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Abstract 
Since its inception in the 1970’s, computed tomography (CT) has revolutionized 

the practice of medicine and evolved into an essential tool for diagnosing numerous 

diseases not only in adults but also in children. The clinical utility of CT examinations 

has led to a rapid expansion in CT use and a corresponding increase in the radiation 

burden to patients. CT radiation is of particular concern to children, whose rapidly 

growing tissues are more susceptible to radiation-induced cancer and who have longer 

life spans during which cancerous changes might occur. In recent years, the increasing 

awareness of CT radiation risk to children has brought about growing efforts to reduce 

CT dose to the pediatric population. The key element of all dose reduction efforts is to 

reduce radiation dose while maintaining diagnostic accuracy. Substantiating the tradeoff 

between the two is the motivation behind this dissertation work. 

The first part of this dissertation involved the development of an accurate 

method for estimating patient-specific radiation dose and potential cancer risk from CT 

examinations. A Monte Carlo program was developed and validated for dose simulation 

in a state-of-the-art CT system. Combined with realistic computer models of patients 

created from clinical CT data, the program was applied to estimate patient-specific dose 

from pediatric chest and abdomen-pelvic CT examinations and to investigate the dose 

variation across patients due to the variability of patient anatomy and body habitus. The 
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Monte Carlo method was further employed to investigate the effects of patient size and 

scan parameters on dose and risk for the entire pediatric population.  

The second part of this dissertation involved the development of tools needed to 

study the diagnostic accuracy of small lung nodules on pediatric CT images. A prior 

method for modeling two-dimensional symmetric liver/lung lesions was extended to 

create three-dimensional nodules with asymmetric shapes and diffused margins. A 

method was also developed to estimate quantum noise in the lung region of a CT image 

based on patient size. 

The last part of this dissertation involved assessment of diagnostic accuracy 

using receiver operating characteristic (ROC) observer experiments. A pilot study of 13 

pediatric patients (1-7 years old) was first conducted to evaluate the effect of tube 

current on diagnostic accuracy, as measured by the area under the ROC curve ( )zA . A 

study of 30 pediatric patients (0-15 years old) was then conducted to assess protocol- 

and scanner-independent relationships between image quality (nodule detectability and 

noise) and diagnostic accuracy. The relationships between diagnostic accuracy and 

nodule detectability, between noise and scan parameters, and between dose/risk and 

scan parameters were lastly combined to yield the relationship between diagnostic 

accuracy and dose/risk.  
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For pediatric patients in the same weight/protocol group, organ dose variation 

across patients was found to be generally small for large organs in the scan coverage (< 

10%), larger for small organs in the scan coverage (1-18%), and the largest for organs 

partially or completely outside the scan coverage (6-77%). Across the entire pediatric 

population, dose and risk associated with a chest scan protocol decreased exponentially 

with increasing patient size. The average chest diameter was found to be a stronger 

predictor of dose and risk than weight and total scan length.  

The effects of bowtie filter and beam collimation on dose and risk were small 

compared to the effects of helical pitch and tube potential. The effects of any scan 

parameter were patient size-dependent, which could not be reflected by the difference in 

volume-weighted CT dose index (CTDIvol). 

Over a nodule detectability (product of nodule peak contrast and display 

diameter to noise ratio or display )CDNR  range of approximately 52-374 mm with an 

average of 143 mm, tube current or dose had a weak effect on the diagnostic accuracy of 

lung nodules. The effect of 75% dose reduction was comparable to inter-observer 

variability, suggesting a potential for dose reduction. 

Diagnostic accuracy increased with increasing nodule detectability over the 

range of 25-374 mm, but reached a plateau beyond a threshold of ~ 99 mm. The trend 

was analogous to the relationship between zA  and signal-to-noise ratio and suggested 
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that the performance of the radiologists saturates (or increases slowly) beyond a 

threshold nodule detectability level; further reducing noise or increasing contrast to 

improve nodule detectability beyond the threshold yields little gain in diagnostic 

accuracy. 

For a typical product of nodule contrast and physical diameter (1400 HU·mm) 

and a set of most commonly used scan parameters (tube potential of 120 kVp, helical 

pitch of 1.375, slice thickness of 5 mm, gantry rotation period of 0.4 second, image pixel 

size of 0.48 mm), diagnostic accuracy increased with effective dose and effective risk for 

a given patient size, but reached a plateau beyond a threshold dose/risk level. At a given 

effective dose, zA  increased with decreasing patient size, i.e., the dose needed to achieve 

the same noise and hence diagnostic accuracy increased with patient size. To achieve an 

zA  of 0.90, the dose needed for a 22-cm diameter (male) patient was about quadruple of 

that for a 10-cm diameter patient. While the effective risk associated with achieving the 

same diagnostic accuracy also increased with patient size, the risk associated with an zA  

of 0.90 was only twice as high for a 22-cm diameter (male) patient than for a 10-cm 

diameter patient due to the older age of the larger patient. 

The research in this dissertation has two important clinical implications. First, the 

quantitative relationships between patient dose/risk and patient size, between patient 

dose/risk and scan parameters, between diagnostic accuracy and image quality, and 
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between diagnostic accuracy and radiation dose can guide the design of pediatric CT 

protocols to achieve the desired diagnostic accuracy at the minimum radiation dose. 

Second, patient-specific dose and risk information, when included in a patient’s 

dosimetry and medical records, can inform healthcare providers of prior radiation 

exposure and aid in decisions for image utilization, including the situation where 

multiple examinations are being considered. 
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1. Introduction  

1.1 Clinical Benefits and Radiation Risk 

Since its inception in the 1970s1, computed tomography (CT) has surpassed 

projection radiography as the first imaging modality to picture the inner depth of 

human body in a slice-by-slice manner. With the advents of helical technology in the late 

1980s2-4 and multi-detector array (MDCT) technology in the late 1990s, CT has 

demonstrated advantages over other imaging modalities, thanks to its sub-millimeter 

spatial resolution, sub-second gantry rotation time, and large anatomical coverage. The 

accuracy, speed, and versatility of CT examinations have been essential for the diagnosis 

of numerous diseases not only in adult but also in children. CT has proved of value for 

virtually the entire spectrum of pediatric thoracic disease5 and is the most frequently 

used imaging modality for evaluating abdominal disease of children6. 

 The clinical benefits of CT have led to a rapid increase in CT use. It is estimated 

that the annual number of CT examinations in the United States rose from 2.8 million in 

19817 to 20 million in 19958, and to 62 million in 20069. The estimated proportion of CT 

examinations in children increased from about 4% in 198910, to an average of 6% in 

199311, and to about 11% in 199912.  

With this rapid increase in CT use comes great concern over CT radiation 

exposure. By its nature, CT delivers substantially higher radiation dose to the patient 

than conventional radiography. For a 5-year-old child, the radiation dose from a chest 
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CT scan is estimated to be equivalent to 150 chest radiography examinations13. 

Consequently, CT examinations pose substantially higher health risk to patients14, 

especially to children whose rapidly growing tissues are more susceptible to radiation-

induced cancer and who have longer life spans during which cancerous changes might 

occur. An article in 200115 estimated that of approximately 600,000 abdominal and head 

CT examinations annually performed in the United States in children under the age of 

15 years, 500 individuals might ultimately die from cancer attributable to the CT 

radiation. A review article in 200716 again emphasized the radiation risk from CT, 

particularly in children. 

The increasing awareness of CT radiation risk to children has brought about 

efforts to reduce CT dose. The dose reduction efforts of healthcare providers 

(radiologists, medical physicists, and radiological technologists) have focused on the 

judicious choice of CT scan parameters, avoidance of unnecessary CT examinations, and 

the use of shielding for radiosensitive organs17. The dose reduction efforts of CT 

manufacturers (engineers and medical physicists) have focused on efficient use of X-ray 

beam (e.g., reducing over-beaming and over-ranging distances), proper design of X-ray 

filtration (e.g., bowtie filter design), implementation of automatic tube current 

modulation, and optimization of image reconstruction algorithms (e.g., iterative 

reconstruction method18 and noise reduction filter19). The key element of all dose 

reduction efforts is to reduce radiation dose while maintaining diagnostic accuracy. 
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Substantiating the tradeoff between the two is the motivation behind this dissertation 

work.  

1.2 Radiation Dose Estimation 

As a result of the aforementioned dose reduction efforts and the continuous 

advance of CT technology, CT scanning protocols and scanner designs have become 

increasingly complex, and there is a growing need to accurately estimate radiation dose 

from CT, not only for the purpose of assessing life-time cancer risk which can be useful 

during discussions with healthcare providers, parents, regulatory bodies, and ethics 

committees, but also for the purposes of comparing and optimizing CT technologies and 

scan protocols.  

Currently, two types of dosimetric quantities are being used in CT. The first type 

is reference dose quantities: CT dose index (CTDI), weighted CT dose index (CTDIw), 

volume-weighted CT dose index (CTDIvol), and dose length product (DLP)20. The 

reference dose quantities are based on measurements made within standard CT dose 

phantoms: polymethylmethacrylate (PMMA) cylinders with diameters of 32 cm (adult 

body) and 16 cm (adult head and pediatric body). The reference dose quantities are 

useful for comparing exposure levels of different CT protocols or scanners; however, 

they do not reflect the actual dose received by the patient and cannot be used to directly 

estimate cancer risk. The second type of dosimetric quantity is patient dose quantities: 

organ dose and effective dose. Organ dose refers to the mean absorbed dose received by 
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an organ of the patient and is directly related to the cancer risk of that organ14. Effective 

dose is the summation of organ dose values weighted by the relative radiosensitivity of 

the organs; it expresses the radiation detriment of a non-uniform exposure in terms of an 

equivalent whole body exposure21. Despite the recent debate on its concept22, effective 

dose has been and remains the most widely used dosimetric quantity related to the 

overall cancer risk of the patient.  

Because it is impossible to measure organ dose directly from patients, three 

methods are currently being used to estimate organ and effective dose from CT 

examinations using patient phantoms/models. The first method is to measure organ 

dose within physical anthropomorphic phantoms using point dosimeters23, 24. Though a 

direct approach, this method does not provide average organ dose values desired for the 

calculation of effective dose. The second method is to simulate organ dose using Monte 

Carlo radiation transport algorithms coupled with mathematical or voxelized models of 

patients25-32. Compared with the first method, Monte Carlo based approach is more 

flexible; scan parameters currently not available on clinical CT scanners (e.g., an 

arbitrary pitch or tube potential) can be investigated. This approach can also be very 

accurate, provided that the simulation code is carefully benchmarked against 

experimental measurements33-35. Lastly, organ and effective dose has been estimated 

from CTDI or DLP using conversion coefficients derived from the first two methods23, 24, 

36-38. The common limitation of the current methods is that they are largely patient-
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generic; phantoms/models have only been developed for standard/limited patient sizes 

at discrete ages (e.g., 0, 1, 5, 10, 15 years old) and do not reflect the variability of patient 

anatomy and body habitus. Therefore, dose information for individual patients is 

currently not available. Furthermore, current protocol designs rely on dose as a 

surrogate for risk of cancer incidence, neglecting the fact that the same dose delivered to 

two patients may entail substantially different risks due to age and gender differences. 

1.3 Influence of Dose Reduction on Diagnostic Accuracy 

When other scan parameters are kept constant, the noise variance in a CT image 

is inversely proportional to tube current and hence radiation dose to the patient39. 

Therefore, dose reduction often comes at the expense of increased image noise. Because 

some clinical tasks (e.g., organ volume estimation) have more tolerance for increased 

noise than others (e.g., lesion detection), the influence of dose reduction on diagnostic 

accuracy cannot be addressed in a general sense and must be evaluated in terms of a 

chosen clinical task. The clinical task targeted by this dissertation was the detection of 

small lung nodules in pediatric patients. 

Owing to the superior resolutions of modern MDCT, chest CT examination for 

the detection of lung nodules is often standard for pediatric cancer staging and 

surveillance. In such examinations, the presence of even one small lung nodule may 

have tremendous prognostic and therapeutic implications40. Several previous studies on 

the pediatric population41-43 have suggested that diagnostic-quality images of the lung 
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could be obtained at significantly reduced tube-current (dose) levels. However, those 

studies were preference-based; reduced-dose images were evaluated by assigning 

subjective image quality scores to known anatomical structures. Results of those studies 

do not necessarily reflect the actual performance of radiologists in terms of lung nodule 

detection at reduced dose levels. Performance-based evaluations have been hindered by 

three major challenges: (a) the occurrence of isolated small lung nodules in the pediatric 

population is low, making it difficult to research with real lung nodules, (b) ethical 

concerns prohibit repeated scans to be taken on the same patients at different dose 

levels, and (c) the performances of radiologists measured at multiple tube currents 

cannot be easily generalized to different scan protocols and CT scanner models.    

The first challenge may be overcome by the simulation of lung nodules44-48. 

However, most prior studies on nodule simulation have not aimed to emulate the 

features of real lung nodules, validated by observer studies of nodule appearances. In 

two recent studies which have offered an exception46, 47, the modeled nodule 

characteristics were typical of large (> 5 mm) nodules, a range that is larger than what 

would be subtle enough for most technique optimization studies in MDCT, particularly 

in pediatric applications48. To overcome the second challenge, one may add noise to 

existing CT data to simulate reduced dose conditions49-56. However, most noise 

simulation techniques operate on raw projection data, which are cumbersome to store 

and transfer and often require scanner processors for image reconstruction. In addition, 



 

 7

prior techniques have not been validated in terms of both the magnitude and the texture 

of the simulated noise. To overcome the last challenge, one may assess the performances 

of the radiologists at multiple noise levels. However, it is often difficult to reliably and 

accurately measure the quantum noise in actual patient images due to the underlying 

anatomy (anatomic noise)57.  

1.4 Design and Objectives of the Dissertation 

This dissertation addressed the relationship between diagnostic accuracy and 

radiation dose in pediatric CT in three parts. 

The first part aimed to estimate patient-specific organ dose and cancer risk in 

pediatric CT. In Chapter 2, a Monte Carlo program was developed to model a state-of-

the-art CT system. The accuracy of this program was validated against experimental 

measurements using cylindrical and anthropomorphic phantoms. As a demonstration of 

its utility, the program was used to estimate organ dose, effective dose, and risks of 

cancer incidence for CT examinations of two representative pediatric patients. The 

Monte Carlo program was subsequently applied to estimate organ and effective dose for 

chest (Chapter 3) and abdomen-pelvis (Chapter 4) examinations of seven pediatric 

patients in the same size group to investigate the dose variation across patients due to 

the variability of patient anatomy and body habitus. In Chapter 5, the effects of body 

size and scanner acquisition parameters on dose and risk estimates were systematically 

evaluated for the entire pediatric size range. 
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The second part aimed to develop software tools to address the challenges 

associated with performance-based studies. In Chapter 6, a technique was developed to 

simulate realistic small lung nodules in three dimensions on pediatric MDCT images 

and was validated in a receiver operating characteristic (ROC) observer experiment. In 

Chapter 7, a method was developed to estimate quantum noise in the lung region of CT 

images based on patient size.  

The last part of this dissertation aimed to conduct ROC observer experiments to 

assess the diagnostic accuracy of radiologists in detecting small lung nodules. A 

proprietary noise addition software tool, which adds noise directly to reconstructed CT 

images, was evaluated and calibrated in terms of both noise texture and magnitude. 

Combined with the nodule simulation technique and the noise estimation method, 

images simulated at reduced tube currents (with increased noise) were used to evaluate 

the effect of tube current (Chapter 8) and image quality (Chapter 9), including nodule 

detectability and noise, on the performance of radiologists. The relationship between 

nodule detectability and diagnostic accuracy, between noise and scan parameters, and 

between dose/risk and scan parameters were lastly combined to yield a generalizable 

relationship between diagnostic accuracy and dose/risk (Chapter 10).  
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Part I: Radiation Dose Studies 

2. A Monte Carlo Method for Estimating Patient-Specific 
Radiation Dose and Cancer Risk in CT* 

2.1 Introduction 

Computed tomography (CT) is the single largest source of medical radiation 

exposure to the US population, constituting half of the total medical exposure in 200658. 

The last few years have witnessed growing societal efforts to manage radiation dose in 

CT, particularly efforts to adapt CT scanning technique to patient sizes20, 59, 60. These 

efforts can greatly benefit from a dose-reporting system that provides radiation dose and 

potential cancer risk estimates that are specific to each patient and each CT scan. Such a 

system could serve as the basis for individualized protocol design and optimization. For 

patients who undergo sequential examinations over an extended period of time, 

knowledge of dose and risk could also aid in deciding the necessity and frequency of 

examinations. Moreover, as there is an increasing call for radiation dose tracking from 

medical examinations and procedures61, 62, patient-specific dose and risk estimations 

could offer an additional opportunity to be accountable for serial examinations. 

The current dose-reporting method, however, is patient-generic; a patient’s 

dosimetry report only includes reference dose quantities such as CT dose index (CTDI)63 

measured in a standard-size cylindrical phantom (e.g., 32-cm diameter phantom for 

                                                      

* This chapter is based on a manuscript with the same title submitted to the journal Medical Physics. 
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adult body). While a myriad of physical24, 64 and computerized65-70 anthropomorphic 

phantoms exist for dosimetric applications, they only represent standard or limited 

patient sizes at discrete reference ages (e.g., 0, 1, 5, 10, 15 years of age) and do not reflect 

the size and hence dose variations from patient to patient. Furthermore, current protocol 

designs rely on dose as a surrogate for risk of cancer incidence, neglecting the fact that 

the same dose delivered to two patients may entail substantially different risks due to 

age and gender differences. Figure 1 illustrates the strong dependence of risk on age and 

gender using lung cancer and all cancers combined as examples. 

 

 

Figure 1: Lifetime attributable risks of cancer incidence tabulated in BEIR VII report14. Risks for 
lung cancer and all cancers are shown to illustrate the strong dependence of risk on age and 
gender. 
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The goal of this work is to develop a method for estimating patient-specific 

radiation dose and cancer risk in CT. A Monte Carlo program was developed to model a 

CT system. Its accuracy was validated using cylindrical and anthropomorphic phantoms 

for both axial and helical scanning modes. As a demonstration of its utility, the Monte 

Carlo program was used to estimate organ dose in CT examinations of two pediatric 

patients (a newborn and a teenager), for whom patient-specific full-body computer 

models were recently developed. The organ dose values were then used to calculate 

risks of cancer incidence for radiosensitive organs and to derive effective dose, the most 

widely accepted dose descriptor, and effective risk, a newly proposed concept for 

overall radiation risk assessment71.  

2.2 Materials and Methods 

2.2.1 CT Scanner 

A multi-detector array CT scanner (LightSpeed VCT, GE Healthcare, Waukesha, 

WI) was used in all measurements and simulations. The CT scanner was equipped with 

64 arrays/rows of detectors, allowing the user to select a beam collimation of 1.25-40 

mm. It could operate in both axial and helical scanning modes with a helical pitch of 

0.516-1.375. Three bowtie filters (small, medium, and large) were available on the 

scanner to provide size-adapted compensation for the variation of body thickness from 

the center to the periphery of the scan field-of-view (SFOV) in order to reduce dose and 

achieve more uniform X-ray intensity at the detector. The appropriate bowtie filter could 
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be selected based on patient size and scanned body region via the proper choice of SFOV 

type. The scanner automatically switched between a large and a small spot size based on 

tube current.  The distance between focal spot and isocenter was 54.1 cm. The user could 

select a tube potential of 80, 100, 120, or 140 kVp and a gantry rotation period of 0.4-2.0 

seconds. While tube-current modulation techniques were available on the CT scanner, 

this study focused on fixed tube current techniques.       

2.2.2 CT System Modeling 

2.2.2.1 Analytical simulation of X-ray energy spectra 

The X-ray energy spectra at the exit of the X-ray tube and before filtration by the 

bowtie filter (referred to as the pre-bowtie spectra) were simulated by an X-ray 

modeling program (xSpect, version 3.3, Henry Ford Health System). An initial set of pre-

bowtie spectra for the four kVp values was simulated for constant/high-frequency tube 

potentials based on the target material, target angle, and inherent tube filtration data 

provided by the manufacturer. The pre-bowtie spectra were then numerically filtered by 

the thinnest central region of the small bowtie filter to obtain a set of post-bowtie 

spectra. The half-value layers (HVLs) of the post-bowtie spectra estimated using xSpect 

were matched to the HVLs reported by the manufacturer for each kVp (at the center of 

the beam) by making small adjustments to the amount of inherent aluminum filtration. 

The above procedure was implemented to ensure that the beam qualities in our 

simulations match that in the actual CT scanner.  
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2.2.2.2 Monte Carlo simulation of radiation transport 

Monte Carlo code: We developed a Monte Carlo program to simulate radiation 

transport in the CT system. The program was based on a benchmarked Monte Carlo 

subroutine package for photon, electron, and positron transport (PENELOPE, version 

2006, Universitat de Barcelona, Spain)72, 73. The example main program PENMAIN.F 

included in the standard PENELOPE distribution was modified to simulate radiation 

transport in the bowtie filter, to model X-ray tube motions during axial and helical scans, 

and to transport radiation through voxel geometry. All material definition files used in 

the simulations were generated by running the program MATERIAL.F of PENELOPE, 

which has a large database of pre-defined common materials in addition to allowing the 

user to input the atomic compositions and mass densities of user-defined materials. 

Radiation transport in bowtie filters: Based on the geometry data provided by the 

manufacturer, each bowtie filter available on the CT scanner was modeled using the 

geometry package PENGEOM of PENELOPE as a group of simple objects limited by 

quadric surfaces. In the actual CT scanner, a cone beam of X-ray with a semi-beam angle 

of ~ 27.5o first passes through the bowtie filter and is subsequently restricted by a pair of 

tungsten cam collimators74. In our simulations, the collimators were not explicitly 

modeled, but a fan beam of X-ray defined by the collimators was transported through 

the bowtie filter. Using a point source, we chose an effective beam width to account for 

the dose delivered by both the umbra and the penumbra regions of the beam (Figure 2a). 
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The effective beam width was measured using a ready-pack X-ray film. The methods are 

detailed in the next section. The semi-angle of the fan beam was chosen to be broad 

enough to cover the imaging object (Figure 2b). A pseudo impact detector was added 

below the bowtie filter at the level of the tungsten cam collimators to register the state 

(type of particle, energy, position coordinates, directional cosines, weight, etc.) of each 

incident particle in a phase-space file for use in the subsequent simulations of axial and 

helical scans. The width of the impact detector was equal to the aperture of the tungsten 

cam collimators and its length was just slightly larger than the divergence of the X-ray 

beam (Figure 2b). 

 

 

Figure 2: (a) A point source and an effective beam width were used in the simulations to account 
for the dose delivered by both the umbra and the penumbra regions of the beam. (b) The fan 
beam was chosen to be just broad enough to cover the imaging object. A pseudo impact detector 
was added below the bowtie filter at the level of the tungsten cam collimators to register the 
information of each incident particle in a phase-space file for use in the subsequent simulations of 
axial and helical scans. 
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Axial and helical scans: To model the effect of X-ray tube motion during an axial or 

helical scan, the initial state of each particle was first read from the pre-calculated phase-

space file. Before the particle was released for transport in the imaging object, rotational 

and translational transforms were performed on the initial coordinates and the 

directional cosines of the particle with rotational angle and translational distance 

calculated as 

RANDβ α=  and 0 ,
2

d s zβ
π

= +            (1) 

respectively, where α  is the total gantry rotation angle during the scan and equals 2π  

for single axial scans, RAND is a random value between 0 and 1, s  is table increment 

per gantry rotation (equals zero for a single axial scan), and 0z  is the start location of the 

scan. Considering the limited size of the phase-space file, each particle was split into 12 

equivalent particles with weights equal to 1/12 of the original particle weight at the 

beginning of the particle track. We have verified that the particle splitting technique did 

not affect the simulation results. 

Radiation transport in voxel geometry: Realistic representation of human anatomy 

in Monte Carlo simulations frequently requires the use of voxel geometry. Earlier 

computer models of patients were generated from direct segmentation of the three-

dimensional matrices of voxels in the patients’ tomographic datasets66, 67, 75, 76; every voxel 

was assigned to the appropriate organ or tissue based on grayscale values. Modern 

computer modeling of human anatomy employs more flexible mathematical surfaces, 
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most notably the non-uniform rational B-spine (NURBS) surfaces, which are fits to the 

segmented tomographic data77. The complexity of such surfaces, however, prohibits 

particle locations to be solved efficiently during Monte Carlo simulations. As such, 

NURBS surfaces based computer models are often voxelized before inputting into 

Monte Carlo simulations32.   

As it is impractical and inefficient to individually define all the planes and voxels 

in a voxel geometry using the original geometry routine PENGEOM of PENELOPE, we 

developed a new geometry routine, named PENVOME (i.e., PENGEOM for voxelized 

models). PENVOME conveniently labels each voxel by its matrix indices; boundary 

planes of the voxel are only calculated when the voxel is reached by a particle. This 

circumvents the need to store surface/body definitions and to sort through a 

genealogical tree of a large number of bodies. The accuracy of PENVOME was validated 

against PENGEOM in terms of simulated dose in a simple object of 18 voxels, and the 

results were identical within the statistical constraints of the Monte Carlo simulation. As 

such, the Monte Carlo program can be used to transport radiation for dose simulation in 

both quadric and voxel geometries. 

2.2.3 Effective Beam Width Measurements 

The effective beam width (along z direction) was determined for the small and 

large focal spots and for three most commonly used collimation settings: 40, 20, and 10 

mm. At each combination of collimation and focal spot setting, a ready-pack X-ray film 
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(PPL, Eastman Kodak Company, Rochester, NY) was centered on the surface of the 

gantry bore and exposed in a single axial scan that delivered dose values within the 

responsive range of the film. The developed film was digitized (Expression 10000 XL, 

Seiko Epson Corporation, Japan) at a resolution of 72 points per inch (ppi), resulting in a 

16-bit image. From the image, three pixel intensity profiles were measured across the X-

ray beam along the beam width (z) direction. The pixel intensity profiles were converted 

into net optical density profiles, which were linearly proportional to the dose profiles 

over the range of net optical densities in our experiment. As each film was exposed 

twice in a single axial scan at two different source-to-film distances, each dose profile 

was the superposition of two profiles, representing the divergences of the beam at two 

source-to-film distances. The effective beam width at each source-to-film distance was 

defined as the distance between two points where the dose fell off most rapidly. Such 

two points were determined by differentiating the dose profile to find the points of 

maximum/minimum slopes. The effective beam widths measured at the two source-film 

distances were then converted to that at the isocenter of the CT scanner using known 

source-to-isocenter distance and gantry bore size. 

2.2.4 Dose Measurements 

A series of dose measurements were performed to calibrate and validate the 

accuracy of our CT model and Monte Carlo code. 
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2.2.4.1 Dose measurements in air 

To quantify the absolute outputs of the X-ray tube for converting Monte Carlo 

results to absolute dose, free-in-air exposure was measured for all combinations of 

bowtie filters and kVps with a calibrated ion chamber and its corresponding 

electrometer (model 10×5-0.18/9015, Radcal Corporation, Monrovia, CA). The ion 

chamber was positioned at the isocenter of the CT scanner with its long axis aligned 

with the axis of gantry rotation. Single axial scans were performed with the X-ray beam 

centered on the active volume of the ion chamber. For each combination of bowtie filter 

and kVp, five to seven repeated measurements were taken at a beam collimation of 40 

mm, a tube current of 30 or 60 mA, and a gantry rotation period of 1 second, and the 

results were averaged. All measured exposures in Roentgen (R) were converted to dose 

in cGy using 1 R = 0.876 cGy. 

2.2.4.2 Dose measurements in a cylindrical phantom 

It is well known that a single axial scan generally delivers more radiation dose to 

the periphery than the center of a cylindrical phantom, affected by beam quality, 

phantom attenuation, and the spatial variation of beam intensity. We were motivated by 

this fact to design a CT dose phantom that allows center-to-periphery dose distributions 

to be measured for comparison with Monte Carlo simulated results. Initially focused on 

pediatric CT applications, we built a cylindrical phantom to represent a pediatric torso 

(Figure 3a). The phantom was made of a 7-inch diameter and 7-inch long 
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polymethylmethacrylate (PMMA) cylinder. Seven through-holes, 1.4 cm in diameter, 

were drilled parallel to its long axis to allow the placement of ion chambers at 

incremental distances away from the central axis. The holes, which could be filled with 

similar diameter PMMA rods, were arranged in a spiral pattern to minimize their 

overlap in the CT projections.  

 

 
Figure 3: (a) Custom-designed CT dose phantom for measuring center-to-periphery dose 
distributions. The locations of the seven drill holes are numbered.  (b) Measurements of dose 
distribution in the custom-designed phantom. The phantom was attached to one end of the CT 
table and positioned so that its long axis matched the axis of gantry rotation. 

 
Radial dose distributions in the phantom from single axial scans were measured 

with the ion chamber. The phantom was attached to one end of the CT table using a 

phantom holder supplied with the CT system and positioned so that its long axis 

matched the axis of gantry rotation (Figure 3b). Exposure was measured for each hole 

individually with the ion chamber positioned mid-way inside the hole and the X-ray 
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beam centered on the active volume of the ion chamber. The remaining volume of that 

hole was filled with two half-length PMMA rods. All other holes also were filled. For 

each of the three bowtie filters, dose distribution was measured at the four kVp values 

with a beam collimation of 40 mm, a tube current between 200 and 300 mA, and a gantry 

rotation period of 1 second. Five to seven repeated measurements were taken at each 

hole location, and the results were averaged.  

2.2.4.3 Dose measurements in anthropomorphic phantoms 

To further validate the accuracy of our Monte Carlo method for dose estimation 

in human anatomical structures, we measured dose in two anthropomorphic phantoms, 

a pediatric one-year-old phantom and an adult female phantom (ATOM, Models 704-D 

and 702, CIRS, Norfolk, VA) shown in Figure 4a and Figure 4b.  

 

 

Figure 4: Dose measurements in (a) pediatric one-year-old CIRS phantom and (b) adult female 
CIRS phantom. (c) The phantoms were composed of axially sliced, 25 mm thick, contiguous 
sections. Each section contained one or more 5 mm diameter through-holes at various organ 
locations.        
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The phantoms were composed of axially sliced, 25 mm thick, contiguous 

sections. Each section contained one or more 5 mm diameter through-holes at various 

organ locations (Figure 4c). The holes could be filled with similar size plugs or dosimeter 

holders. We used thermoluminescent dosimetry (TLD) chips (Harshaw TLD-100, 

Thermoscientific, Oakwood Village, OH), which were calibrated against a pre-calibrated 

ion chamber (model 10×5-6/9015, Radcal Corporation, Monrovia, CA) at appropriate 

beam energies; calibration was performed either in the CT beam of interest or in an X-

ray beam of a radiography system where the beam was hardened with a copper filter to 

match the half-value layer of the CT beam at the tube potential of interest. At each 

selected organ location, the hole plug was removed, cut in half, and used to sandwich a 

pair of two TLD chips before refilling the hole. The average of the two TLD readings at 

each organ location was used as the measured dose at that location; the standard 

deviation of the two readings was used to assess the uncertainty of the measurement. 

For each anthropomorphic phantom, two sets of TLD chips were used to measure dose 

from a single axial scan and a helical scan, respectively (Table 1). The single axial scan 

was centered on a chest section in which TLD chips were embedded. The helical scan 

was a full-body scan for the pediatric phantom and a chest scan for the adult female 

phantom.  
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Table 1: Scan protocols used to collect TLD dose measurements from the pediatric one-year-old 
and the adult female phantoms.                             

 pediatric phantom adult female phantom 

 single axial helical single axial helical 

body region chest whole body chest chest 

kVp 100 100 120 120 

mA 250 250 250 250 

gantry rotation period  
(second) 

1 1 1 1 

scan FOV 
(bowtie filter) 

pediatric body
(small bowtie)

pediatric body
(small bowtie) 

large body 
(large bowtie) 

large body 
(large bowtie) 

collimation (mm) 40 20 40 40 

pitch – 0.531 – 0.516 

slice thickness (mm) 2.5 2.5 5 5 

reconstruction interval (mm) 2.5 2.5 5 5 

 

2.2.5 Dose Simulations 

The dose measurements conducted in the air and in the three phantoms were 

simulated using the developed Monte Carlo program. 

2.2.5.1 Dose simulations in the air and in the cylindrical phantom 

Computer models of the ion chamber (model 10×5-0.18) and the cylindrical 

phantom were created using the geometry package PENGEOM. The head of the ion 

chamber was modeled as a group of simple objects limited by quadric surfaces (Figure 

5), based on the chamber geometry data provided by Radcal Corporation. The stem of 

the ion chamber, which contains metal conductors, was not explicitly modeled but was 
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approximated by a small PMMA cylinder. The small air gaps left in between the ion 

chamber and the phantom were also assumed to be filled with PMMA. 

 

 
Figure 5: Model of the ion chamber (model 10×5-0.18/9015, Radcal Corporation, Monrovia, CA) 
used in the Monte Carlo simulations. “C552” here refers to C552 air-equivalent plastic. Material 
data file for polyoxymethylene was used for the polyacetal cap. 

 
Energy deposited in the air cavity of the ion chamber was accumulated and used 

to calculate dose. When choosing simulation parameters, we referenced the recipe 

prescribed by Sempau et al.78. Analogue simulation was employed in the air cavity and a 

speedup parameter78 of 1a =  was used for the chamber wall. Table 2 summarizes the 

simulation parameters and variance reduction techniques used for air, C552 air-

equivalent plastic, polyacetal (polyoxymethylene), and PMMA. In the polyacetal cap 

and the PMMA stem, electrons were not transported but were assumed to be absorbed 

locally when produced. This is because even if electrons were transported in these 

objects, they could not arrive at the air cavity, thus having no effect on the air cavity 

dose.  For the same reason, electrons were not transported in the PMMA phantom. For 
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each combination of bowtie filter and kVp, center-to-periphery dose distribution in the 

phantom was obtained by running the simulation seven times with the ion chamber 

placed in a different hole each time. For all simulations in the phantom, the number of 

photon histories was chosen to obtain relative errors in dose of 1% or below. The relative 

error was defined as one standard deviation divided by the average tally result. When 

simulating the in-air measurements, the volume occupied by the phantom was replaced 

by air leaving only the model of the ion chamber; the number of photon histories was 

chosen to obtain relative errors of 0.5% or below. 

 
Table 2: Simulation parameters and variance reduction techniques used for dose simulations in 
the air and the cylindrical phantom. 

 

electron 
absorption  

energy 
(keV) 

photon 
absorption 

energy (keV) 

speedup 
parameter78

a 
variance reduction technique72 

air cavity 5a kVp energy /1000 0 photoelectric interaction forcer = 50
Compton interaction forcer = 50 

chamber 
wall 

5 kVp energy /1000 1 photoelectric interaction forcer = 50
Compton interaction forcer = 50 

chamber 
base 

5 kVp energy /1000 1 No 

polyacetal kVp energy kVp energy /1000 N/A No 
PMMA kVp energy kVp energy /1000 N/A No 

aThe absorption energy of electrons in the air was chosen to be 5 keV, half the kinetic energy of an 
electron that has a continuous slowing down approximation (CSDA) range approximately equal 
to the thickness of the air in the cavity78. 
 
 

The above simulations produced air cavity dose in the unit of cGy per photon 

emitted from the source. The total number of photons emitted from the source during a 

CT scan was calculated as 
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mAs,N n= ⋅Ω ⋅                                (2) 

where n, the number of photons emitted from the source per solid beam angle per mAs, 

was calculated from the energy spectra simulated by xSpect, and Ω is the solid angle of 

the fan beam. Absolute dose values in the unit of cGy were then equal to 

,sim simD d N= ⋅                                         (3) 

where dsim is Monte Carlo simulated dose in the unit of cGy per photon emitted from the 

source. We first calculated the absolute dose for each of the in-air dose simulations and 

compared it with the corresponding measured dose. The ratio of the measured to the 

simulated in-air dose was defined as an output correction factor (OCF): 

,

,

.meas in air

sim in air

D
OCF

D
−

−

=              (4)     

As mentioned earlier, HVL matching served to ensure the accurate shapes of the pre-

bowtie spectra. Here the OCF values serve to correct for inaccuracy in the magnitudes of 

the pre-bowtie spectra. In other words, they correct for inaccuracy, tube-to-tube 

variation, or tube variation over time in the values of n. To calculate the absolute dose 

for all simulations in the phantoms and the patients, the total number of photons 

emitted from the source was calculated as 

.N N OCF′ = ⋅                                                                                   (5) 
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2.2.5.2 Dose simulations in the anthropomorphic phantoms 

A full-body computer model was created for each anthropomorphic phantom 

based on the phantom’s CT images. The method was similar to that reported recently for 

creating NURBS models of pediatric CT patients79 and is briefly described below. 

Initially, the images of each phantom were segmented using a graphical software 

application developed in our laboratory. Segmented organs and tissues included soft 

tissue, lung, bone, spinal cord, and spinal disc. The brain of the pediatric phantom, the 

breasts of the adult female phantom, and large unfilled air holes were also segmented. 

The TLD chips were not explicitly segmented, but each was modeled as a 1-mm tall 

cylinder with a 3-mm diameter to emulate the actual dimensions of the TLD chips. 

Following the segmentation, three-dimensional polygon models were created for each 

structure using the marching cubes algorithm80, 81. Typically, three-dimensional NURBS 

surfaces would be then be fit to the polygon models to provide a more compact and 

flexible definition for each structure. The advantage of using NURBS surfaces would be 

to allow for the simulation of anatomical variations or motion. In this case, since only 

static phantoms were needed for dose simulation purposes, each phantom was left as a 

collection of polygon models. As only the chest part of the adult female phantom was 

scanned during the TLD dose measurements, the initial computer model of that 

phantom only included this region. To simulate dose to organ locations outside the chest 
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scan image volume, images of the entire adult female phantom were acquired (after the 

TLD chips were removed) to allow the remaining parts of the phantom to be modeled.  

To account for the effect of CT table attenuation on dose, a computer model of 

the CT table (table case and table interior) was also created via manual segmentation of 

the table from a patient CT image with a large reconstruction field-of-view.  

The model of each phantom with the table attached was voxelized at resolutions 

comparable to the original image resolutions. Each organ and structure was assigned a 

material based on the elemental composition and mass density information tabulated in 

the CIRS manual. Soft tissue material was used for the tissue-equivalent TLD chips.  The 

interior of the CT table (acrylic foam) was modeled as low-density acrylic per 

information provided by the manufacturer. The case of the CT table (carbon fiber) was 

modeled as carbon with density of 1.7 g/cm3. 

  The location and coverage of the axial and helical scans in the actual experiments 

were reproduced in the simulation. For the helical scans, the total scan length was 

calculated as the total image coverage plus the overranging distance (additional scan 

length necessary for data interpolation in helical reconstruction)82. The overranging 

distance was estimated from the scanner console parameters as “table speed (cm/s) × 

total scan time (s) – image coverage (cm)”. In a helical scan, the X-ray tube starting angle 

is not fixed and thus different each time (per private communication with the 

manufacturer). As the tube starting angles in the actual experiments were unknown, 
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each helical scan was simulated six times with tube starting angle differing by 60 

degrees each time. 

For the range of photon energies in CT, the ranges of the secondary electrons in 

tissue materials are generally much smaller than the voxel sizes in the phantoms. 

Therefore, electrons were not transported during the simulations; their energies were 

deposited locally immediately after they were produced. The transport of a photon was 

terminated if the photon energy dropped below one thousandth of the kVp energy72. 

Energy deposited in the TLD chips was tallied and used to calculate dose, following the 

procedure of dose calculation performed for the cylindrical phantom. The number of 

photon histories was chosen to obtain relative errors in dose of 5% or below. 

2.2.6 Patient-Specific Dose and Risk Estimation 

2.2.6.1 Patients 

The validated Monte Carlo program was applied to estimate organ dose and 

potential cancer risk for CT examinations of two patients: a newborn (5 weeks, female) 

and a teenager (12 years, male). Both patients underwent 64-slice CT examinations 

(LightSpeed VCT, GE Healthcare, Waukesha, WI) of the chest, abdomen, and pelvis at 

our institution in 2006 using our size-based pediatric protocols at the time that 

employed fixed tube currents (Table 3). 
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The study was approved by our institutional review board (IRB), who 

determined that it was in compliance with the Health Insurance Portability and 

Accountability Act (HIPAA), and did not require informed consent.  

 
Table 3: CT examinations undergone by the two patients in our study. Each patient underwent a 
combined chest-abdomen-pelvis (CAP) examination consisting of a chest scan and an abdomen-
pelvis scan. 

 newborn (5 weeks, female) teenager (12 years, male) 
 chest abdomen-pelvis chest abdomen-pelvis

image coverage from lung 
apex to top of 

liver 

from 0.75 cm 
above top of liver 
to 1.25 cm below 

bottom of 
ischium 

from 1 cm above 
lung apex to top 

of liver 

from 1 cm above 
top of liver to just 
above bottom of 

ischium 

kVp 100 120 120 120
mA 55 70 90 110

gantry rotation period (s) 0.4 0.4 0.4 0.4
scan FOV  

(bowtie filter) 
pediatric 

body (small)
pediatric body 

(small)
medium body 

(medium) 
medium body 

(medium)
collimation (mm) 40 40 40 40

pitch 0.984 0.984 1.375 1.375
slice thickness (mm) 3.75 3.75 5 5

reconstruction interval 
(mm) 2.5 2.5  5 5 

 

2.2.6.2 Patient-specific computer models 

For each patient, a NURBS-based full-body computer model was created based 

on the patient’s clinical CT data79. Large organs and structures inside the image volume 

(backbone, ribcage, lungs, heart, liver, gall bladder, stomach, spleen, and kidneys) were 

individually segmented and modeled. Other organs were created by morphing existing 

adult male or female full-body computer models (developed from visible human data)83 
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to match the framework defined by the segmented organs, referencing the organ volume 

and anthropometry data in ICRP Publication 8984. The resultant full-body models 

possessed a total of 44 and 43 organs for the newborn and the teenager, respectively, 

including most of the radiosensitive organs defined by ICRP Publication 10321 (Table 4). 

 
Table 4: Summary of organs in the computer models of the two patients. 

    mass (g)i 

organ/structure 
density 
(g cm-3)g material (ICRU 46)g 

newborn  
(5 weeks, female) 

teenager  
(12 years, male) 

respiratory system    

pharynx-larynxa 1.03 average soft tissueh 1.6 17.3
trachea-bronchi 1.03 average soft tissue 1.0 13.7
lungs* 0.26 lung (adult, healthy, inflated) 57.9 445.3
alimentary system    

esophagus 1.03 average soft tissue 1.5 18.0
stomachb 1.03 average soft tissue 39.4 282.9
pancreas 1.03 average soft tissue 9.2 82.1
liver* 1.03 average soft tissue 104.5 961.5
gall bladder 1.03 average soft tissue 4.1 24.6
small intestine 1.03 average soft tissue 70.7 558.3

large intestine 1.03 average soft tissue 63.9 436.5
circulatory system    

heart* 1.03 average soft tissue 51.2 459.8
urogenital system    
kidneys* 1.03 average soft tissue 21.5 189.3
urinary bladder 1.03 average soft tissue 5.4 63.8
prostatec 1.03 average soft tissue – 3.1
testes 1.03 average soft tissue – 3.9
ovaries 1.03 average soft tissue 0.5 –
uterus 1.03 average soft tissue 3.2 –
vagina 1.03 average soft tissue 0.4 –
skeletal systemd    
cranium 1.4d average skeletond 257.5 941.9
mandible 1.4 average skeleton 20.5 99.4
clavicles 1.4 average skeleton 1.2 42.9
scapulea 1.4 average skeleton 6.3 164.6
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Table 4: Continued. 

sternum 1.4 average skeleton 2.5 32.1
ribs* 1.4 average skeleton 25.5 302.9
cervical vertebrae* 1.4 average skeleton 7.1 74.4
thoracic vertebrae* 1.4 average skeleton 23.5 233.7
lumbar vertebrae* 1.4 average skeleton 16.6 186.7
pelvis 1.4 average skeleton 25.6 492.6
sacrum 1.4 average skeleton 10.9 152.7
upper humeri 1.4 average skeleton 5.1 175.9
lower humeri 1.4 average skeleton 3.7 125.1
radii, ulnae 1.4 average skeleton 6.1 185.9
wrist and hand bones 1.4 average skeleton 4.6 132.1
upper femora 1.4 average skeleton 10.9 439.6
lower femora 1.4 average skeleton 15.0 543.9
tibiae, fibiae, patellae 1.4 average skeleton 21.5 765.5
ankle and foot bones 1.4 average skeleton 12.1 420.1
integumentary system   

skin (torso only)e 1.03 average soft tissue 49.3 452.4
additional organs/tissues   
brain 1.03 average soft tissue 400.3 1488.4
eyes 1.03 average soft tissue 6.8 14.6
thyroid 1.03 average soft tissue 1.6 11.2

breasts 0.96 breast (50/50) 0.7 2.2
thymus 1.03 average soft tissue 16.3 37.5
spleen* 1.03 average soft tissue 8.1 215.1
adrenal glands 1.03 average soft tissue 6.5 10.6

residual soft tissuesf 1.03 average soft tissue 2348.2 30226.5
a Combined organ of pharynx and larynx, combined organ of trachea and bronchi, and esophagus 
were modeled as tubular organs with air-fill lumens. The wall thickness of these tubular organs 
was assumed to be 2 mm for the newborn and 3 mm for the teenager. It was independently 
verified that, over the range of 1-3 mm, the effect of wall thickness on organ dose was less than 
1%. Dose to combined organ of pharynx and larynx was used as a surrogate for dose to salivary 
glands, oral mucosa, and extra-thoracic (ET) region. 
b Alimentary tract organs (stomach, small intestine, large intestine), heart, gall bladder, and 
urinary bladder were modeled as single homogenous organs without delineation of walls and 
contents. 
c Prostate, testes, ovaries, uterus, and vagina are gender-specific organs and were included in the 
models of their respective genders only. 
d The skeleton was modeled as a homogeneous mixture of its component tissues, namely cortical 
bone, trabecular bone, yellow marrow, red marrow, and various connective tissues. The atomic 
composition and mass density data published by Cristy and Eckerman65 for the skeletons of 
newborn and adult were used for the newborn and the teenager patients, respectively. 
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Table 4: Continued. 

e The torso of the NURBS model of each patient was covered with a skin layer to allow dose estimations 
for the skin. The skin thickness was assumed to be 1 mm and 2 mm for the newborn and the teenager 
patients, respectively, resulting in a 1-2 voxel definition of the skin in the Monte Carlo simulations. Whole 
body skin dose was calculated as torso skin dose multiplied by the ratio of torso skin area to 
whole body skin area, where skin areas were estimated from the NURBS model of each patient. 
f Residual soft tissues included skeletal muscle, adipose tissue, cartilage, blood, lymphatic tissues, 
and connective tissues. Dose to residual soft tissues was used to approximate dose to skeletal 
muscle and lymphatic nodes. 
g The atomic composition and mass density data tabulated in ICRU Publication 4685 were used for 
all organs and tissues with the exception of the skeleton (see footnote d). 
h Average soft tissue of adult male was used. 
i Organ/tissue mass in the voxel models. 
* Organs individually segmented from CT images of the patients.  
 
 

While each patient’s three-dimensional CT dataset may also serve as his/her 

patient-specific computer model35, the full-body models in our study allowed dose to be 

estimated for not only organs within the image volume, but also organs in the 

overranging distance and those outside the scan coverage. 

2.2.6.3 Organ dose simulations 

The NURBS model of each patient was “positioned” on the CT table in a supine 

position with arms elevated above the head to mimic actual patient posture during CT 

examinations. The models were voxelized at 0.5- and 1-mm isotropic resolutions for the 

newborn and the teenager, respectively. Each organ/structure was assigned a material 

(Table 4) based on the elemental composition and mass density information tabulated in 

ICRU Publication 4685 with the exception of the skeleton, for which the material 

information published by Cristy and Eckerman65 for the skeletons of newborn and adult 

was used for the newborn and the teenager patients, respectively.  
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The scan coverage in the actual patient examinations (Table 3) was reproduced in 

the simulations. As was done for the anthropomorphic phantoms, the total scan length 

in a helical scan was calculated as the total image coverage plus the overranging 

distance. As the exact tube starting angles in the patients’ examinations were unknown, 

a zero degree (12 o’clock) tube starting angle was assumed.  

Energy deposited in organs and tissues was tallied and used to calculate dose. 

Because bone marrow and bone surface were not explicitly modeled, the following 

methods were used to estimate dose to these two organs. To assess dose to the red bone 

marrow, volume-averaged photon fluence spectrum was tallied individually at each 

skeletal site and used to calculated dose to the red bone marrow via the fluence-to-dose 

conversion coefficients published by Cristy and Eckerman65. A single active marrow 

dose was then calculated as its skeletal average using the age-dependent fractional 

distribution of active marrow tabulated in ICRP Publication 8984. Dose to the bone 

surface was approximated by the mass-weighted average of dose to the homogenous 

bones as recommended by Lee et al.86. 

 In terms of simulation time requirement, using a single processor on a 2.3 GHz 

Linux server with 20 GB of random access memory (RAM), a 30-minute runtime plus 

another 30 minutes of input/output operation time was needed to finish ~7 million 

photon histories, resulting in relative dose error of less than 1% for all organs in the scan 

coverage and less than 10% for other organs. In this study, 80 million photon histories 
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(6.5-hour user time) were used to simulate each CT scan of each patient, resulting in 

relative dose error of less than 1% for all organs in the scan coverage and less than 3% 

for other organs. 

2.2.6.4 Effective dose and effective risk calculations 

Simulated organ dose values were used to calculate effective dose for the 

examination of each patient as  

,T T
T

E w H=∑               (6)  

where TH  is the equivalent dose for organ/tissue T and Tw  is the tissue weighting factor 

defined by ICRP Publication 10321. Dose to radiosensitive organs that were not explicitly 

modeled was approximated by dose to neighboring organs (Table 4). Dose to the breasts 

was only included in the effective dose calculations for the female patient. 

While widely used as a surrogate for radiation risk, effective dose is defined for a 

reference hermaphrodite person; the tissue weighting factors are mean values 

representing averages over many individuals of different genders and age groups21. To 

more accurately estimate individual patient risks, we used the recently proposed 

concept of effective risk71 defined as 

,T T
T

R r H=∑                    (7)   

where Tr  is the gender-, age-, and tissue-specific risk coefficient (cases/100,000 exposed 

to 0.1 Gy) tabulated in BEIR VII report14 for lifetime attributable risk of cancer incidence 
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(Figure 1). Thus, T Tr H  is the lifetime attributable risk of cancer incidence for 

organ/tissue T. Values of Tr  are available for leukemia and for cancer of 8-9 high-risk 

organs of each gender at discrete ages of 0, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80 years14, from 

which we linearly interpolated the values of Tr  at other ages. Cancer of other 

radiosensitive organs shares a collective risk coefficient (rother)14. This risk coefficient was 

applied to a weighted average dose of other radiosensitive organs, defined as15 

{other organs}
other

{other organs}

,
T T

T

T
T

w H
H

w
∈

∈

=
∑
∑

                         (8)                  

where the other radiosensitive organs included heart, kidney, gall bladder, spleen, 

pancreas, adrenal glands, thymus, small intestine, salivary glands, extrathoracic region, 

lymph node, muscle, oral mucosa, bone surface, brain, skin, testes (male only), and 

esophagus, among which the reminder organs, as defined by ICRP Publication 10321, 

were each assigned a tissue-weighting factor of 0.01. 

 To compare patient-specific organ dose estimation with the current dose-

reporting method, volume-averaged CTDI (CTDIvol) was also calculated for each 

patient’s each CT scan using the CTDI100 table and the tables of technique adjustment 

factors in the technical reference manual of the LightSpeed VCT scanner. CTDIvol values 

estimated this way agreed with those in the patients’ dosimetry reports within about 5%.  

 Lastly, as effective dose is frequently calculated using the dose-length product 

(DLP) to effective dose conversion coefficients37, 38, 87. DLP was calculated for each CT 
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scan and used to derive effective dose using the conversion coefficients published by 

Shrimpton36. The conversion coefficients for children at 0 and 10 years of age were used 

for the newborn and the teenager patients in our study, respectively.  

2.3 Results 

2.3.1 In-Air Results 

Simulated dose in the air was lower than measured dose for all combinations of 

kVps and bowtie filters (Table 5), resulting in OCF values (Equation 4) greater than 

unity. As OCFs calibrated the magnitudes of the pre-bowtie spectra, they had little 

dependence on bowtie filter type (Table 5). Thus, results averaged across bowtie filters 

were used in subsequent dose calculations.  

 
Table 5: Measured and simulated in-air dose at the isocenter of the LightSpeed VCT scanner for 
single axial scans. Error figures reflect one standard deviation. 

in-air dose (cGy/100mAs) 
kVp bowtie filter measured  simulated OCF meana

standard 
deviationa 

coefficient of 
variationa,b 

small 1.145 ± 0.004 0.896 ± 0.004 1.278 1.290 0.020 1.5% 
medium 1.151 ± 0.003 0.900 ± 0.004 1.279    

80 

large 0.835 ± 0.003 0.636 ± 0.003 1.313    
           

small 1.901 ± 0.003 1.515 ± 0.006 1.255 1.270 0.014 1.1% 
medium 1.907 ± 0.004 1.498 ± 0.006 1.273    

100 

large 1.481 ± 0.003 1.155 ± 0.005 1.283    
           

small 2.776 ± 0.004 2.337 ± 0.009 1.188 1.196 0.016 1.4% 
medium 2.775 ± 0.005 2.340 ± 0.009 1.186    

120 

large 2.262 ± 0.001 1.862 ± 0.008 1.215    
           

small 3.744 ± 0.006 3.187 ± 0.013 1.175 1.177 0.003 0.3% 
medium 3.736 ± 0.007 3.178 ± 0.013 1.176    

140 

large 3.144 ± 0.005 2.664 ± 0.012 1.180       
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Table 5: Continued. 

a The mean, standard deviation, and coefficient of variation of the OCF values across bowtie 
filters. 
bCoefficient of variation = (standard deviation / mean) × 100%. 
 
 

Figure 6 illustrates the results of our analytical simulation of the X-ray energy 

spectra at the exit of the X-ray tube and before filtration by the bowtie filter. The 

magnitudes of the spectra have been corrected using the OCF results. 

 
 

  
Figure 6: Simulated X-ray energy spectra at the exit of the X-ray tube and before filtration by the 
bowtie filter (pre-bowtie spectra).  

 

2.3.2 Effective Beam Width Results 

Results of effective beam width measurements are summarized in Table 6. Good 

agreements were found between the results derived from the two source-to-film 

distances. Furthermore, the effect of focal spot size was not statistically significant (p = 
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0.06-0.94). We defined the penumbra of the beam as the effective beam width minus the 

nominal collimation setting. As the differences between the penumbras at different 

collimation settings were small, the results were averaged to obtain a single penumbra 

value, which was added to each collimation setting to serve as the effective beam width 

at each collimation setting for the Monte Carlo simulations. 

 
Table 6: Effective beam widths measured for both focal spot sizes and for three most commonly 
used collimation settings. 

  effective beam width at isocenter (mm)  
focal spot 

size 
collimation  

(mm) 
derived from  

near SFDa 
derived from  

far SFD average 
penumbrab 

(mm) 
small 40 42.2 ± 0.6 42.4 ± 0.2 42.3 2.3 
large 40 41.9 ± 0.0 42.7 ± 0.2 42.3 2.3 

      
small 20 22.1 ± 0.6 21.7 ± 0.2 21.9 1.9 
large 20 22.1 ± 0.6 23.1 ± 0.2 22.6 2.6 

      
small 10 12.7 ± 0.0 12.1 ± 0.0 12.4 2.4 
large 10 12.7 ± 0.0 12.8 ± 0.4 12.7 2.7 

        average= 2.3 
a SFD = source-to-film distance 
b Penumbra is defined here as the effective beam width minus the nominal collimation setting. 

 
 

2.3.3 Cylindrical-Phantom Results 

Comparisons between measured and simulated dose distributions in the custom-

designed cylindrical phantom are shown in Figure 7. Across all bowtie filter and kVp 

settings, simulations agreed very well with measurements. Percent differences between 

simulations and measurements at individual data points ranged from -4.8% to 2.2% with 

an average magnitude of 1.3%. 
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Figure 7: Measured and simulated dose distributions in the custom-designed cylindrical 
phantom for single axial scans at four kVp values using the (a) small, (b) medium, and (c) large 
bowtie filters and a 40-mm beam collimation. Simulated dose values are shown by lines. 
Measured dose values are shown by symbols, and their error bars reflect one standard deviation. 
Most error bars are too small to appreciate. 

 

2.3.4 Anthropomorphic-Phantom Results 

Figure 8 and Figure 9 illustrate measured and simulated dose values in the 

pediatric and adult female anthropomorphic phantoms. For the axial scans performed in 

both phantoms, excellent match was found between simulations and measurements at 

all organ locations. For the helical scans, simulations agreed well with measurements for 

the pediatric phantom, yet slightly underestimated measurements for the adult female 

phantom. Results are also summarized in Table 7.  

 
Table 7: Summary of discrepancies between simulated and measured dose in the cylindrical and 
anthropomorphic phantoms. 

  cylindrical phantom pediatric phantom adult female phantom 
  single axial single axial helicala single axial helicala 

range (-4.8%, 2.2%) (-8.1%, 8.1%) (-2.1%, 13.0%) (-7.2%, 6.1%) (-17.2%, 3.8%) 
average 

magnitude 1.3% 6.2% 4.0% 3.4% 11.1% 
a Simulated dose averaged across tube starting angles was used for the comparison. 
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Figure 8: Measured and simulated dose from a single axial scan in (a) the pediatric and (b) the 
adult female phantoms. Error bars reflect one standard deviation. Percent discrepancies between 
simulation and measurement are labeled on the bottom. 
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Figure 9: Measured and simulated dose from (a) a full-body helical scan in the pediatric phantom 
and (b) a chest scan in the adult female phantom. Error bars reflect one standard deviation. The 
degrees are X-ray tube start angles relative to 12 o’clock. Percent discrepancies between 
simulation (averaged over tube starting angles) and measurement are labeled on the bottom. At 
four organ locations in the adult female phantom, one of the two TLD chips was cracked during 
the experiment; dose uncertainty could not be assessed for these four locations. 
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Figure 10: Coronal dose distributions in the two patients, resultant from their CT examinations: 
(a) chest scan of the newborn patient, (b) abdomen-pelvis scan of the newborn patient, (c) chest 
scan of the teenager patient, and (d) abdomen-pelvis scan of the teenager patient. The coronal 
plane was taken about half-way in between the anterior and posterior surfaces of each patient. 
The computer model of each patient with organs shown on a gray scale was overlaid with a semi-
transparent colored image of the dose distribution. The noise in the dose distribution is reflective 
of the limited number of photos used in the simulations. As organ dose was an average over the 
entire organ volume, the uncertainty associated with organ dose was less than 1% for all organs 
in the scan coverage and less than 3% for other organs (see Section 2.2.6.3 ). 
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2.3.5 Patient-Specific Dose and Risk Results 

Examples of dose distributions in the two patients from their CT examinations 

are illustrated in Figure 10. The dose distribution was more uniform in the newborn 

patient (pitch of 0.984) than in the teenager patient (pitch of 1.375). As a result of the 

overranging distance, a large portion of the abdomen (chest) was irradiated in the chest 

(abdomen-pelvis) scan.  

Table 8 summarizes the organ and effective dose values. The corresponding risks 

of cancer incidence are tabulated in Table 9. For the newborn patient, lung dose from the 

abdomen-pelvis scan was comparable to that from the chest scan. For both patients, the 

effective dose from the abdomen-pelvis scan was more than double that from the chest 

scan. While the organ and effective dose of the two patients was similar, the organ and 

effective risk of the newborn patient was up to 23 times higher. CTDIvol underestimated 

dose to large organs in the scan coverage by 30-48%, and effective dose derived from 

DLP differed from that estimated using patient-specific organ dose values by -30% to 

42% (Table 10). 

Table 8: Organ and effective dose of the two patients from their CT examinations. Each patient 
underwent a combined chest-abdomen-pelvis (CAP) examination consisting of a chest scan and 
an abdomen-pelvis scan. 

 dose (mGy) 
 newborn (5 weeks, female) teenager (12 years, male) 
organ chest abdomen-pelvis  CAPa  chest abdomen-pelvis  CAPa

respiratory system       
pharynx-larynx 1.95 0.24 2.18 1.09 0.06 1.15 
trachea-bronchi 3.28 0.58 3.86 3.72 0.38 4.09 
lungs 3.68 3.56 7.24 3.93 2.50 6.43 
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Table 8: Continued. 

alimentary system       
esophagus 3.21 1.58 4.79 3.34 1.35 4.69 
stomach 1.49 6.39 7.88 1.61 5.06 6.67 
pancreas 0.34 6.40 6.74 0.58 4.97 5.55 
liver 2.01 6.56 8.57 1.84 4.94 6.77 
gall bladder 0.97 6.89 7.86 0.41 5.20 5.60 
small intestine 0.27 7.07 7.35 0.15 5.51 5.66 
large intestine 0.24 6.77 7.00 0.11 5.08 5.19 
circulatory system       
heart 3.57 4.33 7.90 4.16 2.63 6.80 
urogenital system       
kidneys 1.43 6.10 7.53 0.65 4.55 5.20 
urinary bladder 0.03 6.27 6.30 0.02 5.45 5.47 
prostate - - - 0.01 3.98 3.99 
testes - - - 0.00 4.19 4.19 
ovaries 0.05 6.11 6.16 - - - 
uterus 0.04 6.06 6.10 - - - 
vagina 0.03 6.32 6.35 - - - 
skeletal system       
bone surface 1.81 3.36 5.17 1.45 2.68 4.13 
red bone marrow 0.93 1.60 2.52 1.04 1.91 2.95 
integumentary system       
skin 0.55 1.70 2.25 0.60 1.24 1.83 
additional organs/tissues       
brain 0.12 0.05 0.17 0.07 0.01 0.08 
eyes 0.09 0.03 0.12 0.05 0.01 0.05 
thyroid 2.86 0.38 3.23 4.78 0.23 5.01 
breasts 2.89 2.27 5.16 2.57 1.45 4.02 
thymus 3.54 0.75 4.29 3.87 0.51 4.39 
spleen 2.62 5.71 8.33 1.26 4.65 5.91 
adrenal glands 1.98 6.06 8.04 1.24 4.11 5.36 
residual soft tissues 0.99 2.79 3.78  0.72 1.44 2.16 
effective dose (mSv) 1.7 4.1 5.8  1.4 3.0 4.4 
a Dose from the combined chest-abdomen-pelvis (CAP) examination, i.e., the summation of dose 
from the chest scan and that from the abdomen-pelvis scan. 
 
 
 
 
 



 

 45

Table 9: Lifetime risks of cancer incidence for the two patients attributable to their CT examinations. Each 
patient underwent a combined chest-abdomen-pelvis (CAP) examination consisting of a chest 
scan and an abdomen-pelvis scan. 

 lifetime attributable risk of cancer incidence (cases / 1000 exposed) 
 newborn (5 weeks, female) teenager (12 years, male) 
  chest abdomen-pelvis CAPa  chest abdomen-pelvis CAPa 
thyroid cancer 0.180 0.024 0.203 0.021 0.001 0.022 
breast cancer 0.337 0.265 0.602 0.000 0.000 0.000 
lung cancer 0.269 0.260 0.529 0.080 0.051 0.132 
stomach cancer 0.015 0.064 0.079 0.008 0.026 0.035 
liver cancer 0.006 0.018 0.024 0.007 0.020 0.028 
colon cancer 0.005 0.148 0.154 0.002 0.116 0.119 
bladder cancer 0.001 0.132 0.133 0.000 0.078 0.078 
prostate cancer - - - 0.000 0.025 0.025 
ovary cancer 0.001 0.063 0.064 - - - 
uterus cancer 0.000 0.030 0.030 - - - 
leukemia 0.017 0.029 0.046 0.012 0.022 0.034 
other cancer 0.251 0.405 0.656  0.055 0.131 0.185 
effective risk 1.1 1.4 2.5  0.2 0.5 0.7 
a Risk from the combined chest-abdomen-pelvis (CAP) examination, i.e., the summation of risk 
from the chest scan and that from the abdomen-pelvis scan. 
 
 
Table 10: Comparison between volume-weighted CT dose index (CTDIvol) and patient-specific 
organ dose, and comparison between effective dose derived from DLP and effective dose 
estimated using patient-specific organ dose values. 

    newborn (5 weeks, female)  teenager (12 years, male) 
    chest abdomen-pelvis  chest abdomen-pelvis 
large organ dose (mGy)a      
 approximated by CTDIvol  2.21 4.77  2.24 2.74 
 estimated for specific patient 3.63 6.82 4.05 5.23 
 discrepancy -39% -30% -45% -48% 
       
effective dose (mSv)     
 derived from DLP 1.2 5.2 2.0 4.1 

 
estimated using patient-specific 
organ dose 1.7 4.1 1.4 3.0 

  discrepancy -30% 26%  42% 36% 
a Average dose to large organs inside the scan coverage, represented by lung and heart for the 
chest scan and liver and small intestine for the abdomen-pelvis scan. 
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2.4 Discussions 

In this work, we reported a Monte Carlo method for estimating patient-specific 

radiation dose and potential cancer risk associated with CT examinations. To ensure the 

accuracy of our Monte Carlo method, we modeled the CT system in great detail, 

including explicit modeling of the X-ray source energy spectra, the three-dimensional 

geometry of the bowtie filters, and the trajectories of CT tube motions during axial and 

helical scans. The results of our effective beam width measurements were consistent 

with those reported earlier by other authors, who measured the effective beam widths 

on the LightSpeed VCT scanner using rod optically stimulated luminescence (OSL) 

dosimeters.88 The results of our dose simulation showed good agreement with ion 

chamber and TLD measurements. Excellent match (Figure 7) was found between 

simulated and measured radial dose distributions in the cylindrical phantom for all 

combinations of kVp and bowtie filter settings (discrepancy < 4.8%). As radial dose 

distribution is highly dependent on the quality of the X-ray beam and the filtration of 

the CT system, these results are strong evidence of the accuracy of our spectrum and 

filtration models.  

To our knowledge, this work is the first effort to validate Monte Carlo simulated 

dose inside anthropomorphic phantoms for helical scans. Prior work was limited either 

to single axial scans34, 35, 89 or to the surfaces of an anthropomorphic phantom33. For the 

pediatric phantom in our study, excellent agreement was found between simulations 
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and measurements for both axial and helical scans (Figure 8a and Figure 9a) 

(discrepancy < 13%). Our simulations showed that the tube starting angle has a 

discernable effect on dose even at small helical pitch values (~ 0.5), contributing to the 

uncertainty in dose estimation. Such dependence has also been reported recently at 

higher pitch values (0.75-1.5) and has been exploited as dose reduction strategies90. For 

the adult female phantom, simulations agreed well with measurements for the single 

axial scan (discrepancy < 7.2%), yet slightly underestimated measurements for the 

helical scan (discrepancy < 17.2%). Nevertheless, considering the complexity of the 

simulations and the large number of factors that influence the results, discrepancies of 

less than 20% from measurements are generally considered as good matches35.  

Results of patient-specific dose estimations for the two patients showed that 

overranging and scattered radiation contribute significantly to the dose received by 

organs on the edges and outside of the image volume (Figure 10 and Table 8). This is 

especially apparent for the newborn patient whose lung dose in the abdomen-pelvis 

scan was comparable to that in the chest scan. This result highlighted the importance of 

reducing or eliminating overranging distances91, especially for smaller patients. For both 

patients, the effective dose from the abdomen-pelvis scan was more than double that 

from the chest scan. This may be explained by the higher technique (kVp and/or mA) 

and the larger irradiated body volume in the abdomen-pelvis scan. 
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It is generally accepted that when the same scan technique is used, a smaller 

patient receives higher radiation dose30, 92. Due to the size-based pediatric CT protocols 

in use at our institution, which uses lower scan techniques for smaller patients, organ 

and effective dose received by the newborn patient were only slightly higher but 

comparable to that of the teenager patient. When the risks of cancer incidence were 

assessed, however, the newborn had up to 23% times higher risks than the teenager, due 

to the differences in age and gender. As the same dose may entail substantially different 

risks to patients of different ages and genders, patient-specific risk estimates should be 

used together with dose estimates to guide the design and optimization of CT 

technologies and scan protocols. Knowledge of the risks to a specific patient may have 

potential influence on decisions for imaging in clinical scenarios; even assuming that the 

effect may be trivial, it is important that those involved with ordering, performing, and 

assuring quality for CT examinations understand the range of potential biological 

effects, such as cancer, from these examinations. In addition, patient-specific dose 

information may be extremely helpful for institutional review of scientific investigations 

using CT examinations. Finally, patient-specific dose estimations afford more 

individualized and expanded application of dose tracking from medical radiation 

exposures61, 62. 

To further demonstrate the inadequacy of the current patient-generic dose 

reporting method, we compared CTDIvol with patient-specific dose to large organs in the 
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scan coverage.  For the two patients in our study, CTDIvol grossly underestimated (-30 to 

-48%) dose to large organs in the scan coverage, primarily because the newborn and the 

teenager patients had average truck diameters of 9.7 and 21.7 cm, respectively, much 

smaller than the diameters of the standard CTDI phantoms (i.e., 16- and 32-cm diameter 

PMMA or equivalently 18- and 36-cm diameter water93), on which the respective CTDIvol 

values were based. As such, CTDIvol should not be used as a surrogate for radiation dose 

in CT. Furthermore, we showed that the effective dose values derived from DLP can 

differ substantially (-30% to 42%) from that calculated using patient-specific organ dose 

values. Part of the difference may be attributed to the differences in tissue-weighting 

factors (wT) used in the two methods; the DLP method was based on the wT values in 

ICRP Publication 6094, whereas our calculation of effective dose for specific patients 

employed the wT values in ICRP 10321. However, the patient-generic nature of the DLP 

method was likely the main cause of the discrepancy, leading to under- or over-

estimation of dose depending on the patient. With the development of a large library of 

patient-specific compute models79, it is possible to match any new patient to an existing 

patient in the library based on age, gender, and body habitus. This will allow more 

accurate dose and risk estimates or pseudo-patient-specific estimates to be included in 

all patients’ dosimetry and medical records.  

Our study has several limitations. Firstly, it is limited to a single CT scanner 

model and to the fixed tube-current techniques. However, the methods developed in our 
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study can be readily extended to other CT scanner models and to tube-current-

modulated techniques. Furthermore, other authors have shown, with small numbers of 

patient and scanner models, that when organ dose estimates are normalized by CTDI 

values appropriate for the patient size (e.g., CTDIvol in a cylindrical phantom with the 

same circumference as the patient), the variations across CT scanner models are small10, 

95. Thus, our method may be extended to provide patient-specific normalized dose and 

risk estimates independent of scanner models, although this requires further testing and 

validation. Secondly, we and other authors90 have shown that tube starting angle has 

sizable effects on patient dose. However, as the two patients in our study underwent CT 

examinations four years ago, it was not possible for us to obtain the actual tube starting 

angles in the patients’ examinations (part of the raw CT data, not archived) and 

reproduce that in our dose simulations. This potentially introduced errors in the dose 

results. Lastly, the accuracy of our risk estimations is limited by the 

accuracy/uncertainties of the current cancer risk models,14 which are largely based on the 

life-span studies of atomic-bomb survivors and limited number of studies on 

occupational exposures. Furthermore, as the risk coefficients are still statistical averages 

over many individuals of the same gender and similar age, they can not reflect 

individual vulnerability due to genetic factors. As such,  the cancer risks we reported do 

not represent the true risk of an individual from his/her CT examination but rather our 

current best knowledge of the potential risk to a patient from his/her CT examination, 
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knowing the patient’s age and gender. Therefore, care should be exercised when 

interpreting the risk results. Nevertheless, the patient-specific risk information, as 

presented by our study, represents a step forward beyond effective dose towards 

personalized patient care. 
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3. Patient-Specific Dose Estimation for Pediatric Chest 
CT* 

3.1 Introduction 

With the growing use of computed tomography in children96, 97 and the 

increasing awareness of CT radiation risk to this population15, 16, 60, there is a greater need 

to accurately estimate radiation dose from CT examinations, not only for the purpose of 

assessing life-time cancer risk which can be useful during discussions with healthcare 

providers, regulatory bodies, parents, and ethics committees, but also for the purposes 

of comparing and optimizing CT technologies and scan protocols. Despite the recent 

debate on its concept22, effective dose remains the most widely used dose descriptor for 

radiological procedures including CT. Its calculation requires the knowledge of dose 

delivered to individual organs.  

With no practical technique to measure organ dose directly from patients, three 

methods are currently being used to estimate organ and effective dose from CT 

examinations using patient phantoms/models: (a) experimental measurement on 

physical anthropomorphic phantoms23, 24, (b) Monte Carlo simulation using 

mathematical or voxelized models of patients25-27, 29-32, 98, and (c) calculation of organ and 

effective dose from CT dose index (CTDI) or dose-length product (DLP) using 

conversion coefficients derived via the first two methods23-25, 36-38. Current methods are 

                                                      

* This chapter is based on an article with the same title published in the journal Medical Physics. 
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limited in that they are largely patient-generic. Phantoms/models have only been 

developed for standard/limited patient sizes at discrete ages (e.g. 0, 1, 5, 10, 15 years old) 

and do not reflect the variability of patient anatomy and body habitus. Therefore, dose 

information for individual patients is currently not available. In a recent study32, the 

effect of body weight on organ dose was studied for 15-year-old adolescents using 

NURBS (non-uniform rational B-spline) based computer models created at 10th, 50th, and 

90th weight percentiles. The authors reported up to ~30% dose errors when reference 

patient models were used to represent overweight patients. This highlighted the need 

for patient-specific dose estimations. 

The goal of this work is to use multi-detector array CT (MDCT) data of multiple 

pediatric patients in the same size/protocol group to investigate dose variations across 

patients due to the variability of patient anatomy and body habitus and to explore 

methods for patient-specific dose estimations. 

3.2 Materials and Methods 

3.2.1 Patients 

This study was approved by our institutional review board (IRB), who 

determined that it was in compliance with the Health Insurance Portability and 

Accountability Act, and did not require informed consent. The study included seven 

pediatric patients (3 boys and 4 girls; median age, 2 years old; age range, 1-6 years old; 

median weight, 12.9 kg; weight range, 11.9-18.2 kg) who underwent 64-slice MDCT 
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examinations (LightSpeed VCT, GE Healthcare, Waukesha, WI) of the chest, abdomen, 

and pelvis. 

3.2.2 Patient-Specific Computer Models 

In CT examinations, three sources of exposure contribute to organ dose: direct 

primary exposure, exposure from overranging (additional scan length necessary for data 

interpolation in helical reconstruction), and scattered radiation. While the first source of 

exposure has higher contribution than the other two and can be modeled with the actual 

patient CT data, the other two sources contribute notably to organ dose as well and can 

only be adequately modeled using full-body patient models. 

A full-body computer model of each patient was created to enable dose 

estimations for organs both inside and outside the image volume. The initial anatomy of 

the model was defined by segmenting the patient’s MDCT data using a software 

application developed in our laboratory99. The heart, liver, gall bladder, stomach, spleen, 

and kidneys were manually segmented by contouring from each CT slice. The lungs and 

bones were semi-automatically segmented using thresholding. Once a dataset was 

segmented, three-dimensional polygon models were generated for each structure using 

the marching cubes algorithm80, 81. Three-dimensional NURBS surfaces were then fit to 

the polygon models using NURBS modeling software (Rhinoceros, McNeel North 

America, Seattle, WA) to create the initial patient-specific model.  
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Other organs and structures, not easily segmented or visible in the scan 

coverage, were defined by morphing an existing male or female full-body adult model 

(developed from visible human data)83 to match the framework defined by the 

segmented organs. The morphing was performed manually using the affine 

transformations of Rhinoceros. The volumes of the organs and structures defined in this 

manner for each pediatric model were checked and scaled, if necessary, to match age-

interpolated organ volume and anthropometry data in ICRP Publication 8984.  

The resultant full-body pediatric male and female models possessed a total of 26 

and 27 organs, respectively, including most of the radiosensitive organs defined by ICRP 

Publication 10321 (Table 11). Figure 11 illustrates surface rendered views of the three-

dimensional anatomy in the computer models of the youngest (16 months old) and the 

oldest (6 years old) patients in our study. 

A computer model of the CT table (table case and table interior) was also created 

via manual segmentation of the table from an adult CT image with a large scan field-of-

view, referencing the dimensional data provided by the manufacturer. The model of 

each patient was “positioned” on the table in a supine position with arms elevated 

above the head to mimic actual patient posture during CT examinations.  

The NURBS model of each patient with the table attached was voxelized at 2-mm 

isotropic resolution, resulting in a three-dimensional matrix of voxels, each assigned an 

integer labeling a specific organ or object.  
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Table 11: Summary of organs included in the computer models of the seven pediatric patients. 

 mass (g) 

organ/structure 
density 
(g·cm-3) 

material                              
(ICRU 46) mean (range) CVl 

respiratory system      
pharynx-larynxa 1.03 average soft tissuej 7.2 (4.3 - 10.0) 27.6% 
trachea-bronchi 1.03 average soft tissue 4.7 (2.6 - 6.6) 31.2% 
lungs* 0.26 lung (adult, healthy, inflated) 158.8 (117.6 - 216.6) 22.4% 
alimentary system      
esophagusb 1.03 average soft tissue 6.7 (1.9 - 10.2) 50.8% 
stomach* 1.03 average soft tissue 124.4 (61.9 - 219.6) 46.2% 
pancreas 1.03 average soft tissue 33.7 (26.4 - 52.9) 27.2% 
liver* 1.03 average soft tissue 484.4 (354.2 - 724.0) 25.7% 
gall bladder* 1.03 average soft tissue 6.8 (2.6 - 12.4) 54.4% 
small intestine 1.03 average soft tissue 238.0 (190.5 - 343.9) 22.6% 
large intestine 1.03 average soft tissue 192.1 (157.6 - 291.7) 23.9% 
circulatory system      
heart*c 1.03 average soft tissue 166.7 (133.6 - 248.7) 23.4% 
urogenital system      
kidneys* 1.03 average soft tissue 109.0 (81.3 - 147.6) 22.5% 
urinary bladder 1.03 average soft tissue 14.8 (10.4 - 22.4) 26.4% 
prostated 1.03 average soft tissue 1.6 (1.6 - 1.7) 0.8% 
testes 1.03 average soft tissue 3.3 (3.2 - 3.4) 3.3% 
ovaries 1.03 average soft tissue 2.4 (1.8 - 3.3) 29.5% 
uterus 1.03 average soft tissue 3.3 (2.6 - 4.3) 23.3% 
vagina 1.03 average soft tissue 1.6 (1.4 - 2.1) 20.8% 
skeletal systeme      
compact bone*f 1.75 cortical (5 years) 2303.3 (1875.7 - 2989.5) 16.9% 
marrow 1.03 red marrow (adult)k 424.5 (270.8 - 701.5) 38.5% 
integumentary system     
skin (torso only)g 1.03 average soft tissue 440.8 (375.9 - 535.5) 12.5% 
additional organs/tissues     
brain 1.03 average soft tissue 1161.6 (1069.4 - 1345.0) 8.0% 
eyes 1.03 average soft tissue 12.0 (10.3 - 15.4) 14.2% 
thyroid 1.03 average soft tissue 4.1 (2.9 - 7.5) 39.9% 
breastsh 0.96 breast (50/50) 3.0 (3.0 - 3.1) 1.1% 
thymus 1.03 average soft tissue 35.6 (33.3 - 38.3) 5.5% 
spleen* 1.03 average soft tissue 86.1 (34.2 - 129.7) 42.0% 
adrenal glands 1.03 average soft tissue 7.8 (7.3 - 9.0) 8.3% 
residual soft tissuesi 1.03 average soft tissue 10026.0 (7728.8 - 15045.4) 25.1% 
a Dose to combined organ of pharynx and larynx was used as a surrogate for dose to salivary 
glands, oral mucosa, and extra-thoracic (ET) region. 
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Table 11: Continued. 

b Esophagus, combined organ of pharynx and larynx, and combined organ of trachea and bronchi 
were modeled as walled organs with air-fill lumens. 
c Heart, gall bladder, alimentary tract organs (stomach, small intestine, large intestine), and 
urinary bladder were modeled as single homogenous organs without delineation of walls and 
contents. 
d Prostate, testes, ovaries, uterus, and vagina are gender-specific organs and were included in the 
models of their respective genders only. 
e The skeletons were modeled as homogeneous bone marrow encased by homogeneous compact 
bone. The trabecular bone was not explicitly modeled. The additional dose to bone marrow 
deposited by photoelectrons released in the trabecular bone was accounted for by applying dose 
enhancement factors. The dose enhancement factors reported by King and Spiers100 were 
interpolated by age at 50 keV, effective energy of the 120 kVp beam. 
f Dose to compact bone was used to approximate dose to bone surface. 
g Skin thickness, wall thicknesses of trachea and esophagus, and thicknesses of compact bones 
were assumed to be 3 mm given the 2-mm voxel resolution used in this study and the thin 
thicknesses of these structures in patients of this age range. 
h Breast tissue is underdeveloped in patients of this age range and was not visible in the CT 
images. A small amount of breast tissue (3.0 g) was “attached” to the chest of each patient model 
for dose estimation purposes. Dose to the breast was used to study dose variations across the 
patients, but was not included in the calculation of effective dose. 
i Residual soft tissues include skeletal muscle, adipose tissue, cartilage, blood, lymphatic tissues, 
and connective tissues. Dose to residual soft tissues was used to approximate dose to skeletal 
muscle and lymphatic nodes. 
j Average soft tissue of adult male was used. 
k Bone marrow was assumed to be composed entirely of red bone marrow for patients of this age 
range.  
l CV (coefficient of variation) = standard deviation × 100% / mean. 
* Organs individually segmented from CT images of the patients. Individually segmented 
compact bones included the backbone and the ribcage.  
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Figure 11: Surface rendered views of the three-dimensional anatomy in the computer models of 
the youngest (16 months old) and the oldest (6 years old) patients in our study. 
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3.2.3 Monte Carlo Simulations 

The voxelized models of the patients were used as inputs to a PENELOPE72 

(Universitat de Barcelona, version 2006) based Monte Carlo code, which was previously 

developed to simulate radiation transport in the LightSpeed VCT scanner101. The three-

dimensional geometry of the three bowtie filters on the scanner and the trajectories of X-

ray tube motion during axial and helical scans were explicitly modeled by the code. The 

accuracy of the code was previously validated against experimental measurements in 

terms of dose distributions in a cylindrical acrylic phantom, and the maximum dose 

error was found to be less than 5.4%101.  

Because it is impractical and inefficient to individually define all the planes and 

voxels in the patient model using the original geometry routine PENGEOM of 

PENELOPE, we developed a new geometry routine, named PENVOME (i.e. PENGEOM 

for voxelized models). PENVOME conveniently labels each voxel by its matrix indices; 

boundary planes of the voxel are only calculated when the voxel is reached by a particle. 

This circumvents the needs to store surface/body definitions and to sort through a 

genealogical tree of a large number of bodies. The accuracy of PENVOME was validated 

against PENGEOM in terms of simulated dose in a simple object of 18 voxels, and the 

results were identical within the statistical constraints of the Monte Carlo simulation. 

Before incorporating the voxelized model of each patient into Monte Carlo 

simulation, each organ was assigned a material (Table 11). The case and the interior of 
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the patient table were modeled as carbon fiber (ρ = 1.7 g/cm3) and acrylic foam (ρ = 0.1 

g/cm3), respectively. The MATERIAL program of PENELOPE was used to generate 

material definition files based on the elemental composition and mass density 

information tabulated in ICRU Publication 4685.  

The simulated scan protocol was the standard, size-based chest scan protocol in 

place at our institution for the weight range of the patients: 120 kVp, 70 mA (11.5-14.4 

kg) or 75 mA (14.5-18.4 kg), 0.4-second gantry rotation period, pitch of 1.375, 20-mm 

beam collimation, and small body scan field-of-view (corresponding to small bowtie 

filter). While 40-mm beam collimation is commonly used on the LightSpeed VCT 

scanner to achieve fast scanning, this protocol used a 20-mm beam collimation because 

of its higher dose efficiency for small (< ~ 20 cm) total scan length.  

The total scan length of each patient was calculated as the total image coverage 

plus the overranging distance. The total image coverage was defined as the distance 

from 1 cm above lung apex to 1 cm below lung base, typical of the clinical image 

coverage for a chest scan. The overranging distance was estimated from the scanner 

console parameters as “table speed (cm/s) × total scan time (s) – image coverage (cm)”. 

Estimates were found to be independent of slice thickness, reconstruction interval, and 

image coverage.  The start location of the chest scan was, therefore, 1 cm plus half of the 

overranging distance above lung apex, and the end location was the same distance 

below lung base. 
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In terms of simulation time, using a single processor on a 2.3 GHz Linux server 

with 4 GB of RAM, a 30-minute runtime was needed to finish 10 million photon 

histories, resulting in percent dose error (1 σ standard deviation × 100% / mean) of less 

than 1% for all organs in the scan coverage and less than 15% for other organs. 

3.2.4 Effective Dose Calculations 

The effective dose of each patient was calculated as the summation of 

radiosensitive organ dose values weighted by the tissue weighting factors defined by 

ICRP Publication 10321. Dose to radiosensitive organs that were not explicitly modeled 

was approximated by dose to neighboring organs (footnotes of Table 11). Complying 

with ICRP Publication 103, the weighting factor for the remainder organs was applied to 

the arithmetic mean dose of the 13 remainder organs for each gender. 

3.2.5 Data Analysis 

Variations in organ dose across the patients were quantified by the coefficient of 

variation (standard deviation × 100% / mean) for selected organs both inside and outside 

the chest scan coverage. The coefficient of variation across the patients was also 

calculated for the effective dose.  

Organ dose was correlated with chest size and organ volume using linear 

regression analysis. Chest size was expressed in terms of total scan length, a surrogate 

for chest length, and mid-chest equivalent diameter defined as the diameter of a circle 

having the same area as the mid-chest (half-way between lung apex and lung base) area 
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of the patient model. Effective dose was correlated with chest size and body weight of 

the patient model using linear regression analysis.  

3.3 Results 

Figure 12 depicts coronal dose distributions resultant from the chest MDCT scan 

in three 2-year-old patients. Compact bones inside the scan coverage had the highest 

dose values, a result of having the highest mass energy absorption coefficient. Dose to 

chest organs was similar for the three patients. However, dose to abdominal organs 

varied substantially among the patients, affected by the locations of those organs relative 

to the base of the lung.  

The normalized absorbed dose received by large organs in the scan coverage, i.e. 

the lung, the heart, and the thymus, varied very little across the patients (5.7% - 6.2%) 

(Table 12). Greater dose variations across the patients were observed for small organs in 

the scan coverage, i.e. the esophagus (8.6%), the breast (17.7%), and the thyroid (9.1%), 

but they were generally smaller compared with those for partially or indirectly exposed 

organs (10.7% - 76.6%) (Table 12). The correlation between dose variations and 

variations in organ mass was weak (Pearson correlation coefficient: r = 0.43). For all the 

selected organs, the dose error was less than 1%. Therefore, the variations in organ dose 

reported here were due to the variations in patient anatomy and body habitus, not the 

uncertainty in dose estimation. The seven patients had a chest MDCT effective dose of 
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1.1-1.5 mSv, corresponding to normalized effective dose of 3.7-5.3 mSv/100mAs 

(coefficient of variation: 10.8%). 

 
 

 
Figure 12: Coronal dose distributions in three 2-year-old patients, determined from the chest 
MDCT scan. The coronal plane was taken about half-way in between the anterior and posterior 
surfaces of each patient. The computer model of each patient with organs shown on a gray scale 
was overlaid with a semi-transparent colored image of the normalized dose distribution. 
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Table 12: Variations across patients in normalized organ dose from chest MDCT scan and 
correlations of normalized organ dose with chest size and organ volume for selected organs. 

  
normalized organ dose 

(mGy/100mAs)   Pearson correlation coefficient (r)b 
        chest size   

  mean  (range) CVa   

mid-chest 
equivalent 
diameter  

total       
scan 

lengthc 
organ 

volume 
directly exposed large organs        
     lung 12.0 (10.4 - 12.6)   6.2%  -0.99 -0.45 -0.51 
     heart 12.9 (11.2 - 13.3)   5.7%  -0.93 -0.14 -0.94 
     thymus 11.9 (10.6 - 12.8)   5.8%  -0.76 -0.25 -0.70 
directly exposed small organs        
     esophagus 9.9 (8.6 - 10.8)   8.6%  -0.49   0.15 -0.07 
     breast 9.7 (7.2 - 11.7) 17.7%  -0.79 -0.42 -d 
     thyroid 9.5 (8.5 - 11.0)   9.1%   0.11 -0.29  0.17 
partially or indirectly organs        
     liver 8.0 (6.7 - 9.5) 16.3%  -0.52  0.47 -0.53 
     gall bladder 3.8 (1.4 - 8.2) 76.6%  -0.41  0.40  0.18 
     stomach 7.9 (4.8 - 10.9) 26.6%  -0.46  0.13 -0.79 
     spleen 7.1 (5.3 - 10.0) 22.1%   0.07  0.54 -0.11 
     kidney 2.6 (1.4 - 4.3) 34.9%   0.03  0.61  0.61 
     marrow 2.1 (1.9 - 2.5) 10.7%   -0.64 -0.12 -0.88 
a CV (coefficient of variation) = standard deviation × 100% / mean. 
b The square of r equals R2, a measure of goodness-of-fit for linear regression analysis. r values 
larger than 0.90, corresponding to R2 > 0.81, are highlighted in bold. 
c Total scan length was used as a surrogate for chest length. 
d Correlation of organ dose with organ volume was not calculated for the breast because all 
patients were arbitrarily assigned the same amount of breast tissue. 
 
 

Regression analysis of organ dose with respect to chest size indicated that lung 

dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r = -

0.99, heart: r = -0.93), but weakly with total scan length (Table 12). Normalized absorbed 

dose to the lung ( )lungD  and the heart ( )lungD  decreased with mid-chest equivalent 

diameter ( )mid chestd −  as 
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22.13 0.60 , andlung mid chestD    -  d −=            (9) 

22.26 0.56 ,heart mid chestD   -  d −=                  (10) 

where /lung heartD  and mid chestd −  are in the units of mGy/100mAs and cm, respectively 

(Figure 13). For other organs, the correlations between normalized absorbed dose and 

chest size were generally weak (Table 12). 

 

 

 
Figure 13: Normalized absorbed dose (mGy/100mAs) to the lung and the heart from the chest 
MDCT scan as a function of mid-chest equivalent diameter and the results of regression analysis. 
The mid-chest equivalent diameter was defined as the diameter of a circle having the same area 
as the mid-chest (half-way between lung apex and lung base) area of the patient model. 
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 Regression analysis of organ dose with respect to organ volume showed that 

heart dose correlated strongly with heart volume (r = -0.94), but for all the other organs, 

the correlation of dose with organ volume was generally weak (Table 12).  

 

 

Figure 14: Normalized effective dose (mSv/100mAs) from the chest MDCT scan as a function of 
patient model weight and the result of regression analysis. Because the weights of the patient 
models were not perfectly matched to the actual patient weights (discrepancy < 5 kg), the weights 
of the patient models were used here for the regression analysis. 

 
Normalized effective dose decreased with body weight (Figure 14) as 

6.38 0.11effD   -  w=            (11) 

and with mid-chest equivalent diameter as 

8.87 0.26 ,eff mid chestD   -  d −=           (12) 

where effD  and w  are in the units of mSv/100mAs and kg, respectively. But the 

correlations were weak, r equal to -0.80 and -0.64 for body weight and mid-chest 
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equivalent diameter, respectively. Normalized effective dose had no apparent 

correlation with total scan length (r = 0.20). 

For all the correlation relationships studied above, the trends of the data did not 

suggest the use of non-linear models.  

3.4 Discussions 

In this work, patient-specific computer models were constructed using the 

patients’ actual MDCT data, which enabled the calculation of dose values that were 

patient-specific. Using computer models of multiple pediatric patients in the same 

size/protocol group, we obtained knowledge of dose variations across patients due to 

the variability of patient anatomy and body habitus, which could not be obtained using 

previous methods of DLP, Monte Carlo simulation, or physical phantom measurement. 

We found that, in chest MDCT, variations in normalized organ dose across patients were 

generally small for large organs in the scan coverage, but large for small organs in the 

scan coverage and for partially or indirectly exposed organs. Furthermore, dose 

variations correlated weakly with variations in organ mass, hence organ volume, 

indicating that variations in organ shape, organ location, and body habitus (e.g. breadth) 

also contribute to the dose variations across patients. It is necessary to further examine 

these trends of organ dose variations in future studies of abdominal and pelvis MDCT 

scans.  
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Our work also provided a method to determine patient-specific dose information 

for any other patient in the same size/protocol group (those not included in the study). 

The formula relating lung dose to mid-chest equivalent diameter (derivable from mid-

chest circumference) allows patient-specific lung dose to be estimated with high 

accuracy. The relationship between heart dose and mid-chest equivalent diameter may 

also be used for a broad estimation of patient-specific heart dose. The correlation 

between normalized dose to large organs in the scan coverage and mid-chest equivalent 

diameter was not surprising. Nickoloff et al.92 proposed and verified an exponential 

relationship between CT dose index (CTDI) and phantom diameter over a wide range of 

phantom sizes (5-30 cm in diameter, representing new born to large adult). The linear 

relationships that we found in this study may be understood as an approximation to the 

exponential relationship over a narrow range of body diameters. The weak correlations 

between organ dose and patient dimensions (mid-chest equivalent diameter and chest 

length) for small organs in the scan coverage and for partially or indirectly exposed 

organs suggested that dose to those organs may only be obtained with high accuracy 

using patient-specific computer models.  

 Normalized effective dose was found to decrease with patient weight, consistent 

with the finding of DeMarco et al.30 who studied the effective dose from a chest scan for 

eight patients with a much wider weight range (5-100 kg). In either study, the 

correlation between normalized effective dose and patient weight was weak (DeMarco 
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study:  R2 = 0.41 or r = -0.64, our study: r = -0.79) and did not warrant inferences to other 

patients.  

We note that this investigation did not use the concept of “effective dose” as 

originally defined. Effective dose is defined in ICRP Publication 10321 for a reference 

person; the tissue weighting factors are mean values representing an average over many 

individuals of different genders and age groups. Our application of the concept of 

“effective dose” to individual patients, however, while not being exactly “correct”, is in 

line with other studies in the literature30 and provides a surrogate for patient risk, using 

a concept that the medical imaging community is familiar with. For a more proper 

estimation of patient-specific risk, Martin102 has recommended the use of age-, sex-, and 

organ-specific risk coefficients. Perhaps the recently proposed concept of “effective 

risk”71 could substitute effective dose for future patient-specific risk estimations.  
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4. Patient-Specific Dose Estimation for Pediatric 
Abdomen-Pelvis CT* 

4.1 Introduction 

The importance of radiation dose in children from multi-detector array CT 

(MDCT) examinations has been highlighted recently by the launching of the “Image 

Gently” campaign60.  The campaign stresses the need to “child-size” CT scan techniques, 

namely to minimize dose to children by adapting scan techniques to pediatric body sizes 

or preferably to individual pediatric patients. To this end, dose reported for CT scans 

should be individualized or at least capture the size variation from patient to patient. 

Current dose estimation methods, however, are largely patient-generic. The dosimetry 

report of a patient only includes reference dose quantities such as CT dose index (CTDI) 

measured in cylindrical phantoms of a single standard size (e.g. 16-cm diameter 

phantom for pediatric body). While a myriad of physical and computerized 

anthropomorphic phantoms are available, they only represent standard/limited patient 

sizes at discrete reference ages (e.g. 0, 1, 5, 10, 15 years of age) and do not reflect the 

variability in patient anatomy and body habitus within the same size/age group. 

Recently, using computer models of pediatric patients created from clinical 

MDCT data, we developed a method for estimating patient-specific dose from chest 

                                                      

* This chapter is based on a paper with the same title published in the Proceedings of SPIE. 
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MDCT examinations103. The purpose of this study is to extend this effort to abdomen-

pelvis MDCT examinations. 

4.2 Materials and Methods 

4.2.1 Patients 

This study was approved by our institutional review board (IRB), who 

determined that it was in compliance with the Health Insurance Portability and 

Accountability Act (HIPAA), and did not require informed consent. The study included 

seven pediatric patients (3 boys and 4 girls; age range, 1-6 years old; median age, 2 years 

old; weight range, 11.9-18.2 kg; median weight, 12.9 kg) who underwent 64-slice CT 

examinations (LightSpeed VCT, GE Healthcare, Waukesha, WI) of the chest, abdomen, 

and pelvis. 

4.2.2 Patient-Specific Computer Models 

A non-uniform rational B-spline (NURBS) based full-body computer model was 

created for each patient based on the patient’s clinical MDCT data103. Large organs and 

structures inside the image volume (backbone, ribcage, lungs, heart, liver, gall bladder, 

stomach, spleen, and kidneys) were individually segmented and modeled. Other organs 

were created by morphing existing adult male or female full-body computer models 

(developed from visible human data)83 to match the framework defined by the 

segmented organs, referencing the organ volume and anthropometry data in ICRP 

Publication 8984. Li et al.103 provided greater details on the process of model construction 



 

 72

and the anatomical data of the models. While a patient’s three-dimensional CT data can 

also serve as his/her patient-specific computer model35, the full-body models in our 

study allowed dose to be estimated for not only organs within the image volume, but 

also organs in the over-ranging distance82 and those outside the scan coverage. 

To account for the effect of CT table attenuation on dose, a computer model of 

the CT table has also been created via manual segmentation from CT images of the 

table103.  

The model of each patient was “positioned” on the table in a supine position 

with arms raised above the head to mimic actual patient posture during CT 

examinations. Each model with the table attached was voxelized at 2-mm isotropic 

resolution for input into Monte Carlo simulations. 

4.2.3 Monte Carlo Simulations 

A PENELOPE72 (Universitat de Barcelona, version 2006) based Monte Carlo code 

was used. The code was previously developed and benchmarked for dose simulation on 

the LightSpeed VCT scanner101. The three-dimensional geometry of the bowtie filters on 

the scanner and the trajectories of X-ray tube motion during axial and helical scans were 

explicitly modeled by the code. To efficiently transport radiation through voxel 

geometry, we used the recently developed and validated geometry routine 

PENVOME103 (Carl E. Ravin Advanced Imaging Laboratories, 2008).  
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The simulated scan protocol was the standard, size-based, abdomen-pelvis scan 

protocol in place at our institution for the weight range of the seven patients: 120 kVp, 

85 mA (11.5-14.4 kg) or 90 mA (14.5-18.4 kg), 0.4-s gantry rotation period, pitch of 1.375, 

40-mm beam collimation, and small body scan field-of-view (corresponding to small 

bowtie filter). 

The total scan length of each patient was calculated as the total image coverage 

plus the overranging distance. The total image coverage was defined as the distance 

from 1 cm above the top of the liver/diaphragm to the bottom of the ischium, typical of 

the clinical image coverage for an abdomen-pelvis scan. The overranging distance was 

estimated from parameters displayed on the scanner console as “table speed (cm/s) × 

total scan time (s) – image coverage (cm)”. Estimates were found to be independent of 

slice thickness, reconstruction interval, and image coverage. The start location of the 

abdomen-pelvis scan was, therefore, 1 cm plus half of the overranging distance above 

the top of the liver/diaphragm, and the end location was half of the overranging distance 

below the bottom of the ischium. 

4.2.4 Effective Dose Calculations 

For each patient, the effective dose was calculated as the summation of 

radiosensitive organ dose values weighted by the tissue weighting factors defined by 

ICRP Publication 10321. Breast tissue is underdeveloped in patients of this age range and 

thus was not included in the calculation of effective dose. Dose to radiosensitive organs 
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that were not explicitly modeled was approximated by dose to neighboring organs103. 

Complying with ICRP Publication 103, the weighting factor for the remainder organs 

was applied to the arithmetic mean dose of the 13 remainder organs of each gender. 

4.2.5 Data Analysis 

Dose variation across the patients was quantified by the coefficient of variation 

(standard deviation × 100% / mean)104. Organ dose was correlated with abdominopelvic 

size using linear regression analysis. Abdominopelvic size was expressed in terms of 

total scan length, a surrogate for the length of the abdominopelvic cavity, as well as mid-

liver and mid-intestine equivalent diameters. The mid-liver/mid-intestine equivalent 

diameter was defined as the diameter of a circle having the same area as the cross-

sectional area of the patient model on the plane halfway in between the inferior and 

posterior ends of the liver/small intestine. Effective dose was correlated with body 

weight of the patient model using linear regression analysis.  

4.3 Results 

Figure 15 illustrates a sample coronal dose distribution resultant from the 

abdomen-pelvis MDCT scan in a 2-year-old patient.  

Organ dose received by the seven patients is summarized in Table 13. In general, 

dose variation was small for large organs in the scan coverage (mean: 6.6%; range: 4.9%-

9.2%), larger for small organs in the scan coverage (mean: 10.3%; range: 1.4%-15.6%), 

and the largest for organs partially or completely outside the scan coverage (mean: 
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14.8%; range: 5.7%-27.7%). The uncertainty in the simulated organ dose was less than 2% 

for the thyroid, the combined organ of pharynx and larynx and the combined organ of 

trachea and bronchi, less than 5% for the eye, and less than 1% for the rest of the organs. 

Therefore, the variations in organ dose reported here resulted from variations in patient 

anatomy and body habitus. The seven patients had an abdomen-pelvis MDCT effective 

dose of 2.4-2.8 mSv, corresponding to normalized effective dose of 6.6-8.3 mSv/100mAs 

(coefficient of variation: 7.6%). 

Also summarized in Table 13 are correlations of organ dose with abdominopelvic 

size. With the exception of dose to the testes, organ dose correlated weakly with total 

scan length. However, the dose to some organs correlated strongly with body diameters. 

We note in particular that dose to the kidney and the adrenal gland correlated strongly 

with mid-liver equivalent diameter, r = -0.97 and -0.98, respectively (Figure 16a) and 

dose to the small intestine correlated strongly with mid-intestine equivalent diameter (r 

= -0.97) (Figure 16b). In addition, normalized effective dose correlated strongly with 

body weight (r = -0.94) (Figure 17).  
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Figure 15: Coronal dose distribution in a 2-year-old patient, determined from the abdomen-pelvis 
MDCT scan. The coronal plane was taken about half-way in between the anterior and posterior 
surfaces of the abdominopelvic region of the patient. The computer model of the patient with 
organs shown on a gray scale was overlaid with a semi-transparent image of the normalized dose 
distribution on a colored scale. The patient’s arms are out of this coronal plane. 
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Table 13: Variations across patients in normalized organ dose from an abdomen-pelvis MDCT 
scan and correlations of normalized organ dose with abdominopelvic size. 

 
Normalized organ dose      

(mGy/100mAs) Pearson correlation coefficient (r)e 
    Abdominopelvic size 

 Mean (Range) CVd

Mid-liver         
equivalent 
diameterf 

Mid-intestine     
equivalent 
diameterf 

Total    
scan 

lengthg

Large organs in the scan coverage          
Kidneysa 11.6 (10.0 - 12.3) 6.6% -0.97 -0.92 -0.23 
Livera 11.5 (10.6 - 12.2) 4.9% -0.71 -0.54 0.30 
Spleena 10.8 (8.9 - 11.7) 9.2% -0.83 -0.69 -0.31 
Stomacha 12.0 (10.9 - 12.8) 6.0% -0.75 -0.57 -0.12 
Large Intestine 12.4 (10.6 - 13.0) 6.7% -0.88 -0.94 -0.35 
Small Intestine 13.6 (11.7 - 14.2) 6.2% -0.90 -0.97 -0.26 
Small organs in the scan coverage     
Gall bladdera 12.9 (10.2 - 14.6) 12.0% -0.75 -0.63 -0.01 
Pancreas 12.5 (11.0 - 13.4) 6.0% -0.90 -0.66 0.05 
Adrenals 11.2 (9.3 - 11.9) 7.6% -0.98 -0.91 -0.18 
Bladder 11.6 (9.4 - 14.2) 13.4% -0.56 -0.49 -0.62 
Prostate 11.3 (11.2 - 11.5) 1.4% 0.74 0.78 -0.56 
Testes 13.0 (11.8 - 14.8) 12.0% -0.27 -0.32 0.92 
Ovaries 11.4 (9.5 - 13.8) 15.6% -0.54 -0.73 -0.76 
Uterus 11.1 (9.6 - 12.6) 11.5% -0.70 -0.64 -0.51 
Vagina 10.5 (9.4 - 11.2) 7.6% -0.87 -0.88 -0.37 
Organs partially or completely outside the scan coverage   
Brain 0.1 (0.03 - 0.07) 24.3% -0.55 -0.58 -0.81 
Eyes 0.0 (0.02 - 0.03) 27.7% -0.23 -0.37 -0.73 
Thyroid 1.1 (1.0 - 1.2) 6.6% 0.47 0.45 0.24 
Breasts 7.9 (6.0 - 11.6) 24.7% -0.24 -0.38 -0.71 
Hearta 9.4 (8.5 - 10.2) 5.7% -0.68 -0.71 0.33 
Lungsa 7.9 (6.7 - 8.8) 8.6% -0.63 -0.56 -0.35 
Thymus 2.7 (2.2 - 3.7) 19.5% 0.22 0.16 0.03 
Pharynx-larynx 0.4 (0.3 - 0.6) 19.3% -0.03 -0.23 -0.80 
Trachea-bronchi 1.8 (1.2 - 2.6) 25.1% 0.15 0.28 0.42 
Esophagus 5.0 (3.5 - 6.0) 16.0% -0.01 0.14 0.55 
Compact bonea 9.1 (7.1 - 10.0) 10.3% -0.92 -0.83 -0.16 
Marrowb 5.4 (3.5 - 6.0) 16.4% -0.91 -0.78 -0.28 
Residual soft tissuesc 4.4 (3.7 - 5.2) 13.3% -0.49 -0.26 -0.22 
Skin (torso only) 9.5 (8.1 - 10.1) 7.7% -0.82 -0.78 -0.60 
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Table 13: Continued. 

a Organs individually segmented from CT images of the patients. Individually segmented 
compact bones included the backbone and the ribcage. 
b Bone marrow was assumed to be composed entirely of red bone marrow for patients of this age 
range. Additional dose to bone marrow deposited by photoelectrons released in the trabecular 
bone was accounted for by applying dose enhancement factors of King and Spiers100. 
c Residual soft tissues included skeletal muscle, adipose tissue, cartilage, blood, lymphatic tissues, 
and connective tissues. 
d CV (coefficient of variation) = standard deviation × 100% / mean104. 
e The square of r equals R2, a measure of goodness-of-fit for linear regression analysis. r values 
larger than 0.90, corresponding to R2 > 0.81, are highlighted in bold. 
f Mid-liver/mid-intestine equivalent diameter was defined as the diameter of a circle having the 
same area as the cross-sectional area of the patient model on the plane halfway in between the 
inferior and posterior ends of the liver/small intestine. 
g Total scan length was used as a surrogate for the length of the abdominopelvic region. 

 
 

 
Figure 16: (a) Normalized absorbed dose (mGy/100mAs) to the kidney and the adrenal gland 
from the abdomen-pelvis MDCT scan as a function of mid-liver equivalent diameter and the 
results of regression analysis. (b) Normalized absorbed dose (mGy/100mAs) to the small intestine 
from the abdomen-pelvis MDCT scan as a function of mid-intestine equivalent diameter and the 
result of regression analysis. The mid-liver/mid-intestine equivalent diameter was defined as the 
diameter of a circle having the same area as the cross-sectional area of the patient model on the 
plane halfway in between the inferior and posterior ends of the liver/small intestine. 
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Figure 17: Normalized effective dose (mSv/100mAs) from the abdomen-pelvis MDCT scan as a 
function of patient model weight and the result of regression analysis. The weights of the patient 
models were not perfectly matched to the actual patient weights (discrepancy < 5 kg). The 
weights of the patient models were used here for the regression analysis. 

 

4.4 Discussions 

Using patient-specific computer models created from clinical MDCT data, we 

obtained dose values from an abdomen-pelvis MDCT scan that are patient-specific. 

Studying multiple patients in the same weight/protocol group provided insight into the 

magnitude of dose variation across patients due to the variability of patient anatomy 

and body habitus. Our results show that, in abdomen-pelvis MDCT, dose variations 

across patients were generally small for large organs in the scan coverage, but large for 

small organs in the scan coverage and for organs partially or completely outside the scan 

coverage. These results are consistent with our previous findings for a chest MDCT 

scan103 and suggest that the size of an organ and its location relative to the scanned 

section of the body play important roles in dose variation across patients. The larger 
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dose variations exhibited by some small organs in the scan coverage may be attributable 

to the high helical pitch of 1.375 in our studies which left gaps of tissues unirradiated by 

the primary beam; the variety of locations that a small organ can take relative to those 

gaps led to a variation in organ dose. The dose variations exhibited by organs partially 

or completely outside the scan coverage were most likely caused by the variable 

locations these organs can take relative to the scanned part of the body. 

Our work also suggested a method to estimate patient-specific dose for a larger 

cohort of patients. The strong correlations of dose to the kidney and the adrenal gland 

with mid-liver equivalent diameter (derivable from mid-abdomen circumference) and 

the strong correlation of dose to the small intestine with mid-intestine equivalent 

diameter (derivable from mid-pelvis circumference) may allow patient-specific dose to 

these organs be estimated for any other child in this size group provided that these 

strong relationships are confirmed in a larger scale study. In our previous study of a 

chest MDCT scan103, similar strong correlations with body size were also found for the 

lung and the heart. We hypothesize that such correlations exist for organs, especially 

large organs, in the scan coverage that exhibit approximate bilateral symmetry. We will 

test this hypothesis in future studies involving larger numbers of patients.  

 Normalized effective dose from an abdomen-pelvis scan was found to decrease 

with body weight, consistent with the finding of our previous study for a chest scan103. 

The correlation was stronger for an abdomen-pelvis scan (r = -0.94) than for a chest scan 
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(r = -0.80). DeMarco et al.30 reported an even stronger correlation for a whole-body scan 

(R2 = 0.944 or r = -0.97) for patients of a much wider weight range (5-100 kg). This 

increase of correlation with total scan length may be explained by the fact that as more 

radiosensitive organs are included in the scan coverage, their contributions to effective 

dose become less uncertain, and body weight becomes a more prominent factor affecting 

effective dose. We note that while this work reports effective dose to individual patients, the 

ICRP 103 tissue weighting factors are mean values representing averages over both genders 

and a group of ages. For future studies, perhaps the recently proposed concept of 

effective risk71, which employs age- and gender-specific tissue risk coefficients, is a more 

appropriate metric for reporting risk to individual patients from CT examinations. 
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5. Patient-Specific Radiation Dose and Cancer Risk in 
Pediatric Chest CT: A Systematic Evaluation of the 
Effects of Patient Size and Scan Parameters* 

5.1 Introduction 

With the expanding use of computed tomography (CT) in children96, 97 and the 

increasing attention to the potential risk of CT radiation to this population15, 16, there 

have been growing interests to better manage pediatric patient dose from CT 

examinations105. Perhaps, the most important of these interests are (1) to eliminate 

unnecessary or redundant CT examinations, and (2) to adapt CT scan parameters to 

patient size. The first goal can be facilitated by a dose-reporting system that provides 

estimates of radiation dose and potential cancer risk specific to each CT examination of 

each patient. Knowledge of dose and risk may aid in examination justification, including 

the necessity for and frequency of examinations. The second goal can benefit from an 

understanding of the quantitative relationship between patient dose/risk and various 

factors affecting dose/risk, notably patient size/age and CT scan parameters. 

Due to the limited designs of pediatric anthropomorphic phantoms, either 

physical106 or computational65, 68 in nature, efforts to report CT dose and to estimate 

radiation risk have mainly relied on CT dose index (CTDI) and dose-length product 

(DLP) determined in standard-size cylindrical phantoms and their conversion 

coefficients to effective dose derived for patients of standard ages36, 38. As such, dose and 

                                                      

* This chapter is based on a manuscript with the same title that will be submitted to the journal Radiology.  
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risk information specific to individual patients is not available. Similarly, studies that 

examined the dependence of dose on patient size and scan parameters have mainly been 

carried out in cylindrical or oval-shaped phantoms92, 93, 107. As such, our knowledge of 

how actual patient dose depends on body size and scan parameters is less than 

desirable.    

Recently, a library of pediatric computer models were developed in our 

laboratory based on the clinical CT data of forty pediatric CT patients79. The purpose of 

this study was to combine this unique resource with a validated Monte Carlo 

technique108 to estimate patient-specific radiation dose and cancer risk from pediatric 

chest CT examinations and to conduct a systematic evaluation of factors affecting dose 

and risk, including patient size/age and scan parameters. 

5.2 Materials and Methods 

This study was partially funded by GE Healthcare. The authors had complete 

control over the data and information submitted in this article. Our institutional review 

board determined that the study was in compliance with the Health Insurance 

Portability and Accountability Act, and did not require informed consent. 

5.2.1 Patients 

The study included thirty pediatric patients (16 males and 14 females; median 

age, 3 years; age range, 0-16 years; median weight, 14 kg; weight range, 2-41 kg), who 

underwent chest or chest-abdomen-pelvis CT examinations at our institution between 
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2005 and 2006. All examinations were performed on a clinical CT scanner (LightSpeed 

VCT or LightSpeed 16, GE Healthcare, Waukesha, WI). 

5.2.2 Patient-Specific Computer Models 

A non-uniform rational B-spline (NURBS) based full-body computer model79 of 

each patient was created based on the patient’s clinical CT data: large organs and 

structures inside the image volume were individually segmented and modeled; other 

organs were created by transforming existing adult male or female full-body computer 

models (developed from visible human data)83 to match the framework defined by the 

segmented organs, referencing the organ volume and anthropometry data in ICRP 

Publication 89109. The resultant full-body model consisted of a total of 43 and 44 organs 

for female and male patients, respectively, and included most of the radiosensitive 

organs defined by ICRP Publication 10321.  

The NURBS model of each patient was voxelized at 1-mm isotropic resolution for 

input into Monte Carlo simulations, with the exception of two patients who were 

younger than 2-month old and for whom the voxelization was performed at 0.5-mm 

isotropic resolution. As clinical CT data of the chest were available for all thirty patients 

in this study, the chest section of each computer model more closely match the patient 

anatomy, allowing more reliable estimation of dose and risk for examinations of the 

chest.  
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5.2.3 CT Scanner and Protocols 

A multi-detector array CT system (LightSpeed VCT, GE Healthcare, Waukesha, 

WI) was used in this investigation. Organ dose and cancer risk associated with eight 

scan protocols enabled by the system (Table 14) were estimated to assess the effects of 

patient size and scan parameters, where the first four protocols were selected from the 

set of size-based pediatric chest protocols in use at our institution. Protocols A, B, and C 

were used to examine the effect of bowtie filter choice, Protocols A and D for beam 

collimation, protocols A and E for helical pitch, and protocols A, F, G, and H for peak 

tube potential. While other beam collimation and helical pitch settings were also 

available on the CT system, the values in Table 14 reflect the most frequently used 

settings for routine examinations of pediatric chest.  

 
Table 14: CT protocols investigated in this study. 

protocola kVp 
scan field-of-view 

(FOV) bowtie filter pitch collimation 
A 120 pediatric body small 1.375 40 
B 120 medium body medium 1.375 40 
C 120 large body large 1.375 40 
D 120 pediatric body small 1.375 20 
E 120 pediatric body small 0.984 40 
F 80 pediatric body small 1.375 40 
G 100 pediatric body small 1.375 40 
H 140 pediatric body small 1.375 40 

a Protocols A, B, and C were used to examine the effect of bowtie filter choice, protocols A and D 
for beam collimation, protocols A and E for helical pitch, and protocols A, F, G, and H for peak 
tube potential. 
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5.2.4 Radiation Dose and Cancer Risk Estimations 

Organ dose received by each patient from each scan protocol was estimated 

using a previously developed Monte Carlo program for dose simulation on the 

LightSpeed VCT scanner108. The program explicitly modeled the geometry of the CT 

system, the three-dimensional geometry of the bowtie filters, and the trajectories of X-

ray tube motion during axial and helical scans. The accuracy of the simulated dose was 

previously validated in a cylindrical phantom and two anthropomorphic phantoms for 

both axial and helical scanning modes108. Simulations were found to agree with 

measurements within 1-11% on average and 5-17% maximum108.   

For each patient, the total scan length was determined as the total image 

coverage plus the overranging distance (additional scan length necessary for data 

interpolation in helical reconstruction)82. The total image coverage was typical of a 

clinical chest scan, extending from 1 cm above lung apex to 1 cm below lung base. The 

overranging distance was dependent on beam collimation and helical pitch and was 

estimated from the scanner console parameters as “table speed (cm/s) × total scan time 

(s) – image coverage (cm)”. The start location of the chest scan was, therefore, 1 cm plus 

half of the overranging distance above lung apex, and the end location was the same 

distance below lung base. 

 The organ dose values estimated for each patient were used to calculate effective 

dose as  
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,T T
T

E w H=∑                         (13) 

where TH  is the equivalent dose for organ/tissue T  and Tw  is the tissue weighting 

factor defined by ICRP Publication 10321. Dose to radiosensitive organs that were not 

explicitly modeled was approximated by dose to neighboring organs108. Dose to gender-

specific organs (i.e., prostate, testes, ovaries, uterus, vagina) was only included in the 

effective dose calculations for the respective genders, and breast dose was only included 

in the effective dose calculations for the female patients. 

While widely used as a surrogate for radiation risk, effective dose is defined for a 

reference hermaphrodite person and is not suitable for individual patients; the tissue 

weighting factors are mean values representing averages over many individuals of 

different genders and age groups21. To more accurately estimate individual patient risks, 

we further implemented the recently proposed concept of effective risk71 defined as 

,T T
T

R r H=∑                  (14)      

where Tr  is the gender-, age-, and tissue-specific risk coefficient (cases/100,000 exposed 

to 0.1 Gy) for lifetime attributable risk of cancer incidence. Thus, T Tr H  represents the 

lifetime attributable risk of cancer incidence for organ/tissue T. Values for Tr   are 

tabulated in BEIR VII report14 for leukemia and for cancer of 8-9 high-risk organs of each 

gender at discrete ages of 0, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80 years14.  Values for Tr   at 

intermediate ages were determined by linear interpolation. Cancer of other 
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radiosensitive organs shares a collective risk coefficient (rother)14. This risk coefficient was 

applied to a weighted average dose of other radiosensitive organs, defined as15 

{other organs}
other

{other organs}

.
T T

T

T
T

w H
H

w
∈

∈

=
∑
∑

            (15)          

Those organs included heart, kidney, gall bladder, spleen, pancreas, adrenal glands, 

thymus, small intestine, salivary glands, extrathoracic region, lymph node, muscle, oral 

mucosa, bone surface, brain, skin, testes (male only), and esophagus, among which the 

reminder organs, as defined by ICRP Publication 10321, were each assigned a tissue-

weighting factor of 0.01. 

To compare patient-specific dose estimation with current dose-reporting method, 

volume averaged CTDI (CTDIvol)20 was also calculated for the eight CT protocols using 

the CTDI100 table and the tables of technique adjustment factors in the technical reference 

manual of the LightSpeed VCT scanner. The CTDIvol values estimated in this way agreed 

with those from patients’ dosimetry report to within about 5%. 

5.2.5 Data Analysis 

For each CT protocol, the estimated organ dose, effective dose, risk of cancer 

incidence for individual organs, and effective risk were correlated with body size of the 

patient model using the sample Pearson correlation coefficient104. Seven indices of body 

size were initially considered (Table 15). As all indices correlated well with average 

chest diameter except weight and total scan length, a surrogate for chest height (Table 
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15), average chest diameter, total scan length, and weight were chosen as the final body 

size indices to correlate with dose and risk estimates. 

 
Table 15: Body size indices and their correlations with average chest diameter. 

body size indexa body region 
Pearson correlation coefficient 
with average chest diameter 

weightb whole body 0.93 
average chest diameter start: lung apex                      

end: lung base 
1 

average abdomen diameter start: liver top                         
end: iliac crest top 

0.98 

average pelvis diameter start: iliac crest top                 
end: ischium bottom 

0.98 

average abdomen-pelvis diameter start: liver top                          
end: ischium bottom 

0.98 

average trunk diameter start: lung apex                       
end: ischium bottom 

0.99 

total scan length a surrogate for chest height 0.91 
a The average diameter of a body region (chest, abdomen, pelvis, abdomen-pelvis, trunk) was 
calculated as 

average cross- sectional area of the region region volume2 2 .
region height

d
π π

= =
⋅

                                   (16)            

b Total body weight of the voxelized computer model. 
 
 

5.3 Results 

5.3.1 Effects of Patient Size 

For all eight CT scan protocols, normalized dose to individual organs (in the unit 

of mGy/100mAs) decreased exponentially with increasing average chest diameter 

(Figure 18 and Table 16 to Table 23). The correlation was strong for large organs and 

centrally-located tubular organs inside the scan coverage (Figure 18a), but generally 

weaker for small organs inside the scan coverage (Figure 18b), for organs on the 
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periphery or outside of the scan coverage (Figure 18c), and for distributed organs 

(Figure 18d). Similar trend of correlation with average chest diameter was also found for 

normalized risk of cancer incidence to individual organs (Figure 19 and Table 16 to 

Table 23); however, cancer risks were gender-dependent. Effective dose and effective 

risk correlated strongly, decreasing exponentially, with average chest diameter (Figure 

20 and Table 16 to Table 23). Effective dose showed slight gender dependence, whereas 

effective risk was highly gender dependent. 

The correlations of dose and risk estimates with total scan length (a surrogate for 

chest height) and weight were generally weaker than the correlations with average chest 

diameter (Table 16 to Table 23). As such, curve fitting was not performed for these two 

patient size indices. 
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Figure 18: Examples of normalized dose to individual organs, resultant from Protocol A, as a 
function of average chest diameter for (a) large organs and centrally-located tubular organs 
inside the chest scan coverage, (b) small organs inside the chest scan coverage, (c) organs on the 
periphery or outside the chest scan coverage, and (d) distributed organs. The symbols represent 
dose to the organs of individual patients. The lines are exponential fits exp(a b)y x= +  to the 
data. The quantity r is the Pearson sample correlation coefficient. 
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Figure 19: Examples of normalized cancer risk to individual organs, resultant from Protocol A, as 
a function of average chest diameter for (a) large organs inside the chest scan coverage, (b) small 
organs inside the chest scan coverage, (c) organs on the periphery or outside the chest scan 
coverage, and (d) distributed organs. Risk of colon cancer was assessed using dose to the large 
intestine, and risk of leukemia was assessed using dose to the red bone marrow. The symbols 
represent the risks of individual patients. The lines are exponential fits exp(a b)y x= +  to the 
data. The quantity r is the Pearson sample correlation coefficient. 
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Figure 20: Normalized effective dose and effective risk, resultant from Protocol A. The symbols 
represent effective dose and effective risk estimated for individual patients. The lines are 
exponential fits exp(a b)y x= +  to the data. The quantity r is the Pearson sample correlation 
coefficient. 
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Table 16: Protocol A (120 kVp, pediatric body scan FOV, small bowtie filter, 1.375 pitch, 40 mm 
collimation): correlations of organ dose, effective dose, cancer risk to individual organs, and 
effective risk with three body size indices: average chest diameter, total scan length (a surrogate 
for chest height), and weight, and the results of exponential fits exp(a b)y x= +  to the 
relationships between dose/risk estimates and average chest diameter. 

  Pearson correlation coefficient (r) fitting parametersξ 

    
average        

chest diameter
total       

scan length weight  a b 
rms of 

residuals 
Dose       
 lungs -0.98 -0.85 -0.88 -0.050213 3.424470 0.320426 
 heart -0.96 -0.81 -0.88 -0.040762 3.298130 0.588495 
 thymus -0.93 -0.79 -0.78 -0.046599 3.364670 0.710623 
 thyroid -0.44 -0.26 -0.28 -0.015940 2.758440 1.321500 
 breasts -0.64 -0.71 -0.66 -0.038467 3.015030 1.988640 
 esophagus -0.95 -0.77 -0.80 -0.047221 3.254310 0.524667 
 trachea-bronchi -0.91 -0.75 -0.74 -0.045364 3.270980 0.741304 
 eyes -0.79 -0.65 -0.67 -0.179066 1.717530 0.085230 
 brain -0.88 -0.74 -0.77 -0.152745 1.699850 0.072215 
 pharynx-larynx -0.80 -0.66 -0.65 -0.095600 3.500940 1.398750 
 liver -0.89 -0.75 -0.78 -0.063523 3.390750 1.024030 
 gall bladder -0.70 -0.61 -0.62 -0.125766 4.059540 3.018020 
 kidneys -0.64 -0.43 -0.53 -0.091337 3.257740 1.580800 
 adrenals -0.80 -0.59 -0.68 -0.065704 3.236350 1.211950 
 spleen -0.88 -0.71 -0.77 -0.062840 3.326460 0.957355 
 stomach -0.78 -0.69 -0.75 -0.052395 3.196190 1.497510 
 pancreas -0.68 -0.63 -0.67 -0.101094 3.500790 2.445100 
 small intestine -0.79 -0.67 -0.68 -0.200268 3.963150 0.831160 
 large intestine -0.80 -0.68 -0.69 -0.204325 4.006260 0.896225 
 urinary bladder -0.78 -0.72 -0.73 -0.163335 1.012290 0.091516 
 prostate -0.83 -0.82 -0.79 -0.174920 1.193390 0.086215 
 testes -0.86 -0.82 -0.78 -0.249787 1.795040 0.033419 
 ovaries -0.82 -0.65 -0.74 -0.156647 1.004470 0.083983 
 uterus -0.82 -0.66 -0.74 -0.151782 0.782001 0.071510 
 vagina -0.82 -0.68 -0.76 -0.145742 0.353936 0.051563 
 residual soft tissue -0.90 -0.79 -0.83 -0.102597 2.876290 0.391693 
 bone surface -0.93 -0.79 -0.85 -0.081877 3.247690 0.567448 
 red bone marrow -0.86 -0.67 -0.72 -0.069637 2.468830 0.433789 
 skin -0.77 -0.65 -0.68  -0.096130 2.340340 0.479150 
 effective dose (male) -0.96 -0.90 -0.90 -0.063847 2.845030 0.307285 
  effective dose (female) -0.94 -0.73 -0.79  -0.054230 2.871750 0.388341 
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Table 16: Continued. 

Risk - male 
 lung cancer -0.99 -0.96 -0.97 -0.080395 0.343639 0.023308 
 thyroid cancer -0.97 -0.92 -0.94 -0.084693 -0.839721 0.008674 
 liver cancer -0.97 -0.94 -0.95 -0.093961 -1.314180 0.005442 
 stomach cancer -0.92 -0.92 -0.94 -0.082348 -1.268850 0.010092 
 colon cancer -0.87 -0.80 -0.77 -0.244130 1.219350 0.016805 
 bladder cancer -0.85 -0.83 -0.80 -0.190044 -2.333970 0.001845 
 prostate cancer -0.84 -0.83 -0.80 -0.185120 -3.375750 0.000766 
 leukemia -0.98 -0.93 -0.92 -0.117654 -0.692436 0.005561 
 other cancer -0.98 -0.95 -0.94 -0.129258 1.402370 0.043734 
 effective risk -0.98 -0.94 -0.94 -0.113074 2.079540 0.082711 
Risk - female       
 lung cancer -0.99 -0.85 -0.90 -0.080169 1.174350 0.044444 
 thyroid cancer -0.95 -0.87 -0.89 -0.091652 0.977005 0.081984 
 breast cancer -0.78 -0.87 -0.80 -0.062672 1.153540 0.239272 
 liver cancer -0.92 -0.72 -0.79 -0.090786 -2.181240 0.002830 
 stomach cancer -0.85 -0.69 -0.77 -0.071884 -1.219400 0.016119 
 colon cancer -0.74 -0.57 -0.61 -0.199068 -0.057783 0.023101 
 bladder cancer -0.84 -0.69 -0.76 -0.165243 -3.139700 0.001235 
 ovary cancer -0.84 -0.67 -0.74 -0.173008 -3.385040 0.000826 
 uterus cancer -0.84 -0.68 -0.74 -0.165492 -4.383140 0.000334 
 leukemia -0.91 -0.69 -0.75 -0.138717 -0.704148 0.008501 
 other cancer -0.94 -0.75 -0.79 -0.141490 1.972610 0.094100 
  effective risk -0.97 -0.88 -0.89  -0.091331 2.759070 0.331453 
ξ The unit of a is cm-1 and b is unitless. “rms of residuals” stands for the root-mean-square of the 
residuals; it represents the average discrepancy between dose/risk values predicted by the fitting 
function and the dose/risk results estimated by the Monte Carlo method. The unit of “rms of 
residuals” is mGy/100 mAs or mSv/100mAs for dose estimates and cases/1000 exposed/100 mAs 
for risk estimates. 

 

 

 

 

 

 



 

 96

Table 17: Protocol B (120 kVp, medium body scan FOV, medium bowtie filter, 1.375 pitch, 40 mm 
collimation): correlations of organ dose, effective dose, cancer risk to individual organs, and 
effective risk with three body size indices: average chest diameter, total scan length (a surrogate 
for chest height), and weight, and the results of exponential fits exp(a b)y x= +  to the 
relationships between dose/risk estimates and average chest diameter. 

    Pearson correlation coefficient (r)  fitting parametersξ 

    
average        

chest diameter
total       

scan length weight  a b 
rms of 

residuals 
Dose       
 lungs -0.98 -0.85 -0.89 -0.043172 3.428470 0.345270 
 heart -0.95 -0.81 -0.88 -0.036262 3.309100 0.598506 
 thymus -0.93 -0.79 -0.78 -0.042842 3.372050 0.724682 
 thyroid -0.40 -0.21 -0.24 -0.014066 2.789810 1.395710 
 breasts -0.57 -0.67 -0.62 -0.031546 3.077840 2.318010 
 esophagus -0.95 -0.77 -0.80 -0.043919 3.262510 0.522698 
 trachea-bronchi -0.91 -0.74 -0.74 -0.041855 3.271910 0.747469 
 eyes -0.78 -0.65 -0.67 -0.176483 1.791700 0.095791 
 brain -0.89 -0.75 -0.78 -0.146438 1.729320 0.080993 
 pharynx-larynx -0.80 -0.66 -0.65 -0.091188 3.501120 1.473710 
 liver -0.88 -0.74 -0.78 -0.056565 3.390360 1.109860 
 gall bladder -0.69 -0.61 -0.62 -0.117870 4.031250 3.263220 
 kidneys -0.62 -0.41 -0.51 -0.084550 3.274220 1.780840 
 adrenals -0.79 -0.57 -0.67 -0.061159 3.246640 1.311110 
 spleen -0.88 -0.70 -0.77 -0.056292 3.369680 1.067390 
 stomach -0.75 -0.67 -0.72 -0.046744 3.221080 1.699710 
 pancreas -0.68 -0.62 -0.66 -0.096816 3.520820 2.611330 
 small intestine -0.79 -0.67 -0.69 -0.192540 3.944980 0.908965 
 large intestine -0.80 -0.68 -0.69 -0.198105 4.026540 1.010440 
 urinary bladder -0.78 -0.72 -0.73 -0.160570 1.090020 0.102656 
 prostate -0.83 -0.83 -0.80 -0.170154 1.228230 0.093875 
 testes -0.87 -0.83 -0.79 -0.239570 1.736730 0.038188 
 ovaries -0.81 -0.63 -0.73 -0.153007 1.061640 0.095429 
 uterus -0.81 -0.67 -0.75 -0.149600 0.871050 0.081901 
 vagina -0.82 -0.68 -0.76 -0.143634 0.424179 0.057295 
 residual soft tissue -0.90 -0.80 -0.84 -0.095085 2.901240 0.448163 
 bone surface -0.93 -0.79 -0.86 -0.076011 3.289240 0.646910 
 red bone marrow -0.85 -0.67 -0.71 -0.064290 2.506380 0.483272 
 skin -0.75 -0.65 -0.67  -0.087711 2.383820 0.566310 
 effective dose (male) -0.96 -0.91 -0.91 -0.058780 2.869570 0.324615 
  effective dose (female) -0.94 -0.73 -0.80  -0.047391 2.880170 0.410536 
       



 

 97

Table 17: Continued. 

Risk - male 
 lung cancer -0.98 -0.96 -0.97 -0.074204 0.362256 0.027418 
 thyroid cancer -0.97 -0.92 -0.94 -0.082441 -0.813721 0.009583 
 liver cancer -0.97 -0.94 -0.96 -0.088457 -1.290110 0.006197 
 stomach cancer -0.91 -0.92 -0.94 -0.077568 -1.230830 0.011508 
 colon cancer -0.87 -0.81 -0.78 -0.237918 1.245770 0.019229 
 bladder cancer -0.85 -0.84 -0.80 -0.188100 -2.241860 0.002037 
 prostate cancer -0.84 -0.84 -0.80 -0.179680 -3.355950 0.000850 
 leukemia -0.98 -0.93 -0.93 -0.113076 -0.641574 0.006477 
 other cancer -0.98 -0.95 -0.95 -0.125316 1.426860 0.049340 
 effective risk -0.98 -0.95 -0.95 -0.108157 2.102770 0.094117 
Risk - female       
 lung cancer -0.99 -0.86 -0.91 -0.073090 1.176510 0.053519 
 thyroid cancer -0.95 -0.88 -0.89 -0.090355 1.017130 0.085040 
 breast cancer -0.75 -0.87 -0.80 -0.055558 1.216340 0.280440 
 liver cancer -0.92 -0.74 -0.80 -0.083027 -2.196910 0.003027 
 stomach cancer -0.82 -0.68 -0.76 -0.065764 -1.201470 0.018447 
 colon cancer -0.74 -0.57 -0.61 -0.192561 -0.050197 0.025822 
 bladder cancer -0.83 -0.69 -0.75 -0.161291 -3.087470 0.001385 
 ovary cancer -0.83 -0.65 -0.74 -0.171284 -3.304740 0.000937 
 uterus cancer -0.84 -0.68 -0.74 -0.163941 -4.281150 0.000375 
 leukemia -0.91 -0.70 -0.75 -0.133366 -0.667036 0.009631 
 other cancer -0.94 -0.76 -0.80 -0.137541 1.995210 0.103552 
  effective risk -0.97 -0.89 -0.90  -0.084814 2.775810 0.377755 
ξ The unit of a is cm-1 and b is unitless. “rms of residuals” stands for the root-mean-square of the 
residuals; it represents the average discrepancy between dose/risk values predicted by the fitting 
function and the dose/risk results estimated by the Monte Carlo method. The unit of “rms of 
residuals” is mGy/100 mAs or mSv/100mAs for dose estimates and cases/1000 exposed/100 mAs 
for risk estimates. 
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Table 18: Protocol C (120 kVp, large body scan FOV, large bowtie filter, 1.375 pitch, 40 mm 
collimation): correlations of organ dose, effective dose, cancer risk to individual organs, and 
effective risk with three body size indices: average chest diameter, total scan length (a surrogate 
for chest height), and weight, and the results of exponential fits exp(a b)y x= +  to the 
relationships between dose/risk estimates and average chest diameter. 

    Pearson correlation coefficient (r)  fitting parametersξ 

    
average        

chest diameter
total       

scan length weight  a b 
rms of 

residuals 
Dose       
 lungs -0.98 -0.85 -0.90 -0.034711 3.191130 0.291553 
 heart -0.95 -0.80 -0.88 -0.030329 3.094860 0.484088 
 thymus -0.93 -0.79 -0.78 -0.037559 3.163880 0.566816 
 thyroid -0.41 -0.23 -0.26 -0.012918 2.646380 1.124350 
 breasts -0.48 -0.60 -0.56 -0.024142 2.887650 2.082900 
 esophagus -0.95 -0.78 -0.81 -0.038692 3.065170 0.411794 
 trachea-bronchi -0.91 -0.75 -0.75 -0.037296 3.079350 0.589214 
 eyes -0.78 -0.65 -0.67 -0.165546 1.587690 0.090570 
 brain -0.89 -0.76 -0.79 -0.137534 1.561900 0.076760 
 pharynx-larynx -0.80 -0.67 -0.66 -0.087027 3.325440 1.281910 
 liver -0.87 -0.73 -0.77 -0.048238 3.155470 0.971865 
 gall bladder -0.68 -0.60 -0.62 -0.108739 3.778200 2.836500 
 kidneys -0.59 -0.38 -0.49 -0.073279 3.012380 1.604990 
 adrenals -0.76 -0.55 -0.65 -0.054139 3.030420 1.164040 
 spleen -0.86 -0.69 -0.76 -0.047423 3.154330 0.960472 
 stomach -0.70 -0.62 -0.68 -0.039783 3.011260 1.543950 
 pancreas -0.67 -0.62 -0.66 -0.090717 3.321010 2.279030 
 small intestine -0.79 -0.68 -0.70 -0.181283 3.685260 0.805247 
 large intestine -0.80 -0.69 -0.70 -0.187742 3.775840 0.902279 
 urinary bladder -0.78 -0.72 -0.74 -0.156983 1.013260 0.098748 
 prostate -0.85 -0.84 -0.81 -0.170107 1.205690 0.082654 
 testes -0.87 -0.83 -0.79 -0.239195 1.703810 0.034472 
 ovaries -0.81 -0.65 -0.74 -0.147410 0.929825 0.088773 
 uterus -0.81 -0.67 -0.75 -0.141755 0.717792 0.078423 
 vagina -0.82 -0.68 -0.75 -0.145301 0.467446 0.058464 
 residual soft tissue -0.90 -0.81 -0.85 -0.086085 2.681370 0.409274 
 bone surface -0.93 -0.79 -0.86 -0.067967 3.073630 0.587449 
 red bone marrow -0.84 -0.65 -0.70 -0.057298 2.326970 0.444775 
 skin -0.73 -0.63 -0.66  -0.077943 2.158370 0.522363 
 effective dose (male) -0.96 -0.91 -0.92 -0.052091 2.662840 0.277358 
  effective dose (female) -0.94 -0.73 -0.81  -0.039689 2.661950 0.351419 
       



 

 99

Table 18: Continued. 

Risk - male 
 lung cancer -0.98 -0.97 -0.98 -0.066631 0.139302 0.025670 
 thyroid cancer -0.97 -0.92 -0.95 -0.080882 -0.960416 0.008792 
 liver cancer -0.96 -0.95 -0.96 -0.081231 -1.506060 0.005700 
 stomach cancer -0.89 -0.92 -0.93 -0.070996 -1.436470 0.010675 
 colon cancer -0.88 -0.82 -0.79 -0.227266 0.993084 0.017346 
 bladder cancer -0.85 -0.84 -0.81 -0.182040 -2.355800 0.001974 
 prostate cancer -0.86 -0.86 -0.82 -0.179336 -3.380300 0.000754 
 leukemia -0.98 -0.94 -0.94 -0.107034 -0.804353 0.006303 
 other cancer -0.99 -0.96 -0.95 -0.120022 1.239140 0.046444 
 effective risk -0.98 -0.95 -0.95 -0.101972 1.903790 0.089009 
Risk - female       
 lung cancer -0.99 -0.87 -0.93 -0.064916 0.943610 0.051920 
 thyroid cancer -0.95 -0.89 -0.91 -0.087620 0.845797 0.073790 
 breast cancer -0.71 -0.86 -0.79 -0.048403 1.030150 0.257782 
 liver cancer -0.92 -0.75 -0.82 -0.074296 -2.439050 0.002604 
 stomach cancer -0.80 -0.66 -0.74 -0.059581 -1.396770 0.016683 
 colon cancer -0.73 -0.57 -0.62 -0.182293 -0.302708 0.022992 
 bladder cancer -0.83 -0.68 -0.75 -0.159393 -3.135910 0.001346 
 ovary cancer -0.84 -0.68 -0.75 -0.166119 -3.434790 0.000850 
 uterus cancer -0.83 -0.68 -0.74 -0.157882 -4.416900 0.000374 
 leukemia -0.91 -0.70 -0.76 -0.126274 -0.848473 0.009116 
 other cancer -0.94 -0.77 -0.81 -0.131242 1.788120 0.094658 
  effective risk -0.97 -0.91 -0.92  -0.077740 2.567090 0.351656 
ξ The unit of a is cm-1 and b is unitless. “rms of residuals” stands for the root-mean-square of the 
residuals; it represents the average discrepancy between dose/risk values predicted by the fitting 
function and the dose/risk results estimated by the Monte Carlo method. The unit of “rms of 
residuals” is mGy/100 mAs or mSv/100mAs for dose estimates and cases/1000 exposed/100 mAs 
for risk estimates. 
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Table 19: Protocol D (120 kVp, pediatric body scan FOV, small bowtie filter, 1.375 pitch, 20 mm 
collimation): correlations of organ dose, effective dose, cancer risk to individual organs, and 
effective risk with three body size indices: average chest diameter, total scan length (a surrogate 
for chest height), and weight, and the results of exponential fits exp(a b)y x= +  to the 
relationships between dose/risk estimates and average chest diameter. 

    Pearson correlation coefficient (r)  fitting parametersξ 

    
average        

chest diameter
total       

scan length weight  a b 
rms of 

residuals 
Dose       
 lungs -0.98 -0.83 -0.87 -0.049948 3.440250 0.378479 
 heart -0.96 -0.82 -0.87 -0.041876 3.344310 0.522461 
 thymus -0.92 -0.74 -0.78 -0.039413 3.255730 0.686429 
 thyroid -0.52 -0.33 -0.31 -0.020362 2.830780 1.340140 
 breasts -0.76 -0.70 -0.72 -0.043013 3.115090 1.475900 
 esophagus -0.92 -0.73 -0.77 -0.049258 3.277310 0.669035 
 trachea-bronchi -0.89 -0.71 -0.71 -0.043115 3.223680 0.813298 
 eyes -0.76 -0.64 -0.66 -0.142563 0.601166 0.048691 
 brain -0.90 -0.77 -0.80 -0.127323 0.914356 0.047033 
 pharynx-larynx -0.77 -0.62 -0.63 -0.127029 3.647960 1.387650 
 liver -0.83 -0.69 -0.74 -0.066823 3.340100 1.275570 
 gall bladder -0.61 -0.52 -0.55 -0.124924 3.625740 2.708920 
 kidneys -0.51 -0.27 -0.37 -0.105197 3.058180 1.462460 
 adrenals -0.58 -0.33 -0.45 -0.070754 3.068990 1.768260 
 spleen -0.74 -0.53 -0.61 -0.066597 3.287810 1.527220 
 stomach -0.68 -0.62 -0.65 -0.056670 3.147170 1.896660 
 pancreas -0.59 -0.53 -0.55 -0.117721 3.285570 2.103140 
 small intestine -0.78 -0.69 -0.71 -0.147626 2.513230 0.392850 
 large intestine -0.71 -0.61 -0.62 -0.185912 3.030920 0.549034 
 urinary bladder -0.77 -0.72 -0.73 -0.154700 0.461175 0.061158 
 prostate -0.83 -0.83 -0.79 -0.165430 0.644765 0.057053 
 testes -0.87 -0.83 -0.79 -0.238459 1.147250 0.019776 
 ovaries -0.80 -0.64 -0.74 -0.142162 0.342258 0.055380 
 uterus -0.80 -0.66 -0.75 -0.140158 0.192700 0.049478 
 vagina -0.79 -0.67 -0.75 -0.132421 -0.290593 0.036492 
 residual soft tissue -0.89 -0.78 -0.82 -0.093950 2.587510 0.346522 
 bone surface -0.92 -0.78 -0.86 -0.068741 2.905490 0.506205 
 red bone marrow -0.83 -0.63 -0.68 -0.055158 2.106100 0.352718 
 skin -0.75 -0.63 -0.67  -0.090715 2.170380 0.437774 
 effective dose (male) -0.94 -0.89 -0.88 -0.060846 2.708210 0.322329 
  effective dose (female) -0.89 -0.63 -0.72  -0.053110 2.765170 0.524768 
       



 

 101

Table 19: Continued. 

Risk - male 
 lung cancer -0.98 -0.95 -0.96 -0.080468 0.362521 0.022997 
 thyroid cancer -0.97 -0.93 -0.94 -0.090324 -0.768955 0.008107 
 liver cancer -0.97 -0.94 -0.95 -0.099456 -1.289650 0.005103 
 stomach cancer -0.89 -0.91 -0.89 -0.091355 -1.220140 0.010899 
 colon cancer -0.79 -0.70 -0.68 -0.289688 1.166400 0.009839 
 bladder cancer -0.84 -0.83 -0.80 -0.182227 -2.870710 0.001248 
 prostate cancer -0.85 -0.85 -0.81 -0.175623 -3.927180 0.000518 
 leukemia -0.98 -0.94 -0.94 -0.106831 -0.999674 0.003920 
 other cancer -0.98 -0.94 -0.93 -0.128982 1.257560 0.033559 
 effective risk -0.98 -0.94 -0.94 -0.108975 1.916760 0.069177 
Risk - female       
 lung cancer -0.99 -0.84 -0.90 -0.080058 1.194870 0.044447 
 thyroid cancer -0.94 -0.85 -0.86 -0.096085 1.071380 0.082099 
 breast cancer -0.90 -0.84 -0.81 -0.085772 1.480420 0.183132 
 liver cancer -0.86 -0.65 -0.73 -0.091197 -2.330250 0.003451 
 stomach cancer -0.71 -0.57 -0.66 -0.070770 -1.384440 0.020746 
 colon cancer -0.70 -0.59 -0.66 -0.134970 -1.803890 0.009816 
 bladder cancer -0.83 -0.69 -0.75 -0.157793 -3.681890 0.000830 
 ovary cancer -0.83 -0.67 -0.75 -0.158918 -4.048740 0.000539 
 uterus cancer -0.85 -0.72 -0.78 -0.155701 -4.919840 0.000232 
 leukemia -0.91 -0.70 -0.76 -0.125249 -1.048670 0.006647 
 other cancer -0.93 -0.73 -0.78 -0.143454 1.866890 0.081297 
  effective risk -0.97 -0.83 -0.86  -0.097723 2.815270 0.300244 
ξ The unit of a is cm-1 and b is unitless. “rms of residuals” stands for the root-mean-square of the 
residuals; it represents the average discrepancy between dose/risk values predicted by the fitting 
function and the dose/risk results estimated by the Monte Carlo method. The unit of “rms of 
residuals” is mGy/100 mAs or mSv/100mAs for dose estimates and cases/1000 exposed/100 mAs 
for risk estimates. 
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Table 20: Protocol E (120 kVp, pediatric body scan FOV, small bowtie filter, 0.984 pitch, 40 mm 
collimation): correlations of organ dose, effective dose, cancer risk to individual organs, and 
effective risk with three body size indices: average chest diameter, total scan length (a surrogate 
for chest height), and weight, and the results of exponential fits exp(a b)y x= +  to the 
relationships between dose/risk estimates and average chest diameter. 

    Pearson correlation coefficient (r)  fitting parametersξ 

    
average        

chest diameter
total       

scan length weight  a b 
rms of 

residuals 
Dose       
 lungs -0.98 -0.84 -0.88 -0.049646 3.735480 0.467958 
 heart -0.97 -0.82 -0.88 -0.041880 3.642260 0.672268 
 thymus -0.93 -0.76 -0.79 -0.039732 3.562330 0.880948 
 thyroid -0.50 -0.27 -0.25 -0.017278 3.079450 1.633080 
 breasts -0.92 -0.81 -0.85 -0.050118 3.529680 1.087480 
 esophagus -0.94 -0.75 -0.79 -0.048086 3.570960 0.800027 
 trachea-bronchi -0.89 -0.71 -0.71 -0.042526 3.521070 1.048170 
 eyes -0.79 -0.66 -0.68 -0.157761 1.482170 0.089681 
 brain -0.89 -0.76 -0.79 -0.138904 1.623720 0.080546 
 pharynx-larynx -0.78 -0.64 -0.64 -0.108499 3.854190 1.902350 
 liver -0.87 -0.72 -0.76 -0.064590 3.673370 1.531580 
 gall bladder -0.68 -0.57 -0.61 -0.120715 4.092270 3.630650 
 kidneys -0.60 -0.38 -0.47 -0.101841 3.537240 2.040430 
 adrenals -0.71 -0.48 -0.59 -0.065703 3.425250 1.906730 
 spleen -0.81 -0.62 -0.71 -0.057780 3.499370 1.598760 
 stomach -0.77 -0.69 -0.75 -0.053350 3.460950 1.997910 
 pancreas -0.65 -0.59 -0.63 -0.104563 3.660430 3.100240 
 small intestine -0.79 -0.68 -0.71 -0.172264 3.569790 0.828685 
 large intestine -0.78 -0.67 -0.68 -0.193039 3.864710 0.975360 
 urinary bladder -0.79 -0.73 -0.74 -0.160714 1.124670 0.104714 
 prostate -0.83 -0.83 -0.79 -0.170835 1.268790 0.096816 
 testes -0.87 -0.83 -0.79 -0.239959 1.779390 0.036921 
 ovaries -0.81 -0.65 -0.74 -0.148970 1.039980 0.100434 
 uterus -0.82 -0.66 -0.74 -0.153175 0.939228 0.081071 
 vagina -0.82 -0.66 -0.74 -0.154603 0.658414 0.061453 
 residual soft tissue -0.90 -0.79 -0.83 -0.097931 3.036810 0.498030 
 bone surface -0.93 -0.79 -0.85 -0.075313 3.386080 0.724355 
 red bone marrow -0.85 -0.65 -0.70 -0.061699 2.583220 0.528251 
 skin -0.76 -0.64 -0.67  -0.092188 2.545380 0.621296 
 effective dose (male) -0.95 -0.90 -0.90 -0.061237 3.066110 0.415124 
  effective dose (female) -0.90 -0.64 -0.74  -0.056462 3.167570 0.712865 
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Table 20: Continued. 

Risk - male 
 lung cancer -0.99 -0.96 -0.97 -0.079901 0.653201 0.031379 
 thyroid cancer -0.98 -0.94 -0.95 -0.088698 -0.491954 0.009995 
 liver cancer -0.97 -0.93 -0.95 -0.095210 -1.011850 0.007231 
 stomach cancer -0.90 -0.91 -0.91 -0.085490 -0.959658 0.013878 
 colon cancer -0.87 -0.79 -0.77 -0.235687 1.120200 0.017903 
 bladder cancer -0.85 -0.84 -0.81 -0.187365 -2.227170 0.002112 
 prostate cancer -0.84 -0.84 -0.80 -0.179757 -3.322150 0.000880 
 leukemia -0.98 -0.94 -0.93 -0.111787 -0.546597 0.006229 
 other cancer -0.98 -0.94 -0.94 -0.127543 1.616130 0.054050 
 effective risk -0.98 -0.94 -0.94 -0.109660 2.284560 0.105448 
Risk - female       
 lung cancer -0.99 -0.84 -0.90 -0.079876 1.492640 0.061031 
 thyroid cancer -0.95 -0.86 -0.87 -0.092584 1.308400 0.097434 
 breast cancer -0.95 -0.82 -0.87 -0.089602 1.840710 0.164094 
 liver cancer -0.90 -0.69 -0.76 -0.092218 -1.914900 0.004174 
 stomach cancer -0.84 -0.70 -0.79 -0.070754 -0.999933 0.020910 
 colon cancer -0.72 -0.56 -0.60 -0.185566 -0.236013 0.025674 
 bladder cancer -0.83 -0.68 -0.75 -0.163630 -3.007200 0.001468 
 ovary cancer -0.83 -0.67 -0.74 -0.164940 -3.360220 0.000979 
 uterus cancer -0.84 -0.68 -0.74 -0.168463 -4.192430 0.000387 
 leukemia -0.91 -0.70 -0.75 -0.131101 -0.583309 0.010310 
 other cancer -0.94 -0.74 -0.79 -0.141599 2.213210 0.121516 
  effective risk -0.97 -0.82 -0.86  -0.099424 3.162970 0.375630 
ξ The unit of a is cm-1 and b is unitless. “rms of residuals” stands for the root-mean-square of the 
residuals; it represents the average discrepancy between dose/risk values predicted by the fitting 
function and the dose/risk results estimated by the Monte Carlo method. The unit of “rms of 
residuals” is mGy/100 mAs or mSv/100mAs for dose estimates and cases/1000 exposed/100 mAs 
for risk estimates. 
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Table 21: Protocol F (80 kVp, pediatric body scan FOV, small bowtie filter, 1.375 pitch, 40 mm 
collimation): correlations of organ dose, effective dose, cancer risk to individual organs, and 
effective risk with three body size indices: average chest diameter, total scan length (a surrogate 
for chest height), and weight, and the results of exponential fits exp(a b)y x= +  to the 
relationships between dose/risk estimates and average chest diameter. 

    Pearson correlation coefficient (r)  fitting parametersξ 

    
average        

chest diameter
total       

scan length weight  a b 
rms of 

residuals 
Dose       
 lungs -0.97 -0.83 -0.86 -0.063462 2.536650 0.146916 
 heart -0.96 -0.81 -0.87 -0.052969 2.382060 0.232868 
 thymus -0.92 -0.77 -0.77 -0.060010 2.458280 0.297985 
 thyroid -0.37 -0.16 -0.17 -0.016835 1.644020 0.549094 
 breasts -0.63 -0.71 -0.66 -0.041528 1.985920 0.740595 
 esophagus -0.93 -0.75 -0.77 -0.061486 2.323910 0.223605 
 trachea-bronchi -0.89 -0.71 -0.70 -0.057418 2.324210 0.318231 
 eyes -0.77 -0.62 -0.64 -0.218024 0.889993 0.022365 
 brain -0.86 -0.71 -0.73 -0.182367 0.772328 0.019690 
 pharynx-larynx -0.79 -0.63 -0.61 -0.105387 2.483570 0.465037 
 liver -0.90 -0.75 -0.78 -0.076774 2.486630 0.354924 
 gall bladder -0.72 -0.62 -0.63 -0.142793 3.205910 1.051210 
 kidneys -0.68 -0.46 -0.56 -0.116099 2.482500 0.516251 
 adrenals -0.83 -0.63 -0.71 -0.085295 2.367620 0.390450 
 spleen -0.88 -0.71 -0.77 -0.076637 2.421200 0.340358 
 stomach -0.83 -0.73 -0.78 -0.063848 2.258590 0.510010 
 pancreas -0.70 -0.64 -0.67 -0.115219 2.564090 0.823272 
 small intestine -0.79 -0.66 -0.67 -0.227053 3.185460 0.277861 
 large intestine -0.80 -0.67 -0.68 -0.225529 3.190280 0.310236 
 urinary bladder -0.79 -0.71 -0.71 -0.192890 0.054631 0.024118 
 prostate -0.83 -0.82 -0.78 -0.201708 0.190615 0.021486 
 testes -0.84 -0.78 -0.74 -0.279734 0.866746 0.008866 
 ovaries -0.83 -0.63 -0.71 -0.190138 0.113190 0.021227 
 uterus -0.83 -0.65 -0.72 -0.184704 -0.154013 0.017507 
 vagina -0.84 -0.66 -0.74 -0.181083 -0.529184 0.012174 
 residual soft tissue -0.90 -0.78 -0.81 -0.113835 1.939140 0.133376 
 bone surface -0.93 -0.78 -0.83 -0.095437 2.412990 0.209686 
 red bone marrow -0.87 -0.68 -0.72 -0.084335 1.477790 0.132000 
 skin -0.77 -0.65 -0.68  -0.103666 1.404410 0.168862 
 effective dose (male) -0.95 -0.89 -0.89 -0.076431 1.914600 0.114666 
  effective dose (female) -0.94 -0.72 -0.78  -0.064777 1.923790 0.132803 
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Table 21: Continued. 

Risk - male 
 lung cancer -0.98 -0.95 -0.96 -0.092431 -0.564218 0.007397 
 thyroid cancer -0.96 -0.89 -0.91 -0.087663 -1.933890 0.002712 
 liver cancer -0.97 -0.94 -0.94 -0.105342 -2.251090 0.001787 
 stomach cancer -0.93 -0.93 -0.94 -0.093968 -2.200800 0.003316 
 colon cancer -0.85 -0.78 -0.75 -0.265742 0.411306 0.005817 
 bladder cancer -0.84 -0.81 -0.77 -0.218536 -3.294320 0.000475 
 prostate cancer -0.84 -0.83 -0.79 -0.211610 -4.376920 0.000207 
 leukemia -0.97 -0.91 -0.90 -0.130684 -1.713270 0.001541 
 other cancer -0.98 -0.93 -0.92 -0.141298 0.447407 0.012633 
 effective risk -0.97 -0.93 -0.92 -0.124872 1.132810 0.024186 
Risk - female       
 lung cancer -0.99 -0.81 -0.87 -0.092825 0.277892 0.013808 
 thyroid cancer -0.93 -0.84 -0.85 -0.097412 -0.049013 0.028927 
 breast cancer -0.78 -0.86 -0.78 -0.065023 0.118852 0.087236 
 liver cancer -0.91 -0.70 -0.77 -0.104302 -3.075610 0.000976 
 stomach cancer -0.87 -0.70 -0.78 -0.080568 -2.203500 0.005519 
 colon cancer -0.74 -0.55 -0.60 -0.220222 -0.876045 0.007959 
 bladder cancer -0.86 -0.68 -0.74 -0.195792 -4.086010 0.000291 
 ovary cancer -0.84 -0.65 -0.72 -0.198745 -4.384050 0.000212 
 uterus cancer -0.85 -0.68 -0.73 -0.189813 -5.429230 0.000088 
 leukemia -0.90 -0.68 -0.73 -0.152091 -1.713700 0.002451 
 other cancer -0.93 -0.73 -0.77 -0.155316 1.053460 0.028945 
  effective risk -0.97 -0.86 -0.87  -0.098944 1.777070 0.108806 
ξ The unit of a is cm-1 and b is unitless. “rms of residuals” stands for the root-mean-square of the 
residuals; it represents the average discrepancy between dose/risk values predicted by the fitting 
function and the dose/risk results estimated by the Monte Carlo method. The unit of “rms of 
residuals” is mGy/100 mAs or mSv/100mAs for dose estimates and cases/1000 exposed/100 mAs 
for risk estimates. 
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Table 22: Protocol G (100 kVp, pediatric body scan FOV, small bowtie filter, 1.375 pitch, 40 mm 
collimation): correlations of organ dose, effective dose, cancer risk to individual organs, and 
effective risk with three body size indices: average chest diameter, total scan length (a surrogate 
for chest height), and weight, and the results of exponential fits exp(a b)y x= + to the 
relationships between dose/risk estimates and average chest diameter. 

    Pearson correlation coefficient (r)  fitting parametersξ 

    
average        

chest diameter
total       

scan length weight  a b 
rms of 

residuals 
Dose       
 lungs -0.98 -0.84 -0.88 -0.054949 3.045070 0.230135 
 heart -0.96 -0.81 -0.88 -0.045173 2.909220 0.397718 
 thymus -0.93 -0.78 -0.78 -0.051293 2.976490 0.491413 
 thyroid -0.43 -0.23 -0.25 -0.016788 2.305320 0.898477 
 breasts -0.64 -0.71 -0.66 -0.039733 2.577500 1.296160 
 esophagus -0.94 -0.76 -0.79 -0.052337 2.860010 0.360308 
 trachea-bronchi -0.90 -0.73 -0.73 -0.050212 2.879370 0.520952 
 eyes -0.78 -0.64 -0.65 -0.196468 1.412150 0.049986 
 brain -0.88 -0.73 -0.76 -0.163328 1.311140 0.042878 
 pharynx-larynx -0.80 -0.66 -0.64 -0.098644 3.066100 0.879306 
 liver -0.90 -0.75 -0.78 -0.068211 3.004190 0.658692 
 gall bladder -0.71 -0.62 -0.63 -0.131810 3.691200 1.938600 
 kidneys -0.66 -0.44 -0.54 -0.099964 2.915860 0.992906 
 adrenals -0.81 -0.61 -0.70 -0.072826 2.866160 0.759118 
 spleen -0.88 -0.71 -0.77 -0.067802 2.940430 0.622094 
 stomach -0.80 -0.71 -0.76 -0.056522 2.799110 0.955405 
 pancreas -0.69 -0.63 -0.67 -0.106282 3.106880 1.558390 
 small intestine -0.79 -0.67 -0.68 -0.209756 3.624980 0.529137 
 large intestine -0.80 -0.68 -0.69 -0.211658 3.649390 0.575760 
 urinary bladder -0.79 -0.72 -0.72 -0.175713 0.639431 0.053409 
 prostate -0.83 -0.83 -0.79 -0.179924 0.704330 0.049425 
 testes -0.85 -0.80 -0.76 -0.265582 1.474780 0.020251 
 ovaries -0.82 -0.65 -0.73 -0.168606 0.611197 0.048362 
 uterus -0.82 -0.66 -0.74 -0.163246 0.391595 0.040829 
 vagina -0.85 -0.69 -0.75 -0.166824 0.118553 0.028938 
 residual soft tissue -0.90 -0.79 -0.82 -0.106694 2.478510 0.249933 
 bone surface -0.93 -0.78 -0.84 -0.086925 2.903190 0.378352 
 red bone marrow -0.86 -0.68 -0.72 -0.075032 2.053350 0.266064 
 skin -0.77 -0.65 -0.68  -0.099017 1.943490 0.309355 
 effective dose (male) -0.95 -0.90 -0.90 -0.068363 2.450300 0.202539 
  effective dose (female) -0.94 -0.73 -0.79  -0.058185 2.471050 0.247829 
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Table 22: Continued. 

Risk - male 
 lung cancer -0.99 -0.96 -0.96 -0.084689 -0.043046 0.014487 
 thyroid cancer -0.97 -0.91 -0.93 -0.085352 -1.300900 0.005320 
 liver cancer -0.97 -0.94 -0.95 -0.097956 -1.712300 0.003441 
 stomach cancer -0.92 -0.93 -0.94 -0.086611 -1.662690 0.006362 
 colon cancer -0.86 -0.80 -0.77 -0.251133 0.858596 0.010823 
 bladder cancer -0.85 -0.83 -0.79 -0.202301 -2.706460 0.001059 
 prostate cancer -0.84 -0.83 -0.80 -0.189702 -3.879670 0.000440 
 leukemia -0.97 -0.92 -0.92 -0.122320 -1.120870 0.003298 
 other cancer -0.98 -0.94 -0.93 -0.133693 1.001230 0.026323 
 effective risk -0.98 -0.94 -0.93 -0.117276 1.678620 0.050036 
Risk - female       
 lung cancer -0.99 -0.83 -0.89 -0.084698 0.791818 0.027364 
 thyroid cancer -0.95 -0.86 -0.87 -0.094684 0.563086 0.051507 
 breast cancer -0.78 -0.87 -0.79 -0.063771 0.714130 0.154072 
 liver cancer -0.92 -0.71 -0.78 -0.095671 -2.564760 0.001807 
 stomach cancer -0.85 -0.70 -0.78 -0.074906 -1.635390 0.010313 
 colon cancer -0.74 -0.56 -0.61 -0.206614 -0.411578 0.014823 
 bladder cancer -0.84 -0.67 -0.74 -0.178454 -3.515130 0.000707 
 ovary cancer -0.84 -0.65 -0.72 -0.181674 -3.825340 0.000472 
 uterus cancer -0.83 -0.66 -0.73 -0.184981 -4.664500 0.000192 
 leukemia -0.91 -0.69 -0.74 -0.143666 -1.125960 0.005125 
 other cancer -0.94 -0.75 -0.78 -0.146152 1.577540 0.058239 
  effective risk -0.98 -0.87 -0.88  -0.094390 2.347270 0.206522 
ξ The unit of a is cm-1 and b is unitless. “rms of residuals” stands for the root-mean-square of the 
residuals; it represents the average discrepancy between dose/risk values predicted by the fitting 
function and the dose/risk results estimated by the Monte Carlo method. The unit of “rms of 
residuals” is mGy/100 mAs or mSv/100mAs for dose estimates and cases/1000 exposed/100 mAs 
for risk estimates. 
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Table 23: Protocol H (140 kVp, pediatric body scan FOV, small bowtie filter, 1.375 pitch, 40 mm 
collimation): correlations of organ dose, effective dose, cancer risk to individual organs, and 
effective risk with three body size indices: average chest diameter, total scan length (a surrogate 
for chest height), and weight, and the results of exponential fits exp(a b)y x= +  to the 
relationships between dose/risk estimates and average chest diameter. 

    Pearson correlation coefficient (r)  fitting parametersξ 

    
average        

chest diameter
total       

scan length weight  a b 
rms of 

residuals 
Dose       
 lungs -0.98 -0.86 -0.89 -0.046484 3.720160 0.412886 
 heart -0.95 -0.81 -0.88 -0.037523 3.605640 0.801768 
 thymus -0.93 -0.79 -0.78 -0.043058 3.670600 0.952684 
 thyroid -0.46 -0.28 -0.31 -0.015156 3.109020 1.748370 
 breasts -0.63 -0.71 -0.66 -0.037318 3.351490 2.765920 
 esophagus -0.95 -0.78 -0.80 -0.043852 3.573270 0.705186 
 trachea-bronchi -0.92 -0.75 -0.75 -0.042510 3.592990 0.974573 
 eyes -0.79 -0.65 -0.67 -0.170444 2.016270 0.127488 
 brain -0.89 -0.75 -0.78 -0.145018 2.000940 0.107869 
 pharynx-larynx -0.80 -0.67 -0.66 -0.092292 3.821680 2.003510 
 liver -0.89 -0.75 -0.78 -0.059993 3.694870 1.447470 
 gall bladder -0.69 -0.61 -0.62 -0.121219 4.349570 4.274030 
 kidneys -0.62 -0.41 -0.51 -0.085165 3.532330 2.274420 
 adrenals -0.79 -0.57 -0.67 -0.060685 3.534990 1.757420 
 spleen -0.88 -0.71 -0.77 -0.059533 3.638210 1.354630 
 stomach -0.77 -0.68 -0.74 -0.049185 3.506870 2.133070 
 pancreas -0.68 -0.62 -0.66 -0.097517 3.814170 3.491330 
 small intestine -0.79 -0.67 -0.69 -0.193434 4.232610 1.186740 
 large intestine -0.80 -0.69 -0.69 -0.198861 4.287090 1.267790 
 urinary bladder -0.78 -0.73 -0.74 -0.156617 1.340810 0.136641 
 prostate -0.82 -0.82 -0.79 -0.160938 1.399030 0.129873 
 testes -0.87 -0.83 -0.79 -0.239824 2.067730 0.050088 
 ovaries -0.81 -0.65 -0.74 -0.144849 1.244610 0.128035 
 uterus -0.81 -0.66 -0.75 -0.142130 1.061600 0.111794 
 vagina -0.82 -0.68 -0.76 -0.138110 0.647321 0.077720 
 residual soft tissue -0.90 -0.80 -0.83 -0.099373 3.186810 0.556973 
 bone surface -0.93 -0.79 -0.85 -0.077848 3.503770 0.769883 
 red bone marrow -0.85 -0.67 -0.71 -0.065552 2.794100 0.635944 
 skin -0.76 -0.65 -0.68  -0.093936 2.652970 0.677215 
 effective dose (male) -0.96 -0.91 -0.91 -0.060424 3.154790 0.424351 
  effective dose (female) -0.94 -0.73 -0.79  -0.051087 3.182790 0.546317 
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Table 23: Continued. 

Risk - male 
 lung cancer -0.98 -0.96 -0.97 -0.077069 0.646028 0.033808 
 thyroid cancer -0.97 -0.93 -0.95 -0.083099 -0.497132 0.013268 
 liver cancer -0.97 -0.94 -0.95 -0.090964 -1.000600 0.007786 
 stomach cancer -0.91 -0.92 -0.94 -0.079275 -0.956394 0.014505 
 colon cancer -0.87 -0.81 -0.78 -0.238675 1.500090 0.023768 
 bladder cancer -0.85 -0.84 -0.81 -0.184637 -1.990580 0.002713 
 prostate cancer -0.84 -0.84 -0.81 -0.170647 -3.180210 0.001168 
 leukemia -0.98 -0.93 -0.93 -0.114086 -0.358147 0.008366 
 other cancer -0.98 -0.95 -0.94 -0.126083 1.719420 0.065099 
 effective risk -0.98 -0.95 -0.95 -0.109829 2.392860 0.122638 
Risk - female       
 lung cancer -0.99 -0.86 -0.91 -0.076514 1.470970 0.065568 
 thyroid cancer -0.95 -0.88 -0.90 -0.089492 1.301090 0.114578 
 breast cancer -0.79 -0.87 -0.80 -0.061667 1.491020 0.332848 
 liver cancer -0.91 -0.73 -0.79 -0.087197 -1.879120 0.004009 
 stomach cancer -0.84 -0.69 -0.77 -0.069273 -0.898909 0.022910 
 colon cancer -0.74 -0.57 -0.62 -0.193838 0.226065 0.032695 
 bladder cancer -0.83 -0.69 -0.76 -0.157169 -2.828240 0.001894 
 ovary cancer -0.84 -0.68 -0.75 -0.161788 -3.146080 0.001238 
 uterus cancer -0.83 -0.68 -0.75 -0.157815 -4.083350 0.000522 
 leukemia -0.91 -0.70 -0.75 -0.134834 -0.375924 0.012581 
 other cancer -0.94 -0.76 -0.80 -0.137884 2.281310 0.137163 
  effective risk -0.98 -0.89 -0.90  -0.088927 3.078850 0.473637 
ξ The unit of a is cm-1 and b is unitless. “rms of residuals” stands for the root-mean-square of the 
residuals; it represents the average discrepancy between dose/risk values predicted by the fitting 
function and the dose/risk results estimated by the Monte Carlo method. The unit of “rms of 
residuals” is mGy/100 mAs or mSv/100mAs for dose estimates and cases/1000 exposed/100 mAs 
for risk estimates. 

 

5.3.2 Effects of Scan Parameters 

The exponential relationships reported in Table 16 to Table 23 allowed the effects 

of bowtie filter, collimation, helical pitch, and peak tube potential to be studied for all 

dose and risk estimates. Examples are illustrated in Figure 21 for lung dose, large 

intestine dose, effective dose, and effective risk. As expected, the effects of bowtie filter 
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and collimation were generally smaller compared to the effects of helical pitch and peak 

tube potential, an exception being dose to the large intestine, an organ on the periphery 

or outside the chest scan coverage, for which the effect of collimation was greater than 

that of the helical pitch.  

With all other scan parameters kept the same, using the medium bowtie filter 

resulted in higher dose/risk than the other two bowtie filters. Compared with using the 

small bowtie filter, using the large bowtie filter resulted in lower dose for small patients 

and higher dose in large patients. The dose difference associated with the different 

choices of bowtie filters was not reflected by the corresponding CTDIvol values; the 

CTDIvol values for the medium and the large bowtie filters were substantially lower than 

that for the small bowtie filter. 

Beam collimation had little effect on dose to the lung, an organ inside the chest 

scan coverage, although lung dose was slightly higher at 20-mm collimation. In contrast, 

dose to the large intestine was higher at 40-mm collimation, and the difference between 

the two collimation settings decreased with increasing patient size. Effective dose and 

effective risk were also slightly higher at the wider beam collimation. The difference in 

CTDIvol between the two collimation settings was indicative of the difference observed 

for lung dose.  

For the size range (10-23 cm) of pediatric patients in this study, the ratio of lung 

dose between pitch of 0.984 and pitch of 1.375 ranged from 1.37-1.38, close to but slightly 
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lower than the theoretical prediction of 1.40 (1.375/0.984), as represented by the CTDIvol 

ratio between the two pitch settings. The ratio, however, was much lower for dose to the 

large intestine, ranging 0.97-1.13. For the effective dose and effective risk of male 

patients, the ratio ranged 1.28-1.32 and 1.27-1.33, respectively.  

All dose and risk estimates depended strongly on peak tube potential. For the 

size range of pediatric patients in this study (10-23 cm), the ratio of dose and risk 

estimates between 120 kVp and 100 kVp ranged between 1.53-1.63, 1.54-1.69, 1.55-1.65, 

and 1.56-1.64 for lung dose, large intestine dose, effective dose (male), and effective risk 

(male), respectively, increasing with patient size. In contrast, the CTDIvol ratio between 

the two kVp settings was 1.70. 
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Figure 21: Effects of scan parameters (bowtie filter, collimation, helical pitch, and peak tube 
potential) on radiation dose and cancer risk, using lung dose, large intestine dose, effective dose 
(male), and effective risk (male) as examples. The error bar on each curve reflects the root-mean-
square of the residuals associated with the exponential fit; it represents the average discrepancy 
between dose/risk values predicted by the fitting function and the dose/risk results estimated by 
the Monte Carlo method. Volume-weighted CTDI (CTDIvol) were shown for comparison. The 
letters A-H refer to Protocols A-H. 
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5.4 Discussions 

In this study, we combined patient-specific computer models of a population of 

pediatric CT patients with a validated Monte Carlo technique to systematically evaluate 

the effects of patient size and scan parameters on radiation dose and cancer risk. In a 

prior study of seven pediatric patients (16-20 cm chest diameter)103, we showed that 

normalized dose to centrally-located large organs in the chest scan coverage (e.g., lung 

and heart) correlated strongly, decreasing linearly, with chest diameter. In the current 

study, we confirmed the strong correlations and found the relationships to be 

exponential over a larger range of body diameters (10-23 cm) (Figure 18a), consistent 

with the exponential dependence of CTDI on cylindrical phantom diameter reported by 

Nickoloff et al.92. In addition to centrally-located large organs, normalized dose to 

centrally-located small tubular organs (e.g., esophagus) also correlated well with 

average chest diameter (Figure 18a). These strong relationships suggest that patient-

specific dose to these organs can be accurately estimated for any patient in this size 

range who undergoes a chest scan from a simple measurement of the patient’s chest 

diameter or circumference, thus obviating the need to construct a computer model for 

every patient.  

For some organs, the correlation between dose and average chest diameter was 

less than ideal. We attributed the weak correlation (r = - 0.64) of breast dose in Protocol 

A with average chest diameter (Figure 18b) to the high helical pitch of 1.375 in Protocol 
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A, which left gaps of tissues un-irradiated by the primary radiation beam. This was 

especially the case for organs on the surface of a patient, such as the breast. Depending 

on how much of the breast volume was irradiated by the primary beam, the dose to the 

breast could vary considerably. In fact, the correlation of breast dose with average chest 

diameter was much stronger (r = - 0.92) in Protocol E, which employed a lower helical 

pitch of 0.984. The weak correlation of thyroid dose with average chest diameter (r = - 

0.44) was not surprising, considering that the thyroid is in the neck region, the dose of 

which would more likely be affected by neck thickness than chest size. Despite these 

weak correlations and the generally weak correlations found for organs on the periphery 

or outside of the chest scan coverage (Figure 18c) and for distributed organs (Figure 

18d), the relationships could still be represented by exponential equations, which may 

be used to broadly estimate patient-specific dose to these organs.  

 Our results reflect strong effects of age and gender on CT radiation dose. While 

the lung dose of a 10-cm diameter patient was about twice that of a 23-cm diameter 

patient (Figure 18a), the risk of lung cancer incidence was three times higher in the 

smaller patient (Figure 19a), due to the patient’s younger age. Furthermore, with the 

same lung dose, the risk to a female patient was about double that to a male patient of 

the same size (Figure 19a), a direct result of the dramatically different risk coefficients 

for the two genders. As in the case of organ dose, the exponential relationship between 

cancer risk and average chest diameter may be used to infer risk information for any 
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patient in the size range who undergoes a chest scan. Such dose and risk estimates, 

when documented in a patient’s dosimetry and medical records, could have significant 

implications in patient management, potentially providing guidance in decisions for 

image utilization, including the situation in which multiple examinations have been 

performed or are being considered. 

 Our study further illustrated the difference between effective dose and radiation 

risk. While the effective dose of a 10-cm diameter patient was about twice that of a 23-

cm diameter patient (Figure 20a), the effective risk was three to four times higher in the 

smaller patient (Figure 20b). As mentioned earlier, effective dose is defined for a 

reference hermaphrodite person; the tissue weighting factors are mean values 

representing averages over many individuals of different genders and age groups21. 

However, the concept has been widely applied to patients of various sizes, ages, and 

genders 30, 31, 38, 98 as a surrogate for radiation risk. In particular, dose-length product 

(DLP) to effective dose conversion coefficients have been developed for various patient 

ages (e.g. 0, 1, 5, 10 years, adult)10. The limitations of these applications have been 

discussed recently by several authors71, 102, 110. In this study, we calculated effective dose 

for individual patients because it is a concept that the medical imaging community is 

familiar with. Our results help to quantify the age and gender deficiencies of the 

effective dose concept; the difference in effective dose does not represent the risk 

difference between the two age groups, nor does the difference in effective dose fully 
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capture the risk difference between two genders. While effective dose may still be useful 

for comparing between scan techniques and imaging devices, when risk is compared 

across ages and genders, effective risk is a more useful concept. 

 At our institution, pediatric patients are assigned to different protocol groups 

based on weight, body length, or age. However, the results of this study demonstrate 

that chest diameter/circumference is a stronger predictor of dose and risk than weight 

and body length and should perhaps replace the other body size indices for the purpose 

of protocol design and assignment. This is in line with the recommendation of Haaga et 

al., who advocated the use of patient diameter to determine parameters such as tube 

current111, 112.  

Our study of the effect of bowtie filter showed that, on the LightSpeed VCT 

scanner, the medium bowtie filter was associated with the highest radiation dose, and 

compared with using the small bowtie filter, using the large bowtie filter resulted in 

lower dose for small patients and higher dose in large patients.  These results may 

appear counter-intuitive, but can be understood by knowing that (1) the medium bowtie 

filter has the same materials and thicknesses as the small bowtie filter at the center, but 

is thinner than the small bowtie filter on the periphery, and (2) the large bowtie filter is 

the thinnest on the periphery, but contains an additional layer of copper. These results 

can aid in the design of CT protocols. For example, if one determines that changing from 

the small to the medium bowtie filters would result in more uniform X-ray intensity at 
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the detector for patients of a certain size, then one may need to reduce tube current at 

the same time to compensate for the dose increase due to the bowtie filter change. 

Furthermore, we found that the dose differences associated with the different choices of 

bowtie filters were not reflected by the corresponding differences in the CTDIvol value. 

This is due to the fact that CTDIvol reported by the manufacturer is for a 32-cm diameter 

acrylic phantom when the medium bowtie filter (medium body scan FOV) and the large 

bowtie filter (large body scan FOV) are used, but for a 16-cm diameter acrylic phantom 

when the small bowtie filter (pediatric body scan FOV) is used. As such, if the medium 

bowtie filter is used for any patient (10-23 cm in diameter) in our study, the reported 

CTDIvol value represents a gross underestimation of patient dose. 

  Our study of the effect of beam collimation showed that dose to the lung was 

slightly higher at 20-mm collimation than at 40-mm collimation. This may be explained 

by the effect of the penumbra; at a narrower beam collimation, more rotations were 

needed to cover the same image volume, resulting in more contribution from the 

penumbra. The higher dose to the large intestine at 40-mm collimation could be 

attributable to the longer over-ranging distance and hence longer total scan length at this 

collimation setting, which, for small patients, caused a larger volume of the large 

intestine to be directly irradiated by the primary radiation beam and, for large patients, 

caused more scattered radiation to reach the large intestine. For the same reason, 

effective dose and effective risk were also slightly larger at the wider beam collimation.  
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As for the effect of helical pitch, we found that the dose and risk ratios between 

pitch of 0.984 and pitch of 1.375 were universally smaller than the theoretical prediction 

of 1.40 (1.375/0.984). This may be explained by the longer overranging distance 

associated with the larger helical pitch. The ratio was close to unity (0.97-1.13) for dose 

to the large intestine, most likely because the large intestine was either partially 

irradiated by the primary radiation beam or only irradiated by scattered radiation.  

Our study of the effect of the peak tube potential showed that the dose/risk ratio 

between two kVp settings was a function of patient size. In other words, the same kVp 

increase entails different dose and risk increases to patients of different sizes. Recently, a 

number of studies explored the feasibility of reducing peak tube potential to increase 

image contrast18, 113-115. The resulting increase in image noise was often compensated by 

an increase in tube current. The dose and risk data provided in our study can facilitate 

such efforts by informing the healthcare providers of the tradeoff in patient dose and 

risk as a consequence of using a lower-kVp and higher-mA technique.  

 One limitation of our study was that we did not study the effect of tube current 

modulation (TCM). As the thirty patients in our study underwent CT examinations 

between 2005 and 2006 using fixed-tube-current techniques, the TCM profiles could not 

be readily obtained. However, as the design of a TCM protocol requires specifying the 

maximum tube current of the scan, the results of our study can be used to estimate the 

maximum dose associated with a TCM examination. Furthermore, other authors have 
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shown, for a reference adult patient, that the normalized organ dose values estimated by 

Monte Carlo methods, when multiplied by the mean tube current of a TCM scan, may 

serve as conservative estimates of the dose associated with the TCM scan116. This may 

equally apply to pediatric patients, but further verification is required. Despite having 

thirty patients in this study, the sample size in our study was still relatively small (~ 15 

patients in each gender). As such, we did not treat patient size and patient age as two 

separate factors affecting patient risk. With a larger sample size, the same average chest 

diameter would likely correspond to a larger range of patient ages and thus more 

variable risk estimates. Lastly, in this investigation, we estimated cancer risk for 

individual patients by combining patient-specific dose estimates with risk coefficients 

that are tissue-, age-, and gender-specific. We note, however, that as the risk coefficients 

are still statistical averages over many individuals of the same gender and similar age, 

they can not reflect individual vulnerability due to genetic factors. As such,  the cancer 

risks we reported do not represent the true risk of an individual from his/her CT 

examination but rather our current best knowledge of the potential risk to a patient from 

his/her CT examination, knowing the patient’s age and gender. Therefore, care should 

be exercised when interpreting the risk results. Nevertheless, the patient-specific risk 

information, as presented by our study, represents a step forward beyond effective dose 

towards personalized patient care. 
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Part II: Tool Development 

6. Three-Dimensional Simulation of Lung Nodules for 
Pediatric Multidetector Array CT* 

6.1 Introduction 

Detection of even one small lung nodule may have profound implications in the 

prognosis and treatment of pediatric cancer. Owing to the superior resolutions of 

modern multi-detector array computed tomography (MDCT), CT of the chest is often 

standard for pediatric cancer staging and surveillance. However, compared with other 

imaging modalities, CT delivers higher radiation dose to the patients16, and children are 

especially sensitive to the detrimental effect of radiation. Therefore, care must be taken 

to optimize radiation dose while maintaining diagnostic accuracy. The influence of dose 

reduction on lung nodule detection has been studied for adult patients by performing 

repeated CT scans on the same subjects at different tube current levels28, 117. Such an 

approach is not suitable for the pediatric population. An alternative approach is to 

develop techniques to simulate lung nodules for pediatric chest MDCT.  

Three types of techniques have been developed in the past to simulate lung 

nodules. Type I technique adds synthetic nodules into a phantom118, 119 and has the 

obvious disadvantage of using unrealistic backgrounds, making it difficult to generalize 

research results to patients. Type II technique digitally inserts nodules segmented from 

                                                      

* This chapter is based on an article with the same title published in the British Journal of Radiology. 
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clinical images into clinical images48, 120, thus may be optimal in terms of image/nodule 

realism. However, the occurrence of solitary small lung nodules in the pediatric 

population is low, limiting the available nodule morphologies and making repeated use 

problematic. Type III technique adds computer-generated nodule-like objects to clinical 

images44-47. It offers the maximum flexibility and is also capable of achieving high degree 

of realism as demonstrated by two recent studies46, 47. Nodule characteristics modeled in 

these two studies, however, were typical of nodules larger than those of interest in 

pediatric MDCT (3-5 mm); lung nodules larger than 5 mm are rarely missed by 

radiologists in pediatric MDCT. The purpose of our investigation was to develop and 

validate a technique of type III for modeling small lung nodules in three dimensions on 

pediatric MDCT images and to provide a framework by which focal lesions in other 

organs can be simulated for dose and technique optimization research in MDCT.  

6.2 Materials and Methods 

Our institutional review board determined that the study was in compliance 

with the Health Insurance Portability and Accountability Act, and did not require 

informed consent. 

6.2.1 Image Selection 

Images of 21 patients were retrospectively selected from our clinical (teaching) 

database to represent infants or children up to 18 years old who underwent unenhanced 

MDCT (LightSpeed 16, LightSpeed QX/i, or LightSpeed VCT; GE Healthcare, Waukesha, 
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WI) examinations. All patient identifiers had been removed from the images prior to the 

study. Sixteen of the patients had sarcomas or Wilms tumor, and nodules were 

presumed to represent metastatic disease. The images were acquired using tube 

potentials of 100-140 kVp, tube currents of 44-211 mA, helical pitches of 0.75 or 1.375, 

gantry rotation periods of 0.4-0.8 second, slice thicknesses of 5 mm, reconstruction 

intervals of 2.5 mm or 5 mm, and in-plane resolutions of 0.41-0.66 mm. Those imaging 

parameters were typical of the current clinical protocols for pediatric MDCT at our 

institution. Thirty-four small (real) lung nodules were identified by a pediatric 

radiologist who had 15 years of experience with pediatric CT.  

 

 
Figure 22: Three-dimensional characteristics of small lung nodules on pediatric MDCT images as 
exemplified by a nodule in our study. The nodule was clearly visible on 3 contiguous CT slices 
with slice thickness of 5 mm and reconstruction interval of 2.5 mm. The regions of interest (ROIs) 
are 30 mm in size with the nodule located centrally. 

 

6.2.2 Nodule Characterization 

The real nodules in our study had diameters between 2.5 and 6 mm and were 

clearly visible on 1-4 contiguous MDCT slices. Nodule size and contrast varied across 

slices; frequently, a central slice with maximum nodule size and contrast was 

accompanied by adjacent slices with reduced sizes and contrasts (Figure 22). Although 
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small nodules tended to appear round, a variety of shapes existed that deviated clearly 

from a perfect sphere (Figure 23). The shape of a nodule varied from slice to slice, but 

strong resemblance in shape was often observed across slices (Figure 22). The margin of 

a nodule varied from well-defined margin to diffused/hazy margin (Figure 23). 

 
 

 

Figure 23: A variety of nodule appearances existed as exemplified by 18 real nodules in our 
study. Only the central slice of each nodule is shown. All ROIs are 20 mm in size with nodules 
located centrally. 
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6.2.3 Nodule Simulation Method 

We developed a technique to simulate lung nodules with realistic characteristics. 

A 3-D nodule was modeled as multiple 2-D masks on sequential MDCT slices. All 

computer codes were written in an interactive program (Matlab, R2007a; Mathworks, 

Natick, MA). 

 

 
Figure 24: (a) For a 3-D nodule with diameter 2Ro of 6 mm, its radii on a 5-mm thick CT slice are 
3, 3, and 2.83 mm for the vertical (z-direction) locations 1, 2, and 3, respectively. Assuming the 
peak contrast of the nodule to be proportional to its diameter subtended by the CT slice and 
defining its peak contrast at vertical locate on 1 as Co, its peak contrasts at vertical locations 2 and 
3 are 4Co/5 and 2Co/5, respectively. When changing reconstruction interval from (b) half of the 
slice thickness to (c) one slice thickness, the occupation and the appearance of a nodule on 
contiguous CT slices also change. 
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For a given 3-D nodule, its radii and peak contrasts on contiguous CT slices can 

vary, depending on the vertical (z-direction) offsets of the nodule center relative to the 

CT slices (Figure 24). On each CT slice, the 2-D mask can be defined by a contrast profile 

equation proposed by Samei et al121 and reformulated by Burgess et al122 as 

2

( ) 1
n

rc r C
R

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
                       (17) 

where R  and C  are the radius and peak contrast of the 2-D mask, and exponent n  is a 

positive number inversely related to the steepness of the contrast profile, reflective of 

edge characteristics. Due to its radial symmetry, Equation (17) defines perfectly circular 

masks and has been adopted by Hoe et al123 to model small liver lesions on pediatric 

MDCT images.  

To reflect the variability of real nodule shapes, we introduced radial asymmetry 

by defining radius as a function of polar angle and exponent as a function of radius, i.e. 
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where Rθ  is a pre-defined nodule shape function, rescaled so that its average across all 

polar angles equals R , nodule radius on current CT slice obtained from initial geometric 

calculation. We chose ( )n Rθ  as a linearly increasing function of Rθ  to improve the 

smoothness of nodule border; the roughness induced by increasing nodule size from one 
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polar angle to another is ameliorated by a corresponding decrease in the steepness of the 

nodule contrast profile. Because the steepness of the contrast profile of a spherical 

nodule can be shown to increase with the fraction of its diameter contained by a CT 

slice, f , we assumed a linear relationship between n  and f as 

1 6 1
1( 1)

1 6 1
n n

n f n
−

= − +
−

          (19) 

where 1n  and 1 6n  are exponents corresponding to conditions when all or one-sixth of 

the nodule diameter is contained by a CT slice, respectively.  

To determine 1n , Equation (17) was used to simulate spherical nodules fully 

enclosed by a CT slice with a sequence of 1n  values between 1.0 and 2.0. An experienced 

pediatric radiologist examined the nodule images and determined that 1 1.8 2.0n = −  

yielded the most realistic appearances. Subsequently, Equations (17) and (19) were used 

to create 3-D nodules visible on multiple contiguous CT slices with a sequence of 1 6n  

values between 2.0 and 2.6 and an 1n  value of 2.0. The 3-D nodule images were 

examined by the same radiologist, who determined that 1 6 2.4n =  yielded the most 

realistic appearances. 1 2.0n =  and 1 6 2.4n =  were used to calculate n  in our subsequent 

simulations. 

Because shape variability contributes greatly to the difficulties associated with 

nodule detection, any realistic nodule simulation must reflect the variety of real nodule 
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shapes. We developed an algorithm which generated a nodule shape function Rθ  from 

12 manually-specified base radii at evenly spaced polar angles with linearly interpolated 

values in between. A nodule shape function was first designed for the central CT slice 

containing the nodule center. Slight variations were then added to 4 of the base radii, 90 

degrees apart, to create nodule shape functions for the inferior and superior CT slices. 

Using this method, a library of 60 sets of nodule shape functions was created.  

Lastly, we modeled nodules with diffused edges by adding a second component 

to Equation (18) as 

(1) ( 2)( ) ( )2 2

(1) (2)( , ) 1 (1 ) 1

n R n R

r rc r C C
R R
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θ θ
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Here, (1)Rθ  and (2)Rθ  are two nodule shape functions, rescaled so that their averages equal 

(1)R  and (2)R , respectively. Peak contrast C  is shared between the two components in a 

: (1 )α α−  ratio. Relative to the first component, the exponent of the second component 

is reduced by γ  fold, while the average radius of the second component is increased by 
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β  fold. Both C  and n  were derived from the radius of the first component (1)R . 

Simulations were performed for sequences of , ,α β  and γ  over the ranges of 0.2-0.8, 

1.1-1.5, and 0.5-1.6, respectively. We found that 0.4, 1.3 1.4, and 1.3α β γ= = − =  

provided the most realistic nodule appearances. Equations (20) and (21) with 

0.4, 1.4, and 1.3α β γ= = =  were subsequently used to create double-component 

nodules, each of which adopted two sets of nodule shape functions, randomly sampled 

from the library. Sixty pairs of function sets were selected by an experienced pediatric 

radiologist and added to the library, bringing the total number of designs to 120 (i.e. 60 

single-component and 60 double-component designs). Figure 25 illustrates an example 

simulated nodule in 3-D. 

 

 
Figure 25: An example simulated (single-component) nodule in three dimensions. The nodule 
was simulated with 2Ro = 5 mm and Co = 350 HU on 5 contiguous CT slices with slice thickness of 
5 mm and reconstruction interval of 2.5 mm. All ROIs are 30 mm in size with the nodule located 
centrally. 

 

6.2.4 Comparison between Real and Simulated Nodules: Physical 
Characteristics 

We compared real and simulated nodules in terms of measured shape and 

contrast profile irregularities.  
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For the comparison, twenty real nodules with diameters of 4-6 mm were 

selected, excluding nodules that were too small to demonstrate contrast profiles or too 

close to vessels to allow accurate segmentation. The largest/brightest 2-D mask of each 

nodule was segmented with a method described by Hoe et al123. Using the maximum 

pixel value as peak contrast and the corresponding pixel as origin, we derived six 

contrast profiles from each mask by plotting average pixel value as a function of radial 

distance for six evenly divided angular bins. The contrast profiles were then normalized 

to the peak contrast and fitted to the normalized version of Equation (17) as 
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                                                                                                             (22) 

where ( ) ( ) /c r c r C′ =  is normalized contrast. For each nodule, six R′  and six n′ values 

were extracted from the fits. In a few cases where Equation (22) did not provide a good 

fit, we further attempted double-component fits. 

The visual span of a contrast profile was measured in terms of 0.05R′ , the distance 

at which normalized contrast ( )c r′ equals 0.05, i.e. 

0.05 1 0.05nR R ′′ ′= −                                                           (23) 

Accordingly, the visual steepness of a contrast profile was measured by 
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The dimensionless quantity η  is a slowly increasing function of ,n′ and thus is inversely 

related to the steepness of the contrast profile. Furthermore, to describe shape and 

contrast profile irregularities, coefficients of intra-nodule variation were calculated for the 

six 0.05R′  and six η  values of each nodule as 

0.05
0.05

0.05

( )cov( ) 100%

( )cov( ) 100%

RR
R

σ

σ ηη
η

′′ =
′

=
                                                                                                   (25) 

To compare with real nodule masks, the 120 designs in our library were used to 

simulate 60 single-component and 60 double-component 2-D masks on a zero 

background with nodule centers assuming random vertical (z-direction) locations inside 

the background. Radius oR  and peak contrast oC  were randomly sampled from ranges 

determined to match that of the real masks. The same fitting method was applied to the 

simulated masks to extract R′  and n′  values for the calculation of 0.05cov( )R′  and 

cov( )η . 

Two-sample t-tests were performed to compare shape and contrast profile 

irregularities of simulated and real masks. Commercial software (JMP, version 6; SAS 

Institute, Cary, NC) was used to perform the tests at a significance level of 0.05.  
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6.2.5 Comparison between Real and Simulated Nodules: Observer 
Experiment 

The quality and clinical utility of simulated nodules were evaluated in terms of 

the ability of radiologists to distinguish between simulated and real nodules.  

Sample Preparation. Sixteen of the patients had one or more lung nodules. Images 

with more than one nodule were rendered multiple times, and each time, all but one 

nodule was digitally removed using a method described in Reference123. This process 

provided 34 image sets, each containing 4-6 contiguous CT slices with a single real 

nodule visible on 1-4 slices.  

Another 55 image sets of 4-6 slices, clear of nodules, were identified from images 

of all 21 patients and used as backgrounds for nodule simulation. A single simulated 3-

D nodule with simulation diameter o2R  of 3-7 mm (corresponding to visual diameter of 

2.5-6 mm) was inserted into each of the 55 backgrounds at randomly selected locations 

in the pulmonary parenchyma, not immediately adjacent to the chest wall. A peak 

contrast oC  range of 200-600 Hounsfield units (HU) was used to match the contrasts of 

real nodules. Figure 26 illustrates examples of simulated nodules in this sample. The 

ratio of single-component to double-component nodules was 5:4, but they were 

otherwise grouped and analyzed together to enlarge the scale of the study. Another 4 

image sets of 4-6 slices, clear of nodules, were combined with the real and simulated 

nodule samples, yielding a total of 93 image sets for the observer experiment.  

 



 

 132

 
Figure 26: Examples of simulated nodules used in the observer experiment: the central slices of 
(a) 18 single-component and (b) 18 double-component nodules. All ROIs are 20 mm in size with 
nodules located centrally. 

 
Observer Experiment. The 93 image sets were randomized and displayed as 

independent series on a GE Advantage Workstation (GE Healthcare, Waukesha, WI) set 

to the standard lung window (window center = -500 HU, window width = 1500 HU) in a 

controlled reviewing environment. Four experienced pediatric radiologists (with 3-12 

years of experience with pediatric CT) independently rated the image sets for nodule 
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appearance on a continuous scale between 0 (definitely not real) and 100 (definitely 

real). All observers were told that there was zero or one nodule in each image set; they 

were not told how many of image sets had no nodule or how many were real. The 

observers were encouraged to use the full scale for assigning scores. They had no time 

limit in rating each image set, but they were not allowed to return to an image set once 

rated. To minimize the effect of learning period, the image sets were shown in numerical 

order to two observers, but in reverse numerical order to the other two. Each observer 

was first asked about the presence of nodule, and if a nodule was found, the observer 

was asked to point to the location before rating on a score sheet.  

Data Analysis. The detection rates and the rates of false (spurious nodule) 

detection were computed for the real and simulated nodules. As the goal of the 

experiment was to evaluate the appearances of the known nodules in the images, scores 

given to spurious (non-existing) nodules were discarded from further analysis.  

ROC analysis was performed to test each observer’s ability to distinguish 

between simulated and real nodules. ROC software (ROCKIT, version 1.1 B 2; Charles E. 

Metz, University of Chicago, IL) was used. Simulated nodules were defined as positive 

cases; true-positive fraction (TPF) was the likelihood of a simulated nodule being 

identified as simulated, while false-positive fraction (FPF) was the likelihood of a real 

nodule being identified as simulated. As our objective was to determine whether 

simulated nodules could emulate the appearances of real ones, our ROC analysis was 
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targeted to determine how close the areas under the ROC curves were to the chance 

value of 0.5. In that way, our objective in this use of the ROC analysis, precedent by an 

earlier study124, was somewhat different from that in the standard use of the ROC 

methodology, in which one aims to assess the difference (and not the similarity) between 

two alternatives (e.g. disease present versus disease absent).  

Two-sample t-test was also performed for each observer to test the null 

hypothesis that the difference in population mean score between simulated and real 

nodules ( μ μΔ = simulated μ− real) was zero. Commercial software (JMP, version 6; SAS 

Institute, Cary, NC) was used to perform the t-tests at a significance level of 0.05.  

Lastly, equivalence tests were performed based on the confidence intervals of 

μΔ . We defined the zone of equivalence as ± <σ(xreal)>observer, the standard deviation of 

real nodule scores averaged across observers. As a graphical depiction of the quality of 

simulated nodules, histograms of the frequencies of score assignments for both types of 

nodules were derived for each observer.  

6.3 Results 

6.3.1 Physical Characteristics 

Among the 120 contrast profiles derived from the 20 real nodule masks, 105 

profiles (87.5%) fitted well to Equation (22) as exemplified by Figure 27a and Figure 27b, 

5 (4.2%) profiles had apparent two-component appearance resembling that in Figure 27c, 

and 10 (8.3%) profiles had apparent flat tops resembling that in Figure 27d. For the 120 
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simulated nodule masks, the goodness-of-fit resembled that in Figure 27a and Figure 

27b. Ten (1.4%) profiles had slight two-component appearance similar to that in Figure 

27c, but not as obvious. Equation (22) was found to provide generally reasonable fit for 

both real and simulated nodule masks. 

 

 
Figure 27: Sample results of curve fitting performed for normalized contrast profiles of 20 real 
nodule masks. Contrast profiles are represented by symbols, and their fits to Equation (22) are 
represented by solid lines. All R′ , (1)R′ , and (2)R′  values are in the unit of mm. (a) An excellent fit 
with small residues. (b) Another excellent fit, where the general trend of the contrast profile was 
well described by Equation (22), despite the relatively large residues. (b) is also an example fit 
that yielded large R′  and n′  values. The corresponding 0.05R′  and η  values were 3.3 mm and 2.1, 
respectively, more suitable to describe the visual radius and steepness of this contrast profile than 
the original R′  and n′  values. (c) and (d) are two examples of not excellent, but acceptable fits to 
Equation (22). Excellent fits, however, were obtained when fitting these two contrast profiles to 
the double-component version of Equation (22), as demonstrated by the thick dashed lines. 
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Figure 28: Scatter plots of visual steepness (inversely related to )η  versus visual radius 0.05R′  for 
real, simulated single-component (SSC), and simulated double-component (SDC) nodule masks. 

 
When comparing scatter plots of visual steepness versus visual radius (Figure 

28), excellent match was found between simulated and real masks except for the lower 

right corner ( 0.05R′ > ~ 2.75 mm or visual diameter > ~ 5.5 mm) of the real mask scatter 

plot, where the sharp steepness (small η  values) of some contrast profiles was not 

captured by the simulation. Although marginally significant differences in shape 

irregularity and significant differences in contrast profile irregularity were found 

between the two types of simulated masks and the real ones (Table 24), the three types 

of masks had comparable shape irregularities, and simulated double-component masks 

had comparable contrast profile irregularities to the real ones. 
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Table 24: Summary of t-test results for comparing real and simulated nodule masks in terms of 
shape and contrast profile irregularities 

Case Sample Size Mean (± sda) Difference (95% CI b) p-valuec 
Shape irregularity 0.05cov( )R′ d 

       Real  20 14.1 (± 5.2)   

       SSCe  60 11.0 (± 3.8)   

       SDCe 60 11.5 (± 4.4)   

       SSC – Real   -3.0 (-5.6, -0.4) 0.02 

       SDC – Real   -2.6 (-5.2, 0.1) 0.06 

Contrast profile irregularity cov( )η d 

       Real 20 8.1 (± 2.2)   

       SSC 60 3.2 (± 1.2)   

       SDC 60 6.3 (± 3.0)   

       SSC – Real   -4.9 (-6.0, -3.9) < 0.0001 

       SDC – Real   -1.8 (-3.1, -0.5) 0.01 

a sd = standard deviation. 
b CI = confidence interval. 
c The null hypothesis was that the difference in population mean shape/contrast profile 
irregularity between simulated single/double-component masks and real masks was zero. 
d 0.05cov( )R′ and cov( )η  are coefficients of intra-nodule variation in radius and steepness of 
contrast profile, respectively. 
e SSC = simulated single-component, SDC = simulated double-component. 
 
 

6.3.2 Observer Experiment 

The real and simulated nodules had similar and high detection rates, 86.8% and 

78.2%, respectively, with similar rates of false (spurious nodule) detection, 2.2% and 

1.4%, respectively (Table 25). At these similar detection rates, the observers could not 

reliably distinguish simulated nodules from real ones. All ROC curves (Figure 29) were 

close to the chance line. No significant difference in population mean score was found 

between simulated and real nodules for any observer (Table 25). Although three of the 
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observers assigned slightly lower scores to simulated nodules,  the lower limits of all 

confidence intervals of μΔ simulated real( )μ μ− were well contained within the zone of 

equivalence (Figure 30), indicating that the two types of nodules were perceptually 

equivalent within the normal variation of real nodule appearances. The histograms of 

score assignments (Figure 31) showed that the distributions of scores were similar for 

the two types of nodules for all observers. 

 

 
Figure 29: Results of ROC analysis. Simulated nodules were defined as positive cases; true-
positive fraction (TPF) was the likelihood of a simulated nodule being identified as simulated, 
while false-positive fraction (FPF) was the likelihood of a real nodule being identified as 
simulated. Error figures refer to standard errors. 
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Table 25: Summary of t-test results for comparing real and simulated nodule scores 

Observer and Case Detection Ratea Mean Score (± sdb) Difference (95% CIc) p-valued 

Observer 1     

      Real 97.1% 59.7 (± 25.7)   

      Simulated 81.8% 51.7 (± 24.3)   

      Simulated-Real   -8.0 (-19.5, 3.5) 0.17 

Observer 2     

      Real 91.2% 69.2 (± 23.4)   

      Simulated 83.6% 58.2 (± 27.5)   

      Simulated-Real   -11.0 (-22.6, 0.7) 0.06 

Observer 3     

      Real 76.5% 49.5 (± 38.5)   

      Simulated 69.1% 62.1 (± 29.6)   

      Simulated-Real   12.5 (-5.5, 30.6) 0.17 

Observer 4     

      Real 82.4% 83.2 (± 15.0)   

      Simulated 78.2% 79.3 (± 13.1)   

      Simulated-Real   -3.9 (-10.9, 3.0) 0.26 
a The detection rates averaged across observers were 86.8% and 78.2% for the real and simulated 
nodules, respectively. The rates of missed nodules, for which no scores were given or scores were 
given to spurious (non-existing) nodules, equaled one minus the corresponding detection rates. 
The rates of false (spurious nodule) detection averaged across observers were 2.2% and 1.4% for 
the real and simulated cases, respectively. Scores given to spurious nodules were not included in 
the analysis. 
b sd = standard deviation. 
c CI = confidence interval. 
d The null hypothesis was that the difference in population mean score between simulated and 
real nodules was zero. 
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Figure 30: Results of equivalence tests based on confidence intervals of the differences in 
population mean score between simulated and real nodules ( μ μΔ = simulated μ− real). The zone of 
equivalence was defined as <σ(xreal)>observer, the standard deviation of real nodule scores averaged 
across observers.  

 

 
Figure 31: Histograms of score assignments for (a) observer 1, (b) observer 2, (c) observer 3, and 
(d) observer 4. Scores of 100 were included in the last bin of each histogram. 
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6.4 Discussions 

Computer modeling of lung nodules has been an important area of investigation 

in CT44-48. Most prior studies have not aimed to emulate the features of real lung nodules, 

validated by observer studies of nodule appearances. Two recent studies have offered an 

exception46, 47; however, the modeled nodule characteristics were typical of large (> 5 

mm) nodules, a range that is larger than what would be subtle enough for most 

technique optimization studies in MDCT, particularly in pediatric applications48, 125. Most 

recently, in an investigation focused on the pediatric population48, a single real nodule 

extracted from a pediatric chest MDCT image was digitally resized and inserted back 

into the image to study the effects of added noise on nodule detection. The nodule was 

presented and reviewed on a single slice only, was not validated as representing a 

standard nodule, and did not vary in terms of shape or contrast, making the nodule 

detection study less reflective of the actual clinical paradigm in which nodules with 

variable appearances need to be detected. 

In this work, we developed and validated a technique for computer modeling of 

small lung nodules in 3-D. Our study focused on pediatric MDCT because of the fact 

that the pediatric population is more sensitive to radiation-induced cancer, making 

investigations in dose reduction more important, at the same time, limiting our ability to 

systematically investigate lower dose techniques due to ethical concerns with multiple 

MDCT scans on the same patients with technique variations.  
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Our work also represents, to our knowledge, the first detailed characterization of 

small lung nodules in terms of shape and contrast profile irregularities. The contrast 

profiles of most small lung nodules on pediatric MDCT images fitted well to an 

exponential equation originally proposed for nodules in chest radiography. In those 

cases where fitting to this original equation was unsatisfactory, the double-component 

version could be used to achieve excellent fits. These findings supported our application 

of this equation to simulate small lung nodules. With the introduction of radial 

asymmetry, the simulation nearly matched the shape irregularities of real nodules. 

Even though the objective of our study was to compare real and simulated 

nodules in terms of their appearances, not of their detection rates, it is interesting to 

examine their detection rates and the reason for missed nodules. The real nodules 

yielded a higher detection rate, which is not surprising given the fact that they were pre-

selected, i.e. they had been detected (in the sample selection process) in the first place 

before they could be included in the study. Nevertheless, the detection rates of the two 

types of nodules were similar. Therefore, the subtlety of the simulated nodules 

(determined by size, shape, contrast, and location) adequately resembled that of the real 

nodules, and would be appropriate for studies aiming at comparing nodule detection 

rates between different CT techniques. Revisiting the cases with missed real/simulated 

nodules revealed that most of the nodules that were missed by more than two observers 

were close to vessels and thus looked like parts of the vessels. This highlights the 
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importance of nodule location in detection studies that employ nodule simulation 

techniques. 

One limitation of our study is that we did not fully model the contrast profile 

irregularities of real nodules. We assumed a linear increase of exponent n  with radius 

Rθ . As a result, contrast profile steepness (inversely related to η ) of simulated nodules 

showed a decreasing trend with nodule radius (Figure 28). The behaviors of real 

nodules, however, were more complex and variable. Closer match was found between 

simulated double-component and real masks because the superimposition of two 

components of different sizes and shapes introduced more variations. This physical 

discrepancy, however, did not seem to have provided strong visual clues to our 

observers as demonstrated by the results of the observer experiment. Another limitation 

is that our 3-D nodule model did not fully account for the effects of respiratory and 

cardiac motions, which could further depend on nodule locations in the lung 

parenchyma. By adding nodules directly to reconstructed CT slices, we have assumed 

that the noise characteristics of the images remain the same with or without the nodules. 

For the small nodule sizes modeled in our study, this is a valid assumption, because the 

perturbations of the small nodules to the attenuation properties of the images are 

negligible.  Lastly, our evaluation of the technique was limited to the ranges of scan 

protocols, slice thickness, reconstruction intervals used for the pediatric MDCT patients 
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at our institution only. However, our method can be readily adapted to simulate small 

lung nodules on images acquired with other scan and reconstruction protocols. 

Our simulation method may also enable the modeling of large nodules, which 

often have flat-topped contrast profiles. A few real nodules in our study exhibited such 

contrast profiles, which did not fit well to the single-component contrast profile equation 

(as exemplified by the solid line Figure 27d) and contributed to the lower right corner of 

the real mask scatter plot (combinations of small η  with 0.05R′  > ~ 2.75 mm or visual 

diameter > ~ 5.5 mm). However, a double-component contrast profile equation in which 

a small component is subtracted from a large component can model such contrast 

profiles (thick dashed line in Figure 27d), thus extending our method to simulate larger 

nodules, provided that the nodule sizes are small enough (< ~ 1 cm) to still consider the 

perturbations to the noise backgrounds negligible. 

In conclusion, our results demonstrated that mathematical simulation is a 

feasible technique for creating small lung nodules that resemble real nodules in physical 

characteristics and detection rate, and are perceptually indistinguishable from real 

nodules to experienced pediatric radiologists. The nodule simulation technique can find 

applications in several areas of research. When used in conjunction with noise (tube 

current reduction) simulation techniques operating on either projection or reconstructed 

CT images50, 51, 53, 125, simulated 3-D nodules can be used in dose reduction studies. As 

opposed to the virtually impractical process of collecting nodules from pediatric 
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patients, simulated nodules can be inserted to normal MDCT images, allowing quick 

generation of a large database of images with established truth. Our technique may also 

prove useful in the optimization of other CT imaging parameters and in the training and 

evaluation of computer-aided diagnosis systems. Lastly, we believe that the simulation 

technique can be extended to model nodules and lesions in other organs, facilitating not 

only research investigations but potentially education and training of medical 

professionals126. 
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7. Comparison of Patient Size Based Methods for 
Estimating Quantum Noise in CT Images of the Lung* 

7.1 Introduction 

To assess the effect of reduced radiation dose on image quality in computed 

tomography (CT), one frequently needs to ascertain the level of quantum noise in the 

image107, 111, 127. Knowledge of the noise can guide CT protocol designs to provide 

acceptable noise levels with minimum dose to the patient. However, it is often difficult 

to reliably and accurately measure the quantum noise in actual patient images due to the 

underlying anatomy (structured noise). An example is quantum noise in images of the 

lung, which is impossible to be measured directly. Therefore, methods are needed to 

estimate the noise indirectly. One method is to reconstruct the noise in each CT pixel 

using a modified filter backprojection formulation that includes the square of the 

reconstruction kernel128-130. While accurate, this method requires proprietary knowledge 

of the reconstruction kernel and the availability of sinogram data, which are 

cumbersome to store and transfer and are poorly archived (deleted by most sites after 

image reconstruction). Another method is to acquire two copies of the same patient 

image at exactly the same setting and divide the subtraction image by 2  to yield the 

noise image131, 132. While simple to perform, this image-subtraction method requires 

                                                      

* This chapter is based on an article with the same title published in the journal Medical Physics. 
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scanning the same patient twice and is unacceptable due to the additional radiation 

burden to the patient.  

An alternative approach is to estimate noise based on patient size. It is well-

established that object size (d) is a factor that influences quantum noise ( )σ  in CT: 

2 deμσ ∝ , where μ  is the energy-dependent X-ray attenuation coefficient of the object39. 

For a specific CT system and scan protocol, the exact relationship between σ  and d can 

be determined for cylindrical phantoms of uniform materials107. If an effective diameter 

can be established for a patient, this relationship can then be used to estimate quantum 

noise in the patient image.    

The goal of this technical note is to compare different patient size based methods 

for estimating quantum noise in CT images of the lung. The relationship between noise 

and diameter is determined on a 64-slice CT system for a series of water phantoms. 

Using noise measured by the image-subtraction method as a gold standard, four patient 

size based methods are compared for their suitability to estimate quantum noise in CT 

images of the lung. 

7.2 Materials and Methods 

7.2.1 Noise-Diameter Relationship in Water Phantoms 

To estimate quantum noise in the patient image based on patient size, we first 

determined the relationship between noise and diameter in water phantoms. Six 

cylindrical water phantoms with diameters of 12.7, 15.3, 17.8, 20.0, 23.3, and 27.0 cm 
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were used to represent body size ranging from infant, to adolescent, to small adult 

(Figure 32).  

 

 
Figure 32: Six water phantoms representing body size ranging from infant, to adolescent, to 
young adult: (a) five custom-built phantoms with diameters of 12.7, 15.3, 17.8, 23.3, and 27.0 cm, 
and (b) 20-cm-diameter GE quality-assurance water phantom.  

 
Each phantom was scanned on a clinical 64-slice CT scanner (LightSpeed VCT, 

GE Healthcare, Waukesha, WI) at four tube potentials of 80, 100, 120, 140 kVp and 

eleven tube currents of 200, 180, 160, 140, 120, 100, 80, 60, 40, 20, 10 mA with 40-mm 

beam collimation and 0.4-second gantry rotation period. Other scan parameters were 

summarized in Table 26 and were chosen to emulate our size-based clinical MDCT 

protocols.  
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Table 26: Scan parameters used to acquire noise images from six water phantoms. 

Bowtie Filter Water Phantom Diameter (cm) Pitch Slice Thicknessa (mm) 
small       

 12.7 0.984 3.75 
 15.3 0.984 3.75 
 17.8 1.375 5 
 20.0 1.375 5 

medium    
 17.8 1.375 5 
 20.0 1.375 5 
 23.3 1.375 5 
 27.0 1.375 5 

large    
 20.0 1.375 5 
 23.3 1.375 5 
  27.0 1.375 5 
a  Same as reconstruction interval. 

 

At each combination of bowtie filter, phantom size, kVp, and mA, three to five 

contiguous CT slices were selected from the middle of the scanned section. On each 

selected CT slice, noise was measured as standard deviation of pixel values within a 

central region-of-interest (ROI), which was free of image artifact and had an area larger 

than a quarter of the total cross-sectional area of the phantom. The noise thus measured 

was averaged across contiguous CT slices to yield a single noise figure for the 

combination of bowtie filter, phantom size, kVp, and mA. At extremely low kVp and/or 

mA and for large phantom sizes, severe photon starvation shifted CT numbers of the 

images. The standard deviations measured from such images no longer represented 

noise and were not included in subsequent analysis. 
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At each combination of bowtie filter and kVp, the measured noise data were 

fitted to a second-order polynomial equation as 

2 2
0 1 2 3 4 5ln( ) ln( ) ln ( ) ln( ),d mA d mA d mAσ α α α α α α= + + + + +                                           (26) 

where σ  is the measured noise, mA  is tube current, and d is phantom diameter. 

Commercial software (OriginPro 8, v8.0725, OriginLab Corporation, MA) was used to 

perform the fits. 

7.2.2 Noise in the Lung Measured Using Image-Subtraction Method 

Quantum noise in the lung images of an anthropomorphic phantom (ATOM, 

adult female, Model 702, CIRS, Norfolk, VA) was measured using the image-subtraction 

method and served as a gold standard. The chest section of the phantom without breast 

inserts was scanned on the CT scanner at a tube voltage of 120 kVp, tube currents of 

both 95 and 20 mA, pitch of 1.375, gantry rotation period of 0.4 second, beam collimation 

of 20 mm, and medium body scan field-of-view (corresponding to medium bowtie filter) 

with slice thickness of 5 mm at 5 mm interval. At each tube current, the phantom was 

scanned twice, and the difference in pixel value between the two scans was divided by 

2 to yield the noise map of each CT slice (Figure 33). Twenty-eight contiguous CT 

slices were selected covering most volume of the lung. On the noise map of each selected 

CT slice, six 50-pixel-diameter ROIs, evenly distributed in the lung, were identified 

(Figure 33). Noise values (standard deviations of pixel values) in the six ROIs were 

averaged to yield a single noise figure for the CT slice. The coefficient of variation104 for 
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the six noise values was used to quantify noise variation in the lung within a CT slice. 

The coefficient of variation was also calculated for the twenty-eight average noise 

figures to quantify noise variation across the lung volume. 

 

 
Figure 33: (a) A CT slice from the chest section of the anthropomorphic phantom acquired at 95 
mA. (b) The noise map of (a) obtained by subtracting two copies of (a) and dividing the 
subtraction image by 2.  Standard deviations of pixel values within six 50-pixel-diameter ROIs 
evenly distributed in the lung region were averaged to yield a single noise figure for the CT slice. 

 

7.2.3 Noise in the Lung Estimated Using Patient Size Based Methods 

Quantum noise in the lung was estimated for the aforementioned 28 CT slices of 

the anthropomorphic phantom using four methods, each based on a different definition 

of patient size, characterized in terms of water-equivalent diameter (dw). 

Chest Area Method: A patient’s chest was assumed to be composed entirely of 

water with dw(CA) defined as the diameter of a circle having the same circumference/area 



 

 152

as the circumference/area of the patient’s chest in the image. This definition has been 

used by Boone et al.93 to determine the equivalent-diameters of patients from abdomen 

CT images, who found that the equal-circumference criterion and the equal-area 

criterion produced similar results. The equal-area criterion was used in this study for the 

ease of computation. The chest area was calculated as the total area of all pixels in the 

image with CT numbers greater than -900 HU to reduce the contribution from the 

patient bed in the reconstruction field-of-view. For each of the 28 CT slices, dw(CA) was 

used to estimate quantum noise in the lung at both 95 and 20 mA using the relationship 

in Equation (26). 

Water-Equivalent Area Method: To take into account the difference in X-ray 

attenuation property between tissue and water, patient size was characterized by dw(WEA), 

the diameter of a circle having the same area as the water-equivalent area of the patient’s 

chest in the CT slice. The water-equivalent area was calculated as ( /1000 1) ,CT a+∑ in 

which CT  and a  were the CT number and the area of each pixel, respectively, and the 

summation was over all pixels in the reconstruction field-of-view. Because the bulk of 

the patient bed has very low X-ray attenuation, contribution from the patient bed in the 

reconstruction field-of-view was minimal. A similar definition of dw has been adopted by 

Menke133 who calculated dw from the average image of a patient’s scanned section and 

used it to summarize the x-ray attenuation properties of the scanned section for patient-

specific dose adaptation purposes. Patient size defined this way has also been used in 
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the algorithm of z-axis automatic tube current modulation132. For each of the 28 CT slices, 

dw(WEA) was used to estimate quantum noise in the lung at both 95 and 20 mA using the 

relationship in Equation (26). 

Non-lung Area Method: As a variant of the preceding method, the linear 

attenuation coefficients of lung were assumed to be zero, and that of the bone and soft 

tissue to be water-equivalent. Patient size was thus characterized by dw(NLA), the diameter 

of a circle having the same area as the non-lung area of the patient’s chest in the CT slice. 

The non-lung area was calculated as the total area of all pixels in the reconstruction 

field-of-view with CT numbers greater than -200 HU. For each of the 28 CT slices, dw(NLA) 

was used to estimate quantum noise in the lung at both 95 and 20 mA using the 

relationship in Equation (26). 

Water-Equivalent Path Length Method: Considering the facts that noise at a location 

in the CT slice is a result of back-projecting the noise in all CT projections that 

interrogate that location, and the noise in a projection is determined by the attenuation 

that X-ray traces through in that projection, patient size was characterized by dw(WEPL), the 

water-equivalent path length of X-ray through a location of interest in the image 

averaged over all X-ray incident angles. To determine dw(WEPL) for a pixel location, the CT 

numbers ( )CT  of all pixels in the image were first converted to linear attenuation 

coefficients ( /1000 1),CTμ = +  normalized by water .μ  Radon transform (Matlab, 

Mathworks, Natick, MA) was then employed to calculate the line integral (i.e., water-
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equivalent path length) through the pixel location of interest for X-ray incident angles 

between 0o and 180o. The average of those line integrals was dw(WEPL). For each of the 28 

CT slices, dw(WEPL) was calculated for ten evenly distributed pixel locations in the lung, 

and the results were averaged to yield a single dw(WEPL) for the CT slice. The dw(WEPL) was 

used to estimate quantum noise in the lung region of the CT slice at both 95 and 20 mA 

using the relationship in Equation (26). 

Error Evaluation: The accuracies of the four patient size based methods were 

evaluated against the gold standard of image-subtraction method. For each of the 28 CT 

slices, percent errors were calculated for the quantum noise estimated by dw(CA), dw(WEA), 

dw(NLA), and dw(WEPL) at both the 95 and 20 mA settings.  

 
Table 27: Coefficients of polynomial equation describing the relationship between quantum noise 
and diameter in water phantoms on a LightSpeed VCT scanner. 

Bowtie 
Filter kVp Coefficients 

Adjusted 
R2 

  α0 α1 α2 α3 α4 α5  
small 80 4.42809 0.01476 -0.63593 0.00742 0.05724 -0.02681 0.990 

 100 4.05954 -0.00583 -0.52538 0.00490 0.01714 -0.00877 0.993 
 120 3.97994 -0.02059 -0.52299 0.00471 0.01276 -0.00576 0.995 
 140 3.94392 -0.02886 -0.52743 0.00440 0.00723 -0.00249 0.996 

medium 80 1.64157 0.26954 -0.42099 -0.00048 0.03194 -0.02331 0.975 
 100 1.54965 0.28661 -0.61874 -0.00187 0.05493 -0.02037 0.986 
 120 1.24914 0.27993 -0.55677 -0.00275 0.03529 -0.01306 0.990 
 140 1.26746 0.25753 -0.51762 -0.00282 0.02260 -0.00886 0.993 

large 80 10.17070 -0.12202 -1.94568 0.00783 0.18631 -0.02452 0.998 
 100 5.52959 -0.05413 -0.56413 0.00526 0.05182 -0.02125 0.999 
 120 4.96463 -0.03127 -0.54763 0.00382 0.03951 -0.01467 0.999 
 140 4.66454 -0.01537 -0.56091 0.00271 0.02667 -0.00824 0.999 
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7.3 Results 

The relationship between noise and diameter measured from images of the water 

phantoms fitted well to Equation (26) with adjusted R2 values close to unity (Table 27). 

The coefficients ( 0,1, .., 5)i iα =  extracted from the fits are also summarized in Table 27. 

Quantum noise in the lung measured using the image-subtraction method is 

illustrated in Figure 34 for the 28 CT slices of the anthropomorphic phantom’s chest 

section at 95 and 20 mA. Noise variation within a CT slice ranged from 2.1% to 9.9% at 

95 mA and from 3.7% to 11.4% at 20 mA.  Noise variation across the lung volume was 

22.7% at 95 mA and 28.8% at 20 mA. 

 

 
Figure 34: Quantum noise in the lung measured using the image-subtraction method from the 28 
contiguous CT slices of the anthropomorphic phantom’s chest section at 95 and 20 mA. The error 
bar reflects the standard deviation of the six measurements on each CT slice. The distance to lung 
apex was calculated as the z-distance between a given CT slice and the CT slice associated with 
the most superior position of the lung. 
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The dw(CA), dw(WEA), dw(NLA), and dw(WEPL) values calculated for the 28 CT slices are 

illustrated in Figure 35. Their averages across the chest section were 24.6, 21.0, 18.1, and 

14.1 cm, respectively. The accuracies of the noise estimated by the dw’s are shown in 

Figure 36a and Figure 36b for 95 mA and 20 mA, respectively. Noise estimated by dw(NLA) 

had the highest accuracy with maximum percent error of around 30%, comparable to the 

magnitudes of noise variation across lung volume. In contrast, noise estimated by dw(CA), 

dw(WEA), and dw(WEPL) had maximum percent error of 229%, 93%, and 57%, respectively. 

  

 
Figure 35: Four definitions of patient size calculated for the 28 contiguous CT slices of the 
anthropomorphic phantom’s chest section, including water-equivalent diameters derived from 
chest area (dw(CA)), water-equivalent area (dw(WEA)), non-lung area (dw(NLA)), and water-equivalent 
path length (dw(WEPL)). The error bar on dw(WEPL) reflects the standard deviation of the ten dw(WEPL)’s 
calculated for each CT slice. The distance to lung apex was calculated as the z-distance between a 
given CT slice and the CT slice associated with the most superior position of the lung. 
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Figure 36: Accuracies of quantum noise in the lung estimated by dw(CA), dw(WEA), dw(NLA), and dw(WEPL) 
for the 28 contiguous CT slices of the anthropomorphic phantom’s chest section at (a) 95-mA and 
(b) 20-mA scans. Errors of ± 30%, the magnitude of noise variation across the lung volume, are 
indicated by thick dashed lines.  

 

7.3 Discussions 

In studies that evaluate the effect of dose reduction on the diagnosis of 

pulmonary abnormalities, diagnostic accuracy is frequently evaluated at different tube 

current levels49, 52, 134. Ideally, such evaluations should be performed at different noise 

levels to allow the generalization of study results to other CT systems and scan 

protocols. However, this ideal approach has not been used due to the difficulty with 

ascertaining noise level in the lung. In this study, we explored four methods for 

estimating quantum noise in the lung, each based on a different definition of patient size 

and the relationship between noise and diameter determined in water phantoms.  
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While patient size is commonly characterized based on cross-sectional 

circumference/area (dw(CA))93 or water-equivalent area (dw(WEA))132, the results of our study 

show that such definitions of patient size are not suitable for estimating quantum noise 

in the lung and result in gross overestimations, presumably because they do not 

consider the anatomical and attenuation variation across an image. Considering that the 

technique of z-axis tube current modulation is based on patient size derived from water-

equivalent area132, the noise index associated with the technique19 is likely not 

representative of the actual noise in the lung.  

Anatomical/attenuation variation across an image is taken into account when 

patient size is derived from water-equivalent path length (dw(WEPL));  dw(WEPL) (and noise) in 

the lung is in general smaller than that in the mediastinum. Furthermore, the 

anatomical/attenuation variation across the lung volume is also reflected by dw(WEPL); the 

magnitude of dw(WEPL) (Figure 35) and, hence, the noise it predicted showed a clearly 

decreasing trend with increasing distance to lung apex, consistent with the decreasing 

trend of measured noise (Figure 34). Therefore, the noise prediction error of dw(WEPL), 

while large, had the lowest variance across the lung volume among all four methods 

(Figure 36). We attribute the poor accuracy of this method to its neglect of the effect of 

bowtie filter attenuation on noise. Bowtie filters preferentially attenuate X-ray on the 

periphery. As a result, at a peripheral location in the lung with dw(WEPL), the noise is 

higher than that measured from the center of a water phantom with diameter dw(WEPL). 
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In this study, we determined empirically that patient size derived from non-lung 

chest area has noise prediction errors comparable to the noise variation across lung 

volume, and thus can be used for a broad estimation of lung noise. Furthermore, the 

continuous variation of quantum noise from top to bottom of the lung suggests that the 

average noise level in the lung may be estimated using the non-lung area diameter 

calculated from a single CT slice at the middle of the chest (half-way between lung apex 

and lung base). 

Our study was limited to a single CT scanner model and an associated clinical 

protocol in place at our institution. Applicability of our finding to other CT systems and 

scan protocols requires further validation. Ideally, the accuracies of the different size-

based methods should be evaluated using actual patient images. However, because gold 

standards cannot be established without scanning a patient twice, we chose to perform 

the study using an anthropomorphic phantom, assuming that the construction of the 

phantom is representative of actual patient anatomy. A further verification of our 

finding may be useful if repeated images of patient cadavers are available.    
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Part III: Diagnostic Accuracy Studies 

8. Pediatric MDCT: Towards Assessing the Diagnostic 
Influence of Dose Reduction on the Detection of Small 
Lung Nodules* 

8.1 Introduction 

Owing to the superior resolutions of modern multi-detector array computed 

tomography (MDCT), chest CT examination for the detection of lung nodules is often 

standard for pediatric cancer staging and surveillance. In such examinations, the 

presence of even one small lung nodule may have tremendous prognostic and 

therapeutic implications40. However, a chest MDCT involves the irradiation of many 

radiosensitive organs, including the thyroids, lungs, breasts, stomach, esophagus, and 

bone marrow; these organs are at risk for radiation-induced cancer later in life16, 135. 

Therefore, reducing radiation dose from chest CT is an important area of investigation136. 

 Several previous studies on the pediatric population41-43 have suggested that 

diagnostic-quality images of the lung could be obtained at significantly reduced tube-

current levels. However, those studies were preference-based; reduced-tube-current 

images were evaluated by assigning subjective image quality scores to known 

anatomical structures. The results of such studies do not necessarily reflect the actual 

performance of radiologists in terms of lung nodule detection at reduced tube current 

                                                      

* This chapter is based on an article with the same title published in the journal Academic Radiology. 
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levels. Performance-based evaluations have been hindered by two major challenges: (a) 

the low occurrence of isolated small lung nodules in the pediatric population makes it 

difficult to research with real lung nodules, and (b) ethical concerns prohibit repeated 

scans to be taken on the same patients at different tube current levels.  

The former challenge may be overcome by the simulation of lung nodules44-46, 48, 

137. However, most prior nodule simulation studies have not aimed to emulate the 

characteristics of real nodules, validated by observer studies of nodule appearances. In 

two recent studies which have offered an exception46, 47, the modeled nodule 

characteristics were typical of large (> 5 mm) nodules, a size range that is not subtle 

enough for most technique optimization studies in MDCT, particularly in pediatric 

applications48. To overcome the second challenge, one may add virtual noise to existing 

CT data to simulate reduced tube current conditions48-56. However, most noise 

simulation software operates on raw projection data, which are cumbersome to store 

and transfer and often require scanner processors for image reconstruction. In addition, 

prior software has not been validated in terms of both magnitude and texture of the 

simulated noise.  

The goal of our study was to evaluate the influence of reduced tube current 

levels on the detection of small lung nodules using hybrid images, real pediatric CT 

images with added simulated noise and lung nodules. As radiation dose is proportional 

to tube current, we will refer to “reduced tube current” as “reduced dose” hereafter. Our 
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study was distinct from prior efforts in that it was performance-based, as opposed to 

preference-based41-43, used a realistic model of noise with proper texture and calibrated 

magnitude, and used a validated, realistic, and variable model of three-dimensional 

lung nodules138.  

8.2 Materials and Methods 

This study was approved by our institutional review board (IRB), who 

determined that it was in compliance with the Health Insurance Portability and 

Accountability Act, and did not require informed consent. 

8.2.1 Clinical Cases 

Normal chest CT examinations of 13 patients (median age, 3 years old; age range, 

1-7 years old; median weight, 14 kg; weight range, 11-23 kg) were retrospectively 

selected from our clinical database of children who underwent 64-slice MDCT 

examinations (LightSpeed VCT, GE Healthcare, Waukesha, WI). Images were obtained 

according to our size-based clinical protocols with tube currents of 70-180 mA, tube 

potential of 100 or 120 kVp (lower kVp in smaller children), effective beam width of 20 

or 40 mm, pitch of 1.375, and a slice thickness of 3.75 mm at 3.75-mm interval or 5 mm at 

5-mm interval (thinner slice thickness in smaller children). Each examination was 

reviewed by a radiologist with 18 years of experience in pediatric CT to reconfirm that 

the CT data were free of any lung nodule. 
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8.2.2 Noise Simulation 

Reduced-dose images were simulated using a noise addition software tool (GE 

Noise Addition Tool, Version 1.1, GE Healthcare, Waukesha, WI). The software accepts 

DICOM (Digital Imaging and Communications in Medicine) images acquired on the 

LightSpeed VCT scanner and adds noise to axial slice data to simulate either a reduced 

tube current (mA) or an increased noise index.  

Principles of Noise Simulation 

The noise addition tool is based on the automatic-exposure-control algorithm 

used on the LightSpeed VCT scanner 139 and performs noise simulation in three steps. In 

the first step, the noise tool estimates the overall noise magnitude in the input image.  A 

single scout projection of the input image is calculated and used to estimate noise in the 

input image. The estimate is based on a pre-determined noise model for a reference 

scanning technique in which noise (in the reconstructed image) is a function of 

projection area and amplitude. The noise magnitude is then scaled based on the 

relationship between the reference technique and the actual technique of the input 

image.  

Once the overall noise magnitude is ascertained, the next step addresses the 

noise variability across the image. The input image is re-projected at four degree 

increments over 360 degrees to obtain patient attenuations. Bowtie filter attenuations are 

then added to the patient attenuations to yield total projection attenuations. Random 
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noise projections are generated, and their relative intensities are modulated according to 

the total projection attenuations so that noise is related to the square root of the number 

of photons in each projection according to Poisson statistics. The weighted noise is then 

filtered and back projected to produce a spatially variable noise field image. The filtering 

and backprojection processes applied to the simulated noise are identical to that applied 

to the real noise. This ensures the accurate spatial correlation of the simulated noise. 

In the final step, the noise field image is scaled based on the relationship between 

the original tube current (or noise index) and the desired tube current (or noise index) 

and added to the input image.  

Evaluation of Simulated Noise 

The accuracy of the GE noise addition tool was evaluated using images of six 

cylindrical water phantoms with diameters of 12.7, 15.3, 17.8, 20.0, 23.3, and 27.0 cm to 

represent pediatric body sizes. Each phantom was scanned on a clinical 64-slice scanner 

(LightSpeed VCT, GE Healthcare, Waukesha, WI) at four tube potentials of 80, 100, 120, 

140 kVp and eleven tube currents of 200, 180, 160, 140, 120, 100, 80, 60, 40, 20, 10 mA 

with 40-mm effective beam width and 0.4-second gantry rotation period. Other scan 

parameters were summarized in Table 28 and were chosen to emulate our size-based 

clinical pediatric MDCT protocols. Using the noise addition tool, noise was added to the 

original images acquired at 200 mA to simulate images at each of the ten reduced tube 
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current levels. Simulated images were validated against real images in terms of both 

noise magnitude and noise texture.  

 
Table 28: Scan parameters used to acquire images from six water phantoms*. 

Bowtie Filter Diameter (cm) Pitch 
Slice Thickness η 

(mm) DFOV ξ (cm) 
small         

 12.7 0.984 3.75 20 
 15.3 0.984 3.75 25 
 17.8 1.375 5 25 
 20.0 1.375 5 25 

medium     
 17.8 1.375 5 25 
 20.0 1.375 5 25 
 23.3 1.375 5 36 
 27.0 1.375 5 32 

large     
 20.0 1.375 5 25 
 23.3 1.375 5 36 
  27.0 1.375 5 32 
* The same phantoms and scan parameters were also used in another study that relates image 
noise with phantom size140.  
η Same as reconstruction interval. 
ξ DFOV = display (reconstruction) field of view. 
 
 

Noise magnitude was validated for all combinations of bowtie filter, phantom 

size, kVp, and mA. At each combination, three to five contiguous CT slices were selected 

from the middle of the scanned section of the phantom. On each CT slice, noise 

magnitude was measured as the standard deviation of pixel values within a central 

region-of-interest (ROI). The results were averaged across contiguous CT slices to yield a 

single noise figure for that combination of bowtie filter, phantom size, kVp, and mA.  
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Noise texture, a reflection of the spatial correlation of noise, was measured by the 

spectral shape of the noise power spectrum141. Comparison was made between real and 

simulated images of the 20-cm water phantom at all combinations of kVp and mA using 

the small bowtie filter. On each selected CT slice of the 20-cm phantom, sixteen ROIs, 64 

× 64 pixels in size, were identified covering most area of the phantom image and used to 

calculate radial normalized noise power spectrum (NNPS) using an established 

technique142. After averaging across contiguous CT slices, the radial NNPS was further 

normalized relative to its peak value to allow a comparison of spectral shape, hence 

noise texture, between real and simulated images. While noise texture may exhibit 

spatial dependence, in this study we assumed this dependence as a secondary effect and 

focused on the global noise texture. 

Calibration of Simulated Noise 

To correct for any possible discrepancy in noise magnitude between simulated 

and real noise, a tube current (mA) calibration was performed. At each combination of 

bowtie filter and kVp, noise magnitude data were fitted to second-order polynomial 

equations as 

2 2
0 1 2 3 4 5ln( ) ln( ) ln ( ) ln( ),real real real reald mA d mA d mAσ α α α α α α= + + + + +     (27)                

 and 

2 2
0 1 2 3 4 5ln( ) ln( ) ln ( ) ln( ),sim sim sim simd mA d mA d mAσ β β β β β β= + + + + +     (28)      

using commercial surface fitting software (OriginPro 8, v8.0725, OriginLab Corporation, 
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Mass). In above Equations, /real simσ is the real/simulated noise magnitude, /real simmA is the 

real/simulated mA, and d  is phantom diameter. Coefficients iα  and ( 0,1,..,5)i iβ =  

extracted from the fits were then used to calculate the nominal simulation mA that 

provided the same noise magnitude as that at the desired actual mA, or conversely, to 

calculate the actual mA that was represented by a nominal simulation mA inputted to 

the noise tool. After mA calibration, the accuracy of the simulated noise magnitude was 

re-evaluated. 

Noise Simulation 

Using the noise addition tool, noise was added to the original images of the 13 

patients to create 13 cases at 70 mA (the lowest original mA), 13 cases at 35 mA (50% 

reduction), and 13 cases at 17.5 mA (75% reduction). The three mA values here referred 

to the nominal tube currents inputted to the noise addition tool. The corresponding 

actual mA values, reflective of noise levels in the simulated images, were calculated 

using the calibration method described above. To apply the calibration method to 

patient images, the water-equivalent diameters of the 13 patients were estimated using 

the method of non-lung area described in Chapter 7 and ranged between 11-16 cm 

(median: 14 cm). To enlarge the scale of our study, three copies of each case were made 

to create a total of 117 series (13 patients × 3 dose levels × 3 copies) to serve as 

background for nodule simulation. 
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8.2.3 Nodule Simulation 

Simulated nodules were added to the series. The nodule simulation technique is 

based on a mathematical model of three-dimensional small lung nodules in MDCT 

reported earlier138. The technique can create 3-D nodule masks with a large variety of 

shapes, allowing the user to control for nodule size, contrast density, margin 

characteristics (well defined or diffused), and location. It has been shown that this 

technique simulates pediatric lung nodules that reflect physical attributes of real lung 

nodules and are perceptually indistinguishable by experienced pediatric radiologists 

from real nodules138.  

Using this technique, small lung nodules with diameters of 3-5 mm and peak 

contrasts of 250-550 HU were inserted into the 117 series. The lung volume in each series 

was divided into three anatomical zones: upper lung (lung apex to bottom of aortic 

arch), middle lung (aortic arch to level of aortic valve), and lower lung (aortic valve to 

diaphragm). Simulated nodules were added such that each of the three lung zones 

randomly contained 0 or 1 nodule for a total of 5 nodules in the nine lung zones 

associated with the three copies of each case (Figure 37). Nodule locations were 

randomly selected in the pulmonary parenchyma to ensure that the distribution of 

nodule locations was similar for the three dose levels. For examinations free of motion 

artifact, nodules masks included those with well-defined edges and diffused edges, in 

equal proportions. For examinations where respiratory motion related artifacts were 
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present as determined by an experienced pediatric radiologist (usually in children < 6 

years of age), only nodule masks with diffused edges were used. To minimize the 

likelihood of nodule detection due to the recognition of a repeated mask, the total of 195 

nodule masks (5 nodules/case × 39 cases) in this study were randomly selected from a 

library of 120 three-dimensional nodule masks. Each nodule mask was rotated through a 

random angle around the axial direction (Z-axis) before insertion into the lung images.  

 

 
Figure 37: Diagram showing the preparation of image samples used for the ROC observer 
experiment. 

 

8.2.4 Observer Experiment 

The 117 series were randomized and displayed as independent series on a 

clinical workstation (Advantage Workstation, GE Healthcare, Waukesha, WI) with the 

display device (MultiSync LCD 1980SXi, NEC Display Solutions, Ltd, Tokyo, Japan) set 

to the standard lung window (window center = -500 HU, window width = 1500 HU) in a 

controlled viewing environment. With no study parameters displayed, three pediatric 
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radiologists (3-12 years of experience in pediatric CT) independently rated the presence 

of a nodule in each lung zone on a continuous scale from 0 (definitely not present) to 100 

(definitely present). All observers were informed that there was 0 or 1 nodule in each 

lung zone; they were not told how many lung zones had nodules. Observers were 

encouraged to use the full scale for assigning scores. They had no time limit in rating 

each series, but they were not allowed to return to a series once rated. To minimize the 

effect of learning period, the first observer read all the series in numerical order, the 

second observer read all the series in reverse numerical order, and the third observer 

read the second half of the series in numerical order followed by the first half in reverse 

numerical order. Each observer was asked to point to the location of a possible nodule 

before rating nodule presence on the score sheet. 

8.2.5 Data Analysis 

As the goal of the observer experiment was to evaluate the detection accuracy of 

the known nodules in the images, if the known nodule in a lung zone was missed, and a 

score was given to a “nodule” that did not actually exist in the lung zone, that score was 

not included in further analysis. In lung zones where no known nodule was present, any 

suspicious “nodule” identified by an observer was included as a false positive.  

The Dorfman-Berbaum-Mets (DBM) method for analyzing multi-observer multi-

treatment ROC data with case split-plot design143, 144 was used to test the null hypothesis 

that dose had no effect on the detection accuracy of small lung nodules. Specifically, the 
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area under the ROC curve (AUC) was calculated for each observer at each dose level 

using the Wilcoxon-Mann-Whitney (WMW) statistic. The AUC values were then 

jackknifed, and their pseudovalues were fitted to a standard linear mixed-design 

analysis of variance (ANOVA) model145 in which dose, zone location, and observer were 

fixed effects, and case (background image) and rendition were random effects. 

Commercial statistical software (SAS, version 9.1; SAS Institute, Cary, NC) was used to 

perform the ANOVA at a significant level of 0.05. Inter-observer variability in AUC was 

estimated from the mixed linear model as the standard deviation of AUC among 

observers averaged across different dose levels. 

The Williams trend test for analyzing a monotone decreasing dose-response 

relationship146 was also performed in which the null hypothesis was that dose had no 

effect on AUC, and the alternative hypothesis was that AUC decreased monotonically 

with dose. Commercial statistical software (SAS, version 9.1; SAS Institute, Cary, NC) 

was used to perform the test at a significant level of 0.05. 

8.3 Results 

8.3.1 Evaluation and Calibration of Noise Addition Software 

A close match in noise texture was found between the simulated and real low-

dose CT images of the 20-cm water phantom, as demonstrated by both visual 

appearance (Figure 38a and Figure 38b) and by the spectral shape of the noise power 

spectra (Figure 38c). 
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Figure 38: Noise texture of (a) real (small bowtie filter, 120 kVp, 60 mA) and (b) simulated (small 
bowtie filter, 120 kVp, nominal simulation tube current of 60 mA, simulated from an actual image 
acquired at 200 mA) CT images of the 20-cm water phantom. A 64-pixel ROI from the center of 
each image was blew up by 4 times and displayed at the lower right hand corner of each image to 
allow a close view of the noise texture. (c) Normalized noise power spectra (NNPS) of real and 
simulated CT images of the 20-cm water phantom acquired using the small bowtie filter at tube 
potential of 120 kVp and tube current of 100 mA. The NNPS were further normalized relative to 
their respective peak values in order to compare spectral shapes. The spectral shapes of NNPS at 
other kVp and mA settings were similar. 
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Figure 39: (a) Average CT number as a function of mAs measured from real images of the 20-cm 
water phantom at 80 kVp and 140 kVp for the small, medium and large bowtie filters. The 
average CT number was calculated as the average of mean pixel values within central ROIs of the 
selected CT slices. (b) An image of the 20-cm water phantom acquired at 80 kVp and 4 mAs (i.e. 
10 mA, 0.4-second gantry rotation period) using the medium bowtie filter. Severe photon 
starvation caused a shift in CT number of ~ 40 HU at the center of the image which would 
otherwise look uniform as in Figure 38. 
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Table 29: Minimum tube-current-time product (mAs)* 

    kVp 
bowtie filter diameter (cm) 80 100 120 140 

small      
 12.7 4 4 4 4 
 15.3 8 4 4 4 
 17.8 8 8 4 4 
 20.0 16 8 4 4 

medium      
 17.8 16 8 4 4 
 20.0 24 8 4 4 
 23.3 24 16 8 4 
 27.0 56 16 8 4 

large      
 20.0 32 16 8 4 
 23.3 32 16 8 4 
  27.0 56 24 8 8 
* Below the minimum mAs, severe photon starvation caused shifts in CT number of more than 
~10 HU, leading to apparent artifact in the image. If such artifact was not present in images 
acquired at 4 mAs (10 mA, 0.4-second gantry rotation period), 4 mAs was used as the minimum 
mAs.  
 

 
At low X-ray tube outputs (low kVp and/or mA) and for large phantom sizes, 

severe photon starvation shifted CT numbers of the actual images as illustrated in 

Figure 39. Table 29 summarizes the minimum tube-current-time product (mAs) for each 

combination of kVp, bowtie filter, and phantom size; below the minimum mAs, the shift 

in CT number was greater than ~ 10 HU, leading to apparent artifact in the image 

(Figure 39b), and the measured standard deviation no longer represented noise in the 

image. Such data were not included in the calibration of tube currents. 
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Table 30: Coefficients of polynomial equations (27) and (28) describing real and simulated noise 
in images of water phantoms as functions of phantom diameter and tube current. 

Noise 
Bowtie 
Filter kVp Coefficients 

Adjusted 
R2 

real*   α0 α1 α2 α3 α4 α5  
 small 80 4.42809 0.01476 -0.63593 0.00742 0.05724 -0.02681 0.990 
  100 4.05954 -0.00583 -0.52538 0.00490 0.01714 -0.00877 0.993 
  120 3.97994 -0.02059 -0.52299 0.00471 0.01276 -0.00576 0.995 
  140 3.94392 -0.02886 -0.52743 0.00440 0.00723 -0.00249 0.996 
 medium 80 1.64157 0.26954 -0.42099 -0.00048 0.03194 -0.02331 0.975 
  100 1.54965 0.28661 -0.61874 -0.00187 0.05493 -0.02037 0.986 
  120 1.24914 0.27993 -0.55677 -0.00275 0.03529 -0.01306 0.990 
  140 1.26746 0.25753 -0.51762 -0.00282 0.02260 -0.00886 0.993 
 large 80 10.17070 -0.12202 -1.94568 0.00783 0.18631 -0.02452 0.998 
  100 5.52959 -0.05413 -0.56413 0.00526 0.05182 -0.02125 0.999 
  120 4.96463 -0.03127 -0.54763 0.00382 0.03951 -0.01467 0.999 
  140 4.66454 -0.01537 -0.56091 0.00271 0.02667 -0.00824 0.999 
simulated β0 β1 β2 β3 β4 β5  
 small 80 5.32980 -0.09420 -0.76424 0.00530 0.02829 0.00722 0.993 
  100 5.07604 -0.07876 -0.61616 0.00394 -0.00854 0.01022 0.995 
  120 4.63546 -0.05051 -0.61640 0.00314 -0.00548 0.00891 0.994 
  140 4.47683 -0.05519 -0.64763 0.00343 0.00350 0.00791 0.994 
 medium 80 5.03943 0.03963 -0.99079 -0.00007 0.02920 0.01576 0.993 
  100 2.76751 0.18154 -0.72131 -0.00265 0.01716 0.00602 0.996 
  120 2.17034 0.21300 -0.70031 -0.00336 0.01650 0.00520 0.997 
  140 3.25378 0.13269 -0.84735 -0.00227 0.02278 0.01020 0.997 
 large 80 7.45078 -0.22402 -0.93278 0.00613 0.05620 0.01045 0.997 
  100 4.80621 0.00321 -0.86714 0.00105 0.05076 0.00580 0.999 
  120 4.18627 0.02800 -0.79986 0.00060 0.04929 0.00331 0.999 
    140 3.77092 0.04403 -0.79241 0.00027 0.05152 0.00289 0.999 
* The real coefficients were also reported in another study that relates image noise with phantom 
diameter140. 

 
 
Without mA calibration, percent errors up to ~ 50% existed in simulated noise 

magnitude; percent errors ranged (-45%, 15%), (-45%, 1%), and (-54%, 3%) for the small, 

medium, and large bowtie filters, respectively. The simulated and real noise data fitted 
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well to Equations (27) and (28) with adjusted R-square values close to 1 (Table 30). After 

applying mA calibration, percent errors in simulated noise magnitude reduced to be 

within ± 10%; percent errors ranged (-9%, 9%), (-10%, 9%), and (-10%, 7%) for the small, 

medium, and large bowtie filters, respectively. 

8.3.2 Observer Experiment 

For all observers, the AUC value was the greatest at the nominal tube current of 

70 mA (Figure 40), although only the AUC of observer 2 showed a monotonically 

decreasing trend with dose, and dose seemed to have little effect on the AUC of observer 

3.  

 

 
Figure 40: ROC curves for (a) observer 1, (b) observer 2, and (c) observer 3 at three nominal tube 
current (dose) levels: 70 mA, 35 mA, and 17.5 mA. 

 
Table 31 summarizes the AUC values for all observers and tube current (dose) 

levels and the averages across observers. Using the DBM method, the effect of dose was 

not statistically significant, but close to being significant (p = 0.09). The effect of observer 
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was not significant (p = 0.64). The effect of location in the lung was significant (p = 0.02); 

the average AUC values for the upper, middle, and lower lung zones were 0.93, 0.96, 

and 0.90, respectively, with standard errors of 0.02. Inter-observer variability in AUC 

was 0.02. 

Using the Williams trend test, the effect of dose was barely significant (p = 0.05), 

just rejecting the null hypothesis (no effect) against the alternative of a monotonically 

decreasing AUC with dose.  

 
Table 31: Areas under the ROC Curves (AUC ± 0.02). 

 Observer  
 1 2 3 Average 

70 mA 0.97 0.97 0.92 0.95 
35 mA 0.89 0.93 0.91 0.91 

17.5 mA 0.94 0.91 0.91 0.92 
 

8.4 Discussions 

The influence of dose reduction on the detection of lung nodules has been 

studied extensively for adult CT patients28, 45, 134, 147, 148 mainly by performing repeated CT 

scans on the same subjects at different dose levels. Similar studies are difficult to 

conduct in children, however, not only because of the low occurrence of lung nodules in 

this population, but also because of the fact that children are more sensitive to radiation-

induced cancer, making repeated scans in children ethically unacceptable. In this study, 

we addressed these difficulties by using computer-simulated lung nodules and noise 
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that have been validated or calibrated. We focused on nodules of 3-5 mm diameters, i.e., 

small nodules compared with what is seen clinically, because nodules of this size range 

are likely to be missed by radiologists especially at reduced dose (increased noise) 

conditions, yet they have significant implications for the diagnosis and treatment of 

pediatric cancer. To our knowledge, this work represents the first controlled, systematic, 

and task-specific assessment of the influence of dose reduction in pediatric chest MDCT. 

The results of our study revealed that the influence of tube current (dose) on the 

detection of small lung nodules in children was marginally significant, i.e. dose had a 

weak effect on detection accuracy. On one hand, the effect of dose was measurable since 

all observers had the highest accuracy at the highest dose. This effect would likely be 

confirmed in a larger scale study. On the other hand, however, with a dose saving of 

75%, the decrease in detection accuracy was only ~ 3% (i.e. average AUC dropped from 

0.95 to 0.92). One may question whether such a small difference is clinically significant. 

One may hypothesize that there exists a clinical zone of equivalence; if the change in 

accuracy due to dose falls inside such a zone, then one can conclude that the detection 

accuracies at different dose levels are equivalent and dose reduction is justified. One 

way to define the clinical zone of equivalence is to use the particular difference in AUC 

at which decreased accuracy, hence increased mortality, is fully offset by the number of 

lives saved through dose reduction. However, relating the difference in AUC to that in 

mortality requires a large-scale long-term clinical study and is beyond the scope of our 
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current work. We noted that the difference in detection accuracy due to dose (~ 0.03) was 

comparable to that due to inter-observer variability (~ 0.02). Thus, an alternative method 

for defining the clinical zone of equivalence may be to use the magnitudes of the effects 

on detection accuracy of other contributing factors, assuming that these effects can be 

reliably measured by using large sample sizes. Although no conclusion regarding 

equivalence could be made at this point due to the limited power of our study, the 

equivalence test framework proposed here can guide future larger scale observer 

studies. 

Unlike previous nodule detection studies28, 45, 134, 147, 148, where a single (sensitivity, 

specificity) pair was used as a measure of detection accuracy, our choice of a ROC study 

allowed us to measure sensitivity and specificity at all decision criteria of an observer 

(i.e. how strict or lax the observer is when deciding whether a nodule is present)149; the 

resulting AUC values were free from the influence of decision criterion which could 

vary among observers and even from time to time for the same observer. Thus, our 

method is more sensitive to the change in detection accuracy induced by dose reduction 

and is a preferred method. 

By adding computer-simulated noise to existing clinical images, there was no 

additional radiation burden for the patients. Simulated noise also enabled the 

investigation of nodule conspicuity at systematically reduced dose levels, thus allowing 

the determination of threshold dose levels. Because the noise in a CT image is uniquely 
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dependent on the noise content of the patient’s projection measurements and the 

reconstruction process, adding noise to raw projection data can be very accurate49, 53. 

However, there are practical difficulties with handling raw projection data; raw data are 

cumbersome to store and transfer, most sites delete raw data after image reconstruction, 

and modified raw data may only be reconstructed on the scanner reconstruction 

processor. In contrast, reconstructed images are easier to transfer, well archived, and do 

not require any post-processing following noise addition. For these reasons, techniques 

that add noise directly to reconstructed CT slices can be very valuable51. In this study, 

we evaluated and calibrated the GE Noise Addition Tool which adds noise directly to 

reconstructed CT images. We showed that not only can this new software emulate the 

actual noise texture, after appropriate calibrations, the actual noise magnitudes can be 

accurately simulated as well. 

An interesting finding of our study was the fact that nodule detection accuracies 

were significantly different in different lung zones (i.e. upper, middle, lower zones): 

AUCmiddle > AUCupper > AUClower. The poorest accuracy in the lower lung zone might be a 

result of satisfaction of search150, observer fatigue, or more pronounced motion artifacts 

in the lower lung zone. The relatively lower accuracy in the upper lung zone may be 

attributable to the higher levels of noise and streak artifact around the shoulders. The 

effect of location in the lung deserves further investigation in future larger scale studies. 
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Our study had several limitations. It was limited to a single type of MDCT 

scanner and the associated pediatric CT protocols in effect at our institution. In addition, 

tube current was the only dose-related imaging parameter considered in our study. 

However, as the equipment and the protocol were representative of current clinical 

practice, the findings are applicable to similar clinical settings. Our future study will 

assess nodule detection accuracy at selected (fixed) noise levels. This will allow the 

study results to be applicable to other CT scanner models and tube-current modulation 

techniques. We note that the prevalence of nodules in our study was much higher than 

their actual prevalence in pediatric patients undergoing CT examinations. An earlier 

study revealed elevated diagnostic accuracy with increased disease prevalence151. In 

addition, as the clinical task in this study was the detection of lung nodules, the 

observers were less distracted by the search for other abnormalities. Therefore, the AUC 

values reported in our study may be higher than the actual clinical values. Nevertheless, 

our findings provided objective and task-based guidelines for dose reduction in 

pediatric MDCT. 
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9. Lung Nodule Detection in Pediatric CT: Quantitative 
Relationship between Image Quality and Radiologist 
Performance* 

9.1 Introduction 

In pediatric patients with primary cancer, the number and distribution of lung 

nodules have been shown to significantly associate with metastatic disease and patient 

outcome40. Unlike in adult patients, where small lung nodules (< 5 mm) tend to be 

benign, studies in pediatric patients have shown that small lung nodules are equally 

likely to be benign and malignant152, 153. Due to the superior resolution of modern multi-

detector array CT systems, CT is more sensitive than MRI for the detection of lung 

nodules154, 155 and is often the standard for staging and surveillance of pediatric cancer. 

As CT examinations involve the use of ionization radiation and children are especially 

sensitive to radiation14, it is essential that scan protocols are formulated to achieve the 

best nodule detection accuracy at the minimum possible radiation dose. 

In the past, protocol designs in pediatric CT have mainly focused on determining 

the combination of scan parameters that provide the best tradeoff between radiation 

dose and image quality, expressed in terms of physical quantities such as noise, contrast, 

and contrast-to-noise ratio93, 106, 107, 156. Few studies have investigated how these physical 

quantities influence the diagnostic performance of radiologists, the endpoint of protocol 

optimization. In a recent study48, the radiologists’ sensitivity and specificity in detecting 

                                                      

* This chapter is based on a manuscript to be submitted to the journal Radiology. 
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lung nodules were assessed at various ranges of signal-to-noise ratios. However, the 

study used simulated nodules resized from a single real nodule mask and Gaussian 

monochromatic noise, making the detection task less reflective of the actual clinical 

scenario, in which nodules with various appearances must be detected on highly 

correlated noise backgrounds. To assess radiologist performance in a more realistic 

setting, we recently conducted a pilot receiver operating characteristic (ROC) study157, in 

which a realistic model of noise with proper texture and calibrated magnitude was used 

in combination with a validated and variable model of three-dimensional lung 

nodules138. However, similar to many other dose reduction studies28, 45, 50, 52, 134, our pilot 

study evaluated observer performance at different tube current levels, making it difficult 

to generalize research results to other scan protocols and CT scanner models.  

The goal of this work was to extend our pilot study to quantitatively assess the 

protocol- and scanner-independent relationships between image quality and radiologist 

performance in detecting lung nodules in pediatric CT.  

9.2 Materials and Methods 

This study was partially funded by GE Healthcare. The authors had complete 

control over the data and information submitted in this article. Our institutional review 

board determined that the study was in compliance with the Health Insurance 

Portability and Accountability Act and did not require informed consent. 
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9.2.1 Clinical Cases 

Chest CT examinations of 30 patients (median age, 4 years old; age range, 0-16 

years old; median weight, 17 kg; weight range, 2-52 kg) were retrospectively selected 

from our clinical database of children who underwent 64-slice CT examinations 

(LightSpeed VCT, GE Healthcare, Waukesha, WI) between 2005 and 2006. The images 

were obtained according to our size-based clinical protocols during the two-year period 

that employed fixed-tube techniques with tube currents of 55-180 mA, peak tube 

potentials of 100-140 kVp (lower kVp in smaller children), beam collimations of 20 or 40 

mm, helical pitches of 0.985 or 1.375, and slice thicknesses of 3.75 mm at 3.75-mm 

interval or 5 mm at 5-mm interval (generally thinner slice thickness in smaller children). 

The images were either free of lung nodule or had a small number of lung nodules. The 

real lung nodules were identified by a radiologist (20 years of experience in pediatric 

CT) and were digitally removed using a technique reported earlier123.   

9.2.2 Noise Simulation 

Noise Addition Software 

Tube current-reduced images were simulated using a noise addition software 

tool (GE Noise Addition Tool, Version 1.1, GE Healthcare, Waukesha, WI)139, 158. The 

software accepts DICOM (Digital Imaging and Communications in Medicine) images 

acquired on the LightSpeed VCT scanner and adds noise to axial slice data to simulate 

either a reduced tube current (mA) or an increased noise index condition. We previously 
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evaluated and calibrated the accuracy of this software in terms of both noise texture and 

magnitude157. The texture of the simulated noise, as represented by the noise power 

spectrum, was found to match very well with that of the real noise. Discrepancies up to 

~50%, however, existed between the magnitudes of the simulated and real noise. A 

calibration procedure was developed to correct for the discrepancies in noise magnitude 

using noise measured from real and simulated images of six cylindrical water phantoms 

with diameters of 12.7-27.0 cm. 

Extended Calibration of Noise Addition Software 

In this study, the calibration procedure was extended to a wider range of body 

sizes by including an 8.2-cm diameter water phantom to represent a newborn patient 

and by increasing the number of phantoms scanned with each bowtie filter. Each 

phantom was scanned on a clinical 64-slice scanner (LightSpeed VCT, GE Healthcare, 

Waukesha, WI) at four tube potentials of 80, 100, 120, 140 kVp and eleven tube currents 

of 200, 180, 160, 140, 120, 100, 80, 60, 40, 20, 10 mA with a 40-mm beam collimation and 

0.4-second gantry rotation period. Other scan parameters are summarized in Table 32. 
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Table 32: Scan parameters used to acquire images of the water phantoms. 

  water phantom diameter (cm)       
bowtie 
filter 

geometric 
diameter 

water-equivalent 
diameter helical pitcha

Slice Thicknessb 
(mm) 

DFOVc 
(cm) 

small 8.2 8.7 1.375 5 15 
small 12.7 13.2 0.984 3.75 20 
small 15.3 16.3 0.984 3.75 25 
small 17.8 18.3 1.375 5 25 
small 20.0 22.0 1.375 5 25 

      
medium 8.2 8.7 1.375 5 15 
medium 12.7 13.2 1.375 5 20 
medium 15.3 16.3 1.375 5 25 
medium 17.8 18.3 1.375 5 25 
medium 20.0 22.0 1.375 5 25 
medium 23.3 24.6 1.375 5 30 
medium 27.0 27.8 1.375 5 32 

      
large 12.7 13.2 1.375 5 20 
large 15.3 16.3 1.375 5 25 
large 17.8 18.3 1.375 5 25 
large 20.0 22.0 1.375 5 25 
large 23.3 24.6 1.375 5 30 
large 27.0 27.8 1.375 5 32 

a Noise in the CT image is proportional to pitch / slice thickness 39. Therefore, the noise at pitch 
of 1.375 and slice thickness of 5 differs by only 2% from the noise at pitch of 0.984 and slice 
thickness of 3.75.  
b Same as reconstruction interval. 
c DFOV = display (reconstruction) field of view. 

   
 
Using the noise addition tool, noise was added to the original images acquired at 

200 mA to simulate images at each of the ten reduced tube current levels. For both real 

and simulated images, noise magnitude was measured as the standard deviation of 

pixel values within a central region-of-interest (ROI) for all combinations of bowtie filter, 
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phantom size, kVp, and mA. At each combination of bowtie filter and kVp, the noise 

magnitude data were fitted to second-order polynomial equations as 

2 2
0 1 2 3 4 5ln( ) ln(mAs ) ln (mAs ) ln(mAs ),real real real reald d dσ α α α α α α= + + + + +     (29)            

and 

2 2
0 1 2 3 4 5ln( ) ln(mAs ) ln (mAs ) ln(mAs ),sim sim sim simd d dσ β β β β β β= + + + + +     (30)      

using commercial surface fitting software (OriginPro 8, v8.0725, OriginLab Corporation, 

MA). In the above Equations, /real simσ is the real/simulated noise magnitude, /mAsreal sim is 

the tube current-time product of the real/simulated images, and d  is the water-

equivalent diameter of the water phantom (Table 32), calculated as the diameter of a 

circle having the same area as the water-equivalent area of the phantom in the CT 

image140. The calculation of water-equivalent diameter was needed to convert the 

phantom, which was composed of water, plastic container, air bubbles, and any 

materials supporting the phantom, into a pure water cylinder that provided the 

equivalent X-ray attenuations. At low X-ray tube outputs (low kVp and/or mA) and for 

large phantom sizes, severe photon starvation shifted CT numbers of the real images by 

more than 10 HU, leading to apparent artifact in the image158, and the measured 

standard deviation no longer represented noise in the image. Such data were not 

included in the calibration. 
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Noise Simulation 

Using the noise addition tool, noise was added to the nodule-free images of the 

30 patients to create 29 studies at 70 mA (the lowest original mA for all but one patient), 

30 studies at 35 mA (50% reduction), and 30 studies at 17.5 mA (75% reduction). For one 

patient, the original tube current was 55 mA; therefore, a study at 70 mA could not be 

created for this patient. The three mA values here refer to the nominal tube currents 

inputted to the noise addition tool. The corresponding calibrated mA values, reflective 

of noise levels in the simulated images, ranged 44-118 mA (median: 69 mA), 19-76 mA 

(median: 30 mA), and 9-46 mA (median: 16 mA), respectively∗. To enlarge the scale of 

the investigation, two copies of each study were made to create a total of 178 series ((29 + 

30 + 30) studies × 2 copies) to serve as background for nodule simulation. 

9.2.3 Nodule Simulation 

Simulated nodules were added to the series. The nodule simulation technique 

was based on a mathematical model of three-dimensional small lung nodules in CT 

                                                      

∗ To apply the calibration method to patient images, it is necessary to determine the water-equivalent 

diameter of the patient. In this study, water-equivalent diameters of the 30 patients, estimated using the 

method of non-lung area described in an earlier publication140, ranged between 9-22 cm (median: 15 cm). For 

each patient, water-equivalent diameter and calibrated tube current were estimated for each chest image 

and averaged over all the images. The ranges of values reported here reflect the ranges of the averaged 

results.  



 

 189

reported earlier138. The technique can create three-dimensional nodule masks with a 

large variety of shapes, allowing the user to control for nodule location, size, contrast 

density, and margin characteristics (well defined or diffused). It has been shown that 

this technique simulates pediatric lung nodules that reflect the physical attributes of real 

lung nodules and are perceptually indistinguishable from real nodules for experienced 

pediatric radiologists138.  

 

 
Figure 41: Diagram showing the preparation of image samples used in the ROC observer 
experiment. Because nodule locations and characteristics (size, shape, and contrast) were 
randomized, the nodules in any series were different from the nodules in any other series within 
a patient or cross patients. 

 
Using this technique, simulated lung nodules were inserted into the 178 series. 

The lung volume in each series was divided into three anatomical zones: upper lung 

(lung apex to bottom of aortic arch), middle lung (aortic arch to level of aortic valve), 

and lower lung (aortic valve to lung base). For each lung zone, a simulated nodule was 

added with a 50% probability (Figure 41). As such, each series could have from zero to 
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three nodules, with a maximum of one in each lung zone. Nodule locations were 

randomly selected throughout the pulmonary parenchyma but not immediately 

adjacent to the chest wall. The simulation diameter of each nodule was randomly 

sampled between 3.9 and 6.5 mm to achieve an approximate visual diameter between 3 

and 5 mm138. The peak contrast of each nodule was randomly sampled between 200 and 

500 HU. To minimize the likelihood of nodule detection due to the recognition of a 

repeated nodule shape, the shape of each nodule was randomly sampled from a library 

of 120 pre-defined three-dimensional nodule shapes, including 60 shapes for nodules 

with well-defined margins and 60 shapes for nodules with diffused margins138. Each 

nodule shape was rotated through a random angle around the axial direction (z-axis) 

before being applied in nodule simulation. As the simulated nodules were created with 

random characteristics (size, contrast, and shape) and placed at random locations, the 

two copies of each study had different nodule numbers, locations, and characteristics 

and will be referred to as the two renditions of each study hereafter (Figure 41). 

9.2.4 Observer Experiment 

The observer experiment was conducted in two parts. In the first part, the first 

renditions of the 89 studies were randomized and displayed as 89 independent series on 

a clinical workstation (Advantage Workstation, GE Healthcare, Waukesha, WI) 

equipped with a LCD display device (MultiSync LCD 1980SXi, NEC Display Solutions, 

Ltd, Tokyo, Japan). Four pediatric radiologists (5-14 years of experience in pediatric CT) 
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independently rated the presence of a nodule in each lung zone on a continuous scale 

from 0 (definitely not present) to 100 (definitely present). All observers were informed 

that there was 0 or 1 nodule in each lung zone; they were not told how many lung zones 

had nodules. Each observer had up to eight minutes to review each series, had the 

freedom to scroll through a series, but was not allowed to return to a series once rated. 

The default window/level setting was the standard lung window (window center = -500 

HU, window width = 1500 HU); however, the observers were allowed to adjust the 

window/level setting and manipulate the images in other ways that they normally 

would when reviewing clinical images. To minimize the effect of any possible learning 

process, the first observer read the first half of the series in reverse numerical order 

followed by the second half in reverse numerical order, the second observer read the 

second half of the series in numerical order followed by the first half in numerical order, 

the third observer read all the series in reverse numerical order, and the fourth observer 

read all the series in numerical order. Following the completion of the first part of the 

observer experiment, the second part was conducted, in which the second renditions of 

the 89 studies were randomized and reviewed in exactly the same manner as was done 

in the first part. 

9.2.5 Data Analysis 

ROC analysis was performed, treating the 534 lung zones (178 series × 3 lung 

zones) as independent cases. ROC software (ROCKIT, version 1.1 B 2; Charles E. Metz, 



 

 192

University of Chicago, Chicago, IL) was used to calculate the area under of the ROC 

curve, ,zA  as a measure of diagnostic accuracy. 

9.2.5.1 Relationship between nodule detectability and diagnostic accuracy 

Diagnostic accuracy was presumed to be only a function of nodule 

detectability159, which we defined, based on the Rose model160, as 

display
display ,

C D
CDNR

N
⋅

=                 (31) 

where C  and displayD  are the peak contrast and display diameter of a nodule, and N  is 

the noise in the lung zone where the nodule is located. 

 The display diameter of a nodule was defined as 

display display ,DD x
x

= ⋅ Δ
Δ

           (32) 

where D  is the physical of a nodule and ranged between 3-5 mm in this study, xΔ  is 

the physical dimension of each pixel in a CT image and is equal to 

reconstruction field- of- view size (mm) ,
512

xΔ =         (33) 

and displayxΔ  is the display pixel size determined as 

display
image dimension on display device (mm) .

512
xΔ =        (34) 

displayD  was used in Equation (31) to account for the effect of pixel size, xΔ , on nodule 

detectability. As all CT images are 512 × 512 in size, the pixel size increases with the 
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reconstruction/display field-of-view (FOV) size, which is usually larger for larger 

patients. Therefore, if a newborn patient and a teenager patient both have a 4-mm 

diameter nodule, the nodule would be depicted by a larger number of pixels in the 

images of the newborn patient, whose small body size enables a small reconstruction 

FOV and hence a smaller pixel size. As such, the nodule in the newborn patient would 

have a larger display size and is more likely to be detected. In our study, the image pixel 

size, ,xΔ  ranged between 0.29-0.65 mm. The display pixel size was 0.58 mm. 

For the 89 studies, noise in the lung region of each chest CT image was estimated 

using a patient size based method reported earlier140. The effects on noise of helical pitch 

and slice thickness were accounted for by using the relationship of 

noise pitch / slice thickness∝ 39. The noise values in individual images were then 

averaged to obtain the noise in each lung zone. 

The positive cases (i.e., cases with a nodule present) in the observer experiment 

were sorted based on the value of displayCDNR  and divided into five bins with equal 

number of cases in each bin. The positive cases in each bin were then combined with all 

the negative cases to perform the ROC analysis.  

The zA  values calculated for each bin were averaged across the four observers. 

The standard error (SE) of the averaged zA  was calculated using the method described 

in Swets and Pickett161 and formulated as  
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1/ 22
2 2 ,br wr
c wr wr

SSE S S
l
+

+
⎛ ⎞

= + −⎜ ⎟
⎝ ⎠

         (35) 

where 2S  values are variances associated with case sample c, between-reader br, and 

within-reader wr variability, and l  is the number of observers. 2
c wrS +  was calculated as 

the observer-averaged square of the standard error associated with the zA  of each 

observer. As no repeated reading was performed in the observer experiment, the within-

reader variance term 2
wrS  was not included. This only led to a conservative 

overestimation of the resultant ,SE  i.e., the averaged Az values were more accurate than 

reflected by their standard errors. 

To test if the difference in zA  between any two bins of displayCDNR  was 

statistically significant, the standard error for the difference in zA  was first calculated 

using the method described in Swets and Pickett161 and formulated as  

1/ 22
1/ 2 2 22 (1 ) (1 ) ,br wr

diff c wr c wr br wr wr
SSE S r r S

l
+

+ − −
⎡ ⎤

= − + − −⎢ ⎥
⎣ ⎦

      (36) 

where c wrr −  and br wrr −  are the correlations between zA  values in the two bins due to 

case sample and observer correlations, respectively, and 2
c wrS +  and 2

br wrS +  are the 

corresponding values in Equation (35) averaged across all the bins. Again, the within-

reader variance term 2
wrS  was not included, leading to a conservative overestimation of 

.diffSE  The z-score for the statistical test was then calculated as 



 

 195

,
ji binbin

z z

diff

A Az
SE

−=            (37) 

from which the p-value was determined. Bonferroni adjustment104 was employed for 

multiple comparisons. 

9.2.5.2 Effect of location in the lung 

In the pilot study we reported earlier157, diagnostic accuracy was found to be 

significant different in different lung zones. The effect of nodule location in the lung was 

re-examined in this larger-scale study. The 534 cases were binned based on location in 

the lung into upper, middle, and lower lung zone bins. The data in each lung zone bin 

was then used to calculate .zA  To test if the difference in zA  between any two lung 

zones was statistically significant, the method described above for testing differences 

between displayCDNR  bins was used. 

9.2.5.3 Relationship between noise and diagnostic accuracy 

 Considering that CT examinations are increasingly being performed with tube-

current-modulation techniques, which aim to provide a target noise in the image, we 

lastly examined the relationship between noise and diagnostic accuracy for 

representative nodule diameter and contrast values. The image pixel size was fixed at 

0.48xΔ =  mm, the average pixel size of all the chest images in this study. For a nodule 

with a diameter D  of 4 mm (the average diameter of all the nodules in this study), zA  

as a function of noise was derived at four peak contrast values: 200, 300, 400, and 500 
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HU. Specifically, noise was incremented between 7 and 32 HU at a 0.5 HU interval. At 

each noise value, displayCDNR  was calculated using Equation (31). If the displayCDNR  

value fell in between the centers of the first and last displayCDNR  bins, it was used to 

determine zA  by linearly interpolating the relationship between zA  and the center 

location of the displayCDNR  bin. Similarly, zA  as a function of noise was derived for a 

nodule with a peak contrast of 350 HU (the average peak contrast of all the nodules in 

this study) and a diameter of 3, 4, or 5 mm. 

9.3 Results 

9.3.1 Extended Calibration of Noise Addition Software 

The simulated and real noise data fitted well to Equations (29) and (30) with 

adjusted R-square values close to 1 (Table 33). 

Table 33 also tabulated the coefficients iα  and ( 0,1,..,5)i iβ =  extracted from the 

fits. They were used to calculate the nominal simulation mAs that provided the same 

noise magnitude as that at the desired actual mAs, or conversely, to calculate the actual 

mAs that was represented by a nominal simulation mAs inputted to the noise tool. 
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Table 33: Coefficients of polynomial Equations (29) and (30) describing real and simulated noise 
in images of the water phantoms as functions of phantom diameter and tube current-time 
product (mAs). 

bowtie filter tube potential coefficient adjusted R2

  real noise  

  0α  1α  2α  3α  4α  5α   
small 80 2.84448 0.14125 -0.58035 0.00087 0.03742 -0.01489 0.998 

 100 2.58080 0.12434 -0.52498 -0.00012 0.01389 -0.00555 0.999 
 120 2.47005 0.11510 -0.53298 -0.00027 0.01165 -0.00327 0.999 
 140 2.43375 0.10618 -0.53797 -0.00033 0.00745 -0.00113 1.000 

medium 80 3.09812 0.12501 -0.65923 0.00086 0.04042 -0.01002 0.995 
 100 2.53207 0.12076 -0.48219 0.00037 0.01476 -0.00852 0.997 
 120 2.40700 0.11447 -0.49727 0.00009 0.01354 -0.00606 0.998 
 140 2.41142 0.10877 -0.54230 -0.00013 0.01515 -0.00354 0.998 

large 80 3.72322 0.12024 -0.91608 0.00097 0.07744 -0.01069 0.992 
 100 2.66605 0.10998 -0.44749 0.00057 0.01136 -0.00878 0.997 
 120 2.44186 0.11499 -0.47405 0.00009 0.01342 -0.00708 0.997 
 140 2.37880 0.11009 -0.48698 -0.00016 0.00881 -0.00418 0.998 
  simulated noise  

  0β  1β  2β  3β  4β  5β   
small 80 3.47053 0.06395 -0.69398 0.00023 0.02431 0.00704 0.999 

 100 3.56248 0.04668 -0.58157 0.00004 -0.01790 0.00985 0.999 
 120 3.27701 0.05338 -0.57671 -0.00008 -0.01331 0.00817 0.999 
 140 3.06415 0.05384 -0.60361 0.00002 -0.00216 0.00719 0.999 

medium 80 4.48714 -0.00719 -0.76384 0.00141 0.00598 0.01418 0.997 
 100 3.68025 0.03355 -0.66088 0.00060 0.00358 0.00845 0.998 
 120 3.32943 0.04325 -0.64420 0.00044 0.00690 0.00666 0.998 
 140 3.98629 -0.00741 -0.70745 0.00082 -0.00441 0.01279 0.995 

large 80 3.83864 -0.00069 -0.76858 0.00190 0.05440 0.00858 0.998 
 100 3.25518 0.05831 -0.78318 0.00014 0.04847 0.00698 0.998 
 120 2.81619 0.07352 -0.73398 -0.00020 0.04614 0.00531 0.998 
  140 2.60441 0.07038 -0.71455 -0.00008 0.04962 0.00430 0.998 
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9.3.2 Relationship between Image Quality and Diagnostic Accuracy 

Diagnostic accuracy, ,zA  increased rapidly from 0.63 ± 0.06 to 0.88 ± 0.03 when 

displayCDNR  increased from 44 to 99 mm, followed by a slow increase to 0.92 ± 0.03 when 

displayCDNR  further increased to 265 mm (Figure 42, Table 34). The differences in zA  

between the first displayCDNR  bin and the third, fourth, and fifth displayCDNR  bins were 

statistically significant after adjustment for multiple comparisons with p values of 2e-5, 

5e-6 and 8e-7, respectively.  

 

 
Figure 42: Diagnostic accuracy, zA , as a function of nodule detectability, displayCDNR .  
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Table 34: zA  and associated errors as a function of displayCDNR , and results of testing the statistical 

significance of difference between displayCDNR  bins. 

  CDNRdisplay bin 1   CDNRdisplay bin 2  CDNRdisplay bin 3  CDNRdisplay bin 4   CDNRdisplay bin 5
 (24.8 - 62.6) mm  (62.6 - 84.6) mm (84.6 - 113.6) mm (113.6 - 156.7) mm  (156.7 - 374.2) mm

  Az(1) Sc+wr   Az(2) Sc+wr  Az(3) Sc+wr  Az(4) Sc+wr   Az(5) Sc+wr

Observer 1 0.65 0.04  0.78 0.04  0.86 0.03 0.92 0.02  0.91 0.03
Observer 2 0.62 0.06  0.75 0.05  0.89 0.03 0.85 0.04  0.94 0.02
Observer 3 0.62 0.07  0.79 0.05  0.90 0.03 0.94 0.03  0.90 0.04
Observer 4 0.64 0.05  0.75 0.04  0.88 0.03 0.89 0.03  0.93 0.02

average 0.63 0.06  0.77 0.05  0.88 0.03 0.90 0.04  0.92 0.03
Sbr+wr 0.01   0.02   0.01  0.04   0.01  

p-valuea 

 Az(1) - Az(2) 0.02  Az(1) - Az(3) 2.E-05 Az(1) - Az(4) 5.E-06 Az(1) - Az(5) 8.E-07  Az(2) - Az(3) 0.05

  Az(2) - Az(4) 0.02   Az(2) - Az(5) 0.01  Az(3) - Az(4) 0.76  Az(3) - Az(5) 0.52   Az(4) - Az(5) 0.73
a The significance level was 0.005 after Bonferroni adjustment. Significant differences are 
highlighted in bold. 
 
 
Table 35:  zA  and associated errors as a function of location in the lung, and results of testing the 
statistical significance of difference between lung zones. 

  upper lung zone  middle lung zone  lower lung zone 

  Az(U) Sc+wr  Az(M) Sc+wr  Az(L) Sc+wr 
Observer 1 0.80 0.03 0.87 0.03  0.81 0.03 
Observer 2 0.78 0.05 0.87 0.03  0.76 0.05 
Observer 3 0.84 0.04 0.89 0.03  0.69 0.06 
Observer 4 0.82 0.03 0.91 0.02  0.65 0.05 

average 0.81 0.04  0.88 0.03  0.73 0.06 
Sbr+wr 0.02   0.02   0.06  

p-valuea 

  Az(U) - Az(M) 0.26   Az(U) - Az(L) 0.19   Az(M) - Az(L) 0.01 
a The significance level was 0.017 after Bonferroni adjustment. Significant differences are 
highlighted in bold. 
 
 

For all observers, zA  was the highest in the middle lung zone and lowest in the 

lower lung zone (Table 35). The difference between the middle and the lower lung zones 
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was statistically significant after adjustment for multiple comparisons with a p value of 

0.01. 

 

 
Figure 43:  Diagnostic accuracy, zA , as a function of noise for (a) a nodule with a diameter of 4 
mm and a peak contrast of 200-500 HU and (b) a nodule with a peak contrast of 350 HU and a 
diameter of 3-5 mm. 

 
For a 4-mm diameter nodule with a peak contrast between 200-300 HU, zA  

initially increased rapidly with decreasing noise and then reached a plateau beyond a 

threshold noise value (Figure 43a). The threshold value increased with increasing 

nodule contrast.  However, for a nodule of the same size with a peak contrast above 400 

HU, zA  increased very slowly with decreasing noise, appearing to have reached a 

plateau at noise of 32 HU. Similarly, for a 350-HU nodule with a diameter between 3-4 

mm, zA  first increased rapidly with decreasing noise and then reached a plateau 

beyond a threshold noise value (Figure 43b). The threshold value increased with 
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increasing nodule size. However, for a nodule of the same peak contrast with a diameter 

of 5 mm, zA  increased very slowly with decreasing noise, appearing to have reached a 

plateau at noise of 32 HU. 

9.4 Discussions 

Combining real clinical CT images with realistically simulated nodules and 

noise, we conducted a ROC observer study to evaluate the diagnostic influence of image 

quality (nodule detectability and noise) on the detection of small lung nodules in 

pediatric CT. We showed that diagnostic accuracy, ,zA  increased with nodule 

detectability, display ,CDNR  but reached a plateau beyond a threshold displayCDNR  value 

(~ 99 mm). The relationship was analogous with the well-known theoretical relationship 

between zA  and signal-to-noise ratio (SNR)159, expressed as 

1 (1 ( )),
2 2z

SNRA erf= +            (38) 

where erf is the error function; Equation (38) has the same shape as an integrated 

Gaussian distribution function or a sigmoidal curve. The relationship implies that the 

performance of the radiologists saturates beyond a threshold nodule detectability level; 

further reducing noise or increasing contrast to improve displayCDNR  beyond this 

threshold would result in little gain in diagnostic accuracy. The saturation behavior may 

be explained by the presence of anatomical background variation (also termed 

anatomical noise)57, which prevents the radiologists from achieving a perfect diagnostic 
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accuracy even when quantum noise is reduced to a negligible amount. Even at the 

highest display ,CDNR  zA  does not exceed 0.92, 0.08 value lower than the ideal value of 

unity. Because displayCDNR  beyond the saturation threshold may be achieved by many 

different combinations of scan parameters, protocol design in CT should aim to 

determine the combination of scan parameters that results in the minimum radiation 

dose to the patient.  

Our study also indicates that diagnostic accuracy are different in different lung 

zones (i.e., upper, middle, lower zones): .M U L
z z zA A A> >  This is consistent with the 

results of our pilot study in 13 patients157. As the noise in the three lung zones was 

similar, an average of 17, 16, and 17 HU for the upper, middle, and lower lung zones, 

respectively, the difference in diagnostic accuracy cannot be explained by noise. The 

poorest accuracy in the lower lung zone might be a result of satisfaction of search150, 

observer fatigue162, or more pronounced motion artifacts in the lower lung zone. The 

relatively lower accuracy in the upper lung zone may be attributable to the higher level 

of streak artifact around the shoulders. 

The relationship between zA  and displayCDNR  can be used to examine the effect 

of a single image quality index, such as noise, by keeping other indices constant. We 

showed that, for given nodule size and contrast, zA  increased rapidly with decreasing 

noise, but reached a plateau beyond a threshold noise, the value of which increased with 

increasing nodule size and contrast (Figure 43). The transition point (threshold noise) 
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was a direct result of the transition point (threshold displayCDNR ) in the relationship of 

zA  versus displayCDNR  (Figure 42).  The dependence of the threshold noise on nodule 

size and contrast indicates that the noise required to achieve a given diagnostic accuracy 

varies with the conspicuity of the target. Typically, the nodule diameter and contrast of 

interest spread over a range. Thus, zA  as a function of noise may be determined for the 

centers of the diameter and contrast ranges. A conservative alternative would be to 

determine zA  as a function of noise for the smallest nodule with the lowest contrast. 

With either approach, the dependence of zA  with noise informs the compromise (i.e., 

reduction in accuracy) associated with reducing tube current/dose or increasing noise. It 

might be argued that certain compromise is clinically acceptable, if for instance the 

compromise has no consequence in patient management. Thus, the relationship between 

zA  and noise may be used to determine the optimal tube current or tube current 

modulation scheme that provides the desired diagnostic accuracy at the lowest radiation 

dose. 

We note that the radiologist’s maximum diagnostic accuracy in this study (Az ~ 

0.92) was lower than that in our pilot study157 (Az ~ 0.97), which had a very similar study 

design. This decrease in performance can be explained by (1) the nodules in this study 

had slightly lower contrast (200-500 HU) than those in the pilot study (250-550 HU) and 

(2) all the 13 patients in the pilot study aged between 1-7 years old, whereas nearly half 

of the 30 patients in this study were older than 6 years old, for whom the overall noise 
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and the pixel size were larger than those for the younger patients. In fact, the average 

displayCDNR  was 143 mm (range: 52-374 mm) and 82 mm (range: 25-271 mm) for patients 

younger and older than 6 years old, respectively. We chose a lower range of nodule 

contrasts in this study because the influence of image quality is more likely to be 

demonstrated when the observers are challenged by more difficult detection tasks. 

One limitation of our study was that the prevalence of nodules in our study was 

much higher than their actual prevalence in pediatric patients undergoing CT 

examinations. An earlier study revealed heightened diagnostic accuracy with increased 

disease prevalence151. In addition, as the clinical task in this study was the detection of 

lung nodules, the observers were less distracted by the search for other abnormalities. 

Furthermore, in an actual clinical setting, the radiologist may request to have the CT 

images reconstructed at thinner slices and smaller intervals or reformatted into coronal 

and sagittal slices to facilitate the identification of a nodule. These could not be 

performed in our observer experiment. As such, the Az values reported in our study may 

deviate somewhat from the actual clinical values. Nevertheless, the change in Az caused 

by the change in image quality was indicative of the actual performance change of the 

radiologist in a clinical setting and could serve as a guidance to the design and 

optimization of CT scan protocols.  

In summary, It is feasible to quantify the relationship between image quality and 

radiologist performance for the task of lung nodules in pediatric CT. Diagnostic 
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accuracy increases with nodule detectability (contrast-diameter product to noise ratio), 

but reaches a plateau beyond a threshold detectability level. This quantitative 

relationship can be used to examine the effect of any single image quality index, such as 

noise, by controlling for other indices. The relationship is independent of scan protocols 

and CT scanner models. It can guide the design of CT protocols to achieve the desired 

diagnostic accuracy at the minimum radiation dose. 
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10. Lung Nodule Detection in Pediatric CT: the Tradeoff 
between Diagnostic Accuracy and Radiation Dose or 
Cancer Risk* 

10.1 Introduction 

Since its inception in the 1970’s, computed tomography (CT) has revolutionized 

the practice of medicine and evolved into an essential tool for diagnosing numerous 

diseases not only in adults but also in children5, 6. The clinical utility of CT examinations 

has led to a rapid expansion in CT use and a corresponding increase in the radiation 

burden to patients16. CT radiation is of particular concern to children, whose rapidly 

growing tissues are more susceptible to radiation-induced cancer and who have longer 

life spans during which cancerous changes might occur14. In recent years, the increasing 

awareness of CT radiation risk to children has brought about growing efforts to reduce 

CT dose to the pediatric population60. The key of all dose reduction efforts is to reduce 

radiation dose (hence cancer risk) while maintaining diagnostic accuracy. Achieving the 

desired diagnostic accuracy at the minimum radiation dose requires knowledge of the 

tradeoff between the two. 

The goal of this work is to substantiate the tradeoff between diagnostic accuracy 

and radiation dose and further between diagnostic accuracy and cancer risk for the task 

of lung nodule detection in pediatric CT. In pediatric patients with primary cancer, the 

                                                      

* This chapter is based on a manuscript to be submitted to Medical Physics. 
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detection of even one small lung nodule may have tremendous prognostic and 

therapeutic implications40. Owing to the superior resolution of modern multi-detector 

array CT systems, chest CT examination for the detection of lung nodules is often the 

standard for pediatric cancer staging and surveillance. To examine the impact of dose 

reduction on diagnostic accuracy, we recently conducted a receiver operating 

characteristic (ROC) observer experiment163, in which diagnostic accuracy (characterized 

in terms of the area under the ROC curve, zA ) was measured as a function of nodule 

detectability (the product of nodule peak contrast and display diameter to noise ratio, 

display ).CDNR  For a 64-slice CT system, we have also studied noise, radiation dose, and 

cancer risk as functions of patient size and scan parameters140, 164. The purpose of this 

work was to draw correlation between scan parameters, radiation dose/cancer risk, and 

diagnostic accuracy so as to substantiate the tradeoff between diagnostic accuracy and 

radiation dose or cancer risk.  

10.2 Materials and Methods 

For a 64-slice CT system (LightSpeed VCT, GE Healthcare, Waukesha, WI), we 

have shown that quantum noise in the lung region of the CT image is related with 

patient size and scan parameters as140, 163 

( ) ( ) 2 2 ( )
0 1 2 3 4 5

1.375 exp( ln(mAs) ( ) ln (mAs) ( ) ln(mAs)),
5

NLA NLA NLA
w w w

t d d d
p

σ α α α α α α= ⋅ + + + + +

 (39) 
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where t  is slice thickness in millimeter, p  is helical pitch, ( )NLA
wd  is the water-equivalent 

diameter of a patient calculated from the non-lung chest area140, and coefficients 

( 0,1,..,5)i iα =  are functions of tube potential and bowtie filter (determined by the 

choice of scan field-of-view). It can be shown that the effect of bowtie filter on noise was 

negligible163. Therefore, Equation (39) is reduced to 

( )(kVp, , ,mAs, ).NLA
wp t dσ σ=                      (40) 

For the task of lung nodule detection in pediatric CT, we have also measured the 

performance of pediatric radiologists as a function of nodule detectability, 

display( ),z zA A CDNR=                 (41) 

where zA  is the area under the ROC curve and displayCDNR   is the product of nodule 

peak contrast and display diameter to noise ratio163. Equation (41) was ascertained over a 

noise range of 7 to 32 HU and a displayCDNR  range of 25 to 374 mm163. Thus, for given 

nodule characteristics (i.e., given contrast, diameter, and pixel size), diagnostic accuracy 

is a function of noise and can be expressed as 

( )(kVp, , ,mAs, ).NLA
z z wA A p t d=          (42) 

For the aforementioned CT system, we have also shown, through a Monte Carlo 

study164, that the effective dose ( )D  and effective risk ( )R  associated with a chest 

examination decrease exponentially with increasing patient size, i.e.,  

0 1exp( ) mAs,D dβ β= + ⋅  and         (43) 
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0 1exp( ) mAs,R dγ γ= + ⋅           (44) 

where d  is the average chest diameter of a patient and coefficients iβ  and ( 0,1)i iγ =  

are functions of bowtie filter, collimation, helical pitch, and tube potential164. As the 

effects of bowtie filter and collimation on dose and risk are small compared with the 

effects of kVp and pitch164, Equations (43) and (44) may be expressed as  

(kVp, ,mAs, ),D D p d=  and          (45) 

(kVp, ,mAs, ).R R p d=           (46) 

Equations (42), (45), and (46) suggest that, for a given patient size and a chosen 

set of scan parameters (tube potential, helical pitch, and slice thickness), each mAs value 

corresponds to an zA  value, an effective dose value, and an effective risk value. Thus, by 

eliminating mAs from Equations (42), (45), and (46), the dependence of diagnostic 

accuracy on effective dose and effective risk can be derived. 

To combine Equations (42), (45), and (46), the relationship between ( )NLA
wd  and d  

was first determined using the chest images of the 30 patients in our prior ROC study163. 

For each patient, the non-lung area diameter and chest area diameter140 were calculated 

for each CT slice between lung apex and lung base. The results were averaged across CT 

slices to obtain one pair of average non-lung area diameter ( )NLA
wd  and average chest 

diameter d  for each patient.  ( )NLA
wd  was correlated with d  by regression analysis.  
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Diagnostic accuracy as a function of effective dose and effective risk was 

determined for the detection of lung nodules with a typical peak contrast and physical 

diameter product ( )CD  of 1400 HU·mm, corresponding to the peak location of the CD  

distribution in the prior ROC study163. A representative pixel size of 0.48 mm was 

assumed, corresponding to the average pixel size of all the chest images in the prior 

ROC study163. A set of scan parameters (tube potential of 120 kVp, helical pitch of 1.375, 

slice thickness of 5 mm, and gantry rotation period of 0.4 second) most commonly used 

for imaging children on the aforementioned CT system was considered. Four 

representative average chest diameters ( d  of 10, 14, 18, 22 cm) were selected from the 

pediatric diameter range of 10-23 cm164. For each ,d  effective dose and effective risk of 

male patients were calculated using Equations (45) and (46) for a range of tube currents 

between 10 and 180 mA with a 10-mA interval. At each tube current value, noise was 

also calculated using Equation (40), where ( )NLA
wd  was estimated from d  using the 

correlation relationship between the two. If the noise value fell in between 7-32 HU (the 

noise over which Equation (41) was obtained) and the resultant displayCDNR  value fell in 

between the centers of the first and last displayCDNR  bins, zA  was determined by linearly 

interpolating the relationship between zA  and the center location of the displayCDNR  bin.  
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10.3 Results 

The average non-lung area diameter ( )NLA
wd  of a patient was a linear function of 

the patient’s average chest diameter d  (Figure 44).  For a given patient size, zA  

increased with increasing effective dose, but reached a plateau beyond a threshold dose 

value (Figure 45a). The threshold dose increased with increasing patient size. At a given 

effective dose, zA  increases with decreasing patient size. The effective dose required to 

achieve an zA  of 0.90 was approximately 0.3, 0.6, 0.9, and 1.3 mSv for male patients with 

average chest diameters of 10, 14, 18, and 22 cm, respectively. Similar trends were also 

observed for the relationship between zA  and effective risk (Figure 45b). The effective 

risk required to achieve an zA  of 0.90 was approximately 1.0, 1.3, 1.7, and 2.0 in 10000 

exposed male patients with average chest diameters of 10, 14, 18, and 22 cm, 

respectively. 
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Figure 44: The relationship between average non-lung area diameter ( )NLA

wd  and average chest 
diameter .d  

 

 
Figure 45: For the detection of lung nodules with a typical contrast-diameter product of 1400 
HU·mm, diagnostic accuracy zA  as a function of (a) effective dose and (b) effective risk of male 
patients from a chest examination. The chest examination employed tube potential of 120 kVp, 
helical pitch of 1.375, slice thickness of 5 mm, and gantry rotation period of 0.4 second. A typical 
pixel size of 0.48 mm was assumed. The effects of bowtie filter and collimation on dose and risk 
were assumed to be small164. 
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10.4 Discussions 

Substantiating the tradeoff between diagnostic accuracy and radiation dose/risk 

is an important yet challenging area of research. Due to the time- and labor-consuming 

nature of observer experiments, the lack of clinical patient images with isolated 

abnormalities, and the difficulty in ascertaining actual patient dose, most prior studies 

have been based on phantom images165-168 or have only evaluated diagnostic accuracy as 

a function of tube current28, 45, 134. In addition, the effect of patient size was usually not 

considered. In this work, we combined the results of a ROC observer study98 that 

employed hybrid images (clinical patient images with simulated noise and 

abnormalities) and experienced radiologists with dose and risk estimated for actual 

pediatric patients of a wide range of body sizes164. Thus, our work represents an 

improvement over prior efforts in that the tradeoff between diagnostic accuracy and 

radiation dose/risk is reflective of actual patients and is patient size/age dependent. 

For a typical product of nodule contrast and diameter and a set of most 

commonly used scan parameters, we found that diagnostic accuracy first increased 

rapidly with effective dose/risk and then reached a plateau. Taking a 18-cm diameter 

patient for example, raising zA  from 0.85 to 0.90 requires additional dose of 

approximately 0.5 mSv, whereas further raising zA  to 0.91 requires a dose increase of 

nearly 1 mSv. The saturation behavior is a direct result of the saturation behavior 

exhibited by the relationship of zA  versus displayCDNR 163. If it could be shown that 
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decreasing zA  from 0.91 to 0.90 has no consequence in patient management, then 

substantial dose saving could be achieved. 

The dose needed to achieve the same noise and hence diagnostic accuracy 

increases with patient size. To achieve an zA  of 0.90, the dose needed for a 22-cm 

diameter patient is about quadruple of that for a 10-cm diameter patient. This is 

consistent with the fact that, when designing tube-current-modulated protocols, higher 

noise index is often used for larger patients to avoid over-dosing the patients. Thus, if 

nodules with the same characteristics are being considered, the diagnostic accuracy for 

larger patients can be compromised. It should be noted that there are other 

considerations for selecting higher noise index in larger patients. One consideration is 

that larger patients generally have larger anatomical structures, which presumably can 

be discerned at higher noise levels. Another consideration is that images of larger (older) 

patients are less prone to breathing artifact; larger (older) patients are more capable of 

taking a deep breath and holding the breath. Therefore, the inherent contrast of the lung 

is likely higher in larger patients, which puts less demand on noise in the image. On the 

other hand, as images of patients with different body sizes are displayed with the same 

display size (512 × 512 matrices), a nodule of the same physical size has a smaller display 

size in images of larger patients, which may require lower noise to discern. Therefore, 

the choice of noise index for larger patients requires careful consideration of multiple 

factors. 
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While the risk associated with achieving the same diagnostic accuracy also 

increases with patient size, the risk required to achieve an zA  of 0.90 for a 22-cm 

diameter patient is only twice that for a 10-cm diameter patient. This is because, given 

the same dose, the risk to a larger (older) patient is smaller than that for a smaller 

(younger) patient. As the end goal of dose reduction is to reduce risk, this result 

suggests that risk is a more useful quantity than dose for the purposes of CT protocol 

design and optimization. 

We note that the decision of what zA  is adequate or how much zA  can be 

compromised is a difficult clinical question. Such decisions may only be substantiated in 

clinical trials and are beyond the scope of our investigation. Nevertheless, the area under 

the ROC curve, ,zA  has an intuitive explanation; it is often equated to the percentage 

correct in a two-alternative force choice (2AFC) experiment169-171. Therefore, the tradeoff 

of zA  with dose and risk reported in this study may guide protocol designs to prevent 

large medical errors such as significant over-dosing of a patient or substantial 

degradation of diagnostic accuracy. 

In summary, by combining the relationships of diagnostic accuracy with image 

quality, image quality with scan parameters, and scan parameter with radiation 

dose/risk, we assessed the tradeoff between diagnostic accuracy and radiation dose or 

cancer risk for the task of lung nodule in pediatric CT. For a typical lung nodule in 

pediatric CT and a common set of scan parameters, diagnostic accuracy increases with 
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radiation dose and cancer risk, but reaches a plateau beyond a threshold dose/risk 

values. The threshold values increase with patient size. The relationships can guide CT 

protocol design to achieve the desired diagnostic accuracy at the minimum dose/risk. As 

the end goal of dose reduction is to reduce risk, risk is a more useful quantity than dose 

for the purposes of CT protocol design and optimization. 
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11. Conclusions, Implications, and Future Directions 

11.1 Summary and Conclusions 

This dissertation addressed two important aspects of pediatric CT: radiation dose 

and diagnostic accuracy and assessed the tradeoff between the two for the task of lung 

nodule detection in pediatric cancer.  

To obtain dose results related to actual patient risk, a Monte Carlo technique was 

developed to simulate organ dose of pediatric patients from CT examination. Our work 

demonstrated that Monte Carlo simulation is a powerful tool for modeling modern CT 

systems. Provided that the geometry and filtration of a CT system are accurately 

reproduced in the simulation, the simulated dose results do not deviate from 

experimental measurements on average by more than around 10%. However, as the 

filtration data are rarely known exactly, validation against experiments is essential to 

ensure the accuracy of the simulation results. 

To address the patient-generic nature of the current dose estimation/reporting 

methods, the developed Monte Carlo technique was combined with computer models of 

pediatric patients created from clinical CT data to estimate patient-specific organ dose. 

The results showed that volume-weighted CT dose index (CTDIvol) cannot serve as a 

surrogate for patient dose in CT (underestimations of 30-48% were found for two 

representative pediatric patients). We further showed that effective dose derived from 

the dose-length product (DLP) can differ considerably from that calculated using 
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patient-specific organ dose (discrepancies of -30 to 42% were found for the two 

representative patients).  

Considering that the same dose delivered to two patients may entail 

substantially different risks due to age and gender differences, patient-specific dose was 

further combined with age-, gender-, and tissue-specific risk coefficients to estimate 

patient-specific cancer risk. Although cancer risk estimated in this way does not 

represent the true risk of an individual due to the limitations of the risk coefficients, they 

represent our current best knowledge of the potential radiation detriment to a patient 

associated with his/her CT examination. 

To facilitate the ongoing efforts of the medical imaging community to better 

manage patient dose, the patient-specific method was used to evaluate factors that affect 

dose and risk, including patient size, age, gender, and scan parameters. For pediatric 

patients in the same weight/protocol group, organ dose variation across patients was 

found to be generally small for large organs in the scan coverage (< 10%), larger for 

small organs in the scan coverage (1-18%), and the largest for organs partially or 

completely outside the scan coverage (6-77%). Across the entire pediatric population, 

dose and risk associated with a chest scan protocol was found to decrease exponentially 

with increasing patient size, with average chest diameter being a stronger predictor of 

dose and risk than weight and total scan length. Our results also helped to quantify the 

age and gender deficiencies of the effective dose concept; the difference in effective dose 
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does not represent the risk difference between the two age groups, nor does the 

difference in effective dose fully capture the risk difference between two genders. While 

effective dose may still be useful for comparing scan techniques and imaging devices, 

when risk is compared across ages and genders, effective risk is a more suitable concept 

to use. 

Our study of the effects of scan parameters showed that the effects of bowtie 

filter and beam collimation on dose and risk are small compared to the effects of helical 

pitch and tube potential. The effects of any scan parameter were found to depend on 

patient size, which cannot be reflected by the difference in CTDIvol. 

While it is important to minimize dose and risk to pediatric patients, dose and 

risk reduction should not come at the expense of deteriorated diagnostic accuracy. In 

this dissertation, the influence of dose reduction on diagnostic accuracy was 

investigated for the task of lung nodule detection.  

To overcome the limitation of the real lung nodules, a technique was developed 

to simulate small lung nodules in three dimensions by adding random asymmetry to a 

mathematical model initially proposed for lung nodules on chest radiographs and by 

considering the size and contrast variations across sequential CT slices. Simulated lung 

nodules were found to resemble real nodules in physical characteristics and detection 

rate, and to be perceptually indistinguishable from real nodules for experienced 

pediatric radiologists.  
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Because it is not feasible to scan the same patients at multiple dose levels, noise 

addition software was used to emulate image quality at reduced dose conditions. After 

proper calibrations of the input tube currents, simulated noise was found to match real 

noise in term of both texture and magnitude.  

In view of the fact that noise-base dose reduction studies can provide results 

independent of scan protocols and scanner models, a method was developed to estimate 

quantum noise in the CT image based on patient size. We showed that when noise-

diameter relationships determined in water phantoms were combined with water-

equivalent diameter of a patient estimated from non-lung chest area, noise in the lung 

region of the CT images can be estimated with errors (< ~30%) comparable to the noise 

variation across the lung volume.   

Simulated noise and nodules were added to real clinical images to create hybrid 

images, which allowed the diagnostic performance of radiologists to be assessed in a 

realistic setting. We found that, over a range of relatively high nodule detectability levels 

(product of nodule peak contrast and display diameter to noise ratio or displayCDNR  of 

approximately 52-374 mm), tube current or dose has a weak effect on the diagnostic 

accuracy of lung nodules. The effect of 75% dose reduction was shown to be comparable 

to inter-observer variability, suggesting a potential for dose reduction.  

Over a wider range of nodule detectability ( displayCDNR  of 25-374 mm), 

diagnostic accuracy was found to increase with increasing nodule detectability and 
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reached a plateau beyond a threshold detectability level. Considering that CT 

examinations are increasingly being performed with tube-current-modulation 

techniques, which aim to provide a target noise in the image, the relationship between 

diagnostic accuracy and nodule detectability was used to derive the dependence of 

accuracy on noise for representative nodule diameter and contrast values. We found 

that, for given nodule size and contrast, diagnostic accuracy increases rapidly with 

decreasing noise, but reaches a plateau beyond a threshold noise, the value of which 

increased with increasing nodule size and contrast.   

Lastly, we combined the relationships between diagnostic accuracy and image 

quality, between image quality and scan parameters, and between scan parameter and 

radiation dose/risk to provide the tradeoff between diagnostic accuracy and radiation 

dose or cancer risk. For typical values of nodule size and contrast and for a set of most 

commonly used scan parameters, diagnostic accuracy was found to increase with 

effective dose and effective risk for a given patient size and reach a plateau beyond a 

threshold dose/risk value. To achieve the same diagnostic accuracy, higher dose is 

needed to image a larger patient. Although the associated risk is also higher in a larger 

patient, the risk ratio between two patient sizes was found to be much lower than the 

dose ratio, a result of the older age of the larger patient. As the end goal of dose 

reduction is to reduce risk, risk is a more useful quantity than dose for the purposes of 

CT protocol design and optimization. 
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11.2 Clinical Implications 

The research in this dissertation has two important clinical implications. First, the 

quantitative relationships between patient dose/risk and patient size, between patient 

dose/risk and scan parameters, between diagnostic accuracy and image quality, and 

between diagnostic accuracy and radiation dose can guide the design and optimization 

of CT protocols to achieve the desired diagnostic accuracy at the minimum radiation 

dose/risk. 

Second, patient-specific dose and risk information, when included in a patient’s 

dosimetry and medical records, can inform healthcare providers of prior radiation 

exposure and aid in decisions for image utilization, including the situation where 

multiple examinations are being considered. Patient-specific dose and risk information 

may also be extremely helpful for institutional review of scientific investigations using 

CT examinations. Lastly, patient-specific dose and risk results afford more 

individualized and expanded application of dose tracking from medical radiation 

exposures. 

11.3 Future Directions 

The Monte Carlo method developed in this dissertation work was limited to a 

single scanner model and to fixed-tube-current techniques. Future work can extend the 

method to other scanner models and to tube-current-modulated techniques including 

both longitudinal and angular modulations. Other authors have shown, with small 
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numbers of patient and scanner models, that when organ dose estimates are normalized 

by CTDI values appropriate for the patient size (e.g., CTDIvol in a cylindrical phantom 

with the same circumference as the patient), the variations across CT scanner models are 

small. Thus, the Monte Carlo method may be extended to provide patient-specific 

normalized dose and risk estimates independent of scanner models, although this 

requires further testing and validation.  

Our study of patient-specific dose and risk was limited to the pediatric 

population only. With the development of a library of adult computer models for both 

normal and obese patients, our dose and risk estimation method can be extended to the 

entire patient population to enable a patient-specific dose reporting system, potentially 

replacing the current CTDI-based dose reporting system. 

The utility of our Monte Carlo method can be further expanded by developing a 

user-friendly software interface to enable not only medical physicists but also 

physicians, CT technologists, and other healthcare professionals to estimate radiation 

dose and cancer risk from a patient’s CT image with a few mouse clicks. The 

development of such a software application is pending on the automation of image 

segmentation and model creation process, but should become feasible in the foreseeable 

future.  

One limitation of our nodule simulation technique is that the asymmetric shape 

of a nodule is created in the axial slice, i.e., in two dimensions. Thus, if the axial CT slices 
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were to be reformatted into coronal or sagital planes, discontinuities may appear around 

nodule borders. Future work can create asymmetric (irregular-shaped) nodule models in 

three dimensions and insert a nodule into each CT slice based on both the partial-

volume effect and the modulation transfer property of the CT system. Similar 

approaches can also be used to model other focal lesions and abnormalities of other 

nature, such as fracture. Computer models of abnormalities created in three dimensions 

may also be correlated with physical properties of actual abnormalities, thus offering a 

database of disease truth, by which the quantitative accuracy of an imaging system can 

be evaluated. 

To apply the quantitative relationship between diagnostic accuracy and image 

quality in the design and optimization of CT protocols, image quality as a function of 

scanner acquisition parameters needs to be ascertained as well. The only image quality 

index that we studied was noise. Future work is needed to measure nodule contrast as a 

function of scan parameters for each nodule size range of interest. For a given actual 

nodule size (as determined by pathology), the visual size on the CT image may also 

depend on scan and reconstruction parameters. While contrast as a function of scan 

parameters has been studied by many authors, most studies have focused on iodine 

contrast or soft-tissue contrast such as the contrast between muscle and fat. The contrast 

and size of lung nodules as functions of scan parameters are topics of interest in the 

emerging area of quantitative imaging.  
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Apart from quantifying the dependence of image quality and diagnostic 

accuracy on scan parameters and radiation dose, optimizations in CT can be greatly 

facilitated by the development of a realistic image simulation tool. The noise addition 

software employed in this dissertation work is only capable of emulating image quality 

at reduced tube currents. The image quality at various tube potentials, for example, 

cannot be simulated. With computer modeling of human anatomy becoming 

increasingly sophisticated, computer-simulated CT images may become sufficiently 

realistic in the future for not only image quality assessment but also the evaluation of 

human observer performances.     
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