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Abstract

In environmental health studies air pollution measurements from the closest mon-

itor are commonly used as a proxy for personal exposure. This technique assumes

that air pollution concentrations are spatially homogeneous in the neighborhoods

associated with the monitors and consequently introduces measurement error into

a model. To model the relationship between maternal exposure to air pollution

and birth weight, we build a hierarchical model that accounts for the associated

measurement error. We allow four possible scenarios, with increasing flexibility,

for capturing this uncertainty. In the two simplest cases, we specify one model

with a constant variance term and another with a variance component that allows

the uncertainty in the exposure measurements to increase as the distance between

maternal residence and the location of the closest monitor increases. In the re-

maining two models, we introduce spatial dependence in these errors using spatial

processes in the form of random effects models. We detail the specification for the

exposure measure to reflect the sparsity of monitoring sites and discuss the issue

of quantifying exposure over the course of a pregnancy. The model is illustrated

using Bayesian hierarchical modeling techniques that relate pregnancy outcomes

from the North Carolina Detailed Birth Records to air pollution data from the

U.S. Environmental Protection Agency.
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1

Introduction

1.1 Background and Motivation

The association between maternal exposure to air pollution and adverse health

outcomes has been extensively investigated. Researchers have shown that in-

creased levels of air pollution have been linked to significant increases in both

mortality and morbidity (Dockery et al., 1993; Schwartz, 1994, 1999; Hoek et al.,

2001). Studies have also shown that exposure to air pollution may not affect all

individuals in a population the same way or even at the same rate (Woodruff et al.,

1997; Brunekreef and Holgate, 2002; Bell et al., 2008; Currie et al., 2009). Based

on these disparities in the potential health impact, much emphasis has been placed

on at risk sub-populations including elderly individuals, infants and children, and

pregnant women (NRC, 1998). This dissertation directly addresses some well-

known challenges in modeling exposure assessment, and introduces new modeling

approaches implemented on the effects of air pollution on pregnancy outcomes.

When trying to assess the relationship between air pollution exposure and its

effect on pregnancy outcomes, difficulty lies in trying to calculate an accurate
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personal exposure measure throughout the gestational period. Traditional prox-

imity models often involve using air pollution measurements from fixed site mon-

itoring stations as a proxy for personal exposure (Bobak, 2000; Dugandzic et al.,

2006; Bell et al., 2007; Hansen et al., 2008). Building models based on the as-

sumption that air pollution levels are spatially homogeneous across large surface

areas, like counties or cities, can bias the estimation of the health risk. The prob-

lems associated with exposure measurement error are well known and correcting

this issue is often quite difficult due to the unavailability of accurate estimates of

personal exposure.

Without exact personal exposure measurements, statistical modeling tech-

niques are used to account for the measurement error inherent in air pollution

exposure studies. Some of these approaches make use of geo-referenced data for

the locations of the monitoring stations. Exposure predictions can be computed

using kriging methods, inverse-distance weighting, or other statistical exposure

prediction models (Mulholland et al., 1998; Jerrett et al., 2001; Gryparis et al.,

2007). An obvious advantage when using these statistical techniques is the re-

moval of the assumption that personal exposure is constant over an entire region

for all study participants. This, in turn, is expected to reduce the exposure mea-

surement error and increase the accuracy of the resulting model inference.

In environmental health effects studies using geographically referenced data,

Bayesian hierarchical models are particularly well-suited for modeling the exposure-

response relationship while capturing spatial association and uncertainty. Com-

bined with spatial statistics, Bayesian hierarchical models have given researchers

the ability to incorporate complex models involving multiple layers into their

analyses. The use of Bayesian methods and Markov chain Monte Carlo (MCMC)
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techniques can alleviate some of the computational challenges presented by large

datasets and complicated models.

In the current work, we model the relationship between maternal exposure to

air pollution and birth weight on the State of North Carolina. We use a Bayesian

hierarchical model that reflects the exposure-response relationship and places em-

phasis on accounting for the associated measurement error. Unlike traditional

methods which assume that monitored exposure measures represent personal ex-

posure, we add uncertainty to the model in four different ways:

1. A random normal error model with constant variance

2. An error model with non-constant variance

3. A spatial random effects model with homogeneous variance

4. A spatial random effects model with non-constant variance.

All four models use an original approach for attempting to capture the un-

certainty incurred from using the estimates from the closest monitor. The first

two proposed models are non-spatial and do not require the specification of a

covariance function. These two models differ based on the construction of the

variance specification. In the random error model, the variance is constant while

in the second model, uncertainty is dependent on the distance between maternal

residence and the location of the closest monitor (space), and the duration of the

pregnancy (time). The remaining two models mirror the first two but include

spatial process dependence in the form of random effects.
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1.2 Personal Exposure

Research has shown that exposure to air pollution during pregnancy may elevate

the risk of adverse birth outcomes. Because poor birth outcomes are important

indicators of infant and childhood health and development, and accurate personal

exposure assessment is extremely critical. Exposure prediction models such as

land use regression (LUR) models and interpolation models have been developed

with the use of geographic information systems (GIS) tools and geo-statistical

techniques (Jerrett et al., 2005). These models attempt to address some of the

limitations associated with using monitoring station data as proxies for personal

exposure.

Both LUR models and interpolation models are limited by data collection

problems, as the models are based upon the locations of sparse monitoring sta-

tions. Interpolation to areas further away from any monitors can be unreliable

and can introduce large errors in the generated pollution surfaces (Jerrett et al.,

2005). Scientists have realized the need to develop more sophisticated pollution

surfaces that incorporate spatial methodology (Kaiser et al., 2002; Huerta et al.,

2004).

There are many factors that need to be considered when modeling personal

exposure. As previously mentioned, ambient concentration levels may not be spa-

tially homogenous, and proximity models do not take this fact into account. There

are several other sources that can affect the spatial patterns of the pollutants

including weather and other meteorological conditions, as well as the chemical

composition of the pollutants themselves. Much effort has been made to gain a

better understanding of the underlying spatial distribution of the pollution mea-

surements in order to build accurate personal exposure models (Christakos and
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Serre, 2000; Kyriakidis and Journel, 2001; Diem, 2003; Gilbert et al., 2005; Lindley

and Walsh, 2005).

It has been well-documented that models using air pollution measurements

from fixed site monitoring stations as a proxy for personal exposure suffer from

well-established problems associated with measurement error (Zeger et al., 2000;

Gryparis et al., 2009). With limited data availability, using these exposure mea-

surements is necessary in order to better understand the relationship between air

pollution exposure and human health. Although we are restricted to the air pol-

lution data from the monitoring stations, we present methodology for building a

measurement error model that adjusts for the incurred uncertainty.

Exposure to air pollution during pregnancy is an important regulatory and

public health issue. Models that fail to account for the exposure error can lead

to problems with estimation and inference of parameters. This study addresses

the measurement error problems connected with using monitoring station data by

adding suitable uncertainty which is propagated into a hierarchical birth weight

regression model.

1.3 Thesis Outline

This thesis uses Bayesian hierarchical modeling techniques to address the issues

surrounding exposure misclassification in the study of maternal exposure to air

pollution and birth weight. The main objective is to gain a better understanding of

the relationship between air pollution exposure and birth outcomes. We model this

relationship by using statistical methods that incorporate both spatial modeling

techniques and methods that account for the associated exposure measurement

error.
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Chapter 2, gives a brief overview of modeling air pollution and pregnancy

outcomes. We discuss the challenges that come from investigating this exposure-

response relationship and focus mainly on the measurement error problem. With

individual level maternal and infant health data from the North Carolina Detailed

Birth Records (NCDBR) and air pollution monitoring station data from the U.S.

Environmental Protection Agency (USEPA), we begin with an exploratory anal-

ysis of these two combined datasets. We explore how ambient exposure measures

from monitoring stations connect to pregnancy outcomes in order to understand

how to incorporate the different estimates of exposure (e.g., cumulative, episodic,

extremes) in the exposure-response relationship. We specify a linear relationship

between average air pollution exposure and birth weight, adjusted for standard

covariates. We explore how robust the air pollution and birth weight relation-

ship is to different air pollution measurements that vary by spatial resolution.

We include exposure as a continuous measure, a categorical variable, and with a

piece-wise linear spline function. We compare the output across all three exposure

specifications.

Chapter 3, accounts for the uncertainty related to using a local measure of

air pollution exposure based upon monitoring station data. We describe the hi-

erarchical model specification with four possible scenarios, each with increasing

flexibility, for capturing this uncertainty. For comparability, we first develop a

simple model with a random independent normal error structure. The second

model incorporates an error term with a non-constant variance component to

model the unobserved true exposure measurement. We construct the distribution

for the error terms such that the variance depends on the Euclidean distance be-

tween the maternal residence and the location of the closest monitor. We define
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the variance such that the uncertainty in the exposure measurement increases as

the distance between the maternal residence and the closest monitoring station

increases.

Building on the assumption that the error terms are spatially varying, the

final two models incorporate the spatial association among the error terms using

spatial processes. We introduce spatial dependence in the errors in the form of

random effects models. Similar to the first two non-spatial models, we build the

two spatial models such that one has a constant variance and the other has a

non-homogenous variance. We detail the specification for the exposure measure

to reflect the sparsity of monitoring sites and discuss the issue of quantifying

exposure over the course of a pregnancy.

Chapter 4, uses the birth record data from the NCDBR and air pollution data

from the USEPA to build the hierarchical measurement error models. Using birth

weight as the continuous outcome variable, we model the relationship between

air pollution exposure averaged over the entire pregnancy and birth weight. We

account for the associated measurement error using the four error models described

in Chapter 3. We compare the results from all four hierarchical models with those

from the simple least squares regression model.

Chapter 5, generalizes the modeling techniques from Chapter 3. We illustrate

the methodology required for handling exposure metrics other than average ex-

posure. Examples of other metrics can include a discrete measure of the number

of days above a certain threshold or the number of consecutive days above that

threshold. We view these metrics as functions of the predicted exposure. With

careful construction, we show that the model can systematically accommodate

other measures of air pollution exposure. We illustrate these generalized models
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and summarize the results of our analyses. And finally, Chapter 6 concludes the

dissertation with a brief discussion and directions for future work.
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2

Air Pollution and Birth Weight Models

Air pollution exposure has been identified as a major environmental concern across

the world. Many epidemiological studies have been conducted to investigate the ef-

fect of maternal exposure to air pollution on adverse pregnancy outcomes (Bobak,

2000; Ha et al., 2001; Chen et al., 2002; Dugandzic et al., 2006; Bell et al., 2007).

Results of these studies have shown that exposure to air pollution may elevate

the risk of adverse health outcomes, including mortality (Dockery et al., 1993;

Schwartz, 1994; Bell et al., 2004), cardiovascular and respiratory morbidity (Do-

minici et al., 2006) and pregnancy outcomes (Pope III et al., 1995; Schulz et al.,

2005; Pope III and Dockery, 2006; Bell et al., 2007). A more interesting fact sur-

rounding these results is that the increases in mortality and morbidity seen in

some of these studies occur with pollution levels at or below federal air quality

standards (Dockery and Pope III, 1994; Brunekreef et al., 1995; Gray et al., 2009).

Focusing on the susceptible subgroup of pregnant women, evidence shows that

exposure to air pollution may elevate the risk of adverse birth outcomes, including
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low birth weight (LBW), preterm delivery (PTD), and small for gestational age

(SGA) (Ritz et al., 2000; Vassilev et al., 2001; Lee et al., 2003; Yang et al., 2003;

Lin et al., 2004; Mannes et al., 2005; Parker et al., 2005). Evidence also shows

that survivors of LBW, PTD, and SGA are at an increased risk for both short-

term neonatal morbidity and long-term health effects (Hack et al., 1995; Lemons

et al., 2001). Such effects include mental retardation (Lorenz et al., 1998), severe

vision loss (Crofts et al., 1998; Lorenz et al., 1998), deafness, learning disabilities

(Resnick et al., 1999; Saigal et al., 2000), motor impairment (Ross et al., 1990), and

cerebral palsy (Kuban and Leviton, 1994), as well as hypertension, cardiovascular

disease, and type-2 diabetes in adulthood (Osmond and Barker, 2000; Ashdown-

Lambert, 2005). Exploring the effect of air pollution on the susceptible subgroup

of pregnant women is important to policy makers and, more generally, the overall

health of the nation (NRC, 1998, 2004).

Many researchers recognize that it is challenging to assess personal air pollution

exposure during pregnancy. There are numerous methodological issues that arise

when estimating the association between exposure and maternal health (Ritz and

Wilhelm, 2008). In particular, we need to know how to introduce exposure into a

statistical model, i.e., should it be cumulative, episodic, extremes, or exceedances.

Other considerations for the model include the window of susceptibility, exposure

assessment, classification, and, of course, the modeling technique to be used. If

possible, it is important to understand and incorporate the spatial structure of

the exposure measurements within the statistical models used. And finally, we

also need to take into account the measurement error associated with estimating

exposure to prevent misclassification of exposure estimates (Zeger et al., 2000).

While several studies suggest that air pollution may be associated with
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adverse birth outcomes, difficulty lies in trying to determine how ambient levels of

exposure connect to personal levels of exposure. Due to the long term health im-

pacts associated with air pollution’s negative effect on maternal and child health,

as well as the potential regulatory implications, it is imperative to use models

that adequately reflect the uncertainty associated with exposure measurements.

We attempt to better understand the relationship between maternal exposure to

air pollution and birth outcomes by using statistical models that incorporate both

spatial modeling techniques and methods for evaluating the associated measure-

ment error. Understanding and addressing these environmental health issues on

this vulnerable subgroup of pregnant women has been identified as a high priority

task by the USEPA (NRC, 1998). Without proper modeling and measurement

techniques of air pollution exposure, we risk using inaccurate results as the ba-

sis to make policy decisions that may negatively impact healthy pregnancies and

birth outcomes.

2.1 Modeling Air Pollution and Birth Weight

Epidemiologists and policy makers are often interested in the effect of particulate

air pollution on susceptible populations (NRC, 1998); thus pregnant women are

of particular concern. Since the National Research Council (NRC) identified at

risk subpopulations as a high priority research task, several studies have been

conducted to better examine the effects of PM exposure and adverse pregnancy

outcomes (Resnick et al., 1999; Ritz et al., 2000; Rogers et al., 2000; Chen et al.,

2002; Rogers and Dunlop, 2006; Bell et al., 2007). In the last of four reports

produced by the NRC in 2004, the group determined that more research needs

to be done in order to clarify uncertainties about impacts of maternal exposure
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to PM on pregnancy and to understand how environmental factors can affect

pregnancy outcomes (NRC, 2004).

The biological mechanisms by which air pollutants may influence birth weight

and fetal growth are still unclear. Fetal health is influenced by maternal, placental,

and fetal factors. Studies suggest that maternal exposure to air pollution may

lead to placental inflammation, which impairs placental function, and chronic

inflammation which may in turn result in growth restriction (Lee et al., 2003).

Data also suggest that fetuses may be more prone to genetic damage and may

process toxicants less efficiently than adults (Perera et al., 1999). Perera et al.

(1999) propose that increased DNA adducts in the fetus relative to the mother

could result in lower levels of detoxification enzymes and decreased DNA repair

efficiency in the fetus. Similar to tobacco use during pregnancy, exposure to air

pollution may affect maternal respiratory function or susceptibility to infections

(Tabacova et al., 1998) or may impair umbilical blood flow (Vorherr, 1982). The

prenatal period is a critical window of vulnerability, and exposure to air pollution

may affect fetal growth and the development of organ systems (Dejmek et al.,

1999; Selevan et al., 2000). All these factors can influence PTD and intra-uterine

growth restriction (IUGR), which may in turn lead to lower birth weight (Slama

et al., 2008).

The number of studies investigating the association of maternal exposure to

air pollution and adverse pregnancy outcomes is growing worldwide (Glinianaia

et al., 2004). Studies have been conducted in various countries including the

Czech Republic (Bobak, 2000), China (Wang et al., 1997), South Korea (Ha et al.,

2001), Brazil (Gouveia et al., 2004), Australia (Hansen et al., 2006), Canada (Liu

et al., 2003b; Dugandzic et al., 2006) and several location within the United States

12



(Chen et al., 2002; Bell et al., 2007). Although many of these studies have shown

a negative association between air pollution and birth outcomes, the traditional

techniques that are used for exposure assessment may actually misclassify expo-

sure because of the way the exposure variable is measured and modeled (Thomas

et al., 1993; Zeger et al., 2000; Dominici et al., 2003).

Many of these studies are limited to sparsely located monitoring station data

and average measurements are calculated from monitoring stations within city or

county limits, or postal codes (Bobak, 2000; Dugandzic et al., 2006; Bell et al.,

2007; Hansen et al., 2008). Using measurements based on residing either within

a certain geographic area or proximity to a monitoring station as a proxy for

personal exposure assumes that air pollution levels are spatially homogeneous

across the defined geographic regions. Although lacking in precision, this method

of estimating exposure for an individual or a population has traditionally been

used in air pollution and health effects studies (Dockery et al., 1993; Samet et al.,

2000; Pope III et al., 2002) as collection of accurate personal level exposures is

often difficult and expensive.

Measuring human exposure to air pollution is quite challenging. It has been

shown that exposure measurements from monitoring stations do not accurately

represent personal exposure estimates (Goldstein, 1979; Lioy et al., 1990; Mage

and Buckley, 1995; Ozkaynak et al., 1996; Janssen et al., 1997, 1998; Haran et al.,

2002) and using these measurements as surrogates for true exposure without ad-

justing for the associated measurement error can possibly lead to inaccurate results

(Thomas et al., 1993; Zeger et al., 2000). In using methods that fail to account

for measurement error, scientists and policy makers could be making decisions on

potentially invalid inferences.
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Although we understand the limitations associated with using monitoring sta-

tion data, we recognize that without actual personal exposure data available,

station data can be useful for exploratory purposes. In fact, station data may be

the only available source of exposure information. It is also worth mentioning that

since the information from monitoring stations is used for regulatory and other

policy related purposes, any results generated from the use of this data can also

be valuable to policy makers.

Other challenges in exposure modeling, particularly for estimating exposure

during a specified time period, include trying to determine how exposure should

be calculated. Using daily averages dilutes information on days that were above a

certain threshold. Averages of exposure for days that were consistently moderate

compared to days that were mostly low with occasional high peaks may be exactly

the same but may have different effects on pregnancy outcomes. Assessing expo-

sure at various gestational periods is quite common, with some of these exposure

windows including certain trimesters, the entire pregnancy and the last 4-6 weeks

of gestation. These different and sometimes overlapping windows are an attempt

to determine what the important period during pregnancy to measure is. Further

research is still needed in order to determine the critical exposure window that

should be used in an exposure-birth weight model (Sram et al., 2005).

The NRC determined that more research needs to be done to:

1. Understand how environmental factors can affect adverse pregnancy out-

comes

2. Clarify uncertainties about impacts of maternal exposure to particulate mat-

ter on pregnancy
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3. Develop estimates of measurement error that can be incorporated into sta-

tistical models (NRC, 2004).

Our work focuses on these three concerns.

2.2 Exposure Measurement Error

The exposure measurement error problem arises from the assumption that the

measured level of pollution observed from one or more central monitoring stations

is the actual personal exposure measurement for an individual or population.

Epidemiologists have recognized that it is extremely difficult and expensive to

accurately measure personal exposure to air pollution and are also aware that

ignoring measurement error can produce misleading conclusions (Thomas et al.,

1993; Mage and Buckley, 1995; Zeger et al., 2000). As a result, the USEPA and

the Committee on Research Priorities for Airborne Particulate Matter identified

the development of sophisticated statistical methods designed to systematically

address measurement error in estimating adverse health effects from particulate

matter as a high priority task (NRC, 1998). These new methods should attempt

to reduce the errors and biased estimates associated with personal exposure mis-

classification in health risk assessment studies (Brauer et al., 2002).

Measurement error is an inherent limitation to environmental studies that

involve modeling the relationship between air pollution exposure and adverse

health outcomes. Rarely is it possible to measure air pollution exposure accu-

rately. Studies have shown that measurement error in a single covariate can affect

the relationship between the response variable and other covariates that may not

be measured with error (Greenland, 1980; Brenner, 1993). The measurement er-

ror incurred when using exposure variables that are surrogates for true personal
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exposure can lead to biased estimates in regression coefficients and measures of

relative risk that usually tend towards the null value (Gilks et al., 1996; Arm-

strong, 1998; Zeger et al., 2000). In addition to biased estimates, exposure error

can also reduce the power of a study, making it more difficult to find significant

associations or threshold levels, should they exist (Cakmak et al., 1999; Carrothers

and Evans, 2000; Brauer et al., 2002).

2.2.1 Classical Error and Berkson Error

There are two distinct versions of error models for air pollution studies that use

individual level surrogate measurements as estimates for true personal exposure.

Both models attempt to describe the relationship between a particular outcome

Y and the true but unobserved exposure measurement X for each individual.

Instead of having the true value X for each individual, there is the observed

surrogate measure Z of X. The differences between the Classical and Berkson

error models occur when describing the relationship between the true unobserved

measurement X and the observed surrogate measurement Z. The classical error

modeling uses a hierarchical specification to combine information about three

relationships (Gilks et al., 1996; Molitor et al., 2006), namely

1. The disease model which measures the association between the outcome Y

and the true unobserved personal exposure measurement X.

2. The measurement model which models the association between the observed

exposure measurements Z and the unobserved exposure measurements X.

3. The exposure model which models the distribution of the unobserved expo-

sure X.
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Under the classical error model assumptions, the measurement model states

that the surrogate measure Z is randomly distributed around the true value X

with the property E[Z|X] = X. Although this is the most common error model

used to adjust exposure measurement error, it makes assumptions that can lead

to underestimating of the the regression coefficient associated with the true un-

observed exposure measurement (Navidi et al., 1994; Zeger et al., 2000; Dominici

et al., 2000, 2003). Other methods have been developed to quantify and account

for the exposure measurement bias (Carroll et al., 1995; Zidek et al., 1996; Do-

minici et al., 2000).

In the Berkson error model, the measurement model assumes that the true

exposure measurement X is randomly distributed around the observed value Z

with the property that E[X|Z] = Z. With a disease model that is linear in X,

unbiased parameter estimates are produced; see Armstrong (1990) and Thomas

et al. (1993) for details. Another important consequence with the Berkson error

model is that the need to specify the marginal distribution of the observed ex-

posure Z is completely eliminated, producing a more parsimonious hierarchical

model (Gilks et al., 1996). The Berkson error model is most appropriate when

a group of individuals is assigned the same approximate exposure measurement

(Thomas et al., 1993; Armstrong, 1998).

2.2.2 Accounting for Measurement Error

Several methods of correcting for measurement errors have been explored in

epidemiological studies (Thurigen et al., 2000). Measurement error correction

schemes vary based on the modeling techniques used e.g., Bayesian or frequentist,

as well as the properties of the measurement error model that are considered, e.g.,
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classical or Berkson, and additive or multiplicative (Carroll, 1989; Armstrong,

1990; Thomas et al., 1993). Some of these techniques, while accounting for mea-

surement error, may also introduce different types of biases (Zidek et al., 1996;

Armstrong, 1998; Zeger et al., 2000).

Building a hierarchical measurement error model with a spatial component

is easily handled in a Berkson environment. The Berkson error model specifies

the distribution of the true unobserved exposure X as being dependent on the

observed exposure measurement Z. At this stage, the spatial component can be

incorporated in the model, and the true exposure X can be directly specified into

the disease model. This model is desirable because it provides an unbiased esti-

mate of the regression coefficient associated with the true exposure measurement

X while accounting for the spatial variability of the error terms.

In a time-series study, Cakmak et al. (1999) use a multiplicative classical error

model where Z = Xε, and the error terms have unit expectation. With this

model, the estimates for the variance of the error terms capture different amounts

of measurement error. In another time-series study, Dominici et al. (2000) use a

hierarchical Berkson error model to account for the measurement error in an air

pollution and mortality study. They use a linear regression model for the error

specification: X = a0 + a1Z + ε. Thomas et al. (1993) discuss other statistical

methods for adjusting for exposure measurement error. In the specification of the

distribution of the true exposure measure, the authors suggest the use of either

a parametric form of X that closely resembles that of Z or a non-parametric

likelihood estimation technique.

Regression calibration has also been explored in multiple logistic regression,

linear, and nonlinear models (Armstrong, 1985; Rosner et al., 1989; Carroll et al.,
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1994, 1995). In recent environmental health effects studies, Bayesian hierarchi-

cal models have been used to address the measurement error problem (Dominici

et al., 2000; Richardson and Best, 2003). Longitudinal studies have been consid-

ered as another alternative for addressing the measurement error problem (Liu

et al., 2003a; McBride et al., 2007). These studies allow a small subset of the

study population to wear personal monitoring devices to give accurate measures

of exposure to pollution. Combining these now observed true exposure estimates

and other relevant environmental covariates, models can be built that relate this

true exposure measure to the ambient monitored pollution measures. A limitation

to these studies occurs when these exposure models are based on a small sample

size and are used to interpolate personal exposure for an entire population.

In addition to incorporating measurement error in exposure-response models,

it has been recognized that the error associated with estimating the true exposure

of an individual from the observed measurement at a fixed monitoring site varies

with spatial location (Zeger et al., 2000; Molitor et al., 2007). Some studies rec-

ognize the need to incorporate this spatial component in model-building (Crooks

et al., 2009). Instead of focusing only on modeling both the unobserved “true”

personal exposure and the measured exposure in order to eventually express the

relationship between the true unobserved exposure and the disease or outcome

(Zeger et al., 2000; Molitor et al., 2006, 2007), some studies view the measure-

ment error problem as a spatial misalignment problem. With the locations of the

monitoring stations being fixed, the covariates and outcomes can be viewed as

being measured at different locations, which leads to spatial misalignment in the

health effects analysis (Peng and Bell, 2008; Gryparis et al., 2009).

Although several studies suggest that air pollution exposure may be associated
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with adverse birth outcomes, assessing air pollution exposure during pregnancy

remains challenging. There are numerous methodological issues that arise when

estimating the association between exposure and maternal health. The focus of

this work is to overcome some of these challenges.

2.3 Data

2.3.1 AQS Data and Particulate Matter

The USEPA sets national ambient air quality standards (NAAQS) for six com-

mon air pollutants, called criteria pollutants. The pollutants are particulate mat-

ter (PM), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides

(NOx), and lead. There are two sizes of particulate matter, PM10 and PM2.5.

Coarse PM, less than or equal to 10 micrometers in diameter (PM10), are inhal-

able particles that can travel through the nose and throat into the lungs, where

they can enter the bloodstream and cause adverse health effects (USEPA, 2006b).

PM10 is composed mostly of larger primary particles emitted directly in the at-

mosphere through both anthropogenic and natural sources. These sources can

include traffic-related emissions such as tire and brake lining materials, direct

emissions from industrial, agricultural and mining operations, as well as spores,

pollen and bacteria. Fine PM with a diameter of 2.5 micrometers or less (PM2.5),

is a combination of respirable fine solids produced chiefly by combustion processes

and by atmospheric reactions of various gaseous pollutants such as volatile organic

compounds (VOCs), sulfur dioxide (SO2), and NOx (USEPA, 2006a).

The current short term federal standard for PM2.5 is 35 micrograms per cubic

meter (µg/m3) of air averaged over 24 hours. The long term standard of PM2.5 is

an annual mean of 15.0 µg/m3 averaged over a three-year period for each monitor
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(USEPA, 2005). In October 2006, the USEPA rescinded the 50 µg/m3 annual

standard for PM10, citing a lack of association between long-term exposure to

current ambient levels of PM10 and adverse health effects (USEPA, 2006a). Con-

sequently, there is currently no annual standard for PM10. At the same time, the

USEPA retained the short term federal standard for PM10 of 150 micrograms per

cubic meter (µg/m3) of air averaged over 24 hours (not to be exceeded more than

once per year on average over 3 years) at each monitor.

The air quality in North Carolina is regulated using a sparse network of moni-

toring sites. It is important to note that these sites were established for regulatory

purposes and not for health effects studies. As a result, many of the monitoring

stations are intentionally placed closer to major cities and roadways. Figure 2.1

shows the locations of the PM10 and PM2.5 monitors in the state. Most of the

PM monitors are located along the I-40, I-85 and I-95 corridors.

The air pollution datasets for PM10 and PM2.5 were obtained from the Air

Quality System (AQS) data available from the USEPA for 1999-2002. Preliminary

analyses used births between the years of 2000-2002, and air pollution exposures

from 1999-2002, since exposures for some 2000 births would have occurred in

1999. The AQS data contained the daily 24-h average concentration (µg/m3)

for PM10 and PM2.5. There were between 27 and 37 active PM10 monitors and

between 37 and 41 active PM2.5 monitors in North Carolina during 1999-2002.

The monitoring stations recorded pollution measurements either every day, every

3 days, or every six days.
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Figure 2.1: Locations of the PM10 and PM2.5 monitors in North Carolina.

2.3.2 NCDBR

The NCDBR data were obtained from the North Carolina State Center for Health

Statistics. The NCDBR data contain information on both birth outcomes and

parental demographics for all registered births in North Carolina for the years

2000-2002 (n=350,754). The recorded birth information in the NCDBR used in

this study included gestational age (weeks), infant sex, birth weight, and year of

birth. The maternal characteristics recorded in the NCDBR included residential

address, age, marital status, education, race and ethnicity, alcohol and tobacco

use, plurality, birth order, and the trimester in which prenatal care began.

To link births from the NCDBR to the air pollution data, we street geocoded

the residential addresses in the dataset at the individual record level (all spatial

data management was performed using ArcGIS 9.2 produced by ESRI, Redlands,

CA). The total births successfully geocoded using the maternal residence at the

time of delivery in North Carolina can be seen in Figure 2.2. We

excluded multi-fetal births (3.3%) and infants characterized by congenital anoma-
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lies (0.9%). These exclusions were chosen in order to focus on those pregnancies

that could reasonably be expected to go to term and deliver at a normal birth

weight. Women under age 15 and over age 44 years (0.3%), or those with re-

ported alcohol consumption (0.6%) were also excluded. As 95% of the women in

the dataset self-declared as non-Hispanic white, non-Hispanic black, or Hispanic,

we excluded other races/ethnicities due to the small sample size for these groups.

We excluded births with gestation less than 32 and greater than 44 weeks (2.2%),

birth weight less than 1000 g and greater than 5500 g (1.0%), impossible birth

weight and gestation combinations (0.1%) (Alexander et al., 1996), and mothers

with any missing data on covariates (1.0%), leaving 259,962 cases.
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Figure 2.2: Total geocoded births by county for 2000-2002

2.4 Preliminary Analyses

This sensitivity analysis compared birth weight regression results using exposure

metrics for PM10 and PM2.5 at various spatial resolutions from 2000-2002 in North

Carolina. We evaluate how robust the air pollution and birth weight relationship

is to different air pollution measurements. This will serve as preliminary analyses
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for the more complicated models described in Chapter 3. For comparability to

other studies, we use air pollution metrics based on county averages for the entire

state. We then use buffering schemes associated with proximity models of 20, 10

and 5 km radii and compare how these different exposure metrics affect the birth

weight model. For the county level model, we focused on women who lived in a

county with an active monitoring station whereas for the proximity models, we

used only women within a 20-, 10-, and 5-km buffer of a monitoring station. A

map of North Carolina with the locations of the PM10 and PM2.5 monitors and

the distance buffers can be seen in Figure 2.3.

2.4.1 Exposure Assessment

To estimate air pollution exposure for the proximity models, each mother’s resi-

dence at the time of delivery was linked to the closest active monitoring station.

The weeks of exposure were calculated based on the actual weeks of pregnancy as

recorded in the NCDBR. As birth date and gestational age were supplied as part

of the NCDBR data, we calculated the number of weeks of gestation from the

delivery date to determine an estimated date of conception for each woman in the

study. We note that gestational age is reported as a clinical estimate of the num-

ber of completed weeks of gestation and is also a source of potential measurement

error.

Average maternal exposure was calculated for each pollutant separately by

averaging the weekly data of the closest monitoring station for each trimester of

the pregnancy. The trimester variable was constructed based on the following

categorization: 1-13 weeks of gestation, 14-26 weeks of gestation, and 27 weeks

of gestation until birth. Exposure estimates averaged over the entire pregnancy
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Figure 2.3: Distance Buffers for PM10 and PM2.5 monitors

were also calculated for each pollutant. We constructed this cumulative exposure

measure using average concentration measures over specified pregnancy windows

as averages take into account the variable length of pregnancy associated with

each mother in the study.
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The AQS data were not available for every day and week of the years 1999-

2002. For each birth, the completeness of the exposure dataset was identified by

taking the number of weeks of gestation and dividing it by the number of AQS

concentration values for that birth. If the birth had more than 75% of the data

and there was no more than one consecutive missing concentration value for that

birth, then the average of the concentrations for the weeks before and after the

missing value were used as a proxy for the exposure concentration during that

week. If there was more than one consecutive missing value for a birth, then that

birth was not included in the dataset because a sufficient proxy for the two weeks

or more of missing air quality data was not available. After all exclusion criteria,

exposure estimates were calculated for 195,141 mothers for at least one of the

pollutants of interest.

2.4.2 Regression Model

Multiple linear regression modeling was used to determine the association between

exposure to the pollutants of interest, PM10 and PM2.5, and birth weight. Using

birth weight as a continuous outcome variable, we controlled for gestational age

(32-34, 35-36, 37-38, 39-40, 41-42, 43-44 weeks) maternal race/ethnicity (non-

Hispanic black, non-Hispanic white or Hispanic), maternal education (<9, 9-11,

12, 13-15, >15 years), maternal age (15-19, 20-24, 25-29, 30-34, 35-39, 40-44

years), trimester prenatal care began, tobacco use during pregnancy (yes or no),

marital status (married or unmarried), year of birth, firstborn (yes or no), and

infant sex (male or female) in separate models for PM10 and PM2.5. The exposure

estimates were considered as continuous variables. We then examined the exposure

response relationship with county-wide estimates and estimates for mothers within
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20, 10, and 5 km of a monitoring station.

A baseline model without the air pollution variables was constructed to exam-

ine which of the standard covariates mentioned above affect birth weight in the

sample. We constructed separate models for PM10 and PM2.5 due to the high

correlation between the two pollutants (r ∼ 0.7). For comparability to previous

studies, we constructed models using all three trimester exposure estimates in the

same model, as well as models with a pregnancy-long estimate (Maisonet et al.,

2001; Glinianaia et al., 2004; Salam et al., 2005). All risk factors considered were

observed as being associated with birth weight in recent literature (Bobak, 2000;

Maroziene and Grazuleviciene, 2002; Liu et al., 2003b; Dugandzic et al., 2006; Bell

et al., 2007).

2.4.3 Non-Linear Models in Exposure

In addition to using the continuous measure of exposure, we also introduce ex-

posure as a categorical variable and, alternatively, with a piecewise linear spline

function. Research has shown that higher levels of exposure may affect birth

weight at a different rate than lower levels of exposure (Wang et al., 1997; Yang

et al., 2003; Wilhelm and Ritz, 2005; Ritz et al., 2007). We construct these two

additional measures of exposure as the relationship between exposure and birth

weight may not necessarily be explained by a single regression line.

For the categorical measure, the exposure estimates were divided into tertiles

to correspond with low (< 33rd percentile), medium (33rd to <67th percentile)

and high (≥ 67th percentile) levels of exposure. Exposure corresponding to low

levels was used as the referent category in order to compare changes in birth weight

for infants in the two highest exposure categories with those in the lowest exposure
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category. One criticism of using such a categorical analysis is the inherent loss of

information that occurs when collapsing the data into these three specified bins.

However, we view the work in this chapter as primarily exploratory.

To make use of the information contained within each category, we also fit

a piece-wise continuous function on the exposure measure. This alternative to

the categorical analysis is suggested by Greenland (1995). We use a piecewise

linear spline with predetermined knots c1, and c2, placed on the first and second

tertiles of the data. Similar to the construction used for the categorical measure,

we divided the range of exposure into three parts and fit separate slopes for each

piece. This allows the level of the covariate to vary across the three continuous

measures of exposure. Applying this approach to the data, we let Xi represent

the average PM concentration during the entire pregnancy of each mother and Yi

denote the birth weight response variable. The piecewise linear spline model is

defined by

Yi = β0 + WT βW + βX1Xi + ε, Xi ≤ c1

= β0 + WT βW + βX1Xi + βX2(Xi − c1) + ε, c1 < Xi ≤ c2

= β0 + WT βW + βX1Xi + βX2(Xi − c1) + βX3(Xi − c2) + ε, Xi > c2

where βW and βX are unknown parameters, WT is a vector of personal covariates

that affect birth weight, and εY ∼ N(0, σ2
Y ) is a random normal error term.

Using the exposure estimates summarized over the entire pregnancy, we fit

the models with these alternative exposure measures for both pollutants. We

compare all the models using the standard measures of model fit. We calculate

the empirical coverage of the distribution, the root mean squared error (RMSE),

and the R-squared statistic (R2).
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2.4.4 Summary of Results

Our analysis included estimating pollution exposures for sample populations at

the county level, and within the 20-, 10-, and 5- km radial buffers surrounding the

monitors. At the county level, there were 195,141 observations with the restric-

tions described above and 167,851, 110,555, and 56,043 births at 20, 10 and 5 km,

respectively. Table 2.1 shows the summary statistics for each of the four sample

populations (county and 20, 10, and 5 km buffers). Among the 195,141 county-

level births, the mean birth weight was 3,368 g, and the prevalence of LBW was

5.4%. Approximately 11% of mothers reported smoking during pregnancy. Most

of the mothers were non-Hispanic white (61%), married (68%), and with more

than a high school education (52.8%).

The descriptive characteristics of the mothers living within 20 and 10 km

of a monitoring station are similar to those in the county level dataset. Some

maternal demographics change with proximity to the monitoring station, including

maternal race/ethnicity, maternal education, and marital status. Moving from 20

km away to 5 km away from a monitoring station increases the non-Hispanic

black population by approximately 14% and Hispanic population by 6.2%. There

is also a decrease in the mothers with more than a high school education, as well

as those who are married, as residence gets closer to a monitor. This suggests

that monitors tend to be located in areas with lower socioeconomic status. The

incidence of LBW increases from 5.2% at 20 km to 6.3% at the 5 km buffer.

The means ± standard deviations (SD) along with the interquartile range

(IQR) are shown in Tables 2.2 and 2.3 for the county level and 20 km models,

respectively. Tables 2.2 and 2.3 also show the 25th, 50th and 75th percentiles of

the average exposure of both pollutants by exposure period.
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Table 2.1: Summary statistics of the study population.

20 km 10 km 5 km County

Total Births 167,851 110,555 56,043 195,141
Mean birth weight(g) ± SD 3372 ± 528.4 3353 ± 530.5 3311 ± 531.9 3368 ± 530.9
% LBW 5.2 5.6 6.3 5.4
Mean gestation (wks) 38.9 ± 1.6 38.9 ± 1.6 38.9 ± 1.7 38.9 ±1.6
% Male 50.9 51.0 50.7 51.0
% Firstborn 42.8 43.3 42.3 42.9
% Prenatal Care Began
First Trimester 86.2 84.6 81.2 86.0
Second Trimester 10.8 12.0 14.6 11.0
Third Trimester 1.7 2.0 2.5 1.7
None 0.7 0.9 1.2 0.8
Unknown 0.6 0.5 0.5 0.5
% Race/ Ethnicity
NHW 61.7 52.9 41.9 61.1
NHB 25.7 32.2 39.4 26.1
HISP 12.6 14.9 18.8 12.8
% Maternal Education
< 9 years 5.5 6.6 9.0 5.7
9-11 years 13.8 15.1 19.2 13.9
12 years 27.5 28.0 29.3 27.7
13-15 years 22.3 21.5 19.5 22.3
> 15 years 31.0 28.8 23.0 30.5
% Maternal Age
15-19 years 10.6 11.6 13.9 10.8
20-24 years 25.4 27.4 30.3 25.7
25-29 years 26.8 26.3 25.2 26.9
30-34 years 24.7 23.0 20.1 24.4
35-39 years 10.7 9.9 8.9 10.5
40-44 years 1.8 1.7 1.6 1.8
% Tobacco Use 11.2 10.7 11.4 10.9
% Married 68.4 63.1 54.0 68.2

Summary statistics of the PM10 and PM2.5 averages for the 10 and 5 km

models (not shown) were similar to the results at the 20 km level. For the 10 km

buffer there were 75,111 and 86,573 observations for PM10 and PM2.5, respectively.

At the 5 km level there were 35,212 and 42,782 observations for PM10 and PM2.5
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Table 2.2: County level summaries of PM10(n = 178, 356) and PM2.5(n =
174, 933) by pregnancy period.

Exposure Period Pollutant Mean ± SD IQR Quartiles
25% 50% 75%

Trimester 1 PM10 19.6 ± 5.5 5.5 16.2 17.8 21.8
PM2.5 13.5 ± 1.5 1.9 12.5 13.7 14.3

Trimester 2 PM10 25.1 ± 5.3 7.3 21.0 24.3 28.3
PM2.5 15.3 ± 1.7 2.1 14.5 15.6 16.6

Trimester 3 PM10 26.5 ± 5.2 7.9 22.6 25.7 30.5
PM2.5 18.2 ± 2.8 3.1 16.8 18.3 19.9

Entire Pregnancy PM10 23.7 ± 4.9 4.8 20.7 22.7 25.5
PM2.5 15.7 ± 1.6 1.6 15.0 15.7 16.6

Table 2.3: 20 km level summaries of PM10(n = 117, 279) and PM2.5(n = 134, 232)
by pregnancy period.

Exposure Period Pollutant Mean ± SD IQR Quartiles
25% 50% 75%

Trimester 1 PM10 23.0 ± 5.4 7.2 19.0 22.5 26.2
PM2.5 15.0 ± 3.0 4.2 12.7 12.5 16.8

Trimester 2 PM10 22.6 ± 4.9 6.6 19.1 22.4 25.6
PM2.5 14.4 ± 2.6 3.9 12.7 14.4 16.7

Trimester 3 PM10 22.4 ± 4.9 6.4 19.0 22.3 25.4
PM2.5 14.6 ± 2.6 3.9 12.3 14.3 16.5

Entire Pregnancy PM10 22.6 ± 3.8 3.8 20.5 22.2 24.3
PM2.5 14.7 ± 1.7 2.2 13.7 14.9 15.9

respectively.

Average values of PM10 (PM2.5) concentration levels were approximately 22.7

(14.3) µg/m3. The PM2.5 average is below the NAAQS annual mean of 15 µg/m3,

and there is currently no annual PM10 standard in North Carolina. The correla-

tions between PM10 and PM2.5 during each trimester remain relatively consistent

with r ∼ 0.7. The correlation between PM10 and PM2.5 exposure during the

entire pregnancy was 0.63. Table 2.4 shows the correlation coefficients among
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trimester exposures for PM10 and PM2.5 at the county-level. Similar correlations

were obtained at the 20-, 10-, and 5-km level.

Table 2.4: Pearson correlation coefficients between trimester pollution estimates
at the county level.

PM10
Trimester

PM2.5
Trimester

1 2 3 1 2 3
1 1 1 1

Trimester 2 0.44 1 Trimester 2 0.23 1
3 0.16 0.42 1 3 -0.08 0.24 1

In all of the baseline models with no air pollution estimates, the standard co-

variates carried the expected signs with positive correlation between birth weight

and longer gestation (>40 weeks), male sex, more than a high school level educa-

tion and higher parity; and negative correlation between birth weight and tobacco

use during pregnancy, unmarried status, less than high school education, minority

race groups, firstborns, mothers younger than 24 years and older than 40 years,

and mothers who started prenatal care later in pregnancy. All covariates were

statistically significant (p<.001) and were included in the models with pollution

estimates.

The significant findings in the results are consistent for PM10 and PM2.5.

In the multiple regression models for the county level measure of air pollution

exposure, PM10 and PM2.5 exposure in the third trimester and during the entire

pregnancy were negatively associated with birth weight (Figures 2.4 and 2.5).

An IQR increase in PM10 and PM2.5 during the entire gestational period was

associated with a reduction in birth weight by 5.3 g (95% CI: 3.3 - 7.4) and 4.6

g (95% CI: 2.3 - 6.8), respectively. Similarly, exposure during the third trimester

was associated with a reduction in birth weight for PM10 (7.1 g, 95% CI: 1.0 -

32



 

     

 

 

   

 

    

5.0

0.0

10.0

15.0

-5.0

Trimester 1 Trimester 2 Trimester 3 Entire Pregnancy

-

-

 County
 20 km
 10 km
 5 km

PM10 Models

Exposure Window

Ch
an

ge
 in

 B
W

T 
(g

)

Figure 2.4: Changes in birth weight (g) in PM10 models

13.2) and PM2.5 (10.4 g, 95% CI: 6.4 - 14.4). Similar to Bell et al. (2008); Aguilera

et al. (2009) and Darrow et al. (2009), we report changes in birth weight per IQR

increase of the pollutant as unit changes in the pollutant may not be sensible for

all pollutants.

Proximity models for 20, 10, and 5 km distances showed results similar to the

county level models (Figures 2.4 and 2.5). During the entire gestational period,

there were birth weight reductions between 7 and 8 g for PM10 and 7 and 10 g

for PM2.5 per IQR increase in each pollutant.

Exposure during the third trimester showed significant results similar to the

county level models for both pollutants. PM2.5 showed birth weight reductions in

the second trimester at 20 and 10 km but not 5 km or the county level model. A
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Figure 2.5: Changes in birth weight (g) in PM2.5 models

similar phenomenon is seen for PM10 during the first trimester.

The categorical analysis showed that over the course of the entire pregnancy,

higher levels of pollution are worse with regard to birth weight than lower level.

During the entire pregnancy, a dose-response relationship can be seen for higher

levels of PM10 and PM2.5 (Figures 2.6 and 2.7). The highest levels of PM10 expo-

sure (≥ 23.4 µg/m3) during the entire pregnancy are associated with reductions

in birth weight of 22 - 25 g while medium levels (21.1 - 23.4 µg/m3) see reduc-

tions of between 12 and 18 g when compared to low levels (≤ 21.1 µg/m3) of

exposure (Figure 2.6). Comparatively, in the PM2.5 models, the highest levels of

exposure (≥ 15.5 µg/m3) during the entire pregnancy are associated with reduc-

tions in birth weight of 13 - 18 g while medium levels (14.1 - 15.5 µg/m3) see
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Figure 2.6: Changes in birth weight (g) with categorical exposure in PM10

reductions of between 6 and 8 g when compared to low levels (≤ 14.1 µg/m3) of

exposure (Figure 2.7).

The piecewise spline model produced similar results to the categorical analysis.

Figures 2.8 and 2.9 show plots of maternal exposure averaged over the course of

the entire pregnancy and the reduction in birth weight using the results from

the spline model at the 20-km level. A simple F-test to compare the piecewise

linear spline model with regression model containing a single continuous exposure

measure showed that the spline function did not provide a better fit for the data

(p=0.51).
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Figure 2.7: Changes in birth weight (g) with categorical exposure in PM2.5

We see very little change in model fit across the models with continuous pol-

lutant measures compared to the models with categorical measures and the spline

function. Figure 2.10 shows the values of the R2 statistic and the RMSE for all the

models. The red bars correspond to the linear model with the continuous expo-

sure measure. The blue and green bars correspond to the models with categorical

exposure and linear spline, respectively. The figures show that there almost no

change in the R2 value and little to no change in the RMSE.

Exposure to air pollution during pregnancy is an important public health issue.

Despite North Carolina’s consistent attainment of federal air quality standards,
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Figure 2.8: PM10 results from piece-wise linear spline model

we still see a stable and negative association between both pollutants and birth

weight. The county level model produced consistent results with the proximity

model for estimating reductions in birth weight during the entire pregnancy and

in the third trimester for both PM10 and PM2.5. There were some differences in

the first trimester for PM10 and the second trimester for PM2.5. In both cases,

there was a reduction in birth weight at the 20 km and 10 km level but not at the

county level or the 5 km level.

In the presence of potential measurement error, it is important to determine

whether these various measurements affect the exposure-response relationship.

County level models assume that air pollution exposure is spatially homogeneous
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Figure 2.9: PM2.5 results from piece-wise linear spline model

over a larger surface area than city-wide or neighborhood level models. If air

pollution concentrations are heterogeneous, with variability that increases as dis-

tance from the pollution source increases, then the associated measurement error

may also be larger in exposure measurements based on large geographic regions.

This misclassification in the pollution concentration could underestimate the true

effects of air pollution exposure in the above results.
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3

Hierarchical Measurement Error Model

3.1 Measurement Error Modeling

The use of Bayesian methods to account for measurement error is not new. A

recent study by Crooks et al. (2009) uses a Bayesian hierarchical model to inves-

tigate interpolation error on the relationship between ambient PM exposure and

cardiovascular health. Crooks et al. (2009) interpolate the ambient exposure mea-

sures for the study participants using spatial techniques. This produces posterior

distributions for both the predicted values of the pollutants and their associated

standard errors. These estimates are used as parameters in the distribution of

the ‘true’ exposure measurement. The authors show how the interpolation error

affects the exposure-response relationship. The authors showed that the signif-

icance of the observed associations are robust to the inclusion of measurement

error, but the magnitude of the effects is not.

Dominici et al. (2000) build a hierarchical regression model to investigate the

relationship between exposure to PM10 and mortality. Having personal data from
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five sites outside the Baltimore area, as well as exposure data from fixed mon-

itoring sites, the authors build a model to relate ambient exposure measures to

personal exposure measures. This model is used to produce personal exposure

measurements for subjects at a new Baltimore site which are then used in the

multi-stage relative-risk model. This study makes the assumption that the linear

relationship between the monitored ambient exposure and personal exposure mea-

sures from California, New Jersey, Massachusetts and the Netherlands is translat-

able to Maryland.

Gryparis et al. (2009) examined the association between levels of ambient PM

and birth weight while regarding the measurement error as a spatial misalign-

ment problem. The misalignment is produced in the different spatial locations

of the monitoring stations that measure ambient exposure and the health data

that measures the outcome. The authors consider several approaches for handling

the misalignment errors and compare the performance of these approaches with

different spatial models. They also rely on meteorological conditions, traffic activ-

ity, and other temporal factors to make exposure predictions, which showed that

spatial variability exists in the exposure measurements.

In a recent article by Peng and Bell (2008), an alternative approach involving

spatial misalignment has been presented. Peng and Bell (2008) use a spatial-

temporal model to quantify the spatial misalignment error. The authors use a

two-stage hierarchical Bayesian model for estimating the cardiovascular risk as-

sociated with PM components. Using monitored measurements from neighboring

counties, the authors build an underlying pollution process to provide an average

county-wide daily exposure measure. With both the county level data and the

interpolated county level measure, the spatial misalignment error and variance
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can be estimated. Results showed that the spatial misalignment error variance

depended on the number of monitors within a county.

Much of the recent work in exposure modeling in measurement error studies

includes the use of Bayesian hierarchical models. Richardson and Best (2003)

illustrate the use of Bayesian hierarchical models in investigating environmental-

health relationships with particular attention being given to exposure measure-

ment error. With the use of personal exposure monitors and other meteorological

covariates, McBride et al. (2007) use hierarchical techniques to build a model for

personal PM2.5 exposure. Other personal exposure models such as the proba-

bilistic NAAQS Exposure Model (pCNEM), Community Multi-scale Air Quality

(CMAQ), and Comprehensive Air Quality model with Extensions (CAMx) have

also been developed to estimate air pollution exposure. These exposure simula-

tors use a combination of stochastic modeling, and personal and environmental

characteristics to predict personal exposure (Zidek et al., 2003, 2007).

There are several other relevant approaches to account for the impact of mea-

surement error in exposure models (Richardson and Gilks, 1993; Sheppard and

Damian, 2000; Heid et al., 2004; Sheppard et al., 2005; Burstyn, 2010). Ivy et al.

(2008) use inverse distance weighting in a recent time-series study. Bell (2006)

explores various approaches including inverse distance weighting and kriging. Re-

gression calibration methods (Strand et al., 2006), kriging (Leem et al., 2006;

Finkelstein et al., 2003) and land use regression models (Briggs et al., 1997; Gilbert

et al., 2005) are also used as spatial interpolation techniques. Schwartz and Coull

(2003) and Zeka and Schwartz (2004) use non-Bayesian hierarchical modeling for

a multiple city study examining the effects of air pollution exposure and mortal-

ity. All of these approaches are limited by the use of central monitoring sites to
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measure personal exposure.

We use hierarchical, Bayesian, and spatial techniques to model the relation-

ship between adverse pregnancy outcomes and maternal exposure to ambient air

pollution, while accounting for the uncertainty attributed to the effects of mea-

surement error. We extend the approaches used by Dominici et al. (2000) and

Brauer et al. (2002), by including both spatial and non-spatial error terms, as

well as constant and non-homogeneous variances. With this technique, there are

two possibilities that will cause the variability of the exposure measure to increase.

The first occurs as the distance between the monitoring station and the residence

location increases and the second occurs for shorter gestational ages (see Section

3.4.1 below).

The model is formulated in three stages. First, we model the relationship be-

tween the birth weight response variable and average personal exposure in North

Carolina, along with other personal covariates. True personal exposure is viewed

as an unobserved covariate and is treated as a random variable. The second stage

of the model uses the observed ambient exposure measurements from monitoring

stations across the state and the modeled error terms to predict the true un-

observed average exposure reading. In the final stage, we model the error terms.

The error terms are constructed using multiple approaches, including independent

errors, non-constant variance errors and spatial error terms. A directed acyclic

graph of the model is shown in Figure 3.1. We combine the information on the

disease model, the measurement model, and the spatially varying error terms us-

ing Bayesian hierarchical modeling techniques similar to the multilevel structure

in Dominici et al. (2000) and Molitor et al. (2006, 2007).
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Figure 3.1: Directed acyclic graph (DAG) of the hierarchical model

3.2 Disease Model

In this section, we describe the disease model. We use the AQS and NCDBR data

described in Chapter 2 and now account for the effects of the measurement error

in both the pollutants.

Let s∗1, . . . , s
∗
m denote the locations of the monitoring stations. We partition

the state of North Carolina into j polygons so that each polygon j has a set of

associated residences, where j = 1, ..., J . The polygons are constructed such that

all residences within polygon j are closer to monitoring station j than any other

monitoring station in the state. The induced Voronoi tessellations for the PM10

and PM2.5 monitoring stations are show in Figure 3.2.

Define sji as the residence at the time of delivery for individual i, whose closest

monitor is s∗j , for all i = 1, ..., n. Y (sji) is the observed birth weight response,
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and we consider Y (sji) as the continuous outcome variable. Here we focus on

average exposure and define X̄(sji, ti) as the true but unobserved average personal

exposure level for a mother residing at location sji. X̄(sji, ti) is averaged over time

ti, where {t1, . . . , tn} corresponds to the length of the entire pregnancy for each

mother.

!
!

!

!

!!

!

!

!
!!

!

!!
!

!
!

!
!

!

!

!!

!

!!

!
!!

!

!

!

!!

!!

!

!

!!

!

!!

!
!

Voronoi Tessellations of PM10 Monitors

!

!

!

!

!

!

! !

!

!
!
!

!

!!
!!

!
!

!

!

!
!

!

!!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!
!

!
!

!

!

Voronoi Tessellations of PM2.5 Monitors

Figure 3.2: Veronoi tessellations for PM10 and PM2.5 monitors

The disease model for Y (sji) is given by:

Y (sji) = β0 + WT (sji) βW + X̄(sji, ti)βX + εY (sji) (3.1)
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for i = 1, . . . , n and j = 1, . . . , J where β0 represents the intercept term, βW and

βX are unknown parameters, WT (sji) is a vector of personal covariates that affect

birth weight, and εY (sji) is an error term that follows a normal distribution with

mean zero and variance σ2
Y . The covariates included in WT (sji) are the ones used

in the linear regression models in Chapter 2.

Equation 3.1 models the relationship between birth weight and maternal ex-

posure to ambient PM along with relevant personal covariates. In practice, the

observed ambient measure of air pollution at the county level or from the clos-

est monitoring station would be used. Instead of using this surrogate measure

of average personal exposure obtained from the monitoring stations, the true but

unobserved average personal exposure measure X̄(sji, ti) is used as the predictor.

We are especially interested in the parameter βX which can be interpreted as the

effect for the true average personal exposure measure, X̄(sji, ti).

3.3 Measurement Model

In the second stage of this multilevel model, we calculate estimates of personal PM

exposure based on site specific exposure measurements. We work in the Berkson

error environment for two reasons. Tosteson et al. (1989) show that measurement

error of this type is appropriate for personal exposure measurements obtained

from fixed monitoring sites. The second reason is for ease of computation as

classical-error models require the specification of the marginal distribution for the

observed exposure Z̄(s∗j , ti) (Gilks et al., 1996). This step becomes unnecessary

with this multilevel specification.

Let Z̄(s∗j , ti) be the average exposure measurements from the fixed site monitor

s∗j , over the specified period ti. We assume that Z̄(s∗j , ti) is a surrogate measure

46



for X̄(sji, ti). Using a simple linear specification, we model the relationship of

X̄(sji, ti) given Z̄(s∗j , ti) as

X̄(sji, ti) = Z̄(s∗j , ti) + εX(sji, s
∗
j , ti). (3.2)

Equation 3.2 uses the observed measurements Z̄(s∗j , ti) and the spatially vary-

ing error terms εX(sji, s
∗
j , ti) to predict the true unobserved exposure X̄(sji, ti) in

an additive Berkson error environment. We assume that the error terms εY (sji)

in (3.1) are independent of the measurement errors, εX(sji, s
∗
j , ti). A consequence

of the specification of this measurement model is that Y (sji) is conditionally in-

dependent of Z̄(s∗j , ti) given X̄(sji, ti). The third stage of the model requires

specification of the measurement error terms εX(sji, s
∗
j , ti). Although a more gen-

eral specification than (3.2) might be preferred, we are limited to the monitoring

station data provided by the USEPA and as a consequence have no validation

data available to help with calibration.

3.4 Error Model

The error terms in (3.2) are assumed to capture the unmodeled spatial variability

in the observed personal exposure measurements. We allow four possible scenarios

for capturing this uncertainty. These four models differ based on the variance and

the spatial dependence structure. Figure 3.3 illustrates the four model possibil-

ities. In Model I, the measurement errors take on a normal distribution with a

constant variance term. Using a random error term in the measurement model has

been considered in classical error models by Molitor et al. (2006); Dominici et al.

(2000) and Cakmak et al. (1999) and in Berkson error models by Gryparis et al.

(2009). Model II specifies an updated error term with a non-constant variance
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that is constructed as a function of the length of each mother’s pregnancy ti, and

the distance between the maternal residence sji and the monitoring station s∗j .

Figure 3.3: Variance/Covariance Structure of Error Models

Models III and IV mirror the first two models but now have spatial dependence

in the distribution of the error terms. We use random effects to capture the

associated spatial measurement error for each mother. In Model III, the random

effects have a standard constant variance term. In Model IV, we specify an error

term with a variance that is a function of the length of each mother’s pregnancy

ti, and the distance between sji and s∗j . Similar to Model II, shorter pregnancies

and mothers further away from the monitoring station are expected to have higher

levels of uncertainty in this model specification. We assign a spatial random effect

to each census tract to ease the computational burden. These random effects are
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intended to capture the spatial similarity in the measurement error between census

tracts and are specified conditionally, given all of their neighbors. These models

are referred to as conditional autoregressive (CAR) models (Besag et al., 1991;

Banerjee et al., 1993).

We now more explicitly detail the error models.

3.4.1 Model I: Random Error

The random error term εX represents the deviations associated in the relationship

between the true exposure measurement X̄(sji, ti) and the observed monitoring

station measurement Z̄(s∗j , ti). Here, we assume that εX has a normal distribution

with mean zero a constant variance σ2
ε , given by

εX ∼ N(0, σ2
ε ). (3.3)

By using σ2
ε as the associated error variance, this measurement error model as-

sumes that the variation associated with the measurement error is homogeneous

across all locations.

3.4.2 Model II: Non-constant Variance

In Model II, we specify the mean spatial error structure as

ε̄X(sji, s
∗
j , ti) ∼ N

(
0,
σ2
ε

ti
exp(φ|sji − s∗j |)

)
(3.4)

where φ is an unknown range parameter representing the rate at which the vari-

ance increases as distance from monitoring station increases, and σ2
ε

ti
is the scaled

variance with weights that depend on the length of the entire pregnancy. With

this manner of model specification, longer gestational periods will provide more

49



measured pollution values and reduce some of the uncertainty in the mean spatial

error. The parameter φ is used to characterize the rate of growth of the variability.

Through the specification in Equation 3.4, the average true exposure measure-

ment depends on the average monitored pollution values, as well as an average

error term constructed from the distance between the residence and the monitor-

ing station and the length of the pregnancy. Note that here we have defined error

terms whose uncertainty depends on the distance between sji and s∗j . However,

there is no spatial process as there is no covariance function.

3.4.3 Model III: Random Effects

We believe that the measurement errors in exposure should be spatially associated

in the sense that if two mothers live near to each other we would expect that their

measurement errors in exposure would tend to be similar. To capture the spatial

similarity in the measurement error, we include spatial random effects. The use

of random effects is potentially beneficial as they allow us to account for the

underlying spatial dependence in the error terms.

The random effects are introduced to capture the spatial similarity in the

measurement error between census tracts. Individual level random effects for

each mother are preferable but impractical. With over 100,000 women in both

the PM10 and PM2.5 datasets and the necessary matrix inversion required for

model updating, individual level effects proved computationally intensive. To

ease the computational burden, we assign a spatial random effect to each census

tract.

There are 1,563 census tracts in North Carolina. The variability in average

birth weight by census tract is shown in Figure 3.4. From 3.4, we notice that the
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census tracts in North Carolina have irregular shapes and sizes.

Average Birthweight (g)

2615.3 - 3252.9

3253.0 - 3328.3

3328.4 - 3393.0

3393.1 - 3811.0

No Data

Figure 3.4: Average birth weight quartiles for NC census tracts, 2000-2002

The census tract level random effects are specified conditionally, given all of

their neighbors and use a CAR structure (Besag et al., 1991; Banerjee et al.,

1993). Let wk denote the spatial random effect for census tract k. We write the

measurement model in (3.2) as

X̄(sji, ti) = Z̄(s∗j , ti) + wki

where wki is the deviation of Z̄(s∗j , ti) for census tract k, with wki = wk if individual

i is in census tract k.

The conditional distribution of the area-specific random effects is given by

wk|w−k ∼ N
(∑

l δklwl∑
l δkl

,
σ2
w∑
l δkl

)
(3.5)

where δkl = 1 if tract l is contiguous with tract k and 0 otherwise, and σ2
w is the

spatial variance component.
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3.4.4 Model IV: Non-constant Variance Random Effects

For the last model we combine the ideas from Models II and III. We write the

measurement model in (3.2) as

X̄(sji, ti) = Z̄(s∗j , ti) +

√
exp(φ|sji − s∗j |)

ti
wki (3.6)

where φ is a measure of the rate at which the variance will decrease and wki is

the census tract random effect with the CAR structure previously described in

Equation 3.5. Notice that the variance in Equation 3.6 depends on the distance

between sji and s∗j , as well as the length of gestation ti in a similar manner to

Equation 3.4.

3.5 Bayesian Procedures

The multilevel model is described through the disease model in stage 1, the mea-

surement model in stage 2, and the four possibilities for the error model in the

third and final stage. The Bayesian hierarchical modeling is completed with prior

specifications for the unknown parameters β0, βW , βX , σY , σε, and φ. Typically,

vague normal priors centered at zero with inflated variances are adopted for the

regression coefficients, and noninformative inverse gamma priors are assumed for

the variance parameters. We use empirically driven priors to overcome identifia-

bility problems with jointly estimating σ2
Y , σ2

ε , and φ; see Zhang (2004) and Sahu

et al. (2006) for details and examples.

The regression coefficients, β0, βW , and βX were assigned normal priors cen-

tered at the OLS estimates with large variances (104). Inverse gamma priors were

used for the variance parameters σY and σε. For σY and σε we used IG(ν,η),
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where ν = 2 and η = 0.5 ∗MSE. This prior specification was centered on the

residual mean square error term from the OLS regression analysis in Chapter 2.

In the models with the non-homogeneous variance component, Models II and IV,

a discrete uniform prior is used for φ with φ ∼ U(0, 1).

We generate samples from the posterior distribution via MCMC method Gibbs

sampling. We ran two separate chains starting from different initial values. We

performed sensitivity analyses with various values for the hyperparameters and

the results yielded very robust posteriors. The MCMC algorithm was run for

2,000 burn-in iterations followed by another 20,000 iterations. With only linear

terms in the model, chains of 20,000 iterations were sufficient for convergence. As

all of the models being fit are linear and expected to be well-behaved, we assess

convergence by visual plots of posterior means of the parameters. We computed

summaries of the posterior distribution for all parameters of interest.
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4

Application to Birth Weight

We illustrate the performance of the four measurement error models described

in Section 3.4 using the NCDBR data and AQS data for PM10 and PM2.5. A

description of these two datasets is given in Chapter 2. We restricted the dataset

to include singleton births characterized by no congenital anomalies or reported

alcohol consumption. Further restrictions included only women between ages

15 and 44 years who self-declared as non-Hispanic white, non-Hispanic black,

or Hispanic. Births with gestation less than 32 and greater than 44 weeks, birth

weight less than 1000g and greater than 5500g, unlikely birth weight and gestation

combinations (Alexander et al., 1996), and mothers with any missing data on

covariates were excluded. Approximately 5% of the women in this restricted

dataset lived further than 50 km away from a monitoring station. We removed

these women from the dataset, due to the increased uncertainty associated with

this small group.

After restricting the PM10 and PM2.5 datasets, there were 171,415 and 195,848
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subjects, respectively. The number of the births by census tract for PM10 can be

seen in Figure 4.1, with births occurring in 1,389 census tracts. Figure 4.2 shows

the number of observations in each census tract for the PM2.5 dataset with births

occuring in 1,464 census tracts.

Number of Observations

1 - 50
51 - 75
76 - 125
126 - 175
176 - 1491

No Data

Figure 4.1: Number of observations by census tract in PM10 dataset

We use individual level covariates in all the models and are interested mainly in

the βX coefficient of the unobserved true PM concentration levels. This term rep-

resents the effect estimate of exposure on birth weight during the entire pregnancy.

In all the models, birth weight is a continuous outcome variable and is measured in

grams. The individual level covariates include gestational age (weeks), maternal

race/ethnicity (non-Hispanic black, non-Hispanic white, or Hispanic), maternal

education (< 9, 9-11, 12, 13-15, > 15 years), maternal age (15-19, 20-24, 25-29,

30-34, 35-39, 40-44 years), trimester prenatal care began (None, first, second,

third), tobacco use during pregnancy (yes or no), marital status (married or un-

married), year of birth, firstborn (yes or no), and infant sex (male or female). The
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No Data
1 - 50
51 - 75
76 - 125
126 - 175
176 - 1494

Figure 4.2: Number of observations by census tract in PM2.5 dataset

Bayesian hierarchical models are fit with MCMC method Gibbs sampling.

4.1 Model Results

Table 4.1 shows the ordinary least squared (OLS) results with point estimates and

95% confidence intervals for PM10 and PM2.5 obtained by using the monitored

estimates as measures of personal exposure. These results prove to be similar to

those in the preliminary analysis from Chapter 2. From Table 4.1 we can see that

there is still a negative correlation between birth weight and exposure to both

PM10 and PM2.5 during the entire pregnancy.

4.2 Validation

To compare the fit of the spatial models, we computed estimates of model perfor-

mance: the deviation information criteria (DIC), the root mean square predictive

error (RMSE), and the empirical coverage of the 95% predictive intervals. For the

56



Table 4.1: OLS Results for NCDBR data.

PM10 PM2.5

Estimate (95% C.I.) Estimate (95% C.I.)

Gestation (wks) 170.9 (169.67,172.20) 170.12 (169.64,171.98)
Male 127.91 (123.86,131.97) 128.44 (124.65,132.23)
Smoker -199.26 (-205.89,-192.63) -196.32 (-202.41,-190.23)
Not Married -33.84 (-39.36,-28.32) -32.73 (-37.88,-27.58)
Maternal Education
< 9 years -47.26 (-58.03,-63.21) -48.77 (-58.73,-38.80)
9-11 years -32.97 (-39.93,-26.01) -32.57 (-38.99,-26.14)
12 years
13-15 years 25.39 (19.56,31.22) 25.64 (20.17,31.11)
> 15 years 29.89 (23.59,36.19) 30.36 (24.45,36.26)
Race/ Ethnicity
NHW
NHB -172.21 (-177.71,-166.72) -177.39 (-182.53,-172.25)
HISP -70.93 (-78.65,-63.21) -67.85 (-75.11,-60.60)
Maternal Age
15-19 years -29.92 (-38.48,-21.36) -31.08 (-39.02,-23.13)
20-24 years -22.90 (-28.75,-17.04) -23.68 (-29.15,-18.20)
25-29 years
30-34 years 14.36 (8.51,20.21) 10.91 (5.42,16.40)
35-39 years 4.76 (-2.98,12.49) 2.42 (-4.79,9.64)
40-44 years -30.78 (-47.09,-14.47) -30.93 (-46.12,-15.74)
Firstborn -125.95 (-130.45,-121.44) -125.44 (-129.66,-121.21)
Year of Birth
2000
2001 -12.00 (-16.85,-7.14) -11.66 (-16.26,-7.06)
2002 -20.51 (-25.57,-15.44) -21.54 (-26.68,-16.39)
Prenatal Care
None -40.27 (-64.61,-15.93) -40.14 (-62.59,-17.69)
First Trimester
Second Trimester -22.58 (-29.36,-15.81) -19.51 (-25.72,-13.31)
Third Trimester -37.96 (-53.28,-22.63) -40.99 (-54.81,-27.16)
PM Exposure -2.26 (-2.84,-1.69) -4.60 (-5.84,-3.36)

RMSE and the empirical coverage of the 95% predictive intervals, we used a hold

out dataset of 17,142 and 19,585 random subjects for PM10 and PM2.5, respec-

tively. To show how the spatial measurement error models improve the predictive
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performance, we also included results from an ordinary least squares (OLS) model

with no spatial error corrections.

Across all four of the measurement error models, results for the included co-

variates were comparable to the OLS results. Estimates for the βX coefficient of

all models for PM10 and PM2.5 are reported in Table 4.2. For the OLS models,

we report the 95% confidence intervals, and for the Bayesian hierarchical models

we report 95% credible intervals. Table 4.2 also reports the width of the 95%

credible and confidence intervals, the RMSE and the empirical coverage of the

95% confidence or credible intervals.

Table 4.2: Results for PM models.

Model β̂X (95% C.I.) C.I. Width RMSE Coverage (%)

OLS -2.26 (-2.84, -1.69) 1.15 423.8 92.8
Model I -2.27 (-2.67, -1.87) 0.80 423.6 93.2

PM10 Model II -2.27 (-2.67, -1.87) 0.79 421.8 93.8
Model III -2.03 (-2.52, -1.57) 0.95 419.0 93.2
Model IV -2.26 (-2.59, -1.93) 0.66 395.2 96.4

OLS -4.60 (-5.84, -3.36) 2.48 423.3 94.2
Model I -4.60 (-5.44, -3.76) 1.68 423.2 94.6

PM2.5 Model II -4.59 (-5.43, -3.76) 1.67 425.0 95.0
Model III -4.44 (-5.27, -3.36) 1.64 418.8 94.8
Model IV -4.46 (-5.17, -3.74) 1.43 387.5 96.7

Table 4.2 shows that the βX coefficient is significant in all models for both

PM10 and PM2.5. The βX coefficients remain relatively constant across all the

models with the exception of a change in Model III for both PM10 and PM2.5.

In Models I-IV we see that the width of the credible intervals is smaller than the

confidence intervals from the OLS model.

From Table 4.2, we see that accounting for the spatial uncertainty in the

models improves the predictive performance of the models. Adding the spatial
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random effects reduces the RMSE for both pollutants in Models III and IV, with

Model IV having the tightest credible intervals, the lowest RMSE, and the highest

empirical coverage of all the models.

4.3 Spatial Random Effects

In Figures 4.3 and 4.4, respectively, we present maps of the posterior means of

the spatial random effects obtained for the PM10 Models III and IV. For both

maps the lower values are represented by the lighter shades and larger expected

spatial effects are given by darker shades. The maps produce smoothed spatial

patterns of the random effects with Model IV providing more smoothing compared

with Model III. Spatial maps of the corresponding posterior standard errors of the

spatial random effects are shown in Figures 4.5 and 4.6.

Spatial Random Effects
No Data
-24.35 - -7.50
-7.49 - -5.00
-4.99 - -2.50
-2.49 - 0.00
0.01 - 2.50
2.51 - 5.00
5.01 - 7.50
7.51 - 26.74

Figure 4.3: Posterior mean of spatial random effects for PM10 Model III
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Spatial Random Effects
No Data
-7.98 - -7.50
-7.49 - -5.00
-4.99 - -2.50
-2.49 - 0.00
0.01 - 2.50
2.51 - 5.00
5.01 - 7.50
7.51 - 9.55

Figure 4.4: Posterior mean of spatial random effects for PM10 Model IV

Much of the similarities between Figures 4.3 and 4.4 lies in the mountains

of North Carolina, located on the Western side of the state. The most likely

cause of this similarity is due to the fact that this part of the state has the

fewest PM10 monitors. As the random effects represent the variability associated

with the exposure measurements, we see the similarity in uncertainty where there

are fewer monitoring stations. There are some distinct differences in the spatial

structure for the random effects between the two models. Model III, the model

with the constant variance, has more extreme positive and negative values for the

spatial random effects, than those observed for Model IV. The range of the spatial

random effects is from -24.4 to 26.7 in Model III and -8.0 to 9.5 in Model IV.

In Figures 4.7 and 4.8, respectively, we present maps of the posterior means

of the spatial random effects obtained for the PM2.5 Models III and IV. Spatial

maps of the corresponding posterior standard errors of the spatial random effects
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Random Effects Standard Error
No Data
3.65 - 7.00
7.01 - 8.00
8.01 - 9.00
9.01 - 19.25

Figure 4.5: Posterior standard error of spatial random effects for PM10 Model
III

Random Effects Standard Error
No Data
5.11 - 7.00
7.01 - 8.00
8.01 - 9.00
9.01 - 17.86

Figure 4.6: Posterior standard error of spatial random effects for PM10 Model
IV

are shown in Figures 4.9 and 4.10. We see fewer differences between Models III

and IV for the random effects in the PM2.5 dataset.
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Spatial Random Effects
No Data
-3.99 - -0.70
-0.69 - 0.00
0.01 - 0.70
0.71 - 3.48

Figure 4.7: Posterior mean of spatial random effects for PM2.5 Model III

Spatial Random Effects
No Data
-3.91 - -0.70
-0.69 - 0.00
0.01 - 0.70
0.71 - 3.30

Figure 4.8: Posterior mean of spatial random effects for PM2.5 Model IV
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Random Effects Standard Error
No Data
1.23 - 2.00
2.01 - 2.20
2.21 - 2.40
2.41 - 2.60
2.61 - 5.28

Figure 4.9: Posterior standard error of spatial random effects for PM2.5 Model
III

Random Effects Standard Error
0.00 - 1.76
1.77 - 2.60
2.61 - 2.80
2.81 - 3.00
3.01 - 3.20
3.21 - 6.78

Figure 4.10: Posterior standard error of spatial random effects for PM2.5 Model
IV

We note that across all four years of air pollution data used, there are always

more active PM2.5 monitors than PM10 monitors. Particularly in 2001 there were
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29 PM10 monitors and 38 PM2.5 monitors while in 2002 there were 27 PM10

monitors and 37 PM2.5 monitors.

We now present maps of the posterior means of the imputed air pollution

exposure measurements by census tract.

Imputed Pollution

1.0 - 12.0
12.1 - 16.0
16.1 - 20.0
20.1 - 24.0
24.1 - 28.0
28.1 - 49.0

No Data

Figure 4.11: Expected average PM10 values at the census tract level in Model
III

Figures 4.11 and 4.12 show the average imputed PM10 values for Models III

and IV, respectively and Figures 4.13 and 4.14 show the average imputed PM2.5

values for Models III and IV, respectively.

For each mother, we have calculated her true exposure measure as a function

of the observed measurements from the monitoring station closest to her and the

corrected error terms in the form of random effects from Models III and IV. We

then took the average values across each census tract to produce the maps in

Figures 4.11 - 4.14.

We can see more spatial heterogeneity in Figure 4.12 on the western side of the
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Imputed Pollution
No Data
12.2 - 16.0
16.1 - 20.0
20.1 - 24.0
24.1 - 28.0
28.1 - 32.9

Figure 4.12: Expected average PM10 values at the census tract level in Model
IV

Imputed Pollution
No Data
8.3 - 13.0
13.1 - 14.0
14.1 - 15.0
15.1 - 16.0
16.1 - 19.3

Figure 4.13: Expected average PM2.5 values at the census tract level in Model
III

state when compared to Figure 4.11. Adding information based on distance from

the station and length of pregnancy improved the fit of the model and also added
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Imputed Pollution

13.1 - 14.0

No Data
10.8 - 13.0

14.4 - 15.0
15.1 - 16.0
16.1 - 17.3

Figure 4.14: Expected average PM2.5 values at the census tract level in Model
IV

some spatial variation to the areas with fewer PM10 monitoring stations. We see

very little difference between Models III and IV for PM2.5 which is supported by

the results in Table 4.2.
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5

A Generalized Measurement Error Model

5.1 Exposure Metrics

We have explored the relationship between average exposure over various windows

of pregnancy and birth weight. We recognize that using average values will not

allow us to differentiate between consistently moderate levels of exposure and low

levels of exposure with occasional peaks. We consider using exposure measures of

air pollution other than averages to investigate whether effects of extreme levels

of pollution contribute to adverse pregnancy outcomes. By generalizing the hier-

archical measurement error model, we can now implement these new metrics into

the model specification.

To describe the generalized model, we begin with the first stage of the hierar-

chical model: the disease model as described in Equation 3.1. We relate personal

ambient exposure to birth weight using the following model:

Y (sji) = β0 + WT (sji) βW + g({X(sji, ti)})βX + εY (sji), i = 1, . . . , n, (5.1)

where βW and βX are the unknown parameters, WT (sji) is a vector of personal
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covariates that affect birth weight, and εY (sji) ∼ N(0, σ2
Y ) is a random normal

error term. For each individual i, the function g is carried out over the set of

unobserved exposure readings, {X(sji, ti)} over the duration of the pregnancy ti.

The function g can now be a sum, the count of days above a threshold or any

function of interest.

The second stage specification relates the set of unobserved exposure readings,

{X(sji, ti)}, to the observed ambient exposure readings as follows:

{X(sji, ti)} = {Z(s∗j , ti) + εX(sji, s
∗
j , ti)}. (5.2)

In Equation 5.2 we take the modeled error term and add the value to each of

the observed ambient concentrations. In this manner the error is specifically

attributed to the exposure measurements Z(s∗j , ti) and not just to the function

of the measurements. This is a more flexible measurement error process than

that described in Chapter 3. With this multilevel specification of the generalized

model, we avoid having to use the delta approximation method for the variance

of g({X(sji, ti)}).

For the final stage of the model, we can now use any of the error constructions

given in Chapter 3. For illustration we give the details for the average exposure

metric that was used in the previous analyses, as well as other metrics based on

the number of days an individual was above a threshold λ.
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5.1.1 Average Exposure Metric

Assume that the function g represents an average concentration measure of per-

sonal exposure. Using Equation 5.2, we can represent this metric by:

X̄(sji, ti) =
1

ti

∑
{X(sji, ti)} (5.3)

= Z̄(s∗j , ti) + εX(sji, s
∗
j , ti). (5.4)

The expression in Equation 5.4 is the same expression given in the previous hier-

archical model (Equation 3.2).

5.1.2 Exceedance Exposure Metric

Assume that the function g represents the proportion of days over a certain thresh-

old λ. We use proportion to account for different gestational lengths with indi-

vidual pregnancies. We use this metric to give a measure of the amount of poor

air quality a mother is exposed to. We explore the hypothesis that exposure to

higher levels of pollution may have a more harmful effect on birth weight. An

example of an appropriate choice for λ could be the NAAQS set for NO2 by the

USEPA. We define the metric as:

g({X(sji, ti)}) =
1

ti

∑
1({X(sji,ti)}>λ)

where 1({X(sji,ti)}>λ) is an indicator of the number of days personal exposure was

above λ. Replacing {X(sji, ti)} with Equation 5.2, we get

g({X(sji, ti)}) =
1

ti

∑
1({Z(s∗j ,ti)+εX(si,s∗j ,ti)}>λ).

In addition to considering the number of days exposure was above a threshold

we could also consider a metric that takes into account the magnitude of the
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concentration values, as well as the duration of these high air pollution days. We

define such a metric by

g({X(sji, ti)}) =
1

ti

∑
[1({X(sji,ti)}>λ) × ({X(sji, ti)} − λ)].

This metric gives the amount of total exposure above the threshold λ.

The previous applications analyzed the ambient pollutants PM10 and PM2.5.

We turn our attention now to models that are illustrated using the criteria pollu-

tant nitrogen dioxide (NO2). The detailed daily measurements of NO2 provided

by the AQS data makes this pollutant suitable for applications requiring a more

temporally resolved exposure measure. We develop a template for the hierar-

chical measurement error model to allow for functions of the modeled exposure

measure beyond average concentration levels. These other exposure metrics can

now be considered when analyzing the relationship between maternal exposure to

air pollution and birth weight.

5.2 NO2 and Birth Weight

NO2, like PM10 and PM2.5, is another criteria pollutants monitored by the

USEPA. Sources of NO2 include vehicle emissions from cars and trucks and indus-

try emissions from powerplants and mechanical equipment. As a result of these

sources, elevated levels of NO2 are observed near high-traffic roadways (Rijnders

et al., 2001; Rotko et al., 2001; Ramrez-Aguilar et al., 2002). Other contributors

of NO2 include environmental tobacco smoke, gas stoves, and kerosene heaters.

Both indoor and outdoor sources of NO2 exposure have been linked to a num-

ber of adverse effects primarily associated with the respiratory system (Blomberg

et al., 1997; Monn, 2001; Latza et al., 2009).
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Several studies have shown a relationship between maternal exposure to NO2

and adverse birth outcomes. Bell et al. (2007) showed that NO2 exposure during

the entire pregnancy was associated with a decrease in birth weight and Mannes

et al. (2005) showed a reduction in birth weight during all three trimesters. Ha

et al. (2001) showed a birth weight reduction during the first trimester of exposure

and increased odds for LBW during the first and third trimester. Other outcomes

including SGA, PTD, sudden infant death syndrome and IUGR have also been

associated with NO2 exposure during pregnancy (Liu et al., 2003a,b; Ritz et al.,

2006; Liu et al., 2007; Darrow et al., 2009).

Modeling exposure during pregnancy is plagued by the fact that it is still

unclear how exposure may affect pregnancy outcomes. The key issue of whether

exposure should be measured as chronic or extreme exposures is important when

characterizing the exposure measurement. With the detailed temporal resolution

given by NO2, we develop exposure metrics to investigate both chronic and peak

estimates of exposure. These estimates can then be used in the regression models

or the measurement error models described in Chapter 3.

5.3 Summary of NO2 Data

The NO2 dataset is taken from the AQS data provided by the USEPA for 1999-

2003. There were 3 active monitoring stations for the NO2 data in North Carolina;

2 of which were located in Charlotte and the third in Winston-Salem. The stations

provided measurements on a daily scale for the mothers in the study. The average

NO2 levels were approximately 0.016 ppm, which is well below the current long

term federal standard of 0.053 ppm. Concentration levels over the study time

period had minimal temporal variation (standard deviation = 0.002) and a short
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range from 0.01 to 0.02 ppm.

We linked the NCDBR data with the NO2 dataset and ran preliminary models

to assess the exposure-birth weight relationship. We employed the exclusion cri-

teria used for the merged PM datasets and calculated average trimester and preg-

nancy estimated of NO2 exposure. Our final sample size consisted of n=34,522

women. We ran linear regression models using the same covariates as those used

in the PM models and the results are shown in Table 5.1. Preliminary analyses of

NO2 showed a reduction in birth weight during the first and third trimesters by

25.1 g (95% CI: 11.78 - 38.6) and 16.35 g (95% CI: 9.58 - 23.1), respectively and a

reduction of 12 g (95% CI: 3.18 - 21.87) during the entire pregnancy. Reductions

are reported per IQR increase in NO2.

5.4 Metrics Results with NO2 Data

We ran OLS regression and hierarchical measurement error models with the NO2

data. We present the results for the number of days above the third quartile of

average NO2 exposure. The results for the βX coefficient of the exceedance metric

for all the models is given in Table 5.2 along with the RMSE and the empirical

coverage of the 95% predictive interval.

Across all four of the measurement error models, the βX coefficients were

consistent and comparable to the OLS results. For the OLS models, we report

the 95% confidence intervals and for the Bayesian hierarchical models we report

95% credible intervals. Similar to the PM results, Models I-IV show that the

width of the credible interval is smaller than the confidence intervals from the

OLS model. Adding the spatial random effects to Models III and IV reduces the

RMSE for both pollutants. In the hierarchical models, the DIC is the same for
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Table 5.1: OLS Results for NO2 data.

Estimate (95% C.I.)

Gestation (wks) 168.99 (166.21,171.77)
Male 120.621 (117.84,123.40)
Smoker -185.77 (-202.28,-169.26)
Not Married -37.53 (-50.03,-25.03)
Maternal Education
< 9 years -30.25 (-51.41,-9.09)
9-11 years -34.48 (-50.30,-18.65)
12 years
13-15 years 22.07 (7.69,36.44)
> 15 years 18.74 (3.95,33.53)
Race/ Ethnicity
NHW
NHB -176.41 (-188.88,-163.94)
HISP -70.06 (-86.21,-53.91)
Maternal Age
15-19 years -27.07 (-46.69,-7.45)
20-24 years -25.66 (-39.39,-11.92)
25-29 years
30-34 years 15.09 (2.17,28.02)
35-39 years 28.15 (11.69,44.61)
40-44 years -52.39 (-84.22,-20.57)
Firstborn -123.08 (-133.09,-113.08)
Year of Birth
2000
2001 -9.38 (-23.77,5.02)
2002 -16.65 (-31.73,-1.57)
2003 -25.51 (-42.97,-8.06)
Prenatal Care Began
None -44.25 (-89.76,1.25)
First Trimester
Second Trimester 1.54 (-13.79,16.88)
Third Trimester -61.22 (-98.54,-23.90)
NO2 Exposure -4457.79 (-1131.70,-7783.87)

Models I and II (DIC=536,871) and again for Models III and IV (512,064).
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Table 5.2: Results for βX in NO2 models with exceedance metric

Model β̂x (95% C.I.) C.I. Width RMSE Coverage (%)

OLS -0.28 (-0.50, -0.07) 0.43 423.8 90.7
Model I -0.29 (-0.43, -0.13) 0.30 422.8 91.7
Model II -0.28 (-0.43, -0.14) 0.29 421.3 92.3
Model III -0.29 (-0.44, -0.13) 0.31 416.8 94.3
Model IV -0.29 (-0.44, -0.13) 0.31 419.0 95.7
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6

Conclusion and Future Work

We propose a flexible modeling technique that allows us to incorporate measure-

ment error when estimating the effects of air pollution exposure on birth weight

in situations where exact measures of personal exposure are unavailable. We in-

troduce error both spatially and non-spatially, and with a constant variance or a

more sensible option of a variance that places more uncertainty on those resid-

ing farther away from the monitoring station. The birth weight response variable

depends on imputed exposure predictors constructed from the error terms and ex-

posure measurements from monitoring stations, and on individual level maternal

and fetal characteristics.

The hierarchical measurement error models are illustrated with the use of the

NCDBR and AQS datsets. We also develop a more generalized version of the

hierarchical model that can accommodate exposure metrics other than average

concentration levels. In the current analysis we use birth weight as the health end

point and criteria pollutants PM10, PM2.5 and NO2 as exposure variables. The
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modeling framework can certainly be extended to future investigations of other

health outcomes and pollutants.

Our findings support the growing body of literature which shows evidence that

maternal exposure to air pollution has a negative association with birth weight.

All models in our analyses showed a negative correlation between air pollution

exposure and birth weight with PM2.5 having a larger effect on birth weight than

PM10. While our findings are similar to other air pollution and birth weight

studies, unlike other studies, we do not assume that the exposure readings from

the monitors located near the mother’s residence are exact measures of personal

exposure. We acknowledge the limitation that monitoring station data provides

only crude estimates of outdoor exposure.

In our analysis, we compare five models. We use the monitored exposure

measurement in a standard regression model. We then construct four hierarchical

models: one with a constant variance, another with a variance term that was

a function of each mother’s gestational period and the distance of her residence

from the monitoring station and spatial models with constant and non-constant

variances. Although the models yielded estimates of βX that were similar to

each other, the measurement error models produced tighter credible intervals for

the parameter of interest. Model prediction was also improved by use of the

measurement error terms.

The common problem with trying to study the effects of maternal exposure

to air pollution is the limitation of having to use observed exposure measure-

ments collected from a small number of sources. This work addresses the issue

by attempting to better understand the relationship between maternal exposure

to air pollution and birth outcomes in North Carolina, with the use of statistical

76



models that incorporate Bayesian hierarchical modeling techniques to account for

the associated measurement error.

The current research could be extended in different applications. For the PM

analysis our work calculated average weekly exposure as daily data was unavailable

for most of the monitoring stations. The stations measured PM daily, every three

days, or every six days. We can further extend the computational methods from

the measurement error model to impute the missing days of air pollution data.

Similar to the exposure error imputation, we would use the available exposure

measures as surrogates for the missing days of data. The missing data would

be accounted for by assuming that each missing measurement is a function of

the closest daily measure and an error term that increases as the time from the

nearest recorded measurement increases. This missing data error term is now

incorporated into a temporal component of the model and is independent of the

exposure measurement error.

In trying to understand the effects of air pollution on human health, we realize

that people are generally not exposed to one pollutant at a time. We also recog-

nize that many of these pollutants are correlated with each other. Adding more

pollutants to the models could allow us to explore the potential confounding of

multiple pollutants.

Other more complicated error models can be considered for the distribution

of the spatial structure. For example, a process convolution model could be used

as an alternative to the random effects model given in Model IV. The choice for

Model IV was based on comparability with Models II and III. In the process

convolution model, we define the second stage as follows
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X̄(sji, ti) = Z̄(s∗j , ti) +

√
σ2
ε

ti
exp(φ|sji − s∗j |) w(sji) (6.1)

where

w(s) =
J∑
j=1

l(s− s∗j)z(s∗j). (6.2)

If we model each z(s∗j) as independent draws from a standard normal N(0,1) dis-

tribution, we can show that w(s) is a Gaussian process through kernel convolution

with

E(w(s)) = 0

V ar(w(s)) =
M∑
j=1

l2(s− s∗j)

Cov
(
w(s), w(s′)

)
=

M∑
j=1

l(s− s∗j)l(s
′ − s∗j).

To get the V ar(w(s)) to be 1, we scale l(s− s∗j) so that
∑M

j=1 l
2(s− s∗j)=1. Let

l(s− s∗j) = kj(s− s∗j)
/√√√√ M∑

j=1

k2j (s− s∗j)

where kj(s− s∗j) decreases as |s− s∗j | increases.

There are some techniques for handling computation on large spatial datasets

that should be mentioned. Some include replacing the process w(s) with an ap-

proximation that corresponds to realizations in a lower dimensional subspace using

kernel convolutions, moving averages, low rank-splines or basis functions (Higdon,
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1998; Wikle and Cressie, 1999; Lin et al., 2000; Kamman and Wand, 2003; Ver Hoef

et al., 2004). Alternatively, other approaches involve approximating the likelihood

(Stein, 1999; Fuentes, 2007; Paciorek, 2007) or approximating the process model

by a Markov random field (Rue and Tjelmeland, 2002; Rue and Held, 2006).

Another useful example is proposed by Banerjee et al. (2008). Their method

uses predictive process models to facilitate computation. This eliminates the need

to consider choices of kernels or basis functions and instead builds upon already

established kriging ideas. The predictive process model takes the high dimensional

process w(s) and projects it onto a lower dimensional subspace generated from

realizations of the original process w(s). Implementing this modeling technique

uses knot configuration to produce the predictive process w̃(s) that is derived from

the original w(s).
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