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Abstract

The 1D Wigner crystal is a long sought after strongly correlated quantum state. Here

we present electronic transport data of asymmetric quantum point contacts (QPC)

tuned to the spin-incoherent regime, which provides evidence for achieving the 1D

Wigner state. Our result can be distinguished in several particularly noticeable ways.

First, we utilize an asymmetric point contact geometry that is simple to fabricate and

has not been studied previously. We are able to tune to the conductance anomalies

simply by asymmetrically applying voltages to the gates. Second, we observe clear

suppression of the first plateau and direct jumps to the second in these asymmetric

QPCs at liquid helium temperatures (4.2 K). Such conductance behavior is indicative

of Wigner crystal row formation.

This thesis suggests that the asymmetric geometry and gating scheme allows for

a novel way to search for strongly correlated electronic behavior in quasi-1D quan-

tum wires. A key finding is the importance of asymmetric QPCs for observation of

anomalous transport characteristics. We have observed a strongly developed e2/h

feature under asymmetric voltage gating and zero applied magnetic field. Such a

feature is attributed to enhanced spin energies in the system. We believe the asym-

metric design allows for a relaxing of the 1D confinement so that a quasi-1D electron

conformation develops, which in turn allows for various possible magnetic states. In

addition, by optimally tuning the confinement potential, we observe an unexpected

suppression of the 2e2/h plateau. This provides further evidence for unusual electron
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arrangements in the asymmetric quantum point contact.

I also discuss transport studies on the new FeSe superconductor. Our collabora-

tion discovered the superconducting β-FeSe compound [46] with a Tc approximately

8 K. The crystal lattice structure of β-FeSe is by far the simplest of the Fe supercon-

ductors. One of the most interesting observations regarding FeSe is that the crystal

structure undergoes a structural transition at ∼ 105 K from tetragonal to orthorhom-

bic (or triclinic) symmetry. We believe this structural transition to be closely related

to the origin of superconductivity in this class of materials.

Transport studies also seem to support this claim. From Hall effect measurements

of bulk FeSe, we find that FeSe is likely a two band (electron and hole) supercon-

ductor, which suggests it is quite different from the cuprates, and that very uncon-

ventional superconducting mechanisms are at play. The temperature dependence of

the Hall coefficient is measured, and found to rapidly increase below 105 K. This

suggests the scattering time related to hole bands dominate the transport at low

temperature. As there is no magnetic ordering observed at low temperature, we do

not expect the scattering from random Fe magnetic impurities to play a significant

role in the enhanced hole scattering times. Thus, we speculate that this change is

related to the structural transition observed.
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Introduction

Advances in nanofabrication techniques over the last two decades have allowed re-

searchers tremendous creativity in designing novel nanometer sized devices. Reduc-

ing the device size to the nanometer scale is interesting and important as it allows

for the ability to better probe behavior near the quantum limit. These studies could

have profound implications for both applications, for example, in quantum compu-

tation and spintronics, and in our fundamental understanding of low dimensional

electron and spin transport properties.

One of the simplest devices that can be fabricated is a quantum point contact

(QPC), which is a nanometer sized constriction separating two larger electronic sys-

tems. These constrictions have typically been formed by applying a voltage to a pair

of mirror-image metallic gates deposited on top of a high mobility two dimensional

electron gas (2DEG). The potential that develops from the applied voltage depletes

the underlying 2DEG, in a process similar to gating a field effect transistor. Quite

strikingly, as the point contact constriction width is gradually reduced by applying

more negative gate voltage equally to the pair of gates, a series of quantized staircase

steps results in the measured conductance [110, 104]. This is a clear manifestation

of quantum ballistic transport, which occurs only when the device dimensions are

shorter than the mean length between electron scattering events.

The observation of the quantized conductance is a striking example of how prop-

erly designed device structure can give rise to unusual transport behavior. This thesis
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seeks to exploit the available fabrication tools and techniques to further play with

this theme. In contrast to typical QPC design, I will deliberately introduce asym-

metries into the device pattern. These asymmetric QPCs are found to display very

different transport behavior from the symmetric ones. In particular, conductance

traces where the first quantization plateau is greatly suppressed have been observed.

We suggest that the observed transport behavior can be attributed to a long

sought after one-dimensional (1D) quantum state, the 1D Wigner crystal [90, 74].

The 1D Wigner crystal only occurs in a precise low density regime. The asymmet-

ric gating of the QPC makes it possible to sweep through to the proper density

for Wigner crystal behavior. Coulomb interactions greatly exceed the electron ki-

netic energy in this density regime, and the localization of electrons exponentially

suppresses spin exchange processes. This regime is also termed the spin-incoherent

Luttinger liquid.

In a change of topic, I also discuss transport studies on the new Fe-based super-

conductor, β-FeSe. The layered FeAs based superconductors, the first of which was

discovered by Hosono in 2008 [52], have superconducting transition temperature Tc

as high as 55 K [125], making them the only non-cuprate high temperature super-

conductors known to date. Our collaboration discovered the superconducting β-FeSe

compound with a Tc approximately 8 K [46]. The crystal lattice structure of β-FeSe

is by far the simplest of the Fe superconductors, as it consists of only Fe and Se

arranged in a layered tetrahedral conformation. This simple structure in principle

would allow researchers to most easily discern the crucial mechanisms giving rise to

superconductivity. Selenium also has much less stringent safety requirements in the

laboratory compared to the highly toxic As.

One of the most interesting observations regarding FeSe is that the crystal struc-

ture undergoes a structural transition at ∼ 105 K from tetragonal to orthorhombic

(or triclinic) symmetry. We believe this structural transition to be closely related to
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the origin of superconductivity in this class of materials.

Transport studies also seem to support this claim. From Hall effect measure-

ments of bulk FeSe, we find that FeSe is likely a two band (electron and hole)

superconductor, which suggests it is quite different from the cuprates, and that very

unconventional superconducting mechanisms are at play. At high temperature, the

Hall coefficient is positive (hole). At around 100 K, the coefficient dips negative, in-

dicative of electrons as the major carriers. However, at lower temperatures, the Hall

coefficient rapidly turns positive again. This suggests the scattering time related to

hole bands dominate the transport at low temperature. As there is no magnetic or-

dering observed at low temperature, we do not expect the scattering from random Fe

magnetic impurities to play a significant role in the enhanced hole scattering times.

Thus, we speculate that this change is related to the structural transition observed.

The organization of this thesis is as follows: Chapter 1 briefly reviews the current

understanding of transport properties of quantum point contacts from the nonin-

teracting electron picture. A brief discussion of how device shape may affect the

conductance is also included. Chapter 2 introduces the Tomonaga-Luttinger liquid,

which describes interacting electrons in 1D channels. We will then see how the 1D

Wigner crystal is related to the spin-incoherent Luttinger liquid picture, and the

theoretical predictions for suppressed transport of a Wigner crystal state. These two

chapters present the framework for the studies presented in this thesis.

Chapter 3 details the experimental device parameters and fabrication techniques.

The low-temperature measurement setup will also be discussed. Chapter 4 takes

a more in depth view of how the asymmetric QPC design can give rise to novel

transport behavior. Measurements that led us to optimizing the geometry to observe

the spin-incoherent transport are presented.

Chapter 5 presents the experimental data. The measured results show the asym-

metric QPC geometry to be a wonderful test system for observing novel transport

3



behavior. In particular, traces with signatures of the 1D Wigner crystal and spin-

incoherent transport are shown.

In a change of subject, I include in Chapter 6 Hall Effect measurements done on

β-FeSe superconductors. The anomalous Hall behavior observed could be a signature

of structural transitions in the system. Finally, Chapter 7 concludes this thesis and

briefly explores the interesting possibilities for future research.
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1

Quantum Point Contacts

1.1 Quantized Conductance

The electronic transport properties through ultrasmall structures has been of in-

creased interest in recent years. Semiconductor nanostructures are of particular in-

terest due to the availability of clean, low density and high electron mobility systems,

such as those formed in the two dimensional electron gas (2DEG) at the AlGaAs-

GaAs heterojunction. These 2DEGs have several desirable features compared to

other systems, such as thin metal films. First, the low densities achievable mean

that the Fermi wavelengths, λF are relatively large, typically on the order of 40-60

nm. Second, the large screening lengths allow for the density to be readily varied by

electric fields. Finally, these structures can be designed to have high mobilities and

large electron mean free paths, lmfp, often exceeding several microns. These features

imply that the 2DEGs can be patterned into interesting structures with length L

smaller than the mean free path, but width W comparable to the Fermi wavelength,

with commercially available lithography techniques. This in turn allows for the study

of unusual quantum ballistic transport mechanisms, see Fig. 1.1, where the geometry
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Figure 1.1: (a) Diffusive regime where system width W , L � lmfp (b) Quasi-
ballistic regime where W ≤ lmfp ≤ L (c) Ballistic transport occurs in systems with
W , L� lmfp. (Figure from [11])

of the structure determines the transport properties.

1.1.1 Initial Discovery

One of the simplest devices that can be created for study is a quantum point con-

tact, as shown in Fig. 1.2. These devices can be tuned so that the its width, W is

comparable to λF ∼ 50 nm, which make them ideal for probing the ballistic trans-

port regime. The width can be controlled by changing the applied voltage on the

metallic gates, in a process similar to that in field effect transistors. Essentially, a

negative gate voltage creates a potential that depletes the 2DEG. The conductance

through AlGaAs-GaAs split-gate quantum point contacts was found to be quantized

in multiples of 2e2/h as a function of gate voltage, as shown in Fig. 1.3 [110, 118].

Here, the negative voltage was applied equally to the two gates, V1 and V2, so that

there was no potential drop across the gate electrodes. These studies were made

possible by earlier work showing that electrostatic confinement of the 2DEG did not

dramatically degrade electron mobilities [124, 104]. It has been harder to observe

quantization in ballistic metal point contacts as the λF ∼ 0.5 nm in metals is quite

6



Figure 1.2: Micrograph of a quantum point contact which forms a small channel
150 nm wide connecting two large electron reservoirs (top). Schematic of dispersion
relation in the narrow channel (bottom). Reservoir A and B differ by the chemical
potential, δµ. Right moving states are filled to EF , while left moving states are filled
to EF + δµ.

Figure 1.3: Quantized conductance plateaus as a function of gate voltage. Mea-
surement was taken in our He3 refrigerator with base temperature 300 mK. The
upper inset shows the original device geometry of [110, 118].
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small, however there are reports of signatures of conductance quantization in metallic

break-junctions and pulled nano-contacts [91, 92, 83, 59].

A simple empirical explanation for the observed result is that since the number

N of subbands is an integer, the conductance goes as

G =
2e2

h
N. (1.1)

Applying more negative gate voltage effectively reduced the width and density

in the point contact, and thus led to stepwise depopulation of the subband. To fully

understand the behavior, we need to develop a proper description of the conductance

in terms of the Fermi level properties of the system.

1.1.2 Theory

Let us recall that in an unbounded 2DEG, the energy of conduction electrons in a

single subband relative to the band bottom is a function of the momentum, ~k, given

by

E(k) = ~2k2/2m, (1.2)

where m = m∗me is the effective mass. For GaAs, m∗ = 0.067. The num-

ber of electronic states, n(E) is found by considering the number of distinct states

gsgvA/(2π)2 in a circle in k-space of area A = 2mπE/~2. Here gs = 2, gv = 1 are

the spin and valley degeneracies, respectively. This results is n(E) = gsgvmE/2π~2.

Thus, the density of states, ρ(E) = dn(E)/dE, of a 2DEG is given by

ρ(E) = gsgvm/2π~2, (1.3)

which surprisingly is independent of energy! This is quite different from the 3D

result, where the density of states has
√
E dependence. A sequence of subbands is
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Figure 1.4: Energy density of states. (a) 3D (red curve) and 2D (blue) density of
states with triangular well potential. (b) Quasi-1D density of states, considering a
square well potential. (c) 0D subbands or Landau levels. Broadening of the levels
leads to nonzero density of states between peaks.

associated with the finite energy levels in a quantum well, as shown in Fig. 1.4.

Higher level subbands only begin to fill after the EF exceeds the level band bottom.

Forming a quantum point contact further reduces the dimensions by constrict-

ing the width. The lateral confinement splits the 2D subbands into a series of 1D

subbands, with band bottoms at En, where n = 1, 2, .... Thus the total energy of an

electron in the nth 1D subband is

En(k) = En + ~2k2/2m. (1.4)

The confinement levels, En, are determined by which model is used to describe the

9



potential well. Two popular and well known models are the square well, with En =

(nπ~)2/2mW 2, or the parabolic potential (V (x) = 1
2
mω2

0x
2) with En = (n− 1

2
)~ω0.

Based on this energy function, the 1D density of states can be calculated and is given

by

ρ(E) =
∑
n

2gsgv

(
2π
dEn(k)

dk

)−1

=
∑
n

gsgv
m

π~2

(
~2

2m(E − En)

)1/2

, (1.5)

which is now a function of 1/
√
E, and the summation is over all n for which

En < E. It is often useful to divide the 1D density of states into two equal parts,

ρ±n (E) = gsgv
m

2π~2

(
~2

2m(E−En)

)1/2

, where the plus (minus) denotes the right (left)

moving states with k > 0 (k < 0). The evolution of the energy density of states as

dimensions are reduced is clearly shown in Fig. 1.4. As the dimensions are reduced,

the available energy states become quantized.

We note here that quantization of the available energy states can also be achieved

by applying an external magnetic field perpendicular to the plane of the 2DEG.

This problem was dealt by Landau, who introduced the gauge transformation ~A =

(0, Bx, 0) for magnetic field ~B = ∇ × ~A in the perpendicular z-direction. The

Hamiltonian is then adjusted to

H =
(~p+ e ~A)2

2m
=

p2
x

2m
+
mω2

c

2
(x− x0)2, (1.6)

Where ωc = eB/m is the cyclotron frequency, and x0 = −py/eB. The available

energies in Eq. 1.4 have En = (n − 1/2)~ωc, where n = 1, 2, 3 . . . are integers. The

quantum number n labels the Landau levels, which each carrying a single state per

flux quantum h/e through the sample. The density of states can be approximated

by a delta function,
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ρ(E) = gsgv
eB

h

∞∑
n=1

δ(E − En), (1.7)

and resemble 0D states. Here the spin states are degenerate, and can be resolved

by Zeeman splitting, EZ = gµBB, where µB = e~/2me is the Bohr magneton,

g = −0.44 is the electron Lande g-factor of GaAs and B the applied magnetic field.

Charge transport mechanisms in a 2DEG take place when the electrons are sub-

jected to either an electric or magnetic field. A current ej = σE arises when an ex-

ternal field is applied. In order to determine the conductivity, we note that electrons

in the electric field drift between scattering events with velocity vdrift = −eE∆t/m.

The mobility is defined from the time average over all scattering events, µe = eτ/m,

with τ the scattering time. Mobile electrons in a 2D sheet then have current density

j = nsvdrift, ns is the sheet density, which allows to determine the Drude conductiv-

ity,

σ = ensµe =
e2nsτ

m
= gsgv

e2

h

kF lmfp
2

. (1.8)

Here we have utilized the relation ns = gsgvk
2
F/4π, and defined the lmfp = vF τ .

We note that already we see the combination of the quantum unit e2/h in the con-

ductivity. Equation 1.8 describes contributions from all the conduction electrons,

but it is often sufficient to consider only the conductivity of electrons near the Fermi

level, as weak electric fields only perturb the Fermi-Dirac distribution of electronic

states near EF . The lower lying energy states are too filled to be affected. The well

known Einstein relation is one such description of the conductivity in terms of the

density, ρ(EF ) and diffusion constant, D = 1
2
vF lmfp, evaluated at EF .

σ = e2ρ(EF )D. (1.9)
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This description works well when the system dimensions are larger than lmfp, but

becomes inadequate in the ballistic transport regime of most quantum point contacts

as the conductivity does not exist as a local quantity. Ballistic transport is better

described by the Landauer formula, G = I/V = (e2/h)T , which relates the contact

conductance through the channel to the transmission probabilities at the Fermi levels

on the two sides.

1.1.3 Landauer-Buttiker Formula

We imagine two wide electron reservoirs, A and B, with slight difference in density

δn that are brought into contact through a narrow channel, Fig. 1.2. This slight

density difference gives rise to a chemical potential difference δµ = δn/ρ(EF ), where

ρ(EF ) is the density of states in the reservoir, so that on the two sides, A has energy

EF while B has energy EF +δµ. A diffusion current J = D̃δn with diffusion constant

D̃ will flow due to the difference in chemical potential. This current can be related

to the conductance as GV/e = D̃δn, where the bias voltage eV = δµ. This results

in

G = e2ρ(EF )D̃, (1.10)

which is a generalized form of the Einstein relation, Eq. 1.9 [7]. The diffusion

constant is found by considering an ideal channel or waveguide with no reflection as

the electron travels from B to A. The total current is then the product of the density of

k < 0 states moving rightwards, Eq. 1.5, times the group velocity, vn = dEn(k)/~dk,

over an energy interval from EF to EF + δµ.

Jn =

∫ EF+δµ

EF

gsgv

(
2πdk

dEn(k)

)
dEn(k)

~dk
=
gsgv
h
δµ. (1.11)

Quite importantly, we notice that the group velocity exactly cancels the density,
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Figure 1.5: System with multiple reservoirs, each having chemical potential µα or
µβ.

so that Jn is independent of n and EF . This indicates that the current is shared

equally by the N total modes in the channel. If a fraction Tn of the transmitted

Jn are reflected due to boundary scattering (not impurity scattering), then we have

J = (gsgv/h)δµ
∑N

n=1 Tn, which can be modified to

G =
2e2

h

N∑
n=1

Tn, (1.12)

where we now apply gs = 2 and gv = 1 for GaAs. The fraction Tn can be

expressed in terms of the transmission probability amplitudes from mode n to m,

Tn =
∑N

m=1 |tmn|2. Equation 1.12 is the two terminal Landauer formula. The gen-

eralization of the formula to four terminal resistance measurements was done by

Buttiker [14]. He considered a system with multiple reservoirs as in Fig. 1.5, α and

β, with each reservoir carrying in general a distinct number of propagating modes or

leads, Nα and Nβ. The transmission from α to β can be described by the probability

amplitudes from mode n in α to m in β,

Tα→β =
Nα∑
n=1

Nβ∑
m=1

|tβα,mn|2. (1.13)
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As in the two terminal case, the leads are modeled as ideal, so that reservoir α

with chemical potential µα above EF gives rise to current of (2e/h)Nαµα in the lead,

a fraction Tα→β/Nα which is transmitted to reservoir β, and a fraction Tα→α/Nα ≡

Rα/Nα which is reflected back to reservoir α. The net current in Nα channels is then

Iα =
2e

h

(Nα −Rα)µα −
∑

β(β 6=α)

Tρ→αµβ

 . (1.14)

Equation 1.14 can be used to provide a solid theoretical underpinning for a variety

of transport measurements in the quantum ballistic regime.

We saw earlier in Eq. 1.11 that the net current is the product of the density of

states and the group velocity integrated over the energy spectrum. As the width of

the point contact is decreased, the number of subbands is reduced, and as a result

the group velocity in each remaining subband increases (think Bernoulli’s principle).

However, associated with the rise in group velocity is an equal drop in the 1D density

of states. These two effects cancel one another, so that the current is always composed

of equal contributions of 2e2/h from each 1D subband. This equipartition rule arises

fundamentally from the cancellation of the density of states with the group velocity

in the net current, and is a general result regardless of the confinement potential.

It is this amazing behavior that is directly responsible for the observed conductance

quantization.

1.1.4 Temperature Dependence

The quantization plateaus are quite robust as long as the temperature is low enough.

As the temperature is raised, the plateaus become rounder until they are completely

smeared out by the increased thermal energy. This is directly due to the thermal

smearing of the Fermi-Dirac distribution. At finite temperatures, we would expect

the conductance to be
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Figure 1.6: Conductance traces at low and high temperatures. The cold trace is
taken at He3 base temperature, 300 mK. The temperature of the warm trace was
not accurately measured, though it is estimated to be around 6-10 K.

G(EF , T ) =

∫ ∞
0

G(E, 0)
df

dEF
dE =

2e2

h

∞∑
n=1

f(En − EF ), (1.15)

where we have assumed G to have a step function dependence on EF at T = 0.

In typical experiments, the quantized plateaus are completely smeared out around

and above 4-6 K, see Fig. 1.6. As the width of df/dEF is ∼ 4kBT , we can roughly

estimate the subband splitting to be ∆E ∼ 2 meV [10]. A finite DC bias drop across

the point contact has a qualitatively similar effect to that of a finite temperature.

1.1.5 Magnetoelectric subbands

We would like to understand the effects of an applied magnetic field on the sys-

tem. As mentioned earlier, applying a perpendicular magnetic field also gives rise

to quantization of the density of states, which leads to the well known Integer (and

Fractional) Quantum Hall Effects (I- or F-QHE) [112, 105, 65]. In the IQHE, an

increase in a single flux quantum h/e results in a net transfer of N electrons so that
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Figure 1.7: Dependence of conductance on magnetic field perpendicular to 2DEG
plane.

the conductance also follows Eq. 1.1, but with N now denoting the number of Lan-

dau levels. This equivalence implies that the quantum point contact should preserve

conductance quantization and undergoes a smooth transition from zero field elec-

trostatic confinement quantization to QHE as a magnetic field is applied. As seen

in Fig. 1.7, this is indeed the experimental observation. The number of plateaus is

reduced as a larger field is applied, and counting the number of plateaus allows for

an estimate of the depopulation of magnetoelectric subbands [12, 108, 110, 117].

Such a measurement allows for a way to determine the width of the 1D channel

and corresponding subband energy at that width. We recall the subband energy Eq.

1.4 and Hamiltonian Eq. 1.6, with En = (n − 1
2
)~ωc. The number of Landau levels

below energy E is counted by truncating to integers the following,

N = Int [1/2 + E/~ωc] . (1.16)

For a narrow 1D channel with magnetic field, we consider first the easier to solve
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Figure 1.8: Dependence of conductance on magnetic field parallel to 2DEG plane.
Traces were taken at 300 mK. Unfortunately, the maximum z-field in our He3 system
is 3.8 T. When the spins are completely spin polarized at high fields, a fully developed
e2/h plateau results. The kink at zero field observed is due to interaction effects,
which will be discussed in Ch. 2.

parabolic confinement potential V (x) = 1
2
mω2

0x
2, which is added to Eq. 1.6,

H =
p2
x

2m
+
mω2

2
(x− x̄0)2 +

~2k2

2M
. (1.17)

Here ω =
√
ω2
c + ω2

0, x̄0 = x0ωc/ω, and M = mω2/ω2
0. In this case, Eq. 1.4

for the energy and Eq. 1.16 for the number of subbands are modified by replacing

m → M and ωc → ω. To determine the width of the 1D channel, we define for

a parabolic potential the width as Wpara ≡ 2~kF/mω0 at the Fermi energy. This

modifies Eq. 1.16 to

N = Int

[
1

2
+

1

4
kFWpara

√
1 + (Wpara/2lcyc)2

]
. (1.18)

The number of subbands is determined by a competition between the width due

to parabolic confinement and localization length from cyclotron motion, which has
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cyclotron radius lcyc = ~kF/eB. As a comparison, we show the result for a square

well confinement potential with width Wsq below[110].

N ≈

Int
[

2
π
EF
~ωc (arcsin Wsq

2lcyc
+ W

2lcyc

√
1− ( W

2lcyc
)2)
]

if lcyc >
W
2
,

Int
[

1
2

+ EF
~ωc

]
if lcyc <

W
2
.

(1.19)

The above Eqs. 1.18 and 1.19 spell out a simple procedure for determining W

and confinement barrier height Ec, if we assume that EF does not vary much in a

B field, and replace EF by EF − Ec. For both parabolic and square well, at strong

fields, N ≈ (EF −Ec)/~ωc is just the number of Landau levels. Counting the number

of plateaus allows for the determination of Ec. Then, we utilize the zero field trace

to estimate the width, for example, N ≈ (2m(EF − Ec)/h2)−1/2W/π for the square

well case. Weisz and Berggren have shown that there is little difference in estimates

of the energy and density between the parabolic and square well case [117]. However,

the parabolic potential provides a better estimate of the width when the constriction

is extremely narrow.

Applying a magnetic field also introduces a Zeeman energy, EZ . However, a field

parallel to the 2DEG plane allows for coupling only to the spin degree of freedom

without giving rise to cyclotron motion. Measurements with a field applied parallel

to the 2DEG plane introduce a Zeeman splitting EZ = gµBBz which lifts the spin

degeneracy, resulting in well defined plateaus at odd integer values of e2/h, see Fig.

1.8. These plateaus are now understood to be due to transmission of fully spin

polarized electrons.

1.1.6 Gate Shape Dependence

Finally, we would like to understand how the lithographic shape of the point con-

tacts affect the quality of the observed quantization. The original devices had lengths
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typically L ∼ 100 nm and W ∼ 250 nm, see Fig. 1.3. Early studies on channels

longer than 1 µm did not observe any quantization [111], despite the fact that in

principle conductance quantization should occur for L < lmfp and W ∼ λF . This

discrepancy was attributed to enhanced impurity backscattering [26] or backscatter-

ing from channel wall irregularities. Naturally, fabricating higher mobility devices

with lower disorder should help, and recent studies have shown that the quantization

could persist in quantum wires longer than 1 µm, but the conductance value was more

strongly temperature dependent in the longer wires [99, 122]. A rather overlooked

but also important indication is that the potential well shape and thus, lithographic

gate design, could be important for observing higher quality quantization.

So what kind of shape gives rise to quantized conductance? A key observation

is that the confinement is achieved by electrostatic potentials when applying voltage

to gates, which must give rise to smooth potentials. Thus, Buttiker argued that the

potential well formed by the gates must be a saddle point potential [15], with the

following form,

V (x, y) = V0 −
1

2
mω2

xx
2 +

1

2
mω2

yy
2. (1.20)

Here y is the direction along the width and x is along the length of the wire.

Taking this potential into account, the x and y motion of the Hamiltonian can be

separated, so that the effective potential describing motion along the x direction

can be viewed as the band bottom of the nth subband at the saddle point. The

transmission probabilities are then given by

Tmn = δmn
1

1 + exp−πεn
, (1.21)

εn =
2[E − ~ωy(n+ 1

2
)− V0]

~ωx
. (1.22)
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Figure 1.9: Shape of saddle-point potential from Mathematica output. (a) ωy/ωx =
5 (b) ωy/ωx = 1.

Here n denotes the incident channel while m refers to the outgoing channels.

Transmission probabilities are zero except for the case n = m. To observe high qual-

ity quantization, the shape of the well along the channel separation W , determined

by ~ωy, must be better defined than the transition region for the opening of the quan-

tum channel. More precisely, ωy ≥ ωx, as shown in Fig. 1.9. Buttiker showed that

as this ratio increases larger than 1, wider and better developed quantized plateaus

result. Following along some of these arguments, shallow-etched quantum point con-

tacts with varying shapes were developed with resulting quantization observable up

to 30 K [61, 60]. Here, the channel is initially defined by removing unwanted material

to create a shape. Then a metallic top gate is deposited on top. The quantization

is observed as a function of the top gate placed over the entire constriction region.
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Figure 1.10: SEM image of various QPC shapes.

The subband spacings in these devices reached as high as 10-20 meV, which is much

higher than possible for the usual split-gate designs (see Fig. 1.3). However, the

width of etched point contacts cannot be tuned laterally as in the split gate case,

which is a major drawback.

How then, does one optimize the device dimensions to achieve more perfect quan-

tization and allow for more channels to be measured in field effect confinement QPCs?

This will depend on the exact crystal parameters, such as how far below the surface

the 2DEG resides. We show in Fig. 1.10 several various QPC shapes patterned on

a crystal with 2DEG roughly 80 nm below the surface. The lithographic dimensions

(W,L) in nm for the QPCs formed by the pair of gates are: g8-g10 (100,60), g3-g5

(100,60-∞), g3-g11 (200,200), g3-g12 (100,60), g3-g13 (200,100).

Empirically we observe that having W/L < 1 seems to allow for more subbands

to be observed, and for gates g8-g10 and g3-g11, which have the same lithographic
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Figure 1.11: Conductance traces corresponding to the QPC shapes shown in Fig.
1.10. Measurements were done by dipping the sample in liquid Helium (T = 4.2 K).
The conductance values here have not been corrected for the series resistance due to
the leads.

design, a smaller ratio is better. However, W cannot be arbitrarily small. As we

can see in Fig. 1.11, the depletion point is more or less the same for all geometries.

This denotes the voltage at which the electron gas beneath the gates are depleted

of electrons. Then we enter the regime where we can start to observe conductance

quantization. Eventually, as the gate voltage is made more negative, the channel

between the point contacts is also fully depleted, and conduction is pinched-off. The

pinchoff voltage is quite different for the geometries presented, and in particular, we

cannot have W too small so that the pinchoff voltage is very close to the depletion

voltage, as for designs g3-g5. In such a situation, the channel is shut just as it

becomes well defined.

These studies present a general experimental guideline for designing quantum

point contacts. However, a real understanding is best achieved by performing self-

consistent potential calculations.

An interesting question to pose is what happens if asymmetries in the potential
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are introduced? Another way to put it is how do asymmetries in the lithographic

design and gating that affect the conductance? We will defer discussion of this

important question to Ch. 4.
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2

Wigner Crystal in One Dimension

In this chapter, I will introduce the theoretical background for understanding inter-

action effects in the quantum point contacts. Interacting electrons in 1D are very

well described by the Tomonaga-Luttinger liquid (TLL). The TLL theory predicts

that spin and charge degrees of freedom will be independent of each other for an in-

teracting 1D system. This spin-charge separation is a hallmark of a 1D system with

uniform density. We will see that at low and non-uniform densities, the spin-charge

separation is violated in the QPC due to strong Coulomb repulsive energy. This gives

rise to spin-incoherent behavior, where the spin degree of freedom depends explicitly

on the charge motion. This will have consequences for the observed conductance.

2.1 Interacting Electrons

In the previous chapter, I discussed the conductance quantization through a ballistic

semiconducting quantum point contact. In the single channel limit, the conductance

was found to be exactly 2e2/h, with the factor 2 accounting for two spin degenerate

modes. The quantization was understood to arise from the canceling of the density

of states with the group velocity in the net current, the theory of which was built
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up in the framework of a single electron. Quite surprisingly, Thomas et al. noticed

a ”kink” in the conductance just below the first quantized plateau at G = 2e2/h,

see Fig. 1.3 [103, 111]. This feature at approximately 0.7 × 2e2/h stabilizes with

increasing temperature, up to a sample dependent critical value, and is clearly not

a result of transmission resonances or impurity scattering [101, 62]. The 0.7 effect

cannot be explained in the non-interacting picture, and must arise from electron and

spin interactions in the 1D channel.

Possible alternative explanations for the 0.7 feature have been spontaneous spin

polarization [103], Kondo-like mechanisms [23], and a phenomenological description

of density dependent spin gap that opens in the 1D channel [87, 86]. The primary

issue with interpreting the 0.7 effect as a constant spin polarization is the proof by

Lieb and Mattis that in 1D, the unpolarized state always has a lower energy than

the polarized one. Thus, a ferromagnetic ground state is not possible in 1D [68],

though it can be argued that quantum point contacts may not be strictly 1D, but

quasi-1D as the confinement is provided by electric potentials. Although the exact

mechanism responsible for the 0.7 is still under intense debate, what is clear is that

interaction effects from charge and spin motion are critical.

When interactions are present in 1D, the usual Fermi liquid (FL) picture is no

longer adequate. Instead, the Tomonaga-Luttinger liquid (TLL) theory is a more

appropriate description of the elementary excitations of a 1D conductor with many-

body interactions taken into account [50, 70, 38, 53, 54]. In TLLs, low energy

short-range interactions give rise to decoupled spin and charge degrees of freedom.

The applied bias or current only couples to the charge motion, which contributes

Kρe
2/h, where Kρ is an interaction dependent parameter. For noninteracting sys-

tems, Kρ = 1, while for repulsive interactions, 0 < Kρ < 1. Thus, one would

expect the conductance at the first plateau to deviate below 2e2/h in the interacting

quantum point contacts. The discrepancy with experimental observation was ini-
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tially explained to be the result of TLL quantum wires connected to FL leads. The

quantum wire still has interactions, but the interactions are gradually reduced to

zero as the electrons move from the wire into the leads. In the low frequency (DC)

limit, the conductance is dominated by the leads and has value restored to 2e2/h

[71, 85, 88]. Thus, one expects that interaction effects can not be discerned from

transport measurements of interacting wires connected to noninteracting leads.

The observation of the 0.7 effect, which exists in addition to the usual 2e2/h

plateau, threw this theoretical framework into disarray. In particular, it suggests

that a different framework that considers strong interactions in the channel is needed

to describe the transport behavior. The interactions in the point contact may be

quite strong due to the low densities n � (aBohr)
−1 near the single channel limit.

Here the Coulomb interaction of order e2n/ε, where ε = εGaAs ∗ ε0 = 13.1 ∗ ε0 is

the dielectric constant, is much larger than EF = (π~n)2/8m, and so the Coulomb

energy dominates the electron kinetic energy. Therefore, the electrons space out

equidistantly to minimize the Coulomb repulsion and form an incipient lattice. Such

a configuration is termed a Wigner crystal [119, 90, 73]. This regime has not been

as widely studied in 1D, and is our primary focus.

Interestingly, Matveev found that depending on the density configuration (with

lowest density in the middle of the wire) and thus, energy configuration, of the 1D

Wigner crystal, spin and charge can be intricately intertwined [73]. To properly

describe the behavior, the spin exchange J had to be considered. At low density,

J is exponentially suppressed in the channel as the large Coulomb energy makes

spin exchange tunneling processes harder. In this regime, J � T � EF , and the

spin excitations were found to depend explicitly on the charge motion. This implies

that spin will affect the conductance, and indeed the single channel conductance

is suppressed from 2e2/h to e2/h in the 1D quantum wire connected to leads [73].

The wire behaves very much like a Tomonaga-Luttinger liquid (TLL) with bosonized
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charge and spin density waves, but the spin waves are reflected and do not travel

through the channel, while the charge waves pass unaltered. At higher densities,

where interactions are weaker so that J ∼ EF , and thus, T ≤ J , we expect to return

to the TLL picture with fully decoupled spin and charge, and recover conductance

of 2e2/h. The regime J � T � EF has been termed the spin-incoherent Luttinger

liquid.

Furthermore, Klironomos, Meyer and Matveev have pointed out that the quasi-

1D confinement of quantum point contacts can actually allow for ferromagnetic spin

ground states, without violating the Lieb-Mattis rule. Thus, it is possible that this

framework may eventually provide a clearer interpretation for the 0.7 effect [56, 55,

75]. To develop a deeper understanding, we now discuss how spin-charge separation

arises in 1D.

2.2 Spin-charge Separation in Tomonaga-Luttinger Liquids

The elementary excitations of TLLs are bosonic waves of charge and spin densities

propagating at different velocities. In other words, the spin and charge degrees

of freedom are decoupled in the 1D channel. Spin and charge remain separated

as long as the interaction strengths are less than the respective bandwidths, D,

which typically is ∼ EF . Thus, the TLL considers 1D regimes with relatively weak

interactions, and T < EF . We now briefly summarize the theoretical framework

(following Schulz [90] and Matveev [73]).

The concept of spin charge separation results from a bosonization technique [38,

90], which linearizes the spectrum of electrons near the Fermi level, so that the

quadratic dispersion is replaced with a linear one. Thus, the electrons are separated

into left and right movers with energies εL,R(k) = ~vF (∓k−kF ), and the Hamiltonian

considered is
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H =
∑
k,s

vF [(k−kF )a†k,sak,s+(−k−kF )b†k,sbk,s]+
1

2L

∑
q

V (q)ρqρ−q+Hbackscatter, (2.1)

where a†k,s (b†k,s) creates a right (left) moving electron with momentum k and spin

projection s. The interaction potential V (r) = e2/
√
r2 + d2 is relatively long range,

and takes into account small transverse dimension, d, so as to overcome divergences

in the Fourier transform at r → 0 for a simple 1/r potential. The term ρq = ρa,q+ρb,q

is the Fourier component of the total particle density. Finally, Hbackscatter describes

events where left movers scatter into right movers and vice versa. This contribution

comes from 2kF events and will later appear as a g1⊥ term. The scattering mechanism

is from interaction effects where the spin is flipped, rather than from impurities in

the channel.

The Hamiltonian can be solved by introducing Fermionic field operators ψL,λ

and ψR,λ for the right and left moving fermions. The operators can be written in

terms of fields φλ and θλ, which satisfy bosonic commutation rules [φλ(x), ∂yθλ′(y) =

iπδ(x− y)δλλ′ ]:

ψL,λ(x) =
ηL,λ√
2πα

e−ikF xeiφλ(x)−iθλ(x), (2.2)

ψR,λ(x) =
ηR,λ√
2πα

eikF xe−iφλ(x)−iθλ(x). (2.3)

Here λ =↑, ↓ is the spin index, α is a short distance cutoff, and ηL(R),λ are Majo-

rana Fermion operators. The Hamiltonian of the interacting 1D system can then be

written with these bosonic variables as the sum of two terms, one from charge and

one from spin.

H = Hρ +Hσ, (2.4)
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Hρ =

∫
~uρ
2π

[
π2KρΠ

2
ρ +K−1

ρ (∂xφρ)
2
]
dx, (2.5)

Hσ =

∫
~uσ
2π

[
π2KσΠ2

σ +K−1
σ (∂xφσ)2

]
dx+

2g1⊥
(2πα)2

∫
cos[
√

8φσ(x)]dx. (2.6)

The new fields, φρ,σ = (φ↑±φ↓)/
√

2 and Πρ,σ = ∂x(θ↑±θ↓)/π
√

2, satisfy standard

commutation relations and represent excitations of the charge and spin degrees of

freedom. The Hamiltonian depends on the following parameters: the velocities uρ,σ

of charge and spin excitations, dimensionless parameters K±1
ρ,σ = 1± g1⊥/2πuρ,σ, and

matrix element g1⊥ of spin-flip scattering of left moving electrons into right moving

ones and vice versa (i.e. back scattering events). For a system with no interactions,

uρ = uσ = vF , Kρ = Kσ = 1, and g1⊥ = 0. The above framework describes spin

charge separation at energies below Dρ,σ ∼ ~nuρ,σ.

The interesting quantity to compute is the charge-charge correlation function,

with the result shown [90]:

〈ρ(x)ρ(0)〉 =A1 cos(2kFx)exp(−c2

√
lnx)/x

+ A2 cos(4kFx)exp(−4c2

√
lnx) + . . . .

(2.7)

Only the most slowly decaying Fourier terms are shown, with interaction depen-

dent A1,2 and c2 =
√

(1 + g1⊥)πuρ/e2. The most important observation is the slow

decay of the 4kF term, which is an incipient charge density wave at 4kF . For short

range interactions, the 2kF and 4kF terms are expected to decay as a power law

(x−1−Kρ and x−4Kρ , respectively) [16, 90]. These oscillations with period 4kF are

precisely the average interparticle spacing expected for a Wigner crystal. Although

there is no true long range order in a 1D system, it is nonetheless surprising that the

4kF term results. This implies that even in a theoretical picture of relatively weak
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interactions, as long as the interaction spread is relatively long range, then a Wigner

type lattice will be able to form.

2.3 One Dimensional Wigner Crystal

In practice however, the long-range potential is destroyed in 1D predominantly by

quantum fluctuations and also by partial screening from a top metal gate electrode.

This implies that the Wigner crystal can only persist in a critical density range. We

consider a metal plane gate a distance d away from the quantum wire, which modifies

the Coulomb interaction potential to the following:

V (x) =
e2

ε

(
1

|x|
− 1√

x2 + (2d)2

)
. (2.8)

At large distances the potential decays much more rapidly than the usual 1/r

as V (x) ∼ 2e2d2/ε|x|3. Thus, the lower bound for Wigner crystallization is set by

aBohrd
−2 � n, provided that the gate is far enough away, d � aBohr. The upper

bound is as usual, with n� a−1
Bohr. In GaAs, the typical Bohr length is

aBohr = 4πε~2/me2 ' 100Å, (2.9)

with ε = εGaAs∗ε0 = 13.1ε0 and m = mGaAs∗me = 0.067me, while the gates are at

least ten times the distance (80 nm in our sample). Thus, it is possible, theoretically,

to achieve the Wigner crystal with the 1D quantum point contacts.

2.3.1 Charge and Spin Excitations

The assumptions considered in building the Hamiltonian describing the Wigner crys-

tal are different from that for the set of equations resulting in TLL. Here, we are in

the limit of strong interaction forces, and it may be useful to think of the crystal as a
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continuous medium with propagating waves of electron density, or acoustic plasmon

excitations. Thus we consider a charge Hamiltonian of the form:

Hρ =

∫ [
p2

2mn
+

1

2
mns2(∂xu)2

]
dx. (2.10)

Here p(x) is the momentum density, u(x) is the displacement of the medium at

point x from equilibrium, and the term s describes the speed of plasmons:

s =

√
2e2n

εm
ln(8.0nd). (2.11)

Equation 2.10 completely describes the low-energy excitations for a spinless sys-

tem, and in fact describes the same physics as Eq. 2.5 if we identify the following

equivalences:

φρ(x) =
πn√

2
u(x), (2.12)

Πρ(x) =

√
2

πn~
p(x), (2.13)

uρ = s, (2.14)

Kρ =
π~n
2ms

. (2.15)

To incorporate the additional effects from spin, we utilize the Heisenberg antifer-

romagnetic exchange,

Hσ =
∑
l

JSl · Sl+1. (2.16)

This is a reasonable approach as we imagine the Wigner lattice as equidistantly

spaced localized charge, which to a first approximation do not have coupled spins.
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The exchange of spins is exponentially suppressed due to strong Coulomb repul-

sion and only nearest neighbor interactions play a significant role. The Heisenberg

exchange model can be shown to be equivalent to Eq. 2.6 when the excitation band-

widths are much smaller than exchange, D � J . This is via a bosonization technique

[73], and from that the speed of the spin excitations can be extracted as

uσ =
πJ

2~n
. (2.17)

What of the exchange J term? If we only consider pure Coulomb interaction, the

exchange has form,

J = J∗exp(−η/
√
naBohr), (2.18)

J∗ ≈ 1.79
EF

(naBohr)3/4
. (2.19)

Here, η ≈ 2.82 for an infinite chain of electrons and EF = (π~n)2/8m. As for the

Coulomb potential, we also consider the limit where effects of a metallic screening

gate could be large. In such a case, the decrease of the exchange with decreasing

density is expected to saturate when n ∼ d−1. Thus, according to Matveev [73], for

aBohr/d
2 � n� d−1, the exchange is estimated to be,

J = EF (
nd2

aBohr
)3/4exp(−8.49

√
d

aBohr
). (2.20)

At lower densities, the exchange constant has a power-law dependence on the

density. At exceptionally low densities, n ≤ aBohr/d
2, the exchange term is found to

be similar to Eq. 2.20, but nd2/aBohr goes as the first power instead of 3/4 [73].

The above derivations imply that the bosonized Hamiltonians for low energy,

weakly interacting 1D TLLs, Eqs. 2.5 and 2.6, also work for the Wigner crystal
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in the strong coupling regime, but at T � J . However, the strong exponential

dependence of J on the density also suggests that one can easily enter a regime

where J � T . In such a case, the equivalent picture for the spin density waves

breaks down, and we must use Eq. 2.16 to describe the spins. The charge motion is

still adequately described by the bosonized picture as long as T � EF .

2.3.2 Violation of Spin-charge separation

In experimental devices, it is reasonable to expect that the density of the entire

system of quantum point contact connected to leads is not entirely uniform, n = n(x).

The density is likely to be higher close to the edges of the point contact than at the

center, and the width also widens near the edges. Güclü et al. have substantiated

this hunch and found from simulations on realistic confinement potentials that the

density in the 1D channel can indeed be rather non-uniform and low at the center

[35]. The low and non-uniform density configuration leads to a position dependent

exchange J in the point contact, illustrated in Fig. 2.1. The strength of the exchange

coupling between neighboring spins will then depend on the position of the spins.

Thus, for the lth and l + 1 electron, J = J(xl), where xl = x(l, t) is in general a

function of both the lth lattice site and time. Time dependence of the position arises

from the fact that the Wigner lattice moves in the presence of an electric current.

Thus, considering that a number q(t) electrons move in time t through the channel,

we can expect the lth lattice site to have moved to position l + q. This analysis

modifies the Hamiltonian to,

Hσ =
∑
l

J [l + q(t)]Sl · Sl+1. (2.21)

Quite importantly, the q dependence of Eq. 2.21 means that the coupling between

spins depends on the amount of charge passing through the wire. This Hamiltonian,
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which arises from the assumption of inhomogeneous density in the quantum point

contact connected to leads, violates the spin-charge separation observed earlier, with

important measurable consequences in the conductance.

2.3.3 Charge and Spin Contribution to Conductance

We first estimate the contribution to the conductance from the charge dynamics

based on Eq. 2.5. First we consider an infinite wire without attachment to leads,

and we bias to drive an AC current I = I0 cosωt at x = 0. In terms of the plasmon

velocities, we have I = enu̇. This imposes the following boundary condition on

φρ(0, t):

φρ(0, t) =
π√
2

I0

eω
sinωt =

π√
2
q(t). (2.22)

We can then find the fields φρ and Πρ, which gives the following time-averaged

energy density,

〈E〉t =
π~
4e2

I2
0

Kρuρ
. (2.23)

We are effectively driving the system with an oscillating external force, leading

to emission of plasmon waves which dissipates into the larger reservoir. The total

energy dissipated by the waves then is W = 2uρ〈E〉t, which we compare to the well

known Joule heat law (time-averaged) W = 1
2
I2

0Rρ to find,

Rρ =
h

2Kρe2
=

1

Gρ

. (2.24)

In the strong coupling Wigner crystal, we found that the spin Hamiltonian is

modified to Eq. 2.21, which now depends on the oscillating parameter q(t). This

adds an additional series resistance to the wire due to spin [74, 73, 75], R = Rρ+Rσ.
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Figure 2.1: Sketch of the y dependence of position dependent J . J is exponentially
small inside the wire, −nL/2 < y < nL/2, and saturates to J∞ ∼ EF close to the
leads.

The resistances are in series and not in parallel because the spins do not directly

respond to the bias and instead are driven by the change in electron number or

electrical current.

Matveev estimated the value of Rσ by assuming J to be slowly varying in the

channel with form

J [y] =

{
J � EF at |y| < nL/2

J∞ ∼ EF at |y| → ±∞.
(2.25)

This allows the spin chain to be approximated by a homogeneous Heisenberg

model, which can be solved with a Bethe ansatz, giving ”spinon” particles with

spectrum ε(k) = πJ
2

sin k as the elementary excitations. This points to a threshold

energy πJ/2 for spinon propagation, with the J referring to the smallest value in

the channel. Spinons with energy less than πJ/2 pass through the channel without

issue, while those with larger energies are reflected by moving scatters, which are a

result of the time dependence of J (due to q(t)). At low temperature, T � J , the

resistance due to spinons is exponentially small, Rσ = R0 exp(−πJ
2T

). Here R0 is a

model dependent prefactor.
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For T � J , but still T � EF ∼ J∞, all spinons are expected to be reflected.

The dissipation Rσ is not easy to calculate in this regime, but Matveev conjectures

that the result should be similar to any problem where all the spin excitations are

reflected by moving scatterers. Thus, at T � J ,

Rσ =
h

2e2
. (2.26)

This result combined with Eq. 2.24, points to an overall conductance that is

reduced to G = e2/h as the density in the constriction is reduced. This is the

primary theoretical prediction concerning the conductance.

2.3.4 Zigzag and Unusual Spin Configurations

Aside from the predictions on the measurable conductance, what other interesting

behavior might result from the 1D Wigner crystal? The strong Coulomb repulsion in

the channel forces a relaxation of the confinement, so that the wire is no longer strictly

1D, but rather, has a quasi-1D configuration. Instead of a linear chain of electrons,

more exotic arrangements such as a zigzag are now possible, as shown in Fig. 2.2.

As mentioned earlier, several studies indicated the possibility for unusual spin states

in the zigzag state [57, 56, 55]. The argument here is that in such a zigzag chain, it is

possible for the distance between next-nearest neighbor electrons to be smaller than

the nearest-neighbor. Thus, the exchange between next-nearest neighbors, J2, may

be equal to or exceed the nearest-neighbor exchange, J1. Competition between the

two exchange energies may frustrate the antiferromagnetic ground state, and three

or more particle ring-exchange processes could become possible. The ground state

for odd number of electron interactions then, is likely to be ferromagnetic in nature

[56]!

Is this a realistic situation for quantum point contact 1D channels? We con-
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Figure 2.2: Zigzag in quasi-1D quantum point contact. (a) The zigzag confor-
mation is characterized by the dimensionless number ν = n1D ∗ r0 (see text). As
interactions become stronger, a zigzag shape results (b), with various possible ex-
change mechanism, such as the nearest neighbor J1 and next-nearest neighbor J2.
(c) Phase diagram following that shown in Ref. [55]. rΩ is defined in the text. For
a linear chain (low ν), antiferromagnetism (AF) is the possible magnetic behavior.
In the density range allowing for zigzag to form, exotic magnetic behaviors such as
ferromagnetism (FM), four-particle ring exchange (4P) and partial polarization (M)
are predicted to occur.
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sider the parabolic confinement potential along the y-axis (quantization direction)

Vconf (y) = 1
2
mΩ2y2, with Ω the frequency of harmonic oscillations. The condition

for zigzag Wigner crystal to form is when the Coulomb energy is comparable to

the confinement, Vcoul(r0) = Vconf (r0). Thus, a zigzag develops when the distances

between electrons are on the order of

r0 =

(
2e2

4πmεΩ2

) 1
3

. (2.27)

As r0 has units of length, we can define a dimensionless quantity to describe the

zigzag by multiplying the 1D density, n1D.

ν = n1D ∗ r0. (2.28)

Theoretical studies indicated that a 1D crystal as in Fig. 2.2(a) is stable for

ν < 0.78, while zigzag chains, Fig. 2.2(b), form from 0.78 < ν < 1.75. Larger

channel density gives larger ν, which correlates to a larger distance between the

zigzag rows. The primary result, is that in such a range of ν, it becomes possible

to support a ferromagnetic state as well as other exotic spin states, as shown in the

phase diagram of Fig. 2.2.

Here, rΩ ≡ r0/aBohr is a scaling factor which quantifies the strength of the

electron-electron interactions. As can be seen, at low ν, which corresponds to a

linear chain, the expected magnetic behavior is antiferromagnetic regardless of inter-

action strength. This is expected for a strictly 1D system as argued by Lieb-Matthis.

At the correct density range for zigzag formation however, the magnetic behavior is

not so simple. When interactions are not strong, it is possible to have various ring

exchange processes, denoted as 4P. This exotic state is not well understood, and

we refer the reader to these theoretical papers [56, 55, 75] for more on this topic.

However, the prediction is that if interactions are strong, then it is possible to have
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a partial polarization region M, and above this, at stronger interactions, a ferromag-

netic state is possible, FM.
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3

Experimental System Fabrication and
Measurement Techniques

In the first part of this chapter, I describe the experimental system studied. Then I

detail procedures for nanoscale electron beam lithography device fabrication. Finally,

I will discuss electronic measurement techniques used.

3.1 High Mobility 2DES

The advent of molecular beam epitaxy (MBE) in the 1960s, and its subsequent

development into a now very mature technology, has allowed researchers to realize

the growth of many types of novel semiconducting structures. MBE allows for the

precise placement of single atoms, so that growth can be controlled layer by layer.

Growth of heterojunctions, which is the broad term for materials that are grown

composed of two semiconductors with different band gaps and crystalline structure,

became possible. This in turn, led to the development of heterostructures (crystals

with multiple heterojunctions) and other devices, such as the heterojunction bipolar

transistors (HBT) [79], high mobility electron transistors (HEMT) [76], and quantum
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Table 3.1: Lattice constants and energy gap for several III-V ternary compounds.

Compound Lattice constant (Å) Energy gap (eV)
AlAs 5.6611 2.168
GaAs 5.65325 1.424
InAs 6.0583 0.354
InP 5.8687 1.344
Si 5.431 1.12

Figure 3.1: Band diagram of a modulation doped GaAs-AlxGa1−xAs heterostruc-
ture. A 2DEG is formed at the interface of the undoped GaAs with p-type doped
AlGaAs.

cascade lasers [30].

A simple but rather ideal model to understand what happens when two materials

of different band gap and crystalline structure are meshed together is the electron

affinity rule [1]. The rule assumes that the vacuum levels of the two materials align

at the junction, and therefore the conduction band offset EC1 − EC2 = ∆EC equals

the difference in electron affinities χ1 − χ2 = ∆χ. This allows one to calculate the

conduction and valence band offsets. Once thermal equilibrium is reached, the Fermi

levels of the two materials also match, and this enables a more detailed calculation of

the final band bending. Band gap structure of most heterojunctions can be classified

as straddled, staggered or broken.
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However, this simple model does not account for lattice mismatch between ma-

terials, which naturally have different lattice spacings. Lattice constants for typical

III-V ternary compounds are shown in Table 3.1. The model is also unable to ac-

curately describe most observed band gap values as the electron affinity can depend

on surface states and electron correlation effects. In particular, it does not predict

the quantum well formed at the junction of the GaAs and AlGaAs, see Fig. 3.1,

the experimental test system that is studied in this thesis. A more accurate descrip-

tion, the effective dipole model [5, 100], assumes the conduction band offset to be

the difference in the Schottky barrier height. Essentially, dipole charges arise from

locally different atomic and electronic structure at the interface in comparison to the

bulk, and these charges dictate how the bands merge. This model works well for

AlGaAs-GaAs structures (material parameters and electronic properties are shown

in Table 3.2). The lattice constant in Å and energy gap in eV can be estimated for

AlxGa1−xAs with the following:

a = 5.6533 + 0.0078x, (3.1)

Eg =

{
1.424 + 1.247x for x < 0.45

1.9 + 0.125x+ 0.143x2 for x > 0.45.
(3.2)

Two dimensional electron gases are interesting from both a fundamental and ap-

plications point of view. As the name implies, a 2DEG is a physical realization of a

two dimensional Fermi gas. Fundamental phenomena such as the integer and frac-

tional quantum hall effect, noncompressibility of Fermi liquids, have been observed

in clean 2DEGs. This has opened up the possibility for observation of new physics,

such as anyon and non-abelian statistics. On the applications side, 2DEGs have been

important for ultrafast transistor operation, and more recently, as a potential test
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Table 3.2: Electronic properties and parameters in GaAs-AlGaAs 2DEG heterostruc-
tures and Si inversion layers.

Property GaAs(100) Si(100) Units
m 0.067me 0.19me g
gs 2 2
gv 1 2
ε 13.1ε0 11.9ε0 F/m

ρ(E) = gsgv(m/2π~2) 0.28E-11 1.59E-11 cm−2meV−1

ns 4E11 1-10E11 cm−2

kF = (4πns/gsgv)
(1/2) 1.58E6 0.56-1.77E6 cm−1

vF = ~kF/m 2.7E7 0.34-1.1E7 cm/s
EF = (~kF )2/2m 14 0.63-6.3 meV

µe 104-106 104 cm2/Vs
τ = mµe/e 0.38-381 1.1 ps
D = v2

F τ/2 140-14000 6.4-64 cm2/s
ρ = (nseµe)

−1 1.6-0.016 0.63-6.3 kΩ
λF = 2π/kF 40 35-112 nm
l = vF τ 102-104 37-118 nm

lφ = (Dτφ)1/2 200-· · · 40-400 nm(T/K)−1/2

lT = (~D/kBT )1/2 330-3300 70-220 nm(T/K)−1/2

lcyc = ~kF/eB 100 37-116 nm(B/T)−1

lm = (~/eB)1/2 26 26 nm(B/T)−1/2

kF l 15.8-1580 2.1-21
ωcτ 1-100 1 B/T

EF/~ωc 7.9 1-10 (B/T)−1

system to realize quantum and topologically fault-tolerant computation [93, 94, 13].

One of the key ideas that made 2DEGs useful and ubiquitous is modulation

doping, which is achieved with a Si δ-doping layer in AlGaAs-GaAs structures [28,

97]. The Si atoms in GaAs effectively separate the donors from the charge carriers,

which reduces scattering affects and thus, enhances the electron mobility in the

quantum well. 2DEGs can now be consistently grown with mobilities on the order of

107 cm2/Vs at low temperature [84]. In general, the mobility increases very rapidly

as the temperature is decreased, then saturates. Sample mobilities can be enhanced

by illuminating with a light emitting diode [114].
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Figure 3.2: Layer by layer schematic of a typical GaAs-AlGaAs heterojunction.
Specific details for structure used in this thesis are in the text.

A typical high mobility structure, see Fig. 3.2, consists of a relatively thick 0.2 -

1 µm buffer layer of GaAs, followed by an Al0.3Ga0.7As spacer layer of ∼ 10-30 nm, a

silicon δ-doping layer, and an additional 50-70 nm of Al0.3Ga0.7As to bring to a total

thickness of ∼ 80 nm of Al0.3Ga0.7As. This is capped with an n+ doped 6 nm GaAs

cap layer. The total thickness from the heterojunction is roughly in the 90-100 nm

range. Typically, the AlGaAs layer is kept relatively thin to reduce the chance for a

parallel conduction channel arising.

The GaAs/AlGaAs heterostructure used in this thesis contains a 2DEG 80 nm

below the surface, and the 2DEG mobility and density was µ = 9× 105 cm2/Vs and

n = 3.8× 1011 cm−2 at 4.2 K, respectively.

3.2 Device Fabrication

3.2.1 Electron Beam Lithography - Standard Procedures

Quantum dot and quantum point contacts in the 2DES can be fabricated by standard

lithography methods. To begin with, a GaAs-AlGaAs wafer is cleaved to roughly 3

mm by 3 mm size. The size upper bound is restricted by the size of the sample holders

(14 pin DIP socket, Newark 614-AG1 or Bond socket D14 Side Braze, Spectrum
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Figure 3.3: Schematic of sample fabrication procedure. Explanations are given in
the text.

Semiconducting Materials Inc. CSB01419), while naturally the lower bound is chosen

so that it is not too difficult to handle and see the crystal. The cleaved crystal is

ultrasonically cleaned (Paragon Electronics Bransonic B3510) in a two step process

of acetone then isopropanol wash for five minutes each, then blow dried with dry N2

gas.

Next, electrical contact must be made to the 2DES, Fig. 3.3(a). As shown in the

figure, pure Indium (In) contacts are soldered onto the top surface of the crystal. A

homemade annealing station is utilized to heat the crystal in N2 ambient atmosphere,

so that the In diffuses from the top surface into the underlying electron gas. A photo

of the annealer is shown in Fig. 3.4. Annealing procedures that I use are: 1) Place

sample on the silicon carbide heating plate, close and screw cap tight 2) Fill with

pure N2 gas for 4 minutes 3) Heat to 435◦C in ∼2 minutes 4) Hold at 435◦C for

4 minutes 5) Lower temperature to room temperature 6) Shut off gas and remove

crystal.

The sample is now ready for the lithography process. The first step is to spincoat
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Figure 3.4: The annealing station uses a Micromega CN77343 dual output con-
troller with Micromega SSRL240DC25 3-32 Vdc solid state relay. TRIAD VPS24-
3300 class B power transformer is used. The heating plate is silicon carbide and
thermocouples are used to measure the temperature. This annealing station was
designed and built by Nathan Kundtz.

(Specialty Coating Systems P6700 Spincoater) the crystal with the synthetic poly-

mer poly(methyl methacrylate) or PMMA, Fig. 3.3(b). Electron beam (Ebeam) or

UV light illumination severs the polymer crosslinks in PMMA, which allows for the

PMMA to be patterned into a mask to define nanostructures with line resolutions

achievable in our lab around 30 nm on GaAs (Leo 440, 30 kV ebeam). I utilize Nano

PMMA 495 (molecular weight) diluted to 4% in Anisole; the lower molecular weight

is chosen such that thinner films can be spun, and thus, finer lithographical features
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achieved. Typical spincoating speeds are 5500 RPM for 45 s (ramp up to 2000 RPM

in 2 s, then to 5500 RPM in 1s). The final PMMA thickness for this spin speed is ap-

proximately 100-200 nm. The PMMA is then baked at 120◦C for 30 minutes. Then,

as in (c), the pattern designed is ”written” with the ebeam, which follows commands

from a computer program. The Proxy ebeam cad program as well as more detailed

ebeam settings will be discussed below in 3.2.2. But briefly, to achieve 50 nm line

widths, a box feature is set at roughly 120% dose with 20 pA beam current for 14

µs so that the optimal undercut is formed. Typical ebeam doses are in the range

100-400 µC/cm2. Scattering effects of the incident electron beam in PMMA have

been thoroughly studied [41, 80, 42, 69]. The long polymer chains broken down by

ebeam bombardment can then be removed with a developer (methyl isobutyl ketone:

isopropanol or MIBK:IPA in 1:3 ratio) which leaves an undercut in the PMMA as in

(d). As the developing time is also a variable that determines the PMMA undercut, I

fix the MIBK:IPA rinse time at 30 s, while maintaining freedom to change the beam

parameters. Residual droplets of developer are immediately blown dry with N2 gas

after rinse.

The sample is now ready for metal evaporation Fig. 3.3(e). Depending on the

particular device design, gold (Au), chrome (Cr), titanium (Ti) or aluminum (Al)

may be deposited. We utilize an ancient (but still dependable and rather versatile due

to the large bell jar space) Varian thermal evaporator (Automatic Deposition System

985-7009). Au is a commonly used material for surface gates as it does not oxidize,

but the downside is that it does not naturally stick well to GaAs. Thus, combinations

of Cr/Au or Ti/Au (5 nm/20 nm thickness) are used, with the ”stickier” Cr or Ti

providing the more dependable adhesion to the GaAs. The PMMA mask is ”lifted-

off” with acetone, step (f), leaving only metal deposited on the crystal surface. Au

wire can then be wire-bonded or In soldered to provide electrical contact (Sigmund

Cohn Corp. 98% Au, 2% Sn 0.002” size 171004).
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Figure 3.5: This is a single quantum dot structure formed from five Cr/Au top
gate contacts. The darker colored regions are the bare top GaAs top surface, while
the lighter structures are the deposited metal. The width of the gates at the tip ends
are approximately 100 nm. Scale bar is 100 nm.

In cases where there are several lithographic procedures required, an O2 plasma

etch (Technics PE II-A Plasma System) is sometimes required to remove residue

PMMA after the developing step (d). The residue PMMA could have built up if the

beam exposure is not fully optimal, and the chances of this occurring is greater with

designs that require multiple ebeam writes. The residue may prevent the deposited

metal from actually adhering to the GaAs surface, and thus, the entire metallic

feature could be removed during acetone lift-off.

A typical finalized device would look as in Fig. 3.5. These are SEM images

looking from the top down, with the dark regions corresponding to the bare GaAs,

and the bright features are the deposited metal. A larger field image of the same

device is shown in Fig. 3.6. The gate electrodes are shorted to each other to prevent

a potential from developing across the tips and causing discharge damage. Prior to

device operation, the grounding shorts can be disconnected simply using a diamond

scribe to remove some of the metal.
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Figure 3.6: The five gate electrodes are shorted to each other so that the entire
sample can be maintained at the same ground. This is done to prevent a potential
from developing across the tips (see Fig. 3.5) and causing the small gate features to
be damaged or ”blown-up.” Scale bar is 100 µm.

More fancy structures can be readily designed, but at the potential cost of hav-

ing additional ebeam writes and/or additional metal depositions. The likelihood of

failure or error also increases with complexity. Two additional useful fabrication

techniques, PMMA overexposure and double angle evaporation, that I have utilized

previously are discussed in Appendix B.

3.2.2 Gate Design - Proxy

Various shapes can be designed in the Proxy cad program. We utilize the box

and contour shape command to accomplish this. However, the driving factor for

pattern design is function. In the context of quantum point contacts, the shape of

the patterned metallic gate will greatly influence the shape of the potential well in

the 2DEG. As discussed in Ch. 1, Buttiker has shown that transmission through a

saddle-point potential will give rise to conductance plateaus [15]. A truly accurate

analysis however, requires self consistent potential calculations, taking into account

the heterostructure design and gate geometry [24, 81, 82, 19, 64]. Simple electostatics
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Figure 3.7: Asymmetrical quantum point contact with 300 nm gap width. The
wall gate has length of l = 1 µm. Ti/Au metal of 10 nm/20 nm thickness is used for
the gates.

for various shapes can be calculated based on the work of Davies et. al. [25].

Here I include the detailed Proxy values used to fabricate the gate patterns stud-

ied in this thesis.

Figure 3.7 is an SEM micrograph of an asymmetrical quantum point contact

similar to those used to study spin-incoherent transport. We utilize three separate

Figure 3.8: 50 µm by 50 µm Proxy pattern for the image in Fig. 3.7
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Figure 3.9: 200 µm by 200 µm Proxy pattern that is exposed following the pattern
in Fig. 3.8.

Figure 3.10: 1500 µm by 1500 µm large feature. This pattern ensures the contact
pads are large enough to be seen by eye for In soldering.
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exposure steps to write the device, starting from smallest to largest. In the first step,

a field size of 50 µm by 50 µm with 4000 times magnification is written at 20 pA

beam current with typically 10-15 µs dwell times. Figure 3.8 shows the design for

the image in Fig. 3.7. The finest features are written in this step (roughly 60-100

nm in Fig. 3.8). Then the 200 µm by 200 µm features magnified to 1000 times is

exposed with ∼ 100 pA current for 27 µs. Finally, the pattern with 1500 µm by 1500

µm field size at 133 times magnification is defined with ∼ 3000-3300 pA current for

32 µs. The large field patterns for the device of Fig. 3.7 are shown in Figs. 3.9

and 3.10. In this way, alignment can be ensured so that the smallest features are

properly connected to the larger contact pads.

3.3 Measurement Techniques

In Fig. 3.11 I show a schematic of the basic (differential) conductance measurement

setup. I utilize the PAR124 lockin to generate an AC excitation voltage of 17.3

Hz to the sample to serve as the source-drain bias. Here no DC voltage is applied.

Typically, the 100 mV output at the lockin will be voltage divided to around 10 µV

so that Vsd � kBT . It’s also important to remember not to use a huge shorting

resistor value compared to the sample resistance.

The current from the sample is brought out to a current preamplifier. We have

several available in our lab, either J. C. Chen’s homemade preamp with OPA-128

chips or the Ithaco 1211. For most of the measurements discussed in this thesis, the

Ithaco preamp is used. Typically, amplification is tuned to 10−5 to 10−6 A/V, as

the currents are on the order of nA. The converted voltage signal is sent back to the

PAR124 lockin for detection at 17.3 Hz, with usual time constants of 300 ms to 1 s.

Voltages to deplete the quantum point contact gates are applied via a homemade

DAC power supply with +10V to -10V full range and 10 MΩ current limiting re-

sistors. Typically, I limit the voltage to ±5 V, as the sample breakdown voltage is
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Figure 3.11: Setup for measuring the (differential) conductance through a quantum
point contact.

reached around -4V.

To gain more information about the transport properties, differential conductance

versus a DC source-drain bias can be measured. This is done by adding a small AC

signal on top of a DC source-drain bias. Adding AC to DC can be accomplished with

an isolation transformer, Geoformer G-40 from Triad-Utrad 17-8223 (or a biastee),

paying special attention to the ground configuration. In our setup, the AC signal

ground is isolated from the ground of the shielding box, which is tied to the ground

of the DC power source and sample, see Fig. 3.12. The current through the quantum

point contact as a result of this voltage bias is converted to voltage at the preamp

and measured in the lockin.

3.3.1 Homemade Sample Measurement Probes

Figure 3.13 show homemade He3 system measurement probes and a liquid He4 sam-

ple dipstick. These probes are meant for operation in an Oxford He3 cryostat with

base temperature 300 mK and a helium dunker, respectively. The He3 cryostat was
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Figure 3.12: Transformer box for AC+DC addition.

custom fitted with a triaxial magnet allowing up to 4 T in the vertical z and 200 mT

in the horizontal x directions. The dunker has a single z field up to 6 T.

The He3 sample probe and holder was custom designed for both DC and coaxial

connections. Four stainless steel cables can be seen in the figure. Larger diameter

flexible stainless steel coax was wired from room temperature down to roughly 1

K (where the sample probe thermally contacts the 1Kpot), then switched to semi-

rigid mini-coax. A pc board designed with 50 Ω microstrips connects the different

coaxial cables. Constantan DC cables were used from room temperature down to

base temperature. There are 4 coaxial connections and 18 DC wire cables available

for measurement.
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Figure 3.13: Homemade He3 measurement probe and He4 sample dipstick. Insets
show the sample holder design. The dipstick allows for 14 pin connection, while the
He3 probe has 18 DC wire connections and 4 coaxial connections.

The He4 dipstick is much simpler in design, and consists of only copper wires

from top to bottom. The socket holder is a 14 pin dip socket mounted on brass.
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4

Asymmetric Quantum Point Contacts

At the end of Ch. 1, I raised the question of what would happen to the conductance

if asymmetries were introduced into the potential that defines the quantum point

contact? I consider the following two ways to introduce asymmetries: first, into the

lithographic gate design, and second, by gating asymmetrically. Asymmetries in the

lithographic design can be introduced as in Fig. 4.1. Essentially, instead of trying

to create gates that are mirror-images of each other, we make one gate longer than

the other.

The potential that defines the gates can be tilted as in Fig. 4.2. Consider the

gates V1 and V2. The conductance traces in the past have usually been obtained

by applying voltages equally to V1 and V2. This creates a potential that possibly

looks like the bottom left figure of Fig. 4.2. The QPC can be asymmetrically gated

by applying unequal voltages to V1 and V2.

4.1 Asymmetrically Gating Symmetric QPC

First let us look at the case where voltages are applied asymmetrically to a symmetric

lithographic geometry, for example, the constriction formed by V1 and V2 in Fig.
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Figure 4.1: SEM image of symmetric and asymmetric QPC geometries. The gates
V1 and V2 are mirror-images of each other, and together form a symmetric QPC.
V3 and V4 have quite different lengths, and so are asymmetric.

Figure 4.2: Schematic of potential profile under symmetric and asymmetric gating.
The top image is a side view of the crystal with 2DEG beneath the surface. Voltages
are applied to metallic gates V1 and V2 deposited on the surface to deplete the
electron gas.
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Figure 4.3: Asymmetrically gating symmetric QPC. Here we asymmetrically apply
voltages to V1 and V2, shown in Fig. 4.1. Voltages are fixed on V1 from -2 V to -3
V, with 50 mV decrements. The voltage on V2 is swept at each fixed value of V1.
A slight kink at 1.5e2/h is discernible in some of the traces, but there are no other
significant anomalous conductance features observable.

Figure 4.4: Schematic of potential of asymmetrically gated symmetric QPC. As the
voltage on the gate is made more positive, the potential wall becomes more shallow.
Making the gate voltage more negative sharpens the wall. In the figure, we imagine
a situation where ∆V ≤ ∆V ′, with ∆V =V1 − V2 (solid), and ∆V ′ =V1’ − V2’
(dashed).
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4.1. Here, W = 100 nm and L = 60 nm. The measured conductance traces are

shown in Fig. 4.3. Each individual trace is taken by sweeping the voltage on V2

with voltage on V1 fixed. The leftmost trace has V1 = −2 V, which is decreased by

50 mV steps as we move rightwards. The rightmost trace has V1 = −3.5 V. The

first observation is that asymmetrically gating a symmetric QPC does not seem to

introduce any unusual behavior in the conductance quantization. All the plateaus at

even multiples of 2e2/h are still there, and there are no substantial anomalous features

(there is a slight kink at 1.5e2/h in most of the traces). The pinchoff positions for the

traces are shifted, though as expected, the depletion point stays the same. Second,

it is important to note that in going from left to right, the number of conductance

plateaus drops. This means that are fewer number of subbands accessed, and this

gives an indication of the potential shape. On the left, as shown in Fig. 4.3, the

potential has a shallower shape, while on the right, the potential wall increases much

more sharply. The shape shift changes the subband energies spacing, while the Fermi

energy is fixed. Thus, there are less total number of subbands below the Fermi energy,

and fewer quantization plateaus are observed.

The fact that nothing unusual is observed under asymmetric gating is not that

surprising. By making V1 6= V2, the curvature of the potential wall is only slightly

changed, see Fig. 4.4. However, the shape near the band bottom is expected to be

essentially unaffected. This means that the quantization of subbands still remains,

though as one edge dips lower and lower, for example by making V1 less negative, the

number of subbands below the Fermi level decreases, in agreement with experimental

results.

4.2 Asymmtrically Gating Asymmetric QPC

Next, consider what happens if the gate geometry itself has significant asymmetries,

for example, in gates V3 and V4 in Fig. 4.1, which has a point contact gap W = 250
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Figure 4.5: Asymmetrically gating asymmetric QPC. Here we asymmetrically ap-
ply voltages to V3 and V4, shown in Fig. 4.1. Voltages are fixed on V3 from -0.7 V
to -2 V, with 50 mV decrements. The voltage on V4 is swept at each fixed value of
V3.

nm, and short edge length L = 100 nm. The measured conductances are shown in

Fig. 4.5. The voltage on V4 is kept fixed from -0.7 V to -2 V in 50 mV decrements,

while V3 is swept from 0 to -3 V. Quite interestingly, a number of unexpected features

are observed below the first quantization plateau at 2e2/h. The traces are taken twice

to show the reproducibility of the features during each cooldown. In particular, we

focus on the following two features, shown in Fig. 5.1. The red trace shows a well

developed e2/h feature, while the blue curve has no anomalous conductance below

2e2/h. As was discussed in Ch. 1, plateaus at odd multiples of e2/h develop under

a strong magnetic field, which spin polarizes the electrons. It is quite interesting

that such a strong feature at e2/h is observed in the asymmetric geometry, even

when there is no applied magnetic field! We will further discuss this well developed

e2/h feature and its implications in the next chapter. However, the fact that we can

tune through this regime to one with no anomalous features perhaps indicates that
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Figure 4.6: Conductance of asymmetric QPC with e2/h(2e2/h) feature shown in
red(blue).

asymmetrically gating the asymmetric geometry is drastically altering the transport

dynamics by changing the confinement potential profile.

In a hand-wavy sort of argument, let us recall that for a saddle-point potential,

a larger ωy/ωx ratio gives rise to better, or wider, quantized plateaus. In Fig. 4.5,

we indeed see that going from right to left, the quantized plateaus seem to be wider.

The leftmost trace corresponds to a less negative V 3, or in other words, the channel

is likely closer to V3. This observation seems consistent with the fact that we have

a slightly longer x confinement (longer V3 length). This argument needs to be

substantiated by self-consistent potential calculations.

4.3 Optimizing Asymmetric QPC Gap Width

What is clear from these results is that the asymmetric QPC geometry seems to give

rise to very unusual conductance behavior. We decided to focus on this aspect and

more fully investigate the geometry related or induced effects. Let us consider the

series of gates shown in Fig. 4.7, which have gap widths of 450 nm (g1-g3), 350
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Figure 4.7: Asymmetrical quantum point contacts with gap widths of 250, 350 and
450 nm. The gates are Ti/Au::10nm/20nm.

nm(g1-g5), and 250 nm (g1-g6). The length of the short gate is 100 nm for all three

constrictions.

Figures 4.8, 4.9, 4.10 show the asymmetrical gating conductance traces for the

450 nm, 350 nm, and 250 nm devices, respectively. While measuring each point

contact, the gates for the other two were grounded. Thus, when measuring the

constriction formed by g1-g3, for example, gates g5 and g6 were grounded so as not

to influence the charge configuration. Clearly, in all three measurements, anomalous

conductance features below 2e2/h are observable. This is additional validation that

the asymmetric geometry is important.

In Fig. 4.10, which is for the 250 nm gap width, a very unusual feature marked

by the red arrow is noticeable. It seems that the conductance at the 2e2/h plateau is

drastically suppressed to e2/h. This feature occurs very near the right edge of traces,

indicating that at this gap width, the potential wall is rather sharp. Quite interest-

ingly, such a trace was not observed in the 350 nm gap or the 450 nm gap. This

seemed to indicate that there is an optimal gap width for observing the interesting
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Figure 4.8: Asymmetrical voltage sweep of 450 nm (g1-g3)asymmetric QPC at 300
mK. g1 is set from -2.5 V (leftmost) to -3.5 V (rightmost) in 50 mV steps.

Figure 4.9: Asymmetrical voltage sweep of 350 nm (g1-g5) asymmetric QPC at
300 mK. g1 is set from -2 V (leftmost) to -3 V (rightmost) in 50 mV steps.
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Figure 4.10: Asymmetrical voltage sweep of 250 nm (g1-g6) asymmetric QPC at
300 mK. g1 is set from -1 V (leftmost) to -2.5 V (rightmost) in 50 mV steps. Quite
interestingly, the trace denoted with a red arrow has a suppressed 2e2/h plateau.

conductance behavior.

Thus, I made a 300 nm gap sample, and the result of the asymmetrical gate

tuning is shown in Fig. 4.11. Here, we see that we are clearly able to tune through

the suppressed conductance regime.
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Figure 4.11: Asymmetrical voltage sweep of 300 nm (g2-g14)asymmetric QPC at
300 mK. g1 is set from -1.5 V (leftmost) to -2.5 V (rightmost) in 50 mV steps.
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5

Electron Correlations in Asymmetric Quantum
Point Contacts

5.1 Spin-incoherent Regime and Possible Wigner Crystallization

As discussed in Ch. 1, the conductance of a one dimensional conductor (quantum

wire) is known to be quantized in units of G = 2e2/h. The observed experimental

result can be explained in a noninteracting electron picture with each subband con-

tributing equally to the conductance. Intriguingly, at low electron density, anomalous

behavior unexpected for noninteracting electrons occurs below the first subband at

zero field at 0.7 ∗ 2e2/h [103] and sometimes 0.5 ∗ 2e2/h [87]. The origins of the

conductance features are still under debate, with one possibility discussed in Ch. 2

being the formation of a Wigner crystal in the quantum wire [119, 90].

Wigner crystallization becomes feasible in a specific low density range, aBohrd
−2 �

n � a−1
B . In this limit, the kinetic energy of electrons, which is typically EF =

(π~n)2/8m, is small compared to the Coulomb interaction between electrons, of order

e2n/ε. Thus, electrons prefer to ”keep a distance” and form a lattice with equidistant

spacings to minimize the repulsive Coulomb energy. Electronic transport through
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such a lattice is closely related to the spin-incoherent Luttinger liquid regime, where

electron-electron interactions separate the spin and charge modes of propagation.

Spin-incoherent transport is described as the sum of the spin and charge modes, Eq.

2.24, R = Rρ + Rσ. For large exchange processes T � J , the spin contribution is

small so that the total conductance remains quantized at 2e2/h. However, in the

spin-incoherent regime [32], J � T � EF , spin contributes Rσ = h/2e2 (Eq. 2.26)

to the resistance, giving a total conductance which is suppressed to G = e2/h.

Here we present evidence for conductance behavior that is attributed to the spin-

incoherent regime in quantum wires formed by split-gate quantum point contacts,

and signatures related to possible Wigner crystallization in one dimension are also

observed. Specifically, we observe traces with a well developed e2/h feature at zero

magnetic field, Fig. 5.1 (red trace). This conductance behavior agrees with the

predicted signature of a spin-incoherent Luttinger liquid. As the channel density is

reduced by applying more negative gate voltage to V3, the conductance at 2e2/h

drops to e2/h. This occurs when the density of the channel is reduced to less than

the inverse Bohr radius (aBohr ∼ 10 nm in GaAs). We know the density is in the

correct regime based on subband depopulation measurements shown below. Strong

Coulomb interaction in the channel localizes the electron motion, which allows for

possible zigzag conformation and exotic spin exchange mechanisms. This state is

possibly related to the 0.7(2e2/h) effect (or 1.5e2/h in our language) observed in 1D

quantum wires [103, 23, 87].

To compare the behavior to known results, we look at the differential conductance

under a source-drain bias, dI/dVSD. The measurement methods are described in Ch.

3.3, and the result is shown in Fig. 5.2. Applying a DC source-drain bias introduces

a voltage difference between the chemical potentials on either side of the QPC. The

bunching of the traces in Fig. 5.2 correspond to plateaus in the conductance.

We find that the e2/h structure is indeed related to 1.5e2/h by applying a DC
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Figure 5.1: Conductance of asymmetric QPC with e2/h(2e2/h) feature shown in
red(blue).

source-drain bias, Fig. 5.2(left panel). Note that an e2/h plateau typically develops

under a strong magnetic field which spin polarizes the electrons. Here, no magnetic

field is applied. Figure 5.2(a) is quite similar to the result obtained in [23], but

their trace is taken at a field of 8 T. In their paper, the voltage where the e2/h

bunch merges into 1.5e2/h is 0.2 mV, which is consistent with the 8 T field. Recall

that EZ = gµBz, where g = −0.44 gives a conversion of gµ ∼ 25µeV/T. In our

case, the transition occurs at approximately 1 mV, which translates to a Zeeman

splitting of nearly five times as large as previous works [23]! This suggests a strong

zero field polarization of the electrons, and is experimental evidence that the spin-

incoherent wire has undergone a transition from a linear chain to a zigzag Wigner

crystal formation which could support a ferromagnetic state. At the moment, we do

not fully understand the ripples observed in the regions between the e2/h to 2e2/h

bunches.

Figure 5.3 shows conductance traces for the 300 nm gap sample (shown in inset)

at 4.2 K with asymmetric gating. Data taken at 300 mK on a similar geometry was
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Figure 5.2: Differential conductance versus source-drain bias of asymmetric QPC
when (a) the conductance has a strong e2/h feature (red trace in Fig. 5.1) and (b)
when there are no anomalous features below 2e2/h in the conductance (blue trace in
Fig. 5.1).

shown previously, Fig. 4.11. Here, each trace is obtained by sweeping the finger

gate with the wall gate set at a fixed voltage. We caution against placing too much

emphasis on the precise voltage value, as depending on the cool-down procedure,

which determines the initial local charge configuration, the voltages shift in value.

However, the qualitative features are stable over a single cooldown and reproducible

over multiple thermal cycles and in a separate device. From left to right, the wall

gate is made successively negative starting from Vwall = −2 V (in decrements of

50 mV steps). The density of successive conductance traces drops going from left
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Figure 5.3: Conductance through W = 300 nm asymmetric QPC. Dotted (col-
ored) lines measured with Vwall set at fixed voltage from -2 V (leftmost) to -2.6 V
(rightmost) in 50 mV decrements while sweeping Vf . Inset shows the sample gate
geometry.

to right, indicated by the increasingly positive pinchoff value and reduced number

of conductance plateaus. We note several interesting regimes, similar to previous

observations [45, 96]. First, the system enters the spin-incoherent regime where

the 2e2/h plateau is suppressed to e2/h. Further displacing the channel with more

negative Vwall leads to traces where the 2e2/h plateau is completely suppressed (red

and green traces). These two conductance traces are bounded by regimes where 2e2/h

plateaus exist. On the leftmost trace, Vwall is less negative, and the conductance

shows a ”0.7” type feature near (1 − 1.5)e2/h. The 1.5e2/h feature is depressed as

Vwall is set more negative, evolving to ∼ (0.5)e2/h. Another kink seems to develop

around (1.5)e2/h when the initial (1.5)e2/h has become e2/h (trace with pinchoff

near -2.6 V). Eventually this second inflection starts to depress to e2/h, and this

process eventually ends with the 2e2/h plateau suppressed. Note that the higher
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Figure 5.4: Dependence of the suppressed conductance in a field parallel to the
2DEG plane. The field is applied perpendicular to the current channel direction.
The gate voltage on Vwall = −1.93V , and the traces are measured in the He dunker
at 4.2 K.

index subband conductance values above 8e2/h do not seem to be as affected, as was

observed previously [45, 96].

A field parallel to the 2DEG (in y direction) at strengths up to 6 T was also

measured, but no changes in the conductance were observable, Fig. 5.4. The field is

applied parallel to the 2DEG plane to prevent cyclotron states from developing and is

applied perpendicular to the current channel to couple to the subband quantization

direction (y-axis). A series resistance that takes into account the change in the

lead magnetoresistance is subtracted to obtain the traces. We see that at least up

to 6 T, no dramatic change results; that is, the 2e2/h plateau is not recovered in

this situation. This suggests that the spins may already be polarized, which further

supports our observation in Fig. 5.2.

A magnetic field perpendicular to the 2DEG plane, B⊥, was also applied to study
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Figure 5.5: Evolution of suppressed 2e2/h plateau in a magnetic field. Field
strengths of 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6 T were applied perpendicular to
the 2DEG plane.

Figure 5.6: Number of subbands occupied versus 1/B for fixed gate voltages based
on experimental data from Fig. 5.5.
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the field dependence of the suppressed conductance regime, Fig. 5.5. The suppressed

conductance under a perpendicular magnetic field is not affected up to 0.5 T, which

provides a lower bound estimate of 5 K (taking the value at half the Landau gap). At

1 T, an inflection near 2e2/h is noticeable, suggesting an upper bound of 10 K. This

is a rather large energy scale. Beyond 3 T, the system enters the filling factor ν = 2

quantum Hall regime (only the ground subband remains [12]), and a 2e2/h plateau is

clearly visible, which indicates that the cyclotron confinement has exceeded Coulomb

energy. The suppression of 0.5e2/h and e2/h features in a field suggests it is not due

to local resonances (as was suggested by Hew et al.), which should strengthen at

stronger confinement in an applied B⊥. At stronger fields, Zeeman energy begins

to lift spin degeneracy, and signature of the Zeeman spin gap at e2/h re-develops.

It is important to note here that in comparison to Hew et. al., we do not observe

a return of the 2e2/h plateau until ∼ 1 T, whereas a transverse field of Bz = 0.35

T reestablishes the 2e2/h plateau in their work. This is an important experimental

clue pointing to the larger energy scale observed, which we believe is made possible

by the asymmetric QPC geometry.

From magnetic subband depopulation, the density of the channel at Vf = −1.85 V

(where 2e2/h plateau should exist) is estimated to be n1d ∼ 3.4∗107 /m. We provide

some estimates based on both square well and parabolic potential in Table 5.1 and

Table 5.2. Width estimates tend to be larger for square wells, as noted earlier in

Ch. 1. We also estimate as an upper bound n1D ∼ 6 ∗ 107 /m from n2D = 3.8 ∗ 1015

/cm2 and the inter-electron spacing, which satisfies n1D < 1/aBohr. However, an

additional condition is that the temperature should be bounded by the exchange J

and Fermi energy, J � T � EF . We estimate EF/kB ∼ 19 K and J/kB ∼ 0.64

K, which suggests that in principle no spin-incoherent behavior remains at 300 mK.

This discrepancy is not understood but points to the important role an asymmetric

geometry has in stabilizing the observed behavior.
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Table 5.1: Magnetic Subband Depopulation Calculations with Square Well. Esti-
mates are accurate to within hundredth digit.

Gate Voltage kF Width n2D n1D

-1 V 1.7E8/m 223 nm 4.6E15/m2 6.78E7/m
-1.2 V 1.5E8/m 170 nm 3.58E15/m2 5.98E7/m
-1.4 V 1.33E8/m 150 nm 2.82E15/m2 5.31E7/m
-1.7 V 1.08E8/m 95 nm 1.86E15/m2 4.31E7/m
-1.85 V 9.8E7/m 60 nm 1.53E15/m2 3.91E7/m

Table 5.2: Magnetic Subband Depopulation Calculations with Parabolic Well. Esti-
mates are accurate to within hundredth digit.

Gate Voltage kF Width n2D n1D

-1 V 1.45E8/m 385 nm 3.34E15/m2 5.78E7/m
-1.2 V 1.3E8/m 264 nm 2.69E15/m2 5.19E7/m
-1.4 V 1.27E8/m 140 nm 2.57E15/m2 5.07E7/m
-1.7 V 9.6E7/m 106 nm 1.47E15/m2 3.83E7/m
-1.85 V 8.5E7/m 93.5 nm 1.15E15/m2 3.4E7/m

We can estimate the dimensionless parameter ν, Eq. 2.28, from these measure-

ments. We find that the standard non-interacting quantized plateaus at even multi-

ples of 2e2/h tend to smear out at an applied DC bias of ∼ 2.1 meV. Considering a

parabolic confinement with equal subband spacings, we then extract the frequency

of harmonic oscillations as Ω = 3.14∗1012 /s. This allows for an estimate of r0 and ν

as shown in Table 5.3. Our estimate of ν = 1.32 places the QPC directly within the

allowed range for zigzag formation (see Ch. 2 Fig. 2.2). However, the rather small

interaction strength, characterized by r0/aBohr 4, seems to theoretically preclude a

ferromagnetic state, and instead, places our wire well into the 4P state [55]. The

exact behavior of 4P (four-particle) exchange processes is not well understood. How-

ever, if one imagines specific arrangements where interactions among odd numbered

subsets of four interacting exchange electrons are slightly stronger, then it may be
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Table 5.3: Rough estimates and calculations based on 1D density. The value of Ω
(considering a parabolic well) is found by considering a subband energy of approxi-
mately ~Ω = 2.1 meV. Equations in the last two rows from [55].

Estimate based on n1D = 3E7/m 3.4E7/m 7E7/m
EF/kB 14.7 K 18.8 K 80 K
J/kB 0.4 K 0.6 K 6.6 K

Vcoul/kB 38.2 K 43.3 K 89 K
r0 = (2e2/4πεmΩ2)(1/3) 38.8 nm 38.8 nm 38.8 nm

ν = n1D ∗ r0 1.16 1.32 2.72
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Figure 5.7: Conductance through W =300 nm T-QPC measured with Vwall set
at fixed voltage from -1.5 V (leftmost trace) to -3.0 V (rightmost trace) in 50 mV
decrements while sweeping Vf .

possible to have a polarized situation (this explains the existence of the M region in

Fig. 2.2). Nonetheless, the observed behavior does not quite follow the predicted

phase diagram, motivating further experimental and theoretical studies.

Next we present conductance traces from a separate cooldown, Fig. 5.7. The qual-

itative behavior is reproduced, but the feature near (0.5)e2/h is not as pronounced.

The reason for this is not clear, but likely the different local charge configuration

indirectly influences the relative strength of the spin modes. A numerical deriva-

75



tive of the conductance traces, dG/dVf , is presented in Fig. 5.8. Flat regions in the

derivative correspond to a conductance plateau, and peaks are from the riser between

plateaus. The trace showing straight rise to ∼ 4e2/h is marked with black arrow.

Above and below this regime, several small distinct bumps below the 2e2/h plateau

can be seen, which is likely due to competition between the spin modes. Going from

bottom to top, the plateau width and the number of available subbands decreases.

Both trends indicate that the density is decreasing as we move from trace to trace,

and confinement potential is becoming more shallow.

In Fig. 5.9, the differential conductance versus source-drain bias is shown for

several asymmetric gate settings: (left panel) the (1.5)e2/h effect when Vwall = −1.5

V, (middle panel) spin-incoherent conductance with the 2e2/h plateau suppressed to

e2/h and (right panel) row formation at Vwall = −1.875 V. The middle panel was

taken during at a third cooldown, separate from the first two, explaining why the

voltage values are slightly shifted. There is a weak plateau at e2/h even at zero DC

bias, in contrast to the right panel where there is clearly no bunching of the traces

at zero source-drain bias. In both cases, there is no 2e2/h plateau, in contrast to the

left panel. At higher bias, there seems to be bunching of traces, signaling plateau

formation, at (0.5)e2/h in all three panels. In the leftmost panel, the traces also more

clearly bunch up around 3e2/h. In Fig. 5.10, I show a conductance regime with a

(0.5)e2/h feature already at zero bias. This seems to be a rather different regime

from all the others. These effects present more compelling evidence that we have

tuned the point contact into regimes with unusual electron and spin correlations.

Temperature dependence of the conductance when the 2e2/h plateau is fully

suppressed is shown in Fig. 5.11. The quantized conductance of the 4e2/h plateau

is washed out by thermal averaging above 6 K; however, there still appears to be a

clear feature below ∼ e2/h, which persists up to 10 K. At 18 K, the features near

pinchoff are thermally smeared, but an inflection in the curvature near e2/h can be
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Figure 5.8: Numerical derivative, dG/dVf , of conductance traces shown in Fig.
5.7. Traces are offset vertically for clarity, with bottom to top corresponding to
those from left to right in Fig. 5.7.

discerned. This supports the high energy scale estimate of electron interactions in

the conducting channel. Based on our estimate, the 2e2/h plateau should return

once the temperature exceeded ∼ 6− 10 K. Unfortunately, that is not observable as

above 6 K conductance quantization is already thermally smeared. Nonetheless, the

high bias and temperature results offer compelling evidence that we have tuned the

point contact into regimes with unusual electron and spin correlations.

Recently, evidence for incipient lattice formation have been reported in the Coulomb

blockade of carbon nanotubes [27], localization of double quantum wires [9, 8] and

conductance of quantum wires [44, 45]. Similar to [44, 45], our experiment directly

probes the conductance of the correlated state. Moreover, our large energy scale and

unusual asymmetric geometry, which appears to enhance these correlation effects,

leads to a stabilization of the Wigner Crystal even though the density of our 1D

channel is higher.

In particular, the completely suppressed 2e2/h regime is most clearly observed
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Figure 5.9: Differential conductance versus source-drain bias, Vsd. (left panel)
Vwall = −1.5V with clear (1.5)e2/h feature (lined arrow trace in Fig. 5.7), (mid-
dle panel) spin-incoherent regime (traces from separate cooldown, hence the shifted
voltage values), (right panel) Vwall = −1.875V , direct jump to second subband.

in 300 nm gap samples. We observe the suppression regime in 250 nm gap samples

with design as in Fig. 4.7, but at voltages very close to depletion (to the right in

the asymmetrically biased traces). In 350 nm gap width samples and larger, no

suppression behavior is observed. As was suggested, a shallower potential with less

confinement is likely necessary to form zigzag rows, which give rise to the conductance

behavior observed [45]. This suggests that for our 2DEG of depth 80 nm, a 300 nm

gap is near optimal for forming the right potential shape to observe this strongly

suppressed conductance. We note that the longer width of the quantization plateaus

when Vwall is less negative suggests ωy/ωx > 1 (recall saddle-point potential). This
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Figure 5.10: Differential conductance versus source-drain bias, Vsd, for Vwall =
−2.5V . The conductance trace shows a feature at (0.5)e2/h.

ratio decreases in the asymmetric geometries as Vwall is made more negative. A

self-consistent potential calculation would provide additional insight into how the

asymmetric geometry and gating influences the individual spin and charge modes

and their coupling to the larger Fermi reservoirs, but that is beyond the scope of this

paper.

From the data presented, it is clear that by tuning the gate voltages of highly

asymmetric QPCs, a number of unusual conductance behaviors related to strong
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Figure 5.11: Temperature dependence of suppressed conductance trace in the sus-
pected row formation regime. Conductance is measured at T = 2 K, 6 K, 8 K, 18
K.

interaction effects can be realized. In particular, a plateau at e2/h related to a

zigzag chain is believed to form. By optimizing the asymmetric geometry to a 300

nm gap in a crystal with 80 nm 2DEG depth, we observe unexpected suppression of

the 2e2/h plateau, suggesting highly unusual electron localization configurations in

the channel. The large energy scale of the correlated behavior and the relatively high

densities in our devices indicate the unusual effects an asymmetric geometry has in

stabilizing the quantum state. These results suggest that studying how asymmetry,

in design and gating, can give rise to unexpected interaction effects in 1D may help

to point the way to understanding this strongly-correlated 1D electronic state.
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6

Superconductivity in β-FeSe

6.1 Introduction

The discovery of superconductivity in La[O1−xFx]FeAs (x=0.05-0.12) with supercon-

ducting transition temperature Tc=26 K [52] was perhaps one of the most remark-

able events in the physics community in year 2008. The initial discovery sparked a

worldwide race similar to what occurred nearly twenty years ago with the copper

oxide superconductors to find new Fe based materials with higher Tc. Reports of

new superconducting compounds appeared almost weekly on the arXiv server with

ever higher Tc. Currently, the highest Tc stands at 55 K in Sm[O1−xFx]FeAs [125],

marking the Fe based superconductors as the only non-cuprate high temperature

superconductors known to date.

I was fortunate to be part of the excitement as our collaboration with researchers

at the Institute of Physics, Academia Sinica was responsible for discovering the

superconducting β-FeSe compound[46]. Although Tc is ∼ 8 K as shown in Fig. 6.1,

the crystal lattice structure of β-FeSe is by far the simplest of the Fe superconductors,

consisting of only Fe and Se arranged in a layered tetrahedral conformation, Fig.
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Figure 6.1: Resistivity of bulk β-FeSe. Field dependence shown in top left inset.
The extracted critical field of ∼ 16.3 T and coherence length of 4.5 nm are shown in
bottom right inset.

6.2. This simple structure would allow researchers to most easily discern the crucial

mechanisms giving rise to superconductivity. Also of importance is the fact that

Selenium has much less stringent safety requirements in the laboratory compared to

the highly toxic As.

In the following, I will briefly detail the procedures for preparing polycrystalline

and thinfilm FeSe samples. Then I will discuss results from Hall effect studies on

FeSe.

6.2 Polycrystal Preparation

I am indebted to members of the Institute of Physics, Academia Sinica for sample

growth. Samples used in the bulk Hall effect study were prepared by Dr. Fong Chi

Hsu [46]. Polycrystalline bulk samples were prepared with the following procedure.
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Figure 6.2: Tetragonal structure of FeSe. The superconductivity exists in the Fe
layer (purple spheres).

High- purity (99%) powder of selenium and iron with appropriate stoichiometry

(FeSe1−x with x = 0.03 - 0.18) were mixed and ground with an agate mortar and

pestle. The grinding process was carried out in a fume hood with strong ventilation.

The ground powder was cold-pressed into discs with 400 kg/cm2 uniaxial stress. The

discs were sealed in an evacuated quartz tube (to 10−5 torr vacuum) and slowly

ramped to 700 ◦C, which is a little above the boiling point of Se, at the rate of

100◦C/hr. Finally, the temperature was kept at 700◦C for 24 hours. After cooling to

room temperature at the rate of 300◦C/hr, the loose sample was reground, pressed,

sealed in a quartz tube, sintered again at 700◦C for 24 hours, and finally annealed

at 400◦C for 36 hours. All of the samples were kept in vacuum dessicators before

measurement.

Four terminal contacts for resistivity measurements were achieved by allowing

Silver paste to dry on the bulk material surface. This method is sufficient to observe

the superconducting transition; however, Hall signals are typically small, and in

the Van der Pauw geometry the signals are even smaller, necessitating much better

contacts with lower contact resistances. The small Hall signals are due to the fact

that FeSe has densities in the range of typical semi-metallic type compounds, of
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order 1019 − 1021 cm−3. This was crudely achieved by limiting by hand the amount

of Silver paste applied to the sample surface, then gently heating the paste and bulk

to coagulate the silver particles in the paste. Contacts were prepared in such a fashion

on the four corners of square cut bulk material for Hall studies to be presented in 6.4.

Standard Van der Pauw methodology was applied, but the measured signals were

unfortunately still rather noisy, though sufficient to give the correct trend. There

were two dominant factors contributing to the noise 1) intrinsic contact resistance

from the heavy Fe oxidation layer 2) large measurement wire resistance. To obtain

cleaner data, we decided to push for thinfilm samples measurements with a more

sophisticated measurement contact methodology.

6.3 Pulsed Laser Deposition of Thinfilm

Here I briefly describe the pulsed laser deposition growth procedure for FeSeTe thin

films used in Hall effect study. These films were prepared by Dr. Ji Yong Luo. A

more detailed description of the thinfilms can be found in the review paper [121]. A

description of the pulsed laser deposition system is discussed in A.

FeSe1−xTex thin films were deposited on a MgO substrate in a vacuum chamber

(depositing pressure 10−5 torr) using a KrF (k = 248 nm) excimer laser (Lambda

Physik LPX Pro) to bombard a sample target. The power density of the focused

laser on the target is 56 J/cm2, and the repetition rate is 2 Hz. To make targets, the

starting materials of Fe, Se and Te powders were ground and pressed into disks with

desired compositions of FeSe1−xTex. Then, these disks were sintered in a vacuum

furnace with temperature from 600 to 700◦C. The final sizes of targets are roughly

1 inch (φ) x 8 mm(t) in size. The target substrate distance is approximately 50

mm. The substrate temperature during deposition is varied from 250 to 500◦C. The

deposition rate of thin film is about 0.5 Å/shot. In addition, the surfaces of the

targets were polished before each deposition to improve reproducibility.
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Figure 6.3: Top down view of FeSe structure. The Fe (purple) atoms sit on a
plane. At low temperature, the lattice distorts so that the Fe planes become more
two dimensional.

In contrast to the bulk material, a more careful approach was developed to contact

to the thinfilms.

6.4 Hall Effect Measurements and Structural Transitions

One of the most interesting observations regarding FeSe is that the crystal structure

undergoes a structural transition at ∼ 105 K from tetragonal to orthorhombic (or

triclinic) symmetry (from x-ray diffraction data [46]). We believe this structural

transition to be closely related to the origin of superconductivity in this class of

materials.

Electrical transport studies seem to support this claim, although indirectly. From

Hall effect measurements of bulk FeSe, Fig. 6.4, we find that FeSe is likely a two

band superconductor, which suggests it is quite different from the cuprates, and

that very unconventional superconducting mechanisms are at play. The two band

nature is discerned from the temperature dependence of the Hall coefficient, which is

positive for hole bands and negative for electron carriers. At high temperature, the

Hall coefficient is positive. Around 100 K, the coefficient dips negative, indicative of
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electrons as the major carriers. However, at lower temperatures, the Hall coefficient

rapidly turns positive again. We argue in the next few paragraphs that this low

temperature behavior indirectly points to the importance of the structural change

as a precursor to superconductivity.

A simple multi-band model for one hole and one electron can help to provide

physical intuition. The Hall coefficient can be expressed as RH = ρ2(nhe
3τ 2
h/m

2
h −

nee
3τ 2
e /m

2
e), where ρ is the resistivity, e is unit of charge, and ni, mi, τi, are the

carrier density, effective mass, and carrier scattering time of band i (i=electron or

hole), respectively. The dominant temperature dependence typically comes from

the resistivity, which was found to vary slowly with temperature in the normal state

[17]. In addition, the carrier density and effective mass are in general fixed regardless

of temperature. We conclude that the rapid rise in Hall coefficient observed arises

predominantly from the strong temperature dependence of the relaxation times, τh

and τe. Specifically, τh must increase much faster than τe.

Increases in the carrier scattering time, or time between scattering events, are

expected as the temperature drops. Typically, scattering occurs off of either phonons

or magnetic moments. Interestingly, despite the excess of Fe, no magnetic ordering

is observed at low temperatures in FeSe [121]. This suggests that scattering events

due to Fe magnetic moment are relatively constant from high to low temperature.

This implies that the large increase in τh is likely due to a suppression in phonon

scattering. Such an effect could arise when the crystal lattice undergoes a distortion.

This argument seems to be consistent with the diffraction data showing the widened

γ angle, which suggests the Fe layer has become more two dimensional. The initial

bulk results have been clarified and corroborated by much cleaner work on thin films,

Fig. 6.5 [17].

In conclusion, the experimental evidence from electrical transport and x-ray

diffraction methods clearly points to the important role the low temperature struc-
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Figure 6.4: (a) Measured Hall signal raw data as function of field. (b) Temperature
dependence of Hall coefficient for bulk FeSe.

tural change plays in FeSe. Preliminary studies suggest that this behavior is generally

true across the Fe based superconductor family as a whole.
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Figure 6.5: The temperature dependence of Hall coefficient for FeSe1−xTex films,
x=0, 0.1. The inset shows the Hall resistivity as a function of magnetic field.
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7

Conclusion

This thesis presents experimental transport data from asymmetric quantum point

contacts. The asymmetric designs, which have been largely overlooked by the re-

search community, can provide a wealth of novel transport behavior, and deserves

our attention. A strongly suppressed 2e2/h conductance plateau to e2/h is ob-

served in these asymmetric QPCs, which is a predicted theoretical property of a

spin-incoherent Luttinger liquid. Furthermore, traces with direct drops of the con-

ductance from ∼ 4e2/h to pinchoff with no other anomalous features are observed.

Although the theory does not predict such behavior, we believe this conductance be-

havior to be correlated with the formation of parallel conduction rows in the quantum

point contact. Differential conductance versus DC source-drain bias measurements

further show signatures of a strongly correlated 1D Wigner crystal. To our knowl-

edge, this is only the second observation of a quantum Wigner crystal of any form

to date.

There are still many unanswered questions however. The most obvious is why an

asymmetric geometry gives rise to such unusual transport behavior. For instance, in

the theory of Matveev, the issue of asymmetry in the confinement does not appear
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Figure 7.1: Coherent electron focusing in asymmetrical QPCs. The image on the
left shows the two point contacts used for the focusing measurement. The asymmetric
QPC is tuned to the e2/h kink, while the symmetric QPC is tuned to the first
quantization plateau at 2e2/h. The collector voltage versus perpendicular magnetic
field is presented on the right.

at first glance to be relevant. Furthermore, why is there an optimal gap width

for observing the spin-incoherent and Wigner crystal behavior? To properly address

these questions, we require help from our friends on the theoretical side in simulating

self-consistently the precise potential shape in the 2DEG.

In addition to these interesting questions, the asymmetric gate design can serve as

a model system for a variety of other transport measurements. For example, consider

the coherent electron focusing measurement performed in Fig. 7.1. Electron focusing

with 2DEG QPCs was first studied in [107]. The long mean free path of the electron

allows for the ability to coherently focus a beam of electrons injected out of a QPC

into a second QPC collector. The beam of electrons focused into the collector creates

a measurable chemical potential difference across the collection QPC, which can be

measured as a voltage drop. The focusing is achieved by applying a magnetic field

perpendicular to the plane of the 2DEG. The Lorentz force from the applied field
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qv × B, where q is electron charge, v is the electron velocity, bends the motion

of the electrons that are injected out of a QPC. The cyclotron orbit has a radius

r = mv/qB.

In Fig. 7.1, if we look at the positive field scans, which corresponds to injecting

electrons out of the symmetric QPC into the asymmetric QPC, we can discern a

periodicity of ∼ 60 mT, which corresponds to a focusing radius of ∼ 3µm. This is

the dominant focusing beam which goes directly from injector to collector without

any specular reflections. However, quite unusually, instead of a single peak, sharp

double peaks are observed, along with many small peaks. Also quite interesting is

the behavior in the reverse direction. Here, the negative field trace corresponds to

situations where the electrons are injected out of the asymmetric qpc and collected

in the symmetric one. No large periodicity corresponding to a focusing radius is

observed, instead, we have a uniform period of ∼ 20 mT. This is currently not well

understood, though one wonders whether this is related to scattering off unusual

incipient lattice structure formed in the asymmetric point contact.

In Ch. 6, we presented Hall Effect measurements on the β-FeSe superconductor.

We observed a sharp increase in the Hall coefficient at low temperatures, which we

speculate to be due to a suppression in phonon scattering. Such an effect could

arise when the crystal lattice undergoes a distortion. This argument seems to be

consistent with the diffraction data showing the widened γ angle, which suggests the

Fe layer has become more two dimensional.

The hypothesis that the structural distortion is critical for superconductivity in

FeSe may turn out to be true more generally for the Fe based superconductors as a

whole. Preliminary studies seem to support this conjecture. However, there are still

many issues to understand. The FeSe superconductors do not have any magnetic

ordering, in contrast to some of the FeAs based materials. On the other hand, spin

fluctuations are known to exist in FeSe, and may be important for the superconduc-
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tivity. What is not understood is whether the structural distortion gives rise to spin

fluctuations, and then superconductivity? Or is there a completely different causal

relation? Understanding these issues will greatly enhance our understanding of the

Fe based superconductors, as well as the high temperature superconductor family as

a whole.
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Appendix A

Nano Certificate: Superconducting Thin Film
Fabrication and Measurements

A.1 Introduction

Recently, advances have been made in engineering strong flux pinning nanocomposite

superconducting thin films that at 65 K have 5 times stronger vortex pinning force

than NbTi at 4.2 K [36]. NbTi is the typical material used to fabricate high field mag-

nets, but with the disadvantage in that the magnets can only be operated at liquid

helium temperatures. Nanocomposite superconducting materials potentially could

provide more versatile and higher operating temperature high field applications.

In order to study these materials, a collaboration was formed between the groups

of Prof. Albert Chang at Duke University, and Prof. Maw-Kuen Wu at the Institute

of Physics, Academia Sinica, Taiwan. Prof. Wu’s group helped grow various super-

conducting thin film crystals to be measured with a scanning hall probe system in

Prof. Chang’s group.

The superconducting thin films were grown in a pulsed laser deposition (PLD)

chamber during my trip to Taiwan in early June 2007. Two types of crystal based
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on the well known YBa2Cu3O7−δ (YBCO) family of type II high-Tc superconductors

were grown during this trip: 1) pure YBCO superconductor thin film with the 123

structure, and 2) YBCO thin film crystal with CeO nanoparticle impurities, forming

a 123-211 structure [39, 40].

A.2 Sample Fabrication

In this section I will detail the PLD sample fabrication procedure. Figure A.1 shows

a schematic of the PLD system. In PLD, a pulsed laser bombards a target sample,

situated in a chamber that is either in vacuum or in the presence of a background gas.

The laser beam vaporizes the target, and the ejected vapour forms a bright plume

or plasma that is directed towards the substrate. The target material is deposited

as a thin film onto the substrate. Typically the substrate is heated so that the

deposited material remains in molten form, and gradually solidifies during the ramp

down/cooling process.

For YBCO thin films, the sample chamber was first pumped to vacuum and then

300 mbar of O2 was introduced and maintained. Oxygenation was required for the

growth of oxide superconductors. The substrate was glued with silver paste to the

heater, which was heated to roughly 900 degrees Celsius. As the ramp speed was

very slow, the heating process took roughly an hour and half. Substrates used were

SrTiO3 and MgO. The target was a bulk puck of the desired material. These were

grown with a separate process in the lab with high temperature furnaces. A 238 nm

wavelength excimer laser, using Kr, Neon, F gases, was pulsed at 4 kHz with 130 mW

power; the laser beam spot of roughly mm in size was scanned in a 10 mm by 5 mm

rectangle centered at the target surface’s center so as to obtain the most homogeneous

emission of material. Experience from several group members indicated that roughly

200 nm thick film was deposited over half an hour’s time. Unfortunately, the PLD

system currently does not contain any energy electron diffraction detectors, such as
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Figure A.1: Schematic of the pulsed laser deposition system. The target puck is
irradiated with laser pulses, which generate a plasma beam that deposits onto the
sample substrate. The substrate stage can be heated.

RHEED, for discerning the exact film thickness during growth.

After the film was deposited, the laser pulse was stopped, and the substrate

temperature allowed to gradually cool to room temperature. The substrate would

then be removed from the chamber and DC four terminal resistivity measurements

performed to ensure the crystal’s integrity.

Figures A.2 and A.3 are photos of the PLD system in Prof. Wu’s lab at IOP,

Academia Sinica.

A.3 Measurements

Below are four terminal resistance versus temperature measurements for three sam-

ples, one pure YBCO on SrTiO3 substrate and two YBCO with impurities, on differ-

ent substrates, SrTiO3 and MgO. Measurements were performed on a physical prop-

erty measurement system (PPMS) from Quantum Design, see Figure A.4, as well

as using the simple dipstick method. Observing a superconducting transition from

the four terminal resistivity measurement essentially validated the crystal growth,
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Figure A.2: Front side photo of the pulsed laser deposition equipment, showing
the deposition chamber and vacuum gauges.

although, for the impurity samples, the success in adding CeO to improve pinning

strength must wait to be seen.

I would like to thank Profs. Chang and Wu for allowing me the opportunity to

participate in this project. I would also like to thank Dr. Chi-Yung Luo and Chun-Te

Wu for their assistance in sample fabrication.
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Figure A.3: Back side photo of the pulsed laser deposition equipment. Here we
can see the laser entry port, currently blocked by a power meter.

Figure A.4: Physical property measurement system from Quantum Design, capable
of measuring DC resistivity or electro-transport, magnetometry (for example, AC
susceptibility), thermal transport, and heat capacity.
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Figure A.5: YBCO 123-211 with CeO2 (hopefully) nanoparticles on SrTiO3 sub-
strate. Tc = 88 K with sharp transition width.
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Figure A.6: Close up view of Figure A.5.
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Figure A.7: YBCO 123-211 with CeO2 (hopefully) nanoparticles on MgO sub-
strate. Tc roughly 85 K with large approximately 2 K transition width.
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Figure A.8: Blow up of transition for Figure A.7.

99



-25 0 25 50 75 100 125 150 175 200 225 250 275 300 325 

0 

2 

4 

6 

8 

10 

Re
sis

ta
nc

e 
(O

hm
) 

Temperature (K) 

 YBCO pure on SrTiO3 

Figure A.9: Pure YBCO on SrTiO3 substrate. Tc = 90 K with sharp transition.

0 50 100 150 200 250 300 

0 

5 

10 

15 

20 

Re
sis

ta
nc

e 
(O

hm
) 

Temperature (K) 

 MgO substrate impurity 
 YBCO pure SrTiO3 substrate 

Figure A.10: Plot of Impurity sample with pure YBCO sample. Impurity samples
decrease Tc slightly by 2 to 5%.

100



70 75 80 85 90 95 100 105 110 

0 

30 

Re
sis

ta
nc

e 
(O

hm
) 

Temperature (K) 

 MgO substrate impurity sample 
 YBCO pure SrTiO3 substrate 
 SrTiO3 substrate impurity sample 

Figure A.11: Close up plot of Impurity samples with pure YBCO sample.
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Appendix B

Additional Fabrication Techniques

I discuss two additional and useful nanolithography fabrication techniques. Although

these methods were not used in the main device under study in this thesis, I have

utilized these methods to create GaAs quantum dots and Aluminum double tunneling

barrier single electron transistors.

B.0.1 PMMA Overexposure

PMMA can crosslink and become hardened by an excessive bombardment of electrons

(typically at doses larger than a mC/cm3)[41], which allows the resist to be used as

an insulating spacer layer. This is an additional tool to develop more complicated

structures. However, the PMMA exposure step must be done separate from the

actual device exposure, so the drawback is that additional lithography steps are

required in the fabrication process. Adding extra lithography steps is nontrivial as

each successive ebeam write must be properly aligned to the first. But this can be

done by creating alignment marks.

The fabrication procedures for devices with overexposed PMMA are as follows.

First, a sample with Cr/Au or Ti/Au alignment marks is prepared. This is done
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with standard ebeam lithography steps. Au alignment marks are necessary as only

Au provides enough contrast to be visible beneath the PMMA layer. This step

can be skipped if the device alignment requirements are not as stringent. Then

PMMA is spin coated onto the sample surface and baked to harden in the usual

way to achieve a PMMA thickness of 100-200nm. Prior to actual ebeam exposure,

the sample edges are imaged using the viewing crosshair, for example the bottom

two corners and the top right corner, to get a rough location bearing of the center

of the ebeam write pattern. Then I overexpose the PMMA in the shape, size and

location that I want. A large beam current, as well as long dwell times are needed

to achieve the overexposure. I have found that for 1000 magnification (200x200 µm2

lithographic design), a 500pA beam current and 50 µs to 100 µs dwell time is required

to overexpose PMMA. The sample is then developed in MIBK:IPA for 30s, followed

by an immediate acetone ultrasonic rinse to remove the unexposed PMMA. I found

that it takes three to four ultrasonic acetone washes of 10 minutes each before the

overexposed PMMA starts to loosen. Subsequently, a new layer of PMMA is spun

onto the sample, and the actual device is written at the required location by following

the sample edge distances as rough measure, and alignment marks for fine tuning.

It is important to also match the sample rotation as precisely as possible.

Fig. B.1 is an image of a Cr/Au top gate raised by overexposed PMMA (black

rectangular region). The Cr/Au gate must be raised so that the underlying 2DEG

is not depleted by the applied negative gate voltage. Effectively, the PMMA region

increases the capacitive coupling, so that a larger voltage would be needed to fully

repel all the electrons underneath the raised region. A potential problem is that the

Cr/Au gate may not be properly connected if the PMMA layer is too high. However,

as shown in Fig. B.2, this is not the case with the above parameters.
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Figure B.1: PMMA overexposure to create a raised layer on either side of the
parallel coupled double quantum dot. This allows the source-drain of both quantum
dots to be tied together.

Figure B.2: A more detailed look of the previous figure, showing that the gate is
connected with no breaks developing due to the raised PMMA.
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Figure B.3: PMMA with differing molecular weight are coated onto the sample
surface to create a double layered mask. A single ebeam write completes the mask
patterning. Metal is then deposited first from the right at an angle (which direction
first is arbitrary). Oxygen is next introduced to form the insulating oxide layer.
Finally, metal is deposited at an angle 180◦ from the first to form a complete junction.

B.0.2 Double Angle Evaporation

The double angle or ”shadow” evaporation technique was first demonstrated by

Dolan and Fulton[29, 33]. This technique was developed for the study of small

Josephson tunnel junctions. Our method, which was worked out by Limin Cao, is

somewhat simpler than Dolan’s original technique. The technique is illustrated in

Fig. B.3. First, instead of a single layer of ebeam resist, two layers of PMMA with

differing molecular weight are used. We utilize 495 PMMA 8% for the bottom layer,
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Figure B.4: This is a two junction single electron transistor (SET). The junctions
are Al/AlOx/Al, fabricated following the technique described in the text.

and 950 PMMA 8% for the top. As the response of the 495 and 950 PMMA to ebeam

is different, a large undercut of the bottom layer (495) with a narrower opening at

the top layer (950) can be achieved in a single ebeam write and developer wash

(40s in MIBK:IPA for these devices). This sets up the mask for the angled metal

evaporation. Typically, metal deposition is oriented normal to the sample surface;

instead, we deposit the metal at an angle to provide an offset. To create the oxide

barrier, the sample is then exposed to oxygen (this requires breaking the vacuum

in our evaporator, typically I inject into the chamber oxygen to 100 millitorr pres-

sure then hold for 10 minutes before pumping it out). The oxide thickness should

be within several nanometers. Finally, the second layer of metal is deposited at an

angle 180◦ from the first. The end product of this process is a metal/insulator/metal

or superconductor/insulator/superconductor type junction.

An Al double junction transistor is shown in Fig. B.4. The two round circles are

the junctions to the larger block in the middle, the central charge island. The angled

evaporation is done from left and right, and a clear overlap region is observable. A
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Figure B.5: This design consists of two series coupled quantum dots, each with its
own Al-SET detector. The width of the gates at the tips are designed to be 100 nm.

more complicated double quantum dot each with an Al-SET is shown in Fig. B.5.

Here the evaporation is done top and bottom.
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