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Abstract 
Engineered monolayers created by using microabrasion and micropatterning 

methods have provided a simplified in vitro system to study the effects of anisotropy 

and fiber direction on electrical propagation. Interpreting the behavior in these culture 

systems has often been performed using classical computer models with continuous 

properties. Such models, however, do not account for the effects of random cell shapes, 

cell orientations and cleft spaces inherent in these monolayers on the resulting 

wavefront conduction. Additionally when the continuous computer model is built to 

study impulse propagations, the intracellular conductivities of the model are commonly 

assigned to match impulse conduction velocity of the model to the experimental 

measurement. However this method can result in inaccurate intracellular conductivities 

considering the relationship among the conduction velocity, intracellular conductivities 

and ion channel properties. In this study, we present novel methods for modeling a 

monolayer cardiac tissue and for estimating intracellular conductivities from an optical 

mapping. First, in the proposed method for modeling a monolayer of cardiac tissue, the 

factors governing cell shape, cell-to-cell coupling and the degree of cleft space are not 

constant but rather are treated as spatially random with assigned distributions. This 

approach makes it possible to simulate wavefront propagation in a manner analogous to 

performing experiments on engineered monolayer tissues. Simulated results are 

compared to reported experimental data measured from monolayers used to investigate 



 

v 

the role of cellular architecture on conduction velocities and anisotropy ratios. We also 

present an estimate for obtaining the electrical properties from these networks and 

demonstrate how variations in the discrete cellular architecture affect the macroscopic 

conductivities. The simulation results agree with the common assumption that under 

normal ranges of coupling strengths, tissues whose cell shapes and connectivity show 

relatively uniform distributions can be represented using continuous models with 

conductivities derived from random discrete cellular architecture using the estimates. 

The results also reveal that in the presence of abrupt changes in cell orientation, local 

estimates of tissue properties predict smoother changes in conductivities that may not 

adequately predict the discrete nature of propagation at the transition sites. Second, a 

novel approach is proposed to estimate intracellular conductivities from the optical 

mapping of the monolayer cardiac tissue under subthreshold stimulus. This method 

uses a simplified membrane model, which represents the membrane as a second order 

polynomial of the membrane potential. The simplified membrane model and the 

intracellular conductivities are estimated from the signals similar to that would be 

obtained from the optical mapping of the monolayer tissue under the subthreshold 

stimulus. We showed that the proposed method provides more accurate intracellular 

conductivities compared to a method using a constant membrane resistance. 
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1. Introduction  

1.1 Discrete action potential (AP) conduction in cardiac tissue 

Cardiac cells are electrically coupled with gap junctions enabling action 

potentials to propagate through cardiac tissue. In early investigations of action potential 

(AP) conduction, the tissue was assumed to be a continuous medium due to the tight 

coupling by gap junctions and the relatively smooth patterns of activation (Roberge, 

Vinet et al. 1986; Plonsey and Barr 1987; Muzikant, Hsu et al. 2002). In the early 1980’s, 

Spach et al. reported observations from their experiments that were contradictory to the 

continuous model’s predictions (Spach, Miller et al. 1981). Their findings and an 

increased emphasis on a gap junction function led to more computer models 

incorporating discrete and heterogeneous features of cardiac tissue. In continuous 

media, AP propagation can be described by the continuous cable model, which 

determines the relationship between the transmembrane potential and ionic 

transmembrane current in one dimensional fiber. 

 
𝐶𝐶𝑚𝑚 ∙

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑎𝑎

2 ⋅ 𝑅𝑅𝑖𝑖
⋅
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2  (1.1)  

where 𝑎𝑎 is a radius of the fiber, 𝑅𝑅𝑖𝑖  is intracellular resitivity (Ω𝑐𝑐𝑚𝑚) and 𝐶𝐶𝑚𝑚  is the specific 

membrane capacitance (𝜇𝜇𝜇𝜇/𝑐𝑐𝑚𝑚2). From equation (1.1), the approximate impulse 

conduction velocity (CV) 𝜃𝜃 can be obtained with sodium conductance and intracellular 

resistance (Pickard 1966). 
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�
3
�

1/4

 
(1.2)  

where Υ0 is average maximum rate of rise of the sodium conductance per unit area, 𝜓𝜓0 is 

resting potential, and 𝜕𝜕𝑇𝑇  is threshold potential. The equation (1.2) provides two 

mechanisms for conduction velocity changes. The first one is through changes in the 

sodium current, which is due to positive correlation between 𝜃𝜃 and Υ0. This mechanism 

can be experimentally detected by the changes in the waveforms and the maximum 

upstroke velocity since both are correlated to the conductance of the sodium channel 

during action potential upstroke. The other mechanism involves the change in 

intracellular resitivity 𝑅𝑅𝑖𝑖 , which is inversely proportional to the CV. If the velocity 

changes by the second mechanism, the continuous model predicts that the waveform 

does not change since the intracellular resistance and the sodium channel conductance 

are independent.  

When Spach et al. measured AP upstroke velocity and CV at one site of canine 

cardiac muscle, the result could not be explained with continuous view of AP 

conduction (Spach, Miller et al. 1981). The investigators placed one recording electrode 

and 2-6 stimulus electrodes around the recording site so that they could record AP 

propagating in different directions at one recording site. Under this condition, the 

investigators observed that the longitudinal conduction velocity (LCV) was faster than 

transverse conduction velocity (TCV) with the ratio of 2.6 and the velocity change was 

associated with the waveform change. Longitudinal propagation was associated with 
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smooth waveform but transverse propagation was associated with non-smooth 

waveforms, which supports CV change due to sodium channel conductance. However, 

the maximum upstroke velocity was higher during the transverse propagation than 

during the longitudinal propagation. These results were inconsistent with the 

mechanisms of the conduction velocity change from the continuous model, predicting 

the positive correlation between CV and upstroke velocity �̇�𝜕𝑚𝑚𝑎𝑎𝑥𝑥  or no change in the 

waveform depending on the mechanisms of the velocity change. 

 

1.2 Cultured monolayer cardiac tissue 

Recent advances in tissue engineering and micropatterning techniques have 

made it possible to create monolayers in which the degree of anisotropy can be 

reproducibly controlled (Fast and Kleber 1994; Bursac, Parker et al. 2002; Rohr, 

Fluckiger-Labrada et al. 2003; Bian and Tung 2006). Bursac et al. presented an in vitro 

model system that enables systematic manipulation of the degree, orientation, and 

nonuniformity (continuity) of anisotropy in centimeter-sized monolayer cultures of 

neonatal rat cardiac myocytes (Bursac, Parker et al. 2002). Using micropatterning, they 

cultured a series of cardiac monolayer tissues whose microscale continuity changes from 

discontinuous to continuous and the cell orientations change from oriented (anisotropic) 

to disoriented (isotropic). While these experimental monolayers allow for sophisticated 

electrophysiological, pharmacological, and genetic studies of simple impulse 
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propagation and reentry dynamics in vitro, they are currently limited to rat neonatal 

cells with electrophysiological properties that differ from humans. In addition, some 

features of the tissue, like the magnitude and distribution of gap junctions, are not easy 

to control locally.   

Another benefit of using an in vitro monolayer of cardiac tissue is that impulse 

conduction can be observed over wide area of the tissue with an optical mapping which 

uses voltage sensitive dyes in the cardiac tissue so that the fluorescence can be related to 

the transmembrane potential (Entcheva, Lu et al. 2000). The fluoresced light is captured 

with video imaging device or optical sensors whose signal gives relative values of 

potential rather than absolute values (Gray 1999). This method allows the ability to 

observe impulse conduction with very high spatial resolutions by magnifying the tissue 

with microscopes. In addition, the optical mapping from the monolayer tissue can be 

directly compared with a computer model, which allows additional analysis and testing 

of hypotheses (Entcheva, Lu et al. 2000). 

 

1.3 Computer models of discrete myocardium 

In computational electrophysiology, a monolayer (2D) cardiac tissue model has 

been an efficient tool for studying AP conduction properties when it is compared to a 

one dimensional fiber or to three dimensional tissues. In a one dimensional fiber, cells 

are connected only by end-to-end and it is difficult to represent certain types of 
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heterogeneity observed in cardiac tissue. In a three dimensional network, the increased 

dimensions of the domain does not only increase the computational complexity 

significantly, but also presents challenges in visualizing and analyzing the data. 

However, in two dimensions, the heterogeneity of the tissue can be incorporated into the 

model and properties of impulse conduction can be easily compared to those of tissue 

slices and engineered monolayers. The 2D models can be simulated much more 

efficiently than in 3D. 

Early cardiac tissue models were extended from the core conductor model under 

the assumption that the cardiac tissue can be approximated as a continuous medium. In 

such a continuous cardiac model, gap junctions and cell shapes were considered to affect 

impulse conduction only through their effects on average electrical properties. 

In light of Spach et al.’s findings (Spach, Miller et al. 1981), cardiac tissue models 

began to emerge that included discrete cells connected with high resistance gap 

junctions. Leon and Roberge modeled a thin sheet of cardiac tissue with parallel 

excitable cables connected with regular array of identical resistors (Leon and Roberge 

1991). This model was computationally very efficient but it did not represent 

longitudinal discontinuity. Fast and Kleber extended the parallel cable model by 

introducing gap junctions in longitudinal direction (Fast and Kleber 1993). The authors 

estimated intracellular conductivity and gap junction conductance for this tissue model 

by matching CV and properties of impulse conduction measured in one dimensional 
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fiber and a corresponding fiber model. Although this model clearly defined cell 

boundaries with gap resistance higher than intracellular resistance, the shapes of cells 

were identical and gap junctions were regularly distributed with an identical value. In 

order to build a more realistic monolayer tissue model, Spach et al. duplicated cell 

boundaries from cell isolations and arranged gap junctions similar to that observed in 

native tissue (Spach and Heidlage 1995). For model parameters, the authors either used 

experimentally measured values or chose values so that the resulting simulated 

behavior was consistent with experimental observations. With this model, they observed 

complicated patterns of CV and upstroke velocity due to the cell architecture. Although 

this model was carefully built to produce consistent results compared to those of tissue 

slice, there were still structural limitations; the boundaries of cells were stair stepped 

and the orientations of cells were parallel or orthogonal to each other. This cell shape 

might be proper for adult cells but not for neonatal cells which have a more spindle-like 

shape. Moreover, regarding the orientation of cells, more variations and complexities are 

observed at branch sites and particularly in cultured tissues. The structural components 

of the cardiac models have been developed to include more heterogeneous features of 

the tissue as the experimental findings indicate the importance of them. Despite such 

developments, the existing models still have restrictions on shapes and orientations of 

cells and there is no efficient method to estimate intracellular conductivity and gap 

junction properties for the tissue models. In addition to these modeling efforts, Fast and 
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Kleber estimated intracellular conductivity and gap junction strength of a tissue fiber by 

matching the conduction velocity and other observations (Fast and Kleber 1993). 

Although it seems feasible to estimate intracellular conductivity and gap junction 

conductance in a two dimensional tissue with optical mapping by modifying the work 

of Fast and Kleber in one dimensional fiber (Fast and Kleber 1993), the increased 

dimensionality makes this complicated. 

 

1.4 Model parameter estimation 

Regardless of the type of the computer model, the model requires parameters 

that can be estimated from a set of experimental measurements. These parameters 

describe the passive electrical properties of the tissue but have different physical 

meanings depending on the model. In the bidomain model where the tissue is 

homogenized with the extracellular space, the parameters are effective intracellular and 

extracellular conductivities, which represent averaged electrical properties. Due to the 

averaging, each of these parameters can be represented with three values or one value 

for each direction in the three dimensional space. On the other hand, the monodomain 

model assumes that the extracellular conductivity is infinite and the method can vary 

depending on the way cells and tissues are represented. If the monodomain model is 

implemented with a continuous medium, this implementation only requires 

intracellular conductivities, which can be considered as averaged electrical properties of 
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the tissue. In the other implementation, the tissue can be represented as collection of 

discrete cells connected by gap junctions. This implementation requires a lot more 

information on the tissue including intracellular conductivities, gap coupling strength, 

cell shapes, and distribution of clefts. 

Many of the bidomain parameter estimation methods are based on the four-

electrode technique and its variations. The four-electrode technique uses a linear array of 

four equally spaced electrodes. The outer two electrodes deliver an applied current, 

while the inner two electrodes measure the resulting voltage (Plonsey and Barr 1982). 

Plonsey and Barr showed that this method could be used for estimating bidomain 

parameters when the domain has an equal anisotropy ratio (i.e., the anisotropy of the 

intracellular and extracellular domains have the same ratio). This method has been 

extended to eliminate the equal anisotropy ratio condition and to handle the alignment 

between the fiber and the electrode by using multiple electrodes or high frequency 

stimulus with a numerical method for data fitting (Le Guyader, Trelles et al. 2001; 

Pollard and Barr 2006; Sadleir and Henriquez 2006). 

While the bidomain model parameter estimation has been studied to use 

advanced numerical methods, there are almost no studies estimating monodomain 

model parameters. This is probably because matching CV is usually considered 

sufficient for homogeneous tissue models. However this method is possible only when 

the membrane dynamics are correctly modeled and in many cases membrane dynamics 
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of the neonatal cells used in vitro system is not well described. Although there is few 

study for which estimating monodomain parameter was the main goal (van Oosterom, 

de Boer et al. 1979; Plonsey and Barr 1986), Fast and Kleber used optical mapping data to 

estimate the intracellular conductivity and gap junction conductance for one 

dimensional discrete fiber model (Fast and Kleber 1993). 

 

1.5 Objectives and Organization 

Building a computer model to simulate a natural system always involves 

simplifications, because either the natural system is too complicated or has too many 

immeasurable model parameters. For cardiac tissue, the microscopic heterogeneity has 

been assumed to have minimal effects on impulse conduction because of the complexity 

of the model and the difficulties in measuring model parameters. 

There is growing experimental evidence that indicate that the microscopic 

heterogeneity of the tissue is important for the mechanisms of arrhythmias (Spach and 

Boineau 1997; Kanno and Saffitz 2001; Zlochiver, Munoz et al. 2008). However there are 

numerous technical challenges in experimental methods to study fully the role of 

microscopic heterogeneity of the tissue in the mechanisms of arrhythmias. 

Computational tools can alleviate such limitations by allowing fine control on the 

experimental condition and by providing some insight into the internal ionic channel 

dynamics that are not measurable in the tissue.  
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In this thesis, we developed computational tools to model a monolayer cardiac 

tissue. The method assumes that the factors governing cell shape, cell-to-cell coupling 

and the degree of cleft space are not constant but rather are spatially random with 

assigned distributions. Using this approach, we have conducted a simulation study on 

the role of cellular architecture on conduction velocities and anisotropy ratio. Because of 

the need to better understand how the discrete cellular structure impacts current flow, 

we have also developed methods to estimate the effective intracellular conductivities 

using data that can be derived from the optical mapping experiments. 

Chapter 2 presents the derivation of finite element method (FEM) based 

monodomain model to simulate monolayer tissues. This method was derived from a 

complete three dimensional FEM describing a monolayer tissue. The three dimensional 

FEM can model arbitrarily shaped cells but has the obvious disadvantage of requiring 

more computational resources than two dimensional finite difference or finite volume 

method. This disadvantage was resolved by applying algebraic reduction of FEM in 

depth direction of the tissue. This reduction can lead to numerical errors due to the loss 

of dimensionality. Numerical tests were performed that showed that the algebraic 

reduction did not cause significant numerical error.  

Chapter 3 presents an in depth simulation study investigating the role of the 

orientations and size of cell, and distributions of clefts on the conduction velocities and 

anisotropy ratio. In order to make it possible to simulate impulse conduction through 
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tissues with varying discrete properties, a discrete tissue generator was developed. This 

tissue generator can generate a tissue in which shapes and orientations of cells and 

distribution of clefts can be controlled to follow spatial random distribution. This tissue 

generation method made it possible to perform simulations similar to experimental 

settings. Tissues with various alignments of cells and distributions of clefts were 

generated and then the relationship between these discrete features of the tissue and 

impulse conduction velocity was studied. The simulation results were compared to 

published experimental results and it showed a good agreement. This chapter was 

recently accepted for publication by the Biophysical Journal (Kim, Bursac et al. 2010).  

Chapter 4 presents an improved method for estimating the intracellular 

conductivities from the optical mapping. To improve the accuracy of the estimation, this 

method uses a simplified membrane model that describes membrane resistance under 

the subthreshold stimulus as a second order polynomial of membrane potential. 

 Chapter 5 discusses the general conclusions as well as the limitations, 

applications and suggestions for the future study. 
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2. Finite element method based monodomain model for 
monolayer tissue simulation 

While many models have used to simulate action potential propagation in a 

cardiac monolayer tissue, all have been assumed that the tissue is either continuous or 

discrete with a regular cell structure coupled through gap junctions. There are several 

experimental and computational studies that indicate that conduction velocity (CV) and 

upstroke velocity �̇�𝜕𝑚𝑚𝑎𝑎𝑥𝑥  are determined by microscopic heterogeneity such as sizes and 

orientations of cells; and distributions and values of gap junctions (Spach, Miller et al. 

1981; Spach and Heidlage 1995; Kanno and Saffitz 2001; Hubbard, Ying et al. 2007; 

Jacquemet and Henriquez 2008) that are not captured by these traditional models. 

Currently available discrete computational models for a monolayer tissue were derived 

from a finite difference method (FDM) or a finite volume method (FVM). Because of 

their simplicity, domains are often discretized as Cartesian grids although this leads to 

highly idealized geometries. While FVM and FEM can be performed on non-Cartesian 

grids, a more robust approach to handle more complex domains is the Finite Element 

Method (FEM). The FEM provides a natural framework that can mimic ionic current, 

capacitive current and gap junctional current in the model. 

In this chapter, an efficient numerical model to handle a tissue with arbitrary 

shaped cells was developed by reducing a three dimensional FEM into a two 

dimensional FEM under two conditions: symmetry of the tissue in the depth direction 
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and the use of a single element to discretize the depth direction. The resulting two 

dimensional model can simulate a monolayer tissue with arbitrary cell geometry and 

gap junction distributions with very good accuracy (compared to the full three 

dimensional mode) with significantly less memory requirements and with much greater 

computational efficiency. 

2.1 Introduction 

To study action potential (AP) propagation, cardiac tissue has been usually 

considered as continuous, uniform, and homogeneous medium (Roberge, Vinet et al. 

1986; Plonsey and Barr 1987; Muzikant, Hsu et al. 2002). However, recent experimental 

evidences indicate that AP propagation only appears as continuous in macro scale but at 

the micro scale, it is discrete (Spach, Miller et al. 1981; Spach and Heidlage 1995). The 

discreteness arises, in part, from the variation in the size and shape of cells, the gap 

junction locations, and distributions of clefts (Spach, Miller et al. 1981; Bursac, Parker et 

al. 2002). This discreteness is enhanced as a result of aging or disease by a redistribution 

of gap junctions and development of micro fibrosis (Ausma, Wijffels et al. 1997; Everett, 

Li et al. 2000; Kostin, Klein et al. 2002; Spach, Heidlage et al. 2007). The increased micro-

heterogeneity has been associated with change of CV and AP upstroke velocity (Spach 

and Dolber 1986; Spach, Dolber et al. 1988; Koura, Hara et al. 2002). These findings 

suggested that, with changes of membrane ionic channels, the changes of the tissue 

heterogeneity are important for the initiation, maintenance, and termination of reentrant 
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arrhythmias, which cause irregular heartbeats (Spach, Miller et al. 1981; Spach and 

Dolber 1986; Spach, Dolber et al. 1988; Spach and Boineau 1997). Despite such 

electrophysiological implication for arrhythmias, the interactions between 

microstructure of tissue and dynamics of reentrance are not well understood due to lack 

of experimental and computational tools (Spach and Heidlage 1995). 

In studying AP propagation at a cardiac tissue, experiments and computer 

models are complementary. Many studies have been performed that combine 

experiments and computer simulations (Fast and Kleber 1993; Fast and Kleber 1995; 

Spach, Heidlage et al. 2000; Sharma and Tung 2001). In most cases, the computer models 

were built from experimental observations so that the model could be consistent with 

the experimental conditions. This kind of computer model can provide information 

unavailable under experimental conditions such as the dynamics of individual ion 

currents or ion channel conductances (Spach and Heidlage 1995; Henriquez, Muzikant et 

al. 1996; Shaw and Rudy 1997). Moreover the model can be used to test a hypothesis 

since the model parameters can be changed separately, which is not always possible in 

an experiment (Shaw and Rudy 1997; Spach, Heidlage et al. 2000; Spach, Heidlage et al. 

2004). However typical computer models tend to simplify the heterogeneous structure of 

the target tissue, assuming it to be continuous or composed of regularly structured cells. 

High levels of heterogeneity in a tissue can be caused by aging or disease; or can be 

intentionally created through directed cell growth in cultured cardiac tissues (Spach and 
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Dolber 1986; Spach, Dolber et al. 1988; Bursac, Parker et al. 2002; Koura, Hara et al. 2002). 

If a heterogeneous tissue is modeled as continuous or with simple cell structures, it 

might not be able to capture the effects of known features of heterogeneity such as shape 

and size of cells and distributions of clefts. 

In this study, we formulated a two dimensional tissue monolayer model by 

reducing a dimension of a three dimensional FEM model so that a monolayer tissue with 

arbitrary cell shape can be efficiently simulated. In order to do this, symmetry was 

assumed in the depth direction and the depth was discretized using only one element. 

This reduction is expected to cause some error. First, the restriction on the discretization 

assumes that the intracellular potential in depth direction is near constant. If this 

assumption is not met, it can affect significantly CV and �̇�𝜕𝑚𝑚𝑎𝑎𝑥𝑥 . Second, when the 

distributions of gap junctions in three dimensions are reduced into two dimensions, 

there are an infinite number of three dimensional distributions of gap junctions which 

will appear identical in two dimensions. Some of distributions can increase the 

nonlinearity of intracellular potential in the depth. The effect of the reduction was 

numerically tested by comparing a two dimensional model and a three dimensional 

model with fine depth discretization and various distributions of gap junctions. 
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2.2 Methods 

2.2.1 Three dimensional model formulation 

Three dimensional model formulations used in this study closely follows the 

FEM formulation by Ying and Henriquez (Ying and Henriquez 2007). Cardiac tissue can 

be viewed as a network of cells electrically coupled through gap junctions. In two 

dimensions (i.e. a tissue monolayer), each cell can be simplified as a unit with uniform 

thickness ∆𝑧𝑧 whose boundary Γ is defined by a membrane with the interior Ω𝑖𝑖  and the 

exterior Ω𝑒𝑒 . The potential inside and outside the cell satisfies Laplace’s equation, namely  

 ∇ ∙ 𝜎𝜎𝑖𝑖∇𝜙𝜙𝑖𝑖 = 0    𝑖𝑖𝑖𝑖   Ωi  (2.1)  

 ∇ ∙ 𝜎𝜎𝑒𝑒∇𝜙𝜙𝑒𝑒 = 0    𝑖𝑖𝑖𝑖   Ωe  (2.2)  

where 𝜙𝜙𝑖𝑖  is intracellular potential (𝑚𝑚𝜕𝜕), 𝜙𝜙𝑒𝑒  is extracellular potential , 𝜎𝜎𝑖𝑖  is intracellular 

conductivity tensor (𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚) and 𝜎𝜎𝑒𝑒  is extracellular conductivity tensor. The 

transmembrane potential 𝜕𝜕 and transmembrane current density 𝐼𝐼𝑚𝑚  are defined at the 

membrane of each cell Γ from intracellular and extracellular potential. 

 𝜙𝜙𝑖𝑖 − 𝜙𝜙𝑒𝑒 = 𝜕𝜕 (2.3)  

 𝑖𝑖 ∙ 𝜎𝜎𝑖𝑖∇𝜙𝜙𝑖𝑖 = 𝐼𝐼𝑚𝑚  (2.4)  

 𝑖𝑖 ∙ 𝜎𝜎𝑒𝑒∇𝜙𝜙𝑒𝑒 = −𝐼𝐼𝑚𝑚  (2.5)  

𝑖𝑖 is a unit vector normal to the boundary. The transmembrane current density 𝐼𝐼𝑚𝑚  is sum 

of capacitive current density 𝐼𝐼𝑐𝑐𝑎𝑎𝑐𝑐 , ionic current density 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 , and gap junctional current 
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density 𝐼𝐼𝑔𝑔𝑎𝑎𝑐𝑐 , each of which is a function of transmembrane potential or intracellular 

potential. 

 𝐼𝐼𝑚𝑚 = 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐼𝐼𝑐𝑐𝑎𝑎𝑐𝑐 + 𝐼𝐼𝑔𝑔𝑎𝑎𝑐𝑐  (2.6)  

 𝐼𝐼𝑐𝑐𝑎𝑎𝑐𝑐 = 𝐶𝐶𝑚𝑚
𝑑𝑑𝜕𝜕
𝑑𝑑𝜕𝜕

 
(2.7)  

 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 = ℱ(𝜕𝜕, 𝑞𝑞) (2.8)  

 𝐼𝐼𝑔𝑔𝑎𝑎𝑐𝑐 = 𝜎𝜎𝑔𝑔(𝜙𝜙𝑖𝑖 ,𝑎𝑎 − 𝜙𝜙𝑖𝑖 ,𝑏𝑏) (2.9)  

𝐶𝐶𝑚𝑚  is the specific membrane capacitance (𝜇𝜇𝜇𝜇/𝑐𝑐𝑚𝑚2) and 𝜎𝜎𝑔𝑔  is the gap junction 

conductance (𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚2).  𝜙𝜙𝑖𝑖 ,𝑎𝑎  and 𝜙𝜙𝑖𝑖 ,𝑏𝑏  are the intracellular potential of the nodes coupled 

by the gap junction 𝑖𝑖 between cell 𝑎𝑎 and 𝑏𝑏.  ℱ of 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖  is a function defining the membrane 

dynamics and is usually a nonlinear function of the transmembrane potential and state 

variables,  𝑞𝑞. 

For a tissue in a large bath, the problem can be simplified by assuming infinite 

extracellular conductivity and zero extracellular potential such that  𝜙𝜙𝑖𝑖 = 𝜕𝜕. This 

condition enables us to rewrite the problem in the following form: 

 ∇ ∙ 𝜎𝜎𝑖𝑖∇𝜕𝜕 = 0    𝑖𝑖𝑖𝑖   Ωi  (2.10)  

 𝑖𝑖 ∙ 𝜎𝜎𝑖𝑖∇𝜕𝜕 = 𝐼𝐼𝑚𝑚     𝑖𝑖𝑖𝑖   Γ (2.11)  

This PDE can be solved numerically using a technique such as the finite volume method 

(FVM) or the finite element method (FEM). Using the FVM on a structured grid, the 

resulting system can be considered as a network of resistors similar to the approach 

used by Spach et al. (Spach and Heidlage 1995; Rose, Shao et al. 2000). FEM with 
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unstructured grids can model arbitrary shaped cells. However, with FEM, three 

dimensional structure is assumed and the resultant linear system is significant larger 

than that of FVM. 

2.2.2 Reduction to the two dimensional model 

In this section, the three dimensional model from the previous section is 

algebraically reduced to the two dimensional model. With a simplified cell in Figure 2.1, 

it is assumed that the cell geometry and the boundary conditions are symmetric in the 

depth direction. With proper shape functions in FEM, the intracellular potential 𝜙𝜙𝑖𝑖  can 

be decomposed into 𝜙𝜙𝜕𝜕𝑖𝑖𝑐𝑐  and 𝜙𝜙𝑏𝑏𝑖𝑖𝜕𝜕𝜕𝜕𝑖𝑖𝑚𝑚  such that 𝜙𝜙𝜕𝜕𝑖𝑖𝑐𝑐  vanishes on Γ𝑏𝑏𝑖𝑖𝜕𝜕𝜕𝜕𝑖𝑖𝑚𝑚  and 𝜙𝜙𝑏𝑏𝑖𝑖𝜕𝜕𝜕𝜕𝑖𝑖𝑚𝑚  

vanishes on Γ𝜕𝜕𝑖𝑖𝑐𝑐 . In addition to this, the symmetry condition makes 𝜙𝜙𝜕𝜕𝑖𝑖𝑐𝑐  and 𝜙𝜙𝑏𝑏𝑖𝑖𝜕𝜕𝜕𝜕𝑖𝑖𝑚𝑚  

symmetric in the depth direction. 

 𝜙𝜙𝑖𝑖 = 𝜙𝜙𝜕𝜕𝑖𝑖𝑐𝑐 + 𝜙𝜙𝑏𝑏𝑖𝑖𝜕𝜕𝜕𝜕𝑖𝑖𝑚𝑚  (2.12)  

 𝜙𝜙𝜕𝜕𝑖𝑖𝑐𝑐 = 0   𝑖𝑖𝑖𝑖   Γ𝑏𝑏𝑖𝑖𝜕𝜕𝜕𝜕𝑖𝑖𝑚𝑚  (2.13)  

 𝜙𝜙𝑏𝑏𝑖𝑖𝜕𝜕𝜕𝜕𝑖𝑖𝑚𝑚 = 0   𝑖𝑖𝑖𝑖   Γ𝜕𝜕𝑖𝑖𝑐𝑐  (2.14)  

 𝜙𝜙𝑏𝑏𝑖𝑖𝜕𝜕𝜕𝜕𝑖𝑖𝑚𝑚 (𝑧𝑧) = 𝜙𝜙𝜕𝜕𝑖𝑖𝑐𝑐 (−𝑧𝑧) (2.15)  

In a similar manner, the membrane current 𝐼𝐼𝑚𝑚  can be decomposed with symmetric 

shape functions: 𝐼𝐼𝑚𝑚 ,𝜕𝜕𝑖𝑖𝑐𝑐  and 𝐼𝐼𝑚𝑚 ,𝑏𝑏𝑖𝑖𝜕𝜕𝜕𝜕𝑖𝑖𝑚𝑚 . 

 𝐼𝐼𝑚𝑚 = 𝐼𝐼𝑚𝑚 ,𝜕𝜕𝑖𝑖𝑐𝑐 + 𝐼𝐼𝑚𝑚 ,𝑏𝑏𝑖𝑖𝜕𝜕𝜕𝜕𝑖𝑖𝑚𝑚  (2.16)  

 𝐼𝐼𝑚𝑚 ,𝜕𝜕𝑖𝑖𝑐𝑐 = 0   𝑖𝑖𝑖𝑖   Γ𝑏𝑏𝑖𝑖𝜕𝜕𝜕𝜕𝑖𝑖𝑚𝑚  (2.17)  

 𝐼𝐼𝑚𝑚 ,𝑏𝑏𝑖𝑖𝜕𝜕𝜕𝜕𝑖𝑖𝑚𝑚 = 0   𝑖𝑖𝑖𝑖   Γ𝜕𝜕𝑖𝑖𝑐𝑐  (2.18)  
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 𝐼𝐼𝑚𝑚 ,𝑏𝑏𝑖𝑖𝜕𝜕𝜕𝜕𝑖𝑖𝑚𝑚 (𝑧𝑧) = −𝐼𝐼𝑚𝑚 ,𝜕𝜕𝑖𝑖𝑐𝑐 (−𝑧𝑧) (2.19)  

Note that 𝜙𝜙𝜕𝜕𝑖𝑖𝑐𝑐  and 𝜙𝜙𝑏𝑏𝑖𝑖𝜕𝜕𝜕𝜕𝑖𝑖𝑚𝑚  have the same polarity in equation (2.15) but it is inverted in 

𝐼𝐼𝑚𝑚 ,𝜕𝜕𝑖𝑖𝑐𝑐  and 𝐼𝐼𝑚𝑚 ,𝑏𝑏𝑖𝑖𝜕𝜕𝜕𝜕𝑖𝑖𝑚𝑚  of equation (2.19). This is because the transmembrane currents have 

the same amplitude on Γ𝜕𝜕𝑖𝑖𝑐𝑐  and Γ𝑏𝑏𝑖𝑖𝜕𝜕𝜕𝜕𝑖𝑖𝑚𝑚  but they flow in opposite directions. From these 

symmetric shape function decompositions, the each side of the equation (2.4) becomes 

the following. 

 𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖∇𝜙𝜙𝑖𝑖 = 𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖∇ �𝜙𝜙𝜕𝜕𝑖𝑖𝑐𝑐 (𝑧𝑧) + 𝜙𝜙𝑏𝑏𝑖𝑖𝜕𝜕𝜕𝜕𝑖𝑖𝑚𝑚 (𝑧𝑧)� 

= 𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖∇ �𝜙𝜙𝜕𝜕𝑖𝑖𝑐𝑐 (𝑧𝑧) + 𝜙𝜙𝜕𝜕𝑖𝑖𝑐𝑐 (−𝑧𝑧)� 

(2.20)  

 𝐼𝐼𝑚𝑚 = 𝐼𝐼𝑚𝑚 ,𝜕𝜕𝑖𝑖𝑐𝑐 (𝑧𝑧) + 𝐼𝐼𝑚𝑚 ,𝑏𝑏𝑖𝑖𝜕𝜕𝜕𝜕𝑖𝑖𝑚𝑚 (𝑧𝑧) 

= 𝐼𝐼𝑚𝑚 ,𝜕𝜕𝑖𝑖𝑐𝑐 (𝑧𝑧) − 𝐼𝐼𝑚𝑚 ,𝜕𝜕𝑖𝑖𝑐𝑐 (−𝑧𝑧) 

(2.21)  

In solving equations (2.1), (2.4), (2.20), and (2.21) with FEM, the domain in Figure 

2.1 can be discretized with one element in the depth direction and thus the three 

dimensional PDE problem effectively becomes two dimensional problem because 

equation (2.20) and (2.21) enable the intracellular potential and the membrane current to 

be obtained by solving the PDE only on the either side of the membrane.  

In contrast to the continuous tissue model, the discrete tissue mode consists of 

individual cells electrically coupled through gap junctions. While the continuous tissue 

can be considered as a two dimensional structure, an individual cell in the discrete tissue 

model has three-dimensional structure and currents can flow through the lateral face. If 

the ionic current flow through lateral face is allowed, there will be large discrepancy in 
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the surface area of the tissue between the continuous model and the discrete model. To 

avoid such a discrepancy, the ionic and capacitive currents were blocked and only gap 

junctional current was allowed. More detailed information on numerical 

implementation can be found in Appendix A. 

Note that in contrast to classical monodomain formulations, a surface-to-volume 

ratio is not used. The surface-to-volume ratio can be used to compensate for the 

difference between the geometric membrane surface area and the actual membrane 

surface area arising from membrane folding. While the geometric surface area was 

assumed in this study, folding can be incorporated by appropriately scaling 𝐼𝐼𝑐𝑐𝑎𝑎𝑐𝑐  and 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖  

in equation (2.6). 

The reduction from a three dimensional formulation to the two dimensional 

formulation restricts the boundary condition to be symmetric in depth direction and the 

depth discretization of the tissue is represented by one element. The restriction on the 

depth direction discretization can result in numerical error if the intracellular potential 

has a large nonlinearity in depth direction. To investigate the effect of a single element in 

the depth direction, numerical results were obtained with finer depth direction 

discretization for comparison. 
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Figure 2.1: A cell is symmetric in the depth (𝒛𝒛) direction. 𝚪𝚪𝐭𝐭𝐭𝐭𝐭𝐭 and 𝚪𝚪𝐛𝐛𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐛𝐛 are top 
and bottom membrane, respectively. The line dividing the cell is a plane of symmetry 

 

2.2.3 Tissue structure 

In our study, three tissue structures were simulated: uniform brick (UN), brick 

wall (BW) and random tissue (RT). The UN and BW were from Hubbard et al. 

(Hubbard, Ying et al. 2007)  and RT was built based on a stained image (Figure 2.2). 

Following Hubbard et al., UN and BW consist of uniform brick cells of 144 𝜇𝜇𝑚𝑚 in length 

and 24 𝜇𝜇𝑚𝑚 in width. As shown in Figure 2.2, UN has cells stacked directly on top of each 

other and BW has cells overlapped similar to a brick wall. RT model was hand drawn 

from an image of stained tissue to build a more realistic tissue model with cells of 

varying shapes and orientations. For all cases, the cell thickness was assumed to be 11.3 

𝜇𝜇𝑚𝑚 and the intracellular conductivity was 4 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚. For the given tissue structure, gap 

junctions were assigned on boundary edges to mimic those of neonatal cells. In UN and 

BW model, the gap junctions were assigned every 8 𝜇𝜇𝑚𝑚 around cells and, in RT model, 

they were assigned if the distance between edges from neighboring cells were close 
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enough. As a result of this, UN and BW tissue had 42 junctions per cell and RT tissue 

had average 22 gap junctions per cell. 

 

Figure 2.2: UN, BW and RT cell boundaries in the tissue model and stained 
tissue image used for RT. While UN and BW have regular tissue structure, RT is 
hand-drawn from stained tissue image and has irregular structure. The scale bar 
under the RT is 100 𝝁𝝁𝒎𝒎. 

 

2.2.4 Discretization 

In order to simulate AP propagation in these tissues, cells were separately 

discretized. The UN and BW models were discretized by right isosceles triangles with a 
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cathetus of length 8 𝜇𝜇𝑚𝑚 and the RT model was discretized with triangle area smaller 

than 25 𝜇𝜇𝑚𝑚2 (Figure 2.3) using the software package, Triangle (Shewchuk 2002). Three 

dimensional tissue models were also built in order to test the effects of depth 

discretization due to the nonlinearity of intracellular potential in that direction. For three 

dimensional model discretizations, the two dimensional discretizations were extended 

to three dimensional ones by imagining the triangles as projections of prism elements as 

shown in Figure 2.3. The three dimensional models were discretized into nine elements 

in depth direction so that the nonlinearity in the depth direction can be solved properly. 
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Figure 2.3: two and three dimensional discretization of tissues. UN and BW 
were discretized with structured grids. RT was discretized with unstructured grids 
because of the irregular shapes of cells. These two dimensional discretizations were 
extended to three dimensional discretizations by imagining triangles as projection of 
prism elements. The triangulation of RT was done with Triangle (Shewchuk 2002). 

 

2.2.5 Node coupling for gap junction 

The gap junctions between cells were implemented by coupling the potential and 

the current of the nodes where the gap junctions were located. This coupling is trivial 

with uniform or brick shaped cells where nodes between two adjacent cells are well 
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aligned and the coupling these nodes is straightforward. With randomly shaped cells, 

however, coupling nodes to implement gap junctions is not trivial, because the nodes 

between two adjacent cells are not necessarily aligned. When a discrete tissue pattern 

was provided for the simulation, every pair of cells in this tissue was tested to determine 

the neighbors. For each neighboring pair of cells, the cell-to-cell contact segment was 

defined as the cell boundary segment whose distance was closer than 1 𝜇𝜇𝑚𝑚 between the 

adjacent cells. The gap junction was assumed to exist uniformly on the cell-to-cell 

contact segment and the potential at the gap junction for the equation (2.9) was obtained 

by linear interpolation of the transmembrane potential from the nearest FEM nodes. 

As shown in Figure 2.4, in the two dimensional model, the coupling was made 

on boundary edges covering gap junctions. In a similar manner, the three dimensional 

model coupling was made on the boundary faces covering gap junctions but the 

distributions of gap junctions in the three dimensional model are not equivalent to those 

of two dimensional model even though the same number of connections exist between 

cells. While the gap junctions distribute on one dimensional edges in the two 

dimensional model, the gap junctions distribute on two dimensional faces in the three 

dimensional model. This difference in dimensions leads to the situation where several 

different gap junction distributions in three dimensional models appear identical in the 

two dimensional models. For example, the gap junctions in Figure 2.4 B, C, and D vary 

in the distribution but, when they are modeled in two dimensions, they appear identical 
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as they distribute uniformly in length and width direction. To test the effects of gap 

junction distributions we tested three gap junction distributions in the three dimensional 

model: uniform (3DU), concentrated (3DC) and random (3DR). 3DU model has the gap 

junctions uniformly distributed over the lateral membrane (Figure 2.4 B) and 3DC model 

has the gap junctions located at the center of lateral membrane in depth direction (Figure 

2.4 C). These two models do not violate the symmetry condition and their gap junction 

distributions in two dimensional projection are identical. In 3DR model, although its gap 

junction distribution in two dimensional projection still looks same as those of other 

models, the gap junctions are randomly located on the lateral membrane (Figure 2.4 D). 

This model can test the effects when the depth directional symmetry condition is 

violated in gap junction distributions. 

 

Figure 2.4: In two dimensional and three dimensional cell models, gap 
junctions appear as dots on the boundary of cells. The two dimensional model has 
gap junctions on the boundary edges (A) and the three dimensional models have gap 
junctions on the boundary face (B, C, and D). When the three dimensional models are 
reduced to the two dimensional model, different distributions of gap junctions in B, 
C, and D become indistinguishable in the two dimensional model. 
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2.2.6 Membrane dynamics 

Luo-Rudy membrane model was used for membrane dynamics with modified 

calcium kinetics (Luo and Rudy 1991; Hubbard, Ying et al. 2007). This modification 

scaled up the calcium current by factor 4 but did not change the sodium current during 

upstroke in well coupled tissue. However, in low gap junction conductivity condition, 

this modification increased CV by increasing slow calcium currents. 

2.2.7 Computation 

In order to build a linear system for solving equation (2.1), from these two 

dimensional and three dimensional discretizations, FEM was used for the diffusion step 

and Crank-Nicolson with time step size 2.5 𝜇𝜇𝜇𝜇𝑒𝑒𝑐𝑐 was used for the reaction step (Keener 

and Bogar 1998). The resultant linear system was iteratively solved by BiCGSTAB with 

SSOR preconditioner (Vandervorst 1992) due to the non-symmetric linear system.   

 

2.3 Results 

The two dimensional FEM model was numerically tested by comparing with the 

two dimensional FDM model and the three dimensional FEM models. The two 

dimensional FDM model's results were from the study by Hubbard et al. which 

simulated effects of the gap junction distribution on AP propagation (Hubbard, Ying et 

al. 2007). Among their various cases, we reproduced their results in the two simplest 

tissue structures (UN and BW). In the comparison with three dimensional models (3DU, 
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3DC and 3DR), the effects of the depth discretization and the gap junction distribution 

were tested. 

2.3.1 Comparison to the two dimensional FDM model 

In order to match Hubbard et al.'s implementation, our model was modified. 

First, as with Hubbard et al., the lateral membrane was assumed to not conduct current. 

To mimic the surface-to-volume ratio used in their model, the membrane area was 

scaled by the factor 1.89. 

After AP was initiated by stimulating the left boundary of the tissues for 1 𝑚𝑚𝜇𝜇𝑒𝑒𝑐𝑐, 

the CV and �̇�𝜕𝑚𝑚𝑎𝑎𝑥𝑥  were measured at the center of the tissue. According to Table 2.1, two 

models very well matched and the effects of the tissue structural change were consistent. 

In both models, the structural change from UN to BW increased CV and decreased �̇�𝜕𝑚𝑚𝑎𝑎𝑥𝑥  

and the difference between UN and BW decreases as the gap conductance increases. 

Table 2.1: CV/�̇�𝑽𝒎𝒎𝒎𝒎𝒎𝒎 during longitudinal propagation for 2D FEM and 2D FDM 
model (Hubbard, Ying et al. 2007). CV is in 𝒄𝒄𝒎𝒎/𝒔𝒔𝒔𝒔𝒄𝒄 and �̇�𝑽𝒎𝒎𝒎𝒎𝒎𝒎 is in 𝑽𝑽/𝒔𝒔𝒔𝒔𝒄𝒄 

Structure model 𝑔𝑔𝑗𝑗 = 0.01𝜇𝜇𝑚𝑚 𝑔𝑔𝑗𝑗 = 0.1𝜇𝜇𝑚𝑚 𝑔𝑔𝑗𝑗 = 1𝜇𝜇𝑚𝑚 
UN 2D FEM 7.7/382 36.8/337 66.0/244 

 2D FDM 7.0/377 35.9/322 66.5/253 
BW 2D FEM 18.9/341 50.5/244 68.6/239 

 2D FDM 18.2/343 49.6/258 67.7/241 
 

2.3.2 Comparison to the three dimensional model with structured 
tissues 

With UN and BW tissue structure, two dimensional FEM model was compared 

to three dimensional models to test the effects of depth discretization and gap junction 
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distributions. As shown in Table 2.2, the behaviors of the models by the structural 

change were consistent and there was little difference between models. At the highest 

gap conductivity (𝑔𝑔𝑗𝑗 = 1𝜇𝜇𝑚𝑚), the largest CV difference occurred but the difference is less 

than 3%. 

Table 2.2: CV/�̇�𝑽𝒎𝒎𝒎𝒎𝒎𝒎 during longitudinal propagation for two dimensional 
model and three dimensional model. CV is in 𝒄𝒄𝒎𝒎/𝒔𝒔𝒔𝒔𝒄𝒄 and �̇�𝑽𝒎𝒎𝒎𝒎𝒎𝒎 is in 𝑽𝑽/𝒔𝒔𝒔𝒔𝒄𝒄. 

Structure model 𝑔𝑔𝑗𝑗 = 0.01𝜇𝜇𝑚𝑚 𝑔𝑔𝑗𝑗 = 0.1𝜇𝜇𝑚𝑚 𝑔𝑔𝑗𝑗 = 1𝜇𝜇𝑚𝑚 
 2D 8.8/382 40.4/330 73.2/243 

UN 3DU 8.8/382 40.4/330 72.6/243 
 3DC 8.8/383 40.0/331 71.4/245 
 3DR 8.8/382 40.0/330 71.4/244 
 2D 20.5/335 55.0/243 75.1/240 

BW 3DU 20.5/335 54.3/242 75.8/239 
 3DC 20.5/335 54.3/242 74.5/239 
 3DR 20.5/335 54.3/242 74.5/240 
 

2.3.3 AP propagation in a unstructured tissue 

The effects of depth discretization and gap junction distribution were tested in 

RT tissue structure. In the two dimensional model, the gap junction conductance was set 

as 83.3 𝜇𝜇𝑚𝑚 to achieve physiologically reasonable CV. This conductance was properly 

scaled in three dimensional models depending on the gap junction distributions. After 

stimulating the upper right corner cell in the tissue, the activation time was measured at 

the time when AP upstroke passes 0 mV and this was plotted in Figure 2.5. Although the 

models had different distributions of gap junctions in three dimensional space, little 

difference was found in the activation patterns between the models. The 3DR model did 
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not keep the symmetry condition for the two dimensional model but it still showed little 

difference. To see the difference between models in more detail, the CV was measured 

along the marked lines in Figure 2.5 A and the result is summarized in Table 2.3. The 

Table 2.3 shows that, compared to two dimensional model, 3DU model's CV was exactly 

same but 3DC and 3DR model's CV was lower than that of two dimensional model. The 

difference among 2D, 3DC, and 3DR increased as the CV increased and the CV 

difference reached about 5% when CV in two dimensional model was the highest at 82 

𝑐𝑐𝑚𝑚/𝜇𝜇𝑒𝑒𝑐𝑐. In addition to this, the waveforms sampled at marked locations in Figure 2.5 B 

were compared in Figure 2.6 but there is no visible difference between the methods. 

 

Table 2.3: The path length in 𝝁𝝁𝒎𝒎 and CV in 𝒄𝒄𝒎𝒎/𝒔𝒔𝒔𝒔𝒄𝒄 along the path marked in 
Figure 2.5A. 

Path number 1 2 3 4 5 6 7 
Path length 380 104 201 84 134 36 307 

2D 45.7 14.4 12.3 26.4 70.2 3.0 82 
3DU 45.7 14.4 12.3 26.4 70.2 3.0 82 
3DC 44.6 14.2 12.3 25.6 70.2 3.0 77.9 
3DR 45.2 14.2 12.3 26.4 66.7 3.0 70.0 
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Figure 2.5: The tissue was stimulated by current injection at the node indicated 
by the arrow head on the upper right corner of the tissue. The blue lines crossing the 
tissue in two dimensional model indicates CV measurement reference. A. 2D, B. 3DU, 
C. 3DC, and D. 3DC 
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Figure 2.6: AP propagations at the marked locations in Figure 2.5 B. Solid line 
is for two dimensional model, dashed line is for 3DU model, dashed dot line is for 
3DC model and dotted line is for 3DR model. They are overlapped and 
indistinguishable to each other. 

 

2.4 Discussion 

In this study, we developed a computationally efficient two dimensional model 

to simulate AP conduction in a monolayer tissue with arbitrary shaped cells. This 

method was derived from the three dimensional FEM by reducing the number of 



 

33 

variables to improve the efficiency of the method under the symmetry condition of a 

monolayer tissue in the depth direction. This two dimensional model was compared 

with two dimensional FDM and there were no significant differences in CV and �̇�𝜕𝑚𝑚𝑎𝑎𝑥𝑥 . 

Additionally this two dimensional model was tested by comparing CV and �̇�𝜕𝑚𝑚𝑎𝑎𝑥𝑥  from 

the three dimensional models because the accuracy of the two dimensional model can be 

degraded by two reasons. First, the two dimensional model was reduced from the three 

dimensional FEM model with single element in depth direction and the intracellular 

potential in depth direction was assumed almost constant. However, in the actual tissue, 

current can flow through membrane and a nonzero potential gradient can exist normal 

to membrane. This can result in varying intracellular potential in depth direction. 

Second, the distribution of the gap junctions can increase the nonlinearity of the 

intracellular potential. The two dimensional model had the gap junctions located on one 

dimensional boundary edges but the three dimensional models had the gap junctions on 

two dimensional boundary faces which enables the three dimensional models to have 

many possible gap junction distributions on two dimensional boundary faces satisfying 

the symmetry condition and having identical projection on one dimensional boundary 

edges. Among the possible gap junction distributions, some of them could increase the 

nonlinearity of the intracellular potential. Thus the effects of these two were numerically 

tested by comparing the two dimensional model and the three dimensional models with 

fine depth discretization and three kinds of distributions of gap junctions. For the 
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comparison, we built 3 types of tissue structures, UN, BW, and RT with three kinds of 

three dimensional models, 3DU, 3DC, and 3DR. The AP propagation results showed 

that, if the tissue structure was same, there were less than 5% difference in CV and �̇�𝜕𝑚𝑚𝑎𝑎𝑥𝑥  

when the cells were well coupled with high gap junction conductivity. The Table 2.2 and 

2.3 showed that the gap junction differences affect the behavior of the model when the 

cells are well coupled and CV is high because the nonlinear intracellular potential can 

slow down only while AP propagates through intracellular space. When the cells are 

less coupled and most of the delay occurs at gap junctions, the three dimensional gap 

junction distributions have little effect. 

Bursac et al. cultured neonatal cardiac tissue on fibronectin by using 

microabrasion and micropatterning so that anisotropy ratio and fiber direction in a 

tissue can be controlled (Bursac, Parker et al. 2002). While this technique provides a 

good experimental tool to study the effect of heterogeneity of the tissue on AP 

propagation, the model can provide additional insight. The modeling approach can 

duplicate structural heterogeneity of the cultured tissue from the microscopic images. If 

the electrical properties of the tissue are assigned properly, the model can reproduce the 

heterogeneous features of AP propagation in the tissue at the scale of a single cell. 

This model could be extended to simulate a multilayer tissue or to include 

extracellular stimulations. In multilayer tissue model, the depth directional symmetry 

disappears and each cell needs to be described as a complete three dimensional 
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structure. Extracellular space stimulations are more complicated because the spaces 

between cells distort the electric field and the effects of the distorted electric field need to 

be assessed before any approximations. Our model is flexible in describing the tissue 

morphology but it is computationally more expensive than the other methods using the 

structured grids. This is in part because our model needs more nodes to describe the 

irregular cell boundaries which results in larger linear system and in part because 

solving the linear system produced from the unstructured grid tends to be less efficient 

compared to that from the structured grid. In order to simulate large tissue, the model 

can be improved by using efficient preconditioners or reducing the number of nodes in 

the model. One of the most efficient preconditioner in FEM modeling is ones based on 

multigrid but using multigrid in our model can be challenging because of use of 

unstructured grids (Briggs, Henson et al. 2000) and the fact that the system is not 

symmetric positive definite. However the cells in the tissue were discretized separately 

and this discretization produces the linear system as a blocked matrix. For this system, 

preconditioners based on block ILU or domain decomposition can be efficient. One way 

of reducing the number of nodes in the model can be building a hybrid model using 

both structured grid for well coupled parts of the tissue and unstructured grid for less 

coupled parts of the tissue. The well coupled tissue behaves as a continuous medium, 

which can be modeled with structured grids. These grids tend to require fewer nodes so 

that the hybrid model can use fewer nodes for the well coupled part of the tissue. Our 
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two dimensional FEM model can simulate a monolayer tissue with arbitrary shape and 

its behavior is consistent with that of three dimensional model. The model can be built 

by obtaining cell boundaries from the tissue image and assigning connections for gap 

junctions. Because of its flexibility in modeling the tissue morphology, this model can be 

useful tool for studying interactions between AP propagation and the tissue structure. 
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3. A Computer Model of Engineered Cardiac Monolayers 
This chapter was adapted from a paper that recently was accepted for 

publication in the Biophysical Journal (Kim, Bursac et al. 2010). 

3.1 Introduction 

The anisotropy in electrical properties arising from the distribution and coupling 

of cardiac cells in tissue has been shown to have a significant impact on impulse 

initiation and propagation (Leon and Roberge 1991; Fast and Kleber 1994; Spach and 

Heidlage 1995; Spach, Heidlage et al. 2000; Bursac, Parker et al. 2002). Changes in 

anisotropy often arise in certain cardiac pathologies such as ischemia, infarction, and 

heart failure (Carmeliet 1999; Cleutjens, Blankesteijn et al. 1999; Li, Fareh et al. 1999). 

This change is usually related to altered gap junction distribution and/or expression, and 

the formation of collagenous septa between the cardiac fibers and groups of cells that 

result in discontinuous transverse propagation (Spach and Dolber 1986). While it is 

known that the type, amount, and distribution of gap junctions in the cell membrane, 

the cell size and geometry, and the interconnectivity of cells determine the magnitude of 

anisotropy of tissue, studying the separate effects of each of these factors experimentally 

has been challenging (Spach, Heidlage et al. 2000; Bursac, Parker et al. 2002). 

Recent advances in tissue engineering and micropatterning techniques have 

made it possible to create monolayers in which the degree of anisotropy can be 

reproducibly controlled. Bursac et al. presented an in vitro model system that enables 
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systematic manipulation of the degree, orientation, and nonuniformity (continuity) of 

anisotropy in centimeter-sized monolayer cultures of neonatal rat cardiac myocytes 

(Bursac, Parker et al. 2002). Using micropatterning, they cultured series of cardiac 

monolayer tissues whose microscale continuity changes from discontinuous to 

continuous and the cell orientations change from oriented (anisotropic) to disoriented 

(isotropic). While these experimental monolayers allow for sophisticated 

electrophysiological, pharmacological, and genetic studies of simple impulse 

propagation and reentry dynamics in vitro, they are currently limited to neonatal cells 

with electrophysiological properties that differ from humans. In addition, some features 

of the tissue, like the magnitude and distribution of gap junctions, are not easy to control 

locally. 

Another approach for studying the impact of tissue cellular structure on 

conduction is to make use of computer models (Leon and Roberge 1991; Spach and 

Heidlage 1995; Shaw and Rudy 1997; Spach, Heidlage et al. 2000; Hubbard, Ying et al. 

2007). Many models of cardiac tissue assume continuous properties, where the electrical 

properties are usually assigned to match the observed, macroscopic conduction 

velocities in the tissue and account for macroscopic variations in fiber orientation 

(Henriquez 1993; Sampson and Henriquez 2002; Qu 2006). Another approach to model 

cardiac tissue is to explicitly represent the coupling between cells or fibers. Leon et al. 

presented a discrete cable model connected with regular array of identical resistors such 
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that the discontinuity of the tissue only appeared in transverse direction (Leon and 

Roberge 1991). This approach has been extended to consider more complex anisotropy 

(Vigmond and Leon 1999). Spach et al. modeled a tissue as individual cells whose cell 

boundaries were duplicated from isolated cardiac cells and the gap junctions were 

arranged similar to the experimental observations (Spach and Heidlage 1995). In the 

coupled cable approach, the cell shapes have been idealized to be cylindrical, limiting 

the random variation in cell size and coupling observed in native tissue. In the models 

used by Spach et al., the shape of the cell is constrained to map to a rectangular 

Cartesian grid, limiting the ability to study the effects of random cell orientations. 

While simulations of Spach et al.'s discrete models have revealed that changes in 

cell sizes and the distribution and the coupling strength of gap junction can influence the 

conduction velocity, the relationship of these changes in tissue structure to the 

macroscopic conductivities has not been fully elucidated (Spach, Heidlage et al. 2004). 

One of the challenges is that it is not always clear how to obtain the effective 

conductivities in multidimensional discrete tissue with random structure that involves 

variations in cell shape, orientations and coupling. In this paper, we present a novel 

approach to modeling discrete cardiac tissue in which the factors governing cell shape, 

cell-to-cell coupling and the degree of cleft space are not constant but rather are spatially 

random with assigned distributions. Using this approach, it is possible to construct a 

number of random cellular networks with different tissue features yet possess 
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statistically similar macroscopic behavior. By creating several realizations of the same 

tissue, it is possible to perform simulations in a manner analogous to performing 

experiments on engineered tissue with natural variations from monolayer to monolayer. 

We also present a global and a local approach to obtain the macroscopic conductivities 

from these random networks. The simulations reveal that under normal ranges, global 

changes in cell shape and connectivity are manifested as changes in the effective 

macroscopic intracellular tissue conductivities that result in differences in both the 

macroscopic conduction velocities and the conduction velocity anisotropy ratios. The 

results show that over a normal range of parameters a continuous model with 

appropriately assigned conductivities can explain measured conduction velocities in 

discrete cardiac tissue with complex microstructure. The variance of the global 

estimates, however, increases with increasing degree of discreteness (i.e. cleft space). The 

results also reveal that in the presence of abrupt changes in cell orientation, local 

estimates of the conductivities predict smoother changes in conductivities that may not 

adequately predict the discrete nature of propagation at the transition sites. 

 

3.2 Methods 

3.2.1 Generation of Discrete Tissue Pattern 

The simulated tissue was generated by 1) defining template cells, 2) modifying 

the cell shapes and 3) adding clefts (Figure 3.1 A-C). The tissue domain was populated 
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with non-overlapping “elliptical” template cells with assigned orientations and 

locations. To accomplish this, a template cell of 120 𝜇𝜇𝑚𝑚 in length and 24 𝜇𝜇𝑚𝑚 in width was 

first generated at top right of the domain. This cell was moved toward the bottom left 

until it can no longer move due to presence of other cells or the boundaries of the 

domain. Upon the placement, each template cell was rotated with an angle drawn 

randomly from a normal distribution, thus controlling the alignment of the cells in the 

tissue. This process was repeated until the domain was filled with the template cells. 

Once the template cells filled the domain, cell shapes were modified to fill the gap 

between cells. A cell was selected in random order and the boundary of this cell was 

expanded, by moving randomly selected boundary points away from the cell center by a 

small amount without overlapping with neighboring cells. This expansion was repeated 

several times for all the cells in the tissue while reducing the amount of expansion 

gradually. Finally, clefts were incorporated in the tissue by shrinking the width of 

randomly selected cells. To accomplish this step, each cell was assigned a random 

number drawn from a uniform distribution between 0 and 1. Cells whose assigned 

random numbers were smaller than cleft probability were selected to be reduced in size. 

The selected cell was reduced by moving each boundary point toward the cell's 

longitudinal line, which passes through the cell center in the length direction. The 

resulting tissue contained random shaped cells whose orientations followed the 

orientations of the templates. The cell orientation was controlled by the standard 
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deviation of the normal distribution while the amount of cleft space was controlled by 

cleft probability. 

 

 

Figure 3.1: A)-C) show the procedure generating the tissue pattern. A) placing 
template cells, B) changing shapes of cells (cell angle standard deviation = 0.02), C) 
adding clefts (cleft = 0.5) D)-I) show tissue patterns with various tissue generation 
parameters. Different cell distributions appear from tissues sharing the same 
generation parameters. D,G) (cell angle standard deviation = 0.5, cleft  = 0) E,H) (0.25, 
0) F,I) (0.02, 0.25). All panels show 500 𝝁𝝁𝒎𝒎 by 500 𝝁𝝁𝒎𝒎 area. 
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3.2.2 Effective tissue conductivity measure 

Two methods (global and local) were used to estimate the effective conductivity 

of the intracellular space. In the global method, the membrane elements were removed, 

leaving only the passive intracellular network that contained both the intracellular space 

of the cells and the coupling conductance between cells. This method is also referred to 

as the equivalent circuit method. For regularly arranged cells, the effective conductivity 

can be obtained analytically. For example, if the tissue is composed of rectangular cells 

that are stacked on top of each other with uniform width 𝑊𝑊 and length 𝐿𝐿 and if gap 

couplings are uniform along the cell borders with a coupling strength per unit contact 

area given by 𝑔𝑔, then the effective tissue conductivity can be written in the following 

form: 

 𝜎𝜎𝐿𝐿 =
𝐿𝐿𝑔𝑔𝜎𝜎
𝐿𝐿𝑔𝑔 + 𝜎𝜎

 (3.1)  

 𝜎𝜎𝑇𝑇 =
𝑊𝑊𝑔𝑔𝜎𝜎
𝑊𝑊𝑔𝑔 + 𝜎𝜎

 (3.2)  

where 𝜎𝜎, 𝜎𝜎𝐿𝐿 , and 𝜎𝜎𝑇𝑇  are intracellular conductivity, longitudinal tissue conductivity, and 

transverse tissue conductivity, respectively. For the tissues with irregularly shaped cells 

and connectivity, a numerical approach can be used to obtain the effective properties. To 

accomplish this, cells at one edge of the tissue were grounded and current was injected 

into the cells at the other edge through discrete current sources. The potential was 

measured through the tissue and the total injected current was measured by summing 

up the all discrete sources. This measured potential was then used to estimate the 
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electrical field strength 𝐸𝐸 defined as negative gradient of potential, by performing a 

linear fit of the potential and the distance from the current source. 

 𝜕𝜕 = −𝐸𝐸𝑥𝑥 + 𝑏𝑏 (3.3)  

The effective conductivity 𝜎𝜎 was estimated by the ratio between current flux and 

electrical field strength. 

 𝜎𝜎 = 𝐽𝐽/𝐸𝐸 (3.4)  

where current flux 𝐽𝐽 was obtained from the sum of the injected current divided by the 

cross sectional area of the tissue. This method was independently applied in the 

longitudinal and transverse directions to obtain the conductivities in each direction. 

A local method for estimating the effective intracellular conductivity was also 

developed. In principle, this method can be experimentally implemented. This method 

consisted of two steps: 1) estimating passive membrane resistance 𝑅𝑅𝑚𝑚  from the 

transmembrane potential of an isolated cell subject to a subthreshold stimulus and 2) 

estimating effective tissue conductivity from the steady state membrane potential. In the 

first step, the passive membrane resistance 𝑅𝑅𝑚𝑚  was estimated from the measured 

subthreshold time response from a single, isolated cell from the model using simple RC 

circuit analysis. 

 𝜕𝜕 = 𝜕𝜕0 + (𝜕𝜕𝑚𝑚 − 𝜕𝜕0)exp �−
𝜕𝜕

𝑅𝑅𝑚𝑚𝐶𝐶𝑚𝑚
� (3.5)  

where 𝜕𝜕0 and 𝜕𝜕𝑚𝑚 are the initial and steady state potentials, respectively. Under the 

assumption that the membrane capacitance 𝐶𝐶𝑚𝑚 = 1𝜇𝜇𝜇𝜇/𝑐𝑐𝑚𝑚2, the membrane resistance 𝑅𝑅𝑚𝑚  
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was estimated from this equation and the measured time response of the membrane 

potential. In the second step of this method, the subthreshold point stimulus was 

applied at the center of the discrete tissue. If the stimulus pulse is long enough, the 

membrane capacitance is assumed to be fully charged at steady state. The steady state 

membrane potential of the discrete tissue was compared with that of the continuous 

tissue with the membrane replaced by the membrane resistance 𝑅𝑅𝑚𝑚  and whose 

conductivity was systemically changed to minimize the error between steady state 

membrane potential obtained from the discrete tissue and that obtained from the 

continuous tissue. The longitudinal and transverse conductivities of the continuous 

tissue model minimizing this error were considered to be the corresponding effective 

conductivities of the discrete tissue model. The Levenberg-Marquardt algorithm was 

used for the numerical estimation (Lourakis 2004). This method is also referred to as the 

subthreshold response method. 

3.2.3 Numerical and Computational Methods 

Because of the computational efficiency, the membrane kinetics were described 

with the model proposed by Bueno-Orovio, Cherry and Fenton (Bueno-Orovio-Cherry-

Fenton-Karma model) (Bueno-Orovio, Cherry et al. 2008), based on the model initially 

published by Fenton and Karma (Fenton and Karma 1998) with parameters in Table 3.1 

was fit to match the Wang-Sobie (WS) model (Wang and Sobie 2008) of a neonatal 

mouse cell, which has a shape and duration that resembles neonatal rat cells. These 
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parameters were found by fitting the action potential’s upstroke and derivative while it 

propagated as a planar front in the two-dimensional monolayer (FK �̇�𝜕𝑚𝑚𝑎𝑎𝑥𝑥 = 62.0 𝜕𝜕/𝜇𝜇𝑒𝑒𝑐𝑐, 

𝐴𝐴𝐴𝐴𝐴𝐴90 = 83.0 𝑚𝑚𝜇𝜇𝑒𝑒𝑐𝑐; WS �̇�𝜕𝑚𝑚𝑎𝑎𝑥𝑥 = 50.0 𝜕𝜕/𝜇𝜇𝑒𝑒𝑐𝑐, 𝐴𝐴𝐴𝐴𝐴𝐴90 = 71.0 𝑚𝑚𝜇𝜇𝑒𝑒𝑐𝑐).  

Table  3.1: Bueno-Orovio-Cherry-Fenton-Karma model parameters 

𝑢𝑢0 0 𝑢𝑢𝑢𝑢  1.55 𝜃𝜃𝑣𝑣  0.382 𝜃𝜃𝑤𝑤  0.286 𝜃𝜃𝑣𝑣− 0.000736 𝜃𝜃0 0.00063 
𝜏𝜏𝑣𝑣1
−  14.929 𝜏𝜏𝑣𝑣2

−  1015.43 𝜏𝜏𝑣𝑣+ 2.695 𝜏𝜏𝑤𝑤1
−  53.45 𝜏𝜏𝑤𝑤2

−  8.059 𝑘𝑘𝑤𝑤− 74.827 
𝑢𝑢𝑤𝑤−  0.01 𝜏𝜏𝑤𝑤+ 239.077 𝜏𝜏𝑓𝑓𝑖𝑖  0.186 𝜏𝜏𝑖𝑖1 540.026 𝜏𝜏𝑖𝑖2 10 𝜏𝜏𝜇𝜇𝑖𝑖1 35.436 
𝜏𝜏𝜇𝜇𝑖𝑖2 2.145 𝑘𝑘𝜇𝜇𝑖𝑖  1 𝑢𝑢𝜇𝜇𝑖𝑖  0.991 𝜏𝜏𝜇𝜇1 4.681 𝜏𝜏𝜇𝜇2 3.013 𝑘𝑘𝜇𝜇 1.656 
𝑢𝑢𝜇𝜇 0.997 𝜏𝜏𝜇𝜇𝑖𝑖  11.679 𝜏𝜏𝑤𝑤∞  0.493 𝑤𝑤∞∗  0.857     

 

The cell thickness was assumed to be 16 𝜇𝜇𝑚𝑚 and the intracellular conductivity 

was 6.67 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚. Gap junctions were distributed uniformly around the cell border with 

nominal coupling strength of 0.1667 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚. If the boundaries of two neighboring cells 

were closer than 1𝜇𝜇𝑚𝑚 in the cell boundary image, they were connected via a gap 

junction. Except for the cases where the cell alignments and cell length/width ratio were 

changed (Figure 3.5), five types of tissues were considered by increasing the number of 

clefts with constant cell alignments. The cells in these tissues were generated with an 

elliptical template cell of 120 𝜇𝜇𝑚𝑚 in length and 24 𝜇𝜇𝑚𝑚 in width. The parameters for the 

five tissue types are summarized in Table 3.2.  For each type, eight realizations of the 

tissues were produced, to obtain average properties. Example tissues are shown in 

Figure 3.1 and Figure 3.3. The average length, width and area of cells are summarized in 

Table 3.2.  
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Table 3.2: Tissue generation parameters and cell length, width, area and 
density of resultant tissues. STD = standard deviation, values in parenthesis are 

standard deviations 

 TC0 TC1 TC2 TC3 TC4 
Cell angle STD 0.02 0.02 0.02 0.02 0.02 

Cleft probability 0 0.1 0.2 0.3 0.4 
Length (𝜇𝜇𝑚𝑚) 137.5 (10.5) 137.5 (10.5) 137.5 (10.5) 137.5 (10.5) 137.5 (10.5) 
Width (𝜇𝜇𝑚𝑚) 28.0 (3.4) 27.8 (3.5) 27.4 (3.6) 26.8 (3.8) 26.1 (4.1) 
Area (𝜇𝜇𝑚𝑚2) 2417 (233) 2391 (243) 2349 (264) 2292 (292) 2220 (323) 

Density (𝑐𝑐𝑚𝑚−2) 39449 (29) 39450 (28) 39450 (29) 39448 (30) 39449 (32) 
 

All domains were approximately 7.5𝑚𝑚𝑚𝑚 long and 5𝑚𝑚𝑚𝑚 wide. A 1𝑚𝑚𝜇𝜇𝑒𝑒𝑐𝑐 long 

unipolar stimulus, which was 2 − 3 times greater than threshold, was applied to initiate 

propagation. The generated tissue patterns were discretized using the software package 

Triangle, a Delaunay triangular mesh generator (Shewchuk 2002). Domains were 

generated such that the triangle areas did not exceed 50 𝜇𝜇𝑚𝑚2 and no angles in the 

triangles were smaller than 28.5 degrees, except for those triangles at the boundaries 

(Figure 3.2). A typical domain had approximately 860,000 nodes. The monodomain 

model from the chapter 2 was solved using the FEM and Crank-Nicolson method with a 

time step of 25𝜇𝜇𝜇𝜇𝑒𝑒𝑐𝑐 (Keener and Bogar 1998). The resultant linear system was solved by 

the Unsymmetric MultiFrontal method in UMFPACK (Davis and Duff 1997). 
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Figure 3.2: Cell discretization for FEM was generated by Triangle (Shewchuk 
2002). The thick line indicates cell boundaries and the scale bar on lower left corner is 
50 𝝁𝝁𝒎𝒎 long.  
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3.3 Results 

3.3.1 Propagation through irregular shaped cells 

Using the tissue generation method described above, domains with different 

degree of cell orientations and amount of cleft space were created. Since a tissue was 

generated from randomly populated elliptical template cells, the simulated tissues 

contain some holes even when no clefts were intentionally added (Figure 3.1 D and G). 

The placement and shape of each template were controlled by random numbers, 

enabling the generation of unique cell boundaries even when the tissues were generated 

from the same parameters (Figure 3.1 D - I). 

Figure 3.3 shows cell boundaries of three example tissues. Tissue TC0 had no 

cleft space, mimicking ideal confluent monolayers. In tissues TC2 and TC4, the cleft 

probabilities were 0.2 and 0.4, respectively. The space between cells increased from TC0 

to TC2 and TC4, resulting in smaller contact area between cells. Figure 3.3 B shows a 

histogram of cell-cell contact length. Adding clefts slightly reduced the average of cell-

cell contact length and changed the statistical distributions. There is little difference in 

overall cell size except the widths decrease from 28.0 𝜇𝜇𝑚𝑚  at TC0 to 26.1 𝜇𝜇𝑚𝑚 at TC4. The 

tissue generation parameters, average cell length, width, area and density in each tissue 

type including TC1 and TC3 are shown in Table 3.2.  
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Figure 3.3:  A) Cell boundaries in TC0, TC2 and TC4 tissues. Dark gray 
indicates gap couplings and light gray indicates extracellular space. The scale bar is 
100 𝝁𝝁𝒎𝒎 long. B) Cell-cell contact length histogram. Dashed line indicates average 
contact length. Because of the model assumption, gap coupling strength is 
proportional to the cell-cell contact length. 

 

Figure 3.4 shows the activation patterns generated in the three example tissues 

arising from a point stimulus at the macroscopic and microscopic levels. At the 

macroscopic scale, the wavefronts are roughly elliptical in all models. In contrast to a 

continuous model with uniform and smooth wavefronts, however, the wave in the 

simulated discrete tissues propagates less regularly at the microscale, due to the cell 

boundaries and distributions of gap junctions. As more cleft space is added, the 
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microscopic fronts become more irregular. The macroscopic conduction velocities in the 

fast longitudinal direction (LCV) and in the slow transverse direction (TCV) slowed with 

increasing cleft density. In addition, the conduction velocity anisotropy ratio 

(AR=LCV/TCV) increased as a result of increased microscopic heterogeneity. These 

effects of the microscopic changes on the CV changes are summarized in Table 3.3. 

Table 3.3: CV and AR measured from a front arising from a planar stimulus 
and point stimulus. Values in parenthesis are standard deviations. 

 TC0 TC1 TC2 TC3 TC4 
 Front from a planar stimulus 

LCV (𝑐𝑐𝑚𝑚/𝜇𝜇𝑒𝑒𝑐𝑐) 38.4 (0.09) 36.6 (0.16) 33.2 (0.24) 28.9 (0.32) 24.3 (0.75) 
TCV (𝑐𝑐𝑚𝑚/𝜇𝜇𝑒𝑒𝑐𝑐) 10.3 (0.05) 8.9 (0.06) 7.4 (0.07) 5.9 (0.1) 4.4 (0.18) 

AR 3.74 (0.02) 4.10 (0.03) 4.49 (0.04) 4.89 (0.08) 5.46 (0.18) 
 Front from a point stimulus 

LCV (𝑐𝑐𝑚𝑚/𝜇𝜇𝑒𝑒𝑐𝑐) 34.7 (0.44) 33.4 (0.99) 30.5 (0.91) 26.1 (1.84) 20.9 (1.75) 
TCV (𝑐𝑐𝑚𝑚/𝜇𝜇𝑒𝑒𝑐𝑐) 9.3 (0.2) 8.2 (0.19) 6.6 (0.26) 5.4 (0.45) 3.8 (0.56) 

AR 3.74 (0.11) 4.08 (0.2) 4.6 (0.24) 4.84 (0.66) 5.55 (0.85) 
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Figure 3.4: A) Activation time colormap of TC0, TC2 and TC4 tissues at 12, 14, 
and 22 𝒎𝒎𝒔𝒔𝒔𝒔𝒄𝒄 after the stimulus onset. The scale bar at the bottom left is 1 𝒎𝒎𝒎𝒎 long. B) 
1 𝒎𝒎𝒎𝒎 by 1 𝒎𝒎𝒎𝒎 area marked at the upper panel shows detailed isochrones. Interval 
between isochrones is 1.7 𝒎𝒎𝒔𝒔𝒔𝒔𝒄𝒄 in TC0 and TC2, and 2.0 𝒎𝒎𝒔𝒔𝒔𝒔𝒄𝒄 in TC4. 

 

3.3.2 Cell geometry and AP conduction 

The increase in AR-CV with increasing cleft space is consistent with the 

experimental studies of Bursac et al. (Bursac, Parker et al. 2002). To further investigate 

the effects of the microscopic properties on conduction, simulations were performed in 

which the cell orientations and distribution of clefts were varied as a function of cell 

length/width ratio (CLWR). Figure 3.5 shows the LCV and TCV for various randomly 
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generated tissues as a function of the AR. The simulations were designed to explain the 

results shown in Figure 8 in Bursac et al. (Bursac, Parker et al. 2002). In each panel, 

CLWR was changed from 3 to 6 while maintaining an average cell area. Initially, only 

the cell orientations in the models were varied by changing the cell angle standard 

deviation from 0.5 (isotropic, disoriented) to 0.02 (anisotropic, oriented) with zero cleft 

probability, to mimic confluent tissue. The isotropic, non-aligned tissues are shown to 

the left of the vertical dashed lines. For the anisotropic tissue with nearly aligned cells 

(cell angle standard deviation of 0.02), the amount of cleft space was increased by 

increasing the cleft probability from 0 to 0.4. These tissues are shown to the right of the 

vertical line. Increasing the alignment of cells in the confluent tissue tended to increase 

LCV and decrease TCV and thus increase AR. Increasing the cleft space, however, acted 

to decrease both LCV and TCV. The magnitude of the AR-CV transition point 

corresponding to the inclusion of clefts increased with increasing CLWR. In addition, 

the maximum and minimum LCV increased and the maximum and minimum TCV 

decreased with increasing CLWR. Table 3.4 summarizes the effects of cell geometry on 

AR and CV. 

Table 3.4: Summary of AR-CV in Figure 3.5 

Length/width ratio 3 4 5 6 
Max LCV 26.6 31.4 35.9 39.6 
Min LCV 15.2 16.0 17.0 17.4 
Max TCV 11.8 11.3 11.1 10.9 
Min TCV 4.6 3.1 4.0 2.1 

AR at max LCV 2.4 3.2 3.9 5.0 



 

54 

 

 

Figure 3.5: AR-CV plot with different cell length/width ratios, cell orientations 
and amount of clefts. The dashed line divides effects of cell orientations and clefts. 
The left of the dashed line shows changes in AR-CV due to cell orientations. The 
right shows changes in AR-CV due to clefts. 
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3.3.3 Gap coupling strength and AP conduction  

There have been several experimental studies to study the effects of modulation 

of gap junction conductance through the application of certain pharmacological agents 

(Hennan, Swillo et al. 2006; Lin, Zemlin et al. 2008). One particular novel anti-arrhythmic 

approach has been proposed recently, in which the peptide rotigaptide is used to 

enhance gap junction conductance in infarcted regions to facilitate conduction (Hennan, 

Swillo et al. 2006). Unfortunately, precise experimental control of the conductance 

change is challenging.  In the simulation studies, however, it is possible to modify the 

gap conductance uniformly or non-uniformly. Figure 3.6 shows the changes in AR, LCV 

and TCV after gap coupling was uniformly increased or decreased from its nominal 

value in five discrete tissues. LCV and TCV both increased monotonically with 

increasing gap coupling strength. The AR, however, was not statistically different for 

any of the gap strengths.  
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Figure 3.6: Effects of gap coupling strength on CV and AR. 𝝈𝝈𝒈𝒈 = 𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 𝒎𝒎𝒎𝒎/
𝒄𝒄𝒎𝒎. Both LCV and TCV increased monotonically by increasing gap coupling strength. 
AR did not show statistically significant change by gap coupling strength change. 

 

The gap conductance can also be changed nonuniformly. A simulation was 

performed comparing the conduction velocities in tissues with varying degree of cleft 

space in which the gap coupling was uniformly increased by 200% for all gap junctions 

and nonuniformly increased in which the conductance of 50% of the gap junctions were 

increased 400% and the conductance of the other 50% of the gap junctions remained 

unchanged, such that the averaged gap coupling increase was 200%. A point stimulus 
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was applied at the center of tissue and LCV, TCV and AR were measured. As shown in 

Figure 3.7, LCV and TCV were both faster for both the uniform and nonuniform gap 

coupling increase. The increase in the CV in the case where the gap junction coupling 

was uniformly increased, however, was greater than the case where the gap junction 

coupling was non-uniformly increased. The uniform case resulted in an average of a 

50.7% and 62.4% speed-up in LCV and TCV, respectively, while nonuniform case 

resulted in an average of a 43.3% and 52.2% speed-up in LCV and TCV. This difference 

was statistically significant (p < 0.05). Although the TCV increase was larger than LCV 

increase, the AR decrease was statistically significant for uniform cases and for TC0 and 

TC1 in nonuniform cases (p < 0.05). 
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Figure 3.7: Changes in AR and CV after gap coupling increase. Error bar shows 
standard deviation of changes. Gap coupling strength was increased by 200% for all 
gap junctions in the uniform case and it was increased by 400% for 50% of gap 
junctions in the nonuniform case. 

 

3.3.4 Effective tissue conductivities 

The changes in conduction velocity and AR were observed with changes in the 

microscopic parameters governing the cell shape, orientation and cleft density. One 

question of interest is how the changes in these parameters affected the macroscopic 

conductivities. As noted, the effective tissue conductivity was determined using the 
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global, equivalent circuit method and the local, subthreshold response method (see 

Methods). In the global method, the membrane was removed leaving only the passive 

intracellular space and a current was delivered on one edge and grounded at the other 

edge such that the conductivities could be estimated using equation (3.3) and (3.4). In 

the local method, a subthreshold, intracellular stimulus was applied and the 

conductivities in both directions were estimated by first determining membrane 

resistance and then fitting the potential distribution to a continuous passive model. The 

conductivity estimation methods were first tested using a tissue with rectangular cells of 

length 120 𝜇𝜇𝑚𝑚 and of width 24 𝜇𝜇𝑚𝑚 for which an analytical solution exists. The methods 

were tested for three different gap conductances. Table 3.5 shows the results from the 

global and local estimation methods. Both methods match the analytical solution very 

well for the case of uniform tissue of rectangular cells in a regular lattice over the range 

of gap conductances studied. 

Table 3.5: Tissue conductivity comparison from analytical method and 
numerical methods (global estimate and local estimate) in a tissue model of 

rectangular cells 

𝜎𝜎𝑔𝑔  0.0167 0.167 1.67 
LCV (𝑐𝑐𝑚𝑚/𝜇𝜇𝑒𝑒𝑐𝑐) 12.3 42.0 86.2 

Analytical 𝜎𝜎𝐿𝐿  (𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚) 0.123 1.05 4.35 
Global method 𝜎𝜎𝐿𝐿  (𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚) 0.123 1.05 4.35 
Local method 𝜎𝜎𝐿𝐿  (𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚) 0.126 1.05 4.36 

TCV (𝑐𝑐𝑚𝑚/𝜇𝜇𝑒𝑒𝑐𝑐) 6.37 20.3 55.6 
Analytical 𝜎𝜎𝑇𝑇  (𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚) 0.0249 0.241 1.82 

Global method 𝜎𝜎𝑇𝑇  (𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚) 0.0249 0.241 1.82 
Local method 𝜎𝜎𝑇𝑇  (𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚) 0.0252 0.237 1.82 
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Two estimation methods were then applied to the discrete tissues, TC0 - TC4, 

and the result is shown in Figure 3.8. In the local method, the passive membrane 

resistance was estimated to be 9.66 𝑘𝑘Ω ∙ 𝑐𝑐𝑚𝑚2 and this value was used for all the tissues. 

Although there was some difference in the estimation, the correlation coefficients of two 

methods are 0.97 and 0.98 for longitudinal and transverse conductivities, respectively. 

The effective conductivities for the five models were estimated by the global method 

and are given in Table 3.6. The results show that both longitudinal and transverse 

conductivities are negatively correlated with the amount of cleft space. 

Table 3.6: Effective conductivity obtained by global method 

 TC0 TC1 TC2 TC3 TC4 
𝜎𝜎𝐿𝐿  0.842 (4.2e-3) 0.767 (7.4e-3) 0.632 (7.1e-3) 0.474 (5.7e-3) 0.326 (1.2e-2) 
𝜎𝜎𝑇𝑇  0.060 (5.3e-4) 0.046 (6.1e-4) 0.032 (5.0e-4) 0.021 (7.3e-4) 0.011 (1.1e-3) 
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Figure 3.8: A) Steady state potential distribution by the subthreshold point 
stimulus. The scale bar is 200 𝝁𝝁𝒎𝒎. B) Time course of membrane potential at the center 
of the tissue and its best fit with estimate 𝑹𝑹𝒎𝒎 = 𝟗𝟗.𝟏𝟏𝟏𝟏𝒌𝒌𝛀𝛀 ⋅ 𝒄𝒄𝒎𝒎𝟐𝟐. C, D) Estimated 
effective tissue conductivity comparison between global method and local method for 
longitudinal and transverse directions. The solid line is the best fit. cc = correlation 
coefficient 

 

The conductivity estimation methods were also compared in a tissue with an 

abrupt change in cell orientation. In this tissue, cells were aligned in the horizontal 

direction on the left half and in the vertical direction in the right half. The cleft 

probability was zero on both halves. Figure 3.9 A shows the estimated conductivities 
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under the following scenarios: a) global method applied only to the left half of the tissue, 

b) local method applied to several sites along the tissue; c) global method applied to the 

entire tissue and d) global method applied only to the right half of the tissue. The 

estimates for cases a, c, and d are 0.85, 0.11 and 0.058, respectively. The results show that 

the local method estimates a relatively smooth change in conductivity across the 

transition site while the global method applied across the entire tissue nearly predicts an 

average conductivity of the two halve ��0.5 � 1
0.85

+ 1
0.058

��
−1

= 0.11 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚�. It is 

important to note that the local method does a good job of estimating the conductivity 

away from the transition site in the right half of the tissue where the space constant is 

smaller than in the left half where the space constant in larger and the effect of the 

boundary on the flow of current is greater. 
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Figure 3.9: A) Changes in the estimated conductivity as a result of changes in 
cell orientations. The double headed arrows indicate the cell orientations. a. estimated 
conductivity by the global method applied to only the left half of the tissue. b. 
estimated conductivity by the local method. c. estimated conductivity by the global 
method for the whole tissue. d. estimated conductivity by the global method applied 
to only the right half of the tissue. B) CV changes of a wavefront moving from the left 
half of the tissue to the right half for the Discrete Model, the continuous model with 
conductivities based on the estimates from the local method (model 1), and a 
continuous model with the conductivities on the right and left halves based on the 
estimates from the global method (model 2). 

 

3.3.5 Effective tissue conductivity and conduction velocity 

The changes in macroscopic conductivities due to changes in the microstructure 

in the discrete tissues suggest that a continuous model with the same macroscopic 

conductivities could be used to explain the changes of CV seen in Figure 3.5. Table 3.6 

gives the effective longitudinal and transverse conductivities of the five models. The 

inclusion of cleft space reduces not only the effective transverse conductivity, as 

expected, but also the longitudinal conductivity. The lateral uncoupling causes a 
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slowdown in both the longitudinal and transverse conduction velocities as shown in 

Table 3.3. The effective conductivities for all realizations were then applied to 

continuous models. Figure 3.10 A shows that ratio of LCV’s and TCV’s in continuous 

and discrete models is close to 1 for all the tissues. Figure 3.10 B shows that when gap 

conductance tissues with clefts (TC1, TC2, TC3 and TC4) were increased uniformly such 

that the effective conductivities of those tissues were identical to those of the confluent 

tissue, TC0, the LCV’s and TCV’s were nearly the same. Finally, when the conductivity 

estimation method was repeated for all the tissues in Figure 3.5 whose CV varied with 

changes in cell length/width ratio, cell orientations and clefts, the square root of 

estimated conductivities was linear with CV (correlation efficient 0.995 (Figure 3.10 C)) 

as expected from continuous media theory. 
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Figure 3.10 
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Figure 3.10: A) CV ratio of the continuous model and the discrete model, 
whose passive conductivities are identical. B) CV ratio between TC0 tissue and 
tissues with increased gap coupling so that their passive conductivities are identical. 
C) CV vs. square root of conductivity for tissues shown in Figure 3.5. All data points 
are pooled together. Low CV points are from transverse propagation and high CV 
points are from longitudinal propagation. The line shows best linear fit with slope 
38.0 and correlation coefficient 0.995. D) Longitudinal effective conductivity of tissues 
in Figure 3.7. E) Transverse effective conductivity of tissues in Figure 3.7 
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Finally, although the above results support the strong correlation between CV 

and the effective conductivity, the estimation of the conductivities for a continuous 

model is more challenging to interpret when the properties are not uniform. To 

investigate this, AP propagation was simulated in the domain with an abrupt change in 

cell orientation (Figure 3.9 A). The propagation velocities were plotted from the discrete 

model and from two continuous models. In one continuous model (model 1), the 

conductivities were assigned to the values obtained using the global, equivalent circuit 

method on each half separately. In the other continuous model (model 2), the 

conductivity was assigned to be smoothly varying based on the estimates obtained using 

the local, subthreshold response method. When the AP was initiated from left edge of 

the tissue, both model 1 and the discrete model showed an abrupt increase in CV near 

the transition of the change in cell orientation before the CV decreased. In model 2, the 

CV gradually slowed without an abrupt CV increase (Figure 3.9 B). Thus while the local 

measurements suggested a smooth change in conductivities, using such tissue 

properties does not yield behavior that is seen in tissue with an abrupt change in cell 

orientation. Note that although it appears that the CV fluctuations are larger on the left 

half of the tissue than on the right (Figure 3.9 B), a closer examination shows that the 

size of the fluctuations relative to the average conduction velocity is approximately the 

same. 
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3.4 Discussion 

In this chapter, we present a new methodology to develop models of cardiac 

tissue structure that more closely replicates the complex and arbitrary cell shape and 

orientations found in engineered monolayers. The technique can also be applied to 

diseased regions like an infarct scar where there can be significant heterogeneity and 

sparse, disorganized cell structure (Gardner, Ursell et al. 1985; Cabo and Boyden 2003). 

Because it is straightforward to create different tissue realizations with the same 

statistical properties, it is possible to perform simulations in a manner consistent with 

experimental studies where several tissue or heart preparations are used. 

One of the key questions addressed in this study is how conduction is influenced 

by cell orientation and degree of cleft space corresponding mostly to transverse 

decoupling. Bursac et al. showed that by decreasing the degree of background 

fibronectin concentration between the micropatterned fibronectin lines, the cells are 

increasingly elongated and oriented along the lines (Bursac, Parker et al. 2002). This 

results in an increase in longitudinal conduction velocity, a decrease in transverse 

conduction velocity, and an overall increase in anisotropy ratio of the conduction 

velocity. As the background fibronectin concentration is further decreased, the 

longitudinal intercellular clefts start to form followed by the increase in their length and 

number. This results in a further decrease of transverse conduction velocity along with a 

slow decrease in longitudinal velocity, which overall yields a further increase in the 
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conduction velocity anisotropy. This increase in structural discontinuity results in a 

decrease in longitudinal conduction velocity (for AR > 3.4), a decrease in transverse 

conduction velocity, and an overall increase in anisotropy ratio. As shown in Figure 3.5, 

the simulated results were consistent with these experimental findings as the modeling 

methodology allows for arbitrarily oriented cells as well as aligned cells with differing 

amounts of cleft space. The simulated results also show that AR for which there is a 

decrease in longitudinal conduction velocity increases with increasing cell-length to 

width ratio. 

The results also revealed that in the monolayer, longitudinal conduction velocity 

can be slowed when there is transverse decoupling. In a previous modeling study, 

Hubbard and Henriquez showed that in a regular cell structure with no cell overlap, 

transverse decoupling has no effect on longitudinal conduction (Hubbard, Ying et al. 

2007). In contrast, in a brick wall structure with cell overlap, longitudinal conduction is 

facilitated by the transverse connections. As a result, a loss of transverse coupling 

reduces velocity as seen in the monolayers.  

One of the distinct advantages of the computational model is the ability to 

compute or estimate the effective tissue electrical properties associated with the various 

tissue structures. Using a global estimation method, we show (Figure 3.10 C and Table 

3.6) that the decrease in longitudinal conduction velocity with transverse decoupling is 

also associated with a decrease in the effective longitudinal conductivity. In other words, 
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the overlap of cells acts to effectively increase the effective longitudinal conductivity and 

explains the increase in LCV seen by Hubbard and Henriquez (Hubbard, Ying et al. 

2007) in brick wall models. Because of the ability to consider several realizations of a 

given tissue, it is possible to obtain statistics regarding the estimates. In general, the 

greater the degree of transverse decoupling, the greater the variance in the estimates of 

the effective conductivity (Table 3.6), demonstrating the effects of small perturbations in 

microscopic structure on the current flow. 

The simulations also showed that the distribution of the coupling strength can 

affect the conduction velocity. A global uniform increase in gap junction conductance 

did not lead to the same conduction velocity as did a non-uniform increase in gap 

junction conductance, even though the average conductance change was the same in 

both cases. The results showed that the non-uniform gap coupling increase (118% 

longitudinal and 158% transverse increase in effective conductivity) led to a lower 

effective conductivity than that resulting from a uniform increase in gap coupling (139% 

longitudinal and 187% transverse increase in effective conductivity) (Figure 3.10 D and 

E), and hence a lower conduction velocity (Figure 3.7). While this appears to be 

surprising, the result is actually expected if the cells are considered as connected in 

series. Because the gap junctions are in series, the increase in conductance, C, leads to a 

decrease in resistance R. For two gap conductances of strength C, the total resistance is R 

= 1/C + 1/C = 2/C). If the total gap conductance is uniformly doubled from 2C to 4C, the 
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total resistance is halved (R = 1/2C +1/2C = 1/C). If, however, one conductance is 

unchanged and the other the tripled such that the total conductance is again doubled to 

4C, the effective resistance is larger than in the uniform case (R = 1/C +1/3C = 4/3C). In 

the monolayer, the way in which the conductances sum is more complicated and hence 

it is not always obvious how a certain distribution of gap junctions will impact the 

electrical properties. This study shows that the global method properly estimates the 

changes in conductivity that explains the changes in conduction velocity. 

Under the conditions studied, the changes in velocity associated with cell size, 

orientation and the distribution and strength of coupling comprising the highly discrete 

structure could be explained by the corresponding changes in the effective 

conductivities. Because tissue conductivities require a model to interpret the 

measurements, two methods were used to determine the values. The first method, 

which is not applicable under experimental conditions, removed the membrane 

elements in the model, applied a current through the intracellular space and evaluated 

the potential. The effective conductivity is obtained through an estimate of the electric 

field and the use of equation (3.4). Because the field is applied across the entire tissue, 

the estimate is an effective global conductivity. The values arising from this method 

were verified using a simplified tissue structure for which an analytical solution was 

available. The second method may be experimentally realizable as it uses a subthreshold 

stimulus response of the tissue, and applies a parameter estimation method with a 
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continuous model to determine the effective conductivities. Both estimation methods 

agreed very well with the analytical solution for the case of regular, rectangular cells 

(Table 3.5). Although some small differences were found between the two methods for 

the discrete tissue with nearly uniform cell orientations and clefts, the estimated 

conductivities from the two methods showed strong correlation.  

The local estimation method did not perform as well with abrupt change in cell 

orientations (Figure 3.9 A). The local measurement estimates that the conductivity 

smoothly varies at the transition site. When the smooth conductivities were applied to a 

continuous model, the resulting conduction velocities and action potential upstrokes 

near the transition site did not agree with those obtained in the discrete model, as shown 

in Figure 3.9 B. In the discrete model, the CV sharply increased as the wavefront moved 

from the longitudinally oriented cells to the transversely oriented cells. Note that an 

abrupt decrease in CV occurred in both the continuous model with abrupt changes in 

conductivity and the discrete tissue but not in the continuous model with a smooth 

change in conductivity and when the wavefront moved in the opposite direction (not 

shown). This abrupt increase in CV by conductivity changes can be explained by the 

current-to-load concept; as the wavefronts approaches the boundary, less current flows 

in the neighboring tissue due to the lower conductivity and the conduction accelerates 

(Wang and Rudy 2000). Figure 3.9 B also shows that the continuous model with abrupt 

changes in the properties better predicted the behavior of the discrete network. These 
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results suggest that care must be taken when estimating properties in regions with 

abrupt transitions in fiber orientation or discreteness; particularly when using these 

estimates to construct a continuous model. Note that while the local method may be 

experimentally realizable, it requires a measurement of the absolute potential 

distribution over a large area. While optical methods can be used to assess the 

distribution, the measurements only reflect relative changes. One approach to overcome 

this limitation is to calibrate the optical mapping measurements with one microelectrode 

measured data which was shown by Pastore et al (Pastore, Girouard et al. 1999).  

While the new approach for modeling discrete tissues was able to simulate some 

phenomena observed in monolayers, a few limitations remain. First, the choice to use 

cells with relatively fixed geometries led to the emergence of holes in the domain when 

the cell orientations were random. Such holes are not observed in confluent monolayers, 

because the cells will spread to fill in the holes (Bursac, Parker et al. 2002). In addition, 

the clefts in the model were generated by shrinking cells laterally, while the clefts in vitro 

result from insufficient expansion of the cells. The model is capable of generating any 

cell shape but the ability to create random networks automatically required some 

compromises. Future studies will consider greater flexibility in the assignment of cell 

shapes and a tissue generation algorithm that more closely mimics the variety of cell 

shapes seen in engineered monolayers. It is important to point out that because we 

assumed a monodomain, the model does not fully account for the effects of tight spaces 
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on conduction (Roberts, Stinstra et al. 2008). The Bueno-Orovio-Cherry-Fenton-Karma 

model rather than a detailed ionic-based membrane model was used to reduce the time 

of the simulations and to consider it usefulness when performing estimation with 

experimental data.  While the Bueno-Orovio-Cherry-Fenton-Karma model can 

reproduce many of the features seen in Hodgkin-Huxley type membrane models, the 

lack of true ionic currents may limit its utility under some critical regimes of conduction. 

Note for the studies considered here of a single wavefront, the difference between the 

Bueno-Orovio-Cherry-Fenton-Karma model and more detailed model is expected to be 

small. Finally, the studies performed here and the conclusions derived from the 

simulations are based on cells with neonatal distributions of gap junctions. More work is 

needed to determine how the conclusions generalize to tissues with adult cell shapes 

and distributions of gap junctions. The method, however, can easily be extended to such 

cases with no modification. 
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4. Effective intracellular conductivity estimation 

4.1 Introduction 

A cultured cardiac monolayer tissue is a useful experimental model to study 

initiation and development of arrhythmias since 1) the discrete features of the tissue 

such as cell orientations and distributions of clefts can be controlled, 2) the impulse 

propagation can be observed conveniently by the optical mapping and 3) a 

corresponding computer model can be built, using the approach described in Chapter 2, 

to develop further insights into the mechanisms of conduction failure (Entcheva, Lu et 

al. 2000). The computer model also allows fine control over many parameters and thus 

enables investigations that are difficult if not impossible under the experimental 

conditions (Henriquez 1993; Sampson and Henriquez 2002; Rudy and Silva 2006). 

However, building a predictive computer model for the tissue preparation often 

requires that a set of model parameters to be determined from experimental 

observations. The computational cardiac model has two primary features: the passive 

electrical properties and the membrane properties. The passive tissue properties are the 

effective continuous intracellular and extracellular conductivities, while the membrane 

properties are determined by the ion channel dynamics of the cell. While the ion channel 

model is built by analyzing single cell recordings, the conductivities of the tissue are 

usually assigned to match the observed action potential (AP) conduction velocity. This 

method can determine the proper tissue conductivities only when the correct ion 
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channel model is available. However the ion channel model is not available in many 

cases and the tissue conductivities are usually assigned as physiologically reasonable 

values so that the behaviors of the model and experimental observations are similar. 

Several groups have developed methods to determine the tissue conductivities in 

which a specific model is used to interpret potential measurements. The four electrode 

method by Plonsey and Barr uses a linear array of four equally spaced electrodes to 

estimate bidomain model parameters and this method is limited to the tissue with equal 

anisotropy ratios (Plonsey and Barr 1982). This method has been extended to eliminate 

an equal anisotropy ratio requirement and to handle the alignment between the fiber 

and the electrode by using multiple electrodes or high frequency stimulus with 

numerical method for data fitting (Le Guyader, Trelles et al. 2001; Pollard and Barr 2006; 

Sadleir and Henriquez 2006). On the other hand, there are few studies to estimate the 

monodomain model parameters. Fast and Kleber used optical mapping data for 

estimating intracellular conductivity and gap coupling for one dimensional discrete fiber 

model (Fast and Kleber 1993).  

In this study, we developed a method to estimate the effective intracellular 

conductivities (EICs) of an in vitro monolayer of tissue. The estimated values are 

compared to the conductivities calculated from the equivalent circuit model (see 

Chapter 3) representing the intracellular domain. The method approximated membrane 

resistance under subthreshold stimulus as a second order polynomial of membrane 
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potential and this polynomial and the EICs were estimated from spatiotemporal pattern 

of the optical mapping. This simplified membrane model allowed us to estimate the 

EICs relatively accurately without the detailed knowledge of the membrane properties.  

 

4.2 Methods 

4.2.1 Surrogate data 

To generate data, the discrete monolayer tissue model was used instead of a 

cultured tissue. For the membrane dynamics in the surrogate tissue, the Pandit model 

and Luo-Rudy model were used (Luo and Rudy 1991; Pandit, Clark et al. 2001). The 

membrane potential was computed and used as if it was recorded using microelectrode 

or via optical mapping. The microelectrode recording was simulated by averaging the 

membrane potential over a cell. In order to simulate the optical mapping, circular optical 

sensors were assumed with a fixed radius and location. At each time step of the 

simulation, the membrane potential was spatially averaged under each sensor and this 

averaged membrane potential was used as the “measured” data. After the simulation 

was over, these recorded values were shifted and normalized so that the maximum of 

the recordings is 1 and the minimum of the recordings is 0. Three surrogate tissues were 

generated with different gap coupling strength and the effective intracellular 

conductivities of the tissues were obtained from the global method (Table 4.1) described 

in Chapter 3 in which the membrane elements were removed. The effective intracellular 
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conductivities (EICs) from the global method were considered as the true conductivities 

of the corresponding tissues and compared with the values from the estimation method. 

 

Table  4.1: Longitudinal and transverse EICs and their ratio of the discrete 
tissue 

Gap coupling 
strength 

Longitudinal 
conductivity 

Transverse 
conductivity 

Ratio 

4 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 4.58 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 0.94 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 4.87 
1 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 2.78 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 0.31 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 8.97 

0.25 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 1.10 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 0.084 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 13.10 

 

4.2.2 Estimating membrane resistance from a single cell 

The time response of the single cell’s membrane potential under subthreshold 

stimulus was modeled as a simple RC circuit while the specific membrane capacitance 

was assumed to be 1 𝜇𝜇𝜇𝜇/𝑐𝑐𝑚𝑚2. The subthreshold membrane response can be divided into 

depolarization phase and repolarization phase as shown in Figure 4.1 and three different 

membrane resistances were obtained depending on which part of the membrane 

potential was used for the estimation. 

1) Depolarization: The normalized membrane potential from onset of the stimulus 

can be modeled as 𝜕𝜕𝑚𝑚 = 1 − exp �− 𝜕𝜕
𝑅𝑅𝑚𝑚 𝐶𝐶𝑚𝑚

�. This analytical expression was 

compared to normalized membrane potential during depolarization and the 

membrane resistance 𝑅𝑅𝑚𝑚  was found by an optimization process. This membrane 

resistance is heretofore referred to as 𝑅𝑅𝑚𝑚1. 



 

79 

2) Repolarization: After the stimulus was removed, the normalized membrane 

potential can be modeled as 𝜕𝜕𝑚𝑚 = exp �− 𝜕𝜕
𝑅𝑅𝑚𝑚 𝐶𝐶𝑚𝑚

�. This analytical expression was 

compared to normalized membrane potential during repolarization and the 

membrane resistance 𝑅𝑅𝑚𝑚  can be found by an optimization process. This 

membrane resistance is heretofore referred to as 𝑅𝑅𝑚𝑚2. 

3) Combined: Both depolarization and repolarization of membrane potential were 

compared to corresponding analytical expressions and the membrane resistance 

𝑅𝑅𝑚𝑚  was optimized for both depolarization and repolarization membrane 

potential. This membrane resistance is heretofore referred to as 𝑅𝑅𝑚𝑚3. 

In addition to these methods, a transient membrane resistance was evaluated by 

𝑅𝑅𝑚𝑚 = (𝜕𝜕𝑚𝑚 +𝑑𝑑𝑣𝑣)−(𝜕𝜕𝑚𝑚−𝑑𝑑𝑣𝑣)
𝐼𝐼𝑚𝑚 (𝜕𝜕𝑚𝑚 +𝑑𝑑𝑣𝑣)−𝐼𝐼𝑚𝑚 (𝜕𝜕𝑚𝑚−𝑑𝑑𝑣𝑣)

 and this is heretofore referred to as 𝑅𝑅𝑚𝑚4 (Sampson and 

Henriquez 2005). Note that the relationship between the steady state membrane 

potential change and the membrane resistance, ∆𝜕𝜕𝑚𝑚 = 𝐼𝐼𝜇𝜇𝜕𝜕𝑖𝑖𝑚𝑚 𝑅𝑅𝑚𝑚 , is not used to estimate 

membrane resistance because of the uncertainty regarding the membrane area in the 

experimental conditions. 
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4.2.3 Estimating effective intracellular conductivities with simplified 
membrane model 

We assumed an EIC for both the longitudinal and transverse directions and 

modeled the membrane resistance as a second order polynomial of membrane potential 

in the following form.  

 𝑅𝑅𝑚𝑚 = 𝐴𝐴 ⋅ (𝜕𝜕𝑚𝑚 − 𝐵𝐵)2 + 𝐶𝐶 (4.1)  

where 𝜕𝜕𝑚𝑚  is the membrane potential and 𝐴𝐴, 𝐵𝐵, and 𝐶𝐶 are parameters of the polynomial to 

be estimated from the experimental data. The EICs and membrane resistance were 

estimated from spatiotemporal response of two dimensional tissues for the subthreshold 

stimulus. A two dimensional tissue was stimulated with two subthreshold stimulus 

patterns in longitudinal and transverse directions with a planar electrode. The stimulus 

was 200 – 300 msec long and the membrane potential reached steady state at the end of 

stimuli. The stimulus strength was controlled so that the maximum depolarization was 

from 10 to 15 mV. The membrane potential was recorded with the optical mapping and 

the EICs and the polynomial modeling the membrane resistance were obtained by 

minimizing the difference in the depolarization patterns between recorded tissue 

responses and those of the simulated continuous tissue model. 

 

4.2.4 Simulation and estimation detail 

The monolayer tissue was implemented with the monodomain model following 

the method in the previous chapter. The size of the tissue was 7 𝑚𝑚𝑚𝑚 by 4 𝑚𝑚𝑚𝑚 for all 
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cases. Three tissues were considered with different gap coupling strength: 4 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚, 1 

𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚, and 0.25 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚. The system of equations was solved using the Crank-Nicolson 

method with a time step size 10 𝜇𝜇𝜇𝜇𝑒𝑒𝑐𝑐 (Keener and Bogar 1998). During the optimization, 

the domain size of the continuous tissue model was represented as a strip of tissue to 

reduce the computational time. For the longitudinal stimulus, the size of the continuous 

tissue was 7 𝑚𝑚𝑚𝑚 by 0.4 𝑚𝑚𝑚𝑚. For the transverse stimulus, the size of the continuous tissue 

was 0.4 𝑚𝑚𝑚𝑚 by 4 𝑚𝑚𝑚𝑚. This reduction in the tissue size was found not to affect the 

parameter estimation. The optical mapping recordings were simulated to investigate 

how the number and radius of the sensors affected the estimation. The radii of the 

sensors were 45 𝜇𝜇𝑚𝑚, 90 𝜇𝜇𝑚𝑚 and 180 𝜇𝜇𝑚𝑚 while the numbers of sensors were 16, 32, and 64 

for longitudinal direction and 8, 16 and 32 for transverse direction. The differential 

evolution algorithm was used (Storn and Price 1997) to perform the estimation. The 

differential evolution algorithm has been shown to find the global minimum of a 

multidimensional function with good probability. The error function for the 

optimization was defined as squared sum of the error in the following form.  

 𝐸𝐸 =
1
2
���𝑂𝑂𝐴𝐴𝑑𝑑𝑎𝑎𝜕𝜕𝑎𝑎 (𝜕𝜕, 𝑖𝑖) − 𝑂𝑂𝐴𝐴𝜇𝜇𝑖𝑖𝑚𝑚 (𝜕𝜕, 𝑖𝑖; 𝑥𝑥)�2

𝑖𝑖𝜕𝜕

 (4.2)  

where 𝑂𝑂𝐴𝐴𝑑𝑑𝑎𝑎𝜕𝜕𝑎𝑎 (𝜕𝜕, 𝑖𝑖) is optical mapping data from the sensor 𝑖𝑖 at time 𝜕𝜕 and 𝑂𝑂𝐴𝐴𝜇𝜇𝑖𝑖𝑚𝑚 (𝜕𝜕, 𝑖𝑖) is 

simulated optical mapping from the sensor 𝑖𝑖 at time 𝜕𝜕. 𝑥𝑥 is a vector of parameters to be 

estimated. As the differential evolution algorithm parameter, the crossover rate was set 
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as 0.9 and the weighting factor F was randomly selected between 0.5 and 1.0 at every 

generation. The number of population was 12. 

 

4.3 Results 

4.3.1 The passive membrane resistance estimation from RC circuit 
analysis  

The membrane resistance was estimated by RC circuit analysis while the cell was 

stimulated with subthreshold pulse. Figure 4.1 A compares optical mapping and ideal 

RC circuit response with resistance values estimated from different part of the 

waveform. In this Figure, 𝑅𝑅𝑚𝑚1 fits best during the depolarization, 𝑅𝑅𝑚𝑚2 fits best during 

the repolarization and 𝑅𝑅𝑚𝑚3 stays between 𝑅𝑅𝑚𝑚1 and 𝑅𝑅𝑚𝑚2.  Figure 4.1 B shows the transient 

membrane resistance 𝑅𝑅𝑚𝑚4 for Figure 4.1 A. The membrane resistance increases and then 

decreases during the pulse. 
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Figure 4.1: A) Comparison between optical mapping of Pandit model when 
subthreshold stimulus was applied and response of the equivalent RC circuit with 
different membrane resistances. 𝑹𝑹𝒎𝒎𝟏𝟏 showed the best fit during depolarization while 
𝑹𝑹𝒎𝒎𝟐𝟐 showed the best fit during repolarization. B) Transient membrane resistance 𝑹𝑹𝒎𝒎𝟒𝟒 
during subthreshold stimulus. The overall shape of membrane resistance follows that 
of membrane potential. 
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4.3.2 The effective intracellular conductivities with constant 
membrane resistance 

 

Figure 4.2: A, B) Membrane potential distribution of Pandit model at the 
steady state when the subthreshold stimulus was applied in longitudinal and 
transverse direction. The circles indicate the location of optical sensors of radius 180 
𝝁𝝁𝒎𝒎. The size of the tissue is 7mm by 4 mm. C, D) Optical mapping measured from the 
sensors in A) and B). The arrow on the right indicates the sensor number. Because of 
the normalization, the maximum of optical mapping is 1 and the minimum of the 
optical mapping is 0. 

 

Figure 4.2 A and B show the potential distribution at the steady state in the 

domain for stimulation in the longitudinal and transverse directions, respectively. 

Figure 4.2 C shows the optical mapping recorded at different sensor locations shown in 
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Figure 4.2 A and Figure 4.2 D shows the optical mapping at the different locations 

shown in Figure 4.2 B. Because the true voltage will not be measured, the simulated 

optical mapping data was normalized such that the signal has maximum of 1 and a 

minimum of 0. If the membrane resistance can be considered as a constant, the EICs can 

be estimated by using only the steady state membrane potential distribution. Although 

the membrane resistance was found to be different for the rising and falling phases, 

studies were performed to determine if a fixed membrane could be used to perform the 

estimations. Initial studies showed that estimated values had a tendency to diverge 

when only longitudinal and transverse stimulus patterns were given as data. The 

divergence in the estimation was prevented by providing a point stimulus pattern as 

additional data. As a result, this method used three stimulus patterns: longitudinal, 

transverse and point stimulus patterns. Although additional data was provided to 

improve the performance, consistently good estimations of the EICs still could not be 

achieved with the constant membrane resistance. The tables 4.2 and 4.3 summarize the 

percentage error of the estimated EICs and their ratios compared to the values from the 

global method for Pandit model and Luo-Rudy model, respectively with a fixed 

membrane resistance. The error 𝐸𝐸 is calculated by 𝐸𝐸 = 𝐶𝐶𝑒𝑒−𝐶𝐶𝑔𝑔
𝐶𝐶𝑔𝑔

× 100 where 𝐶𝐶𝑒𝑒  is estimated 

EIC and 𝐶𝐶𝑔𝑔  is EIC from the global method.  From this definition of the error, an 

overestimation results in the positive error and an underestimation results in the 

negative error. Table 4.2 and 4.3 show that when the number of sensors is the same, the 
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estimated value tends to increase as the size of the sensor decreases. Increasing the 

number of sensors did not improve the estimation accuracy but it decreased the 

estimations both in Pandit model and in Luo-Rudy model. Although the estimated EICs 

from this method were not quite accurate, the ratios of the conductivities had relatively 

lower error. 

Table 4.2: Percentage error of EIC estimates with constant membrane 
resistance for Pandit model. The constant membrane resistance was 12.58 𝒌𝒌𝛀𝛀𝒄𝒄𝒎𝒎𝟐𝟐. The 

values in parenthesis are the number of sensors in longitudinal and transverse 
direction. 

 45 𝜇𝜇𝑚𝑚  
(16,8) 

45 𝜇𝜇𝑚𝑚 
(64,32) 

90 𝜇𝜇𝑚𝑚  
(16,8) 

90 𝜇𝜇𝑚𝑚 
(32,16) 

180 𝜇𝜇𝑚𝑚 
(16,8) 

 Longitudinal 
4 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 -12.88 -20.67 -17.37 -20.26 -23.70 
1 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 -14.18 -20.00 -16.99 -19.08 -23.06 

0.25 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 -20.98 -23.11 -20.47 -20.84 -24.59 
 Transverse 

4 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 -7.31 -17.78 -18.26 -19.84 -25.01 
1 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 -8.93 -14.09 -18.26 -18.70 -25.06 

0.25 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 -10.73 -11.86 -16.68 -16.71 -24.40 
 Ratio 

4 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 -6.01 -3.51 1.10 -0.52 1.75 
1 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 -5.77 -6.88 1.56 -0.47 2.67 

0.25 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 -11.45 -12.77 -4.54 -4.95 -0.26 
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Table 4.3: Percentage error of EIC estimates with constant membrane 
resistance for Luo-Rudy model. The constant membrane resistance was 6.29 𝒌𝒌𝛀𝛀𝒄𝒄𝒎𝒎𝟐𝟐. 
The values in parenthesis are the number of sensors in longitudinal and transverse 

direction. 

 45 𝜇𝜇𝑚𝑚 
(16,8) 

45 𝜇𝜇𝑚𝑚 
(64,32) 

90 𝜇𝜇𝑚𝑚 
(16,8) 

90 𝜇𝜇𝑚𝑚 
(32,16) 

180 𝜇𝜇𝑚𝑚 
(16,8) 

 Longitudinal 
4 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 -27.35 -32.72 -30.91 -32.11 -35.98 
1 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 -28.62 -32.15 -30.70 -31.23 -35.44 

0.25 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 -29.91 -31.28 -30.62 -30.67 -35.20 
 Transverse 

4 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 -21.35 -23.24 -31.35 -32.07 -36.99 
1 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 -19.81 -20.97 -30.33 -30.43 -36.44 

0.25 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 -19.62 -20.02 -27.83 -27.83 -36.00 
 Ratio 

4 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 -7.63 -12.35 0.65 -0.06 1.61 
1 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 -10.99 -14.14 -0.52 -1.15 1.58 

0.25 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 -12.81 -14.08 -3.87 -3.93 1.25 
 

4.3.3 The membrane resistance as a function of membrane potential 

Figure 4.1 showed that there is some difference between the membrane potential 

and the RC circuit response and the membrane resistance was different for the 

depolarization and repolarization phases. As shown in Figure 4.3, the membrane 

resistance during each phase also varies as a function of membrane potential resulting 

from different stimulus amplitudes. This figure suggests that the membrane resistance 

under subthreshold stimulus can be better represented with a low order polynomial 

rather than as a constant. In order to avoid over-fitting, a second order polynomial was 

found to be a reasonable estimate (equation 4.1). The coefficients used in Figure 4.3 are 

summarized in the Table 4.4. 
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Table 4.4: The second order polynomial coefficient for membrane resistance 
during subthreshold stimulus 

 Pandit model Luo-Rudy model 
A B C A B C 

𝑅𝑅𝑚𝑚1 0.0358 -2.6046 7.945 0.0692 2.7413 4.3993 
𝑅𝑅𝑚𝑚2 0.0028 -22.9666 6.4571 0.0038 -8.6687 3.1486 
𝑅𝑅𝑚𝑚3 0.0146 -6.4808 7.4122 0.0232 0.3772 3.7865 
𝑅𝑅𝑚𝑚4 0.1220 1.1104 8.9846 0.1730 4.0249 5.0025 

 

 

Figure 4.3: Membrane resistance as a function of maximum membrane 
potential change. The dotted lines show the best fit with a second order polynomial. 
In both Pandit model and Luo-Rudy model, the membrane resistance during 
subthreshold stimulus can be well approximated as a second order polynomial of the 
membrane potential (dashed dot lines). 
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4.3.4 The effective intracellular conductivities with simplified 
membrane model 

Given the findings that membrane resistance varies as a function of membrane 

potential under subthreshold conditions, a new estimation scheme was developed in 

which the parameters of this polynomial and the EICs were estimated simultaneously 

from the spatiotemporal response of the tissue. This method requires significantly 

longer computation time compared to the method using constant membrane resistance 

since the full time response needed to be simulated at each iteration of the estimation. 

However, the new estimation scheme yielded EICs that were much more accurate. As 

shown in Table 4.5 and 4.6, the overall errors are below 10% for all the cases and do not 

show significant change due to the number or size of sensors for both membrane types. 

The Table 4.7 shows averages and standard deviations of the estimated coefficients of 

the simplified membrane function in the equation (4.1). The coefficients of the equation 

(4.1) were estimated at the same time with the EICs for the Table 4.5 and 4.6 and then 

these function coefficients were averaged over the number of sensors to obtain the 

values in the Table 4.7. The values in Table 4.7 are consistent with the values in Table 4.4 

that were obtained from the single cell. 
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Table 4.5: Percentage error of EIC estimates for the Pandit model. The 
membrane resistance was approximated with a second order polynomial and the 

parameters of this polynomial were estimated with EICs. The values in the 
parenthesis are the number of sensors in longitudinal and transverse direction. 

 45 𝜇𝜇𝑚𝑚  
(16,8) 

45 𝜇𝜇𝑚𝑚 
(64,32) 

90 𝜇𝜇𝑚𝑚  
(16,8) 

90 𝜇𝜇𝑚𝑚 
(32,16) 

180 𝜇𝜇𝑚𝑚 
(16,8) 

 Longitudinal 
4 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 8.79 7.97 6.97 6.51 6.51 
1 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 7.04 7.07 6.70 5.94 6.95 

0.25 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 1.96 2.48 0.73 0.95 3.46 
 Transverse 

4 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 2.22 5.57 5.17 5.12 6.32 
1 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 3.20 5.19 4.89 5.03 6.36 

0.25 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 -0.63 0.002 0.64 0.44 2.45 
 Ratio 

4 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 6.43 2.27 1.71 1.32 0.17 
1 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 3.72 1.79 1.72 0.86 0.56 

0.25 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 2.61 2.47 0.09 0.51 0.98 
 

Table 4.6: Percentage error of EIC estimates for the Luo-Rudy model. The 
membrane resistance was approximated with a second order polynomial and the 

parameters of this polynomial were estimated with EICs. The values in the 
parenthesis are the number of sensors in longitudinal and transverse direction. 

 45 𝜇𝜇𝑚𝑚 
(16,8) 

45 𝜇𝜇𝑚𝑚 
(64,32) 

90 𝜇𝜇𝑚𝑚 
(16,8) 

90 𝜇𝜇𝑚𝑚 
(32,16) 

180 𝜇𝜇𝑚𝑚 
(16,8) 

 Longitudinal 
4 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 8.63 8.51 4.26 2.92 5.42 
1 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 6.95 4.55 3.43 4.14 2.33 

0.25 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 5.79 5.74 1.17 1.05 2.54 
 Transverse 

4 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 1.79 2.94 -0.13 -0.62 2.95 
1 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 1.79 -1.93 -1.51 -0.41 -1.19 

0.25 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 1.95 -1.49 -5.40 -5.02 -2.11 
 Ratio 

4 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 6.72 5.42 4.39 3.56 2.40 
1 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 5.07 6.61 5.02 4.57 3.56 

0.25 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 3.77 7.34 6.94 6.39 4.75 
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Table 4.7: Averages of the simplified membrane model coefficient in the 
equation (4.1). The values in parentheses are the standard deviations. The coefficients 

of the equation (4.1) were estimated at the same time with the EIC estimates for the 
Table 4.5 and 4.6 and then these function coefficients were averaged over the number 

of sensors to obtain values in this table. 

 A B C 
 Pandit model 

4 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 0.016 (8.45e-4) -3.505 (0.584) 8.038 (0.121) 
1 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 0.023 (4.50e-3) -0.658 (1.583) 8.440 (0.256) 

0.25 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 0.035 (7.10e-3) 1.371 (1.172) 8.658 (0.129) 
 Luo-Rudy model 

4 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 0.021 (3.84e-3) -0.064 (1.053) 3.556 (0.135) 
1 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 0.026 (4.34e-3) 1.088 (1.005) 3.650 (0.105) 

0.25 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚 0.026 (3.54e-3) 0.582 (1.010) 3.502 (0.156) 
 

4.4 Discussion 

In this chapter, we developed a method to estimate EICs from optical mapping of 

membrane potential while the tissue was stimulated by subthreshold pulse. It is 

generally assumed that under subthreshold conditions, the membrane resistance is 

constant. Under this assumption, the steady state membrane potential falls 

exponentially from the stimulus site. The rate of the fall in the potential is known as the 

tissue space constant, 𝜆𝜆. 

 𝜆𝜆 = 𝐴𝐴 ⋅ �𝑅𝑅𝑚𝑚𝐶𝐶𝑖𝑖  (4.3)  

 𝐶𝐶𝑖𝑖 =  
𝜆𝜆2

𝐴𝐴2𝑅𝑅𝑚𝑚
 (4.4)  

where 𝐴𝐴 is a constant determined by the geometry of the tissue and 𝐶𝐶𝑖𝑖  is the EIC. Thus if 

the space constant can be measured from the membrane potential distribution and the 
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exact membrane resistance is known, the EIC can be easily found from equation (4.4). 

However the membrane resistance is not constant as the subthreshold stimulus was 

applied but varies as a function of membrane potential. As shown in this study, when 

the membrane resistance is assumed to be constant, accurate EIC estimate cannot be 

obtained using simulated optical recordings. In general, the average estimation errors 

for the Pandit model are 19.9% and 16.9% for longitudinal and transverse EIC, 

respectively while the average estimation errors for the Luo-Rudy model are 31.7% and 

27.6% for longitudinal and transverse EIC, respectively. In addition to this, when 𝑅𝑅𝑚𝑚1, 

𝑅𝑅𝑚𝑚2 and 𝑅𝑅𝑚𝑚3 were used as a constant membrane resistance for the EIC estimation, the 

multiplication of estimated EIC and the membrane resistance was constant regardless of 

the membrane resistance and the membrane type (data not shown). This confirms that 

the stimulus pattern follows that of the one dimensional fiber and the relationship 

between the EIC and the membrane resistance can be expressed by the equation (4.4). 

 In the new method presented here, the estimates were significantly improved by 

using a simplified membrane model, which expresses the membrane resistance under 

subthreshold stimulus as a second order polynomial of membrane potential. By using 

this simplified form of membrane resistance, the average estimation errors for the Pandit 

model are 5.3%, 3.5% for longitudinal and transverse EIC, respectively while the average 

estimation errors for the Luo-Rudy model are 4.5% and 0.6% for longitudinal and 

transverse EIC, respectively. Additionally, the estimated coefficients of the simplified 
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membrane in Table 4.7 model are consistent with the values in Table 4.4 that were 

obtained from the patch clamp recording. This supports the findings that the estimated 

coefficients of the equation (4.1) are not just a set of numbers minimizing the error 

function but, after the optimization process, they make the simplified membrane model 

physiologically meaningful. 

While the approach gives reasonable estimate, there are several areas for 

improvement, the method was developed and tested with only surrogate tissue data 

generated by the monodomain model in which extracellular conductivities are infinite 

and the extracellular potential is grounded. The method could be tested using a more 

detailed model which implements finite extracellular conductivities and tight 

extracellular space (Hogues, Leon et al. 1992; Roberts, Stinstra et al. 2008). However, in 

the modeling study by Hogues et al., while the distance between two adjacent cells was 

assumed to be constant as 1 nm and their contact area was assumed 10 times larger than 

that of the flat surface due to the folding, they investigated the efficacy of electric field 

interactions between two adjacent cardiac cells and concluded that the coupling through 

the gap junctions is 30 – 130 times more efficient than the coupling through electric field 

(Hogues, Leon et al. 1992). Therefore, it is unlikely that the tight extracellular space 

between cells will affect the results of this study. In order to implement the proposed 

method in experimental setting, it might require a slight modification to the electrode 

configuration. The proposed method used planar electrodes but these planar electrodes 
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might be unavailable or difficult to implement under experimental conditions. As a 

result, the planar electrode could be replaced by small number of point electrodes. The 

stimulus is also applied to the intracellular space and the effect of the extracellular 

stimulus in this context would need to be studied (Fast, Rohr et al. 1998; Trayanova, 

Skouibine et al. 1998). In addition to the electrode configuration, only homogeneous 

tissues were considered and the discrete features of the tissue such as shapes and 

orientations of cells and distributions of clefts were assumed to relatively uniform 

throughout. However the monolayer tissue can be cultured with abrupt change in its 

properties to mimic a diseased state. The proposed method can be readily modified to 

detect such an abrupt change in the discrete features of the tissue by adding the size and 

the location as additional model parameters. The proposed method has high 

computational cost. During the optimization process, the simulation was repeated a few 

hundred times with different parameters. While a single simulation took for a few hours 

and the entire optimization took about a week even when using a parallel 

implementation. Additionally the optimization process sometimes failed converging to 

the global minimum and the method needed to be restarted with a new initial set of 

parameters.  

There are several methods that could be applied to reduce the long computation 

time and improve convergence. First, the cardiac tissue model can be built with high 

order FEM and the size of the linear system to be solved by the simulator can be 
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reduced. The optimization method can also be made more efficient. In this study, the 

differential evolution (DE) algorithm was used for the estimation. Although DE is quite 

efficient, the parameters in DE and the error function can be tuned to get a faster and 

stable convergence. 

In this study, the model tissue was assumed as a continuous domain while in 

previous chapters the tissues were modeled as a discrete one with various cell shapes 

and orientations. After the conductivities of the continuous tissue model were estimated, 

the continuous tissue model can be converted to the discrete tissue model by combining 

information on the discrete features of the tissue. In the discrete tissue model, the EIC is 

determined by various factors including sizes and orientations of cells, distributions of 

clefts and gap coupling strength. Sizes and orientations of cells and distributions of gap 

junctions can be observed from the tissue with a microscope and this information can be 

used for deciding the corresponding discrete tissue parameters. And then gap coupling 

strength and intracellular conductivity of a cell can be determined so that the discrete 

tissue’s effective intracellular conductivities are same as those of the continuous tissue. 
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5. Contributions and Conclusions 
In this thesis, I have developed a series of tools to build a discrete cardiac tissue 

model of neonatal cells in a monolayer to simulate impulse propagation. Moreover, I 

have tested the methods in several cases and achieved results that were not possible 

using pre-existing approaches.  Chapter 2 described a novel monodomain model to 

simulate impulse propagation through a tissue whose cells can have arbitrary shapes, 

orientations and coupling. A 2D finite element method (FEM) model was derived from 

three dimensional FEM model of a layer of cells by reducing the dimension of the linear 

system under the assumption of symmetry in the depth direction. Although the 

derivation of the 2D FEM was straightforward, there were two potential sources of 

errors when the results from the model were compared to those obtained from the 3D 

FEM model. First, the reduction process required a single discretization element in the 

depth direction. This requirement can cause an error in the solution if there is a 

significant nonlinearity in the intracellular potential. The other potential source of error 

is due to the gap junction distribution in three dimensional space. While gap junctions 

can be located anywhere on two dimensional lateral faces of three dimensional cells, the 

gap junctions for the two dimensional cells can only be located on a one dimensional 

edge.  The 2D FEM was compared to various three dimensional methods with various 

tissue structures. In addition to this, 2D FEM was compared to 2D finite difference 
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method (2D FDM). In all tests mentioned above, CV and �̇�𝜕𝑚𝑚𝑎𝑎𝑥𝑥  were compared at various 

tissue structures and no significant error was found. 

In Chapter 3, I presented a method to build a discrete monolayer tissue in which 

shapes and sizes of cells and distributions of clefts can be controlled. Although the cells 

in discrete tissue can be generated by using semi-automatic image segmentation 

schemes, they are difficult to apply to large domains.  In addition, it is difficult to use 

this scheme to create several versions of tissues in which the shapes and sizes of cells 

and distributions of clefts between cells are treated as random variables. The models are 

used to study wavefront propagation in a manner similar to that done experimentally, 

where multiple preparations are tested under the same conditions. Simulations results 

from the models were compared to the experimental results of Bursac et al.’s showing 

the relationship of cell orientations and distributions of clefts with CV and anisotropy 

ratio. As in the experiments, the simulations showed that as the cells oriented 

transitioned from random to aligned, the longitudinal CV increased and as the 

transverse directional discontinuity increased by the increase in the amount of clefts, the 

longitudinal CV decreased (Bursac, Parker et al. 2002).  

For the further analysis, two methods were developed to estimate the effective 

tissue conductivities. In the first method, the membrane elements are removed leaving 

only an effective network of resistors. The conductivity was evaluated by computing the 

ratio between mean electric field and total current flux when the current is injected at the 
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one edge of the tissue. This method, termed a global method, cannot be implemented 

experimentally since the membrane cannot be removed. In the second method, the 

membrane resistance was estimated from time response of a cell while this cell is 

stimulated with a long subthreshold pulse. The effective tissue conductivities were 

found through an optimization process that minimized the difference between the 

potential patterns from the tissue under the long subthreshold point stimulation and the 

simulated tissue under the same condition. This method was termed a local method. 

When the conductivities from the global method and the local method were compared, 

there were some differences but they had high correlation coefficient (0.97 for 

longitudinal conductivity, 0.98 for transverse conductivity). The global method showed 

that Bursac et al.’s experimental results where LCV was decreased when AR > 3.4 

(Bursac, Parker et al. 2002) can be explained by the change in effective tissue 

conductivity in longitudinal direction. 

In Chapter 4, the local method to estimate the effective intracellular 

conductivities was extended to achieve higher accuracy. When the membrane resistance 

was assumed to be constant, the errors in the estimated effective intracellular 

conductivities are strongly dependent on the estimated membrane resistance. The 

estimation method was significantly improved by approximating the membrane 

resistance as a second order polynomial of membrane potential. The coefficients of this 

polynomial were estimated with effective intracellular conductivities. The test results 
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using the Pandit model and the Luo-Rudy model showed that this method gives much 

more accurate estimations compared to the method using a constant membrane 

resistance.  

The methods developed here have advantages and disadvantages compared to 

in vitro studies on engineered monolayers. One advantage is the greater control over 

tissue properties including cell shapes, orientations, and distributions of gap junctions. 

The models also allow the ability to monitor individual ionic currents or status of gating 

variables in the tissue, which is currently not possible experimentally. As a result, the 

computer model can be used to integrate experimental observations from the molecular 

to the organ level (Sampson and Henriquez 2005; Silva, Pan et al. 2009). However, the 

advantages of the model cannot be fully realized if they do not generate behavior that is 

consistent with that seen in tissues. Experimental studies, while challenging to set up, 

can provide data in real-time and thus are significantly faster than computer models. For 

example, simulating 1 msec activity in the domains described in Chapter 4 took about 7 

min on a single 2.2 GHz AMD opteron processor and this computational burden 

increases as the size of tissue increases. 

While the methods developed here were found to yield results that were 

consistent with more traditional methods, the methods still have drawbacks. First, the 

2D FEM requires significantly more computer memory when compared to the 

equivalent continuous model. The memory requirements limit the size of the tissue that 
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can be simulated in practice. It may be possible to only use the discrete cellular structure 

in regions where it matters. Thus methods will need to be developed to couple the 

discrete cellular domain with more traditional continuous models. The automatic 

discrete tissue generation method also requires more works to improve its flexibility. For 

example, the discrete features of the tissue cannot be changed in the middle of the 

domain. This would be useful as it is often a case that two or more different types of 

cells are cultured together in one tissue and these different types of cells have different 

shapes and orientations. Additionally when the cells orientations are more random, this 

method produces unintended small holes between cells because the cells were generated 

from a template cell. All these cases can be improved by using a more sophisticated cell 

placement method which finds empty space efficiently in the two dimensional space. 

One approach might be to use quad tree decomposition (Finkel and Bentley 1974). In the 

current method, a template cell is “pushed” in one direction until the template cell 

cannot move due to the tissue boundary or the other cells. This approach can make 

unintended holes depending on the arrangements of cells and the final location of the 

cell is undetermined until the “pushing” is completed. This makes it difficult to 

implement a method capable of generating a discrete tissue with variation in cell 

morphology by the location of the cell. The quad tree decomposition makes it possible to 

search for empty space in the tissue and the cell can be directly placed in this empty 

space. This would allow the ability to control the morphology of the cell location by 
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location. In addition, the quad tree decomposition can efficiently find holes in the tissue 

and these holes can be filled with small cells. Finally the effective tissue conductivity 

estimation method utilized planar electrodes to stimulate the tissue. The planar 

electrode is possible but may be difficult to implement experimentally. Thus the planar 

electrode might need to be replaced with experimentally more suitable electrode 

configurations and the method would need to be tested. 

While the methods can be improved and made faster, they nevertheless open the 

possibility of studying much more complicated scenarios that are associated with 

diseased conditions where cells are poorly coupled and the tissue is infiltrated with 

fibroblasts or nonfunctioning cells. The methods developed in this thesis will allow the 

ability to investigate the behavior of the discrete cellular networks in critical regimes. 

Because of the flexibility in creating cellular networks, the simulation can be compared 

directly to experimental studies using engineered monolayers. Once validated, the 

models can extended to adult architectures and incorporate the types of heterogeneity in 

diseased states for which it is not currently possible to develop engineered tissue. 

Ultimately these models will be used as a testbed to design new experiments to study 

the role of heterogeneity on arrhythmia and test novel approaches for reengineering the 

arrhythmogenic substrate either through novel cell therapies or new drugs. 
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Appendix A 

Finite element method implementation for monodomain model 

The monodomain model can be expressed in the following form. 

 −∇ ⋅ 𝜎𝜎𝑖𝑖∇𝜕𝜕 = 0        in 𝛺𝛺 (A.1)  

 −𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖∇𝜕𝜕 = 𝐼𝐼𝑚𝑚         on 𝛤𝛤 (A.2)  

𝜕𝜕 is membrane potential, 𝐼𝐼𝑚𝑚  is membrane current, 𝜎𝜎𝑖𝑖  is intracellular conductivity 

tensor, 𝛺𝛺 is an intracellular space, 𝛤𝛤 is a membrane of a cell and 𝑖𝑖 is a normal vector on 

the membrane, Γ. The membrane current 𝐼𝐼𝑚𝑚  is sum of capacitive, ionic and gap 

junctional current density, namely 

 𝐼𝐼𝑚𝑚 = 𝐼𝐼𝑐𝑐𝑎𝑎𝑐𝑐 + 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 (𝜕𝜕,𝒒𝒒) + 𝐼𝐼𝑔𝑔𝑎𝑎𝑐𝑐  (A.3)  

 𝐼𝐼𝑐𝑐𝑎𝑎𝑐𝑐 = 𝐶𝐶𝑚𝑚
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (A.4)  

 𝐼𝐼𝑔𝑔𝑎𝑎𝑐𝑐 = 𝑔𝑔𝑎𝑎 ,𝑏𝑏
𝑖𝑖 �𝜕𝜕𝑖𝑖 ,𝑎𝑎 − 𝜕𝜕𝑖𝑖 ,𝑏𝑏� (A.5)  

where 𝐼𝐼𝑐𝑐𝑎𝑎𝑐𝑐 , 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 , and 𝐼𝐼𝑔𝑔𝑎𝑎𝑐𝑐  are capacitive, ionic and gap junctional current density, 

respectively. The ionic current is usually expressed as a set of nonlinear differential 

equations, which are functions of membrane potential and state variables, 𝒒𝒒. The 𝑖𝑖𝜕𝜕ℎ  gap 

junctional current between cell 𝑎𝑎 and cell 𝑏𝑏 is a linear function of potential difference 

between two cells with gap coupling strength parameter 𝑔𝑔𝑎𝑎 ,𝑏𝑏
𝑖𝑖 . This gap junction current 

provides electrical coupling between cells in the tissue, which is similar to the biological 

counterpart. 
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In order to solver the equation (A.1) and (A.2) with FEM, multiplying a proper 

test function Ψ on both side of equation (A.1) and using integration by part yield 

following integral identity 

 � (∇Ψ)𝑇𝑇 ⋅ 𝜎𝜎𝑖𝑖∇𝜕𝜕𝑑𝑑𝑥𝑥
 

Ω
+ �𝐼𝐼𝑚𝑚Ψ𝑑𝑑𝜇𝜇 = 0

 

Γ
 (A.6)  

After proper discretization of the domain, the equation (A.6) can be written in 

the matrix-vector format. 

 0 = 𝐴𝐴 ⋅ 𝜕𝜕𝜕𝜕 + 𝐵𝐵 ⋅ 𝐼𝐼𝑚𝑚  

= 𝐴𝐴 ⋅ 𝜕𝜕𝜕𝜕 + 𝐵𝐵 ⋅ �𝐶𝐶𝑚𝑚
𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜕𝜕−1

∆𝜕𝜕
+ 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 (𝜕𝜕𝜕𝜕−1,𝒒𝒒) + 𝐺𝐺 ⋅ 𝜕𝜕𝜕𝜕−1� 

(A.7)  

where 𝐺𝐺 is a unsymmetrical matrix representing gap coupling strength and the location. 

In the matrix 𝐺𝐺, a linear interpolation of membrane potential at discretization nodes is 

used to get best estimate of the membrane potential at the gap junction when the 

location of gap junction and the discretization node do not match. Equation (A.7) uses a 

fully explicit method for the time step integration and it can be rewritten to use Crank-

Nicolson method (Keener and Bogar 1998). 

 0 =
1
2
𝐴𝐴 ⋅ (𝜕𝜕𝜕𝜕 + 𝜕𝜕𝜕𝜕−1) 

+𝐵𝐵 ⋅ �𝐶𝐶𝑚𝑚
𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜕𝜕−1

∆𝜕𝜕
+ 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 (𝜕𝜕𝜕𝜕−1,𝒒𝒒) +

1
2
𝐺𝐺 ⋅ (𝜕𝜕𝜕𝜕 + 𝜕𝜕𝜕𝜕−1)� 

(A.8)  

Rearranging the equation (A.8) gives the following equation. 
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 �
1
2
𝐴𝐴 +

𝐶𝐶𝑚𝑚
∆𝜕𝜕

𝐵𝐵 +
1
2
𝐵𝐵𝐺𝐺�𝜕𝜕𝜕𝜕

= −�
1
2
𝐴𝐴 −

𝐶𝐶𝑚𝑚
∆𝜕𝜕

𝐵𝐵 +
1
2
𝐵𝐵𝐺𝐺�𝜕𝜕𝜕𝜕−1 − 𝐵𝐵𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 (𝜕𝜕𝜕𝜕−1,𝒒𝒒) 

(A.9)  

At 𝜕𝜕 = 0, the initial membrane potential and state variable 𝒒𝒒 were plugged in the 

right hand side of the equation (A.9) and the equation (A.9) is solved to get membrane 

potential on the left hand side of the equation. This new membrane potential is plugged 

in the right hand side of the equation again and this process is repeated until the final 

computation time is reached.  

The equation (A.9) was used to implement both continuous and discrete tissue 

models. For the continuous tissue model, a single large cell was considered as a tissue 

and proper intracellular conductivities were assigned as the effective tissue 

conductivities. For the discrete tissue model, when a discrete tissue pattern was 

provided for the simulation, every pair of cells in this tissue was examined to find 

adjacent pair of cells. For each neighboring pair of cells, the cell-to-cell contact segment 

was defined as the cell boundary segment whose distance was closer than 1 𝜇𝜇𝑚𝑚 between 

the adjacent cells. The gap junction was assumed to exist uniformly on the cell-to-cell 

contact segment and the potential at the gap junction for the equation (A.5) was 

obtained by linear interpolation of the membrane potential at the nearest FEM nodes. In 

implementing the discrete tissue model, the ionic current was assumed not to flow 

through the lateral faces of the cell throughout the study. The discrete tissue model was 

compared to the continuous ones and the ionic current through the lateral face causes 
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discrepancy in the membrane surface area between the discrete model and the 

continuous model. This discrepancy can make the analysis unnecessary complicated.   
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Appendix B 

Optimization process 

In Chapter 3 and 4, a nonlinear system optimization was used to estimate model 

parameters. This optimization process can be described with the Figure A.1. In the first 

step, the optimization method provides trial values. These trial values were effective 

tissue conductivities in Chapter 3 and effective tissue conductivities with membrane 

resistance function parameters in Chapter 4. With these trial values as the model 

parameters, the tissue simulator simulates the subthreshold response of the tissue. The 

optimization method requires the creation of an error function that calculates the error 

between the “measured” data and the simulated data from the simulator. This function 

is usually defined as a squared sum of the difference between the measured data and the 

simulated data. In Chapter 3, this subthreshold response was delivered to the 

optimization error function without additional processing. In Chapter 4, the 

subthreshold response was spatially averaged to mimic the optical mapping. Based on 

the output of error function, the optimization method generates next trial values. This 

optimization process, in which a full simulation is performed at each step, continues 
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until the error is below some user-defined tolerance.

 

Figure A.1: The optimization process iterates an optimization method, 
simulator and error function until there is no more improvement in the error. 
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Differential evolution for global optimization 

The optimization method used in this thesis is the differential evolution (DE) 

algorithm, based on the work of Storn and Price (Storn and Price 1997). DE is a global 

optimization algorithm, using only a function value but not the derivative of the 

function.  DE is relatively easy to use because it only requires three parameters and has 

shown a good convergence over wide range of the problems (Storn and Price 1997). 

Additionally DE is easy to implement for parallel processing, making it suitable for 

computationally demanding problems.  

DE algorithm starts with 𝑁𝑁𝐴𝐴 D-dimensional parameter vectors 𝑥𝑥𝑖𝑖 ,𝐺𝐺 , 𝑖𝑖 = 1, 2, … ,𝑁𝑁𝐴𝐴 

while D is the dimensionality of the problem to be optimized. These 𝑁𝑁𝐴𝐴 vectors are 

initial candidates for the optimum solution and selected to cover the entire parameter 

space. At each generation, new target vectors are generated from the previous 

generation through mutation, crossover and selection. 

1) Mutation: For each target vector, a mutant vector 𝑣𝑣𝑖𝑖 ,𝐺𝐺+1 is generated by 

𝑣𝑣𝑖𝑖 ,𝐺𝐺+1 = 𝑥𝑥𝑟𝑟1,𝐺𝐺 + 𝜇𝜇 ⋅ �𝑥𝑥𝑟𝑟2,𝐺𝐺 − 𝑥𝑥𝑟𝑟3,𝐺𝐺�. The random index 𝑟𝑟1, 𝑟𝑟2, and  𝑟𝑟3 ∈

{1, 2, … , 𝑖𝑖 − 1, 𝑖𝑖 + 1, … ,𝑁𝑁𝐴𝐴} are randomly selected as mutually different 

integers. 𝜇𝜇 is a real number between 0 and 2 controlling the amplification of 

the differential vector (𝑥𝑥𝑟𝑟2,𝐺𝐺 − 𝑥𝑥𝑟𝑟3,𝐺𝐺). In our implementation, 𝜇𝜇 was randomly 

selected between 0.5 and 1 at every generation (Das, Konar et al. 2005). 
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2) Crossover: The trial vector 𝑢𝑢𝑖𝑖 ,𝐺𝐺+1 is generated from the target vector 𝑥𝑥𝑖𝑖 ,𝐺𝐺  

and the mutant vector 𝑣𝑣𝑖𝑖 ,𝐺𝐺+1 in the following form: 

 𝑢𝑢𝑖𝑖 ,𝐺𝐺+1 = �𝑢𝑢1𝑖𝑖 ,𝐺𝐺+1,𝑢𝑢2𝑖𝑖 ,𝐺𝐺+1, … ,𝑢𝑢𝐴𝐴𝑖𝑖 ,𝐺𝐺+1� (B.1)  

 𝑢𝑢𝑗𝑗𝑖𝑖 ,𝐺𝐺+1 = �
𝑥𝑥𝑗𝑗𝑖𝑖 ,𝐺𝐺   𝑖𝑖𝑓𝑓 (𝑟𝑟𝑎𝑎𝑖𝑖𝑑𝑑𝑖𝑖𝑚𝑚(𝑗𝑗) > 𝐶𝐶𝑅𝑅)    𝑎𝑎𝑖𝑖𝑑𝑑   𝑗𝑗 ≠ 𝑟𝑟𝑖𝑖𝑏𝑏𝑟𝑟(𝑖𝑖)
𝑣𝑣𝑗𝑗𝑖𝑖 ,𝐺𝐺    𝑖𝑖𝜕𝜕ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝜇𝜇𝑒𝑒                                                          

� 

   𝑗𝑗 = 1,2, … ,𝐴𝐴 

𝑟𝑟𝑎𝑎𝑖𝑖𝑑𝑑𝑖𝑖𝑚𝑚(𝑗𝑗) is uniform random number between 0 and 1 for  

𝑗𝑗𝜕𝜕ℎ  parameter in the 𝑖𝑖𝜕𝜕ℎ  vector. 𝑟𝑟𝑖𝑖𝑏𝑏𝑟𝑟(𝑖𝑖) is a randomly selected 

index between 1 and D. 𝑟𝑟𝑖𝑖𝑏𝑏𝑟𝑟(𝑖𝑖) guarantees that the trial 

vector 𝑢𝑢𝑖𝑖 ,𝐺𝐺+1 gets at least one parameter from 𝑣𝑣𝑖𝑖 ,𝐺𝐺+1. 𝐶𝐶𝑅𝑅 is the 

crossover constant selected between 0 and 1. 𝐶𝐶𝑅𝑅 was 0.9 in 

our implementation. 

(B.2)  

3) Selection: The trial vector 𝑢𝑢𝑖𝑖 ,𝐺𝐺+1 and the target vector 𝑥𝑥𝑖𝑖 ,𝐺𝐺  are compared 

and the vector producing a smaller cost function value becomes the target 

vector 𝑥𝑥𝑖𝑖 ,𝐺𝐺+1. 

The mutation, crossover, and selection step is repeated for a few hundred generations to 

achieve minimum in the cost function. In our implementation, the number of population 

𝑁𝑁𝐴𝐴 was 12, the amplification factor 𝜇𝜇 was selected between 0.5 and 1 at each generation 

(Das, Konar et al. 2005), and the crossover rate 𝐶𝐶𝑅𝑅 was 0.9. The algorithm was 

implemented in parallel by using MPI in C. 
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