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Abstract

Trust has played a central role in the design of open distributed systems that span distinct

administrative domains. When components of a distributed system can assess the trust-

worthiness of their peers, they are in a better position to interact with them. There are

numerous examples of distributed systems that employ trust inference techniques to regu-

late the interactions of their components including peer-to-peer file sharing systems, web

site and email server reputation services and web search engines.

The recent rise in popularity of Online Social Networking (OSN) services has made an

additional dimension of trust readily available to system designers: social trust. By social

trust, we refer to the trust information embedded in social links as annotated by users of

an OSN. This thesis’ overarching contribution is methods for employing social trust em-

bedded in OSNs to solve two distinct and significant problems in distributed information

systems.

The first system proposed in this thesis assesses the ability of OSN users to correctly

classify online identity assertions. The second system assesses the ability of OSN users to

correctly configure devices that classify spamming hosts. In both systems, an OSN user

explicitly ascribes to his friends a value that reflects how trustworthy he considers their

classifications. In addition, both solutions compare the classification input of friends to

obtain a more accurate measure of their pairwise trust. Our solutions also exploit trust

transitivity over the social network to assign trust values to the OSN users. These values

are used to weigh the classification input by each user in order to derive an aggregate trust
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score for the identity assertions or the hosts.

In particular, the first problem involves the assessment of the veracity of assertions

on identity attributes made by online users. Anonymity is one of the main virtues of

the Internet. It protects privacy and freedom of speech, but makes it hard to assess the

veracity of assertions made by online users concerning their identity attributes (e.g, age

or profession.) We propose FaceTrust, the first system that uses OSN services to provide

lightweight identity credentials while preserving a user’s anonymity. FaceTrust employs

a “game with a purpose” design to elicit the opinions of the friends of a user about the

user’s self-claimed identity attributes, and uses attack-resistant trust inference to compute

veracity scores for the attributes. FaceTrust then provides credentials, which a user can

use to corroborate his online identity assertions.

We evaluated FaceTrust using a crawled social network graph as well as a real-world

deployment. The results show that our veracity scores strongly correlate with the ground

truth, even when a large fraction of the social network users are dishonest. For example, in

our simulation over the sample social graph, when 50% of users were dishonest and each

user employed 1000 Sybils, the false assertions obtained approximately only 10% of the

veracity score of the true assertions. We have derived the following lessons from the design

and deployment of FaceTrust: a) it is plausible to obtain a relatively reliable measure

of the veracity of identity assertions by relying on the friends of the user that made the

assertion to classify them, and by employing social trust to determine the trustworthiness

of the classifications; b) it is plausible to employ trust inference over the social graph to

effectively mitigate Sybil attacks; c) users tend to mostly correctly classify their friends’

identity assertions.

The second problem in which we apply social trust involves assessing the trustworthi-

ness of reporters (detectors) of spamming hosts in a collaborative spam mitigation system.

Spam mitigation can be broadly classified into two main approaches: a) centralized secu-

rity infrastructures that rely on a limited number of trusted monitors (reporters) to detect
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and report malicious traffic; and b) highly distributed systems that leverage the experi-

ences of multiple nodes within distinct trust domains. The first approach offers limited

threat coverage and slow response times, and it is often proprietary. The second approach

is not widely adopted, partly due to the lack of assurances regarding the trustworthiness of

the reporters.

Our proposal, SocialFilter, aims to achieve the trustworthiness of centralized security

services and the wide coverage, responsiveness, and inexpensiveness of large-scale col-

laborative spam mitigation. It enables nodes with no email classification functionality to

query the network on whether a host is a spammer. SocialFilter employs trust inference

to weigh the reports concerning spamming hosts that collaborating reporters submit to the

system. To the best of our knowledge, it is the first collaborative threat mitigation sys-

tem that assesses the trustworthiness of the reporters by both auditing their reports and

by leveraging the social network of the reporters’ human administrators. Subsequently,

SocialFilter weighs the spam reports according to the trustworthiness of their reporters to

derive a measure of the system’s belief that a host is a spammer.

We performed a simulation-based evaluation of SocialFilter, which indicates its po-

tential: during a simulated spam campaign, SocialFilter classified correctly 99% of spam,

while yielding no false positives. The design and evaluation of SocialFilter offered us the

following lessons: a) it is plausible to introduce Sybil-resilient OSN-based trust inference

mechanisms to improve the reliability and the attack-resilience of collaborative spam mit-

igation; b) using social links to obtain the trustworthiness of reports concerning spammers

(spammer reports) can result in comparable spam-blocking effectiveness with approaches

that use social links to rate-limit spam (e.g., Ostra [64]); c) unlike Ostra, SocialFilter yields

no false positives. We believe that the design lessons from SocialFilter are applicable to

other collaborative entity classification systems.
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1

Introduction

1.1 Overview

The Internet has enabled the deployment of a multitude of complex distributed computer

systems that allow information sharing among devices and their human users. Prominent

examples are the World Wide Web (WWW), the email infrastructure and peer-to-peer

content distribution networks such as BitTorrent [36].

Components of a distributed system need to be able to assess whether the information

shared and the actions taken by other components are reliable and have no malicious in-

tend. Consequently, trust has always played a central role in the design of open distributed

systems that span distinct administrative domains. For example, a misbehaving peer in a

file sharing system may be serving content that does not correspond to the content’s de-

scription. A malicious node in a Distributed Hash Table (DHT) [48] may drop or misroute

queries.

Open distributed systems are also known to be vulnerable to the Sybil attack [39]. Sybil

attacks subvert distributed systems by introducing numerous malicious identities under the

control of an adversary. By using these identities the adversary acquires disproportional
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influence over the system. For example, attackers can use Sybils to control 1
3 or more of

nodes in a Byzantine agreement [57] setting.

Consequently, there are numerous examples of distributed systems that employ algo-

rithmic trust inference to regulate the interactions of their components. By trust inference,

we refer to algorithms that derive trust values for each vertex in a trust graph. In these trust

graphs, the vertices encode the components of the distributed system. The edges encode

how much trust each component places on other components. The trust encoded by edges

can be derived either by mining explicit trust assignments by each component concerning

another (e.g., a vote or a hyperlink,) or by comparing the actions of two components (e.g.,

voting similarity.) A list of the components that vertices in the trust graph may encode in-

cludes but is not limited to: a) nodes or files in a peer-to-peer file sharing system [53, 87];

b) web sites [12, 11, 49]; c) recommended items [67, 27]; d) email domains or IP ad-

dresses [4, 17]; and e) a public key certificate in the PGP Web of Trust [99].

However, trust inference, as it is currently employed in most distributed systems, faces

two shortcomings: a) it is itself susceptible to Sybil attacks [34, 35]; b) it does not exploit

the social relationships the users of those systems may have, resulting in reduced resilience

to malicious behavior.

Recently, a new application of the World Wide Web called Online Social Networks

(OSN) has risen in popularity and is now rivaling the most popular web search engine [9]

in terms of visitors. Social networking sites such as Facebook and LinkedIn have amassed

over 400 million and 60 million users as of May 2010. Unlike most other web services

that are structured around content, OSN services are structured around their users and their

users’ relationships. OSN services enable users to declare who their social acquaintances

are and organize them in lists of stratified privileges. They also allow users to submit and

share multimedia content, and communicate with their friends in the form of messages,

status updates, content tags, and comments.

The broad availability and popularity of massive OSN services has made an additional

2



dimension of trust readily available to system designers: social trust. By social trust, we

refer to the trust information embedded in social links as annotated by users of an OSN.

The overarching contribution of this thesis is our proposed use of social trust that is in-

ferable from OSN services. In particular, we use it to enhance existing trust inference

techniques by rendering them more resilient to manipulation. We then use the enhanced

trust inference to address two significant problems in distributed systems: a) assessing the

veracity of identity assertions (statements) made by online users; b) assessing the trust-

worthiness of reporters (detectors) of spamming hosts in a collaborative spam mitigation

system. To solve the first problem this thesis proposes FaceTrust, and to solve the second

problem this thesis proposes SocialFilter.

Both FaceTrust and SocialFilter exploit social trust as follows: the vertices of the so-

cial graph encode components that classify other components. These components are

online users for FaceTrust, and spam reporters managed by human administrators for So-

cialFilter. The edges encode user-defined and similarity-derived trust between socially-

acquainted components. We use trust inference to determine the weight we should assign

to the classifications of the users or spam reporters in quantifying the veracity of an iden-

tity assertion or the belief that a host is spamming, respectively. This is in contrast to

previous OSN-based approaches, that used trust inference to determine whether a user is

allowed to communicate over the social network (by sending an email or voting on an

online item) [64, 85].

1.1.1 Rationale of Employing Online Social Networks

In designing both FaceTrust and SocialFilter, we treat trust and manipulation-resistance as

first-order design goals. These goals lead us to structure our design around OSN services

for the following two reasons:

• Establishing friend relationships requires substantial efforts by human users. Thus

establishing edges in the social graph can be used as a resource test to defeat Sybils.
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To this end, both systems exploit trust transitivity and social trust in their Sybil-

resilient trust-inference methods.

• The intuitive user interface of OSN services allows users to easily manage their so-

cial acquaintances. Our designs augment the OSN user interface with an additional

user interaction that seamlessly integrates with the existing OSN user experience:

enabling users to declare how much they trust each friend’s actions and statements.

1.1.2 Assessing the Veracity of Online Identity Assertions

The first problem in which we apply social trust involves the assessment of the veracity

of assertions on identity attributes made by online users. Anonymity is one of the main

virtues of the Internet. It protects privacy and freedom of speech, but makes it hard to

assess the veracity of assertions made by online users concerning their identity attributes

(e.g, age or profession.) We propose FaceTrust, the first system that uses OSN services

to provide lightweight identity credentials while preserving a user’s anonymity. FaceTrust

employs a “game with a purpose” design to elicit the opinions of the friends of a user

about the user’s self-claimed identity attributes, and uses attack-resistant trust inference to

compute veracity scores for the attributes. FaceTrust then provides credentials, which a

user can use to corroborate his online identity assertions.

We evaluated FaceTrust using a crawled social network graph as well as a real-world

deployment. The results show that our veracity scores strongly correlate with the ground

truth, even when a large fraction of the social network users are dishonest. For example, in

our simulation over the sample social graph, when 50% of users were dishonest and each

user employed 1000 Sybils, the false assertions obtained approximately only 10% of the

veracity score of the true assertions. We have derived the following lessons from the design

and deployment of FaceTrust: a) it is plausible to obtain a relatively reliable measure of the

veracity of identity assertions by relying on the friends of the user that made the assertion
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to classify them, and by employing social trust to determine the trustworthiness of the

classifications; b) it is plausible to rely trust inference over the social graph to effectively

mitigate Sybil attacks; c) users tend to mostly correctly classify their friends’ identity

assertions.

FaceTrust bears similarity with the PGP Web of Trust [99] in that the edges of the

trust graph encode social relationships. Furthermore, similar to the PGP Web of Trust,

FaceTrust relies on the friends of a user to certify his identity. We justify this design

choice in Sections 2.3.1 and 3.3.1.

1.1.3 Introducing Social Trust to Collaborative Spam Mitigation

Spam mitigation can be broadly classified into two main approaches: a) centralized secu-

rity infrastructures that rely on a limited number of trusted monitors (reporters) to detect

and report malicious traffic; and b) highly distributed collaborative systems that leverage

the experiences of multiple nodes within distinct trust domains. The first approach offers

limited threat coverage and slow response times, and it is often proprietary. The second

approach is not widely adopted, partly due to the lack of assurances regarding the trustwor-

thiness of the reporters. Hence, the second problem in which we apply social trust involves

assessing the trustworthiness of reporters (detectors) of spammers in a collaborative spam

mitigation system.

Our proposal, SocialFilter, aims to achieve the trustworthiness of centralized security

services and the wide coverage, responsiveness, and inexpensiveness of large-scale col-

laborative spam mitigation. It enables nodes with no email classification functionality to

query the network on whether a host is a spammer. SocialFilter employs trust inference

to weigh the reports concerning spamming hosts that collaborating reporters submit to the

system. To the best of our knowledge, it is the first collaborative threat mitigation sys-

tem that assesses the trustworthiness of the reporters by both auditing their reports and

by leveraging the social network of the reporters’ human administrators. Subsequently,
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SocialFilter weighs the spam reports according to the trustworthiness of their reporters to

derive a measure of the system’s belief that a host is a spammer.

We performed a simulation-based evaluation of SocialFilter, which indicates its po-

tential: during a simulated spam campaign, SocialFilter classified correctly 99% of spam,

while yielding no false positives. The design and evaluation of SocialFilter offered us

the following lessons: a) it is plausible to introduce Sybil-resilient OSN-based trust in-

ference mechanisms to improve the reliability and the attack-resilience of collaborative

spam mitigation; b) using social links to obtain the trustworthiness of reports that identify

spammers (spammer reports) can result in spam-blocking effectiveness that is comparable

to approaches that use social links to rate-limit spam (e.g., Ostra [64]); c) unlike Ostra,

SocialFilter yields no false positives. We believe that the design lessons from SocialFilter

are applicable to other collaborative entity classification systems.

1.1.4 Rationale for our Choice of Trust Inference Methods

For the problem of assessing the veracity of online identity assertions, we design a new a

max-flow-based trust inference method, which is computationally efficient (O(|E| log |V |)).

However the trust values it returns cannot be directly interpreted as a belief that an asser-

tion is true. Therefore it is not informative and actionable at the absence of prior experience

with those values. These values however, correlate strongly with the ground truth: a true

assertion will have a higher veracity than a false assertion. Thus, a user or service can

interpret them in a meaningful way if it has prior experience with the system and has set

appropriate trust thresholds.

For the problem of assessing the trustworthiness of spammer reports, we rely on a

commonly used [87] maximum trust path method. That method by itself is not Sybil-

resilient, hence we combine it with a Sybil detection method [92]. This approach is more

computationally expensive (O(|V |
√
|E| log |V |+ |E| log |V |)), but its trust values have a

partially Bayesian interpretation. That is, they can be used to derive a trust value that can
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be explicitly interpreted as the belief that a host is spamming: a host with 0% spammer

belief is very unlikely to be a spammer, whereas a host with 100% spammer belief is very

likely to be one.

The rationale behind our choice to use two district trust inference methods for each

problem lies in the trade-off between computational cost and how informative the trust

values can be. In the context of spam mitigation the users for which we assess the trust-

worthiness are relatively limited in numbers: the number of email servers is less than the

number of Online Social Networking users. Thus, we can afford to use a more expensive

trust inference method that can be directly interpreted as a belief. However, when the

number of users is very high, it is preferable to use a non-Bayesian but less informative

metric.

1.1.5 Contributions

The first contribution of this thesis is the lessons from the design and evaluation of FaceTrust.

FaceTrust is the first system that uses social networks to provide lightweight identity cre-

dentials without sacrificing a user’s anonymity. In particular, this thesis makes the fol-

lowing sub-contributions with respect to the problem of assessing the veracity of identity

assertions made by online personas:

• We have designed an attack-resistant veracity scoring mechanism that relies on the

friends of a user to classify (tag) his online assertions on his identity attributes.

• We have designed a new context-specific credential scheme to obviate the need for

client-side cryptography to improve usability.

• We have improved upon a prior max-flow trust inference method [60] by making it

more attack resistant and computationally efficient.

• We have implemented the design, and evaluated it using simulations and a real-

world deployment. Our results show the plausibility of leveraging friend tagging
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on identity assertions and social trust to assess the trustworthiness of the tags. Our

results also illustrate the limitations of our approach, namely its inability to ensure

the correctness of veracity scores when attackers launch highly organized colluding

and Sybil attacks.

The second contribution of this thesis is the lessons from the design and evaluation of

SocialFilter. To the best of our knowledge, SocialFilter is the first OSN-based collaborative

spam filtering system to use Sybil-resilient trust inference to assess the overall trustwor-

thiness of a node’s spammer reports. Our sub-contributions with respect to the problem

of assessing the trustworthiness of spammer reports in a collaborative spam mitigation

system are:

• We have combined existing trust inference mechanisms to derive an attack-resistant

mechanism that assigns trust values (spammer belief) to hosts detected by a collab-

orative spam mitigation system.

• We have evaluated our design using simulations and compared it to Ostra [64] to

illustrate our design’s advantages and shortcomings.

• We have demonstrated the plausibility of using social trust to improve the reliability

and attack-resilience of collaborative spam mitigation systems. We believe that our

mechanisms are applicable to other collaborative entity classification systems.
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2

FaceTrust: Assessing the Veracity of Online
Identity Assertions via Social Networks

In this chapter, we describe how we use Online Social Networks to assess the veracity of

identity assertions made by online users.

2.1 Introduction

The Internet has changed how people interact with each other. Rich social interactions

take place online. Users read, shop, chat, work, and play on the Internet. However, unlike

social interactions in the physical world, the Internet has largely hidden the identity of

online users. “On the Internet, nobody knows you are a dog,” says the famous Peter

Steiner cartoon.

While anonymity has brought much benefit, including protecting user privacy and free

speech, it also poses security threats to online activities, and makes what and who to

believe challenging. On one hand, individuals that hide their real identity attributes may

defraud naive users; on the other hand, honest users cannot make credible assertions about

some of their identity attributes without sacrificing their anonymity. Consider these real
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examples:

• Alice is shopping for a food scale and she finds a rave review “Worth DOUBLE the

Money” [20] from a user claiming “I was a chef for many years.” Should she believe

it, given that she is aware authors or users with vested interests in a company have

been caught creating fake positive reviews for their own books [22] or the company’s

products [2]?

• John met “Kayla” on Facebook, and sent her nude photos. “Kayla” was actually

Anthony Stancl [23]. John was blackmailed and sexually assaulted.

Real-world remedies to this problem typically forgo a user’s anonymity. Moreover,

verifying a user’s identity attributes can be costly and time consuming. For instance,

Amazon provides a Real Name badge to a user that desires to sign the content he posts by

his real name [21]. It verifies a user’s name using his credit card information. Twitter is

experimenting with a feature called Verified Account [86] to prevent identity confusion.

It currently provides verified accounts only to celebrities, because of the cost and time

required to verify an account [86].

This situation prompts the question: can an online user establish identity veracity

without sacrificing his anonymity? One approach is to use personal digital certificates

issued by a trusted authority (e.g., VeriSign), and apply techniques such as idemix [33] to

make the certificates anonymous, unlinkable, and non-transferable. However, we consider

this approach heavyweight and inflexible. It involves centralized manual verification, and

could be a financial [19] as well as a usability burden to users [89]. Each time a user

desires to certify a new attribute (e.g., a new home address), he would have to contact the

trusted authority.

In Sections 2.2 and 2.3, we present FaceTrust, a system that enables online personas

to cost-effectively obtain credentials that provide an additional indication of the trustwor-

thiness of identity assertions. Our insight is that many realistic Internet settings do not
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require strong authentication to guard critical resources. Instead, they may benefit greatly

from partial or likely-to-be-true identity information. For example, a user may only need

to know a reviewer’s profession rather than his real name to trust his reviews. Similarly,

it may suffice for a user of an online dating service to know that another user’s location

information is likely to be true.

FaceTrust mines and enriches information embedded in online social networks (OSNs)

to provide lightweight and extensible digital credentials. We observe that OSNs already

allow users to express a limited form of trust relationships using friend links. We pro-

pose to extend this ability by allowing users to declare whether they consider the identity

assertions of their friends credible (Section 2.3.1).

In particular, a user that wishes to obtain a credential posts short assertions about him-

self on his OSN profile in the form of a poll, e.g., “Am I really over 18?” The user asks his

friends to respond to this poll by tagging (classifying) his assertion as true or false. The

OSN employs an attack-resistant trust inference algorithm to compute a veracity score for

this assertion, which we refer to as the veracity of the assertion (Section 2.3.2.) The OSN

then issues to the user a credential in the form of {assertion, veracity, context}

(Section 2.3.4.) Verifiers (online services or human users) can use this OSN-issued cre-

dential to regulate their interactions with the user. To improve usability, we design a

context-specific credential scheme that allows a user to certify his online statements with

a web interface without involving user-side cryptography (Section 2.3.4.)

The key challenge of FaceTrust lies in assessing the veracity of user identity assertions.

It should be easy for trustworthy (honest) users to obtain high veracity for their true as-

sertions, while it should be relatively difficult for untrustworthy (dishonest) users to make

their false assertions have high veracity. Users may post false assertions, tag incorrectly

or lie, and create Sybil accounts [39]. To address this challenge, we translate this problem

into trust inference (Section 2.3.3.) The intuition is that honest users tend to tag correctly

and similarly. We compare a user’s tags with those from his friends on the set of asser-
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tions they both tag, and use the similarity between the tags as trust values on social graph

edges. We then compute a Sybil-resistant tagger trustworthiness score for each user, us-

ing a max-flow-based trust inference scheme. Finally, we derive an assertion’s veracity by

combining its tags weighted by their tagger’s trustworthiness.

FaceTrust credentials can be used by verifiers to reject assertions with low veracity

scores from the outset. Verifiers can treat credentials with high veracity as an additional

indication of the trustworthiness of the user that presents the credential, but they should

not take them at face value. For this reason, we refer to our credentials as relaxed.

We evaluate FaceTrust using simulations on a crawled 200K-user social network graph

and a real-world deployment on Facebook (Section 2.6.) In our simulations, we randomly

mark users as honest or dishonest. Honest users submit only true assertions and tags.

Dishonest users strategize to make their false assertions appear credible. Our simulations

show that FaceTrust is able to assign high veracity to true assertions and low veracity to

false ones. This holds under an adversarial model of moderate strength ( 2.2.4,) even when

a large fraction of the network is dishonest and employs the Sybil attack (Section 2.6.1.)

For example, in our simulation over the sample social graph, when 50% of users were

dishonest and each user employed 1000 Sybils, the false assertions obtained approximately

only 10% of the veracity score of the true assertions.

For the real-world deployment, we developed the “Am I Really?” Facebook applica-

tion, which uses a game-with-a-purpose design to collect data on real-world user assertion

posting and tagging behavior.1 We find that users of our application tag and post asser-

tions sufficiently frequently to allow the system to function reliably, and that their tags are

mostly correct (Section 2.6.2.)

1 We have obtained Institutional Review Board (IRB) authorization to perform our study.
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FIGURE 2.1: FaceTrust overview and an age verification example.

2.2 Overview

Figure 2.1 presents an overview of FaceTrust. In FaceTrust, the following three com-

ponents interact with each other: a) the OSN provider that maintains the social network

and its users’ profiles, and performs veracity computations; b) online users that maintain

accounts with the OSN and attempt to access online services by presenting OSN-issued

credentials; and c) verifying online services or users that regulate access to their resources

or characterize user inputs based on a user’s credentials.

2.2.1 An Example

Before describing FaceTrust in detail, we use an age-verification example to shed light

on how components interact. As shown in Figure 2.1, user u attempts to access an age-

restricted movie at the Netflix website. At the same time, u is concerned with his anonymity

and does not wish to reveal neither his real identity nor a linkable pseudonym to Netflix.

With FaceTrust, Netflix can demand an OSN-issued age credential from the user to
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allow access to its content. To obtain this credential, the user u must have posted an

age assertion on his OSN profile, and requested his friends to tag the veracity of his age

assertion before he attempts to access the age-restricted content. In this example, user

u has asserted that his age is 21, and three of his friends, users x, y, and z, have tagged

the assertion with boolean values T RUE, T RUE, and FALSE respectively. Since not all

users are equally credible, the OSN provider has computed a trustworthiness score (w) for

each tagger x, y, and z by analyzing the social graph and their tagging history as we soon

describe in Section 2.3.3. The OSN provider computes an overall veracity score for user

u’s age assertion (0.8 in this example) by aggregating u’s friends’ tagged values weighted

by their trustworthiness scores (Section 2.3.2).

As shown in Figure 2.1, the OSN issues an age credential with an overall veracity

score that certifies that the user belongs to the restricted age group, and the user presents

this credential to a Netflix software process to gain access to Netflix content. For ease of

use, instead of using cryptographic digital certificates, FaceTrust implements web-based

identity credentials using an XML API for online services such as Netflix, or through a

simple web page for human users (Section 2.3.4.)

2.2.2 More Motivating Examples

In addition to age verification, we envision that FaceTrust credentials will benefit Internet

users and online services in many other ways. A few more examples include but are not

limited to:

Assessing the authority or relevance of online reviews or ratings with profession cre-

dentials: Many Internet users read online reviews before making purchase decisions. In-

tuitively, expert opinions of an online product may appear more authoritative to many

readers. For instance, a reader may place more weight on a review for a networking text-

book by a computer science professor than by an average user. With FaceTrust, if an expert

user desires to appear more authoritative, he may request a profession credential from his
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OSN provider and present this credential to an online review site when submitting his

reviews.

We clarify at this point that the goal of FaceTrust is not to explicitly assess the cor-

rectness of the review. Instead, FaceTrust only aims at verifying the identity attribute

(profession) of the user that posted the review. This is because FaceTrust is suitable for

assessing the veracity of ground truth statements and not for assessing statements that are

subject to personal taste or opinion.

Verifying participant eligibility: A citizen journalism site [18] may wish to verify that

a user actually resides in a specified area before it accepts his report on an event that

took place there. Similarly, Wikipedia, online auction sites, and online statistical surveys

may wish to restrict participants to certain groups of people, such as people with particular

expertise, residents in a certain geographic area, or people of a certain age range. FaceTrust

can assist legitimate participants to obtain credentials that certify their eligibility.

Preventing online fraud: Scammers commonly respond to online postings alleging to

be prospective participants in legitimate transactions (e.g., a potential tenant of an apart-

ment), and aiming to commit “advance-fee” fraud [13, 5]. Such attacks could possibly be

averted if online users have a way have scammers were unable to lie about their location,

affiliation, or age. To this end, a classifieds service such as Craigslist or its users could use

FaceTrust to verify identity attributes of users that post or respond to ads.

2.2.3 Assumptions

In designing FaceTrust, we make the following assumptions:

Trustworthy users tag mostly truthfully and similarly, as well as post true identity

assertions: We assume that trustworthy (honest) users tag assertions mostly correctly. We

validate this assumption in §2.6.2. We also assume that when they tag the same asser-

tion, their tags mostly match, since an assertion in our design is about ground truth rather

than personal taste. We employ a weighted voting mechanism (§2.3.2) to characterize
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assertions, which allows for a minority of trustworthy users to tag incorrectly. We also

assume that trustworthy users mostly post true assertions. We treat users that consistently

tag mistakenly not due to malicious intent, but due to lack of knowledge, as dishonest

(Section 2.2.4.)

Users carefully vet OSN friend requests: This assumption implies that establishing

friend connections in the FaceTrust social network is a resource-intensive task, as it may

require that two users have actually met each other. Therefore, Sybil attackers cannot

cheaply establish such connections as we assume that users would reject friend requests

from users they have never met. In addition, users can use common-secret-based tech-

niques to verify that a friend request originates from a real acquaintance and not an im-

poster [29]. Our assumption also implies that a user is careful to select only friends that

will not try to harm him by tagging his true assertions as false.

Trusted credential issuing authority: We assume that the OSN provider reliably issues

credentials to the best of its knowledge based on the input of its users. We also assume that

the OSN provider does not reveal a user’s tags to the assertion poster or others. Further-

more, users may wish to remain anonymous and untraceable by the verifiers. We assume

that the OSN provider protects the privacy of its users by not revealing their identity and

the list of online services or users that verify its users’ credentials.

The FaceTrust administrators have an initial estimate of what portion of the social

network is honest: We assume that FaceTrust administrators know approximately the

portion of users that is honest. They use this estimate to initialize the trust inference

method employed by FaceTrust.

The FaceTrust administrators have a’ priori knowledge of fully trusted users in the

social network: These users (trusted seeds) are used to seed the trust inference method

that we employ. These fully trusted users can for example be FaceTrust employees. Fully

trusted users can also be inferred by running the trust inference method initialized with

FaceTrust employees to identify other highly trustworthy users. These highly trustworthy
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users can then be added to the set of fully trusted users and be used to seed the trust

inference method.

2.2.4 Threat Model

FaceTrust’s design copes with the following threat model:

Dishonest assertion posters and taggers: Our threat model considers dishonest users that

are primarily interested in posting false assertions to misrepresent their identities. These

dishonest users may collude with other dishonest users that tag their false assertions as

true.

Sybil Taggers: Dishonest users may launch the Sybil attack [39] by creating many fake

accounts under their control. A dishonest user that creates Sybils can employ them to tag

its false assertions or the dishonest assertions of the creator’s colluders as true.

Sybil Assertion Posters: Dishonest users can create Sybils who post false assertions.

These assertions are subsequently tagged by their creators and their colluders as true.

The purpose of this attack is to create users that are connected only to dishonest users,

thus their assertions are never tagged false by honest users. As a result, it is easier for

those Sybils to make their assertions appear credible.

Camouflage attack: We also consider attacks under which attackers initially behave hon-

estly to accumulate trust for themselves or their friends. They later attempt to defeat the

system. This threat model resembles what Kamvar et al. [53] refer to as “malicious nodes

with camouflage.”

One manifestation of this attack is the tagger camouflage attack. Dishonest users at-

tempt to build up trust with honest users by always tagging according to the observed

majority, i.e., voting according to the veracity that is currently displayed for the asser-

tion. After they earn enough tagger trustworthiness, they tag dishonestly only for specific

questions. Thus, we are also explicitly considering the case in which a user is not always

tagging falsely, but instead has a mixed strategic behavior.
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Another manifestation of the camouflage attack is the assertion poster camouflage

attack. A dishonest user posts several true assertions. Both his honest and dishonest

friends tag those assertions as true. As a result, if his dishonest and honest friends are

also friends with each other, his dishonest friends build up trust with his honest friends.

Consequently the dishonest friends’ tagger trustworthiness increases.

Rational dishonest users: We assume that dishonest users, who post false assertions and

tag dishonestly are rational. Dishonest users benefit by obtaining a credential that makes

a false assertion appear true. At the same time, they incur a cost every time they create a

Sybil account, i.e., the time needed to solve CAPTCHAs at registration time. They also

incur a cost every time they coordinate with other dishonest users on which assertions to

tag as true.

Verifiers can collude to survey users: We assume that credential verifiers may wish to

track a user against its will. They may collude to link user accounts and derive a more

accurate profile of a user’s activities.

2.2.5 Goals

FaceTrust’s design is driven by the following goals:

Attack-resistant: Our system aims at making it difficult for false assertions to appear

trustworthy by having high veracity. The system should be resilient to errors made by

benign users and to manipulations by dishonest users. Although our design is attack-

mitigating, it cannot ensure the correctness of the veracity scores in the presence of devoted

adversaries. Therefore, our system is not meant for guarding critical resources and the

veracity scoring is relaxed to be within the range [0,1] rather than a binary true or false

value. FaceTrust credentials alone cannot guarantee the truthfulness of a statement. For

this reason we refer to our credentials as relaxed.

Informative: The actual goal of FaceTrust is to provide users with additional information

on a statement’s veracity, thus making it easier for them to reject false statements. Since
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it is relatively easy for a user that posts a truthful assertion to find friends that vouch for

him, if an assertion has low veracity, users should reject it from the outset. If however

the assertion has high veracity, users should still employ other common sense verification

mechanisms or be aware that they are taking a risk by accepting the statement as true.

The veracity of user assertions should correlate positively with the ground truth. When

an assertion has higher veracity than another, this should indicate that it is more likely to

be credible. Verifiers can define their own thresholds (possibly suggested by FaceTrust’s

admins) to map a veracity score to an action based on the application scenarios and their

own risk tolerance.

Lightweight: We aim to provide credible identity information for online personas without

centralized manual identity verification.

Flexible: Users should be able to obtain credentials on a variety of attributes, e.g., age,

location, profession, education etc. Users should also be able to conveniently obtain new

credentials when their attributes change.

Practical: The system should be easy to use. It should not impose on users the burden

of dealing with cryptographic primitives, shared secrets etc. It should require minimal

upgrades of client software.

Secure: The credentials should satisfy authentication, i.e., the verifier should be assured

that a credential is issued by a trusted authority. Second, they should satisfy integrity,

i.e., the assertion, veracity, and context fields of the credential should not change once

the credential is issued. This guarantees that a user cannot forge the veracity score of

his assertions and that a user cannot use somebody else’s assertions to verify his identity

attributes. Third, the credentials should satisfy privacy and anonymity, i.e., a user should

be able to obtain credentials with no personally identifiable information and should be able

to make the showings of his credentials untraceable.
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Table 2.1: Key notations.

Name Meaning
At

i Assertion of type t posted by user j
wt

j Tagger trustworthiness of user j for type t
dA

ji User j’s friend i’s tag on j’s assertion A
aA Veracity of assertion A

tst
i j Tagging similarity between users i and j for

assertions of type t
T (V,Et) Similarity-based trust graph for type t

S Set of trusted sources (seeds)
pd Portion of the social graph that is dishonest

2.3 FaceTrust Design

We now describe our design in detail. Table 2.1 lists the key notations used in our descrip-

tion. For a more in-depth analysis of the assurances offered by FaceTrust’s mechanisms,

we refer the reader to 2.4.

2.3.1 Social Tagging

FaceTrust uses social tagging to obtain trustworthy identity information for online users.

By social tagging, we refer to OSN users posting assertions about their attributes and their

friends tagging them as true or false.

We take an approach similar to the PGP Web of Trust [99], in that we allow only friends

of a user to tag (certify) the user’s assertion. The rationale behind this choice is two-fold.

First, most of the assertions posted by a user can only be reliably evaluated by people who

know him. Those people are more likely to be his friends. Second, our system relies on

the assumption that since a user has carefully vetted his friends, those friends will mostly

not attempt to harm him by tagging his true assertions as false.

FaceTrust categorizes user attribute assertions into various types such as age, address,

profession, expertise etc. A user posts his assertions of assorted types in his OSN profile.
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For instance, for the type age, an assertion has the format [{<,=,>}, number], e.g., [>

18] means that the user claims to be older than 18. For the type location, the assertion has

the format [{country,state,city ...}, string].

For an assertion At
i of type t posted by a user i, i’s friend j may tag it as dA

ji. dA
ji takes

two values: a) true indicates that j believes i’s assertion;and b) false, indicates that j

does not believe it. A posted assertion and the associated tags are valid for a period of time

set by the OSN provider depending on the assertion type. An assertion is uniquely iden-

tified by its {type, assertion} pair. A user cannot repost the same assertion and reset

unfavorable tags before the assertion expires. The tags are stored by the OSN provider and

are only known to the OSN and the taggers. They are never made available to other users,

as they represent sensitive information.

In addition, the OSN provider does not reveal to users the veracity of an assertion

unless the assertion has accumulated a threshold number of tags to protect taggers’ privacy.

This design assumes that users are willing to tag their friends. This is a reasonable

assumption because abundant evidence suggests that users may adopt social tagging. For

example, “Friend Facts” [10], a micro-polling application that resembles our Facebook

application “Am I Really?”, also presents a user with questions about his friends and asks

him to vote to let them know what he thinks about them (Figure 2.3.1.) It has amassed

∼ 4.5 million monthly active users. We further validate this assumption in Section 2.6.2

using data from our real-world deployment of the “Am I Really?” Facebook application

(Section 2.5.)

2.3.2 Assertion Veracity

A main challenge in FaceTrust’s design is to assess the veracity of user assertions. This

task is difficult because dishonest users may post false assertions and strategize to make

them appear true, and benign users may make mistakes. To make this task tractable, we

resort to providing a relaxed credential that binds an assertion to a veracity score between
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FIGURE 2.2: Illustration of social tagging using the “Am I Really?” Facebook application.

0 and 1.

Definition 2.3.1. We define assertion veracity as a score 0≤ aA ≤ 1 that indicates whether

a ground truth (non-subjective) assertion A is true or false. This score strongly correlates

with the truth, i.e., an assertion with higher veracity than another is more likely to be true.

As shown in Figure 2.3, the inputs for computing an assertion’s veracity are the tags

on the assertion and their taggers’ trustworthiness. A tagger j’s trustworthiness wt
j is a

metric that estimates the trustworthiness of j’s tags on assertions of type t. We compute

this metric using the trust inference technique described in Section 2.3.3. We then weight

an assertion’s tags with their taggers’ trustworthiness to compute the assertion’s veracity.

Let Fi denote the set of friends of user i that have tagged the assertion At
i of type t posted

by user i. To compute the veracity score aA of At
i , the OSN provider aggregates the tags

dA
ji by i’s friends as follows:
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aA = max( ∑
j∈Fi

wt
j ·dA

ji/ ∑
j∈Fi

wt
j, 0) (2.1)

We make the scoring of the veracity of an assertion conservative by assigning -1 to

false tags, 1 to true tags, and normalizing negative veracity scores to zero. For instance,

if an assertion has two tags true and false from two equally trustworthy taggers, its

assertion veracity will be 0, not 0.5. Equation 2.1 ensures that if the sum of the weights

wt
j of the dishonest users that have falsely tagged user i’s false assertion is less than 0.75

of the sum of the weight of the users that have tagged the assertion, the assertion will have

less than 0.5 veracity.

This design is biased towards making it difficult for dishonest users to make false

assertions appear true, as an honest false tag weights more than a dishonest true tag.

Dishonest users, however, can abuse this design to make a user’s true assertions appear

not credible. We are tackling this attack, by allowing only a user’s friends to tag his

assertions. We assume that the user could use his due diligence to choose honest friends.

It is possible to map false tags to 0 and combine tags in a different way such as

weighing them by the logarithm of their taggers’ trustworthiness. We adopt Equation 2.1

because our experiments show it works the best among the variations we have tried.

We use an additional condition that if the sum of the trustworthiness of the assertion

At
i’s taggers is below a specified threshold M, aA is 0. M can be proportional to the mean

tagger trustworthiness of users. We use this condition to discount assertions that have been

tagged only by a few users with low tagger trustworthiness.

aA = 0 if ∑ j∈Fi wt
j < M (2.2)

We analyze the assurances provided by the assertion veracity mechanism in 2.4.1.
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2.3.3 Tagger Trustworthiness

How can FaceTrust reliably determine a tagger’s trustworthiness wt on assertions of type

t? We observe that the problem is similar to determining the trustworthiness of a user and

thus resort to trust inference techniques. A trust inference algorithm refers to the process

of computing the trustworthiness of a node in a trust graph by exploiting the transitivity of

trust. The trust algorithm assumes that a few select nodes in the graph are fully trustworthy.

It then analyzes the trust graph to determine how this trust propagates to other nodes.

Definition 2.3.2. We define tagger trustworthiness of a user j as the score 0 ≤ wt
j ≤ Tmax

that indicates whether a tagger j is honest or correct in his assessments of the veracity of

assertions of a specific type. This score strongly correlates with the ground truth, i.e., a

tag by a user with higher trustworthiness is more likely to correspond to the reality. Tmax

takes integer values.

We face two challenges in determining the tagger trustworthiness wt . First, trust infer-

ence uses a trust graph, where an edge between two users i and j is explicitly labeled with

the degree of trust that i places on j. However, this explicit trust information is not avail-

able in a social network graph. Second, how should we compute the tagger trustworthiness

wt , given that different trust inference algorithms exist and each has its own strengths? We

describe how we address each challenge in turn in Section 2.3.3 and Section 2.3.3.

Tagging Similarity

We address the first challenge by using tagging similarity between two friends to approxi-

mate explicit trust. Recall that our assumption is that honest users tend to tag similarly, and

note that tagging similarity is transitive. The tagging similarity tst
i j between two friends i

and j for an assertion type t is computed from two sources: a history-defined similarity

hst
i j computed by comparing their tagging history, and a user-defined similarity ust

i j.

We compute the history-defined similarity between two friends using a formula that
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FIGURE 2.3: Combining social tagging with trust inference to derive the veracity of user asser-
tions.

resembles the Jaccard index [52]. Let Nt be the total number of assertions of type t that

friends i and j both have tagged. Let Ct be the number of tags on the set of common

assertions for which i and j are in agreement. The history similarity hst
i j between i and j

for type t is computed as hst
i j = Ct/Nt . If Nt = 0, the similarity is equal to 0.

We use special assertions for each type - “Do I honestly tag the <type> assertions of

my friends?” - to derive user-defined similarity ust
i j by a user i on his friend j for type t.

Each user j posts these assertions on his OSN profile. If j’s friend i tags it as true, ust
i j

equals 1; otherwise, it is 0.

We combine user-defined similarity with history-defined similarity to obtain the final

tagging similarity between two users: tst
i j ← a · hst

i j +(1− a)ust
i j, where 0 ≤ a ≤ 1. We

vary the parameter a depending on how many common assertions Nt of the same type t

that users i and j have tagged: the larger Nt is, the higher a should be. This is, when

Nt is large, we presume that the history-defined similarity hsi j = Ct/Nt approximates the

likelihood that two friends would tag an assertion with the same value in the future more

accurately than a manually specified value usi j. However, when Nt is small, we use the

user-defined value usi j to approximate this likelihood. The parameter a is computed using

the logistic (S-shaped) function a(Nt) of Nt :

a(Nt) = (1+ eb−Nt )−1 (2.3)
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where b is a small constant. For example, if we set b = 5, for Nt ≤ 2, a(Nt) would be

small. However, when Nt exceeds the threshold 3, a increases drastically until it becomes

0.5 for Nt = 5. For Nt = 10, a(Nt) approximates 1.0.

We then transform the social graph into a trust graph by assigning the tagging similarity

tst
i j to be the weight of a trust graph edge from a friend i to a friend j. We refer to this

augmented graph as the similarity-based trust graph T (V,Et). Note that this is a directed

graph, as the user-defined similarity usi j is directional.

We have a distinct similarity-based trust graph for each type of assertion to mitigate

camouflage attacks (Section 2.2.4). Due to this design an attacker is forced to tag honestly

many assertions of the same type in order to boost its tagger trustworthiness. As a result,

he is less flexible in his choice of which assertions to tag and how.

We only compute tagging similarity between two friends to constrain the edges in the

trust graph to be the same as the ones in the social graph. This design choice is critical

in making our assertion veracity scoring algorithm resilient to Sybil attacks, as social

edges are limited resources [92]. However, it raises the concern that if two friends do not

share common friends, they may not have enough common assertions to tag. Fortunately,

OSN measurement studies [63, 25] show that the clustering coefficient in social graphs

is one to five orders of magnitude higher than in Erdös-Rényi [42] random graphs and

preferential-attachment-constructed random power-law graphs [30]. This result implies

that two friends of a single user are more likely to be friends as well.

Trust Inference

Once we have converted a social graph into a trust graph, the challenge is how to compute

a tagger’s trustworthiness using trust inference techniques. We consider the max-flow-

based broad class of trust inference algorithms [60, 61, 73, 34, 85]. It has been shown that

max-flow-based trust inference is more resilient to attackers because it considers multiple

trust paths [74, 34]. It has also been shown that a group max-flow-based trust metric [60]
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is sum-Sybilproof, i.e., an attacker cannot substantially increase the sum of the trust values

of users under his control by introducing many Sybils.

The common element among trust inference methods is that trust flows from a few

select trusted seeds and propagates to the other users in the trust graph. A seed is a highly

trusted user, e.g., a trusted employee of the OSN provider that also verifies and tags asser-

tions of many of his acquaintances. The specifics of the trust inference method determine

how trust propagates in the graph. Trust inference should assign high trust to users that

are well-connected with the trusted seeds, and assign low trust to Sybil users created by

dishonest users. A desirable feature that renders a trust metric Sybil-resilient is the bottle-

neck property [60], which we define as follows: “the trust that flows to the region of the

graph that consists of dishonest users and their Sybils is limited by the edges connecting

the dishonest region with the region that consists of trusted seeds and honest users.”

In addition, the selection of the trusted seeds and the number of trusted seeds is

paramount to the attack resilience of the system. This is because an attacker that manages

to befriend trusted seeds and to build up high tagging similarity with them can greatly

manipulate trust assignment. When the trust inference method employs numerous trusted

seeds a dishonest user would need to identify and target many of them in order to be ef-

fective. Note that the complete trust graph itself is not made public, therefore locating a

trusted seed is a difficult task for attackers. Nevertheless, it is possible for dishonest users

to infer a portion of the topology and identify a trusted seed. Hence, one additional de-

sirable feature of trust inference methods is that they have to be computationally efficient

for numerous trusted seeds. To this end, the method’s computation cost should be mostly

independent of the number of trusted seeds.

We also note that determining which users in a social graph can be designated as trusted

seeds is an important challenge. Gyongyi et al. [49] addressed this challenge in the context

of TrustRank, an eigenvector-based trust inference method for web pages. Their solution

also applies in our setting. The basic idea is to first run the trust inference method with
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a few manually selected seeds. We then identify the nodes with the highest tagger trust-

worthiness and add them to the set of trusted seeds. Subsequently, repeat until we have a

sufficiently large number of seeds with which we can initialize the algorithm.

Max-flow-based Tagger Trustworthiness

We now describe how we compute the tagger trustworthiness wt
i using a max-flow based

trust inference algorithm, inspired by the Advogato [60] trust metric. We call our trust

inference method MaxTrust. Both Advogato and MaxTrust satisfy the bottleneck prop-

erty. That is, they provide the assurance that the sum of the tagger trustworthiness of the

dishonest user and its Sybils cannot exceed the sum of the capacity of the Sybil creator’s

incoming edges in the similarity-based flow graph. We further analyze the assurances

provided by MaxTrust in Section 2.4.2.

Advogato determines the set of users that can be trusted by at least a certain level w

on a trust graph, where a directed edge u→ v indicates that user u trusts v by at least w.

Advogato transforms the trust inference problem into a problem of maximum flow from a

single trusted seed user to a virtual supersink user. The capacity of the users in the flow

graph is distributed such that the sum of the capacity of users at the same shortest hop

distance from the trusted seed is approximately equal to the capacity of the seed. It splits

each user into two virtual users (+ and -) and draws an additional edge of capacity 1 from

the + virtual user to the supersink. The capacity of the edge connecting the + to the -

virtual trusted seed user is approximately the number of users in the trust graph that are

expected to be trusted by at least x. The sum of the capacity of the +→- edges at each

shortest hop distance from the trusted seed is approximately equal to the capacity of the

trusted seed +→- edge. A user is considered trusted by at least w if the maximum flow

solution has flow 1 on his +→supersink edge. Since Advogato chooses a single trusted

seed as the source of its max-flow computation, a dishonest user that is close to the seed

can have high capacity. As a result, it can have many of its Sybils accepted at the same
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FIGURE 2.4: The tagging similarity-based trust graph and its conversion into a MaxTrust network
flow graph. The capacity Csupersource in the flow graph is 8 · Tmax. MaxTrust results in all users
except U7 having tagger trustworthiness equal to Tmax.

trust level as him. To mitigate this problem, one has to use multiple trusted seeds from

a set S ⊂ V , run the Advogato max-flow computation |S| times, and average the resulting

trust value across the runs.

Compared to Advogato, MaxTrust has the advantage that it does not need to be run

for each trusted seed. Instead in a single run (max-flow computation), it considers all

the trusted seed users. This results in MaxTrust being Θ(|S|) times more efficient than

Advogato.

To assign tagger trustworthiness to a user using Advogato we need to run a max-flow

computation for each non-zero trust level w, pruning at each run the edges that correspond

to pairwise trust less than w. Instead, MaxTrust computes the tagger trustworthiness 0 ≤

wt
i ≤ Tmax in one run, but the max-flow computation is approximately Tmax times more

expensive than the max-flow computation of Advogato for a single trust level. In choosing

a value for Tmax one has to consider the trade-off between computation cost and fine-

granularity in assigning trust values to users.

We next describe MaxTrust, which proceeds in two phases: a) the phase in which

we transform the trust graph into a network flow problem; and b) a heuristic suitable for

approximating max flow in case every user in the graph is directly connected to the sink.
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Both Advogato and MaxTrust can be efficiently computed with this heuristic.

Phase 1: Network Flow Graph Creation. In this phase we transform the trust graph

into an edge-capacitated maximum flow graph. In the next phase we will use the max-

flow on this trust graph to determine the trustworthiness of taggers. Figure 2.4 describes

this transformation.

We first create an additional virtual supersource user. We add an edge from the super-

source to each trusted user s∈ S. We also add a directed edge from each user, except of the

supersource, to an additional virtual supersink user. To prevent loops during the distribu-

tion of capacity among the users (described next,) we prune all edges that connect users at

a higher distance from the supersource to users at a lower distance from the supersource.

We also prune edges between users at the same distance from the supersource.

We now describe how we distribute capacity to the edges of the network flow graph. In

the rest of this description we denote as Csupersource the sum of the capacity of the outgoing

edges of the supersource. We set Csupersource = (1− pd)|V | ·Tmax, where pd is the portion

of users in the trust graph G(V,E) that are dishonest. We make the implicit assumption

that we know the approximate number of honest users at the time we initialize the trust

inference method. Next, we assign capacity Cs = Csupersource/|S| to each edge from the

supersource to each trusted user s. In the rest of this description, we denote as Cu the sum

of the capacity of the incoming edges of user u.

Subsequently, we recursively assign capacities to the rest of the edges in the trust

graph. That is, for each user u, we distribute Cu−Tmax capacity among the outgoing edges

that connect u with its neighbors in the pruned graph. The capacity Cuv of the outgoing

edge from user u to its neighbor v in the pruned graph is assigned proportionally to the

tagging similarity tsuv between user u and v: Cuv = (Cu−Tmax)
tsuv

∑z∈Fu tsuz
, where Fu is the

set of u’s friends. We also assign capacity Tmax to the edge u→ supersink. If Cu < Tmax,

we set Cu = Tmax, and allocate no more capacity to u’s neighbors. With this choice, we
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bias tagger trustworthiness towards higher values for a smaller number of users, instead

of higher values for a larger number of users. This further limits the effectiveness of Sybil

assertion poster attacks 2.2.4.

Phase 2: Max-flow Computation We now describe how we compute the maximum flow

from the supersource to the supersink. In our setting, edge capacity and flows take integer

values. Thus, solving optimal max-flow with Edmonds-Karp costs O(Tmax(1− pd)|V ||E|)

as it takes at most Csupersource = Tmax(1− pd)|V | augmentations. This is computationally

prohibitive (Section 2.6.3), therefore we resort to an efficient heuristic.

The heuristic executes Tmax Breadth First Search (BFS) operations. The BFS operation

starts from the supersource. It visits every user i in the flow graph once. When the heuristic

visits a user i, it scans i’s children in a random order. For each child, it stores the last parent

user that the BFS operation visited before scanning the child. In the rest of this description,

we denote the last visited parent of a scanned user j as parent( j).

When the BFS operation scans i’s child j, it backtracks from j to the supersource

through i as follows. At first, it checks whether the edge i→ j has at least capacity 1. If

yes, it checks whether the capacity of the edge parent(i)→ i is at least 1. If yes, it sets

i = parent(i) and repeats until parent(i) is the supersource. If backtracking reaches the

supersource, it adds 1 unit of flow to the edge j→ supersink. It also reduces the capacity

of the edges along the backtracking path by 1 unit. If the edges on the backtracking path

upstream of i do not have at least capacity 1, the algorithm does not scan any more of i’s

children. This step costs O(∆), where ∆ is the graph diameter.

If the algorithm adds 1 unit of flow to the edge j→ supersink, j is considered for a

subsequent visit, but is not considered for a subsequent scan by the same BFS operation.

If the algorithm does not add 1 unit of flow, j can be scanned from another parent. The

BFS operation continues until there are no more users to be visited.

After the BFS operation ends, the heuristic starts a new one from the supersource. It

31



repeats this process until Tmax BFS operations are executed. The capacities and flows of the

edges remain as adjusted during the previous BFS operation. After Tmax BFS operations,

the flow on the edge j→ supersink corresponds to j’s tagger trustworthiness.

The algorithm performs a total of Θ(Tmax|E|) user scans. At each scan it performs

O(∆) capacity updates for each of the user’s ancestors. Thus, our heuristic costs O(Tmax|E|∆).

The diameter of social graphs (small world networks) is typically O(log(|V |) (measured

to be 9 to 27 in real OSNs [63].)

Our heuristic takes advantage of the fact that all users are connected to the supersink.

Thus, it finds in O(1) an approximation of the shortest residual path to the supersink. It

maintains the guarantees required by the trust-inference method and offered by the optimal

max-flow solution using Edmonds-Karp’s algorithm: a) if there is flow on a link j →

supersink, there will be flow on this link in the optimal solution; b) if there is flow on j’s

outgoing links there will be flow on the link j→ supersink. The heuristic misses the cases

in which it would be preferable to not use ancestor capacity to accept a child j but to use it

for another child m, because child j may have another parent that can pass flow to it, while

child m does not (Figure 2.3.3. However, in our 200K-user network flow graph this was

not often the case, as indicated by the fact that the max-flow achieved with our heuristic

was typically ∼ 96% of the optimal max flow.

2.3.4 OSN-Issued Credentials

After the OSN provider (Section 2.2.3) obtains the assertion veracity score for a user i’s

assertion At
i, it can issue a relaxed credential for this assertion. As shown in Figure 2.1,

a credential issued by an OSN will include the assertion type t, the assertion At
i, and the

assertion veracity score.

We use non-cryptographic web-based credentials that satisfy the goals listed in Sec-

tion 2.2.5. Each credential as seen by the verifiers consists of:

• The list of assertions the user is verifying with their veracities and their types.
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10, respectively. This means that both users 4 and 5 get trustworthiness 10. In both cases all other
nodes get trustworthiness 10.

• Content: An excerpt of the message (review, email, random string etc.) for which

the credential is used.

• Context: A URL to or a description of the message for which the credential is

used.

For example, a credential used for an online book review may include the following

fields:

• [profession, CS professor, 100%, 17 tags]

• This is a great textbook and I highly recommend it ...

• http://www.amazon.com/review/...

This design binds a credential to the content and context it is used for, and ensures a

credential’s authenticity as it cannot be used to verify the assertion in a different content

and context.

If a user wishes to obtain a credential to verify his identity attribute(s) when he posts
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on an online forum, he first requests a unique HTTPS URL and ID for the credential

from the OSN’s credential issuing website. He then copies the credential URL or ID

into the message he wishes to use, publishes the message, and obtains the message URL

(context). Subsequently, he selects the assertions he wishes to certify, and submits them

together with an excerpt of his message (content) and the URL to or ID of the credential

issuing website. This completes the credential request process. The OSN provider creates

a credential linked to by the credential URL, which includes the user selected assertions

and their veracity scores, the excerpt of the message, and the message URL. To ensure

integrity, once a credential is created, the user cannot modify it. Our implementation also

includes the number of total tags an assertion has in a credential to give a verifier more

information for better judgement.

To verify the credentials of a user, a human verifier can follow the HTTPS credential

URL to view the credential through their browser. The FaceTrust site employs a CA-

signed certificate. The use of secure HTTP addresses most challenges to the security of

the web channel. However, the system still remains vulnerable to phishing attacks if the

verifier is not trained to expect an HTTPS page or does not properly verify the certificate.

Figure 2.3.4

In case the online message cannot include a credential URL, e.g., Amazon strips URL’s

from user reviews, the user can instead include a specially formatted unique ID of the

credential in his message when he requests the credential. A browser extension can read

the specially formatted ID and prompt the user to view the credential.

In case a user wishes to use a credential to verify attributes to a human verifier with

which he exchanges messages, the verifier and the user run the following protocol. The

verifier sends to the user a randomly generated string. The user includes this string in the

content field of the credential along with an excerpt of the message he wishes to send to

the user.

FaceTrust’s design also offers an XML web service API which can be accessed by
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FIGURE 2.6: Illustration of a human-readable FaceTrust credential for an online book review.

online verifying services, such as web sites that perform automated access control based

on the user’s identity attributes (e.g., age.) The verifier presents a randomly generated

string to the user, and the user generates a credential with the random string in the content

field. Subsequently, the user posts to the online service the credential URL or ID that the

user uses to certify his attributes, and the online service can retrieve the credential through

an API call. A verifying web service is also configured a priori with FaceTrust’s domain

name.

Optionally Unlinkable Credentials. When a user creates a credential, he can choose to

link the credential to his other credentials. This option is useful if the user is not concerned

with verifying users or online services knowing what other credentials he created and

(possibly) how he used them. He may instead desire to further reassure the verifier of the

truthfulness or consistency of his assertions.
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However, linked credentials may enable unscrupulous verifiers to survey the user against

its will. The user is able to not choose this option if he is very concerned about his

anonymity and untraceability. Note that the user has to generate a different credential

each time it presents it to a verifier in order to preserve the unlinkability of his creden-

tial showings. Naturally, to preserve his anonymity a user has to ensure that he does not

include any personally identifiable information in his assertions.

In an earlier design of FaceTrust [78], we proposed to use cryptographic anonymous,

unlinkable, and non-transferable credentials [33]. We discarded this design to obviate the

need for user-side cryptographic operations, as it has been shown it is difficult for average

users to use cryptography [89].

2.3.5 Mitigating Sybil Assertion Posters

We now describe how we improve the above scheme to defend against the Sybil assertion

poster attack (Section 2.2.4.) Under this attack groups of colluding dishonest users create

a single or more Sybil accounts, post assertions on behalf of those Sybil accounts and tag

them as true. The dishonest users subsequently share the Sybil accounts and use their

assertions to create FaceTrust credentials.

Since honest users are not connected to the Sybil accounts and cannot tag their asser-

tions, dishonest users do not need to tag differently from their honest friends. This results

in high tagging similarity between honest and dishonest users. Subsequently dishonest

users do not have lower tagger trustworthiness than honest users and their tags on the false

assertions are not discounted.

We simultaneously employ two techniques to mitigate this attack. The first technique

addresses the case in which a group of colluding users creates a single or a small number of

Sybil accounts. We observe that colluders can create assertions on the few Sybil accounts,

tag them as true and use them unimpeded to present multiple falsified credentials. We

mitigate this attack by imposing a quota on the number of credentials each account can

36



issue. A reasonable approach in enforcing quotas is to impose an upper limit on the number

of credentials a user can issue per month for each type of assertion, based on expected

usage.

The second technique addresses the case in which the group of colluding users creates

multiple Sybil accounts attempting to deal with the credential quotas. We modify the as-

sertion veracity Equation 2.1 as follows. This solution relies on the assumption that honest

users are typically both honest taggers and honest assertion posters. We can therefore use

our Sybil-resilient tagger trustworthiness measure to infer how trustworthy their assertions

are. To this end, we multiply the computed assertion veracity aA of an assertion A posted

by user j by a normalized value of the tagger trustworthiness of j.

a′A = aA ·min(1,c+(1− c)wt
j/w) (2.4)

Where w is the tagger trustworthiness value for which (1− pd)|V | users have great or

equal tagger trustworthiness. c is a tunable parameter, that assigns a minimum veracity

aA · c to assertion A in case the tagger trustworthiness wt
j of j is 0. The factor min(1,c +

(1− c)wt
j/w) is 1 for users with tagger trustworthiness higher than w.

Since our trust inference method assigns low tagger trustworthiness values to multiple

Sybils, this adjustment results in decreased veracity for assertions posted by colluders un-

der this attack. Furthermore, since under several settings dishonest users have less tagger

trustworthiness than honest users (Section 2.6.1,) this equation results in further decreas-

ing the veracity of false assertions.
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2.4 Attack-Resistance Analysis

We now discuss the attack-resistance of our design based on the assumptions and threats

and goals listed in Sections 2.2.3, 2.2.4 and 2.2.5.

2.4.1 Assertion Veracity Analysis

We now discuss the assurances that the assertion veracity Equation 2.1 offers. For sim-

plicity, we assume that the user j has higher than or equal tagger trustworthiness than w,

thus we do not need to consider the discounting introduced in Equation 2.4.

Theorem 2.4.1. If the sum of the weights wt
j of the dishonest users that have incorrectly

tagged a false assertion by user i is less than 0.75 of the sum of the weight of the users that

have tagged the assertion, the assertion will have less than 0.5 veracity.

Proof. We denote as R the ratio of the sum of the tagger trustworthiness of the dishonest

users that have tagged i’s false assertion over the sum of the tagger trustworthiness of the

users that have tagged the assertion. The dishonest friends of j tag the false assertion as

true (1). The honest users tag the assertion as false (-1). The goal of the system is to

make the veracity of the false assertion be less than 0.5.

Using Equation 2.1, we derive the inequality: (R)1+(1−R)(−1) < 0.5⇔ R < 0.75.

We now examine Equation 2.2. The threshold M dictates how many dishonest users

with a given tagger trustworthiness need to collude in order to make an assertion have non-

zero veracity. A reasonable value for M is a multiple of the average tagger trustworthiness

of honest users as derived by simulations (Section 2.6.1.) In the worst case, we need to

consider dishonest users that have so far been tagging honestly and thus have obtained

as high tagger trustworthiness as honest users. Assuming that that honest users have on

average w tagger trustworthiness, at least
M
w

dishonest users have to tag an assertion in
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order for it to have non-zero veracity.

2.4.2 Tagger Trustworthiness Analysis

We now discuss the security assurances offered by the trust inference method used to

derive a user’s tagger trustworthiness (Section 2.3.3). We observe that our max-flow-

based trust inference method satisfies the bottleneck property, by ensuring that the sum of

the tagger trustworthiness of the dishonest user and its Sybils cannot exceed the sum of

the capacity of the Sybil creator’s incoming edges.

The purpose of our analysis is to derive the ratio Rall of the maximum sum of the

tagger trustworthiness of dishonest users over the sum of the tagger trustworthiness of all

users, when dishonest users are placed randomly in the social graph. Assuming that this

ratio is on average maintained among the tagger trustworthiness of the friends of a user,

Rall becomes a useful measure of the security of the assertion veracity, as is equivalent of

the ratio R defined in 2.4.1.

We proceed by providing an upper bound Md on the sum of the tagger trustworthiness

of dishonest users and their Sybils. The tagger trustworthiness assigned to the Sybils of

a dishonest user equals to the sum of the flows on the edges connecting the Sybils to the

supersink. It is upper-bounded by the capacity Cu of the incoming edges of the dishonest

user u that creates the Sybils. The closer the dishonest user is to the supersource, the

higher the capacity of its incoming edges are. This is an inherent issue for all trust metrics,

including TrustRank [49] and Sumup [85]: the closer a node is to the trusted seed users

the more effective a Sybil attack is. The capacity of the incoming edges of the dishonest

creator of Sybils depends on the distance from the supersource, the number of outcoming

edges of users (fanout), and the capacity of the edges connecting the supersource to the

trusted seeds. Given this observation, the Sybil-limiting assurances of this method rely on

how capacity is distributed among the graph edges.

For simplification, the following analysis assumes that the similarity-based trust graph
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consists of trees rooted at the trusted seeds. We also do not consider tagging-similarity in

the edge capacity allocation during the transformation of the trust graph T (V,Et) to the

network flow graph, thus assuming that all edges in Et denote equal similarity. By not

considering tagging similarity, we provide a pessimistic upper bound for Md as the use of

tagging similarity in assigning capacities results in the Cu of dishonest users to decrease.

We also assume that there are no outgoing edges from dishonest users to honest users,

which maximizes the tagger trustworthiness the Sybils of dishonest users can obtain.

As described in Section 2.3.3, the out-degree of the supersource is equal to the number

of trusted seeds |S|. We assume that the out-degree of all non-leaf users u is f . Each

trusted seed is the root of a subtree of |V |/|S| nodes. V includes honest and dishonest

users and does not include Sybils that dishonest users may create. Each user u is connected

with an edge of capacity Tmax with the supersink. Let pd denote the portion of users in

the similarity graph T (V,Et) that are dishonest. According to Section 2.3.3 (Phase 1),

Csupersource = Tmax(1− pd)|V | and the capacity Cs of the edge from the supersource to a

trusted seed s is Csupersource/|S|. Also, d = blog f Csc denotes the maximum distance of

users from a trusted seed.

Theorem 2.4.2. For a given size |V | of the trust graph, given out-degree f and given num-

ber of trust levels Tmax, the maximum sum Md of the tagger trustworthiness of dishonest

users and their Sybils is only dependent on the portion of users that are dishonest pd and

the number of trusted seeds |S|. It does not depend on the number of Sybils that dishonest

users employ. Md is expressed as follows:

Md = pd · |S|( Cs
(1− (1− pd)d

pd
+

f Tmax(( f (1− pd))d−1)
(1− f )( f (1− pd)−1)

+
Tmax((1− pd)d−1)

(1− f )pd)
)

(2.5)

Proof. If a user u is at distance 1≤ k≤ b from a trusted seed s, the capacity of its incoming
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edges C(u)k is:

Cu(k) =
Cs−Tmax ∑

k−1
i=0 f i

f k =
Cs−Tmax

f k−1
f−1

f k (2.6)

We aim at determining the sum of the flow Md that can be allocated to the links that

connect dishonest users and their Sybils with the supersink when we solve the max-flow

from the supersource to the supersink. Md corresponds to the maximum sum of the tagger

trustworthiness of the dishonest users and their Sybils. It is equivalent of the sum of the

capacity of the incoming edges of the dishonest users. This is because in the tree topology

we are considering, a dishonest user can ensure that all its incoming edge capacity is

utilized by creating enough Sybils and connecting its outgoing edges to them.

We consider the case when dishonest users are placed randomly in the graph. This is

in fact a pessimistic assumption that results in a higher Md , obtains dishonest users are less

likely than honest users to be placed close to trusted seeds.

To derive the total maximum sum of the flow Md , we sum up the capacities Cu(k) of

dishonest users across varying distances from the trusted seed. Under our assumptions, the

capacity of the incoming edge Cu(k) of a dishonest user is assigned exclusively to Sybils

or other dishonest users. Thus, when we account for the capacity of dishonest users at

distance k, we should not account for the capacity of dishonest users that have dishonest

ancestors.

At distance 1 ≤ k ≤ d from the trusted seed, the average number of users (honest and

dishonest) with no dishonest ancestor is f k(1− pd)k−1. Correspondingly, the number of

dishonest users at distance k with no dishonest ancestor is on average pd f k(1− pd)k−1. We

derive that the maximum sum of the tagger trustworthiness Md of dishonest users when

dishonest users are placed randomly in the social graph and utilize all their capacity Cu to

provide trust flow to dishonest users and Sybils is:
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FIGURE 2.7: Ratio Rall of the maximum sum of the tagger trustworthiness of honest users over
the sum of the tagger trustworthiness of all users, when dishonest users utilize all their capacity
to provide flow (tagger trustworthiness) to dishonest users and Sybils. |V |= 200K, Tmax = 10 and
f = 10

Md = pd · |S|
d

∑
k=1

f k(1− pd)k−1Cu(k) (2.7)

The above equation is equivalent to Equation 2.5.

We can now provide the ratio Rall of the maximum sum of the trustworthiness of

dishonest taggers over the sum of the trustworthiness of all taggers, when dishonest users

are placed randomly in the social graph and utilize all their capacity to provide flow to

dishonest users and Sybils.

Rall =
Md

Csupersource
=

Md

Tmax|V |(1− pd)
(2.8)

According to Equation 2.1, a good ratio Rall to prevent dishonest users from making

their assertions appear credible on average is 0.75. As can be deduced from the above

equations and is illustrated in Figure 2.4.2, the ratio Rall increases substantially as a func-

tion of the portion of dishonest users pd and decreases slightly as a function of the number
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of trusted seeds|S|. It does not depend on the number of Sybils that dishonest users em-

ploy. Under the examined setting (|V |= 200K, f = 10,Tmax = 10, increasing |S| from 100

to 1000 results in Rall decreasing by ∼ 0.1. In addition R remains below 0.75 as long as

pd is below 0.4.

The ratio R is large even when pd is small (e.g, R = 0.44 when pd = 0.2 and |S|= 400)

because our model examines the worst case scenario: a dishonest user never distributes

capacity to its children that are honest. This corresponds to dishonest users assigning 0

tagging similarity to their honest friends, while their honest friends assign 1.0 tagging

similarity to them. Under our model, as the number of trusted seeds |S| increases, honest

users have more opportunities to receive capacity from the trusted seeds or other honest

users. This is the reason we observe the decrease of Rall as |S| increases.

Our simulation-based evaluation (Section 2.6.1) considers a real social graph (under

which honest users can be connected to trusted seeds via multiple paths), thus it yields

higher trustworthiness for honest taggers. Under our tree-topology model, the existence of

multiple seeds also mitigates the impact of a focused adversary that manages to be close

to a trusted seed and establish high tagging similarity with it. This is because this fo-

cused dishonest user at distance k from the trusted seed obtains at most (Csupersource/|S|−

Tmax
f k−1
f−1 )/ f k capacity for its incoming edges instead of (Csupersource−Tmax

f k−1
f−1 )/ f k.
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2.5 Implementation

We implemented FaceTrust as a three-tier web application so that we can evaluate the

design and its assumptions using a real-world deployment. The front-end of FaceTrust is

the “Am I Really?” Facebook application, which is implemented using the PHP Facebook

developer API [8]. The FaceTrust application server serves the HTTP content, collects

assertions and tags, as well as maintains the social graph. The FaceTrust server employs

MySQL to store the user, assertion, tagging and social graph information. It uses a Java

implementation of MaxTrust to perform the veracity computations.

Game with a Purpose: We built the “Am I Really?” (AIR) Facebook application [1]

using a “game with a purpose” design to incentivize social tagging. AIR is a “micro-

polling” application. Users post facts about themselves and other statements and ask their

AIR friends to tag them as true or false. For example, a user may post the question

“Am I really older than 18?” or questions of lighter nature, such as “Am I really good

at baseball?” AIR users can view the veracity of a friend’s assertion only after they have

tagged his assertion, and after the assertion amassed a threshold number of tags.

According to Facebook’s terms of use, we are not allowed to store long term the friends

of a user that the Facebook API provides. To circumvent this restriction, AIR asks a user to

declare which of his friends he would like to have as friends on AIR. To further ensure that

connections in the AIR social graph correspond to real life acquaintances (Section 2.2.3)

and to address the problem of promiscuous users that naively establish Facebook connec-

tions with malicious users, we explicitly ask a user to declare as AIR friends only persons

with whom he has met in person.

We also build a credential issuing website https://www.facetrust.net, which links

each user’s account to their Facebook account. A user that wishes to prove an identity

attribute to other users or online services requests a credential as we describe in Sec-

tion 2.3.4. The issuing website pulls the user’s assertions and their veracity scores from
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the AIR database back-end.
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2.6 Evaluation

By evaluating FaceTrust, we aim to understand the following aspects of its operation:

• Effectiveness: How well do the assertion veracity and tagger trustworthiness scores

correlate with the truth, and how well does the design withstand incorrect user tag-

ging, colluder attacks and Sybil attacks?

• Practicality and usage: How often and how accurately does a user tag his friends to

help them obtain credentials?

• Computational feasibility: A social network may consist of several hundreds of mil-

lions of users. Will an OSN provider have sufficient computational resources to

mine the social graph and derive tagger trustworthiness scores?

We use simulations on a crawled Facebook social graph and a real-world deployment

to answer these questions. We discuss each in turn.

2.6.1 Effectiveness

Our effectiveness evaluation aims at examining whether true assertions obtain high verac-

ity and false assertions obtain low veracity, even in the presence of dishonest users and

Sybil attacks. It also aims to determine the limits of our approach, i.e., under which con-

ditions false assertions can obtain high veracity and what strategies the attackers need to

deploy in order to defeat the system.

We start by evaluating the ability of our max-flow-based trust inference scheme (Sec-

tion 2.3.3) to assign low tagger trustworthiness to dishonest users and Sybils. We then

proceed to analyze the effectiveness of the assertion veracity mechanism (Section 2.3.2),

which weighs user tags based on tagger trustworthiness.

For a more realistic evaluation, we use a crawled sample of the Facebook social graph [44].

The social graph we use is a 200K-user connected component obtained from a 50M-user

sample via the “forest fire” sampling method [58]. It has been shown [58] that the forest
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fire technique outperforms random node, random edge or random walk sampling in pre-

serving important statistical graph properties (e.g. degree distribution, distribution of sizes

of connected components, the distribution of the clustering coefficient and the diameter)

in order to capture a snapshot of the network at an earlier point in time.

“Forest fire” sampling proceeds as follows: a) We randomly choose a seed node s; b)

We generate a random variable x that is binomially distributed with mean (1p f )1, with

p f = 0.7. We sample (“burn”) x randomly selected edges of s and their incident nodes.

Let w1,w2, ...,wx denote the other ends of these selected links. (c) We apply recursively

step (b) from nodes w1,w2, ...wx. Already sampled (burned) nodes cannot be revisited.

The average number of friends of each user in the sample graph is ∼ 24 and the maxi-

mum number of friends is 313. The diameter of this graph is 18. The clustering coefficient

is 0.159.

General Simulation Settings

Each user in the social graph posts a single assertion of the same type on his profile. We

have two types of users: honest and dishonest. Honest users always post true assertions

and dishonest users always post false assertions. Furthermore, the honest users tag their

friends truthfully, that is, they tag as true the assertions made by their honest friends and

as false the assertions made by their dishonest friends.

Unless specified otherwise, the dishonest users tag all assertions as true, regardless of

whether the users that post them are honest or not. By doing so, dishonest users collude

to increase the veracity of each other’s assertions. By truthfully tagging the assertions

of honest users, dishonest users attempt to have common tags with other honest users in

order to increase their tagging similarity with trustworthy users (the tagger camouflage

attack described in Section 2.2.4.) Thus we are also explicitly considering the case in

which a user is not always tagging falsely, but instead has a mixed strategic behavior.

Unless specified otherwise, both honest and dishonest users are randomly distributed
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in the social graph. In addition, each user tags the assertions of at most F of his friends.

We vary F to reflect various degrees of adoptability of social tagging.

We obtain the tagger trustworthiness as described in Section 2.3.3. We do not consider

the user-defined similarity (Section 2.3.3), as we use no notion of a priori trust between

users. We set Tmax = 100 (Section 2.3.3). For each experiment, we set the minimum sum of

the trustworthiness of taggers M (Section 2.3.2) equal to the average tagger trustworthiness

of honest users. We set the parameter c (Section 2.3.5) equal to 0.2. For all experiments we

employ 1000 trusted seeds which are randomly selected among the honest users. For each

configuration we repeat the experiment 5 times and plot the mean, and 95% confidence

intervals (too small and not visible in most configurations).

Tagger Trustworthiness Effectiveness

As described in §2.3.2, the tags on assertions are weighted by their tagger’s trustworthi-

ness. Therefore, we first need to examine the effectiveness of tagger trustworthiness under

various strategies employed by dishonest users. We consider the tagger trustworthiness

scheme effective if: a) it assigns substantially lower trustworthiness to Sybil users than to

honest users; and b) it does not assign higher trustworthiness to dishonest users than to

honest ones.

Dishonest users do not employ Sybils: In this series of experiments, dishonest users do

not employ Sybils. As can be seen in Figure 2.6.1, the tagger trustworthiness of honest

users is substantially higher than the one of dishonest users when the portion of honest

users is small. Honest and dishonest users have the same connectivity. They differ only in

terms of tagging. When the portion of honest users is relatively low and honest and dis-

honest users are placed randomly, there are many opportunities for honest and dishonest

users to tag dissimilarly. We also observe that the trustworthiness of both honest and dis-

honest users decreases with the portion of honest users. This is because the more dishonest

users exist in the network, the more likely it is for the honest users to be disconnected from
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FIGURE 2.8: Mean tagger trustworthiness as a function of the fraction of honest nodes when the
maximum number F of friends a user tags is 20 (F = 20) and dishonest users do not employ Sybils.
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FIGURE 2.9: Mean tagger trustworthiness of honest users as a function of F when 80% of users
are honest and dishonest users do not employ Sybils.

trusted seeds.

Tagging similarity captures the difference in tagging behavior between dishonest and

honest users, and this translates to low pairwise trust between them. Since trust is seeded at

honest users, MaxTrust’s transitive trust mechanism assigns lower tagger trustworthiness

to dishonest users. This result demonstrates the importance of using tagging similarity.

When dishonest users tag incorrectly very often, this mechanism results in them getting
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FIGURE 2.10: Mean tagger trustworthiness as a function of the number of Sybils each dishonest
user creates when 50% of users are honest and F = 20.

substantially decreased tagger trustworthiness, thus having less influence on the system’s

operation.

Figure 2.6.1 shows the trustworthiness of honest users as a function of the maximum

number of friends F each user tags. As F increases, the number of common tags Ct

(Section 2.3.3) used to derive the tagging similarity increases. For F < 10, the tagging

similarities between users are almost 0 and the similarity-based trust graph is disconnected,

resulting in honest users getting very low trustworthiness. As F increases, the trust graph

becomes more connected and honest users obtain increased tagger trustworthiness.

When tagging is infrequent, a large fraction of edges between honest users do not have

high tagging similarity, as it becomes less likely for honest users to tag the same assertions.

As a result, honest users get relatively low veracity. As can been seen in Figure 2.6.1,

honest users to achieve high tagger trustworthiness, F should be ≥ 10.

Dishonest users employ Sybil Taggers: To evaluate the scheme’s resilience to Sybil

attacks, all the dishonest users create a varying number of Sybils. The dishonest users

connect to all the Sybils they create and the Sybils connect only to their creator. Sybils

tag the false assertions of their creator as true to increase the veracity of those assertions.

The creator always has tagging similarity 1.0 with all its Sybils. This corresponds to the
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configuration that maximizes the tagger trustworthiness of Sybils.

As can be seen in Figure 2.6.1, when the number of Sybils is 200, the tagger trustwor-

thiness of Sybils is on average 90 and 70 times lower than the trustworthiness of honest

and dishonest users, respectively. This is due to the bottleneck property of our trust infer-

ence mechanism (Section 2.3.3), which limits the amount of trust that can be assigned to

the Sybils of a dishonest user.

We also observe that as the number of Sybils increases from 10 to 200, the tagger

trustworthiness of honest and dishonest users also decreases by 12% and 30%, respec-

tively. The reason is that the incoming flow that passes through a dishonest user is now

assigned to the Sybil users instead of other users downstream. Nevertheless this decrease is

not substantial, especially for honest users, because there are multiple trust paths through

which flow can reach these users.

We now examine how tagger trustworthiness is distributed among the users. Figure

2.6.1 depicts the CDF of the tagger trustworthiness of honest, dishonest and Sybil users.

As can be seen, there is substantial variance in the trustworthiness values of honest and

dishonest taggers. Nevertheless, on average dishonest users have substantially lower trust-

worthiness due to their decreased tagging similarity with honest users. Furthermore, al-
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most 90% of Sybil users has 0 tagger trustworthiness.

Since we set the assertion veracity threshold (Equation 2.2)) to be close to the mean

tagger trustworthiness, the tagger trustworthiness distribution greatly affects how assertion

veracity is computed. In MaxTrust we can safely set the threshold equal to the mean tagger

trustworthiness for that portion of honest users, and in many cases the honest users that

tag an honest assertion have sufficient tagger trustworthiness.

Assertion poster camouflage attack: We also evaluate the resilience of FaceTrust when

dishonest users use the assertion poster camouflage attack. Section 2.2.4. Honest users

post one true assertion, and dishonest users post one false assertion with a varying number

(1-10) of true assertions for camouflage. We obtain the average tagger trustworthiness

of honest and dishonest users under 80% honest nodes, 200 Sybils per dishonest users

and F = 20. We observe that the effect of the camouflage attack on the resulting tagger

trustworthiness is insignificant.

Although it is not demonstrated in our experimental setting, this attack can be further

mitigated by assigning distinct tagger trustworthiness values for each type. As a result the

camouflage attack cannot occur for many assertions of the same type because the tagging

similarity of the user’s dishonest friends with honest friends for that particular type will

drop, and so will their tagger trustworthiness.

Trustworthiness evaluation conclusions: The above results illustrate that under our

tagging-similarity-based trust inference mechanism dishonest users obtain substantially

lower trustworthiness than honest users. In addition, we show that Sybil users obtain

almost two orders of magnitude less trustworthiness, under common Sybil strategies. Our

results have also illustrated the importance of the frequency of tagging, as modeled by the

parameter F .
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nodes when F = 20 and dishonest users do not employ Sybils.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000

A
s
s
e

rt
io

n
 v

e
ra

c
it
y

# Sybils

True

False

FIGURE 2.13: Mean veracity of true and false assertions as a function of the number of Sybils
each dishonest user creates when 50% of users are honest.

Assertion Veracity Effectiveness

The assertion veracity scoring is dependent on the mechanism for determining the weight

of the taggers, which was evaluated in the previous section. We now evaluate the assertion

veracity scoring technique itself, which was introduced in Section 2.3.2. We evaluate the

resilience of the assertion veracity equation under varying attack scenarios.

Dishonest users do not employ Sybils: Figure 2.6.1 plots the mean veracity of true and
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false assertions as a function of the portion of the users that are honest. In this experiment,

dishonest nodes do not employ Sybils. We observe that when the fraction of honest users

exceeds 50%, the mean veracity of true assertions substantially exceeds that of false ones.

Unlike plain majority voting approaches, our mechanism assigns low veracity to false

assertions even when the fraction of dishonest users is large. This is because MaxTrust

assigns lower tagger trustworthiness to dishonest users and their tags are discounted.

As the portion of dishonest users increases, the number of users that obtain very low

tagger trustworthiness increases. Consequently, multiplying the veracity of an assertion by

the normalized tagger trustworthiness of its poster (Section 2.3.5) decreases the veracity

of both true and false assertions.

Dishonest users employ Sybil taggers: Figure 2.6.1 shows the veracity of true and false

assertions when dishonest users employ Sybils. Each dishonest user creates a varying

number of Sybils. The Sybils are connected only to their creator and tag all its assertions

as true. As can be seen, the dishonest users gain little benefit by using Sybils in our

setting. Although there are many Sybil taggers for false assertions, most of them have very

low (or 0) tagger trustworthiness and the sum of tagger trustworthiness of Sybil taggers

is most often below the threshold M (Section 2.3.2.) Moreover, because the mean tagger

trustworthiness of dishonest users which employs Sybils decreases, multiplying by the

normalized tagger trustworthiness of the poster reduces the mean veracity of dishonest

users.

Figure 2.6.1 shows how veracity is distributed among true and false assertions. We

depict the CDF of the assertion veracity of all 200K assertions. We observe that 57.5%

and 12.5% of true assertions obtain veracity equal to 1 and 0.2, respectively. 24.3% of

true assertions obtain 0 veracity. The true assertions with 0.2 veracity belong to honest

users with 0 tagger trustworthiness. The true assertions with 0 veracity are the ones for

which the sum of their taggers’ trustworthiness scores are below M. The number of these
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incorrectly assessed true assertions can be reduced by increasing the maximum number

of friends that users tag (F), i.e., increasing the adoption of social tagging. Incorrectly

assessed assertions can be further avoided designating more trusted seeds (S.)

Unlike true assertions, most of the false assertions, 85%, obtain 0 veracity. Only 1.5%

of false assertions obtain veracity 1. This result suggests that FaceTrust’s assertion veracity

scoring mechanism is effective, but not absolutely accurate. Thus, it should not be used to

control access to critical resources.

Dishonest focused colluders: We also evaluate the case in which dishonest users form

colluders groups. The dishonest colluders in a group are connected to each other and tag

each other’s assertions, as true. This experiment differs in that it is guaranteed that each

dishonest user has a specified minimum number of dishonest colluders. This corresponds

to a more focused and coordinated attack. Figure 2.6.1 depicts the mean veracity of the

assertions posted by the dishonest users as a function of the size of the colluder groups.

We observe that colluders can get higher average veracity of assertions than true asser-

tions only if their size exceeds a relatively high threshold (in this case 30). This is due to:

a) the increased number of dishonest taggers; and b) the increased tagger trustworthiness

of the colluders. The tagger trustworthiness of colluders increases because users closer

to seeds can get higher tagger trustworthiness in MaxTrust and the colluders are all con-

nected to each other. If a single colluder is close to the trusted seeds, all the colluders may

get reasonably high tagger trustworthiness. As the number of colluders increases, both

sources of increased tagger trustworthiness become more prominent and the assertions of

colluders get high veracity.

This result reveals a limit of our approach. If a substantial number of colluders co-

ordinates, they can ensure that their assertions have high veracity. Nevertheless, rational

colluders need to expend effort (Section 2.2.4) to perform this attack, thereby they can be

discouraged. For this reason, FaceTrust credentials should not be treated as the absolute
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truth and they should instead be used as an additional indication of veracity.

Dishonest users employ Sybil assertion posters: We now evaluate our system when a

group of dishonest users performs the Sybil assertion poster attack (Section 2.2.4.) Each

group of colluders creates Sybils to which all the colluders connect to. The Sybil users

post assertions and all the colluders tag them as true. At the same time dishonest users

tag honestly for all other assertions in an attempt to establish high tagging similarity with

honest users. This attack is equivalent to dishonest users who choose to connect only to

other dishonest colluders. As explained in Section 2.2.4, this attack results in the colluders

having access to assertions that cannot be voted as false by other honest users, thus they

are expected to have high veracity.

In Figure 2.6.1, when the number of Sybil assertion posters is small, e.g., 10, we ob-

serve that the assertion veracity is high. Since the number of Sybils is small, MaxTrust

does not assign low tagger trustworthiness to them. Consequently, Equation 2.4 (Sec-

tion 2.3.5) does not mitigate this attack, because both the colluding dishonest taggers and

the Sybil posters have relatively high tagger trustworthiness. This result reveals another

limit of our approach. Nevertheless, FaceTrust prevents dishonest users from using the

assertions of those Sybils in multiple contexts by imposing a quota (Section 2.3.5) on the

number of credentials each user can request.

When the colluders create many Sybils to overcome the quotas, they have to cope with

the fact that the tagger trustworthiness of the Sybils is reduced. Consequently, the mean

assertion veracity is reduced as shown in Figure 2.6.1. This result indicates the importance

of multiplying the assertion veracity by the poster’s normalized tagger trustworthiness as

described in Section 2.3.5. Furthermore, rational dishonest users incur a cost to create

Sybils (Section 2.2.4), which further limits their ability to subvert the system.

Veracity evaluation conclusions: The above results illustrate that our assertion veracity

scoring technique results in false assertions obtaining substantially lower veracity than true
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FIGURE 2.14: CDF of assertion veracity, when 80% of users are honest, F = 20, and dishonest
users employ Sybils.
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FIGURE 2.15: Mean veracity of assertions posted by dishonest colluders as a function of the
colluder group size, when 80% of users are honest and F = 20.

ones. We show that this holds even under commonly deployed attack strategies (Sybils and

colluders). In addition, we demonstrate the limits of our approach by explicitly describing

elaborate colluding attacks that FaceTrust does not sufficiently mitigate.

2.6.2 Facebook Deployment

FaceTrust requires a new form of user input: assertions and tags. In addition, in order

for the veracity scores to correlate positively with the ground truth, it requires trustworthy
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FIGURE 2.16: Mean veracity of assertions posted by Sybil posters as a function of the number of
Sybil assertion posters in the group, when 80% of users are honest, F = 20, and the group size is
30.

users to tag honestly and similarly. These facts motivate us to ask: Are users willing to

tag their friends’ tags? How often and honestly will they tag? To answer these questions,

we implemented the “Am I Really?” (AIR) Facebook application (Section 2.5) for users

to post and tag assertions, we invited our friends to use it, and advertised it on Facebook.

The Facebook advertisement resulted in approximately 100 installations of AIR.

We collected a data set consisting of 1108 users. 395 of those users chose to declare

that they are friends with at least one AIR user, thus having one or more neighbors in the

AIR social graph. For the rest of this evaluation we provide statistics concerning those

395 users, since they are the only ones that can tag friends in AIR. Our data set includes

2410 social connections established between Sept. 1st, 2009 and Jan. 10, 2010. These

connections form several connected components, the largest of which includes 182 users.

The average number of friends a user has in that largest component is 3.8 and the diameter

of the component is 4. Our live system computes tagger trustworthiness using MaxTrust.

We employ 10 trusted seeds, set Tmax = 10 and assume that 90% of the network consists

of honest users.

To protect user privacy, we anonymize all Facebook and AIR-specific identifiers and
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exclude the assertions that include personally identifiable information prior to data pro-

cessing. In addition, the application informs its users that their personal data will not be

published.

We incorporate user-defined similarity (Section 2.3.3) in the computation of tagging

similarity, using b = 5. We again set the parameter c (Section 2.3.5) equal to 0.2. On

average, friends have Nt (as defined in Section 2.3.3) equal to 5.2, 10.4, 3.7. and 2.8 for

type t of age, location, profession, and gender, respectively.

Figure 2.6.2 shows the complementary cumulative distribution of users as a function

of the number of tags they post. We observe that even in this small social graph, more than

half of the users have tagged at least 8, 6, 4, and 1 time for type age, profession, location

and gender, respectively. We also find that users tag on average 14.4, 10.4, 7.5, and 4.6

times for assertions of type age, profession, location, and gender. We believe that when

the system is widely adopted, in a larger social graph, users will have on average many

more friends to tag. Thus, we speculate that the number of assertions users tag is likely to

exceed 10, the number needed to obtain accurate tagger trustworthiness (Figure 2.6.1 in

Section 2.6.1).

Figure 2.6.2 shows the complementary cumulative distribution function for the number

of assertions users post for each assertion type. More than one quarter of the 395 users

have posted at least 8, 6, 4 and 2 assertions of type age, profession, location and gender,

respectively. We find that users post on average 5.6, 3.6, 2.6, and 0.9 assertions of types

age, profession, location, and gender, respectively. This is indicative of the fact that users

use this application as intended and do not feel uncomfortable reporting such information

to their friends and FaceTrust. We also observe that users tend to post more assertions that

concern their age or profession than their location. This is possibly because users are not

as motivated to ask others what they think about their location or to certify their location.

Next, we take a closer look at the AIR profiles of 10 out of the 395 users, for which

we know the correct answer for their age, gender, location and profession assertions. We
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FIGURE 2.17: CCDF of the number of users as a function of the number of tags per user for each
assertion type.
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FIGURE 2.18: CCDF of the number of users as a function of the number of posted assertions per
user for each assertion type.

collect a total of 50, 50, 50 and 20 age, profession, location and gender assertions, re-

spectively. These include 14 false age assertions, 21 false profession assertions, 19 false

profession assertions, and 10 false gender assertions. Each of these assertions were tagged

∼ 6 times on average by distinct users.

Figure 2.6.2 shows the mean veracity per type of the true and false assertions with and

without attackers in the system. Per each type, the first column depicts the mean assertion
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FIGURE 2.19: Veracity per type of true and false assertions in FaceTrust’s real-world deployment
with and without attackers. The error bars denote 95% confidence intervals.

veracity of true assertions. The second column depicts the mean assertion veracity of false

assertions in the absence of attackers. The third column shows the mean veracity of false

assertions when we inject 20 artificial dishonest users in AIR’s social graph. The injected

dishonest users do not represent real Facebook accounts. They are connected to the 10 real

honest users, such that each of these real users is AIR-friends with two distinct dishonest

users. The injected dishonest users tag the false assertions of the 10 real users as true. In

an attempt to increase its similarity with honest users, an injected dishonest user launches

the camouflage attack by tagging all the other assertions as true, if their prior veracity of

the assertion was greater than 50% and false otherwise.

As can be seen in Figure 2.6.2, the computed veracity for true and false assertions in the

absence of attackers correlates very well with the ground truth. This result indicates that

users tend to tag correctly. We observe that users may make some mistakes in assessing

each other’s age, but when the truth for an assertion is straightforward, such as for gender,

the veracity of the assertion is high.

As can be seen in the third column per type, the attack by the injected dishonest users

has affected the computed veracity of false assertions. This is mainly because the AIR

social graph is small, with each real honest user having less than 4 honest friends on
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average. Two attackers per user have caused the false assertions’ veracity to increase

substantially. However, there is still a distinguishable gap between the average veracity of

true and false assertions, suggesting that FaceTrust’s assertion veracity scoring mechanism

is resilient.

Deployment conclusions: Our Facebook deployment results indicate that users tag suffi-

ciently frequently for the tagger trustworthiness measure to be effective. Importantly, our

results also indicate that benign users tag mostly correctly. This demonstrates the efficacy

of relying on users to certify each other’s identity attributes.

2.6.3 Computational Efficiency

We have benchmarked the computational overhead to derive MaxTrust’s max-flow-based

tagger trustworthiness, using a 3.4GHz P4 machine with 2GB memory running Debian

2.6.25. We repeated the measurement 5 times. The mean computation time to obtain

the tagger trustworthiness using our max-flow-based method for all 200K users and for

Tmax = 100 users is 629 sec. The computation time is almost independent of the number

of trusted seeds. The required memory is ∼ 550MB. (∼ 500MB for graph structure data,

∼ 50MB for computation.)

We observe that the computation cost of our heuristic for sub-million node graphs is

not excessive. Using parallel computation techniques, e.g., MapReduce [38] as used for

the computation of PageRank in Google’s datacenters, and by BotGraph [96], we expect

that this computation could scale to multi-million user social networks.

On the other hand, solving the optimal max-flow using Edmonds-Karp algorithm is

computationally prohibitive. For the same 200K-user social graph, under the same ma-

chine configuration, Edmonds-Karp requires approximately 1 million sec.
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3

SocialFilter: Introducing Social Trust to
Collaborative Spam Mitigation

In this chapter, we describe how we use Online Social Networks to assess the trustworthi-

ness of reporters (detectors) of spamming hosts in a collaborative spam mitigation system.

3.1 Introduction

The majority of the currently deployed spam email mitigation techniques rely on central-

ized infrastructures and place trust on a small number of security authorities. For instance,

email systems and browsers rely heavily on a few centralized email sender reputation ser-

vices (e.g., [17, 76, 15].)

Unfortunately, these services often maintain out-dated blacklists [72], offering a rather

large window of opportunity to spammers. Moreover, the number of nodes that detect and

report spam to them is limited. At the same time, attacks launched using large botnets are

becoming increasingly surreptitious. That is, a single malicious host may attack multiple

domains, each for a short period of time [70, 54], reducing the effectiveness of spam

traffic detection with a small number of vantage points. Finally, several of these services
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require paid subscription (e.g., CloudMark [3] and TrustedSource [15].)

Motivated by the shortcomings in terms of effectiveness and cost of these central-

ized email sender reputation services, researchers have proposed collaborative peer-to-

peer spam filtering platforms [97, 98]. These systems assume compliant behavior from all

participating reporters of spam. This is hardly true given the heterogeneity of the Inter-

net and the fact that reporters may belong to distinct trust domains. Compromised hosts

controlled by attackers may join the system and pollute the detection mechanisms. In

addition, honest reporters may become compromised after they join the system. A more

recent collaborative spam email sender detection system employs trust inference to weigh

spammer reports [77], however it is still susceptible to Sybil attacks.

To this end, we propose SocialFilter, which is a Sybil-resilient collaborative spam fil-

tering system that uses social trust embedded in Online Social Networks (OSN) to evaluate

the trustworthiness of spam reporters. SocialFilter aims at aggregating the experiences of

multiple security authorities, democratizing spam mitigation. It is a trust layer that exports

the a measure of the system’s belief that a host is spamming. Thus, it enables nodes with

no spam detection capability to collect the experiences of nodes with such capability and

use them to classify email connection requests from unknown email senders.

Each SocialFilter node submits spammer reports (Section 3.2.2) to a centralized repos-

itory. These reports are security alerts that classify spamming Internet hosts identified by

their IP addresses. The goal of the system is to ensure that the reports reach other nodes

prior to spamming hosts contacting those nodes, and that the spammer reports are suffi-

ciently credible to warrant action by their receivers.

SocialFilter nodes are administered by human administrators (admins). Our insight

is that nodes maintained by trusted admins are likely to generate trustworthy spammer

reports, while nodes maintained by admins known to be less competent are likely to gen-

erate unreliable reports. The repository utilizes a trust inference method to assign to each

node a reporter trust (Section 3.3.1) score. This score reflects the system’s belief that the
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spammer reports of a node are reliable.

The trust inference method exploits trust transitivity and operates on a trust graph

that is formed at the repository as follows (Section 3.3.1.) Each vertex in the graph is a

SocialFilter node, which is administered by a human admin. The edges in the graph are

direct trust values between nodes administered by admins that are socially acquainted. The

social relationships between admins are obtained from OSN providers, First, each admin

explicitly assigns a direct trust value to nodes that are administered by his friends, based on

his assessment of his friend’s competency. Second, the direct trust values between nodes

are updated to reflect the similarity between their spammer reports. This is based on the

observation that trustworthy nodes are likely to report similarly on commonly encountered

hosts. Third, the repository computes the maximum trust path from pre-trusted nodes to

all other nodes in the trust graph using Dijkstra’s algorithm.

However, traditional transitive trust schemes and email reputations systems are known

to be vulnerable to the Sybil attack [39, 34, 35]. To mitigate this attack, we again use the

social network to assess the belief that a node is a Sybil attacker, which we refer to as iden-

tity uniqueness (Section 3.3.2). Each node is associated with its administrator’s identity.

The identity uniqueness of a node is determined via the social network of administrators

using a SybilLimit-based technique [92](Section 3.3.2).

The originator of a spammer report also assigns a confidence level to its report. The re-

porter trust of a node, its identity uniqueness, and its confidence level in a report determine

how much weight the repository should place on each report. Subsequently, the reposi-

tory combines the reports to compute a spammer belief score for each host IP reported to

the system. This score can be explicitly interpreted as the belief that a host is spamming.

This score is exported by the repository to other online systems for diverse purposes. For

example, email servers can use them to automatically filter out email messages that origi-

nate from IPs that have been designated as spammers. IDS systems can use them to block

SMTP packets that originate from suspicious IPs.
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Ostra [64], a recent unwanted traffic mitigation system, combats unwanted commu-

nication by forcing it to traverse social links annotated by credit balances. The per-link

credit balances rate-limit unwanted communication. Unlike Ostra, SocialFilter does not

use social links to rate-limit unwanted traffic. Instead it utilizes social links to bootstrap

trust between reporters, and to suppress Sybil attacks. We perform a comparative eval-

uation between Ostra’s and SocialFilter’s approach in leveraging social trust. Ostra uses

the social network as a rate-limiting conduit for communication. SocialFilter on the other

hand uses the social network as a trust layer from which information on the trustworthiness

of spam detectors can be extracted.

We have evaluated our design (Section 3.4) using a 50K-node sample of the Facebook

social network. We demonstrate through simulation that collaborating SocialFilter nodes

are able to suppress spam email traffic in a reliable and responsive manner. Our com-

parison with Ostra shows that our approach is slightly less effective in suppressing spam

when the portion of spammers in the network exceeds 1% and when spammers employ

more than 100 Sybils each. However, Ostra can result in a non-negligible percentage of

legitimate emails being blocked (false positives), which is highly undesirable. This holds

even when receivers do not falsely classify legitimate email as spam. In contrast, in this

case SocialFilter yields no false positives. Given the severity of the problem of false posi-

tives, these results suggest that our system can be a better alternative under a multitude of

deployment scenarios.
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3.2 Overview

In this section, we provide a high-level description of SocialFilter and the security chal-

lenges it addresses.

3.2.1 SocialFilter Components

Figure 3.1 depicts SocialFilter’s architecture. At a high-level, the SocialFilter system com-

prises the following components: 1) human users that administer networked devices/networks

(admins) and join a social network and maintain a unique account; 2) SocialFilter nodes

(or reporters) that are administered by specific admins and participate in monitoring and

reporting the behavior of email senders; 3) spammer reports submitted by SocialFilter

nodes concerning email senders they observe; and 4) a centralized repository that receives

and stores spammer reports, and computes trust values for SocialFilter nodes and their
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reports.

The same admin that administers a SocialFilter node also administers a group of ap-

plications that interface with the node to report spamming behavior. Interfacing applica-

tions can be SMTP servers or IDS systems [68] that register with the SocialFilter reposi-

tory. SMTP servers can classify spam by using their email characterization functionality

(host reputation services such as TrustedSource [15], CloudMark [3] and DShield [95], or

content-based filters.) The interfacing application can also be one driven by a human user

who reports an email (and consequently its originating email server) as spam.

3.2.2 Spammer Reports

An email characterization application uses the ReportSpammer(h, confidence) call of

the SocialFilter node RPC API to feedback its observed behavior for an email sender h to

the node. The first argument identifies the email sender, i.e., an IP address. The second

argument is the confidence with which the application is reporting that the specified host

is a spammer. The latter takes values from 0% to 100% and reflects the fact that in many

occasions traffic classification has a level of uncertainty. For example, a mail server that

sends both spam and legitimate email may or may not be a spamming host. For instance,

the confidence may be equal to the portion of emails received by host h that are spam [76].

In turn, the SocialFilter node submits a corresponding spammer report to the repository

to share its experience with its peers. For example, if a node i’s spam analysis indicates

that half of the emails received from host with IP h are spam, i reports:

[spammer report] h, 50%

To prevent forgery of reports and maintain accountability, nodes authenticate with both

the repository and the OSN provider using standard single-sign-on authentication tech-

niques, e.g., [41, 83] or Facebook Connect [7].
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3.2.3 Determining whether a Host is Spamming

Our system relies on the fact that nodes comprising Internet systems, such as email servers,

honeypots or IDS, are administered by human admins. These users maintain accounts in

online social networks (OSN.) The SocialFilter centralized repository utilizes two dimen-

sions of trust embedded in OSNs to determine the trustworthiness of the reports submitted

by SocialFilter nodes:

• Reporter trust. The SocialFilter repository computes reporter trust values for all

nodes by employing a transitive trust inference mechanism. This mechanism relies

on comparing the reports of SocialFilter nodes that are socially acquainted to derive

pairwise direct trust values (Section 3.3.1.) If two friend nodes i and j have submit-

ted reports concerning the same hosts, the repository can compare their reports to

determine the direct trust value di j. The repository initializes the direct trust di j to a

trust value explicitly submitted by the admin of i. This value is i’s assessment on his

friend’s j ability to correctly maintain its SocialFilter node. Since two friends may

initialize their direct trust at distinct values, the direct trust values are not symmetric.

• Identity uniqueness. The SocialFilter repository defends against Sybil attacks [39]

by exploiting the fact that OSNs can be used for resource testing [92, 64, 85]. The

test in question is a Sybil attacker’s ability to create and sustain acquaintances. Us-

ing a SybilLimit-based [92] technique (Section 3.3.2,) the OSN provider assigns an

identity uniqueness value to each node. This value quantifies the system’s belief in

that node being a Sybil.

An application can use the IsSpammer(h) call of the SocialFilter node RPC API to

obtain a value that quantifies the belief the host h is spamming. The node obtains this

value by querying the repository, which derives this value by aggregating spammer re-

ports regarding h. The repository weighs these reports by the reporter trust and identity
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uniqueness of the nodes that submitted them.

3.2.4 Assumptions

In designing SocialFilter, we make the following assumptions:

Correctly configured and trustworthy SocialFilter reporters send trustworthy re-

ports and report similarly: We assume that trustworthy SocialFilter admins have cor-

rectly configured their spam detection systems, so that their SocialFilter node sends mostly

correct reports. We also assume that when they report the same spamming host, their re-

ports mostly match, since a host is expected to send spam to most of the nodes it connects

to [90]. In the rest of this paper, we call correctly configured and trustworthy SocialFilter

reporters honest. We treat non-malicious but incorrectly configured nodes as malicious

(Section 3.2.5.)

Trusted repository: We assume that the OSN provider and the SocialFilter repository

reliably maintain the social graph, and the spammer reports. We trust the SocialFilter

repository to correctly compute the required spammer belief values.

The administrators of the SocialFilter repository have an initial estimate of what

portion of the social network is honest: We assume that SocialFilter administrators know

approximately the portion of users that is honest. They use this estimate to initialize the

trust inference methods employed by SocialFilter.

The administrators of SocialFilter repository have a priori knowledge of fully trusted

users in the social network: These users are used to seed the SybilLimit-based identity

uniqueness method. They are also used as pre-trusted nodes for the maximum-trust-path-

based trust inference method.

Social connections are properly vetted. We assume that social connections between ad-

mins have been properly vetted, i.e., when two admins befriend each other in the OSN,

this implies that they know each other’s ability to correctly maintain their systems. Thus,

we do not need to tackle the problem of promiscuous users that connect to other mem-
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bers of the OSN indiscriminately, reducing the guarantees offered by the Sybil-detection

algorithm.

3.2.5 Threat Model

SocialFilter is a collaborative platform aiming at suppressing malicious traffic. In addition,

it is an open system, meaning that any admin with a social network account and a device

can join. As such, it is reasonable to assume that SocialFilter itself will be targeted in order

to disrupt its operation. Our system faces the following security challenges:

False spammer reports. Malicious SocialFilter nodes may issue false reports aiming at

reducing the system’s ability to detect spam or disrupting legitimate email traffic.

Direct trust manipulation. The transitive trust scheme used to determine a node’s re-

porter trust is vulnerable to manipulation via false spammer reporting as follows. First, a

malicious node may purposely send false spammer reports in order to increase the direct

trust between himself and malicious friends that also send false reports. This can result

in the malicious friends of the malicious node to have increased reporter trust. Second,

a malicious node may purposely send true spammer reports in order to increase its direct

trust with honest SocialFilter nodes that send true reports (similar to the camouflage attack

Section 2.2.4.) This manipulation can result in the malicious node having increased re-

porter trust. Third, malicious nodes may purposely send false spammer reports to reduce

the direct trust with honest nodes. This can result in the honest nodes having decreased

reporter trust. Fourth, a malicious host may send legitimate email to an honest node x and

spam email to x’s honest friend node y, aiming at decreasing the direct trust between x and

y. This manipulation can decrease the reporter trust of x or y.

Sybil attack. An adversary may attempt to create multiple SocialFilter identities aiming

at increasing its ability to subvert the system using false spammer reports and direct trust

updates. Defending against Sybil attacks without a trusted central authority that issues

verified identities is hard. Many decentralized systems try to cope with Sybil attacks by
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binding an identity to an IP address. However, malicious users can readily harvest IP

addresses through BGP hijacking [70] or by commanding a large botnet.
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3.3 SocialFilter Design

We now present SocialFilter’s design in more detail.

3.3.1 Reporter Trust

Malicious nodes may issue false spammer reports to manipulate the perceived belief that

a host is a spammer. In addition, misconfigured nodes may also issue erroneous spammer

reports. SocialFilter can mitigate the negative impact of malicious or incorrect reports by

assigning higher weights to reports obtained from more nodes with higher reporter trust.

The repository maintains a reporter trust value 0≤ rti ≤ 1 for each node i managed by

an admin in the social graph. This trust score corresponds to the repository’s estimation of

the belief that node j’s reports are accurate. It is obtained from three sources: a) manual

trust assignments between friends in the social networks; b) spammer report comparison;

and c) transitive trust.

To derive trust values, the repository needs to maintains the social graph S(V ,E) of the

admins in the SocialFilter system. V denotes the set of the admins and E denotes the set of

the friend connections between socially acquainted admins. The repository also maintains

a reporter trust graph T (V ,E). The vertices of this graph is the set of all SocialFilter

admins as is the case for graph S(V ,E). The edges E are the edges in E annotated

with direct trust values between acquainted SocialFilter nodes. Next, we describe how

the direct trust values are derived and how the reporter trust values are computed using

T (V ,E).

User-defined trust. First, to initialize the direct trust values, the repository relies on the

fact that nodes are administered by human users. Competent and benign users are likely

to maintain their nodes secure, and provide honest and truthful reports. Moreover, admins

that are socially acquainted can assess each other’s competence. An admin i tags his

acquaintance admin j with a user-defined trust score 0 ≤ uti j ≤ 1 based on his belief on
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j’s ability to correctly configure his node. The repository uses this value to initialize the

direct trust value between friend nodes i and j: di j = uti j. Users frequently use the OSN to

add friends and to communicate with each other, thus the requirement for administrators

to rate each other should not induce a substantial usability burden.

Spammer reports comparison. Second, the repository dynamically updates the direct

trust di j by comparing spammer reports submitted by two nodes i and j. The spammer

reports of two friend nodes i and j can be compared if both nodes have reported on the

same host h. Intuitively, if i and j share similar opinions on h, i should place high trust

in j’s reports. Let 0 ≤ vk
i j ≤ 1 be a measure of similarity between i and j’s kth report on

a common host. The repository updates i’s direct trust to j using an exponential moving

average:

dk+1
i j = α∗dk

i j +(1−α)∗ vk+1
i j (3.1)

As i and j submit more common reports, the direct trust dk
i j gradually converges to the

similarity of reports from i and j. α is a system parameter that affects the influence of

history on direct trust assessment.

Transitive trust. Third, the repository incorporates direct trust and transitive trust [46, 47]

to obtain the reporter trust value for i: rti. It does so by analyzing the reporter trust graph

T (V ,E) from the point of view of a small set of pre-trusted nodes in V . These pre-

trusted nodes are administered by competent admins that are fully trusted by the Social-

Filter repository.

We use transitive trust for the following reasons: a) due to the large number of nodes,

the admin of a pre-trusted node i cannot assign a user-defined trust uti j to every admin of

a node j, as he may not know him; b) due to the large number of email-sending hosts, a

pre-trusted node i may not have encountered the same hosts with another node j, thus the

repository may be unable to directly verify j’s reports; and c) even if a pre-trusted node i
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has a direct trust value for another node j, the repository can improve the correctness of

rt j by learning the opinions of other SocialFilter nodes about j.

The overall reporter trust rt j can be obtained as the maximum trust path between a

pre-trusted node i and the node j in the trust graph T (V ,E). That is, for each path p ∈ P,

where P is the set of all paths between nodes the pre-trusted node and j:

rt j = maxp∈P(Πu→v∈pduv) (3.2)

The above reporter trust value is computed from the point of view of a single pre-

trusted node. We repeat the above process for every pre-trusted node. We then average the

reporter trust values for all pre-trusted nodes to derive a final rt j value. We use multiple

pre-trusted nodes to ensure that there is a trust path from a pre-trusted node to most honest

nodes j. We also use many pre-trusted nodes to limit the influence of attackers that manage

to establish a high trust path with one of the pre-trusted nodes.

We use the maximum trust path because it can be efficiently computed with Dijkstra’s

shortest path algorithm in O(|E| log |V |) time for a sparse T (V ,E). In addition, it yields

larger trust values than the minimum or average trust path, resulting in faster convergence

to high confidence on whether a host is spamming. Finally, it mitigates the effect of

malicious nodes that have low direct trust values towards honest nodes.

We choose to record and consider the direct trust values only for pairs of nodes for

which the admins are friends. By doing so, we prevent malicious nodes from establishing

high direct trust values with many honest nodes, aiming at increasing their reporter trust

(the camouflage attack mentioned in Section 2.2.4.) Furthermore, by considering direct

trust only over social edges we keep the trust graph sparse, thus the cost of the maximum

trust path computation decreases.

We compute the maximum trust path from the pre-trusted nodes to all other nodes

periodically to reflect changes in direct trust values.
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Direct Trust Manipulation Attack

Our design is inherently resilient to the direct trust manipulation attack mentioned in Sec-

tion 3.2.5. We discuss each manifestation of this attack in turn using the enumeration used

in Section 3.2.5.

The reporter trust mechanism by itself does not defend against attack (a). To tackle this

attack when the malicious friends are Sybils, we incorporate an additional trust mechanism

as described in Section 3.3.2. By performing attack (b) a malicious node may increase its

reporter trust, but in doing so it will have to submit truthful spammer reports. The attack

(c) is effective only if the maximum trust path to the targeted honest node passes through

the malicious node. If there is at least one alternative trust path that yields a higher trust

value, then the direct trust value between the malicious and the honest node is ignored.

The attack (d) can be effective only if the malicious host has a legitimate reason to send

email to the targeted honest nodes.

Bayesian Interpretation of Reporter Trust

Note that the max trust path metric described above has a partially Bayesian interpreta-

tion. The direct trust edge duv may correspond to the probability that u assigns to v to

correctly assign direct trust to other users or to correctly classify spamming hosts. Thus,

the maximum trust path from the pre-trusted nodes to a node i (rti) quantifies the belief

that user i will correctly classify spam, as perceived by the pre-trusted node. It is derived

by multiplying the correct classification probabilities that each intermediate node along

the maximum trust path assigns to the next node.

3.3.2 OSN Providers as Sybil Mitigating Authorities

For an open system such as SocialFilter to operate reliably, prevention of Sybil attacks is

of the utmost importance. We propose to leverage existing OSN repositories as inexpen-

sive Sybil-mitigating authorities. OSNs are ideally positioned to perform such a function:
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using SybilLimit-like [92] techniques (Section 3.3.2), OSNs can approximate the belief

that a node’s identity is not a Sybil. We refer to this belief as identity uniqueness.

Each node that participates in SocialFilter is administered by human users that have

accounts with OSN providers. The system needs to ensure that each user’s social network

identity is closely coupled with its SocialFilter node. To this end, SocialFilter employs

single sign-on authentication mechanisms, such as Facebook Connect [7], to associate the

OSN account with the spammer report and direct trust update repository account.

Identity Uniqueness

When malicious users create numerous fake online personas, SocialFilter’s spammer belief

measure can be subverted. Specifically, a malicious user a with high reporter trust may

create Sybils and assign high direct trust to them. As a result, all the Sybils of the attacker

would gain high reporter trust. The Sybils can then submit reports that greatly affect the

spammer belief values.

Fortunately, existing algorithms such as SybilGuard and SybilLimit [93, 92] can de-

tect Sybil attackers on social graphs. These algorithms take advantage of the feature that

most social network users have a one-to-one correspondence between their social network

identities and their real-world identities. Malicious users can create many identities or

connect to many other malicious users, but they can establish only a limited number of

trust relationships with real users. Thus, clusters of Sybil attackers are likely to connect

to the rest of the social network with a disproportionately small number of edges, forming

small quotient cuts.

SocialFilter adapts the SybilLimit algorithm to determine an identity-uniqueness score

0 ≤ idi ≤ 1 for each node i. This score indicates the belief that the administrator of node

i corresponds to a unique user in real life and thus is not part of a network of Sybils. To

be Sybil-resistant, SocialFilter multiplies the identity-uniqueness score idi by the reporter

trust to obtain the trustworthiness of node i’s spammer reports.

77



SybilLimit is designed to operate in a decentralized setting in which nodes are not

aware of the complete social graph. We use a stripped-down centralized version of Sybil-

Limit, because in our setting the OSN provider has complete knowledge of the social

graph’s topology. We now describe in detail how we compute idi.

First, we provide a brief background on the theoretical justification of SybilLimit. It

is known that randomly-grown topologies such as social networks and the web are fast

mixing small-world topologies [88, 26]. Thus, in the social graph S(V ,E), the last edge

(also referred to as the tail) traversed by a random walk of Θ(log |V |) steps is an indepen-

dent sample edge approximately drawn from the stationary distribution of the graph. If

we draw Θ(
√
|E |) Θ(log |V |)-long random walks from a legitimate verifier node v and a

legitimate suspect node s, it follows from the generalized Birthday Paradox that the sample

tails intersect with high probability. The opposite holds if the suspect resides in a region

of Sybil attackers. This is because the Sybil region is connected via a disproportionally

small number of edges to the region of legitimate nodes. Consequently, the tails of ran-

dom walks from the Sybil suspect are not samples from the same distribution as the tails

of random walks from the verifier.

SybilLimit [92] replaces random walks with “random routes” and a verifier node v

accepts the suspect s if random routes originating from both nodes intersect at the tail.

In random routes, each node uses a pre-computed random permutation as a one-to-one

mapping from incoming edges to outgoing edges. Each random permutation generates

a unique routing table at each node. As a result, two random routes entering an honest

node along the same edge will always exit along the same edge (“convergence property”).

This property guarantees that random routes from a Sybil region that is connected to the

honest region through a single edge will traverse only one distinct path, further reducing

the probability that a Sybil’s random routes will intersect with a verifier’s random routes.

With SocialFilter’s SybilLimit-based technique, the OSN provider computes an iden-

tity uniqueness score for each node s in the social graph I (V ,E). At initialization time, the
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OSN provider selects l pre-trusted verifier nodes. It also creates 2r independent instances

of pre-computed random permutation as a one-to-one mapping from incoming edges to

outgoing edges (routing table). The first r = Θ(
√
|E |) routing tables are used to draw

random routes from suspect nodes s and the rest r routing tables are used to draw random

routes from the verifier nodes v. For each s, the OSN provider runs the SybilLimit-like

algorithm is as follows:

1. For each of the l verifiers v, it picks a random neighbor of v. It draws along the

random neighbors r random routes of length w = Θ(log |V |), for each instance of

the r = Θ(
√
|E | routing tables. It stores the last edge (tail) of each verifier random

route.

2. It picks a random neighbor of s and draws along it r random routes of length w =

Θ(log |V |), for each instance of the nodes’ routing tables. It stores the tail of each

suspect random route. We refer to steps (1) and (2) of the algorithm as random

routing.

3. For each verifier v, if one tail from s intersects one tail from v, that verifier v is

considered to “accept” s. We refer to this step as verification.

4. It computes the ratio of the number of verifiers that accept s over the total number

of verifiers l. That ratio is the computed identity uniqueness score ids.

Nodes query the OSN provider for the identity uniqueness of their peers. The OSN

provider performs the above computations periodically and off-line to accommodate for

topology changes.

3.3.3 Spammer Belief

We now describe how we combine reporter trust, identity uniqueness and spammer reports

to derive a measure of the belief that a host is spamming.
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Definition 3.3.1. We define spammer belief as a score in 0% to 100% that can be inter-

preted as the belief that a host is spamming: a host with 0% spammer belief is very unlikely

to be a spammer, whereas a host with 100% spammer belief is very likely to be one.

Spammer Reports

A node i may have email classification functionality through applications that interface

with it using the i’s ReportSpammer() API. In this case, i considers only the reports

of those applications in calculating the belief that a host is spamming. When i receives

spammer reports by more than one applications for the same h, i’s confidence ci(h) that

h is a spammer is the average (possibly weighted) of these applications’ reports. Node

i uses this average confidence to compute the similarity of its reports with the reports of

members of its view, which is used to derive direct trust scores.

At initialization time, SocialFilter nodes consider all hosts to be legitimate (0% con-

fidence in the hosts being spammers). As nodes receive emails from hosts, they update

their confidence ( 3.2.2). For efficiency, nodes send spammer report to the repository only

when the difference between the previous confidence in the node being a spammer and the

new confidence exceeds a predetermined threshold δ.

When a node i receives a new spammer report for h, this new report preempts an older

report, which is thereafter ignored. Consequently, SocialFilter nodes are able to revoke

spammer reports by updating them. Each spammer report carries a timestamp. The time

interval during which a spammer report is valid is a tunable system parameter. Reports that

have expired are not considered in the calculation of the belief that a host is spamming.

We assume loose synchronization between SocialFilter nodes.

Spammer Belief Equation

A node i that does not have email classification functionality may receive multiple spam-

mer reports originating from multiple nodes j ∈Vi and concerning the same host h. Subse-
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quently, i needs to aggregate the spammer reports to determine an overall belief IsSpammer(h)

that h is a spammer. Node i derives the spammer belief by weighing the spammer reports’

confidence with the reporter trust and identity uniqueness of their reporters:

IsSpammer(h) =
Σ j∈V h

i
rt j id j c j(h)

S
Logistic(S) (3.3)

In the above equation, V h
i ⊆ Vi \ i is the set of members in i’s view that have posted a

spammer report for h. In addition, S = Σ j∈V h
i

rt j id j.

The factor 0≤ Logistic(S)≤ 1 discounts the belief in a host h being spammer in case

the reporter trust and identity uniqueness of the nodes that sent a spammer report for h is

low. It is used to differentiate between the cases in which there are only a few reports from

non-highly trustworthy nodes and the cases there are sufficiently many and trustworthy

reports. When S is sufficiently large, we should consider the weighted average of the

confidence in the reports to better approximate the belief that a host is spammer. But when

S is small we cannot use the spammer reports to derive a reliable spammer belief value.

Based on these observations, we define the function Logistic as the logistic (S-shaped)

function of S:

Logistic(S) =
1

1+ eb(1−S) (3.4)

b is a small constant set to 5 in our design. For S ≤ 0.4, Logistic(S) is very small.

However, when S exceeds 0.6, Logistic(S) increases drastically until it becomes 0.5 for

S = 1. For S = 2, Logistic(S) approximates 1.

3.3.4 SocialFilter Repository

Practice has shown that centralized email infrastructure such as web mail providers and

email reputation services can scale to millions of clients. Thus, to simplify the design

and provide better consistency and availability assurances we use a centralized repository.
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This repository can in fact consist of a well-provisioned cluster of machines or even a

data-center.

When a node queries the repository for the spammer belief of a host, the repository is

interested on the reports for a single host. These reports are sent by multiple nodes, thus

for efficiency it is reasonable to index(key) the reports based on the hash of the host’s IP.

3.3.5 SocialFilter Operation Example

Spammer report:

[128.195.169.1, 

confidence=50%]

Spammer report:

[128.195.169.1, 

confidence=100%]

TrustedSource

Spam Classifier

SocialFilter

node 3

Human user IDS

SocialFilter 

node 1

IsSpammer(128.195.169.1)= 0.795

ReportSpammer

(128.195.169.1, 100%)

SocialFilter 

node 2

ReportSpammer

(128.195.169.1, 50%)

SocialFilter

node 2

SocialFilter 

node 1

Pre-trusted

SocialFilter

node 4

SocialFilter

node 3

SocialFilter

node 5

0.9

0.5

0.9

0.8

0.3

0.5

Reporter Trust Graph on Repository

 Node   Reporter Trust   Identity uniqueness

    1               0.40                  0.9 

    2               0.648                0.8

       Host                     Belief  

128.195.169.1             0.795

 State on Repository

SocialFilter

Repository

Spammer belief:

[128.195.169.1, belief=0.795]

FIGURE 3.2: Example of the operation of a small SocialFilter network.

Figure 3.2 depicts an example of the operation of a small SocialFilter network. The net-

work includes an IDS node tasked with checking incoming TCP connections for whether

they originate from spamming hosts, SocialFilter node 3. That node has no inherent email

classification functionality, thus it relies on the other two nodes, 1 and 2, for early warn-

ing about spam bots. Node 1 relies on human users to classify emails as spam. In this

example, the human user has classified half of the emails originating from host with

IP=128.195.169.1 as spamming, therefore it reports that this host is spamming with con-

fidence c1(IP) = 50%. Node 2 is an email server that has subscription to the proprietary
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TrustedSource email reputation service. In this example, Node 2 receives a connection re-

quest from the host with IP=128.195.169.1, it queries the email reputation service and

gets a response that this host is spamming. Thereby, node 2 reports with confidence

c2(IP) = 100% confidence that the host is a spam bot.

The repository maintains the depicted reporter trust graph. The trust graph includes

the pre-trusted node 4. It also includes nodes 1 and 2, which send the depicted spammer

reports. Furthermore it includes node 3 and node 5, which do not send any reports in

this example. The weighted directed edges in the graph correspond to the direct trust

between the nodes in the trust graph. From the reporter trust graph and Equation 3.2,

the maximum trust path between nodes 4 and 1 traverses nodes 5 and 1 yielding reporter

trust rt1 = 0.4. The maximum trust path between 4 and 2 traverses nodes 5, 3 and 2

and yields reporter trust rt2 = 0.648. The identity uniqueness of nodes 1 and 2 has been

computed by the OSN provider to be id1 = 0.9 and id2 = 0.8, respectively. The IDS can

now call IsSpammer(128.195.169.1) on node 3 to determine the belief that the host is

a spammer. To compute this belief, we use Equation 3.3:

rt1id1c1(IP)+ rt2id2c2(IP)
rt1id1 + rt2id2

= 79.5%
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3.4 Evaluation

We evaluate SocialFilter’s ability to block spam traffic and compare it to Ostra [64]. Os-

tra represents a different approach to spam mitigation using social links. The goal of our

evaluation is two-fold: a) to illustrate the importance of our design choices, namely incor-

porating identity uniqueness and initializing direct trust with user-defined trust; and b) to

shed light on the benefits and drawbacks of SocialFilter’s and Ostra’s approach in using

social links to mitigate spam. We also evaluate the computation cost of SocialFilter on the

centralized repository.

3.4.1 Ostra Primer

Before we proceed with the comparative evaluation, we briefly describe Ostra to provide

insights on its operation. Ostra bounds the total amount of unwanted communication a user

can send based on the number of social trust relationships the user has and the amount of

communication that has been flagged as wanted by its receivers. Similar to SocialFilter, in

Ostra an OSN repository maintains the social network. When a sender wishes to establish

an email connection to a receiver, it first has to obtain a cryptographic token from the OSN

repository. The OSN repository uses the social links connecting the admins of the sender

and the receiver nodes to determine whether a token can be issued.

In particular, a node is assigned a credit balance, B, for each social link it’s administra-

tor is adjacent to. B has an initial value of 0. Ostra also maintains a per-link balance range

[L,U ], with L ≤ 0 ≤ U , which limits the range of the users credit balance (i.e., always

L≤ B≤U). The balance and balance range for a user is denoted as BU
L . For instance, the

link’s adjacent user’s state 2+5
−4 denotes that the user’s current credit balance is 2, and it can

range between −4 and 5.

When a communication token is issued, Ostra requires that there is a path between the

sender and the receiver in the social network. Subsequently, for each link along the social
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path the first adjacent nodes credit limit L is increased by one, and the second adjacent

nodes credit limit U is decreased by one. This process propagates recursively from the

sender to the receiver along the social links. If this process results in any of the links in

the path to have adjacent nodes of which the credit balances exceed the balance range,

Ostra refuses to issue the token. When the email connection is classified by the receiver,

the credit limits L and U are restored to their previous state. If the connection is marked

as unwanted, one credit is transferred from the balance of the first node of the link to the

balance of the second one.

As a consequence of this design, the social links that connect spammers to their re-

ceivers eventually have balance beyond the allowed range, and a spammer is prevented

from sending further emails. In addition, Ostra is Sybil-resilient because the credit avail-

able to a sender is not dependent on the number of Sybils it has. It is only dependent

on the sender’s connectivity in the social network and on whether the sender’s emails are

classified as wanted.

3.4.2 Evaluation Settings

For our evaluation, we use a large connected component sampled from the Facebook social

network as described in Section 2.6.1. Our sample consists of 50K users and 442,772

symmetric links. The average number of friends of each user in the graph is approximately

18. The diameter of this graph is 11. The clustering coefficient is 0.178. Each user in the

social network is the admin of an email server, which we also refer to as a SocialFilter or

Ostra node. Nodes can send and receive email connections.

We use the SimPy 1.9.1 [66] discrete-event simulation Python framework to simulate

the operation of SocialFilter and Ostra. We do not simulate physical, network or transport

layer events (e.g. congestion and packet loss). For efficiency, the identity uniqueness and

reporter trust modules are coded in C++.

We have two types of nodes: honest and spammers. Honest nodes send 3 legitimate
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emails per day. 80% and 13% of the legitimate emails are sent to sender’s friends and

sender’s friends of friends respectively, and the destination of the rest 7% emails is ran-

domly chosen by the sender. Spammers send 500 spam emails per 24h, each to random

honest nodes in the network. We set Ostra’s credit bounds as L =−5 and U = 5. The above

settings are obtained from Ostra’s evaluation [64]. Honest and spammer nodes correspond

to users uniformly randomly distributed over the social network.

Several nodes can instantly classify spam connections. These instant classifiers cor-

respond to systems that detect spam by subscribing to commercial blacklists or by em-

ploying content-based filters. On the other hand, normal nodes can classify an email only

after receiving it and their users read the email. That is, the normal classification can be

delayed based on the behavior of the users (how frequently they check their email). In our

evaluation, 10% of honest SocialFilter nodes have the ability of instant classification and

the average delay of the normal classification is 2 hours [64].

In SocialFilter, when a node classifies received email as spam, it issues a spammer

report as {[spammer report] h, c(h)}, where h is the IP of the email sender and c(h) is

the node’s confidence. The issued spammer reports are gathered and aggregated in the

repository. When normal users with no capability of instant classification receive SMTP

connection requests from previously unencountered hosts they query the repository. Sub-

sequently, the repository returns to them a value that corresponds to the belief that a host is

a spammer (Section 3.3.3.) In summary, classifier nodes share their experiences by issuing

spammer reports, and normal nodes use the reports to block spam from senders they had

not previously encountered.

The reporter trust assigned to nodes is computed using Dijkstra’s algorithm based on

the pairwise direct trust value between users that are connected in the 50K-node social

graph (Section 3.3.1.) The pairwise direct trust values are derived using Equation 3.1. The

direct trust between users that are friends is initialized to a random value in [0, 1]. The

number of pre-trusted nodes used is 100 and we recompute the reporter trust every 24
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simulated hours.

In this evaluation, we compute the similarity between reports using Equation 3.1 with

α = 0.8. Assume that node i receives the kth spammer report from node j that involves a

host h that both nodes have observed and to which node i and j have assigned confidence

ci(h) and c j(h), respectively. The repository computes the similarity vk
i j as follows:

vk
i j =

min(ci(h),c j(h))
max(ci(h),c j(h))

(3.5)

The identity uniqueness of each node is computed as described in Section 3.3.2 by pro-

cessing the 50K-node social graph. The parameters of the computation are set as follows:

w = 15, r = 2000 and l = 100. If the overall spammer belief computed by Equation 3.3 is

over 0.5, a node blocks the SMTP connection.

3.4.3 Importance of User-defined Trust

In this portion of our evaluation, we demonstrate the importance of using the user-defined

trust score (Section 3.3.1) to initialize the direct trust between nodes.

In Figure 3.4.4, we show the percentage of blocked spam and legitimate email connec-

tions for SocialFilter with varying lengths of simulated time. Figure 3.4.4 also shows the

spam mitigation capability of SocialFilter when the initial user-defined (UD) trust assigned

by friends in the SocialFilter admin social network is 0 (“SF-Spam-without UD trust”). As

can be seen, SocialFilter with direct trust initialized with user-defined trust is effective in

blocking 99% of spam emails after 85h. On the other hand, when the user-defined trust is

0, it takes a lot more time (up to 340h) for SocialFilter to start effectively blocking spam.

When the user-defined trust is not used to initialize direct trust, after 85h of simulated

time a SocialFilter node has on average only 0.22 reporter trust. This is because early in

the simulation, nodes have encountered a small number of common spamming hosts, thus

the repository cannot derive meaningful direct trust values. Consequently the reporter
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FIGURE 3.3: Percentage of blocked spam and legitimate emails connections for SocialFilter (SF)
and Ostra as a function of simulated time length. The percentage of spammer nodes is 0.5%.

trust graph T (V ,E) is disconnected, resulting in low report trust scores. Consequently,

the repository is unable to consider many valid spammer reports from the nodes. As time

progresses, the repository can derive more meaningful direct trust values by comparing

the reports of friend nodes. Therefore, we observe that after 170h SocialFilter is able to

block almost 100% of spam.

This result validates our design choice to tap into the user-defined trust between ac-

quainted SocialFilter admins. This source of trust is important because it enables the

initial trust graph to be sufficiently connected. These trust values can be derived without

prior spammer report comparisons. User-defined trust also contributes in trust values con-

verging to correct ones faster (given that the admins have assigned appropriate values),

even in case common spammer reports are infrequent.

3.4.4 Resilience to Spammers

In Figure 3.4.4, we depict SocialFilter’s and Ostra’s spam mitigation effectiveness with

varying simulated time duration. We observe that SocialFilter manages to block 99% to

100% after 179h of simulated time. Once the repository has obtained sufficiently trust-

worthy spammer reports from nodes, it can inform all other nodes about the detected
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FIGURE 3.4: Percentage of blocked spam and legitimate email connections for SocialFilter (SF)
and Ostra as a function of the percentage of spammer nodes. The simulated time duration is 340h.

spammers. In Ostra, after the percentage of blocked spam reaches 95% at 340h, it does

not improve with the passage of time. We attribute this difference in effectiveness on the

fact that in Ostra spam detection affects only a region of the social network: the one that is

affected by the change in the credit balances of the links adjacent to the detector node. On

the other hand, in SocialFilter once a sufficiently trustworthy node detects spam, its report

can be used by all other nodes in the network to classify the spamming host. Importantly,

we also observe that Ostra suffers from a non-negligible false positive rate (blocked legiti-

mate emails), which is equal to ∼ 0.4%. In contrast, SocialFilter yields no false positives.

Figure 3.4.4 presents the spam mitigation effectiveness of SocialFilter and Ostra un-

der a varying number of spammers. We make two observations. The first is that as in

Figure 3.4.4, Ostra suffers from a substantial false positive rate when the percentage of

spammers is greater than 0.1%. When the percentage of spammers is 1% (500 spammers),

around 0.8% of legitimate emails are blocked. We can attribute Ostra’s high false positive

rate to the following. In SocialFilter, a node blocks an email sender only if it has been

explicitly reported as spammer by a member of its view. On the other hand, Ostra blocks

links (credit balance goes out of bounds) in the socials path used by a spammer, and some
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FIGURE 3.5: Percentage of blocked spam and legitimate email connections for SocialFilter (SF)
and Ostra as a function of the portion of colluding spammers.

honest nodes cannot send email because those links are included in all the social paths

used by those honest nodes.

The second observation is that SocialFilter always blocks∼ 99% of spam as the portion

of spammers varies in 0.1% to 1%. Ostra always blocks 93% to 97% of spam connections.

We observe that the spam detection rate increases substantially for Ostra and slightly for

SocialFilter as the number of spammers increases. This is because the increased number of

spam events induces nodes to share more information. As a result, the reporter trust graph

becomes more connected in the case of SocialFilter, allowing the repository to consider

reports from more nodes as trustworthy. In the case of Ostra, it reduces the balance on

social links adjacent to spammers resulting in less spam passing through.

3.4.5 Resilience to Colluding Spammers and Sybils

We also consider attack scenarios under which spammers collude to evade SocialFilter

and Ostra, as well as to disrupt email communication from legitimate hosts. We as-

sume that spammers are aware of each other, which is reasonable if the spammers be-

long to the same botnet. In particular to attack SocialFilter, a spammer submits a report

{[spammer report] s, 0%} for each of the other spammers in the network. Also, when a
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FIGURE 3.6: Percentage of blocked spam and legitimate email connections for SocialFilter (SF)
and Ostra as a function of the number of Sybils created per spammer. The percentage of spammer
nodes is 0.5%. Results for SocialFilter that does not employ identity uniqueness (IU) are also
included. The simulated time is 340h.

spammer receives a connection from a legitimate host l, it submits {[spammer report] l, 100%}

to induce SocialFilter to block h’s emails. To attack Ostra, each spammer classifies a le-

gitimate email and a spam email connection as unwanted and legitimate, respectively.

Figure 3.4.5 shows the percentage of blocked spam and legitimate email connections

in SocialFilter and Ostra as a function of the percentage of nodes in the network that

are colluding spammers. Ostra achieves almost the same effectiveness in blocking spam

connections as in the absence of colluding spammers. However, the false positive rate

(percentage of blocked legitimate email) increases substantially with the percentage of

colluders. Since Ostra does not have any method to recognize false classification, it is

more adversely affected by it.

As can be seen in Figure 3.4.5, SocialFilter is less effective in blocking spam email

than in the absence of false classification. In fact, when the percentage of colluding spam-

mers reaches 1%, SocialFilter becomes slightly less effective than Ostra. Moreover, the

existence of false reporters that incriminate legitimate senders results in a non-zero false

positive rate for SocialFilter, which however is substantially less than for Ostra. The rea-
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son is that colluding spammers have very low direct trust to other honest users as their

reports are different to those honest nodes. As a result, the reporter trust for spammers is

lower, resulting in their reports to be mostly ignored by honest nodes.

Sybil Attack

We also consider the case in which colluding spammers create Sybil nodes. These Sybil

nodes form a cluster that is directly connected only to their creator spammer node. The

purpose of the Sybils is to decrease the reported by the repository belief in the spammer

node being spammer, to increase the belief in an honest node being spammer and to send

spam messages from many different sources. The latter increases substantially the number

of spammers, rendering their classification more challenging.

At the start of the SocialFilter simulation, Sybils send positive spam reports for all

other spammer nodes (including the Sybils). Honest nodes may send legitimate email to

spammer nodes but not to their Sybils, whom they are not aware of. When a spammer

node receives legitimate email from an honest node, the spammer reports the good user as

a spammer and so do all the Sybils of the spammer. 10% of all Sybils act as spammers.

sending spam messages at the same rate as their creator. In the simulation for Ostra, Sybil

nodes classify a legitimate email and a spam email connection as unwanted and legitimate,

respectively.

Figure 3.4.5 shows the percentage of blocked spam and legitimate email connections

as a function of the number of Sybils per spammer in the network. In SocialFilter, Sybil

users gets very low identity uniqueness, which becomes even lower as the number of Sybil

users per spammer increases. As a result, we can see in Figure 3.4.5 that SocialFilter is

resilient to this attack. In Ostra, Sybil spammers cannot send spam because the few social

links that connect the creator of the Sybils with the rest of the network become blocked.

We observe that when each spammer creates more than 100 Sybils, Ostra is able to block

more spam than SocialFilter. However, Ostra still suffers from higher false positive rate.
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FIGURE 3.7: Computation cost of reporter trust as a function of social graph size for 100 pre-
trusted nodes.

Importance of Identity Uniqueness

Figure 3.4.5 also shows the case in which SocialFilter does not employ identity unique-

ness (“SF-Spam/Legitimate-without IU”). As can be seen, attackers are very effective in

manipulating the system in this case. SocialFilter without identity uniqueness is unable

to block a substantial percentage of spam, while it blocks a high percentage of legitimate

email. This result profoundly illustrates the importance of integrating identity uniqueness

in the spammer belief computation (Equation 3.3.)

3.4.6 Computation Cost of Trust Inference

Before comparing SocialFilter and Ostra, we investigate the computation cost of Social-

Filter’s trust inference mechanisms - reporter trust (Section 3.3.1) and identity Uniqueness

(Section 3.3.2)- with respect to the size of the social and trust graphs being analyzed. For

the measurement, we use an Intel Core Duo P8600, 2.4GHz CPU, 3MB L2 cache, 4GB

RAM machine, and we use the trust computation algorithms implemented in C++.

The repository needs to periodically compute the identity uniqueness and the reporter

trust of each node in the social graph. The reporter trust is computed each time the direct

trust values in the trust graph change substantially (Section 3.3.1). It is computed by
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FIGURE 3.8: Computation cost of identity uniqueness as a function of social graph size for 100
verifiers.

using Dijkstra’s algorithm and the complexity of this computation on the sparse trust graph

graph T (V,E) is O(|E| log |V |). In Figure 3.4.6, we show the computation time of the

reporter trust with varying trust graph size. As the size of the network increases, the

computation time increases almost linearly, which indicates this computation can scale to

large trust graphs. We observe that the computation is relatively inexpensive. However,

this is conditioned on the fact that this computation does not take place too often.

The identity uniqueness computation is the most demanding on the repository. This

computation costs O(|V |
√

E log |V |). It is also linearly dependent on the number of veri-

fiers. It is approximately 400 times (in the same order of magnitude as the
√

E factor) more

computationally expensive than the reporter trust computation. As can be seen in 3.4.6,

the cost increases super linearly to the size of the network. Since the social graph does not

change as often as the trust graph, this computation can be performed substantially less

often that the reporter trust one, e.g., once a day.

The above results indicate that these computations can be performed in reasonable

amounts of time by computer clusters with adequate memory and processing power even

for million-node email server networks.
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4

Related Work

4.1 Overview

A variety of systems have employed trust in social networks to improve system security

[69, 81, 71, 59, 91, 85, 37, 92, 84, 75, 69, 43, 99, 51]. To the best of our knowledge,

FaceTrust is the first work that proposes to use OSNs to provide relaxed credentials for

online personas. In addition, SocialFilter is the first collaborative spam mitigation system

to employ Sybil-resilient trust inference to assess the trustworthiness of spamming host

reporters.

We now discuss in detail prior work that is related to the proposed FaceTrust and

SocialFilter systems.

4.2 Prior Work Pertinent to FaceTrust

FaceTrust improves upon a max-flow-based trust inference method [60] by making its

computational cost independent of the number of trusted seeds. However, our contribu-

tions are not limited to the trust inference method. Instead, they primarily lie in the novel

idea of using OSNs to provide lightweight, extensible, and relaxed identity credentials,
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and the overall design and preliminary evaluation of FaceTrust. Table 4.2 summarizes the

comparison of prior work with FaceTrust. Next, we classify related work based on its

similarities with the problem FaceTrust is addressing and the techniques it uses.

Table 4.1: Comparison of Sybil-resilient trust inference systems and the problems they address.

Trust Inference Problem Cost Assumptions
FaceTrust MaxTrust Veracity of Identity O(Tmax|E| log |V |) Known seed and

Assertion # honest nodes
PGP Web of [61, 73] Trustworthiness of O(Tmax|E|) per node Known seed and
Trust Key/Identity binding # honest nodes
SybilLimit Birthday Paradox Whether a node is Sybil O(|V |

√
|E| log |V |) Known seed and

fast-mixing
Advogato Group Max flow Trustworthiness of a O(|V ||E|) Known seed and,

user # honest nodes
Sumup Group Max flow Whether a user can O(|V | log |V |) Known collector

vote and # honest nodes
Ostra Pairwise Credit Whether a user can Unspecified Known collector

Balances send email or vote
SybilInfer Bayesian Inference Probability of a user O(|V |2 log |V |) known seed and

being Sybil fast-mixing
TrustRank Eigenvector Rank of a user O(|V | log |V |) known seed

in a network and fast-mixing

4.2.1 Similar Problem - Similar Techniques

Social Web of Trust

The PGP Web of Trust [99, 82, 16] uses the social network to determine how trustworthy

is the binding between a public key certificate and an identity. The edges in the trust graph

of PGP encode two distinct trust values that users ascribes to each other by signing their

certificates: a) trustworthiness of a public key certificate, which reflects how much a user

trusts that a public key certificate belongs to the identity designated on the certificate; b)

trustworthiness of the introducer, which reflects how much a user trusts the owner of a

public key certificate to be a competent assigner of trustworthiness. Several trust graph

analysis techniques have been proposed for the Web of Trust, such as authentication by
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a single chain of authorities [99], and scalar maximum-flow-based techniques [73, 61]

(Section 4.2.3.)

Like PGP, FaceTrust aims to circumvent the expensive and often monopolized Cer-

tificate Authorities such as VeriSign to provide lightweight credentials. Unlike PGP,

FaceTrust uses the intuitive OSN interface, and employs social tagging rather than key

signing to derive trustworthiness. Furthermore, FaceTrust is easily extensible, and is not

limited to certifying only public keys. Users can tag each other regarding multiple types of

identity assertions, and the set of assertions can be extended by simply adding fields into

a user’s profile.

4.2.2 Similar Problem - Different Techniques

Birthday-paradox-based Trust Inference

Like MaxTrust, SybilLimit [94] is a trust inference scheme that can differentiate between

honest and Sybil nodes in a social network. It exploits the fact that although Sybil attackers

can create multiple identities, they are limited in their ability to create and sustain social

acquaintances. SybilLimit performs special random walks of O(log |V |) length (called

random routes) starting from trusted verifier nodes and suspect nodes. In a fast-mixing

social graph, the last edge traversed by the random walk is drawn from the stationary

distribution of the graph. Following from the generalized Birthday Paradox, the last edges

of Θ(sqrt|E|) random walks from the verifier nodes and from the honest nodes intersect

with high probability.

The opposite holds if the suspect resides in a region of Sybil attackers connected with

a disproportionally small number of edges to the honest node region. In this case, the

network has a higher mixing time and the last edges of random walks from the suspects

are not drawn from the stationary distribution. We provide a more detailed description of

SybilLimit in Section 3.3.2, where we describe its use in the SocialFilter system.

FaceTrust’s Sybil defense also relies on the fact that malicious users can establish only
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a limited number of trust relationships with real humans. FaceTrust could employ Sybil-

Limit instead of MaxTrust as follows. For each level of trust 0≤w≤ Tmax we can prune the

tagging similarity graph such that it includes only edges that denote greater than or equal to

w similarity. We subsequently run SybilLimit for each user in the graph and for each level

of trust and use as verifiers the trusted seeds. The users (suspects) that are accepted for at

most a trust level w are considered to have tagger trustworthiness w. The reason we do not

employ SybilLimit is that its computation cost would be O(
√
|E|Tmax|V | log |V |), which is

approximately
√
|E| times more expensive than MaxTrust’s under our sparse social graph

setting.

Eigenvector-based Trust Inference

Similar to MaxTrust, PageRank[32], EigenTrust [53], and TrustRank [49] are trust infer-

ence methods. In this class of trust inference methods, the node trust value vector is the left

principal eigenvector e of the matrix c, where ci j is the normalized pairwise trust between

nodes i and j. Both EigenTrust and TrustRank seed the computation of the eigenvector

at a few selected trusted nodes. This computation expresses how trust flows among users

through weighted edges. For a fast-mixing social graph TrustRank can be computed in

O(|V |log|V |) time and this value approximates the stationary distribution of the graph for

users that reside in the honest fast-mixing region of the graph.

The value ei corresponds to the probability of a random walker of the similarity graph

starting from a trusted seed to land at user i. At each step with probability g, the walker

follows an edge with probability proportional to the edge’s tagging similarity. With prob-

ability 1−g the walker stops and restarts the walk from a randomly selected seed. It holds

that 0 ≤ ei ≤ 1 and that ∑i∈V ei = 1. The eigenvector-based trust inference that is seeded

at select trusted peers satisfies the “bottleneck property” (Section 2.3.3.)

For a fast-mixing social graph, TrustRank can be computed in O(|V | log |V |) time and

this value approximates the stationary distribution of the graph for users that reside in
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the honest and fast-mixing region of the graph. However, Sybils make the graph non-

fast-mixing as they introduce regions that are connected with disproportionately small

number of edges to the rest of the network. As a result after only log(|V |) iterations (or

random walks of log(|V |) steps) the TrustRank of Sybil users is substantially lower than

the stationary distribution probability and substantially lower than the TrustRank of honest

users. Although, for sparse and small-world social graphs TrustRank’s computation cost

is comparable to MaxTrust’s, we do not employ it because Cheng et al. have shown that

eigenvector-based trust inference is substantially manipulable under Sybil strategies [35].

4.2.3 Different Problem - Similar Techniques

Max-flow-based Trust Inference

Scalar max-flow-based trust inference computes the maximum flow over a trust graph from

a trusted node (source) to a suspect node (sink) in order to determine whether the suspect is

trustworthy. Levien et al. [61], Reiter et al. [73] and Cheng et al. [34] have formally proved

the resilience of maximum-flow-based trust metrics to node and edge attacks. In addition,

a suspect node cannot increase its trust by creating Sybils, and needs to establish social

edges with multiple honest nodes in order to attain the same trustworthiness as honest

nodes.

FaceTrust does not employ scalar trust inference because they do not prevent an at-

tacker from creating Sybils that obtain the same trust value as their creator. Thus, an

attacker can increase the sum of the trust of the users he controls simply by adding Sybils.

Advogato [60] and Sumup [85] use group max-flow-based trust inference to build a

Sybil-resilient trust metric for posters in an online forum and a voter collection system,

respectively. Group max-flow trust inference bounds the sum of the trust values of Sybils

by the edge capacity of their creators.

Next, we justify our design choice to use MaxTrust instead of the newly proposed

Sumup [85]. MaxTrust computes multiple source max-flow from multiple trusted seeds to
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the supersink user using our heuristic. Sumup computes multiple-source max flow from

the users/voters to a single trusted collector with a DFS-based heuristic to decide which

users can vote at least once. This heuristic costs O(|V |∆), where ∆ is the diameter of the

graph. Using Sumup to decide whether a user can vote Tmax times, is equivalent to deter-

mining the trustworthiness in [0,Tmax] of a user in MaxTrust. Unlike Sumup, MaxTrust

transforms the trust metric problem to a single source-single sink maximum flow problem

which can be solved with our heuristic in O(Tmax|E||∆ (Section 2.3.3). For sparse graphs,

the computation cost of Sumup and MaxTrust is comparable.

The reason we use MaxTrust instead of Sumup is its effectiveness in identifying trust-

worthy users. In our 200K-user graph, MaxTrust with a single seed and Tmax = 1 and

C(supersource) initialized at 200K assigned tagger trustworthiness 1 to nearly 180K nodes.

In contrast, when the same trusted seed is chosen as the trusted vote collector node in

Sumup, and Sumup’s parameter, Cmax which corresponds to MaxTrust’s C(supersource),

is set equal to 200K, only 60K users are able to send 1 vote. Unlike MaxTrust, Sumup’s

DFS-based heuristic for the multiple-source/single-sink max flow problem, substantially

underestimates the maximum flow in social graph topologies. For this reason, the authors

of Sumup propose using it for voter aggregation where typically at most 1% of the nodes

in the social graph vote on any single object.

Using OSN Applications to Thwart Impersonators

Baden et al. [29] recently proposed an OSN-application-based system for identifying

friends or friends of friends via exclusive shared knowledge tests. We also employ a face-

book application to solicit user feedback on their friends identity assertions. FaceTrust

is a system that defends against impersonating users in general, while this proposal is

aimed at vetting users that claim to be friends and should thus share knowledge. The two

approaches are distinct, and can complement each other (Section 2.2.3.)
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4.3 Prior Work Pertinent to SocialFilter

We now discuss prior work that is pertinent to SocialFilter’s design.

4.3.1 Reputation Systems

SocialFilter is inspired by prior work on reputation and trust management systems [62,

50, 31]. Well-known trust and reputation management systems include the rating scheme

used by the eBay on-line auction site, object reputation systems for P2P file sharing net-

works [87, 53] and PageRank [32]. In contrary to the above systems, our system incor-

porates social trust to mitigate false reporting and Sybil attacks. EigenTrust [53], PageR-

ank [32] and TrustRank [49], provide trust values that enable a system to rank users based

on their trustworthiness. However, this value cannot be explicitly interpreted as the likeli-

hood of a node being honest. On the other hand, SocialFilter’s reporter-trust- and identity-

uniqueness-based trust values provide the probability that a node is trustworthy.

4.3.2 Collaborative Email Reputation Systems

Prior work also includes proposals for collaborative spam filtering [97, 98, 6, 28]. Kong et

al. [56] also consider untrustworthy reporters, using Eigentrust to derive their reputation.

These solutions only enable classifying the contents of emails and not the source of spam.

This requires email servers to waste resources on email reception and filtering. SocialFilter

can assign trust metrics to sources, thereby rejecting unwanted email traffic on the outset.

Similar to SocialFilter, RepuScore [77] is also a collaborative reputation management

framework, which allows participating organizations to establish email sender account-

ability on the basis of senders past actions. It provides a global reputation value for IP

addresses and email domains. RepuScore utilizes a distributed hierarchical architecture

as well as algorithms to collect the local reputations for email senders calculated by each

email server (reporter) in each domain.
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Repuscore assigns the same global reputation value for both email senders and re-

porters of spam. To calculate a global reputation for a sender, RepuScore weighs the local

sender reputation from the reporters by the global reputation of the reporters. It does not

employ a rigorous sybil-resilient and transitive trust inference method, which results in

the trust values being highly susceptible to manipulation. In particular, a email server’s

reported local reputations are considered reliable unless the email server itself sends spam

and becomes detected by other reporters.

On the other hand, SocialFilter separates the reporter reputation from the reputation of

the hosts. The confidence (local reputation) in each report is weighted by the reporter trust

and identity uniqueness of each nodes. It updates the direct trust between email servers

based on the similarity of the reported spam events and a manually set trust value that

administrators input to the system. According to these direct trust values the reporter trust

score of each reporter is calculated over the social graph using a transitive trust inference

method. Unlike Repuscore, SocialFilter’s Sybil detection mechanism can defeat Sybils

before those Sybils send a substantial amount of spam. Thus, compared to Repuscore, So-

cialFilter provides increased attack-resilience in the face of malicious reporters and Sybils.

4.3.3 IP Blacklisting

SocialFilter is similar to IP blacklisting services such as SpamHaus [17], DShield [4] and

TrustedSource [15] in that it employs a centralized repository. Currently, IP blacklist-

ing relies on a relatively small number (in the order of a few hundreds or thousands) of

reporters. Reporters submit their attack logs to the centralized repositories, and the repos-

itories synthesize blacklists based on the attack history recorded in these logs. SocialFilter

differs in that it automates the process of evaluating the reports and assigning reputations

to reporters. Thus it does not incur the management overhead of traditional IP blacklisting

services. It can therefore scale to millions of reporters. CloudMark [3] explicitly addresses

the issue of trustworthiness of the collaborating spam reporters through a distributed re-
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porter reputation management system based on history of past interactions. However, it

does not leverage the social network to derive trust information.

Predictive blacklisting [95, 80] improves upon IP blacklisting by creating a customized

blacklist for each reporter that is shorter and more likely to be relevant. However, it does

not address adversarial behavior by reporters, i.e., false reporting combined with Sybil

attacks. In addition, because it does not employ user-defined social trust, a node is able to

obtain a customized ranking only if the node itself has classification functionality.

Highly Predictive Blacklisting [95] employs similarity between reports to rank how

similarly the malicious traffic that two reporters encounter is. It uses a variation of the

PageRank trust metric. This trust metric is computed from the point of view of each

reporter. That is, the PageRank computation is seeded at the reporter, so that it can deter-

mine which nodes have encountered attacks that are more likely to be experienced by the

reporter. The end-goal is to limit the size of blacklists shared between nodes by sending

only the entries that are more relevant to each node. On the other hand, SocialFilter uses a

global trust inference method, i.e., computes trust values from the point of view of a few

trusted nodes and these trust values are common in the system. This is because SocialFil-

ter aims at determining the trustworthiness of nodes with respect to reporting ground truth

events; typically a host is either a spammer or it is not regardless of who is the reporter

that observes it.

4.3.4 Other Sybil defenses

Common defenses against Sybil attacks are based on resource testing of computing or stor-

age capability. The underlying assumption is that a Sybil attacker does not possess enough

resources to perform the additional tests imposed on each Sybil node. Some drawbacks

with resource testing are listed in [39], such as the fact that attackers subvert this defense

by tricking humans into solving CAPTCHAS [24] posted on their website or presented by

malware on infected machines.
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Similar to MaxTrust and SybilLimit, the schemes in [37, 64] take advantage of the fact

that clusters of Sybils are connected to the honest regions of social networks with a dispro-

portionally small number of edges. Danezis et al.’s [37] Bayesian Sybil detection method

(SybilInfer) derives the probability of a suspect node being a Sybil, which is an explicitly

actionable measure of trustworthiness. However, its computation cost (O(|V |2 log |V |) is

excessive for FaceTrust’s setting, where we expect social graphs in the order of tens of

millions of users. We considered SybilInfer as an alternative of SybilLimit in SocialFilter.

Although SybilInfer provides a more formal probabilistic interpretation of identity unique-

ness, it is more expensive than SybilLimit, which costs (O(
√
|E||V | log |V |) in the sparse

social graph setting of SocialFilter. Nevertheless, we believe SybilInfer is a plausible al-

ternative to SybilLimit and we are currently experimenting with it.

Ostra [64] (§ 3.4.1) bears similarity to Sumup [85] in that it limits unwanted communi-

cation from Sybils. FaceTrust could employ a variation of Ostra by replacing its pairwise

credit balance edge with the pairwise tagging-similarity-annotated edges. However, Ostra

does not specify an efficient way to determine trust paths, as is the case with MaxTrust.

Whanau [59] forwards DHT queries over carefully constructed routes that consist of

social links. It employs social trust in the sense that it considers trustworthy only forward-

ing links that correspond to social links. It borrows ideas from SybilLimit to construct its

so-termed “layered identifiers’, which improve its Sybil-resilience.

FaceTrust and SocialFilter can employ non-social-network-based Sybil defense tech-

niques such as the ones proposed in [96, 94] to further limit the influence of Sybils in the

system. BotGraph [96] detects botnet spamming attacks that target Web email providers.

BotGraph detects botnets by constructing large user-user graphs for links between email-

exchanging users and looking for tightly connected subgraph components. As stated

in [96] this technique is applicable in social graphs.
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5

Future Work

We now discuss ongoing and future work to improve FaceTrust and SocialFilter.

5.1 Incorporating External Sources of Trust

FaceTrust currently relies solely on explicit user feedback through tags to derive the verac-

ity of an assertion. We are considering other external sources of trust information. These

external sources can be used to both directly derive the veracity of the assertion and to

derive the tagger trustworthiness of a user. By using additional sources of trust we can

improve the accuracy of our trust values.

In particular, it is possible to assess the veracity of a professional identity statement,

simply by analyzing the social network of the assertion poster. For example, it is more

likely that a user is a CS professor if many of his acquaintances claim to be professors

themselves or have PhD in CS. We intend to explore techniques that infer identity attributes

of users by analyzing their social network [45, 14, 65].

FaceTrust can also be combined with stronger authentication mechanisms (such as

manual verification) to acquire a bottom line on the identity of users. For example, users

that are frequent review writers can present to FaceTrust proof of their profession in order
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to increase their veracity score. A parent that wishes to prevent her teenage children from

accessing age restricted sites can use out-of-band means to prove to FaceTrust her relation

with her children. FaceTrust can then assign a lot more weight to her tags on her children’s

age assertions.

5.2 Attack-Resistance Analysis

We intend to extend FaceTrust’s attack-resistance analysis with a more realistic model. We

currently consider a tree social graph topology and we intend to extend it to more realistic

topologies.

We will also define a formal utility model. That is, we will quantify the cost that an

attacker has to incur to effectively increase the veracity of his and his colluders assertions.

An attacker incurs cost to creates a new OSN account, to create friend connections and to

vote similarly with honest users. The gains are the tagger trustworthiness he accumulates

and the increase of veracity of his assertions.

5.3 Probabilistic Interpretation

Currently, our assertion veracity and spammer belief measures cannot be interpreted as the

likelihood or probability of an assertion or host being trustworthy. We are investigating

the use of a Bayesian models of trust [40, 55], such that we can derive veracity values that

directly correspond to the probability of an assertion or host being trustworthy. Our goal

is to design an efficient (less than O(V 2)) Bayesian trust algorithm.

5.4 Inferring Trust Between Friends in OSNs

In the physical world, declaring a person as a social acquaintance implies a high or mod-

erate level of trust. To build trust with a person, one needs to devote effort, such as go to

meetings, have conversations, and so on. Therefore, as stated in [93, 92], social connec-
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tions can be used as a resource test to defend against Sybil [39] attacks.

However, in the realm of web-based Online Social Networks (OSN), users tend to be

less careful with respect to whom they declare as friend. Our preliminary measurements

have shown that it is relatively easy for fake Facebook users to establish friend connections

with many real Facebook users. This experimental observation challenges the assumption

that connections in the online social graph can be used as a resource test.

Our ongoing research aims to quantify with large scale measurements how easy it is

for attackers to connect to users depending on the users’ profile characteristics (age, pro-

fession, location, etc.) We are also working on efficient methods to detect “promiscuous”

users who connect to others indiscriminately. Such detected users could then be ignored

by social-graph-based Sybil detection algorithms.

We are also working in the direction of inferring real levels of trust between OSN

friends via communication patterns and mutual privacy settings. The real trust levels can

then be used to secure distributed systems as proposed in this thesis and [92, 64], or to

appropriately determine privacy settings.
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6

Conclusion

Distributed information systems leverage the Internet infrastructure to to solve challenging

computational problems and to improve many aspects of every day human activities. For

a distributed system to be effective in its tasks, it often has to span a multitude of devices

across multiple administrative domains. This openness and scale results in a serious ten-

sion by introducing issues of trust: components of a distributed system need to be able to

assess each other’s trustworthiness.

The recent rise in popularity of Online Social Networking services as a popular com-

munication medium has highlighted the importance of considering human relations in the

design of our distributed infrastructure. Since OSNs encode relationships between hu-

mans, it is natural to consider them as a source of readily available trust information.

Hence, this work tackles the issue of improving distributed systems by means of social

trust. We have focused on leveraging social networks to address two important security

problems: a) how to assess the veracity of statements that OSN users make; and b) how to

assess the trustworthiness of spam reporters in a collaborative spam detection system.

This thesis has demonstrated the plausibility of using Online Social Networks as a

Sybil-resilient trust substrate to address these problems. Our design and implementa-
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tion has demonstrated the practicality of using centralized OSN services to analyze trust-

annotated social graphs to derive trust values for their users. We have learned that it is

plausible to rely on those trust values to weigh the classification input (tags or spammer

reports) of OSN users. Furthermore, our Facebook application deployment and user study

has showed that it is plausible to use the OSN user interface to enable users to express

their trust towards each other’s classification ability and identity assertions.

6.1 Assessing the Veracity of Online Identity Assertions

We presented FaceTrust, a system that leverages online social networks to provide lightweight,

extensible, relaxed and optionally anonymous credentials. These credentials assist users

and services in assessing the veracity of assertions made by online users. With FaceTrust,

OSN users post identity assertions such as “Am I really 18 years old?” on their social

network profiles and their friends explicitly tag these assertions as true or false. An

OSN provider analyzes the social graph and the user tags to assess how credible these as-

sertions are, and issues credentials annotated by veracity scores. Our analysis, simulation-

based evaluation, and real-world deployment suggest that FaceTrust is effective in obtain-

ing credible and otherwise unavailable identity information for online personas.

We have derived the following lessons from the design and deployment of FaceTrust:

a) it is plausible to obtain a relatively reliable measure of the veracity of identity asser-

tions by relying on the friends of the user that made the assertion to classify them, and by

employing social trust to determine the trustworthiness of the classifications; b) it is plau-

sible to employ trust inference over the social graph to effectively mitigate Sybil attacks;

c) users tend to mostly correctly classify their friends’ identity assertions.
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6.2 Introducing Social Trust to Collaborative Spam Mitigation

We have also presented SocialFilter, a large scale distributed system for collaborative spam

mitigation. SocialFilter nodes consider each other’s reports on encountered spam hosts

and the social network of their human administrators to quantify the belief that a host is

spamming. Applications can in turn use this belief measure to make informed decisions

on how to handle traffic associated with that host.

Our simulation-based evaluation demonstrated our design’s potential for the suppres-

sion of spam email. SocialFilter was able to identify 99% of spam connections with greater

than 50% belief. Furthermore, in contrast to a competing social-network-based spam mit-

igation technique, Ostra [64], SocialFilter exhibited no false positives.

The design and evaluation of SocialFilter offered us the following lessons: a) we can

improve the reliability and the attack-resilience of collaborative spam mitigation by in-

troducing Sybil-resilient OSN-based trust inference mechanisms; b) using social links to

obtain the trustworthiness of spammer reports can result in comparable spam-blocking ef-

fectiveness with approaches that use social links to rate-limit spam (e.g., Ostra [64]); c)

unlike Ostra, SocialFilter yields no false positives. We believe that the design lessons from

SocialFilter are applicable to other collaborative entity classification systems.
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