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Abstract 
Interactions between nucleic acid substrates and the proteins and 

enzymes that bind and catalyze them are ubiquitous and essential for 

reading, writing, replicating, repairing, and regulating the genomic code by 

the proteomic machinery.  In this dissertation, computational molecular 

engineering furthered the elucidation of spatial-temporal interactions of 

natural nucleic acid binding proteins and enzymes and the creation of 

synthetic counterparts with structure-function interactions at predictive 

proficiency.  We examined spatial-temporal interactions to study how natural 

proteins can process signals and substrates.  The signals, propagated by 

spatial interactions between genes and proteins, can encode and decode 

information in the temporal domain.  Natural proteins evolved through 

facilitating signaling, limiting crosstalk, and overcoming noise locally and 

globally.  Findings indicate that fidelity and speed of frequency signal 

transmission in cellular noise was coordinated by a critical frequency, beyond 

which interactions may degrade or fail.  The substrates, bound to their 

corresponding proteins, present structural information that is precisely 

recognized and acted upon in the spatial domain.  Natural proteins evolved 

by coordinating substrate features with their own.  Findings highlight the 

importance of accurate structural modeling.  We explored structure-function 
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interactions to study how synthetic proteins can complex with substrates.  

These complexes, composed of nucleic acid containing substrates and amino 

acid containing enzymes, can recognize and catalyze information in the 

spatial and temporal domains.  Natural proteins evolved by balancing 

stability, solubility, substrate affinity, specificity, and catalytic activity.  

Accurate computational modeling of mutants with desirable properties for 

nucleic acids while maintaining such balances extended molecular redesign 

approaches.  Findings demonstrate that binding and catalyzing proteins 

redesigned by single-conformation and multiple-conformation approaches 

maintained this balance to function, often as well as or better than those 

found in nature.  We enabled access to computational molecular engineering 

of these interactions through open-source practices.  We examined the 

applications and issues of engineering nucleic acid binding proteins and 

enzymes for nanotechnology, therapeutics, and in the ethical, legal, and 

social dimensions.  Findings suggest that these access and applications can 

make engineering biology more widely adopted, easier, more effective, and 

safer. 

 

keywords:  molecular engineering, computational biology, synthetic biology, 

protein design, nucleic acid, binding protein 



 
 

 
vi 
 

 

 

 

 

 

 

 

 

To my mother and father, 

Khurshid Ara Begum and Rezaul Kabir 

 

 

 

 



 

 
vii 

 

Contents 
Abstract .............................................................................................................. iv 

Contents ............................................................................................................vii 

List of Tables ...................................................................................................... xi 

List of Figures ...................................................................................................xii 

List of Abbreviations and Symbols.................................................................. xvi 

Acknowledgements .......................................................................................... xxi 

1. Introduction..................................................................................................... 1 

1.1. Intelligent design of evolved molecules ................................................. 1 

1.2. Organization of this dissertation ........................................................... 5 

2. Engineering molecules through computation .............................................. 11 

2.1. Motivation ............................................................................................. 11 

2.2. Natural systems.................................................................................... 12 

2.2.1. DNA .................................................................................................. 12 

2.2.2. Nucleic acid binding proteins and restriction endonucleases ........ 15 

2.3. Modeling natural systems .................................................................... 23 

2.3.1. Gene-protein circuit modeling ......................................................... 23 

2.3.2. DNA-enzyme structure modeling.................................................... 33 

2.4. Engineering of models .......................................................................... 40 

2.4.1. Operating philosophy....................................................................... 43 

2.4.2. Input model structure visualization and preparation.................... 46 

2.4.3. Rotamer library................................................................................ 49 



 

 
viii 

 

2.4.4. Energy function................................................................................ 50 

2.5. Discussion ............................................................................................. 52 

3. Single-conformation engineering of nucleic acid binding proteins ............. 53 

3.1. Motivation ............................................................................................. 54 

3.2. Overview ............................................................................................... 55 

3.2.1. Computational filtering approaches................................................ 56 

3.2.2. Biological focusing approaches ........................................................ 62 

3.2.3. Coupling computational and biological approaches: CF-BF .......... 64 

3.3. Methods................................................................................................. 64 

3.3.1. Molecular system selection.............................................................. 64 

3.3.2. Primary structure BF ...................................................................... 68 

3.3.3. Secondary structure BF................................................................... 69 

3.3.4. Tertiary and quaternary structure BF............................................ 69 

3.3.5. Engineering validations................................................................... 71 

3.4. Results................................................................................................... 72 

3.4.1. Objective of CF-BF........................................................................... 72 

3.4.2. Primary Structure (PS) Biological Focusing................................... 74 

3.4.3. Secondary Structure (SS) and Hydropathy BF .............................. 77 

3.4.4. Tertiary (TS) and Quaternary (QS) Structure BF.......................... 79 

3.4.5. Computational validation via structural mutagenesis .................. 81 

3.4.6. Preliminary experimental validation.............................................. 83 

3.5. Discussion ............................................................................................. 85 



 

 
ix 
 

4. Multiple-conformation engineering of nucleic acid binding proteins ......... 90 

4.1. Motivation ............................................................................................. 91 

4.2. Overview ............................................................................................... 91 

4.3. Methods................................................................................................. 94 

4.3.1. Scanning NABP residues for mutation tolerance........................... 94 

4.3.2. Redesigning NABP residues for functional mutations................... 95 

4.3.3. Engineering validations................................................................... 95 

4.4. Results................................................................................................... 96 

4.4.1. Molecular engineering protocol for NABPs..................................... 97 

4.4.2. Scanning for mutation tolerance and experimental validation ... 112 

4.4.3. Computational redesign for functional S81 mutants and 
experimental validation........................................................................... 117 

4.5. Discussion ........................................................................................... 131 

5. Open-source molecular engineering ........................................................... 138 

5.1. Motivation ........................................................................................... 138 

5.2. Overview ............................................................................................. 139 

5.3. Modeling flexibility in nucleic acid binding protein redesign........... 140 

5.4. Computational redesign in practice................................................... 141 

5.4.1. Scanning ......................................................................................... 143 

5.4.2. Redesign ......................................................................................... 143 

5.4.3. Native structure recovery .............................................................. 143 

5.4.4. Molecular rebuilding...................................................................... 147 

5.5. Discussion ........................................................................................... 148 



 

 
x 
 

6. Applications and issues of molecular engineering..................................... 149 

6.1. Motivation ........................................................................................... 150 

6.2. Bionanotechnologies ........................................................................... 151 

6.3. Therapeutics ....................................................................................... 159 

6.4. Ethical, legal, and social issues (ELSI).............................................. 163 

6.5. Discussion ........................................................................................... 165 

7. Conclusion ................................................................................................... 166 

7.1. Contributions of this dissertation ...................................................... 166 

7.2. Intelligent evolution of molecular design .......................................... 171 

Appendix.......................................................................................................... 173 

A.1. Amino acid templates......................................................................... 173 

A.2. Amino acid rotamer library ............................................................... 178 

A.3. Amino acid rotamer volumes ............................................................. 182 

A.4. Energy function.................................................................................. 183 

A.5. Nucleic acid templates ....................................................................... 184 

References ....................................................................................................... 185 

Biography ........................................................................................................ 225 

B.1. Personal .............................................................................................. 225 

B.2. Training .............................................................................................. 225 

B.3. Research ............................................................................................. 225 

B.4. Teaching and service.......................................................................... 226 

B.5. Awards and honors ............................................................................ 227 



 

 
xi 
 

List of Tables 
Table 2-1: Sequence specific proteins that recognize DNA ............................. 16 

Table 2-2: Computational and experimental parallels among DNA and 
restriction endonucleases ................................................................................. 19 

Table 2-3: Restriction endonuclease crystallographic structures ................... 35 

Table 2-4: R.PvuII crystallographic structures ............................................... 37 

Table 2-5: Amino acid pKa values for modeling titratable moieties............... 48 

Table 3-1: Comparative protein candidate structures..................................... 67 

Table 3-2: Origins and attributes of chosen proteins ...................................... 75 

Table 4-1: Computed ensemble-based binding affinities, rather than global 
minimum energy conformation-based bound energies, are better predictors of 
experimental outcomes ................................................................................... 132 

Supplementary Table 4-1: Pruning efficiency of redesigned R.PvuII S81 
mutants for cognate and non-cognate DNA substrates................................. 115 

 



 

 
xii 

 

List of Figures 
Figure 2-1: Principles of DNA .......................................................................... 14 

Figure 2-2: Principles of restriction endonucleases......................................... 17 

Figure 2-3: Restriction endonuclease functional activity upon cognate DNA 
substrate............................................................................................................ 20 

Figure 2-4: Restriction endonuclease binding and catalytic kinetics with 
cognate and non-cognate DNA substrates ....................................................... 21 

Figure 2-5: Reaction coordinates of protein-DNA binding and catalysis ....... 22 

Figure 2-6: Single stage gene-protein circuit model........................................ 24 

Figure 2-7: An oscillatory input signal can generate an output signal with 
oscillations compounded with noise ................................................................. 26 

Figure 2-8: From analytical decomposition, the amplitude of output 
oscillations decreased with fin, while the critical frequency, fc, was calculated 
as the intersection between the ‘‘average noise level’’ curve and the 
‘‘oscillation amplitude’’ curve............................................................................ 30 

Figure 2-9: From numerical stochastic Gillespie simulation and FFT for 
dominant frequency, a critical frequency, fc, consistent with the analytical 
decomposition was observed............................................................................. 31 

Figure 2-10: The percentage of cells that generated fout with fidelity, i.e. equal 
to fin, reduced sharply at and beyond the critical frequency, fc....................... 32 

Figure 2-11: Fixed basepair origin, F, for all unique arrangements of single 
basepairs............................................................................................................ 38 

Figure 2-12: Bound cognate DNA substrate crystallographic structure 
exhibits deformation compared to cognate B-DNA model .............................. 39 

Figure 2-13: Degree of DNA substrate deformation differs among REase-
bound crystallographic structures.................................................................... 41 

Figure 2-14: Operating philosophy of synthetic biomolecules inspired by 
modeling and engineering central dogma of natural biomolecules ................ 45 



 

 
xiii 

 

Figure 3-1: Protein interfacial pocket engineering possibilities ..................... 57 

Figure 3-2: CF-BF reduces the search space and the corresponding cost 
required to locate the global minimum energy conformation ......................... 65 

Figure 3-3: Flowchart of coupled CF-BF criterion to engineer an IP ............. 73 

Figure 3-4: PS properties of chosen proteins ................................................... 76 

Figure 3-5: Tertiary and quaternary structure properties of remaining 
proteins after primary and secondary structure focusing............................... 80 

Figure 3-6: BF for putative engineered IP on original R.PvuII scaffold to bind 
R.EcoRV 5’-gatatc-3’ substrate ......................................................................... 82 

Figure 3-7: Computational validation based on hydrogen bond and polar 
contacts with respect to steric hindrance patterns.......................................... 84 

Figure 4-1: Molecular engineering protocol for computing ensemble-based 
binding energies and affinities of protein-nucleic acids interactions ............. 99 

Figure 4-2: Input structure model of R.PvuII with interactions and residues 
of interest......................................................................................................... 101 

Figure 4-3: Computational and experimental alanine scans of selected 
residues in R.PvuII ......................................................................................... 113 

Figure 4-4: Computed binding affinities of redesigned R.PvuII S81 mutants 
to cognate DNA substrate............................................................................... 118 

Figure 4-5: Enzymatic activities of redesigned R.PvuII S81 mutants.......... 128 

Figure 4-6: Modeling of global minimum energy conformations near the -
3c::+3g BP of cognate DNA substrate 5’-cagctg-3’ illustrates packing of 
redesigned R.PvuII S81 mutants ................................................................... 134 

Figure 5-1: Open-source software engineering for computational redesign of 
nucleic acid binding proteins .......................................................................... 142 

Figure 5-2: Native structure recovery of residues in R.PvuII structure....... 144 

Figure 5-3: Molecular rebuilding of R.PvuII placeholder residue A94 to 
redesigned wildtype residue A94Y ................................................................. 146 



 

 
xiv 

 

Figure 6-1: Wildtype R.PvuII-WT and redesigned R.PvuII-S81T and R.PvuII-
S81A mutants in restriction-modification gene-protein circuits .................. 157 

Figure 6-2: Nucleic acid binding proteins and enzymes as gene 
reprogramming therapeutics.......................................................................... 162 

Supplementary Figure 3-1: Traditional dead-end elimination (DEE) criterion 
for nucleic acid binding proteins ...................................................................... 61 

Supplementary Figure 3-2: Secondary structure and hydropathy properties of 
remaining proteins after primary structure focusing ..................................... 78 

Supplementary Figure 3-3: Synthetic R.PvuII gene validated by sequencing
........................................................................................................................... 86 

Supplementary Figure 3-4: In vivo cell survival assay for R.PvuII Putative 
Engineered IP mutant in E. coli....................................................................... 87 

Supplementary Figure 3-5: In vitro enzymatic function assay for R.PvuII 
Putative Engineered IP mutant in E. coli........................................................ 88 

Supplementary Figure 4-1: Experimental protocol for validating mutant 
proteins............................................................................................................ 100 

Supplementary Figure 4-2: minimized side-chain Dead-End Elimination 
(minDEE) criterion for nucleic acid binding proteins ................................... 108 

Supplementary Figure 4-3: Redesigned R.PvuII S81 mutants computed 
binding affinities to the cognate and non-cognate DNA substrates ............. 119 

Supplementary Figure 4-4: Enzyme synthesis and mutagenesis................. 123 

Supplementary Figure 4-5: DNA sequencing chromatograms validates gene 
sequence of scanned and redesigned R.PvuII S81 mutants.......................... 124 

Supplementary Figure 4-6: Design and evaluation of DNA substrate for 
REases ............................................................................................................. 126 

Supplementary Figure 4-7: DNA sequencing chromatograms validates 
restriction sequence of +cut DNA, i.e. largest fragment, from DNA substrate 
after complete digestion by redesigned R.PvuII S81 mutants...................... 127 

 



 

 
xvi 

 

List of Abbreviations and Symbols 
1D    one dimensional 

3D    three dimensional 

Å    Angstrom (1 Å = 10-10 meters) 

a    adenine 

A, Ala    alanine 

AA    amino acid 

AS    active site 

ATP    adenosine triphosphate 

B, Asx   aspartic acid or asparagine (ambiguous) 

BB    backbone 

R.BamHI REase genus and species Bacillus 

amyloliquefaciens strain H 1st in order identified  

bamHIR   gene for R.BamHI 

R.BglII REase genus and species Bacillus globigii 2nd in 

order identified  

bglIIR    gene for R.BglII 

BP    base pair (of DS DNA) 

c    cytosine 

C, Cys   cysteine 

D, Asp   aspartic acid (carboxylate anion is aspartate) 

Da    Dalton (= 1 atomic mass unit) 

DBP    DNA binding protein, a type of NABP 

DEE    dead-end elimination 

DIY    do-it-yourself 

DNA    deoxyribose nucleic acid 



 

 
xvii 

 

DS    double stranded 

DSB    double stranded break 

E, Glu    glutamic acid (carboxylate anion is glutamate) 

R.EcoRI REase genus and species Escherichia coli strain 

RY13 1st in order identified  

ecoRIR   gene for R.RcoRI 

R.EcoRV REase genus and species Escherichia coli strain 

RY13 5th in order identified  

ecoRVR   gene for R.EcoRV 

EDTA    ethylenediaminetetraacetic acid 

F, Phe   phenylalanine 

FFT    fast Fourier transform 

g    guanine 

G, Gly    glycine 

GMEC   global minimum energy conformation 

H, His   histidine 

I, Ile    isoleucine 

ID    identification 

indel    insertion or deletion 

IPTG    isopropyl- -D-thiogalactoside 

J, Xle    leucine or isoleucine (ambiguous) 

K, Lys   lysine 

K*    ensemble-based computed approximation to Ka 

Ka    association constant 

Kd    disassociation constant 

kB    Boltzmann constant 

kcat    first-order rate constant 



 

 
xviii 

 

L, Leu   leucine 

M, Met   methionine 

mRNA   messenger RNA 

MTase   methyltransferase 

n    a, c, g, or t 

N, Asn   asparagines 

N/A    not applicable 

NA    nucleic acid 

NABP    nucleic acid binding protein (e.g. DBP or RBP) 

NDB    Nucleic Acid Database 

NHEJ    non-homologous end joining 

NT    nucleotide 

ORF    open reading frame 

P, Pro    proline 

PCR    polymerase chain reaction 

PDB    Protein Data Bank 

pKa    acid disassociation constant, -log10(Ka) 

PS    primary structure 

M.PvuII MTase genus and species Proteus vulgaris 2nd in 

order identified 

pvuIIM   gene for M.PvuII 

r    a or g 

R.PvuII REase genus and species Proteus vulgaris 2nd in 

order identified  

pvuIIR   gene for R.PvuII 

Q, Gln   glutamine 

QS    quaternary structure 



 

 
xix 

 

R, Arg    arginine 

R4    residue replacement R-group refinement 

RBP    RNA binding protein, a type of NABP 

RBS    ribosomal binding site 

REase    restriction endonuclease 

R-M    restriction-modification 

RMSD   root-mean-square deviation 

RNA    ribose nucleic acid 

RNAi    RNA interference 

s    g or c 

S, Ser    serine 

SC    side-chain 

SNP    single nucleotide polymorphism 

SS    secondary structure 

ss    single stranded 

t    thymine 

T, Thr    threonine 

TAE    Tris/Acetate/EDTA 

TBE    Tris/Borate/EDTA 

TFO    triplex forming oligonucleotide 

Tris    tris(hydroxymethyl)aminomethane 

tRNA    transfer RNA 

TS    tertiary structure 

TU    template unit 

V, Val    valine 

vdW    van der Waals 

w    a or t 



 

 
xx 
 

W, Trp   tryptophan 

WT    wildtype 

X, Xaa   unspecified or unknown amino acid (ambiguous) 

XFP    X fluorescent protein, X = G (green), Y (yellow) etc. 

y    c or t 

Y, Tyr    tyrosine 

Z, Glx    glutamic acid or glutamine (ambiguous) 

ZFP    zinc finger protein 

φ    protein BB dihedral angle, by Ci-1-N-CA-C 

ψ    protein BB dihedral angle, by N-CA--C-Ni+1 

ω    protein BB dihedral angle, by CA-C-Ni+1+CAi+1 

χn    protein SC dihedral angle, e.g. χ1 by N-CA-CB-CG 

    anaglyph 3D image, viewable in 3D with  

red (over left eye)-blue (over right eye) glasses 

 



 

 
xxi 

 

Acknowledgements 
If I have seen a little further,  

it is by standing on the shoulders of giants. 
 

                                                                                             – Isaac Newton 
natural philosopher 

 
 This work is possible due to the people I have met and opportunities I 

have received.  To those acknowledged here, and to those left un-

acknowledged, know that I am more grateful than the following can convey. 

 I thank my Dissertation Committee Co-Chairs, Bruce R. Donald and 

Jingdong Tian, for their exceptional advice.  Bruce has shared remarkable 

intelligence and optimism in computational molecular design.  Jingdong has 

shown steadfast enthusiasm and determination in engineering synthetic 

molecules.  It has been a privilege having these dedicated advisors broaden 

and deepen my development as an independent researcher. 

 I thank my Dissertation Committee Members, Thom LaBean, Kam 

Leong, and William “Monty” Reichert, for their generous guidance.  Thom has 

offered his creativity and assistance towards achieving my goals.  Kam has 

shared his astute wisdom and outlook for the prospects of my work.  Monty 

has instilled his clear insights, inquiries, and faith in my abilities.  The 

confidence of these visionary professors has sustained and supported me 

through graduate school. 



 

 
xxii 

 

 I thank co-workers, Syandan Chakraborty, Cheng-Yu Chen, Nicholas 

Christoforou, Ivelin Georgiev, Kuo-Sheng Ma, John MacMaster, Kyle 

Roberts, Cheemeng Tan, Qihai Wang, Lingchong You, Fan Yuan, and Peijun 

Zuo for sharing their enthusiasm for knowledge and the pursuit of discovery. 

 I thank members of Duke University’s Department of Biomedical 

Engineering, like Kathy Barbour, Ashutosh Chilkoti, Ned Danieley, Marcus 

Henderson, David Katz, Barry Myers, Ellen Ray, Susan Story-Hill, and 

George Truskey.  At the Institute for Genome Sciences and Policy, among 

many I thank Huntington Willard.  I thank those at the Pratt School of 

Engineering, including Kathleen Cahill, Marianne Hassan, Tom Katsouleas, 

and Carla Sturdivant.  I appreciate the research support from the National 

Institutes of Health, Sigma Xi, The Scientific Research Society, Biomedical 

Engineering Society, Duke University’s Center for Biomolecular and Tissue 

Engineering, and its Computational Biology and Bioinformatics Program. 

I thank mentors at the Massachusetts Institute of Technology (MIT), 

George Church, Doug Lauffenburger, Rafael Reif, and Greg Stephanopoulos 

and teachers at the Bronx High School of Science, Mitch Fox, John Kelly, 

Sherrill Mirsky, and Joel Seidenstein, for fostering a passion for research. 

Foremost, I thank my mother, Khurshid Ara Begum, and father, 

Rezaul Kabir, for their love, strength, and perseverance.  They devoted their 

lives to my own.  My successes are, and will always be, their success. 



 

 
xxiii 

 

With sincere appreciation to those who have eased and enlivened 

my time and way through Duke University, Durham, North Carolina, USA 

 
Charles Anamelechi BME   Endothelial cell-based grafts 

Serkan Apaydin  CS   NMR structure-based assignment 

Frances H. Arnold  CalTech  Directed evolution, academic career 

Kathryn Ashley  BME   Payroll coordination 

Jennifer Avery  IGSP   Posters 

Nima Badie   BME, CBTE  Cardiomyocyte modeling 

Jerome F. Baker  Sigma Xi  Society executive direction 

Kathy Barbour  BME   Departmental support 

David Becker  CS   SGE, MPI, rsh 

Weining Bian  BME   Hydrogels for muscle tissue 

Jeremy N. Block  BIOCHEM  KiNG, KinImmerse, GSS Comm. 

John A. Board  CSEM  Computational support 

I. Regina Borkoski   BMES  Student programs 

Philip E. Bourne  UCSD, PDB  PDB format, structural bioinformatics 

Kevin Bowen  Sigma Xi  Student Research Conference 

Rachael Brady  CSEM  Visualization, anaglyphs 

Eileen Brand  CBTE, CBIMMS Graduate support, equipment 

Matthew A. Brown  BME   Teaching lab equipment 



 

 
xxiv 

 

Melissa Brown  BME, CBTE  Endothelial progenitor cells 

August Burns  FIP   Poster printing 

Kathleen Cahill  Pratt   Grants, reimbursements 

Daniel J. Callahan  BME, CBIMMS pH sensitive ELPs 

Isabel Cardenas-Navia BME   Mock study sections 

Lynda M. Cecere  IGSP   Scheduling assistance 

Syandan Chakraborty BME   Physiology 

Lih Mei and Jack Chao Grace’s Café  Chinese lunch specials, buffet 

Cheng-Yu Chen  BIOCHEM  Kinetics assays, analysis 

Ashutosh Chilkoti  BME, CBIMMS ELPs, departmental support 

Nicholas Christoforou BME   ES/iPS cells 

Erica Clayton  BME   Payroll 

Jeffrey M. Coles  MEMS, CBIMMS Articular joint tribology  

Stephen L. Craig  CHEM  Computational chemistry 

Thomas A. Darden  NIEHS  Force fields, molecular mechanics 

Robert Cook-Deegan IGSP   IP, USPTO, ELSI 

Ned D. Danieley  BME   IT, networking 

Mark R. DeLong  IGSP   IT, DSCR queues 

Michael DeSoto  BME   Mechanical tools 

Bruce R. Donald  CS, BIOCHEM minDEE, A*, K*, NMR, iGEM 

Nelita T. Elliott  BME   Electric field-mediated gene delivery 



 

 
xxv 

 

Stuart Endo-Streeter CS   Kinetic assays, labeling 

Drew Endy    MIT, Stanford Biological abstraction, iGEM 

M. Judah Folkman  Harvard  Angiogenesis, publishing 

Joyce Franklin  BME   Reimbursements 

Terrence S. Furey  IGSP   Genome browser, cluster access 

Pablo Gainza-Cirauqui CS   K* optimization, bounds 

Andres Garcia  MEMS  Tapping-mode AFM 

Anthony R. Geonnotti BME   Chalk Talks, modeling transport 

Ivelin Georgiev  CS   minDEE, K*, GrsA-PheA 

Michelle Gignac  SMiF   Biological SEM/TEM 

Robert Gotwals  NCSSM  Computational chem. of whiskering 

Michael R. Gustafson II  ECE   Duke Chapter of Tau Beta Pi 

Myra J. Halpin  NCSSM  iGEM 

Paulette Harmon  Sigma Xi  Student Research Conference 

Alexander Hartemink CS, IGSP  The Oracle 

Marianne Hassan  Pratt   Research funds, support 

Jeffrey J. Headd  CBB, SBB  Protein structure error correction 

Marcus H. Henderson BME   Equipment, teaching lab 

Jared Heymann  CHEM  Biomaterials, Fe binding chemistry 

Mengchi Ho   ENVIRON  Duke Chapter of Sigma Xi 

Celeste Hodges  CS   Lab management, visitors 



 

 
xxvi 

 

Brendan Hodkinson BIO   Duke Chapter of Sigma Xi 

Swati Jain   CBB   BWM, RNA 

Nathan Jenness  CBTE, CBIMMS Chalk Talk Comm., Janus particles 

Yong Jiang   MEMS, CBIMMS AFM imaging of DNA 

Gary and Amy Kapral PhD Posters  Poster printing 

Thomas Katsouleas Pratt, ECE  NAE Summit, career development 

David F. Katz  BME   Transport phenomena 

Kathy L. Kay  Pratt   NAE Summit poster session 

Daniel Keedy  BIOCHEM  NAMD, binding proteins 

Thomas B. Kepler  BIOSTAT  Computational immunology 

Donghwan Kim  BME   Protein microarrayer 

Minkyu Kim   MEMS, CBIMMS AFM biomolecule pulling 

Dianne G. Kindel  BME   Teaching lab administration 

Robert D. Kirkton  BME   Cardiac physiology 

Marius Kluenger  BME   Global health 

John A. Knesel  Sigma Xi  Southeast region direction 

Thomas F. Knight  MIT EECS  Synthetic biology, BioBricks 

Valerie, Ira Kolmaister BMES  Student programs 

Heidi Koschwanez  BME   Glucose sensors 

Karina Kulangara  BME   Surface topography on cells 

Thomas H. LaBean  CS, CHEM, BME Bionanotechnology 



 

 
xxvii 

 

Bonnie E. Lai  BME   Transport in microbicide gels 

Tod A. Laursen  Pratt, MEMS Scholar-administrator views 

Curtis J. Layton  CBB, SBB  Protein-protein interfaces 

Anne A. Lazarides  MEMS  Nanoscience seminars 

Tae Jun Lee   BME   Cell cycle circuits 

Whasil Lee   MEMS, CBIMMS AFM biomolecule pulling 

Kam W. Leong  BME, CBTE  Gene/drug delivery 

I-Chien Liao   BME   Electrospinning, nanofibers 

Leping Li   NIEHS  Genetic element Markov models 

Ryan H. Lilien   Univ. of Toronto Protein design, medicine 

E. Allan Lind  BA   Leadership 

Phillippe Luedi  CBB   Genomic imprinting 

Kuo-Sheng Ma  BME   Oligo. synthesis, COC, Ag-DNA 

John MacMaster  CS   Protein purification 

Piotr E. Marszalek  MEMS, CBIMMS Scanning probe microscopy 

Jeff Martin   CS   Symmetric protein structures 

Kathy McLane  Sigma Xi  National services, membership 

Megan Mobley  ENVIRON  Duke Chapter of Sigma Xi 

Alexander Motten  BIO   Duke Chapter of Sigma Xi 

Krista L. Moyle  GS   Dissertation check 

Sayan Mukherjee  STAT, IGSP  Statistical bioinformatics 



 

 
xxviii 

 

Barry S. Myers  BME   One minute manager 

David Needham  MEMS, CBIMMS Micromanipulation, EDUK 

Amy Norstrud  BME   Reimbursements 

Lori Norton   BME   Glucose probes 

Matthew T. Novak  BME, CBTE  Gene arrays 

Gregory Nusz  BME, CBTE  Nanoparticle plasmonics 

Uwe Ohler   CBB   Gene regulation, seminars 

Taylan Ozdere  BME   Bistable gene switches 

Anand Pai   BME   Quorom sensing potential 

John B. Pormann  CSEM  Scalable computing 

Jiayuan Quan  BME   Codon optimization 

Mindy Quigley  CSEM  Computational support 

Mahir H. Rabbi  MEMS, CBIMMS AFM construction 

Srinath Rangarajan BME   DNA extension, amplification 

Ellen M. Ray  BME   Business assistance 

William M. Reichert BME   Wound healing, presentations 

Randy Rettberg  MIT   Synthetic biology, iGEM 

Caroline Rhim  BME, CBTE  Artificial muscle differentiation 

David C. Richardson BIOCHEM  Protein structures physical models 

Jane S. Richardson  BIOCHEM  Repairing protein structure data 

Kyle E. Roberts  CBB   DEE/K* improvements, CFTR 



 

 
xxix 

 

Richard J. Roberts  NEB   REBASE, REase PDBs 

Shandra L. Robertson IGSP   Genomes@Grandover, posters 

Elaine Ruger Emory CBTE   Equipment support 

Ishtiaq Saaem  BME   Oligonucleotide synthesis 

William H. Safley  Pratt   Webservers, wikis 

Scott C. Schmidler  STAT   Macromolecular structure 

Robert J. Schutte  BME   Cellular responses to biomaterials 

Lori A. Setton  BME   Duke Chapter of BMES 

Joe Shamblin  CS   Filesystem, MPI 

Amy L. Sheck  NCSSM  iGEM 

Haige Shen   CBB   Bayesian statistics 

William J. Shamblin CS   MPI, MPIJava 

Andrew J. Simnick  BME, CBIMMS ELPs in drug delivery 

Susan Story-Hill  BME   Scheduling assistance 

Carla Sturdivant  CBTE, CBIMMS Graduate support 

Cheemeng Tan  BME   Gene circuit construction, fc 

Yu Tanouchi   BME   Noise in quorum sensing 

Jingdong Tian  BME, IGSP  Gene synthesis, iGEM 

David A. Tirrell  CalTech  Proteins as polymers 

Vinalia Tjong  BME   Antibodies 

Chittaranjan Tripathy CS   Protein loop closure algorithms 



 

 
xxx 

 

George A. Truskey  BME   Departmental support, BMES 

Dennis Tu   BME   Cell-cell communication 

Alexei Valiaev  MEMS  CIERD 

Gunjan Verma  CBB   Statistics, algorithms 

Tuan Vo-Dinh  BME, FIP  Government labs view 

Charles S. Wallace, Jr. BME   Sheer stress 

Mark D. Walters  SMiF   Advanced materials lab 

Qihai Wang   BME   Protein expression, evaluation 

Rui Wang   CBB   Statistics, modeling 

Huntington F. Willard IGSP   X inactivation, HACs 

Ann H. Williams  Sigma Xi  Society organization 

Susan Williford  GS   M.S., Ph.D. records, dissertation 

Jo Rae Wright  GS   GSS Comm., grad. student policies 

Mina Wu   BME, CBTE  Chalk Talk Comm., drug delivery 

Anthony Yan  CS   NMR, MATLAB 

Lingchong You  BME, IGSP  Gene-protein circuits, iGEM 

Fan Yuan   BME, CBTE  Drug delivery, Kewaunee, iGEM 

Stefan Zauscher  MEMS, CBIMMS AFM, polymer science 

David J. Zielinski  CSEM  DiVE, Virtools 

Jianyang Zeng  CS   NMR assignment algorithms 

Peijun Zuo   BME   Gene cloning 



 

 
1 
 

1. Introduction 
The known is finite,  

the unknown infinite; 
 intellectually we stand on  
an islet in the midst of an  

illimitable ocean of inexplicability.  
Our business in every generation  

is to reclaim a little more land, 
to add something to the  

extent and solidity  
of our possessions. 

 
                                                                                          – Thomas H. Huxley  

                                                                                             British biologist 

1.1. Intelligent design of evolved molecules 

Molecules in nature evolved out of necessity or perished.  Among these 

molecules, protein and enzymes evolved their functional prominence likely 

due to their greater diversity of constituent amino acids and broader 

effectiveness in catalytic capacities than those composed of ribose nucleic acid 

(RNA) during the dawn of the post-RNA world (1).  In this world, a slightly 

different nucleic acid molecule from RNA, which was deoxyribose nucleic acid 

(DNA), carried biological information.  In essence, interactions among DNA 

and the proteins that bind to them and the catalytic proteins, or enzymes, 

that facilitate a biochemical reaction with them, became paramount in nature 

for transforming biological information onto physiological function. 

 The importance of interactions between proteins and nucleic acids has 

not escaped our attention.  The intelligent design from already evolved 
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nucleic acid binding proteins, which is termed redesign, presents significant 

advantages and notable caveats.  

Among these advantages is the insight that evolved proteins have 

already been optimized along many properties, due to their having subjected 

and responded to various environmental cues and the considerable tests of 

time.  The tests of time occurred both in the short-term lifetime of a 

functional protein in the cell, as well as the long-term lifetime of the protein 

in the cell population.  For the short-term lifetime, the optimized properties 

included genesis during satisfactory translation off the ribosome, to proper 

folding from linear and semi-folded conformations, to reception of any 

requisite post-translational modifications, to stability in solution under 

perturbed cellular conditions, to binding, recognition, and possibly catalysis, 

of appropriate substrates, and demise during proteolytic degradation.  In the 

long-term lifetime, these optimized properties, and the genes that encoded 

them, were subject to mutation and adaptation that determined the use and 

importance of the protein to the cell. 

During redesign, it is prudent to utilize these natural advantages.  A 

reasonable assumption is that redesigns of functional proteins are likely to 

also yield functional mutant counterparts that introduce or alter the desired 

property while, for the most part, maintaining the other existing properties.  

This assumption may be further supported if there is a relatively disparity in 
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size of the (large) molecule and of the (small) regions altered.  Doing so could 

maintain overall stability and functionality, while the mutations restricted to 

the regions may confer the redesigned function. 

Among the caveats is that depending on the degree of optimization, as 

well as type and amount of variation tolerated by the natural protein, 

perhaps even the slightest of mutations during redesign can instead upset an 

already-delicate balance among properties.  This is often the case when the 

aforementioned disparity is quite small, so that each residue on average 

shares greater responsibility and interdependency in supporting the 

properties that have permitted the protein to remain fit and functional. 

During design it would be necessary to observe these natural caveats.  

Thus, the aforementioned assumption can be amended to state that redesigns 

of functional proteins are likely to also yield functional mutant counterparts, 

if the mutations are compatible with the existing balance among properties 

or can introduce a new balance among properties that is suitable. 

Proteins mutated in nature and in the laboratory are similar in some 

respects while differing in others.  For example, the chemical constituencies 

of proteins, that are the amino acid residues that form polypeptide chains, 

are identical, regardless of whether they are in an organism (i.e. in vivo) or in 

a laboratory test tube (i.e. in vitro).  Models of these proteins in a computer 

(i.e. in silico) may be further removed in apparent similarity, but through our 
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engineering efforts it is hoped that these representations reasonably describe 

the natural aspects.  However, the setting for the protein, whether it be 

inside an organism or laboratory test tube, the environment that it affects 

and, in turn, affects it, and the motivation for mutating the protein highlight 

important differences for consideration, as follows. 

In nature, it is entirely reasonable for the mutation of proteins, and 

the genes encoding them, to be driven by evolutionary instinct and shaped by 

the ensuing environmental pressures.  Simply stated, the organism, or 

species for that matter, may not need to know how or why their proteins 

should mutate or remain unchanged with the times.  Rather, the mutations 

would occur (or not), as determined by the necessities of regular and chance 

natural occurrences.  Those mutations that happened to be favorable would 

permit the organism, and in turn the gene and protein within it, avoid 

obsolescence and extinction and continue being maintained and propagated.  

Thus, in nature, an organism’s actions can be described as exploratory and its 

prerogative is to survive. 

In the laboratory, it is often desirable for the mutation of proteins, and 

the genes encoding them, to be dictated by intelligent design approaches and 

observed under controlled conditions.  Once again simply stated, we as 

researchers would be appreciative at discovering that mutant proteins 

functioned.  Evolution can and has been mimicked in the laboratory in order 
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to achieve this initial goal by predicting the requisite combination of instinct 

and pressures necessary in order to mutate the protein with altered 

properties.  Yet, as researchers we would also appreciate knowing why and 

how proteins should be mutated, ideally a priori, which is integral to the 

design process.  Mutations would occur (or not) as determined by the intents 

of redesign.  Those mutations that were evaluated to function as intended 

would permit us, as researchers, to understand and apply intelligent redesign 

principles across diverse genes, proteins, and conditions.  Thus, in the 

laboratory, our actions can be deemed as hypothesis-driven and further our 

prerogative to understand and improve the world around us. 

1.2. Organization of this dissertation 

The organization of this dissertation presents our work on the 

intelligent design and redesign of evolved molecules, such as DNA and the 

proteins that bind them.   

We believe that using computational means enables us model these 

molecules and form hypotheses in silico that can be then validated in vitro or 

in vivo.   

We operate at the level of molecules and their constituent atoms in 

order to make accurate design and redesign mutation predictions a priori.  

We put these beliefs and level of operation to the test through forward 

engineering from what we know to what we have yet to discover. 
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Taken together, we present this organization of the dissertation on 

computational molecular engineering nucleic acid binding proteins and 

enzymes, with respect to our publications and research meeting abstracts: 

In Chapter 2, we discuss engineering molecules through computation.   

We first describe the features and activities of natural systems, such as DNA, 

DNA binding proteins, and restriction endonucleases (REases) in particular.  

We then discuss models of these natural DNA-protein interactions and 

perform two distinct studies, one dealing with these interactions across many 

nucleic acids and proteins in a gene-protein circuit, and another more focused 

on interactions of a single DNA substrate and protein at a structural level.  

We then posit that these models can be used not only to describe the existing 

activities of proteins and nucleic acids but engineer novel counterparts as 

well.  Some of the material in Chapter 2 is based on a manuscript that was 

joint work with Cheemeng Tan and Lingchong You: 

Tan C., Reza F., You L. Noise-limited frequency signal transmission in 

gene circuits. Biophysical Journal. 2007, 93: 3753-3761. 

and partially from a research meeting abstract that was joint work with 

Cheemeng Tan, Lingchong You, Ivelin Georgiev, Bruce R. Donald, Jingdong 

Tian and Kuo-Sheng Ma: 

Reza F. in collaboration with Tan C., You L. (modeling spatial-temporal 

interactions), Zuo P.,Georgiev I., Donald B. R., Tian J. (engineering 
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structure-function interactions), Ma K-S. (nanoscale characterization of 

interactions). Modeling and engineering of nanomolecular interactions. 

Sigma Xi, The Scientific Research Society 2008 Student Research 

Conference. 2008, Washington, DC. 

In Chapter 3, we discuss single-conformation engineering of nucleic 

acid binding proteins.  This continues our investigation of engineering models 

of a single DNA substrate and protein at a structural level and on single 

conformations of these molecules.  We examine computational filtering and 

biological focusing strategies and find that coupling them is advantageous.  

We apply a coupled filtering and focusing structure-based approach to altered 

the substrate specificity of a REase to another and perform preliminary 

experimental validations.  Some of the material in Chapter 3 is based on a 

manuscript that was joint work with Peijun Zuo and Jingdong Tian: 

Reza F., Zuo P., Tian J.  Protein interfacial pocket engineering via coupled 

computational filtering and biological focusing criterion. Annals of 

Biomedical Engineering: Special Issue: Systems Biology, Bioinformatics, 

and Computational Biology. 2007, 35: 1026-1036.  

and partially from a research meeting abstract that was joint work with 

Peijun Zuo and Jingdong Tian: 

Reza F., Zuo P., Tian J. Theoretical and empirical perturbations of 

endonuclease-DNA biomolecular complexes. Duke University Center for 
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Biomolecular and Tissue Engineering Kewaunee Event. 2007, Durham, 

NC. 

In Chapter 4, we discuss multiple-conformation engineering of nucleic 

acid binding proteins.  This extends our continuing investigation of 

engineering models of a single DNA substrate and protein at a structural 

level to consider multiple conformations of these molecules simultaneously.  

Some of the material in Chapter 4 is based on a manuscript that was joint 

work with Qihai Wang, Ivelin Georgiev, Bruce R. Donald, and Jingdong Tian: 

Reza F., Wang Q., Georgiev I., Donald B. R., Tian J. Automated and 

accurate engineering of a superior nucleic acid enzyme. In revision. 

and partially from a research meeting abstract that was joint work with 

Qihai Wang, Ivelin Georgiev, Bruce R. Donald, and Jingdong Tian: 

Reza F., Wang Q., Georgiev I., Donald B. R., Tian J. Molecular ensemble 

engineering and evaluation for targeted genome therapeutics. Biomedical 

Engineering Society 2009 Annual Meeting. 2009, Pittsburgh, PA. 

In Chapter 5, we discuss open-source molecular engineering.  We 

present the needs and benefits and address these by releasing and 

documenting our state-of-the-art suite of design algorithms for molecular 

engineering that model flexibility the redesign of proteins that act upon 

nucleic acids.  Some of the material in Chapter 5 is based on a manuscript 

that was joint work with Ivelin Georgiev, Jingdong Tian, and Bruce R. 

Donald: 
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Reza F., Georgiev I., Tian J., Donald B. R. Open-source computational 

redesign of nucleic acid binding proteins. To be submitted. 

and partially from a research meeting abstract that was joint work with 

Qihai Wang, Ivelin Georgiev, Bruce R. Donald, and Jingdong Tian: 

Reza F., Wang Q., Georgiev I., Donald B. R., Tian J. Computational and 

experimental scanning and redesign of nucleic acid proteins. Sigma Xi, 

The Scientific Research Society 2009 Student Research Conference. 

2009, The Woodlands in Houston, TX. 

In Chapter 6, we discuss applications and issues of molecular 

engineering.  We consider the impact of such engineering in the areas of 

nanotechnologies, of therapeutics, and their ethical, legal, and social issues 

(ELSI).  Some of the material in Chapter 6 is based on a manuscript that was 

joint work with Kuo-Sheng Ma, Ishtiaq Saaem and Jingdong Tian: 

Ma K-S., Reza F., Saaem I., Tian J. Versatile surface functionalization of 

cyclic olefin copolymer (COC) with sputtered SiO2 thin film for potential 

BioMEMS applications. Journal of Materials Chemistry. 2009, 19: 7914-

7920. 

partially from a research meeting abstract that was joint work with Jingdong 

Tian: 

Reza F., Tian J. Engineering molecular interactions for targeted 

therapeutics and technologies. National Academy of Engineering Grand 

Challenges National Summit. 2009, Durham, NC. 
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and partially from a manuscript that was joint work with the Duke 

University Genetically Engineered Machines Program 2006: 

Reza F., Chandran K., Feltz M., Heinz A., Josephs E., O'Brien P., Van 

Dyke B., Chung H., Indurkhya S., Lakhani N., Lee J., Lin S., Tang N., 

LaBean T., You L., Yuan F., Tian J. Engineering novel synthetic biological 

systems. IET Synthetic Biology. 2007, 1: 48-52. 
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2. Engineering molecules through computation 
The best way to have a good idea  

is to have lots of ideas. 
 

                                                                                                – Linus C. Pauling 
                                                                                                   American chemist 
 

This chapter has been adapted partially from a manuscript that was joint 

work with Cheemeng Tan and Lingchong You: 

Tan C., Reza F., You L. Noise-limited frequency signal transmission in 

gene circuits. Biophysical Journal. 2007, 93: 3753-3761. 

and partially from a research meeting abstract that was joint work with 

Cheemeng Tan, Lingchong You, Ivelin Georgiev, Bruce R. Donald, Jingdong 

Tian, and Kuo-Sheng Ma: 

Reza F. in collaboration with Tan C., You L. (modeling spatial-temporal 

interactions), Zuo P.,Georgiev I., Donald B. R., Tian J. (engineering 

structure-function interactions), Ma K-S. (nanoscale characterization of 

interactions). Modeling and engineering of nanomolecular interactions. 

Sigma Xi, The Scientific Research Society 2008 Student Research 

Conference. 2008, Washington, DC. 

2.1. Motivation 

In order to engineer molecules through computation, it is useful to 

appreciate the properties of natural systems.  Performing computational 
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modeling of these systems at various levels of abstraction can provide further 

insights that complement or inform experimental investigations.  

Engineering these molecules requires a healthy appreciation of the natural 

systems and a host of insights into the models of these systems.  

2.2. Natural systems 

The natural systems studied are deoxyribose nucleic acid (DNA) and 

restriction endonucleases (REases), a type of nucleic acid binding proteins 

(NABPs) with catalytic cleavage ability for specific sequences of DNA 

substrates.  Interactions between DNA and REases are interesting and 

important for a number of reasons, possibly far too many to list.  While these 

molecules have some features in common, such as both being biopolymers, 

they differ many ways, such as these polymers being composed of nucleic 

acids (NAs) in DNA and amino acids (AAs) in REases.  Thus, before 

proceeding to modeling, it is useful to review the current understand of DNA 

and REases. 

2.2.1. DNA 

NAs, of which the predominant terrestrial types in biological systems 

are DNA and ribose nucleic acid (RNA), store and transmit genetic 

information.  In 1944, Oswald and co-workers had successfully demonstrated 

this property of DNA to carry information (2).  Less than a decade later, the 

three dimensional (3D) structure of DNA was correctly proposed by Watson 
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and Crick (3), for which they shared the Nobel Prize in Medicine or 

Physiology in 1962. 

In the structure of DNA, both strands consisted of monomer units, or 

nucleotides (NTs), of a varying nitrogenous heterocyclic base covalently 

bonded to a form of deoxyribose sugar, which in turn are covalently tied 

together by phosphodiester bonds.  These DNA basepairs (BPs) presented 

different spatial and biochemical profiles.  The modeling of canonical B-DNA 

through fiber studies revealed further nuances in the overall polymeric 

structure (4).  DNA contains four types of base, adenine (a), cytosine (c), 

guanine (g) and thymine (t).  The axial and longitudinal aspects of this 

biopoloymer enable interaction, and recognition, to occur at various scales 

and manners (5).  From a distance, indirect recognition of DNA can occur 

through identification of the double helix and negative-charged phosphates 

spaced along the backbone (BB).  Approaching closer, differences in the 

individual bases of DNA can be directly recognized (Figure 2-1).  It is 

presumed that this indirect recognition is able to act on longer scales to 

localize a NABP onto the DNA.  With the proximity conferred by localization, 

direct recognition is able to finely align a sequence specific NABP, such as a 

REase, to its intended DNA recognition site by making complementary polar 

and hydrogen bonding contacts between its interfacial (IP) amino acid  
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Figure 2-1: Principles of DNA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(A) DNA is nanoscale polymer of nucleic acids, (B) with each monomer containing one of four 
nucleotides, adenine, a, guanine, g, cytosine, c, or thymine, t.  It is (C) composed of anti-parallel 
sugar phosphate double helices implicated in indirect recognition, (D) and of heterocyclic nitrogenous 
bases paired by two or three Watson-Crick hydrogen bonds.  The N1 and N9 atom of (E) an a::t pair 
and (F) a g::c pair covalently bond to the C1’ atoms of the backbone creating asymmetric major and 
minor grooves and hydrogen bond donor (magenta arrows) and acceptor (yellow arrows) atoms 
implicated in direct recognition. 
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residues and NTs found in the DNA’s major or minor grooves (6). 

In more recent times, DNA and its related molecules are being 

investigated in broader and more varied ways.  By the end of the 20th 

century, all 3 billion BPs of the human genome were sequenced (7,8).  The 

research continues, however, for understanding how the diverse array of 

NABPs encoded by these genomes in turn interact the DNA within these 

genomes.  The work in this dissertation is a part of this ongoing pursuit. 

2.2.2. Nucleic acid binding proteins and restriction 

endonucleases 

The cell has a wide variety of proteins and enzymes that bind and act 

upon NAs, such as transcription factors, polymerases, and ribosomes used in 

our work (Table 2-1).  Among these enzymes of interest are REases due to 

their sequence-specific and robust catalytic function  (Figure 2-2).  Glimpses 

into the world of REases began in the 1960s.  Arber and co-worker were 

studying “host controlled restriction of bacteriophages” and found that it 

provided bacteria with a defense mechanism against invading foreign DNA, 

such as viral DNA (9-11).  Smith and co-workers purified the REases as well 

as the methyltransferase (MTase) from Hemophilus influenzae, characterized 

its properties, and deciphered the DNA BP sequence of its recognition site 

(12-15).  Nathans and co-workers led in applying this “endonuclease R” (now  
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Table 2-1: Sequence specific proteins that recognize DNA 

nucleic acid binding 
protein/enzyme 

host(s)  
cell 

substrate recognition 
site length 

molecular function 

alkaline phosphatase archea, 
bacteria,  
eukaryota 

1 BP hydrolase for dephosphorylation 

endonuclease, homing eukaryota 14-30 BPs, considerable 
tolerance of degeneracy 

autonomous, self-catalyzing 
genetic elements 

endonuclease, restriction bacteria, 
archaea 

4-8 BPs , limited tolerance 
of degeneracy 

cleavage of foreign genome 
phosphodiester bonds 

glycosylase archea, 
bacteria,  
eukaryota 

1 BP cleave nitrogenous base from 
nucleotide 

histone  
(nucleosome core) 

archea, 
eukaryota 

146 BPs genetic “spool” for regulation of 
gene expression 

kinase archea, 
bacteria,  
eukaryota 

1 BP transfer of phosphate group from 
ATP 

ligase archea, 
bacteria,  
eukaryota 

1 BP formation of phosphodiester bond 

methyltransferase archea, 
bacteria,  
eukaryota 

3-8 BP methylation of host genome 
nucleotides 

repair, base excision archea, 
bacteria,  
eukaryota 

1 BP repair of oxidation, alkylation, 
hydrolysis, or deamination damage 

repair, nucleotide 
excision 

archea, 
bacteria,  
eukaryota 

2-30 BP repair helix distorting and  broader 
damage, e.g. via UV 

repair, mismatch archea, 
bacteria,  
eukaryota 

10-50 BP repair error in replication and 
recombination mispairing 

polymerase archea, 
bacteria,  
eukaryota 

1  BP polymerize deoxyribonucleotides 
into DNA strands 

transcription factor archea, 
bacteria,  
eukaryota 

dependent upon 
regulatory element(s) 

controls transfer of information 
among nucleic acids, proteins 
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Figure 2-2: Principles of restriction endonucleases 

 

(A) A REase is a nanoscale molecule composed of polymer peptide chains that 
recognizes and cleaves specific sequences of DNA, (B) with each monomer 
being one of twenty AAs.  Each AA residue contains common backbone atoms 
composing its N-amino group, CA, HA, and C-carboxyl group, and a variable 
atoms composing its side chain or R-group.  Here the R-group for the AA 
alanine, having CB, HB1, HB2, and HB3 methyl group atoms, is shown. 
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known as R.HindII according to REase nomenclature conventions (16)) as 

genetic and molecular biology tools to linearize and cleave Simian Virus 40 

(17-19).  Together, Arber, Smith, and Nathans received the Nobel Prize in 

Physiology or Medicine in 1978 for the discovery of "restriction enzymes and 

their application to problems of molecular genetics” (20).  With it, REases 

became the workhorses of molecular biology for manipulating and mapping 

specific sequences of DNA (16). 

In keeping to their name, REases recognize and cleave (i.e. restrict) in 

between (i.e. endo-) specific short sequences, usually four to eight BPs, of 

DNA (i.e. nuclease) (21).  They are composed of residues in nanoscale polymer 

peptide chains having common backbone atoms and variable side-chain 

atoms (Figure 2-2).  The restriction sites have been studied for patterns (22) 

and frequency (23).  These sites tend to be palindromic in sequence and the 

REases that cleave in between them are classified as Type IIP.  The REases 

themselves tend to form multimers, usually homodimers, in order to 

accommodate the 2-fold symmetry when forming DNA-REase complexes (24) 

as well as other symmetries that that should be taken into computational and 

experimental consideration (Table 2-2).  Cleavage of DNA occurs through a 

scissile phosphate nucleophilic attack through coordination with a metal 

cation cofactor (Figure 2-3).  This cleavage, and the binding that precedes it, 

is highly sensitive to substrate sequence, cofactor, buffer and incubation  
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Table 2-2: Computational and experimental parallels among DNA 
and restriction endonucleases 

 

 DNA REase 
computational   
natural complex cognate wildtype 
synthetic complex non-cognate mutant 
structural symmetry in silico structurally asymmetric 

palindromic anti-parallel strands 
in silico structurally asymmetric 
homodimers 

symmetry of mutations engineer and evaluate both 
constituent strands 

engineer and evaluate both 
constituent monomers 

   
experimental   
natural complex cognate wildtype 
synthetic complex non-cognate mutant 
structural symmetry in vivo/in vitro palindrome and 

approximately symmetric 
in vivo/in vitro approximately 
symmetric homodimers 

symmetry of mutations mutate against single strand for 
complementary strands 
 

mutate against single gene for 
both monomers 
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Figure 2-3: Restriction endonuclease functional activity upon cognate DNA substrate 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(A) DNA substrates that are uncut are probed at the nanometer scale as potential reactants through 
recognition directly, via the sequence of base pairs in particular DNA, and indirectly, via the sugar 
phosphate double helices.   (B)  The cognate DNA substrate, or one that contains a suitable base pair 
sequence and shape, is recognized by the REase, via conformational changes in both biomolecules 
that facilitate complementary recognition and coordinated catalysis of the later by the former.  (C) 
DNA substrates that are cut are released non-reversibly as products of the reaction. 
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R.EcoRV cognate recognition 
holo (4RVE.pdb) 

R.EcoRV non-cognate interaction 
holo (2RVE.pdb)

R.EcoRV apo 
(1RVE.pdb) 

cognate DNA 
(generated) 

k2

k4 

R.EcoRV catalysis  
holo (1RVA.pdb) 

products from non-
specific “star” activity 

under extreme conditions

R.EcoRV apo
(1RVE.pdb)

cognate DNA product
(1RVA.pdb) 

B 

A 

non-cognate DNA 
(generated) 

k1 

k-1 

k-3 

k3 

Figure 2-4: Restriction endonuclease binding and catalytic kinetics 
with cognate and non-cognate DNA substrates 

 

 

 

 

 

 

  

 

 

 

In a system of reactions, spatial and kinetic aspects within DNA and between 
it and the restriction endonuclease (REase) are critical to recognition, 
deformation, and catalysis of the former by the latter.  (A) Here, a DNA 
cognate sequence, 5’-gatatc-3’, is complexed, k1, recognized, and deformed to 
expose the scissile phosphates for catalytic cleavage, k2, by RE R.EcoRV.  (B) 
When non-cognate DNA is complexed, k3, it is not recognized, stabilized, or 
deformed significantly and thus is unbound, k-3, or yields product release 
from non-specific “star” activity under extreme conditions, k4.  The color code 
employed for RE homodimeric monomers is in gray shades, and for DNA 
adenine is in aquamarine, cytosine is in crimson, guanine is in green, and 
thymine is in tan. 
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Figure 2-5: Reaction coordinates of protein-DNA binding and catalysis 
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conditions (Figure 2-4); variations from normal conditions can lead to “star” 

activity, or non-sequence-specific cleavage of the DNA substrate.  The REases 

serve as nanomolecular catalysts, lowering the activation energy necessary to 

cut DNA specifically and efficiently, but unlike many enzymes, do so without 

the dependence on a common biological energy currency adenosine 

triphosphate (ATP) (Figure 2-5).  

2.3. Modeling natural systems 

Two distinct studies were performed on nucleic acids and the proteins 

that interact with them.  The first discussed below involved multiple proteins 

and genes interacting to create a circuit, in order to model the spatial-

temporal interactions among them.  The second discussed below involved 

single proteins and genes interacting to form structural complexes, in order 

to model structure-function interactions for further engineering. 

2.3.1. Gene-protein circuit modeling 

A single stage gene circuit was modeled and signal transmission 

through it analyzed by mathematical modeling (25).  A one-stage gene circuit 

was considered where an output protein (P) is driven by an oscillatory input 

signal (A) (Figure 2-6). In the cellular context, the input oscillations may be 

directly derived from environmental conditions (e.g. day-night cycles) or 

endogenous cellular oscillators (e.g. circadian clocks). Without loss of  
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Figure 2-6: Single stage gene-protein circuit model 

 

 

 

 

 

 

 

 

 

 

 

 

A one-stage gene-protein circuit where a transcription activator, A, is present 
at certain concentrations and times.  A then acts on the operator, O, of the 
Gene to facilitate transcription.   The transcription from O creates mRNA, 
once again at certain concentrations at certain times.  The transcribed mRNA 
in turn produces the output protein, Protein (P) with its own concentration-
time profile.  Each of these events have their own production and decay rates.  
In an experimental setting, Protein (P) can be a fluorescent reporter that has 
destabilizing mutations, such as destabilized green fluorescent protein 
(DsGFP) to reduce the half-time of its fluorescence and more closely indicate 
the off state of the transmitted signal. 
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generality, it was assumed that the oscillation can be characterized by a 

simple sinusoid function: 

⎥
⎦

⎤
⎢
⎣

⎡
+= )2sin(5.01

0
0 T

tAA π  

where A0 defines both the average signal strength (A0 is set to 10 in the 

example modeled herein) and the corresponding oscillation amplitude, and T0 

is the oscillation period.  Two complementary analytical and numerical 

approaches were taken to analyze transmission of the frequency signal 

(Figure 2-7).  In the first approach the time course of output P was 

decomposed into its mean and standard deviation, which is an application of 

the linear genetic network method (26,27).  The output signal P would 

oscillate when the gene-protein circuit was driven by the oscillatory input 

signal from A.  The mean is defined as the oscillatory component and the 

standard deviation is defined as the noise component, which tends to obscure 

or mask the oscillatory component.  The model was hypothesized to reveal 

that a frequency signal is transmitted accurately if the oscillation amplitude, 

α, exceeds the noise level, σ.  For simplicity in terminology, α and σ are 

termed the amplitude and noise level, respectively, of the output signal. 

To complement the analytical method, numerical methods were used to 

analyze the P time course for its dominant frequency. If the signal 

transmission was accurate, this dominant frequency would be the same  
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Figure 2-7: An oscillatory input signal can generate an output signal 
with oscillations compounded with noise 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mean and standard deviation of the output signal of the linearized model 
was analytically computed. Here, the mean value was defined as the 
oscillatory component and the standard deviation as the noise component.  
Alternatively, the stochastic simulations of the output signal for the 
nonlinear system was analyzed by the fast Fourier transform (FFT) method 
to obtain its dominant frequency. 
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(within numerical errors and machine precision) as the input frequency. The 

dominant frequency of the P time course was calculated by using the fast 

Fourier transform (FFT) method. The steady-state portion of the P time 

course for each simulation was analyzed using the FFT method.  Results from 

the FFT analysis were then used to extract the dominant output frequency. 

This output frequency would correspond to the signal frequency ‘‘perceived’’ 

by downstream processes. 

By linearizing the mathematical model of the gene-protein circuit and 

then decomposing the output using established methods (26-28), the average 

output level, b, is obtained:  

b = 
pm

pm

gg
Akk 0  

where km is the transcription rate constant, kp is the translation rate 

constant, gm is the mRNA decay rate constant, and gp is the protein decay 

rate constant. When changing a circuit parameter, the average output level 

was maintained at a constant 500 molecules by adjusting the kp.  For 

instance, if gm is increased 10-fold, b can be kept constant by increasing kp 10-

fold.  By doing so, different circuit configurations or parameter settings would 

on average elicit the same average level of downstream gene expression 

(whether or not the input frequency was maintained through transmission).  

The amplitude of the output oscillations, α, follows the equation:  
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where w is a function of the frequency of input signal, fin: 

w = 2πfin 

The corresponding average noise level, σ, equation is: 
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The amplitude of the output oscillations is defined as a decreasing function of 

α with increasing input frequency (fin).  This dependency reflects the low-pass 

filter characteristic of linear gene-protein circuits (29).  In contrast, the σ 

equation is independent of fin.  Therefore, α would decrease below σ for 

sufficiently high fin (Figure 2-8).  In this region, frequency signals will be 

masked by the noise. The intersection between the σ curve and the α curve 

thus defines a critical frequency, fc, beyond which the circuit will fail to 

transmit the input signals. For the given circuit configuration, fc was 

approximately 0.02/min. 

 The results of the decomposition method were consistent with those 

from stochastic simulations. Specifically, fin was varied from 0.002/min to 

0.033/min.  For each fin, 200 stochastic simulations were performed using the 

Gillespie algorithm (30).  The dominant frequency, fout, was determined for 

each output time course using FFT.  A parity plot between fin (x-axis) and 
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corresponding fout (y-axis) was created, and the estimated fc (0.02/min) using 

the decomposition method corresponded to a transition region in the parity 

plot (Figure 2-9). 

In most simulations, when fin was less than 0.02/min, fout was equal to 

the corresponding fin.  These signals were considered accurately transmitted 

despite cellular noise. Beyond 0.02/min, however, the average fout started to 

deviate from the corresponding fin and the deviation increased drastically 

with further increase of fin (Fig. 2-9, striped area).   

The drastic deviation was due to the fact that most output time courses 

gave incorrect fout.  The percentage of the outputs that oscillated at the 

correct fout for each fin was analyzed.  This analysis quantified the fraction of 

a cell population that could correctly transmit the frequency signal, where 

behavior of each cell was represented by one stochastic simulation.  It 

provided a quantitative measure of signal transmission fidelity for each fin 

(Fig. 2-10).  Again, the estimated fc defined a transition point that 

corresponds to a drastic reduction of cells that generated the correct fout. 

When fin was less than 0.02/min, nearly 100% of the cells produced the 

correct fout, indicating high fidelity in signal transmission. However, when fin 

was greater than fc, the percentage decreased drastically, indicating that the 

majority of cells failed to transmit the frequency signal accurately. 
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Figure 2-8: From analytical decomposition, the amplitude of output 
oscillations decreased with fin, while the critical frequency, fc, was 
calculated as the intersection between the ‘‘average noise level’’ 
curve and the ‘‘oscillation amplitude’’ curve 
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Figure 2-9: From numerical stochastic Gillespie simulation and FFT 
for dominant frequency, a critical frequency, fc, consistent with the 
analytical decomposition was observed 
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Figure 2-10: The percentage of cells that generated fout with fidelity, 
i.e. equal to fin, reduced sharply at and beyond the critical frequency, 
fc 
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Therefore, both the analytical method and the ‘brute-force method by 

stochastic simulation revealed an intrinsic property of frequency-signal 

transmission in the simple gene circuit: it is ‘all-or-none’, with the 

transmission fidelity limited by fc. The analytical method also suggested how 

the fc emerged as the interplay between the amplitude and the noise level of 

each output oscillation. 

2.3.2. DNA-enzyme structure modeling 

All uniquely available REase bound to cognate DNA structures and 

associated information were retrieved from the Protein Data Bank (PDB) 

(31,32), the Nucleic Acid Database (NDB) (33), and REBASE (34,35) for 

modeling (Table 2-2).  Among the structures available, R.PvuII was the 

smallest in monomer and overall length, was available in both bound to 

cognate DNA and unbound forms, and with (Mg2+) and without (Ca2+) a 

catalytically competent metal cation, and thus selected as the model system 

for much of this dissertation (Table 2-3).  For each structure, the modeling 

was performed to visually demonstrate the curvature of DNA and degree of 

distortion imparted due to the interactions with the bound REase.  Since the 

BPs themselves are asymmetric and lack a third common point with which to 

establish common planes, their the vector origins Ox, Oy, Oz were determined  
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along three dimensions following the definitions established in (36,37).  The 

fixed BP origin, F, of the entire BP was thus defined as: 

F = (Ox, Oy, Oz) 

All unique arrangements of single BPs were generated from ideal bond 

geometries using the nucgen package in the Assisted Model Building and 

Energy Refinement (AMBER) software suite (38,39).  The F for all unique 

arrangements of single BPs was performed, to ensure a common plane could 

be established (Figure 2-11).  With a common plane defined by the, now, 

three common points in space (C1’ on each base of a BP and F), a structural 

mutation procedure of one BP to another through coordinate identification 

and affine space transformation and RMSD minimization between identified 

coordinates was possible.  This was deprecated in favor of a base-specific 

structural mutation procedure, to accommodate for differences in separation 

distance between bases (40).   

The F was computed for all BPs in a crystallographic structure 

containing bound cognate DNA substrate.  For comparison, the B-DNA form 

of the same substrate sequence was generated using nucgen and F computed.   

In the case of R.EcoRV, the differences in the distortion between the bound 

cognate DNA substrate crystallographic structure and the B-DNA form were 

striking (Figure 2-12).  The degree of distortion was clearly visualized and  
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Table 2-3: Restriction endonuclease crystallographic structures 

REase  
name 

bound 
conformations 

unbound 
conformations 

DNA recognition site  
and cleavage pattern 

residue × 
multimer count 

R.BamHI 4 1 5’-g ↓ gatcc-3’ 
3’-cctag ↑ g-5’ 

213 ×  
2 

R.BcnI 1 1 5’-cc ↓ sgg-3’ 
3’-ggs ↑ cc-5’ 

238 ×  
2 

R.BfiI 0 1 5’-actgggnnnnn ↓ -3’ 
3’-tgacccnnnn ↑ n-5’ 

358 ×  
2 

R.BglI 1 0 5’-gccnnnn ↓ nggc-3’ 
3’-cggn ↑ nnnnccg-5’ 

299 ×  
2 

R.BglII 2 1 5’-a ↓ gatct-3’ 
3’-tctag ↑ a-5’ 

223 ×  
2 

R.Bse634I 0 1 5’-r ↓ ccggy-3’ 
3’-yggcc ↑ r-5’ 

293 ×  
2 

R.BsoBI 1 0 5’-c ↓ ycgrg-3’ 
3’-grgcy ↑ c-5’ 

332 ×  
2 

R.BstYI 2 1 5’-r ↓ gatcy-3’ 
3’-yctag ↑ r-5’ 

203 ×  
2 

R.Cfr10I 0 1 5’-r ↓ ccggy-3’ 
3’-yggcc ↑ r-5’ 

285 ×  
2 

R.Ecl18kI 2 0 5’- ↓ ccngg-3’ 
3’-ggncc ↑ -5’ 

305 ×  
2 

R.EcoO109I 1 1 5’-rg ↓ gnccy-3’ 
3’-yccng ↑ gr-5’ 

272 ×  
2 

R.EcoRI 7 1 5’-g ↓ aattc-3’ 
3’-cttaa ↑ g-5’ 

276 ×  
2 

R.EcoRII 0 1 5’- ↓ ccwgg-3’ 
3’-ggwcc ↑ -5’ 

404 ×  
2 

 

a = adenine  ;  c = cytosine  ;  g = guanine  ;  t = thymine  ;   
n = a, c, g, or t  ;  r = a or g  ;  s = g or c  ;  w = a or t  ;  y = c or t 
 



 

 
36 

 

Table 2-2: Restriction endonuclease crystallographic structures 
(continued) 

REase  
name 

bound 
conformations 

unbound 
conformations 

DNA recognition site  
and cleavage pattern 

residue × 
multimer count 

R.EcoRV 26 3 5’-gat ↓ atc-3’ 
3’-cta ↑ tag-5’ 

244 ×  
2 

R.FokI 1 1 5’-ggatgnnnnnnnnn ↓ nnnn-3’ 
3’-cctacnnnnnnnnnnnnn ↑ -5’ 

579 ×  
2 

R.HinP1I 0 1 5’-g ↓ cgc-3’ 
3’-cgc ↑ g-5’ 

247 ×  
2 

R.HincII 10 1 5’-gty ↓ rac-3’ 
3’-car ↑ ytg-5’ 

257 ×  
2 

R.MspI 2 0 5’-c ↓ cgg-3’ 
3’-ggc ↑ c-5’ 

262 ×  
2 

R.MunI 1 0 5’-c ↓ aattg-3’ 
3’-gttaa ↑ c-5’ 

202 ×  
2 

R.MvaI 1 1 5’-cc ↓ wgg-3’ 
3’-ggw ↑ cc-5’ 

249 ×  
2 

R.NaeI 1 1 5’-gcc ↓ ggc-3’ 
3’-cgg ↑ ccg-5’ 

317 ×  
2 

R.NgoMIV 1 0 5’-g ↓ ccggc-3’ 
3’-cggcc ↑ g-5’ 

286 ×  
4 

R.PabI 0 1 5’-gta ↓ c-3’ 
3’-c ↑ atg-5’ 

226 ×  
2 

R.PvuII 4 5 5’-cag ↓ ctg-3’ 
3’-gtc ↑ gac-5’ 

157 ×  
2 

R.SdaI 0 1 5’-cctgca ↓ gg-3’ 
3’-gg ↑ acgtcc-5’ 

323 ×  
2 

 

a = adenine  ;  c = cytosine  ;  g = guanine  ;  t = thymine  ;   
n = a, c, g, or t  ;  r = a or g  ;  s = g or c  ;  w = a or t  ;  y = c or t 
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Table 2-4: R.PvuII crystallographic structures 

R.PvuII crystallographic structure  
description 

resolution 
(Å) 

PDB ID  citation 

bound, with cognate DNA substrate 
5'-tgaccagctggtc-3' 

2.60 1PVI (41) 

bound, with cognate DNA substrate and 5-iodocytosine(4) at x 
5'-tgaccagxtggtc-3' 

1.76 2PVI (42) 

bound, D34G mutant with cognate DNA substrate 
5'-tgaccagctggtc -3' 

1.59 3PVI (43) 

bound, with Ca2+ and cognate DNA substrate 
5'-tgaccagctggtc -3' 

1.78 1EYU (44) 

bound, with Ca2+, glutaraldehyde and cognate DNA substrate 
5'-tgaccagctggtc -3' 

2.50 1F0O (44) 

unbound 2.40 1PVU (45) 

unbound, Y94F mutant 2.50 1NI0 deposited in PDB 
but no publication 

unbound, with Mg2+ 3.00 1H56 (46) 

unbound, with Pr3+ and SO4
2- 2.05 1K0Z deposited in PDB 

but no publication 
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Figure 2-11: Fixed basepair origin, F, for all unique arrangements of 
single basepairs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) The generated non-hydrogen heavy atoms of bases from all four B-DNA 
BPs, arising from AMBER force field parameters, and fiber nucleic acid 
studies, have two common coordinates in space, C1’, but lack a third 
coordinate needed to define a common plane.  (B) The coordinate 
identification includes computing a third common coordinate, the fixed BP 
origin F, occupying the 3D center of the BP and, along with C1’ atoms, 
defining common planes among all pairs.  The coordinate F was computed 
using X3DNA software (47-49) and visualized using the open-source PyMOL 
v.0.99 molecular graphics software (50).  
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Figure 2-12: Bound cognate DNA substrate crystallographic 
structure exhibits deformation compared to cognate B-DNA model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A)  Bound cognate DNA substrate crystallographic structure of R.EcoRV.  
(B) Cognate right handed B-DNA model generated using the nucgen package 
in the AMBER software, which is based on Arnott fiber studies (4).   (C)  
Analysis of F coordinates of each of the 6 BPs in the structure (green) and 
model (orange) using reveal the extent of deformation when this DNA 
substrate is bound and spatial deviations of some corresponding atoms (black 
lines). 
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summarized by the collection of one F for each BP.  When this analysis was 

repeated for many cognate DNA substrates bound to REase, it was observed 

that the degree of distortion differs and lacks a consistent conformation, but 

rarely resembled the linear arrangement of F in B-DNA (Figure 2-13).  This 

modeling suggested that the overall distortion of the DNA substrate be 

maintained when performing structure-based molecular engineering. 

2.4. Engineering of models 

Engineering nucleic acid binding proteins, or other biomolecules, is 

non-trivial.  Computational as well as experimental strategies have been 

employed to redesign biomolecules with desired properties. 

Computational engineering of models is subject to assumptions and 

approximations additional to those already made in modeling natural 

systems.  These additional assumptions and approximations are made in 

order to achieve the desired solutions within the available time and space of 

computational resources while working within the mutation tolerances of 

biological systems.  Natural systems often adopt the lowest energy 

conformations possible (51).  Given the input model structure, a means to 

model and mutate side-chains of this structure using a discrete rotamer 

library, and a means to measure and rank the existing and mutated 

structures using a pairwise energy function, determining the overall lowest 
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Figure 2-13: Degree of DNA substrate deformation differs among REase-bound 
crystallographic structures 
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energy conformation solution, or Global Minimum Energy Conformation 

(GMEC), has been proven to be NP-hard (52,53) in computational protein 

design (54,55).  Furthermore, even approximating this solution has been 

show to be NP-hard (56). 

Semi-empirical and knowledge-based approaches, such as with 

retrospective data as support, have been applied in nucleic acid binding 

protein studies in order to reduce the search time and space (57).  Protein-

DNA interactions using structural information and evolutionary support 

information from databases and experiments, respectively, have 

demonstrated that direct interactions correlate with conservation of DNA 

sites, albeit with outliers (58).  These interactions have also been shown to be 

nearly additive in energy (59).  Other heuristics in conjunction with 

structural knowledge enabled the design of protein chimera (60) and obligate 

heterodimers (61).  Mode analysis has also modeled thermal fluctuations and 

motions of proteins with some success (62-64). 

 Stochastic approaches have also been used for similar gains.  Monte 

Carlo sampling methods have helped predicted mutations in homing 

endonucleases (65,66) and of active sites (67,68).  However, these and other 

stochastic methods, such as the aforementioned, self-consistent mean field, 

and genetic algorithms, are not guaranteed to find the optimal solution. 
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Experiment-driven search strategies have also been taken to 

engineering molecules for similar reasons of searching the space for 

functional molecules (69).  Though they too do not guarantee the optimal 

solution, they often yield theoretical (70,71) and practical successes (72,73).  

For example, directed evolution and high-throughput screening methods 

(74,75) have found proteins having greater stability (76), improved folding 

(77), more thermophilicity (78) or psychrophilicity (79,80), or that are novel 

catalysts (81-83).  Some of this directed evolution has been guided initially by 

computation (84,85).  In altering experimental conditions around the natural 

REase system, some behavior modification could be achieved.  In some cases, 

the REase was sensitive to perturbing experimental conditions in order to 

modify its activity (86).  In other cases, a REase could be forced to comply 

through the incorporation of other molecules that promoted the desired 

activity (87,88).  However, these evolution strategies require considerable 

experimental capacity, time, and overhead in order build and diversify 

representative libraries of genes, through many serial single mutations (89), 

and apply the proper selective pressure conditions, which are often 

determined through trial-and-error (90). 

2.4.1. Operating philosophy 

 The operating philosophy of this dissertation is that quality modeling 

with state-of-the-art design algorithms can search promising spaces 
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efficiently to accurately predict functional engineered proteins.  Our 

deterministic exponential-time algorithms with provable guarantees enable 

us to search for the GMEC and report the results with greater awareness of 

the search space than stochastic methods.  Further developments in this area 

will permit systems of greater complexity to be tackled and understood.  

General metrics and tools, such as energy functions and rotamer libraries, 

enables us to extend beyond the knowledge inherent in specific systems.  

Here, too, improvements are ongoing and desirable.  Our experimental 

approaches permit us to synthetically build and test the predicted mutants 

rapidly and as intended. 

Yet, we would be remiss to not look to nature for some guidance.  Cues 

from the central dogma of natural biomolecules are taken.  The central 

dogma of nature states that a particular 1D sequence, whether it be a 

sequence of nucleic acids in DNA or RNA or of amino acids in proteins, 

imparts a 3D structure.  It is this structure that confers some function to the 

DNA or protein.  If the sequence and structure aspects of these nucleic acid 

and amino acid polymers can be modeled accurately, using suitable input 

coordinates, a tractable interaction space, and algorithmic implementations 

to perturb these coordinates in these interaction spaces, then this modeling 

can lead to engineering of function that may or may not already exist in 

nature  (Figure 2-14). 
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Figure 2-14: Operating philosophy of synthetic biomolecules inspired 
by modeling and engineering central dogma of natural biomolecules 

 

 

  
sequence 

 
structure 

 
function 

 
modeling 

(input coordinates, interaction space,  
algorithmic implementations) 

 

synthetic biomolecules 

engineering 

natural biomolecules 

+

=



 

 
46 

 

2.4.2. Input model structure visualization and preparation 

For input model structures, source crystallographic structures in the 

form of .pdb files, which contain information such as atom types and 3D 

coordinates, can be retrieved from a number of sources, including the PDB 

(32) and NDB (33).  Upon retrieval a number of cross-computing platform 

molecular graphics software are available that permit 3D visualization and 

analysis of the structure.  These software include the PyMOL Molecular 

Graphics System (50), DeepView Swiss-PdbViewer (40), KiNG Kinemage, 

Next Generation (91), VMD (92), and Chimera (93).   

Structures should be visualized in order to prepare and validate that 

input model structures are appropriate for computational engineering.  

Among the criteria for preparation include checking for the correct form (e.g. 

REase unbound or bound to DNA form), type of bound substrate (e.g. cognate, 

non-cognate DNA), type of cofactor and its effect on binding and catalysis 

(e.g. for R.PvuII, Mg2+ permits binding and cleavage, while Ca2+ permits only 

binding), type of chemical modifications, if any (e.g. crosslinking), and 

resolution.  If such criteria is acceptable, each input model structure file 

should be further checked that only a single complex rather than multiple 

complexes are present, that incomplete residues are repaired to the 

appropriate residue or removed.   
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While the heavy atoms are present, hydrogen atoms can often be 

absent from X-ray crystallographic structures if the resolution of the 

structure’s electron density map is too coarse to demarcate the hydrogen 

atom radii.  When weighted to account for the frequencies of amino acids in 

1,021 unrelated proteins of known sequence, there were on average 1.01 

hydrogen atoms per non-hydrogen, or heavy, atom in a protein (94).  Since 

hydrogen atoms compose about half of all atoms in a given protein, when 

possible, it is desirable to use a high resolution protein structure which 

contains hydrogen atoms or computationally supplement them using software 

such as Reduce (95) or WHATIF (96).  With hydrogen atoms in place, further 

optimization to the input model structure can include flipping ring structures 

of side-chains asparagine, glutamine and histidine to optimize the hydrogen 

bonding network using software such as MolProbity (97,98).  Special 

attention should be directed to modeling the protonation state of histidine 

residue imidazole moieties as they are near physiological pH (Table 2-5).  The 

distinct protonation state should be indicated by renaming HIS residues in 

the input model structure to HID, HIE, or HIP, corresponding to a hydrogen 

atom on atom ND1, on NE2, or on both, respectively.   

All protein atom nomenclature and connectivity in the prepared input 

structure should match the templates indicated in Appendix A.1. Amino acid  
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Table 2-5: Amino acid pKa values for modeling titratable moieties 

amino acid pKa 
arginine 13.0 
aspartic acid 4.0 
cysteine 8.7 
c-terminus 3.8 
glutamic acid 4.4 
histidine 6.3 
lysine 10.4 
n-terminus 8.0 
tyrosine 9.6 

 
adapted from (99) 
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templates, and those in the DNA should correspond to those templates 

indicated in Appendix A.5. Nucleic acid templates.  Else, computational steps 

downstream will be unable to properly identify and thus perform operations 

upon the offending atom or residue.  Caveats to the preceding statement are 

that the input model structure, whether representing the whole complex or a 

sterically reduced region, should be checked for adhering to the guidelines 

above to be properly identified by the downstream computations. 

2.4.3. Rotamer library 

The side-chains, branching from the main chain of proteins, are 

generally able to rotate through continuous ranges of allowable 

conformations.  However, the computational space and time necessary to 

model all such conformations in a continuous range can become intractable, 

impractical, and possibly unnecessary.  By analysis of high-resolution 

crystallographic structures, it was observed that there were some frequently 

observed conformations than others in these ranges.  These observed 

conformations tended to be of lower energy than others in the range.  The 

statistics of some of the distinguishing properties of these conformations, 

such as the distribution of side-chain dihedral angles χ1 defined by the 

residues N-CA-CB-CG bonds, χ2 defined by the residues CA-CB-CG-CD 

bonds, ideal covalent geometries of chemical moieties on these side-chains, 

and volume packing density constraints (100) were tabulated to create 



 

 
50 

 

rotamer libraries, that is rotated conformer libraries (101-104).  In contrast, 

strict conformer libraries are created from geometries found in particular 

high-resolution crystallographic structures (105-107).  The discretization of 

side-chain conformations in rotamer libraries allows computation to proceed 

in more reasonable space and time allocations, while still remaining 

appreciably faithful to experimental observations.  Appendix A.2. Amino acid 

rotamer library and Appendix A.3. Amino acid rotamer volumes were used in 

this dissertation. 

2.4.4. Energy function 

The conformations adopted by side-chains and mainchain of the 

protein and by the DNA substrate have associated energies.  To compute 

these energies, an empirical molecular mechanics energy function can be 

applied.  This energy function is often composed of a sum of terms that each 

represent various biophysical interactions (108-110).  These include dihedral 

bonded interactions and van der Waals steric, Coulombic electrostatic and 

hydrogen bonding non-bonded interactions which can vary when molecular 

engineering the input models, such as those found in the Assisted Model 

Building with Energy Refinement AMBER energy function (39).  Since the 

energy computation occurs between pairs of all atoms in the input model, the 

terms of this energy function are necessarily pairwise-decomposable. 
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Like the rotamer library, the energy function attempts balance the 

sophistication necessary to capture some of the biophysical interactions of 

molecules reasonably faithfully and the simplicity needed for computations 

using the function to successfully complete in reasonable periods of time.  For 

example, hydrogen bonding is a biophysical interaction used by sequence-

specific nucleic acid binding proteins in order to directly recognize the nucleic 

acid substrate bases and to indirectly recognize other substrate features such 

as phosphates on the substrate BB (5).  However, a 10-12 hydrogen bonding 

term has been shown to be unnecessary due to improvements in the terms 

that model van der Waals steric and Coulombic electrostatic interactions (39).  

Another important biophysical interaction is that imparted by water on other 

molecules.  Like the continuous range of side-chain rotations, Explicit 

solvation, or representation of the biophysical effects of water on other 

molecules, can be computationally expensive to model.  An implicit solvation 

model, such as the Lazaridis-Karplus effective energy function (EEF1) has 

been demonstrated to reasonably approximate the results from explicit 

modeling of water molecules while maintaining a lower computational cost 

(111).  Furthermore, similar to the other aforementioned energy function 

terms, the EEF1 implicit solvation term is pairwise-decomposable.  Appendix 

A.4. Energy function was used in this dissertation. 
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2.5. Discussion 

In this dissertation, we computationally extended and applied state-of-

the-art design algorithms to NABPs and enzymes in the Donald Laboratory 

and experimentally synthesized and evaluated the designed sequences and 

structures in the Tian Laboratory, both at Duke University, Durham, NC, 

USA.  In subsequent Chapters, where possible, we have used readily 

available, open-source software and developed software for open-source 

release.  Modeling software such as the aforementioned PyMOL and 

DeepView Swiss-PdbViewer were used for input model structure 

visualization and preparation, particularly in Chapter 3.  Design algorithms 

such as minimized side-chain DEE (minDEE) (112-114), in combination with 

A* (115), which is a branch-and-bound algorithm for gap-free list 

enumeration, and K*, which is a provably-accurate ensemble-based scoring 

algorithm were extended to NABPs in Chapter 4.  Documentation and open-

source release of this software with extensions is discussed in Chapter 5. 
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3. Single-conformation engineering of nucleic acid 

binding proteins 
Certainly no subject is making  

more progress on so many fronts than biology,  
and if we to name the most powerful assumption of all,  

which leads one on and on in an attempt to understand life,  
it is that all things are made of atoms, 

 and that everything that living things do  
can be understood in terms of  

the jiggling and wiggling of atoms. 
 

– Richard P. Feynman 
                                                                                                American physicist 
 

This chapter has been adapted from a manuscript that was joint work with 

Peijun Zuo and Jingdong Tian: 

Reza F., Zuo P., Tian J.  Protein interfacial pocket engineering via coupled 

computational filtering and biological focusing criterion. Annals of 

Biomedical Engineering: Special Issue: Systems Biology, Bioinformatics, 

and Computational Biology. 2007, 35: 1026-1036.  

and partially from a research meeting abstract that was joint work with 

Peijun Zuo and Jingdong Tian: 

Reza F., Zuo P., Tian J. Theoretical and empirical perturbations of 

endonuclease-DNA biomolecular complexes. Duke University Center for 

Biomolecular and Tissue Engineering Kewaunee Event. 2007, Durham, 

NC. 
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3.1. Motivation 

To engineer bio-macromolecular systems, protein-substrate 

interactions and their configurations need to be understood, harnessed, and 

utilized.  Due to the inherent large numbers of combinatorial configurations 

and conformational complexity, methods that rely on heuristics or 

stochastics, such as practical computational filtering (CF) or biological 

focusing (BF) criterions, when used alone rarely yield insights into these 

ensembles or successes in (re)designing them.   

Here we use a coupled CF-BF criterion upon an amenable interfacial 

pocket (IP) of a protein scaffold complexed with its substrate to undergo a 

proper set of residue replacement and R-group refinement (R4) to filter out 

energetically unfavorable residues and R-group conformations, and focus in 

on those that are evolutionarily favorable.   

We show that this coupled filtering and focusing can efficiently provide 

a putative engineered IP candidate and validate it computationally and 

empirically. The CF-BF criterion may permit holistic understanding of the 

nuances of existing protein IPs and their scaffolds and facilitate 

bioengineering efforts to alter substrate specificity. Such approach may 

contribute to accelerated elucidation of engineering principles of bio-

macromolecular systems. 
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3.2. Overview 

Elucidating the properties of a protein interfacial pocket (IP) can be a 

daunting task (52,53), let alone re-engineering it by altering residue and R-

group arrangements to endow intended new functionalities.  The IP of a 

protein may be abstracted as a set of amino acid residues, not necessarily 

adjacent in the linear polypeptide sequence, that form a local biochemical 

environment in three dimensional (3D) structure using conformations of their 

R-groups that is favorable to binding the proper substrate (116). These 

residues are housed amongst the rest of the residues, or scaffold, that do not 

participate in binding.  Contribution to this favorable local environment can 

arise from a number of biophysical factors. The steric effects, approximated 

by a pairwise Lennard-Jones interaction energy, EvdW, of the van der Waals 

(vdW) radii of atoms composing the amino acid residues of the IP as well as 

the proper substrate, contribute to favorable binding between them and 

provide hindrance and shielding against unintended side-reactions involving 

other substrates (117).  The Coulombic effects, represented by an analogous 

pairwise electrostatic interaction energy, Eelectrostatics, enable charge 

complementarities between regions of the IP and proper substrate and 

repulsive mismatches with other substrates (117). And since both the IP and 

a region of the substrate with which it interfaces are occupied by electrostatic 

interactions with water molecules or some other solvent, evacuating this 



 

 
56 

 

solvent is quantified as the electrostatic desolvation energy of the former, 

 ΔGdesolvation IP, and the latter, ΔGdesolvation substrate.  Thus, an estimate has been 

often used for the net binding free energy, ΔG, from a linear sum of these 

weighted energies (117): 

desolvation desolvation IP desolvation desolvation substrate
IP electrostatics substrate electrostatics

VDW VDW electrostatics electrostatics
i i i i

i i

G w G w G

w E w E C

  Δ = Δ + Δ

          + + +∑ ∑  

The protein IP engineering possibilities, as outlined in Figure 3-1, and IP 

residue replacement R-group refinement (R4) maintain these favorable ΔG of 

interactions and global minimum energy conformations (GMECs) of the 

protein-substrate complex as a whole (118).  

3.2.1. Computational filtering approaches 

There are a number of CF approaches to perform R4 with the 

aforementioned energetic conditions under consideration.  However, due to 

the rapidly increasing degrees of freedom at each residue, n, of the protein 

chain, coupled with the specific characteristics of the 20 amino acids that can 

be found at each position, an colossal combinatorial quagmire of 20n 

possibilities require modeling and analysis—and for an average-sized protein 

composed of 100 amino acids, simulating 20100 possible physical combinations 

exceeds the number of known atoms in the universe.  Thus, the probability of 

the protein’s IP locating its native state by pursuing all these combinations is  
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Figure 3-1: Protein interfacial pocket engineering possibilities 

 

 

 

 

 

 

 

 

 

 

 

 
The existing (possibly wildtype) protein, consisting of the existing scaffold 
and IP  with the cognate substrate (top) can serve as a starting point for 
three distinct engineering possibilities: an advantageous existing scaffold can 
support an engineered IP that binds the cognate or non-cognate substrate 
differently than wild-type (bottom left); an existing IP that binds the cognate 
or non-cognate substrate well can be adapted to an engineered scaffold 
(bottom center); or both IP and scaffold can be engineered to provide 
advantageous support and binding to a cognate or non-cognate substrate 
(bottom right).   
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biologically infeasible (known as the Levinthal paradox) (119) and 

computationally impractical (known as the Blind Watchmaker paradox) 

(119).  An exhaustive structural bioinformatics search for IP formation and 

end-state continues to be a challenge that is tackled using filtering, 

heuristics, homology, distributed computing, and high performance 

supercomputers with varied success (120). 

 Heuristics are often helpful and necessary in undertaking R4 at the 

scale of IPs.  For example, heuristics in genetic algorithms, mean field 

algorithms, constraint logic programming enumeration, or database search 

perform adequately under certain scenarios and assumptions and not as well 

with others (121).  While the computational cost is lessened or efficiency 

increased compared to the exhaustive search, the quality, however, of the end 

solution may or may not be consistent rather than assuring that the 

particular IP R4 generated by the heuristic is located at the GMEC. 

Homology can often aid in proper R4 as well. Here, informatics 

searches and interpolations from signature sequences of a few residues 

composing a key motif of IP, substrate, or both can provide clues for 

engineering.  This can extend further to domain sampling of entire regions 

across the protein that compose the IP. While this may be effective in well-

investigated and documented systems, those sequences or structures with no 

similarity or availability of such information can hinder this approach.  Even 
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with fertile sources, often the R4 is limited by what has been already observed 

to transpose well (122,123). 

 In similar fashion, partitioning and docking can narrow the 

possibilities for R4 (124). A collection of IP conformations can be generated 

that each present a different vdW, electrostatic profile or desolvation cost.  By 

docking this collection of IP conformations to the proper substrate, the 

affinity features of those subpartition of IPs that dock more readily can be 

gleaned.  However, fully enumerating all the elements in this collection may 

be computationally difficult or biologically unsubstantiated.  

 Furthermore, exact filtering algorithms, among them integer 

programming (125), dead-end elimination (DEE) (126-129) (130-132), and A* 

(115), advances the R4 process by eliminating and enumerating possibilities 

(133).  Dead-End Elimination (DEE) is a provably-accurate deterministic 

algorithm guaranteed to find the optimal solution, if such a solution exists 

(126,128,134).  Like many of the aforementioned approaches, DEE reduces 

the search space by pruning rotamers, placed using the aforementioned 

rotamer library, that are provably cannot be part of the global minimum 

energy conformation (GMEC). This pruning is accomplished by using the 

aforementioned energy function to calculate the rotameric energy of 

interactions between rotamers and the backbone, between rotamers and 

itself, and between rotamers and other rotamers.  In DEE the relative global 
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energy, Eglobal, of an IP is composed of the linear sum of the energy 

contributions from the backbone, the self and interaction with backbone 

energy, E(ir),of rotamer, r, at its position, i, and its pairwise interaction 

energy with rotamer at nearby position, j: 

( ) ( );global backbone r r s
i i j

E E E i E i j i j= + + <∑ ∑∑  

Thus, if the minimum energy, determined by via some given discrete rotamer 

library and energy function, or best case, arrangement of rotamer, ir, still has 

a higher energy than the maximum energy, or worst case, arrangement of an 

alternate rotamer, it: 

( )( ) min ( ) max ( );r r s t t ss sj j
E i E i j E i E i j i j+ > + ≠∑ ∑  

then the former rotamer is considered an energetic dead-end for further 

investigation as it and its variant arrangements are guaranteed to not be a 

participant in the GMEC, thus filtering the number of possibilities than need 

to undergo R4 (Supplementary Figure 3-1).  The conformations can be 

enumerated in a gap-free list, ordered by lower-bounds of energies, using 

computational techniques such as A* branch-and-bound search.  DEE was 

originally applied by Desmet, Maeyer, Hazes and Lasters for side-chain 

replacement and refinement (127).  Mayo and co-workers adapted the DEE 

for sequence search and biologically focused on different protein architectures  
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Supplementary Figure 3-1: Traditional dead-end elimination (DEE) 
criterion for nucleic acid binding proteins 
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for redesign, such as core, boundary, or surface (135).  The computational 

guarantees provided by DEE and A* can be accompanied by significant 

computational cost if DEE pruning is ineffectual and enumeration of all 

elements from the rotamer library in use at each residue position of the IP 

must be done.  In addition, since these IP R-groups need to be energy 

minimized as a whole, then DEE may no longer be provably-accurate.  In this 

Chapter, we will biologically focus but on different protein levels, and then 

proceed to extending and applying a more powerful minimized DEE criteria 

(minDEE) with side-chain flexinbility that is provably accurate for nucleic 

acid binding proteins in Chapter 4 (112-114).  In summary, the CF 

approaches are often a trade-off between the quality of the end IP candidate 

and the efficiency to reach it (84). 

3.2.2. Biological focusing approaches 

Correspondingly, there are many BF approaches to perform R4 so that 

resulting possibilities are in or near the aforementioned energetic conditions, 

perhaps by virtue of the constraints and fitness requirements existing in and 

imposed by the biological environment (69,85).  Here, the parallel processing 

nature of this environment may provide a natural, even advantageous, 

platform to evaluate the large combinatorial number of possibilities and 

interdependencies to be considered in a tractable manner.  However, this 

evaluation is often performed in a stochastic, discovery-driven investigation 
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using various mutagenesis techniques, recombination, and directed evolution 

among others to screen for high performing clones or select those that survive 

from a large starting population representing the number of possibilities 

(136). 

Stochastic methods are often necessary for R4 at a single position in 

the protein, let alone the half-dozen to a dozen residues that comprise some 

IPs (137).  Consider a random mutagenesis methodology using mutagenic 

chemicals, wobble base PCR, or error prone PCR to incorporate mutations at 

the genetic level that will be selected or screened for the desired 

characteristics at the protein level.  Though apparently misguided, it has 

been observed that non-obvious mutations can give rise to proteins with new 

characteristics (138).   

Another set of approaches to achieve R4 using biology relies on using 

the recombination of existing components in the system to generate new 

promising possibilities (139). Among these is incremental truncation to 

correlate the loss or gain of certain IP features and functions to the gene and 

protein truncation positions (140,141).  There is also homologous gene 

shuffling to generate variants of the original IP from internal wellsprings of 

diversity (142). 

 These external and internal sources of stochastics can be considered 

aspects of directed and simulated evolution, which mimic the fitness 
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requirements, survival and natural selection, propagation and amplification 

and of individuals, or IPs, to evaluate massive potential-filled populations 

with desirable properties (137).  However, these stochastic approaches rely on 

the robustness of this evolutionary condition to propagate order from 

randomness.  In summary, the BF approaches are usually a compromise 

between the intended end IP and those that arise serendipitously or survive 

having unintended properties. 

3.2.3. Coupling computational and biological approaches: CF-

BF 

While CF and BF each has its own advantages and drawbacks, a 

synergistic coupling of CF and BF may narrow the scope to a smaller number 

of high-quality, intended candidates more efficiently than either alone 

(Figure 3-2). This smaller number of possibilities is also more amenable to 

downstream computational and empirical evaluation and feedback.  In this 

research, we demonstrate the application of the CF-BF criterion to 

computationally engineer a putative IP on the scaffold of the restriction 

endonuclease R.PvuII to bind the DNA substrate of a different restriction 

endonuclease R.EcoRV. 

3.3. Methods 

3.3.1. Molecular system selection 
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Figure 3-2: CF-BF reduces the search space and the corresponding 
cost required to locate the global minimum energy conformation 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using existing computational filtering criterion, shown in red arrows, the 
search space of all possibilities, Ω, eliminates residues and R-group 
configurations of those residues that are most likely not in the GMEC based 
on pairwise local energies, to yield a smaller number of conformational 
possibilities, shown in dotted blue line, that must be evaluated via global 
energy minimization (top panel).  Coupling to a biological focusing criterion, 
shown in green, improves this condition by further reducing Ω to an even 
smaller number of possibilities based on evolutionarily relevant residues and 
R-groups, to be evaluated for minimum global energy as well as functionality 
(bottom panel).   
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As the various CF approaches are described in aforementioned 

references, the materials and methods for the BF aspects of the CF-BF 

criterion are as follows. Since restriction endonucleases are representative 

class of proteins with high specificity to their DNA substrates (143,144), the 

electronic .pdb file containing crystallographic coordinates of protein 

structures of comparative candidates were obtained via a survey of the 

Protein Data Bank (http://www.rcsb.org/pdb) (32) and REBASE: the 

Restriction Enzyme Database (http://rebase.neb.com) (34) online resources. 

Of the 22 restriction enzymes and 10 methyltransferases with available 

crystal structural information, PvuII was the only candidate for which 

structural information in .pdb files were available for both the restriction 

endonuclease, R.PvuII, (denoted by the R. prefix) and the corresponding 

methyltransferase modification enzyme, M.PvuII, (denoted by the M. prefix), 

and thus were downloaded for its greater comparative specificity of the 

restriction-modification system for the same DNA substrate (145,146).  Also, 

as seen in Table 3-1, given that R.PvuII is among the smallest known 

restriction endonucleases available, it may be more amenable to structural 

bioinformatics analysis and a tolerant acceptor of IP engineering (41).  The 

other candidate .pdb files downloaded were R.EcoRI (147), R.EcoRV  
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Table 3-1: Comparative protein candidate structures 

protein description PDB ID structure multimers and residue count 
R.PvuII-N PvuII Native  

unbound form 
restriction enzyme 

1PVU 
 

dimer (shown) with 157 residues per 
monomer 

R.PvuII-D PvuII restriction enzyme 
with DNA substrate 

1PVI 
 

as above with DNA base pairs 

M.PvuII-N PvuII cytosine N-4 apo form 
Methyltransferase 

1B00 
 

monomer (shown) with 323 residues 

R.EcoRI-N EcoRI Native  
apo form 
restriction enzyme 

1QC9 
 

dimer with 276  residues per 
monomer (shown) 

R.EcoRI-D EcoRI restriction enzyme 
with DNA substrate 

1ERI 
 

as above with DNA base pairs 

R.EcoRV-
N 

EcoRV Native  
apo form 
restriction enzyme 

1RVE 
 

dimer (shown) with 245 residues per 
monomer 

R.EcoRV-
D 

EcoRV restriction enzyme 
with DNA substrate 

4RVE 
 

as above with DNA base pairs 

R.BamHI-
N 

BamHI Native  
apo form 
restriction enzyme 

1BAM 
 

dimer (shown) with 213 residues per 
monomer 

R.BamHI-
D 

BamHI restriction enzyme 
with DNA substrate 

1BHM 
 

as above with DNA base pairs 
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(148-150), and R.BamHI (151) since these restriction endonucleases also have 

available structural information.  For all these candidates, except M.PvuII, 

both the unbound, or native, (denoted by the -N suffix) and the bound (to 

DNA substrate, denoted by the -D suffix) forms were accessible, providing 

further comparison of conformational change with binding and a fertile 

source of donor IP residues for engineering.  While it would have been 

insightful to compare isoschizomers, or enzymes that recognize the same 

DNA substrate and performs similarly, to R.PvuII’s 5’-cagctg-3’ such as 

R.DmaI, there are no such available crystal structure data available at this 

time.  Similarly lacking crystal structure data but even more useful from a 

comparative perspective would be neoischizomers, or enzymes that recognize 

the same DNA substrate but perform their activity at different positions from 

the prototype (152). 

3.3.2. Primary structure BF 

Primary structure (PS) BF analysis on the proteins (PDB IDs: 1PVI, 

1BOO, 1ERI, 4RVE, 1BHM) was performed by first querying the REBASE 

database for these comparative protein candidates and extracting the source 

organism.  For each protein and associated source organism, the identity of 

the corresponding oligonucleotide bases of DNA substrate and means of 

interaction was determined.  The one dimensional (1D) protein polypeptide 

sequences were retrieved from the Protein Data Bank for each .pdb entry and 



 

 
69 

 

cross-checked with the SEQRES fields in the .pdb files. Furthermore, these 

sequences were used to construct a phylogenetic tree. Multiple sequence 

alignments of the sequences were generated using a pairwise alignment 

evolutionary distance matrix,  neighbor-join clustering and CLUSTALW 

algorithms (153). 

3.3.3. Secondary structure BF 

 Secondary structure (SS) BF analysis was performed for the remaining 

proteins (PDB IDs: 1PVI, 1ERI, 4RVE, 1BHM) after PS BF by querying the 

Protein Data Bank for “Sequence Details” section to assign secondary 

structure based on the .pdb structure file’s “Author” and domain assignment 

using the Structural Classification of Proteins (SCOP) backend database 

(154).  The hydropathic profiles of each protein were determined using the 

Kyte-Doolittle method (155) . 

3.3.4. Tertiary and quaternary structure BF 

 Tertiary (TS) and quaternary (QS) structure BF analyses was 

performed for the remaining proteins (PDB IDs: 1PVI and 4RVE) after PS 

and SS BF using the open-source PyMOL v.0.99 molecular graphics real-time 

visualization and manipulation software with embedded Python scripting 

and interpreter (50). For each PDB ID, the corresponding .pdb coordinate file 

was loaded, preset to cartoon rendering of the polypeptide SS, TS, and QS, 

enabled main and side chain rendering of the oligonucleotide substrate, and 
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directional coloring of the polypeptide chains using a spectral gamut ranging 

from cooler blue hues at the N-termini to warmer red hues at the C-termini.  

After isolating all atoms composing the 6-mer recognition sequence on the 

sense oligonucleotide chain to serve as points of origin, the set all residues 

within a 3.0 angstroms (Å) boundary from these points were selected.  This 

set was pruned of those atoms located at the origin and the anti-sense 

oligonucleotide chain, leaving the subset of atoms that were part of IP 

residues and R-groups within this boundary.  Upon labeling, the polypeptide 

positions and residues at those positions were tabulated against the closest 

proximity oligonucleotide base.  This process was repeated for the anti-sense 

oligonucleotide chain with similar results, due to the palindromic nature of 

the DNA substrate and dimeric nature of the restriction endonucleases.  In 

addition to these steric vdW calculations, qualitative vacuum electrostatics 

assessments of the protein IP and accessible surface for each structure were 

generated using a local protein contact potential, without solvent dielectrics, 

and with equilibrium charges and radii settings from the Assisted Model 

Building and Energy Refinement (AMBER 99) force field to evaluate IP 

charge complementarily to the substrate DNA (156). Given these sterics and 

electrostatics, the consensus participating positions from the acceptor IP 

were overlaid with the consensus participating residues from the donor IP to 
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propose a putative engineered IP on the acceptor scaffold that binds the 

donor substrate.  

3.3.5. Engineering validations 

 Proposed putative engineered IP was validated both computationally 

and empirically.  Structural mutagenesis was performed on both monomers 

of R.PvuII-D using a PyMol-native rotamer library (102) to generate the 

mutant homodimeric enzyme.  Discrete mutant rotamers were auto-

positioned based on calculated lowest energy, steric hindrance minimizing 

conformations, and then relaxed to assume along the same spatial direction 

as would be achieve by a natural continuous R-group.  Then, in one approach, 

5’-gatatc-3’ DNA substrate coordinates were extracted from R.EcoRV-D, and 

in the other B-form substrate coordinates was generated de novo using 

nucgen (157).  Each 5’-gatatc-3’ substrate was then inserted into R.PvuII-D 

and affine space aligned along the 5’-cagctg-3’ DNA substrate using the 

shared second A and fifth T bases as spatial and directional coordinates of 

reference.  Upon aligning, 5’-cagctg-3’ DNA substrate was deleted resulting in 

the R.PvuII Putative Engineered IP mutant-D, i.e. the mutant bound to the 

5’-gatatc-3’ DNA substrate.  Hydrogen bond and polar contact patterns 

between the IP residues and DNA substrate involved in recognition were 

calculated and compared for engineered and wild-type ensembles.  
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Preliminary empirical validation was carried out using a cell survival 

assay. R.PvuII Putative Engineered IP mutant was synthesized de novo 

using a similar protocol as described in (158) and the correct synthetic 

sequence was confirmed by standard DNA sequencing technology.  This 

synthetic sequence was sub-cloned into the pET-21a expression vector 

(Novagen), which was then transformed into E. coli BL21 cells. Transformed 

cells were cultured with appropriate selection antibiotics in the presence or 

absence of IPTG, which induced expression of R.PvuII Putative Engineered 

IP mutant. 

3.4. Results 

3.4.1. Objective of CF-BF 

The coupled CF-BF criterion (Figure 3-3), can be used to generate a 

few promising candidate engineered IPs in the original scaffold that will bind 

to a different substrate.  Upon freezing those scaffold coordinates not relevant 

to engineering, the CF can be calibrated to both the donor and acceptor IPs so 

that it can appropriately eliminate energetically impossible or unlikely 

residue participants, to produce some semi-engineered IP candidates that 

may have the desired binding ability. But given the size of many IPs, there 

will still be too many to fully consider energy minimization.  This number can 

be reduced further by BF on those aspects of the candidate and other IPs 
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Figure 3-3: Flowchart of coupled CF-
BF criterion to engineer an IP 

 
This flowchart of the CF-BF criterion 
demonstrates some possibilities from 
Figure 3-1 to engineer an IP on the 
existing scaffold that binds to a non-
cognate substrate than that of the 
existing protein.  Should the CF and BF 
determine that the two proteins behave 
structurally or interfacially similar, it 
may be possible for one to act as an IP 
donor, having key residues and R-groups 
conformations of those residues, which 
can be transplanted into the other 
protein, the IP acceptor.   
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shown to be evolutionarily conserved or fit.  Note that this BF permits 

informed selection of R4 from a continuous set of remaining possible R-group 

conformations rather than discrete enumeration from a rotamer library often 

used in the CF performed upstream.  Also note that this BF is not conditional  

upon CF and can be used standalone or coupled to the latter to yield results.  

This smaller number of engineered IPs will still be subject to downstream 

energy minimization as is the rest of the protein-DNA complex. However, 

given their reduced number, a larger portion or all of them can now be 

evaluated. 

3.4.2. Primary Structure (PS) Biological Focusing 

The objective of BF on PS is to focus on those candidates that have 

similar origins based on their polypeptide sequences.  Candidate proteins are 

all from prokaryotic organisms (Table 3-2).  Yet, it is notable that all but 

M.PvuII-N perform a similar biological function—sequence recognition and 

cleavage of DNA substrates.  While a multiple sequence alignment of 

polypeptide sequences is not particularly revealing in Figure 3-4, the 

associated phylogenetic tree indicates that the methyltransferase M.PvuII-N 

(PDB ID: 1B00) which protects DNA from cleavage is most distant from the 

others.  While this tree does not represent actual evolutionary patterns, it is 

not surprising that the monomeric M.PvuII-N may have arisen differently  
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Table 3-2: Origins and attributes of chosen proteins 

 

protein  source organism DNA substrate  
R.PvuII-N Proteus vulgaris 

(source: ATCC 13315) 
5’-  cag ↓ ctg  -3’ 
3’-  gtc ↑ gac  -5’ 

R.PvuII-D as immediately above as immediately above 
M.PvuII as immediately above 5’-  cag m4ctg  -3’ 

3’-  gtcm4 gac  -5’ 

R.EcoRI-N Escherichia coli RY13 
(source: R.N. Yoshimori) 

5’-  g ↓ aattc  -3’ 
3’-  cttaa ↑ g  -5’ 

R.EcoRI-D as immediately above as immediately above 
R.EcoRV-N Escherichia coli J62 pLG74 

(source: L.I. Glatman) 
5’-  gat ↓ atc  -3’ 
3’-  cta ↑ tag  -5’ 

R.EcoRV-D as immediately above as immediately above 
R.BamHI-N Bacillus amyloliquefaciens H

(source: ATCC 49763) 
5’-  g ↓ gatcc  -3’ 
3’-  cctag ↑ g  -5’ 

R.BamHI-D as immediately above as immediately above 
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Figure 3-4: PS properties of chosen proteins 

 
The primary structures of the chosen proteins were 
compared using multiple sequence alignment (top 
panel) and associated phylogenetic tree (bottom 
panel).  Adapted from (159).  
 

PDB ID   PS multiple sequence alignment
1BHM          ----------------------MEVEKEFITDEAKELLSKDKLIQQAYN----------- 
4RVE          -----------------------SLRSDLINALYDENQKYDVCGIISAEGK--------- 
1BOO          MLNFGKKPAYTTSNGSMYIGDSLELLESFPEESISLVMTSPPFALQRKKEYGNLEQHEYV 
1ERI          ---SNKKQSNRLTEQHKLSQGVIGIFGDYAKAHDLAVGEVSKLVKKALSNEYPQLSFRYR 
1PVI          -------------MSHPDLNKLLELWPHIQEYQDLALKHG-------------------- 
                                      :                                    
 
1BHM          ----------EVKTSICSPIWPATSKTFTINNTEKNCNGVVPIKELCYT---LLEDTYNW 
4RVE          ------IYPLGSDTKVLSTIFELFSRPIINKIAEKHGYIVEEPKQQNHYPDFTLYKPSEP 
1BOO          DWFLSFAKVVNKKLKPDGSFVVDFGGAYMKGVPARSIYNFRVLIRMIDEVGFFLAEDFYW 
1ERI          DS----IKKTEINEALKKIDPDLGGTLFVSNSSIKPDGGIVEVKDDYGEWRVVLVAEAKH 
1PVI          -----------INDIFQDNGGKLLQVLLITGLTVLPGREGNDAVDN----------AGQE 
                          .                   .                            
 
1BHM          YREKPLDIL--KLEKKKGG-----PIDVYKEFIE---------------NSELKRVG--- 
4RVE          NKKIAIDIK--TTYTNKENEKIKFTLGGYTSFIR---------------NNTKNIVYPFD 
1BOO          FNPSKLPSP--IEWVNKRKIRVKDAVNTVWWFSKTEWPKSDITKVLAPYSDRMKKLIEDP 
1ERI          QGKDIINIRNGLLVGKRGDQDLMAAGNAIERSHKN-------------ISEIANFMLSES 
1PVI          YELKSINID---------------LTKGFSTHHH-----------------MNPVIIAKY 
                   :                           .                     :     
 
1BHM          MEFETGNISSAHRSMNKLLLGLKHGEI-DLAIILMPIKQLAYYLTDRVTNFEELEP---- 
4RVE          QYIAHWIIGYVYTRVATRKSSLKTYNINELNEIPKPYKGVKVFLQDKWVIAGDLAGSGNT 
1BOO          DKFYTPKTRPSGHDIGKSFSKDNGGSIPPNLLQISNSESNGQYLANCKLMGIKAHPARFP 
1ERI          HFPYVLFLEGSNFLTENISITRPDGRVVNLEYNSGILNRLDRLTAANYGMPINSNLCINK 
1PVI          RQVPWIFAIYRGIAIEAIYRLEPK----DLEFYYDKWERK-------------------- 
                                                   :                       
 
1BHM          ---------YFE------------------LTEGQPFIFIGFNAEAYNSNVPLIPKGSDG 
4RVE          TNIGSIHAHYKD------------------FVEGKGIFDSEDEFLDYWRNYERTSQLRND 
1BOO          AKLPEFFIRMLTEPDDLVVDIFGGSNTTGLVAERESRKWISFEMKPEYVAASAFRFLDNN 
1ERI          FVNHKDKSIMLQAAS--------------IYTQGDGREWDSKIMFEIMFDISTTSLRVLG 
1PVI          -----------------------------WYSDGHKDINNPKIPVKYVMEHGTKIY---- 
                                              : .                          
 
1BHM          MSKRSIKKWKDKVENK---------   Consensus key 
4RVE          KYN-NISEYRNWIYRGRK-------   * - single, fully conserved residue
1BOO          ISEEKITDIYNRILNGESLDLNSII   : - conservation of strong groups 
1ERI          ------RDLFEQLTSK---------   . - conservation of weak groups 
1PVI          -------------------------     - no consensus 
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than the dimeric restriction endonucleases.  Thus, this PS BF deemphasizes 

the IP of this methyltransferase as a source of donor residues and R-group 

conformations for R4 into the R.PvuII-N/D dimer. 

3.4.3. Secondary Structure (SS) and Hydropathy BF 

 The objective of BF on SS is to focus on those remaining candidates 

that have similar local hydropathic profiles and conformations of the IP 

polypeptide BB, such as the alpha helix and beta sheet.  In addition, given 

evolutionary fold conservation at protein IPs, such as active and allosteric 

sites, it may be worthwhile to compare how these local conformations interact 

with the DNA substrate.  Also, this conservation may influence the choices 

made in R4 since certain residues are more capable in participating in 

particular SS, as they are able to adopt the necessary backbone dihedral 

angles.  A mapping of these dihedral angles to the corresponding SS and 

capable residues can be found in a Ramachandran plot. 

For this analysis, hydropathic profiles remained uninformative, but 

similarity in secondary structure motif interactions to DNA grooves 

permitted further focusing (Supplementary Figure 3-2).  It was calculated 

that both R.EcoRI-N/D and R.BamHI-N/D tend to have a greater proportion 

and longer stretches of alpha helices (shown as waves) than beta sheets 

(shown as arrows), while both R.EcoRV-N/D and R.PvuII-N/D are more  
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Supplementary Figure 3-2: Secondary structure and hydropathy 
properties of remaining proteins after primary structure focusing 

 

 
 
 

 
 
 

 

R.PvuII-D R.EcoRI-D 
  

R.EcoRV-D R.BamHI-D 
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balanced in beta sheet content.  Notably, both R.EcoRI-N/D and R.BamHI-

N/D approach and recognize the DNA substrate from the major groove via an 

alpha helix and a loop and produce 5’ sticky ends, while both R.EcoRV-N/D 

and R.PvuII-N/D do so from the minor groove via a beta sheet and beta-like 

turn and produce blunt or 3’ sticky ends.  Thus, this SS BF deemphasizes 

R.EcoRI-N/D and R.BamHI-N/D as sources for IP donation to R.PvuII-N/D, 

leaving R.EcoRV-N/D as a more biologically promising candidate. 

3.4.4. Tertiary (TS) and Quaternary (QS) Structure BF 

The objective of BF on TS and QS is to spatially align the remaining 

two well-focused candidates and readily identify the IP residues close enough 

to interact with the substrate. Given that both R.PvuII-N and R.EcoRV-N 

recognize and bind to a uniform, helical substrate, this can facilitate R4 by 

acting as a common coordinate reference from which residues from the donor 

IP can be mapped onto positions on the acceptor IP.  A promising mapping 

can be confirmed using qualitative vacuum electrostatics assessments of the 

protein IP and accessible surface, since the engineered IP should have the 

electrostatic profile of the donor IP while the rest of the scaffold should 

remain as-is. 

Longitudinal and axial views of the DNA substrate were presented 

against each protein for orientation purposes (upper panels of Figure 3-5).  
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Figure 3-5: Tertiary and quaternary structure properties of 
remaining proteins after primary and secondary structure focusing 

 

R.PvuII-D R.EcoRV-D 
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the protein IP 
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      sense (in white)           anti-sense 
 
c    N140                            N140 
a    H84                              -- 
g    --                                  D34, G56, K93 
c    Q33, N35                     Q33, N35, N57 
t     --                                  H83 
g    N141, K143                 N141, K143 
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using local contact potential 
of AMBER 99  
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 g    K119, N120, S183         K119, G184
 a    N185                              N185 
 t     --                                    T111 
 a    K92, T186                      K92, T186 
 t     T37, T93                        T37, T93 
 c    N70                                T94, G182 

 

 
vacuum electrostatics  

 
of protein IP and surface 

using local contact potential 
of AMBER 99  

charges and radii 
indicates charge  
complementarily  
to substrate DNA  



 

 
81 

 

From the longitudinal views, some asymmetric distortion of the DNA 

substrate upon binding can be seen.  This may contribute to the lack of 

identical IP residues found within the 3 Å boundaries for both the sense and 

anti-sense strands of the DNA substrate.  Upon selecting a DNA strand as 

points of origin, which IP residues within this 3 Å boundary are closest to 

which DNA base are explicitly indicated (lower panels of Figure 3-5).  Taking 

advantage of the existing symmetries, the consensus IP position 140 on 

R.PvuII-D was determined to interact with the first base of the DNA 

substrate, and so on. Similar symmetries showed a consensus IP residue LYS 

on R.EcoRV-D to interact with the first base of the DNA substrate.  By 

integrating discrete levels of biological abstraction, from PS to SS to TS and 

QS, in a systematic manner, a putative engineered IP is mapped on the 

original R.PvuII-N scaffold (Figure 3-6) to confer specificity and bind the 

R.EcoRV 5’-gatatc-3’ substrate. 

3.4.5. Computational validation via structural mutagenesis 

The putative engineered IP mapping was validated structurally using 

relaxed rotamer-based mutagenesis and hydrogen bond and polar contact 

pattern comparison.  Discrete mutant rotamers were positioned with greater 

than majority occupancy at that lowest energy with little to no steric 

hindrance.  After positioning, local relaxing permitted the mutant to assume  
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Figure 3-6: BF for putative engineered IP on original R.PvuII 
scaffold to bind R.EcoRV 5’-gatatc-3’ substrate 

 

 

 
R.PvuII Putative Engineered IP mutant 

 
     non-cognate DNA bases             residues within 3.0 Å of substrate DNA  
 
                                                           sense                                        anti-sense 
      g                                                   140K                                         140K 
      a                                                   84N                                           84N 
      t                                                    93T                                           93T 
      a                                                   33K, 35T                                   33K, 35T 
      t                                                    83T                                           83T 
      c                                                   141N, 143T                              141N, 143T 
 
      having consensus residues of R.EcoRV to bind 5’-gatatc-3’ substrate,  
      at consensus 3.0 Å positions of R.PvuII 
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similar spatial direction as wild-type residue had, thus achieving continuous 

R-group positioning.  Affine space alignment repositioned the 5’-gatatc-3’ 

DNA substrate from the R.EcoRV-D orthogonal coordinate system to that of  

the R.PvuII Putative Engineered IP mutant-D ensemble and then aligned it 

to the 5’-cagctg-3’ DNA substrate.  Though the R.EcoRV-D 5’-gatatc-3’ DNA 

substrate was slightly more bent, and the B-form one slightly less, than the 

R.PvuII-D 5’-cagctg-3’ DNA substrate, the affine space alignments achieved 

good fits with expected deviations occurring at the substrate extremes, with 

root mean square deviations (RMSD) of 2.02 Å and 2.07 Å for the R.EcoRV-D 

and canonical B-form conformations, respectively.  Hydrogen bonding and 

polar contacts were made by the mutant’ IP residues to all bases and BB in 

both conformations of 5’-gatatc-3’ substrate, just as for the wild-type 

ensembles (Figure 3-7).  Thus, this suggests that the mutant is labile yet 

specific enough to approach and make recognition contacts with B-form DNA, 

and then maintain these contacts while bending it like R.EcoRV-D to expose 

the scissile phosphate for enzymatic cleavage. Computationally, this R.PvuII 

Putative Engineered IP mutant exhibited promising recognition 

characteristics and was further evaluated empirically. 

3.4.6. Preliminary experimental validation  

A cell survival assay was performed to determine whether the  
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Figure 3-7: Computational validation based on hydrogen bond and 
polar contacts with respect to steric hindrance patterns 

 

Wild-type R.PvuII-D interacts with DNA substrate 5’-cagctg-3’ (top left), 
R.EcoRV-D with 5’-gatatc-3’ (top right), and R.PvuII Putative Engineered IP 
mutant also with canonical B-DNA-like (bottom left) and R.EcoRV-D-like 
(bottom right) 5’-gatatc-3’ in order to make hydrogen bond and polar contacts 
while avoiding steric hindrance.  DNA are color coded according to bases 
(alanine = aquamarine, cytosine = crimson red, guanine = green, thymine = 
tan), IP residues according to standard Corey, Pauling, Kultin atom colors 
(carbon = white, oxygen = red, nitrogen = blue), and hydrogen bond and polar 
contacts highlighted in dotted lines (contacts from IP residues to any other 
atoms in yellow, from DNA 6-mer to any other atoms in orange).   

R.PvuII 
with 5’-cagctg-3’ DNA substrate  

in R.PvuII-D conformation 

R.EcoRV 
with 5’-gatatc-3’ DNA substrate 
 in R.EcoRV-D conformation 

  
 

R.PvuII Putative Engineered IP mutant 
with 5’-gatatc-3’ DNA substrate  

in canonical B-form conformation 
with 5’-gatatc-3’ DNA substrate  

in R.EcoRV-D conformation 
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 engineered R.PvuII has any enzymatic activity in cutting DNA. A synthetic 

R.PvuII Putative Engineered IP mutant gene was cloned into pET-21a 

expression vector, validated by DNA sequencing (Supplementary Figure 3-3), 

and cultured on agar plate in the presence or absence of isopropyl- -D-

thiogalactoside (IPTG). Without IPTG, the cells grew normally and formed 

colonies; with IPTG, cells did not grow and no colonies were found on the 

plate (Supplementary Figure 3-4). The result of this cell survival assay 

suggested that the expression of the R.PvuII Putative Engineered IP mutant 

in E. coli lead to cell death presumably due to digestion of the host 

chromosomal DNA (160). 

3.5. Discussion 

 While CF-BF produced a promising putative engineered IP, the 

computational and empirical validations confirmed its properties.  The 

computational validation of R.PvuII-N scaffold with the engineered IP 

examined the hydrogen bonding and polar contact patterns to show they, like 

the R.EcoRV-D IP, interact with all the bases in the substrate 5’-gatatc-3’ 

DNA.  Preliminary empirical validation using the cell survival assay 

suggested that the R.PvuII Putative Engineered IP has enzymatic activity in 

cutting DNA. The engineered specificity was examined further biochemical 

assays, such as an enzymatic function assay (Supplementary Figure 3-5).   
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Supplementary Figure 3-3: Synthetic R.PvuII gene validated by 
sequencing 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The synthetic R.PvuII gene sequence was verified to be accurate, with no 
insertions or deletions (indels) by sequencing using a 3730xl DNA Analyzer 
(Applied Biosystems, CA, USA). 
 

 

 

gene start codon atg  
(starts at position 190) 

gene stop codon taa 
(starts at position 661)
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Supplementary Figure 3-4: In vivo cell survival assay for R.PvuII 
Putative Engineered IP mutant in E. coli 
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Supplementary Figure 3-5: In vitro enzymatic function assay for 
R.PvuII Putative Engineered IP mutant in E. coli 
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These validations, in turn, will inform and improve the CF-BF criterion 

through further iterations of this process for these types of nucleic acid 

binding enzymes. 

 The IP engineering possibilities are nearly as vast as the diversity of 

biology itself.  Using CF alone, R4 of a 6-mer DNA recognition site and a 

monomer of a dimer restriction enzyme, assuming that there is one residue 

interacting with each base of DNA and a limited number of rotamers in a 

library represents all possible R-group conformations of the twenty naturally-

occurring residues, would have required the evaluation of possible IP 

sequences equal to the size of the rotamer library to the sixth power in 

number.  The CF-BF reduces this to a subset of the twenty naturally 

occurring residues (the subset being the ten polar and charged residues in 

this restriction endonuclease experiment herein) and R-group conformations, 

which are known to participate in the IP and interact with a similarly 

structured substrate.   

The benefits of successful IP engineering are equally numerous.  

Engineered IPs may lead to programmable proteins, such as restriction 

endonucleases that not only act as research tools, by enabling targeting, 

mapping and manipulation of genes and genomes, but as clinical technologies 

as well, by facilitating cleaving out a disease gene and repairing it with a 

working version in vivo. 
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4. Multiple-conformation engineering of nucleic 

acid binding proteins 
The overall struggle for existence  

of living beings is therefore  
not a struggle for raw materials— 

the raw materials of all organisms are available  
in excess in the air, water, and ground— 
nor for energy, which in the form of heat  

is plentiful in every body,  
but rather a struggle for entropy,  

which becomes available in the flow of energy  
from the hot sun to the cold earth. 

 
                                                                                          – Ludwig E. Boltzmann 
                                                                                             Austrian physicist 
 

This chapter has been adapted from a manuscript that was joint work with 

Qihai Wang, Ivelin Georgiev, Bruce R. Donald, Jingdong Tian: 

Reza F., Wang Q., Georgiev I., Donald B. R., Tian J. Automated and 

accurate engineering of a superior nucleic acid enzyme. In revision. 

and partially from a research meeting abstract that was joint work with 

Qihai Wang, Ivelin Georgiev, Bruce R. Donald, Jingdong Tian: 

Reza F., Wang Q., Georgiev I., Donald B. R., Tian J. Molecular ensemble 

engineering and evaluation for targeted genome therapeutics. Biomedical 

Engineering Society 2009 Annual Meeting. 2009, Pittsburgh, PA. 
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4.1. Motivation 

We report the first molecular engineering protocol which integrates the 

deterministic algorithms minimized side-chain Dead-End Elimination 

(minDEE), ordered conformational enumeration (A*), and ensemble-based 

scoring (K*) for scanning and redesigning protein-nucleic acids interactions. 

Furthermore, we report application of this protocol to the scanning and 

redesign of a Type II restriction endonuclease, R.PvuII, with predictions 

validated by de novo gene synthesis, cell-free protein expression and enzyme 

function assays.  

This protocol accurately scanned and characterized R.PvuII residues 

for mutation tolerance. Redesign of a tolerant residue using this protocol 

predicted 8 mutants to bind cognate DNA substrate, of which the top 6 

showed enzymatic activities.  The computed ensemble-based binding affinity 

scores, rather than single-conformation, or more specifically global minimum 

energy conformation (GMEC)-based bound energy values, correlated better 

with experimental results. Remarkably, the top-scoring redesign exhibited 

significantly faster activity, reducing the DNA digestion half-time to a third 

as compared to the wildtype while maintaining substrate specificity.  These 

results demonstrated the utility of this protocol in automated and accurate 

ensemble-based engineering of protein-nucleic acids interactions. 

4.2. Overview 
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Interactions between proteins and nucleic acids are ubiquitous and 

essential for the transduction of biochemical information into physiological 

action in nature, basic research, and translational medicine (5,6,161-169). 

Accurate engineering of these interactions are of keen importance and have 

been attempted through both experimental and computational means.  

Experimental strategies generally involved random diversification, selection 

and amplification (77,138,170-172). Computational redesign to alter DNA 

recognition specificity of a homing endonuclease has been demonstrated on 

single conformations, rather than ensembles, using stochastic searches, with 

specificity further improved by directed evolution experiments (65).  Other 

rational DNA enzyme redesigns have used heuristic approaches based on 

sequence homologies (173), or made compatible modular fusions between 

existing proteins (60,61,174) or between proteins and DNA (175,176).  

Although significant progress has been made, molecular engineering of 

protein-nucleic acids interactions through computational design remains 

exceedingly challenging (53,177). Natural proteins have evolved over long 

periods of time by balancing properties such as stability, solubility, substrate 

affinity, specificity, and catalytic activity.  Accurately and consistently 

engineering mutants with equal or better properties while maintaining such 

balances is a significant challenge. This challenge can be highlighted using 

examples of restriction endonucleases (REases), which are indispensable in 
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nature and the laboratory for binding and cutting specific DNA sequences 

(16).  Most REases have tightly-coupled binding and catalytic activities (178).  

Given these coupled interactions, engineering improved or new properties 

without compromising others that are already satisfactory is difficult. 

Consider the Type II REase R.PvuII as an example.  R.PvuII is 

isolated from the Gram-negative human pathogen Proteus vulgaris. It is the 

smallest known REase with only 157 amino acid residues (18.3 kDa) per 

monomer, and its enzymatic activity can be easily abolished by single point 

mutations (41,179). The functional enzyme is a homodimer that binds double-

stranded palindromic DNA substrate 5’-cagctg-3’.  Each monomer is 

comprised of three structural regions: a subunit interface region, a catalytic 

region, and a DNA recognition region (41).  The N-terminal 46 residues form 

the subunit interface region through two alpha helices connected by a loop. 

The subsequent residues form interspersed catalytic and the DNA 

recognition regions in primary sequence. The catalytic region consists of 

mixed beta sheets and an alpha helix, which allows coordinated access and 

action upon the DNA substrate.  The recognition region comprises two 

subregions separated in primary sequence, each containing one helix and one 

short loop. The two short loops (residues 80-84 and 140-144) make direct and 

specific interactions with DNA substrate bases.  With Mg2+ also coordinated, 

this cooperative association proceeds to chemically-coordinated catalytic 
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cleavage of both DNA scissile phosphates between +1 and -1 base pairs (BPs) 

from the substrate midpoint, yielding blunt-ended DNA restriction sequences 

5’-cag-3’ and 5’-ctg-3’. Replacing Mg2+ with Ca2+ permits binding and 

unbinding but not subsequent cleavage of the DNA substrate (44,180).  These 

sequence-structure-function characteristics make R.PvuII an attractive, 

albeit extremely challenging engineering example. 

To accurately and efficiently engineer protein-nucleic acid interactions, 

we have made significant advances over prior works (112,158,159,181) and 

report here the development of a deterministic and automated computational 

protocol and an efficient experimental validation pipeline. In addition, we 

report the successful application towards accurately engineering mutants for 

activity comparable to or faster than the R.PvuII found in nature. 

4.3. Methods 

4.3.1. Scanning NABP residues for mutation tolerance 

The protocol was applied to scan residues for mutation tolerance, as a 

function of computed binding energy loss.  For scanning, each position on the 

mutation map on both or one of the two monomers was allowed to mutate to 

the wildtype or alanine residue by setting the sequence space of allowable 

residues accordingly.  At each position all rotamers of wildtype residue or 

alanine, which has one conformation, were placed.  The homodimer target 

volumes for the residues being scanned were S81 137.78 Å3 and N140 or 
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N141 176.34 Å3 and volume windows were set to 100% of these volumes.  

Entire DNA-REase complex and entire REase were used as bound and 

unbound models, respectively, to permit cross-comparison of binding energies 

and affinities among scans of different residue positions. 

4.3.2. Redesigning NABP residues for functional mutations 

The protocol was applied to redesign mutation-tolerant residues for 

binding the DNA substrate, 5’-cagctg-3’.  For redesign, each position on the 

mutation map was allowed to mutate to the wildtype or 18 other possible 

non-cyclic, naturally occurring residues by setting the sequence space of 

allowable residues accordingly.  The homodimer target volumes for the 

residues being scanned were chosen similarly, but the volume windows were 

set to 20% of these volumes.  The number of residues in the bound model was 

reduced to a steric shell of all atoms within 8.0 Å from any atom belonging to 

the -3c::+3g BP and then extended to include whole residues of such atoms.  

All residues having one atom within 3.0 Å from any atom belonging to the 

mutatable residue was permitted to be flexible.  The same REase residues in 

the unbound model were reduced to those in the steric shelled bound model.  

These steric shelled models of the entire DNA-REase and entire REase 

facilitated rotameric mutations to many allowable residue types while 

sterically constraining such mutations to allowable conformations.   

4.3.3. Engineering validations 
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Wildtype R.PvuII gene and its mutants were de novo synthesized.  The 

PURExpress In Vitro Protein Synthesis Kit (New England Biolabs, MA, USA) 

was used for expressing wildtype and mutant R.PvuII proteins following 

manufacturer instructions. Each PURExpress reaction was incubated at 37 

°C for 3 hours. The amount of proteins synthesized was monitored by 

Western blot analysis using anti-His6-tag antibody and Amersham ECL Plus 

Western Blotting Detection System (GE Healthcare).  The enzyme activity 

assays were carried out in 20 μl reactions containing a mixture of 1 μl protein 

product, 150 ng of DNA substrate and 2 μl of NEBuffer 3. After incubating 

for specified amounts of time (0-120 min) in a 37°C water bath, reactions 

were immediately stopped by adding EDTA (10 mM) and gel loading dye and 

stored on ice until analysis. When all reactions were completed, 20 μl of each 

reaction was analyzed by agarose gel electrophoresis (1% agarose in TAE 

buffer 0.5 ug/ml ethidium bromide).  Gel images were taken using an Alpha 

Innotech gel documentation system and the densitometry of DNA bands were 

determined using the averaged integrated density value method of 

AlphaEaseFC software (Alpha Innotech, version 4.0.0).  Replicates of three 

(n=3) were performed of the above procedure.  Half-time was computed for 

mutants that completely digested the DNA substrate (3113 bp) to +cut DNA 

(2514 bp) within 2 hours.   

4.4. Results 
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4.4.1. Molecular engineering protocol for NABPs 

The protocol we developed started with building 3D models from 

structures as input, followed by mutating and pruning the mutations with 

the deterministic algorithms 1) minimized side-chain Dead-End Elimination 

(minDEE), 2) ordered conformational enumeration (A*), and 3) ensemble-

based scoring (K*), and concluded by computing bound and unbound 

conformational energies, binding energies, binding affinities, and building 3D 

structure models as output (Figure 4-1).  We also implemented a 

corresponding experimental validation protocol for the mutant proteins 

(Supplementary Figure 4-1).  The input 3D models were built from atomic 

coordinates of crystallographic structures bound and unbound to nucleic 

acids.  The algorithms then mutated these models using a rotamer library of 

low-energy, high-probability side-chain conformations and computed an array 

of minimum and maximum bounds and ranges on pairwise energies using an 

energy function composed of dihedral, steric, electrostatic, and solvation 

pairwise-decomposable terms. The conformations were then provably pruned, 

enumerated, and scored by the minDEE (112), A* (115), and K* (112,124) 

algorithms, respectively.  The algorithms computed 3D structures of all 

unpruned bound and unbound conformations, as well as their energies.  

Three means of scoring were used in this study: conformational energy, 

binding energy, and binding affinity.  
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Input models.  The bound and unbound 3D structure input models 

were built from source crystallographic structure coordinates for the holo 

form phased at 2.60 Å (41) (Figure 4-2A).  In this process, heavy atoms for 

REase or DNA were retained and others discarded; broken or missing 

residues were repaired by remodeling to the extent permitted by the electron 

density; hydrogen atoms were computationally added and the hydrogen 

bonding network mapped; and N, Q, and H residue side-chains were flipped 

in order to optimize geometric and biochemical properties.  This bonding 

network mapping revealed that the -3c::+3g (and through symmetries, the 

+3g::-3c) BP in the substrate center interacted exclusively with residues S81, 

N140, and N141 of one REase monomer or the other (Figure 4-2B).  Although 

these REase residues were located on flexible loop regions, the bonding 

network and packing stabilized the interactions among each other and with 

the DNA substrate. These hydrogen bonding and packing interactions were 

automatically considered by the algorithms in the protocol when they were 

subjected to this example. 

Input models building.  Input models of R.PvuII bound and unbound to 

cognate DNA were built from X-ray crystallography determined atomic 

structure data resolved at 2.60 Å (PDB accession ID: 1PVI (41)) from the  
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Figure 4-1: Molecular engineering protocol for computing ensemble-
based binding energies and affinities of protein-nucleic acids 
interactions 
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Supplementary Figure 4-1: Experimental protocol for validating 
mutant proteins 

 



 

 
101 

 

Figure 4-2: Input structure model of R.PvuII with interactions and 
residues of interest 

 

(A) Crystallographic structure of R.PvuII bound to cognate DNA sequence 5’-cagctg-3’.  
One monomer of protein dimer is colored by subunit interface (red), catalytic (magenta), 
and recognition (yellow) regions, while the other is monochrome; one strand of DNA 
double strand is colored from 5’- (blue) to 3’- (cyan) termini, while the other is 
monochrome. (B) Magnified area of built model indicates residues and interactions of 
interest for computational engineering. 
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Protein Data Bank (32).  Each monomer subunit of the crystallized 

homodimer was built and refined independently (41).  Heavy atom entries 

belonging to the RE or DNA were retained while the rest, such as those for 

explicit water molecules, were discarded.  All residue numbers were 

reassigned from matching numbers on unique chains to unique numbers 

throughout all RE and DNA chains in the entire bound complex. Wildtype 

residues Y94 on both monomers were remodeled as A94 due to insufficient 

resolution in the electron density beyond the Cβ atoms in the side-chain.  

Protonation and hydrogen bonding were incorporated into the built model.  

At 2.60 Å resolution, heavy atoms lacked protonation and were supplemented 

computationally using Reduce (95).  Side-chain ring moieties for N, Q, and H 

residues were inspected after protonation and flipped 180°, when necessary, 

to optimize the hydrogen bonding network with MolProbity (97,98).  

Nomenclature used for model constituents were made to conform to Assisted 

Model Building and Energy Refinement (AMBER) template conventions (39).  

Given model evaluation at physiological pH, all histidine residue imidazole 

side-chains were inspected and reassigned to HID, HIE, or HIP based on 

protonation of Nδ, Nε, or both Nδ and Nε atoms, respectively.  The unbound 

model was obtained by removing DNA residues from the bound model.  Both 

bound and unbound models were used in their entirety for scanning and 

sterically shelled to an 8.0 Å region around the -3c::+3g BP for redesign. 
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Model mutation.  The algorithm mutated models according to a 

sequence space of allowable residues at each position of mutation maps 

designated from examination of the literature (41,43,159) and mapping of the 

native hydrogen bonding network.  Maps for interactions with the -3c::+3g BP 

included S81, N140 and N141 residues.  The allowable residues were set to 

either wildtype and alanine or all 19 types according to whether scanning or 

redesign was performed, respectively.  Side-chain conformation of the mutant 

residue was initially placed similarly to those of the wildtype residue and 

rotated according to idealized and experimentally observed dihedral angle 

geometries specified in the rotamer library (103).  Initial rotamer placements 

were later energy minimized with bounds using a steepest-descent-based 

approach. 

Pairwise energy computation.  Inter- and intra- rotamer energies, and 

corresponding rotamer voxel energy maxima, minima, and ranges, were 

computed using a composite energy function and stored in a pairwise energy 

matrix for expedient retrieval in subsequent protocol stages.  Template 

energy of the Cα backbone was computed once, since it would remain 

unchanged and contribute a constant energy for all side-chain mutations.  

Pairwise components in the computation were categorized as DNA substrate, 

RE steric shell, and RE active site residues.  The RE steric shell consisted of 

RE residues not part of the mutation map while the RE active site residues 
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were those that were part of the mutation map.  Pairwise energies were 

computed between DNA substrate and RE steric shell, DNA substrate and 

RE active site, RE steric shell and RE active site, and between RE active site 

residues.  Singleton energies for intra-residue contributions were also 

computed for DNA substrate, RE steric shell, and RE active site residues.  

These energies were subject to change as rotamers were permitted to energy 

minimize.  The energy function was composed of linear summation of 

pairwise decomposable terms for AMBER bonded dihedral angles interaction, 

non-bonded vdW steric interaction, and non-bonded electrostatic Coulombic 

interaction terms for explicit DNA and RE atoms as well as a term for 

Lazaridis-Karplus EEF1 implicit solvation (111), of the form: 

bonded dihedral angles

non-bonded vdW sterics

non-bonded Coulombic electrostatic
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with variables defined similarly as (39).  The AMBER charge model and vdW 

parameters, rather than an explicit 10-12 term, represented hydrogen bonds.  
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The implicit solvation model was suitable, given crystallographic structures 

for all available R.PvuII bound to DNA (PDB accession IDs: 1PVI resolved at 

2.60 Å (41), 2PVI resolved at 1.76 Å (42), 3PVI resolved at 1.59 Å (43), 1EYU 

resolved at 1.78 Å (44), 1F0O resolved at 2.50 Å (44)) were found to be lacking 

explicit water molecules between the -3c::+3g BP and aforementioned 

mutation map residues.  Parameters for the energy function were set 

according to successful evaluations between proteins and amino acid 

substrates (114), as follows.  A steric threshold was applied so that atomic 

vdW radii overlap by 1.5 Å or less are allowed prior to minimization, with 

overlaps greater than this deemed too great a clash to relax away from using 

minimization.  A dielectric constant of 6.0 was applied with dielectric effects 

scaled by distance.  The solvation energies effects were similarly scaled by a 

multiplicative factor of 0.05.  Electrostatic energies were computed for heavy 

and hydrogen atoms. 

Model ensemble generation and pruning.  After building the bound and 

unbound input structures, the algorithm generated bound and unbound 

conformations by building side-chain conformations using the rotamer library 

for all allowable flexible residues.  Dihedral atom types and angles in the 

library were aligned to those in the existing backbone of the wildtype residue 

being mutated.  Rotamers were eventually energy minimized in voxels for all 

conformations, including those participating in the global minimum energy 
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conformation (GMEC).  Prior to the minDEE stage, a volume filter assessed 

the target volumes occupied by the wildtype residues and then pruned 

allowable mutant residues that were not within a volume window from this 

target volume.  The minDEE stage examined the rotamer pairwise energies 

and pruned rotamers that were not within 5 kcal/mol of the GMEC energy.  

Prior to the A* stage, a steric filter pruned conformations having van der 

Waals (vdW) radii that overlapped by more than 1.5 Å, as relaxation from 

such a severe clash is not likely using energy minimization.  The A* stage 

then enumerated conformations in order of lower bounds of energies so that 

this stage could be terminated once partial partition functions reach the 

desired accuracy of approximation (112).  As the A* stage fed the K* stage, an 

ε-approximation guaranteed that the computed partial partition function, 

incorporating a subset of the remaining unpruned conformations, represented 

at least 97% of the full partition function.  Each successive stage incurred 

greater computational cost, and thus was executed later in the pipeline.  

Pruning was achieved with provable guarantees while both adapting GMEC-

based and applying ensemble-based criteria.  For example, minDEE 

identified the bound or unbound GMEC from the ensemble of conformations 

having flexible side-chains (Supplementary Figure 4-2).  Adapted to this 

ensemble-based protocol, minDEE pruned conformations of a given mutant 

sequence to yield its GMEC as well as a gap-free list of other low-energy 
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conformations that are within an energy window from this GMEC.  

Furthermore, when A* and K* were applied, the computed energies of bound 

and unbound conformations were used in corresponding partition functions to 

determine binding affinities.   

Combinatorial computational scanning and redesign.  Pruning was 

performed on all conformations based on wildtype residue packing volumes, 

so that over-packed or under-packed allowable residues in the mutation map 

were removed from subsequent computation.  A target volume initially was 

computed through summation of volumes for a rotamer of each wildtype 

residue in the mutation map.  A volume window that permitted a specified 

volume over-packing or under-packing from this target volume was applied 

for redesign, but not for scanning.  Further pruning was performed on bound 

and unbound conformations using minDEE, sterics, and K*/A*.  The minDEE 

algorithmic pruning eliminated dead-end rotamers not near the minimized 

GMEC using simple coupled Goldstein criterion (112,131) with pairs removal 

from the aforementioned energy bounds.  After an initial minDEE pruning, 

divide and conquer splitting was performed (114).  An energy window of 5.0 

kcal/mol ensured that no conformations having energy within this window 

from the GMEC energy were pruned.  The energy bounds had a cutoff energy 

threshold of 100.0 kcal/mol.  Steric pruning was then applied to prune  
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Supplementary Figure 4-2: minimized side-chain Dead-End 
Elimination (minDEE) criterion for nucleic acid binding proteins 

 

 

 

 

 

 

 

 

 

 

With conformations being energy minimized, the minDEE criterion 
guarantees that no rotamers belonging to the minimized GMEC are pruned.  
The rotamers of conformations are energy minimized in voxels (dotted conic 
regions) of conformational space within ± θ° from the each rotamer’s dihedral 
angle.  With such minimization, the maximum, minimum, and range of these 
energies can be computed.  Building upon (112), these computations enable 
the scanning and redesign of protein residues near nucleic acid-protein 
interfaces, thereby extending the traditional DEE criterion to consider the 
effect of energy minimization to changes in conformational energies. 
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conformations in which atomic vdW radii clash by more than 1.5 Å, assuming 

that such extreme steric clashes cannot relax to the aforementioned hard 

steric threshold by steepest-descent-based energy minimization.  Rotamer 

pairs were further pruned based on a steric energy threshold.  Rotamers with 

a summed intra-rotamer and rotamer-to-template energy greater than 30.0 

kcal/mol were pruned.  Furthermore, rotamer pairs with interaction energy 

greater than 30.0 kcal/mol were also pruned.  The K*/A* algorithms perform 

enumeration in order of lower bounds on energy by calculating whether each 

subsequent minimized conformation is expected to contribute to an ε-

approximation of the total partition function (112).  Since partition functions 

are an exponentiated sum of energies of the unpruned bound (or unbound) 

conformations, some conformations in the ensemble contribute more than 

others to the total partition function.  For expediency, an ε value of 0.03 was 

chosen to guarantee that the partially computed partition function for the 

bound (and unbound) ensemble of conformations would approximate at least 

97% of the completely computed partition function value for that ensemble.  

For efficiency, expensive energy minimization and downstream computations 

are performed only for each successive conformation that can contribute to 

this partially computed partition function.  High performance computing 

resources were used to distribute and process tasks through an objected-

oriented Java wrapper (mpiJava) to a message passing interface (MPI) (182-184).   
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Conformational energy, binding energy, and binding affinity.  Of the 

three means of scoring used in this study, conformational energy was 

computed using the aforementioned energy function for all bound and 

unbound conformations.  Binding energy was computed by identifying the 

GMECs among these conformations and calculating the difference in their 

bound and unbound conformational energies.  Binding affinity, termed K* 

score, was computed as the quotient of partition functions encoding the 

conformational energy contributions of all unpruned conformations that 

contribute significantly to the bound and unbound partition functions.  While 

the binding energy computation used only the energies of the bound and 

unbound GMEC with unitary weights, the binding affinity computation used 

the conformational energies of all significant unpruned bound and unbound 

conformations weighted by Boltzmann probabilities.  Therefore, GMEC was 

used to represent an energetically favorable bound conformation for each 

mutant at a particular instant.  In contrast, in order to account for the 

conformational flexibility and adaptation that protein side-chains can 

assume, the binding affinity simultaneously assessed all rotameric 

conformations in silico rather than just the rotameric GMEC. 

Output structure models, overall binding energy and binding affinity 

computation.  The overall energies were computed for significantly 
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contributing bound (and unbound) conformations in the ensemble using the 

aforementioned energy function.   The binding energy was defined as: 

ΔΔEbinding = ΔEbound - ΔEunbound 

The ΔEunbound component is composed of changes to the unbound RE energy, 

since the RE is mutated while the DNA substrate, and its energy, remain 

constant.  The K* algorithm computed a binding affinity approximation, 

termed K* score, to the association constant, Ka, using partition functions of 

ensembles of bound and unbound conformations, where the energy 

contribution of each conformation is weighted by a Boltzmann probability.  

The partition functions (pq), (p), and (q), over an ensemble of bound and 

unbound conformations were defined as: 

,  : ,  ,  

   :       NA
( )    ;     ( )    ;     ( )

i bound RE DNA i unbound RE i unbound DNAE E E
RT RT RT

i bound RE DNA i unbound RE i unbound D
pq e p e q e

− − −

∈ ∈ ∈

= = =∑ ∑ ∑
 

where E is the aforementioned computed energy in kcal/mol for each 

conformation.  The universal gas constant R (=8.314472 J K−1 mol−1) was 

used as a molar multiplicative of the Boltzmann constant typically used in 

the canonical ensemble.  The absolute temperature T (=298.15 K) was used 

as it is consistent with the implicit solvation energy term of the energy 

function and physiological temperature for the RE and DNA.  A reasonable 

statistical mechanics approximation to the kinetic binding constant was thus 

defined as (185): 
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Losses in binding energy and binding affinity were computed as the 

difference in binding energy between mutant and wildtype GMECs: 

ΔΔEbinding loss = ΔΔEbinding, mutant – ΔΔEbinding, wildtype 

and quotient of entire mutant and wildtype ensembles of conformations: 

K* scorebinding loss = K* scorebinding, mutant / K* scorebinding, wildtype 

respectively.  Atomic coordinates for the output models were generated for all 

unpruned conformations, and visualized for the GMECs. 

4.4.2. Scanning for mutation tolerance and experimental 

validation 

One application of this automated computational protocol was to scan 

amino acid residues for mutation tolerance. The three residues in R.PvuII, 

S81, N140, and N141, which had been previously identified to interact with 

the -3c::+3g BP in the cognate DNA substrate, , were mutated to all rotamers 

of themselves or alanine in order to assess losses due to this computational 

alanine scanning. Due to apparent asymmetry of the two monomers in the 

structural model, we performed both simultaneous and non-simultaneous  
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Figure 4-3: Computational and experimental alanine scans of 
selected residues in R.PvuII 

 

 
 

(A) Computed homodimer binding energy loss (left, full columns) and binding 
affinity loss (right) as a measure of residue mutation tolerance. Monomer-
specific contributions to binding energy losses are shown in stacked pink and 
gray columns (left). (B) Experimental alanine scan of the same residues 
validated the computational predictions. Mutant constructs were expressed 
in a cell-free system and tested for DNA digestion activity. Agarose gel 
electrophoresis of the digestion reactions indicated that S81A mutant 
maintained specific R.PvuII activity, while N140A and N141A mutants lost 
all enzymatic activity. The positive control (+cut) was cut with wildtype 
R.PvuII enzyme expressed in the same way as the mutants. The DNA 
substrate includes all 6-mer sequences. 
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alanine mutations for each of the three residues in the two monomers. As 

shown in Figure 4-3A, when scans were performed using simultaneous 

alanine mutations on both monomors, two wildtype-to-alanine mutations, 

N140A and N141A, resulted in binding energy losses of 8.32 and 4.98 

kcal/mol and binding affinity losses of approximately 6 and 4 orders of 

magnitude from the wildtype, respectively. When compared to the single 

position computational scanning performed for all other positions on both 

monomers simultaneously, these binding energy losses represented 

approximately 1 standard deviation (5.28 kcal/mol) or greater than the mean 

binding energy loss (0.72 kcal/mol) of all the residues except prolines or G56 

in the model.  The S81A mutation yielded a binding energy loss of 2.53 

kcal/mol, which was less than 1 standard deviation from the mean value, and 

a binding affinity loss of approximately 2 orders of magnitude. The 

computational alanine scan results suggested that mutations to S81 would be 

tolerated whereas mutations to N140 and N141 would lose too much binding 

energy and binding affinity.  When scans of non-simultaneous mutations 

were performed, the results revealed that corresponding positions on each 

monomer contributed unequally to the loss of binding energy, thus 

highlighting the asymmetry found in the models for symmetric biological 

units (Figure 4-3A). 
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Supplementary Table 4-1: Pruning efficiency of redesigned R.PvuII 
S81 mutants for cognate and non-cognate DNA substrates 

 pruning 
stage 

sequences 
remaining 

sequence pruning  
factor 

conformations 
remaining  

conformation pruning  
factor 

 

 

 mutatable:   S81 
 flexible:  S81 

initial 
allowable 

19 ; 19 ; 
19 ; 19 

– 152 ; 152 ; 
152 ; 152 

  – 

packing 
volume 

  8 ;   8 ;  
  8 ;   8  

2.375 (42%) ; 2.375 (42%) ; 
2.375 (42%) ; 2.375 (42%)  

  26 ;   26 ; 
  26 ;   26 ; 

  5.846 (83%) ;   5.846 (83%) ;
  5.846 (83%) ;   5.846 (83%) 

minDEE 
energy 

  8 ;   8 ;  
  8 ;   8  

0.000 (  0%) ; 0.000 (  0%) ; 
0.000 (  0%) ; 0.000 (  0%)  

  12 ;   12 ;  
    8 ;   11 

  2.167 (54%) ;   2.167 (54%) ;
  3.250 (69%) ;   2.364 (58%) 

A* steric 
constraints 

  8 ;   8 ;  
  8 ;   8  

0.000 (  0%) ; 0.000 (  0%) ; 
0.000 (  0%) ; 0.000 (  0%)  

  12 ;   12 ; 
    8 ;   11 

  0.000 (  0%) ;   0.000 (  0%) ;
  0.000 (  0%) ;   0.000 (  0%) 

bo
un

d 
co

nf
or

m
at

io
ns

 

K* partition 
fcn. contrib. 

 

  8 ;   8 ;  
  8 ;   8  

0.000 (  0%) ; 0.000 (  0%) ; 
0.000 (  0%) ; 0.000 (  0%) 

    9 ;     9 ; 
    8 ;   10 

  1.333 (25%) ;   1.333 (25%) ;
  0.000 (  0%) ;   1.100 (  9%) 

initial 
allowable 

19 ; 19 ; 
19 ; 19 

– 152 ; 152 ; 
152 ; 152 

  – 

packing 
volume 

  8 ;   8 ;  
  8 ;   8  

2.375 (42%) ; 2.375 (42%) ; 
2.375 (42%) ; 2.375 (42%)  

  26 ;   26 ; 
  26 ;   26 ; 

  5.846 (83%) ;   5.846 (83%) ;
  5.846 (83%) ;   5.846 (83%) 

minDEE 
energy 

  8 ;   8 ;  
  8 ;   8  

0.000 (  0%) ; 0.000 (  0%) ; 
0.000 (  0%) ; 0.000 (  0%)  

  15 ;   15 ;  
  15 ;   15 

  1.733 (42%) ;   1.733 (42%) ;
  1.733 (42%) ;   1.733 (42%) 

A* steric 
constraints 

  8 ;   8 ;  
  8 ;   8  

0.000 (  0%) ; 0.000 (  0%) ; 
0.000 (  0%) ; 0.000 (  0%)  

  15 ;   15 ; 
  15 ;   15 

  0.000 (  0%) ;   0.000 (  0%) ;
  0.000 (  0%) ;   0.000 (  0%) 

un
bo

un
d 

co
nf

or
m

at
io

ns
 

K* partition 
fcn. contrib. 

 

  8 ;   8 ;  
  8 ;   8  

0.000 (  0%) ; 0.000 (  0%) ; 
0.000 (  0%) ; 0.000 (  0%) 

  11 ;   11; 
  11 ;   11 

  1.364 (27%) ;   1.364 (27%) ;
  1.364 (27%) ;   1.364 (27%) 

 

 

 mutatable: S81 
 flexible:  K70, F80, S81, T82, N141, K143 

initial 
allowable 

19 ; 19 ; 
19 ; 19 

– 9.3x106 ; 9.3x106

9.3x106 ; 9.3x106
  – 

packing 
volume 

  8 ;   8 ;  
  8 ;   8  

2.375 (42%) ; 2.375 (42%) ; 
2.375 (42%) ; 2.375 (42%)  

1.6x106 ; 1.6x106;
1.6x106 ; 1.6x106

  5.846 (83%) ;  5.846 (83%) ; 
  5.846 (83%) ;  5.846 (83%) 

minDEE 
energy 

  8 ;   8 ;  
  8 ;   8  

0.000 (  0%) ; 0.000 (  0%) ; 
0.000 (  0%) ; 0.000 (  0%)  

2.6x105 ; 2.6x105;
3.3x105 ; 2.6x105

  6.143 (84%) ;   6.143 (84%) ;
  4.774 (79%) ;   6.143 (84%) 

A* steric 
constraints 

  8 ;   8 ;  
  8 ;   8  

0.000 (  0%) ; 0.000 (  0%) ; 
0.000 (  0%) ; 0.000 (  0%)  

2.3x105 ; 2.3x105;
3.1x105 ; 2.4x105

  1.126 (11%) ;   1.130 (12%) ;
  1.093 (  9%) ;   1.099 (  9%) 

bo
un

d 
co

nf
or

m
at

io
ns

 

K* partition 
fcn. contrib. 

 

  8 ;   8 ;  
  8 ;   8  

0.000 (  0%) ; 0.000 (  0%) ; 
0.000 (  0%) ; 0.000 (  0%) 

1.8x104 ; 2.3x104;
8.0x103 ; 1.1x104

12.764 (92%) ;   9.981 (90%) ;
38.064 (97%) ; 21.938 (95%) 

initial 
allowable 

19 ; 19 ; 
19 ; 19 

– 9.3x106 ; 9.3x106

9.3x106 ; 9.3x106
  – 

packing 
volume 

  8 ;   8 ;  
  8 ;   8  

2.375 (42%) ; 2.375 (42%) ; 
2.375 (42%) ; 2.375 (42%)  

1.6x106 ; 1.6x106;
1.6x106 ; 1.6x106

  5.846 (83%) ;  5.846 (83%) ; 
  5.846 (83%) ;  5.846 (83%) 

minDEE 
energy 

  8 ;   8 ;  
  8 ;   8  

0.000 (  0%) ; 0.000 (  0%) ; 
0.000 (  0%) ; 0.000 (  0%)  

5.1x105 ; 5.1x105;
5.1x105 ; 5.1x105

  3.150 (68%) ;   3.150 (68%) ;
  3.150 (68%) ;   3.150 (68%) 

A* steric 
constraints 

  8 ;   8 ;  
  8 ;   8  

0.000 (  0%) ; 0.000 (  0%) ; 
0.000 (  0%) ; 0.000 (  0%)  

4.4x105 ; 4.4x105;
4.4x105 ; 4.4x105

  1.139 (12%) ;   1.139 (12%) ;
  1.139 (12%) ;   1.139 (12%) 

un
bo

un
d 

co
nf

or
m

at
io

ns
 

K* partition 
fcn. contrib. 

 

  8 ;   8 ;  
  8 ;   8  

0.000 (  0%) ; 0.000 (  0%) ; 
0.000 (  0%) ; 0.000 (  0%) 

9.9x104 ; 9.9x104;
9.9x104 ; 9.9x104

  4.494 (78%) ;   4.494 (78%) ;
  4.494 (78%) ;   4.494 (78%) 

  

 reported for DNA substrates:  5’-cagctg-3’ ; 5’-tagcta-3’ ; 5’-aagctt-3’ ; 5’-gagctc-3’ 
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The pruning factor represents the ratio of the number of protein sequences or 
conformations present before and after the given pruning stage. The pruning-
% (in parentheses) represents the percentage of remaining protein sequences 
or conformations eliminated by the given pruning stage.  Reported for DNA 
substrates 5’-cagctg-3’ ; 5’-tagcta-3’ ; 5’-aagctt-3’ ; 5’-gagctc-3’. 
 
The stages pruned varying numbers of bound and unbound conformations.  
Fewer unbound as opposed to bound conformations were pruned.  This is not 
unexpected as the absence of the DNA substrate makes more space available 
for rotameric side-chains from the protein to be placed without steric clashes. 
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Experimental alanine scans agreed with the assessment of tolerance 

by computational scans on S81, N140, and N141, as indicated by the presence 

or absence of the +cut DNA band, representing complete digestion of all three 

cognate sequences found in the substrate (Figure 4-3B).  In addition to the 

qualitative importance of binding energy loss, the quantitative differences 

highlighted the effect of REase residue position and proximity to the DNA 

substrate.  For example, atoms of N140 and N141 are closer to the DNA and 

lose more binding energy than S81 when scanned. Despite this greater 

distance, it has been previously reported that this S81 residue is also critical 

to binding and cleavage, and that redesign attempts such as S81L were not 

successful (186).  Since our scanning results indicated that S81 was mutation 

tolerant, S81 was focused on as the target for redesign. 

4.4.3. Computational redesign for functional S81 mutants and 

experimental validation 

Another application of this automated protocol was to redesign 

mutation tolerant residues, such as S81 identified previously, by reducing the 

mutation search space at S81 and flexible search space of all residues 3.0 Å 

from S81 from 19 possible protein sequences containing 9,307,872 possible 

bound (and an equal number of unbound) rotameric conformations to 8 

mutants containing 18,037 and 98,727 possible bound and unbound  
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Figure 4-4: Computed binding affinities of redesigned R.PvuII S81 
mutants to cognate DNA substrate 

 

(A)  With residue S81 permitted to be mutatable to all amino acids except 
proline and to be flexible, a 1-point simultaneous mutation search was 
performed over 304 initial allowable total bound and unbound conformations.  
(B)  With residue S81 permitted to be mutatable to all amino acids except 
proline and residues having at least one atom within 3 Å of an atom of 
residue S81, i.e. K70, F80, S81, T82, N141, K143, permitted to be flexible, a 
6-point simultaneous mutation search was performed over 18,860,688 initial 
allowable total bound and unbound conformations.  



 

 
119 

 

1E+95

1E+105

1E+115

1E+125

1E+135

1E+145

1E+155

1E+165

1E+175

1E+185

S81T S81V S81C S81S S81A S81G S81N S81D

R.PvuII mutants

co
m

pu
te

d 
bi

nd
in

g 
af

fin
ity

DNA 5'-cagctg-3'   DNA 5'-tagcta-3'   DNA 5'-aagctt-3'   DNA 5'-gagctc-3'   

 

10 
 

10 
 

10 
 

10 
 

10 
 

10 
 

10 
 

10 
 

10 
 

10 
 

1E+95

1E+105

1E+115

1E+125

1E+135

1E+145

1E+155

1E+165

1E+175

1E+185

S81T S81V S81C S81S S81A S81G S81N S81D

R.PvuII mutants

co
m

pu
te

d 
bi

nd
in

g 
af

fin
ity

DNA 5'-cagctg-3'   DNA 5'-tagcta-3'   DNA 5'-aagctt-3'   DNA 5'-gagctc-3'   

 

10 
 

10 
 

10 
 

10 
 

10 
 

10 
 

10 
 

10 
 

10 
 

10 
 

A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B 

Supplementary Figure 4-3: Redesigned R.PvuII S81 mutants 
computed binding affinities to the cognate and non-cognate DNA 
substrates 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(A) With residue S81 permitted to be mutatable to all amino acids except 
proline and to be flexible, a 1-point simultaneous mutation search was 
performed over 1,216 initial allowable total bound and unbound 
conformations for the cognate, 5’-cagctg-3', and for the three possible non-
cognate sequences at the -3::+3 BP position.  Comparative evaluation 
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revealed that all these mutants have a general, but varying, preference for 
the cognate sequence.  This preference was experimentally tested with a 
DNA substrate containing all 64 palindromic 6-mer sequences, including 
these aforementioned for sequences, and validated to be the case.  Of the 
three non-cognate sequences, there existed a general, but varying, preference 
for 5’-tagcta-3’ which maintains the heterocyclic pyrimidine::purine ring 
configuration at the -3::+3 BP position with respect to the cognate sequence.   
 
(B) With residue S81 permitted to be mutatable to all amino acids except 
proline and residues having at least one atom within 3 Å of an atom of 
residue S81, i.e. K70, F80, S81, T82, N141, K143, permitted to be flexible, a 
6-point simultaneous mutation search was performed over 74,462,976 initial 
allowable total bound and unbound conformations for the cognate, 5’-cagctg-
3', and for the three possible non-cognate sequences at the -3::+3 BP position.  
Comparative evaluation once again revealed the preference for the cognate 
sequence remains while greater flexibility around the redesigned residue 
suggested the possibility of non-specific “star” activity exhibited by REases 
under more destabilizing conditions. 
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conformations, respectively (Supplementary Table 4-1).  In addition to 

addressing this combinatorial complexity through the consideration of more 

flexible residues so that the 9,430,344 possible bound (and an equal number 

of unbound) rotameric conformations were initially considered for each DNA 

substrate cognate or non-cognate sequence, various stages of the protocol 

enabled predictions to be made that have biological accuracy.  From the 19 

initial allowable residues, the volume filter enforced a 20% volume window 

that was satisfied by 8 of these residues.  Then, minDEE eliminated 

1,332,936 out of 1,592,136 (or 84%) bound and 1,086,696 out of 1,592,136 (or 

68%) unbound rotamers as not being at or within 5.0 kcal/mol of the GMEC.  

While no remaining conformations after this stage presented a steric clash 

severe enough to be pruned prior to A*, the sum of exponentiated energies of 

only 18,037 of the remaining 230,228 bound and 98,727 of the 443,720 

unbound conformations for 8 mutants contributed to 97% or more to the 

corresponding full bound and unbound partition functions, and thus were 

scored by K*. The sums of exponentiated energies for the other 

conformations, being of higher energy, were proven not to contribute enough 

to this 97% of the corresponding full partition functions to warrant inclusion.  

Interestingly, comparative evaluation for all three other possible non-cognate 

BPs at the -3::+3 position on the DNA substrate revealed that all eight 
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redesigned mutants show higher affinity for the cognate substrate 

(Supplementary Figure 4-3). 

Accurately predicting functional mutants out of 19 sequences or 152 

bound conformations is not trivial.  The protocol generated 8 redesigns, S81T, 

S81V, S81C, S81S, S81A, S81G, S81N, and S81D, in order of their binding 

affinities to the cognate DNA substrate (Figure 4-4).  Among the 8 redesigns, 

S81S was a true positive, as it was the rotameric native recovery of the 

functional wildtype sequence and structure, with a structural root mean 

square deviation averaged across both monomers and normalized by number 

of atoms in this residue of only 0.060 Å.  Another mutant that was pruned 

rather than predicted was an experimentally proven true negative, as it was 

the same S81L mutant that was already found to not function in earlier 

studies (186).  The function of the remaining 7 mutants had not been tested 

previously and thus warranted further investigation. 

The 8 redesigns were experimentally evaluated for restriction 

specificity and efficiency using DNA restriction digestion assays.  The 

R.PvuII gene, pvuIIR, and the redesigned mutants were synthesized and 

mutated de novo (Supplementary Figure 4-4) and verified by sequencing 

(Supplementary Figure 4-5).  To avoid potential cytotoxicity problems, these 

REase mutants were expressed from synthetic genes using the PURE cell-  
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Supplementary Figure 4-4: Enzyme synthesis and mutagenesis 
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Supplementary Figure 4-5: DNA sequencing chromatograms 
validates gene sequence of scanned and redesigned R.PvuII S81 
mutants 

 

 
 

 

 

 

   

 

 

 

 

  

 

 

 

 

 
 

 
The most frequently used codon in the synthesized PvuIIR wildtype gene 
sequence encoding each residue type was determined.  These codons 
(highlighted in   blue) were then specifically implemented during 
mutagenesis to the gene sequences for the scanned and redesigned mutants. 

  S81V   S81T 

  S81C 

  S81A  S81G 

 S81N  S81D 

 S81S 
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free protein synthesis system (187-191).  A typical reaction using the PURE 

system yielded about 50 pM of each full-length protein product with a C-

terminal His6-tag.  

For the restriction digestion assays, a synthetic DNA substrate 

containing the cognate sequence (5’-cagctg-3’) as well as all 63 other possible 

palindromic 6-mer non-cognate sequences was constructed to fairly assess the 

mutants’ functional specificity (Supplementary Figure 4-6).  Digestion with 

R.PvuII or a true functional mutant was expected to produce a distinct 

signature of cut DNA fragments (+cut) which is clearly discernable from the 

uncut (-cut) or those cut at different sites. The exact cutting site was 

identified by sequencing of re-ligation products if necessary (Supplementary 

Figure 4-7).  As shown in Figure 4-5, the results of the restriction digestion 

assays supported the redesign predictions from the computational protocol. 

The apparent molecular weights and relative concentrations of the His6-

tagged protein products of the mutant genes were verified by Western 

blotting with anti-His6 antibody (Figure 4-5A). With equivalent amount of 

each mutant protein present in the restriction digestion assays, it was found 

that the top 6 mutants with high scores in predicted ensemble-based binding 

energies, S81T, S81V, S81C, S81S, S81A, and S81G, all showed restriction 

digestion activities; the 2 lowest-scoring mutants, S81N and S81D, exhibited 

non-detectable activities over a time-course of 2 hours at 37°C (Figure 4-5B).  



 

 
126 

 

aaatttAaacgttAacatgtAcacgtgCac 
cggtAcccgggCccgcggCcgcgcgCgcat 
gcGcaattgCaagcttAagatctAgaattc   
GaatattAatcgatAtcatgaTCAttataa 
TTatatatATagcgctAGctgcagCTgtat 
acGTatgcatATggcgccGGccatggCCac 
gcgtAcgatcgCGaggcctAggatccGGac 
tagtActcgagCTctatagCTAgtcgacGT 
C 

compressed length = 241 BP

loss-less  
compression  
of 64 sub- 
sequences  
 
to shortest  
common  
supersequence

             plasmid 
     linearization 
         by R.BglII 

circular plasmid = 3113 BP 
 
-cut DNA, linearized plasmid =  3113 BP 
 
+cut DNA,  largest fragment = 2514 BP 
 

 

AmpR

ColE1 origin 
of replication 

R.PvuII

 

  R.PvuII
  lacz 
 

   R.BglII
 

R.PvuII

synthesized substrate has 
100% sequence fidelity 
with designed supersequence 

DNA de novo synthesis, 
verified by DNA sequencing

64 subsequences  
containing  
all possible  
palindromic  
6-mers 
 
concatenated  
length = 384 BP 

aaaTTT  acaTGT  agaTCT  ataTAT 
aacGTT  accGGT  agcGCT  atcGAT 
aagCTT  acgCGT  aggCCT  atgCAT 
aatATT  actAGT  agtACT  attAAT 
 
cccGGG  cgcGCG  ctcGAG  cacGTG 
ccgCGG  cggCCG  ctgCAG  cagCTG 
cctAGG  cgtACG  cttAAG  catATG 
ccaTGG  cgaTCG  ctaTAG  caaTTG 
 
gggCCC  gtgCAC  gagCTC  gcgCGC 
ggtACC  gttAAC  gatATC  gctAGC 
ggaTCC  gtaTAC  gaaTTC  gcaTGC 
ggcGCC  gtcGAC  gacGTC  gccGGC 
 
tttAAA  tatATA  tctAGA  tgtACA 
ttaTAA  taaTTA  tcaTGA  tgaTCA 
ttcGAA  tacGTA  tccGGA  tgcGCA 
ttgCAA  tagCTA  tcgCGA  tggCCA 
 

R.BglII recognition sequence 

R.PvuII recognition sequence 

R.PvuII 

Supplementary Figure 4-6: Design and evaluation of DNA substrate 
for REases 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

A synthetic DNA substrate sequence was designed that contained all 64 possible 
palindromic 6-mers as subsequences.  For accuracy and efficiency of synthesis, this 
concatenated sequence of length 384 BP was computationally compressed in a loss-
less manner to the shortest common supersequence of length 241 BP containing all 
subsequences in overlapping arrangements.  This DNA supersequence was de novo 
synthesized and verified by sequencing.  Upon inserting this synthesized 
supersequence into a circular plasmid backbone of length 2872 BP, the total length 
of the plasmid for the assays was 3113 BP.  With the restriction map determined, 
this circular plasmid was linearized (red line) using R.BglII, since its restriction site 
occurred only once.   This linearized plasmid, when fully digested at the R.PvuII 
cognate sequence by scanned or redesigned mutants, are expected to produce DNA 
fragments of lengths 2514 (green line), 323, 210, and 66 BPs.  The largest of these 
+cut DNA fragments are readily comparable to the -cut DNA linearized plasmid 
during gel electrophoresis. 
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Supplementary Figure 4-7: DNA sequencing chromatograms 
validates restriction sequence of +cut DNA, i.e. largest fragment, 
from DNA substrate after complete digestion by redesigned R.PvuII 
S81 mutants 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
The largest fragment was isolated by gel electrophoresis and extracted by gel 
purification.  The purified fragment was then incubated with T4 ligase for 
self-ligation and sequenced using the method and tools detailed elsewhere in 
this work. 
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Figure 4-5: Enzymatic activities of redesigned R.PvuII S81 mutants 

 
(A) Western blot validating that equivalent concentrations of R.PvuII mutant 
proteins were synthesized and used in restriction digestion assays.  



 

 
129 

 

 
(B) Agarose gel electrophoresis of equal aliquots of restriction digestion 
reactions of the eight mutants taken at specified time points. The top band of 
3,113-BP represents the full-length DNA substrate. The 2,514-BP band 
represents the longest fully-digested product; other smaller digestion 
products were out of the exposure area. The bands in between are incomplete 
digestion products as the linear DNA substrate contains 3 R.PvuII 
restrictions sites.  
 
(C) Kinetics of restriction digestions of the three most active enzymes, S81T, 
S81S, and S81A (n = 3 for each mutant). The relative quantity of each band 
in the agarose gel was quantified by densitometry analysis. The percentage of 
+cut DNA over total DNA was calculated based on densitometry results. The 
kinetics data was plotted and reaction half-times were measured on the plot. 
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The patterns of the digestion intermediates and final products all indicated 

that the six functional mutants all recognized the cognate R.PvuII site. The 

level of enzymatic activities varied among the six functional mutants. For the 

three constructs that completely digested the DNA substrate within 2 hours 

at 37°C, S81T, S81S, and S81A, the half-times, or times taken to turnover 

half of the DNA substrate to +cut DNA, were 1.0, 2.6, and 5.7 minutes, 

respectively (Figure 4-5C). It is apparent that the top-scoring mutant, S81T, 

exhibited significantly higher activity than the wildtype while maintaining 

specificity (Supplementary Figure 4-7). This further demonstrated that 

ensemble-based binding affinities, rather than GMEC-based bound energies, 

were better predictors of these experimental outcomes (Table 1). 

Output 3D models.  To gain intuition on the interactions taking place 

in the redesigned mutants, a final step of the protocol built 3D output models 

for analysis.  Atomic coordinates for output models were built for bound and 

unbound conformations post-pruning and post-scoring.  For uniformity, the 

output models were built using the same rotamer library and energy 

minimization within voxels that were applied upstream in the protocol to 

mutate the input models.  Similarly, the same composite energy function was 

applied to evaluate the energy of each output model in order to rank by 

energy and identify the bound and unbound GMEC for each mutant.   The 

bound GMEC for each mutant was then post-hoc analyzed for biophysical 
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properties, such as steric packing and biochemical complementarity, which 

may confer favorable interactions with the DNA.  These models revealed that 

the mutants with predicted affinities higher than the wildtype exhibited 

packing similar to the wildtype, while those with predicted affinities lower 

than the wildtype were under- or over-packed with respect to the wildtype 

(Figure 4-6). 

4.5. Discussion 

This study developed a computational molecular engineering protocol 

that successfully redesigned a challenging Type II restriction endonuclease, 

R.PvuII, after scanning its residues in silico for mutation tolerance.  The 

protocol recovered the native sequence and structure and predicted high 

binding affinity mutants using partition functions over conformational 

ensembles. These benefits were reaped from its groundings in statistical 

mechanics, though at substantial computational cost. The protocol is general 

and can be applied to any nucleic acid binding protein (NABP) for which 

structure coordinates are available for the bound conformation.  This can not 

only contribute to the understanding of existing protein-nucleic acids 

interactions, but may enable the modeling and engineering of synthetic  
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Table 4-1: Computed ensemble-based binding affinities, rather than 
global minimum energy conformation-based bound energies, are 
better predictors of experimental outcomes 

 

 

 

 

 

 

 

 

 

 

 

 

 

        ND = not determined. 
        n = 3 
 

S81 
mutant 

binding affinity rank 
(K* score) 

bound energy 
rank 
(kcal/mol) 

function  
presence

function 
half-time 

  

mutatable: S81 
flexible:  S81 

S81T 1st  (1.779 × 10189) 2nd  (-403.682) +cut 1.0 min 
S81V 2nd  (1.308 × 10189) 4th  (-402.076) +cut ND 
S81C 3rd  (3.152 × 10188) 5th  (-401.389) +cut ND 
S81S 4th  (9.462 × 10187) 6th  (-400.863) +cut 2.6 min 
S81A 5th  (9.922 × 10186) 7th  (-397.230) +cut 5.7 min 
S81G 6th  (1.637 × 10186) 8th  (-395.396) +cut ND 
S81N 7th  (1.155 × 10186) 1st  (-405.865) -cut ND 
S81D 8th  (9.259 × 10184) 3rd  (-402.816) -cut ND 

  

mutatable: S81 
flexible:  K70, F80, S81, T82, N141, K143 

S81T 1st   (9.252 × 10186) 2nd  (-401.855) +cut 1.0 min 
S81V 2nd  (7.408 × 10186) 4th  (-400.102) +cut ND 
S81C 3rd  (2.670 × 10186) 5th  (-399.384) +cut ND 
S81S 4th  (4.894 × 10185) 6th  (-398.977) +cut 2.6 min 
S81A 5th  (5.937 × 10184) 7th  (-395.249) +cut 5.7 min 
S81G 6th  (8.656 × 10183) 8th  (-393.372) +cut ND 
S81N 7th  (8.576 × 10183) 1st  (-403.525) -cut ND 
S81D 8th  (5.845 × 10182) 3rd  (-400.723) -cut ND 

  

reported for DNA substrate:  5’-cagctg-3’ 
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 interactions as well (177). 

The example used here represents a particularly significant 

computational scanning and redesign challenge.  Since R.PvuII is the 

smallest known REase, and is a homodimer encoded by a single gene, small 

mutations in the gene sequence can have dramatic impact on the protein 

structure and function.  Furthermore, given the 2.60 Å resolution and 

completeness at this resolution (34.8 %) of  the input structure model, it is 

impressive that our approach was able to predict mutations that were 

experimentally found to be accurate. The challenge involves making 

mutations that were both tolerable, as determined by scanning, and 

functional, as discovered by redesign.  

Alanine scanning is useful in assessing the importance of interacting 

residues between biomolecules.  Computational alanine scanning of NABPs 

using our protocol is a facile means of identifying mutation tolerant and 

intolerant residues.  This approach is rapid and cost-effective, taking on the 

order of minutes to hours to compute binding properties for a given scanned 

residue on a 2.66 GHz node of a parallel high performance computing cluster.  

This approach, to an extent, also accurately models reality, as asymmetric 

contributions of symmetric binding partners mentioned elsewhere in the 

literature (178) were computationally revealed during our scanning of the  

 



 

 

 134 

Figure 4-6: Modeling of global minimum energy conformations near the -3c::+3g BP of 
cognate DNA substrate 5’-cagctg-3’ illustrates packing of redesigned R.PvuII S81 mutants 

 

Packing (enclosed yellow area) is one of the distinguishing features of redesigned R.PvuII S81 
mutants.   
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homodimeric REase with the palindromic DNA.  In contrast to other 

computational methods with similar features, this approach is not heuristic 

and does guarantee a gap-free list of mutants for experimental consideration.   

Similar scanning has been performed for protein-protein interfaces of single-

conformation and molecular dynamics approximated multiple-conformations 

(192-195).  However, to our knowledge this is the first report of 

computational alanine scanning on protein-nucleic acid interfaces using 

molecular ensembles. 

Redesign of NABPs is vital to the understanding and engineering 

protein-nucleic acid interactions.  However, this field has been fraught with 

obstacles as there is no known or well characterized correspondence, or 

recognition codes between NABP amino acids and substrate nucleic acids (5).  

Our structure-based protocol obviates the reliance upon such correspondence 

codes by evaluating the interactions of each NABP specifically on a case-by-

case basis and at an all-atom level. 

The field has also attempted to redesign single conformations, such as 

the GMEC, without much success (186). The results presented here 

demonstrated that binding affinities computed from ensemble-based 

computations, rather than bound energies calculated from single-

conformation assessments, are better predictors of experimental outcomes, 

and thus may describe the underlying dynamics better than these previous 
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approaches (Table 4-1).  Of the surviving eight mutants predicted to bind 

with high affinity, the top ranked six were validated to function, with one 

discovered to out-perform the wildtype.  This is the first report of an 

ensemble-based approach to redesigning NABPs based on statistical 

mechanics, where a collection of bound and unbound conformations are used 

in ensembles for Boltzmann-distributed partition functions, and the partition 

functions and computed conformational energies are utilized to compute 

provably-good approximations to binding affinities. 

Though the redesigned GMEC structures represent only a single 

conformation among possibly many others in the ensembles that populate 

these partition functions, they are worth inspecting for intuition on molecular 

packing between REase and DNA.  Nevertheless, the effects of such packing 

were evaluated by the energy function for all conformations and not just the 

GMEC.  The S81S mutant, which the protocol outputs as the rotameric model 

equivalent of the wildtype structure, is recovered with the fourth highest K* 

score for binding affinity.  The three mutants having higher K* scores, S81T, 

S81V, and S81C, are packed similarly to the wildtype, but present REase 

side-chain moieties to the DNA that are more favorably assessed by protocol.  

In particular, a reason why the S81T mutant out-performs the wildtype may 

be due to its ability to present both a hydroxyl group that can participate in 

hydrogen bonding and a methyl group for hydrophobic complementarity.  
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Two other mutants, S81A and S81G, having K* lower than S81S, are 

apparently under-packed as compared to the wildtype.  The remaining two 

mutants with the lowest K* scores, S81N and S81D, appear over-packed as 

compared to S81S. According to the experimental results, it seems that, while 

the under-packing still permitted some attenuated R.PvuII enzymatic 

activity, over-packing significantly reduced or abolished it. The precise effects 

of under or over packing on the overall structure of the protein remain to be 

investigated, but the utility of packing in design is in agreement with 

findings elsewhere (196). 
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5. Open-source molecular engineering 
There is something fascinating about science.  
One gets such wholesale returns of conjecture  

out of such a trifling investment of fact. 
 

                                                                                                  – Mark Twain 
                                                                                                     American author 
 

This chapter has been adapted partially from a manuscript that was joint 

work with Ivelin Georgiev, Jingdong Tian and Bruce R. Donald: 

Reza F., Georgiev I., Tian J., Donald B. R. Open-source computational 

redesign of nucleic acid binding proteins. To be submitted. 

and partially from a research meeting abstract that was joint work with 

Qihai Wang, Ivelin Georgiev, Bruce R. Donald, Jingdong Tian: 

Reza F., Wang Q., Georgiev I., Donald B. R., Tian J. Computational and 

experimental scanning and redesign of nucleic acid proteins. Sigma Xi, 

The Scientific Research Society 2009 Student Research Conference. 

2009, The Woodlands in Houston, TX. 

5.1. Motivation 

Computationally designed and redesigned proteins have been reported.  

In contrast, comparably fewer numbers of software have been released.  We 

report the release of an open-source cross-platform macromolecular 

engineering software suite OSPREY: Open Source Protein REdesign for You 

for the redesign of nucleic acid binding proteins.  Functions of the software 
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suite include protein scanning, redesign, native structure recovery, and 

molecular rebuilding.  The community-wide adoption of OSPREY is 

anticipated to increase the frequency and diversity of redesigns of nucleic 

acid binding proteins, ubiquitous and vital to all forms of life. 

5.2. Overview 

There are a number of significant challenges in computational protein 

design (197).  Access to protein design software should not be one of them.  

Protein design software is not often readily available or usable.  This may be 

partially due to the state of the software.  Development-grade software rarely 

is distributed outside the expertise and oversight of specific user groups.  

Another possible reason for the dearth of software may be tied to the conflicts 

of interests associated with the software.  Commercial entities, whether big 

pharmaceutical corporations or fledgling start-ups often consider software 

developed in-house as part trade-secret and part competitive advantage. 

Software that is readily available may or may not appeal to the end-

user.  Heuristic algorithms are available, but can be limited in the choice of 

heuristics and level of control afforded (198,199).  Other design routines and 

libraries are state-of-the-art and powerful, but are not integrated into a 

relatively user-friendly software suite for end-to-end molecular design 

(200,201).  Some projects have generously established webserver interfaces to 

automated protein design, which provide some but not complete 
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customization capabilities, as well as computing clusters, which can be 

overburdened with potentially many simultaneous end-users (202).  While 

automation in protein design may seem desirable (203), the level and 

locations of automation can prove otherwise.  Still other software are 

distributed under permissive licenses, but have integrated code from other 

projects which may not share similar licenses (204).  We make the case that 

many of these qualms can be ameliorated though open-source 

macromolecular engineering software that is modular and a development 

community that is correspondingly open and free to exchange ideas. 

5.3. Modeling flexibility in nucleic acid binding protein 

redesign 

Macromolecules move.  It is desirable for the models in design to move 

and present different conformations as well, preferably in some principled 

fashion.  Rotamer libraries have continually improved with respect to the 

high-resolution source crystallographic structures from which they are 

created (205) and improved modeling using rotamer based-methods (206).  

Studies of side-chain rearrangements upon ligand binding have shown that, 

normalized for the number of dihedral bonds, polar amino acids were more 

flexible than aromatics in interfacial pockets (IPs) (116).  Once placed, 

further flexibility is gained by using energy minimization to relax rotamer 

side-chain initial geometries (207).  This energy minimization may also 
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permit more preferable packing and specificity during the design process 

(208).  Even further flexibility can be achieved while maintaining the 

provable guarantees by moving the protein backbone (209), thus modeling the 

conformational accommodations that may occur due to mutations to the 

residue side-chain. While energy functions are continually improving, and 

energy minimization capabilities reaching to larger and longer molecular 

space and time scales, optimization methods to estimate and reduce the 

problem size are being developed (210). 

 Recognizing the importance of flexibility in design, we have extended 

the minimized side-chain Dead-End Elimination (minDEE) (112,114), A* 

gap-free ordered enumeration (115), and K* provably-accurate ensemble-

based (124) algorithms to nucleic acid binding proteins in an open-source, 

cross-platform software suite, OSPREY: Open Source Protein REdesign for 

You.  The software is written in the Java language and uses the standards-

compliant message passing interface (MPICH2) and an objected-oriented 

wrapper (mpiJava) for distributed computation (182-184) (Figure 5-1).  

5.4. Computational redesign in practice 

OSPREY for nucleic acid binding proteins has been put into practice 

for four functions: alanine scanning, active site redesign, native structure 

recovery, and molecular rebuilding of protein and enzyme structures. 
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Figure 5-1: Open-source software engineering for computational 
redesign of nucleic acid binding proteins 
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5.4.1. Scanning 

As described in Chapter 4, OSPREY was used to computationally 

alanine scan R.PvuII residues S81, N140, and N141 for mutation tolerance. 

Functional assays validated the accuracy of predictions, specifically that 

residue S81 was tolerant to mutation, while residues N140 and N141 were 

not tolerant as determined by in vitro cleavage assays. 

5.4.2. Redesign 

As described in Chapter 4, OSPREY was used to redesign R.PvuII 

residue S81 to all minimized rotamers of all non-proline residues.  Time-

course functional in vitro assays validated the accuracy of predictions.  The 

highest six of the total eight K* ranked predicted mutants all functioned as 

determined by in vitro cleavage assays.  Furthermore, the highest K* ranked 

predicted mutant functioned faster than the wildtype enzyme. 

5.4.3. Native structure recovery 

A further assessment of computational molecular design algorithms, 

such as our own, involves their ability to recover what already exists in 

nature.  Termed native recovery, this recapitulation of the existing sequence 

and structure can be thought of as a redesign towards the natural protein or  
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Figure 5-2: Native structure recovery of residues in R.PvuII structure 

Native structure (PDB ID: 1PVI) was recovered for all atoms in all residue side chains as the global 
minimum energy conformation (GMEC), in terms of small average distance root-mean-square 
deviation (RMSD).  Data point represents mean value of RMSD for the residue found on both 
monomers of R.PvuII homodimer.  Vertical line at each data point represents high value and low 
value of RMSD for the residue on each monomer of R.PvuII homodimer.   

 S
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enzyme, given the general framework of the algorithms and the inputs 

necessary to build the wildtype structure, such as a rotamer library and the 

sequence of the wildtype protein.   OSPREY was used to recover the native 

structure of R.PvuII at all non-proline residues on both monomers of the 

homodimer.  The bound and unbound 3D structure input models of PvuII 

were built from source crystallographic structure coordinates for the holo 

form phased at 2.60 Å (PDB accession ID: 1PVI (41)) retrieved from the Protein 

Data Bank (32) and prepared as described in previous Chapters.  The entire 

protein, cognate and flanking DNA substrate structure was modeled as part 

of the redesign process.  Matching residues on both monomers on the dimer 

were mutated simultaneously to the wildtype residue, thus predicting 

rotameric conformations of the wildtype structure.  All output model 

structures were generated and the GMEC for each matching residue 

identified.  Each output model structures were spatially aligned to the input 

model structure and the distance root-mean-square deviation (RMSD) for 

each residue was calculated.  From this calculation, for each matching 

residue on the monomers, the average RMSD was computed as well.  The 

average RMSD value was normalized by all-atoms-per-residue  to address 

residue size bias.  This average RMSD, normalized by all-atoms-per-residue, 

was determined to be no greater than 0.3 Å across the entire protein (Figure  
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Figure 5-3: Molecular rebuilding of R.PvuII placeholder residue A94 
to redesigned wildtype residue A94Y 

 

 

 

 

 

 

 

 

 

 

 

 
(A) In an earlier crystallographic structure of R.PvuII (PDB ID: 1PVI), the 
electron density for Y94 was unclear and it was modeled as A94 (purple ball-
and-sticks). 
 
(B) Rebuilding the structure from (A) to A94Y and the lowest minimum 
energy side-chain conformation was generated (orange ball-and-sticks). 
 
(C) The rebuilt A94Y lowest minimum energy side-chain conformation 
(orange ball-and-sticks) from (B). 
 
(D) The rebuilt A94Y lowest minimum energy side-chain conformation 
(orange ball-and-sticks) aligned to a later crystallographic structure of 
R.PvuII (PDB ID: 1EYU) having a clearly resolved Y94 residue (green ball-
and-sticks) showed spatial and electron density agreement.  
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5-2). Furthermore, as a computational validation, residues with more 

dihedral bonds and rotamers in the rotamer library (Appendix A.2) exhibited 

greater RMSD. 

5.4.4. Molecular rebuilding 

The ability of our software to natively recover structures accurately 

suggests the possibility of rebuilding structures that were otherwise left 

undefined.  OSPREY was used to rebuild a placeholder residue, A94, in the 

aforementioned 3D structure input model of R.PvuII (PDB accession ID: 1PVI 

(41)).  This original authors of the crystallographic structure chose to model  

residue 94 as an alanine rather than the wildtype tyrosine due to the lack of 

clarity in the electron density map (Figure 5-3, A).  This residue position, 

originally having alanine as a placeholder, was rebuilt with all flexible 

rotamers of tyrosine from the rotamer library (Figure 5-3, B).  Once again, all 

output model structures were generated and the lowest energy conformation 

of A94Y was identified (Figure 5-3, C).  As a comparative test, a newer 

crystallographic structure for which the Y94 residue was adequately resolved 

to assign a structure to this side-chain (PDB ID: 1EYU) (44) was retrieved 

from the Protein Data Bank (32).   Global space alignment was performed 

with the CA-C-Ni+1 protein backbone atoms between the output model 

structure and the structure with Y94.  The molecular rebuilt A94Y showed 

spatial and electron density agreement with the Y92 residue of the newer 
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crystallographic structure, despite the computations not having prior 

knowledge of the conformation of the native tyrosine residue (Figure 5-3, D). 

5.5. Discussion 

The functions demonstrated herein are among some of the many 

possible using the software suite OSPREY for nucleic acid binding proteins.  

The open-source, object-oriented framework of this software permits end-

users to modify, compile, and run independently.  In doing so, further 

extensions and functions are limited only by the end-user’s imagination.  

Furthermore, the open-source model and reasonably permissive licensing of 

OSPREY can encourage adoption and improvement through the efforts and 

good-will of the end-user community. 
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6. Applications and issues of molecular engineering 
Each individual person is very important.  

Each person has tremendous potential. 
She or he alone can influence the lives of others  

within the communities, nations,  
within and beyond her or his own time. 

 
                                                                                        – Muhammad Yunus 
                                                                                           Bangladeshi economist 
 

This chapter has been adapted partially from a manuscript that was joint 

work with Kuo-Sheng Ma, Ishtiaq Saaem and Jingdong Tian: 

Ma K-S., Reza F., Saaem I., Tian J. Versatile surface functionalization of 

cyclic olefin copolymer (COC) with sputtered SiO2 thin film for potential 

BioMEMS applications. Journal of Materials Chemistry. 2009, 19: 7914-

7920. 

partially from a research meeting abstract that was joint work with Jingdong 

Tian: 

Reza F., Tian J. Engineering molecular interactions for targeted 

therapeutics and technologies. National Academy of Engineering Grand 

Challenges National Summit. 2009, Durham, NC. 

and partially from a manuscript that was joint work with Duke University 

international Genetically Engineered Machines (iGEM) Program 2006: 

Reza F., Chandran K., Feltz M., Heinz A., Josephs E., O'Brien P., Van 

Dyke B., Chung H., Indurkhya S., Lakhani N., Lee J., Lin S., Tang N., 
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LaBean T., You L., Yuan F., Tian J. Engineering novel synthetic biological 

systems. IET Synthetic Biology. 2007, 1: 48-52. 

6.1. Motivation 

Engineering biological systems is challenging.  Doing so demands 

intimate understanding of the natural biological system, a multidisciplinary 

and principled approach, and appreciation of the impact of such actions.  The 

ability to redesign proteins that can act upon nucleic acid substrates is of 

notable interest, due to their ubiquity and importance in all living organisms.   

In basic science and engineering settings, these redesigned proteins 

can be applied to advancing the state of bionanotechnologies, where DNA 

enzymes already have a prominent role.  Redesigned proteins can also be 

utilized as components of other biotechnologies, such as the described herein 

for probing the behaviors of gene-protein circuits.   

In medicine, redesigned proteins can be applied as novel therapeutics, 

such as towards desirable or different signaling and regulation of endogenous 

genes and proteins or enzyme replacement therapy.  As recombinant biologics 

or biological medicinal products, redesigned proteins can again interface with 

other therapeutic modalities, such as the strategy described herein of 

reprogramming of genes for heritable repair or conferral of benefits. 

These proposals in biotechnological and therapeutic applications elicit 

ethical, social, and social issues (ELSI).  As molecules that can intimately 
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modify the code of life in intended as well as deleterious manners, the ethics 

of nucleic acid binding proteins and enzymes as dual-use technologies are 

discussed.  As useful and novel technologies, these proteins are also within 

the purview of the legal and industrial sectors, through such avenues as 

patenting and commercialization.  With the emergence and increasing ease of 

manipulating genes and genomes using nucleic acid binding proteins and 

other molecules, the social dimensions of do-it-yourself (DIY) and communal 

hacker biology as well as implications for global health are addressed. 

6.2. Bionanotechnologies 

Proteins are among biology’s most potent nanotechnologies.  The 

diversity of their form and function enables the living world around us.  

Intrigued and inspired by nature’s use of nucleic acid binding proteins, 

practitioners of the art have adopted these bionanotechnologies to 

manipulate biology towards various purposes.  Researchers have used these 

proteins as tools of biotechnological discovery and development.  By isolating 

nucleic acid binding proteins from natural systems, observing their behavior, 

and then creatively connecting this behavior to needs in the laboratory, these 

proteins have served to copy and thus amplify DNA (211-218), transform 

DNA into mRNA (219-221), mRNA to DNA (222-226), join DNA together 

(227-229), repair damaged DNA (230,231), protect or sequester DNA from 

other molecules (232-235), silence gene expression through RNA interference 
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(RNAi) (236-238), produce other proteins from mRNA and tRNA (239-243), 

and much more.  Among the functions most desirable and readily applied in 

the laboratory is the ability to bind and cut short, specific sequences of DNA.  

This sequence-specific function is undertaken by the workhorses of molecular 

biology, restriction endonucleases (REases) (16,21,143,144,244-246).  

REases have evolved to satisfy the activity and specificity 

requirements of the host organism.  The genes for these enzymes, along with 

their corresponding methyltransferases (MTases), form restriction-

modification (R-M) systems that have been isolated through careful searches 

of bacterial and archeal genomes.  Interestingly, individual R-M systems 

have highly-specific sequence recognition capacities that are intolerant to 

degenerate DNA sequences, but collectively these systems are diverse in the 

sequences they are able to bind (247). 

While this diversity exists, the search for natural R-M systems with 

certain specificities remains unproductive and those that are found are 

restricted to their evolved levels of enzymatic activity.  With the pace of 

advancements in high-throughput oligonucleotide synthesis and BioMEMS 

technologies (158,248,249), synthetic gene and even genomes can been 

artificially produced rather than traditionally cloned from natural sources 

(250,251).  These synthetic genes can be introduced into heterologous cellular 

expression systems in order to produce proteins.  In addition, progress in cell-
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free protein expression technologies (190,191,252) permits the production of 

synthetic proteins from these genes to occur in vitro.  This is particularly 

important for the expression of proteins, such as REases, that would be 

cytotoxic for in vivo expression systems that lack sufficient endogenous 

mechanisms of protection (such as MTases with suitable sequence specificity) 

and physical barriers (such as nuclear walls) to the activity of these proteins.  

Analogously, protein-based mechanisms of protection can be created using 

the aforementioned oligonucleotide synthesis technologies and introduced 

into the expression system exogenously.  Thus, the ability to synthetically 

produce genes and proteins in conjunction with the ability to mutate genes 

and produce proteins from nature permits the introduction of greater 

diversity of specificity and activity than previously available. 

The diversity through the redesign of REases for altered specificity and 

activity was demonstrated in Chapters 3 and 4, respectively.  There are a 

multitude of constructive applications for these redesigned REases.  Some of 

these applications are described as follows. 

With altered specificity comes the ability to cleave DNA not previously 

possible or possible with a less preferable REase.  This ability is a boon for 

laboratory molecular biology, where often experimental conditions would 

require or prefer such altered specificity.  For example, a REase redesigned 

with a novel specificity would enable new DNA sites to be cleaved and, in 
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turn, insertion of new genetic material between the cleaved sites to be ligated 

that was not previously possible.  This ability also has consequences for 

laboratories in various settings.  Consider genomic diagnostic tests or in 

forensic analyses settings, in which DNA profiling through digestion with a 

REase with redesigned novel specificity can provide further uniquely cut 

DNA fragments for that single nucleotide polymorphism (SNP).  Yet another 

setting is in genetic counseling and population studies, where a REase with 

redesigned specificity can digest genomic DNA for restriction fragment length 

polymorphism analysis.  In doing so, closely related sequences that differ at 

the cognate sequence of the redesigned REase can be distinguished. 

With altered activity comes the ability to cleave DNA faster or with 

fewer non-specific cleavages, or “star” activity, than previously possible.  This 

ability, too, is a boon for molecular biology by reducing incubation time or the 

amount, and thus cost, of REase needed for complete digestion of the DNA 

substrate.  The faster activity can also enable better monitoring and 

avoidance of “star” activity, which occurs with prolonged incubations or 

REases with DNA, and which can obfuscate the reaction results when used in 

biotechnological and biomedical applications.  For similar reasons, mutations 

to REases that confer reduction in “star” activity while maintaining 

specificity has been applied (253).  Maintaining specificity is vital for utility 

in sequence-specific biotechnological and biomedical applications, such as 
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cloning, DNA footprinting, genotyping, and restriction mapping.  The 

combination of both aspects confers the advantages of more rapid, while 

equally specific, cleavage of the DNA substrate, not found in nature. 

The application of redesigned REases also facilitates the ability to test 

hypotheses about R-M systems themselves.  Among the hypotheses on the 

prevalence of R-M systems are that they are selfish genetic elements that 

shape the host genome (247).  This hypothesis has support from several 

empirical observations.  For example, when a R-M system is introduced into a 

host, the REase or MTase genes it carries cannot be readily displaced by a 

plasmid that is incompatible with this introduced system (254) or replaced by 

DNA that is homologous (255).  The incompatible plasmid can also interfere 

with an introduced or existing R-M system by reducing the concentration of 

REase and MTase proteins in the cell, leading to “post-segregational host 

killing.”  This killing is hypothesized to occur because while all methylation 

sites in the host genome must be acted upon by the dwindling number of 

MTases, only a single un-methylated restriction site is sufficient to be cut by 

the reduced in number, yet present, REases and cause cell apoptosis (256).  

Furthermore, the codons used in R-M genes are distinctly different than 

those used elsewhere in the host genome (257) as well as across several 

sequenced genomes (258), further implicating that R-M systems are 

themselves foreign to the host.  Another hypothesis on the maintenance of R-
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M systems is that they evolved as part of synergistic cellular defense.  This 

hypothesis suggests that prokaryotes evolved to encode REases to defend 

their genomes from bacterial, viral, and other foreign genetic materials and 

MTases to protect themselves from their own REases (259,260).  This 

hypothesis is particularly apt to the bacteria and archea in which R-M 

systems have so far been identified.  These hypotheses, and the underlying 

natural balance that exists between REases and MTases can be tested 

through REases that maintain sequence specificity but perturb activity from 

the WT REase.  As described in Chapter 5, we have computationally 

engineered and experimentally evaluated two REases with the requisite 

activity profiles:  R.PvuII-S81T, which has activity faster than R.PvuII-WT, 

and R.PvuII-S81A, which has activity slower than R.PvuII-WT. 

In order to test the selfish genetic elements and synergistic cellular 

defense hypotheses, cells-based REase expression systems for R.PvuII (186) 

can be programmed so that synthetic gene-protein circuits interface with the 

endogenous natural bionanomocular machinery (261).  We propose that three 

synthetic circuits can permit some elucidation of these hypotheses: a circuit 

consisting of R.PvuII-WT and M.PvuII (Figure 6-1A), a circuit consisting of 

R.PvuII-S81T and M.PvuII (Figure 6-1B), and a circuit consisting of R.PvuII-

S81A and M.PvuII (Figure 6-1C).  For testing the post-segregational host  
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Figure 6-1: Wildtype R.PvuII-WT and redesigned R.PvuII-S81T and 
R.PvuII-S81A mutants in restriction-modification gene-protein 
circuits 
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the host cell is able to protect its genome through methylation using its own 
WT M.PvuII before its own WT R.PvuII can cleave the same cognate DNA 
sequence.  The WT R.PvuII is able to cleave the cognate DNA sequence found 
in the infecting bacteriophage, thus protecting the host.   
 
(B) In a synthetic restriction-modification gene-protein circuit, a mutant 
R.PvuII-S81T that acts more quickly than the WT R.PvuII may cleave the 
bacteriophage DNA sequence so that there is less likelihood for phage 
proliferation, but may cause deregulation in the restriction-modification 
system so that the same cognate DNA sequence in the host is cleaved before 
it can be methylated.    
 
(C) In a synthetic restriction-modification gene-protein circuit, a mutant 
R.PvuII-S81A that acts more slowly than the WT R.PvuII may not cleave the 
DNA sequence in the host before it can methylated, but may not also not 
cleave the bacteriophage DNA sequence as needed so that there is more 
likelihood for phage proliferation. 
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killing hypothesis, the faster activity of R.PvuII-S81T may enable it to bind 

and cleave the host DNA before the M.PvuII has managed to methylate all 

sites as would be possible in conjunction with the R.PvuII-WT.  For testing 

the cellular defense hypothesis, the slower activity of R.PvuII-S81A may 

permit greater incorporation of bacteriophage genetic material than would 

otherwise be possible with R.PvuII-WT.  Our preliminary studies indicate 

that, in fact, cell growth and multiplication is stunted in cultures that are 

responsible for expressing the R.PvuII mutants when compared to the 

R.PvuII-WT.  Thus, this example highlights how our redesigned REase can 

further elucidate the workings and timings of natural systems. 

6.3. Therapeutics 

Proteins are among nature’s most sophisticated tools for healing as 

well as harm.  In the case of the former, for example, the first generations of 

protein-based therapies involved producing and harvesting wildtype proteins 

in order to apply their natural functions in a therapeutic setting or using 

monoclonal antibodies to inhibit these natural functions (262).  In 

nanomedicine, antibodies, and non-proteins such as peptides, nucleic acid 

aptamers, carbohydrates, and small molecules, have been used to 

differentially target other molecules (263).  Protein-based nanotechnology 

continues to be investigated for therapeutic applications in cancer therapy 

(264,265), particularly in the first generation modality of antibody therapies 
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(266-268).  Due to the dissemination of new and drug-resistant 

microorganisms for which anti-microbial agents may be ineffectual or 

patients’ conditions may not permit administration, antibody therapies for 

infectious diseases are being pursued (269). 

Alternatively, other natural proteins are being targeted for detection 

and suppression of function rather than their utilization.  Telomerases, for 

example, are essential for the maintenance and immortalization of a subset of 

cells, including cancer stem cells (270-275).  This enzyme is present in more 

than 85% of cancers but virtually absent from most somatic tissues (276).  

Thus, the targeting and inhibition of telomerase activity in cancer patients is 

thought to induce cellular senescence or apoptosis and thus transform the 

malignancy’s immortal phenotype (277).   

Natural proteins have also been engineered for therapeutics.  This 

engineering has involved the in vivo properties of proteins, such as 

immunogenicity, affinity, effector functions, and pharmacokinetics (278).  

Some of these engineering initiatives have taken on a distinct design 

approach, and marshaled the capabilities of protein modeling and design in 

particular to modify monoclonal antibodies, cytokines, enzymes and viral 

fusion inhibitors (279).  In intentionally manipulating the physical, chemical 

and biological properties through structure-based investigation, rational 

design enables the hypothesis-driven discovery of therapeutic proteins (280).  
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Among the reported successes in rational design include computational 

antibody affinity improvement (281), switches in specificity of a non-

ribosomal peptide synthetase (181), and design and engineering of an oxygen 

transport protein (282).  Yet, most of these approaches ultimately produce 

proteins in vitro and must be routinely administered due to their transient 

effects in vivo as protein or enzyme replacement therapies. 

To produce proteins endogenously in a more permanent manner, the 

cellular genetics may be reprogrammed by nucleic acid binding proteins and 

enzymes so that a cell, and its descendents, will express the corrected gene 

and behavior (Figure 6-2).  In this strategy, allografts of cells would reduce 

the possibility for rejection of the reprogrammed cells after introduction into 

the host.  Among the strategies to introduce such permanent changes is to 

induce the cellular double strand break (DSB) and repair by non-homologous 

end joining (NHEJ) machinery (283,284) while providing a DNA template 

containing the genetic changes to be introduced into the host genome.  This 

strategy has been achieved using triplex forming oligonucleotides (TFOs) 

(285,286) to elicit the machinery to correct the beta-globin gene in a heritable 

fashion (176,287,288).  A transgene encoding a redesigned REase with more 

potent or altered specificity would provide more efficient DSB induction than 

is currently possible using TFOs.  This greater number of DSBs may increase 

the likelihood of proper NHEJ with the provided template DNA containing 
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Figure 6-2: Nucleic acid binding proteins and enzymes as gene 
reprogramming therapeutics 
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the genetic changes to be incorporated.  In addition, taking a cue from 

nature, eukaryotic cells could encode and use REases without the need for 

the corresponding MTases (since they have nuclear walls to protect their 

genomes from cleavage).  These REases would act as cellular sentinels 

against viral genes in the cytoplasm, much the same way bacteria and archea 

use them in synergistic cellular defense.  Redesigned REases can thus be 

applied against some of the prevalent viral scourges, including HIV (289).  In 

general, reprogramming cells using redesigned nucleic acid binding proteins 

and enzymes provides promising prospects for complementing or 

supplementing the native physiology in a heritable fashion.  

6.4. Ethical, legal, and social issues (ELSI) 

The ease and access with which genes and genomes can be created and 

manipulated with nucleic acid binding proteins and enzymes raises ethical, 

legal, and social issues (ELSI) that go beyond the laboratory.  DNA synthesis 

and sequencing productivity has been increasing at an insatiable pace (248).  

The proliferation and progress in biotechnology has enabled the average 

estimated time required to obtain protein structures, including 

isolation/production, crystallization, data collection, and model building, to 

reduce from a decade to less than a year in person-years (290).   

The ethical issues with redesigning nucleic acid binding proteins and 

enzymes involve concerns for the unpredictable consequences that altering 
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these proteins, and thus the balance they maintain, may have in all living 

beings.  In this regard, these proteins can be considered dual-use 

technologies, with the potential for benefit, such as the aforementioned 

bionanotechnological and therapeutic examples, or harm.  Adding to the 

social fabric, the relatively automated and cost-effective means of producing 

genes and proteins de novo has fostered a do-it-yourself (DIY) and hacker 

biology cultures to create novel synthetic biological systems (291-293).   

Legal quandaries regarding the products of these cultures include 

intellectual property and ownership rights (294-296) and the interaction of 

these cultures with the proprietary research and development interests (297), 

such as in the case of drug discovery (298).  These communities need not be 

shunned or regulated but rather supported and encouraged to work 

collaboratively, openly, and constructively.   

The social aspects can extend more broadly, with implications for 

global health and well-being.  Given the aforementioned uses of nucleic acid 

binding proteins as gene-protein circuits, intimately tied to and affecting the 

host cell physiology, and REase reprogrammed cells, which need not require 

constant reintroduction, it is not far from the imagination for such 

bionanotechnology and heritable therapeutics to be deployed in corners of the 

world where constant health monitoring and administration to humans and 

livestock are impracticalities or luxuries. 



 

 
165 

 

6.5. Discussion 

The redesign of nucleic acid binding proteins and enzymes and their 

applications in bionanotechnology and therapeutics are ongoing, forthcoming, 

and realizable.  No longer are the province of speculation (299-301) or science 

fiction (302-308), nature’s nanotechnology and therapeutics in the form of 

proteins are being molecular engineered as-is, whole or part, or redesigned as 

we have done, in order to perform novel and different tasks.  An open 

approach to dealing with these engineered molecules, just as in the open- 

source practice of sharing and improving the tools that design them, as 

expounded upon in Chapter 5, will enable more effective and safer adoption 

for all. 

z
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7. Conclusion 
For I dipped into the future,  
far as human eye could see,  
saw the vision of the world,  

and all the wonder that would be. 
 

                                                                                                  – Alfred Tennyson 
                                                                                                     British poet 

7.1. Contributions of this dissertation 

In this dissertation the computational molecular engineering of nucleic 

acid binding protein and enzymes was presented.  The contributions of this 

dissertation commence with modeling interactions among DNA and the 

proteins that bind and catalyze them, proceeds to engineering these 

interactions at single- and multiple-conformation means, disseminates the 

computational tools to perform similar designs by a community of 

computational molecular engineers as well as the uninitiated, and presents 

the applications and issues that these molecular tools and technologies can 

have on society. 

In Chapter 2, principles of natural systems involving DNA, DNA 

binding proteins, and restriction endonucleases (REases), and their 

interactions were presented.  Through the analysis of model of natural 

systems a number of interesting conclusions were drawn.  Gene-protein 

circuits were modeled using both analytical as well as stochastic methods.  

Both methods identified a critical frequency, fc, of input signal, fin, 
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transmission from the beginning of the circuit beyond which the frequency 

signal reported, fout, at the end of the circuit became corrupted.  Furthermore, 

DNA-protein structures were modeled using structural bioinformatics and 3D 

visualization tools.  This investigation quantified the degree of distortion of 

DNA substrates that were bound to restriction endonucleases (REases).  The 

crystallographic bound DNA substrates modeled with the tools demonstrated 

varying degrees of distortion and deviation from canonical B-DNA.  The 

structural aspects of DNA-protein structures were pursued in many of the 

latter Chapters. 

 In Chapter 3, the single-conformation engineering of nucleic acid 

binding proteins from models of DNA-protein structures was investigated.  

Computational filtering and biological focusing approaches were examined, 

and a coupled computational and biological approach was further 

implemented.  Focusing and filtering at different structural levels of the 

chosen REase molecular system, R.PvuII, predicted a mutant with altered 

substrate sequence specificity which was validated through the development 

of cell survival and enzymatic activity assays. 

 In Chapter 4, the multiple-conformation engineering of nucleic acid 

binding proteins from models of DNA-protein structures was studied.  

Modeling was done in depth of the REase R.PvuII and a region critical to 

binding and cleavage was chosen for redesign.  The state-of-the-art provably-
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accurate design algorithms, minimized side-chain Dead-End Elimination 

(minDEE), A* and K* were extended to proteins and enzymes that bind 

nucleic acids.  In doing so, DNA was among the largest known protein 

substrates simulated using these algorithms.  Computational alanine 

scanning in the region predicted residues that were tolerant or intolerant to 

mutation, of which all were experimentally shown to be as predicted.  

Redesign of the tolerant residue predicted eight mutant proteins with 

preference for the cognate DNA substrate, of which the top ranked six bound 

and cleaved as predicted.  The top ranked redesigned mutant R.PvuII-S81T 

out-performs the natural wildtype protein, by consistently cleaving DNA 

substrates faster under the same buffer, cofactor, and DNA substrate 

conditions while maintaining substrate sequence specificity.  Given that often 

a single variation in the DNA sequence encoding a restriction endonuclease 

or the environment in which it functions can result in over millions-fold 

reductions in activity or degeneration in specificity (86,309-312), and given 

that native sequences are already nearly optimal (313), it is quite notable 

that our top-ranked prediction of R.PvuII, among the most challenging to 

redesign given that it is the smallest REase known, was still successful in 

both increasing activity as well as maintaining specificity. 

 In Chapter 5, open-source molecular engineering was advocated.  An 

overview of our software release for the scanning and redesign of nucleic acid 
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binding proteins was presented.  Modeling flexibility in nucleic acid binding 

protein redesign by our software was among the novel aspects described.  

Additional applications of the software, such as native structure recovery and 

molecular rebuilding, were demonstrated.  It is hoped that this open-source 

software will enable the molecular engineering community to proliferate and 

the number and frequency of molecular design efforts and successes to 

increase. 

 In Chapter 6, the applications and issues of molecular engineering 

were considered.  Applications of designed nucleic acid binding proteins and 

enzymes in bionanotechnologies and in therapeutics were presented.  In 

bionanotechnologies, redesigned restriction endonucleases, such as the ones 

we created as part of this dissertation, were proposed to facilitate further 

discovery and biotechnological development.  In addition, they were also 

proposed for investigating hypotheses about the origins and behavior of 

restriction endonucleases themselves.  A series of restriction-modification 

gene-protein circuits were proposed to examine the prevailing hypotheses of 

restriction modification (R-M) systems as selfish genetic elements as well as 

for synergistic cellular defense.  As therapeutics, redesigned nucleic acid 

binding proteins can be applied in a number of treatment modalities, 

including therapeutics against cancer, aging, and viral infections.  

Redesigned nucleic acid enzymes were proposed to bind deleterious genes and 
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induce the endogenous DNA repair machinery and, in conjunction with the 

introduced template of the corrected gene, reprogram the host’s own cells.  

Borrowing from the behavior found in nature, redesigned REases were also 

proposed as effective cellular defense mechanisms for cells with nuclear 

walls, such as eukaryotic cells, without the necessity for matching MTases.  

The ethical, legal, and social issues (ELSI) of redesigning nucleic acid binding 

proteins were discussed.  In the context of dual-use technologies, conclusions 

drawn included the observation of the unfettered pace of engineered genomic 

and proteomic technologies and the recommendation that open access and 

utilization of information can facilitate safe applications as well as provide 

security.  The proliferation of means for engineering biology has fostered the 

emergence of a DIY and hacker culture in biology in individual and small 

group settings that deserves note.  On a global health scale, the potential for 

engineered biology to modulate and maintain well-being with minimal 

human intervention is recognized. 

 Through the works in this dissertation, it is hoped that harnessing the 

power of computation and models can further our capacity to extend the 

frontier of atomic biology though molecular design.  The contributions made 

herein to computationally design novel proteins as intended with the 

advancements in materializing these designs through de novo molecular 

synthesis and expression technologies permits us to glean into the workings 
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of living molecular machines that were at times only within the purview of 

nature.  In doing so, we promote and benefit from the intelligent evolution of 

molecular design. 

7.2. Intelligent evolution of molecular design 

Like the evolved molecules that they are entrusted to help engineer, 

molecular design methods are evolving at a staggering pace due to increasing 

interest, necessity, and capabilities.   

Progress in computational protein and enzyme design has been 

occurring on many fronts, including improved energy functions and better 

search and optimization procedures (314).  This progress has been fueled by 

increases in the number of molecular structures determined and their 

deposition to and availability from public databases (31).  Scientific 

computing tools have matured further and provided processing power at an 

exponential rate (315) to enable more sophisticated methods to be 

implemented and designs to be attempted.  The processing capacity has also 

been increase by distributed processing tasks across computers, as is the case 

of some of the work described in this dissertation and in the work of others 

(316-323). 

Synthetic experimental technologies, too, have emerged in order to 

facilitate the creation of DNA and proteins not already in existence and they 
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are being used in projects that affect the molecular status quo of society (324-

331) and the individual (332-334). 

With advancements on so many fronts, the conversations, 

conversations, and cooperation continue on the scientific as well as societal 

repercussions of molecular engineering, much like those from the last century 

on recombinant DNA technology (335,336) and emerging DNA analytical 

methods (337-339). 

Thus, computational molecular engineering is coming of age and 

continues to be a driving force for scientific, technological, and social 

progress…  
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Appendix 

A.1. Amino acid templates 

 
alanine template    arginine template 
 

 
 
atom names for     atom names for 
input model residue name: ALA  input model residue name: ARG 
atom count: 10 atoms   atom count: 24 atoms 
 
 
 
asparagine template   aspartic acid template 
 

 
 
atom names for     atom names for 
input model residue name: ASN  input model residue name: ASP 
atom count: 14 atoms   atom count: 12 atoms 
 



 

 
174 

 

 
 
 
 
 
 
cysteine template    glutamic acid template 
 

 
 
atom names for     atom names for 
input model residue name: CYS  input model residue name: GLU 
atom count: 11 atoms   atom count: 15 atoms 
 
 
 
glutamine template   glycine template 
 

 
 
atom names for     atom names for 
input model residue name: GLN input model residue name: GLY 
atom count: 17 atoms   atom count: 7 atoms 
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histidine templates 
 

 
 
atom names for     atom names for 
input model residue name: HID  input model residue name: HIE 
atom count: 17 atoms   atom count: 17 atoms 
 
Note: if hydrogen atoms are present on both imidazole nitrogen atoms, i.e. 
HD1 on ND1 and HE2 on NE2, then input model residue name: HIP) 
 
 
isoleucine template    leucine template 
 

 
 
atom names for     atom names for 
input model residue name: ILE  input model residue name: LEU 
atom count: 19 atoms   atom count: 19 atoms 
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lysine template    methionine template 
 

 
 
atom names for     atom names for 
input model residue name: LYS  input model residue name: MET 
atom count: 22 atoms   atom count: 17 atoms 
 
 
 
phenylalanine template   serine template 
 

 
 
atom names for     atom names for 
input model residue name: PHE input model residue name: SER 
atom count: 20 atoms   atom count: 11 atoms 
 



 

 
177 

 

 
 
 
 
 
 
threonine template    tryptophan template 
 

 
 
atom names for     atom names for 
input model residue name: THR input model residue name: TRP 
atom count: 14 atoms   atom count: 24 atoms 
 
 
 
tyrosine template    valine template 
 

 
 
atom names for     atom names for 
input model residue name: TYR  input model residue name: VAL 
atom count: 21 atoms   atom count: 16 atoms 
 
Modeled from source crystallographic structures for REase R.PvuII (PDB 
IDs: 1PVI, 1H56) and phenylalanine activating domain of gramicidin 
synthetase (PDB ID: 1AMU). 
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A.2. Amino acid rotamer library 

amino acid number 
of 
rotamers 

number 
of 
dihedrals 

atom name of  
dihedral angles 

χ1  
angle 
(°) 

χ2  
angle 
(°) 

χ3  
angle 
(°) 

χ4  
angle 
(°) 

alanine 0 (1 struc.) 0      
arginine 34 4 χ1: N-CA-CB-CG 

χ2: CA-CB-CG-CD 
χ3: CB-CG-CD-NE 
χ4: CG-CD-NE-CZ 

    62 
    62  
    62  
    62  
    62  
    62  
    62  
-177  
-177  
-177  
-177  
-177  
-177  
-177  
-177  
-177  
-177  
-177  
-177  
-177  
  -67  
  -67  
  -67  
  -67  
  -67 
  -67 
  -67 
  -67 
  -67 
  -62 
  -62 
  -62 
  -62 
  -62 

 180 
 180 
 180 
 180 
 180 
 180 
 180 
   65 
   65 
   65 
   65 
 180 
 180 
 180 
 180 
 180 
 180 
 180 
 180 
 180 
 180 
 180 
 180 
 180 
 180 
 180 
 180 
 180 
-167 
  -68 
  -68 
  -68 
  -68 
  -68 

   65 
   65 
 180 
 180 
 180 
  -65 
  -65 
   65 
   65 
 180 
 180 
   65 
   65 
   65 
 180 
 180 
 180 
  -65 
  -65 
  -65 
   65 
   65 
   65 
 180 
 180 
 180 
  -65 
  -65 
  -65 
 180 
 180 
 180 
  -65 
  -65 

   85 
-175 
   85 
 180 
  -85 
 175 
  -85 
   85 
-175 
   85 
 180 
   85 
-175 
-105 
   85 
 180 
  -85 
 105 
 175 
  -85 
   85 
-175 
-105 
   85 
 180 
   85 
 105 
 175 
  -85 
   85 
 180 
  -85 
 175 
  -85 

asparagine 7 2 χ1: N-CA-CB-CG 
χ2: CA-CB-CG-OD1 

   62 
   62 
-174 
-177 
  -65 
  -65  
  -65 

  -10 
   30 
  -20 
   30 
  -20 
  -75 
 120 

  

aspartic acid 5 2 χ1: N-CA-CB-CG 
χ2: CA-CB-CG-OD1 

   62  
   62 
-177 
-177 
  -70  

  -10 
   30 
     0 
   65 
  -15 
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amino acid number 

of 
rotamers 

number 
of 
dihedrals 

atom name of  
dihedral angles 

χ1  
angle 
(°) 

χ2  
angle 
(°) 

χ3  
angle 
(°) 

χ4  
angle 
(°) 

cysteine 3 1 χ1: N-CA-CB-SG     62 
-177 
   -65 

   

glutamic acid 8 3 χ1: N-CA-CB-CG 
χ2: CA-CB-CG-CD 
χ3: CB-CG-CD-OE1 

    62 
    70 
-177 
-177 
-177 
   -65 
   -67 
   -65 

 180 
  -80 
   65 
 180 
  -80 
   85 
 180 
  -65 

   -20 
      0 
    10 
      0 
   -25 
      0 
   -10 
   -40 

 

glutamine 9 3 χ1: N-CA-CB-CG 
χ2: CA-CB-CG-CD 
χ3: CB-CG-CD-OE1 

    62 
    70 
-177 
-177  
-177 
   -65 
   -67 
   -65 
   -65 

 180 
  -75 
   65 
   65 
 180 
   85 
 180 
  -65 
  -65 

    20 
      0 
-100 
    60 
      0 
      0 
   -25 
   -40 
  100 

 

glycine 0 (1 struc.) 0      
histidine 8 2 χ1: N-CA-CB-CG 

χ2: CA-CB-CG-ND1 
    62 
    62 
-177 
-177 
-177 
  -65 
  -65 
  -65 

  -75 
   80 
-165 
  -80 
   60 
  -70 
 165 
   80 

  

isoleucine 7 2 χ1: N-CA-CB-CG1 
χ2: CA-CB-CG1-CD1 

   62 
   62 
-177 
-177 
  -65  
  -65  
  -57 

 100 
 170 
   66 
 165 
 100 
 170 
  -60 

  

leucine 5 2 χ1: N CA CB CG 
χ2: CA CB CG CD1 

   62 
-177 
-172  
  -85  
  -65  

   80 
   65 
 145 
   65 
 175 
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amino acid number 

of 
rotamers 

number 
of 
dihedrals 

atom name of  
dihedral angles 

χ1  
angle 
(°) 

χ2  
angle 
(°) 

χ3  
angle 
(°) 

χ4  
angle 
(°) 

lysine 27 4 χ1: N-CA-CB-CG 
χ2: CA-CB-CG-CD 
χ3: CB-CG-CD-CE 
χ4: CG-CD-CE-NZ 

   62 
   62 
   62 
   62 
   62 
-177 
-177 
-177 
-177 
-177 
-177 
-177 
-177 
-177 
-177 
  -90 
  -67 
  -67 
  -67 
  -67 
  -67 
  -67 
  -67 
  -62 
  -62 
  -62 
  -62 

 180 
 180 
 180 
 180 
 180 
   68 
   68 
   68 
 180 
 180 
 180 
 180 
 180 
 180 
 180 
   68 
 180 
 180 
 180 
 180 
 180 
 180 
 180 
  -68 
  -68 
  -68 
  -68 

   68 
 180 
 180 
 180 
  -68 
 180 
 180 
 180 
   68 
   68 
 180 
 180 
 180 
  -68 
  -68 
 180 
   68 
   68 
 180 
 180 
 180 
  -68 
  -68 
 180 
 180 
 180 
  -68 

 180 
   65 
 180 
  -65 
 180 
   65 
 180 
  -65 
   65 
 180 
   65 
 180 
  -65 
 180 
  -65 
 180 
   65 
 180 
   65 
 180 
  -65 
 180 
  -65 
   65 
 180 
  -65 
 180 

methionine 13 3 χ1: N-CA-CB-CG 
χ2: CA-CB-CG-SD 
χ3: CB-CG-SD-CE 

   62 
   62 
-177 
-177 
-177 
-177 
-177 
  -67 
  -67 
  -67 
  -65 
  -65 
  -65 

 180 
 180 
   65 
   65 
 180 
 180 
 180 
 180 
 180 
 180 
  -65 
  -65 
  -65 

   75 
  -75 
   75 
 180 
   75 
 180 
  -75 
   75 
 180 
  -75 
 103 
 180 
  -70 

 

phenyl alanine 4 2 χ1: N CA CB CG 
χ2: CA CB CG CD1 

   62 
-177 
  -65 
  -65 

   90 
   80 
  -85 
  -30 

  

serine 3 1 χ1: N-CA-CB-OG    62 
-177 
  -65 
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amino acid number 

of 
rotamers 

number 
of 
dihedrals 

atom name of  
dihedral angles 

χ1  
angle 
(°) 

χ2  
angle 
(°) 

χ3  
angle 
(°) 

χ4  
angle 
(°) 

threonine 3 1 χ1: N-CA-CB-OG1    62 
-175 
  -65 

   

tryptophan 7 2 χ1: N-CA-CB-CG 
χ2: CA-CB-CG-CD1 

   62 
   62 
-177 
-177 
  -65 
  -65 
  -65 

  -90 
   90 
-105 
   90 
  -90 
    -5 
   95 

  

tyrosine 4 2 χ1: N-CA-CB-CG 
χ2: CA-CB-CG-CD1 

   62 
-177 
  -65 
  -65 

   90 
   80 
  -85 
  -30 

  

valine 3 1 χ1: N-CA-CB-CG1    63 
 175 
  -60 

   

  
adapted from (103). 
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A.3. Amino acid rotamer volumes 

amino acid volume (Å3) 
alanine   61.84375  
arginine 131.53125     131.17188     131.42188     131.09375     131.29688     131.4375     

131.14062     131.26562     131.375         131.10938     131.4375       130.96875   
131.26562     131.32812     131.46875     131.1875       131.57812     131.6875     
131.375         131.28125     131.29688     131.625         131.45312     131.26562   
131.51562     131.17188     131.20312     131.4375       131.1875       131.71875   
130.82812     130.98438     131.5             131.625 

asparagine   88.171875     88.296875     88.15625       88.953125     88.78125       88.890625 
  88.765625 

aspartic acid   83.125           83.453125     83.46875       83.84375       84.109375 
cysteine   80.234375     80.171875     80.546875 
glutamic acid   96.96875       96.1875         96.796875     97.296875     96.765625     97.015625 

  97.140625     97.546875 
glutamine 102.46875     101.109375   102.265625   102.296875   102.4375       102.3125     

102.34375     102.59375     102.109375 
glycine   48.109375 
histidine 110.453125   110.25           110.71875     110.703125   110.96875     110.6875     

110.859375   110.640625 
isoleucine 102.59375     103.09375     102.859375   102.984375   102.90625     102.734375 

102.671875 
leucine 101.90625     103.0625       102.984375   102.734375   103.125 
lysine 114.40625     114.359375   114.078125   114.4375       114.359375   114.25         

114.40625     114.328125   114.453125   114.40625     114.40625     114.59375   
114.421875   114.453125   114.609375   114.59375     114.375         114.640625 
114.40625     114.546875   114.515625   114.46875     114.65625     114.546875 
114.640625   114.546875   114.640625 

methionine 108.0             107.828125   107.78125     107.671875   108.265625   107.890625 
108.15625     108.234375   108.171875   108.015625   107.5             107.96875   
107.640625 

phenyl alanine 126.015625   125.796875   126.03125     125.90625 
serine   68.890625     68.921875     68.65625 
threonine   82.6875         82.34375       82.28125 
tryptophan 151.32812     150.98438     151.10938     151.26562     151.67188     151.5625 

151.65625 
tyrosine 132.23438     132.40625     132.35938     132.23438 
valine   89.203125     89.1875         89.234375 
                        computed from Appendix A.2. Amino acid rotamer library 
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A.4. Energy function 

 

 

 

 

 

 

ηφ γ+ + −∑ [1 cos( )]
2

n

dihedrals

V

<

⎡ ⎤
+ −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ 12 6

atoms
ij ij

i j ij ij

A B
R R

=E

≠

+Δ − ∑ ( )ref
i i ij j

j i
G f R V

ε<

+ ∑
atoms

i j

i j ij

q q
R

E

E

E

R

R

φφ
 

   
dihedral bonded interactions 
   
 
 
 
van der Waals steric interactions 
 
 
 
 
Coulombic electrostatic, hydrogen-bonding interactions 
 
 
 
Lazaridis-Karplus EEF1 
implicit solvation interactions 



 

 
184 

 

A.5. Nucleic acid templates 

 
 
 
guanine template    cytosine template 
 

 
 
atom names for     atom names for 
input model residue name: DG  input model residue name: DC 
atom count: 33 atoms   atom count: 30 atoms 
 
 
 
adenine template    thymine template 
 

 
 
atom names for     atom names for 
input model residue name: DA  input model residue name: DT 
atom count: 32 atoms   atom count: 32 atoms 
 
Modeled from source crystallographic structure for R.PvuII (PDB IDs: 1PVI). 
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