumed to be uniform throughout the

storm and across the hill slope, χo is the sorptivity and should be replaced by χo m.t.

in the presence of microtopography (A > 0), and Ksat is the saturated hydraulic

conductivity. Note that where the A is small enough to approximate the scale of

a soil pore, the continuum assumption behind this description of infiltration breaks

down. Consequently, the surface area scaling should be treated as a macroscopic

property and applied only for sufficiently large values of A.

7.3.2 Surface storage (Case A)

Following ponding, runoff is locally initiated [Horton, 1945]. In the presence of mi-

crotopography, the initiation of non-local runoff until micro-topographic depressions

are filled. The volume of water that can be “sequestered” by these depressions is

known as the surface store [Allmaras et al., 1966, DeLima et al., 1989, Gayle and

Skaggs, 1978, Hansen et al., 1999, Linden and Vandoren, 1986, Mitchell and Jones,

1976, Mohamoud et al., 1990, Onstad, 1984, Planchon et al., 2002, Van Oost et al.,

2006, Zobeck and Onstad, 1987]. Some 40−70% of the time lag between rainfall and

runoff initiation in experiments has been related to the peak size of the surface store

[Darboux and Huang, 2005]. Strong positive linear correlations between amplitude

and storage [Darboux et al., 2001, Kamphorst et al., 2000, Onstad, 1984, Zobeck

and Onstad, 1987], and strong negative linear correlations between slope angle and

storage [Huang and Bradford, 1990, Kirkby, 2001] have been found, presumably as a

direct geometric result. A toy model that accounts for the effects of the surface store

can be constructed by computing a peak storage volume, given the microtopographic

geometry, and delaying the initiation of runoff until a time tr when this storage is
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Figure 7.3: Effects of microtopography on infiltration dynamics based on a numer-
ical solution to Richards Equation over a sinusoidal depression and for varying soil
types. The effective sorptivity scales approximately 1:1 with the surface area ratio.

filled:

tr = tpm.t. +
Vs∫ tr

tp m.t.
(I − f) dt

(7.3)

where Vs is the storage volume, and f is the infiltration rate which, following ponding,

is given by

f = Ksat +
1

2
χ2
o (t− (tp − tca)) , (7.4)

where tca is the compression time introduced to account for the shift in boundary
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condition from unsaturated to ponded infiltration [Sivapalan and Milly, 1989]. The

choice of χo and tp in equation 7.3 should reflect the surface condition (i.e. b.g. or

m.t.).

7.3.3 Sheet flow (Case D)

The flow over a microtopographic surface is complex and its complete description

requires solution of (at least) the shallow water equations. IA simple scale analysis of

the shallow water mean momentum equation can provide insight into its behaviour.

If time scales as the microtopographic length scale over the bulk velocity (2A/V ),

and as the microtopographic length-scale (2A), then:

∂

∂t
(V h) +

∂

∂x

(
V 2h

)
+ hg

∂h

∂x
= gh (So − Sf ) , (7.5)

and

≈
(
V 2

gh

)(
h

2A

)
= So − Sf , (7.6)

Here So and Sf are the bed and energy grade-line (or friction) slopes, V is the

depth-averaged velocity, h is the water depth, g the gravitational acceleration, and x

is the direction along the hill slope. This analysis suggests that the Froude Number

Fr = V 2/gh and the inundation ratio h/2A are the two control parameters for

the shallow-water system, and are directly related to the local slope and roughness

imposed by microtopography. The emergence of the Froude number as a control

variable is expected for free surface flows, while the inundation ratio is the logical

geometric variable.

The most elementary treatment of roughness is via a Darcy-Weisbach friction

factor given by fD = 8τ/ρV 2, where τ is the surface shear stress (viscous, turbulent,

or their sum), and ρ is the water density. The dominant contribution to the shear is
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taken to be the pressure gradient term so that the friction factor may be decomposed

as
8gh sin θ

V 2
=

8 sin θ

Fr2
, suggesting that a macroscopic parameterization of the rough-

ness via a friction factor must implicitly depend upon Fr. Again, this is consistent

with the importance of free surface effects (as parameterized by Fr) in contributing

to the resistance to flow (parameterized by fD) [Smith et al., 2007]. Experimentally,

the friction factor that parameterises resistance to a particular microtopographic

arrangement varies with the inundation ratio [Lawrence, 1997, 2000]. The nature

of this variation appears to be sensitive to specific geometric arrangements, making

generalization of existing semi-empirical models challenging. As an alternative, we

adopt the simple and conservative assumption that the resistance to the flow can be

parameterised by relating the microtopography to the momentum roughness height

(zo) [Katul et al., 2002, Chen, 1991], and assuming that zo scales linearly with the

depression height 2A. We follow Katul et al. [2002] in linking the value of the friction

factor to an estimate of Manning’s friction factor (n) (or fD = 8n2g/h1/3), such that

n ≈ 0.06 z
1/6
o (assuming turbulent flows). The n estimate is then used to parame-

terize a kinematic wave approximation to the overland flow. While this approach is

undoubtedly an oversimplification, it provides a consistent and reproducible method

to apply within the scope of the toy model. It offers a conservative estimate of the

resistance in that this parameterization strictly applies to ’deep flows’ over microto-

pography, and probably under-estimates the resistance where the inundation ratio is

close to one [Katul et al., 2002]. We solved the flow equations following Giraldez and

Woolhiser [1996] using the method of characteristics and accounting for the unsteady

lateral inflow terms imposed by rainfall and infiltration:

dh

dt
= I − f, (7.7)

127



dx

dt
= aKr (h− 2A)a−1, (7.8)

where I is the rainfall intensity, f , as before, is the infiltration rate (enhanced by

microtopography), Kr is a kinematic resistance parameter defined in terms of the

slope So and the roughness coefficient n, and is given as Kr =
√
So/n, and the

exponent a = 5/3 for a turbulent overland flow regime (assumed when linking n to

zo) though a can be as large as 3 for a laminar flow regime. The modification to

the celerity (equation 7.8) by incorporating dependence on a reduced depth simply

ensures that no flow occurs when the depth of ponding is less than the storage depth.

The kinematic treatment assumes 1D flow and K − r inversely proportional to n.

A finer level of detail could be obtained by considering a 2D formulation where the

vertical dimension is explicitly incorporated and the differences in dynamics across

the various water levels above the undulating surface are retained. Such a refinement

would consider the effects of the undulating surface in depth (z) and longitudinal

distance (x) along the hill slope on the time-averaged longitudinal (U) and vertical

(W ) velocities via,

∂U

∂x
+
∂W

∂z
= 0 (7.9)

U
∂U

∂x
+W

∂W

∂z
≈ −1

ρ

∂P

∂x
− ∂τ

∂z
− 1

2
CdU

2, (7.10)

where Cd is the effective drag coefficient imposed by the microtopography on the flow

(due to pressure and viscous effects), and τ is the sum of the turbulent and viscous

stresses. The analysis can be simplified by assuming that the undulating surface

primarily perturbs the mean pressure gradient ∂P/∂x (which is approximately out

of phase with microtopography), in a vertically uniform manner, and that the mean
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longitudinal momentum balance responds by creating the advection terms. These ad-

vection terms modify the τ gradients given by τ = − (ν +m+ νt) (∂U/∂z + ∂W/∂x),

where νt and νm are the turbulent and eddy-viscosities. Once the solution for U (x, z)

is derived using appropriate models for νt from this system (as originally proposed

by Jackson and Hunt [1975] [Belcher and Hunt, 1998, Jackson and Hunt, 1975, Poggi

et al., 2007]), formal spatial averaging across the entire hill length can be employed

to arrive at a bulk roughness parameter:

fD =
1

L

∫ L

0

1

h (x)

∫ h(x)

0

8τ (x, z)

ρU (x, z)2dzdx. (7.11)

Since the first order analysis with 1D flow did not indicate a strong sensitivity to the

parameterization of the overland flow (see below), this elaboration was not introduced

for the numerical analysis presented here.

7.4 Numerical analysis of the idealized case

Even the simple toy model is dependent on a large number of parameters, preclud-

ing a comprehensive sensitivity analysis across the entire parameter space. As an

alternative, a reasonable reference condition was defined using realistic but static

(unless otherwise specified) parameter values (Table 1). The reference soil prop-

erties correspond to clays with saturated hydraulic conductivities on the order of

10−6 m/s. The sorptivity of the soil χo was set to 3.7 × 10−4 m/s1/2. Reference

microtopography was set with an amplitude A of 2.5 cm and a wavelength λ of 40

cm, and reference rainfall was taken as an intense rainstorm with intensity 3.5×10−5

m/s and duration (td) of 30 minutes. For comparison, this approximates intensities

associated with 2 year storms in several dryland areas (e.g. northwestern Australia

or the northern Chihuahuan desert [Australian BoM, 2009, Texas Department of

Transport, 2010]). From this baseline, the soil properties (Ksat, χo), geometry (A,
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Parameter Reference Value Model Run Range
A (m) 0.025 A 1mm - 10 cm
λ (m) 0.4 A 10cm - 2m

I (m/s) 3.5× 10−6 B 10−6 − 10−2m/s
td (min) 30 B 30 min - 5 hr
Ksat (m/s) 1× 10−6 C 10−10 − 10−2 m/s
χo (m/s1/2 3.7× 10−4 C 10−6 − 10−3 m/s1/2

So (◦) 2 D (results not shown) 10◦

n (m−1/3/s) 0.06 (2A)1/6 (mt) E (results not shown) 0.02
0.02 (smooth)

Table 7.1: Parameter values for the reference case, identification of the model runs
in which their effects were assessed, and the range of values employed in these model
runs

λ), and storm properties (I, td) were varied. For each model run, the percentage

of the rain that was partitioned into infiltration was calculated. To assess the sen-

sitivity of this partitioning to microtopography, this proportion was normalized by

the partitioning to infiltration on a hillslope with A = 0 under otherwise identical

conditions (i.e. the background state), and it is this ratio that is reported. These

model runs were repeated for slope angles of 2◦ and 10◦; and for a test case where

the flow resistance parameter was held constant between the microtopographic and

the background cases. The relative significance of the microtopography in increasing

the time to ponding, the time to runoff generation (ie tr− tp), and the runoff regime

(hydrographs) were also evaluated. Microtopography induced large increases in the

proportion of incident rainfall that infiltrated, approximately doubling the percent-

age of rainfall that infiltrates in the reference case. The existence and magnitude of

an increase in infiltration were sensitive to the soil properties, storm characteristics

and microtopographic geometry. Similarly, the degree to which increased infiltration

could be attributed to changes in time to ponding, the existence of the surface store

or the change in hydraulic resistance varied with these factors.
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Figure 7.4: The proportional increase in infiltration per storm in the presence
of microtopography (A > 0) relative to the background state (A = 0). Each plot
represents variation in A) microtopographic properties, B) Storm properties, C) Soil
properties about the background case (see Table 7.1).

7.4.1 Sensitivity to microtopographic dimensions

For specified micro-topographic amplitude, increasing the wavelength diminished

the effects of microtopography. This decrease was subtle for low slope angles (Figure

7.4A), but became pronounced as the slope angles increased (not shown). Given a

fixed microtopographic wavelength, we found that increasing the amplitude of the

microtopography increased the proportion of rainfall infiltration markedly (as would

be expected from surface area considerations alone).

The strong positive association of infiltration with increased microtopographic

amplitude arose from the direct scaling between the amplitude and the time to pond-

ing, the surface store and the resistance parameter (Figure 7.5, A and B). In contrast,

the relative increase in time to ponding declined as the microtopographic wavelength

increased, while the size of the surface store and the resistance parameter were nearly

invariant with respect to wavelength (Figure 7.5, A and B). The significant changes

in partitioning associated with changes in the surface storage alone suggest that

increases in the relative proportion of infiltrated water may still occur even where
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Figure 7.5: The increase in runoff initiation associated with the time to ponding
and the storage time, both referenced against the time to ponding in the background
case (see Table 7.1 for values). The proportional increases are rendered on a log scale
to show their variation. A) Time to ponding in the presence of microtopography
relative to the background state, B) Storage time associated with microtopography
again relative to time to ponding. The runs were conducted with the usual reference
properties and result in the change in total infiltration presented in Figure 7.4(A).

microtopographic variation is associated with the presence of impermeable obstacles

(e.g. rocks, vegetation or debris).

7.4.2 Sensitivity to storm properties

The sensitivity of the partitioning to storm properties peaked at intermediate rainfall

intensities, and was generally greatest for storms of short duration. Where rainfall

intensities were low, the time to ponding was not reached, or was of very short

duration, such that discrepancies between background and microtopographic cases

were minimal. Where rainfall intensities were high, the proportion of infiltration was

low relative to the total rainfall volume for both microtopographic and background

cases. Thus, an intermediate regime where rainfall intensities were 2-3 orders of

magnitude greater than Ksat generated the most sensitive response (Figure 7.4B).

Provided storm duration (td) was long enough to induce ponding on the background
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surface, the impact of microtopography was greatest for short storms.

7.4.3 Sensitivity to soil properties

Microtopography caused the greatest increase in proportional infiltration where both

the saturated hydraulic conductivity and the sorptivity were low. The increases in

infiltration observed in this model run were entirely due to increased time to ponding

relative to the background case as sorptivity declined. At high sorptivities, time to

ponding was not reached. At intermediate sorptivities, although time to ponding

was reached, it occurred relatively late in the storm duration, and both surfaces,

regardless of microtopography, infiltrated the majority of the rainfall. Thus at low

sorptivities the background surface ponded rapidly and generated the most marked

response.

7.4.4 Slope and roughness effects

Two additional cases were considered. In the first of these cases, the results for a

2o slope as presented in Figure 7.4 and Figure 7.5 were compared to the results for

a 10◦ slope. Microtopography continued to exert an increase in infiltration relative

to the background surfaces, but this increase declined (e.g. from a doubling of in-

filtration to a 50% increase for the background case), primarily due to decreased

storage volumes. The overall trends presented in Figure 7.4 and Figure 7.5 remain

representative, despite the change in magnitude. The second comparison utilized a

consistent resistance parameter for the background and microtopographically varying

cases. This induced a small decrease in the effects of microtopography on infiltra-

tion, and suggested that overall sensitivity to the resistance terms was not large in

comparison to the infiltration effects.
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7.5 Discussion

7.5.1 Toy model implications

Based on the model results, microtopography may induce increases in the proportion

of rainfall that infiltrates of 20 − 200% for short storms on shallow slopes. These

increases are substantially larger for larger microtopographic amplitude, or where

soils are very heavy, degraded, or exhibit surface crusting and sealing (lower Ksat

and χo). The increases persist, albeit with smaller magnitudes, for less intense

rainstorms, smaller microtopographic amplitudes and more permeable soils. The

results suggest that a suite of dimensionless numbers can be defined that control the

sensitivity of the partitioning to microtopography:
I

Ksat

,
I
√
td

χo
,
A

λ
,
L

λ
and

nm.t.
nb.g.

are all positively correlated to an increase in infiltration relative to the background

surface. So,
td

tp m.t.
and

td
t

are negatively correlated to an increase in infiltration

relative to a background surface. Microtopography increased infiltration and altered

runoff thresholds. The relatively simple alteration of sorptivity and the large number

of existing empirical models available for estimating the size of the surface store mean

that it is not onerous to make first order amendments to existing hydrological models

to account for these effects.

7.5.2 Theoretical extensions

As stated previously, the assumption of homogeneity and stationarity in the treat-

ment above is not representative of ‘real world’ conditions, where heterogeneity in

soil properties is legion. Rather than attempt to address all possible sources of het-

erogeneity and their implications, we make an immediate distinction between hetero-

geneity induced by microtopography, and heterogeneity that may be superimposed

on microtopographic landscapes. In the former case, the literature offers several in-
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teresting examples that provide opportunities to extend the simple treatment above,

while the latter situation pertains primarily to upscaling results obtained to date.

Heterogeneity induced by microtopography

Several sources of heterogeneity and non-stationarity are expected to correlate with

microtopography. Fox et al. [1998] showed that microtopography was progressively

eroded during a simulated rainfall event. Infiltration rates in the depressions were

shown to be significantly less than those associated with mounds. The low infiltra-

tion rates were associated with the wash-in of fines and surface sealing. Drier soils

may be expected at the peaks of microtopographic geometries and wetter conditions

in the troughs. To explore the possible effects of such variation, we consider two

prototypical cases where the infiltration rate is a function of the inundation. In one

case, infiltration rates are highest on the mounds [Fox et al., 1998, Dunne et al., 1991,

Bochet et al., 2000]. We also present the alternative case, where infiltration rates are

highest in the depressions, as might arise if clay soils result in increased cracking and

macroporosity. Further extensions can be made where correlations develop during a

storm e.g. due to surface sealing, or if A also becomes a function of time. Existing

work developing infiltration theory in such cases provides an appropriate starting

point [Assouline and Mualem, 1997, 2002]. For the temporally constant cases, a

mathematical derivation is presented in the supplementary material and only the

key results are discussed here. The results in the supplementary material suggest

that if correlations between microtopography and Ksat alter the spatially averaged

value of Ksat relative to the background case, then the correlations may significantly

dampen or amplify the effects of the microtopography depending on their phase rela-

tionship with microtopography. However, where the correlations leave the spatially

averaged Ksat unaltered, they have essentially no impact on the partitioning. This

result appears surprising when compared to Dunne et al.’s results, which showed
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strong sensitivity to correlations with Ksat and z. The distinction lies in the fact

that in order to generate any runoff in this geometry, a depression must be fully

inundated. For low slope conditions this results in essentially all the variability in

Ksat being explored prior to runoff generation. Thus, the effective infiltration rate

at the point of runoff generation is dictated by the spatial average of all values of

Ksat, not a subset constrained by a comparative shallow depth of flow as per Dunne

et al.’s study. Consequently, the nonlinear coupling between runoff and infiltration

is more dynamically variable and significant in that geometric arrangement.

Large-scale heterogeneities and upscaling

Large-scale heterogeneities impose new length scales on hillslopes. If the effects of

heterogeneity in isolation are anticipated to be on the same order of magnitude

as the microtopographic effects, it may be necessary to move towards an explicit

simulation approach [Fiedler and Ramirez, 2000, Fiedler et al., 2002]. If, however,

the impacts of imposed heterogeneities are sufficiently severe, then their effects may

be dealt with by spatially decomposing the hillslope. Below the characteristic length

scale on which the heterogeneities act, the microtopographic effects described here

would dominate, while at longer length scales, the effects of the heterogeneities would

become more pronounced. In combination with non-linearities in the dynamics and

length scales induced by the microtopographic variability itself (see below), this leads

to the potential for highly scale-specific runoff and infiltration processes on hillslopes,

as are known to arise in arid landscapes [Kirkby, 2001, Kirkby et al., 2002].

Challenges for generalization

When motivating this problem, two additional cases, B and C, were identified as

posing challenges requiring new theoretical developments. The first development

addresses the transition of the hillslope from a series of isolated depressions with
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independent and localized hydrologic balance to a connected network of basins con-

tributing flow to their downstream neighbours and ultimately the channel. These

fill-spill processes determine the formation of a surface flow network and have been

identified as important in generating scale dependence in runoff [Bergkamp, 1998,

Joel et al., 2002, van de Giesen et al., 2000, Kirkby et al., 2002, Puigdefabregas

et al., 1999, Wood et al., 1988], as well as introducing nonlinearity into runoff gener-

ation mechanisms [Darboux et al., 2001, Esteves and Lapetite, 2003, Kirkby, 2001,

Lehmann et al., 2007, Planchon et al., 2002, Reaney et al., 2007, van de Giesen et al.,

2000]. Similar nonlinear scaling is familiar in the physics literature in studies of perco-

lation or systems displaying criticality [Bak et al., 1987, Berkowitz and Ewing, 1998,

Hammersley, 1957, Isichenko, 1992], and often yielding universal scaling properties

[Narayan and Fisher, 1994]. Extending such approaches to account for infiltrating

surfaces and flow forced by rainfall may provide useful and generalizable insights into

surface connectivity. The second theoretical challenge addresses the description of

the bulk flow properties of a partially submerged surface. Such flow is inherently

complex, consisting of flow over, and around submerged or emergent microtopo-

graphic features [Lawrence, 1997]. Macroscopically, microtopography segregates the

flow into fast flowing ”threads” moving at velocities 2-7 times greater than the mean

velocity, and slow moving backwaters in which velocities approach zero [Dunkerley,

2003, 2004]. Up-scaling such variation, even empirically, is challenging [Abrahams

and Parsons, 1990]. The development of theoretical approaches to study flows of

this nature has been driven by approaches from the geomorphology, canopy flows,

and gravel-bed river communities [Cooper et al., 2006, Ferguson, 2007, Ferro, 2003,

Hardy et al., 2007, Katul et al., 2002, Lacey and Roy, 2007, Lawrence, 1997, 2000,

MacVicar and Roy, 2007, Marquis and Roy, 2006]. All approaches highlight the im-

portance of the relative degree of inundation of roughness elements. Similarity and

scaling approaches based on the inundation ratio have proven at least as successful
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at describing the bulk flow properties as existing semi-empirical models [Hey, 1979,

Katul et al., 2002, Lawrence, 2000, Leopold and Wolman, 1960]. The description of

the average properties of spatially variable flows remains challenging [Canovaro et al.,

2007], although new techniques are becoming available, such as acoustic “grazing an-

gle sound propagation”, which allows measurement of bulk roughness properties from

the acoustic profile of the water surface [Cooper et al., 2006]. The applicability of

such techniques to overland flows is limited due to the shallow and variable depth of

flow, meaning that drawing analogies from deeper, gravel lined channels, and scaled

flume experiments remains the most promising way forward.

7.5.3 Feedbacks in dynamic landscapes

At long timescales, feedbacks between vegetation, hydrology and geomorphology

suggest the possibility of co-evolution of hillslope features. A prototypical exam-

ple of the feedbacks between vegetation, microtopography and hydrology is in the

role of vegetation in generating soil mounds [Bochet et al., 2000, Nash et al., 2003]

with infiltration rates up to 2-8 times greater than surrounding soil [Valentin et al.,

1999]. Saco et al. [2007] demonstrated that feedbacks between biomass density, in-

filtration capacity and erodibility generated regular arrays of both vegetation and

microtopographic mounds on arid hillslopes. Feedbacks between aeolian geomorphic

features and vegetation are generate signatures of vegetation in landscape structures

[Baas and Nield, 2007, Nield and Baas, 2008], while feedbacks between aeolian pro-

cesses and hydrology have been shown to generate ring patterns in arid ecosystem

vegetation [Ravi et al., 2007]. The generation of microtopographic terracettes was

explicitly considered by Sanchez and Puigdefabregas [1994] using cellular automata.

Extending the focus of these studies from the generation of microtopography to the

evolution of hydrological partitioning and ecological functioning is an area ripe for

further exploration.
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7.6 Conclusion

Microtopographic variation was predicted to significantly alter hydrological parti-

tioning where soils had low permeability and were subject to intense rainstorms.

The net effect of microtopography was to enhance the retention of rainfall in hill-

slope soils, which may represent a significant improvement in habitat and growing

conditions for plants in the semiarid systems under consideration. The results sug-

gest that under certain circumstances, ignoring microtopographic variation may lead

to significant biases in prediction of hydrological partitioning of rainfall into infiltra-

tion and runoff. Modifications to classical hydrological theory through the use of an

“effective sorptivity” and accounting for the peak surface store can be immediately

applied. However, a more comprehensive theory that accounts for connectivity and

the bulk representation of flow properties over variable terrain is needed, along with

upscaling approaches to factor in other sources of variability in infiltration properties

through space and time. Characterizing the properties of microtopography in real

landscapes to allow its effective simulation and parsimonious description is a prior-

ity. Linking theoretical developments to the co-evolution of landscapes, specifically

with regard to hydrological, geomorphological and ecological feedbacks, presents an

exciting set of challenges for understanding and managing arid landscapes.
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8

Summary and conclusions

A brief summary of the main findings and key conclusions are presented. The con-

clusions here lay out a framework for progressing with future studies, also described

here.

8.1 Summary of results

The research presented in this dissertation focused on four key areas: exploring

alternative explanations for observed vegetation patterning; biomass transport by

seed dispersal; the alteration of surface hydrology by the presence of vegetation

and the implications of land surface micro-topography on infiltration and runoff

generation. Taken together, the results from these studies present a rich and complex

picture of the eco-hydrological dynamics of structural organization in vegetation

communities.

Chapter 2 demonstrated the plausibility of alternative, non-Turing mechanisms

being responsible for vegetation patterning. This work highlighted the difficulty of

determining mechanisms of pattern formation solely from the morphology of the

patterns formed. It provided one of the first known examples of fluid instabilities
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being responsible for vegetation patterning in terrestrial ecosystems and opened up

the possibilities of alternative ecological pattern forming mechanisms beyond those

typically discussed in the literature.

Chapter 3 developed a methodology to estimate dispersal kernels and diffusion

coefficients from the measured properties of seeds and wind. The focus of this work

in developing scaling methods to account for the effects of variability in mean wind

speeds on the rate of plant population movement remains suitable for continuous

treatment adopted. The estimates of plant migration rate provided in the chapter,

however, are susceptible to biases arising from the continuous representation. The

minimum biomass density at a point within a continuous model should be equivalent

to the biomass density of an individual seed. Applying such a minimum biomass

threshold effectively truncates the propagation front. The predicted population mi-

gration rate turns out to be extremely sensitive to this truncation, and this sensitivity

is exacerbated for the case of power-law seed dispersal kernels. Simulations indicate

that in the case of an exponential kernel (c.f. diffusion), truncating the traveling wave

at biomass values of ≈ 1% of carrying capacity (an unrealistically high threshold)

results in a 40% decline in the predicted wavespeed. Conversely, a decline of 40% of

the wavespeed is achieved in the case of a Wald kernel for a truncation threshold of

just 2 × 10−9× the carrying capacity - a rather plausible threshold for typical seed

masses (on the order of mg) versus typical carrying capacities (on the order of 100s

of kg). The sensitivity of the propagation velocity to such truncation in the range

1 × 10−10 ×K to 1 × 10−8 ×K (recall that K is the carrying capacity) is shown in

Figure 8.1. Consequently, predicted migration rates presented in Chapter 3 should

be regarded as containing a bias due to the failure to account for the discrete nature

of seed dispersal.

This bias alone would suggest that the migration rates obtained in the case study

in Chapter 3 should be viewed with caution. There are, additionally, numerous other

141



0 2 4 6 8 10

x 10
−8

0.4

0.5

0.6

0.7

0.8

0.9

1

Truncation Mass / Carrying Capacity

C
/C

un
tru

nc
at

ed

Sensitivity of Wave Speed to Front Truncation

Figure 8.1: Proportional change in predicted wavespeed (c) when the traveling
wave is truncated. The results shown were generated for a WALD kernel and show
the strong sensitivity to truncation associated with the power law kernel.
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reasons for viewing these as over-estimates of migration rate. Specifically, the pollen

record must be viewed as incomplete. Utilising contemporary pollen and macrofossils

extracted from surficial lake sediments, McLachlan and Clark [2004] were unable to

reconstruct the current range of beech and birch species in the US. Sparse popula-

tions did not leave a detectable record, even over large areas within the contemporary

range. This finding was backed by molecular data which suggested that the pattern

of expanation of maple and beech species after the last glacial maximum cannot

be spatiall reconciled with that predicted from the pollen record [McLachlan et al.,

2005]. These data indicate that tree species’ ranges during the last glacial maximum

extended beyond those indicated by the pollen record, such that the rates of popula-

tion expansion predicted solely from the pollen record are necessarily overestimated.

In addition to the biases associated with continuous representations of a discrete

population, the model employed in Chapter 3 ignored numerous other processes,

known to be important in plant population migration, and likely to retard the front

speed: these include finite fecundity [Clark et al., 2004], mortality of dispersed seed

[Clark et al., 2001], and ignoring the time needed for trees to reach maturity and

commence seed dispersal at the front [Clark et al., 2003]. Consequently, Chapter 3

needs to be viewed as identifying the importance of variability when upscaling wind

speeds, but emphatically not as advocating a realistic model for plant population

migration, nor as having predicted reasonable rates of biomass migration, given the

limitations of the pollen record.

Chapters 4 through 5 developed a framework for examining the significance of

seed dispersal in determining the structures of vegetation communities. The nu-

merical treatment of seed dispersal developed in Chapter 3 was then applied to

extend existing models of vegetation pattern formation by examining the influence

of non-diffusive biomass movement on patterning, as well as the role of anisotropy

in secondary seed dispersal. This work showed that patchy landscapes were formed
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regardless of the characteristic length scale of seed dispersal, but that in the absence

of diffusive seed movement the spatial pattern of vegetation distribution became dis-

ordered and sensitive to initial conditions. The results suggested that the formation

of ordered patchy landscapes was more likely to result from fragmentation of coher-

ent vegetation cover than expansion vegetation into bare sites. Secondary dispersal

was shown, phenomenologically, to have a potentially significant role in explaining

the evolution of vegetation patterns and moderating landscape dynamics in sloping

patchy systems.

Chapters 6 and 7 outlined two key influences on the partitioning of water at the

land surface: the presence of vegetation cover and the significance of local micro-

topography. Local biomass density was shown to correlate to local infiltration ca-

pacity in drylands, such that higher local biomass resulted in high infiltration rates,

independently of soil type. Secondly, micro-topographic features were shown to gen-

erally enhance the infiltration volume when compared to an idealized flat case. These

two features suggest that the perturbations to the surface hydrological budget in-

duced by vegetation on arid hillslopes are significant and potentially difficult to

account for with standard surface hydrological approaches. The incorporation of a

refined treatment of surface hydrology into pattern forming equations is the next

outstanding challenge in this area.

8.2 Future work

The scope for further study of these issues is extensive, and can be subdivided into

several areas, namely

• further exploration of pattern forming processes;

• further refinement of pattern forming models;

• further examination of secondary dispersal processes; and
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• further study of the interaction of micro-topography and hydrology.

Finally, the potential links to land use and land and water resources management

are discussed.

8.2.1 Further exploration of pattern forming processes

Elucidating the mechanisms of vegetation pattern formation in drylands remains an

active subject of research. To date mechanistic pattern forming models have not

been comprehensively tested with field, modelling and remote sensing studies. Their

validity and suitability for reproducing the dynamics of patterned systems remains

uncertain until such validation takes place. Recently the phenomenological models

developed by Lefever and Lejeune have been refined and assessed in the field us-

ing gapped vegetation patterns as a case study. These studies have introduced new

possibilities for the ecosystem dynamics of patterned systems, and highlighted the

significance of plant allometry, specifically the ratio of the crown to rooting-zone

diameters, in determining the dynamics of pattern formation and collapse [Lefever

et al., 2009]. Such results suggest that further linking plant physiology (which con-

trols the allocation of carbon above and below ground, and thus moderates plant

allometry) to spatial patterning may offer valuable insights.

As a complementary problem, theories regarding the formation of spatially patchy

systems where vegetation distributions do not display a dominant wavelength are

largely undeveloped. However, in many of these systems, similar feedbacks to those

observed in patterned systems are present and result in the concentration of nutrient

and water resources under plant canopies. The determinents of spatial patchiness in

these “disorganized” systems and the development of spatial models that can be used

to examine their evolution remains a largely outstanding problem (but see Manor

and Shnerb [2008] and Kefi et al. [2007b] for some approaches based on cellular

automaton methods).
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8.2.2 Refinement of pattern forming models

Several outstanding challenges remain in representing the pattern forming processes

mechanistically in numerical models. Firstly, the role of stochasticity in time and

space have not been comprehensively addressed. Existing models adopt mean field

approaches that neglect the intermittency of rainfall, and which assume that soil

properties are uniform over the domain of interest. Accounting for stochasticity in

rainfall introduces a need to resolve water transport processes at the scale of individ-

ual storms, a significant refinement from existing models. This refinement can now,

however, benefit from the empirical relationships between biomass and infiltration

derived in this thesis, and can be readily modified to incorporate micro-topographic

effects. Incorporating intermittency in rainfall in pattern forming models will also

require refinements to the representation of plant physiology to incorporate the ef-

fect of drought survival strategies by vegetation (but see Guttal and Jayaprakash

[2007] for a phenomenological approach to this issue). In the spatial domain, ran-

dom variation in soil properties may act to obscure vegetation patterning to such

a degree that interpretation of pattern features becomes impossible, or may even

interact non-linearly with the pattern forming process in potentially complex ways

(see Lowe et al. [1983], Coullet [1986] for examples in other pattern forming sys-

tems). There is scope to develop experimental treatments to further investigate the

pattern forming process at the laboratory scale. Constructing a large “vegetated

flume” where water input, soil properties, slope, drainage and vegetation type can

be controlled offers the scope to experiment with the growth of model organisms.

Similar experimental flumes have been installed within the hillslopes at the Coweeta

Hydrological Facility and formed the basis for fundamental research into hillslope

discharge processes [Hewlett and Hibbert, 1963]. Given recent calls to extend hydro-

logical efforts in laboratory-scale experiments [Kleinhans et al., 2009], such a facility
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would provide one of relatively few set-ups to investigate the coupling of hydrological,

geomorphological and ecological roles at small scales.

Finally, development of appropriate parameter estimation techniques for spatially

extended systems responding to stochastic forcing but existing largely near their

equilibrium condition are also needed in order to progress from prognostic modeling

of vegetation patterns to suitable inverse modeling schemes that can allow inference

of ecosystem properties based on observations of pattern dynamics. Recent methods

to allow parameter estimation from ensembles of chaotically evolving convection

patterns have been developed, offering several models that could form the basis for

such an extension [Sitz et al., 2003, Cornick et al., 2009].

8.2.3 Mechanistic treatment of secondary dispersal

In the context of patterned vegetation and elsewhere, secondary seed dispersal is

largely under-studied, and has been most thoroughly explored in the context of ani-

mal mediated dispersion. Experimental and observational studies have demonstrated

the importance of secondary dispersal for seed location, burial and germination suc-

cess, but to date, only one study has mechanistically linked secondary dispersal to

environmental conditions and thus developed a predictive framework [Schurr et al.,

2005]. Given the importance of secondary dispersal in spatially structuring plant

populations in dry-land ecosystems and the value of the need for mechanistic de-

scriptions of secondary dispersal that can be used for predictive purposes, secondary

dispersal is ripe for more detailed mechanistic treatments through a combination of

modeling, experimental and field studies.

8.2.4 Microtopography and hydrology

As discussed in the conclusions of Chapter 7, several studies have begun to explore

the links between hydrology, ecology and geomorphology, often with a bias towards
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determining the processes that form micro-topographic features. Extending these

approaches with field and experimental studies to assess the co-evolution of micro-

topography with hydrological transport paths and ecological function is a question

ripe for further exploration. Recent novel flume studies addressing similar questions

in the context of fluvial geomorphology have developed illustrative and useful mod-

els with extremely simple plants (e.g. alfalfa) [Tal and Paola, 2007]. Potentially,

similar approaches for understanding the coupled ecological-hydrological and geo-

morphological dynamics of hillslopes could be adopted at laboratory scales, using

the experimental set up outlined previously.

8.2.5 Social and management applications

The research effort reported in this dissertation concentrated largely on questions

regarding the structure and functioning of spatially patchy arid ecosystems. Many

of these ecosystems, however, are also significant source of primary production (ei-

ther for agricultural production, livestock grazing or firewood harvest) and act as

dryland water catchments (indeed the Millennium Ecosystem Assessment outlines

the primary ecosystem service of arid ecosystems as being water regulation [Safriel

and Adeel, 2003]). Decision-making about land use and management in these en-

vironments may constitute a major regulating factor or perturbation to the natural

ecosystem, and one which to date has been inadequately explored with the exception

of site-specific case studies [Berg and Dunkerley, 2004]. While some socio-economic

modelers are now developing approaches to model the human element of desertifi-

cation (e.g. [Hellden, 2007]), such models have so far represented primarily linear

responses in the environment and thus cannot reproduce threshold or bistable be-

haviour, even where it is widely acknowledge to drive dryland dynamics. Syntheses of

socio-economic and ecohydrological approaches to the dynamics of drylands are likely

to occur at fairly phenomenological levels, but this integration nontheless must ensure
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that the critical dynamics from each approach are faithfully maintained. Integrating

the ecology, hydrology, economics and social sciences into a unified complex-systems-

science approach to drylands remains a key challenge for ongoing management and

decision making.
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Appendix A

Meteorological data

Station 0:00am 1:00am 2:00am 3:00am 4:00am 5:00am 6:00am 7:00am
Air Temperatures

KTDF 1.1 1.1 0.0 -1.1 -1.1 -1.1 -2.2 -2.2
KRDU 5.0 4.4 3.3 2.8 1.1 1.1 0.6 0.0
KIGX 6.7 5.0 3.3 2.8 1.7 1.7 1.1 1.1
SILR 0.6 -1.1 -1.1 -1.7 -2.2 -2.2 -2.8 -3.3

REED 6.7 6.7 4.4 3.3 2.2 2.8 2.2 1.1
OXFO 5.6 3.9 3.9 3.3 2.2 1.7 1.1 1.1

Soil Temperatures
SILR 12.2 11.7 11.7 11.1 11.1 11.1 10.6 10.6

REED 13.3 12.8 12.8 12.8 12.2 12.2 12.2 12.2
OXFO 12.2 12.2 12.2 11.7 11.7 11.1 11.1 11.1

¯Tair 4.3 3.3 2.3 1.6 0.6 0.6 0.0 -0.4
¯Tsoil 12.6 12.2 12.2 11.9 11.7 11.5 11.3 11.3

∆̄T 8.3 8.9 9.9 10.3 11.0 10.8 11.3 11.7

Table A.1: Meteorological data from weather stations surrounding Durham NC on
12th Nov 2008
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Appendix B

Wind data, scaling and sensitivity analyses

This appendix is presented in five sections. The first illustrates the relationship be-

tween diffusion models and models in which W (x) is replaced by a Gaussian dispersal

kernel G(x) for the case of the Fisher-Kolmogoroff Equation, utilising a novel ap-

proach for deriving this result from a differential, rather than a difference equation.

The second section provides the details of the numerical simulations used to con-

struct the relationship between Ueff and the Weibull parameters. The third section

deals with the collection, derivation and use of wind statistics in determining the

resulting biomass movement. It outlines the collection of data from the Ameriflux

sites, outlines the scaling and analysis of this data, and the derivation of sensitivity

results for the front speed relative to the Weibull wind statistics across different ge-

ographic areas and land cover types. The fourth section treats the data derived for

the Duke Forest Grass Field and Hardwood canopies in greater detail, and shows the

derivation of the data used in the case study. The final section addresses a sensitivity

analysis performed on the estimates of biomass propagation speed for parameters rel-

evant to tree species and discusses the linear and nonlinear responses observed with
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a view towards understanding where parameterisation effort should be invested.

B.1 The classical Fisher Equation and Gaussian dispersal kernels

We assumed that the one dimensional Fisher Equation

∂P

∂t
= rP

(
1− P

K

)
+D

∂2P

∂x2
(B.1)

could be approximated by a logistic growth function coupled to a Gaussian dispersal

kernel:

∂P

∂t
= rP

(
1− P

K

)
×
∫ ∞
−∞

G (x− x′)P (x′) dx′ (B.2)

Using a similar analysis to that performed on the logistic-WALD model, we can

linearise, and discretise Equation B.2 and derive the characteristic equation:

ex = r

(
1 +

∫ ∞
−∞

esuG (u) du

)
+ 1. (B.3)

We recognise the integral as the moment generating function of the Gaussian distri-

bution, MGGauss (s), given by:

MGGauss (s) = exp

(
σ2s2

2

)
, (B.4)

and its derivative is

∂MGGauss (s)

∂s
= 2s exp

(
σ2s2

2

)
. (B.5)

We require the solution to hold at the double root given by the derivative of the

characteristic equation. This yields the expression for the wave speed as:
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c =
rσ2sexp

(
σ2s2

2

)
rexp

(
σ2s2

2

)
+ 1

. (B.6)

When r exp (σ2s2/2) >> 1, this expression simplifies to

c = σ2s, (B.7)

giving the expression for r as

r =
exp (σ2s2)− 1

exp
(
σ2s2

2

) ≈ exp

(
σ2s2

2

)
, (B.8)

and upon eliminating s yields:

c = σ
√

2 ln r. (B.9)

For a fixed growth rate, if we identify an effective diffusion coefficient, D =

ln rσ2/2r , we recover the speed of invasion derived for the Fisher equation:

c = 2
√
Dr. (B.10)

Numerical simulations of the two models show close matching of wave profiles,

convergence of wave speeds, and for low ratios of D : r, a close match in the predicted

location of the wave front (Figure B.1).

A point of difference between dispersal kernel models and diffusion models is the

asymptotic approach to the maximum speed in dispersion kernel models, while in

diffusion models, given appropriate initial conditions, the maximum speed is attained

immediately [Kot et al., 1996, Murray, 2003a]. Both approaches are appropriate

for predicting the maximum speed of biomass movement, but they will predict the

location of the biomass wave front differently. The time at which the dispersion
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Figure B.1: Approximation of the solutions of the Fisher Equation (FE) with
a Gaussian Kernel Model (GK). The growth rate r=1, and the ratio D:r is 0.042,
resulting in a close match of both the speed and the location of the wave front.

speed approaches its asymptotic maximum varies with the biomass growth rate, but

was always low with respect to the vegetation lifespan in numerical simulations.

B.2 Numerical simulations

Equation B.1 was integrated numerically using a finite difference scheme in 1D. At

each timestep a random draw was made from a Weibull distribution and used to

generate the Wald kernel. The convolution of the seed dispersal kernel (the WALD)

and the standing biomass was performed in the Fourier domain using a fast Fourier

transform algorithm for one-dimensional convolutions [Rosa, 2004]. Because of their

efficiency, Fourier transforms are routinely used to simplify the computation of convo-

lution integrals. The domain size was varied depending upon the Weibull parameters
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used. As wind speeds increased, the domain size was increased from 3000m up to

12000m to ensure that the travelling wave was contained within the domain. Simu-

lations were run at a half hourly timescale, with dt set to 0.025 hours. The spatial

discretisation, dx was set to 1m. Logistic and tree parameters were set to values

of: r = 2; α = 0.1; K = 500; Vt = 1.14; h = 2; zr = 0.1, θ = 0.36, κ = 0.4.

These values were selected to ensure that asymptotic speeds were reached rapidly

and are not representative of any real system. The position of the front was eval-

uated at every timestep by determining the spatial location of the point where the

biomass was equivalent to 50% of carrying capacity. The front speed was determined

based upon the distance travelled during each timestep. Simulations were run for

200 timesteps, which provided sufficient time for the front speeds to reach steady

state (this assumption was checked by comparison with longer simulations). Mul-

tiple fast Fourier transforms generated small instabilities ahead of the front. These

instabilities remained small with respect to the front for the duration of the simula-

tion, but became problematic if simulation length was greatly increased. Truncating

the instabilities retarded the front speeds and changed the shape of the travelling

wave, so they were left uncorrected. Simulations were manually checked prior to

running the Monte Carlo simulations to optimise the domain size and simulation

duration. Monte Carlo results were also manually checked for outliers, indicating

that the wavefront had crossed the domain boundary. Monte Carlo simulations were

conducted with 500 realisations for 47 combinations of Weibull parameters.

B.3 Wind data and wind statistics across multiple regions

This section addresses the collection and analysis of the mean wind velocity data.

Data were collected from six locations across four experimental Ameriflux sites

(http://public.ornl.gov/ameriflux/data-get.cfm), as detailed in Table B.1.

Wind speed data at the sites were collected via sonic anemometry at high fre-
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Site Coords Cover Canopy Sensor Date
name type height height Range

Duke Forest, NC 35◦58′16.33′′ N Grass 1m 6m 2001-
79◦05′36.15′′ W Clearing 2005

Duke Forest, NC 35◦58′24.90′′ N Hardwood 33m 42m 2001-
79◦06′01.55′′ W Forest 2005

Duke Forest, NC 35◦58′41.40′′ N Pine 14m 15.5 m 2001-
79◦05′39.10′′ W Plantation 2005

Harvard Forest, Ma 42◦32′15.92′′ N Hardwood 24m 30m 2001-
72◦10′17.32′′ W Forest 2005

Morgan Monroe, In 39◦19′23.34′′ N Hardwood 27m 48m 2001-
86◦24′47.30′′ W Forest 2005

Howland Forest, Mn 45◦12′14.65′′ N Mixed 19.5m 29m 2001-
68◦44′25.00′′ W Forest 2004

Table B.1: Site details for wind data collection.

quency (e.g. 10Hz for Duke Forest sites) and averaged over half-hourly or hourly

intervals [Novick et al., 2005]. Wind speed is a function of elevation, so that to

allow an inter-comparison of the sites the data must be normalised to a common

reference height with respect to the canopy surface. The wind speed profile can be

approximated with a logarithmic function of the form:

U =
U∗

κv
ln

(
z − d
zo

)
(B.11)

Where U∗ is the friction velocity, κv is von Karman’s constant (0.4), z is the

elevation above the ground surface; d is the zero plane displacement height which

accounts for the fact that the flow regime within the canopy is independent of the

flow above the canopy and which is typically estimated as 2h/3 where h is the canopy

height, and zo is a reference elevation at which the velocity is zero, often referred to as

the momentum roughness height. Using this logarithmic profile, all wind speeds were

normalised to a reference height of 5 m above the canopy surface, commensurate with

the values from the only forest edge site, the Duke Forest Grass Field. A Weibull
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Weibull Scale b Weibull Shape k Ueff
Duke Grass Clearing 1.77 1.78 4.03
Duke Pine 1.98 1.82 4.40
Duke Hardwood 2.25 2.11 4.40
Maine 2.66 2.15 5.13
Harvard Forest 2.52 2.36 4.50
Indiana 3.09 2.64 5.07
Standard error (all surfaces) 20.15% 15.19% 9.30%
Stndard error (forests only) 16.83% 13.76% 7.81%
% difference Duke HW- 26.93% 18.79% 9.11%
Duke Grass
% difference mean 41.01% 24.45% 16.57%
forests - Duke Grass

Table B.2: Weibull Statistics and Ueff for the wind data scaled to 5m above the
canopy across the six sites

Distribution was fit to the rescaled data for each year, and the average statistics and

projected Ueff values computed. A comparison of the averaged Weibull parameters

and Ueff across all sites (including all three Duke Forest sites) is shown in Table B.2.

It can be inferred that the variability in the effective wind speed associated with

geographical changes across the sites sampled is of the same order of magnitude as

the variability in changing between different land cover types.

To assess whether the variation of the Weibull parameters exhibited any trends,

the shape and scale parameters for each site were plotted against each other. A

strong linear correlation was apparent, and a trend line could be fit (Figure B.2) as

k = 0.64× b+ 0.62, which fits the data with r2 = 0.89.

The strong positive correlation between the Weibull statistics explains the rela-

tively small changes in Ueff across the sites despite the large variability in b and k.

While an increase in b tends to increase Ueff , an increase in k tends to counteract

this. Thus the correlation observed between the Weibull statistics tends to dampen

the effect of variability on Ueff . This can be formally assessed in a sensitivity analy-

157



1        1.5         2        2.5         3        3.5
Scale Parameter

S
ha

pe
 P

ar
am

et
er

3

2.5

2

1.5

1

Figure B.2: Weibull scale and shape parameters plotted against each other across
the six sites. The linear regression results in k = 0.6409× b+ 0.6167.

sis in terms of the Weibull parameters’ effect on Ueff (note that the effect of Ueff on

the front speed c is treated separately in the next section). Expressing the variation

in terms of the variability in b, we can predict the approximate impact on the shape

parameter k using the linearly relationship, thus determine the resulting proportional

change in Ueff . This sensitivity analysis is shown in Table A3.

B.4 Wind data and wind statistics from Duke Forest

The data from the hardwood stand at Duke Forest were used to parameterise the case

study for forest canopy conditions. The annual average of the half hourly Duke Forest

hardwood stand wind speed data had a coefficient of variation of 3.34% across the

years 2001 to 2005. Variability in the individual Weibull parameters was comparable

at 3.31% in the scale parameter, and 3.99% in the shape parameter. The variability
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Proportional change in b applied
1
10
× 1

2
× 1× 2× 3×

b 2 0.2 0.5 2 4 6
k 1.9 0.75 1.27 1.91 3.19 4.47

Proportional change in Ueff resulting from change in b

Ueff 1.24 0.29× 0.75× 1× 1.35× 1.69×

Table B.3: Sensitivity of Ueff to variations in the Weibull scale parameter b. When b
is changed, k changes in a near linear fashion. The resulting change in Ueff is strongly
damped, limiting sensitivity to the Weibull parameters while the linear correlation
between b and k applies.

Year Weibull Parameters Mean ann. Ueff 10%ile 90%ile
b k U (m/s) (m/s) Ueff Ueff

2001 2.16 2.13 1.91 4.19 3.55 4.86
2002 2.23 2.20 1.98 4.22 3.59 4.87
2003 2.33 2.0 2.03 4.76 3.99 5.55
2004 2.29 2.12 2.02 4.44 3.76 5.15
2005 2.26 2.06 2.01 4.51 3.8 5.25
Mean 2.25 2.11 2.00 4.4 3.72 5.11
CoV 3.31% 3.99% 3.34% 5.96% 5.41% 6.41%

Max variation 4.19% 5.40% 4.21% 8.06% 7.21% 8.74%

Table B.4: Wind speed statistics and Ueff predictions from the Duke Forest Hard-
wood Stand, 2001-2005.

in the predicted values of Ueff exceeded that of the variability in the mean wind

speeds at 5.96%, with similar levels of variability in the 10th percentile estimates of

(5.41%) and the 90th percentile estimates (6.41%).

The data from the grass clearing at Duke Forest were used to parameterise the

case study for forest edge conditions and to gain an initial understanding of inter-

annual variability. The annual average of the half hourly Duke Forest grass clearing

wind speed data had a coefficient of variation of 3.46% across the years 2001 to 2005.

Variability in the individual Weibull parameters was comparable at 3.28% in the

scale parameter, and 4.95% in the shape parameter. The variability in the predicted
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Year Weibull Parameters Mean ann. Ueff 10%ile 90%ile
b k U (m/s) (m/s) Ueff Ueff

2001 1.70 1.91 1.50 3.63 3.02 4.26
2002 1.82 1.74 1.62 4.21 3.45 5.00
2003 1.82 1.74 1.62 4.21 3.46 5.01
2004 1.76 1.76 1.57 4.04 3.32 4.79
2005 1.77 1.75 1.58 4.08 3.35 4.84
Mean 1.77 1.78 1.58 4.03 3.32 4.78
CoV 3.28% 4.59% 3.46% 6.82% 6.16% 7.33%

Max variation 8.32% 8.20% 8.32% 14.12% 13.06% 14.96%

Table B.5: Wind speed statistics and Ueff predictions from the Duke Forest Grass
Clearing, 2001-2005.

values of exceeded that of the variability in the mean wind speeds at 6.82%, with

similar levels of variability in the 10th percentile estimates of Ueff (6.16%) and the

90th percentile estimates (7.33%) (Table B.3).

Across both sites, the inter-annual variability in the annual mean wind speed was

low compared to hourly variability at around 3.5%. The inter-annual variability in

Ueff was greater than that of the mean wind speed, reflecting the sensitivity of the

logistic-WALD model (and thus Ueff ) to the shape of the distribution. Overall,

however, variability in wind statistics observed at inter-annual timescales was low.

The Duke Forest wind data were also used to compute an estimate of the value

of θ (σw/U). Typically the ratio of σw/U
∗ (where U∗ is the shear velocity) above a

forested canopy is ≈ 1.2. The ratio of U to U∗ is typically 3.3, giving a reasonable

estimation of θ as 0.36 [Katul et al., 1998, Raupach et al., 1996].

B.5 Sensitivity analysis of semi-analytical model

A sensitivity analysis on the semi-analytical model was undertaken by considering

a null case and then reducing and increasing individual parameters by appropriate

factors while all other parameters were held constant. r, α and U (which can be
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Change in c when WALD parameters changed
Original value 1

100
× 1

10
× 1× 10× 100×

r 7.78 kg/yr 0.2 0.5 2 4 6
α 0.01 0.75 1.27 1.91 3.19 4.47
U 2.9 m/s 0.01× 0.1 × 1× 10.00× 100.00×

1
10
× 1

2
× 1× 2× 10×

Vt 1.6 m/s 99.19× 3.98× 1× 0.25× 0.02×
x3r 11.9 m 0.99× 0.99× 1× 1.02× 1.63×
h 17 m 0.16× 0.51× 1× 1.99× 9.92×

1
100
× 1

10
× 1× 2× 3×

σw/U 0.4 m 0.042× 0.10× 1× 2.0× 3.0×

Table B.6: Sensitivity analysis of the vegetation front speed to scaling of individual
parameters.

considered as equivalent to U eff for the analytical model, as this is the wind forcing

used), which can conceivably range over large values, at least between species, were

increased and decreased by factors of 10 and 100. Physiological parameters zr, h

and Vt which cannot realistically vary over such a large range were increased and

decreased by factors of 2 and 10, and the ratio, σw/U which could not realistically

take values significantly larger than 1 was reduced by factors of 100 and 10, and

increased by factors of 2 and 3. For all cases, the resulting change in the predicted

wave speed was computed. For instance a 100 fold decrease in the α parameter from

the null case resulted in only a 2% decline in the wave speed. Note that nonlinear

interactions between parameters have not been evaluated, and the results of this

sensitivity analysis are expected to apply locally to the parameters listed above.

These logistic-WALD parameters are those used to model the movement of Fraxinus

pennsylvanica, which represented a ’mean’ case for the species considered, and thus

should be appropriate for considering the sensitivity of model for a range of tree

species.

The results of the sensitivity analysis are largely intuitive. The linear implications

of the growth rate, the wind speed, the canopy height or the variation in vertical wind
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speed on the outcome of the biomass wave front speed follow from the linear nature

of the processes they describe. Nonlinearities in Vt can be understood physically as

the limiting behaviour as Vt → 0 and as V t >> U . As Vt → 0, the flight times of

seeds approach an unrealistic “infinitely long” limit; resulting in huge increases in

dispersion length and migration speed. As Vt >> U the seeds become insensitive to

turbulent uplift and fall ballistically, confining dispersion to the immediate area of

the parent and drastically slowing migration, as shown previously. The nonlinearities

associated with the seed release height are similar to those associated with the termi-

nal velocity - as the release height declines the kernel moves into a ballistic regime,

although higher release heights do not change gravitational responses. In both cases

the nonlinearity relates to a change in the dominant processes affecting the shape

of the kernel. The most significant nonlinearity is in the α parameter. Intuitively

we would expect that the fewer seeds survive, the slower the wave speed should be.

The limited sensitivity to α was confirmed with numerical simulations but appears

to confound intuition. The resolution lies in consideration of the asymptotic nature

of the predicted wave speeds. In a continuous model, arbitrarily low survival values

do not prevent biomass establishment at the periphery of the travelling wave, but

rather reduce the amount of biomass that initially establishes. Once established,

this biomass grows logistically, such that the difference in established biomass at a

given outlying position between two models with different a values is eroded rapidly.

Ultimately, decreasing α results in a slower approach to the asymptotic wave speed,

but does not greatly impact the value of the wave speed itself. This is significant

in that the a parameter is not straightforward to parameterise and that values of

less than 1 × 10−6 tend to require the root finding algorithm to evaluate numbers

smaller than the limit of precision for many computers. However at the half hourly

timescale a will always be low, certainly lower than 1 × 10−4. If a large decrease

in α results in only a small decrease in the resulting wave speed, then there is less
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need for robust parameterisation of α by comparison to the more significant deter-

minants of the wave speed. In contrast to the results obtained by Clark et al. [2001],

this allows us to recover the Holocene expansion speeds without having to assume

an unrealistically high seed survival. Provided there is a sufficiently long lead time

to allow the asymptotic wave speed to be reached, appropriate expansion rates are

obtained even for arbitrarily small values of α.
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Appendix C

Dispersal kernels and implications for linear
stability analysis

This Appendix provides further detail regarding the model limitations, the shape of

the dispersion kernels, interpretation of the linear stability analysis and derivation

of the dispersion relation.

C.1 Model limitations - process and timescale considerations

The model used is a simplified description of the biology, ecology and hydrology of

water-limited ecosystems. Given the essentially “infinite” complexity of a real sys-

tem, a critique of such a simple model can be carried on indefinitely. We confine

this critique to the most salient limitations of the Rietkerk model, which essentially

amount to limitations in the process descriptions adopted, and the consequences of

a deterministic representation of truly stochastic drivers, particularly rainfall. The

plant physiology is simplified, treating growth as a function of water availability only

(a reasonable but inexact approximation in arid ecosystems because of the instanta-

neous linkages between photosynthesis and water availability); and all parameters are
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treated as constant in space and time, generating results representing mean responses

over long timescales. The hydrology represented in the model is also primitive, re-

lying upon a representation of both surface and soil water movement as diffusion.

These representations are not strictly realistic, but given that infiltration and plant

uptake are of interest rather than the precise routing of the flow to the plant, the

simple representation is perhaps suitable at the biomass timescale. The model is con-

tinuous in space and time, and represents deterministic processes dependent upon the

mean environmental conditions. As such it omits temporal variability, and cannot

represent the stochastic nature of many important processes in arid ecosystem (e.g.

rainfall). This approach, however, captures the trends at long timescales, and allows

an evaluation of their effects in isolation from transient processes, which given the

large separation of timescales between the surface water transport and the biomass

response is reasonable. Furthermore, adopting a quasi-steady-state approximation

and linearizing the equations, the time averaged biomass response can be shown pre-

dicted by the time averaged rainfall (see Linearisation of the surface water terms,

below).

C.2 Linearization of the surface water term

The scale separation between the surface water response time and the biomass/soil

water response time in the Rietkerk model can be evaluated in the diffusive framework

by the ratio ofDo : Dp(1000), and in the dispersive framework byDo/φσ (ϑ), where is

the standard deviation of the dispersal kernel. Taking an upper limit of σ (ϑ) = 100,

the ratio can then be evaluated as: 100/0.25 or ≈ 400. This large scale separation

suggests that at steady state, changes in the surface water terms occur so rapidly in

comparison to the biomass and soil moisture terms, as to allow the surface water to be

approximated as stationary during biomass growth. The linearised equations are time

averaged from the fast scales of overland flow (minutes) to the slower timescales of
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biomass response (annual), with the aim of investigating how fluctuations in rainfall

about the mean are propagated into the biomass evolution equation, and under what

conditions it is reasonable to approximate the temporally variable rainfall by its long-

term mean state for arriving at stationary patterns. Consider the model equations,

reproduced here for convenience, at steady state. In this case, the rapid response of

the surface water allows the approximation ∂O/∂t = 0 to be made:

∂P

∂t
= cgmax

W

W + k1

P − dP +Dp∆P

∂W

∂t
= αO

P + k2Wo

P + k2

− gmax
W

W + k1

P − rwW +Dw∆W

0 = R− αOP + k2Wo

P + k2

+Do∆O

(C.1)

That is:

O =
1

α
(R +Do∆O)

(
P + k2

P + k2Wo

)
. (C.2)

Note that P is plant biomass, gm−2, W is the soil water depth, mm and O the

surface water depth in mm. Hence, at steady state, changes in biomass occur much

more slowly than changes in the surface water budget, and the multiplier can be

considered to be constant, κ so that O is linearly forced by rainfall:

O =
1

α
(R +Do∆O)κ. (C.3)

Substituting Equation C.2 into the steady state W equation allows the simplifi-

cation:
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∂W

∂t
= (R +Do∆O)− gmax

W

W + k1

P − rwW +Dw∆W (C.4)

suggesting that the response of W to rainfall forcing is also linear. This approach

removes one of the key nonlinearities but a further linearization step is necessary to

treat the plant water uptake term W/ (W + k1)P . Performing Reynolds decompo-

sition on this term yields

W +W ′

W +W ′ + k1

(
P + P ′

)
, (C.5)

where primed quantities are excursions from the temporal average indicated by an

overbar. When the fluctuations in soil moisture are small by comparison to k1 (a

reasonable assumption as the maximum steady state soil moisture is typically on the

order of k1), and upon time averaging this term, we obtain:

(
W

W + k1

P

)
≈ WP

W + k1

(
1 +

W ′P ′

WP

)
=

WP

W + k1

(
1 +RW,P

σw

W

σP

P

)
, (C.6)

where σ is the standard deviation, and RW,P ∈ [0, 1] is the correlation coefficient be-

tween rainfall and soil moisture variability (positive in this case). Hence, a necessary

condition for using only mean annual rainfall in biomass models is that:

RW,P
σw

W

σP

P
<< 1 (C.7)

Given that RW,P ≈ 1 in arid ecosystems, the condition above is reasonable if the

coefficients of variation in rainfall and soil moisture do not exceed 30% each.
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C.3 Linear stability analysis and the dispersion relation

The analysis follows the methods used by HilleRisLambers et al. [2001] and is not

reproduced in full here. The pertinent steps may be summarised as:

• Nondimensionalise the model equations

• Recognise that the timescales of surface water transport are 103 times greater

than biomass or soil water response, thus at long timescales a pseudo-steady

state approximation can be applied (i.e. ∂0/∂t = 0).

• Determine the steady state solution(s) and apply a periodic perturbation.

• By the pseudo-steady state approximation, the growth in the perturbation of

the surface water can also be taken as zero

• Use this approach to contract the system of 3 equations to 2 ODES describing

the growth of the perturbations in the soil and biomass terms.

Before proceeding two points must be noted: this procedure does not allow us

to define the dispersion relation and so determines conditions for pattern formation,

but it does not identify the most rapidly growing modes; secondly most of the pat-

tern formation that is important in this model arises due to nonlinear instabilities,

and these results should be treated as indicative only of the impact of replacing a

diffusive term with a dispersion term. In this analysis, we examine the case of the

bare soil steady state. Performing a similar analysis at the vegetated state fails to

reveal significant differences between the dispersion and diffusion approaches, again

suggesting that the nonlinear instabilities are principally responsible for the changes

in pattern behaviour.

In one dimension, perturbations in the biomass and soil water terms are given by:
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ε (x, t) = ε (t) cos (qx) , Biomass (C.8)

ψ (x, t) = ψ (t) cos (qx) , Soil Water

Here q represents the wavenumber of the perturbations. Linearising around the

steady states by taking P = P + ε (t) and W = W + ψ (t) and using the pseudo-

steady state approximation, an expression for the growth of the perturbations is

obtained:

∂ε (t)

∂t
= − (Dpq

2) ε (t) + P
(W+1)2

ψ (t) (C.9)

∂ψ (t)

∂t
=

(
P

(W+1)2
− P+Wo

P+1
× (−O 1−Wo

P+1 )
(−P+Wo

P+1
−q2)

)
ε (t) +

(
−
(

kP
(W+1)2

+ r
)
−Dwq

2
)
ψ (t)

The Jacobian for this system of equations can be found:

J =

[
−Dpq

2 P
(W+1)2

−bk +O 1−Wo

1+P
+O 1−Wo

1+P 2

(P+Wo)

(q2+P+Wo
1+P )

Dwq
2 − r − kP

(1+W )2

]
(C.10)

and conditions for the stability of the steady states in terms of the wavenumber q

can be determined based on the typical conditions for stability:

Tr (J) < 0 (C.11)

Det (J) > 0
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where

Tr (J) = −Dpq
2 +Dwq

2 − r − kP

(1 +W 2)
, (C.12)

and

Det (J) = − (Dpq
2)
(
Dwq

2 − r − kP
(1+W )2

)
(C.13)

−
(
−bk +O 1−Wo

(1+P )2
P+Wo

(q2+P+Wo
1+P )

)(
P

(W+1)2

)
.

We are interested in cases where pattern formation occurs, which implies that one

of the inequalities for stability must be compromised. Considering the case of bare

soil as a starting point, and using the parameters that have been used throughout

the modelling study with d/R = 0.23 (although note that for this steady state the

stability analysis is essentially independent of R);

Tr (J) = −0.4 (C.14)

Det (J) = −
q2 =

(
−0.4 + q2

2500

)
2500

Thus the condition on the trace is always met, and modes grow when the determinant

changes sign as q increases past 31.6. By contrast, if we replace the biomass diffusion

term with a dispersion term, then the term −Dpq
2 is replaced by φ (FT (q)), where

FT (q) represents the one-dimensional Fourier transform of the dispersion kernel.

For the case where the kernel can be approximated by a square wave, the Fourier

transform is:
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FT (q) = ie−i(c1+c2)q
(
−eic1q + eic2q − ei(2c1+c2)q + ei(c1+2c2)q

) H|c1 − c2|
2q|c1 − c2|

. (C.15)

where c1 and c2 can be taken as dx/2 and 3dx/2, or 1 and 3 for the case modelled

in this paper (dx = 2), and where H represents the Heaviside function. Thus we

obtain:

Tr (J) = −φFT (q) +Dwq
2 − r − kP

(1 +W )2 , (C.16)

and

Det (J) = − (−φFT (q))
(
Dwq

2 − r − kP
(1+W )2

)
(C.17)

−
(
−bk +O 1−Wo

1+P
+O 1−Wo

(1+P )2
P+Wo

q2+P+Wo
1+P

)(
P

(W+1)2

)
.

Again taking the no-biomass steady state and the parameters used in this paper, we

obtain:

Tr (J) = −0.4 +
q2

2500
− 2.5× 10−3FT (q) (C.18)

Det (J) = 0.01− 2.5× 10−3FT (q)

(
−0.42 +

q2

2500

)
.

(C.19)

Figure C.1 shows that all wave numbers greater than 31.6 are again unstable, now

due to the sign change in Tr(J), while additional wavenumbers are introduced due

to the oscillations of Det(J). This broadening of the range of linearly unstable

wavenumbers is indicative of a general destabilisation of the model to spatially vari-

able perturbations.
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A B

Figure C.1: Plot of the trace (A) and determinant (B) of the Jacobian matrix de-
scribing the growth of perturbations about the bare soil steady state. By comparison
to a constant value of the trace and a single sign change in the determinant with
positive wavenumbers obtained for the diffusion situation, the use of the dispersion
equation introduces a sign change into the description of the trace, and ”spreads”
the instability over a wide range of wavenumbers due to the fluctuations in the de-
terminant.
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Appendix D

Duke Forest field experiment data

Table D.1: Measured infiltration rate, litter and biomass

Site Ksat Litter Biomass
(mm/hr) (g/m2) (kg/m2)

H
ar

d
w

o
o
d

S
it

es

HW1A 4.83 189 7.60
HW1B 0.91 118 46.1
HW1C 9.69 301 158
HW1D 0.30 188 153
HW2A Pressure transducer failed 342 82.6
HW2B 0.61 421 37.1
HW2C 30.48 299 86.1
HW2D 11.64 251 3.77
HW3A 41.50 147 4.3
HW3B 38.27 178 2.48
HW3C 9.07 146 1.52
HW3D 11.05 215 98.2

P
in

e
S
it

es

P4A 4.3 456 32.1
P4B 10.0 593 4.4
P4C 0.55 382 18.2
P4D 2.98 613 19.2
P51 8.35 276 8.84
P5B 11.75 359 7.68
P5C 12.72 276 30.3

Continued on Next Page. . .
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Table D.1 – Continued
Site Ksat Litter Biomass

(mm/hr) (g/m2) (kg/m2)
P5D 1.08 639 19.7
P61 5.96 281 17.5
P6B 11.64 315 14.9
P6C 0.69 465 20.0
P6D 1.54 909 11.3

G
ra

ss
S
it

es

G7A 15.28 56 5.61× 10−2

G7B 9.74 496 0.496
G7C 34.26 640 0.640
G7D 5.89 280 0.280
G8A 6.87 87 8.71× 10−2

G8B 0.61 98 9.76× 10−2

G8C 4.24 159 0.159
G8D 11.20 65 6.51× 10−2

G9A 15.42 109 0.109
G9B 34.20 374 0.374
G9C 1.46 271 0.271
G9D 2.06 264 0.264

Table D.2: Soil carbon and nitrogen content and bulk
density measurements at three depths.

Site %Carbon(g/g) %Nitrogen(g/g) Bulk Density (g/cm3)
0-5 5-15 15-30 0-5 5-15 15-30 0-5 5-15 15-30
cm cm cm cm cm cm cm cm cm

H
ar

d
w

o
o
d

S
it

es

HW1A 3.79 1.86 0.635 0.262 0.117 0.46 0.453 0.756 1.10
HW1B 2.78 0.80 0.449 0.172 0.498 0.296 0.787 1.20 1.02
HW1C 3.00 1.00 0.551 0.177 0.665 0.338 0.715 0.993 1.12
HW1D Trench Dug
HW2A 3.27 1.56 – 0.220 0.115 – 1.32 1.18 –
HW2B 2.52 1.20 0.607 0.166 0.968 0.440 1.03 1.19 1.23
HW2C 3.92 1.75 0.686 0.265 0.127 0.466 0.555 0.982 1.09
HW2D 2.75 1.08 0.567 0.205 0.870 0.397 1.06 1.73 1.23
HW3A 2.73 0.98 0.474 0.199 0.751 0.318 0.789 1.04 1.18
HW3B 4.45 1.69 – 0.270 0.115 – 0.574 0.649 –
HW3C 3.42 1.71 0.904 0.231 0.114 0.604 0.744 0.433 0.812
HW3D 2.98 0.92 0.524 0.176 0.588 0.41 0.769 0.927 0.924

Continued on Next Page. . .
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Table D.2 – Continued
Site %Carbon(g/g) %Nitrogen(g/g) Bulk Density (g/cm3)

0-5 5-15 15-30 0-5 5-15 15-30 0-5 5-15 15-30
cm cm cm cm cm cm cm cm cm

P4A 3.05 0.96 – 0.126 0.483 – 0.490 1.13 0.987
P4B 4.31 1.24 0.582 0.182 0.717 0.393 0.728 1.17 1.148
P4C 4.03 1.58 0.709 0.194 0.887 0.458 0.589 0.765 1.04
P4D 4.25 1.21 0.553 0.174 0.695 0.352 0.417 0.723 –
P5A 3.67 – – 0.162 – – 0.550 – –

P
in

e
S
it

es

P5B 5.38 1.29 – 0.252 0.829 – 0.636 0.966 –
P5C 13.6 1.89 0.729 0.300 0.861 0.414 0.330 0.850 1.03
P5D Trench Dug
P6A – 1.19 0.544 – 0.677 0.348 – 0.954 0.274
P6B 3.83 0.94 0.387 0.181 0.577 0.130 0.567 0.822 0.743
P6C 1.71 2.22 0.434 0.120 0.103 0.295 1.30 0.471 0.824
P6D 3.84 0.79 0.321 0.159 0.399 0.248 0.536 1.27 1.43

G
ra

ss
S
it

es

G7A 2.23 1.32 – 0.170 0.96 – 0.720 1.01 –
G7B 2.84 1.43 – 0.220 0.114 – 0.747 0.804 –
G7C 2.31 1.30 – 0.179 0.998 – 0.823 0.841 –
G7D 2.61 1.07 – 0.184 0.759 – 0.474 0.494 –
G8A 2.44 1.00 – 0.184 0.759 – 0.795 1.06 –
G8B 2.59 1.38 – 0.194 0.984 – 0.722 1.00 –
G8C 2.59 1.38 – 0.194 0.984 – 0.722 1.00 –
G8D 2.03 1.12 – 0.154 0.751 – 0.804 1.50 –
G9A 2.34 1.25 – 0.174 0.874 – 0.912 1.10 –
G9B Trench Dug
G9C 2.72 1.01 0.428 0.202 0.762 0.26 0.958 0.947 1.54
G9D – – – – – – – – –

Table D.3: Root massses within 5cm cores taken at three
different depths

Site 0-5 cm roots (g) 5-15cm roots (g) 15-30cm roots (g)
Fine Coarse Fine Coarse Fine Coarse
< 2mm > 2mm < 2mm > 2mm < 2mm > 2mm

H
W

S
it

es HW1A 0.414 0.0964 0.237 0.857 0.157 0.305
HW1B 0.682 0.389 0.542 0.157 0.0976 0.0854
HW1C 0.687 0.626 0.295 2.65 0.249 0.232
HW1D Trench Dug

Continued on Next Page. . .
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Table D.3 – Continued
Site 0-5 cm roots (g) 5-15cm roots (g) 15-30cm roots (g)

Fine Coarse Fine Coarse Fine Coarse
< 2mm > 2mm < 2mm > 2mm < 2mm > 2mm

H
ar

d
w

o
o
d

S
it

es
HW2A 1.64 2.67 0.770 0.711 0.129 0
HW2B 0.875 1.04 0.720 0 0.191 0.948
HW2C 0.808 0.0837 0.764 1.03 0.194 0.499
HW2D 1.06 0.142 0.394 1.99 0.109 0.0875
HW3A 1.02 0 0.450 2.20 0.163 0.148
HW3B 0.414 0.0940 0.562 6.02 0.111 0.0868
HW3C 0.742 0.916 0.331 5.06 0.0437 0.404
HW3D 1.22 0.754 0.466 1.84 0.177 0

P
in

e
S
it

es

P4A 0.703 0 0.305 0 – –
P4B 0.410 1.18 0.480 1.26 0.357 0.440
P4C 0.974 0.365 0.420 0.0611 0.131 0.0409
P4D 0.753 1.20 0.449 1.68 – –
P5A – – 0.635 0.150 – –
P5B 0.631 0.0161 – – 0.288 0.234
P5C 1.13 0.667 0.548 2.01 0.328 1.12
P5D Trench Dug
P6A 1.89 0.251 1.11 1.29 0.836 0.272
P6B 1.89 0.251 1.11 1.29 0.836 0.272
P6C 0.627 0 0.450 0 0.127 0.0139
P6D 1.23 0.466 0.812 2.16 0.161 0.0157

G
ra

ss
S
it

es

G7A 1.47 0 0.558 0 – –
G7B 1.82 0 1.01 0 – –
G7C 1.32 0 0.811 0 – –
G7D 0.742 0 1.90 0 – –
G8A 0.656 0 0.340 0 0.0372 0
G8B 2.57 0.118 0.950 0 – –
G8C 3.55 0 1.21 0 – –
G8D 3.01 0 2.44 0 – –
G9A 1.71 0. 0670 0.914 0 0.251 0
G9B Trench Dug
G9C 1.281 0 0.834 0 0.164 0.00310
G9D – – – – – –
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Table D.4: Macropore flux as a percentage of the total
flux

Site Macropore Flux (as %Ksat Total Macropore Flux
Small Medium Large
< 4µm 4-15 µm > 15µm

H
ar

d
w

o
o
d

S
it

es
HW1A 0 2% 5% 7%
HW1B 10% 12% 13% 36%
HW1C 3% 4% 6% 13%
HW1D 0 0 13% 14%
HW2A Pressure Transducer Failed
HW2B 0 16% 18% 34%
HW2C 2% 3% 4% 8%
HW2D 2% 5% 6% 13%
HW3A 4% 10% 31% 45%
HW3B 1% 2% 3% 7%
HW3C 2% 5% 7% 14%
HW3D 4% 5% 7% 15%

P
in

e
S
it

es

P4A 0 1% 1% 3%
P4B 0 4% 7% 12%
P4C 19% 19% 20% 58%
P4D 0 0 22% 22%
P5A 0 0 22% 22%
P5B 0 16% 17% 33%
P5C 0 6% 10% 16%
P5D 0 0 22% 22%
P6A 0 1% 2% 3%
P6B 0 14% 17% 31%
P6C 0 0 22% 22%
P6D 0 19% 21% 40%

G
ra

ss
S
it

es

G7A 7% 7% 9% 22%
G7B 3% 3% 5% 11%
G7C 1% 20% 16% 36%
G7D 10% 16% 17% 43%
G8A 0 9% 13% 22%
G8B 0 17% 22% 38%
G8C 0 11% 15% 26%
G8D 0 10% 14% 24%
G9A 0 5% 9% 14%
G9B 15% 15% 17% 47%
G9C 0 21% 22% 43%
G9D 0 0 22% 22%
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Table D.5: Soil textural analysis for cores taken at three
depths

Site Surface Middle Depth
Sand Clay Silt Sand Clay Silt Sand Clay Silt

HW1A 0.49 0.13 0.38 0.54 0.13 0.33 0.48 0.22 0.29
HW1B 0.47 0.11 0.41 0.61 0.09 0.29 0.59 0.13 0.27
HW1C 0.47 0.11 0.41 0.61 0.10 0.28 0.58 0.14 0.28

H
ar

d
w

o
o
d

S
it

es

HW1D Trench Dug
HW2A 0.36 0.18 0.46 0.44 0.13 0.44 – – –
HW2B 0.31 0.15 0.54 0.36 0.14 0.50 0.44 0.17 0.39
HW2C 0.43 0.10 0.47 0.48 0.12 0.41 0.55 0.20 0.25
HW2D 0.41 0.11 0.49 0.40 0.14 0.46 0.43 0.18 0.39
HW3A 0.76 0.10 0.15 0.46 0.11 0.43 0.50 0.16 0.34
HW3B 0.40 0.11 0.49 0.39 0.12 0.49 – – –
HW3C 0.37 0.11 0.52 0.46 0.12 0.42 0.35 0.31 0.35
HW3D 0.48 0.09 0.43 0.61 0.10 0.28 0.48 0.27 0.25

P
in

e
S
it

es

P4A 0.58 0.12 0.30 0.60 0.12 0.29 0.45 0.21 0.34
P4B 0.55 0.12 0.34 0.56 0.13 0.31 0.44 0.21 0.36
P4C 0.51 0.11 0.39 0.57 0.12 0.31 0.60 0.14 0.26
P4D 0.61 0.17 0.23 0.58 0.12 0.30 – – –
P5A 0.59 0.10 0.31 – – – – – –
P5B 0.44 0.10 0.45 0.44 0.12 0.43 – – –
P5C 0.56 0.18 0.25 0.54 0.13 0.33 0.52 0.18 0.30
P5D Trench Dug
P6A – – – 0.54 0.12 0.33 0.55 0.15 0.29
P6B 0.50 0.11 0.39 0.54 0.12 0.34 0.50 0.15 0.34
P6C 0.55 0.12 0.33 0.55 0.13 0.32 0.48 0.16 0.36
P6D 0.52 0.14 0.34 0.40 0.23 0.38 0.28 0.35 0.37

G
ra

ss
S
it

es

G7A 0.50 0.14 0.35 0.58 0.14 0.28 – – –
G7B 0.48 0.14 0.39 0.49 0.15 0.36 – – –
G7C 0.49 0.13 0.38 0.60 0.11 0.30 – – –
G7D 0.55 0.14 0.31 0.58 0.12 0.31 – – –
G8A 0.47 0.13 0.40 0.59 0.12 0.30 – – –
G8B 0.44 0.15 0.41 0.60 0.12 0.28 – – –
G8C 0.44 0.16 0.40 0.53 0.14 0.33 – – –
G8D 0.52 0.12 0.36 0.59 0.12 0.29 – – –
G9A 0.49 0.12 0.39 0.55 0.10 0.35 – – –
G9B Trench Dug
G9C 0.46 0.13 0.41 0.50 0.11 0.39 0.47 0.18 0.36

Continued on Next Page. . .
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Table D.5 – Continued
Site Surface Middle Depth

Sand Clay Silt Sand Clay Silt Sand Clay Silt
G9D – – – – – – – – –
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Appendix E

Meta-analysis dataset
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Appendix F

Heterogeneity in soil properties induced by
microtopographic variation

The supplementary material here addresses the effects of correlations between micro-

topographic variation and variation in soil properties, specifically hydraulic conduc-

tivity. It is not intended to provide a complete overview of the impacts of correlations

between soil properties and microtopography, but instead provides an illustration of

how topographic induced variations in the infiltration parameters may amplify or

damped the effects of microtopography discussed in section 5.2. Again these effects

are assessed primarily in terms of their impact on partitioning rainfall into overland

flow and infiltration. The results are referenced to a background case where the soil

properties are constant and microtopography is absent.

F.1 Case 1: variations in infiltration rate with depth

Before commencing with this derivation, a reference frame shown below is considered:

For simplicity, we assume that a deterministic relationship between infiltration

capacity and depth can be prescribed in the form:
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Figure F.1: Definition of the reference frame and parameters

fc (t, z) = Ksat (z) +
1

2
χoM.T. (t)

−1/2 , (F.1)

such that the infiltration rate after ponding may be approximated by

f (t, z) = Ksat (z) +
1

2
χoM.T. (t− (tp (z)− tca ()))−1/2 , (F.2)

where,

tp (z) =
χ2
o

2IKsatlog
(

I
I−Ksat(z)

) , (F.3)

and
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tca (z) = t

(∫ tca(a)

0

fc (t, z) dt = Itp (z) dz

)
, (F.4)

It was assumed that the sorptivity does not change with z, but it is a straight-

forward extension to allow the sorptivity to vary within a depression as well. Given

ponding in a depression of arbitrary height h, there are three conditions that need

to be considered:

1. Ponded conditions that are submerged by the standing water

2. Ponded conditions ’above’ the standing water

3. Non-ponded conditions ’above’ the standing water

For condition (1) the time to ponding is determined by the lesser of the time

of inundation and the time to ponding computed based on soil properties. The

defined condensation time / compression time is then computed based on this time

to ponding. These two values are then used to estimate the instantaneous infiltration

rate at a point. For condition (2) the time to ponding is determined by soil properties,

and is again used to compute the local value of the tca and f . For condition (3) the

time to ponding has not yet been reached and f = I.

The change in stored volume in the depression must then be calculated as a local

property. At elevations greater than h, the storage volume cannot decline so that:

dV (x)

dt
= max (0, 1− f (x)) (F.5)

However at elevations less than h the storage volume may be negative, provided

it does not entirely drain the stored volume. The total change in volume can then be

integrated across the regions and a total change in V computed. For any specified
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geometry an expression for the volume in terms of the depth of inundation can be

derived such that in general:

h = g2 (V,A, L, θ) (F.6)

dh

dV
=
dg2 (V,A, L, θ)

dV

The change in ponded depth at any time can then be expressed as:

dh

dt
=
dV

dt

dh

dV
(F.7)

If a peak storage height, hmax is identified then the time for runoff to leave each

depression can be identified as tr, defined implicitly as:

hmax =

∫ tr

0

dV

dt

dh

dV
dt (F.8)

For the case of a non-tilted depression these expressions can be solve numerically

to allow an estimation of the effects of the synchronization to be evaluated. We

utilize the same parameters for the base case that were used in the main text, but

considered shallower depressions (A ≈ 1cm, λ ≈ 40cm), and I ≈ 3.5 × 10−6 m/s,

Ksat ≈ 1× 10−6 m/s and χo ≈ 3.7× 10−4 m/s1/2.

As described in the text, we considered three possibilities:

1. Ksat varies around a fixed mean value (Ko), which is adopted at the elevation

z = A, i.e. Ksat = Ko + α (z − A). In this case, there is limited change in the

mean Ksat integrated over the depression, and only the distribution of Ksat is

important.

2. Ksat declines from Ko at the peak of the mounds, i.e. where z = 2A to a

minimum at z = 0, i.e. Ksat = Ko + α (z − 2A). In this case, the mean value
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of Ksat averaged over the depression is reduced as the minimum Ksat (at the

base of the depression) is lowered.

3. Ksat increases from Ko at the peak of the mounds, i.e. where z = 2A to a

maximum at z = 0, i.e. Ksat = Ko − α (z − A). In this case, the mean value

of Ksat averaged over the depression is increased as the minimum Ksat (at the

base of the depression) is lowered.

The strength of the variation in Ksat can be measured as a parameter γ where

γ = Ksat(z = 2A)/Ksat(z = 0). The effect of γ can then be expressed in terms of

the proportion of rainfall that infiltrates in the microtopographic case, normalized

by the reference case.

F.2 Case 1. Ksat varies around a fixed mean value

In this case, the correlation between microtopography and hydraulic properties has

no significant impact upon the partitioning of infiltration and runoff. Across all val-

ues of the mean saturated conductivity (Ko) and for cases that range from constant

Ksat to a 50-fold increase in Ksat at the peaks compared to the troughs, the parti-

tioning compared to the background flat case with uniform Ko infiltration rates was

unchanged. This suggests that where the correlations of Ksat with microtopography

preserve the average Ksat across the microtopographic depression there is no net

affect on partitioning.

F.3 Case 2. Ksat declines from a fixed mean value

In this case, the correlation between microtopography and hydraulic properties de-

creases the proportion of rainfall that infiltrates relative to the case where Ksat is

constant (i.e. γ = 1). The sensitivity of the response to changing γ declines with

declining Ko. Consequently in regimes where microtopography induces only small
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Table F.1: For the case where Ksat = Ko + α (z − A). Ratio of the proportion
of rainfall that infiltrates infiltration in a microtopographic case to that in the flat
background case for different levels of contrast of infiltration rate with ponded water
depth (γ). No matter how great the contrast in Ksat is, the relative partitioning is
unchanged.

Ko (m/s)× 105

6 5 4 3 2 1 0.75 0.5 0.25 0.1
γ

1 1 1 1 1.1 1.2 1.4 1.6 1.8 2.7 5.2
2 1 1 1 1.1 1.2 1.4 1.6 1.8 2.7 5.2
5 1 1 1 1.1 1.2 1.4 1.6 1.8 2.7 5.2
10 1 1 1 1.1 1.2 1.4 1.6 1.8 2.7 5.2
20 1 1 1 1.1 1.2 1.4 1.6 1.8 2.7 5.2
50 1 1 1 1.1 1.2 1.4 1.6 1.8 2.7 5.2

Table F.2: For the case where Ksat = Ko + α (z − A). Effects of changing Γ and Ko

on the time to runoff generation from the microtopographically varying surface

Ko (m/s)× 105

6 5 4 3 2 1 0.75 0.5 0.25 0.1

γ

1 > 1800 > 1800 > 1800 1232 374 218 197 179 164 156
2 > 1800 > 1800 > 1800 936 375 218 197 179 164 156
5 > 1800 > 1800 > 1800 630 373 218 197 179 164 156
10 > 1800 > 1800 > 1800 547 363 218 197 179 164 156
20 > 1800 > 1800 > 1800 509 354 218 197 179 164 156
50 > 1800 > 1800 > 1800 488 348 217 196 179 164 156

relative increases in the percentage of rainfall that infiltrates, positive correlations

between microtopography and depth may be sufficient to reverse this trend through

inducing a decline in the effective (i.e. spatially averaged) Ksat. For sufficiently low

Ko values, however the importance of the surface storage in delaying runoff increases

relative to the importance of infiltration, and sensitivity to γ declines markedly.

F.4 Case 3. Ksat increases from a fixed mean value

Here the inverse correlation between microtopography and permeability leads to

minimal change in the partitioning of infiltration and runoff in permeable soils, but
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Table F.3: For the case where Ksat = Ko + α (z − 2A). Ratio of the proportion
of rainfall that infiltrates infiltration in a microtopographic case to that in the flat
background case for different levels of contrast of infiltration rate with ponded water
depth (γ). The partitioning is sensitive to γ within the regime where microtopogra-
phy produces relatively small increases in infiltration c.f. the background case. For
highly permeable or impermeable soils, however, the sensitivity is damped.

Ko (m/s)× 105

6 5 4 3 2 1 0.75 0.5 0.25 0.1

γ

1 1 1 1 1.1 1.2 1.4 1.6 1.8 2.7 5.2
2 1 1 0.94 0.88 0.95 1.2 1.3 1.6 2.5 5.0
5 1 0.92 0.78 0.73 0.81 1.0 1.2 1.5 2.3 4.8
10 0.98 0.86 0.73 0.68 0.76 0.97 1.12 1.4 2.3 4.8
20 0.94 0.83 0.7 0.66 0.73 0.95 1.09 1.4 2.2 4.7
50 0.92 0.81 0.69 0.65 0.72 0.93 1.08 1.4 2.2 4.7

Table F.4: For the case where Ksat = Ko − α (z − 2A). Ratio of the proportion
of rainfall that infiltrates infiltration in a microtopographic case to that in the flat
background case for different levels of contrast of infiltration rate with ponded water
depth (γ). The partitioning is sensitive to γ in less permeable soils.

Ko (m/s)× 105

6 5 4 3 2 1 0.75 0.5 0.25 0.1

γ

1 1 1 1 1.1 1.2 1.4 1.6 1.8 2.7 5.2
2 1 1 1 1.2 1.7 1.9 2.0 2.3 3.2 5.7
5 1 1 1 1.2 1.7 3.3 3.5 3.8 4.7 7.2
10 1 1 1 1.2 1.7 3.5 4.7 6.2 7.1 9.6
20 1 1 1 1.2 1.7 3.5 4.7 7.0 11.8 14.5
50 1 1 1 1.2 1.7 3.5 4.7 7.0 13.9 28.6

marked increases in the proportion of the rainfall that infiltrates in less permeable

soils.
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