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Abstract

Cellular dynamics arise from intricate interactions among diverse components, such
as metabolites, RNAs, and proteins. An in-depth understanding of these interactions
requires an integrated approach to the investigation of biological systems. This task can
benefit from a combination of mathematical modeling and experimental validations,
which is becoming increasingly indispensable for basic and applied biological research.

Utilizing a combination of modeling and experimentation, we investigate
mammalian cell cycle entry. We begin our investigation by making predictions with a
mathematical model, which is constructed based on the current knowledge of biology.
To test these predictions, we develop experimental platforms for validations, which in
turn can be used to further refine the model. Such iteration of model predictions and
experimental validations has allowed us to gain an in-depth understanding of the cell
cycle entry dynamics.

In this dissertation, we have focused on the Myc-Rb-E2F signaling pathway and its
associated pathways, dysregulation of which is associated with virtually all cancers. Our
analyses of these signaling pathways provide insights into three questions in biology: 1)
regulation of the restriction point (R-point) in cell cycle entry, 2) regulation of the
temporal dynamics in cell cycle entry, and 3) post-translational regulation of Myc by its

upstream signaling pathways. The well-studied pathways can serve as a foundation for
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perturbations and tight control of cell cycle entry dynamics, which may be useful in
developing cancer therapeutics.

We conclude by demonstrating how a combination of mathematical modeling and
experimental validations provide mechanistic insights into the regulatory networks in

cell cycle entry.



To mom, dad, my sister and her family

In loving memory of my brother in heaven...
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respectively). B) Increase in Kr for increasing strength of the positive-feedback was
predicted for all input strengths. C) Decrease in Tor for increasing strength of the
positive feedback was predicted at all input strengths. ...........ccccooviiiniinniin. 108

Figure 4.13: Predicted modulation of the temporal dynamics of E2F activation. Temporal
dynamics of E2F activation were simulated at varying input strengths (weak = 5=0.5,
intermediate - S =1, and strong > S =5) and varying CycE-mediated positive feedback
strengths (strong—> kes= 18 and weak > krs=9). With strong positive feedback (PFB),
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bimodality was predicted for weak input while monomodality (E2F ON) was predicted
for intermediate and strong stimulations. With weak positive feedback, however, the
percentage of E2F activation was predicted to decrease for weak and intermediate input
strengths. For strong input, however, the effect of the positive feedback strength was

Figure 4.14: Fraction of activated E2F in a cell population under varying inhibitor drug
strength and serum concentrations. E2F activity was measured at the steady-state in
response to varying concentrations of the Cdk2 inhibitor and serum. The fluorescence
level was quantified by flow cytometry. For each serum and inhibitor drug condition,
the fraction of cells athigh E2F mode was determined at 24" hour. For each serum
concentration, increasing drug dose led to a decreasing fraction of cells at high E2F
INOTE. ..o 111

Figure 4.15: Temporal dynamics of E2F activation under drug treatment. A) The
temporal dynamics of E2F activation is altered when CycE-mediated positive feedback
is weakened. At 2% serum, we applied Cdk2 inhibitor III at 2uM (blue curve) and
monitored the effect on E2F activation over time by flow cytometry. Compared to the
case without drug (red curve), the transition rate decreased from 0.06+0.013 to
0.022+0.0091 hr' and the time delay increased from 4.7+2.8 to 8.7+1.2 hours. B) Targeting
the CycE-mediated positive feedback modulates the transition rate. For a given drug
dose, time-courses of cell populations treated with varying serum concentrations were
obtained and the transition rate was calculated for each serum condition. The transition
rate increased with serum concentration in the presence or absence of the inhibitor drug.
With the addition of the inhibitor drug, the transition rate decreased for all serum
concentrations. C) Time delay decreases with increasing concentration in the presence or
absence of the drug. D-E) transition rate and time delay for an independent set of
experiments in the presence (blue line) and absence (red line) of the Ckd2 inhibitor drug.

Figure 4.16: Experimentally measured E2F time courses for varying serum
concentrations, in the absence or presence of Cdk2 inhibitor (at 3uM). At 0 hour REF52-
d2GFP cells were synchronized in quiescence by serum-starvation (24 hours at 0.02%
serum), stimulated with varying serum concentrations (with or without Cdk2 inhibitor),
and measured for GFP by flow cytometry at the indicated time points...........cccoco........ 113

Figure 4.17: Mapping the stochastic dynamics of E2F activation with the GC model.
Simulation results from the stochastic Rb-E2F model are fitted with the GC model with
two parameters (adapted from the G-rate model [231]), which is defined as
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T =1/X, where X ~ N(r,06) . ris the mean growth rate over the entire cell population
(A) and o is the standard deviation of the growth rate (B). The two parameters of the GC
model were estimated by assuming that X is a random variable from an inverse-gamma
distribution. The standard errors of these estimated parameters were approximated with
Monte-Carlo standard deviation. Our simulations predicted increasing growth rate for
increasing input strengths and positive feedback strengths (krs=9, 14, and 18 for blue,
black, and red lines, respectively). No significant change in the variance was predicted.

Figure 4.18: Variability in the initial conditions vs. in the rates of the chemical reactions.
The effects of variability in the initial conditions and in the rates of the chemical
reactions were evaluated on the temporal dynamics of E2F activation. With all else the
same, our simulation results predicted that transition rate (A) and time delay (B) would
decrease significantly with increasing w. To describe variability in the initial conditions,
we assumed that the initial concentrations were Gaussian-distributed with the mean
being their base value and varying variance values. At a fixed extrinsic noise amplitude,
our simulation results predicted that transition rate (C) and time delay (D) would
decrease slightly with increasing variance of the initial conditions. Overall, the activation
dynamics of E2F is much more sensitive to changes in extrinsic variability than those in
the initial CONAItION. ...cvovviicicic e 119

Figure 5.1: Myc’s role in coordination of cell growth and proliferation by relaying signals
from Ras (adapted from [147]). ... 124

Figure 5.2: Post-translational of Myc by the two arms of Ras signaling. Stimulation with
growth factors (GF) leads to activation of Ras and Myc synthesis. Active Ras induces
activation of its downstream effector pathways: the MAPK and PI3K pathways. While
the synthesized Myc is unstable with short half-life, its stability can be significantly
increased via the Ras effector pathways. Active Ras induces Erk that stabilizes Myc by
phosphorylation at Ser62. PI3K activation blocks Myc degradation by inhibiting
phosphorylation at Thr58 by Gsk3p. As Ras activity declines, Gsk3p initiates
phosphorylation of Myc at Thr58 and triggers degradation. Phosphorylation at Thr58
requires prior phosphorylation at Ser62, and phosphorylation at Thr58 induces
dephosphorylation at SEI62...........cceiiiviiiiiiiniiiiiicc e 128

Figure 5.3: Detailed reaction diagram for Myc protein stabilization...........c.cccccovevvnnee. 133
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Figure 5.4: Myc protein stabilization. Activation patterns of Erk and PI3K determine Myc
stability pattern. The three forms of Myc are plotted independently. The unmodified
Myc (blue line) and Myc™™8 (green line) accumulate only to a limited level, but
stabilized MycS]evel increases via phosphorylation (red line). The total Myc level is
the sum of the three forms of Myc (black line) and its dynamics are highly correlated
with input signals, Erk and PI3K. We define the shaded area under the Myc curve as
‘potency’, a measure of Myc accumulation. ...........ccccccvvviiiiniiiinniniiiiie 141

Figure 5.5: Modeling a phosphorylation-dephosphorylation cycle. An enzymatic
modification cycle of Gsk3 between phosphorylated and dephosphorylated states (A)
is mathematically modeled (B). k and kcr are rate constants for phosphorylation and
dephosphorylation, and K is the Michaelis-Menten constant. Protein conversion is
ultrasensitive near y=1, for a sufficiently small Michaelis-Menten constant. The
sensitivity becomes weaker as K is increased. Time-course simulation results at varying
a values show the dependence of conversion on the rates of phosphorylation and
dephosphorylation (C). Protein conversion becomes ultrasensitive near =1 for a
sufficiently small Michaelis-Menten constant, while the sensitivity becomes weaker as K
IS INCTEASE. .....vviiiiiit s 145

Figure 5.6: The overall ultrasensitivity arises from the input/output response in each
level and across different levels down the cascade. (A) The Akt Ph-dePh cycle (in
response to PI3K) can be either graded (red line) or ultrasensitive (blue line) depending
on the Michaelis-Menten constants. (B) Both types of PI3K-Akt responses can lead to
ultrasensitive PI3K-Gsk3p responses (both red and blue), if the Akt-Gsk3p response
remains ultrasensitive. (C) If Akt-Gsk3p response is not ultrasensitive, the overall PI3K-
Gsk3p remains ultrasensitive if PI3K-Akt response is ultrasensitive, but may lose
ultrasensitivity if PI3K-Akt response is not ultrasensitive. Note that here we have
assumed that the output from the first step (Aktr) has an appropriate dynamic range
that “matches” the input of the second step. The dependence of the overall sensitivity of
the PIBK-Gsk3p response will likely be much more complex if this matching condition is
NOt SAtISHIO. ... 147

Figure 5.7: Erk and PI3K signal patterns determine Myc temporal behaviors. For all
analyses, black lines represent the base case. A) The Erk signal was represented with the
following parameters: duration (Dure), maximal Erk amplitude (Erkwmax), and residual
Erk level (Erkr). B) The PI3K signal was represented with the following parameters:
duration (Durr), maximal PI3K amplitude (PI3Kwmax), residual PI3K level (PI3Kr), and the
time interval between the two peaks of PI3K (IPr). The first peak of the PI3K was not
considered, since its variations did not have a big impact. C) Myc accumulation was
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insensitive to Erkmax. Fivefold increase in Erkwmax resulted in little change in Myc (red line)
in comparison to the base case (black line), whereas fivefold decrease in Erkmax resulted
in light reduction in the main peak of Myc (blue line). D) Doubling (red line) or halving
(blue line) Dure leads to significant change in the initial peak of Myc accumulation. E)
Myc was sensitive to Erkr. The base value of Erkr was 10 percent of Erkwmax (black line). A
small increase in Erkr (20% of Erkmax) resulted in excessive Myc accumulation (red line).
When Erk was completely removed (Erkr=0), Myc responded only to the initial,
transient Erk pulse and became unresponsive to the PI3K signal (blue line). F) Myc
accumulation was insensitive to PI3Kwax. Fivefold increase (red line) or decrease (blue
line) in PI3Kwmax resulted in little change in Myc accumulation. G) The 24 PI3K peak
determined generation and maintenance of Myc hump. Doubling (red line) or halving
(blue line) the duration of the second PI3K peak led to approximately twofold change in
the Myc hump duration. Increasing IPr from 3 hours to 8 hours delayed the timing of the
second rise in Myc accumulation (red dotted line). H) A slight increase (20% of PI3Kwmax)
in PI3Kr from the base value (10% of PI3Kwmax) resulted in excessive Myc accumulation
(red line). However, complete removal of PI3Kr did not change Myc accumulation
significantly (blue line overlapping with black line). .........cccccoeiiinniiinniiicceee 152

Figure 5.8: Impact of varying PI3K inputs on Myc accumulation. (A) A single peak of
Myc is predicted if the second round of PI3K activity is removed. These results in
reduced Myc accumulation compared to the wild-type. (B) Increased inter-peak time
delay of PI3K (from 3 to 8 hours) results in wider separation between the two peaks of
Myc, and the resulting Myc accumulation is less than the wild-type.......c.cccooeoennnnn. 155

Figure 5.9: Dual-kinase module as a signal integrator. A) The dual-kinase mechanism. S:
and S: determine gain and loss of X stability by sequential phosphorylation, which in
turn control the total amount of the target protein (xr=x + xr + xrr). k1 and k: are the rate

constants for phosphorylation by S1 and S2, respectively. dy and d x, are degradation

rate constants of the unstable (X or X;») and stable (X;) forms of X. B) Given sufficiently
strong input signals S1 and Sz, the dual kinase mechanism integrates upstream activating
signal S1 to turn on, and deactivating signal Sz to turn off. The time delay between the
two signals controls the duration of activation. .............cceeeeiccicci, 158

Figure 5.10: System sensitivity to input signal perturbations. A) At a given synthesis rate
constant (x=10), the maximal activated level of X at the steady-state (Xss) can be

modulated by a. For small or large a, sensitivity (defined as In X / Inar) was minimal,

while it was the greatest at intermediate a values. We assumed 0 for 8 to allow
decoupling of activation from deactivation. B) Deactivation from the high state
depended on § at a givenk. The system was initially driven to its high state by assuming
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a large a (10000). Sensitivity was minimal for small or large 5, and was the greatest at
intermediate f values. ... 161

Figure 5.11: Dynamic range of output activation and deactivation. A) The dynamic range
for activation was 1 because: Xss = x/1 as a 2 0; Xss = K as a=>0. For a given 1, we define
a critical value ac that corresponds to an Xss = 95% of the maximal value. If a> ac,
fluctuations in Xss due to fluctuations in & would be smaller than 5%. Here we consider
system activation in this parameter range as effectively noise-resistant. Similar to
analyses in Figure 5.10, we assumed 0 for fand a large value (10000) for o, which
allowed analyzing dynamic range for activation and deactivation independently. B)
Given a sufficiently large ¢, the dynamic range for system deactivation was also n
because: Xss = kas f 2 0; Xss= &/1 as p >oo. For a given 1, we define a critical value fc
that corresponds to Xss within 5% of its minimal value. Similar to (A), we consider
system deactivation to be effectively noise-resistant for f>pc. C) ac increased with n
almost linearly. D) Bc increased with 1 almost linearly...........cccocooeeeiniiiine, 162

Figure 5.12: Erk “primes” Myc activity, and PI3K ‘fine-tunes” Myc accumulation level.
With the PI3K signal fixed, different residual Erk level leads to differential Myc
accumulation by the second PI3K activity. The base value of the residual Erk level
(ErkR) was 10 percent of maximal Erk level (black line). For increased level of ErkR
(20%), the second PI3K activity increased Myc accumulation level significantly (red line).
When ErkR was completely removed, Myc became unresponsive to the PI3K signal
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Figure A.1: Temporal dynamics of bacterial adherence/internalization after a pulsatile
input of bacteria. HeLa cells were co-incubated with bacteria (grown overnight and
diluted in DMEM) at high MOI (=2000) in the absence (A) and presence (B) of
gentamicin. The mixture was co-incubated in DMEM with 10 % bovine growth serum
(BGS) for 1 hour, and we removed bacteria in suspension by washing with PBS 3 times.
The cells were replenished with fresh DMEM with 10% BGS and the antibiotic treatment
condition was maintained as before. At various time points after washing, we assayed
the cells for their bacterial uptake with flow cytometry. In the absence of gentamicin, the
mean GFP signals became stronger over time, suggesting bacterial growth in the host
cells either on the surface or inside of the host cells. In contrast, we observed minor
decrease in the GFP signals strength in the presence of gentamicin, suggesting
degradation of the bacterium by the host cells or by the antibiotics. .........cccccoeueueunnneeee. 181
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Figure A.2: Bimodal bacterial attachment. A) A microscope image of engineered bacteria
attaching to HeLa cells. Bacteria were co-incubated with HeLa cells in a 6-well plate in
the presence of gentamicin at 50 multiplicities of infection (MOI). After 2 hours of co-
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times. The uptaken bacteria were visualized with a inverted microscope. B) Bimodal
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plate were trypsized and their gfp signals were analyzed with flow cytometry. At
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distribution becomes monomodal at the high mode (MOI=1000). The low mode
represents absence of bacterial attachment or internalization, and the high mode
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HeLa cells grown in DMEM supplemented with 10% BGS were infected with BL21DES
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Chapter 1: Introduction — A primer to modeling cellular
networks

In Chapter 1, we present methodologies on modeling, simulation and analysis of
cellular networks. We note that different types of mathematical models are widely used.
Here we limit our scope to kinetic models, which represent systems of interest as
coupled chemical reactions. By so doing, we steer away from discussing other widely
used mathematical models, such as Boolean models, and those focusing on spatial
dynamics. This chapter is reproduced by permission from the 6t chapter of Systems
Bioinformatics: An Engineering Case-Based Approach, Norwood, MA: Artech House, Inc.,

20077[1].

1.1 Introduction

Systems-level understanding of cellular dynamics is important for identifying
biological principles and may serve as a critical foundation for developing therapeutic
strategies. To date, numerous developments of therapeutics have been based on
identification and comprehensive analysis of cellular dynamics, especially in the
involved pathways. In cancer therapy, for instance, many researchers have focused on
oncogenic pathways such as the Rb pathway, whose in-depth understanding of the
pathway dynamics promises effective therapeutics [1,2,3,4,5,6,7]. The effectiveness of

this approach in the development of cancer therapeutics has been illustrated in in-vivo



pre-clinical tests of the engineered adenovirus ONYX-015 and ONYX-411. These
adenoviruses, engineered to target mutations in the Rb or p53 pathway for killing, have
demonstrated high selectivity and efficiency in viral replication in tumor cells for cell
killing [2,3]. However, clinical application of these methods is hindered by lack of ability
to precisely predict and regulate cellular responses. This ability is essential in
minimizing complications and side-effects. Especially, a large amount of biology data on
these pathways generated by rapid advancements in biotechnologies and molecular
biology renders integrated understanding of the pathway dynamics impossible by
intuition alone. Therefore, a more systematic approach allowing incorporation of the
multitude of information is necessary to improve prediction and regulation of cellular
responses.

To this end, mathematical modeling is becoming increasingly indispensable for
basic and applied biological research. Essentially, a mathematical model is a systematic
representation of biological systems, whose analysis can confer quantitative predicting
power. In recent years, advanced computing power combined with improved numerical
methods has made it possible to simulate and analyze dynamics of complex cellular
networks [4,5,6,7,8,9,10,11,12].

Mathematical modeling is useful in a number of ways. One of the common
applications of mathematical modeling is to analyze cellular networks systematically.

For example, although the mitogen-activated protein kinase (MAPK) was known to



control multiple cellular responses such as cell growth, survival, or differentiation, the
molecular mechanisms for these divergent behaviors were not fully elucidated.
Consequently, several models on the MAPK pathway have been developed that
differentiates activation patterns in response to epidermal growth factors and neural
growth factors [13], characterizes the signal-response relationship [14,15], and suggests
the significance of feedback control in complete signal adaptation [16]. A more extensive
modeling work investigates the emergent properties that arise from multiple signaling
pathways [17]. These works illustrate the utility of mathematical modeling in
understanding complex biological systems that intuition alone cannot handle.

Another use of mathematical modeling has been demonstrated in devising
strategies to control cellular dynamics. The concentrations of MAPK phosphatase have
been shown to play a key role in whether the MAPK pathway demonstrates monostable
or bistable states [15]. Sasagawa and colleagues use their MAPK model to identify
‘critical nodes’, to which perturbations result in dramatic changes in system behaviors
[13],. A number of critical nodes that are responsible for diverse cellular actions have
also been suggested in the insulin-signaling pathways based on biochemical and
computational data [18]. Such characterization of input-output response or identification
of critical nodes can be utilized to effectively modulate cellular dynamics.

Furthermore, modeling can form a basis for the development of therapeutics for

medical applications. Various pathway models including the MAPK models described



above can be useful in designing, or evaluating the effectiveness of, therapeutic drugs in-
silico [13,14,15,16,17]. The predictive power and therapeutics design principles that these
models offer can facilitate development of therapeutics [19,20,21]. Stemming from these
studies on the MAPK signaling pathways, Kitano and colleagues have developed an
EGFR Pathway Map in a software that is shared and compatible with other simulation
and analysis packages [22]. Such efforts to avail and share information on biological
pathways among researchers exemplify inclination towards understanding of biology
via mathematical modeling.

Despite advantages of mathematical modeling for basic and applied biological
research, there remain many challenges in constructing and analyzing models. Modeling
of biological systems is always accompanied by assumptions, which are predicated on
the modeler’s goals. Therefore, a successful modeling work requires clear justification of
these assumptions. Even with clear, justified goals, a modeler is faced with another
challenge, lack of detailed, quantitative biological information. While biotechnologies
continue to advance our knowledge on the building blocks of biological systems,
parameters for the kinetics of interactions among them are often unknown. Various
methodologies for inferring reaction mechanisms and parameters have been proposed
[23,24,25,26,27,28,29]. Yet high-throughput biological data, generated by microarray
experiments or protein expression profiling, are often not of sufficiently high resolution

for using these techniques. To address these issues, a combination of mathematical



modeling and experimental validations are required. Iterations of model construction,
system analysis, and experimental validation improve accuracy of the model, and lead
to increased predictive power. In particular, the power to quantify gene expression with
high temporal resolution at the population level or single cell level will likely
complement high-throughput technologies in facilitating inference of reaction

mechanisms and parameter [30,31,32,33,34,35,36].

1.2 Construction and Analysis of Kinetic Models

Construction of a kinetic model can be a daunting task for a system consisting of a
large number of components with complex interactions. To build an experimentally
tractable model, it is important to define the scope of abstraction. Once the scope is
defined, a conventional approach begins with a minimal diagram that includes key
components and interactions among them. Identification of the key components and
interactions is based on the current knowledge of biology and frequently on intuition
and experience. Depending on the focus of study, a modeler may choose to emphasize
certain signaling pathways while de-emphasizing less relevant ones. These processes
often accompany ‘lumping’ or deletion of molecular interactions or components. Once
the diagram is completed, a minimal mathematical model is constructed from the

information embedded in the diagram and is further refined or extended to reflect new



hypotheses or experimental measurements. Simulation of the final model reveals the

network dynamics, which in turn gives insights into the intrinsic design principles.

1.2.1 Parameter Estimation and Modeling Resources

A major challenge in model formulation is determination of reaction mechanisms
and estimation of parameters. In some systems, the network behaviors are defined
mostly by the architecture of the system. These systems are highly robust to a wide
range of parameters. In others, system dynamics are determined not only by the
architecture, but also the parameters, which are often poorly understood. Therefore,
construction of a meaningful mathematical model of a biological pathway requires two
critical elements: interactions between molecular species and kinetics of the interactions

As the first step, we need to know the interactions between the molecular species in
the model. Several pathway databases are available for this purpose: EcoCyc [37], Kegg

[38], ERGO [39], aMAZE [40], ExPASy [41], www.sbml.org, STKE (Sci) and Nature:

Signaling update. The pathways included in these databases are retrieved and
constructed from specialized databases such as GenBank, PDB and EMBL. These
pathway databases often provide detailed information on the molecular species. Next,
we need to determine the kinetics of the interactions. In most cases, kinetic parameters

are obtained from the literature data. Alternatively, we can also use kinetic parameters



from typical values, which can be based on values inferred from related process or even
the experience of the modeler.

For every biological system, model construction usually goes through common
process of iterations of model construction, experimental validation, and model
refinement (in terms of reaction mechanisms or parameter values) (Figure 1. 1). These
steps will be repeated until the mathematical model matches the experimental data to a
satisfactory degree. This process can be considered as a special case of “reverse
engineering” biological pathways. Additional methods, such as Bayesian [42], maximum
likelihood [29], and genetic algorithms [26] can be used to infer more qualitative

connectivity of biological networks from high-throughput experimental data.

Mathematical
mode]

Validation | Experiments

Figure 1. 1: Refining models of biological networks. Iteration of model construction
and experiments enable parameter and kinetic estimation and model refinement. The
experimental data can be matched to the model with various computation methods.
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1.2.2 A Modular Approach to Model Formulation

Modeling and analysis of complex biological systems may benefit from a modular
approach, in which a biological system is considered as a combination of smaller
subnetworks with well-recognizable functions, termed as motifs and modules [43,44].
The distinction between motifs and modules is often based on the size difference but is
not always clear-cut. We here use the two terms interchangeably. That is, we consider all
small, repeated, and conserved regulatory subnetworks as “‘modules’, classifiable on the
basis of function, architecture, dynamics, and biochemical process. Such
conceptualization may provide insight into the qualitative network dynamics at the
systems-level, and it helps clarify the modeling objective and generation of qualitative
hypotheses. In addition, it also forms the basis for incorporating mathematical

equations, with which more quantitative understanding can be attempted.



Table 1.1: Well-defined feedback modules involving negative, positive, or both types
of regulation.
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The dynamics of a module are governed by both network connectivity and
associated parameter values. In general, increasing complexity in either variables or
connectivity will result in more complex dynamics, and modules with feedback control
may show properties that are difficult to grasp by intuition alone. Structures and
properties of some well-defined feedback control modules are tabulated in Table 1.1,
where we have summarized their key properties. For example, a module with one
variable demonstrates either mono-stable or bistable properties with negative or positive
feedback control, respectively, but it is impossible to generate oscillations with a single
variable in the absence of time delay. Mono-stable, bi-stable, or oscillatory behaviors can
be generated with a two-variable module, but not chaos. Modules with higher number
of variables can demonstrate much richer dynamics such as chaos (Table 1.1) [43,45,46].

Various feedback control mechanisms confer properties useful for different
biological functions. For example, negative feedback control is essential in homeostasis,
a process of maintaining the system’s internal environment in a steady state. Without
feedback control, sudden external changes such as those in temperature or salinity may
induce significant internal damages that can be fatal to a cell. Negative feedback control
can buffer the impact of such changes and facilitate homeostasis [47]. In attempts to
engineer gene circuits, this property has been used to reduce variations in gene
expression [48]. In addition, negative feedback may increase the response speed of

simple gene cascades [49].
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Positive feedback can create bistable behaviors. The synthetic biology approach has
been used to develop bistable switches whose overall molecular mechanism is based on
autocatalysis of a single gene [50,51]. These networks may be considered as synthetic
models of their natural counterparts, such as signaling network controlling cell cycle
regulation [52,53] and regulation of the lac operon [54]. Bistable switches can also be
realized in a positive feedback system by combining negative regulations. A recent
study on a synthetic ‘toggle” switch, a two-component module in which two
transcriptional repressors negatively regulate each other, is shown to achieve bi-stable
switching behaviors [55]. A combination of negative or positive regulation between two
or more components can give rise to oscillations. This was theoretically or
experimentally characterized in Escherichia coli [56,57,58,59].

In addition to mono-stable, bi-stable, or oscillatory modules, network architectures
with other connectivity have also been identified, and their properties and biological
significance have been characterized [43,46,60,61]. Importantly, these modules often
maintain similar function across different species. For example, oscillator modules are
the molecular mechanisms that underlie molecular, physiological and behavioral
rhythms [62,63] or pattern formations [64], and bistability modules may govern the cell’s
entry into the cell cycle and be responsible for controlling cell differentiation
[52,65,66,67,68]. Thus, thorough analysis of a module in one context can provide insight

into its functional roles under a wide spectrum of conditions.
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1.2.3 Basic Kinetics

In kinetic modeling, a biological system is considered as a series of chemical
reactions, whose kinetics can be described by rate expressions. The system is often
composed of multiple reactions, which occur through direct interactions among
reactants. If these interactions are elementary reactions, their rates can be modeled
following the mass action law. That is, the reaction rate is proportional to the product of
reactant concentrations. However, most biological models are frequently formulated as
consisting of more complex reaction mechanisms. One important class is enzyme
catalyzed reactions, which are critical for live systems where virtually all reactions are
too slow to support life without enzymes. The enzymes provide a way to regulate
reactions at appropriate rates and conditions.

A commonly used reaction model for enzymatic reactions is the Michaelis-Menten
equation. In this reaction mechanism, one assumes that the enzyme is not consumed and
the total concentration of enzyme stays constant. It only interacts directly with the
substrate to form an enzyme-substrate complex, which leads to the synthesis of the

product:
E+S—ES — X ,E+P
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Assuming that the intermediate (ES) is at the quasi-steady-state and the substrate is in

excess, we can derive the Michaelis-Menten equation:

dP V., [S]
dt K, +[S]

where Vi is the maximal reaction rate (K,[E;,, 1) and Ku is the Michaelis-Menten

Kk, +k
constant, ((+f2) ).

Another recurring scheme in modeling cellular networks is the representation of
gene expression. Expression of a single gene involves two basic steps: transcription and
translation. This simplistic view of gene regulation starts with transcription, where the
RNA polymerase binds the promoter of a gene to result in mRNA synthesis. The mRNA
that carries coded information binds with ribosome, and the coded information is

translated into protein (Figure 1.2A).
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Figure 1.2: Modeling gene regulation. A simplified view of gene regulation is shown in
(A). Initiation of the mRNA synthesis can be triggered by either transcription activation
(B) or transcription repression (C), which can be mathematically represented with
Michaelis-Menten type of kinetics.
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In real systems, gene expression can be regulated at multiple layers involving
interactions among inducers, repressors, and operator sites. The interactions of these
components lead to two general categories of transcriptional regulations: activation and
repression. When an activator binds to the operator site, this complex leads to
recruitment of RNA polymerase (RNAP) and synthesis of mRNA (Figure 1.2B). In
contrast, binding of a repressor will prevent initiation of transcription by blocking the
RNAP. In the absence of cooperative interactions, such as dimerization and synergistic
binding of transcription regulators to promoters, both types of regulation can be
mathematically described by using Michaelis-Menten type of kinetics (Figure 1.2B & C).

If the transcription regulator acts as a dimer or multimer, and/or if it binds
synergistically to multiple operator sites, transcription regulation can by modeled by

higher-order expressions, such as the commonly used Hill kinetics:

d_P_ Vmax[s]n
dt Ky, +[S]"

where 7 is called the Hill coefficient. For n=1, Hill kinetics is the same as the Michaelis-
Menten kinetics. However, for the response curve that has a different slope from what is
predicted by Michaelis-Menten kinetics, n can be adjusted to fit the Hill kinetics curve.

Detailed treatment of this can be found in [69]
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1.2.4 Deterministic Models

By treating each interaction as a chemical reaction, one can account for the
production and depletion of each species by using an ordinary differential equation. A
coupled system of ODEs that describes the dynamics of all elements in the network
constitutes an integrated kinetic model. The general form of ODE systems can be written

as:

dx
d—tlz fL(X Xys Xy oo s X)-
dx,

it =F.(X5 X35 X5, eee s X))

where x1, x2, ... xn represent levels of different interacting species, and fi, f2, ... fu
represent their corresponding rate expressions.

This representation often implies that the system dynamics occur in a well-
stirred reactor in which bulk concentrations of the components are considered. Except
for simple systems, an ODE-based kinetic model is often solved numerically using
established methods [70,71,72,73]. Given the same parameter values, initial conditions,
and simulation settings (e.g. error tolerance), different rounds of simulations will
generate exactly the same temporal dynamics for each individual component. As such,

an ODE model is also called a “deterministic’ model. To assist in computational
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modeling research, a wide range of computational methods and tools have been

developed for ODE systems [5,74,75,76,77,78,79]

1.2.5 Cellular Noise and Stochastic Methods

ODE-based models are widely used to model dynamics of both natural and
synthetic biological networks. For example, deterministic simulations predicted that a
synthetic gene circuit of transcriptional repressors would cause sustained oscillations in
gene expression [57]. Aspects of these predictions were verified in experiments where
individual cells carrying the circuit displayed oscillatory behavior. However, the real
system dynamics were quite stochastic when compared to simulation results from an
ODE model. Specifically, oscillations in the repressilator occurred in only ~40% of
individual cell lineages and were often out of phase with each other.

Such stochastic behavior is partially due to the intrinsically stochastic
biochemical reactions among small numbers of molecules. These fluctuations in gene
expression are often termed “noise” [80,81]. In general, sources of noise include
fluctuations in cellular components [33], transmitted noise from upstream genes [35],
and other cellular processes un-accounted for by the model. Recently, the origin and
propagation of noise in gene expression have been of central interest in many

experimental studies [32,36,82,83,84,85,86].
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Presence of cellular noise presents both a challenge and an opportunity for
cellular function. On one hand, reliable function in the presence of noise requires
strategies that reduce impact of noise [87,88]. For instance, one such mechanism that
regulates noise is negative feedback where the output from a system reduces its own
output. In a biological context, this occurs when a protein inhibits its own expression by
binding to its promoter. This mechanism has been shown to reduce noise in gene
expression [48,89]. On the other, noise may be beneficial by serving as a source for
generating phenotypic diversity [88,90], which can facilitate adaptation to changing
environments or trigger cell differentiation [91].

Because of the important implications of noise for both natural and synthetic
cellular networks, it is often useful to model stochastic dynamics. For a well-stirred,
spatially homogeneous system, its stochastic temporal dynamics can be captured by a

generic chemical master equation (CME) [92]:

oP(X,t|X,,t,) & o o o o~ o e~
TH:J_Z::,&](X _Vj)x P(X —-V;,t | XO’tO)_aj(X)X P(X,t]X,,t,)

The first term of the equation describes probability of a species reacting at time t,
while the second term describes the probability of a species remaining in its current
state. x is a vector containing number of molecules for each species. P(x,t) gives the

probability of the system in state x at time ¢. aj is the propensity value of reaction j. vjis a
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vector containing the changes in state x caused by reaction j. xo and to is the initial state
and time respectively.

One can solve the CME analytically only for very simple systems. As the system
size increases beyond a few reactions, the analytical solution of the CME becomes
intractable. When the number of reactions and the number of molecules increases, the
number of possible paths increases exponentially. Gillespie proposed a simple algorithm
to solve the CME numerically using a Monte-Carlo method [93]. In this formulation,
each reaction is assumed to be an elementary reaction, where collisions between reactant
molecules directly lead to formation of products. The probability that a reaction happens
is dependent on its reaction propensity (Table 1.2), which is analogous to a rate

expression in ODE-based models.

Table 1.2: Reaction propensity for stochastic methods

Reaction Propensity
A->B c*xa
A+B>C Cc*xa*xs
2A->B c*xa*(xa-1)/2

The reaction propensity describes the probability of one molecule colliding with

another molecule, which leads to firing of a chemical reaction. Note that the reaction
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propensity for dimerization reactions is equal to c*xa*(xa-1)/2 rather than c*xa*xabecause
a molecule cannot react with itself. This presents a consistent interpretation of stochastic
rate constants. Stochastic rate constants are normally calculated from conventional rate
constants [93]. Given the reaction propensity, we can now define the state of a species at
time t. In order to follow the evolution of the states through time, we have to calculate
which reaction (p) is firing at time t and how much time (1) the reaction requires. The
probability of the firing event is shown in Equation (6.6) and it can be calculated by

using the schemes illustrated in Table 1.3.

P(z,u)=2a; xexp(-a,x7)

Table 1.3: Pseducode for Gillespie Algorithm adapted from Gillespie [93]

M
1.  Calculate a, = Za J-
j

2. Generate two random numbers r1 and r2 from the uniform distribution (0, 1).

3. Compute 7 = Lln(l)
a

0 1
H a1
4.  Compute u that satisfies Za j 2Myxa, 2 Za i
i i

5. Execute reaction u and advance time t by t
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Despite its simplicity, the computational cost of the Gillespie algorithm increases
drastically with the number of reaction and the number of molecules in a system. The
increment in computational cost is primarily due to the generation of random numbers
(Step 2 in Table 1.3) and the enumeration of reactions to determine the next reaction
(Step 4 in Table 1.3). For example, when the number of molecules is equal to 1e6, T will
become excessively small (order of 1e-6) which then increases the number of time-steps.

In order to simulate large scale stochastic model, Gibson [94] proposed the Next
Reaction method to improve computational efficiency of the Gillespie algorithms. The
first improvement involves implementation of a tree data structure to store the reaction
time of each reaction, which minimizes enumeration of the reactions at every time-step.
The second improvement uses a map data structure to minimize recalculation of the
reaction propensity at every time step. The Gibson algorithm is significantly faster than
the Gillespie algorithms for systems consisting of many reactions and many reacting
species. It is also an exact algorithm in the sense that it satisfies the same basic
assumptions as required by the Gillespie algorithm.

Several other algorithms were also proposed to improve computational speed of
stochastic simulations. These algorithms are not exact and require users to pre-
determine an extra parameter that affects accuracy of the numerical solutions. Tau-leap

algorithms [95] predict multiple firing of fast reactions and hence, reduce the total
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number of time-steps. Another class of algorithms will be the hybrid algorithms [88,96]
which model fast reactions subsets using either ODEs or Langevin equations (see below)
while treating the slow reaction subset with the stochastic algorithms.

An alternative, widely used stochastic method, remains in the framework of
differential equations by adding an appropriate noise term to each of the ODEs that
describe the biological network. The resulting stochastic differential equations (SDEs)
can then be solved numerically. Different formulations of SDEs can be established for
different types of simulation applications. With appropriate assumptions, one can obtain
a special type of SDE, the chemical Langevin equation [97], which has been used to

model a variety of cellular networks.

dX;(t) ¥ N
dlt(t) = 2.V (X)) +2 via) (XO) (1)

where X (t) is the number of molecules of a molecular species in the system at time t
and i refers to the specific molecular species (i =1,...,N). X(t) = (X, (1),..., X (t)) is the
state of the entire system at time t, a,(X(t)) is the rate for a specific reaction or
molecular interaction (j =1,...,M). v ;i is a matrix describing the change in the number

of molecules as a result of one molecular interaction. In other words, interactions that
result in the synthesis of X, (t) are added and interactions that result in the degradation
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of X;(t)are subtracted. I';(t) are temporally uncorrelated, statistically independent

Gaussian white noises.

SDEs are attractive in that they are computationally more efficient that the
Gillespie algorithm and its derivatives. Also, by remaining in the framework of
differential equations, they can facilitate in-depth analysis of system dynamics without
always resorting to numerical simulations [98].

Regardless of the exact formulation of a stochastic algorithm, repeated rounds of
stochastic simulations will generate different temporal dynamics for each individual
species. One often uses an ensemble of simulated time course to gain insight into noise
characteristics, as well as how they are impacted by regulatory mechanisms. One way of
quantifying noise in gene expression is to normalize the standard deviation of the

protein level with respect to the average protein level (y = <), where o'is standard

deviation of protein level and x is the mean of protein level [33]. While this metric is
direct and intuitive, some noise characteristics may be obscured by the more dominant
small-number effects [87]. This may make it difficult to compare the noise of proteins
that are being expressed at different levels. In this case, a more advantageous metric of
quantifying noise is noise strength, or the variance of the protein level normalized with

respect to the average protein level, { = 072 Since gene expression is often controlled

through transcription factors, noise levels can be compared among different genes

regardless of their expression levels. This metric was recently used to analyze relative
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contribution of transcription rates and translation rates to the noise characteristics of

tinal protein products [98].

1.2.6 System Analysis Techniques

Given an integrated model, one can characterize the system behavior using
various analysis techniques, such as parametric sensitivity analysis and bifurcation
analysis. These techniques allow for exploration of potential system dynamics and
provide quantitative insights into emergent system behavior, such as robustness. Such
information is useful for revealing “design principles” of natural biological systems or

guiding design and implementation of synthetic gene circuits

1.2.6.1 Parametric Sensitivity Analysis

Sensitivity analysis is used to quantify changes in system behaviors in response to
parameter changes. Different parameter may have varying impact on the system
dynamics and the degree of the impact can be quantified by a sensitivity value. A

general method for computing the sensitivity value for an ODE system is:

1 (4. +Ad.)— (¢
S(|;¢j)=i=1im (¢J+ ¢J) (¢J)

09; 140 A,
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where the sensitivity value is the ratio of change in the objective function of interest (I) to
change in a parameter (¢).

Alternatively, the normalized form of sensitivity can be defined:

4 |

4, ol oml ¢
| o¢

ding, = s

S(|;¢j):

i

This is also called logarithmic sensitivity. It is commonly used in metabolic control
analysis [99], and has the feature of being dimensionless.

The objective function of interest is determined by the goals of the analysis. In the
enzymatic synthesis of product that follows Michaelis-Menten kinetics, one may be
interested in the change in the synthesis rate or in the steady-state product concentration
as the Michaelis-Menten constant is varied. Therefore, there may be more than one
sensitivity value for a given parameter. For an extensive treatment of sensitivity
analysis, refer to [100].

Sensitivity analysis has been widely used in quantifying robustness of complex
biological systems with respect to parametric perturbations [101,102,103,104,105]. In a
complex system with a large number of parameters, the system behaviors may be robust
to changes in various parameters. Especially, feedback controls and backup or
compensation mechanisms in biological systems confer additional layers of robustness

[9,106,107,108]. Accurate identification of the underlying mechanisms for such
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robustness is challenging, since the system behaviors result from both parameters and
system architecture. By distinguishing the impact of parameters from that of the
architecture, sensitivity analysis provides a way to characterize system robustness. Such
mathematical exploration of various system behaviors may serve as a guide in realizing
system behaviors as desired experimentally. Specifically, if the parameters with high
sensitivity values can be controlled, higher efficiency in biologically feasible experiment

designs and data analysis can be achieved.

1.2.6.2 Bifurcation Analysis

While sensitivity analysis provides a quantitative measure on the dependence of
system dynamics on parameters, bifurcation analysis focuses on a qualitative
understanding of the system dynamics. Similar to sensitivity analysis, bifurcation
analysis monitors change in system behaviors in response to parameter change also,
except the goal is to explore qualitative changes in the steady-state solution due to
parameter changes. Bifurcation analysis is performed by varying a parameter until a
qualitative change in dynamics is observed. The value at which this occurs is called the
bifurcation point.

A quantitative measure of the stability can be achieved by a simple analytical
method called linear stability analysis. This method provides a numerical value for the

rate of decay to the stable steady-state solution from a small perturbation. Let us
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dx
consider a model consisting of only one species, ot = f(X). Linear stability analysis

begins with steady-state solutions (xs), which can be found by equating the right-hand
side of the ODE expression to 0 and solving for the species concentration of interest.

Adding a small perturbation, X=X, +d(t), the right-hand side becomes:

f(X)= (X, +0(t)) —RLEMmIN 5 f (x )+ 5(t) f'(X,)+O(5(1))°
Assuming that the higher order terms (O(&t))?) are negligible and since f(xs) is 0, the
system at steady-state responds to small perturbations as f (X) = 5(t) f'(X;). Since &,
the left-hand side of the ODE equation, is equal to 102220 — 990 the growth rate of
perturbations is:

do(t)

T o) f'(x,)

Therefore, the perturbation will grow exponentially if f'(xs) is positive, and decays
exponentially if f'(xs) is negative.

A bivariate system can be treated in a similar manner. For example, consider:

x=f(Xy), X=x-08.t)

y=09(xy), Vv=y-4,()
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where 9, (t) and & , (t) denote a small disturbance from the steady-state solutions. Using

the Taylor’s expansion similar to the first order system, we can approximate the growth

rate of perturbations to be:
of
; ) ay a b
5* :A{ X],Where A= gx gy :( J
5 ) 9, 9 o ¢ d
oy

A is the Jacobian matrix at a steady state. The exponents of the growth rate are
determined by eigenvalues A of the matrix A, given by the characteristic equation det(A-
Al), where [ is the identity matrix. Defining 7= trace(A )= a+d and A= det(A) = ad-bc, the

eigenvalues are:

Since the real part of an eigenvalue determines the rate at which the perturbation grows,
the real part of both eigenvalues must be negative for the steady-state solutions to be

stable. General analysis for yet more complex biological systems can be found in [109].
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Varying the parameter of interest can create or destroy steady-state solutions, and
the properties of these solutions can change. At bifurcation points where network
behaviors undergo a qualitative change, a stable steady-state solution may become
unstable or vice versa. Also, a stable steady-state solution may diverge to two or no

steady-states. For an extensive treatment of bifurcation analysis, refer to [110].

1.3 Case Studies

To illustrate the basic concepts and techniques outlined above, we here provide
examples of kinetic modeling and analysis using three simple biological systems:
expression of a single gene, a phosphorylation-dephosphorylation cycle composed of

enzymatic reactions, and a synthetic population control circuit.

1.3.1 Expression of a Single Gene

Although gene expression is a complicated process that involves a number of
components, we use the simplistic view as shown in Figure 1.3A. Key assumptions in
this view are that transcription of mRNA is constitutive with rate k, and that translation
of protein depends on the concentration of mRNA. Although the choice of parameters
depends on many factors such as the gene of interest and the internal and external
environment of gene expression, commonly accepted estimation of parameters is

sufficient for our gene expression model. Based on simplification and estimated
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parameters, mathematical models are constructed using ODE, SDE, and stochastic

methods as shown in Table 1.4. These models are implemented and simulated in a

graphic-based simulator Dynetica [111] (Figure 1.3B). Also see

(http://labs.genome.duke.edu/Youlab/software/dynetica/index.php).

Table 1.4: Comparison between mathematical representation schemes for the gene
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expression.
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Figure 1.3: A mathematical model is constructed based on our knowledge of the single
gene expression and typical reaction parameters (A). The model is implemented in a
simulation and analysis software, Dynetica
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Figure 1.4: Simulation results of the model shown in Figure 1.3 by deterministic (A),
SDE (B), and stochastic(C) formulations.
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As shown by simulation results in Figure 1.4, the stochastic simulations generated
dynamics overall similar to that from a deterministic simulation, but their dynamics are
noisy. The deterministic simulation also reveals that mRNA synthesis reaches steady-
state faster than protein production. Assuming steady-state for mRNA synthesis, we can
carry out stability analysis of a steady state for gene expression. Equating the right-hand

side of the ODE expression for mRNA in Table 1.4 to 0, we find the mRNA level at the
steady-state to bes—z . Then, the protein expression at the steady-state concentration of

[protein] _ kp*kg

mRNA can be re-written as22o — P d, [ protein]. When the decay rate

dt

(dp[ protein) matches the synthesis rate ( kpd*RkR ) at steady-state, the system is stable.

From equation (6.10), we can calculate the exponent for the growth rate of

perturbation (?—P) =—d, <0, where f is the right hand side of the rate equation at

P=Pss
the steady-state, and Pis the protein level and Psis the steady-state protein level. Since
f (Ps) is negative, any perturbation around the steady-state will decay at the rate of d,

indicating that the steady state is globally stable.

1.3.2. A Phosphorylation-Dephosphorylation Cycle

Increasing in complexity, we analyze transient and steady-state behaviors of an
enzyme-mediated phosphorylation cycle, which has been shown to demonstrate ultra-

sensitivity when the enzymes operate outside the region of first-order kinetics [112]. To
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construct a mathematical model, we begin with the conventional enzyme catalysis
scheme where a protein switches between its phosphorylated and dephosphorylated
forms (Figure 1.5). Assuming the enzymatic reactions follow the Michaelis-Menten
kinetics and the total protein concentration is constant, we develop two ODE equations
which are implemented and simulated in Dynetica. Since the goal of modeling here is to
identify general system behaviors of a phosphorylation cycle, we employ a set of

biologically feasible parameters.

4 Phosphorylation Cycle | . B)Reactions J

i Kinage (E;) : i 1 i

§M+}:*1(:2_1_’,&*IM—;.I‘?E M, +E,
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dlMp) _ KEIM] kL5 1[Mp] ditp] _ o ofM] _ [Mp] )
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Figure 1.5: Modeling a phosphorylation-dephosphorylation cycle. Enzymatic
modification cycle (A) of a protein between an unphosphorylated state and the
phosphorylated state is mathematically modeled. Reaction schemes in (B) are converted
to a set of ODEs based on two assumptions: 1) Michaelis-Menten kinetics for the
enzymatic reactions and 2) constant total level of the protein.
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Assuming that the system starts with all protein in the unphosphorylated state,
the protein will switches from the unphosphorylated state to the phosphorylated state
over time, leading to a steady-state distribution of the protein in the two forms (Figure
1.6A). This process is sensitive to ¢, a ratio between phosphorylation and
dephosphorylation rates. When « is small, the amount of phosphorylated protein at the
steady-state is insignificant. However, more protein is converted as a becomes large.

With very large «, the phosphorylation cycle becomes virtually irreversible, favoring

the phosphorylated state.
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Figure 1.6: Simulation results for the model in Figure 1.5. Time-course results at
varying « values show the dependence of conversion on the rate of phosphorylation and
dephosphorylation (A). Protein conversion becomes ultra-sensitive for a sufficiently

small Michaelis-Menten constant near =1, while the sensitivity becomes weaker as K is
increased (B).

The sensitivity analysis in Figure 1.6B shows the dependence of conversion on a. As

K, a ratio of Michaelis-Menten constant to the total protein concentration, approaches 0,
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the dependence of conversion is ultrasensitive neara equal to 1. Then, the rate equation

dMp

for the protein phosphorylation becomes <>

= f(a — 1), a zero order rate expression that

does not depend on any concentration. This dynamics is thus called zero-order
ultrasensitivity. When the Michaelis-Menten constants are comparable to the total
protein concentration (large K), the rate expression is first order and the ultrasensitivity
at a =1 becomes weaker. The time-courses and sensitivity analysis in Figure 1.6 reveal
two critical conditions to achieve ultrasensitivity: 1) a has to be near 1 and 2) the total
protein concentration must be much greater than the Michaelis-Menten constants. That
is, both kinase and phosphatase operate near saturation so that the overall reaction rate
does not have a linear dependence on protein concentration.

We note that modeling can facilitate discovering design principles in biological
systems. For example, ultrasensitivity is utilized in biological systems when sharp
switching behavior is desired. A study of the mitogen-activated protein kinase (MAPK)
pathway that combined both simulations and experiments has demonstrated
ultrasensitivity. Their work illustrates that the phosphorylation cycle mechanism under
the two conditions is sufficient to generate a sharp switching behavior, whose the Hill
coefficient is estimated to be 5 [113]. At least two ways by which biological systems take
advantage of ultrasensitivity can be speculated. In one scenario, a minor change in input
will result in significant output when the system is operating near a = 1. In the other

scenario, a significant change in the input will have little impact on the output when « is
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much smaller or larger than 1. This may be useful in dealing with noisy signals, allowing

the system to filter out noise [114].

1.3.3. A Synthetic Population Control Circuit

In addition to revealing dynamics of natural systems, modeling has become an
indispensable tool for designing synthetic circuits [91,115,116,117,118,119,120]. To
illustrate this, we take as an example the synthetic population control circuit that we
recently engineered [6,121]. This circuit is based on a combination of two well-
characterized modules: a quorum-sensing module and a killing module. Generally, we
can develop an intuition on the circuit behavior, as the design is based on a combination
of previously characterized modules. For example, the quorum-sensing module allows
for cell-cell communication, where the cell density is broadcasted and detected by
elements in the module. When the quorum-sensing module is coupled with a killing
module, detection of high cell density by the quorum-sensing module activates killing of
the cells. More specifically, the signal that diffuses across cell membranes to mediate
communication is a small acyl-homoserine lactorne (AHL) molecule synthesized by the
LuxI protein. At high cell density, the AHL accumulates inside the cells and in the
extracellular medium. At sufficiently high concentrations, it activates the LuxR
transcriptional regulator, which in turn activates expression of the killer gene (E) under

the control of a luxI promoter (pluxI). Accumulation of the killer protein causes cell
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death. Based on this qualitative understanding of the programmed population control
circuit, a set of ODE equations are formulated (Figure 1.7). The model is implemented,

simulated and analyzed in XPP-AUT [122].
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Figure 1.7: Modeling a synthetic population control circuit. A) A qualitative
understanding of the circuit dynamics is illustrated in a graphical form. B) Based on the
qualitative formulation, a quantitative representation of the programmed population
control circuit is derived with several assumptions. More details on the assumptions and
the parameters can be found in [6,121]

38



20_]! T T T T |

i

(I

l [
- |5 F | I ﬂ f | .
| A N A A N I A
ey I | (| I ]l | I ' |
—_~ | (| I || || i [ ||
- | I | | I
E10—| | I A A L N
z 00 0
= | i R Il
o ‘ | | | | | 4| | | | | |
~ | | A | N N | | |
s 1 I| !l |l |' ’| !! |1 -'l

a0 | | | | | | | | | | | | | [ 14

| . || . . || - |

| o | | ' | [ i . [

A A A AR AR A

. A I ‘I A R A Y A T

| : |I| .'u J |I1 ll.' | f |II I,f 1'. ! | | | f |i

L/ \_l_/l N |\._// /. '\__.-/I UI u
0 50 100 150 200

Time (hr)

Figure 1.8: Oscillation in the cell density over time for appropriate parameter values.
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This system has four components and has a negative feedback control on the cell
density by the killer protein. Such structure has a potential to generate complex
dynamics including oscillations. For certain biologically feasible parameters, our
analysis shows that the model can indeed generate sustained oscillations over time. This
prediction is consistent with experimental observations [121]. Further system stability
analysis indicates that for N << Nu, there are two steady-state solutions. While the trivial
steady-state is always unstable, the non-trivial steady state is stable if degradation rates
of LuxR, the killer protein, and the AHL signal, and the microchemostat dilution rates
are sufficiently large. However, decreases in these parameters destabilize the non-trivial
steady-state, leading to oscillations. This trend is captured in Figure 1.8. For each of
these parameters, bifurcation analysis is carried out using XPP-AUT (Figure 1.9A). In
Figure 1.9B oscillations are observed for da less than 0.35 and the amplitude of the
oscillations is the difference between the top and the bottom curves. High values of da (>
0.35) stabilize the system and the magnitude of oscillations decreases until damped
oscillations occur (Figure 1.9C). Further increases in da lead to stronger dampening of
the oscillations that eventually eliminate oscillations (Figure 1.9D). Similar stability
analysis is carried out for the other parameters and similar behaviors of the non-trivial

steady-state solution are observed (Figure 1.10).
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Figure 1.9: Bifurcation analysis. (A) Qualitative changes are observed in the dynamics
as the AHL degradation rate (da) is varied. When da is sufficiently small (<0.35),
oscillation in cell density is observed (B). The population undergoes damped oscillation

in cell density for increased da (C), and further increase in da stabilizes cell density at a
faster rate (D).
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Figure 1.10: Further bifurcation analysis with rates for killer protein degradation (A)
and LuxR degradation (B) is performed. Oscillations at sufficiently smaller rates
diminish as the rates increase.

1.4 Discussion

We have used relatively simple, well-characterized systems to illustrate
construction and analysis of kinetic models. In these simple examples, we have
demonstrated the significance of kinetic modeling not only for improved understanding
of biological systems but also for improved predictions on cellular response to
perturbations. We note that mathematical modeling is not limited to simple systems
only, but has been used in more complex systems also. Successful application of
modeling has been demonstrated by numerous studies. The increase in the complexity
of modeled systems suggests wider applicability of mathematical modeling. Integrated
understanding of complex systems, whose dynamics cannot be conceptualized by

intuition alone, can be achieved in a quantitative manner. Also, improved predictive
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power is particularly promising in the developments of therapeutics, where system-level
understanding is essential to minimize side-effects and to precisely predict drug effects.
Finally, modeling of cellular networks has become an integral part of the nascent field of
synthetic biology. The combination of design, modeling, experimental implementation,
and characterization of synthetic circuits or modules can provide substantial insights
into the design principles of more complex natural biological systems and assist in the

creation of artificial systems for practical applications.
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Chapter 2: Introduction

To demonstrate use of the mathematical techniques described in Chapter 1, we
focus on mammalian cell’s entry into the cell cycle in the subsequent chapters. The
overarching goal is to gain an integrated understanding of the signaling transduction
networks that underlie mammalian cell cycle entry. This can serve as a foundation to a
more in-depth view of cell signaling pathways. In addition, an integrated understanding
of cell cycle entry dynamics may shed light on novel strategies for cancer therapy. Before
an in-depth analyses of signaling transduction networks, we provide general

introduction to regulation of the mammalian cell cycle in Chapter 2.

2.1 The mammalian cell cycle

The mammalian cell cycle consists largely of two stages: DNA replication
(interphase) and segregation of the replicated chromosome into two separate daughter
cells (mitosis or M phase). In the beginning of the interphase, the cell undergoes a gap
phase (G1), where it grows and prepares for DNA replication. Once the cell is ready, it
synthesizes a fresh copy of the DNA. This specific stage is called S phase. The S phase is
followed by another gap phase (G2), where the cell prepares for mitosis. Often times, the
cell can exit out of this cycle and enter into a resting, quiescent stage (GO0). It can be

induced to reenter into the cell cycle upon growth stimulation.
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Figure 2.1: The mammalian cell cycle. The cell cycle is largely divided into two stages:

mitosis (M) and interphase (G1/S/G2). The cell can exit the cell cycle and enter into the

quiescent GO phase. Appropriate stimulation may induce the cell to reenter the cell cycle
(Adapted from [123]).
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2.1.1 Control of the mammalian cell cycle by cyclin-dependent
kinases (Cdks)

The mammalian cell cycle is intricately orchestrated by cyclin-dependent kinases
(Cdks) and their binding partners, cyclins [124]. To date, a number of cyclins and Cdks
have been identified. In yeast, only one major Cdk is expressed and its activity oscillates
during cell-cycle progression. This oscillation in the Cdk activity is not due to oscillating
Cdk level, but due to oscillating cyclin levels. By interacting with different cell-cycle
stage-specific cyclins, the oscillating Cdk activity is believed to drive diverse cell-cycle
transitions in the interphase (G1/S, S, and G2/M phases). In higher eukaryotic cells,
many homologues of yeast Cdk have been identified, suggesting that regulation of
various cell-cycle transitions is much more complex (Figure 2.1 and Table 2.1). In fact,

human cells contain multiple loci encoding Cdks and cyclins (13 and 25, respectively).

Table 2.1: Cyclin-Cdk complexes at various stages of the cell cycle

Cell cycle phase Cyclin Cdk

G1 phase CycD1, CycD2, CycD3 Cdk4, Cdk6
G1/S transition CycE Cdk2

S phase CycA Cdk2

G2/M transition CycA Cdk1

M phase CycB Cdk1
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Despite many cyclins and Cdks, only a small number of cyclin/Cdk complexes
have been shown to be directly involved in driving the mammalian cell cycle
progression [125,126]. In early G1 phase, mitogenic signals are sensed by D-type cyclins
(CycD) that bind and activate Cdk4 and Cdké. Activation of these complexes initiates
phosphorylation of the retinoblastoma protein (Rb) family including Rb, p107, and p130
[127]. This results in release of a transcription factor E2F, which is initially bound by the
Rb protein. The released E2F activates and transcribes E2F-responsive genes required for
cell cycle progression [128], including E-type cyclin (CycE) and A-type cyclin (CycA)
[129]. In the late G1 phase, CycE forms a complex with Cdk2, and this complex further
phosphorylates the Rb protein, leading to additional activation of E2F mediated
transcription. In addition to phosphorylating Rb proteins, CycE-Cdk2 is thought to be
essential for initiating DNA replication by facilitating loading of the MCM chromosome
maintenance proteins onto origins of replication. These coordinated activity of Cdk?2, 4,
and 6 with various cyclins drives the cell to traverse through the G1/S transition into the
S phase.

CycE availability is tightly controlled and is limited to the early stages of DNA
synthesis to avoid re-replication of DNA [130]. During the late S-phase, Cdk2 is
activated by CycA and the CycA/Cdk2 complex drives the transition from S phase to G2
phase. During G2, CycA is thought to be activated by Cdk1 and the CycA/Cdk1 complex

drives the G2/M transition [131]. Near the completion of G2, CycA is degraded by
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ubiquitin-mediated proteolysis, while cyclin B (CycB) is actively synthesized.

CycB/Cdk1 complex actively participates in and completes mitosis [132].

2.1.2 Cyclin-dependent kinase inhibitors (CKIs)

The activity of the Cdk4/6 and Cdk2 kinases is essential for progression through
G1 and entry into S-phase, and their activity can be modulated at multiple levels,
including cyclin accumulation and cyclin-Cdk complex formation [133]. In addition,
Cdks can be effected by their association with cyclin-dependent kinase inhibitors (CKI)
that can either physically block activation or block substrate access [134].

The CKIs can be grouped into at least two families: an Ink4 family that inhibits
CycD-associated kinase activity and a Cip/Kip family that inhibits Cdk2- and Cdk4-
containing complexes. The Ink4 family, consisting of pl6Ink4a, p15Ink4b, p18Ink4c, and
p19Ink4d, inhibits Cdk activity by competing with CycD for binding to the Cdk subunit.
The Cip/Kip family, consisting of p21Cip1, p27Kip1 and p57Kip2, shares an inhibitor

domain that can bind and inhibit Cdk2- and Cdk4-containing complexes.

2.1.3 Cell cycle, cancer, and anti-cancer strategies

Given their role in the G1/S, S, or S/G2 transitions, the regulatory components
involved in the cell cycle progression must be highly orchestrated for normal cell

physiology. Alterations in the cell cycle machineries often lead to unrestrained cell
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proliferation, resulting in cancer. In cancer, a number of mutations have been reported
that disrupt Cdk functions. First, Cdks themselves may be mutated, although this occurs
with low frequency. The mutations lead to over-expression of Cdks (Cdk4 [135], Cdk1,
or Cdk2 [136,137]) or to loss of CKI binding in Cdk4 and Cdkeé [138]. Also, cyclins that
bind Cdks to active them may be mutated. In particular, CycD, which senses growth
signals, is often associated with a number of cancers [139]. Other cyclins including CycA
and CycE have been shown to be over-expressed in lung carcinoma [140]. Finally,
mutations in CKIs are observed in a high percentage of human tumors and can be
inactivated by a variety of mechanisms including deletion, point mutations, and
hypermethylation [141]. Cells with intact p16Ink4a, a specific inhibitor of CycD/Cdk4,6,
inhibits phosphorylation of Rb, but mutated pl6Ink4a removes such inhibition and cells
are unrestrained to proliferate. In addition to disrupted Cdk functions, mutations in the
Cdk substrate can lead to cancer development. One of the most important substrates is
Rb, which binds E2F to inhibit proliferation. Absence or loss of Rb function is often
observed in various types of cancer, and is associated with unrestrained cell cycle
progression [139,142]. These mutations are often accompanied with disrupted Cdk
functions.

Based on the current understanding of cancer development, a number of
strategies have been designed to restore control of the cell cycle. Cdk inhibitors have

been considered as a reasonable strategy, but the first generation of the Cdk inhibitors
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has raised several concerns [126]: 1) off-target effects that limit therapeutic drug
concentrations, 2) specificity of the drugs for various mutations, and 3) toxicities. These
concerns may be addressed by gaining an in-depth understanding of cell cycle

regulation in normal and in cancers.

2.2 Checkpoints in the mammalian cell cycle

During the cell cycle, it is critical that the parental DNA is replicated faithfully
and is distributed to the daughter cells symmetrically. However, the DNA in
mammalian cells is under constant attack by agents that directly target its bases or break
the phosphodiester backbone on which the bases reside. For example, the
phosphodiester bonds in the DNA backbone can be damaged by energy released from
free oxygen radicals, which are generated either by normal metabolic processes or by
exposure to an external source of ionizing radiation [143].

To ensure survival and faithful propagation of their genetic contents, the
eukaryotic cells are equipped with elegant mechanisms to repair DNA damages. Such
repair mechanisms are critical in normal physiology and maintenance of eukaryotic cells,
as damage to cellular DNA causes cancer [144]. Highlighting their importance further,
most cancers arise from mutations in the genes involved in DNA-damage responses.

Interestingly, these repair mechanisms are intricately coordinated with the

processes of cell-cycle arrest or apoptosis. It has been shown that cells are equipped with
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a number of different repair mechanisms, which are specific for cell cycle stage or the
nature of the DNA damage. These mechanisms allow for modulation of cell cycle
progression in the face of DNA damage and other stresses that affect DNA replication.
Such modulation may be critical in optimal DNA repair, as halting or slowing DNA

replication may be beneficial during the process of DNA repair.

2.2.1 Signal initiation upon stress

Upon DNA damage, a number of signals instantaneously become activated.
These include AMT (ataxia telangiectasia mutated) and ATR (AMT- and Rad3-related),
which inhibit cell cycle progression by phosphorylating their substrates. In unstressed
cells, ATM kinase is a homodimer and its kinase domain is physically blocked. Its
activity is minimal and it functions to help cells deal with cellular stresses that affect
DNA or chromatin structure [143]. Upon DNA damage, ATM undergoes a
conformational change, resulting in dissociation of the homodimer. The activated ATM
monomers get directed by a helper MRE11 to move to its substrates, some of which
localize to the sites of DNA damage. Unlike ATM, ATR exists in a complex with ATR-
interacting protein (ATRIP) and is constitutively activated. Upon DNA damage, ATRIP
binds to replication protein A (RPA), which is involved in DNA replication [145].
Accumulation of RPA, therefore, would lead to recruitment of ATR, which can

phosphorylate critical substrates in DNA repair. Once ATM and ATR reach their
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appropriate destinations, they phosphorylate a number of proteins including their
effector kinases (or transducer kinases), CHK1 and CHK2 [146]. These are extremely
mobile kinases that facilitate modulation of cell-cycle progression at various stages of

the mammalian cell cycle.

2.2.2 G1/S checkpoints
2.2.2.1 The restriction point (R-point)

In unperturbed cell cycle progression, mammalian cells can only be blocked from
proliferation by withdrawing growth signals or applying growth inhibitory signals in
early-to-mid G1 phase. In this stage, cells survey a number of metabolic and
environmental signals and they develop an integrated interpretation of these signals.
Based on their interpretation, cells decide whether to enter S-phase or pause. The point
at which this decision is made is called a restriction point (R-point). When the growth
signals are weak, cells remain at its non-proliferating state. Once the growth signals are
sufficiently strong, cells proceed with proliferation and become independent of growth
signals. That is, removal of the growth signals does not prevent cells from completing
the cell cycle after the R-point. However, withdrawal of the growth signals before the R-
point will prevent cells from proliferation.

Underlying the R-point is the Rb/E2F signaling pathway, which is driven by

several cyclin/Cdk complexes. In this pathway, the binary decision at the R-point results
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from the balance between growth stimulation interpreted by cyclin/Cdk complexes and
opposing inhibition by Rb and CKIs. Rb represents a family of tumor-suppressor protein,
consisting of retinoblastoma (Rb), p130, and p10, and is a substrate of the CycD/Cdk4,6
and CycE/Cdk2 complexes. Rb interacts with the E2F to incapacitate their
transcriptional functions. E2F is a family of transcriptional factors with many members
identified to date. E2F1, E2F2, and E2F3a are transcriptional activators, responsible for a
large number of genes essential for DNA replication and downstream cell cycle
progression. E2F3b, E2F4, and E2F5 complexed with Rb and p130 are found in quiescent
cells as transcriptional repressors of S phase genes as wells as genes encoding E2F1,

E2F2, and E2F3a proteins [147]. Once the growth signals overcome inhibition, cells

proceed with proliferation.
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Figure 2.2: DNA damage response. Upon DNA damage, ATR/ATM with their
transducers CHK1/CHK?2 initiates both transient and prolonged DNA damage response,
leading to inhibition of Cdks activity, which in turn results in the arrest of cell cycle
progression [143].
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2.2.2.2 G1/S checkpoints by ATR/AMT and CHK1/2

Under stressful condition, cells may modulate cell cycle progression to avoid
replication and propagation of the damaged DNA. The dominant response to DNA
damage in mammalian cells traversing through G1 is achieved by ATM/ATR along with
the transducer kinases CHK2/CHK]1, acting on two critical effectors: Cdc25A and p53.
These effectors link the apical checkpoint kinases with the core Rb/E2F cell cycle
machinery via modulation of the CycE/Cdk2 activity, as shown in Figure 2.2.

Cdc25A is a phosphatase that activates Cdk2. Cdk2 forms a complex with CycE,
which is responsible for DNA replication. Therefore, the Cdc25A phosphatase activity is
important for DNA replication. Upon DNA damage, CHK1 and CHK2 phosphorylates
Cdc25A on multiple serine sites and target Cdc25A for degradation by enhanced
ubiquitination and proteasome-mediated degradation. This reduces Cdk2 activation,
thereby preventing initiation of DNA synthesis. This response by Cdc25A is rapid but
transient, capable of delaying cell cycle progression only for several hours [148,149].

On the other hand, another checkpoint mediated by p53 facilitates a prolonged
G1 cell cycle arrest in response to DNA damage [143,150]. p53 is a transcription factor,
playing a key role in cellular decisions to either arrest the cell cycle, allowing the repair
of damaged DNA, or to commit to cell death [151]. p53 accumulation is negatively
regulated by Mdm?2, which targets it for ubiquitin-mediated proteasome degradation.

One of the key effectors of p53-mediated G1 arrest is the p21 inhibitor of Cdks. When
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p21 is elevated, it effectively blocks the CycE/Cdk2 activity, arresting the cell cycle
progression.

Upon DNA damage, p53 is phosphorylated by ATR/ATM and CHK1/CHK?2 at
various residues and is activated. In addition, its negative regulator Mdm?2 is also
targeted by ATR/ATM. These together contribute to stabilization and increased activity
of the transcription factor p53. This results in accumulation of p21, which in turn can
lead to cell cycle arrest. While this mechanism may require up to several hours, it
complements and eventually replaces the transient cell cycle arrest by Cdc25A

phosphorylation [150].

2.2.3 S-phase checkpoint

Once cells pass the R-point and begin their DNA replication at the S-phase, DNA
damage causes cells to slow down DNA replication by inhibiting the firing from those
origins of DNA replication that have not been initiated, but does not completely arrest
the cell cycle progression. This is achieved by at least two parallel processes mediated by
the ATR/ATM signaling machinery. Upon DNA damage, Cdk2 activity becomes
inhibited by Cdc25A phosphorylation by CHK1 and CHK?2, as mentioned above. This
blocks the loading of Cdc45 onto chromatin, a protein required for the recruitment of
DNA polymerase o into assembled pre-replication complexes. Therefore, inhibition of

Cdk2 prevents firing of the new origins [148,149]. In addition, ATR/ATM can
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phosphorylate other proteins that are involved in DNA repair including NBS1 and

SMC1[152,153].

2.2.4 G2/M checkpoint

After completion of DNA replication, cells ensure the integrity of the DNA to
prevent mitosis with damaged or unrepaired DNA at the G2/M checkpoint. Similar to
the G1/S checkpoint, the G2/M checkpoint consists of rapid response mediated by
Cdc25A phosphorylation and a prolonged response mediated by both p53-dependent
and p53-independent mechanism.

One of the major targets in the G2/M checkpoint is Cdk1 complexed with CycB.
In unperturbed cells, Cdc25A activates Cdk1, and the CycB/Cdk1 complex drives the
G2/M transition. Under the condition of DNA damage or incorrect DNA replication,
Cdc25A becomes phosphorylated and targeted for degradation, resulting in inactivation
of Cdk1. This constitutes transient DNA repair mechanism at the G2/M transition. In
addition, phosphorylation of p53 silences the Cdk1 activity via p21, resulting in cell

cycle arrest.

2.3 The mammalian cell cycle and apoptosis

Under severe stress to the DNA, the integrity of the genome may be severely

damaged and the elegant DNA repair mechanisms may not warrant restoration of the
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genome integrity. This may pose oncogenic threat to the cell. In this case, the optimal
decision for the cell may be to undergo a programmed cell-death, or apoptosis.
Apoptotic cells undergo cell blebbing, exposure of phosphatidylserine at the cell surface,
reduction of cell size, shrinkage of the cell core, DNA condensation and the formation of
apoptotic bodies [154]. Apoptosis is achieved by the tumor suppressor protein p53,
which has also shown its ability to elicit cell cycle arrest. How p53 mediates these

drastically differential responses has been the focus of intensive research [155].

2.3.1 p53-dependent cell cycle arrest vs. apoptosis

The transcription factor p53 mediates both responses by turning on or off
appropriate genes to achieve the desirable outcome [156,157]. One strategy used by p53
to elicit different responses is by differential binding affinities. Transactivation of the p53
target genes requires sequence-specific binding at p53-response elements (P53REs), but
it has been shown that not all target genes bind to p53 with equal affinity. The binding
affinity of the genes associated with cell cycle arrest tends to be greater than that of the
apoptotic genes [158]. Therefore, the cell fate mediated by p53 depends strongly on the
its level: low level of p53 tends to favor growth arrest, while high p53 level overrides
this pathway and trigger apoptosis [159].

Apoptosis is facilitated by either an extrinsic pathway via TNF-family ligands or

an intrinsic, mitochondrial pathway induced by UV radiation, chemotherapeutics, free
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radicals or DNA damage [154,160,161]. The death-receptor pathway is activated upon
binding of TNF-family ligands to their corresponding receptors, including CD95/Apo-
1/Fas or TRAIL. These receptors contain different death effector domains (DEDs) and
aggregate to form membrane-bound signaling complexes. The signaling from these
complexes ultimately leads to the formation of the death-induced signaling complex
(DISC), activation of caspase-8 (cysteinyl aspartate-specific protease), and triggering the
proteolytic caspase cascade. Active caspase-8 can cleave BID (BH3-interacting-domain
death agonist), which promotes the mitochondrial permeability transition [162]. The
intrinsic, mitochondrial pathway can be triggered when pro-apoptotic proteins such as
Bcl2-associated X protein (Bax) are activated or when anti-apoptotic proteins Bcl2 family
members are inactivated [163]. As a result, inner membrane potential becomes
dissipated and the outer mitochondrial membrane becomes permeabilized. This induces
the release of various apoptotic proteins including cytochrome c, Smac, or apoptosis
inducing factor (AIF) [162,164]. Many of the proteins involved in the mitochondrial
pathway are encoded by the target genes of p53, including the pro-apoptotic Bax protein

that generates pores sufficient for release of the apoptotic factors [165,166].

2.3.2 The cell cycle machinery linked with apoptosis

The apoptotic pathways are intricately linked with the cell cycle machinery, as

many of the cell cycle components are directly involved in inducing apoptosis. For
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example, E2F1, whose ectopic expression can drive the quiescent cells through the G1/S
transition, can trigger apoptosis when continually expressed through the S-phase. In
unperturbed cells, E2F1 can induce the expression of p194t, which negatively regulates
Mdm?2, which in turn negatively regulates p53. Upon DNA damage, E2F1 is highly
induced by its stabilization. Similar to stabilization of p53 by phosphorylation by
ATR/ATM kinases, E2F1 is phosphorylated by these kinases and is prevented from
degradation. Therefore, the E2F accumulation upon DNA damage can further stabilize
and accumulate p53, which can facilitate p53-dependent apoptosis [129,147]. In addition,
the E2F antagonist Rb may act as a general suppressor of apoptosis, as it can suppress
apoptosis induced by IFN, TGFp, and p53 [167]. Consistent with this notion, TNF-

induced apoptosis requires Rb cleavage by caspases [168].
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Chapter 3: Modeling and experimental analysis of a
bistable Myc-Rb-E2F switch

3.1 Introduction

In Chapter 3, we investigate the key signaling pathways that underlie cell cycle
entry dynamics. More specifically, we have developed a mathematical model for the
Myc-Rb-E2F signaling pathway, known to be involved in cell cycle entry. With this
model, we predicted all-or-none switching dynamics in cell cycle entry, which were
experimentally validated. Such all-or-none switching dynamics is characteristic of the
restriction point (R-point). This work was achieved in collaboration between Dr. Guang
Yao, who focused on experimental validations, and Tae ]J. Lee, who worked on
mathematical modeling. The work presented in Chapter 2 appears in Nature Cell

Biology 2008 Apr; 10(4): 476-482 [53].

3.2 Background
3.2.1 The Restriction Point

The restriction point (R-point) refers to a position in cell cycle where cells commit
themselves to proliferation given enough growth factors [169,170,171]. Removal of
growth signals before the R-point prevents cells from engaging in the cell cycle. After
the R-point, however, the cell cycle is completed regardless of the growth signal

condition [172]. Despite its importance, the molecular nature of the R-point remains
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elusive [173] and even controversial [174]. Several modeling studies have been
conducted to gain insight into the R-point from dynamics of underlying signaling
networks [175,176,177,178,179,180,181,182]. An emerging consensus from these studies is
that the entry of mammalian cell cycle may be governed by bistable activation of some
regulatory proteins. However, these studies focused on different processes or
components, leading to somewhat confusing characterization of the R-point and/or G1/S
transition.

Thron proposed a highly simplified conceptual framework to account for origin
of bistability during cell cycle control [52]. Aguda and colleagues built their analysis
primarily around two positive feedback loops involving Cyclin E (CycE) [177,178]. Their
model generated a bistable switching behavior leading to CycE activation, which they
used to account for the R-point [177]. Similarly, Hatzimanikatis and colleagues predicted
bistability in the CycE/Rb-E2F pathway, which they argued to be critical for G1/S
transition [176]. Qu and colleagues also focused on CycE regulation as the basis of G1/S
transition [183]. Yet CycE is unlikely to play a central role, as experiments indicated that
it is not required for passage of the R-point [184,185]. Novak and Tyson [175] built a
mammalian cell cycle model following the framework of their well-established yeast cell
cycle model [186,187,188]. They characterized the R-point as activation of E2F and
degradation of Cdk inhibitors. Based on their analysis, they argued that the R-point,

which is independent of cell size, is dissociated from the G1/S transition driven by
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accumulation of CycA, which is dependent on cell growth [175]. A limitation of these

modeling studies is that their predictions have not been put to direct experimental test.

3.2.2 The Myc-Rb-E2F signaling pathway

Extensive evidences suggest that the Myc-Rb-E2F pathway plays a central role in
regulating the cell cycle entry [189,190,191,192,193,194,195,196,197], but its connection
with the R-point remained unclear. In our mathematical model, we considered a positive
auto-regulation of E2F, which has been neglected [175,176,179] in the past or considered
secondary [177]. We hypothesized that this positive feedback regulation may be
sufficient to generate bistable switching behaviors, which may account for the R-point
dynamics.

In the Myc-Rb-E2F pathway, the interactions between Rb and E2F define the
threshold for the system activation. In quiescent cells, Rb protein inhibits function of E2F
transcription activators (E2F1, E2F2, and E2F3a) by forming an E2F-Rb complex.
Addition of serum (containing growth signals) leads to production of transcription
factor Myc via a complex Ras signaling pathway. In turn, Myc up-regulates synthesis of
cyclin D (CycD), and inactivates cyclin-dependent kinase inhibitors (CKIs).
Subsequently, an active complex is formed between CycD and cyclin-dependent kinases
(cdks), which phosphorylates Rb and releases its inhibition on E2F. Synergistic with

Myc, active E2F can in turn promote its own synthesis, forming a positive feedback. In
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addition, E2F drives the expression of cyclin E (CycE), which forms a complex with
cdks. The CycE-cdk complex further phosphorylates the Rb complex to relieve its

repression of E2F, establishing a second positive feedback.

Figure 3.1: The Myc-Rb-E2F pathway (adapted from [147]). In quiescent cells E2F is
bound by Rb and its transcriptional activities are repressed. Growth stimulation

removes Rb repression by upregulating cyclin D (CycD), which, in complex with Cdk4,6,
phosphorylates Rb to release E2F. In addition, growth stimulation induces a
transcription factor Myc that upregulates CycD. The free form of E2F synergizes with
Myc to induce its own transcription, forming feed-forward and positive feedback loops.
Subsequently, E2F activates the transcription of Cyclin E (CycE), which forms a complex
with Cdk2 to further remove Rb repression by phosphorylation, constituting another
positive feedback loop.
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3.3 Quantitative analysis of the Myc-Rb-E2F signaling pathway
3.3.1 Construction of the mathematical model

We have developed a simplified mathematical model to account for the key
interactions outlined in Figure 3.1. The model consists of a set of ordinary differential
equations (ODEs) as listed in Table 3.1. These ODEs were based on kinetics and
parameters as shown in Table 3.2 and Table 3.3. Great care has been taken to estimate
basic modeling parameters. Some parameters (e.g., Michaelis-Menten constants and
decay rate constants) were obtained from the literature. Some other parameters (e.g,
maximum phosphorylation and dephosphorylation rate constants) were estimated
based on typical values for related or similar kinetic processes. The remaining free
parameters (synthesis rates of various components) were constrained with experimental
measurements. For preliminary parameter adjustments and time-course simulations, We
used Dynetica (Figure 3.2), a graphics-based, integrated simulation platform [76]. We
then implemented the model in ‘XPP-AUTO’ to perform bifurcation analysis [198,199].

In developing the mathematical model, we focused on the role of Myc-Rb-E2F
circuit in governing cell cycle entry. As such, the model accounted for cellular dynamics
prior to the G1/S transition and neglected downstream gene regulations. Furthermore,
we used E2F to generalize all E2F activators (E2F1, E2F2, and E2F3a), and used Rb to
represent all pocket proteins (Rb, p107, and p130). In addition, the inhibitory activities of

CKIs were lumped into the phosphorylation rate constants of Cyclin/cdk complexes.

65



These simplifications reduced the intricate regulatory network of cell cycle entry to an

experimentally tractable model.
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Figure 3.2: Implementation of the Myc-Rb-E2F pathway in Dynetica. Filled circles
represent interacting species. Boxes represent interactions. A red arrow pointing away
from a substance to a reaction represents degradation or consumption by the reaction. A
green arrow pointing toward a substance represents production. A gray arrow pointing
from a species to a reaction indicates that the species is modulating the rate of the

corresponding reaction.
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Table 3.1: The mathematical model for the Myc-Rb-E2F pathway

diM]_ ku[S]
dt [S]+K,

dy[M]

d[E] _ [M] [E] |, k,[M1] +kp3[CD][RE]+kp4[CE][RE]
dt “"|K, +IM])\ K. +[E]) K, +[M] K +[RE] K +[RE]

_dE[E]_ kRE[R][E]

dCD] __Keo[M]  Keps[S]

dt  [M]+Kgp [S]+Kj ~deo[CD]
d[CE] _ keelE]
&t K, +[E] dee[CE]
AIR] _ , KoplRPI | ove Ko[CDIR] knlCEIR] 4 (oo

dt " Kge +[RP] Ko +[R] K +[R]

d[RP] _ ko [CDIIR]  Kes[CEIR], Kn[CDIRE]  Kn[CEIRE] Knp[RP]

Ao [RP]
dt KCD +[R] |<CE +[R] KCD +[RE] KCE +[RE] KRP +[RP]

dIRE]_, pye;KnlCDIRE] K, [CEIIRE] _

dt Ko +[RE] K +[RE]

dee[RE]
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Table 3.2: Reaction kinetics for the model

Reaction Kinetics Description and notes
*_S yM Ky [S] Myc synthesis driven by
[S]+ K growth signals (S)
*_ 5 5CD Keps[S] CycD synthesis driven by
[ST+ K, growth signals
x__ME JE Y [M] [E] E2F synthesis by a synergy
E K, +[M] | K¢ +[E] between M}.fc and E2F
K TM autocatalysis.
_&[M] Since neither Myc nor E2F
Ku +[M] forms a homodimer, we
assumed no cooperativity in
gene activation mediated by
these factors, and used the Hill
coefficient of 1.0. Using Hill
coefficient greater than 1.0 will
not change the qualitative
behavior of system dynamics
*__E SCE Kee[E] CycE synthesis driven by E2F
Ke +[E]
*_ M sCD Kep[M] CycD synthesis driven by Myc
Ku +[M]
*____ 3R Kq Constitutive Rb synthesis
RE —S2-CE sE L RP | Kp5[CD][RE] N ko,[CE][RE] | E2F dissociation from Rb-E2F
Kep +[RE] Kee +[RE] | complex by CycD- and CycE-
mediated phosphorylation
E+R—>RE Kee[RI[E] E2F titration by Rb via E2F-Rb
complex formation
R—2% ,RP kei[CD][R] , Kpo[CEJ[R] | Rb phosphorylation by CycD
Keo +[R]  Kge +[R] | and CycE
RP— SR Kop [RP] Rb dephosphorylation
Kge +[RP]
M —* d,,[M] Myc decay
E— % dE[E] E2F decay
CE—* d.:[CE] CycE decay
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Table 3.2: Continued

CD—* dp[CD] CycD decay

R——* d;[R] Rb decay

RP——* dgp[RP] Phosphorylated Rb decay
RE——* dre[RE] Rb-E2F complex decay
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Table 3.3: Parameters for the model

Rate constants

Parameter values, sources, and notes

kEF 0.4 uM/hr These values were adjusted together so that:
Keo 0.03 uM/hr (1) The max1mum E2F level is about 5-6 fold h.1gher than
the maximum CycD level (based on our experimental
Keps 045 uM/hr | Gbservations).
Keg 0.18 uM/hr | (2) E2F activation threshold is about 1% serum
K 3 LM (3) The simulated E2F level will be around the
b 0.003 pM/hr corresponding Michaelis-Menten parameter (K&)
Kee 0.35 uM/hr | Assumed to be the same as Kgp
dy, 0.7/hr Myc half-life = 60 min [200,201,202]
de 0.25/hr E2F half-life = 2~3 hr [203]
deo 1.5/hr CycD half-life = 25~30 min [127,204]
dee 1.5/hr CycE half-life = 30 min [205,206]
dg 0.06/hr Rb half-life = 12 hours [207]
dgp 0.06/hr Assumed to be the same as dj
d 0.03/hr Rb-E2F half-life = 6 hours: The Rb-E2F complex assumed
RE ' to be more stable than Rb alone [208]
18/hr Typical value phosphorylation rate constant [209] is
3600/hr
18/hr Typical value phosphorylation rate constant [209] is
3600/hr
k 3.6 uM/hr Typical value for dephosphorylation rate assuming a
O H constant phosphatase concentration [209] is 720 pM/hr
Estimated based on measured Myc/Max -DNA
K .
M 0.15uM dissociation constant [210]
Ke 0.15 uM Assumed to be the same as Ku
Keo 0.92 uM Experimentally measured [211,212]
Kee 0.92 uM Assumed to be the same as CycD
K. 0.01 uM Typical value for Michaelis-Menten parameter for

dephosphorylation [209]
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Table 3.3: Continued

* Typical values of phosphorylation and dephosphorylation rate constants results in a

stiff model, which drastically slows down the calculation. We have found that the

overall dynamics is insensitive to the overall rates of the phosphorylation and

dephosphorylation reactions, as long as they are balanced. Thus we have reduced the

corresponding rate constants by 200 fold to speed up calculation. Proportionally

increasing these parameters has no significant impact on the overall system dynamics.
[RE] = 0.82 uM; [Rb]=[Rbp] = [E2F] = [Myc] = [CycD] = [CycE] = 0 uM
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3.3.2 Utilities and limitations of the Myc/Rb/E2F model

The complete Myc/Rb/E2F pathway is far more complex than what is shown in
Figure 3.1, and understanding of the network dynamics may be challenging by intuition
alone. To gain a system-level understanding of the network dynamics, we built a
mathematical model that is simple enough to make experimentally tractable predictions
without losing key features of the network. The ultimate goal of the model is not only to
gain an in-depth, system-level understanding of the network and make predictions, but
also to guide experiments that will validate model predictions.

To achieve simplicity of the model without compromising its dynamical features,
we have made a number of simplifications. Some of the components of the Myc-Rb-E2F
pathway not shown in the model were lumped into the model parameters by their
functional similarity. For example, the activity of E2F transcriptional repressors (E2F3a,
E2F4, and E2F5), which shares similar functions as the Rb family, was assumed in the Rb
synthesis rate. The Rb family consists of multiple members, which were also lumped
together into the Rb synthesis rate. In addition, other components that functionally
oppose the model components were lumped together in the parameters that describe the
model components. For instance, the activity of cyclin-dependent kinase inhibitors
(CKIs) was reflected in the parameters that represent the activity of CycD/Cdk4,6 or

CycE/Cdk2. Finally, many of other components in the Myc-Rb-E2F pathway were not
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considered in our model because they are not directly involved in cell cycle entry, but
rather in the maintenance of the cell cycle progression (i.e. CycA or CycB).

The dynamics of a mathematical model is defined not only by its architecture,
but also its parameters. While some of the parameters were obtained from the literature,
others were not readily available and were estimated from our own experimental data.
Often times, these parameters would cover a wide range of values. Even the parameters
obtained from the literature may vary significantly (to several orders of magnitude)
depending on the experimental conditions and context. In addition, the parameter
values may change over time due to various mechanisms. For example, the degradation
rate of Myc is tightly controlled by its upstream signals via post-translational
modification. Before the protein modification, Myc is highly unstable. Upon protein
modifications by phosphorylation via its upstream signals, Myc becomes stabilized.
Such stabilization in Myc will depend on the timing of the upstream signals and will
change the parameter describing degradation by several folds. These sources of
uncertainty in the model parameters call for a strategic way to justify the parameter
values used in the model.

To define a permissible, biological feasible range of parameters, several criteria
can be imposed on the model parameters. One of the criteria is that the set of parameters
should give rise to the expected dynamics. In the development of the Rb-E2F model, we

expected E2F dynamics to be bistable. This is based on the previous observation that the
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R-point control is history-dependent and irreversible, consistent with the concept of
bistability. To achieve bistability, we began with the initial set of parameters obtained
from the literature and our own experimental results, which were sufficient to generate
bistability in our model. In case the initial set of parameters and the network architecture
did not generate the expected dynamics, more systematic exploration of the parameter
sets would be required. If this failed to generate the expected dynamics, modification of
the network architecture would be required and another exploration of appropriate
parameters would be conducted. This constitutes the first layer of model calibration.

Once a base model is established, it can be tested for sensitivity of the system
dynamics to various parameters. This is usually done at one-dimension by evaluating
the change in the objective function to the change in the parameter of interest. For
example, the objective function in the Rb-E2F model was the temporal dynamics of E2F
and the parameter of interest was the Cdk2 kinase activity. Using the model, we could
predict how sensitive the temporal dynamics of E2F activation is to the phosphorylation
efficiency of Cdk2. Such prediction can guide future experiments and further calibration
of the model. Multi-dimensional approaches may also be taken, although experimental
validation for such sensitivity analysis would be difficult with a large number of
dimensions.

Such sensitivity analysis can serve as a foundation for another criterion for the

model: an agreement between the predicted dynamics and experimental observation
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under perturbations. Perturbing the network at different nodes introduces a change in
the parameters, and the corresponding change in network dynamics can be directly
evaluated by experiments. A good agreement between the modeling and experimental
results would demonstrate the goodness of the model, and such agreements under
various perturbations would enhance the predictive power of the model. Lack of
agreement would suggest a need for modification of the parameters set or network
architecture. To this end, we have perturbed the model at CycE/Cdk2 only, but future

studies targeting other nodes would further calibrate the model.

3.3.3 Model predictions: bistable switching behaviors

Figure 3.3 shows exemplary E2F time courses in response to different serum
stimulation schemes that demonstrate bistability of the pathway. For a low serum level
(Figure 3.3A), E2F never gets activated, which corresponds to the GO phase or arrest in
G1 phase (Figure 3.3B). However, if the serum level starts high (Figure 3.3D, Time<5),
E2F will be activated, and it will remain at the high state (corresponding to cell cycle)
even if the serum is subsequently reduced to a low level (Figure 3.3E). That is, the
pathway has “memory”: its final outcome depends on not only network parameters, but
also the prior history of network dynamics. This bistable response of E2F signaling is

distinct from expression of other genes in the Myc-Rb-E2F pathway such as CycD, which
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responds to serum stimulation in a monostable fashion — that is, expression levels of

these genes are independent of history of the system dynamics (Figure 3.3C,F).
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Figure 3.3: Response of E2F to serum stimulation. If serum level is kept low (A), E2F
will not be activated (B). However, for a sufficiently high serum level (D, Time<100),
E2F will be activated to a high level (E), and will not drop to zero even if serum level is
reduced to a low level (D, Time > 5). Note that the final states of the serum level are the
same for (A) and (D), but the corresponding steady-state levels of E2F are drastically
different (B & E). In contrast to E2F, CycD increases or decreases in proportion to the
serum level (C & F). Essentially, the circuit has a “memory”: the outcome of the circuit
depends on the history of circuit dynamics. Time, serum levels, and E2F and CycD
levels are in arbitrary units. Similar dynamics was observed if Myc protein level, instead
of serum, was varied.

The history-dependent behaviors at the steady-state are represented in the
bifurcation analyses in Figure 3.4. For low serum levels (<0.2%), the system is

monostable: regardless of its history, it always stays at the low state of E2F, which
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corresponds to GO phase or arrest in G1 phase. For sufficiently high serum levels (>1.0%),
the system is also monostable: it always stays at the high state, corresponding to cell
cycle progression. For intermediate serum levels, however, the system can be either at

the low or high state, depending on its history, as demonstrated in Figure 3.4.
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Figure 3.4: Hysteresis in E2F activation. (A) The modeling results demonstrate
hysteresis in E2F activation in response to serum concentrations. At low serum
concentration, E2F remains at its low state (OFF). At high concentration, E2F elevates to
its high state (ON). At intermediate serum concentration, E2F can be either at the high
state or low state depending on its history. E2F follows two different trajectories when
switching from OFF-ON and ON-OFF. We define the minimum serum concentration at
which E2F activates as “activation threshold’, and the minimum serum concentration at
which E2F deactivates as ‘maintenance threshold’. The region between the thresholds is
a ‘bistable region” where E2F can be either at ON of OFF state. (B) CycD follows an
identical trajectory for both switching OFF-ON and ON-OFF.

3.3.4 Experimental validation of the model predictions (by Dr. Guang
Yao)

To validate bistable switching behaviors in the Rb-E2F pathway, we monitored
transcriptional activities of E2F using a destabilized green fluorescent protein (d2GFP).

This transcriptional reporter, under the control of a cloned E2F promoter, was integrated
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into the chromosome of a rat embryonic fibroblast cell line (REF52) by retroviral
transfection. As a negative control, we constructed a CycD-d2GFP reporter system to
show monostable behaviors in comparison. In either system, it was critical to establish
single cell clones of relatively homogenous backgrounds (i.e. similar copy number),
since we expected that stochastic cellular noise may interfere with capturing
ultrasensitive dynamics of E2F [213]. Both d2GFP reporter systems exhibited strong
serum responses comparable to well-characterized endogenous activities, with the half-
activation time of CycD induction appeared over 7 hours earlier than that of E2F.
Consistent with our model predictions, we found that E2F-d2GFP, measured by
flow cytometry, exhibited bistable behaviors with two distinct peaks at low and high
serum concentrations (Figure 3.5A). When serum concentrations were sufficiently low (<
0.1%) or adequately high (= 3%), the E2F-d2GFP levels were unimodally OFF or ON,
respectively. However, although the exact distributions were contingent on individual
cell clones and experimental conditions, E2F-d2GFP distributions were clearly bimodal
at intermediate concentrations (0.5% ~ 2%). Consistent with our model predictions in
Figure 3.3, with serum concentration increasing, we observed gradual increase of E2F-
d2GFP level at both its OFF state (left peak) and ON state (right peak); the OFF and ON
peaks, however, were always well-separated. This bimodal separation of E2F-d2GFP
levels indicated the “all-or-none” characteristic in E2F activation. That is, the Rb-E2F

switch fully turned ON in some cells or remained OFF in others due to cellular noise
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[87,88,214], but it hardly stayed at intermediate levels because of its ultrasensitive
response. In contrast, the expression of CycD-d2GFP, which is not directly regulated by
positive feedback, was always unimodal. Similar to E2F-d2GFP, it increased gradually
as a function of increasing serum concentrations, but no clear separation between ON

and OFF states was observed (Figure 3.5B).
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Figure 3.5: Bimodal E2F expression in cultured mammalian cells. E2F-d2GFP
construct. (Upper) E2F dose responses. (Lower) (A) Cells were serum starved at 0.02%
BGS (a & b) or 0.05% FBS (c & d) for 1 day and subsequently stimulated with BGS (a &
b) or FBS (c & d) at indicated concentrations for 24 (a & b) or 20 (c & d) hours. (B) CycD-
d2GFP construct. (Upper) CycD dose responses. (Lower) Cells were serum starved at
0.02% BGS for 1 day (a & b) or 1.5 days (c & d) and subsequently stimulated with BGS at
indicated concentrations for 24 (a & b), 21 (c), or 25 (d) hours. For both A and B, Each
histogram represents the distribution from ~ 10,000 cells. Data from four independent
single cell clones are shown.
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Figure 3.6: Bistable E2F activation. (Left) Serum stimulation protocols. Pulsatile input
was generated by stimulating serum-starved quiescent cells at 20% serum for 5 hours,
then reducing the serum level to varying concentrations. (Right) E2F-d2GFP and CycD-
d2GFP dose responses (red curves, without pulse; green curves, with pulse).
Hydroxyurea (HU) was applied to synchronize cells at the G1/S phase to avoid
involving downstream cell cycle oscillation. Each histogram represents the distribution
of GFP signals from ~ 10,000 cells after baseline correction.
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The history dependence predicted in our modeling (Figure 3.4) was also
experimentally observed, as shown in Figure 3.6. Similar to experimental observations in
Figure 3.4, the serum threshold for E2F activation was approximately 1%. Most of the
serum-starved quiescent cells stimulated with serum concentration below the threshold
remained OFF, while growth stimulation with higher serum concentrations resulted in
increasing number of cells switching ON. However, when the quiescent cells were
stimulated with strong serum pulse for sufficiently long duration (20% for 5 hours),
followed by reduction of serum to a low level, we observed that cells remained at its
high state even at serum concentrations below the threshold (1%). This clearly showed
that E2F expression depended not only on the input level, but also on its history. In
contrast, CycD-d2GFP expression depended only on the input level: it followed the

same dose response trajectory, with or without the initial pulse stimulation (Figure 3.6).

3.4 Discussion

Control of the R-point at the G1-S transition of the mammalian cell cycle is a
complex process, likely to involve many other regulatory activities not included in our
model. Our work here, together with other studies, nevertheless suggests that the Rb—
E2F bistable switch, by its unique properties, is fundamental in establishing the R-point.

First, it is “indispensable’: the R-point control was lost completely in cells with knockout
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of all Rb family members [215,216]. In addition, the ability of a cell to pass the R-point to
enter the cell cycle was completely blocked when all E2F activators were knocked out
[217]. Second, it is ‘sufficient’: introducing E2F activity alone can induce quiescent cells
to enter S-phase [218]. In addition, cells with E2F turned ON were the very ones that
were able to pass the R-point, despite varying strengths and duration of growth
stimulation [53]. To our knowledge, the Rb—E2F network is the only system identified in
the mammalian cell-cycle machinery that is both indispensable and sufficient for the R-
point control.

Our results indicate that the Rb—E2F pathway functions as a bistable switch in
response to growth stimulation. The all-or-none and, especially, history-dependent
switching behavior of this gene network (in terms of E2F accumulation in each
individual cell) provides a mechanistic explanation for the R-point concept. Our work
provides a foundation for future studies that will carefully analyze the contribution of
individual components in the Rb—E2F gene network in achieving E2F bistability. Such
studies will provide further detailed understanding how precisely the R-point is

controlled in mammalian cells.
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Chapter 4: Transition probability in cell cycle entry
4.1 Introduction

In Chapter 4, we extend our work in Chapter 3 to the study of temporal
dynamics of E2F activation in cell cycle entry. Our analyses in this work are significant
in three aspects: First, it defines a well-calibrated mathematical model that predicts the
stochastic dynamics associated with the cell’s transition from quiescence to proliferation.
Second, it defines a conceptual framework that reconciles the seemingly conflicting
views as represented by the existing phenomenological models: transition probability
(TP) model and growth-controlled (GC) model. Third, our work suggests that these
phenomenological models can define concise, quantitative phenotypes of the underlying
cell physiology (as characterized by their parameters). This aspect has implications for

classifying cell states or cell types.

4.2 Background
4.2.1 Temporal variability in the cell cycle

Cell-to-cell variability in the timing of cell-fate commitment is widely observed
in biological settings [219,220,221,222]. In particular, the variable transition timing from
the quiescent state to the proliferative state is a well-documented phenomenon
[53,223,224,225]. In a population of proliferating cells, such variability is reflected in the

partitioning of the population into subpopulations at different phases of the cell cycle.
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This phenomenon is observed over time even in a population of isogenic cells that have
been synchronized by serum starvation. Upon growth stimulation, cells reenter the cell
cycle from quiescence and undergo the G1/S transition, but not all cells in the population
proceed at the same rate. This rate also differs among different cell types [171,172], and

can be modulated by external conditions [226].

4.2.2 Existing models for the temporal variability

To account for the variable transition timing in cell cycle progression, two major
types of models have been proposed: transition probability (TP) model
[226,227,228,229,230] and growth-controlled (GC) model [174,231,232]. The TP models
attributed the temporal variability to random state transitions through different phases
of the cell cycle. One of the earliest TP models was proposed to account for the inter-
mitotic variability by assuming a single random transition from a non-proliferative (A-
state) to a proliferative state (B-phase) [230]. It was subsequently extended to account for
the timing variability in cell cycle reentry starting from quiescent (GO) cells [226,229]. In
this case, the exponential drop in the fraction of GO cells over time was suggested to
indicate probabilistic nature of the transition. The original model and its subsequent
variants have provided excellent fits to various types of experimental data
[226,227,228,229,230]. However, a major criticism against the TP model is that the

transition probability from the A-phase was assumed to be time-invariant, despite
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uneven cell division at mitosis and obvious cell growth or metabolism through the cell
cycle [233]. As an alternative, the GC models proposed that the observed temporal
variability arises from growth rate heterogeneity within a cell population, rather than
random state transitions. Remarkably, this line of models has been able to provide
equally good fits to various experimental data [231,234]. Integrating these two lines of
thinking, hybrid models proposed cell-size control and random transitions as regulatory
elements for progression to cell division [235,236]. However, understanding of the
underlying mechanisms for cell-size control and random transitions was limited at the
time. Consequently, these models remain descriptive to date, although they provided
excellent fits to experimental data.

There has been an active debate between these two lines of thinking since initial
proposition of the TP model. While never fully resolved, the debate gradually faded
after the concept of the restriction point (R-point) was proposed [169], which we have
shown to be controlled by a bistable Rb-E2F switch [53]. We showed that activation of
this switch is correlated with the cell’s reentry from quiescence into the cell cycle.
Interestingly, cell cycle reentry was explored by both the TP and GC models, which were
originally developed to describe actively growing cells. For example, the TP models
ascribe the quiescence and proliferation to low and high transition probabilities,
respectively [226,229]. In addition, the GC model has recently been proposed as an

alternative explanation for the “R-point” [174].
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4.2.3 Mapping between the stochastic Rb-E2F bistable switch and
phenomenological models

The temporal variability described by the GC and TP models is based on the
distribution of inter-mitotic times and may differ from temporal variability in E2F
activation from quiescence. However, we suggest that the stochastic Rb-E2F model
embodies the concepts assumed in the TP model (stochastic) and the GC model
(deterministic). Our model predictions and experiments suggest that stochastic
activation of E2F can account for temporal variability in cell cycle entry, and the degree
of such variability is determined by environmental cues and the regulatory network
parameters. These results suggest that the TP and GC models are not mutually exclusive
but rather reflect different aspects of the same temporal dynamics in cell cycle entry, as
has been speculated [235,237]. In addition, we show that stochastic activation of the Rb-
E2F bistable switch under various environmental conditions can be readily mapped into
both TP and GC models with a small number of parameters (Figure 4.1). We propose
that these parameters can potentially serve as concise, quantitative phenotypes of the

cell state.
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Figure 4.1: Temporal variability in cell cycle reentry. A population of quiescent cells
can undergo the G1/S transition with serum stimulation. The timing of cell cycle entry is
highly variable in a cell population, characterized by an exponential drop in the
percentage of GO cells over time (GO exit curve). To account for such temporal
variability, two groups of phenomenological models have been previously proposed:
transition probability (TP) model, which describes the dynamics of cell cycle entry with
transition rate constant (Kr) and a time delay of the cell population (Tor), and growth-
controlled (GC) model with the mean G1 growth rate (f, defined as the reciprocal of G1
time) and the standard deviation of the Glgrowth rate (o). We recently demonstrated
that the G1/S transition dynamics is governed by a bistable Rb-E2F switch, whose
stochastic activation may also account for the GO exit curve. Here, we propose that the
two phenomenological models in essence reflect different aspects of the cell cycle
reentry dynamics, and can be recast into the framework of the mechanistic model.
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4.3 Mathematical model and experimental analyses
4.3.1 Construction of the mathematical model

The mathematical framework established in our previous work [53] consists of 7
ordinary differential equations (ODEs) and 23 parameters, as shown in Table 3.1, Table
3.2, and Table 3.3. 15 of these parameters are based on the published literature and the
rest of the parameters (free parameters) are adjusted to satisfy a number of stringent
criteria (see supplementary materials in [53]). In our stochastic model, further
adjustments are made to the free parameters, initial conditions, and extrinsic noise
amplitude based on additional criteria. These include: 1) bimodal distribution at 0.5%
serum stimulation and activation of the majority of cell population at 1% serum
stimulation, 2) irreversible E2F activation, 3) noise terms modeled as either reaction-
dependent (intrinsic) or —-independent (extrinsic) Gaussian noise 4) extrinsic noise as the
predominant source to the total noise in the cell population [85], 4) the time delay at 1%
serum is approximately 20 hours and is halved at 10% serum and 5) moderate molecule

numbers (~1000). These assumptions are consistent with our experimental observations.
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Table 4.1: Revised parameter values and initial conditions:

Rate constants Parameter values, sources, and notes
Ku 1 uM/hr
ke 0.15 uM/hr These values were adjusted together so that:
Keo 0.2 uM/hr (1) The maximum E2F level is about 5-6 fqld higher than the
maximum CycD level (based on our experimental
Keos 0.2 pM/hr observations).
Kg 0.35 uM/hr (2) E2F activation threshold is about 1% serum.

0.001 uM/hr | ) The simulated E2F level will be around the

ke 0.5 uM/hr corresponding Michaelis-Menten parameter (Kk).
j e (4) The time delay at 1% serum is approximately 20 hours

Ks 0.3 pM and is halved at 10% serum.

Kee 30 / (uM * hr)

Initial conditions: [Rb]=0.4 uM, [RE]=0.25 uM, [M]=[E]=[CD]=[CE]=[RP]=0pM.

To capture stochastic aspects of the Rb-E2F signaling pathway, we adopt the

chemical Langevin formulation[1,97].

dzt(t) ZVJ' (IX(O]+ i 1/2 SIXOI, () + o, )
i=1

where X; (1) represents the number of molecules of a molecular species i (i=1, ..., N) at
time t, and X(t) = (X, (1),..., X (1)) is the state of the entire system at time t. X(t)
evolves over time at the rate of a ;[ X(1)] (j=L...,M), and the corresponding change in
the number of individual molecules are described in vji. I';(t) and w,(t) are temporally

uncorrelated, statistically independent Gaussian noises. This formulation retains the
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deterministic framework (the first term), and reaction-dependent and reaction-
independent noise. The concentration units in the deterministic model were converted to
molecule numbers by assuming a certain volume. As a result, the molecule number of
each species is 3300x greater than its concentration value. The resulting parameters and
initial conditions are shown in Table 4.1.

Since the noisy behavior of the stochastic model depends on the amplitude of the
extrinsic noise ( ®), we carefully select the optimal value for oto represent stochasticity
in the Rb-E2F signaling pathway. As the high limit, we use criterion 2) to constrain the
noise amplitude. We assume that once the system is activated and E2F is high, the
random fluctuation in the system does not drive the system to the low state. As the low
limit, we use criterion 3) to ensure that the effective extrinsic noise (next) contributes
more to the overall noise (nwt) in the population than the effective intrinsic noise (nint).
Nwtis calculated by dividing the standard deviation of a cell population by its mean. nnt
can be obtained by assuming o to be zero and calculating the population noise. Then,

we can obtain nintby using the relationship, n;, +n’, =n., . This is shown in Table 4.2.

Table 4.2: Intrinsic and extrinsic noise

Q) MNtot Tint Text

50 0.12 052 11

Here, noise is defined as standard deviation divided by mean.
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4.3.2 Experimental setup
4.3.2.1 Cell line, culture, synchronization, serum stimulation, and drug treatment.

The previously established REF52-d2GFP cells [53] carry an expression cassette
encoding destabilized EGFP with a half-life of approximately 2 hours (d2GFP; Clontech)
under E2F promoters (see supplementary information methods in [53]). These cells were
regularly passed on a plate in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% of bovine growth serum (BGS, from Hyclone). To select for
resistance in the REF52-d2GFP cells, puromycin (2.5 pg ml') was added to the growth
media. For all our experiments, cells were synchronized by serum starvation at the
quiescent phase. For synchronization, actively growing cells were washed with PBS,
trypsinized for cell detachment, and plated at a density of 10° cells/well in a six-well
culture plate. These cells were incubated in DMEM supplemented with 0.02 % of BGS
for approximately 24 hours. For serum stimulation, the starved cells were washed with
PBS and were incubated in fresh DMEM with varying concentrations of BGS for the
indicated durations. For drug treatment targeting the CycE/Cdk2 complex, Cdk2
inhibitor IIT (from Calbiochem: Cat #238803, dissolved in DMSQO) was added to the fresh
media at the indicated concentrations. Hydroxyurea (2mM) was added in the fresh

culture media to synchronize cells at the G1-S transition.
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4.3.2.2 Flow cytometry

Cells were collected after the indicated durations by trypsinization. Cells were
washed with PBS, trypsinized for approximately 3 minutes for detachment, and
supplemented with 10% BGS. Subsequently, cells were centrifuged at 960g for 2 minutes,
and their supernatant was aspirated. Finally, they were fixed by resuspending the cells
in 1% formaldehyde. For each sample, approximately 10,000 cells were assayed for their
GFP signals with a flow cytometry system (BD FACSCanto™II Flow Cytometry System),

and their GPF signals were analyzed with Matlab.

4.3.2.3 Western blots

REF52-d2GFP cells were serum-starved (BGS=0.02%) for 24 hours before they
were treated with varying concentration of Cdk2 inhibitor III and serum. After 24 hours
of serum/inhibitor drug treatment, cell lysates were collected and Western blotting was
conducted with primary antibodies recognizing Rb phosphorylation at Cdk4-specific
serine 780 (Santa Cruz, #sc-12901-R) and at Cdk2-specific threonine 821 (Santa Cruz, #sc-
16669-R). These were conjugated with anti-rabbit secondary antibodies (GE Healthcare,
#NA934) for detection. As a loading control, actin was measured with actin-recognizing
primary antibodies (Santa Cruz, #sc-8432) conjugated with anti-mouse secondary
antibodies (GE Healthcare, #NA9310). The effects of the inhibitor drug are shown in

Figure 4.2.
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Figure 4.2: Specificity of Cdk2 inhibitor III. To demonstrate the effect of the inhibitor
drug on Cdk2 kinase activity, we measured Rb phosphorylation at the Cdk2-specific and
Cdk4-specific residues for varying inhibitor drug concentrations. An isogenic
population of serum-starved REF52-d2GFP cells was used for Western Blotting. In
serum-starvation condition (serum=0.02%), Rb phosphorylation at either residue was
negligible. With serum stimulation (serum=10%), a significant increase in Rb
phosphorylation at both residues was observed. For increasing inhibitor drug
concentration, Rb phosphorylation efficiency decreased at the Cdk2-specific residue, but
no significant change was observed at Cdk4-specific residue.
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4.3.3 Simulation and experimental results

Given the bistable switching property of the Myc-Rb-E2F network, we
hypothesized that this network, when subjected to noise, might demonstrate variable
timing in E2F activation, which in turn might account for the temporal variability
observed in the cell cycle entry. This hypothesis is based on the strong correlation we
previously observed between E2F activation and DNA synthesis [53]. Using our
stochastic Rb-E2F model, we predicted temporal dynamics of E2F activation and

validated these predictions experimentally.

4.3.3.1 Modulation of E2F activation by serum stimulation: Simulation results

The fluctuations in the bistable switch result in significant discrepancies between
stochastic and deterministic simulations and the average of the stochastic simulations
significantly differs from the deterministic simulations [87,238,239,240]. Given a set of
initial conditions and parameters in the Myc-Rb-E2F network, the simulated time
courses from a deterministic model are fixed (black line in Figure 4.3), but those from a
stochastic model show drastically variable trajectories (gray lines in Figure 4.3). For
example, the stochastic Rb-E2F model can generate two modes of E2F at the steady-state
when stimulated with weak input as shown in Figure 4.3. We define a switching
threshold that distinguishes the low mode, which corresponds to non-activated

subpopulation of cells, from the high mode, which represents activated populations.
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This threshold (horizontal red line in Figure 4.3) can be used to calculate the percentage
of activated cells over time (or GO exit curve). The minimum time required for E2F to
reach the switching threshold is defined as a switching time (vertical red line in Figure
4.3). Similarly, the deterministic time-courses are fixed and stochastic time-courses show
variable trajectories (data not shown) for strong input, but the distribution E2F activities

exhibits a single mode at the high E2F level, rather than two modes.
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Figure 4.3: Stochastic vs. deterministic Rb-E2F model. The noise in Rb-E2F switch
drives a population of cells (5000 simulations) to two modes (low and high), separated
by a switching threshold (horizontal red line). The minimum time required to reach this
threshold is defined as the switching time (vertical red line). The time evolution is the
same for a given set of parameters in the deterministic model (black line). However, 25
stochastic simulations exhibit variable time delays (gray lines).

Based on our simulations and definitions in Figure 4.3, we obtained GO exit
curves for weak and strong input conditions as shown in Figure 4.4. These GO exit
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curves are analogous to the a-curve in the TP model, which represents frequency
distribution of inter-mitotic times [230]. Both GO exit curve and a-curve can be fitted
with an exponential curve with two parameters (black dotted curve in Figure 4.4):
transition rate (Kr) and time delay (Tor). To estimate Tpp and Ky of a cell population, we fit
the GO exit curve with an exponential function: N(t) = N ,e ™) ; N(t<T,) = N, where

No (=100%) is the initial percentage of cells in GO. Kt and Tpp were defined by minimizing the

root mean square deviation (RMSD) between our data and the exponential function.

The fitting between the GO exit curve and a-curve is possible because both exhibit
an initial time delay followed by an exponential drop [226,229,230]. The transition rate of
the GO exit curve is inversely proportional to the temporal variability of the cell
population. For example, a population of cells with more synchronous E2F activation
E2F would have a higher transition rate than that of a population with less-synchronous
E2F activation. If the cells were fully synchronized, the GO exit curve would have an

infinite transition rate.
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Figure 4.4: GO exit curve. The percentage of GO cells over time (GO exit curve) is plotted
for a population of 5,000 simulated cells stimulated at strong (red line, S = 5) and weak
(blue line, S = 0.5) input concentrations. The GO exit curve for the strong input is fitted
with an exponential function (black dotted line), N(t) = N e "™ ; N(t<Ty,) =N,,
where No (=100%) is the initial percentage of cells in GO0, Kr is the transition rate, and Tor
is the population time delay. The standard error of these estimated parameters can be
approximated with Monte-Carlo standard deviatioin. For increasing input strength, the
transition rate was predicted to increase (Kr = 0.018+0.0015 hr! for weak input and Kr=
0.19 £0.018 hr for strong input) and the time delay was predicted to decrease (Tor =
11.0£1.2 hours for weak and Tor =8.3+0.48hrs for strong input).
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Our simulated E2F activation dynamics in Figure 4.4 predict serum-dependence
of transition rate and time delay. For a weak input (Kr = 0.018+0.0015 hr-'and Tor =
11.0+1.2 hrs, blue line in Figure 4.4), most cells were expected to remain inactivated and
the percentage of GO0 cells would decrease slowly. This is because the impact of noise
acting on the Rb-E2F bistable switch was significant enough to activate E2F in some cells,
but not in other cells. This would lead to a bimodal distribution of E2F activity (Figure
4.5), which is consistent with previous experimental observations in mouse fibroblasts

[228,241,242].
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Figure 4.5: Simulated temporal dynamics of E2F activation. The Rb-E2F bistable switch
was stimulated with weak (5=0.5) and strong (5=5) input strengths. E2F distributions
from 5,000 simulations were sampled at various time points for both conditions. For
weak input strength, bimodality was predicted to emerge at around thel6 hour. At
strong input strength, however, bimodaity was expected to be less clear.

In contrast, the impact of noise was negligible with strong input and all cells
were predicted to be activated at high transition rate (Kr=0.19 £0.018 hr' and Tor
=8.3+0.48 hrs, red curve in Figure 4.4). The selective response of the Rb-E2F bistable
switch to noise would cause an increase in Kr with increasing input strength as the

population moves from bimodal distribution to monomodal distribution at the high
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mode (Figure 4.6A). At sufficiently high input strength, further increase in input
strength may have negligible effect on Kr. In contrast, Tor may decrease with increasing

input strength and reach a plateau at sufficiently high input strength (Figure 4.6B).
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Figure 4.6: Dependence of Kr and Tor on input strength. A) Kr was predicted to
increase with increasing input strength and reach a plateau at sufficiently strong input.
B) Tor was predicted to decrease with increasing input strength. Here, the error-bars
represent the standard error of the estimated parameters (Kr and Tor) approximated
with the Monte-Carlo standard deviation.

The dependence of Kr and Tor on input strength can be recapitulated with a
minimal bistable model (Figure 4.7). Similar to our simulation results with the full Rb-
E2F model, our minimal model predicted increase in Kr and decreasing Tor with
increasing input strength. This suggests that the dependence of Kr and Tor may be an

intrinsic property of the bistable switch.
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Figure 4.7: Dependence of Kr and Tor on input strength in a minimal model. A) A
minimal model was used to recapitulate the temporal dynamics of the bistable Rb-E2F

2
switch. The model describes activity of a molecule X: ax = [S] kaz[X] - |—[XT,
drt 1+[S] N [X]" +K

where S is the input strength, ka (=1) is the lumped rate term for synthesis and feedback
strength, and K (=0.15) is a dimensionless Michaelis-Menten constant. This minimal
model was converted to a stochastic model using the chemical Langevin formulation.
The transition rates were calculated for cell populations stimulated at various input
strengths. The transition rate increased with input strength and reached a plateau at
sufficiently high input strength. B) In the minimal bistable model, the time delay

decreased with increasing input strength and reached a plateau at sufficiently high input
strength.

4.3.3.2 Modulation of E2F activation by serum stimulation: Experimental validations

To validate our model predictions, we measured E2F activation using E2F-
d2GFP cells [53] stimulated with various serum conditions. Prior to serum stimulation,
the REF52-d2GFP cells were synchronized at quiescence by serum-starvation (0.02%
bovine growth serum, BGS) with basal E2F-GFP expression (Figure 4.8). Upon weak
serum stimulation (0.3% BGS), E2F activation was rather stochastic and only a

subpopulation of the cells switched to the high E2F mode over time. At earlier time
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points (0~15% hour), the difference in E2F level between the non-activated and activated
cells was small. The difference between the two modes became increasingly clear,
resulting in distinctive bimodality starting at 18" hour. In contrast, upon strong serum
stimulation (5% BGS), E2F activation was more synchronous. The cell population
gradually switched to the high mode with greater temporal synchrony without
demonstrating detectable bimodality at any time point (Figure 4.8). It is possible that
noise may partition the cell population into two subsets (active and inactive towards
proliferation) temporarily even at high serum stimulation. However, simulations
suggest that accumulation of E2F in the activated cells at earlier time points may not be

significant enough to result in detectable difference between the two subsets (Figure 4.5).
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Figure 4.8: Experimental E2F distributions at varying MOISs over time. The temporal
dynamics of a cell population depends on serum concentration. At 0" hour REF52-
d2GFP cells were synchronized in quiescence by serum-starvation (24 hours at 0.02%
bovine growth serum, BGS). These cells were then stimulated with either 0.3% or 5%
serum, and corresponding E2F levels were determined by flow cytometry. The cell
population treated with 0.3% serum exhibited bimodal distribution of E2F at the steady-
state. In contrast, monomodal distribution was observed at the steady-state in the cell
population treated with 5% serum.
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Based on the distribution of E2F in Figure 4.8, we calculated the percentage of
non-activated cells and obtained a GO0 exit curve for each serum condition (Figure 4.9A).
Consistent with predictions in Figure 4.4, we observed an increase in Kr and decrease in
Tor for increasing serum concentration (Kr = 0.021+0.0063 hr' and Tor = 5.5+1.2 hours at
0.3% serum and Kr = 0.16+0.018 hr' and Tor = 3.9+0.72 hours at 5% serum), reminiscent
of modulation of the a-curve by serum [226,230]. An independent experiment under the
same conditions on a different day exhibited similar dependence of Kr and Tor on serum
(Figure 4.9B). Consistent with our predictions in Figure 4.6, we observed initial increase
in Kr, followed by a plateau, and decreasing Tor for increasing serum concentrations

(Figure 4.10).
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Figure 4.9: Experimental GO exit curves. The thresholds shown as dotted blue lines in
Figure 4.8 were used to calculate the percentage of cells in the low mode of E2F. The two
GO exit curves showed that transition rate increased (Kr = 0.021+0.0063 hr! at 0.3% serum
and 0.16+0.018 hr! at 5% serum) and time delay decreased (Tor = 5.5+1.2 hours at 0.3%
and 3.9+0.72 hours at 5% serum) with serum concentration. B) GO exit curves for an
independent set of experiments

104



0.15 - 15
A B
;: 01 | gu” ' = 10 -
= | 005 - L | 5-
oo o
¥ | O = | 0
0 5 10 0 10
Serum (%) Serum (%)
0.2 - 10 ~
C 0.15 | D
——
"': 0.1 - :E. 5 -
£ 005 a
f 0 = 0
0 2 4 0 2 4
Serum (%) Serum (%)

Figure 4.10: Dependence of Kr and Tor on serum concentrations. A) The transition rate
increased with serum concentration. B) The time delay decreased with serum
concentrations. C-D) the transition rate and time delay for increasing serum from an
independent set of experiments

4.3.3.3 Modulation of stochastic E2F activation by strength of CycE-mediated
feedback: Simulations

The temporal dynamics of biological systems often strongly depend on network
parameters [243], and consequently, the transition rate of cell cycle entry may be

modulated by nodal perturbations. This is exemplified in a recent study on the yeast cell
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cycle [244], which demonstrated that a positive feedback by G1 cyclins is responsible for
temporal coherence in gene expression and proper division timing of the yeast cells.
Loss of this feedback control in the cell cycle machineries was shown to promote
incoherent gene expression and abnormal duration for yeast budding. Interestingly, a
similar feedback module by G1 cyclin (CycE) can be found in the Myc-Rb-E2F network
also, suggesting its possible role in the control of temporal dynamics.

To investigate modulation of the transition rate by nodal perturbations in the
Myc-Rb-E2F network, we introduced in-silico perturbations on one particular node: the
CycE/Cdk2 complex, which forms a positive feedback loop. Our bifurcation analyses
predict that weakening of the CycE-mediated positive feedback loop will desensitize the
Rb-E2F bistable switch to serum stimulation, requiring a higher critical serum
concentration (Figure 4.11) for E2F activation. Similarly, we predict desensitization to

serum when CycD is down-regulated or when Rb is up-regulated (data not shown).
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Figure 4.11: Bifurcation analyses of the Rb-E2F bistable switch for varying strengths
of the CycE-mediated positive feedback. The strength of the CycE-mediated positive
feedback determines the sensitivity of the system to serum stimulation. Bifurcation
analyses of the Myc-Rb-E2F network with weak (Rb phosphorylation rate constant kes =
9, blue), intermediate (krs = 14.4, black), and strong strength (kes = 18, red) of the positive
teedback were performed. For decreasing strength of the positive feedback, the system
became less sensitive to the input strength, requiring greater critical input strength for
E2F activation.

Such desensitization of the network to serum is expected to modulate the
temporal dynamics of E2F activation. When the positive-feedback strength by CycE is
weakened, our simulations in Figure 4.12 (corresponding simulated distributions in
Figure 4.13) predicted increase in the time delay and decrease in the transition rate. For
strong feedback strength, Kr was estimated to be 0.35 hr'. This value was reduced to
0.19 hr' and 0.14 hr! for intermediate and weak feedback strength, respectively. In

contrast, Tor for strong feedback input (=4.4 hours) was predicted to increase to 7.6
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hours for intermediate feedback strength, and further extend to 11.4 hours for weak
feedback strength. Similar dependence of Kr and Toron the feedback strength was

predicted for all serum concentrations (Figure 4.12 B and C).
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Figure 4.12: Predicting temporal dynamics of E2F activation under varying feedback
strengths. A) The temporal dynamics can be modulated by adjusting the feedback
strength. At the saturating input level (S = 10), the Rb-E2F switch was subjected to
varying degrees of feedback strength mediated by CycE. GO exit curves from 5,000
simulations were constructed for strong (red line, krs = 18), intermediate (black line, krs =
14.4), and weak (blue line, kr« = 9) feedback strengths. For decreasing strength of the
positive feedback, our simulation predicted decrease in the transition rate (Kr =
0.20+0.023 hr for strong, 0.17+0.016 hr' for intermediate, and 00.14+0.0084 hr! for weak
teedback strength), and increasing the time delay (Tor = 7.8+0.52 hours for strong
feedback, 9.0+0.51 and 11.6+0.40 hours for intermediate and weak feedback strength,
respectively). B) Increase in Kr for increasing strength of the positive-feedback was
predicted for all input strengths. C) Decrease in Tor for increasing strength of the
positive feedback was predicted at all input strengths.
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Figure 4.13: Predicted modulation of the temporal dynamics of E2F activation.
Temporal dynamics of E2F activation were simulated at varying input strengths (weak
- 5=0.5, intermediate = S =1, and strong > S = 5) and varying CycE-mediated positive
feedback strengths (strong=> kes=18 and weak = krs=9). With strong positive feedback
(PFB), bimodality was predicted for weak input while monomodality (E2F ON) was
predicted for intermediate and strong stimulations. With weak positive feedback,
however, the percentage of E2F activation was predicted to decrease for weak and
intermediate input strengths. For strong input, however, the effect of the positive
feedback strength was minor.
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4.3.3.4 Modulation of stochastic E2F activation by strength of CycE-mediated
feedback: Experimental validations

To test these predictions experimentally, we perturbed the Myc-Rb-E2F network
by applying varying concentrations of a cyclin-dependent kinase inhibitor (Cdk2
inhibitor III). In the context of the current study, which focuses on the dynamics leading
to E2F activation, the impact of the Cdk2 inhibitor is primarily the inhibition of the
CycE/cdk2 complex. However, we note that the inhibitor would also affect other
components of the cell cycle regulation that were not considered in the model (i.e.
CycA/cdk2 complex). When the CycE node was perturbed experimentally, we observed
inhibitor dose-dependent changes in the steady-state dynamics of E2F activation. As
shown in Figure 4.14A, increasing dose of the inhibitor drug reduced the percentage of
cells at high E2F mode at the steady-state (24" hr), consistent with our bifurcation
analysis in Figure 4.11A. For example, without the Cdk2 inhibitor, 1% serum was
required for E2F activation in half of the cell population. At 2uM of the drug, Cdk2
inhibitor, 2% serum was required to achieve the same fraction of E2F activation. Such
desensitization to serum stimulation was true for all drug concentrations tested (Figure

4.14).
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Figure 4.14: Fraction of activated E2F in a cell population under varying inhibitor
drug strength and serum concentrations. E2F activity was measured at the steady-state
in response to varying concentrations of the Cdk2 inhibitor and serum. The fluorescence
level was quantified by flow cytometry. For each serum and inhibitor drug condition,
the fraction of cells athigh E2F mode was determined at 24 hour. For each serum
concentration, increasing drug dose led to a decreasing fraction of cells at high E2F
mode.

Next, we tested modulation of temporal dynamics by the Cdk2 inhibitor. At 2%
serum, we applied Cdk2 inhibitor IIT (2 uM) to monitor its effect on E2F activation over
time. Our results in Figure 4.15A show that the transition rate of the cell population
decreased (from Kr = 0.066+0.013 to 0.022+0.0091 hr!) and time delay increased (from Tor
= 8.7+1.2 hrs to Tor = 4.7+2.8 hrs) with addition of the inhibitor drug. Such decrease in Kr

with the inhibitor drug is consistent with our model predictions in Figure 4.12, and was
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observed for all serum concentrations, as shown in Figure 4.15B (distributions of E2F in
Figure 4.16). As predicted, time delay generally decreased with serum concentrations

and it increased in the presence of the inhibitor drug (Figure 4.15C).
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Figure 4.15: Temporal dynamics of E2F activation under drug treatment. A) The
temporal dynamics of E2F activation is altered when CycE-mediated positive feedback
is weakened. At 2% serum, we applied Cdk2 inhibitor III at 2uM (blue curve) and
monitored the effect on E2F activation over time by flow cytometry. Compared to the
case without drug (red curve), the transition rate decreased from 0.06+0.013 to
0.022+0.0091 hr'! and the time delay increased from 4.7+2.8 to 8.7+1.2 hours. B) Targeting
the CycE-mediated positive feedback modulates the transition rate. For a given drug
dose, time-courses of cell populations treated with varying serum concentrations were
obtained and the transition rate was calculated for each serum condition. The transition
rate increased with serum concentration in the presence or absence of the inhibitor drug.
With the addition of the inhibitor drug, the transition rate decreased for all serum
concentrations. C) Time delay decreases with increasing concentration in the presence or
absence of the drug. D-E) transition rate and time delay for an independent set of
experiments in the presence (blue line) and absence (red line) of the Ckd2 inhibitor drug.
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Figure 4.16: Experimentally measured E2F time courses for varying serum
concentrations, in the absence or presence of Cdk2 inhibitor (at 3uM). At 0t hour
REF52-d2GFP cells were synchronized in quiescence by serum-starvation (24 hours at
0.02% serum), stimulated with varying serum concentrations (with or without Cdk2
inhibitor), and measured for GFP by flow cytometry at the indicated time points.

4.3.3.5 Mapping simulated stochastic E2F activation into TP and GC model

Throughout this study, we have analyzed the temporal dynamics of E2F
activation by extracting a set of parameters defining the TP model (transition rate and

time delay). This parameter extraction establishes a connection with the mechanistic Rb-
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E2F model. Similarly, the GC model parameters (growth rate rand its variance) can be
extracted from the stochastic dynamics of E2F activation, and a connection between the
GC model and the mechanistic Rb-E2F model can be established, as shown in Figure
4.17. Our results predicted increasing growth rate (Figure 4.17A) and decreasing
variance of the growth rate (Figure 4.17B) for increasing input strength. However,
decreasing the strength of the positive feedback mediated by CycE was predicted to
reduce growth rate without affecting its variance. Such parameter extraction of
parameters defining the phenomenological models provides a quantitative mapping

between the phenomenological models and the mechanistic Rb-E2F model.
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Figure 4.17: Mapping the stochastic dynamics of E2F activation with the GC model.
Simulation results from the stochastic Rb-E2F model are fitted with the GC model with
two parameters (adapted from the G-rate model [231]), which is defined as

T =1/X, where X ~ N(r,0) . ris the mean growth rate over the entire cell population

(A) and o is the standard deviation of the growth rate (B). The two parameters of the GC
model were estimated by assuming that X is a random variable from an inverse-gamma
distribution. The standard errors of these estimated parameters were approximated with
Monte-Carlo standard deviation. Our simulations predicted increasing growth rate for
increasing input strengths and positive feedback strengths (krs=9, 14, and 18 for blue,
black, and red lines, respectively). No significant change in the variance was predicted.

4.4 Discussion

Focusing on E2F activation, we show that the temporal variability in cell cycle
entry from quiescence can be quantitatively modeled by the stochastic activation of the
bistable Rb-E2F switch [230]. In addition, we show that the degree of such variability can
be modulated by varying the input strength or by perturbing the network parameters.

Our model predictions are overall consistent with experimental measurements.

In particular, our analysis indicates that serum and the Cdk2 inhibitor drug exerts
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opposite influences on the temporal dynamics of E2F activation: transition rate increases
and time delay decreases with increasing serum, but transition rate decreases and time
delay increases with increasing Cdk2 inhibitor concentrations. We suggest that such a
well calibrated stochastic Rb-E2F model may guide further experimental analysis to gain
insights into the systems dynamics underlying cell cycle entry. For example, our model
predicts that reducing the CycD/Cdk4,6 activity may have similar effects as the Cdk2
inhibitor, while knocking down Rb may increase transition rate (data not shown). In
addition, we can predict population dynamics of E2F activation under combinatorial
perturbations including growth factors, inhibitor drugs targeting the Myc-Rb-E2F
network, or mutations within this network.

Equally importantly, we further show that these predicted stochastic dynamics
of the Rb-E2F model can be quantitatively mapped into two lines of phenomenological
models reflecting seemingly conflicting views: the TP model and the GC model. For a
given set of parameters defining the stochastic model, the simulated stochastic E2F
activation at the population level can be uniquely described by a set of parameters
defining the TP model or the GC model (Figure 4.12 and Figure 4.17). Furthermore,
different sets of parameters in the stochastic model would lead to different parameters
in the TP or the GC models. We propose that this mapping provides a simple conceptual
framework that reconciles the different views reflected in the TP and GC models, which

have been a source for an unresolved debate over the last several decades. In other
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words, the stochastic model can be considered as a common mechanistic base for the
two seemingly different models.

Throughout this study, we have focused on a single transition during the cell
cycle progression (quiescence to proliferation) due to its experimental and
computational tractability. To further simplify analysis, we have chosen not to model
cell division or growth explicitly. Instead, the variability associated with these processes
is lumped into the extrinsic noise terms in our SDE model. More explicit mechanisms to
account for such variability may further improve the quantitative agreement between
the modeling and the experiment. For example, our simulation results suggest that E2F
activation depends on both stochasticity in the chemical reactions and variability in the
initial conditions. This is evident when E2F activation dynamics were compared under
two conditions: varying initial conditions (Var) and varying amplitude of the extrinsic
noise (w) in the stochastic model. At a fixed amplitude value of the extrinsic noise,
increasing variability in the initial conditions (modeled as a Gaussian distribution of the
mean being the base initial conditions and varying level of standard deviation) is
predicted to decrease transition rate and time delay (Figure 4.18A-B). Similarly,
increasing w without any variability in the initial conditions (Var=0) is predicted to
decrease transition rate and time delay (Figure 4.18C-D). Therefore, the impact of the
variable initial conditions and extrinsic noise on variable cell cycle entry timing is

similar. Interestingly, our simulation results predict greater change in the temporal
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dynamics in E2F activation by extrinsic noise than by variability in the initial conditions.
These suggest that the major source of temporal variability in cell cycle entry is extrinsic
noise, but variability in the initial conditions also can lead to discernable change in the
temporal dynamics of E2F activation. Such dependence on initial conditions may explain

reduced time delay in actively growing cells compared to that in quiescent cells [229].
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Figure 4.18: Variability in the initial conditions vs. in the rates of the chemical
reactions. The effects of variability in the initial conditions and in the rates of the
chemical reactions were evaluated on the temporal dynamics of E2F activation. With all
else the same, our simulation results predicted that transition rate (A) and time delay (B)
would decrease significantly with increasing w. To describe variability in the initial
conditions, we assumed that the initial concentrations were Gaussian-distributed with
the mean being their base value and varying variance values. At a fixed extrinsic noise
amplitude, our simulation results predicted that transition rate (C) and time delay (D)
would decrease slightly with increasing variance of the initial conditions. Overall, the
activation dynamics of E2F is much more sensitive to changes in extrinsic variability
than those in the initial condition.
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During the mapping from our stochastic model to the TP or GC models, details
associated with individual signaling reactions are necessarily lost in the resulting TP or
GC models, pointing to their limitations in offering mechanistic insights. However, this
mapping suggests a potential, unappreciated utility of the TP or GC models. On one
hand, these phenomenological models are simple and are able to provide quantitative
description of the population-level dynamics associated with variable cell cycle entry.
On the other, specific changes in the underlying reaction networks can be manifested in
changes in the parameters in these simple models. As such, together with a
mechanistically based model, the TP and GC models can serve as a concise platform to
define quantitative phenotypes that facilitate classification of cell types or cell states.

This utility may be particularly useful for cancer diagnostic, since most cancers
have defects in the Myc-Rb-E2F signaling pathway [173,245]. Recent approaches for
cancer classification involve microarray-based gene expression profiling to develop
cancer signatures [246], which have been used to reveal activation status of oncogenic
signaling pathways [247]. Here we suggest that oncogenic phenotypes resulting from
deregulation in these pathways may also serve as cancer signatures. Using the mapping
technique defined in this work, a correlation may be established between the temporal
dynamics of a cancer cell under various conditions and the library of predicted
phenotypes based on the Myc-Rb-E2F network. This correlation may be used to reveal

activation status of the Myc-Rb-E2F network. With sufficient number of testing
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conditions, such correlation may be used to identify the underlying mechanism for the

observed patterns (i.e. mutations in this network).
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Chapter 5: Sensing and integration of Erk and PI3K
signhals by Myc

In Chapter 5, we study post-translation regulation of Myc, a important
transcriptional factor in multiple cell-fate decisions, including proliferation, growth and
apoptosis. To maintain a normal cell physiology, it is critical that the control of Myc
dynamics is precisely orchestrated. Recent studies suggest that such control of Myc can
be achieved at the post-translational level via protein stability modulation. Myc is
regulated by two Ras effector pathways: the extracellular signal-regulated kinase (Erk)
and phosphatidylinositol 3-kinase (PI3K) pathways. To gain quantitative insight into
Myc dynamics, we have developed a mathematical model to analyze post-translational
regulation of Myc via sequential phosphorylation by Erk and PI3K. Our results suggest
that Myc integrates Erk and PI3K signals to result in various cellular responses by
differential stability control of Myc protein isoforms. Such signal integration confers a
flexible dynamic range for the system output, governed by stability change. In addition,
signal integration may require saturation of the input signals, leading to sensitive signal
integration to the temporal features of the input signals, insensitive response to their
amplitudes, and resistance to input fluctuations. We further propose that these
characteristics of the protein stability control module in Myc may be commonly utilized
in various cell types and classes of proteins. The work in this chapter appears in PLoS
Computational Biology, 2008 Feb; 4(2): e1000013 [53].
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5.1 Introduction

The proto-oncogene Myc is a transcription factor that regulated numerous
signaling pathways involved in cell-fate decisions [248,249,250,251,252]. In fact, Myc is
known to coordinate two coupled but distinct processes [253] (Figure 5.1): cell
proliferation, a discrete process initiated by DNA synthesis as outlined in Chapter 3 and
cell growth, a continuous process characterized by accumulation of mass.
Disengagement of this coupling by disrupting Myc function or by interfering with either
pathway will cause abnormal phenotype in cell cycle process [254,255]. In addition,
excessive accumulation of Myc can induce apoptosis [256,257] when cell are under
stress or deprived of growth factors. In this chapter, we discuss how Myc is tightly
controlled in response to different environmental cues, which may provide insights into

coordination of multiple cell-fate decisions.
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Figure 5.1: Myc’s role in coordination of cell growth and proliferation by relaying
signals from Ras (adapted from [147]).

5.2 Background:

5.2.1 Modulation of the Myc-Rb-E2F signaling pathway by Ras

Dynamics of the Myc-Rb-E2F pathway is known to be influenced by many

signaling components, one of which is a proto-oncogene Ras. Activation of Ras signaling

pathways is essential for cells to leave a quiescent state and to progress through Gl

phase of the cell cycle. Based on experiments in cells expressing wild-type or mutant Rb,

a primary role for Ras in G1 progression is to inactivate Rb through the activation of G1
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Cdks [258,259]. This has been shown to occur through the stimulation of Cyclin D
transcription as well as increases in the Cyclin D/Cdk4 kinase activity [260,261]. Three
Ras effector pathways, the Raf-MEK-ERK cascade, PI3-K signaling, and Ral activation
are all involved in stimulating Cyclin D gene transcription, with maximal stimulation
requiring the co-operative action of several pathways [262]. In addition, PI3-K/AKT
signaling, via inhibition of glycogen synthase kinase (GSK-3), increases the stability of
Cyclin D [263].

Ras activation has been shown to down-regulate the cyclin-dependent kinase
inhibitor p27kipl, resulting in the activation of Cyclin E/Cdk2 [264]. The down-
regulation of p27 involves both ERK and PI3-K effector signaling pathways, and it is
associated with a decrease in the rate of p27 translation, stability, and association with
Cyclin E/Cdk2. This effect is essential for Ras-mediated entry into S phase [265]. Ras, via
Raf, has also been reported to activate the Cdc25A phosphatase that removes inhibitory
phosphates from Cdk2 and Cdk4 contributing to their activation [266]. Adding to the
complexity, Ras also stimulates transcription of the cyclin-dependant kinase inhibitor
p21 and p16INK4a, which may underlie the ability of Ras to induce cellular senescence

[267].
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5.2.2 Myc modulation by Ras via the Erk and PI3K signaling pathways

Ras activation is essential in collaborating with Myc to mediate serum stimulated
cell proliferation, as well as oncogenesis. On one hand, Ras signaling stabilizes the Myc
protein and increases the accumulation of functional Myc transcriptional factor in the
cell [200,201,202]. It has been shown that serum-induced increase in Myc protein half-life
depends on Ras activation. On the other hand, the activation of PI3-K/AKT signaling in
Ras pathway provides a critical survival signal, which counteracts the Myc-induced
apoptosis effect that prevents the outgrowth of a cell population [268]. Taken together,
these data suggest a central role of Ras in modulating the dynamics of Myc-Rb-E2F
pathway.

Interestingly, recent discoveries indicate that Myc is dynamically regulated at
the protein level by the Ras effector pathways [200,201,202,269]. These discoveries
suggest that Myc protein undergoes a series of modifications that are sequential and
irreversible [147,200,201,202,270]. More specifically, when Myc is newly synthesized, it is
highly unstable and quickly undergoes ubiquitination and degradation [271]. It can be
substantially stabilized when phosphorylated at serine 62 (Ser62) by Ras-activated Erk
activity (Figure 5.2). Subsequent phosphorylation of Myc at threonine 58 (Thr58) by
Gsk3, however, initiates a destabilization process in a sequential manner. This is

achieved by a dephosphorylation mechanism by a prolyl isomerase Pinl and a protein
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phosphatase PP2A. Once Myc is phosphorylated at Thr58 (MycSer>™38), Pin] induces it
to undergo conformation changes, which are required for PP2A to dephosphorylate the
Ser62 residue (Myc™3#) [200]. To date, this is the only dephosphorylation mechanism
identified in the Myc stabilization processes. Destabilization of Myc by Gsk3 can be

blocked by the Ras-activated PI3K pathway (Figure 5.2).
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Figure 5.2: Post-translational of Myc by the two arms of Ras signaling. Stimulation
with growth factors (GF) leads to activation of Ras and Myc synthesis. Active Ras
induces activation of its downstream effector pathways: the MAPK and PI3K pathways.
While the synthesized Myc is unstable with short half-life, its stability can be
significantly increased via the Ras effector pathways. Active Ras induces Erk that
stabilizes Myc by phosphorylation at Ser62. PI3K activation blocks Myc degradation by
inhibiting phosphorylation at Thr58 by Gsk3p. As Ras activity declines, Gsk3p initiates
phosphorylation of Myc at Thr58 and triggers degradation. Phosphorylation at Thr58
requires prior phosphorylation at Ser62, and phosphorylation at Thr58 induces
dephosphorylation at Ser62.
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The unique control of Myc dynamics by sequential phosphorylation allows Myc
to integrate upstream signals from Erk and PI3K, which play critical roles in controlling
diverse cell fates [200,272,273]. Erk often exhibits an early, transient peak of activation
upon growth stimulation (Table 5.1). The peak is followed by varying residual activities,
which depend on cell lines and growth factors. This residual Erk is critical in
downstream signal encoding. For example, in PC12 cells, a small residual Erk activity, as
a result of epidermal growth factor (EGF) stimulation, leads to proliferation. In contrast,
a high residual Erk activity as a result of nerve growth factor (NGF) stimulation in the
same cell line leads to differentiation [13,274] The residual Erk level has also been

observed to be critical in regulating c-Fos level in fibroblasts [275].

Table 5.1: Erk signal pattern

(Transient strong activation followed by varying residual levels)

Cell Line Growth Factor Cell outcome References
PC12 EGF Proliferation [13,274]
PC12 NGF Differentiation [13,274,276]

CCL39 Thrombin Proliferation [277]

Swiss 3T3 PDGF Proliferation [275]

Swiss 3T3 EGF No proliferation [275]

The PI3K activation pattern depends on cell lines and stimulants, as detailed in
Table 5.2. It is bimodal (having two peaks) in various cell lines including WI38, NIH 3T3,
or HepG2 when stimulated by platelet-derived growth factors (PDGF) or fetal bovine
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serum (FBS) [270,278,279]. In contrast, PI3K appears to have only an early, transient
single peak in the U-20S or PVSM cell lines stimulated with other growth stimulants
[278,280]. The bimodal activation of PI3K has been shown to be important for cell cycle
regulation [279,281,282]. In particular, the second peak has been found sufficient and

critical to drive the G1/S transition during cell cycle [270,281].

Table 5.2: PI3K signal pattern

Cell line | Growth Cell outcome Inter-peak References
Factor delay (hrs)
Single PVSM PDGF Proliferation or | N/A [280]*
peak migration
PVSM TGFa Proliferation N/A [280]*
PVSM Thrombin | Proliferation N/A [280]*
U-20S FCS Proliferation N/A [278]
Double NIH 3T3 | FBS Proliferation 8 [270]
peaks HepG2 PDGF Proliferation 5 [279]
WI38 PDGF Proliferation 3 [278]

* Experimental observations were made only for the first three hours after stimulation. It
is possible that cells exhibit a second round of PI3K activity when measured for a longer
time under these conditions.

The temporal pattern of Myc activation closely correlates with those of Erk and
PI3K (Table 5.3). Myc protein reaches its peak at ~2 hours after growth stimulation and
decreases to and remains at an intermediate value, or hump, for over ~6 hours before

reducing to its basal level [270,283]. The peak and the hump of Myc coincide with the

Erk peak (also the 1%t PI3K pulse) and the 2n PI3K pulse, respectively. These
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observations suggest that Myc may sense and integrate signals from its two regulators

(Erk and PI3K).

Table 5.3: Myc signal pattern

Cell Line Growth | Cell outcome | Inter-peak delay | References

factor (hrs)
Two peaks NIH 3T3 FBS Proliferation | 8 [270]
Overlapping | Primary FBS Proliferation | N/A [283]
peaks Human
Fibroblast

5.3 Mathematical Analysis of post-translational regulation of Myc
by Erk and PI3K

To gain insight into this control mechanism, we have constructed a
mathematical model to analyze dynamics of Myc accumulation, controlled by sequential
phosphorylation. Using this model, we aimed to investigate how signaling patterns of
Erk and PI3K regulate Myc dynamics at the post-translational level. Also, how robust is
Myc dynamics with respect to network parameters, such as phosphorylation and
dephosphorylation rate constants? What is unique about this strategy of controlling Myc
accumulation by sequentially modulating protein stability? Is this a common strategy by
which cells achieve reliable temporal control of key regulatory proteins? By exploring
these questions, we provided insights into design features of cell signaling networks and

guidance for experimental intervention. Conceptually, our model defines a unique
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module that connects with other models that deal with upstream signaling dynamics
leading to the activation of Erk [13] or PI3K [284,285], as well as downstream dynamics
leading to mammalian cell fate decisions [175,177,286], including cell proliferation
governed by the Myc-Rb-E2F signaling pathway. We further propose that post-
translation regulation of Myc represents an example of a generic dual-kinase motif. With

appropriate parameters, this motif will enable precise temporal sensing of input signals.

5.3.1 Construction of the mathematical model: the post-translational
control of Myc accumulation

Based on the reaction network outlined in Figure 5.3, we developed a kinetic
mathematical model in Dynetica, a graphics-based, integrated simulation platform [76].
Most of reaction mechanisms and base model parameters were derived from
experimental results in mouse or human cells. Others were carefully obtained or
estimated from previous theoretical studies [14,209,287]. We simplified the model by
lumping the sequential destabilization processes together into the phosphorylation rate
constant for Myc™3. This simplification was based on the observation that Pin1 and
PP2A activation is not rate-limiting during cell cycle entry [288,289]. Explicitly
accounting for the sequential events by Pinl and PP2A did not have significant impact
on Myc accumulation. In addition, we assumed that the change in transactivation
capacity due to stability control [200] is not significant, since Myc5? is much more

predominant than Myc™8, Based on experimental data, we assumed phosphorylation of
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Myc at Ser62 or Thr58 to be much more significant than dephosphorylation. This results
in sequential, irreversible Myc stabilization. However, we accounted specifically for the

differential degradation dynamics of protein isoforms in this model.
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Figure 5.3: Detailed reaction diagram for Myc protein stabilization.

To establish a framework that facilitates investigation of Myc modulation by its
upstream signals, Erk and PI3K, we built the model with Erk and PI3K as the inputs and
Myc as the output. Despite the extensive interactions between the MAPK and PI3K
pathways, we decoupled Erk and PI3K signals and simplified them as a single or double

rectangular pulses, respectively. Such decoupling of these signals was driven by the
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objective of our study: to characterize Myc’s response to various input signal patterns.
Since activation of Erk and PI3K is specific to cell lines and stimulants (as shown in
Table 5.1and Table 5.2), and is mediated by multiple signaling pathways including Ras,
Rac, or Rap [290,291,292,293], it is not clear to what extent these signaling pathways
contribute to Erk and PI3K activation patterns. Furthermore, the Erk and PI3K pathways
that control Myc protein turnover are a conserved motif found in both mammalian and
yeast systems and such control motif has been speculated in many other protein
stabilization processes [269]. In many of these processes, input signals are not triggered
by a single protein. To set up a framework for a more general Myc stabilization process,
we decoupled the two signals from each other and from their upstream network
regulation and assumed their effects on Erk and PI3K in the decoupled inputs. This
allowed analyzing Myc’s response to variations in Erk and PI3K independently.

Based on experimental observations, we approximated input signals as
rectangular pulses with three parameters: duration, the maximum level, and the residual
level. To describe two-peak PI3K activation, we introduced another parameter, inter-
peak delay. More sophisticated representations (for example, sinusoidal pulses) give
similar results (data not shown). Although we focused on the two-peak activation of
PI3K in the base model, the modeling framework can be extended to study other
patterns of PI3K signals (such as a single peak pattern) by varying duration, steady-state

values, or inter-peak delay.
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Table 5.4: Reaction Kinetics

Index | Reaction Kinetics Description
1 * S 5 Myc ku[GF] Synthesis of Myc
2 Akt&)Aktp Kap [P13KTAKt] Akt
K HAKt] phosphorylation
3 Akt, —— Akt Kap [AKL, ] Akt
K o +[Akt,] dephosphorylation
p
4 Gsk3p—"—Gsk3p, kep[Akt, ][Gsk3 ] Gsk3p
Kgp +[Gsk3/3] phosphorylation
5 Gsk3pB, ——>Gsk3p Kep[GSk34, ] Gsk3p
Koo +[Gsk323,1 dephosphorylation
6 Myc—EX— Myc™"®? Kys [Erk][Myc] Myc
Kus +[Myc] phosphorylation at
Ser62
7 MyCSer62 Gsk3f s MyCThr58 kMT [GSk3ﬂ][MyC5er62] Myc
K,r +[Myc® ] phosphorylation at
Thr58
8 Myc——* d,, [Myc| Unstable Myc
Degradation
9 |\/|yCSer62 d,, [Myc > %] MycSer62
degradation
10 MyCThI’SS __)* dMT [MyCThI’SS] MYCThr58
degradation
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Table 5.5: Base model parameters and notes

Rate Constants | Values Source

ke 1 /hr Constrained by [283]

Erkmax" 1 /hr Constrained by [13]

PI3Knmax™ 1 /hr Constrained by [279]

kap 360 / hr Typical value phosphorylation rate constant
is 3600/hr [209]

Kar 0.01 uM Typical value for Michaelis-Menten (MM)
parameter for phosphorylation is 0.01 uM
[209]

kap 72 uM / hr Typical value dephosphorylation rate
constant assuming a constant phosphatase
concentration is 720 uM/hr [209]

Kap 0.01 uM Typical value for MM parameter for
dephosphorylation [209]

kep 360 / hr Typical value phosphorylation rate constant
is 3600/hr [209]

Ker 0.01 uM Typical value for MM parameter for
phosphorylation [209]

kep 72 uM / hr Typical value dephosphorylation rate
constant assuming a constant phosphatase
concentration is 720 uM/hr [209]

Kep 0.01 uM Typical value for MM parameter for
dephosphorylation [209]

kms' 2.3 /hr These values are adjusted together so that

Kuwms 0.01 uM / hr (@) The peak level is at least 3 time

kmr 0.4 /hr s higher than the basal level.

Kumr 0.01 uM / hr (2) The level of the second hump i

s about 60 % of the peak level
[283]

dm 2.08 / hr [202,294]

dms 0.35/hr Myc’s half-life is increased by 6fold upon
phosphorylation at Ser62 [202,294]

dmr 2.08 / hr Assumed to be the same as du
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Table 5.5: Continued

Initial Akt =0.6 uM and initial Gsk33 = 0.6 pM.

Erkr:Residual Erk level. Adjusted to 10 percent of the maximal Erk level. To reflect
experimental observations in our model, residual Erk level is required. Without Erkg,
our model cannot generate the second peak of Myc activity.

PI3Kr: Residual PI3K level. Adjusted to 10 percent of the maximal PI3K level.

" Erkmax and kms together represent Erk’s phosphorylation efficiency of Myc at Ser62. If
kwms[Erkma] is sufficiently large, our model can generate the initial peak of Myc activity as
observed in [283]. Further increase in kums[ Erkmax] does not significantly change the initial
peak of Myc activity, suggesting that Erk’s phosphorylation efficiency is operating at
saturation.

" Prevention of Myc destabilization by Gsk3p depends on PI3K’s ability to inhibit Gsk3
activity. A sufficiently strong PI3K pulse is needed to prevent Myc from destabilization
and to generate the second round of the Myc accumulation.
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Due to lack of detailed quantitative analysis of the PI3K pathway, many rate
parameters for our modeled reactions are unavailable. To address this limitation, we
have adopted base parameter values that fall into the range of values typically used for
other phosphorylation or dephosphorylation reactions (Table 5.5). In adopting these
parameter values for our system, we made an implicit assumption that different types of
phosphorylation-dephosphorylation (Ph-dePh) cycles share similarity, not only in terms
of the mechanism, but also in terms of parameter values. It is possible that the adopted
base parameter values may differ significantly from the true values. To address this
caveat, we carried out extensive sensitivity analysis to test the impact of the uncertainty
in these parameters. Our results suggest that overall, our conclusions will hold despite
significant changes in these parameters (up to 100fold change for each parameter, while
holding the others constant). Further tests of the modeling predictions against
experiments will help constraining these parameters.

We have used Michaelis-Menten kinetics to model phosphorylation or
dephosphorylation reactions, which is a well-established practice in modeling signaling
pathways [209,287,295,296]. Under certain circumstances, the Michaelis-Menten kinetics
may deviate from true dynamics. Overall, our model predictions on the response of Myc
to varying input signals (Erk and PI3K) have been qualitatively consistent with existing
experimental observations. Due to the lack of quantification of signaling dynamics

leading to Myc activity (especially at the individual reaction level), it is unclear how, at
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the quantitative level, the Michaelis-Menten kinetics may faithfully reflect the
underlying kinetics. If our model’s predictions deviate significantly from more
quantitative experimental observations, it may be necessary to formulate the model
using alternative methods, such as the “total quasi-steady state assumption” (tQSSA)

[297].

5.3.2 Base simulation

The Myc temporal dynamics, simulated with reaction kinetics and base
parameter values in Table 5.4 and Table 5.5, was overall consistent with experimental
observations in Figure 5.4. [281,283]. To achieve this consistency, however, we found
that the input signals Erk and PI3K needed to operate at or close to saturation, and there
needed to be sufficient residual Erk (Erkr) before the second PI3K pulse. In the base
simulation (Figure 5.4), the total Myc (black line) consisted of unmodified, unstable Myc
(blue line), stable Myc>? (red line), and unstable Myc™? (green line). Although
phosphorylation state affects transactivation capacity [200], the contribution from
MycSer2 to total Myc was much more significant than that from Myc™8, Therefore, we
assumed that the overall transactivation capacity of Myc does not change significantly
during Myc modulation. The modification of Myc from its unstable to stable form, then
back to unstable form closely followed Erk and PI3K signals. The first peak of Myc

coincided with the Erk pulse and the first PI3K pulse. After these initial pulses,
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unmodified Myc and Myc*2 recovered to new steady state levels, which depended on
the rate constants of Myc synthesis, phosphorylation, and degradation. Before MycSer®2
reached its new steady state, however, PI3K pulse became activated for the second time
and prevented Myc>2 from converting to the unstable form, sustaining total amount of
Myc at high level. Once the second PI3K pulse subsided, Myc52was turned to Myc™r8
via phosphorylation by Gsk3p. In other words, while Erk and the first peak of PI3K
determine initial Myc accumulation, the second peak of PI3K prevents Myc from

receding to a lower level, thus fine-tuning the Myc level.
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Figure 5.4: Myc protein stabilization. Activation patterns of Erk and PI3K determine
Myc stability pattern. The three forms of Myc are plotted independently. The
unmodified Myc (blue line) and Myc™8 (green line) accumulate only to a limited level,
but stabilized Myc*2level increases via phosphorylation (red line). The total Myc level
is the sum of the three forms of Myc (black line) and its dynamics are highly correlated
with input signals, Erk and PI3K. We define the shaded area under the Myc curve as
‘potency’, a measure of Myc accumulation.

5.3.3 Sensitivity Analysis

As Myc accumulation was determined by conversion between its unstable forms
and stable form, we expected Myc accumulation to depend on the degradation rate
constant of each form. As a quantitative estimate for Myc accumulation, we used Myc

potency [298], the shaded area in Figure 5.4. If Myc became stabilized quickly and
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remained stabilized for an extended period of time, Myc potency would be high. In
contrast, slow stabilization and quick destabilization would yield small potency. To test
these notions, we carried out sensitivity of Myc potency to various parameters. Here,
sensitivity is the amount of change in Myc potency to a 100fold change in each
parameter. To be more specific, we calculated Myc potency for 10fold increase and
decrease in each parameter. Then we took the logarithmic ratio between the largest Myc
potency and the smallest Myc potency. Therefore, the positive values in Table 5.6
indicate logarithmic fold-increase in Myc potency over 100fold parameter change. The
negative values indicate logarithmic fold decrease. Sensitivity of ‘0" represents no

change, and ‘1’ represents 10 fold changes in Myc potency.

5.3.4 Zero-order ultrasensitivity

Our sensitivity analyses in Table 5.6 indicated that Myc potency was highly
sensitive to parameters involved in stabilization of Myc and maintenance of the stable
form. In comparison, other parameters governing the signal transduction in the PI3K
pathway had little impact on Myc potency. In particular, many parameters had little
impact on Myc potency when the input Erk and PI3K signals were strong. For a 100fold
change in each of these parameters, the corresponding change in the potency was less

than 10fold. Many of these are involved in the PI3K signaling cascade. These include the
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Michaelis-Menten (MM) constants for Akt and Gsk3( phosphorylation and

dephosphorylation.
Table 5.6: Parametric Sensitivity
Sensitivity =
o 10[ POENCY,erese j
Parameters POteNCYpecrease
Myc synthesis rate constant (km) 4.57
Myc degradation rate constant (dm) -1.27
Myc5e? degradation rate constant (dms) -0.88
Rate constant for Myc phosphorylation at Ser62 (kwms) 0.88
Rate constant for Myc phosphorylation at Thr58 (kmr) -0.38
Akt phosphorylation rate constant (kar) 0.32
Akt dephosphorylation rate constant (kap) -0.32
Myc™8 degradation rate constant (dwmr) -0.31
Gsk3 dephosphorylation rate constant (kcp) -0.14
Gsk3 phosphorylation rate constant (kcr) 0.14

* Sensitivity to other parameters was equal to or smaller than 0.1. These include ‘"MM
constants for Myc phosphorylation at Ser62 (Kwus) and Thr58 (Kwmr) , Gsk3f3
phosphorylation (Kcr) / dephosphorylation (Kep), and Akt phosphorylation (Kar) /

dephosphorylation (Kab).

The insensitive response of the Myc potency may result from the signaling

transduction in the PI3K pathway operating with zero-order ultrasensitivity [112]

around the base parameter setting, which may confer robustness to random

perturbation in a signaling cascade [299]. That is, each phosphorylation-

dephosphorylation cycle acts as a digital switch in response to changes in kinase and

phosphatase concentrations (Figure 5.5). This switching behavior occurs under the
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following conditions: 1) the phosphorylation and dephosphorylation rates are close to
each other, and 2) the protein concentration is much greater than the MM constants. As
long as parameter changes did not cause loss of ultrasensitivity, the switching behavior

of each stage was not significantly changed (Figure 5.5).
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Figure 5.5: Modeling a phosphorylation-dephosphorylation cycle. An enzymatic
modification cycle of Gsk3 between phosphorylated and dephosphorylated states (A)
is mathematically modeled (B). k and kcr are rate constants for phosphorylation and
dephosphorylation, and K is the Michaelis-Menten constant. Protein conversion is
ultrasensitive near y=1, for a sufficiently small Michaelis-Menten constant. The
sensitivity becomes weaker as K is increased. Time-course simulation results at varying
a values show the dependence of conversion on the rates of phosphorylation and
dephosphorylation (C). Protein conversion becomes ultrasensitive near =1 for a
sufficiently small Michaelis-Menten constant, while the sensitivity becomes weaker as K
is increased.

145



To investigate ultrasensitivity in the PI3K pathway further, we evaluate
contribution of each phosphorylation-dephosphorylation (Ph-dePh) cycle of the cascade
towards overall ultrasensitivity. In particular, we characterize parameter dependence of
ultrasensitivity in each Ph-dePh cycle, and how this affects the cascade’s overall
input/output response. We first start with our base model, where we assume
ultrasensitivity in the Akt (Kap=Kar= K4=0.01) and Gsk3p (Kcp=Kcr=Kc=0.01) Ph-dePh
steps (blue line in Figure 5.6A,B). Consequently, the overall cascade response is
ultrasensitive. When the ultrasensitivity in Akt Ph-dePh step is lost (Ka=1, red line in
Figure 5.6A), the overall cascade response is not significantly affected as long as Gsk3f3
Ph-dePh cycle (Kc=0.01) remains ultrasensitive (Figure 5.6B). When the ultrasensitivity
in Gsk3p Ph-dePh cycle is lost (Kc=1, Figure 5.6C), the overall ultrasensitive response can
be maintained if Akt Ph-dePh cycle is ultrasensitive (blue line in Figure 5.6C).
Otherwise, the overall system response loses ultrasensitivity (red line in Figure 5.6C).
Here we limit our analysis to two extreme cases where ultrasensitivity is present or

absent.
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Figure 5.6: The overall ultrasensitivity arises from the input/output response in each
level and across different levels down the cascade. (A) The Akt Ph-dePh cycle (in
response to PI3K) can be either graded (red line) or ultrasensitive (blue line) depending
on the Michaelis-Menten constants. (B) Both types of PI3K-Akt responses can lead to
ultrasensitive PI3K-Gsk3p responses (both red and blue), if the Akt-Gsk3p response
remains ultrasensitive. (C) If Akt-Gsk3p response is not ultrasensitive, the overall PI3K-
Gsk3p remains ultrasensitive if PI3K-Akt response is ultrasensitive, but may lose
ultrasensitivity if PI3K-Akt response is not ultrasensitive. Note that here we have
assumed that the output from the first step (Aktr) has an appropriate dynamic range
that “matches” the input of the second step. The dependence of the overall sensitivity of
the PIBK-Gsk3p response will likely be much more complex if this matching condition is
not satisfied.

We note that overall input/output response is a convolution of the input/output
responses between PI3K-> Akt and Akt->Gsk3p. Ultrasensitivity may arise if the ‘gating’
between these responses matches. In this case, it has been shown that even without

ultrasensitivity in each level of the cascade, ultrasensitivity may arise [300].
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Although the ultrasensitivity in the PI3K pathway may facilitate noise-
resistance, it is not absolutely required for insensitivity to parameter changes. The noise-
resistant feature of the model also arises from the inputs operating at the saturation
level. If the input level is sufficiently large, minor increase or decrease in the input level
may not have much impact on the output response. This is clear in Table 5.7, where we
repeat sensitivity analysis assuming absence of ultrasensitivity in Akt (K4=1) and Gsk3f3
(Kc=1) Ph-dePh cycles. The rate constants for Myc phosphorylation at Ser62 (kms=3.4/hr)
and Thr58 (kmr=1.08/hr) are adjusted to match Myc’s steady-state level with our base
model. Although a minor increase is observed in some parameters (kvr, dmr, kep, and kcp)
the results in Table 5.7 do not significantly deviate from those in Table 5.6 as long as the
inputs are sufficiently strong. For example, Myc potency is sensitive to parameters
directly involved in Myc protein modification or degradation. However, many
parameters involved in the PI3K signaling cascade have little impact on Myc potency. In
contrast, when the input signals are weak, the sensitivity is overall increased.
Ultrasensitivity with increasing effective Hill coefficient may ‘shrink’ the sensitive
region in input/output response curve, allowing wider range of input values for noise-
resistance. However, Michaelis-Menten response is sufficient to confer resistance to
minor fluctuations when the input value is large. This aspect is also evident in the
analysis of the simplified dual-kinase module, which assumes no cooperativity in

phosphorylation of Myc isoforms.
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Table 5.7: Parametric sensitivity without ultrasensitivity*

Sensitivity =
ogm( POLENCY, 0re0ee J

Parameters POtENCYpecrease

Myc synthesis rate constant (km) 4.6
Myc degradation rate constant (dwm) -1.3
Rate constant for Myc phosphorylation at Ser62 (kms) 0.81
MycSe2 degradation rate constant (dwms) -0.79
Rate constant for Myc phosphorylation at Thr58 (kmr) -0.64
Myc™8 degradation rate constant (dmr) -0.61
Gsk3p phosphorylation rate constant (kcr) 0.56
Gsk3[3 dephosphorylation rate constant (kcp) -0.56
Akt dephosphorylation rate constant (kap) -0.41
Akt phosphorylation rate constant (kar) 0.41
MM constant for Myc>? phosphorylation (Kws) -0.12
MM constant for Myc™ phosphorylation (Kur) 0.10

*Sensitivity to other parameters was equal to or smaller than 0.1. These include
Michaelis-Menten constants for Myc™ phosphorylation (Kur), Gsk3 phosphorylation
(Kcr) / dephosphorylation (Kcp), and Akt phosphorylation (Kar) / dephosphorylation
(Kab).

5.3.5 Effects of Erk and PI3K signal patterns on Myc accumulation

Erk and PI3K activation patterns, which determine the temporal dynamics of
Myc, may vary significantly under different growth conditions and in different cell lines.
Here we investigated how Myc potency responds to varying patterns of Erk and PI3K
signals. Whenever possible, model predictions were compared with existing
experimental observations. When the latter are unavailable, our model predictions may
serve as testable hypothesis for future experiments, which in turn can further constrain

our model. As shown in Figure 5.7, we quantitatively represented input signals of Erk
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and PI3K with the following parameters: duration (Dure and Durr), maximal amplitude
(Erkmax and PI3Kwmax), and residual level (Erkr and PI3Kr). For PI3K, we used an

additional parameter to describe the time interval between the two peaks (IPr).
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Figure 5.7: Erk and PI3K signal patterns determine Myc temporal behaviors. For all
analyses, black lines represent the base case. A) The Erk signal was represented with the
following parameters: duration (Dure), maximal Erk amplitude (Erkwmax), and residual
Erk level (Erkr). B) The PI3K signal was represented with the following parameters:
duration (Durr), maximal PI3K amplitude (PI3Kwmax), residual PI3K level (PI3Kr), and the
time interval between the two peaks of PI3K (IPr). The first peak of the PI3K was not
considered, since its variations did not have a big impact. C) Myc accumulation was
insensitive to Erkmax. Fivefold increase in Erkmax resulted in little change in Myc (red line)
in comparison to the base case (black line), whereas fivefold decrease in Erkmax resulted
in light reduction in the main peak of Myc (blue line). D) Doubling (red line) or halving
(blue line) Dure leads to significant change in the initial peak of Myc accumulation. E)
Myc was sensitive to Erkr. The base value of Erkr was 10 percent of Erkwmax (black line). A
small increase in Erkr (20% of Erkmax) resulted in excessive Myc accumulation (red line).
When Erk was completely removed (Erkr=0), Myc responded only to the initial,
transient Erk pulse and became unresponsive to the PI3K signal (blue line). F) Myc
accumulation was insensitive to PI3Kwmax. Fivefold increase (red line) or decrease (blue
line) in PI3Kwmax resulted in little change in Myc accumulation. G) The 2 PI3K peak
determined generation and maintenance of Myc hump. Doubling (red line) or halving
(blue line) the duration of the second PI3K peak led to approximately twofold change in
the Myc hump duration. Increasing IPr from 3 hours to 8 hours delayed the timing of the
second rise in Myc accumulation (red dotted line). H) A slight increase (20% of PI3Kwmax)
in PI3Kr from the base value (10% of PI3Kwmax) resulted in excessive Myc accumulation
(red line). However, complete removal of PI3Kr did not change Myc accumulation
significantly (blue line overlapping with black line).
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Our analysis predicted Myc accumulation to be insensitive to further increase in
Erk amplitude. A fivefold increase in Erkwmax caused little change in Myc accumulation
(Figure 5.7C). A fivefold decrease in Erkmax, however, predicted a slight but discernable
decrease in Myc accumulation. These results indicated that the base case of Erk was
operating at saturation. As a result, this behavior enabled the system to be insensitive to
minor changes in Erk amplitude, unless the Erk amplitude became sufficiently small. In
comparison, the Myc potency was much more sensitive to the duration of Erk pulse:
excessive accumulation of Myc was also observed when the duration of Erk was
doubled (red line in Figure 5.7D). Halving Erk duration resulted in significant reduction
in the initial peak of Myc.

Myc potency was sensitive to the residual Erk level (Erkr). Without it (Erkz=0),
the total Myc level quickly reduced to a low level following the Erk pulse (blue line in
Figure 5.7E). Conversely, a mere twofold increase in Erkr from the base value (=10% of
Erkmax) led to excessive Myc accumulation (red line in Figure 5.7E). These results
highlighted the importance of Erkr in fine-tuning total Myc accumulation. In particular,
Erkr was important for maintaining sufficient Myc level before the arrival of the second
PI3K pulse, by providing a moderate rate of Myc stabilization. In a more extreme case
where the Erk signal was completely removed, no Myc accumulation was observed
(data not shown). These results may provide a mechanistic explanation for differential

phenotypic responses to varying residual level of Erk [13]. In PC12 cells proliferation
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was correlated with low residual level of Erk, while high residual level of Erk was
observed for differentiation. Based on our simulations, we suggest that differential
regulation of Myc accumulation may be involved in determining these diverging
phenotypic behaviors of these cells. This prediction can be tested by further
experiments.

Similarly, Myc accumulation was insensitive to the maximum amplitude of
PI3K (PI3Kwmax), but much more sensitive to its residual level (PI3Kr) and temporal
features, including duration of the 24 peak (Durr) and time interval between the two
peaks (IPr). Five-fold increase or decrease in PI3Kwmax resulted in little change in Myc
accumulation (Figure 5.7F). However, doubling or halving the duration of the 24 PI3K
peak caused an approximately two fold change in the duration of the Myc hump (G).
Complete removal of the 27 PI3K peak eliminated the Myc hump (Figure 5.8A). This
indicates that the 2" PI3K peak was primarily responsible for generating and
maintaining the hump in Myc activation. These results are consistent with recent
experimental data: removal of the 274 PI3K peak by using a PI3K inhibitor [270] or by
acid washing [281] drastically reduced total Myc accumulation. Given this role of the 24
PI3K peak, the time interval between the two peaks of PI3K was critical for determining
Myc accumulation pattern (dotted red line in Figure 5.7G). This is highlighted by a
variable time interval across different cell lines or growth conditions. For example, the

PI3K inter-peak delay is 3~4 hours in HepG2 cells [279] but approximately 8 hours in
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NIH 3T3 cells [270,279]. Our model was able to account for Myc accumulation pattern in
both conditions by varying only the time-interval (either 3 hrs or 8 hours) between the

two peaks of PI3K (Figure 5.8B).
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Figure 5.8: Impact of varying PI3K inputs on Myc accumulation. (A) A single
peak of Myc is predicted if the second round of PI3K activity is removed. These
results in reduced Myc accumulation compared to the wild-type. (B) Increased
inter-peak time delay of PI3K (from 3 to 8 hours) results in wider separation
between the two peaks of Myc, and the resulting Myc accumulation is less than
the wild-type.

Another sensitive parameter of PI3K was its residual level. A mere two-fold
increase in the residual level from the base case (10% of PI3Kwmax), resulted in excessive
increase in Myc level (red line in Figure 5.7H), consistent with an experimental study

where exogenous Akt expression induced significantly increased Myc protein levels
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[301]. Interestingly, however, PI3Krbelow a certain threshold level did not have much
impact on Myc accumulation (blue line overlapping with black line in Figure 5.7H).
Such threshold effect is due to the ultrasensitivity in the PI3K signaling cascade (Figure
5.5 and Figure 5.6). If the change in the PI3K residual level triggers a digital switching
behavior, it can cause a large change in the output (black to red lines in Figure 5.7H).
Any change in the residual level outside the ultrasensitive region will not cause any
significant output change.

The results in Figure 5.7 suggest that Myc accumulation was insensitive to
changes in the maximum amplitude of Erk and PI3K signals (Figure 5.7C and F), but
much more sensitive to their temporal features such as duration and inter-peak time
delay, and their residual values (Figure 5.7D, E, G, and H). This occurred because the
maximum amplitudes of Erk and PI3K pulses were at their saturation level. That is,
when the Erk pulse is sufficiently strong, Myc is almost completely converted into
MycSer2; strong PI3K pulses block further phosphorylation of MycS2 to Myc™=8, If so,
this mechanism will allow cells to resist further changes in Erk and PI3K amplitudes.
Such resistance (or insensitivity) to amplitude changes (or fluctuations) of Erk and PI3K
may underlie precise control of signal transduction by Myc, given its role as a key
regulator of downstream cellular events. That is, dysregulation of Myc activities, which
is a signature of various cancers, may have detrimental consequences [302]. To prevent

such dysregulation, activation or deactivation cues must be transmitted and integrated
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precisely to regulate Myc accumulation. We note that this noise-resistance, which we
define as insensitivity to the changes in Erk or PI3K level in individual cells, requires the
maximum amplitudes of Erk and PI3K to be sufficiently large. If their amplitudes and
residual values are set 10 fold lower, the Myc accumulation becomes much more

sensitive to perturbations around the new base values.

5.4 Mathematical analysis of a generic signal integrator

The Erk and PI3K pathways that control Myc protein turnover are conserved in
yeast [269], and may represent a general post-translational strategy in natural signaling
pathways [303,304,305,306,307,308,309]. For instance, (3-catenin stability is regulated by
casein kinase Ia (CKlIa) and Gsk3p [307,309]. Similarly, an unknown kinase and Gsk3[3
coordinate to modulate microtubule (MT) stabilizing activity [308]. These examples
consist of a dual-kinase motif that integrates two independent input signals (Figure
5.9A). In this motif, X represents the unphosphorylated effector protein, which is
unstable. It can be stabilized by kinase S: through phosphorylation (becoming Xp) and
subsequently destabilized by kinase S through additional phosphorylation (becoming

Xpp), as shown in Figure 5.9B.
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Figure 5.9: Dual-kinase module as a signal integrator. A) The dual-kinase mechanism.
Si1and S: determine gain and loss of X stability by sequential phosphorylation, which in
turn control the total amount of the target protein (xr=x + xr + xrr). k1 and k: are the rate

constants for phosphorylation by S1 and S2, respectively. dy and d x, are degradation

rate constants of the unstable (X or X;») and stable (X;) forms of X. B) Given sufficiently
strong input signals S1 and Sz, the dual kinase mechanism integrates upstream activating
signal S1 to turn on, and deactivating signal S to turn off. The time delay between the

two signals controls the duration of activation.
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The wide presence of this motif suggests its potential advantages for cellular
signal processing. To gain insights into this issue, we developed a simplified model to
analyze dynamics of the dual-kinase motif (see Model and Methods). In the model, we
treated the two inputs of the system (Figure 5.9A) as independent, decoupled upstream
signals, since most of the dual-kinase motifs found in nature often integrate independent
upstream signals. Using this model, we aimed to explore what properties of this basic
motif may underlie the dynamics observed for Myc regulation, and what advantages

these properties may confer in cellular signaling.

5.4.1 Construction of a mathematical model: the dual-kinase motif as
a generic signal integrator

Based on the connectivity in Figure 5.9A, we modeled the dual kinase motif
using three highly simplified ordinary differential equations (ODEs), as presented in a
dimensionless form:

dx X dx, X Xp dXpp Xp
— —k—a—— -1, —g——-— — Xp, = — 7
dr Tax dr 1+x ﬂl+xp ° dr 'Bl+xP e

where x, xp, and xrr are the concentrations of the three forms of a molecule X; ris an

independent variable, time; x describes the synthesis of X (%( 0, ) ais the activation
efficiency by S1 (“ % iy, ); B is the deactivation efficiency by Sz ( k2 %dxp ); and 7 is the
ratio of unstable protein to stable protein (d%XP ), or stabilization efficiency. Without loss

of generality and for simplification, we assumed that x and xy, have the same stability.
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Similar to Myc regulation, we used the total effector concentration X (= x + xr+
xrp) to represent the system output. As shown by a typical simulation (Figure 5.9B), this
module enables integration of two signals by the effector module. Drawing analogy to
electric signal processing, the output can be considered a combination of ‘NOT” and

‘AND’ operators, which defines a pulse of output.

5.4.2 Characterization of the dual-kinase motif

To characterize the dual-kinase motif, we first examined dose response of the
system with respect to the two inputs S1 and Sz. Our results indicated that system
activation (through phosphorylation by Si1) was sensitive to input variations at an
intermediate a value (Figure 5.10A). In contrast, it was insensitive to input variations at
either high or low a values (green curve). Similar insensitivity (or noise-resistance) at
either strong or weak input signals was observed for system deactivation (Figure 5.10B)
for varying . These results provide a mechanistic explanation for the insensitivity of

Myc potency to input signal strengths (Figure 5.7C and F).
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Figure 5.10: System sensitivity to input signal perturbations. A) At a given synthesis
rate constant (x=10), the maximal activated level of X at the steady-state (Xss) can be

modulated by . For small or large a, sensitivity (defined as In X / Ina) was minimal,

while it was the greatest at intermediate o values. We assumed 0 for g to allow
decoupling of activation from deactivation. B) Deactivation from the high state
depended on f at a givenx. The system was initially driven to its high state by assuming
a large a (10000). Sensitivity was minimal for small or large 8, and was the greatest at
intermediate f§ values.

Another salient feature of the dual kinase motif was the stabilization of X, which
could be captured by the stabilization efficiency (1), or the ratio between the degradation
rate constant of the unstable form and that of the stable form. Our analysis indicated that
the stabilization efficiency determines the dynamic range of the output X. In response to
Si, the upper bound of output was set by the synthesis rate of X (x) and was
asymptotically approached as the signal strength (o) increased (Figure 5.11A). The lower
bound of the output, however, was set by «/n, which corresponded to the basal level of
X in the absence of Si. Thus, 17 directly set the dynamic range of the output (x/n ~ x).
Similar dependence was also applied to deactivation of X by S: (Figure 5.11B). Given
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saturating activation by Si, the dynamic range for deactivation by Sz increased with
increasing 1), allowing the dynamic range to be flexible. The system approached the

basal output level (x/n) with an increasing strength of Sz (3 2 ).
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Figure 5.11: Dynamic range of output activation and deactivation. A) The dynamic
range for activation was 1 because: Xss = /1 as a =2 0; Xss = Kk as a=><. For a given 1, we
define a critical value ac that corresponds to an Xss = 95% of the maximal value. If o> ac,
fluctuations in Xss due to fluctuations in a would be smaller than 5%. Here we consider
system activation in this parameter range as effectively noise-resistant. Similar to
analyses in Figure 5.10, we assumed 0 for fand a large value (10000) for o, which
allowed analyzing dynamic range for activation and deactivation independently. B)
Given a sufficiently large ¢, the dynamic range for system deactivation was also 1
because: Xss = kas f 2 0; Xss= &/ as f 2. For a given 1, we define a critical value fc
that corresponds to Xss within 5% of its minimal value. Similar to (A), we consider
system deactivation to be effectively noise-resistant for f>pc. C) ac increased with n
almost linearly. D) fc increased with 1 almost linearly.
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These results highlight two appealing features of the dual kinase motif. First,
differential stability control on effector protein isoforms enables flexible modulation of
the output dynamic range. This dynamic range can be fully exploited if the signal
strengths are sufficiently large. Second, sufficiently strong signals will also result in
desensitization of the system output to minor fluctuations in the levels of these signals.

While advantageous, however, increase in noise-resistance and dynamic range
comes with increasing metabolic cost. On one hand, increasing destabilization of X or
Xpp is associated with increasing metabolic cost. On the other, this will also require
stronger input signals to fully exploit the increased dynamic range and to achieve noise-
resistance, creating another metabolic burden as characterized by « and . To quantify
this effect, we define a critical a value (ac), which corresponds to a steady-state X (Xss)
value at 95% of the maximum X (for a = ). If the input signal would fluctuate in the
range of a>ac, the resulting output fluctuation would never exceed 5% (regardless of
the magnitude of input signal fluctuation). Here we can consider system activation as
noise-resistant in this parameter range. With similar reasoning, we define a critical fc,
which corresponds to an Xss value within 5% of the minimum X (for = ). ac and fc
thus determine the minimal signal strengths required to achieve noise-resistance in
system activation or deactivation. As shown Figure 5.11C and D, the greater the
stabilization efficiency was (larger 1), the heavier would be the corresponding metabolic

burden (larger acor fc) required to achieve noise-resistance. Insufficient input signal
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strength would either fail to generate response or fall into the sensitive range of the dose

response curve (Figure 5.10).

5.5 Discussion

Here we demonstrate that modulation of Myc stability by sequential
phosphorylation enables Myc to precisely sense and integrate upstream Erk and PI3K
signals. Such regulation is likely critical to cell fate decisions. Our analysis indicates that,
when operating with appropriate parameters, this mechanism enables the temporal
features, instead of maximum amplitudes, of the upstream signals to precisely modulate
Myc accumulation. Supporting this notion, dynamics of a minimal dual-kinase motif
provide direct, intuitive explanation for the key sensitivity properties of Myc output in
the full model. In this work, we have limited our study to the well-defined post-
translational control of Myc. It is possible that robust control of Myc accumulation is
facilitated by additional mechanisms, including Myc stabilization by a signal in the
carboxy-terminus of Myc [310] and Myc sequestration for degradation [311,312]. Myc
modulation is also tuned by regulations at other levels including post-transcription [313]
and translation [314], along with feedback control [315]. Furthermore, the activities of
Pinl and PP2A, which we assumed to be abundant and not rate-limiting, may further

contribute to more complex Myc dynamics, as seen in various cancers [49-52].
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As Myc is often deregulated in cancers, quantitative understanding of the
mechanisms for Myc regulation may be helpful for developing novel strategies for
cancer treatment. Myc stabilization processes consist of two temporally coordinated
events: Myc stabilization by Erk and prevention of Myc degradation by PI3K. While the
significance of Myc degradation by the second PI3K activity has been suggested in cell
proliferation [270], the extent to which the initial Myc stabilization by Erk contributes to
cell proliferation remains unknown. Our model predicts that, for the second round of
Myc accumulation, Myc needs to be sufficiently accumulated by Erkr prior to the second
PI3K activity (black line in Figure 5.12). With the PI3K signal fixed, a small increase in
Erkr is predicted to result in a significant increase in Myc accumulation pattern (red line
in Figure 5.12). In contrast, removal of Erkr renders Myc unresponsive to the PI3K signal
(blue line in Figure 5.12). This is due to the sequential nature of the Myc stabilization
processes, where Erk activity must precede PI3K activity. In other words, while Erk

‘primes’” Myc activity, PI3K ‘fine-tunes” Myc accumulation.
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Figure 5.12: Erk “primes’ Myc activity, and PI3K ‘fine-tunes” Myc accumulation level.
With the PI3K signal fixed, different residual Erk level leads to differential Myc
accumulation by the second PI3K activity. The base value of the residual Erk level
(ErkR) was 10 percent of maximal Erk level (black line). For increased level of ErkR
(20%), the second PI3K activity increased Myc accumulation level significantly (red line).
When ErkR was completely removed, Myc became unresponsive to the PI3K signal
(blue line).
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The priming ability of Erk for Myc modulation may play a critical role in
distinct responses to different stimulations. Studies have shown that PC12 cells can be
induced to undergo differentiation or proliferation in response to NGF or EGF [316,317],
and the residual Erk level may be responsible for these differential cellular responses
[13]. Our analysis suggests that the ability of Erk to modulate these cellular responses is
through modulation of Myc accumulation. For EGF stimulation, the low residual Erk
level may induce proliferation by weakly priming Myc (black line in Figure 5.12). In
contrast, the high residual Erk level upon NGF stimulation may lead to a significant
increase in Myc, inducing differentiation (red line in Figure 5.12). This notion can be
experimentally tested by simultaneous time-course measurements of the input signals
Erk and PI3K, and the output Myc protein. Also, the input signals can be independently
controlled by inhibitor drugs [318], inducible systems, or siRNA molecules targeting the
MAPK or PI3K pathways [319].

The assumed saturation of the input signals in the base model can also be
experimentally tested. Our simulations indicate that the assumed saturation is a
necessary condition for the overall robustness of Myc to parameters. This serves as an
interesting question to explore experimentally. Also, as detailed in Figure 5.8, some
constituent reactions in the PI3K pathway (e.g. the Ph-dePh cycles) have not been well-

characterized at the quantitative level. Our additional model predictions on how the

167



overall response of Gsk3p to PI3K depends on sensitivity characteristics of individual
stages can serve as further targets for experimental tests.

The analysis of the Myc stabilization mechanism reveals a regulatory network
motif that may be ubiquitously used in nature. Network motifs are small, recurring
cellular regulatory networks, identified and characterized by their shared architectures
and functions among diverse organisms. Well-known examples include feedback
regulations, feed-forward loops, and their derivatives (see [1,43,46,320] for review). Here
we suggest that the dual-kinase motif represents another example with distinctive
features.

The dual-kinase motif is similar to a well-studied phosphorylation-
dephosphorylation enzymatic motif of protein modification. In both motifs, protein
modification events occur sequentially, and the current state of the protein hinges upon
its previous state. Given appropriate input signals and parameters, the sensitivity and
amplitude of the output response can be precisely controlled [321]. The dual-kinase
motif differs from the phosphorylation-dephosphorylation one, however, in that protein
modification process is irreversible. Once phosphorylated, the stabilized protein cannot
return to its initial state, but is targeted for degradation upon further modification. This
distinctive characteristic contributes to additional features of the dual-kinase motif:
sequential signal integration of multiple inputs and, correspondingly, flexible dynamic

range for the output governed by protein stability modulation.
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Chapter 6: Conclusion and future directions

In summary, our works here demonstrate that a combination of mathematical
modeling and experimental validations is an effective approach for understanding
complex dynamics that arise from highly connected signaling pathways. With this
approach we have investigated an important biological phenomenon: cell cycle
regulation. In particular, we characterized the Myc-Rb-E2F signaling pathway and its
upstream signaling pathways. Such characterizations provide insights into three
important questions in the cell cycle regulation: 1) regulation of the restriction point (R-
point) in mammalian cell cycle entry, 2) regulation of temporal variability in cell cycle
entry, and 3) regulation of Myc by its upstream signals.

In Chapter 3, we demonstrate that the Myc-Rb-E2F signaling pathway underlies
the R-point dynamics. First, we built a mathematical model for the Myc-Rb-E2F
signaling pathway based on the current known biology. With this model we predicted
bimodality in the activation of a transcriptional factor E2F, which is responsible for DNA
synthesis. In addition, we predicted history-dependent activation of E2F (hysteresis).
This is, once E2F is activated upon growth stimulation, it stays at its activated state even
after removal of growth stimulation. However, E2F remains at its inactivated state
without growth stimulation. These predictions were experimentally validated in
collaboration with a molecular biologist Guang Yao. Our modeling and experimental

results together showed that E2F activation dynamics in the G1-S transition demonstrate
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bimodality and hysteresis, which are characteristic of a bistable switch. These results
suggest that the Myc-Rb-E2F signaling pathway underlie the R-point dynamics.

Our analyses of the R-point dynamics focused on the steady-state dynamics of
E2F activities, but the temporal dynamics of E2F activities in cell cycle entry is largely
unknown. In Chapter 4, we investigated the temporal dynamics of E2F activation by
extending our work in Chapter 3. In particular, we focused on the variable transition of
the mammalian cell from the quiescence to proliferation. Over the last four decades, two
lines of apparently contradictory, phenomenological models have been proposed to
account for such temporal variability. These include various forms of the transition
probability (TP) model and the growth control (GC) model. The GC model was further
proposed as an alternative explanation for the concept of restriction point, which we
demonstrated as being controlled by a bistable Rb-E2F switch in Chapter 2. Through a
combination of modeling and experiments, we show that these different lines of models
in essence reflect different aspects of the stochastic dynamics in cell cycle entry. In
particular, we show that the variable activation of E2F can be described by stochastic
activation of the bistable Rb-E2F switch. This activation dynamics can be recast into the
framework of the TP model and that of the GC model. While the phenomenological
models lack direct mechanistic insights into the underlying dynamics, we show that

there is a quantitative mapping between these models and the mechanistic model. As

170



such they may be useful for defining concise, quantitative phenotypes of the cell
physiology.

In Chapter 5, we investigate the post-translation regulation of Myc, an input to
the Myc-Rb-E2F signaling pathway. This is via protein stability modulation by its
upstream Ras effector pathways: the extracellular signal-regulated kinase (Erk) and
phosphatidylinositol 3-kinase (PI3K) pathways. Precise control of Myc expression is
critical in regulating diverse cell-fate decisions, including growth, proliferation, and
programmed cell death. Underscoring its importance, Myc expression is often found to
be deregulated in cancers. However, the dynamic mechanism for Myc modulation
remained unclear. To address this issue, we analyzed a well-defined signaling module
for Myc regulation using a kinetic model constrained by experimental data and
observations. In this module, Myc acts as an integrator of its upstream signals that
differentially regulate its stability. We showed that this module can enable highly
sensitive Myc response to the temporal features of the input signals, but not to their
maximum amplitudes. We further suggest that this module represents a generic post-
translational mechanism for signal sensing and integration in diverse signaling
networks. Our work offers insight into the “design” of natural biological networks and
makes predictions that can guide further experimental studies on Myc regulation.
Moreover, it defines a simple signal processing unit that may be useful for engineering

synthetic gene circuits to carry our cell-based computations.
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In Chapter 3 and Chapter 4, we have taken great care to develop a mathematical
model that is consistent with experimental observations. Such well-calibrated model can
be used for further predictions that are experimentally tractable. For example, in-silico
perturbations to the CycD/Cdk4,6 node may show significant modulation of the
activation threshold for E2F elevation. In fact, our simulation results predict that
reducing the activity of CycD/Cdk4,6 may increase activation threshold for E2F
elevation and increase temporal variability in cell cycle entry. Such perturbations can be
realized experimentally by adding various Cdk4,6 inhibitors drugs (Calbiochem, Cat.
No. 219476, 219478, 219477, and 219492) to the REF52-d2GFP cells. The effects of these
drugs on the steady-state and temporal dynamics in the cell cycle entry can be
quantitatively measured by reading GPF signals with flow cytometry. In addition, the
effects of varying Rb synthesis can be simulated. Our simulation results predict that the
Rb synthesis is directly correlated with activation threshold of growth stimulation and
temporal variability. For higher Rb synthesis, stronger growth stimulation may be
required for E2F elevation, and increased temporal variability is expected. Targetting of
the Rb synthesis may be achieved by small interfering RNA (siRNA) or short-hairpin
RNA (shRNA). The effects of modulating Rb synthesis can also be quantified by GFP
reading with flow cytometry. In addition, we can predict population dynamics of E2F

activation under combinatorial perturbations including growth factors, inhibitor drugs
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or siRNA targeting the Myc-Rb-E2F network, or mutations within this network. These
results may be used to further calibrate our Myc-Rb-E2F model.

We discussed the mapping between the phenomenological models and the
stochastic Rb-E2F model in Chapter 3, which provides a simple conceptual framework
that reconciles the different views reflected in the TP and GC models. In addition, this
mapping provides quantitative description of the population-level dynamics associated
with variable cell cycle entry (by phenomenological models) as well as the state of the
underlying reaction networks (by stochastic Rb-E2F model).

Based on this mapping, we can develop a library of predictions that can be
uniquely described by a set of parameters defining the TP model or the GC model. This
library would consist of different sets of parameters in the stochastic model, leading to
different parameters in the TP or the GC model. Based on this library, experimentally
obtained parameters for the phenomenological models can be used to reveal the state of
the underlying reaction networks. As such, the TP and GC models can serve as a concise
platform to define quantitative phenotypes that facilitate classification of cell types or
cell states.

This idea may be experimentally demonstrated with REF52-d2GFP cells. These
cell lines may be subjected to varying testing conditions, and the unique parameters in
the TP or GC model describing the population-level dynamics can be obtained. Then, a

correlation may be established between the temporal dynamics of these cells and the
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library of predicted phenotypes based on the Myc-Rb-E2F network. With sufficient
number of testing conditions, such correlation may be used to reveal the activation
status of the Myc-Rb-E2F network. Using this technique, different cell lines carrying the
same expression cassette encoding destabilized EGFP may be tested to identify the
underlying mechanism for the observed patterns (i.e. mutations in the Myc-Rb-E2F
network).

In the study of temporal variability in cell cycle entry in Chapter 4, we focused
on a single transition from quiescence to proliferation during the cell cycle progression
due to its computational and experimental tractability. However, the temporal
variability at the G1-S transition in actively growing cells may differ significantly from
that in quiescent cells [229]. To compare the temporal variability in the quiescent and
actively growing REF52-d2GFP cells, these cells may be grown over multiple cell cycles
and observed under the microscope. The difference in the temporal dynamics between
the two conditions may be recapitulated with our mathematical model by assuming

different initial conditions.
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Appendix A: Bimodality in bacterial infection

In Appendix A, we apply mathematical tools described in Chapter 1 to the
understanding of bacterial infection dynamics. In particular, we focus our analyses on
the bacterial attachment step, which has been the topic of interest in studying infection
dynamics and developing anti-bacterial or bacteria-mediated therapeutics. Complicating
these efforts is the inherent variability in bacterial uptake, but the underlying
mechanism remains largely speculative. To gain more insights into such variability in
bacterial uptake, we have developed an experimental model system by engineering non-
pathogenic bacteria to express invasins, which interact with mammalian receptors 31-
integrins. Using this model system, we show that uptake of the engineered bacteria is
variable, leading to bimodal infection kinetics. This can be accounted for by a simple
mathematical model that incorporates the ‘zipper mechanism’, together with a positive
feedback mediating the invasin-integrin interactions. Taking advantage of this simple
model, we make predictions on correlation between the average receptor concentration
and the percentage of infection. Our simulations predict robust correlation to variations
in model parameters, which were experimentally represented by various mammalian
host cell lines that span a wide range of f1-integrin levels. Our experimental correlation
was consistent with the model prediction, suggesting the model’s utility in predicting

bacterial infection dynamics. Our results together suggest that our work may serve as a
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useful guide for studying infection dynamics or developing therapeutics. We are in the

final stage of preparing a manuscript for submission.

A.1l Introduction

The infection cycle of a bacterial pathogen typically consists of multiple steps,
including adherence to the host, internalization, survival and replication, and ultimate
intoxication or death of the mammalian host. Although the molecular details of bacterial
infection vary among pathogen species, many pathogens share common strategies in the
infection processes. For example, bacterial adherence to the host cell is often mediated
by adhesins, which are molecules or molecular structures that facilitate fimbrial or
afimbrial binding of bacteria to their hosts [322]. In addition, bacterial internalization by
the hosts is achieved by largely two common mechanisms: ‘trigger’ mechanism, where
signaling triggers membrane ruffling and cytoskeletal rearrangement for bacterial entry,
and ‘zipper’ mechanism, where sequential interactions between the ligands and the

receptors result in encapsulation of the bacterium [323].

A.2 Background

A population of isogenic host cells subjected to isogenic pathogens often shows a

drastic cell-to-cell variability in bacterial uptake [324]. Some hosts are highly infected,
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while others remain free of bacteria. Even in the infected subpopulation, bacterial uptake
is variable ranging from a single bacterium to hundreds of bacteria per host cell. This
variability may result from heterogeneity in both pathogens and mammalian host cells.
In isogenic bacterial pathogens, it has been shown that invasion efficiency may differ
due to stochastic gene expression of virulence factors (i.e. phase variation for virulence
gene expression [325,326,327]), external factors including bacterial growth conditions
(growth media, temperature, or shaking speed), or growth phase (logarithmic, late-log,
or stationary). In mammalian host cells, bacterial uptake may depend on the activation
state of the involved signaling transduction pathways [328,329] or receptor distribution
[330]. These individual differences in the pathogens or in the host cells together may
result in variable bacterial uptake. However, the variable bacterial uptake has been
largely overlooked in the study of host-pathogen interactions, and the underlying

mechanism for such variability remains poorly understood.

To gain insight into variable bacterial uptake, here we analyze the infection
dynamics by an engineered bacterium that expresses invasins, which interact with
mammalian receptors $1-integrins. Our experimental results show that uptake of the
engineered bacteria is highly variable in mammalian host cells, leading to bimodal
infection kinetics. This can be accounted for by a simple mathematical model that
incorporates the ‘zipper mechanism’, together with a positive feedback mediating the

invasin-integrin interactions. With this model, we predict that the correlation between
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the average receptor concentration and the percentage of infected cells would be robust
against variations in model parameters. This prediction was validated by further
experiments carried on cell lines with varying concentrations of 31-integrins. These
results together suggest that our work may serve as a quantitative framework for

guiding the modulation of bacterial infection kinetics.

A.3 Mathematical model and experimental analyses
A.3.1 Construction of the mathematical model

We have developed a mathematical model based on the interactions between
invasin-expressing bacteria and mammalian p1-integrin receptors. These interactions
begin with a bacterium with membrane-bound invasins initially making contact with f1-
integrins. This initial contact facilitates sequential interactions of invasin-integrin
interactions, resulting in encapsulation of the bacterium [328,331]. A mathematical
model for such serial interactions between a multi-valent ligand and receptors have been
previously developed by Perelson [332], but our simulations of the Perelson’s model
could not sufficiently account for the experimentally observed threshold effects . In this
work, we develop a highly simplified model based on the Perelson’s model by making
additional assumptions. These assumptions include: 1) f1-integrins exist in either
available (Ra) or unavailable (Ru) pools for binding with bacteria, and the their total

concentration is constant, 2) once a bacterium in suspension (determined by MOI) binds
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the host via the initial invasin-integrin interaction, further interactions are assumed to be
instantaneous, and 3) the downstream events after adherence are not considered in the
current model. This is based on the experimental observation that bacterial processing
by the mammalian host is minor (Figure A.1). The model consists of a set of ordinary
differential equations (ODEs), and its parameters are obtained either from the literature

or fitted from experimental data.

Table A.1: The mathematical model for bacterial adherence

%akf[a]ma]“+kr[Bn]+Bi[Ra]—kr[BJ

dB, n_

dt =ki[B][R.]" -k [B,]

ﬁ:ki[Ra]_M_kb

dt B +Kg

R a Ky[R[B,]
g~ IRk BIIRT -BIR I+ n*k (B, k(B4 50 ek,

Variables are:

Bi: The amount of bacteria bound with one receptor

Bn: The amount of bacteria with ‘n” number of receptors

Ra: available integrin receptors available for bacterial binding
Ri: unavailable receptors

Initial conditions:

Total receptor concentration (Rr=Ri + Ra) = 10nM [333,334]
Ri=10nM, R-=0nM
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Table A.2: Reaction kinetics for the model

Reaction Kinetics Description and notes
R % R ] K,[R][B,] Receptor activation by positive
| : B, +Kg feedback

[R1——>[R,] k,[R:] Basal receptor activation

[R,]—[R] ki[R,] Receptor inactivation

[R,] L)[ B, k:[B;1[R,] Initial invasin-integrin interaction

[B]——>[R.] k.[B,] Unbinding of the initial interaction

[B,]+ n[Ra]L{ B.] | k[B/IR,T Subsequent invasin-integrin
interactions

[Bn]L) n[R,1+[B,] k.[B,] Unbinding of the subsequent
interactions

Table A.3: Parameters for the model

Rate constants

Parameter values, sources, and notes

n 10 These free parameters were adjusted to satisfy the
k. 0.1 nM-h-1 following criteria :
” 03I 1) Bimodal distribution
ke 0.001h
ke 0.036 ht Rate constant for unbinding [334]
ks 0.0072nM- | Rate constant for invasin-integrin interaction
h (calculated from the known dissociation constant
[335] and kr)
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Figure A.1: Temporal dynamics of bacterial adherence/internalization after a pulsatile
input of bacteria. HeLa cells were co-incubated with bacteria (grown overnight and
diluted in DMEM) at high MOI (=2000) in the absence (A) and presence (B) of
gentamicin. The mixture was co-incubated in DMEM with 10 % bovine growth serum
(BGS) for 1 hour, and we removed bacteria in suspension by washing with PBS 3 times.
The cells were replenished with fresh DMEM with 10% BGS and the antibiotic treatment
condition was maintained as before. At various time points after washing, we assayed
the cells for their bacterial uptake with flow cytometry. In the absence of gentamicin, the
mean GFP signals became stronger over time, suggesting bacterial growth in the host
cells either on the surface or inside of the host cells. In contrast, we observed minor
decrease in the GFP signals strength in the presence of gentamicin, suggesting
degradation of the bacterium by the host cells or by the antibiotics.
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A.3.2 Experimental setup
A.3.2.1 Plasmid construction

The invasin-coding plasmid placInv was constructed by fusing a PCR-derived
fragment of the inv gene from pGB2 Qinv-hly [336] into pPROLar.A. Similarly, another
invasin-coding plasmid pSCT7Inv was constructed by fusing inv gene into xxx. The
reporter plasmid ptetGFP was created by fusing a PCR-derived fragment of the gfp gene

into pPROTet.E.

A.3.2.2 Bacterial transformation and culture

Bacterial strains used in this study were Top10F and BL21DE3. Both cell strains
were transformed with a reporter plasmid ptetGFP, and Top10F” was transformed with
placInv and BL21DE3 was transformed with pSCT7Inv. They were grown overnight at
37°C in Luria-Bertani medium, and were diluted with D-MEM until their absorbance
(Abssn) reading by a plate reader () was approximately 1.0. At this absorbance, the

number of bacteria in 1 pL of the bacterial culture was approximately 2.0 x 10°.

A.3.2.3 Mammalian cell culture and media

All mammalian cells (graciously given by the Dr. Nevins lab) were grown in D-
MEM (GIBCO® Cat. No. 31053-036), supplemented with L-glutaminine (Cat. No. 25030-

164), sodium pyruvate (Cat. No. 11360-070), and 10 % bovine growth serum (BGS).
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These cells were detached by trypsinization and seeded on 6-well plates at
approximately 2.0 x 105/well, and were allowed for recovery overnight in D-MEM in

10% BGS overnight.

A.3.2.4 Co-incubation and GFP assay

MOI in all the experiments in this study was determined by the number of
bacterial cell number (2.0 x 10°) added to each well of host cells in the 6-well plate (2.0 x
105). The bacteria in D-MEM were co-incubated with mammalian host cells on the 6-well
plates in the presence of gentamicin at varying MOIs. After the desired co-incubation
duration, the 6-well plates were washed 3 times with PBS to wash off extracellular
bacteria. These cells were assayed for their GFP signals under the microscope (Leica) or

flow cytometry (Canto 2).

A.3.2.5 Quantification of Bl-integrin concentration

For quantification of f1-integrin concentration, we use a primary antibody
(CBL497, Millipore) directed against the a-chain of the a5p1-integrin receptors. The
primary antibody can be conjugated to the immunofluorescent secondary antibody
(phycoerythrin, PE), allowing for quantification of the receptor concentration by flow

cytometry.
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A.3.3 Simulation and experimental results

Our experimental system consists of mammalian host cells (HeLa) and
engineered bacteria (BL21DE3) that carries two plasmids: pT7Inv and ptetGFP. Invasins
facilitate binding of the bacteria with its mammalian hosts and subsequent
internalization, while the GFP signals are used as a means for quantifying bacterial
uptake. For all experiments, we allowed co-incubation of bacteria with host cells for
varying durations and MOIs. During co-incubation, bacterial growth was inhibited by
gentamicin treatment and heterogeneity in bacterial uptake in the host population was
reduced by constant shaking (at 30 rpm). After the co-incubation, we removed bacteria

in suspension by washing, and the host cells were assayed for the GFP signals.

A.3.3.1 Quantification of bacterial uptake in the population and single-cell levels

We first visualized binding of the engineered bacteria with HeLa cells under the
fluorescence microscope, as shown in Figure A.2A. A population of HeLa cells co-
incubated with the engineered E.Coli showed significant variability in bacterial uptake.
In Figure A.2A, some HeLa cells were bound by a large number of bacteria (~ 20
bacteria), while others remained free of bacteria. Such variability was also reflected in
our flow cytometry measurements. Our results in Figure A.2B showed MOI-dependent
bimodality in GFP signals. Based on the intensity of the GFP signals, we separated the

cell population into the low mode and high mode of GFP signals and observed them
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under the microscope (data not shown). The mammalian cells with low mode of GFP
signals were free of bacteria, suggesting that the GFP signals in a single bacterium may
be sufficient to separate the two modes in the cell population. Those with strong GFP
signals carried one or more bacteria as in Figure A.2A. A control study showed that
HeLa cells co-incubated with BL21DE3 cells carrying only ptetGFP remained free of
bacteria (data not shown). These results demonstrated that the engineered bacteria can
interact with the host cells with specificity, and their interaction efficiency can be

quantified.
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Figure A.2: Bimodal bacterial attachment. A) A microscope image of engineered
bacteria attaching to HeLa cells. Bacteria were co-incubated with HeLa cells in a 6-well
plate in the presence of gentamicin at 50 multiplicities of infection (MOI). After 2 hours
of co-incubation, extracellular bacteria were removed by washing the wells with PBS
three times. The uptaken bacteria were visualized with a inverted microscope. B)
Bimodal distribution of bacterial attachment in a cell population. The infected HeLa cells
on the plate were trypsized and their gfp signals were analyzed with flow cytometry. At
sufficiently low MOI (=5), the cell population demonstrated bimodal distribution of gfp
signals. For increasing MOI (=50), the low mode shifts to the high mode, until the
distribution becomes monomodal at the high mode (MOI=1000). The low mode
represents absence of bacterial attachment or internalization, and the high mode
represents a subpopulation of cells with at least one or more bacterial uptake.
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A.3.3.2 Dependence of bacterial uptake efficiency on MOI and co-incubation
duration: threshold effects

It has been shown that bacterial uptake efficiency is positively correlated with
increasing time and multiplicity of infection (MOI) [337]. To recapitulate such
correlation, we co-incubated the engineered bacteria with a population of HeLa cells at
various co-incubation durations and MOlIs. Intuitively, the bacterial uptake would
increase monotonically with increasing durations and MOlIs, followed by a plateau at
saturation. Consistent with our intuition, our experimental results showed positive
dependence of bacterial uptake on co-incubation durations and MOIs (raw data shown

in Figure A.3)
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Figure A.3: Raw data for bacterial infection at various co-incubation durations and
MOIs. HeLa cells grown in DMEM supplemented with 10% BGS were infected with
BL21DES bacteria harboring ptetGFP and pSCT7Inv in the presence of gentamicin at
varying multiplicity of infections (MOlIs = 10, 20, 50, 100, 500, and 1000). After varying
co-incubation durations (30, 60, 90, 120, 150, 180, 210, 240, 270, 300, and 330 mins), the
extracellular bacteria were washed off with PBS, and HeLa cells were collected by
trypsinization. These cells were assayed for their GFP signals under flow cytometry.
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Figure A.4: The threshold effects in bacterial infection. The average GFP signal was
calculated from a GFP distribution in Figure A.3 and plotted over co-incubation

durations. Below a threshold MOI (=100), the increase in bacterial uptake is insignificant.
Above this threshold, however, gfp signal strength increased with increasing MOL

A closer inspection of our results in Figure A.3 suggested two stages of infection
separated by a threshold MOI (= 100), as shown in Figure A.4. Below the threshold, the
dependence of bacterial uptake on increasing MOI is small. Above the threshold,
however, the dependence increases significantly with increasing MOI, demonstrating a
‘sharp’ transition from insensitive to sensitive infection dynamics to MOI. This sharp
transition in bacterial uptake was also observed at the single-cell level (Figure A.5). At
sufficiently high MOI (=100), our microscope images frequently showed a large number
of bacteria on a host cell. At low MOI (=50), however, the frequency of such large

number on a host cell reduced significantly. Our dose response curves at various co-
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incubation durations suggested that the sharp transition in bacterial uptake to increasing

MOI was maintained for all co-incubation durations.

Figure A.5: Bacterial infection at MOI=50 and MOI=100. Multiple microscope images (9
images) were juxtaposed to show frequency of localization of bacterial infection. At sub-
threshold MOI (=50), bacterial infection was approximately 10 fold lower than at MOI
near the threshold (= 100).
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Figure A.6: Time-course plots. At sufficiently low MOIs (=10, 20, and 50), no significant
increase in GFP is observed over time. At MOI=100, however, GFP signal became
increasingly stronger over time after some time delay. At higher MOlIs, GFP signal
increased without time delay.

To investigate the cause of such sharp response to MOI, we observed the
temporal dynamics of bacterial infection. Consistent with our dose response curves, our
results in Figure A.6 also indicated MOI-dependent increase in bacterial uptake. At low
MOI (< 50), the GFP signal was maintained at a low value over 5.5 hours. For an
intermediate MOI (= 100), however, the GFP signal became stronger over time after
some time delay. Interestingly, despite the increase in the GFP signal, we did not
observe significant change in the percentage of infected host cells at the intermediate
MOI (Figure A.7A). These results suggest that the increase in GFP signal is not because
of more mammalian host cells being infected, but because of increasing GFP signal
strength in the infected host cells. This increase in GFP was probably not because of

bacterial growth or increasing GFP signal strength in bacteria due to the gentamicin
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treatment. At the working concentration of this antibiotic, our plate reader
measurements showed that the drug treatment inhibited bacterial growth and reduced
GFP signal strength (Figure A.8). Moreover, our raw data in Figure A.7B showed that
the high mode of GFP at 90 minutes (red line in Figure A.7B) shifted to the right after
some time delay (330 mins, blue line in Figure A.7B), while the low mode of GFP did not
change significantly. These results together suggest that the infected host cells become
more prone to further bacterial uptake over time, while those without bacterial uptake

remains free of bacteria.
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Figure A.7: Sustained percentage of infection. A) The percentage of the host cells
infected with bacteria is plotted over co-incubation duration for varying MOIs. The GFP
signal in a single bacterium allows for differentiation of the infected host cells from the
non-infected host cells. B) GFP distributions at varying co-incubation durations for
MOI=100.
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Figure A.8: The effects of gentimicin on bacterial growth. The engineered bacteria
were grown overnight and diluted to varying concentrations in DMEM supplemented
with 10% BGS in the presence or absence of gentimicin in a 96-well plate. The amount of
bacteria in each well is similar to the infection conditions at varying MOls.

A.3.3.3The threshold effects observed across multiple cell lines

We hypothesized that the characteristic threshold effect may be an intrinsic
feature of the ‘zipper mechanism’ mediated by invasin-integrin interactions, and it
should be observed regardless of the host cell line or bacterial strain. To test our
hypothesis, we developed another bacterial strain that carries an invasin-encoding
plasmid pSCT7Inv and a reporter plasmid ptetGFP for quantification of bacterial uptake.
Under the same experimental conditions, we quantified bacterial uptake in multiple cell

lines (total of 8) at various MOIs. Consistent with our hypothesis, our results in Figure
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A.9 showed threshold effects in most of the cell lines tested, suggesting that the positive

feedback regulation may be a ubiquitous mechanism in the bacterial uptake process.
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Figure A.9: Bacterial uptake for multiple host cells. Bacterial uptake was measured in
multiple host cells for increasing MOIs. These host cells were subjected to varying MOlIs
under the same experimental conditions. After 2 hours of co-incubation, these cells were
collected, fixed with formaldehyde, and assayed for their GFP signals.

A.3.3.4 A positive feedback regulation for multi-stage infection

The threshold effects observed in these experiments are characteristic of a
positive feedback regulation [46,338]. In fact, at least two positive feedback mechanisms
have been speculated in the recruitment of f1-integrin receptors at the bacterial binding
site: via receptor clustering and focal adhesion kinase (FAK) signaling. During bacterial
uptake, the initial bindings of invasins with f1-integrins facilitate receptor clustering

[339], constituting a positive feedback that increases the efficiency of bacteria binding. In
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addition, these receptors directly interact with FAK signals. These FAK signals have
been speculated to liberate f1-integrins from the focal adhesion sites [6,7], where 1-
integrins serve as cell-adhesin molecules for anchoring the cell to the extracellular matrix.
The liberated receptors become available for further binding of bacteria, constituting
another positive feedback that increases receptor availability. Such positive feedback
regulations may account for the two stages of bacterial uptake. The initial stage of
bacterial uptake may correspond to when the positive feedback is not yet activated and
the number of bound bacteria is small. The second stage may represent activated state of
the positive feedback regulation when MOI is greater than the threshold, and the
infected host cells are prone to further infection.

To test this possibility, we considered our mathematical model under two
conditions: with and without a positive feedback. In either case, the positive dependence
of bacterial uptake on MOI and co-incubation duration could be recapitulated with the
model. However, our model could not generate the threshold effects without the
positive feedback loop (data not shown). When the positive feedback loop was
considered in the model, our model could generate the threshold effect, as shown in

time plots (Figure A.10A) and dose responses (Figure A.10B).
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Figure A.10: Simulation results. A) Time-course simulations. Below a threshold level of
Bi (=0.01), the change in Brot (sum of initially bound bacteria B: and fully bound bacteria
Bn) is expected to be small over time. Above the threshold, however, Brotis predicted to
increase significantly over time. B) Threshold effects in the dose response. Simulations at
various time points suggest a threshold of input Bi, below which bacterial uptake is
insignificant and is independent of co-incubation durations.

A.3.3.5 Dependence of bacterial uptake on receptor concentration

Intuitively, bacterial binding would directly correlate with receptor
concentrations. Such correlation has been demonstrated in a cancer cell line HEp-2
expressing different levels of p-integrin concentrations [340], and is consistent with our
model predictions (Figure A.11). However, it is not clear whether this dependence
would be maintained across different host cell lines, since different cell lines may have

varying 1-integrin receptors and integrin binding affinities [341].
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Figure A.11: Dependence of bacterial infection on receptor concentration.

Using our mathematical model, we can predict how variations in the model
parameters may govern the correlation between the receptor concentration and the
percentage of infection. To emulate variations in the model parameters, we assumed that
a parameter is a Gaussian random variable with a variance of 1 and a mean being the
basal value for the parameter. Our simulation results Figure A.12A suggest that the
correlation between the receptor concentration and the percentage of infection is robust

to variations in parameters.
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Figure A.12: Predicted correlations between f1-integrin level and bacterial uptake,
and with the percentage of infection. A) Predicted correlation between p1-integrin level
and the percentage of infection. B) Predicted correlation between p1-integrin level and
bacterial uptake.

However, simulations in Figure A.12B suggest that bacterial uptake efficiency is
highly sensitive to variations in some parameters. In particular, our model predicts the
greatest sensitivity in the parameters that define receptor availability (k«t and kin) and
receptor’s binding affinity with invasins (k). In fact, it has been experimentally shown
that receptors in different cell lines may have different binding affinities [340], which
may lead to variable bacterial uptake. These simulation results suggest the sensitivity of
bacterial uptake efficiency to various model parameters may mask the dependence of

bacterial uptake efficiency on receptor concentration.
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Figure A.13: Quantification of f1-integrin in multiple cell lines. f1-integrin was
quantified with phycoerythrin (PE), immunofluorescent signals conjugated with the
primary antibodies (Milipore, CBL479) for p-integrin receptors. Two independent
measurements were performed in two different days.
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Figure A.14: Ordering of receptor levels in different cell lines. Two independent
measurements of PE in various cell lines (each data point representing a cell line) were
plotted against each other. Despite day-to-day variability in PE values, the order of the
receptor levels in different cell lines did not change.

To test these predictions, we quantified -integrin receptor concentrations in a set
of mammalian cell lines that span a wide range of receptor concentrations (Figure A.13).
These different cell lines represent variations in the model parameters. We used primary
antibody against the a5f1-integrin receptors and immunofluorescent secondary
antibody (phycoerythrin, PE), conjugated to the primary antibody. Under the same
experimental conditions, we observed day-to-day variability in the level of PE signals,
but the order of the receptor levels in different cell lines did not change significantly
(Figure A.14). To check for correlation between percentage of infection and receptor

concentration, we plotted the bacterial uptake efficiency in Figure A.9 against our 31-
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integrin measurements in Figure A.14. Our results in Figure A.15A showed that the
correlation was not significant, suggesting that factors other than receptor concentration

may also play a role in bacterial uptake.
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Figure A.15: Experimental correlations between receptor concentrations and bacterial
uptake, and with percentage of infections. A) A correlation between bacterial uptake
(represented by GFP) and 1-integrin (represented by PE) level in multiple cell lines. B)
The percentage of host cells infected with bacteria in these host cell lines with different
Bl-integrin levels.

Despite the insignificant correlation between bacterial uptake efficiency and
receptor concentration, the percentage of infection was generally correlated with
receptor concentration, as shown in Figure A.15B.At a sub-saturating MOI (<100), we
observed a group of cell lines that showed increasing percentage of bacterial uptake
with increasing receptor concentration (along an arbitrarily drawn black line in (Figure
A.15B). However, we also observed deviation from this black line in 1806 and HeLa cells,
suggesting that receptor concentration may not be the only determinant in governing

the percentage of infection. In fact, 1806 cells were more strongly attached to the plate
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than others and required prolonged trypsinization, which might have removed attached
bacteria by cleaving the invasin-integrin interactions [342]. At sufficiently high MOI, no
significant variability was observed as most of the cells for a given cell line were infected
(data not shown). To test for reproducibility, we carried out another set of experiments
under the same experimental conditions on a different day. Our results in Figure A.16
showed similar correlation between the percentage of infection and receptor
concentration, but the correlation between bacterial uptake efficiency and receptor
concentration was more pronounced in this data set. We note that this is not inconsistent
with our model predictions in Figure A.12B, as we predicted significant variability in
bacterial uptake efficiency for variable model parameters. These modeling and
experimental results together suggest that our model can be useful in predicting further

bacterial infection dynamics.
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Figure A.16: Replicate experiments for correlations between receptor concentrations
and bacterial uptake, and with percentage of infections
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A.4 Discussion

In this work, we provide experimental and mathematical evidences for a positive
teedback regulation, which may account for the variable bacterial uptake that leads to
bimodal infection kinetics. In addition, we show that the positive feedback may be a
ubiquitous regulation associated with the ‘zipper mechanism’ for bacterial uptake, as
demonstrated by the dose responses in multiple host cell lines. Finally, we demonstrated
our model’s utility in making experimentally tractable predictions that were
experimentally validated: robust correlation between receptor concentration and the
percentage of bacterial infection to variable model parameters, but insignificant

correlation between receptor concentration and bacterial uptake efficiency.

A mathematical framework may be beneficial in various applications that require
a quantitative understanding of host-pathogen interactions. In fact, a number of
predictive mathematical models for bacterial adherence have been developed
[343,344,345,346,347], but the predicted dynamics have not been validated
experimentally. Our quantitative framework in this work, consisting of a mathematical
model and an experimental platform for model validation, may serve as a useful guide

for modulating infection dynamics.

For example, our model predictions may provide insights for optimal
intervention strategies in the development of anti-bacterial therapeutics. The traditional

treatment of bacterial diseases has focused on eradication of the pathogens by antibiotics.
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However, many pathogens have developed resistance to major antibiotics [348],
necessitating alternative strategies for the resistant pathogens. One of these efforts is to
reduce or eliminate host-pathogen interactions without incurring significant pressure for
the emergence of resistant strains [349]. In this mode of treatment, our model may guide
effective therapeutic strategies. For example, our model predictions in Figure A.12B
suggest that the optimal strategy may be to limit receptor availability or to interfere with

receptor’s binding affinity with invasins.

In addition, the development of bacteria-mediated therapeutics may also benefit
from a quantitative framework for bacterial infection. For the past two decades,
increasing characterization of virulence factors has inspired emergence of genetically
engineered bacteria as a delivery method [337], where the goal is to maximize delivery
efficiency with minimal toxicity to the host cells. Our model predictions in Figure A.12B
suggest that increasing receptor availability or increasing receptor’s binding affinity may

improve bacterial uptake efficiency.
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