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Abstract

This dissertation consists of three chapters relating to identification and inference in

dynamic microeconometric models including dynamic discrete games with many players,

dynamic games with discrete and continuous choices, and semiparametric binary choice

and duration panel data models.

The first chapter provides a framework for estimating large-scale dynamic discrete

choice models (both single- and multi-agent models) in continuous time. The advantage

of working in continuous time is that state changes occur sequentially, rather than

simultaneously, avoiding a substantial curse of dimensionality that arises in multi-agent

settings. Eliminating this computational bottleneck is the key to providing a seamless link

between estimating the model and performing post-estimation counterfactuals. While

recently developed two-step estimation techniques have made it possible to estimate

large-scale problems, solving for equilibria remains computationally challenging. In

many cases, the models that applied researchers estimate do not match the models that

are then used to perform counterfactuals. By modeling decisions in continuous time,

we are able to take advantage of the recent advances in estimation while preserving a

tight link between estimation and policy experiments. We also consider estimation in

situations with imperfectly sampled data, such as when we do not observe the decision

not to move, or when data is aggregated over time, such as when only discrete-time data

are available at regularly spaced intervals. We illustrate the power of our framework using

several large-scale Monte Carlo experiments.
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The second chapter considers semiparametric panel data binary choice and duration

models with fixed effects. Such models are point identified when at least one regressor

has full support on the real line. It is common in practice, however, to have only discrete

or continuous, but possibly bounded, regressors. We focus on identification, estimation,

and inference for the identified set in such cases, when the parameters of interest may

only be partially identified. We develop a set of general results for criterion-function-

based estimation and inference in partially identified models which can be applied to

both regular and irregular models. We apply our general results first to a fixed effects

binary choice panel data model where we obtain a sharp characterization of the identified

set and propose a consistent set estimator, establishing its rate of convergence under

different conditions. Rates arbitrarily close to n−1/3 are possible when a continuous, but

possibly bounded, regressor is present. When all regressors are discrete the estimates

converge arbitrarily fast to the identified set. We also propose a subsampling-based

procedure for constructing confidence regions in the models we consider. Finally, we

carry out a series of Monte Carlo experiments to illustrate and evaluate the proposed

procedures. We also consider extensions to other fixed effects panel data models such as

binary choice models with lagged dependent variables and duration models.

The third chapter considers nonparametric identification of dynamic games of in-

complete information in which players make both discrete and continuous choices. Such

models are commonly used in applied work in industrial organization where, for example,

firms make discrete entry and exit decisions followed by continuous investment decisions.

We first review existing identification results for single agent dynamic discrete choice

models before turning to single-agent models with an additional continuous choice

variable and finally to multi-agent models with both discrete and continuous choices. We

provide conditions for nonparametric identification of the utility function in both cases.
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1

Estimation of Dynamic Discrete Choice Models in
Continuous Time

1.1 Introduction

Empirical models of single-agent dynamic discrete choice (DDC) problems have a rich

history in structural applied microeconometrics, starting with the pioneering work of

Gotz and McCall (1980), Miller (1984), Wolpin (1984), Pakes (1986), and Rust (1987). These

methods have been applied to a wide range of economic problems including investment

under uncertainty, savings and retirement, human capital accumulation, fertility deci-

sions, labor market participation, resource extraction, and political decisions, among

many others. Because dynamic decision problems are naturally high-dimensional, the

empirical DDC literature has been accompanied from the outset by a parallel method-

ological literature aimed at reducing the computational burden of both estimating and

computing these models.

The computational challenges raised by the dimensionality of these problems are

even greater in the context of multi-agent strategic games, where the simultaneous

actions of competing players introduces a further curse of dimensionality in computing
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expectations over rivals’ actions. Although a recent series of papers (Aguirregabiria

and Mira, 2007; Bajari, Benkard, and Levin, 2007; Pesendorfer and Schmidt-Dengler,

2007; Pakes, Ostrovsky, and Berry, 2007) have shown how to extend two-step estimation

techniques, originally developed by Hotz and Miller (1993) and Hotz, Miller, Sanders,

and Smith (1994) in the context of single-agent dynamics, to more complex multi-agent

settings, the computation of these models remains formidable, despite a growing number

of methods for solving for equilibria (Pakes and McGuire, 1994, 2001; Doraszelski and

Satterthwaite, 2010).1

A curse of dimensionality naturally arises in simultaneous move games because, in

order to solve for their optimal policies, players must form expectations over all com-

binations of actions that each of their rivals can take. The burden of computing these

expectations grows exponentially in the number of players and so, in many applications,

the model that researchers can estimate (using two-step procedures) is far richer than

what can be used for counterfactual policy simulations, leading some to suggest alterna-

tives to the Markov perfect equilibrium concept in which firms condition on long run

averages (regarding rivals’ states) instead of current information (Weintraub, Benkard,

and Van Roy, 2008). The goal of this chapter is to exploit the sequential structure of

continuous time games to break the computational curse, create a tight link between

estimation and counterfactuals, and open the door to more complex and realistic models

of strategic interaction.

We are not the first to address these computational challenges. Pakes and McGuire

(2001) extend their seminal approach to solving dynamic games (Pakes and McGuire,

1994) by replacing explicit integration with simulation and utilizing an adaptive algorithm

that targets only the recurrent class of states. Their computational approach is able to

1 Two-step estimation of dynamic discrete games was originally proposed by Rust (1994a). Rust recom-
mended substituting non-parametric estimates of rivals’ reaction functions into each player’s dynamic
optimization problem, turning a complex equilibrium solution into a collection of simpler games against
nature.
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alleviate the curse of dimensionality that arises when calculating expectations over future

states as well as the increasing size of the state space itself, but does rely on the recurrent

class being small. In theoretical work that is closest to ours, Doraszelski and Judd (2008)

exploit the structure of continuous time to break the curse of dimensionality associated

with the calculation of expectations over rival actions. Players in their model make con-

tinuous decisions that control the hazard rate of state changes (e.g., choose investment

which results stochastically in a discrete productivity gain). Because state changes occur

only one agent at a time, the dimension of expectations over rival actions grows linearly

in the number of players, rather than exponentially, resulting in computation times that

are orders of magnitude faster than those of discrete time.

Building on the theoretical insights of Doraszelski and Judd, we seek to connect the

computational advantages of continuous time with the empirical tractability of discrete

choice models. To do so, we recast the dynamic decision problem as one in which com-

peting Poisson processes stochastically control when players are able to move, with

players then facing a standard discrete choice problem when given the opportunity to

make a decision. This structure results in a simple, yet flexible mathematical structure

that is computationally light enough to make even full solution (i.e. nested fixed point)

estimation feasible for very large problems. The model also inherits many features of

the standard discrete choice framework and, as a result, many of the insights and tools

commonly used in discrete time settings, such as two-step CCP (conditional choice

probability) estimation, are directly applicable within our continuous time approach,

further relaxing the computational burden of estimation. Having estimated the model, it

is straightforward to re-solve the model in continuous time to perform counterfactuals

or simulate data. The continuous time framework thus offers a seamless link between

estimation and computation, allowing the same underlying model to be used through-

out. We demonstrate the power of our approach using several large scale Monte Carlo

3



experiments, many of which would be infeasible using previous methods.

Our framework easily accommodates a number of more complex sampling schemes,

including some that are especially challenging in a discrete time setting. We show how to

handle situations in which certain observations are missing (e.g. passive actions, such

as the decision not to invest) or where the data are only sampled at discrete intervals

(e.g. quarterly or yearly). Both extensions are likely to be empirically relevant given the

limitations of publicly available datasets (most of which are collected at regular intervals,

rather than in real time). The mathematical structure of continuous time makes time

aggregation simple. It is straightforward, for example, to calculate the likelihood of

transitioning from any initial state to any final state over any discrete period of time in a

manner that explicitly accounts for the complex combinations of possible actions and

state changes that might have led to that final state. Time aggregation is much more

difficult in discrete time and, as a result, researchers generally adopt the convention

that players move at the same periodicity with which the data is observed, even when

players clearly move far more frequently. The potential advantages of modeling decisions

using a continuous time framework extend beyond computation, highlighting aspects

of strategic interaction that are muted by discrete time (e.g. first-mover advantage) and

mitigating unnatural implications that can arise from simultaneity (e.g. ex post regret).

The empirical relevance of these issues will depend on the institutional setting. In this

way, a continuous time approach provides researchers with the option of modeling moves

as sequential rather than simultaneous when this accords more closely with the actual

economic setting, even if the data is only observed at regular intervals.

The chapter is structured as follows. Section 1.2 reviews some basic properties of

continuous time Markov jump processes. Section 1.3 introduces our model in a simple

single-agent context in order to build intuition. Section 1.4 extends the model to the multi-

agent setting. Concrete and canonical examples are provided in both cases. Section 1.5

4
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FIGURE 1.1: Markov jump process: a representative sample path with jumps at times tn

and inter-arrival times τn .

develops our estimators, including both full-solution and two-step approaches, and

discusses issues associated with partial observation and time aggregation. Section 1.6

contains the results of several Monte Carlo studies relating to full-solution and two-step

estimation in both settings, including time aggregation, unobserved passive moves, and

comparisons of computational times. Section 1.7 concludes.

1.2 Background

The models we describe below are based on Markov jump processes and we briefly

review their properties here. A Markov jump process is a stochastic process X t indexed

by t ∈ [0,∞) taking values in some discrete state space X . If we begin observing this

process at some arbitrary time t and state X t , it will remain in this state for a duration of

random length τ before transitioning to some other state X t+τ. The trajectory of such a

process is a piecewise-constant, right-continuous function of time. This is illustrated in

Figure 1.1, where a single realization xt is plotted along with corresponding jump times

tn and inter-arrival times τn , with n denoting the n-th jump.
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Jumps occur according to a Poisson process and the length of time between jumps

is therefore exponentially distributed. The probability density function (pdf) of the

exponential distribution with rate parameter λ> 0 is

f (x;λ) =
{
λe−λx , x ≥ 0,

0, x < 0,

and the cumulative distribution function (cdf) is

F (x;λ) =
{

1−e−λx , x ≥ 0,

0, x < 0.

The mean is 1/λ, the inverse of the rate parameter or frequency, and the variance is 1/λ2.

We consider stationary processes with finite state spaces X = {1, . . . ,K }. Before pro-

ceeding, we first review some fundamental properties of Markov jump processes, pre-

sented without proof. For details see, for example, Karlin and Taylor (1975, section

4.8).

A finite Markov jump process can be summarized by it’s intensity matrix

Q =


−q11 q12 . . . q1K

q21 −q22 . . . q2K
...

...
...

...
qK 1 qK 2 . . . −qK K


where for i 6= j

qi j = lim
h→0

Pr
(
X t+h = j |X t = i

)
h

represents the probability per unit of time that the system transitions from i to j and

qi i =
∑
j 6=i

qi j

6



denotes the rate at which the system transitions out of state i . Thus, transitions out of i

follow an exponential distribution with rate parameter qi i and, conditional on leaving

state i , the system transitions to j 6= i with probability

(1.1) pi j =
qi j∑

k 6=i qi k
.

Finally, let Pi j (t) = Pr
(
X t+s = j |Xs = i

)
denote the probability that the system has

transitioned to state j after a period of length t given that it was initially in state i . Let

P (t) = (Pi j (t)) denote the corresponding matrix of these probabilities, the transition

matrix. P (t) can be found as the unique solution to the system of ordinary differential

equations

P ′(t ) = P (t )Q,

P (0) = I .

frequently referred to as the forward equations. It follows that

(1.2) P (t ) = etQ =
∞∑

k=0

(tQ)k

k !
.

This quantity is the matrix exponential, the matrix analog of the scalar exponential ex .2

Finally, we review some properties of the exponential distribution which will be

required for constructing the value function later. In particular, we note that if there

are n competing Poisson processes (or exponential distributions) with rates λi for i =
1, . . . ,n, then distribution of the minimum wait time is exponential with rate

∑n
i=1λi

and, furthermore, conditional on an arrival, the probability that it is due to process i is

λi /
∑n

j=1λ j . These properties are well known, but we present the following proposition

for completeness.

2 In practice, since we cannot calculate the infinite sum (1.2) directly, we compute etQ using known
algorithms implemented in the Fortran package Expokit (Sidje, 1998).
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Proposition 1.1. Suppose τi ∼ Expo(λi ), for i = 1, . . . ,n, are independent and define τ≡
mini τi and ι≡ argmini τi . Then

τ∼ Expo(λ1 +·· ·+λn)

and

Pr(ι= i ) = λi∑n
j=1λ j

.

Proof. See Appendix A. ■

This proposition allows us to treat the n competing Poisson processes (τ1, . . . ,τn) as a

single joint process (τ, ι) where the joint distribution is given above.

1.3 Single-Agent Dynamic Discrete Choice Models

In this section, we introduce a dynamic discrete choice model of single-agent decision-

making in continuous time. The single-agent model provides a simple setting in which to

describe the main features of our continuous time framework; we show how these extend

directly to multi-agent settings in the following section. We begin this section by laying

out the notation and structure of the model in a general setting. We then introduce an

example—the classic Rust bus engine replacement problem—to fix ideas. The example

also serves as the basis for the Monte Carlo analysis presented later in the paper.

Consider a single agent decision problem in which time is a continuous variable

t ∈ [0,∞). The state of the model at any time t can be summarized by an element x of

some finite state space X . Two competing Poisson processes drive the dynamics of the

model. First, a continuous-time Markov jump process on X with intensity matrix Q0

represents moves by nature—state changes that aren’t a direct result of actions by the

agent. At each time t , if a jump occurs next, the state jumps immediately to the new

value. The agent may not influence this process. Second, a Poisson arrival process with

8



rate λ governs when the agent can move.3 When the agent has an opportunity to move,

the agent chooses an action a from the discrete choice set A = {1, . . . , J }, conditional on

the current state k ∈X . The set A contains all possible actions the agent can take when

given the opportunity to move.

The agent is forward looking and discounts future payoffs at a rate ρ. While the model

is in state k, the agent receives flow utility uk . Thus, if the model remains in state k over

some interval [0,τ), the present discounted value of the payoff obtained over this period

from the perspective of time 0 is
∫ τ

0 e−ρt uk d t .

Upon receiving a move arrival when the current state is k, the agent chooses an action

j ∈A . The agent then receives an instantaneous payoff ψ j k +ε j associated with making

choice j in state k, where ε j is a choice-specific payoff shock that is iid over time and

across choices. Let σ j k denote the probability that the agent optimally chooses choice

j in state k. Let v j k denote the continuation value received by the agent after making

choice j in state k. In most cases, v j k will consist of a particular element of the value

function, for example, if the state is unchanged after the action then we might have

v j k =Vk , where Vk denotes the value function at state k (defined below). On the other

hand, if there is a terminal action after which the agent is no longer active, then we might

have v j k = 0.4

We can now write the Bellman equation, a recursive expression for the value function

Vk which gives the present discounted value of all future payoffs obtained from starting in

some state k and behaving optimally in future periods. Without loss of generality, we use

time 0 as the initial time. Let τ denote the time until the next event: either an exogenous

3 Note that it is completely straightforward to include state-specific move arrival rates λk . However, since
this would significantly increase the data requirements for estimation, we assume throughout that λk =λ
for all k.

4 There might also be uncertainty about the resulting state. In such cases we letφ j kl denote the probability
with which the model transitions to state l after the agent takes action j in state k, where for each j and k
we have

∑K
l=1φ j kl = 1. In many cases, such as an exit decision, these probabilities will be degenerate. In

this notation, for example, one might express the future value term as v j k =∑K
l=1φ j kl Vl . Since there are

many possible scenarios, we use the notation v j k for generality.
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state change or a move opportunity for the agent. In state k we have

(1.3) Vk = E

[∫ τ

0
e−ρt uk d t +e−ρτ

1

λ+qkk

(∑
l 6=k

qkl Vl +λmax
j

{
ψ j k +ε j + v j k

})]
.

Here we have used Proposition 1.1 and the law of iterated expectations to evaluate the

expectation over the joint distribution of (τ, ι) by first conditioning on τ.

The value function, as expressed recursively in (1.3), is the expectation of two terms.

The first term represents the flow utility obtained in state k from the initial time until

the next event (a move or jump), at time τ. The second term represents the discounted

expected future value obtained from the time of the event onward, where λ/(λ+qkk ) is

the probability that the event is a move opportunity and qkl /(λ+qkk ) is the probability

that the event is a jump to some state l 6= k. The expectation is taken with respect to both

τ and ε. It is important to note that although we have used the time of the next event,

τ, as the point of reference in (1.3), another intuitive possibility is the time of the next

move by the agent in question, τi (here, τ1). We use the next event form in practice as it is

computationally simpler.5

A policy rule is a function δ : X ×E → A which assigns to each state k and vector

ε= (ε1, . . . ,εJ ) an action from A . The optimal policy rule satisfies the following inequality

condition:

δ(k,ε) = j ⇐⇒ ψ j k +ε j + v j k ≥ψl k +εl + vl k ∀l ∈A .

That is, when given the opportunity to choose an action, δ assigns the action that maxi-

mizes the agent’s expected future discounted payoff. Thus, under the optimal policy rule,

the conditional choice probabilities σ j k satisfy

σ j k = Pr[δ(k,ε) = j |k].

5 The next move form introduces matrix exponentials which must be calculated to evaluate the first term.
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Note that the move arrival rate, λ, and the choice probabilities of the agent, σ j k , also

imply a Markov jump process on X with intensity matrix Q1, where Q1 is a function

of both λ and σ j k for all j and k. In particular, the hazard rate of action j in state k is

simply λσ j k , the product of the move arrival rate and the choice probability. The choice

probability σ j k is thus the proportion of moves in state k, which occur at rate λ, that

result in action j . Summing the intensity matrices Q0 and Q1 yields the intensity matrix

of the combined (compound) process. This simple and intuitive structure is especially

important in extending the model to include multiple agents, and in estimation with

discrete time data.

Example: A Single Agent Renewal Model

Our first example is a simple single-agent renewal model, based on the bus engine

(capital) replacement problem analyzed by Rust (1987). The state space represents

accumulated mileage and is indexed by the finite set X = {1, . . . ,K }. The agent has a

binary choice set A = {0,1}, which represents the choice over whether or not to replace

the engine, thereby reseting the mileage to its baseline level. The agent faces a cost

minimization problem where the flow cost incurred in mileage state k is uk =−βk where

β> 0. The action j = 0 represents continuation, where the state remains unchanged, and

the choice j = 1 causes the state to reset to k = 1.

A representative sample path generated by this model is shown in Figure 1.2. Inter-

arrival times are indicated by τi n , where i denotes the identity of the player (with i =
0 denoting nature) and n denotes the event number. The agent’s decisions (atn ) are

indicated at each decision time. For example, at time t1, the agent chooses to continue

without replacement (at1 = 0), while at time t4, the agent chooses to replace (at4 = 1),

resetting the mileage.
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X t

i = 0

at1 = 0

i = 1
τ11

τ02 τ03

τ14

τ05

t2 t3 t5t4t1 t

at4 = 1

FIGURE 1.2: Single agent model: a representative sample path where tn , τi n , and ai n

denote, respectively, the time, inter-arrival time, and action corresponding to n-th event.
Moves by the agent are denoted by i = 1 while i = 0 denotes a state change (a move by
nature).

The K ×K intensity matrix for the jump process on X is

Q0 =



−q1 −q2 q1 q2 0 . . . 0
0 −q1 −q2 q1 q2 . . . 0
...

...
. . .

...
...

...
0 0 . . . −q1 −q2 q1 q2

0 0 . . . 0 −q1 −q2 q1 +q2

0 0 . . . 0 0 0


.

Thus, the state can only move forward until it reaches the final state K , at which point

it remains there until it is reset to state 1 by the agent. For any state 1 ≤ k < K −1 the

state may jump forward either one level or two (and only one at state K −1). Conditional

on jumping, the probabilities of moving forward one level or two are q1/(q1 +q2) and

q2/(q1 +q2) respectively.

In the notation of the general model above, the continuation values are

v j k =
{

Vk , if j = 0,

V1, if j = 1.
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That is, when the model is in state k and the agent chooses to continue, j = 0, the state is

unchanged and the continuation value is simply Vk . On the other hand, when the agent

chooses to reset the state, j = 1, the continuation value is V1, the present discounted

value of being in state 1. Although no cost is incurred from continuation, the agent incurs

a one-time cost of c when choosing to reset the state to the initial value:

ψ j k =
{

0, if j = 0,

−c, if j = 1.

The value function for this model can thus be represented recursively as

Vk = E

[∫ τ

0
e−ρt uk d t +e−ρτ

( q1

λ+q1 +q2
Vk+1

q2

λ+q1 +q2
Vk+2

+ λ

λ+q1 +q2
max{ε0 +Vk ,−c +ε1 +V1}

)]

for k ≤ K −2. It is similar for K −1 ≤ k ≤ K , with the appropriate adjustments being made

at the boundary of the state space.

If we assume that the ε j are iid with ε j ∼ TIEV(0,1) then we can simplify this ex-

pression further using the closed form representation of the expected future value (cf.

McFadden, 1984) and the law of iterated expectations (replacing Eτ,ε with EτEε|τ) to

obtain:

E[max{Vk +ε0,V1 − c +ε1}] = ln
[
exp(Vk )+exp(V1 − c)

]
,

and thus,

(1.4) Vk = E

[∫ τ

0
e−ρt uk d t +e−ρτ

( q1

λ+q1 +q2
Vk+1

q2

λ+q1 +q2
Vk+2

+ λ

λ+q1 +q2
ln

(
exp(Vk )+exp(V1 − c)

))]
.
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The value function summarizes the present discounted value of all future cost flows

from the perspective of an arbitrary point in time, without loss of generality taken to be

time 0, and at an arbitrary state k ∈ X . Here, τ represents the length of time until the

arrival of the next event. At each point in time, the agent makes a decision based on an

expected future utility comparison, with the expectation taken with respect to the next

event time τ, and ε. Inside the expectation, the first term provides the expected flow

utility accumulated over the time interval [0,τ). Since the agent does not move during

this time, the state evolves undeterred according the Markov jump process defined by

the intensity matrix Q0, resulting in a cost flow uk at each instant. The second term is the

present discounted value of future utility from time τ onward, after the next event occurs.

At the arrival time τ, the state jumps to k + l , l ∈ {1,2} with probability ql /(λ+q1 +q2),

while with probability λ/(λ+ q1 + q2), the agent gets to move and makes an expected

future utility maximizing choice of j ∈ {0,1}. The agent may choose j = 0 and simply

continue accumulating the flow cost until the next arrival, or choose j = 1 and reset the

state to 1 by paying a cost c . The type I extreme value assumption also yields closed forms

for the associated CCPs:

(1.5) σ j k =
{ exp(Vk−V1+c)

exp(Vk−V1+c)+1 , if j = 0,
1

exp(Vk−V1+c)+1 , if j = 1.

We return to this example in Section 1.6 below, where we conduct Monte Carlo

experiments for various parameterizations of this single-agent renewal problem.

1.4 Multi-Agent Dynamic Discrete Games

Extending the single-agent model of Section 1.3 to the case of dynamic discrete games

with many players is simply a matter of modifying the intensity matrix governing the

market-wide state vector to incorporate players’ beliefs regarding the actions of their

rivals. Following Harsanyi (1973), we treat the dynamic discrete game as a collection

14



of single-agent games against nature, in which moves by rival agents are distributed in

accordance with players’ beliefs. As is standard in the literature, we focus on Markov

strategies, eliminating the need to keep track of the full history of play. We begin this

section by describing the general structure of the model followed by an example—the

Ericson-Pakes quality ladder model—to fix ideas.

Suppose there are N̄ players indexed by i = 1, . . . , N̄ . The state space X is now a set

of vectors of length N̄ , with the i -th component corresponding to the state of player i .

Player i ’s discount rate is ρi . We shall simplify the notation later by assuming symmetry

and anonymity, but for generality we index all other quantities by i , including the flow

utility in state k, ui k , the choice probabilities, σi j k , instantaneous payoffs, ψi j k , and

transition probabilities resulting from the action of a player, φi j km .

Although it is still sufficient to have only a single state jump process on X (with some

intensity matrix Q0) to capture moves by nature, there are now N̄ competing Poisson

processes with rates λi generating move arrivals for each of the N̄ players.6 The next

event in the model is determined by the earliest arrival of one of these N̄ +1 processes.

By assuming that the iid shocks to the instantaneous payoffs are private information

of the individual players, we can re-interpret the multi-agent model as a collection of

games against nature, and incorporate the uncertainty about the moves of rival firms into

the intensity matrix. This allows us to construct the value function for the multi-agent

model in much the same way as in the single-agent case. Let τ denote the time of the

next event, a state jump or a move opportunity for any player, which is the minimum of

a collection of competing Poisson processes with rates given by the intensity matrix Q0

and the move arrival rates λi for i = 1, . . . , N̄ .

A representative sample path from a two-player game is shown in Figure 1.3. Moves

by nature are indicated by i = 0. The moves and inter-arrival times at the n-th event are

6 As in the single player model, we assume here that the move arrival rate is constant across states.
However, with a large enough dataset, the inclusion of state specific arrival rates would be straightforward.
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X1t
a14 = 1

a23 = 1
a25 = 1

a11 = 0

τi n τ02

t5t2 t3 t4t1

X2t

t

τ11 τ23 τ14 τ25

FIGURE 1.3: Multi-agent model: a representative sample path for two players (i = 1,2)
and nature (i = 0). Event times are denoted by tn , inter-arrival times are denoted τi n ,
and actions are denoted ai n . Here, at t1, player 1 chooses a11 = 0 which has no effect on
the state and at t2 an exogenous state change decreases both players’ states. The final
three events are moves by players 1 and 2 where action 1 is chosen by both, increasing
the player-specific state variables in each case.

denoted by ai t and τi n respectively. Here, for example, player 1 moves at time t1 and

chooses action 0 which does not change the state. The move by nature (an exogenous

state change) at t2 decreases both players’ states. Player 2 then moves at t3, choosing

action 1 which increases player 2’s state. Similar moves by players 1 and 2 follow at times

t4 and t5.

Returning to the model, note that in the interval between the previous event time

and τ, no other events may take place since, by definition, τ is the time of the next event.

In some state k, the probability that the event is a move by player i is proportional to

λi and the probability that the state jumps from k to l 6= k is proportional to qkl . The

denominator of these probabilities is the sum of all of the rates involved,7 so that the

7 For simplicity, we assume here that all players are active in all states. In this case, the rate at which
moves occur is the sum

∑
i λi , which is independent of the state. In general, these move arrival rates may

be state-specific, as illustrated in the quality ladder model of the following section, where inactive firms
cannot move (i.e., λi k = 0 in states k where firm i is inactive).
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probability that the next event in state k is a move opportunity for player i is

λi∑N̄
l=1λl +qkk

,

where qkk =∑
l 6=k qkl , and the probability that the state jumps from k to m is

qkm∑N̄
l=1λl +qkk

.

As before, let σi j k denote the probability that action j is chosen optimally by player i

in state k. These choice probabilities are determined endogenously in the model. The

continuation values are denoted vi j k , and φi j kl denotes the probability that immediately

after player i takes action j , the state jumps to another state l .

Given the above notation, the value function for player i in state k is

(1.6) Vi k = E
[∫ τ

0
e−ρi t ui k d t +e−ρiτ

1∑N̄
i=1λi +qkk

(∑
l 6=k

qkl Vi l

+∑
l 6=i

λl

J∑
j=1

σl j k

K∑
m=1

φl j kmVi m +λi max
j

{
ψi j k +εi j + vi j k

})]
.

This expression is complicated only for the sake of generality. In many applications, it

will be the case that the φl j km terms are degenerate, with deterministic state transitions

following moves. Further simplifications are also possible under symmetry.

A policy rule is then a function δi : X ×Ei →Ai which maps each state k and vector

εi = (εi 1, . . . ,εi J ) to an action from Ai . Given a set of beliefs σl j k for each rival l 6= i

regarding the probability that player l chooses j in state k (which enter Q−i ), the optimal

policy rule satisfies the following condition:

(1.7) δi (k,εi ) = j ⇐⇒ ψi j k +εi j + vi j k ≥ψi lk +εi l + vi lk ∀l ∈Ai .

That is, when given the opportunity to choose an action, δi assigns the action that

maximizes the agent’s expected future discounted payoff given the specified beliefs.
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Then, under a given policy rule, the conditional choice probabilities of player i , σi j k ,

satisfy

(1.8) σi j k = Pr[δi (k,εi ) = j |k].

A Markov perfect equilibrium is a collection of policy rules (δ1, . . . ,δN̄ ) and a set of

beliefs {σi j k : i = 1, . . . , N̄ ; j = 1, . . . , J ; k = 1, . . . ,K } such that both (1.7) and (1.8) hold for

all i .

Example: A Quality Ladder Model

To illustrate the application to dynamic games we consider a discrete control version of

the quality ladder model proposed by Ericson and Pakes (1995). This model is widely

used in industrial organization and has been studied extensively by Pakes and McGuire

(1994, 2001), Doraszelski and Satterthwaite (2010), Doraszelski and Pakes (2007), and

several others. The model consists of at most N̄ firms who compete in a single product

market. The products are differentiated in that the product of firm i has some quality

level ωi ∈Ω, where Ω= {1,2, . . . ,ω̄,ω̄+1} is the finite set of possible quality levels, with

ω̄+1 denoting the “quality” of inactive firms. Firms with ωi < ω̄+1 are incumbents. In

contrast to Pakes and McGuire (1994), all controls here are discrete: given a move arrival,

firms choose whether or not to move up the quality ladder, not how much to spend to

increase their chances of doing so.

We consider the particular example of price competition with a single differentiated

product where firms make entry, exit, and investment decisions, however, the quality

ladder framework is quite general and can be easily adapted to other settings. For example,

Doraszelski and Markovich (2007) use this framework in a model of advertising where,

as above, firms compete in a differentiated product market by setting prices, but where

the state ωi is the share of consumers who are aware of firm i ’s product. Gowrisankaran

(1999a) develops a model of endogenous horizontal mergers where ωi is a capacity level
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and the product market stage game is Cournot with a given demand curve and cost

functions that enforce capacity constraints depending on each firm’s ωi .

State Space Representation

We make the usual assumption that firms are symmetric and anonymous. That is, the

primitives of the model are the same for each firm and only the distribution of firms across

states, not the identities of those firms, is payoff-relevant. We also assume players share

the same discount rate, ρi = ρ for all i , and move arrival rate, λi =λ, for all i . By imposing

symmetry and anonymity, the size of the state space can be reduced from the total

number of distinct market structures, (ω̄+1)N̄ , to the number of possible distributions

of N̄ firms across ω̄+1 states. The set of payoff-relevant states is thus the set of ordered

tuples of length ω̄+1 whose elements sum to N̄ :

S = {(s1, . . . , sω̄+1) :
∑

j
s j = N̄ , s j ∈Z∗},

where Z∗ is the set of nonnegative integers. In this notation, each vector ω= (ω1, . . . ,ωN̄ )

inΩN̄ maps to an element s = (s1, . . . , sω̄+1) ∈S with s j =∑N̄
i=1 1{ωi = j } for each j .

In practice we map the multidimensional space S to an equivalent one-dimensional

state space X = {1, . . . , |S |}.8 Payoff relevant market configurations from the perspective

of firm i are then uniquely described by two integers (x,ωi ), where x ∈X denotes the

market structure and ωi is firm i ’s own quality level.

Product Market Competition

Again, we follow Pakes and McGuire (1994) in assuming a continuum of consumers with

measure M > 0 and that consumer j ’s utility from choosing the good produced by firm i

is g (ωi )−pi +εi , where εi is iid across firms and consumers and follows a type I extreme

8 In particular, we use the “probability density space” encoding algorithm described in Gowrisankaran
(1999b), to map market structure tuples s ∈S to integers x ∈X .
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value distribution. Pakes and McGuire (1994) use the g function to enforce an upper

bound on profits. As in Pakes, Gowrisankaran, and McGuire (1993), for some constant ω∗

we specify the function

g (ωi ) =
{
ωi if ωi ≤ω∗,

ωi − ln(2−exp(ω∗−ωi )) if ωi >ω∗.

Let ςi (ω, p) denote firm i ’s market share given the state ω and prices p. From McFadden

(1974), we know that the share of consumers purchasing good i is

ςi (ω, p) = exp(g (ωi )−pi )

1+∑N̄
j=1 exp(g (ω j )−p j )

.

In a market of size M , firm i ’s demand is qi (ω, p) = Mςi .

All firms have the same constant marginal cost c ≥ 0. Taking the prices of other firms,

p−i , as given, the profit maximization problem of firm i is

max
pi≥0

qi (p,ω)(pi − c).

Caplin and Nalebuff (1991) show that (in this single-product firm setting) there is a unique

Bertrand-Nash equilibrium, which is given by the solution to the first order conditions of

the firm’s problem:

∂qi

∂pi
(p,ω)(pi − c)+qi (p,ω) = 0.

Given the functional forms above, the first order conditions become

−(p j − c)(1−ς j )+1 = 0.

We solve this nonlinear system of equations numerically using the Newton-Raphson

method to obtain the equilibrium prices and the implied profits

π(ωi ,ω−i ) = qi (p,ω)(pi − c)

earned by each firm i in each state (ωi ,ω−i ).

20



Incumbent Firms

We consider a simple model in which incumbent firms have three choices upon receiving

a move arrival. Firms may continue without investing at no cost, they may invest an

amount κ in order to increase the quality of their product from ωi to ω′
i = min{ωi +1,ω̄},

or they may exit the market and receive some scrap value η. We denote these choices,

respectively, by the choice set Ai = {0,1,2}. When an incumbent firm exits the market,

ωi jumps deterministically to ω̄+1. Associated with each choice j is a private shock

εi j t . These shocks are iid over firms, choices, and time and follow a type I extreme value

distribution. Given the future value associated with each choice, the resulting choice

probabilities are defined by a logit system.

Due to the complexity of the state space, we now introduce some simplifying notation.

For any market-wide state k ∈ X , let ωk = (ω1k , . . . ,ωN̄ k ) denote its counterpart in ΩN̄ .

In the general notation introduced above, the instantaneous payoff ψi j k to firm i from

choosing choice j in state k is

ψi j k =


0 if j = 0,

−κ if j = 1,

η if j = 2.

Similarly, the continuation values are

vi j k =


Vi j k if j = 0,

Vi j k ′ if j = 1,

0 if j = 2,

where state k ′ is the element of X such that ωk ′i = min{ωki +1,ω̄} and ωk ′ j =ωk j for all

j 6= i . Note that we are considering only incumbent firms with ωki < ω̄+1.
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The value function for an incumbent firm in state k is thus

Vi k = E

[∫ τ

0
e−ρi t πi k d t +e−ρiτ

1

Nkλ+qkk

(∑
l 6=k

qkl Vi l +
∑
l 6=i

λ
J∑

j=1
σl j k

K∑
m=1

φl j kmVi m

+λmax
{
Vi k +εi 0,Vi k ′ −κ+εi 1,η+εi 2

})]

whereπ represents the flow profit accruing from product market competition, Nk denotes

the number of active incumbents and potential entrants in state k, and the expectation

is with respect to τ and εi j for all i and j . Conditional upon moving while in state k,

incumbent firms face the following maximization problem:

max
{
Vi k +εi 0,−κ+Vi k ′ +εi 1,η+εi 2

}
.

The resulting choice probabilities are

σi 0k = exp(Vi k )

exp(Vi k )+exp(−κ+Vi k ′)+exp(η)
,

σi 1k = exp(−κ+Vi k ′)

exp(Vi k )+exp(−κ+Vi k ′)+exp(η)
,

σi 2k = 1−σi 0k −σi 1k ,

where, as before, k ′ denotes the resulting state after investment.

Potential Entrants

Whenever the number of incumbent is smaller than N̄ , a single potential entrant receives

the opportunity to enter at rate λ. Potential entrants are short-lived and do not consider

the option value of delaying entry. The potential entrant is counted in Nk , the total

number of active firms in state k, and thus the rate at which incumbents receive the

opportunity to move is (Nk −1)λ but the rate at which any type of move opportunity

occurs is Nkλ. If firm i is a potential entrant with the opportunity to move it has two

choices: it can choose to enter (ai = 1), paying a setup cost ηe and entering the market
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immediately in a predetermined entry state ωe ∈Ω or it can choose not to enter (ai = 0)

at no cost. Associated with each choice j is a stochastic private payoff shock εe
i j t . These

shocks are iid across firms, choices, and time and are distributed according to the type I

extreme value distribution.

In the general notation of Section 1.4, for entrants ( j = 1) in state k, the instantaneous

payoff is ψi 1k =−ηe and the continuation value is vi 1k =Vi k ′ where k ′ is the element of

X with ωk ′i =ωe and ωk ′ j =ωk j for all j 6= i . For firms that choose not to enter ( j = 0) in

state k, we have ψi 0k =Vi 0k = 0. Thus, conditional upon moving in state k, a potential

entrant faces the problem

max
{
εe

i 0,−ηe +Vi k ′ +εe
i 1

}
yielding the conditional entry-choice probabilities

σi 1k = exp(Vi k ′ −ηe )

1+exp(Vi k ′ −ηe )
.

State Transitions

In addition to state transitions that result directly from entry, exit, or investment decisions,

the overall state of the market follows a jump process where at some rate γ, the quality of

each firm i jumps fromωi toω′
i = max{ωi−1,1}. This process represents an industry-wide

(negative) demand shock, interpreted as an improvement in the outside alternative.

Being a discrete-time model, Pakes and McGuire (1994) assume that each period this

industry-wide quality deprecation happens with some probability δ, implying that the

quality of all firms falls on average every 1/δ periods. Our assumption of a rate γ is also a

statement about this frequency in that 1/γ is the average length of time until the outside

good improves.

We construct the corresponding intensity matrix Q0 as follows. We map each market

structure s to an integer k and map the resulting structure after deprecation s′ to an
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integer k ′. The (k,k) element of Q0 for each eligible state k is −γ while the corresponding

(k,k ′) element is γ.

1.5 Estimation

Methods that solve for the value function directly and use it to obtain the implied choice

probabilities for estimation are referred to as full-solution methods. The nested-fixed

point (NFXP) algorithm of Rust (1987), which uses value function iteration inside of an op-

timization routine that maximizes the likelihood, is the classic example of a full-solution

method. Su and Judd (2008) provide an alternative MPEC (mathematical program with

equilibrium constraints) approach which solves the constrained optimization problem

directly, bypassing the repeated solution of the dynamic programming problem.

CCP-based estimation methods, on the other hand, are two-step methods pioneered

by Hotz and Miller (1993) and Hotz et al. (1994) and later extended by Aguirregabiria and

Mira (2007), Bajari et al. (2007), Pesendorfer and Schmidt-Dengler (2007), Pakes et al.

(2007), and Arcidiacono and Miller (2008). The CCPs are estimated in a first step and

used to approximate the value function in a closed-form inversion or simulation step.

The approximate value function is then used in the likelihood function to estimate the

structural parameters of the model using a maximum pseudo-likelihood procedure (or

similarly “plugged-in” to a corresponding GMM criterion function).

Full-solution methods have the advantage that the exact CCPs are known once the

value function is found—they do not have to be estimated—and thus the model can

be estimated using full-information maximum likelihood. These methods can become

quite computationally expensive for complex models with many players or a large state

space. Many candidate parameter vectors must be evaluated during estimation and, if

the value function is costly to compute, even if solving the model once might be feasible,

doing so many times may not be. In the presence of multiple equilibria, they also require
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researchers to make an assumption on the equilibrium selection mechanism and solve

for all the equilibria (cf. Bajari, Hong, and Ryan, 2007).9 The Su and Judd (2008) MPEC

approach provides one solution to the issue of multiplicity. CCP methods provide another

attractive alternative, allowing the value function to be computed very quickly and the

pseudo-likelihood function to condition upon the equilibrium that is played in the data.

Our model has the advantage of being estimable via either approach. As in Doraszelski

and Judd (2008), the use of continuous time breaks one primary curse of dimensionality

in that only a single player moves at any particular instant. An attractive and novel

feature of our framework is that it is easily estimable using standard CCP methods. This

greatly reduces the computational costs of estimation relative to full solution methods.

Having estimated a large problem with CCP methods, it is then straightforward to use

the model for post-estimation exercises, since the computational burden of computing

the equilibrium a few times for these purposes is not as great as nesting several such

solutions into an estimation routine. In this way, our framework preserves a tight link

between the estimated model and that used for post-estimation analysis, something

which has proven infeasible for many empirical applications that have been modeled in

discrete time.

This section is organized as follows. We begin by discussing estimation via full-

solution methods with continuous time data in Section 1.5.1 before turning to cases with

imperfectly sampled data. We consider the case when some moves may be unobserved

in Section 1.5.2, and in Section 1.5.3 we consider the case where the data is only sampled

at discrete intervals. We consider two-step CCP-based estimation in Section 1.5.4 and

close with a discussion of extensions to models which admit unobserved heterogeneity

in Section 1.5.5.

9 When performing full-solution estimation in this paper, we assume that the equilibrium selection rule
assigns probability one to the equilibrium obtained by our numerical fixed point routine. The computa-
tional advantages of continuous time, however, make it easier to explore more complex specifications with
non-degenerate weightings.
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1.5.1 Full-Solution Estimation

We begin our discussion of estimation by considering the application of a full solution

method in a setting where continuous time data is available. In particular, suppose we

observe all continuous-time events in a single market over the time interval [0,T ]. Let N

denote the total number of observed events during the observation window, that is, the

number of actions (moves) plus the number of exogenous state changes (jumps). The

n-th event is characterized by five pieces: the elapsed time since the last event, τn , the

index of the player associated with the event, in (where in = 0 indicates a move by nature),

the observed choice, an , and the states immediately before and after the event, xn and

x ′
n .

Let `n(θ) denote the likelihood of the n-th event where θ is the vector of parameters of

interest which includes the move-arrival rates, the parameters of the process generating

exogenous state changes, and the parameters of the payoff functions. The likelihood

function depends on the aggregate and individual intensity matrices, which are in turn

functions of θ. We let q(x, x ′;θ) denote the absolute value of the (x, x ′) element of the

aggregate intensity matrix Q ≡Q0 +∑N̄
i=1 Qi . Taking the absolute value serves to ensure

that all rates are positive, since the diagonal elements, the rates of leaving a particular

state, are negative. Define q0(x, x ′;θ) and qN̄ (x, x ′;θ) similarly for the matrices Q0 and∑N̄
i=1 Qi .

The likelihood of a single event consists of several parts, the first of which is the

pdf of the inter-event interval, g (τn ; q(xn , xn ;θ)), where g is the pdf of the exponential

distribution. The rate parameter in this case is q(xn , xn ;θ), the negative of the diagonal

element of the aggregate intensity matrix Q, which is the overall rate at which the process

leaves state xn . The remaining components of the likelihood for jumps (indicated by

in = 0) are the probability that the event is indeed a jump, q0(xn , xn ;θ)/q(xn , xn ;θ), and

the state transition probability, p(xn , x ′
n ;θ) ≡ q0(xn , x ′

n ;θ)/q0(xn , xn ;θ). On the other
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hand, for moves (indicated by in > 0), the remaining components are the probability that

the event is a move, qN̄ (xn , xn ;θ)/q(xn , xn ;θ), the choice probability, σ(in , an , xn ;θ), and

the probability of the resulting state transition, φ(in , an , xn , x ′
n ;θ).10

Combining these components, the likelihood of a single event is

`n(θ) = g (τn ; q(xn , xn ;θ))

[
q0(xn , xn ;θ)

q(xn , xn ;θ)
·p(xn , x ′

n ;θ)

]1{in=0}

×
[

qN̄ (xn , xn ;θ)

q(xn , xn ;θ)
·σ(in , an , xn ;θ) ·φ(in , an , xn , x ′

n ;θ)

]1{in>0}

.

When the last observation occurs before the end of the observation window (i.e., when

tN < T ), we must also account for the fact that no event was observed over the interval

[tN ,T ]. The likelihood of this is the probability of observing no events over an interval of

length T − tN while the state was xN , given by 1−G(T − tN ; q(xN , xN ;θ)), where G is the

cdf of the exponential distribution. Thus, after simplifying the observation likelihood,

the log likelihood for the time period [0,T ] is

lnLT (θ) =
N∑

n=1
ln g (τn ; q(xn , xn ;θ))+

N∑
n=1

1{in = 0}ln q0(xn , x ′
n ;θ)

+
N∑

n=1
1{in > 0}

[
ln qN̄ (xn , xn ;θ)+ lnσ(in , an , xn ;θ)+ lnφ(in , an , xn , x ′

n ;θ)
]

−
N∑

n=1
ln q(xn , xn ;θ)+ ln

[
1−G(T − tN , q(xN , xN ;θ))

]
.

We have replaced the transition probabilities by the relevant elements of the intensity

matrices, canceled the q0(xn , xn ;θ) terms for move observations, and collected the com-

mon q(xn , xn ;θ) terms. Note that it is straightforward to generalize this to the case where

multiple markets are observed over potentially market-specific time horizons.

10 In many cases, the state will change deterministically with the choice.
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1.5.2 Partially Observed Moves

We continue using the same notation as in the previous sections, but now we suppose that

the choice set is A = {0, . . . , J −1} and that only actions an for which an > 0 are observed

by the econometrician, where, without loss of generality, an = 0 denotes the unobserved

action.11 This assumption is likely to be the relevant one in most empirical settings with

continuous-time data, as we generally expect the arrival of the right to move to be latent.12

This complicates the estimation as now we only observe the truncated joint distribution

of move arrival times and actions. Estimating λ using only the observed move times for

observations with an > 0 would introduce a downward bias, corresponding to a longer

average waiting time, because there could have been many unobserved moves in any

interval between observed moves. Thus, in this setting τn is now the interval since the

last observed event. For simplicity, we will consider only estimation of the single agent

model of Section 1.3.

Over an interval where the state variable is constant at xn , the choice probabilities

for each action, σ(in , an , xn ;θ), are also constant. On this interval, conditional on re-

ceiving a move arrival, the move will be observed by the researcher with probability

1−σ(in ,0, xn ;θ).

For a given state xn we can derive the likelihood of the waiting times between observed

moves by starting with the underlying Poisson process generating the move arrivals. Let

N (t ) denote the total cumulative number of move arrivals at time t and let Na(t ) denote

the number of move arrivals for which the agent chose action a. We will write N+(t)

to denote
∑

a>0 Na(t). We also define the waiting time before receiving a move arrival

with corresponding action a, Wa(t), defined as the smallest value of τ ≥ 0 such that

11 We also assume that information about the unobserved action is not revealed through changes in the
state, that is, the state remains constant following the choice an = 0. Stated formally, for all xn and in > 0,
φ(in ,0, xn , xn ;θ) = 1.

12 Estimation with time-aggregated data, discussed in Section 1.5.3, naturally accounts for this.
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Na(t +τ)−Na(t ) ≥ 1. Let W+(t ) and W (t ) be defined similarly.

By the properties of Poisson processes we know that W (t), the waiting time until

the next move arrival (both observed and unobserved), is independent of t and has an

exponential distribution with parameter λ. We have a similar result for W+(t ). Because

the probability of truncation (the probability of choosing a = 0) depends on x, so will

the distribution of W+(t ). We will derive the distribution for intervals where the state is

constant, which will be sufficient for the purposes of the likelihood function.

Proposition 1.2. Let the state of the model be x and let σ(i , a, x) denote the choice proba-

bility of player i for action a in state x. Then W+(t ) has an exponential distribution with

rate parameter (1−σ(i ,0, x))λ.

Proof. See Appendix A. ■

The primary difference here is that we will use λ̃xn = [1−σ(in ,0, xn ;θ)]λ, the rate of

observed moves in state xn , to construct an intensity matrix for the observed processes,

which will be used for estimation. We let q̃(x, x ′;θ) denote the absolute value of the (x, x ′)

element of the resulting intensity matrix Q̃. Similarly, the choice probabilityσ(in , an , xn ;θ)

is replaced by the choice probability conditional on having observed the choice,

σ̃(in , an , xn ;θ) = σ(in , an , xn ;θ)

1−σ(in ,0, xn ;θ)
.

As before, we first write the likelihood for a single observation (τn , in , an , xn , x ′
n):

`n(θ) = g (τn ; q̃(xn , xn ;θ))

[
q̃0(xn , xn ;θ)

q̃(xn , xn ;θ)
·p(xn , x ′

n ;θ)

]1{in=0}

×
[

q̃N̄ (xn , xn ;θ)

q̃(xn , xn ;θ)
· σ̃(in , an , xn ;θ) ·φ(in , an , xn , x ′

n ;θ)

]1{in>0}

.

Estimation can now proceed as before by constructing and maximizing the log-likelihood

function of the full sample.
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1.5.3 Time Aggregaton

Having considered settings with partially observed moves, now suppose we only observe

the process at N discrete points in time {t1, t2, . . . , tN }. Let {x1, x2, . . . , xN } denote the

corresponding states. Through the aggregate intensity matrix Q ≡ Q0 +∑
i Qi , these

discrete-time observations provide information about the underlying state jump process

as well as the rate of move arrivals and the conditional choice probabilities. We use these

observations to estimate the structural parameters θ, which appear in Q both directly and

indirectly through the conditional choice probabilities σi j k . In this section, we describe

a full-solution approach in which the value function is solved for each value of θ in order

to obtain the implied CCPs which, in turn, are used to construct Q.

Let P (t) denote the transition probability function from (1.2) corresponding to the

aggregate intensity matrix Q. These probabilities summarize the relevant information

about a pair of observations (tn−1, xn−1) and (tn , xn). That is, Pxn−1,xn (tn − tn−1) is the

probability of the process moving from xn−1 to xn after an interval of length tn−tn−1. This

includes cases where xn = xn−1 since the transition probabilities account for there having

been no jump or any of an infinite number of combinations of jumps to intermediate

states before coming back to the initial state. The likelihood for a sample {(tn , xn)}N
n=1 is

thus

lnLN (θ) =
N∑

n=1
lnPxn−1,xn (tn − tn−1).

In this way, dealing with time aggregation is remarkably simple in continuous time.

Because transition probabilities for an interval of any length can easily be calculated

from the underlying intensity matrix, it is straightforward to characterize the likelihood

of transitioning from any observed initial state to any observed final state over any given

interval. This approach naturally accounts for all of the myriad ways that such a transition

could have occurred, something which would be much more computationally demanding
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FIGURE 1.4: Time aggregation: two distinct paths which begin in the same state at t2 −∆
and end in the same state at t2 but differ over intermediate interval of length ∆.

in discrete time.13

To illustrate the issues involved, Figure 1.4 displays two distinct paths which coincide

both before and after an interval of length ∆, but which take different intermediate steps.

Consider the possible paths of the process between times t2 −∆ and t2. The dashed path

first moves to a higher state before arriving at the resulting state xt2 , while the dashed and

dotted path first moves to a lower state and arrives in xt2 at a later time (but before t2).

There are an infinite number of such paths since time is continuous, but the dynamics of

the process over the interval are summarized by the transition matrix P (∆).

For example, consider the single agent renewal model of Section 1.3 with K = 5 states.

The intensity matrix Q0 gives the rates at which the state changes due to nature. Suppose

that the state increases one level at rate q1 and two levels at rate q2. Then, Q0 for this

13 In a discrete-time, sequential-move model with a prespecified number of sub-periods, time aggregation
would require enumerating and integrating over all possible paths. Conveniently, in continuous time this
information is summarized by the matrix exponential from Section 1.2.
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model is

Q0 =


−q1 −q2 q1 q2 0 0

0 −q1 −q2 q1 q2 0
0 0 −q1 −q2 q1 q2

0 0 0 −q1 −q2 q1 +q2

0 0 0 0 0

 .

Let σk denote the conditional choice probability of choosing to renew—moving the

state back to 1 deterministically—in state k. Note that σk is determined endogenously

and depends on the parameters θ through the value function as in (1.5). Under our

assumptions, σk will have a logit form. If λ is the rate at which moves arrive, then Q1 is

Q1 =


0 0 0 0 0
λσ2 −λσ2 0 0 0
λσ3 0 −λσ3 0 0
λσ4 0 0 −λσ4 0
λσ5 0 0 0 −λσ5

 .

The first row contains only zeros because the model remains at state 1 regardless of which

action is taken. The remaining diagonal elements are −λ+λ(1−σk ) where λ is the rate

at which the model potentially leaves state k and λ(1−σk ) is the rate at which the state

potentially remains unchanged yielding a net exit rate of −λσk . The aggregate intensity

matrix in this case is Q =Q0 +Q1, where the corresponding probability function P (t ) is

used for estimation.

Embeddability and Identification

There are two fundamental issues concerning estimation using time aggregated data,

which arise in both the continuous-time and discrete-time settings. The first is the em-

beddability problem: could the observed discrete-time transition matrix P (∆), associated

with a time interval of length ∆, have in fact been generated by the proposed data gener-

ating process (some continuous-time Markov structure with intensity matrix Q or some

discrete-time chain over fixed time periods of length δ). If so, then we can address the
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second question regarding identification: whether there is a unique parametrization of

the underlying model which, when sampled at intervals of length ∆, gives rise to the

transition matrix P (∆).

In the continuous-time framework, let Q be the set of all valid intensity matrices

and P0 ≡ {exp(Q) : Q ∈Q} be the set of all possible generated transition matrices. The

question of embeddability asks whether P (∆) ∈P0.14 Singer and Spilerman (1976) pro-

vide several necessary conditions for embeddability involving testable conditions on the

determinant and eigenvalues of P (∆). Essentially, this is simply a model specification

issue: was the data actually generated by a continuous time process? In this paper, we

assume that the model is correctly specified and therefore, such a Q matrix exists.

The problem of identification is about whether there is a unique matrix Q ∈Q such

that P (∆) = exp(Q). Singer and Spilerman (1976) provide several sufficient conditions

that must be verified to guarantee that Q is unique, for example if the eigenvalues of P (∆)

are distinct, real, and positive, if mini {Pi i (∆)} > 1/2, or if detP (∆) > e−π.

Although these two issues are typically discussed in the context of continuous-time

models, both apply to discrete-time models as well. Consider a discrete-time model with

a fixed move interval of length δwhich may be different from the fixed interval∆ at which

observations are sampled. In practice, researchers typically assume (implicitly) that

δ=∆, where ∆= 1 is normalized to be some specific unit of time (e.g., one quarter).15

This assumption is convenient but effectively assumes away the embeddability and

identification problems.

In this case, the issue of embeddability is then whether the observed discrete time

transition matrix P (∆) could have in fact been generated by (another) discrete time

14 This problem was first proposed by Elfving (1937). Kingman (1962) derived the set of embeddable
processes with K = 2 and Johansen (1974) gives an explicit description of the set for K = 3.

15 Our continuous-time model is more flexible than the discrete-time model in the sense that we estimate
the rate of move arrivals, rather than fixing it at unity. The closest analog to discrete time is found by setting
λ≡ 1.
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transition matrix over intervals of length δ. Stated somewhat differently, embeddability

is satisfied if there exists a matrix P0 such that P∆/δ
0 = P (∆). In general, the root P0 need

not exist. The identification question is then, if the root P0 exists, is it unique? In general

there may be multiple such matrices (Singer and Spilerman, 1976, p. 49). These issues

become trivial under the aforementioned assumption that δ=∆.

1.5.4 CCP-Based Estimation

We introduce CCP estimation in terms of the single-agent model for simplicity. Applica-

tion to the multi-agent model follows directly and is discussed at the end of this section.

CCP estimation relies on finding a mapping from the CCPs σ j k to the value function Vk .

When separated at the time of the next event, the value function as expressed in (1.3) con-

tains both terms involving Vk directly, as well as the familiar “social surplus” term which

is typically used to obtain the inverse mapping. These extra terms preclude the use of the

usual inverse CCP mapping. However, when the value function is separated instead at

the time of the player’s next move, application of the inverse mapping is straightforward.

The derivation is very similar to the next-event representation of Section 1.3, but we

now need to consider that between any two moves by the agent, any number of other

state jumps could have occurred. For example, if the model is initially in state k and

no move arrival occurs on the interval [0,τ1) while the state follows the dynamics of the

underlying Markov jump process, we know that the probability of being in any state

l at time t ∈ [0,τ1) is Pkl (t), where P (t) are the jump probabilities associated with the

intensity matrix Q0. The total payoff obtained over [0,τ1), discounted to the beginning of

the interval, is therefore
∫ τ1

0 e−ρt ∑K
l=1 Pkl (t )ul d t .

The next-move representation of the value function in state k, is

(1.9) Vk = E

[∫ τ1

0
e−ρt

K∑
l=1

Pkl (t )ul d t +e−ρτ1
K∑

l=1
Pkl (τ1)max

j

{
ψ j l +ε j + v j l

}]
.

Note that this is simply an alternate representation of the value function in (1.3), ex-
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pressed in terms of the next move time instead of the next event time. These representa-

tions are equivalent.16

The first term above represents the flow utility obtained from the initial time until the

first move arrival at time τ1. The second term represents the expected instantaneous and

future utility obtained from making a choice at time τ1. The resulting state l at time τ1 is

stochastic, as is the optimal choice j and, possibly even the continuation value v j l . The

expectation operator is needed because τ1 is also random and unknown a priori.

If ε j ∼ TIEV(0,1), then the CCPs admit the following closed form:

(1.10) σ j k = exp(ψ j k + v j k )∑J
m=1 exp(ψmk + vmk )

.

Suppose we wish to express this probability with respect to another state, say state 1, then

we can write

(1.11) σ j k = exp(ψ j k + v j k −ψ j 1 − v j 1)∑J
m=1 exp(ψmk + vmk −ψm1 − vm1)

.

The ψ j k ’s typically have closed forms in terms of the parameters. Thus, if we know

differences in the continuation values v j k − v j 1, we effectively know the CCPs and can

estimate the model. In what follows, we show how to obtain these differences using

first stage estimates of the CCPs and a closed form inverse relationship with the value

function.

First, note that from (1.10) we can write

(1.12) ln

[
J∑

m=1
exp(ψmk + vmk )

]
=− lnσ j k +ψ j k + v j k .

The left side of this expression is precisely the closed form for the ex-ante future value

term in the value function.
16 In Section 1.2 we noted that the next-move representation introduces matrix exponential calculations,
increasing the computational burden of evaluating the functional mapping. However, in the context of
CCP estimation this can be completed in a preliminary step and only needs to be carried out for the states
actually observed in the data and the neighboring states required for calculating expectations.
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Single-Agent Example

In many model specifications we can then obtain an expression for the differences in

(1.11) by choosing an appropriate normalizing state.17 We use the example model of

Section 1.3 to illustrate this point. In terms of this model, we can write (1.12), for j = 1 as

(1.13) ln
[
exp(Vk )+exp(V1 − c)

]=− lnσ1k +V1 − c.

Note that the left-hand side of the above equation is exactly the expression in the value

function as expressed in (1.4). Substituting (1.13) into (1.4) gives the following expression

for the value function for each state k:

Vk = E

[∫ τ1

0
e−ρt

K∑
l=1

Pkl (t )ul d t +e−ρτ1
K∑

l=1
Pkl (τ1) (− lnσ1l +V1 − c)

]

= E

[∫ τ1

0
e−ρt

K∑
l=1

Pkl (t )ul d t −e−ρτ1
K∑

l=1
Pkl (τ1) lnσ1l +e−ρτ1 (V1 − c)

]

where in the second equality we have used the fact that V1 − c does not depend on l

and that the probabilities Pkl (t ) must sum to one over l = 1, . . . ,K . Evaluating the above

expression at k = 1 and differencing gives

Vk −V1 = E

[∫ τ1

0
e−ρt

K∑
l=1

[Pkl (t )−P1l (t )]ul d t −e−ρτ1
K∑

l=1
[Pkl (τ1)−P1l (τ1)] lnσ1l

]
.

This expression gives differences in the value function in terms of the conditional choice

probability σ1l . With first-stage estimates of σ1l for each l we can use this expression

to “invert” the estimated CCPs to obtain an approximation of Vk −V1 which can then

be used, along with (1.5), to approximate σ(at , xt ;θ) in the likelihood. The result is a

pseudo-likelihood function which can be maximized to obtain an estimate of θ.

17 See Arcidiacono and Miller (2008) for a general discussion.
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Multi-Agent Models

In dynamic games, in the interval between an arbitrary time t < τi and τi , any com-

bination of state jumps and moves by other players may take place. Q0 describes the

dynamics of state jumps, and we can construct similar intensity matrices Qi that describe

the dynamics of events caused by the actions of rival players. In any state k, player i

moves at a rate λi which is constant across k.

Thus, the rate at which the model leaves state k due to player i is λi . The rate at which

the model enters another state l 6= k, the (k, l ) element of Qi , is given by the sum

λi

J∑
j=1

σi j kφi j kl ,

which accounts for uncertainty both over the choice and the resulting state. Intuitively,

this is the probability of moving to state l expressed as a proportion of λi , the rate at

which the model leaves state k. Note that we must also allow for the state to remain at k,

in which case the diagonal (k,k) element of Qi is

−λi +λi

J∑
j=1

σi j kφi j kk .

From the perspective of player i , the dynamics of the model follow an intensity

matrix Q−i ≡Q0+∑
j 6=i Q j which captures all events caused by nature and player i ’s rivals.

With this intensity matrix in hand, the flow utility portion of the value function can be

expressed exactly as before with P−i (t ) being constructed using the intensity matrix Q−i :∫ τi
0 e−ρt ∑K

l=1 P−i
kl (t )ui l d t . The value function for player i is then

(1.14) Vi k = E

[∫ τi

0
e−ρi t

K∑
l=1

P−i
kl (t )ui l d t +e−ρτ

K∑
l=1

P−i
kl (τi )max

j

{
ψi j l +εi j + vi j l

}]
.

CCP estimation of the quality ladder model, for example, can now proceed as in the

single agent case by recognizing that exiting is a terminal state. Hence, at the time of
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the next move, the continuation value can be expressed simply as the negative of the log

probability of exiting.

Computational Issues

There are several computational issues to consider when evaluating the next-move based

value function in both the single- and multi-agent cases. In practice, for CCP estimation,

we are actually interested in approximating the difference Vk −V1. For simplicity, we will

discuss methods for approximating Vk . Approximating the difference is straightforward

using the same procedures.

Consider the single-agent version in (1.9). The expectation of the max{·} term is the

ex-ante expected future value of choosing optimally in state l . We can isolate this term

using the law of iterated expectations, replacing Eτ1,ε with Eτ1 Eε|τ1 . If we then make the

standard assumption that the ε j are iid and distributed according to the type I extreme

value distribution, we can simplify this expression using the known closed form for the

maximum of J values {δ1 +ε1, . . . ,δJ +εJ }:

E
[
max{δ1 +ε1, . . . ,δJ +εJ }

]= ln
[
exp(δ1)+·· ·+exp(δJ )

]
.

See, for example, McFadden (1984) for details.

Now, we must still choose how to evaluate both the flow utility term as well as the

expectation over τ1. We describe two Monte Carlo integration methods for doing so. The

first involves simulating from the distribution of τ1 and using a closed form for the flow

utility term. The second involves averaging the flow utility and discounted future value

over many simulated paths of the combined jump process, starting from the current

time and ending at the next move by the player in question. The first method involves

a lower-dimensional integral but requires many matrix exponential calculations. The

second approach involves approximating a more complex integral, but avoids potentially

costly matrix calculations.
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In the first approach, we simply approximate the expectation over τ1 using Monte

Carlo integration by drawing R values of τ1, {τs
1}R

s=1, and forming the following approxi-

mation:

(1.15) Vk ≈ 1

R

R∑
s=1

[∫ τs
1

0
e−ρt

K∑
l=1

Pkl (t )ul d t +e−ρτ
s
1

K∑
l=1

Pkl (τs
1)Emax

j

{
ψ j k +ε j + v j k

}]
.

In matrix notation, the flow utility term has a relatively simple closed form which

allows (1.15) to be calculated directly. To see this, let bi (τ1) = ∫ τ1
0 e−ρs ∑

j Pi j (s)u(x j )d s,

B(τ1) = (b1(τ1),b2(τ1), . . . ,bK (τ1))> and U = (u(x1), . . . ,u(xn))>. Define C ≡−(ρI −Q) for

simplicity. Then we can write the first term inside the expectation in matrix notation as

B(τ1) =
∫ τ1

0
e−ρsI esQ U d s =

[∫ τ1

0
e−s(ρI−Q) d s

]
U

=
[∫ τ1

0
C−1C esC d s

]
U =C−1

[∫ τ1

0
C esC d s

]
U =C−1 [

eτ1C −I
]

U .

Finally, substituting for C we have

B(τ1) =−(ρI −Q)−1 [
e−τ1(ρI−Q)−I

]
U .

The alternate approach is able to avoid the computation of matrix exponentials

altogether. We can approximate Vk using a forward simulation procedure where we

simulate R paths of the joint jump process governed by the aggregate intensity matrix

Q =Q0+∑
i Qi . Each path begins at the current time, in state k, and ends when the player

in question moves next (a simulated realization of τ1). The flow utility obtained over each

path is accumulated and the discounted future value term at the final state is calculated

(via CCP inversion when working in differences). Averaging both the flow utility and

future value terms over the R simulated paths and discounting appropriately provides an

approximation to Vk .

In either case, it is important to note that the value function only needs to be approxi-

mated at states that are relevant for estimation. We can focus only on those states that
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are actually observed in the sample and any related states which are used in the choice

probability calculations that appear in the log likelihood function. That is, we only need

to know the value function at each observed state k and each additional state that might

arise as a result of some action at state k (e.g., exit or investment). As a result, even when

the state space is very large the number of components of the value function that need to

be calculated is simply a function of the observations in the sample. This can result in

considerable computational savings.

1.5.5 Unobserved Heterogeneity

Incorporating permanent unobserved heterogeneity into the models above follows the

same method commonly used in the dynamic discrete choice literature. Namely, we can

use finite mixture distributions to allow for permanent unobserved characteristics.18

Consider, for example, the bus engine problem but where certain buses now have

higher replacement costs or mileage transitions. The type-specific likelihood for a par-

ticular bus is composed of the type-specific probabilities of the mileage and engine

transitions over the course of the sample period. The log likelihood for a particular bus

with the unobserved state integrated out is then the log of the sum of the type-specific

likelihoods weighted by the population probabilities of being each of the different types.

For the nested fixed point algorithm, estimation is then straightforward. With CCP estima-

tion, the techniques developed by Arcidiacono and Miller (2008) apply to the continuous

time setting as well.

1.6 Monte Carlo Experiments

1.6.1 Single Agent Dynamic Discrete Choice

Here, we generate data according to the simple single player binary choice model of

Section 1.3. The primitives of the model are the payoff (mileage cost) parameter β, the

18 See Keane and Wolpin (1997), Eckstein and Wolpin (1999), Arcidiacono (2005) and several others.
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intensity matrix (mileage transition) parameters q1 and q2, the reset (engine replacement)

cost c, the discount rate ρ, and the move arrival rate λ. We fix ρ = 0.05 and focus on

estimating θ = (λ, q1, q2,β,c).

In the first set of experiments, we use a full solution approach to estimate the model.

Namely, the value function is obtained through value function iteration for each value of

θ while the log likelihood function is maximized in an outer loop. We estimate the model

under several different scenarios including full continuous-time data, continuous-time

data when the decision not to replace the engine is not observed, and discrete time

data of varying resolution. In each experiment we fixed the discount rate, ρ = 0.05, the

number of states, K = 10, and the number of draws used for Monte Carlo integration,

R = 250. Additional details regarding data generation and estimation can be found in the

appendix. The means and standard deviations of the parameter estimates are reported in

Table 1.1. All are centered around their true values and estimated quite precisely. The loss

in precision from moving away from continuous time data is initially greatest for the move

arrival rate, λ, yet all estimates of this parameter are still very precise. The replacement

cost, c, also loses precision with more coarsely sampled data, but the increases are not

large until we move to seeing only one in four events on average in the sampling period.

Results for two-step estimation using conditional choice probabilities are displayed

in Table 1.2. We use a simple bin estimator to obtain the CCPs in a first stage. Details

about how these first-stage estimates were obtained in the time aggregation and partial

move cases can be found in Appendix B. Using CCPs increases the standard deviations

slightly, reflecting noise from the first stage. However, the estimates are still very good,

particularly when the average number of state changes per sampling interval is small.

Finally, we also estimated the model with continuous-time data while allowing for

buses to be of two distinct types, where the type is not observed by the econometrician.

In this specification, the type affected both the mileage transition probabilities and
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payoff parameters. In particular, with probability π, the bus is of the first type and with

probability 1−π, the bus is of the second type. For buses of type m = 1,2, the mileage

jumps forward one unit at rate q1 and two units at rate q2m , the cost of mileage is β, and

the cost of replacement is cm . Again, estimation proceeded quickly with little difficulty in

separating the unobserved heterogeneity from the other model parameters. The results

are reported in Table 1.3.

1.6.2 A Dynamic Discrete Game

Our second set of Monte Carlo experiments corresponds to the quality ladder model

described in Section 1.4. We estimate models ranging from 10 to 20 firms with 7 possible

quality levels. The size of the state space for our largest problem is over four and a half

million. In all experiments, as before, we fixed ρ = 0.05 and used R = 250 draws for Monte

Carlo integration. Further details can again be found in Appendix B.

Table 1.4 summarizes the results for full-solution estimation, where we obtain the

value function using value function iteration for each trial value of θ. Table 1.5 presents

the analogous results obtained using CCP estimation, where we assume the true CCPs are

available. In all cases, both full-solution methods and CCP estimation perform extremely

well and there is virtually no change in the standard deviations across the different state

space sizes.

We then compare the computational time required for both full-solution and CCP

estimation in Table 1.6. We first report the number of players N̄ , the market size M , and

the total number of states K . For each model, computational times are reported for only

one replication. Since we consider many models, the overall trends are clear despite the

fact that we do not report averages.19

The first timing column reports the time required to obtain the value function V for

19 All reported times are for estimation on a desktop PC with a quad-core 64-bit AMD Phenom II X4 920
processor. Our programs are written in Fortran and take advantage of parallel processing in obviously
parallel segments of code. Again, we use L-BFGS-B to maximize the log-likelihood function in each case.
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each model specification. This step is necessary to either generate a dataset or to simulate

the model (e.g. to perform counterfactuals). In particular, we use datasets consisting of

M = 200 markets with T = 100 continuous time events observed in each. Next we report

the time required to estimate the first stage parameters λ and γ. This step is independent

of the method used to obtain the value function. Next, we report the total time required

to estimate the second stage parameters κ, η, and ηe via full solution estimation. For each

new trial value of θ, we use the value function at the previous θ as the starting value for

the value function iteration. Finally, we report the setup time required to perform the

initial forward simulation procedure described in Section 1.5.4 (with R = 250), the time

required to estimate the second-stage parameters, and the sum of these two times (the

total time).20

Even with over four and a half million states, full solution estimation took under five

hours. Conditional on already having the CCPs from a first stage, two-step estimation

times were incredibly fast, with the longest taking less than two minutes. To put these

numbers in perspective, Doraszelski and Judd (2008) note that it would take about a year

to just solve for the equilibrium of a 14 player game (with 9 levels of quality) using the

basic Pakes-McGuire algorithm.21 Our continuous-time approach takes about 20 minutes

to solve the game and under two hours to estimate the parameters using a full solution

(NFXP) approach. CCP estimation requires less than a minute. These computational

times suggest that very large classes of problems can be easily estimated in a continuous-

time framework. Furthermore, the computational time required to calculate the fixed

point once in continuous time is small even for very large problems. This implies that

simulating counterfactuals from large-scale models will not be an issue.

20 This table does not address the time required to estimate the first-stage CCPs, which can vary signif-
icantly depending on which method is used. Parametric methods can clearly be quite fast while fully
nonparametric methods can be computationally intensive.

21 Similar computational times are also reported in Doraszelski and Pakes (2007).
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1.7 Conclusion

While recently developed two-step estimation methods have made it possible to esti-

mate large-scale dynamic games, performing simulations for counterfactual work or

generating data remains severely limited by the curse of dimensionality that arises from

simultaneous moves. We recast the standard discrete-time, simultaneous-move game

as a sequential-move game in continuous time. This breaks the curse of dimensionality,

greatly expanding the breadth and applicability of these structural methods and making

even full-solution estimation feasible for very large games.

Furthermore, by building on an underlying discrete-choice random utility model, our

model preserves many of the desirable features of discrete-time models. In particular,

we show that the insights from two-step estimation methods can be applied directly

in our framework, resulting in another order of magnitude computational gain during

estimation. We also show how to extend the model to accommodate incomplete sampling

schemes, including missing actions and time-aggregated data. Both are likely to be

relevant for real-world datasets.

Our framework suggests a number of areas for future research. First, we currently

do not allow players to influence the arrival rate of move opportunities. It is reasonably

straightforward to endogenize these rates (over a finite set) using the methods described

in Puterman (2005). This would, however, increase the data requirements substantially.

Second, we have focused exclusively on models with discrete state spaces. Future work is

needed to extend these models to continuous state spaces, which will be key to allowing

for asymmetric information in continuous time games. If players only observe their rivals’

actions with a lag, then the time since player i ’s last move, which is continuous, becomes

a relevant state variable for player i ’s value function. We believe this is a particularly

promising area for future research.
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Table 1.1: Single player Monte Carlo results: NFXP estimation

Sampling n q1 q2 λ β c
Population ∞ 0.150 0.050 0.200 1.000 1.250
Continuous Time 10,000 0.150 0.050 0.200 1.009 1.254

(0.002) (0.001) (0.003) (0.068) (0.054)
Passive Moves 7,176 0.150 0.050 0.204 1.010 1.271

(0.002) (0.001) (0.020) (0.127) (0.126)
∆= 0.625 40,000 0.137 0.053 0.189 1.107 1.305

(0.003) (0.002) (0.019) (0.213) (0.238)
∆= 1.25 20,000 0.145 0.051 0.191 1.074 1.191

(0.003) (0.002) (0.024) (0.210) (0.297)
∆= 2.5 10,000 0.147 0.051 0.198 1.014 1.167

(0.004) (0.002) (0.027) (0.334) (0.408)
∆= 5.0 5,000 0.151 0.050 0.195 1.088 1.233

(0.007) (0.003) (0.019) (0.249) (0.402)
∆= 10.0 2,500 0.158 0.048 0.200 1.010 1.108

(0.019) (0.007) (0.022) (0.397) (0.618)

We simulate 100 datasets over an observation window of length T = 25,000 and report the
means and standard deviations of the parameter estimates. Here, ∆ denotes the discrete-
time observation interval and n denotes the average number discrete-time observations or
continuous-time events.
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Table 1.2: Single player Monte Carlo results: CCP estimation

Sampling n q1 q2 λ β c
Population ∞ 0.150 0.050 0.200 1.000 1.250
Continuous Time 10,000 0.150 0.050 0.200 1.015 1.256

(0.002) (0.001) (0.003) (0.064) (0.053)
Passive Moves 7,176 0.150 0.050 0.187 0.830 1.157

(0.002) (0.001) (0.012) (0.148) (0.094)
∆= 0.625 40,000 0.137 0.053 0.196 1.114 1.367

(0.003) (0.002) (0.041) (0.267) (0.272)
∆= 1.25 20,000 0.145 0.051 0.211 1.066 1.370

(0.003) (0.002) (0.053) (0.301) (0.325)
∆= 2.5 10,000 0.147 0.051 0.219 1.094 1.377

(0.004) (0.002) (0.103) (0.333) (0.421)
∆= 5.0 5,000 0.151 0.050 0.222 1.092 1.350

(0.007) (0.003) (0.089) (0.373) (0.499)
∆= 10.0 2,500 0.154 0.049 0.241 1.159 1.356

(0.018) (0.008) (0.157) (0.516) (0.733)

We simulate 100 datasets over an observation window of length T = 25,000 and report the
means and standard deviations of the parameter estimates. Here, ∆ denotes the discrete-
time observation interval and n denotes the average number discrete-time observations
or continuous-time events. The CCPs were estimated in a first step using a bin estimator
for continuous-time data and via logistic regression on x and ln x for estimation with time
aggregation.

Table 1.3: Single player Monte Carlo results with unobserved heterogeneity

M n q1 q21 q22 π λ β c1 c2

∞ ∞ 0.150 0.050 0.030 0.700 0.200 1.000 1.000 2.000
25 100 0.150 0.051 0.031 0.677 0.201 1.040 0.986 2.003

(0.006) (0.004) (0.005) (0.115) (0.005) (0.303) (0.111) (0.255)
50 100 0.151 0.050 0.030 0.693 0.201 1.045 0.995 2.001

(0.004) (0.003) (0.004) (0.070) (0.004) (0.188) (0.067) (0.141)
100 100 0.151 0.051 0.030 0.689 0.201 1.023 0.994 1.994

(0.003) (0.002) (0.002) (0.058) (0.003) (0.137) (0.049) (0.107)
25 200 0.150 0.050 0.030 0.685 0.200 1.025 1.004 2.002

(0.003) (0.003) (0.003) (0.092) (0.004) (0.176) (0.061) (0.118)
50 200 0.151 0.050 0.030 0.694 0.201 1.033 1.009 2.008

(0.003) (0.002) (0.002) (0.073) (0.003) (0.136) (0.041) (0.102)
100 200 0.151 0.050 0.030 0.701 0.201 1.014 1.002 1.995

(0.002) (0.001) (0.002) (0.047) (0.002) (0.096) (0.029) (0.062)

We simulate 100 datasets containing M markets each with n observed continuous-time events and report
the means and standard deviations of the parameter estimates.
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Table 1.4: Quality ladder Monte Carlo results: NFXP estimation

N̄ K M navg ωavg λ γ κ η ηe

Population 1.800 0.200 0.800 4.000 5.000
10 80,080 5.0 6.62 3.79 1.820 0.201 0.798 3.986 4.967

(0.005) (0.001) (0.026) (0.204) (0.171)
11 136,136 7.0 7.79 3.62 1.819 0.201 0.791 3.990 4.952

(0.005) (0.002) (0.031) (0.198) (0.174)
12 222,768 8.0 8.29 3.47 1.821 0.201 0.798 4.010 5.007

(0.006) (0.001) (0.024) (0.192) (0.163)
13 352,716 9.0 8.81 3.35 1.821 0.200 0.801 4.043 5.044

(0.006) (0.001) (0.031) (0.184) (0.157)
14 542,640 10.0 9.32 3.22 1.821 0.200 0.801 4.043 5.044

(0.006) (0.001) (0.031) (0.184) (0.157)
15 813,960 11.0 9.86 3.13 1.822 0.201 0.811 4.012 5.047

(0.005) (0.002) (0.073) (0.211) (0.257)
16 1,193,808 13.0 10.89 3.00 1.822 0.200 0.837 3.967 5.152

(0.005) (0.001) (0.103) (0.223) (0.402)
17 1,716,099 15.0 11.88 2.90 1.820 0.201 0.836 3.984 5.181

(0.006) (0.002) (0.107) (0.201) (0.363)
18 2,422,728 17.0 12.90 2.81 1.821 0.200 0.808 3.999 5.030

(0.006) (0.002) (0.060) (0.195) (0.268)
19 3,364,900 19.0 13.91 2.72 1.820 0.201 0.809 3.987 5.139

(0.006) (0.002) (0.078) (0.190) (0.272)
20 4,604,600 21.0 14.92 2.64 1.820 0.200 0.801 4.009 5.129

(0.006) (0.0020 (0.084) (0.194) (0.308)

The mean and standard deviation of the parameter estimates for 25 samples are shown for different
choices of N̄ , the total number of players, and M , the market size, with ω̄ fixed at 7. K denotes the total
number of distinct states, navg denotes the average number of active players, and ωavg denotes the
average quality level. Samples consisted of 1000 markets each with 100 observed events.

47



Table 1.5: Quality ladder Monte Carlo results: CCP estimation

N̄ K M navg ωavg λ γ κ η ηe

Population 1.800 0.200 0.800 4.000 5.000
10 80,080 5.0 6.62 3.79 1.822 0.202 0.777 4.075 5.072

(0.005) (0.001) (0.012) (0.236) (0.235)
11 136,136 7.0 7.79 3.62 1.821 0.202 0.774 4.099 5.080

(0.005) (0.002) (0.014) (0.253) (0.247)
12 222,768 8.0 8.29 3.47 1.823 0.202 0.775 4.088 5.086

(0.006) (0.001) (0.013) (0.236) (0.228)
13 352,716 9.0 8.81 3.35 1.823 0.202 0.779 4.076 5.071

(0.006) (0.001) (0.010) (0.226) (0.227)
14 542,640 10.0 9.32 3.22 1.823 0.202 0.780 4.076 5.069

(0.005) (0.001) (0.015) (0.238) (0.228)
15 813,960 11.0 9.86 3.13 1.824 0.202 0.782 4.068 5.060

(0.005) (0.002) (0.014) (0.218) (0.210)
16 1,193,808 13.0 10.89 3.00 1.824 0.202 0.787 4.067 5.060

(0.005) (0.001) (0.016) (0.212) (0.199)
17 1,716,099 15.0 11.88 2.90 1.822 0.202 0.782 4.066 5.064

(0.006) (0.002) (0.013) (0.209) (0.201)
18 2,422,728 17.0 12.90 2.81 1.823 0.202 0.784 4.070 5.064

(0.006) (0.002) (0.014) (0.210) (0.189)
19 3,364,900 19.0 13.91 2.72 1.822 0.202 0.782 4.055 5.047

(0.006) (0.002) (0.016) (0.210) (0.185)
20 4,604,600 21.0 14.92 2.64 1.822 0.201 0.783 4.061 5.050

(0.006) (0.002) (0.017) (0.204) (0.189)

The mean and standard deviation of the parameter estimates for 25 samples are shown for different
choices of N̄ , the total number of players, and M , the market size, with ω̄ fixed at 7. K denotes the total
number of distinct states, navg denotes the average number of active players, and ωavg denotes the
average quality level. Samples consisted of 1000 markets each with 100 observed events. The true CCPs
were used in estimation.
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Table 1.6: Computational time: NFXP vs CCP

NFXP CCP
N̄ M K Solve V First Stage Estimate Setup Estimate Total
5 0.5 2,310 9.05 0.42 51.61 0.51 0.30 0.81
6 1.0 5,544 15.59 0.30 107.41 1.54 0.32 1.86
7 2.0 12,012 29.26 0.28 172.40 2.17 0.47 2.64
8 3.0 24,024 58.27 0.30 256.19 4.02 0.62 4.64
9 4.0 45,045 107.40 0.26 375.26 5.58 1.01 6.59

10 5.0 80,080 185.78 0.35 535.83 7.13 1.42 8.55
11 7.0 136,136 325.28 0.34 639.98 11.20 1.80 13.00
12 8.0 222,768 518.57 0.33 1,069.52 13.47 3.21 16.69
13 9.0 352,716 821.83 0.34 1,411.32 14.96 3.63 18.59
14 10.0 542,640 1,228.98 0.39 2,436.61 17.21 4.10 21.31
15 11.0 813,960 1,719.72 0.38 3,413.42 19.67 7.15 26.82
16 13.0 1,193,808 2,499.98 0.44 4,765.67 23.85 7.06 30.91
17 15.0 1,716,099 3,642.02 0.43 13,513.96 27.28 8.38 35.66
18 17.0 2,422,728 5,109.30 0.41 10,807.54 30.93 10.54 41.47
19 19.0 3,364,900 6,929.01 0.43 13,737.87 35.67 15.37 51.04
20 21.0 4,604,600 9,377.57 0.41 16,069.89 37.26 15.60 52.86

Times are reported in seconds for estimation on a desktop PC with a quad-core AMD Phenom II X4
920 processor using code written in Fortran using OpenMP for parallel processing in obviously parallel
segments of code. Times are reported for only one replication of each specification. N̄ denotes the total
possible number of players, M denotes the market size, and K denotes the total number of distinct states.
We have fixed the number of possible quality levels at ω̄ = 7. Obtaining the value function v once is
required for generating data. Obtaining the first stage estimates is a common step for both NFXP and
CCP estimation.
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2

Partial Identification and Inference in Binary
Choice and Duration Panel Data Models

2.1 Introduction

Many economic variables of interest are qualitative in nature and therefore discrete

response models have become a standard tool in applied econometrics and their prop-

erties have been studied thoroughly in the econometrics literature (McFadden, 1974;

Maddala, 1983; Amemiya, 1985). Semiparametric methods such as maximum score have

emerged to estimate such models without tenuous parametric assumptions, however,

these methods typically assume the existence of an exogenous explanatory variable with

full support (Manski, 1975, 1985; Horowitz, 1992). Similar rank conditions have been

successful in estimating more general regression models but the known conditions for

point identification still include a full support condition (Han, 1987; Abrevaya, 2000). In

practice, however, it is not uncommon to encounter datasets with genuinely discrete

or bounded variables. In general, without a regressor with full support on the real line,

under semiparametric assumptions the models we consider are only partially identified

(Horowitz, 1998).
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This chapter develops estimators for a general class of partially identified models

with limited support regressors and provides conditions for consistency, obtaining rates

of convergence, and constructing confidence regions. While the previous literature has

focused on partially identified regular models which give rise to set estimators that are

essentially
p

n-consistent,1 this chapter provides conditions under which irregular rates

of convergence may also arise. Our analysis is motivated by several semiparametric

fixed effects panel data models including binary choice and duration models. We apply

our general results to several models and show that depending on the assumptions

made on the support of the regressors, the set estimators may achieve nearly cube-root

convergence or they may converge arbitrarily fast.

In a broad sense, this chapter concerns econometric models characterized by a finite

vector of parameters θ which lie in some parameter spaceΘ. Our particular focus is on

semiparametric models which also have unknown infinite-dimensional components,

such as the distribution of disturbances, which are not specified a priori and are not of

interest themselves. However, to address the concepts of partial identification it suffices

to consider a standard parametric model. Suppose that the data generating process, the

distribution of observables, is induced by a true parameter θ0 ∈Θwhich is unknown by

the researcher and is the primary object of interest. The model is point identified if θ0

is the only element of Θ such that the model would be consistent with the population

distribution Pθ0 , assuming for a moment that it were perfectly observable. On the other

hand, the model is partially identified if there are multiple elements θ ∈ Θ that are

observationally equivalent to θ0, that is, such that Pθ = Pθ0 . The set of all such θ is the

identified set and is denotedΘI . See Manski (2003) and Tamer (2009) for surveys of partial

identification in econometric models.

This chapter contributes to both the emerging literature on partial identification and

1 That is, they can achieve rates arbitrarily close to 1/
p

n as in Chernozhukov, Hong, and Tamer (2007).
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the broad literature on nonlinear panel data models. First, it presents general inference

results for two new classes of models: models with continuous but potentially bounded

regressors which may have non-standard rates of convergence and models with discrete

regressors which are characterized by a discontinuity in the population objective func-

tion at the boundary of the identified set. Our results parallel those of Chernozhukov

et al. (2007) in that we propose criterion-function-based set estimators, derive their rates

of convergence, and propose a subsampling-based (Politis, Romano, and Wolf, 1999)

procedure for obtaining confidence regions. We obtain these results under new condi-

tions which are applicable to the specific cases we consider: binary choice panel data

models and panel data duration models with discrete or continuous (but potentially

bounded) regressors. Thus, this chapter also contributes to the subset of the partial

identification literature which is concerned with semiparametric estimation of models

with limited support regressors, as well as to the nonlinear semiparametric panel data

literature. We provide sharp characterizations of the identified sets of the fixed effects

models we consider which are then used to motivate estimators. The consistency and

rates of convergence of these estimators are established, as is the validity of subsampling

for constructing confidence regions in these models.

This chapter is organized as follows. First, Section 2.2 provides a brief review of the

related literature. Then, in Section 2.3, we formally describe the specific models and

assumptions that motivate our analysis. Subsequent sections first introduce general

definitions or theorems and then apply them to the panel data binary choice models

we consider. In particular, Section 2.4 focuses on identification, Section 2.5 discusses

consistent estimation and rates of convergence, and Section 2.6 proposes a subsampling-

based algorithm for performing inference in a class of discrete models. We discuss

extensions to a class of panel data duration models in Section 2.7. Several Monte Carlo

experiments are described in Section 2.8 and Section 2.9 concludes.
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2.2 Related Literature

This chapter is related to several topics in the econometrics literature. First, it contributes

to a series of papers on criterion-function-based estimation and inference in partially

identified models beginning with Manski and Tamer (2002), who consider regression

models with interval data. They derive the sharp identified set in a semiparametric binary

response model with an interval-valued regressor under a conditional quantile restriction

and propose a set estimator which is defined as an appropriately-chosen contour set

of a modified maximum score objective function. This estimator is shown to be consis-

tent. In addition to nonparametric estimation, they also consider modified minimum

distance and maximum likelihood estimation of parametric models. Chernozhukov

et al. (2007) develop a general framework for criterion-function-based estimation of

partially identified models, obtain rates of convergence, and construct confidence re-

gions using subsampling. They apply their general results to models characterized by

moment equalities and inequalities. Romano and Shaikh (2008, 2009) further explore

subsampling-based inference in partially identified models. Bugni (2008), on the other

hand, introduces a bootstrap procedure for performing inference. He also works within

the criterion function framework and considers models characterized by a finite number

of moment equalities and inequalities.

A second, fundamentally different method for constructing confidence regions in

partially identified models is based on set expansion. Expanding the identified set re-

quires a better understanding of its boundary, which is easy to characterize, for instance,

when the identified set is an interval on the real line. See Horowitz and Manski (2000)

and Imbens and Manski (2004) for examples of the use of set expansion. Beresteanu

and Molinari (2008) extend this method to more general settings and develop inference

procedures based on the theory of random sets for partially identified models where

the identified set can be expressed as the Aumann expectation of a set valued random
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variable.

There is also a distinction made in the literature, pointed out by Imbens and Manski

(2004), between two possible objects of interest: the identified set itself, which is the

focus of the present chapter, and individual points within the identified set, including

the true parameter θ0. Stoye (2009) observes that the conditions of Imbens and Manski

(2004) implicitly assume the existence of a superefficient estimator of the width of the

identified interval. He revisits the problem under assumptions that both weaken and

remove this condition. Note that although some of the estimators proposed in this

chapter are superefficient, this arises due to the inherent properties of the model, not as

a result of an implicit assumption.

There are numerous other areas where partially identified econometric models have

arisen including, games with multiple equilibria (Tamer, 2003; Andrews, Berry, and Jia,

2004; Pakes, Porter, Ho, and Ishii, 2006; Aradillas-Lopez and Tamer, 2008; Ciliberto and

Tamer, 2009; Beresteanu, Molchanov, and Molinari, 2009), and models characterized by

conditional moment inequalities (Khan and Tamer, 2009; Kim, 2009; Andrews and Shi,

2009).

Of particular relevance to the present chapter is a growing literature on semipara-

metric binary response models with limited support regressors, typically involving either

discrete or interval-valued regressors. In terms of cross-sectional models, Bierens and

Hartog (1988) show that there are infinitely many single-index representations of the

mean regression of a dependent variable when all covariates are discrete. Horowitz (1998)

discusses the non-identification of single-index and binary response models with only

discrete regressors. Generic non-identification results such as these serve to motivate

our analysis.

Manski and Tamer (2002) and Magnac and Maurin (2008) consider partial identifica-

tion and estimation of binary choice models with an interval-valued regressor. This is a
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related, but different source of partial identification than those that we consider. Hon-

oré and Lleras-Muney (2006) estimate partially identified competing risk models with

interval outcome data and discrete explanatory variables. Komarova (2008) considers

partial identification in static binary response models with discrete regressors. Despite

using a different methodology, part of the present chapter is similar to her work in that

we consider a fixed effects panel extension of the static binary choice model with discrete

regressors. However, our analysis differs substantially in that we also consider models

with continuous regressors and analyze other unrelated models. Even similarities in the

binary choice case are limited since, for example, sharpness of the identified set does not

follow directly from the cross-sectional case since we must account for the distribution

of the fixed effect in the panel case.

Previous papers have considered partial identification in panel data models, with

different points of departure and quantities of interest. They highlight the importance of

studying the identifying power of various assumptions and provide practitioners with

methods to assess the robustness of their results. In particular, Honoré and Tamer (2006)

analyze dynamic random effects panel data models and discus how to calculate the

identified set using minimum distance, maximum likelihood, and linear programming

methods. Chernozhukov, Fernández-Val, Hahn, and Newey (2009) derive bounds on

marginal effects in nonlinear panel models with discrete regressors. Rosen (2009) consid-

ers partial identification in fixed effects panel data models under conditional quantile

restrictions.

This chapter is also related to the point-identified fixed effects panel data literature,

especially the semiparametric analysis of Manski (1987) for the basic fixed effects model

and Honoré and Kyriazidou (2000) for dynamic models with lagged dependent variables.

Our characterizations of the identified sets in the models we consider are based in part on

known necessary conditions for point identification established in these papers, however,
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establishing sharpness in partially identified models requires additional work.

2.3 Models and Assumptions

We consider panel data models where observations are available at times t = 0, . . . ,T−1 for

each individual. An individual in the model is described completely by a random vector

(y0, x0,u0, . . . , yT−1, xT−1,uT−1,c), where yt is a binary response variable in period t , xt is

a vector of k observed explanatory variables, ut is an unobserved disturbance in period

t , and c is a time invariant individual-specific unobserved effect. Let y ≡ (y0, . . . , yT−1)

and define x and u similarly. Let F denote the joint distribution of (y, x,u,c) and let P

denote the underlying probability measure generating F . In this case, Fy x is the joint

distribution of the observed variables. Our first objective is to combine our knowledge of

Fy x and a set of weak semiparametric assumptions on F to determine the identified set

of parameters of interest. We let θ denote the finite vector of parameters of interest and

we will denote the set of possible values of θ byΘ. We assume F is induced by some true

unknown parameter θ0.

In the models we consider, the distribution of the available regressors may not be rich

enough to point identify θ0 without additional assumptions. Therefore, we focus instead

on the identified set ΘI which contains θ0 itself, as well as all other parameter vectors

which cannot be distinguished from θ0. We address these issues in depth in Section 2.4.

Our goal is to combine data and prior knowledge about the joint distribution F to

learn about θ. First, note that we can always write F as the product of conditional

distributions F = Fy |xcuFu|xc Fc|xFx . In principle, Fx is observable and therefore any

restrictions on it should be determined by the data. Much of the literature assumes

assumes the presence of at least one component of x, say x1, which has full support

conditional on the remaining components x2, . . . , xk . Instead, we consider what can

be learned about θ without this assumption in order to develop methods which are
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appropriate to datasets with only discrete regressors, regressors with compact support,

or which otherwise fail to satisfy a full support condition. The present chapter focuses

on models for which Fy |xcu will be fully specified. For example, in panel data discrete

choice models, Fy |xcu is determined by an underlying latent variable model. Following

the fixed effects literature, Fc|x will not be restricted in any way. We will, however, restrict

Fu|xc with a standard stationarity assumption used in the literature.

2.3.1 Basic Fixed Effects Panel Data Model

We begin with the fundamental restriction on Fy |xcu which defines the basic linear-index

fixed effects binary response model.

Model 2.1 (Fixed Effects Model). For all t ,

(2.1) yt = 1{x ′
tβ+ c +ut ≥ 0}

where xt is a random variable with support X ⊆Rk , c is a real-valued random variable,

and θ = β is the parameter of interest, a member of some parameter space Θ ⊆ Rk . In

addition, for all x and c, Fut |xc satisfies the following:

a. Fut |xc = Fu0|xc for all t .

b. The support of ut is R.

Here, 1{·} denotes the indicator function, equal to one when the event {·} is true

and zero otherwise. Condition a above is a substantive restriction, necessary for the

estimation methods we introduce below. It requires ut to be is stationary conditional on

the identity of the panel member—that is, conditional on (x,c). Note, however, that it

does not restrict the form of serial dependence of ut in any way. Condition b is a regularity

condition which serves to ensure that for any c, the event y1 6= y0 occurs with positive

probability. Otherwise, the model provides no information about θ.
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2.3.2 Limited Support Regressors

Now, turning to Fx , we begin by reviewing existing conditions for point identification.

In the cross-sectional model with a conditional median restriction, analogous to the

fixed effects model above, Manski (1985) showed that a full rank, full support condition

on x was sufficient to point identify β up to scale. That is, he assumes that x is not

contained in a proper linear subspace of Rk and that the first component of x has positive

density everywhere on R for almost every value of the remaining components. The same

conditions were invoked by Han (1987) for the maximum rank correlation estimator and

Horowitz (1992) for the smoothed maximum score estimator. The panel version of this

assumption (for T = 2) was used by Manski (1987) to establish point identification of β

up to scale in a semiparametric fixed effects panel data model of the kind considered in

the present chapter.

Thus, modulo assumptions on the disturbances, point identification of β hinges on

the assumptions one is willing to make on the underlying data generating process. The

validity of a full support assumption depends critically on the particular explanatory

variables available for and relevant to a particular application. It is therefore up to the

researcher to determine whether it holds. Many common variables such as age, number

of children, years of education, and gender are inherently discrete and so in many cases

the decision will be clear. Similarly, many variables such as income have only partial

support on the real line (e.g., R+ ⊂ R). The estimators proposed in this chapter do not

distinguish between the point identified and partially identified cases. They exploit

additional information available from regressors with full support if available, but do not

require it.

We consider two alternatives to the full support condition. The first applies when xt

is a discrete random variable with finite support. The second applies when at least one

component of xt −xt−1 is continuous but may fail to have full support on R.
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Assumption 2.1 (Discrete Regressors). xt is a discrete random vector with finite support

X ⊂R. That is, |X | <∞, where |X | denotes the cardinality of the set X .

This assumption applies to models which include only genuinely discrete explanatory

variables, including indicator variables.

Assumption 2.2 (Continuous Regressor). The first component of the vector x1 −x0 has

positive density everywhere on a set W1 ⊆ R for almost every value of the remaining

components.

Note that this assumption does not rule out the possibility that W1 = R but it also

includes cases where the support x1 − x0 is bounded in some sense. Therefore, this

condition includes variables with one-sided support such as income, which is non-

negative. As we discuss in detail below, the implications of these two assumptions for

estimation are very different.

2.3.3 Lagged Dependent Variable Model

We also consider a lagged dependent variable model, an extension to the basic fixed effect

model which allows for state dependence. Since we do not observe yt in periods prior to

the sample, the model is left unspecified in the first period.

Model 2.2 (Lagged Dependent Variable Model). The choice probabilities in the first period

are P (y0 = 0 | x,c) = p0(x,c), where p0 is unknown and 0 < p0(x,c) < 1 for all x and c. In

subsequent periods t = 1, . . . ,T ,

(2.2) yt = 1{x ′
tβ+γyt−1 + c +ut ≥ 0}

where xt is a random vector with support X , c is a real-valued random variable, and

θ = (β,γ) are the parameters of interest which lie in some parameter space Θ⊆ Rk+1. In

addition, the unobservables ut are serially independent, identically distributed with cdf

Fut |xc = Fu0|xc for all t , and have full support on R.
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Note that in this model, as opposed to the basic fixed effects model, we do not allow

serial correlation in the disturbances. The full support assumption on ut is a regularity

condition which guarantees that certain events used for estimation occur with positive

probability.

2.3.4 Panel Data Duration Models

We also consider estimation of fixed effects panel data versions of a general class of

transformation models.

Model 2.3 (Panel Data Transformation Model). For all t ,

(2.3) Λ(yt ) = x ′
tβ+ c +ut

where Λ is a strictly monotonic function, xt is a random vector with support X , c is a

real-valued random variable, and θ = β is the parameter of interest which lies in some

parameter space Θ ⊆ Rk . The disturbances ut are serially independent with identical

distribution Fu0|xc and independent of x.

Here, t denotes a single spell. The covariates xt remain constant within a spell,

but vary may across spells. Again, c is a time-invariant individual-specific unobserved

variable.

This model is quite general and contains many common duration models in their

panel data forms with individual specific time invariant unobserved heterogeneity. For

example, the generalized accelerated failure time (GAFT) model of Ridder (1990) is of this

form. The mixed proportional hazards model arises when ut has the minus extreme value

distribution with Fu0|xc (u) = 1− exp(−eu) and Λ is the log integrated baseline hazard

function
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2.4 Identification

We begin our identification analysis by developing a broad definition of the identified

set in a generic regression model which can later be applied to the specific models we

consider. Let Fy x denote the joint distribution of (y, x), the observable variables, and v , a

vector of unobservables. In Model 2.1, for example, we have v = (c,u). Let θ be a vector of

parameters of interest and letΘ be the parameter space, the set of all feasible values of θ.

Assume that we observe the marginal distributions Fy |x and Fx , but not Fv . The unknown

primitives of the model are thus θ and Fv . Let π(· | θ,Fv , x) denote the distribution of

y | x implied by the model under θ and Fv . The set of primitives that are observationally

equivalent to Fy |x is thus

Ψ(Fy x) = {(θ,Fv ) :π(y | θ,Fv , x) = Fy |x(y | x) Fx −a.s., y −a.e.}.

Definition. The identified set for θ given Fy |x is

(2.4) ΘI (Fy x) = {
θ ∈Θ : ∃Fv such that (θ,Fv ) ∈Ψ(Fy x)

}
.

This set is sharp by definition in the sense that each θ ∈ΘI (Fy x ) is consistent with Fy x

and cannot be rejected given the maintained assumptions of the model. Henceforth, we

simply writeΘI , with the dependence on Fy x understood.

We also assume throughout that the model is correctly specified: ΘI 6= ;. See Ko-

marova (2008) for a discussion of misspecification in terms of the closely-related static

binary choice model.

Note that we do not rule out cases where point identification obtains. If the model is

actually point identified, then our estimates will converge to a point. In practice, models

with richer regressor support will have a smaller identified set. OurΘI characterizes this

set, but when x1 − x0 has richer support, ΘI naturally becomes smaller. For example,

in the fixed effects model with discrete regressors, considered below, the number of
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equality constraints definingΘI increases with the cardinality of the support of x1 −x0.

Intuitively speaking, when a component is continuous, but perhaps bounded, the number

of equalities becomes infinite. When a component has full support, ΘI collapses to a

singleton. This may happen in other situations as well.

2.4.1 Fixed Effects Model

In Model 2.1, the primitives of the model are β, Fu0|xc , and Fc|x . We now provide a

characterization of ΘI in terms of observables and show that it is equivalent to the

identified set defined above. Since c is unobserved, in order to estimate β we must find

implications of the model that are independent of c.

Our identification analysis follows that of Manski (1987). Although our characteriza-

tion of the identified set is based on a previously known necessary condition for point

identification, our characterization of the identified set and the conclusion that it is sharp

in this setting are new. The following theorem provides a tractable representation of the

identified set,ΘI , in terms of observables: P (y0 = 1 | x), P (y1 = 1 | x), and Fx .

Theorem 2.1. In Model 2.1,

(2.5) ΘI =
{
θ ∈Θ : sgn

(
P (y1 = 1 | x)−P (y0 = 1 | x)

)= sgn
(
(x1 −x0)′β

)
Fx −a.s.

}
.

Proof. See Appendix C.4. ■

Henceforth, in discussions of Model 2.1, we use (2.5) to characterize the identified set

rather than the general definition given in (2.4).

2.4.2 Lagged Dependent Variable Model

In this section we turn to the identification of Model 2.2. Our analysis follows along the

lines of Chamberlain (1985) and Honoré and Kyriazidou (2000) and we focus on the case

where T = 4. Again, although we build on a previously established necessary condition
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for identification in point identified models, our characterization of the identified set in

the present partially identified model is new.

The identification of the model is based on comparing observations for which we

observe the same outcome in periods 0 and 3 but different outcomes in periods 1 and 2.

Consider the following events for given values of d0,d3 ∈ {0,1}:

A = {y0 = d0, y1 = 0, y2 = 1, y3 = d3},

B = {y0 = d0, y1 = 1, y2 = 0, y3 = d3}.

Letting G denote Fu0|xc for simplicity, the corresponding choice probabilities are:

P (A | x,c, x2 = x3) = p0(x,c)1−d0 (1−p0(x,c))d0G(−x ′
1β−γd0 − c)

× [
1−G(−x ′

2β− c)
]

G(−x ′
2β−γ− c)1−d3

× [
1−G(−x ′

2β−γ− c)
]d3 ,

P (B | x,c, x2 = x3) = p0(x,c)1−d0 (1−p0(x,c))d0
[
1−G(−x ′

1β−γd0 − c)
]

×G(−x ′
2β−γ− c)G(−x ′

2β− c)1−d3

× [
1−G(−x ′

2β− c)
]d3 .

Note that the latter probability is nonzero since ut has full support on R for all t and since

p0(x,c) > 0. Dividing, we have

P (A | x,c, x2 = x3)

P (B | x,c, x2 = x3)
= G(−x ′

1β−γd0 − c)

G(−x ′
2β−γ− c)

× 1−G(−x ′
2β− c)

1−G(−x ′
1β−γd0 − c)

×
[

G(−x ′
2β−γ− c)

G(−x ′
2β− c)

]1−d3

×
[

1−G(−x ′
2β−γ− c)

1−G(−x ′
2β− c)

]d3

.

When d3 = 0,

P (A | x,c, x2 = x3)

P (B | x,c, x2 = x3)
= G(−x ′

1β−γd0 − c)

G(−x ′
2β−γd3 − c)

× 1−G(−x ′
2β−γd3 − c)

1−G(−x ′
1β−γd0 − c)

,

and when d3 = 1,

P (A | x,c, x2 = x3)

P (B | x,c, x2 = x3)
= G(−x ′

1β−γd0 − c)

G(−x ′
2β−γd3 − c)

× 1−G(−x ′
2β−γd3 − c)

1−G(−x ′
1β−γd0 − c)

.
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We have used the fact that when d3 = 0, γd3 = 0, and when d3 = 1, γd3 = γ. In both cases,

by the monotonicity of G ,

P (A | x,c, x2 = x3) ≥ P (B | x,c, x2 = x3) ⇐⇒ −x ′
1β−γd0 − c ≥−x ′

2β−γd3 − c,

or equivalently, since this event is independent of c,

sgn(P (A | x, x2 = x3)−P (B | x, x2 = x3)) = sgn
(
(x2 −x1)′β+γ(d3 −d0)

)
.

This condition provides the foundation for our characterization of the identified set

and the results of the derivation above are formalized in the following theorem.

Theorem 2.2. In Model 2.2,

(2.6) ΘI ⊆ Θ̃I =
{
θ ∈Θ : sgn(P (A | x, x2 = x3)−P (B | x, x2 = x3))

= sgn
(
(x1 −x2)′β+γ(d3 −d0)

)
Fx −a.s. ∀d0,d3 ∈ {0,1}

}
.

2.5 Consistent Estimation

In the remainder of the chapter we focus on criterion-function-based estimation and

inference. In this section, we first propose consistent estimators for the identified set

in a class of models that satisfy a set of general conditions. We also provide rates of

convergence for models with objective functions that are either step functions in the limit

(e.g., Model 2.1 with discrete regressors) or that are bounded by a polynomial in d(θ,ΘI )

on regions away from the identified set (e.g., Model 2.1 with a continuous regressor). In

both cases our conditions are new. In the latter case we provide new conditions which

allow analysis of irregular models with non-standard rates of convergence. We then verify

the conditions of the general theorems for the specific models we consider.

First, we assume that an iid sample is available for use in estimation.

Assumption 2.3 (Sampling). We observe a iid sample {(xi ,0, . . . , xi ,T−1, yi ,0, . . . , yi ,T−1)}n
i=1

drawn from the joint distribution Fy x .
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Furthermore, we assume the existence of a population criterion function Q and a

finite sample objective function Qn . These functions must satisfy certain conditions

which are stated formally below. A requirement of the population criterion function Q

is that the set of parameters at which it attains its maximum must equal the identified

set. The analogy principle then suggests estimating ΘI using the set of maximizers of

the sample objective function Qn . However, in general, taking only the set of maximizers

may result in an inconsistent estimator. Instead, we define the estimator Θ̂n(τn) to be a

contour set of Qn for some non-negative sequence τn :

(2.7) Θ̂n(τn) ≡
{
θ ∈Θ : Qn(θ) ≥ sup

Θ
Qn −τn

}
.

The “slackness” sequence τn was introduced by Manski and Tamer (2002) and has been

used by Chernozhukov et al. (2007), Bugni (2008), Kim (2009), and others. Below, we

determine the properties of the sequence τn such that Θ̂n is a consistent estimator ofΘI .

To discuss consistency and convergence, we must be precise about which metric

space we are working in. We define convergence in terms of the Hausdorff distance, a

generalization of Euclidean distance for sets, on the space of all subsets ofΘ. Let (Θ,d) be

a metric space where d is the standard Euclidean distance. For a pair of subsets A,B ⊂Θ,

the Hausdorff distance between A and B is

(2.8) dH (A,B) = max

{
sup
θ∈B

d(θ, A), sup
θ∈A

d(θ,B)

}
,

where, in a slight abuse of notation, d(θ, A) ≡ infθ′∈A d(θ,θ′) is the distance between a

point θ and a set A. This is illustrated in Figure 2.1.

2.5.1 Consistency in General Models

This section develops generic consistency results and rates of convergence. In the fol-

lowing sections, the conditions of these theorems will be verified in the context of the
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supθ∈B d(θ, A)

supθ∈A d(θ,B)

A

B

FIGURE 2.1: Hausdorff Distance

specific models discussed above. We first assume the existence of a population objective

function Q(θ) that fully and exactly characterizes the identified set ΘI . Note that once

ΘI is found, constructing Q is straightforward. Using the analogy principle, we then use

the finite sample objective function Qn(θ) to obtain a set estimator Θ̂n . Finally, we shall

prove that the sequence of set estimates Θ̂n converges in probability to the identified set

ΘI in the Hausdorff metric and obtain rates of convergence under different assumptions

on the curvature of the objective function.

Assumption 2.4. Suppose the following conditions are satisfied:

a. Θ is a nonempty subset of Rk and is compact with respect to the Euclidean metric.

b. There exists a function Q :Θ→R such that argmaxΘQ =ΘI .

c. Q has a well-separated maximum in that for all ε > 0 there exists a δε > 0 such that

supΘ\ΘεI
Q ≤ supΘQ −δε.

d. There exists a function Qn :Θ×X T ×Y T →R, denoted Qn(θ), which converges uni-

formly in probability to Q at the 1/bn rate. That is, supΘ |Qn −Q| =Op (1/bn) for some

sequence bn →∞.
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ΘεI

ΘI

Θ̂n

FIGURE 2.2: One-sided consistency without slackness

Part c is a regularity condition which rules out pathological cases that can arise

without a continuity assumption. It is satisfied in the models we consider, for example,

when Q is continuous or when Q is a step function.

Theorem 2.3 (Consistency in General Models). Suppose Assumption 2.4 holds.

1. If τn
p→ 0, then supθ∈Θ̂n

d(θ,ΘI )
p→ 0.

2. If τn
p→ 0 and τnbn

p→∞, then limn→∞ P (ΘI ⊆ Θ̂n) = 1.

If both conditions hold then dH (Θ̂n ,ΘI )
p→ 0.

Proof. See Appendix C.2. ■

Note that the first conclusion of Theorem 2.3 actually holds in general without slack-

ness (i.e., with τn = 0). This is formalized in the following corollary.

Corollary (One-Sided Consistency Without Slackness). Suppose Assumption 2.4 holds. If

τn = 0, then supθ∈Θ̂n
d(θ,ΘI )

p→ 0.

This corollary guarantees that asymptotically, without slackness, Θ̂n is close toΘI . The

converse need not be true in general since supθ∈ΘI
d(θ,Θ̂n) may be large, as illustrated by

Figure 2.2.
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Q(θ)

FIGURE 2.3: Infinite curvature of Q(θ)

2.5.2 Rates of Convergence in General Models

The rate of convergence of the Hausdorff distance dH (Θ̂n ,ΘI ) is the slowest rate at which

the component distances supθ∈ΘI
d(θ,Θ̂n) and supθ∈Θ̂n

d(θ,ΘI ) converge to zero. The

second part of Theorem 2.3 establishes that with only Assumption 2.4, the first distance

converges arbitrarily fast to zero in probability (because with probability approaching

one,ΘI ⊆ Θ̂n). The rate of convergence of the second component depends on the shape

of the objective function. In the specific models we consider this shape depends in

turn on the support of xt . In this section, however, we prove general results by making

assumptions about Q and Qn . In later sections we provide conditions on the support of

xt that imply the required properties of these functions.

In particular, we show that when Q has a discrete jump at the boundary ofΘI , then

Θ̂n converges arbitrarily fast in probability toΘI . That is, for any sequence rn , including

powers of n and exponential forms, rndH (Θ̂n ,ΘI )
p→ 0. This result also implies that

Θ̂n =ΘI with probability approaching one.

On the other hand, when Qn(θ) is stochastically bounded from above by a polynomial

in d(θ,ΘI ), we show that the rate of convergence of supθ∈Θ̂n
d(θ,ΘI ) depends on both the

curvature of the bounding polynomial and the rate at which τn converges to zero.

We begin with models that satisfy the following assumption, where Q exhibits a

discrete jump atΘI :
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Assumption 2.5 (Existence of a Constant Majorant). There exists a positive constant δ

Q(θ) ≤ sup
Θ

Q −δ

for all θ ∈Θ\ΘI .

When the above condition holds, Θ̂n converges arbitrarily fast to ΘI . This result is

due to the discrete jump in Q at the boundary ofΘI . As we will see later, this can happen

when the regressors in a binary response model have discrete support. We present the

theorem first, followed by a discussion of the intuition.

Theorem 2.4. Suppose Assumptions 2.4 and 2.5 hold. If τn
p→ 0 and τnbn

p→∞, then for

any sequence rn , rndH (Θ̂n ,ΘI )
p→ 0.

Proof. See Appendix C.2 ■

Figure 2.4 illustrates the notion that, due to the discrete nature of Qn(θ), there are

only a finite (though potentially very large) number of possible estimates Θ̂n . For the

realization of Qn in the figure, the contour sets determine a partition of Θ into four

disjoint sets: Θ =Θ1 ∪Θ2 ∪Θ3 ∪Θ4. In the present framework, where Θ̂n is defined by

a threshold τn , so that it includes all values of θ for which Qn(θ) ≥ supQn −τn , there

are four possible estimates: Θ2, Θ2 ∪Θ3, Θ2 ∪Θ3 ∪Θ1, and Θ2 ∪Θ3 ∪Θ1 ∪Θ4. In higher

dimensions, and for large sample sizes, the combinatorics of the problem dictate that

the number of possibilities becomes large very quickly. On the other hand, as n →∞,

the contour sets of Qn approach those of Q, and the set of possible estimates contains

a set equal toΘI with probability approaching one. Intuitively, as we obtain more data,

we are able to detect which values of θ belong toΘI with increasing accuracy since there

is a discrete jump in Q(θ) for all θ not in ΘI . Furthermore, since τn converges to zero

in probability slower than Qn converges uniformly to Q, Θ̂n converges to ΘI . This is

illustrated in Figure 2.5.
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FIGURE 2.4: A realization of Qn and the partition ofΘ it generates

Q(θ) Qn(θ)

Op (1/bn)

Θ

supQn

ΘI

Θ̂n

τn

FIGURE 2.5: Convergence of Qn to Q with bn and τn

We now consider models for which Q and Qn may be smooth, but which satisfy a

curvature condition such that, outside of a shrinking neighborhood ofΘI , Qn is bounded

in probability by a polynomial in the distance from the identified set. This condition is

analogous to conditions used to obtain rates of convergence in point identified models.

Assumption 2.6 (Existence of a Polynomial Majorant). There exist positive constants

(δ,κ,γ1,γ2) with γ1 ≥ γ2 such that for any ε ∈ (0,1) there are (κε,nε) such that for all

n ≥ nε,

Qn(θ) ≤ sup
Θ

Qn −κ · (d(θ,ΘI )∧δ)γ1

uniformly on {θ ∈Θ : d(θ,ΘI ) ≥ (κε/bn)1/γ2 } with probability at least 1−ε.
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Theorem 2.5. Suppose Assumptions 2.4 and 2.6 hold. If τn
p→ 0 and τnbn

p→ ∞, then

dH (Θ̂n ,ΘI ) =Op (τ1/γ2
n ).

Proof. See Appendix C.2 ■

2.5.3 Fixed Effects Binary Choice Model

In this section we focus on consistent estimation of Model 2.1. We first propose popula-

tion and finite sample criterion functions and show that the population criterion function

characterizes the identified set exactly. Then, we verify the conditions of Theorem 2.3,

making use of empirical process techniques, to show that the estimator is consistent.

Finally, we obtain the rate of convergence in two cases: models with only discrete regres-

sors, under Assumption 2.1, and models with a continuous regressors, under assumption

Assumption 2.2. In these cases we verify, respectively, the assumptions for Theorem 2.4

and Theorem 2.5.

Objective Function

The population objective function we propose for use in estimating Model 2.1 is the

maximum score objective function of Manski (1987), a panel data analog of the cross-

sectional maximum score objective function of Manski (1975, 1985):

Q(θ) = E
[
(y1 − y0)sgn

(
(x1 −x0)β

)]
.

The corresponding finite sample analog objective function is

Qn(θ) = 1

n

n∑
i=1

(yi 1 − yi 0)sgn
(
(xi 1 −xi 0)β

)
.

Note that although essentially the same objective function is used for maximum score es-

timation in the point identified case, the set estimators proposed here are fundamentally

different since they are defined as contour sets of this function. Also, note that Q(θ) and
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Qn(θ) effectively condition on the event y1 6= y0. This does not result in a loss of efficiency

since, as established by Theorem 2.1, the event y1 = y0 is not informative about θ.

Lemma 2.1 below establishes the equivalence between the identified setΘI and the

set of maximizers of the population objective function.

Lemma 2.1. Under the maintained assumptions of Model 2.1,

argmax
θ∈Θ

Q(θ) =ΘI .

Proof. See Appendix C.4. ■

Consistency

We verify each of the conditions of Assumption 2.4 in order to use the general consistency

result of Theorem 2.3. In doing so, we will make use of empirical process concepts such

as the subgraph of a function, Vapnik-Chervonenkis (VC) classes of sets, and Euclidean

classes of functions. We refer the reader to Section 2 of Pakes and Pollard (1989) for

definitions and further details. Essentially, we construct a class of functions F , indexed

by Θ, such that Q(θ) = P fθ and Qn(θ) = Pn fθ for fθ ∈ F . We begin by defining F and

establishing that it is Euclidean.

Lemma 2.2. Let f (z, w,θ) = z · (2 ·1{w ′β≥ 0}−1). Then, the class F = { f (·, ·,θ) : θ ∈Θ} is

Euclidean for the constant envelope F = 1.

Proof. See Appendix C.4. ■

Now that we have established that the objective function is generated by an underlying

Euclidean class of functions, we can use tools from empirical process theory to establish

the uniform convergence required for consistency. In particular, we make use of a result

from Kim and Pollard (1990) to establish uniform convergence of Qn to Q at the rate 1/bn

with bn = n−1/2.
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Lemma 2.3 (Uniform Convergence of Qn to Q). Under Assumption 2.3,

sup
θ∈Θ

|Qn(θ)−Q(θ)| =Op (n−1/2).

Proof of Lemma 2.3. F is Euclidean, so it is also manageable in the sense of Pollard

(1989) (cf. Pakes and Pollard, 1989, p. 1033). Since
∫

F 2 dP = 1 <∞, the result follows

from Corollary 3.2 of Kim and Pollard (1990). ■

Finally, combining the above results, we can apply Theorem 2.3 to establish consis-

tency of Θ̂n for Model 2.1.

Theorem 2.6. Suppose Assumption 2.3 holds in Model 2.1. If τn
p→ 0, and τnn1/2 p→∞,

then dH (Θ̂n ,ΘI )
p→ 0.

Proof. See Appendix C.4. ■

Rates of Convergence

The rate of convergence of Θ̂n to ΘI in Model 2.1 depends on the support of xt . We

obtain the rate under both Assumption 2.1 and Assumption 2.2. We show that when the

support of xt is finite, Θ̂n converges arbitrarily fast in probability to ΘI . On the other

hand, when at least one component of x2 −x1 is continuous, the estimator can achieve

rates arbitrarily close to n−1/3. The rate depends on τn and, although the exact rate n−1/3

is not achievable, in practice, one can achieve convergence close to n−1/3 by choosing,

for example, τn ∝p
lnn/n.

Discrete Regressors Here, we verify Assumption 2.5, the constant majorant condition, in

the context of Model 2.1. We can then apply Theorem 2.4 to show that in this case, Θ̂n

converges arbitrarily fast toΘI .
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When the support of (x0, x1) is a finite set, henceforth X , the objective function Q(θ)

can be rewritten as follows:

Q(θ) = Ex Ey |x
[
(y1 − y0)sgn

(
(x1 −x0)′β

)]
= ∑

x∈X

P (x)
[
P (y1 = 1 | x)−P (y0 = 1 | x)

]
sgn

(
(x1 −x0)′β

)
.

Therefore, Q(θ) is a step function and there exists a real number δ> 0 such that for all

θ ∈Θ\ΘI , Q(θ) ≤ supΘQ −δ. In particular, δ is bounded below by the smallest nonzero

value of P (x)
[
P (y1 = 0 | x)−P (y0 = 1 | x)

]
for any x ∈X . Thus, applying Theorem 2.4, we

have the following result.

Theorem 2.7. Suppose that Assumption 2.1 holds in Model 2.1. For any sequence τn such

that τn
p→ 0 and n1/2τn

p→∞, then Θ̂n converges toΘI arbitrarily fast in probability in the

Hausdorff metric. That is, for any sequence rn , rndH (Θ̂n ,ΘI )
p→ 0.

Continuous Regressors The properties of the maximum score objective function in the

continuous covariate case have been studied carefully by Kim and Pollard (1990), Abre-

vaya and Huang (2005), and others. We follow Abrevaya and Huang (2005) in restricting

the coefficient on one component of x, henceforth xd , to be either 1 or −1 and consider

β to be a vector in Rk−1. Let x̃ denote the remaining components of x.2

Kim and Pollard’s heuristic for cube root convergence translates almost directly to

the set identified case. Let Γ(θ) ≡ Q(θ)−Q(θ0) and Γn(θ) ≡ Qn(θ)−Qn(θ0). We can

decompose Γn(θ) into two components, a trend and a stochastic component: Γn(θ) =
Γ(θ)+ [Γn(θ)−Γ(θ)]. The limiting objective function is approximately quadratic near the

identified set: Γ(θ) = O(d 2(θ,ΘI )). The variance of the empirical process component

is Op (d(θ,ΘI )/n). When the trend overtakes the noise, Γn very likely to be below the

2 Alternatively, Kim and Pollard (1990) work with parameters in unit sphere Sk−1 ≡ {x ∈Rk : ‖x‖ = 1} in Rk

and assume that the angular component of x has continuous, bounded density with respect to the surface
measure on Sk−1.
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maximum. Thus, the maximum is likely to occur when the standard deviation of the

random component is of the same magnitude or larger than the trend. That is, when√
d(θ,ΘI )/n > d 2(θ,ΘI ), or, d(θ,ΘI ) < n−1/3. Therefore, Θ̂n the set of near maximizers of

Γn , should be within an n−1/3 neighborhood ofΘI . In the set identified case, this is only

one component of the distance. The other component, however, was shown to converge

arbitrarily fast and therefore does not hinder the rate of convergence.

In terms of Theorem 2.5, the above argument corresponds to the case where γ1 = 2

and γ2 = 3/2. Since τn can be chosen arbitrarily close to n−1/2, the rate of convergence

can be made arbitrarily close to (n−1/2)1/γ2 = n−1/3. The following theorem formalizes this

result. We also need several assumptions on the distribution of x, which are intentionally

close to those made by Abrevaya and Huang (2005) in analyzing the cross-sectional model

in the point identified case.

Let w ≡ x1−x0 and v ≡ u1−u0. Let F and f denote cdf and density of v and let G and

g denote the cdf and density of w . Finally, let w1 denote the first component of w and let

w̃ denote the remaining k −1 components.

Theorem 2.8. Suppose that Assumptions 2.2 and 2.3 hold in Model 2.1. In addition,

suppose the following:

a. The components of w̃ and w̃ w̃ ′ have finite first absolute moments.

b. The function g ′(w1 | w̃) exists and, for some M > 0,
∣∣g ′(w1 | w̃)

∣∣< M and
∣∣g (w1 | w̃)

∣∣<
M for all w1 and almost every w̃.

c. For all v in a neighborhood of 0, all w1 in a neighborhood around −w̃ ′β0, almost every

w̃, and some M > 0, the function f (v | w̃ , w1) exists and f (v | w̃ , w1) < M.

d. For all v in a neighborhood of 0, all w1 in a neighborhood of −w̃ ′β0, almost every w̃,

and some M > 0, the function ∂F (v | w̃ , w1)/∂w1 exists and |∂F (v | w̃ , w1)/∂w1| < M.
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e. ΘI is contained in the interior ofΘ.

f. The matrix V (θ) ≡ E
[
2 f (0 | w̃ ,−w̃ ′β)g (−w̃ ′β | w̃)w̃ w̃ ′] is positive semidefinite for all

θ ∈ bd(ΘI ).

Then for any sequence τn such that τn
p→ 0 and n1/2τn

p→∞, dH (Θ̂n ,ΘI ) =Op (τ2/3
n ).

Proof. See Appendix C.4 ■

2.5.4 Lagged Dependent Variable Model

In this section, we propose a consistent estimator for Model 2.2. The proofs of the results

in this section largely parallel those for the fixed effects model and therefore all proofs are

reserved for Section C.5. For simplicity we only consider the lagged dependent variable

model under Assumption 2.1 (discrete regressors). An extension to Assumption 2.2 (a

continuous regressor) would involve the use of a kernel as in Honoré and Kyriazidou

(2000), along with the associated assumptions. The kernel is used to condition on the

event x3 = x2 and x3 −x2 is assumed to support in a neighborhood of zero. In the case of

discrete regressors, this conditioning is accomplished with a simple indicator function.

We use the population objective function

Q(θ) = E
[
1{x2 = x3} · (y2 − y1) · sgn((x2 −x1)′β+γ(y3 − y0))

]
.

This function was used by Honoré and Kyriazidou (2000) for estimation in point identified

models. The finite sample objective function is

Qn(θ) = 1

n

n∑
i=1

1{xi 2 = xi 3} · (yi 2 − yi 1) · sgn((xi 2 −xi 1)′β+γ(yi 3 − yi 0)).

The set of maximizers of Q is indeed a sharp characterization of the identified set, as

established by the following Lemma.

Lemma 2.4 (Objective Function Representation of Θ̃I ). Under the maintained assump-

tions of Model 2.2, argmaxθ∈ΘQ(θ) = Θ̃I (as defined in Theorem 2.2).
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Proof. See Appendix C.5. ■

Next, we verify each of the conditions of Assumption 2.4 in order to use Theorem 2.3

to establish consistency of the estimator Θ̂n for Θ̃I . As in the fixed effects model, we

begin by establishing that the objective function belongs to a Euclidean class of functions

indexed by θ so that we can leverage results from empirical process theory.

Lemma 2.5 (Euclidean Property). The class of functions F = { fθ : θ ∈Θ}, where fθ(x, y) =
1{x2 = x3}(y2 − y1)

[
2 ·1{(x2 −x1)′β+γ(y3 − y0) ≥ 0}−1

]
, is Euclidean for the constant en-

velope F = 1.

Proof. See Appendix C.5. ■

As before, the Euclidean property allows us to immediately establish uniform conver-

gence and the P-Donsker property which we will in turn use to show consistency and,

later, the conditions required by our inference procedure.

Theorem 2.9. Suppose Assumption 2.3 holds in Model 2.2. If τn
p→ 0 and τnn1/2 p→∞,

then dH (Θ̂n ,Θ̃I )
p→ 0.

Proof. See Appendix C.5. ■

Additionally, when Assumption 2.1 is satisfied, Q is again a step function. The argu-

ment is analogous to that for the basic fixed effects model and is reserved for the proof.

Thus, applying Theorem 2.4, we again find that Θ̂n converges arbitrarily fast to Θ̃I in

probability.

Theorem 2.10. Suppose that Assumptions 2.1 and 2.3 hold in Model 2.2. If τn
p→ 0 and

n1/2τn
p→∞, then for any sequence rn , rndH (Θ̂n ,Θ̃I )

p→ 0.

Proof. See Appendix C.5. ■
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2.6 Confidence Regions

Confidence regions forΘI can be formed using contour sets of Qn in much the same way

as we defined the estimator Θ̂n in (2.7). Let Cn(κn) denote the set

(2.9) Cn(κn) = {θ ∈Θ : bnQn(θ) ≥ sup
Θ

bnQn −κn}.

Inference is based on the statistic

Qn ≡ sup
Θ

bnQn − inf
ΘI

bnQn

and the following equivalence:

{ΘI ⊆Cn(κn)} ⇐⇒ {Qn ≤ κn}.

The sets Cn(κn) defined in (2.9) have the same form as (2.7), except that the objective

function is now normalized by bn , the rate of uniform convergence. We apply this

normalization in order to use subsampling to approximate quantiles of Qn . As a result,

the sequence κn is analogous to bnτn . Thus, while in Theorem 2.3 we required τn
p→ 0

and bnτn →∞ for consistent estimation using (2.7), we could obtain consistent estimates

with (2.9) if κn
p→∞ and κn/bn

p→ 0. That is, κn approaches infinity at a rate slower than

that of bn .

For smooth models, where Θ̂n converges at a polynomial rate and where the limiting

distribution of Qn is continuous, Chernozhukov et al. (2007) provide methods of con-

structing confidence regions which coverΘI asymptotically with probability 1−α using

subsampling. Their results are not applicable to the models we consider with discrete

regressors due to the discrete nature of Qn . Instead, in the following sections, we provide

conditions under which one can obtain conservative asymptotic confidence regions with

coverage probability at least 1−α.
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Our confidence regions are based on estimates of quantiles of Q. To understand

why the confidence regions we propose are conservative, consider the cdf and quantile

functions of a generic discrete random variable X depicted in Figure 2.6. There, for

example, the 0.50 and 0.75 quantiles are equal. If we use the x2, the 0.50 quantile in an

attempt to form a 50% confidence region, the coverage will actually be over 75%.

2.6.1 Confidence Regions in General Discrete Models

For now, we assume the availability of a consistent estimate ĉn of the corresponding 1−α
quantile of Q, the limiting distribution of Qn . In the following section, we describe an

algorithm to construct such a sequence. Large sample inference with discrete regressors

is based on the following lemma.3 We require only that Qn has a nondegenerate limiting

distribution.

Assumption 2.7 (Convergence of Qn). Suppose that P {Qn ≤ c} → P {Q ≤ c} for each c ∈R,

where Q has a nondegenerate distribution function on R.

Lemma 2.6. Suppose Assumption 2.7 holds. Then, for any sequence ĉn such that ĉn
p→

c(1−α) ≡ inf{c : P {Q ≤ c} ≥ 1−α} for some α ∈ (0,1),

P {ΘI ⊆Cn(ĉn)} ≥ (1−α)+op (1).

Proof. See Appendix C.3. ■

An appropriate sequence ĉn , and corresponding conservative confidence regions

Cn(ĉn) with asymptotic coverage probability of at least 1−α, can be constructed using

the following algorithm.

3 Lemma 2.6 is the discrete-distribution analog of Lemma 3.1 of Chernozhukov et al. (2007). The funda-
mental difference is that here, the distribution of Q may not be continuous. As a result, our confidence
regions are conservative since we cannot place an upper bound on the coverage probability.
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FIGURE 2.6: Cumulative distribution and quantile functions for a discrete distribution

Algorithm 2.1. 1. Choose a subsample size m < n such that m →∞ and m/n → 0 as

n →∞. Let Mn denote the number of subsets of size m and let κn be any sequence

such that such that Cn(κn) is a consistent estimator ofΘI (e.g., κn ∝p
lnn).

2. Compute ĉn as the 1−α quantile of the values {Q̂n,m, j }Mn
j=1 where

Q̂n,m, j ≡ sup
θ∈Θ

bmQn,m, j (θ)− inf
θ∈Cn (κn )

bmQn,m, j (θ)

and Qn,m, j denotes the sample objective function constructed using the j -th sub-

sample of size m.

3. Report Cn(κn) as a consistent estimate of ΘI and Cn(ĉn) as a conservative confi-

dence region.

The following theorem addresses the validity of this algorithm for obtaining the

desired sequence ĉn . Let an ↓a denote a sequence which eventually equals a, or in other

words, a sequence which converges arbitrarily fast to a.4

Assumption 2.8 (Approximability of Qn). LetΘn be a sequence of subsets ofΘ such that

dH (Θn ,ΘI ) ↓ 0 in probability and let Q′
n = supΘbnQn − infΘn bnQn . Then P (Q′

n ≤ c) →
4 See Appendix C.1.1 for a precise definition of an ↓a, both deterministically and in probability.
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P (Q ≤ c) for each c ∈R.

Theorem 2.11. Suppose that Assumptions 2.3, 2.4, 2.5, 2.7 and 2.8 hold and that m →∞,

and m/n → 0 as n →∞. Let 1−α denote the desired coverage level, where the distribution

of Q is continuous at c(1−α). Then, ĉn
p→ c(1−α).

Proof. See Appendix C.3 ■

2.6.2 Fixed Effects Binary Choice Model

In this section we verify the conditions required for constructing confidence regions in

the context of Model 2.1 under Assumption 2.1 (discrete regressors). The following lemma

verifies both the convergence of Qn required by Assumption 2.7 and the approximability

of Qn based on a sequence of estimates Θ̂n , required by Assumption 2.8. Thus, this result

establishes the validity of Algorithm 2.1 for constructing conservative confidence regions.

Lemma 2.7. In Model 2.1 under Assumptions 2.1, and 2.3, both Assumptions 2.7 and 2.8

are satisfied.

Proof. See Appendix C.4 ■

2.6.3 Lagged Dependent Variable Model

For the case of Model 2.2 with discrete regressors, the arguments to establish the validity

of the subsampling procedure of Algorithm 2.1 are identical to those of the previous

section for Model 2.1. This follows since both objective functions are of the same form in

the underlying functions fθ and both functions satisfy Assumption 2.5. That is, in both

cases, for the appropriate class of functions F = { fθ : θ ∈ Θ}, we have Q(θ) = P fθ and

Qn(θ) = Pn fθ. Since both classes of functions F are Euclidean, it follows that Lemma 2.7

also applies to Model 2.2 under Assumption 2.1.
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2.7 Panel Data Duration Models

This section considers Model 2.3 (defined on page 60), the fixed effects panel data du-

ration model. Identification of this model and similar ones has been considered by

a number of authors under a wide variety of conditions. For example, Ridder (1990)

considers the nonparametric identification of the generalized accelerated failure time

(GAFT) model, which contains both the mixed proportional hazards (MPH) model and

the accelerated failure time (AFT). He shows that GAFT models are nonparametrically

identified (up to an obvious normalization) with continuous duration data (and con-

tinuous covariates). Furthermore, it is identified even with discrete duration data with

an additional parametric assumption on the regression function. We consider a similar

model, when the observed durations are continuous but the covariates are discrete. Han

(1987), Chen (2002), Abrevaya (2000) and others have considered point identification

and estimation of various components of generalized regression models, which contain

models of this type, but such studies are based on a full-support condition which we relax.

Honoré and Lleras-Muney (2006) consider partial identification of a related competing

risks model.

In many ways, this model is very similar to Model 2.1 and so many of the results will

be familiar. When the disturbances are independent, we can carry out a similar ranking

procedure relating the ordering of y1 and y0 to that of x ′
1β and x ′

0β:

P (y1 ≥ y0 | x,c) ≥ P (y0 ≥ y1 | x,c)

⇐⇒ P (x ′
1β+u1 ≥ x ′

0β+u0 | x,c) ≥ P (x ′
0β+u0 ≥ x ′

1β+u1 | x,c)

⇐⇒ P (u0 −u1 ≤ (x1 −x0)′β | x,c) ≥ P (u1 −u0 ≤ (x0 −x1)′β | x,c)

⇐⇒ P (u0 −u1 ≤ (x1 −x0)′β | x,c) ≥ P (u0 −u1 ≤ (x0 −x1)′β | x,c)

⇐⇒ (x1 −x0)′β≥ 0

Note that we are able to exchange u1 and u0 due to the independence assumption.
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Here we consider estimating the set suggested by the rank condition above:

Θ̃I =
{
sgn

(
P (y1 ≥ y0 | x,c)−P (y1 ≥ y0 | x,c)

)= sgn
(
(x1 −x0)′β

)}
.

This set is guaranteed to contain ΘI and establishing its relative sharpness is left for

future research. The intuition underlying this set is that, due to the structure of the model,

whenever x ′
1β≥ x ′

0β it is likely also the case that y1 ≥ y0.

Consider the following population objective function and sample analog:

Q(θ) = E
[
sgn(y1 − y0) · sgn

(
(x1 −x0)′β

)]
Qn(θ) = 1

n

n∑
i=1

sgn(yi 1 − yi 0) · sgn
(
(xi 1 −xi 0)′β

)
Due to the similarity of the objective functions, it follows from the proof of Lemma 2.1 for

Model 2.1 that Q is maximized exactly on Θ̃I .

As before, we can write Q(θ) = P fθ and Qn(θ) = Pn fθ where

fθ(x, y) = 1{y1 > y0}1{x ′
1β≥ x ′

0β}−1{y1 < y0}1{x ′
1β< x ′

0β}.

It should also be apparent from the arguments underlying Lemma 2.2 and Lemma 2.5

that the class F = { fθ : θ ∈Θ} is Euclidean for the constant envelope F = 1. Therefore, the

conditions of Theorem 2.3 are satisfied with bn = n1/2.

2.7.1 Bounding the Transformation Function

In this model, in addition to β, one might be interested in estimating the transformation

functionΛ. This section discusses estimating bounds forΛ(ȳ) at particular values of ȳ .

Since we can only identifyΛ(ȳ) up to differences with respect toΛ(ȳ0) at some value ȳ0,

we normalizeΛ(ȳ0) = 0.

Suppose first that θ0 is known. Then, again following the maximum score principle,

we could estimate bounds forΛ(ȳ) by collecting all values of λ which maximize

1

n

n∑
i=1

(
1{yi 1 > ȳ}−1{yi 0 > ȳ0}

)
1{(xi 0 −xi 1)′β0 ≤λ}.
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Estimating the set above is infeasible because θ0 is unknown. However, given an

estimated set Θ̂n , the above method can be applied for each θ ∈ Θ̂n . This suggests using

the function

Γn(ȳ ,λ,θ) = 1

n

n∑
i=1

(
1{yi 1 > ȳ}−1{yi 0 > ȳ0}

)
1{(xi 0 −xi 1)′β≤λ}

and forming a set estimate Λ̂n(ȳ) ofΛ(ȳ) which consists of all values of λwhich maximize

Γn for some θ ∈ Θ̂n . That is,

Λ̂n(ȳ) = {
λ :λ ∈ argmaxΓn(ȳ ,λ, θ̂) for some θ̂ ∈ Θ̂n

}
.

Establishing the asymptotic properties of two-stage estimators such as Λ̂n(ȳ), which

depend on first-stage set estimators such as Θ̂n , is a promising area for future work which

we intend to pursue.

2.8 Monte Carlo Experiments

In this section we summarize the results of a series of Monte Carlo experiments intended

to shed light on the finite sample properties of the proposed estimators defined in Sec-

tion 2.5 and the inference procedures defined in Section 2.6.5 First, we consider the

estimator for Model 2.1 by replicating the following model:

yi t = 1{xi 1t +βxi 2t + ci +ui t ≥ 0}

where xi 1t and xi 2t are uniformly distributed for each t with xi 1t ∈ {−2,−1,0,1,2} and

xi 2t ∈ {1,2,3,4,5,6,7,8,9,10}. The individual effect is generated as ci = (xi 11 + xi 12 +
xi 21 + xi 22)/4 and the disturbances are iid standard Normal draws. The population

parameter used in the experiments is θ0 = β0 = −0.15 which yields the identified set

ΘI = [−0.163,−0.148].

5 Fortran 95 source code to reproduce all figures and tables in this section is available from the author’s
website at http://jblevins.org/research/panel.
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FIGURE 2.7: Q(θ) and one realization of Qn(θ) for n = 500

Figure 2.7 displays one realization of Qn(θ) for this model, with n = 500, along with the

population objective function Q(θ). We compare the estimates for several sample sizes in

Table 2.1, which lists the mean estimated set over 1000 replications for each sample size

with κn =C
p

lnn (recall that τn = κn/
p

n). We choose C ∈ {0.20,0.10,0.05,0.01}. These

values were chosen to be roughly around the same magnitude as Qn . For each sample

size, the standard deviation of the endpoints of the estimated sets and the coverage

frequency are also reported. By definition of consistency, the coverage probability should

asymptotically approach one. Note that only observations for which y0 6= y1 are used in

estimation. The effective sample size for this specification is about 0.307n.

As seen in Table 2.1, smaller constants C used to construct κn produce smaller esti-

mated sets, but only at the expense of lower empirical coverage for small sample values

of n. One interesting point to note about the estimates in the first panel of Table 2.1, with

C = 0.20, is that the upper bound of the estimated interval plateaus at −0.003 for the

small sample sizes shown. This corresponds to the large jump in the objective function at

β=−0.003 that can be seen in Figure 2.7 and is even larger in the sample analog objective

function. Since the sequence κn = 0.20
p

lnn is large relative to the other panels, the

cutoff value does not rise above this jump as quickly.
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Table 2.1: Estimates

κn n Mean Θ̂n St. Dev. Coverage

0.20
p

lnn

250 [ -0.450, 0.077 ] [ 0.149, 0.105 ] 0.96
500 [ -0.401, 0.044 ] [ 0.096, 0.076 ] 0.98
1000 [ -0.365, 0.019 ] [ 0.069, 0.051 ] 0.99
2000 [ -0.328, -0.001 ] [ 0.045, 0.016 ] 0.99
4000 [ -0.305, -0.003 ] [ 0.037, 0.003 ] 1.00
8000 [ -0.277, -0.003 ] [ 0.032, 0.005 ] 1.00
16000 [ -0.256, -0.003 ] [ 0.019, 0.000 ] 1.00
32000 [ -0.246, -0.003 ] [ 0.010, 0.000 ] 1.00
64000 [ -0.239, -0.003 ] [ 0.015, 0.000 ] 1.00

0.10
p

lnn

250 [ -0.318, -0.003 ] [ 0.124, 0.103 ] 0.75
500 [ -0.301, -0.007 ] [ 0.085, 0.070 ] 0.85
1000 [ -0.293, -0.005 ] [ 0.064, 0.044 ] 0.94
2000 [ -0.268, -0.011 ] [ 0.047, 0.034 ] 0.96
4000 [ -0.252, -0.012 ] [ 0.036, 0.033 ] 0.99
8000 [ -0.236, -0.011 ] [ 0.026, 0.031 ] 0.99
16000 [ -0.226, -0.012 ] [ 0.024, 0.032 ] 0.99
32000 [ -0.216, -0.019 ] [ 0.022, 0.040 ] 1.00
64000 [ -0.204, -0.026 ] [ 0.015, 0.046 ] 1.00

0.05
p

lnn

250 [ -0.242, -0.079 ] [ 0.114, 0.121 ] 0.39
500 [ -0.258, -0.041 ] [ 0.083, 0.085 ] 0.66
1000 [ -0.247, -0.033 ] [ 0.061, 0.065 ] 0.76
2000 [ -0.231, -0.044 ] [ 0.048, 0.064 ] 0.81
4000 [ -0.215, -0.050 ] [ 0.038, 0.065 ] 0.84
8000 [ -0.203, -0.055 ] [ 0.031, 0.064 ] 0.88
16000 [ -0.196, -0.064 ] [ 0.027, 0.062 ] 0.95
32000 [ -0.194, -0.078 ] [ 0.021, 0.060 ] 0.97
64000 [ -0.188, -0.096 ] [ 0.017, 0.051 ] 0.99

0.01
p

lnn

250 [ -0.242, -0.079 ] [ 0.114, 0.121 ] 0.39
500 [ -0.210, -0.096 ] [ 0.080, 0.097 ] 0.34
1000 [ -0.192, -0.109 ] [ 0.058, 0.083 ] 0.29
2000 [ -0.178, -0.122 ] [ 0.047, 0.068 ] 0.31
4000 [ -0.171, -0.126 ] [ 0.039, 0.061 ] 0.30
8000 [ -0.173, -0.120 ] [ 0.031, 0.056 ] 0.46
16000 [ -0.166, -0.129 ] [ 0.027, 0.042 ] 0.50
32000 [ -0.168, -0.137 ] [ 0.021, 0.027 ] 0.62
64000 [ -0.166, -0.138 ] [ 0.018, 0.017 ] 0.77

The true parameter is θ0 = −0.150 and the corresponding identified set is ΘI =
[−0.163,−0.148].
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Tables 2.2, 2.3, and 2.4 list, for m = n2/5, m = n3/5, and m = n4/5 respectively, the

empirical coverage frequencies of 1000 confidence regions for 1−α ∈ {0.75,0.90,0.95,0.99}.

For each of the 1000 datasets used for estimation and for each value of 1−α, a confidence

region was constructed using Algorithm 2.1 of Section 2.6. These regions are based on

the estimated sets from the same 1000 datasets as before. Increasing the subsample size

from n2/5 to n3/5 seems to increase the speed of convergence of the lower quantiles. The

results for the upper quantiles are largely the same for n2/5, n3/5, and n4/5. Note that

when the level of τn used for estimation is large, the finite sample confidence regions

tend to have too little coverage, although it seems that larger subsample sizes are able to

mitigate this to some extent.

Finally, in Tables 2.5 and 2.6, we present similar estimates and confidence regions

with κn = 0 (for m = n3/5 only). The estimates obtained with κn = 0 are tight, but have

poor coverage in finite samples, as do the corresponding confidence regions.

2.9 Conclusion

We have developed new conditions for establishing both regular and irregular rates of

convergence for set estimators in partially identified econometric models and proposed

a method for performing inference in models whose estimators exhibit arbitrarily fast

convergence. We have applied these general results to a standard binary choice panel data

models with fixed effects. First we characterize the sharp identified set and we propose

a consistent estimator which converges arbitrarily fast with fully discrete regressors

and can achieve rates arbitrarily close to n−1/3 when a continuous regressor is present.

The validity of a subsampling-based inference procedure is established in the discrete

regressor case. We also consider extensions to a lagged dependent variable and panel data

duration models. Finally, a series of Monte Carlo experiments illustrates the estimation

and inference procedures, which perform as expected.
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Table 2.2: Confidence regions (m = n2/5)

Empirical Coverage
κn m n 0.750 0.900 0.950 0.990

0.20
p

lnn n2/5

250 0.700 0.941 0.973 0.992
500 0.672 0.948 0.984 0.993
1000 0.621 0.960 0.987 0.995
2000 0.660 0.979 0.992 0.995
4000 0.824 0.990 0.993 0.997
8000 0.866 0.991 0.992 0.996
16000 0.968 0.991 0.992 0.998
32000 0.994 0.998 0.998 1.000
64000 0.998 0.998 0.998 1.000

0.10
p

lnn n2/5

250 0.464 0.662 0.793 0.933
500 0.438 0.719 0.863 0.967
1000 0.391 0.819 0.935 0.980
2000 0.425 0.899 0.972 0.991
4000 0.508 0.944 0.985 0.991
8000 0.653 0.978 0.990 0.993
16000 0.834 0.986 0.992 0.996
32000 0.926 0.997 0.998 0.999
64000 0.984 0.998 0.999 1.000

0.05
p

lnn n2/5

250 0.399 0.464 0.525 0.573
500 0.384 0.556 0.689 0.857
1000 0.321 0.594 0.787 0.927
2000 0.338 0.674 0.857 0.942
4000 0.362 0.739 0.888 0.958
8000 0.446 0.811 0.927 0.973
16000 0.558 0.903 0.970 0.983
32000 0.728 0.966 0.984 0.988
64000 0.837 0.978 0.993 0.996

0.01
p

lnn n2/5

250 0.404 0.465 0.535 0.574
500 0.347 0.404 0.468 0.530
1000 0.295 0.336 0.398 0.481
2000 0.311 0.344 0.382 0.446
4000 0.308 0.342 0.366 0.414
8000 0.355 0.461 0.541 0.636
16000 0.420 0.494 0.550 0.615
32000 0.515 0.604 0.661 0.688
64000 0.640 0.764 0.797 0.808
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Table 2.3: Confidence regions (m = n3/5)

Empirical Coverage
κn m n 0.750 0.900 0.950 0.990

0.20
p

lnn n3/5

250 0.943 0.979 0.987 0.992
500 0.934 0.978 0.994 0.993
1000 0.910 0.976 0.984 0.996
2000 0.936 0.989 0.991 0.997
4000 0.978 0.989 0.990 0.995
8000 0.985 0.991 0.994 0.995
16000 0.986 0.994 0.997 0.997
32000 0.997 1.000 1.000 1.000
64000 1.000 1.000 1.000 1.000

0.10
p

lnn n3/5

250 0.709 0.884 0.949 0.960
500 0.776 0.923 0.952 0.970
1000 0.838 0.931 0.965 0.983
2000 0.903 0.961 0.978 0.990
4000 0.922 0.972 0.982 0.987
8000 0.945 0.979 0.993 0.992
16000 0.965 0.989 0.995 0.994
32000 0.984 0.996 0.996 1.000
64000 0.994 0.999 1.000 1.000

0.05
p

lnn n3/5

250 0.484 0.574 0.574 0.573
500 0.608 0.775 0.877 0.918
1000 0.721 0.853 0.897 0.936
2000 0.808 0.912 0.931 0.946
4000 0.859 0.926 0.939 0.957
8000 0.900 0.918 0.926 0.945
16000 0.898 0.954 0.965 0.974
32000 0.939 0.975 0.980 0.982
64000 0.969 0.983 0.992 0.995

0.01
p

lnn n3/5

250 0.480 0.572 0.574 0.574
500 0.434 0.519 0.535 0.538
1000 0.378 0.468 0.497 0.498
2000 0.387 0.421 0.453 0.465
4000 0.367 0.412 0.432 0.447
8000 0.554 0.629 0.649 0.667
16000 0.583 0.609 0.612 0.617
32000 0.665 0.671 0.676 0.688
64000 0.798 0.800 0.804 0.807
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Table 2.4: Confidence regions (m = n4/5)

Empirical Coverage
κn m n 0.750 0.900 0.950 0.990

0.20
p

lnn n4/5

250 0.952 0.977 0.989 0.990
500 0.961 0.987 0.992 0.997
1000 0.966 0.989 0.996 0.997
2000 0.979 0.994 0.995 0.999
4000 0.989 0.996 0.999 1.000
8000 0.987 0.997 0.999 1.000
16000 0.991 0.996 0.998 1.000
32000 0.997 1.000 1.000 0.999
64000 1.000 1.000 1.000 1.000

0.10
p

lnn n4/5

250 0.807 0.876 0.893 0.904
500 0.829 0.918 0.946 0.951
1000 0.888 0.958 0.970 0.982
2000 0.949 0.981 0.985 0.988
4000 0.960 0.991 0.995 0.990
8000 0.968 0.992 0.995 0.996
16000 0.977 0.994 0.998 0.995
32000 0.993 0.997 0.997 1.000
64000 0.998 1.000 1.000 1.000

0.05
p

lnn n4/5

250 0.544 0.551 0.556 0.556
500 0.743 0.822 0.838 0.856
1000 0.775 0.861 0.892 0.920
2000 0.868 0.917 0.931 0.941
4000 0.890 0.905 0.916 0.934
8000 0.889 0.918 0.934 0.955
16000 0.939 0.961 0.965 0.968
32000 0.965 0.980 0.979 0.982
64000 0.974 0.991 0.995 0.995

0.01
p

lnn n4/5

250 0.545 0.553 0.555 0.555
500 0.480 0.499 0.504 0.505
1000 0.437 0.458 0.464 0.464
2000 0.429 0.436 0.444 0.446
4000 0.396 0.410 0.413 0.423
8000 0.575 0.606 0.616 0.634
16000 0.589 0.601 0.606 0.616
32000 0.666 0.679 0.679 0.685
64000 0.798 0.801 0.806 0.806
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Table 2.5: Estimates without slackness

n Mean Θ̂n St. Dev. Coverage
125 [ -0.281, -0.019 ] [ 0.181, 0.156 ] 0.53
250 [ -0.242, -0.079 ] [ 0.114, 0.121 ] 0.39
500 [ -0.210, -0.096 ] [ 0.080, 0.097 ] 0.34
1000 [ -0.192, -0.109 ] [ 0.058, 0.083 ] 0.29
2000 [ -0.178, -0.122 ] [ 0.047, 0.068 ] 0.31
4000 [ -0.171, -0.126 ] [ 0.039, 0.061 ] 0.30
8000 [ -0.166, -0.132 ] [ 0.031, 0.047 ] 0.35
16000 [ -0.162, -0.135 ] [ 0.027, 0.037 ] 0.41
32000 [ -0.163, -0.143 ] [ 0.022, 0.020 ] 0.50
64000 [ -0.161, -0.143 ] [ 0.017, 0.014 ] 0.61

These estimates were obtained with κn = 0 and m = n3/5.

Table 2.6: Confidence regions without
slackness

Empirical Coverage
n 0.750 0.900 0.950 0.990
125 0.603 0.651 0.652 0.651
250 0.480 0.571 0.574 0.573
500 0.429 0.517 0.534 0.536
1000 0.377 0.461 0.495 0.501
2000 0.381 0.424 0.458 0.465
4000 0.372 0.416 0.430 0.447
8000 0.399 0.421 0.433 0.440
16000 0.442 0.457 0.459 0.461
32000 0.514 0.517 0.518 0.521
64000 0.622 0.622 0.622 0.622

These estimates were obtained with κn = 0 and
m = n3/5.
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3

Nonparametric Identification of Dynamic Games
with Discrete and Continuous Choices

3.1 Introduction

In this chapter we present new nonparametric identification results for both single-agent

models and games in which players make both discrete and continuous choices. Such

models are routinely used in industrial organization where firms in dynamic oligopoly

models typically make discrete entry and exit decisions and continuous investment, pric-

ing, or quantity choices. For example, in the theoretical framework of Ericson and Pakes

(1995), each period incumbent firms first decide whether to continue in the industry or

exit, and conditional upon continuing, they make a continuous investment decision.

Previous work regarding identification of dynamic structural models has focused pri-

marily on discrete choice models. Identification of single-agent dynamic discrete choice

models has been studied by Rust (1994b) and Magnac and Thesmar (2002). Several

authors have also considered nonparametric identification of dynamic discrete games.

Pesendorfer and Schmidt-Dengler (2007) provide a rank condition for identification in

models with discrete state spaces while Bajari, Chernozhukov, Hong, and Nekipelov
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(2007) show that models with continuous state spaces are identified under an exclu-

sion restriction. Other identification results have been established in related models.

Jofre-Bonet and Pesendorfer (2003) consider nonparametric identification of the cost

distribution in a dynamic auction game with continuous choices. Heckman and Navarro

(2005) consider semiparametric identification of dynamic discrete choice models and

dynamic treatment effect models.

Our contribution relative to the existing literature is to establish conditions for the

nonparametric identification of both single- and multi-agent models in which agents

also make continuous choices in addition to the usual discrete choices. Given that identi-

fication of discrete-choice games has been established, it may not seem surprising at first

that models with an additional continuous choice are also identified, since observing

a continuous choice should provide more information than a observing a discrete one.

However, in the continuous choice framework, for each state, the unknown primitives are

infinite-dimensional functionals rather than finite-dimensional vectors. Thus, although

more information is available, the objects of interest are much more complex.

We build on the insights of Hotz and Miller (1993), who develop a method for es-

timating single-agent dynamic discrete choice models which is based on a mapping

from (observable) conditional choice probabilities to differences in the choice-specific

value function (with respect to a normalizing choice). Bajari et al. (2007) use this idea

in a preliminary step in establishing nonparametric identification of dynamic discrete

games of incomplete information. They then show that the choice-specific value function

can be recovered in levels by establishing that the functional operator in the recursive

definition of the value function for the normalized choice is a contraction, and therefore

has a unique fixed point. The utility function is then identified trivially by definition of

the value function.

We follow a similar approach but we must account for an additional layer of com-
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plication due to the introduction of a second, continuous choice. We define a discrete-

choice-specific value function and show that it can be recovered, in differences, from the

conditional choice probabilities as in Hotz and Miller (1993). We show that the relevant

functional operators are also contractions in the models we consider, and can thus be

used to identify the discrete-choice-specific value function in levels. The utility function

can then be identified up to a normalization, using the first order condition implied

by agents’ optimal choice of the continuous variable. We will explicitly only consider

models in which all components of the state vector are either serially independent or

fully observable to the researcher. However, in light of recent work by Hu and Shum

(2008a,b), our results can also be applied to models with serially correlated unobserved

state variables.

This chapter proceeds as follows. Section 3.2 introduces a general discrete-time

dynamic decision process and some fundamental assumptions. We then turn to nonpar-

ametric identification of the structural primitives in specific models. We approach the

main result for dynamic games in three steps, each of which adds one level of complexity.

Section 3.3 begins with a discussion of identification of single-agent discrete choice mod-

els in order to build intuition. Then, we consider single-agent models with the addition

of a continuous choice in Section 3.4. Finally, we extend these results to multi-agent

dynamic games in Section 3.5. Section 3.6 concludes.

3.2 Framework and Basic Assumptions

We consider a general class of discrete-time dynamic models with N players, indexed

by i = 1, . . . , N , over an infinite time horizon t = 1,2, . . . ,∞. The state of the market at

time t can be summarized by a state vector st ∈ S which is common knowledge to

all players and evolves according to a first order Markov process. At the beginning of

the period, players observe vectors of private choice-specific shocks εi t ∈ Ei ⊆ RK+1
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and simultaneously make discrete choices di t ∈Di = {0,1, . . . ,K }. Next, players observe

private shocks ηi t ∈H i ⊆ R and simultaneously make continuous choices ci t ∈Ci ⊆ R.

Let ai t = (di t ,ci t ) and νi t = (εi t ,ηi t ) denote, respectively, the vectors of choices and

private shocks, and let at denote the vector consisting of the actions of all players at

time t . For simplicity, we assume that all players have the same choice sets and that the

support of each of the player-specific shocks is identical across players. We occasionally

omit the time subscript on variables when the context is clear.

Upon making the choices at , each player i receives a payoff Ui (at , st ,νi t ) associated

with making choice ai t in state st given that player i ’s rivals make choices a−i t , where

we define a−i t ≡ (a1t , . . . , ai−1,t , ai+1,t , . . . , aN t ). Players are forward looking and discount

future payoffs and share a common discount factor β ∈ [0,1). Players choose actions ai t

in order to maximize their expected discounted future utility. When the market is state st

this can be written as

E

[ ∞∑
τ=t

βτ−tUi (aτ, sτ,νiτ)

∣∣∣∣ st

]
,

where the expectation is taken over the infinite sequence of actions, states, and private

shocks. Note that we have implicitly assumed that the utility functions and state tran-

sitions probabilities are time invariant. Combined with the Markov assumption, this

implies that agents’ optimal decision rules are stationary.

Before proceeding we make several standard assumptions to make the model more

tractable (cf. Rust, 1994b; Aguirregabiria and Mira, 2009). Rust (1994b) imposes a condi-

tional independence assumption which requires νt to be conditionally independent of

νt−1 given the state st . However, we make a stronger assumption that the private shocks

are independent and identically distributed (iid), an assumption which is commonly

used in practice. For example, many applications assume the discrete-choice-specific

shocks are iid and have a type I extreme value distribution.
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Assumption 3.1 (Private Information). The private shocks νi t = (εi t ,ηi t ) are indepen-

dent across i and t and have a known distribution G . Furthermore, the choice-specific

components εi t are independent with full support on R and finite first moments.

Additive separability assumptions are standard in discrete choice analysis, both in

static and dynamic models. Given the potential addition of a continuous choice, we make

the following modified additive separability condition.

Assumption 3.2 (Additive Separability). The utility function is additively separable in εi :

Ui (a, s,νi ) = ui (a, s,ηi )+εi di .

Additionally, if a continuous choice is made, then ui is further separable as

ui (a, s,ηi ) = u1i (d ,c, s)+u2i (d ,c, s)ηi

where u2i (d ,c, s) is a known function. Otherwise, ui (a, s,ηi ) is independent of ηi .

For the discrete choice, this assumption is equivalent to the usual additive separability

assumption on the discrete-choice-specific shocks. In models where a continuous choice

is made, we make the following additional assumption on the utility function.

Assumption 3.3 (Monotone Choice). For all i , the utility function ui is twice differentiable

and ∂2ui /∂ci∂ηi > 0.

The monotone choice assumption is standard and will be used for identification in

models with continuous choices. This assumption implies that agents’ continuous choice

policy rules are monotonic in ηi (Bajari et al., 2007). Note that we can always use η̃i ≡−ηi

in cases where the policy function is decreasing in ηi .

In the following sections, we analyze several common special cases of the general

model described above. In each case, we first describe the model and then provide

conditions for nonparametric identification accompanied by constructive proofs. Since
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our approach extends previous results for discrete-choice models, we briefly review

existing results in the context of a single-agent discrete choice model in Section 3.3.

Next, we consider identification in a similar single agent model with the addition of a

continuous choice variable in Section 3.4. Finally, we establish the main identification

result for dynamic games with both discrete and continuous choices in Section 3.5.

3.3 Single Agent Dynamic Discrete Choice

Single agent dynamic discrete choice models are an important special case of the more

general multi-agent model discussed above. These models have a long history in applied

microeconomics, beginning with the pioneering work of Gotz and McCall (1980), Miller

(1984), Wolpin (1984), Pakes (1986), and Rust (1987). See Eckstein and Wolpin (1989) for a

survey of the early literature. Rust (1994b) also provides a survey, discusses identification,

and develops a general framework for estimating such models. Hotz and Miller (1993)

develop two-step methods for estimating these models which are based on first-step

estimates of the conditional choice probabilities. Aguirregabiria and Mira (2002) extend

this approach to develop a class of nested pseudo-likelihood estimators. Again, our focus

is on nonparametric identification and in this section we review certain results of Hotz

and Miller (1993) and Bajari et al. (2007) which we build upon in later sections.

Since there is only a single player (N = 1) we omit the i subscript from states and

payoffs in this section. Furthermore, since there is only a discrete choice we have ν =
ε. Assumption 3.2 simplifies to the usual additive separability condition. Note that

Assumption 3.3 has no meaning here since there is no continuous choice.

The value function for this model can be expressed recursively as follows:

V (s,ε) = max
d∈D

[
u(d , s)+εd +β

Ï
V (s′,ε′)Gε(dε′ | s′)P (d s′ | s,d)

]
.

Under Assumption 3.2, following Rust (1994b), we also define the choice-specific value
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function

(3.1) v(d , s) ≡ u(d , s)+β
Ï

V (s′,ε′)Gε(dε′ | s′)P (d s′ | d , s)

which gives the expected discounted utility in the current period and all future periods

resulting from choosing d when the current state is s, excluding the iid shock εd . Assump-

tion 3.2 allows us to express this problem in a more compact form resembling a static

discrete choice problem with the choice-specific value function playing the role of the

period utility function. Let σ(s,ε) denote the agent’s optimal choice of d in state (s,ε).

Then,

σ(s,ε) = argmax
d∈D

[v(d , s)+εd ] .

In this setting, we define the ex-ante value function

(3.2) V̄ (s) ≡ E[V (s,ε) | s] = E

[
max
d∈D

(v(d , s)+εd )

∣∣∣∣ s

]
.

This is social surplus function of McFadden (1981). Using this notation we can rewrite

the choice-specific value function from (3.1) as

(3.3) v(d , s) = u(d , s)+β
∫

V̄ (s′)P (d s′ | s,d).

Assumingβ is known, the structural primitive of interest here is the utility function u(d , s).

Example 3.1. A classic dynamic discrete choice model is the bus engine replacement

model of Rust (1987). The state variable st is the accumulated mileage of the bus. Each

period, a manager must decide whether or not to overhaul the engine. The manager pays

a cost u(1, st ) upon replacement, and pays a cost u(0, st ) when operating the bus when the

mileage is st . Associated with each choice d is a random component εd t which represents

unobserved choice-specific costs or benefits incurred in period t . The manager chooses

d in order to minimize his expected discounted costs.
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The identification argument proceeds as follows. Hotz and Miller (1993) show that

there is a one-to-one mapping between the conditional choice probabilities Pr(d | s),

which are observable, and differences in the choice-specific value function, ∆(d , s) ≡
v(d , s)− v(0, s). Without loss of generality, we work in differences with respect to the

choice d = 0. Bajari et al. (2007) show that this mapping can be used to recover v(0, s)

itself, through the use of a contraction mapping in the choice-specific value function.

Then, the entire choice-specific value function can be recovered in levels which in turn

allows one to recover the utility function, the primary structural primitive of interest,

up to a standard normalization. We state the result, due to Bajari et al. (2007), before

proceeding with the argument, which is instructive for the following sections.

Theorem 3.1. Suppose Assumptions 3.1 and 3.2 are satisfied in the single-agent dynamic

discrete choice model. Then the payoff function u(d , s) is nonparametrically identified up

to the normalization u(0, s) = 0 for all s.

Proof of Theorem 3.1. Under Assumption 3.1, Hotz and Miller (1993) show that there is a

one-to-one mappingΨ from the conditional choice probabilities to differences in the

choice-specific value function (3.1):

(v(1, s)− v(0, s), . . . , v(K , s)− v(0, s)) =Ψ (Pr(d = 1 | s), . . . ,Pr(d = K | s))

(see also Rust, 1994b, Lemma 3.1). This mapping depends on the distribution G and, given

the choice probabilities, it is sufficient to identify the differences ∆(k, s) ≡ v(k, s)− v(0, s)

for each k = 1, . . . ,K and s ∈S .

For any function f : D×S →R, define

H̃
(

f (0, s), f (1, s), . . . , f (K , s)
)≡ ∫

E
max
d∈D

[ f (d , s)+εd ]Gε(dε).

When f is the utility function in a static discrete choice model, H̃ is McFadden’s social

surplus function. H̃ has the following additivity property (Rust, 1994b, Theorem 3.1):

H̃
(

f (0, s)+α, f (1, s)+α, . . . , f (K , s)+α)= H̃
(

f (0, s), f (1, s), . . . , f (K , s)
)+α.
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In particular, when we take f = v , we define

(3.4) H(∆(1, s), . . . ,∆(K , s)) ≡ H̃ (0,∆(1, s), . . . ,∆(K , s))

and note that

H(∆(1, s), . . . ,∆(K , s))+ v(0, s) = H̃ (0,∆(1, s), . . . ,∆(K , s))+ v(0, s)

= H̃ (0, v(1, s)− v(0, s), . . . , v(K , s)− v(0, s))+ v(0, s)

= H̃ (v(0, s), v(1, s), . . . , v(K , s)) .

We can now write the functional mapping for the choice-specific value function in

(3.3) as a function of ∆(d , s), u(d , s), and v(0, s):

v(d , s) = u(d , s)+β
∫ [

H
(
∆(1, s′), . . . ,∆(K , s′)

)+ v(0, s′)
]

p(s′ | s,d)d s

where H is defined above. Again, this function is specific to the distribution G . Note

that p(s′ | s,d) is identified since it is observable. For d = 0, under the normalization

u(0, s) = 0, the only remaining unknown is the functional v(0, s). Thus, v(0, s) is identified

as the unique1 fixed point to this functional equation. Given v(0, s), the remainder of the

choice-specific value functions are identified in levels since v(d , s) =∆(d , s)+ v(0, s).

It remains to identify the utility function u(d , s) for d = 1, . . . ,K . We can express u(d , s)

in terms of the choice-specific value function and other identified quantities as

u(d , s) = v(d , s)−β
∫ [

H
(
∆(1, s′), . . . ,∆(K , s′)

)+ v(0, s′)
]

P (d s′ | s,d)

for any d and s. Thus, u(d , s) is identified up to the normalization u(0, s) = 0 for all s. ■

Note that this identification result is not in conflict with the non-identification result

of Rust (1994b) since the utility normalization rules out alternative specifications of the

form ũ(d , s) = u(d , s)+ f (s)−βE[ f (s′) | d , s].

1 See Rust (1994b) for a proof that this functional operator is a contraction.
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3.4 Single-Agent Dynamic Discrete-Continuous Choice

In this section we consider the single-agent dynamic discrete choice model from the

previous section with the addition of a continuous choice. The choice sets are D for the

discrete choice and C for the continuous choice. The associated random shocks in each

period are εt and ηt . We assume that the discrete choice is made at the beginning of the

period, prior to making the continuous choice and prior to learning the value of ηt .

The value function from the perspective of the beginning of the period is thus

V (s,ε) = max
d

Eη

{
sup

c

[
u(d ,c, s,η)+εd +βE

[
V (s′,ε′) | d ,c, s

]]∣∣∣∣d , s,ε

}
,

and the corresponding discrete-choice-specific value function can be written

(3.5) v(d , s) = Eη

{
sup

c

[
u(d ,c, s,η)+βE

[
V̄ (s′) | d ,c, s

]]∣∣∣∣d , s

}
,

where we have made use of the ex-ante value function as defined in (3.2) and the fact that

εd is independent of η.

Example 3.2. Timmins (2002) considers the problem of a municipal water utility adminis-

trator who chooses the price of water each period. The price may either be zero, or it may

be some positive value. Consider a simplified version of the model in which dt ∈ D = {0,1}

represents the decision of whether or not to set the price at zero, and, conditional on not

choosing zero, ct ∈C =R+ represents the choice of the (positive) price. Associated with

each discrete choice j is a random shock εi j . The continuous-choice-specific shock ηi t

represents unobservables affecting the cost of extracting water in period t .

The following theorem establishes that, as with the discrete choice model, the utility

primitives of this model are nonparametrically identified up to an obvious normalization.

Theorem 3.2. Suppose Assumptions 3.1–3.3 are satisfied. Then the payoff function u1 is

nonparametrically identified up to the normalization u(0,c, s) = 0 for all c and s.
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Proof of Theorem 3.2. The steps in the proof correspond conceptually to those of the

proof of Theorem 3.1. We first use a conditional choice probability inversion to identify

differences in the discrete-choice-specific value function. This is a different function

from the previous model in that it represents the value before the continuous-choice-

specific shock is known. Then, we show that the discrete-choice-specific value function

is identified in levels by showing that it is the unique fixed point to a similar functional

equation, appropriately modified to account for the continuous choice. Finally, we show

that the utility function is identified up to a normalization using the first order condition

and the fact that the continuous choice is monotonic in the corresponding shock.

Note that as before, we can now write the discrete choice probabilities in terms of the

discrete-choice-specific value function as

Pr(d = k | s) =
∫

1{k = argmax
d

(v(d , s)+εd )}Gε(dε).

Given Assumption 3.1, we can use the mappingΨ from choice probabilities to ∆(d , s) to

identify differences in the discrete-choice-specific value function for all d and s.

We show that v(0, s) can be identified as before, through the use of a similar contrac-

tion mapping. First, note that by definition of the ex-ante value function V̄ (s) and the

function H , defined as in (3.4), we have

Es′|d ,c,s V̄ (s′) = Es′,ε′|d ,c,s

[
max
d ′∈D

(
v(d ′, s′)+ε′d ′

)]
= Es′|d ,c,s

[
H

(
∆(1, s′), . . . ,∆(K , s′)

)+ v(0, s′)
]

.

Using this identity in the expression above for v(d , s) and evaluating it at d = 0 yields a

functional equation for v(0, ·):

v(0, s) = Eη

{
sup

c

[
u(0,c, s,η)+βEs′|d=0,c,s V̄ (s′)

]}
.

= Eη

{
sup

c

[
u(0,c, s,η)+βEs′|d=0,c,s

[
H

(
∆(1, s′), . . . ,∆(K , s′)

)+ v(0, s′)
]]}

.
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Under the normalization u(0,c, s) = 0 for all s, everything in this expression is known

except for v(0, s). Lemma D.1 (see Appendix D) establishes that this mapping is a contrac-

tion and therefore v(0, s) is identified since it is the unique fixed point. We can then use

the identity v(d , s) =∆(d , s)+ v(0, s) to recover v(d , s) for all d = 1, . . . ,K .

It remains to identify u(d ,c, s,η). In the case of single agent models with only discrete

choices, we were able to obtain u directly from the choice-specific value function. With

the addition of the continuous choice, however, we cannot simply identify u from v(d , s)

as before, due to the presence of the additional private shock η and the supc operator

in (3.5). The monotone choice assumption allows us to overcome the first problem. It

guarantees a one-to-one relationship between c and η so that given values of d , s, and c

we can infer the value of η. We address the second problem by working with the first-order

condition.

First, by the monotone choice assumption (Assumption 3.3) the policy function

c = σc (d , s,η) provides a one-to-one relationship between the private shock η and the

continuous choice c (conditional on d and s). Let η(d , s,c) ≡ σ−1
c (d , s,c) denote the

inverse mapping. The distribution Fc|d ,s is identified since c, d , and s are all observable

and the distribution G of η is known. So, we have

Fc|d s(c | d , s) = Pr
(
σc (d , s,η) ≤ c | d , s

)
= Pr

(
η≤σ−1

c (d , s,c)
∣∣d , s

)
=Gη

(
σ−1

c (d , s,c)
)

.

Thus, if we observe the continuous choice c made when the discrete choice is d and the

state is s, the value of η must have been

η=σ−1
c (d , s,c) =G−1

η ◦Fc|d s(c | d , s).

From now on we focus on identifying u1(d ,c, s). The optimal choice of c , given by the
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policy rule σc (d , s,η), satisfies

σc (d , s,η) = argsup
c

[
u(d ,c, s,η)+φ(d ,c, s)

]
,

where

φ(d ,c, s) ≡βE
[
H(∆(1, s′), . . . ,∆(K , s′))+ v(0, s′) | d ,c, s

]
is an identified function. Therefore, c satisfies the corresponding first-order condition

∂

∂c
u(d ,c, s,η)+ ∂

∂c
φ(d ,c, s) = 0.

Applying Assumption 3.2 (additive separability) we have the equivalent condition

∂

∂c
u1(d ,c, s)+ ∂

∂c
u2(d ,c, s)η+ ∂

∂c
φ(d ,c, s) = 0.

Rearranging and using the fact that η=σ−1(d , s,c), we have

∂

∂c
u1(d ,c, s) =− ∂

∂c
u2(d ,c, s)σ−1

c (d , s,c)− ∂

∂c
φ(d ,c, s).

u1(d ,c, s) is now identified (up to a normalizing constant) for each d and s since

u1(d ,c, s) =−
∫ c

c

[
∂

∂c
u2(d , c̃, s)σ−1

c (d , s, c̃)+ ∂

∂c
φ(d , c̃, s)

]
dc̃ +u1(d ,c, s)

where c = infC . ■

3.5 Dynamic Games with Discrete and Continuous Choices

In this section we consider dynamic games with discrete and continuous choices involv-

ing N > 1 players. These models are becoming increasingly important in empirical work

in applied microeconomics, especially in industrial organization, and many methods

have been developed to estimate them. Aguirregabiria and Mira (2007) propose pseudo
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maximum likelihood estimators for dynamic discrete games and Pakes et al. (2007) con-

sider two-step method of moments based estimators. Pesendorfer and Schmidt-Dengler

(2007) discuss a general class of asymptotic least squares estimators for such games.

Bajari et al. (2007) develop simulation-based methods for estimating dynamic games

with both discrete and continuous choices based on revealed preference conditions. See

Aguirregabiria and Mira (2009) for a survey of this literature. We focus on nonparametric

identification of these models.

In models with multiple players, each player’s optimal decision depends on the expec-

tations that player holds about the actions of the other players and so we require some

sort of equilibrium concept. We assume that players use strategies that are consistent

with a Markov perfect equilibrium (MPE). A Markov strategy for player i in this model

is a vector-valued mapping σi = (σdi ,σci ) where σdi : S ×Ei →Di denotes the discrete

choice of player i in each state and σci : S ×D×H i →Ci denotes the continuous choice

of player i in each state, conditional on the discrete choices d . When behaving optimally,

the present discounted value of player i ’s payoffs in state (s,εi ) at the beginning of the

period is

(3.6) Vi (s,εi |σ−i ) = max
di∈Di

E
[
Wi (di ,σd ,−i , s,ηi |σc,−i )+εi di | di , s,εi

]
,

where

(3.7) Wi (di ,d−i , s,ηi |σc,−i ) =

sup
ci∈Ci

E
{
ui (d ,ci ,σc,−i , s,ηi )+βE

[
Vi (s′,ε′i |σ−i ) | d ,c, s

]∣∣d ,ci , s,ηi
}

The value function Vi gives the present discounted value of player i ’s payoffs when facing

the discrete decision in state s after the discrete-choice-specific shocks εi are known. The

expectation is with respect to ε−i , the discrete-choice-specific shocks of player i ’s rivals,

and ηi , player i ’s own continuous-choice-specific shock. Wi is the value function when

105



facing the continuous choice in state s after ηi is revealed, given that discrete choices di

and d−i were made. These functions provide a succinct recursive representation of the

dynamic decision of players in this model. The expectation is with respect to η−i , the

continuous-choice-specific shocks of player i ’s rivals.

A Markov perfect equilibrium in this model is a collection of policy rules (σ1, . . . ,σN )

such that for all i = 1, . . . , N and s ∈ S , σdi assigns the optimal discrete choice in (3.6)

given beliefs σ−i and σci assigns the optimal continuous choice in (3.7) given beliefs σ−i .

The primitives of the model are the discount factor β, the distribution of private

shocks G , the utility functions U1, . . . ,UN , and the state transition kernel P (d s′ | s, a). The

state transition kernel is observable, we assume β and G are known, and we focus on

identifying the utility functions.

The following example outlines a model of the type we consider.

Example 3.3. Consider a dynamic game in which each period firms first choose whether

or not to remain in the market (di t ∈Di = {0,1}) and then choose quantities for competing

in a product market (ci t ∈Ci =R+). Suppose that there is learning by doing in the sense

that firms’ marginal costs are decreasing in their past cumulative production. The choice

of quantity now has dynamic implications since more production today results in lower

marginal costs in the future. The state vector is si t = (xt ,Ci t ) where xt is a market-

wide state variable and Ci t is the past cumulative production of firm i which evolves as

Ci ,t+1 =Ci t +ci t . Suppose for simplicity that Ci 1, firm i ’s past cumulative production in

the initial period, is known. Let p(dt ,ct , st ) denote the inverse demand function. Marginal

costs are a function of cumulative production so the utility (profit) function (conditional

on continuing) is

Ui (di t = 1,d−i ,t ,ct , st ,ηi t ,εi t ) = ci t
[
p(dt ,ct , st )− (

µ−θCi t +ηi
)]+εi t1

where µ is the baseline marginal cost, θ is the amount by which an additional unit of

past cumulative production decreases the marginal cost, and ηi is a private marginal cost
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shock. εi t1 is the private choice-specific shock for continuing. Upon exit (di t = 0), firms

receive a scrap payment φ and a random shock εi t0. In this example,

ui 1(d ,c, s) = ci t
(
p(dt ,ct , st )−µ+θci t

)
,

ui 2(d ,c, s) = ci t ,

and so the assumption that ui 2 is known simply amounts to assuming that the continuous-

choice specific shock is a linear marginal cost shock. Furthermore, the monotone choice

assumption holds since ∂2ui /∂ci∂ηi = 1 > 0.

With multiple players, we require an exclusion restriction to identify the utility func-

tion. Namely, we assume that the state vector can be written as s = (s1, . . . , sN ) where si

are the relevant state variables for player i .

Assumption 3.4 (Exclusion Restriction). The utility function for player i satisfies

ui (a, s,ηi ) = ui (a, si ,ηi )

where si has at least one continuous component for each i .

Thus, some components of si may be common to all players but there must be at least

one continuous component that is specific to player i . A similar exclusion restriction was

used for identification purposes in dynamic discrete choice games by Bajari et al. (2007).

Our condition is slightly different in that we require that there be at least one continuous

component of si for each player. Note that the utility function in Example 3.3 satisfies

this assumption.

Theorem 3.3. Suppose Assumptions 3.1–3.4 are satisfied. Furthermore, suppose that both

ui and ∂ui /∂ci are continuous for all i and that the conditional expectation operator

Ec−i |d ,s is one-to-one. Then the payoff function ui is nonparametrically identified up to the

normalization ui (0,d−i ,ci ,c−i , si ) = 0.
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Proof of Theorem 3.3. For simplicity, we drop the policy rule notation (σ−i ) and simply

treat d−i and c−i as random variables distributed according to the appropriate equilib-

rium beliefs. We can define the discrete-choice-specific value function as

vi (di , s) ≡ Eηi |di ,s Ed−i |di ,s sup
ci

{
Ec−i |d ,ci ,s

[
ui (di ,d−i ,ci ,c−i , s,ηi )+βEs′|d ,c,s V̄i (s′)

]}

where V̄i (s) = E[Vi (s,εi ) | s] is the ex-ante value function for player i . If we define H as in

(3.4), then

V̄i (s) = E

[
max

di

{
vi (di , s)+εi di

}∣∣∣∣ s

]
= H(∆i (1, s), . . . ,∆i (K , s))+ vi (0, s).

Then, for di = 0, after normalizing ui (0,d−i ,ci ,c−i , s,ηi ) = 0, we have

vi (0, s) = Eηi |di ,s Ed−i |di ,s sup
ci

{
βEc−i |d ,ci ,s

[
Es′|d ,c,s V̄i (s′)

]}
= Eηi |di ,s Ed−i |di ,s sup

ci

{
βEc−i |d ,ci ,s Es′|d ,c,s

[
H(∆i (1, s′), . . . ,∆i (K , s′))+ vi (0, s′)

]}
.

Note that all quantities except the function vi (0, s) are known, including β, ∆i (d , s), the

distributions of ηi , d−i | di , s, and c−i | d ,ci , s, and the transition density of s′ | d ,c, s.

As established by Lemma D.2 (see Appendix D), this defines a contraction mapping

which identifies vi (0, s) and in turn, knowing vi (0, s) allows us to identify vi (di , s) =
∆i (di , s)+ vi (0, s) for all di > 0.

We now turn to identifying the utility function u. For any d , s, and ηi , the optimal

choice of ci maximizes

Ec−i |d ,ci ,s
[
ui 1(di ,d−i ,ci ,c−i , s)+ui 2(di ,d−i ,ci ,c−i , s)ηi

]+φ(d ,ci , s)

where φ(d ,ci , s) is the known function

φ(d ,ci , s) ≡βEc−i |d ,ci ,s Es′|d ,c,s
[
H(∆i (1, s′), . . . ,∆i (K , s′))+ vi (0, s′)

]
.
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Therefore, ci must satisfy the first order condition

∂

∂ci

∫ [
ui 1(di ,d−i ,ci ,c−i , s)+ui 2(di ,d−i ,ci ,c−i , s)ηi

]
p(c−i | d , s)dc−i+ ∂

∂ci
φ(d ,ci , s) = 0

Here, we have used the fact that p(c−i | d ,ci , s) does not depend on ci conditional on

s and d since the relevant shocks are iid. Under the maintained assumptions, we can

interchange the order of integration and differentiation:

∫ [
∂

∂ci
ui 1(di ,d−i ,ci ,c−i , s)+ ∂

∂ci
ui 2(di ,d−i ,ci ,c−i , s)ηi

]
p(c−i | d , s)dc−i

+ ∂

∂ci
φ(d ,ci , s) = 0

The partial derivatives of φ and ui 2 are identified since both are known functions. Fur-

thermore, due to the monotone choice assumption we can replace ηi with σ−1
ci (d , s,ci ),

also a known quantity.

Ec−i |d ,s is one-to-one by assumption so we can apply the inverse operator to the

right-hand side above to recover ui , however we need to use the exclusion restriction

ui (di ,d−i ,ci ,c−i , s) = ui (di ,d−i ,ci ,c−i , si ) if we hope to recover a function of d−i and c−i .

The conditional expectation operator maps functions of (di ,d−i ,ci ,c−i , si ) (such as the

utility function) to functions of (di ,d−i ,ci , s). The inverse operator reverses this mapping

so that for fixed values of (d ,ci , si ) it maps functions of s−i to functions of c−i .

Now for each (d ,ci , si ) we can apply the inverse operator E−1
c−i |d ,s to − ∂

∂ci
φ(d ,ci , s) to

recover

∂

∂ci
ui 1(di ,d−i ,ci ,c−i , si )+ ∂

∂ci
ui 2(di ,d−i ,ci ,c−i , si )σ−1

ci (d , si ,ci ).

Integrating this with respect to ci and using the fact that we know ui 2 and σ−1
ci (d , si ,ci )

identifies ui 1 up to a constant normalization for each ci . ■
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Intuitively, the assumption that the conditional expectation operator Ec−i |d ,s is one-

to-one requires there to be sufficient variation in the conditional distribution of c−i

for different values of d and s. Assumptions of this type have been used by Hu and

Shum (2008a,b) in identifying the Markov kernel in dynamic discrete choice models and

dynamic games with unobserved state variables. They are also key conditions for identi-

fication in many nonparametric econometric models such as instrumental regression

models (Newey and Powell, 2003; Darolles, Florens, and Renault, 2007; Blundell, Chen,

and Kristensen, 2007) and classical measurement error models (Chen and Hu, 2006; Hu

and Schennach, 2008).

3.6 Conclusion

We have established conditions for nonparametric identification of both single agent

models and dynamic games of incomplete information in which agents make both

discrete and continuous choices. Our nonparametric identification results can serve

as a point of reference for practitioners estimating parametric models. In the absence

of conditions for parametric identification, our conditions, though likely stronger than

necessary for highly parametrized models, can serve as a benchmark. Furthermore, our

proofs are constructive and suggest the possibility of nonparametric or semiparametric

estimators for such models.
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Appendix A

Proofs for Chapter 1

Proof of Proposition 1.1. The result follows directly from the joint distribution function:

Pr(τ≤ t ) = Pr

(
min

i
τi ≤ t

)
= 1−Pr(τ1 > t , . . . ,τn > t )

= 1−
n∏

i=1
Pr(τi > t ) = 1−

n∏
i=1

e−λi t = 1−e−(
∑n

i=1λi )t .

Therefore, τ has an exponential distribution with rate parameter
∑n

i=1λi .

Furthermore,

Pr(τi ≤ τ j ∀ j ) = Eτi

[
Pr(τ j ≥ τi ∀ j 6= i )

∣∣τi
]

=
∫ ∞

0

[
e−

∑
j 6=i λ j

]
λi e−λiτi dτi

=
∫ ∞

0
λi e−(

∑n
j=1λ j )τi dτi

=− λi∑n
j=1

[
e−(

∑n
j=1λ j )τi

]∞
τi=0

= λi∑n
j=1λ j

.

111



■

Proof of Proposition 1.2. We have

Pr(W+(t ) ≥ τ) = Pr[N+(t +τ)−N+(t ) = 0]

=
∞∑

k=0
Pr[N (t +τ)−N (t ) = k, N0(t +τ)−N0(t ) = k]

=
∞∑

k=0
Pr[N (t +τ)−N (t ) = k]σ(0, x)k

=
∞∑

k=0

e−λτ(λτ)k

k !
σ(0, x)k

= e−λτ
∞∑

k=0

(σ(0, x)λτ)k

k !

= e−λτeσ(0,x)λτ

= e−(1−σ(0,x))λτ,

and therefore the cdf of W+(t ) is

Pr(W+(t ) ≤ τ) = 1−e−(1−σ(0,x))λτ .

For a given x, this is precisely the cdf of the exponential distribution with parameter

(1−σ(0, x))λ. ■
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Appendix B

Details of the Monte Carlo Experiments for
Chapter 1

Single Agent Model

To generate data for the single agent model we first choose values for θ and then use

numerical fixed point methods to determine the value function over the state space X

to within a tolerance of ε= 10−6 in the relative sup norm. To evaluate the expectation

over τ in (1.4), we use Monte Carlo integration as described in Section 1.5.4, drawing R

arrival intervals according to the appropriate exponential distribution and approximating

the integral using the sample average. We set R to 250. We then use the resulting value

function to generate data for various values of T .

In the first set of experiments, we estimate the model using full solution methods. The

value functions are obtained through value function iteration for each value of θ while

maximizing the likelihood function using the L-BFGS-B algorithm (Byrd, Lu, and Nocedal,

1995; Zhu, Byrd, Lu, and Nocedal, 1997).1 We generate 100 data sets over the interval

1 While there are more efficient methods to evaluate the expectation over τ and taking analytic derivatives
would clearly speed up estimation, the computational times are so fast that these steps were not needed.
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[0,T ] with T = 25,000 for an average of 10,000 events and then estimate the model under

several sampling regimes: true continuous time data, continuous time data when passive

actions (a = 0, the choice not to renew) are unobserved, and discrete time data observed

at intervals ∆ ∈ {0.625,1.25,2.5,5.0,10.0}.2

We also carry out the same experiments using CCP-based estimation in the single

agent model. Again, for T = 25,000, we estimate the model with full continuous-time

data, a continuous-time dataset with missing passive actions, and several discrete-time

datasets of varying granularity. For the full continuous-time dataset, we can nonpara-

metrically estimate the CCPs using a simple bin estimator. When accounting for passive

moves, we approximate the CCPs by dividing the number of times each particular ob-

served choice was made in each state by the implied expected number of move arrivals

in that state. Finally, when estimating the model with discrete-time data, we first jointly

estimate the first-stage parameters (λ, q1, and q2) and the parameters of a logistic regres-

sion model for the probability of renewal with parameters α. The regressors in our logit

model are a constant, the state x, and ln x. Then, we invert the predicted CCPs obtained

using the estimated parameters α̂ to obtain the value function which we use to estimate

the remaining second stage parameters.

Quality Ladder Model

For the multi-agent quality ladder model, we obtain estimates of θ = (λ,γ,κ,η,ηe ) for each

of 25 simulated datasets and report the means and standard deviations (in parenthesis).

In all experiments, we hold ω̄ fixed at ω̄= 7, set ωe = b ω̄2 c, and vary the maximum number

of players, N̄ , and the market size, M .3

2 One could view 25,000 as the number of months in the data with {0.625,1.25,2.5,5.0,10.0} indicating the
number of months (or fraction of months) between samples. While 25,000 implies having over 2,000 years
of data, this is following one time series. An almost equivalent structure would follow 1000 decision-makers
over two years.

3 For a fixed value of N̄ , the size of the state space of our model with ω̄= 7 is roughly comparable to that of
Doraszelski and Judd (2008) with ω̄= 9 since their model does not include entry and exit.
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We also increase the market size M so that the average number of active players (navg)

grows with the total number of possible players (N̄ ). The average quality level of active

firms is denoted ωavg. We also report K , the number of states from the perspective of

player i —the number of distinct (ω,ωi ) combinations. In these experiments, we used

samples containing T = 100 continuous time events in each of M = 1000 markets. We

fixed ρ = 0.05 and use R = 250 draws for Monte Carlo integration.

For the CCP estimation, we use the true CCPs. In practice, the CCPs must be estimated

somehow in a preliminary step. However, because there are many possible methods for

doing so, and because they tend to be application and data specific, we simply present

the results for the second-stage parameters as if the true CCPs were known. We have

estimated the CCPs nonparametrically using locally weighted averages with little change

in the results.
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Appendix C

Proofs for Chapter 2

C.1 Notation and Preliminary Results

C.1.1 Notation

First we introduce some notation. We shall make use of a modified signum function

sgn(x) where

sgn(x) =
{
−1 if x < 0,

1 if x ≥ 0.

This definition, which is standard in the maximum score literature, differs from the

common definition only at zero, where we define sgn(0) = 1 instead of sgn(0) = 0. We

write a ∨b to denote max{a,b} and a ∧b to denote min{a,b}.

In a slight abuse of notation, define the distance between a point x and a set B to be

d(x,B) = inf
x ′∈B

d(x, x ′),

where d denotes the Euclidean distance. For any set B , we let Bε denote an ε-expansion

of B , defined as

Bε = {x ∈ B : d(x,B) ≤ ε}.
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We write an ↓a to a sequence which eventually equals a, or in other words, a sequence

for which there exists an N <∞ such that an = a for all n ≥ N . We also say that such a

sequence converges arbitrarily fast to a since for any sequence rn , rn |an −a|→ 0. This

includes all polynomials of n such as rn = n1/2. In particular, when an is a stochastic

process, we say an converges arbitrarily fast to a in probability, or an is eventually a in

probability, when P {ω ∈Ω : an(ω) = a} → 1. In such cases we write an ↓a in probability.

C.1.2 Preliminary Results

Lemma C.1. Let f and g be bounded real functions on A ⊂Rn . Then

∣∣∣∣sup
x∈A

f (x)− sup
x∈A

g (x)

∣∣∣∣≤ sup
x∈A

∣∣ f (x)− g (x)
∣∣ .

Proof of Lemma C.1. First, note that for all x ∈ A,

(C.1) f (x)− sup
y∈A

g (y) ≤ f (x)− g (x) ≤ ∣∣ f (x)− g (x)
∣∣

and

(C.2) sup
y∈A

f (y)− g (x) ≥ f (x)− g (x) ≥− ∣∣ f (x)− g (x)
∣∣ .

We prove the result by showing that

−sup
x∈A

∣∣ f (x)− g (x)
∣∣≤ sup

x∈A
f (x)− sup

x∈A
g (x) ≤ sup

x∈A

∣∣ f (x)− g (x)
∣∣ .

For the right hand side:

sup
x∈A

f (x)− sup
x∈A

g (x) = sup
x∈A

[
f (x)− sup

y∈A
g (y)

]
≤ sup

x∈A

∣∣ f (x)− g (x)
∣∣ .

The equality holds since sup g is constant with respect to x and the inequality follows
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from (C.1), since it holds for all x. Similarly, the left hand side follows from (C.2):

sup
x∈A

f (x)− sup
x∈A

g (x) = sup
x∈A

f (x)+ inf
x∈A

(−g (x)
)

= inf
x∈A

[
sup
y∈A

f (y)− g (x)

]

≥ inf
x∈A

− ∣∣ f (x)− g (x)
∣∣

=−sup
x∈A

∣∣ f (x)− g (x)
∣∣

Together, these two inequalities imply the result. ■

C.2 Consistent Estimation

Proof of Theorem 2.3. The proof proceeds in two steps. In the first step, we show that

supθ∈Θ̂n
d(θ,ΘI )

p→ 0. The second step shows that limn→∞ P (ΘI ⊂ Θ̂n) = 1. Combining

these steps and using the definition of the Hausdorff distance yields the final conclusion

of the theorem. Let Bε denote an ε-expansion of a set B , as defined in Section C.1.1.

Step 1 For any ε> 0,

sup
Θ\ΘεI

Qn ≤ sup
Θ\ΘεI

Q +op (1) ≤ sup
Θ

Q −δε+op (1),

where δε > 0. The first inequality above follows from Assumption 2.4.d, giving uniform

convergence in probability of Qn to Q, and the second inequality follows from Assump-

tion 2.4.c, sinceΘI maximizes Q. Similarly,

inf
Θ̂n

Qn ≥ sup
Θ

Qn −τn ≥ sup
Θ

Q −τn +op (1)

The first inequality follows from the definition of Θ̂n and the second follows again from

uniform convergence. By assumption, τn = op (1), and since δε > 0, with probability

approaching one, τn < δε, or equivalently, supΘQ − τn + op (1) ≥ supΘQ − δε + op (1).
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Given the inequalities above, this implies infΘ̂n
Qn ≥ supΘ\ΘεI

Qn , which in turn implies

thatΘn ⊆ΘεI , and so supθ∈Θ̂n
d(θ,ΘI ) ≤ ε.

Step 2 By definition of Θ̂n and τn , we know that if bnτn ≥ supΘbnQn − infΘI bnQn , then

ΘI ⊆ Θ̂n . We have

sup
Θ

Qn − inf
ΘI

Qn =
[

sup
Θ

Qn − sup
Θ

Q

]
+

[
sup
Θ

Q − inf
ΘI

Qn

]

≤
∣∣∣∣sup
Θ

Qn − sup
Θ

Q

∣∣∣∣+ ∣∣∣∣sup
Θ

Q − inf
ΘI

Qn

∣∣∣∣
=

∣∣∣∣sup
Θ

Qn − sup
Θ

Q

∣∣∣∣+
∣∣∣∣∣sup
ΘI

Q − inf
ΘI

Qn

∣∣∣∣∣
≤ sup

Θ
|Qn −Q|+ sup

ΘI

|Qn −Q|

≤ sup
Θ

|Qn −Q|+ sup
Θ

|Qn −Q|

These steps follow by, respectively, adding and subtracting supΘQ, taking the abso-

lute value, noting that ΘI maximizes Q, using the fact that inf f = −sup− f , and ap-

plying Lemma C.1 (see Section C.1) twice, noting that ΘI ⊆ Θ. By Assumption 2.4.d,

supΘ |Qn −Q| =Op (1/bn) and so the requirement that τnbn
p→∞ (i.e., that τn approach-

es zero in probability slower than 1/bn) implies that τn ≥ 2supΘ |Qn −Q| ≥ supΘQn −
infΘI Qn with probability approaching one. ■

Proof of Theorem 2.4. From Theorem 2.3, limn→∞ P (ΘI ⊆ Θ̂n) = 1. We will prove the

result by showing that limn→∞ P (Θ̂n ⊆ ΘI ) = 1 and therefore the Hausdorff distance

dH (Θ̂n ,ΘI ) eventually equals zero with probability approaching one.

Uniform convergence at the 1/bn rate (Assumption 2.4.d) implies Qn(θ) ≤ Q(θ)+
Op (1/bn) and Q(θ) ≤Qn(θ)+Op (1/bn). It follows that

sup
Θ\ΘI

Qn ≤ sup
Θ\ΘI

Q +Op (1/bn) ≤ sup
Θ

Qδ+Op (1/bn) ≤ sup
Θ

Qn −δ+Op (1/bn),
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where the second inequality follows from Assumption 2.5.

Since τn converges to zero in probability and δ> 0 is constant, with probability ap-

proaching one, τn < δ. Thus, with probability approaching one, −δ<−τn , supΘ\ΘI
Qn ≤

supΘQn −τn +Op (1/bn) ≤ infΘ̂n
Qn +Op (1/bn), and therefore, Θ̂n ⊆ΘI . ■

Proof of Theorem 2.5. For any ε> 0, let δ, κ, γ1, γ2, κε, and nε satisfy Assumption 2.6 and

define

νn ≡
(
κ ·κε∨bn ·τn

bn ·κ
) 1
γ2

where bn is given by Assumption 2.4.d. Then, since νn = op (1), νn = Op (τ1/γ2
n ), and

τnbn
p→∞, there is an n′

ε > nε such that for all n > n′
ε, with probability at least 1−ε, we

have both νn ≤ δ and νn ≥ (κε/bn)1/γ2 . On a setΘ\Θνn
I , the distance satisfies d(θ,ΘI ) ≥ νn ,

so min{d(θ,ΘI ),δ} ≥ min{νn ,δ}. Therefore, by Assumption 2.6,

sup
Θ\Θνn

I

Qn ≤ sup
Θ

Qn −κ · (νn ∧δ)γ1

≤ sup
Θ

Qn −κ ·νγ1
n

≤ sup
Θ

Qn −
(
κ ·κε

bn
∨τn

)γ1/γ2

≤ sup
Θ

Qn −τγ1/γ2
n

≤ inf
Θ̂n

Qn .

The above implies that Θ̂n ∩ (Θ\Θνn
I ) is empty, or equivalently, that Θ̂n ⊆Θνn

I . Therefore,

in light of Step 1 of the proof of Theorem 2.3, which shows that limn→∞ P (ΘI ⊆ Θ̂n) = 1,

we have dH (Θ̂n ,ΘI ) =Op (τ1/γ2
n ) (since τn is slower than 1/bn by assumption). ■
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C.3 Confidence Regions

Proof of Lemma 2.6. Observe that

P {ΘI ⊆Cn(ĉn)} = P {Qn ≤ ĉn} = P {Q ≤ c(1−α)}+op (1) ≥ (1−α)+op (1).

The first equality holds by definition of Cn and Qn , the second by Assumption 2.7 and

ĉn
p→ c(1−α), and the third by definition of c(1−α). ■

Proof of Theorem 2.11. The proof proceeds in three steps. First, we derive upper and

lower bounds for Q̂n,m, j such that Qn,m, j ≤ Q̂n,m, j ≤Qn,m, j with probability approaching

one. Next, we prove that the empirical distribution function of Q̂n,m, j converges in

probability to the distribution function of Q, the limiting distribution of Qn . Finally, we

show that ĉn converges in probability to c(1−α), the desired quantile of the distribution

of Q.

Step 1 By Theorem 2.4, we have dH (Cn(κn),ΘI ) = 0 with probability approaching one.

Thus, dH (Cn(κn),ΘI ) ≤ εn for some sequence εn ↓ 0 with probability approaching one.

For a fixed subsample j , let Qn,m, j ≡ supθ∈ΘbmQn,m, j (θ)− infθ∈Θεn
I

bmQn,m, j (θ). Let Kn

be the collection of all subsets K ⊆ Θ such that dH (K ,ΘI ) ≤ εn and define Qn,m, j ≡
supK∈Kn

[
supθ∈ΘbmQn,m, j (θ)− infθ∈K bmQn,m, j (θ)

]
. There exists a setΘn,m, j ∈Kn such

that Qn,m, j is equal to infθ∈Θn,m, j bmQn,m, j (θ). With probability approaching one, since

Cn(κn) ⊆Θεn
I and Cn(κn) ∈Kn , we have Qn,m, j ≤ Q̂n,m, j ≤Qn,m, j for all j = 1, . . . , Mn .

Step 2 From Step 1, with probability approaching one,

Gn,m(x) ≡ M−1
n

Mn∑
j=1

1{Qn,m, j ≤ x} ≤ Ĝn,m(x) ≡ M−1
n

Mn∑
j=1

1{Q̂n,m, j ≤ x}

≤ Gn,m(x) ≡ M−1
n

Mn∑
j=1

1{Qn,m, j ≤ x}.
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We will show that Gn,m(x)
p→ P {Q ≤ x} and Gn,m(x)

p→ P {Q ≤ x} as n → ∞ (and thus,

m →∞). Therefore, Ĝn,m(x)
p→ P {Q ≤ x} for each x ∈R.

Let J m(x) denote the cdf of Qn,m, j . Note that Gn,m(x) is a U-statistic of degree m with

0 ≤Gn,m(x) ≤ 1 (i.e., it is bounded). Furthermore, E[Gn,m(x)] = E[1{Qn,m, j ≤ x}] = J m(x),

where the last equality holds by nonreplacement sampling, since each subsample of size

m is itself an iid sample. By the Hoeffding inequality for bounded U-statistics for iid data

(Serfling, 1980, Theorem A, p. 201), for any t > 0,

P
{

Gn,m(x)− J m(x) ≥ t
}
≤ exp

[
−2t 2 n

m

]
.

A similar inequality follows for t < 0 by considering the U-process −Gn,m(x). Therefore,

Gn,m(x) = J m(x)+op (1) for fixed m. Finally, since Qn,m, j is obtained from sets satisfying

Assumption 2.8, J m(x) = P {Qn,m, j ≤ x} = P {Q ≤ x}+op (1).

A similar argument shows that Gn,m(x)
p→ P {Q ≤ x} as well, and therefore, Ĝn,m(x)

p→
P {Q ≤ x}.

Step 3 Convergence of the distribution function at continuity points implies conver-

gence of the quantile function at continuity points (cf. Shorack, 2000, Proposition 3.1).

Therefore, ĉn = inf{x : Ĝ(x) ≥ 1−α}
p→ c(1−α). ■

C.4 Fixed Effects Model

Below we provide proofs for results pertaining to Model 2.1. First we present results

which are independent of assumptions on state space X , followed by results for discrete

regressors and continuous regressors.

C.4.1 General Results

Proof of Theorem 2.1. For the proof, let ΘI denote the identified set as defined in (2.4)

and let Θ̃I denote the set on the right side of (2.5). We first show ΘI ⊆ Θ̃I , and then
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Θ̃I ⊆ΘI .

Step 1 Let θ ∈ΘI . By definition ofΘI , there exist distributions Fu0|xc and Fc|x such that

π(yt = 1 | x;β,Fu0|xc ,Fc|x) = P (yt = 1 | x) Fx-almost surely for t = 0,1. Conditioning on c,

we have P (y0 = 1 | x,c) = 1−Fu0|xc (−x ′
0β−c) and P (y1 = 1 | x,c) = 1−Fu0|xc (−x ′

1β−c). By

the monotonicity of Fu0|xc ,

P (y1 = 1 | x,c) ≥ P (y0 = 1 | x,c) ⇐⇒ 1−Fu0|xc (−x ′
1β− c) ≥ 1−Fu0|xc (−x ′

0β− c)

⇐⇒ Fu0|xc (−x ′
1β− c) ≤ Fu0|xc (−x ′

0β− c)

⇐⇒ −x ′
1β− c ≤−x ′

0β− c

⇐⇒ (x1 −x0)′β≥ 0

Since this event is independent of c, we have

P (y1 = 1 | x)−P (y0 = 1 | x) ≥ 0 ⇐⇒ (x1 −x0)′β≥ 0,

or, equivalently,

sgn
(
P (y1 = 1 | x)−P (y0 = 1 | x)

)= sgn
(
(x1 −x0)′β

)
.

Therefore, θ ∈ΘI ⇒ θ ∈ Θ̃I .

Step 2 Now, suppose θ ∈ Θ̃I . We will show that for each such θ, given population distri-

butions P (yt | x) for t = 0,1, there are values of the remaining free model primitives—the

cdfs Fu0|xc and Fc|x—such that the implications of the model coincide with the true

population values P (y0 = 0 | x) and P (y1 = 0 | x).

First, note that we do not need to consider the events y0 = 1 or y1 = 1 since in each

time period, the (binary) choice probabilities must sum to one. Thus, we need to show

that there exist distributions Fu0|xc and Fc|x such that for Fx-almost every x the model

implications align with the population choice probabilities:

P (y0 = 0 | x) =π(y0 = 0 | x;θ,Fu0|xc ,Fc|x)

P (y1 = 0 | x) =π(y1 = 0 | x;θ,Fu0|xc ,Fc|x)
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For a given x and for primitives (θ,Fu0|xc ,Fc|x), the model implications are:

π(y0 = 0 | x;θ,Fu0|xc ,Fc|x) =
∫

Fu0|xc (−x ′
0β− c)dFc|x

π(y1 = 0 | x;θ,Fu0|xc ,Fc|x) =
∫

Fu0|xc (−x ′
1β− c)dFc|x

Fix x. It will suffice to construct a distribution Fc|x with only a single mass point c∗(x)

(conditional on each fixed value of x):

Fc|x(c) =
{

0 if c < c∗(x),

1 if c ≥ c∗(x).

Suppose that P (y1 = 1 | x) < P (y0 = 1 | x) (the opposite case follows similarly). Then

our choice of θ ∈ Θ̃I guarantees that β is such that x ′
1β< x ′

0β. We can rewrite these two

inequalities equivalently as P (y0 = 0 | x) < P (y1 = 0 | x) and −x ′
0β < −x ′

1β. Thus, the

following choice for Fu0|xc is a valid cdf:

Fu0|xc (u) =


0 if u <−x ′

1β− c∗(x),

P (y0 = 0 | x) if −x ′
0β− c∗(x) ≤ u ≤−x ′

1β− c∗(x),

P (y1 = 0 | x) if −x ′
1β− c∗(x) ≤ u < ū,

1 if u ≥ ū,

for any ū >−x ′
1β− c∗(x). Essentially, we only need to choose a cdf that passes through

the two points
(−x ′

0β− c∗(x),P (y0 = 0 | x)
)

and
(−x ′

1β− c∗(x),P (y1 = 0 | x)
)

and there are

an infinite number of such cdfs, as illustrated by Figure C.1.

Given the above cdfs, we have:

π(y0 = 0 | x;θ,Fu0|xc ,Fc|x) = Fu0|xc (−x ′
0β− c∗(x)) = P (y0 = 0 | x),

π(y1 = 0 | x;θ,Fu0|xc ,Fc|x) = Fu0|xc (−x ′
1β− c∗(x)) = P (y1 = 0 | x).

Therefore θ ∈ΘI , and since θ ∈ Θ̃I was chosen arbitrarily, Θ̃I ⊆ΘI . ■

Proof of Lemma 2.1. Define w = x1 −x0, z = y1 − y0, andΘ∗ = argmaxθ∈ΘQ(θ).
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Fu0|xc

u

P (y0 = 0 | x)

P (y1 = 0 | x)

−x ′
0β− c∗(x) −x ′

1β− c∗(x)

FIGURE C.1: Two distributions Fu0|xc with equivalent observable implications under Fc|x .

Step 1 Let θ1 ∈ΘI and θ2 ∈Θ. We will show that ΘI ⊆Θ∗ by proving that, for arbitrary

choices of θ1 and θ2, Q(θ1) ≥Q(θ2).

Consider the difference

Q(θ1)−Q(θ2) = E
[
z sgn(w ′β1)

]−E
[
z sgn(w ′β2)

]
= E

[
z
(
sgn(w ′β1)− sgn(w ′β2)

)]
= 2

∫
D(θ1,θ2)

sgn(w ′β1)E[z | x,c] dFxc

where D(θ1,θ2) = {(x,c) : sgn(w ′β1) 6= sgn(w ′β2)} is the set of values of x and c where

sgn(w ′β1) and sgn(w ′β2) differ. The last equality above follows from the fact that the in-

tegrand vanishes on complement of D(θ1,θ2), and that on D(θ1,θ2) we have sgn(w ′β1) =
−sgn(w ′β2), implying that sgn(w ′β1)− sgn(w ′β2) = 2sgn(w ′β1). Since θ1 ∈ ΘI , Theo-

rem 2.1 guarantees that

sgn(w ′β1) = sgn
(
P (y1 = 1 | x,c)−P (y0 = 1 | x,c)

)= sgnE(z | x,c)

Fxc -almost surely. Rewriting the above difference,

Q(θ1)−Q(θ2) = 2
∫

D(θ1,θ2)
|E[z | x,c]| dFxc ≥ 0

for all θ2. Therefore,ΘI ⊆Θ∗.
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Step 2 Now, let θ1 ∈ΘI and suppose there exists a θ2 ∈Θc
I ∩Θ∗, where Θc

I denotes the

complement of ΘI . We will use the definition of ΘI to show that Q(θ2) <Q(θ1), contra-

dicting the assumption that θ2 ∈Θ∗, and guaranteeing thatΘc
I ∩Θ∗ =;, or equivalently,

Θ∗ ⊆ΘI .

First, note that we can rewrite Q(θ) as follows:

Q(θ) = E[z sgn(w ′β)]

= Exc Ez|wc [z sgn(w ′β)]

= Exc
[(

P (y1 = 1 | x,c)−P (y0 = 1 | x,c)
)(

1{w ′β≥ 0}−1{w ′β< 0}
)]

=
∫

{w ′β≥0}

(
P (y1 = 1 | x,c)−P (y0 = 1 | x,c)

)
dFxc

+
∫

{w ′β<0}

(
P (y0 = 1 | x,c)−P (y1 = 1 | x,c)

)
dFxc

The first equality is definitional, the second is an application of the law of iterated expec-

tations, and the third follows from the definition of z and the signum function. In the

fourth line, the expectations of the indicator functions are expressed as integrals over the

corresponding regions of the support of x.

Now, consider the difference Q(θ2)−Q(θ1):

Q(θ2)−Q(θ1) =
∫

{w ′β2≥0}

(
P (y1 = 1 | x,c)−P (y0 = 1 | x,c)

)
dFxc

+
∫

{w ′β2<0}

(
P (y0 = 1 | x,c)−P (y1 = 1 | x,c)

)
dFxc

−
∫

{w ′β1≥0}

(
P (y1 = 1 | x,c)−P (y0 = 1 | x,c)

)
dFxc

−
∫

{w ′β1<0}

(
P (y0 = 1 | x,c)−P (y1 = 1 | x,c)

)
dFxc
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Over regions where w ′β2 and w ′β1 have the same sign, the difference is zero, therefore

Q(θ2)−Q(θ1) =
∫

{w ′β2≥0,w ′β1<0}

(
P (y1 = 1 | x,c)−P (y0 = 1 | x,c)

)
dFxc

−
∫

{w ′β2<0,w ′β1≥0}

(
P (y1 = 1 | x,c)−P (y0 = 1 | x,c)

)
dFxc

From the proof of Theorem 2.1, we know that for θ1 ∈ΘI ,

P (y1 = 1 | x,c)−P (y0 = 1 | x,c) ≥ 0 ⇐⇒ w ′β1 ≥ 0

and for θ2 ∈Θc
I ,

P (y1 = 1 | x,c)−P (y0 = 1 | x,c) < 0 ⇐⇒ w ′β2 ≥ 0.

This implies that the first term in the difference above is strictly negative and the second

term, which is being subtracted, is weakly non-negative. Thus, Q(θ2) < Q(θ1). This

contradicts the choice of θ2, meaning thatΘc
I ∩Θ∗ =; and therefore it must be the case

thatΘ∗ ⊆ΘI . ■

Proof of Lemma 2.2. Let D ⊂Rd denote the support of w and let X = {−1,0,1}×D denote

the support of (z, w). For each (z, w) ∈X and for each real number t , α, and γ, and real

vector δ ∈Rd , define

g (z, w, t ,α,γ,δ) =αt +γz +δ′w

and define

G =
{

g (·, ·, ·,α,γ,δ) :α,γ ∈R and δ ∈Rd
}

.

Since G is a vector space of real-valued functions on X ×R, by Lemma 2.4 of Pakes and

Pollard (1989), classes of sets of the form {g ≥ r } or {g > r } with g ∈ G and r ∈ R are VC

classes. We will show that F is Euclidean by showing that it is a VC subgraph class, that

is, that the collection of subgraphs of functions in F is a VC class. To accomplish this, we

127



will use Lemma 2.5 of Pakes and Pollard (1989) which states that, in particular, if C1 and

C2 are VC classes, then so are {C1 ∩C2 : C1 ∈C1,C2 ∈C2}, {C1 ∪C2 : C1 ∈C1,C2 ∈C2}, and

{C c
1 : C1 ∈C1}.

First, note that we can rewrite f as

f (z, w,θ) = (1{z > 0}−1{z < 0}) · (1{w ′β≥ 0}−1{w ′β< 0}
)

= 1{z > 0, w ′β≥ 0}−1{z > 0, w ′β< 0}

−1{z < 0, w ′β≥ 0}+1{z < 0, w ′β< 0}.

Now, for any θ ∈Θ,

subgraph( f (·, ·,θ)) = {(z, w, t ) ∈X ×R : 0 < t < f (z, w,θ) or 0 > t > f (z, w,θ)}

= (
{z > 0}∩ {w ′β≥ 0}∩ {t ≥ 1}c ∩ {t > 0}

)
∪ (

{z > 0}∩ {w ′β≥ 0}c ∩ {t ≥−1}∩ {t ≥ 0}c)
∪ (

{z ≥ 0}c ∩ {w ′β≥ 0}∩ {t ≥−1}∩ {t ≥ 0}c)
∪ (

{z ≥ 0}c ∩ {w ′β≥ 0}c ∩ {t ≥ 1}c ∩ {t > 0}
)

= (
{g1 > 0}∩ {g2 ≥ 0}∩ {g3 ≥ 1}c ∩ {g3 > 0}

)
∪ (

{g1 > 0}∩ {g2 ≥ 0}c ∩ {g3 ≥−1}∩ {g3 ≥ 0}c)
∪ (

{g1 ≥ 0}c ∩ {g2 ≥ 0}∩ {g3 ≥−1}∩ {g3 ≥ 0}c)
∪ (

{g1 ≥ 0}c ∩ {g2 ≥ 0}c ∩ {g3 ≥ 1}c ∩ {g3 > 0}
)

where gk (z, w, t) = αk t +γk z +δ′k w ∈ G for each k with, α1 = 0, γ1 = 1, δ1 = 0, α2 = 0,

γ2 = 0, δ2 = β, α3 = 1, γ3 = 0, and δ3 = 0. The collection of sets of the form {g ≥ 0} or

{g > 0} is a VC class by Lemma 2.4 of Pakes and Pollard (1989). Furthermore, this property

is preserved over complements, unions, and intersections of VC classes by their Lemma

2.5. Therefore, {subgraph( f ) : f ∈ F } is a VC class, and by Lemma 2.12 of Pakes and

Pollard (1989), F is Euclidean for any envelope. In particular, F is Euclidean for the

constant envelope F = 1. ■
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Proof of Theorem 2.6. We shall verify each of the conditions of Assumption 2.4. Condi-

tion a is satisfied by definition of Model 2.1, condition b holds as a result of Lemma 2.1,

and condition d is satisfied with bn =p
n as a result of Lemma 2.3. ■

C.4.2 Discrete Regressors

Proof of Lemma 2.7. Note that the first part of this proof is independent of assumption

Assumption 2.1.

Verification of Assumption 2.7 First, note that we can rewrite n1/2Qn as

n1/2Qn(θ) = n1/2(Pn fθ−P fθ)+n1/2P fθ =Gn( fθ)+n1/2P fθ,

and therefore,

Qn ≡ inf
θ∈ΘI

n1/2Qn(θ) = inf
θ∈ΘI

(
Gn( fθ)+n1/2P fθ

)
.

Supposing Q is normalized so that it is identically zero onΘI , since the map infΘI , which

takes real functions on Θ into R, is continuous in `∞(F ), the continuous mapping

theorem gives Qn
d→ infθ∈ΘI G( fθ) ≡Q.

Verification of Assumption 2.8 For any sequence of subsetsΘn ofΘ such that dH (Θn ,ΘI ) ↓ 0

in probability, define Q′
n ≡ infθ∈Θn n1/2Qn(θ). For all ε> 0, there exists an nε such that for

all n ≥ nε, P (Θn =ΘI ) ≥ 1−ε. Then, P
(
infΘn n1/2Qn = infΘI n1/2Qn

)≥ 1−ε. Recall from

above that infθ∈ΘI n1/2Qn
d→Q. Therefore, Q′

n
d→Q. ■

C.4.3 Continuous Regressors

Proof of Theorem 2.8. Lemma 2.2 established that F is Euclidean and the conditions of

Assumption 2.4 have been shown to hold previously with bn = n1/2. We will show that

Assumption 2.6 holds with γ1 = 2 and γ2 = 3/2 and then use Theorem 2.5 to obtain the

resulting rate.
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Abrevaya and Huang (2005) show that ∇θθ′ Q(θ0) = −V (θ0). Generalizing their ar-

gument to the set identified case yields ∇θθ′ Q(θ) = −V (θ) for all θ ∈ bd(ΘI ). There-

fore, in a neighborhood N of ΘI , Q is approximately quadratic and for some C > 0,

Q(θ) ≤ supQ −C ·d 2(θ,ΘI ).

Let η > 0 and define Fη ≡ { fθ ∈ F : d(θ,ΘI ) < η}. Again, following the arguments

of Abrevaya and Huang (2005), Fη is a VC subgraph class with envelope Fη such that

PF 2
η =Op (η). Then, by Lemma 4.1 of Kim and Pollard (1990), for all ε> 0, there exists a

sequence Mn =Op (1) such that

(C.3) Pn fθ−P fθ ≤ εd 2(θ,ΘI )+n−2/3M 2
n

for d(θ,ΘI ) ≤ η.

Let Gn(θ) ≡ n1/2(Pn fθ−P fθ) denote the standardized empirical process. For θ ∈N c ,

Qn(θ) ≤ n−1/2Gn(θ)+ sup
Θ

Q −δ

≤ n−1/2Op (1)+ sup
Θ

Q −δ

≤ sup
Θ

Q − δ̃

for sufficiently large n. The final inequality is a result of the Donsker property which

implies supθ∈Θ
∣∣Gn( fθ)

∣∣=Op (1).

For θ ∈ N , we can choose ε = 1
2C in (C.3) and combine this with the quadratic

approximation above to obtain

Qn(θ) = (Pn fθ−P fθ)+P fθ

≤ (Pn fθ−P fθ)+ sup
Θ

Q −C ·d 2(θ,ΘI )

≤ n−2/3M 2
n + sup

Θ
Q − 1

2
C ·d 2(θ,ΘI ).

Note that the term n−2/3M 2
n is smaller than 1

4C d 2(θ,ΘI ) whenever d(θ,ΘI ) ≥ 4M 2
n

C n−1/3 .
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For any ε> 0 we can choose δ, κε and nε such that for all n ≥ nε, with probability at

least 1−ε,

Qn(θ) ≤ sup
Θ

Q −C · (d(θ,ΘI )∧δ)2

uniformly on {θ ∈Θ : d(θ,ΘI ) ≥ (κε/n1/2)2/3}. This follows since we can choose nε large

enough to guarantee that set Dn ≡ {θ : d(θ,ΘI ) ≥ (κε/bn)1/γ2 } intersects the neighborhood

N .

Thus, we have verified Assumption 2.6 with γ1 = 2, γ2 = 3/2, and bn = n1/2. The

conclusion then follows by applying Theorem 2.5. ■

C.5 Lagged Dependent Variable Model

Proof of Lemma 2.4. This proof parallels the proof of Lemma 2.1, the corresponding

result for Model 2.1. Let Θ∗ ≡ argmaxΘQ and define wt ≡ xt − xt−1, z ≡ y2 − y1, and

v ≡ y3 − y0.

Step 1 Let θ1 ∈ΘI and θ2 ∈Θ. We will show that Q(θ1) ≥Q(θ2) and therefore, θ1 ∈Θ∗. We

have

Q(θ1)−Q(θ2) = E
[
1{w3 = 0} · z · (sgn(w ′

2β1 +γ1v)− sgn(w ′
2β2 +γ2v)

)]
=

∫
E[z | x,c, y0, y3, w3 = 0]

(
sgn(w ′

2β1 +γ1v)− sgn(w ′
2β2 +γ2v)

)
dFx,c,y0,y3|w3=0

= 2
∫

D(θ1,θ2)
sgn(w ′

2β1 +γ1v)E[z | x,c, y0, y3, w3 = 0]dFx,c,y0,y3|w3=0

where D(θ1,θ2) is defined as the set of all (x,c, v) where sgn(w ′
2β1 +γ1v) and sgn(w ′

2β2 +
γ2v) differ. The first equality follows by definition of Q, the second is an application

of the law of iterated expectations, and the third is due to the fact that on D(θ1,θ2),

sgn(w ′
2β2 +γ2v) =−sgn(w ′

2β1 +γ1v). Note that on the integrand above vanishes on the

complement of D(θ1,θ2).
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Now, since θ1 ∈ΘI , from Theorem 2.2 we have that for all d0,d3,

sgn(w ′
2β1 +γ1v) = sgn(P (A | x, x2 = x3)−P (B | x, x2 = x3))

= sgn
(
P (y1 = 0, y2 = 1 | x, x2 = x3, y0 = d0, y3 = d3)

−P (y1 = 1, y2 = 0 | x, x2 = x3, y0 = d0, y3 = d3)
)

for all d0,d3 ∈ {0,1}. The second line follows because the common factor which was

removed, P (y0 = d0, y3 = d3 | x, x2 = x3), is always positive. Furthermore, we can write

E[z | x,c, y0, y3, w3 = 0] = P (y1 = 0, y2 = 1 | x,c, y0, y3, w3 = 0)

−P (y1 = 1, y2 = 0 | x,c, y0, y3, w3 = 0).

So, the sign above times the conditional expectation of z simplifies to the absolute value

of the conditional expectation. Returning to the objective function,

Q(θ1)−Q(θ2) = 2
∫

D(θ1,θ2)

∣∣E [z | x,c, y0, y3, w3 = 0]
∣∣ dFx,c,y0,y3|w3=0 ≥ 0.

Step 2 Let θ1 ∈ΘI and suppose there exists a θ2 ∈Θc
I ∩Θ∗. We will show that this implies

Q(θ2) < Q(θ1), which is a contradiction of the choice of θ2 ∈Θ∗, and therefore Θc
I ∩Θ∗

must be empty.

Note that we can express Q as

Q(θ) =
∫

{w ′
3β+γv≥0}

[
P (y1 = 0, y2 = 1 | x,c, y0, y3, w3 = 0)

−P (y1 = 1, y2 = 0 | x,c, y0, y3, w3 = 0)
]

dFx,c,y0,y3|w3=0

+
∫

{w ′
3β+γv<0}

[
P (y1 = 1, y2 = 0 | x,c, y0, y3, w3 = 0)

−P (y1 = 0, y2 = 1 | x,c, y0, y3, w3 = 0)
]

dFx,c,y0,y3|w3=0.

Again we consider a difference Q(θ2)−Q(θ1). Using the linearity of integrals, we can

partition the range of each integral into disjoint sets and subtract the corresponding inte-

grands on each set. When w ′
3β1 +γ1v and w ′

3β2 +γ2v have the same sign, the difference
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is zero, so we only need to consider regions where the sign differs:

D1 ≡ {(x,c, y0, y3) : w ′
3β2 +γ2v ≥ 0, w ′

3β1 +γ1v < 0},

D2 ≡ {(x,c, y0, y3) : w ′
3β2 +γ2v < 0, w ′

3β1 +γ1v ≥ 0}.

Hence,

Q(θ2)−Q(θ1) =
∫

D1

[
P (y1 = 0, y2 = 1 | x,c, y0, y3, w3 = 0)

−P (y1 = 1, y2 = 0 | x,c, y0, y3, w3 = 0)
]

dFx,c,y0,y3|w3=0

+
∫

D2

[
P (y1 = 1, y2 = 0 | x,c, y0, y3, w3 = 0)

−P (y1 = 0, y2 = 1 | x,c, y0, y3, w3 = 0)
]

dFx,c,y0,y3|w3=0.

Since θ1 ∈ ΘI and θ2 ∉ ΘI , first term is strictly negative and the second term is weakly

non-positive. ■

Proof of Lemma 2.5. We follow the same strategy as in the proof of Lemma 2.2. Define

wt ≡ xt − xt−1, z ≡ y2 − y1, and v ≡ y3 − y0, and let f (w2, w3, z, v,θ) = 1{w3 = 0} · z2 ·[
2 ·1{w ′

2β+γv ≥ 0}−1
]
. First, note that f can be rewritten as

f (w2, w3, z, v,θ) = 1{w3 ≥ 0} ·1{w3 ≤ 0} · (1{z2 > 0}−1{z < 0})

· (1{w ′
2β+γv ≥ 0}−1{w ′

2β+γv < 0}
)

.

Upon expanding this expression, it is clear that, as before, for any θ we can express

subgraph f (·, ·, ·, ·,θ) as series of intersections and unions (and complements thereof) of

the form {g ≥ 0} and {g > 0} for specific coefficient values α of some polynomial

g (w2, w3, z, v, t ,α) =α1t +α2w2 +α3w3 +α4z +α5v.

It then follows that {subgraph( f ) : f ∈F } is a VC class, and, therefore, F is Euclidean for

any envelope. In particular, it is Euclidean for the envelope F = 1. ■
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Proof of Theorem 2.9. We verify each of the conditions of Assumption 2.4. Condition a

is satisfied by definition of Model 2.2, condition b holds as a result of Lemma 2.4, and

condition d is satisfied with bn =p
n as a result of Lemma 2.3, since the objective function

is of the same form as that of Model 2.1—only the indexing class of functions F is different

but both are Euclidean with envelope F = 1. ■

Proof of Theorem 2.10. When the support of x is a finite set, henceforth X , the objective

function Q(θ) can be rewritten as follows:

Q(θ) = ∑
y0∈{0,1}

∑
y3∈{0,1}

∑
x∈X

P (x)P (y0 | x)P (y3 | x, y0)

× [
P (y2 = 1 | x, y0, y3)−P (y1 = 1 | x, y0, y3)

]
× sgn

(
(x2 −x1)′β+γ(y3 − y0)

)
.

Therefore, Q(θ) is a step function and there exists a real number δ> 0 with

δ≥ inf
(x,y0,y3)

P (x)P (y0 | x)P (y3 | x, y0)
[
P (y2 = 1 | x, y0, y3)−P (y1 = 1 | x, y0, y3)

]
such that for all θ ∈Θ\ΘI , Q(θ) ≤ supΘQ −δ. This verifies Assumption 2.5. Since condi-

tions of Assumption 2.4 were already established under the current assumptions in the

proof of Theorem 2.9, the result follows by applying Theorem 2.4. ■
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Appendix D

Auxiliary Results for Chapter 3

Lemma D.1. Under the assumptions of Theorem 3.2, the functional mapping

Γ (v(0, ·)) (s) ≡ Eη

{
sup

c

[
u(0,c, s,η)+βEs′|d=0,c,s [H (∆(1, s), . . . ,∆(K , s))+ v(0, s)]

]}

is a contraction with modulus β.

Proof of Lemma D.1. First we simplify the notation, defining w(s) ≡ v(0, s) and

Γ(w)(s) = sup
c

[
ψ(0,c, s)+βEs′|d=0,c,s w(s′)

]
,

where

ψ(d ,c, s) ≡βEs′|d ,c,s
[
H

(
∆(1, s′), . . . ,∆(K , s′)

)]
Note that in light of the utility normalization, this expression no longer depends on

η and so we can drop the outer expectation. Furthermore, under the assumptions of

Theorem 3.2, the function ψ(d ,c, s) is identified.

We must show that for any two functions w and w̃ , ‖Γw −Γw̃‖ ≤ k ‖w − w̃‖ for some

135



0 < k < 1 where ‖·‖ is the sup norm,
∥∥ f

∥∥≡ sups∈S

∣∣ f (s)
∣∣. We have

‖Γw −Γw̃‖ = sup
s

|Γw(s)−Γw̃(s)|

= sup
s

∣∣∣∣sup
c

[
ψ(0,c, s)+βEs′|d=0,c,s w(s′)

]− sup
c

[
ψ(0,c, s)+βEs′|d=0,c,s w̃(s′)

]∣∣∣∣
≤ sup

s
sup

c

∣∣[ψ(0,c, s)+βEs′|d=0,c,s w(s′)
]− [

ψ(0,c, s)+βEs′|d=0,c,s w̃(s′)
]∣∣

=βsup
s

sup
c

∣∣Es′|d=0,c,s
[
w(s′)− w̃(s′)

]∣∣
≤βsup

s
sup

c
Es′|d=0,c,s

∣∣w(s′)− w̃(s′)
∣∣

≤βsup
s′

∣∣w(s′)− w̃(s′)
∣∣

=β‖w − w̃‖ .

The first two equalities follow by definition while the third line follows from the prop-

erties of the supremum:
∣∣sup f (x)− sup g (x)

∣∣ ≤ sup
∣∣ f (x)− g (x)

∣∣. The fourth line is a

simplification using the linearity of the expectation operator. The next two lines follow

from properties of the integral: we know that
∣∣∫ f

∣∣ ≤ ∫ ∣∣ f
∣∣ and that for any measure µ,∫

E f dµ≤µ(E)supx∈E f (x). The last equality holds by definition of the norm. ■

Lemma D.2. Under the assumptions of Theorem 3.3, the functional mapping

Γ (vi (0, ·)) (s)

≡ Eηi |di=0,s Ed−i |di=0,s sup
ci

βEc−i |d ,ci ,s Es′|d ,c,s
[
H(∆i (1, s′), . . . ,∆i (K , s′))+ vi (0, s′)

]
.

is a contraction with modulus β.

Proof of Lemma D.1. For simplicity, define w(s) ≡ v(0, s) so that the functional equation

becomes

Γ(w)(s) ≡ Eηi |di=0,s Ed−i |di=0,s sup
ci

Ec−i |d ,ci ,s
{
ψ(0,c, s)+βEs′|d ,c,s w(s′)

}
,
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where

ψ(d ,c, s) ≡βEc−i |d ,ci ,s Es′|d ,c,s
[
H

(
∆(1, s′), . . . ,∆(K , s′)

)]
Note that in light of the utility normalization, this expression no longer depends on ηi

and so we can drop the outermost expectation. Furthermore, under the assumptions of

Theorem 3.3, the function ψ(d ,c, s) is identified.

We must show that for any two functions w and w̃ , ‖Γw −Γw̃‖ ≤ k ‖w − w̃‖ for some

0 < k < 1 where ‖·‖ is the sup norm,
∥∥ f

∥∥≡ sups∈S

∣∣ f (s)
∣∣. We have

‖Γw −Γw̃‖ = sup
s

|Γw(s)−Γw̃(s)|

=βsup
s

∣∣∣∣Ed−i |di=0,s

[
sup

ci

Ec−i |d ,ci ,s Es′|d ,c,s w(s′)− sup
ci

Ec−i |d ,ci ,s Es′|d ,c,s w̃(s′)
]∣∣∣∣

≤βsup
s

Ed−i |di=0,s

∣∣∣∣sup
ci

Ec−i |d ,ci ,s Es′|d ,c,s w(s′)− sup
ci

Ec−i |d ,ci ,s Es′|d ,c,s w̃(s′)
∣∣∣∣

≤βsup
s

Ed−i |di=0,s sup
ci

Ec−i |d ,ci ,s Es′|d ,c,s
∣∣w(s′)− w̃(s′)

∣∣
≤βsup

s
Ed−i |di=0,s sup

ci

Ec−i |d ,ci ,s sup
s′

∣∣w(s′)− w̃(s′)
∣∣

≤βsup
s′

∣∣w(s′)− w̃(s′)
∣∣

=β‖w − w̃‖ .

The first equality follows by definition of the norm. The second follows since ψ is known

and by the linearity of Ed−i |di=0,s . The remaining inequalities from properties of the

integral, the uniform continuity of sup, and the definition of the norm. ■
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