Technology Impacts of CMOS Scaling on
Microprocessor Core Design for Hard-Fault Tolerance
in Single-Core Applications and Optimized Throughiou
Throughput-Oriented Chip Multiprocessors
by
Fred Allison Bower lIlI

Department of Computer Science
Duke University

Date:

Approved:

Professor Daniel J. Sorin, Advisor

Dr. Steven W. Hunter

Professor Alvin R. Lebeck

Professor Christopher L. Dwyer

Professor Landon P. Cox

Dissertation submitted in partial fulfillment of
the requirements for the degree of Doctor
of Philosophy in the Department of
Computer Science in the Graduate School
of Duke University

2010



ABSTRACT

Technology Impacts of CMOS Scaling on
Microprocessor Core Design for Hard-Fault Tolerance
in Single-Core Applications and Optimized Throughiou
Throughput-Oriented Chip Multiprocessors
by
Fred Allison Bower I

Department of Computer Science
Duke University

Date:

Approved:

Professor Daniel J. Sorin, Advisor

Dr. Steven W. Hunter

Professor Alvin R. Lebeck

Professor Christopher L. Dwyer

Professor Landon P. Cox

An abstract of a dissertation submitted in partial
fulfillment of the requirements for the degree
of Doctor of Philosophy in the Department of

Computer Science in the Graduate School
of Duke University

2010



Copyright © 2010
by
Fred Allison Bower llI
All rights reserved



Abstract

The continued march of technological progress,oefited by Moore’s Law provides the
microarchitect with increasing numbers of transstio employ as we continue to shrink feature
geometries. Physical limitations impose new con#isaupon designers in the areas of overall
power and localized power density. Techniques #desthreshold and supply voltages to lower
values in order to reduce power consumption ofpifue have also run into physical limitations,
exacerbating power and cooling problems in deepnsigbon CMOS process generations. Smaller
device geometries are also subject to increasesitiséty to common failure modes as well as

manufacturing process variability.

In the face of these added challenges, we obsestadtan the focus of the industry, away from
building ever-larger single-core chips, whose foisusn reducing single-threaded latency, toward
a design approach that employs multiple cores single chip to improve throughput. While the
early multicore era utilized the existing single-eaesigns of the previous generation in small
numbers, subsequent generations have introduced tatored to multicore use. These cores seek
to achieve power-efficient throughput and have tied new emphasis on throughput-oriented
computing, particularly for Internet workloads, wéehe end-to-end computational task is domi-
nated by long-latency network operations. The ubygof these workloads makes a compelling
argument for throughput-oriented designs, but du#dree the microarchitect fully from latency
demands of common workloads in enterprise and dpsipplication spaces.

We believe that a continued need for both throutfopiented and latency-sensitive processors
will exist in coming generations of technology. Wether opine that making effective use of the

additional transistors that will be available maguire different techniques for latency-sensitive



designs than for throughput-oriented ones, sincema® trade latency or throughput for the

desired attribute of a core in each of the respegaradigms.

We make three major contributions with this the@isr first contribution is a fine-grained fault
diagnosis and deconfiguration technique for artayctures, such as the ROB, within the micro-
processor core. We present and evaluate two vara@rhis technique. The first variant uses an
existing fault detection and correction techniquese scope is the processor core execution pipe-
line to ensure correct processor operation. Thergkegariant integrates fault detection and correc-
tion into the array structure itself to provide alf€ontained, fine-grained, fault detection,

diagnosis, and repair technique.

In our second contribution, we develop a lightweidime-grained fault diagnosis mechanism
for the processor core. In this work, we leverdgefirst contribution’s methods to provide decon-
figuration of faulty array elements. We additiogadixtend the scope of that work to include all

pipeline circuitry from instruction issue to retinent.

In our third and final contribution, we focus omdhghput-oriented core data cache design. In
this work, we study the demands of the throughpigirded core running a representative work-
load and then propose and evaluate an alternatitee ghche implementation that more closely
matches the demands of the core. We then showathadtter-matched cache design can be

exploited to provide improved throughput underadi power budget.

Our results show that typical latency-sensitiveesdnave sufficient redundancy to make fine-
grained hard-fault tolerance an affordable altéwedior hardening complex designs. Our designs
suffer little or no performance loss when no faalts present and retain nearly the same perfor-
mance characteristics in the presence of small eusrdf hard faults in protected structures. In our

study of the latency-sensitive core, we have shthah SRAM-based designs have low latencies



that end up providing less benefit to a throughgignted core and workload than a better-fitted
data cache composed of DRAM. The move from a higlgs, low-latency technology to a lower-

power, high-latency technology allows us to incesa$ data cache capacity, which is a net benefit

for the throughput-oriented core.

Vi
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1 Introduction

As computer architects, we continue to benefit fitim decades-long progression of Moore’s
Law [46]. Increasing device densities into deep-sutron feature geometries have enabled fur-
ther performance gains in latency-sensitive simglee applications, and have also ushered in the
generation of throughput-oriented computing. Chigtiprocessors (CMPs) now are ubiquitous in
personal computers and servers. With the techntdbgidvances that enable these increased den-

sities comes a set of additional challenges.

First, with smaller device geometries and lowerrapieg voltages, devices are more sensitive
to many of the fault causing effects. These effetam from manufacturing defects, such as parti-
cle contamination or process variation, and fronanvat effects due to gate oxide breakdown and
electromigration [13, 30, 51, 68]. Increased seariitpresents additional challenges in process
yield at the factory. It also makes parts more is@esto progressive field wearout effects [8] and

the phenomena that incur transient faults.

This increased sensitivity has caused device iiétialm high-performance to become a greater
concern with smaller geometries. Techniques thii be maintain or improve manufacturing
yields, extend part lifetimes, and provide gracefedradation in the presence of common faults in
critical structures are increasingly importantliege designs as they incorporate ever-more tran-
sistors and per-transistor fault rates fail to kpape with these increases.

Next, while we continue to lower operating voltagesreduce power consumption, we are
approaching a point where the ability to scaleagpt further is limited by physical limits. Until
recent technology generations, scaling of voltageided an effective means to keep chip power
from growing as we add more devices to the sama. &With this technique losing its ability to

keep pace with further scaling, we now face a ehai to reduce power via other means, such as



reducing the average activity factor of transistmmsthe part. Reduction of threshold voltage has
also brought with it an increase in the leakagepament of the power consumption by traditional
device designs such as the six-transistor (6 T) SR&Ncommonly employed as a building block

for on-chip storage, both within the core and i@ tlache hierarchy.

Finally, as densities have increased, basic codiinijs of the total microprocessor package
have not. This is due to the fact that maximumatiea has remained relatively fixed at roughly
400 mnf and advances in heatsink technology have not geovsignificant additional gains in
heat dissipation from the package. With a physiegl on power dissipation, power has become a

first-class design constraint.

These challenges present a new set of boundageesdhstrain the microarchitect in extracting
additional value from the ever-increasing transistadget. At the same time, efforts to improve
single-threaded performance have been thwartechblfenges with scalability of performance-
critical structures in the core and the power @mgks of increasing chip frequency. This has led
the microarchitecture community away from techngukeat seek to increase ILP in single-
threaded applications. Instead, we are now seeicrgased focus on optimizing energy-delay to
achieve balanced throughput per unit power witlseaable latency in many applications, particu-
larly in the commercial application space of thieinet.

As a result of these trends, we develop technituespe with these fundamental challenges in
both latency-sensitive and throughput-oriented gigras. In latency-sensitive core design space,
we propose and evaluate fine-grained hard faudirémice mechanisms within the core. In the
throughput-oriented CMP design space, we studgéimeands of the throughput-oriented core and

data cache alternatives that provide a better ntattttese demands than traditional cache designs.



The rest of this chapter is organized as followsSéction 1.1, we discuss trends that motivate
our research in the latency-sensitive core degiges In Section 1.2, we explore how these gen-
eral trends impact the throughput-oriented corégdespace. Section 1.3 presents our thesis state-
ment and the hypotheses that we test in this ik conclude in Section 1.4 with an outline of

the rest of the dissertation.

1.1 Single Core Trends in Latency Sensitive Applications

As technological trends continue to lead toward IEmaevice and wire dimensions in inte-
grated circuits, the probability of hard (permanefaults in microprocessors increases. These
faults may be introduced during fabrication, asedes, or they may occur during the operational
lifetime of the microprocessor. Well-known physigdienomena that lead to operational hard
faults are gate oxide breakdown, electromigrataond thermal cycling. Microprocessors become
more susceptible to all of these phenomena as eleiicensions shrink [68], and the semiconduc-
tor industry’s roadmap has identified both operadichard faults and fabrication defects (which
we will collectively refer to as “hard faults”) asitical challenges [28]. In the near future, ityma
no longer be a cost-effective strategy to discardieoprocessor with one or more hard faults,

which is what, for the most part, we do today.

Traditional approaches to tolerating hard faultsehenasked them using macro-scale redun-
dancy, such as triple modular redundancy (TMR). TR effective approach, but it incurs a
200% overhead in terms of hardware and power copgam There are some other, lightweight
approaches that use marginal amounts of redundanaptect specific portions of the micropro-

cessor, such as the cache [49, 84], but none séthee comprehensive.

Our goal in this work is to create a microprocessesign that can tolerate hard faults without

adding significant redundancy. The key observatmadge also by previous research [64, 67, 69],



is that modern latency-sensitive, superscalar mromessors, particularly those supporting simul-
taneously multithreading (SMT) [76], already contaignificant amounts of redundancy for pur-

poses of exploiting ILP and enhancing performaliée want to use this redundancy to mask hard
faults, at the cost of a graceful degradation ifiquenance for microprocessors with hard faults. In
this work, we do not consider adding extra reduglastrictly for fault tolerance, because cost is
such an important factor for commodity microprocessThe viability of our approach depends

only on whether, given a faulty microprocessor cbming able to use it with somewhat degraded

performance provides any utility over having tocdisl it.

To achieve our goal, the microprocessor core masiide to do three things while it is running.
1) It must detect and correct errors caused biysfélooth hard and transient).
2) It must diagnose where a hard fault is, agttamularity of the field deconfigurable unit (FDU).
3) It must deconfigure a faulty FDU in order t@yent its fault from being exercised.

While previous work in this area has explored aspetthis problem, none has developed an
integrated solution. Some work has used deconfiqur#o tolerate strictly fabrication defects and
thus assumed pre-shipment testing instead of oaliree detection and diagnosis [64]. Other work
has explored deconfiguration and has left deteaiwh diagnosis as open problems [69]. We will
discuss integrated design options for microproasssiat achieve all three of these goals in

Chapter 2.

1.2 Throughput-Oriented CMP Trends

Multicore processors are now the standard commaditgputing platform. Many researchers
argue that Moore’s law will lead to exponentialrieases in the number of cores per chip. In this

scenario the memory system that serves these lbecesnes a crucial system component in terms



of performance and power. As power and energyieff@y become first-class design constraints,
the ability to increase clock frequencies as thieg@ry means for improved performance becomes

infeasible.

The response by system designers has been to gieater emphasis on exploiting coarse-
grained, thread-level parallelism (TLP) by incregsthe number of cores on a single chip. This
new paradigm represents an opportunity to revisigls-chip designs. Specifically, for many
server workloads, throughput is the primary perfange metric. The realization that a more
energy-efficient design point can be achieved liooughput-oriented computing led to a redesign
of the cores. Recent chip multiprocessors (e.gaSjparc T2 [62]) have a large number of simpler
low-power processor cores, often with multithregdior tolerating long latency events, instead of

a small number of sophisticated high-power cores.

Although core microarchitectures have been re-designed for girput-oriented computing,
the memory systemare still tailored to the demands of high-perfonee, latency-centric cores.
Instead, designs should seek to balance latenngwidth, and capacity for optimum throughput.
The aim of the work we present in Chapter 3 is emtdy and exploit mis-matches in the capabil-
ities of the on-chip data cache and the througlopigiated core. The first part of this work is to
show that the low latency caches of the late siagle and early multicore era over-emphasize the
criticality of latency for a throughput-oriented ktnad. With the magnitude and nature of the
miss-match better understood, we explore ways iiclwive can trade over-provisioned attributes,
such as latency, for attributes that will bendfi¢ throughput-oriented CMP, namely additional

cache capacity and power savings.



1.3 Thesis Statement and Contributions

With this thesis, our goal is to validate two primdiypotheses motivated by the high-level

trends we have reviewed in this introduction: hefgrained techniques for detecting, diagnosing,

and tolerating hard faults in latency-sensitiveesatan provide performance of a fault-free core in

both fault-free and fault-present states at a ifvacdf the hardware and power costs of traditional

coarse-grained fault-tolerance methods and 2)autfirput-oriented cache design, better matched

to core demands, enables additional throughputsgaier present designs under a fixed power

budget.

1)

2)

3)

In support of these hypotheses, we make three pyicentributions:

Ouir first contribution is a fine-grained fadiignosis and deconfiguration technique for array
structures, such as the ROB, within the microprsaesore. We present and evaluate two
variants of this technique. The first variant ugesxisting fault detection and correction tech-
nique scoped to the processor core execution pgédi ensure correct processor operation.
The second variant integrates fault detection andection into the array structure itself to

provide a self-contained, fine-grained, fault détat diagnosis, and repair technique.

In our second contribution, we develop a ligkityint, fine-grained fault diagnosis mechanism
for the processor core. In this work, we leveraye first contribution’s methods to provide
deconfiguration of faulty array elements. We addiéilly extend the scope of that work to

include all pipeline circuitry from instruction-iss to retirement.

In our third and final contribution, we studyetdemands of the throughput-oriented core run-
ning a representative workload and then proposeegalliate an alternative data cache imple-

mentation that more closely matches the demandbeotore. We then show that a better-



matched cache design can be exploited to provigeawed throughput under a fixed power

budget.

1.4 Thesis Outline

We begin our presentation of contributions in Ckaf{ with a presentation of our fine-grained
fault tolerance and diagnosis techniques. In Ch&phteve present our work on throughput-ori-
ented cache design. The thesis concludes with ansuynof contributions and conclusions in

Chapter 4.



2 Fine-Grained Hard Fault Tolerance in Single Core
Applications?

In this chapter we develop and evaluate technitpuesovide fine-grained hard-fault tolerance
in the high-performance microprocessor core. Wittyd, complex core implementations, fine-
grained techniques afford the designer with a weagrovide graceful degradation of performance
in the presence of small numbers of faults, evecritical structures. With the methods that we
develop, our evaluation shows that performancesbbsan be mitigated to a point where utility of
the part is retained for extended periods of opmraafter faults are encountered. The chapter
begins with a definition of the fault models thag wse and a discussion of existing techniques for

providing fault tolerance in the microprocessorecor

We then discuss the design space for self-repairifgyoprocessor array structures, and we
present two specific designs. Array structuresuidelthe reorder buffer, load-store queue, instruc-
tion queue, branch history table, etc. Our go#b idevelop self-repairing arrays that enable auto-
nomic execution. In both of our designs for seffaieing array structures (SRAS), spare rows are
built into each array structure and are mapped neplace faulty rows using a level of indirection.
This approach is similar to how disks map out fagéctors and how hard faults in DRAMs can be
tolerated with schemes that map out faulty locatid®, 44, 59]. Our first design, SRAS-Check-
Row (SRAS-CR), uses dedicated check rows to damttdiagnose hard faults. SRAS-CR relies
upon DIVA [6] to recover from transient errors agrdors due to hard faults that have not yet been

classified as hard. Our second design, SRAS-EDEs esror detecting codes (EDC) for error

1. This chapter contains previously published wibek is covered by the following copyrights:
©2005 IEEE. Reprinted, with permission, from IEEEAsactions on Dependable and Secure Computingnaatic
Microprocessor Execution via Self-Repairing Arraiysed A. Bower, Sule Ozev, and Daniel J. Sorin.

©ACM, 2007. This is the author’s version of the walt is posted here by permission of ACM for yqarsonal use.
Not for redistribution. The definitive version wpablished in ACM Transactions on Architecture aral€ Optimiza-
tion (TACO), {4, 2, (June 2007)} http://doi.acm.é6t§.1145/1250727.1250728



detection/diagnosis, and it uses the pre-existirmndh misprediction recovery mechanism to
recover from transient errors and errors due td Feults that have not yet been classified as hard.
After a hard fault has been diagnosed and mappeadeither SRAS-CR nor SRAS-EDC incurs a
performance penalty due to that fault, unlike Wgéight schemes that incur a costly recovery for

every manifestation of a hard fault.

Our experimental results show that SRAS-EDC addsesperformance overhead in the fault-
free case, but that both SRAS-CR and SRAS-EDC raskfaults (a) without the hardware costs
of high-level redundancy (e.g., IBM mainframes [6&hd (b) without the per-error performance
penalty of existing low-cost techniques (e.g., D)VWhen hard faults are present in arrays, due to
operational faults or fabrication defects, then 8®AS schemes outperform low-cost techniques
that require a pipeline recovery per error. Giviea increasing frequencies of fabrication defects
and operational hard faults, the likelihood of vagtto be able to operate correctly with one or

more hard faults makes array self-repair appealing.

With our two SRAS implementations defined, we expanr scope to develop an online, fine-
grained fault diagnosis and deconfiguration medrarfor the microprocessor core. In this work,
we utilize SRARS-style methods for deconfiguratidrfiaulty array structures. We also extend our
ability to diagnose faults to include functionalitsrand data paths within the processor pipeline.
Our experimental results show that our new diagnagéchanism quickly and accurately diag-
noses hard faults. Moreover, our reliable micropssor can function quite capably in the pres-
ence of hard faults, despite not using redundaregyofd that which is already available in a
modern microprocessor. This technique can turnrefise useless microprocessors into micropro-
cessors that can function at a gracefully degrddedl of performance. This capability can

improve reliability by tolerating operational hdellts. We can improve yield by shipping micro-



processors with defects that we have tolerateds—isi if they are regular microprocessors that
will get “binned” into a lower performance bin. Atiugh binning is typically by clock frequency,
recent proposals have suggested more general penfice binning [64]. As long as these bins are
not so low-performing as to be useless, then oyravement in yield is a benefit. Our scheme
also vastly outperforms a system with only DIVAaocomparable recovery-based scheme, since
the performance cost of recoveries is quite higthéod faults that get exercised frequently; more-
over, our scheme can tolerate a hard fault in aADdNecker.

The rest of this chapter is organized as followexti®n 2.1 provides background on our hard
fault model. The underlying physical phenomena thatl to hard faults are discussed in some
detail to familiarize the reader with these mechars as well as to further motivate the case for
providing hard-fault tolerance in coming micropreser core designs. Section 2.2 presents SRAS-
CR and SRAS-EDC in detail, explaining the mechasidnow they operate, and their limitations
and advantages in the application of providing Hardt tolerance to microprocessor core array
structures. In Section 2.3, we present our finergr@idiagnosis and deconfiguration framework
for high-performance microprocessor cores. We aaitelthis chapter in Section 2.4, with the

experimental evaluation of these techniques.

2.1 Fault Tolerance Background

In this section, we first define terminology arouiadlt tolerance that we will utilize through-
out the rest of the chapter. We also present thtercal progression of designs that has led up to

this point and motivated the work in this chapter.
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2.1.1 Hard Faults in Submicron CMOS Technology

We start with a presentation of existing high-leweldels for hard faults (Section 2.1.1.1) and
then we delve into the underlying physical phenoanirat cause hard faults (Section 2.1.1.2). In
this process, we show that existing fault modedsagplicable to the physical faults that we con-

sider in this work
2.1.1.1 Fault Models

To facilitate fault tolerant design and testing jpdwysical faults that lead to errors at the circuit
level, several structural fault models have beereligped for logic circuits and storage compo-
nents over the past few decades [1]. $tuek-at fault modédk the most commonly used model in
VLSI testing and fault tolerance schemes. In thislet, a physical defect manifests itself as a sig-
nal consistently having a certain value (eithepzmrone) independent of the input. For example,
an unintended short circuit between the two injfitgan XOR gate results in a stuck-at-zero fault
at the output signal. Theoupling fault modekin which a write to a certain memory location
always prompts a write to a neighboring locatiomogations—has been defined for storage com-
ponents [18]. The recently definednsition fault modetepresents a slow charging or discharging

of a circuit node [53, 60, 75]. This delay can eaimcorrect logic values to be latched.

Next, in Section 2.1.1.2, we see that stuck-at angpling fault models will be sufficient for
the hard faults that we consider.

2.1.1.2 Underlying Physical Phenomena

The reliability of electronic devices under diserenvironmental stress, such as radiation [70],
and continuous functional stress due to the apmlledtric field [11, 57, 72] has been a topic of
vast research since the early days of semiconducémufacturing. Extensive research has been

conducted on the failure-causing physical phenomsmneh as electromigration [11, 34, 72] and
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transistor gate oxide breakdown (OBD) [23]. Theawenbeen several recent studies of operational
hard faults [30, 68], that is, hard faults thaturcover the lifetime of the microprocessor. Srini-
vasan et al. [68] determine that electromigratiod gate oxide breakdown are likely to be the two
dominant phenomena that cause operational hartsfaliis we focus on them in developing our
fault models in this work. Electromigration resutishighly resistive interconnects or contacts and
eventually leads to open circuits. Such defectstygreally modeled as transition faults during
manufacturing testing, but they become stuck-altdaduring operation due to their progressive

nature.

Gate oxide breakdown (OBD) results in the malfurrctdf a single transistor due to the cre-
ation of a highly conductive path between its gate its bulk. As illustrated in Figure 2-1, a
newly manufactured oxide contains inherent electraps due to imperfections in the fabrication
process. Over the lifetime of the device, the nundiesuch traps increases due to electric field
stress and electron tunneling. At some point, teeten traps may line up and constitute a con-
ductive path between the gate and the bulk of éwicd. The onset of this phenomenon is called a
soft breakdown (SBD). OBD increases switching delagan lead to delay faults that manifest

themselves as bit flips [16]. Initially, the condive path may be transient since the high heat
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caused by high current density may relocate sonbeofraps. However, after several SBD inci-
dents, the oxide layer diffuses and highly condwecitnelted metal fills the void and solidifies into
a consistent path. This phenomenon is called harakidown (HBD). Similar to the electromigra-
tion case, the initial circuit level manifestatiohSBD is a transition fault, whereas the effect of
the subsequent HBD is a stuck-at fault. OBD defacéspotentially more dangerous than elec-
tromigration defects due to the consistent patlvéen a charged node and ground or supply. For
the circuit illustrated in Figure 2-2, an OBD defasttransistor M2 forms a conductive path
between the drain of M1 (and the gate of M2) aredgiound node. As long as the logic value at
the gate of M1 is LOW, there is a sustained resgpiath from the supply to the ground, resulting
in sustained current flow through transistor MInc®i the resistance of this transistor for a LOW
input is typically small, the current can be largetentially damaging M1 or causing regional
drops in the supply. Thus, detection and isolatibomemory locations with OBD defects is essen-

tial for the operational health of computing degice

Both the electromigration and OBD defects are msgive in nature. The mean time to failure
(MTTF) for both defects depends on the thicknessthg initial health of the structure. Reported
laboratory data on OBD indicates that MTTF is oa tnder of four million seconds (around 46
days) for 15A gate oxides under constant stress13f [40] (scaling the supply voltage down to
1.0V, we can estimate the MTTF for this oxide tinieks to be 375 days). However, MTTF also
depends heavily on the number and location ofahitiaps within the oxide; thus it can be much
shorter for some transistors with inherent weake®sA similar analysis can be made for elec-
tromigration defects [12].

In the early stages of the progression of bothtedetgration defects and OBD defects, bit

errors only occur if the defects are sequentiakgited. However, in later stages, both defects
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resemble stuck-at faults. Moreover, in additiomff@cting the output node to which the defective
transistor is connected, the OBD defects may résubupling faults due to their current driving
nature. Thus, in our evaluation experiments, wedngtuck-at faults and coupling faults since they

correspond to the manifestations of electromigratind OBD defects.

Defects introduced during chip fabrication are &rotsource of hard faults. Their causes differ
from those of operational hard faults, but thegnfinanifest themselves in a similar fashion. For
example, a fabrication defect could result in aaliginuity in a wire, which is equivalent to the
situation in which electromigration leads to anmp@cuit. A fabrication defect could also lead to
the growth of an insufficiently thick gate oxidehieh is functionally equivalent to OBD. The
impact of technology trends on fabrication deféstiess clear than it is for operational faults. In
general, though, smaller wire and device dimensaesmore prone to defects, since the margin
for error is smaller.

2.1.2 Existing Fault Tolerance Techniques

A canonical design for autonomic operation is & Imainframe [66]. Mainframes not only
have redundant processors, but they also incompoealundancy within the processor in order to
seamlessly tolerate hard faults. The IBM G5 micoapssor, for example, has redundant units for
fetch/decode and for instruction execution. Sonteiotraditional fault-tolerant computers, such
as the Stratus [82] and the Tandem S2 [31], simgplicate entire processors. While these systems
all provide excellent reliability, such heavyweigbtiundancy incurs significant costs in terms of

hardware and power consumption.

As a low cost and low power alternative to heavgheiredundancy, DIVA [6] dynamically
verifies an aggressive microprocessor core witlieple, provably correct checker core. DIVA

sacrifices some amount of reliability in order teatly reduce these costs. DIVA's small amount
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of redundancy uses far less power than mainfrardenaancy, but it incurs significant perfor-
mance and energy penalties for each error thaudt morrect. Each error detected and corrected
by the checker core triggers a pipeline flush efalygressive core. Since DIVA was designed pri-
marily for soft faults (not the hard faults we tatly these flushes are not a performance problem.
However, permanent faults in frequently accessedires, such as the reorder buffer, will fre-
guently manifest themselves as errors and will thiesatly degrade performance. Researchers
have also proposed using redundant threads tovachggtweight redundancy, primarily for soft
faults. Of these schemes, the ones that perforoveeg as well as error detection include AR-
SMT [58], Slipstream [71], and SRTR [78]. All ofdbe schemes share the same drawback as
DIVA, with respect to hard faults, since they ineupipeline squash (and its corresponding perfor-
mance and energy penalty) every time a hard faahifests itself. Redundant thread schemes,

unlike DIVA, may not be able to guarantee forwardgress in the presence of hard faults.

One option for array structures is to protect thwith error correcting codes (ECC), as in IBM
mainframes [66]. Combining ECC for arrays with DI'd#&oids costly DIVA recoveries. However,
ECC protection of arrays is on the critical pathdaay access (both read and write). Current ECC
implementations can calculate ECC on a represeatdtitum in 4 cycles on a 2 GHz Itanium2
[81]. Since ECC must be calculated on the microgseor’s critical path, a 4-cycle penalty per
ECC calculation results in highly-degraded perfamoe even in the fault-free case. This lost per-
formance makes ECC inappropriate for applicatioth@timing-critical microprocessor pipeline.

With the advent of chip multi-processing (CMP) ionumodity microprocessor designs,
another hard-fault tolerance option is to disabig eore that is detected to have a hard fault.
While this works, we seek to provide a more cofgeative option than to lose 1/Nth (for an N-core

design) of the chip’s capacity for each hard f#udtt is detected. Aggarwal et al. [2, 3] extend thi
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idea to include other shared CMP structures, sgcmemory controllers and on-chip busses. In
their presented methodology, a designer can adthgmwiring complexity and mulitplexor delay
to gain the ability to route around faulty sharesnponents. Shivakumar et al. [64] propose a
more cost-effective, fine-grained solution thatlizgis inherent redundancy in CMP and SMT
designs. This work is limited to manufacturing-timhetection (i.e., testing) and deconfiguration.
The methods that we present in this work, SRAS-8IRAS-EDC, and our new online fault diag-
nosis mechanism, provide a means for both manufagttime and in-situ operational detection
and deconfiguration of sub-units within the micrmgessor core, giving the designer additional
options in designing for hard-fault tolerance.

Table 2-1 summarizes all of these techniques, imotusur SRAS-CR, SRAS-EDC, and
online diagnosis (labeled Microarchitectural Recamey Exploitation) designs. Included are the
original fault-tolerance targets of the techniq(sest, hard, or design), and notes on the limitaio
of using these in a commodity microprocessor deditpte that our online fault isolation design
extends previous work [2, 3, 64] to provide a figeanularity of redundancy exploitation within
the core.

As can be seen in the table, each technique htasrcadvantages and certain disadvantages.
The characteristics of a given technique make itenoo less appropriate for application to a given

design space.

2.2 Self-Repairing Arrays

Technology and microprocessor architecture tremeldemding towards larger array structures
within microprocessors. These structures inclu@enbtruction queue, reorder buffer (ROB), reg-

ister file, reservation stations, register mapdabtanch history table (BHT), etc. These structure
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Table 2-1. Fault Tolerance Techniques. Design Points and Limitations

PrimaryFault | Limitationsof Usefor Hard-Fault Tolerance In the

Technique Target(s) Microprocessor Core
DIVA Soft, Design Excessive performance penalty for feegpipeline flushes|

due to faults in frequently-accessed structures

Redundant Soft May be subject to livelock

Multithreading Excessive performance penalty for frequent pipdiimshes

due to faults in frequently-accessed structures

Triple Modular Soft, Hard Over 3x cost in terms of die area andgrav@ensumption

Redundancy (TMR) over unprotected core design point

CMP Core Hard High performance penalty per hard fault (Nafores) in

Sparing designs wherd\ is relatively small

ECC Soft, Hard Adds excessive latency to critical patin@roprocessor
Only localized fault tolerance

Microar chitectural Hard Manufacturing-time only, as described in [@&Harse-

Redundancy grained in [2, 3], extended in this work to includelts in

Exploitation the field at a finer granularity within the core

Only localized fault tolerance

SRAS-CR Hard Requires fault detection mechanism to trigged#ault tol-
erance

Only localized fault tolerance

SRAS-EDC Hard Adds latency to fault-free operation of micrag@ssor

Only localized fault tolerance

are the single-largest consumer of microprocessia die area, comprising up to 33% of the area
of microprocessor core (i.e., not including cachiesyecent microprocessor designs [64]. We
would like to protect these structures from haudttaas the probability of hard faults continues to
increase, but we cannot afford to fully replicdtede structures. Thus, our SRAS schemes protect
array structures in a fashion similar to the wawhich existing on-line (dynamic) techniques pro-
tect large memory storage structures. The basi isleo use a level of indirection to map out
faulty portions of the structure. Especially asistures grow larger, the probability of a hard faul
within them increases. Disk sizes, for exampleglago reached the point at which hard faults
were expected and had to be tolerated. Whole ditkés were addressed by RAID [52]. For disk

faults that did not incapacitate the entire disle $olution was to map out faulty portions at the
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sector granularity. Thus, a faulty disk could coné to operate correctly in the presence of hard
faults. Similar approaches have been developeDRAM main memory. Whole chip failures are
tolerated by chipkill memory and RAID-M [22, 27hé partial failures are tolerated with schemes
that map out faulty locations [19, 44, 59]. For SRAaches, techniques have been developed to
map out defective locations during fabrication [&4d, more recently, during execution [49].
While providing insight for the use of spare memlmgations for repair, direct application of the
aforementioned methods to array structures withémprocessor bears little hope due to the perfor-

mance criticality within microprocessors.

In the rest of this section, we discuss the arthgs we will protect (Section 2.2.1), and we
present the design space for self-repairing ar(®gstion 2.2.2). We then present two specific
implementations (Section 2.2.3 and Section 2.2.6).

2.2.1 Microprocessor Array Structures

We can classify array structures within the micomgssor core into two categories: non-
addressable buffers for which the data locatiotei®rmined at the time of access, and randomly
addressable tables for which the data locatioretsrchined before access. In order to allow timing
efficient implementation of the repair logic, wepoit these distinct features of each type of array
structures. Without loss of generality, we focus discussion of SRAS on one specific array struc-
ture from each of the two categories: the reordéieb (ROB) and the branch history table (BHT).
The ROB and BHT are representative of the kindarcdy structures found in modern micropro-

cessors, and thus the arguments and results hglselapadly.
2.2.1.1 Reorder Buffer

The ROB is a circular buffer that is used in dyneatly scheduled (a.k.a. “out-of-order”) pro-

cessors to implement precise exceptions by enstingginstructions are committed in program
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order. There is an entry in the ROB for each igHtiinstruction, and there are pointers to the head
and tail entries in the ROB. An entry is addedh® tiail of the ROB once it has been decoded and
is ready to be scheduled. An entry is removed ftoenhead of the ROB when it is ready to be
committed. We focus on processors that performigitplegister renaming with reservation sta-
tions—such as the Intel PentiumPro, IBM PowerPd, ARID K6—in which an ROB entry con-
tains the physical register tags for the destimatiegister and the data result of the instruction.
When an instruction commits from the head of theBRtbe data in the head entry is written to the
destination register. Alternative ROB designs existwhich ROB entries do not hold the data
results of completed instructions (data is insteald in the physical registers). Designing SRAS
for these alternative designs is straightforward actually simpler (but not discussed in this

work).

ROB sizes are on the order of 32-128 entries, whidhrge enough to have a non-negligible
probability of a hard fault. The ROB has a highhétexctural vulnerability factor [48], in that a
fault in an entry is likely to cause an incorrecteution. A fault in an ROB entry is not guaranteed
to cause an incorrect execution for its instructitbough, since the fault might not change the data
(i.e., logical masking) or the ROB entry might @spond to a squashed instruction (i.e., func-
tional masking).

2.2.1.2 Branch History Table

The BHT is a table that is accessed during brametigtion. Common two-level branch pre-
dictor designs [83] use some combination of thetingorogram counter (PC) and the branch his-
tory register (BHR) to index into a BHT. The BHRa&-bit shift register that contains the results
of the pask branches. The indexed BHT entry contains the ptiedi (i.e., taken or not taken, but

not the destination). A typical BHT entry is a 2-baturating counter [65] that is incremented
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(decremented) when the corresponding branch isitékat taken). A BHT value of 00 or 01 (10

or 11) is interpreted as a not-taken (taken) ptaxfic

BHRs and/or BHTs can be either local (one per bdrdPC), global (shared across all branch
PCs), or shared (by sets of branch PCs). In thigmpave focus on the gshare two-level predictor
[45], in which the BHT is indexed by the exclusi@& of the branch PC and a global BHR. Since
the BHT is a table, our remapper implementationitfdg fairly similar to the logical abstraction
presented earlier. The BHT has an architecturatenability factor of zero, in that no fault in it
can ever lead to incorrect execution. However, & B&llt can lead to incorrect branch predic-
tions, which can degrade performance.

2.2.2 Design Space

Self-repairing arrays require three features, &eddesigns of each collectively comprise the
design space:

» Detection of errors and diagnosis of faults

How does the hardware detect an error in an aaray,then how does it isolate which part of
the array is faulty? While there are several sclesimedynamically verifying microprocessor exe-
cution as a whole [6, 55, 58], they sacrifice diagja capability in order to not degrade perfor-
mance.

* Recovery from errors

How does the hardware recover from an error suahittcan ensure that the error does not
propagate corrupted data into committed architat&tate? The most basic option for recovery is
to halt the system when an error is detected gtaib), thereby protecting system state from being
corrupted, at the cost of more downtime and thss &vailability. Other alternatives exist, such as

using the microprocessor’s branch mispredictiomvecy mechanism.
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* Mapping out faulty sub-arrays

Once the faulty sub-array (e.g., row, column) hesrbdiagnosed, how does the hardware map
it out and thus avoid future manifestations of faiglt? The design choices for this aspect mainly
involve the granularity of mapping, e.g., row, auly, or even the whole array. Another design
decision is the number of spares to provide. ThiEssign decisions may be influenced by the
array’s position in the microprocessor pipelinetipalarly if accessing the array is on the critica
path and performance is thus crucial.

There are numerous design decisions for each séttigee aspects, but the decisions for each
aspect are not completely independent. For exar&@€; protection of arrays would serve as the
detection and recovery mechanism, and it doesauptire remapping, provided that the errors do
not exceed the correction abilities of the chosamection code.

The design decisions, particularly for the recovergchanism, also determine which array
structures can be protected. For example, sinceSSRBC uses the misprediction recovery mech-
anism, it thus cannot tolerate errors in the reppsgéate (i.e., committed architectural state, such
as the register file or condition codes).

2.2.3 SRAS-CheckRow (SRAS-CR)

The first SRAS design that we present, SRAS-ChealRGRAS-CR) uses dedicated check
rows to detect and diagnose errors in array roRASCR protects each array structure in isola-
tion, i.e., the decision to protect an array wifRAS does not affect the decision to protect any
other array. We will see in Section 2.2.6 that SRASE differs in that it is an integrated approach

for protecting multiple arrays.

2.2.3.1 Detection and Diagnhosis

21



SRAS-CR uses DIVA for end-to-end error detectiod aorrection. However, DIVA cannot
isolate the row or even the structure that is fadlhus, SRAS-CR combines DIVA with a simple
scheme for detecting row errors and diagnosing kvhiev is faulty. SRAS-CR adds a handful of
check rows (some are spares, which are used td awingle point of failure) to each structure we
wish to protect. For buffer structures such asRi@B, each time an entry is allocated, initializa-
tion data is written to both the entry and the &hemw. This initialization data consists of the
available target data for the entry (for exampie,dource and destination register tags for an ROB
entry) and pseudo-random data for the parts oétiey that will be written later (for example, the
actual result value for an ROB entry). Where psetastmlom data is needed, the tick counter is
used, with appropriate scaling to provide the propenber of bits to fully populate the entry. For
tables, every write to a location will have a miad write to the structure’s affiliated check row.
Any partial write to a row must be implemented asad-modify-write (RMW) action in order to
support SRAS-CR checking. The issue here is thatteck row and array entry to be checked
must have identical data written into their conseimt order for a meaningful comparison to be
made. Immediately after the two writes, both lomagi are read and their data are compared (all off
the critical path of execution). If the data diffdren one of the rows is faulty. Several optioxiste
for determining which one is faulty, and we willpgain a simple one after we first describe the
mechanism we exploit for distinguishing hard fadittem soft faults. SRAS-CR maintains small
saturating counters for each row, which are pecaltli reset, and a counter value above a thresh-
old identifies a hard fault. Now, to determinehi&toperational row or the check row is faulty, we
can simply increment both of their counters in¢hee of a mismatch in their values, as long as we

initially set the threshold for check row countarde much higher than that for operational rows.

Detection and diagnosis is the same for both tadotelsbuffers. While we logically need oy

check rows in &-way superscalar processor to detect and diagrzagts,fthe SRAS-CR imple-
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mentation may necessitate having even more cheek tidaving onlyk check rows could lead to
an unreasonably long delay to transfer the datagaldres from one end of the array to the other.
Wire delays are already a problem in multi-GHz mjgocessors—for example, the Intel
Pentium4 has multiple pipeline stages allocatadttito wire delay—and we cannot ignore them
in our design. A simple option is to divide theagriinto sub-arrays, each of which Hasheck
rows.

2.2.3.2 Recovery

If an error is detected, but the hard fault thréghms not yet been reached, then the fault is
considered to be transient and it is tolerated wiiblIVA recovery and its associated performance
penalty. If the detected error raises the coumténg hard fault threshold, then DIVA also tolesate
this fault, but the system then repairs itself sdaprevent this hard fault from being exercised
again.

2.2.3.3 Mapping Out Faulty Sub-arrays

We logically add a level of indirection that canpnaut faulty rows in microprocessor array
structures, as shown in Figure 2-3. The remappeeses the interface between the array and the
rest of the microprocessor.

The repair actions taken depend on whether théyfaolv is a non-check row or a check row.
If it is a non-check row, then it can be immediatelapped out and a spare row can be mapped in
to take its place. The spare row can get the cod&a from the check row. If the faulty row is a
check row, then SRAS-CR maps in a spare check row.

While remapping with a level of indirection is stfatforward in the abstract, implementing it
in a high performance microprocessor pipeline nexpucareful consideration. We now present

remapper implementations for the ROB and BHT.
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2.2.3.3.1 ROB Remapper

In buffer structures, as in the case of the ROB,atidress of the data to be accessed is deter-
mined at the time of the access. Typically, twanpexis are used to mark the head and the tail loca-
tion of the active rows. When a new ROB entry Isated, the tail pointer is advanced and the
corresponding address becomes the physical addfeg® data. Similarly, when an entry is
removed, the head pointer is advanced. Thus, thsigdl as well as logical address of the data is
abstracted and all rows have the same functiondlitg faulty row can easily be mapped out by

modifying the pointer advancement logic when a Hatdt is detected. Figure 2-4 illustrates the
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implementation of the self-repair mechanism forférd, with SRAS-CR hardware shaded in gray.
SRAS-CR uses a shifted fault map bit-array to tifackty rows. If a row is determined to contain
a hard fault, the faulty bit in the previous rowsist to 1. The fault map is used by the pointer
advancement circuit to determine how far the poineeds to be advanced. Upon the reception of
a dispatch signal, the pointer is advanced by ote@depending on whether the next row is fault
or not. The shifted faulty row information enabthe preprocessing of the pointer advance logic.
Upon the reception of the commit signal, the heaidtpr is advanced in the same manner. Once
the pointer is updated accordingly, reads and writkthe buffer entries proceed unmodified.
Since the pre-processing for pointer advancemanteadone off the critical path, the proposed

modification does not impact the read or write asdéne.

In order to avoid a reduction in the effective leunf€apacity due to hard faults, spare rows can
be used. Since there is no need to replace thiy faowl with any particular spare row, the detec-
tion of the faulty row prompts incrementing thealdbuffer capacity by one entry (by adding the
spare) while maintaining the same effective caga8RAS-CR can tolerate as many hard faults
as there are spares without any degradation oébpffrformance. If the number of faulty rows
exceeds the number of spare rows, then the eféebtiffer capacity is allowed to shrink, resulting
in graceful degradation of the buffer performamgsuming that adding one or two to the pointers
does not dramatically change timing or power corgion, the only overhead of this repair mech-
anism is the small additional area taken by thé& faap and the additional power consumed for
pointer pre-processing, updating fault map entaesl, updating the buffer size. Section 2.2.4 dis-

cusses the overall overhead of the complete SRASCRtecture in more detail.

2.2.3.3.2 BHT Remapper
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In tables, the logical address of the data is datexd by the program execution prior to access-
ing the data. Since rows do not have equal funatitynin tables, a faulty row needs to be replaced
by a specific spare row. In this case, we needji@abindirection to map out the faulty rows. This
problem is quite similar to the memory repair pesh) and many on-line repair mechanisms have
been proposed [11, 21]. However, in microprocess@y structures, logic inserted into the criti-
cal path directly impacts performance, so we nmagiément a timing-efficient repair mechanism.
In SRAS-CR, we distribute spare rows over sub-arafythe table, and a spare can only replace a
row within its own sub-array. This choice may make use of spares inefficient for highly local-
ized faults, but it enables timing efficient implentation of the repair logic, as shown in Figure 2-

5. Once again, hardware for SRAS-CR is shown ig.gra

Similar to the buffer case, we keep the fault mdprimation in a table. However, we also use a
fault/spare match map which contains informationwdrich functional row each spare row is
replacing. If a row is identified faulty and an wed spare is found to replace it, the faulty eafry
the row is set to 1. In addition, the physical @sdrof the faulty row is written into the corresgon
ing entry of the fault/spare match map. In the gxanshown in Figure 2-5, we can see that the 1st
spare is allocated to the 6th entry and the 2ncespaallocated to the 4th entry, hence the 1én th
fault map at the 6th position of the 1st column #red4th position of the 2nd column. The address
decode logic, which is present in all tables, easll row of the table to be read or written by gen-
erating the individual read/write enable signalstfee table rows. During a read or write access,
these signals are modified by the remap logic teegate the updated read/write enable signals for
the table entries as well as the read/write ensijleals for the spare entries. The remap logic con-
sists ofn inverters and 2-input NOR gates, whereis the size of the subarray. To generate the
read/write enable signals for the spare rokvig(n) 2-input XOR gates and the equivalentkof

log(n)input NOR gates (denoted by the compare blockignifé 2-5) are needed, whekés the
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number of spares assigned to the subarray. Notethieafault/spare match map will contain one
more bit than the physical address of the tabladiwate whether the spare rows are active or not.

This bit is not shown in the figure to avoid con@uswith the address value.

Assuming the compare logic can execute faster tharaddress decode logic, SRAS-CR will
add two gate delays (one INV and one NOR gate jlétathe table access time. Since the addi-
tional level of indirection for accessing the plogditable entries is on the critical path, thisiadd
tional time cannot be ignored. In order to avoid-ige or hold time violations, we very
conservatively use a second pipeline stage to atbegdable entries. This additional pipeline stage
will impose a penalty in the normal mode of openatiWhile we expect that the actual perfor-
mance penalty would be far less than a pipelingesfa.g., if BHT access latency is not the deter-
mining factor in pipeline stage latency), we chothge pessimistic design point as a lower bound
on SRAS's benefit. In Section 2.4.1, we run expentsm¢o assess the impact of this additional
pipeline stage on the execution time in the absehbard faults.

2.2.4 SRAS-CR Costs

The cost of a fault tolerance scheme has threecasgerdware (area) overhead, performance
(timing) overhead, and power consumption overhéam. aggressive microprocessor architec-
tures, the performance overhead during fault-freeetion is often the most critical parameter.

In order to keep the performance overhead at anmimi, buffers and tables are handled differ-
ently in SRAS. The distinct nature of buffers theaikes all of their rows have equal functionality
enables a no-timing-overhead implementation. Tabhesvever, require a definitive logical
address for the data, which results in a needrfadalitional level of indirection. This indirection
results in two gate delays in access times (egthke Pentium4, an inverter delay is about 1-2% of

the clock period [73]). Since gate delay will begker than inverter delay, and since we cannot
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know how much margin exists in an existing desige,very conservatively add a pipeline stage
for access to tables. The additional pipeline stageilts in increased latency and an increased

number of stalls, and we evaluate its performamvegtead in Section 2.4.1.

The increase in power consumption in SRAS-CR stamstly from increased data read/write
activity due to the check rows. Since the writedreativity is doubled, the dynamic power con-
sumption in the array structures will roughly beaudied as well. If power consumption is still a
concern, accesses to check rows can be reducée akpense of increasing the fault detection

latency.

Finally, the hardware overhead of SRAS-CR incluthesneed for (a) DIVA, (b) spare rows
(including spare check rows), (c) one logic cirdoitrepair and check per array structure, (d) the
per-row counters for diagnosing hard faults, andvy® additional read and one additional write
ports on the protected array structures to supgonltaneous writing of the check row and read-
ing of the result and check rows. DIVA is the prignaost yet, according to Weaver and Austin
[80], a DIVA checker’s size is less than 5% of dplfa 21264 core. Thus, there is an engineering
trade-off between availability and the area ovedhieaurred for spare rows.

2.2.5 Limitations of SRAS-CR

The implementation of SRAS-CR we present here dogsolerate all microprocessor faults.
We divide these untolerated faults into three aatieg. First, SRAS-CR does not tolerate faults in
its own logic, e.g., the pointer remapping logictlee fault map. These structures are far smaller
than the structures they are protecting, which rmakem less prone to hard faults, but they could
still fail. Second, SRAS-CR does not tolerate dtfewia table sub-array if no more spare rows are

available in that sub-array. This limitation doed apply to buffers except in the extreme case in
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which every row of the buffer, including sparedaslty. Third, SRAS-CR does not tolerate a fault

in a sub-array (for a buffer or table) if all oktictheck rows for that sub-array are faulty.

All of these untolerated faults present the degigniéh a classic engineering trade-off; fault
tolerance versus hardware cost. Future SRAS-CReimghtations could develop hardened logic
if the first fault model is considered importanhéelprobabilities of the latter two categories can b

decreased by designing the SRAS-CR protectiongéanare spare rows and more check rows.

2.2.6 SRAS-EDC: Self-Repair Design Without DIVA Backstop

In this section, we present a design for arraymsgiair that is independent of DIVA and that is
fully integrated into the microprocessor datapate design attempts to minimize the amount of
logic, particularly on critical paths. An illustiah of our design (simplified for purposes of iHus
tration) is shown in Figure 2-6. As we mentionedvjpasly in Section 2.2.1, the microarchitec-
ture is similar to that of the Intel PentiumPro thmt the reorder buffer holds the results of
completed but not yet committed instructions (ratti@n keeping them in the physical register
file). The array structures we protect are therutdion buffer, instruction scheduling window,
reorder buffer, load-store queue, and BHT. In igark, unprotected instructions are fetched into
the datapath, and protected data is eventuallyenmriback to the register file or data cache. The
register file and data cache are highlighted toleamsjze that they hold architectural state and that
they cannot be recovered using the core’s misptiedicecovery mechanism. Note that, with
minor modifications, our scheme could be adaptedufe in microarchitectures with register
update units (RUUS) or microarchitectures that kéfepresults of completed but uncommitted
instructions in the physical register file and es@licit register renaming with a map table. Our

design treats the combinational logic that mani@sléhe data that flows through the microproces-
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Figure 2-6. Datapath Design with SRAS-EDC

The register file and L1 data cache (L1 D$) ardljgnted to emphasize that they hold archi
tural state. This simplified figure ignores therstqueue, since stores are handled just like
load instructions, except that they write theiutesto the L1 D$ instead of the register file.

Legend

sor (e.g., instruction decoders, functional unés)black boxes. Protecting this logic from hard

faults is an orthogonal issue.

As an instruction progresses through the pipekrery time it is modified, an EDC write must
occur. As Figure 2-6 shows, this activity occureafnstruction fetch, instruction decode, ALU
operation, memory reads, and before updating th€, Blbsuming it is optionally protected. With
the exception of the BHT update, these EDC writerappons must be on the critical path of the
pipeline, and thus add additional latency to tharirction’s processing time. The use of EDC, as
opposed to ECC, is advantageous in that it providea lower-latency operation that takes less
logic to implement in the timing and space-consedipipeline. EDC must be checked after any

access to a datum contained in a protected steudtlowever, the only time that this EDC check
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activity is on the critical path of an instructisréxecution is when the instruction’s result idb¢o
committed to architectural state at the end ofiipeline. At all other times, the datum can be used
by a subsequent pipeline stage without knowingBB& result, since the later discovery of an

error in the EDC check can be contained by flushimegpipeline.
2.2.6.1 Detection and Diagnhosis

SRAS-EDC uses error detecting codes (EDC) to detadtdiagnose errors in array rows.
There are numerous kinds of EDCs, including paaitg cyclic redundancy check (CRC) codes.
EDCs add some number of check bitdp the originald data bits, and the tradeoff is between the
cost due to the number of check bits added ancdaded error detection capabilities of having
more check bits. For example, a single parity titsaal/d cost and can detect all single-bit errors.
For implementation purposes, we prefeseparableEDC, i.e., the check bits are not interleaved
with the data bits. Thus, each array row consiét a@ata bits followed bk check bits. We also
want an EDC that can detect all single-bit errovd many types of multiple-bit errors, particularly
unidirectional errors (i.e., all 0->1 or 1->0). MaBDC options exist—a designer can choose the
EDC that best suits the system, based on the tifduletoveen error detection capability and imple-
mentation cost. Because of our fault model, we shoBerger codes [10] to protect all arrays
except the BHT, since Berger codes can detecirglesbit errors and all unidirectional multiple-
bit errors. A Berger code will detect all singledt-at faults and coupling faults (from one bit to
any number of neighboring bits). In a Berger cadek check bits are the binary representation of
the number of zeros in the original data, and ﬂhusﬁogz(d +1) |. For the BHT, which has only
2-bit entries, we simply use a parity bit for EDC.

As in SRAS-CR, to distinguish hard faults from daftlts, we add a small counter to each row

that is incremented for every error detected ity all counters are periodically cleared. If an
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error increments a counter such that it exceegeeifsed threshold, then this row is considered to
have a permanent fault; otherwise the error isidensd transient. All data written into arrays is
protected with EDC, and all data read from arrags ils EDC checked. We also maintain EDC
bits in the register file, in order to not haverdecompute EDC for data that is read from the regis
ter file to be written into the instruction windoNevertheless, we are not protecting the register

file from hard faults—a hard fault would be detédtabut unrecoverable.

The only six instances in which EDC logic (writiespC bits to the end of a datum or checking

EDC bits) can potentially impact performance aremh

* Fetched instructions go through logic that adds HIX€ to them before inserting them into

the instruction buffer.

* Decoded instructions go through logic that adds Hitf€ to them before inserting them into
the instruction scheduling window. EDC needs tordmmputed here, since the process of

decoding the instructions modifies their data pasilo

» Data produced by functional units goes throughdadlyat adds EDC bits before being written
into the instruction window (as operands) and ti@BRas results). EDC needs to be recom-
puted here, since the functional units produce data. This EDC logic could be associated
with the functional units or with the data resulisbAn optimization is to compute the EDC
(for the outputs of the functional units) in paghlNvith the outputs. This requires more hard-
ware but hides the latency of the EDC logic, andmileexplore the potential of this approach
in our evaluation in Section 2.4.1. In this work, de not consider use sklf-checking cir-
cuits [79], in which EDC codewords (usirayithmetic codesare produced by the combina-
tional logic (e.g., functional units). This techngwould enable us to check the functional

units themselves (but not to map out hard faultdhém), and it would also remove the need
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for this EDC recomputation logic. The techniquesuse and results we present in our evalua-
tion represent a pessimistic performance boundesinself-checking implementation would

remove all EDC generation logic from the criticatlp of the processor pipeline.

* Data loaded from the L1 data cache goes through thgt adds EDC bits before being writ-
ten into the ROB. EDC needs to be recomputed lséree we do not assume that the caches
implement the same EDC. If we were to relax thiiagption, then this logic for recomputing

EDC would no longer be necessary.

e Data from the ROB goes through logic that checksBEBC before being committed into the
register file (or into the L1 data cache, for s§)rén the figure (which omits stores, for clar-
ity), this data is shown as unprotected (befoig ¢hecked) despite coming from the protected
ROB. This is because, unlike for other structuties,EDC check on this data cannot be done
later and thus undo the effects of writing thisguially erroneous data into the register file or

data cache.

* Updates to the branch history table go throughcléigat adds a parity bit. However, checking

the parity bit of data that is read from BHT is @€ critical path.

In the first five of these situations, EDC logicds the critical path, and we pessimistically
assume that we must add an extra pipeline stagedommodate this latency. The exception is
adding the parity bit to the BHT—we assume that #iimple operation will not force the addition
of a pipeline stage. In all other instances, ED@idas off the critical path For example, when
instructions pass from the instruction buffer te thstruction window (after being decoded and
renamed), their EDCs are checked off the critighpThat is, erroneous data could be written
into the instruction window before the EDC checkasnplete; however, the EDC check will fail

soon thereafter and trigger a system recovery wiitlreliminate the effects of the error before
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they can be committed to architectural state. OBi2€ checks are between the instruction win-
dow and the functional units, between the load quand the data cache, and between the ROB

and the instruction window.

One potential challenge for fast implementatioeBIC (or ECC, for that matter) is that partial
writes to a structure (i.e., writes that do not ifothe entire data) turn into RMW operations.
Recall that this limitation is also present for SRER for any write that will have a check per-
formed. The read is necessary to help compute €@ Bver the entire data before writing it.
Since RMWs are slower and require extra array béfttiywe would like to avoid them if possi-
ble. Our solution is to compute EDCs over indepetigenritten fields of array rows, instead of
over the entire row, in order to avoid any possitéetial writes. For example, in the ROB, we
compute separate EDCs for the result data anchéordst of the entry. Thus, when the entry is
allocated, we must compute both, but this is noentmmplex than computing it over the whole
entry. The key savings is when the result is writtiiring instruction completion, since we no

longer need to do a RMW.
2.2.6.2 Recovery

Recovery is implemented with the microprocessoosmal misprediction recovery mecha-
nism. Thus, unlike SRAS-CR, SRAS-EDC does not rigd\. This recovery mechanism effec-
tively deletes all speculative, uncommitted micam@ssor state (e.g., contents of the instruction
buffer, instruction window, ROB, etc.), but it camirundo changes made to architectural state such
as the register file. This is why the EDC checkuestn the ROB and register file is on the critical
path.

2.2.6.3 Remapping

We use the same techniques as SRAS-CR for mappirfaulty rows of arrays.
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2.2.6.4 SRAS-EDC Costs

The costs for SRAS-EDC are less than those of SRRSA two important ways. First, SRAS-
EDC does not require DIVA. Second, SRAS-EDC dodgequire all of the extra reads and writes
that were necessary for the check rows. HoweveASRDC does add some hardware for per-
forming EDC computations. It also adds some peréoroe overhead because of those instances in
which EDC logic is on the critical path.

2.2.6.5 Limitations of SRAS-EDC

There are a few limitations of SRAS-EDC. First, taelt coverage is limited by the strength of
the particular EDC that we choose. This is paraneta be tuned to allow a designer to trade off
error detection capability against implementatiostcSecond, we can only protect structures that
do not hold committed architectural state. Thus,cae protect the ROB, LSQ, 1Q, IW, etc., but
we cannot protect the register file, processowustatord, condition codes, etc. In order to extend
SRAS-EDC to cover this portion of the microprocesswre, an additional state save and recovery

mechanism would be required (e.g. a checkpointihgme).

2.2.7 Applicability of SRAS to Specific Structures

In developing SRAS-CR and SRAS-EDC, we have stutiedcommon structures within the
microprocessor core and applied SRAS techniquékase structures that we believe support it
economically (that is, without undue redesign oritig constraints). While we generalize struc-
tures as buffer-like or table-like, each structorast be considered in detail to understand how
SRAS can be made to work on it. This section prissire detailed assumptions about the differ-
ent structures we studied to give the reader bigtteition in applying SRAS techniques to a spe-

cific design that we have not specifically addressih this study.

2.2.7.1 Instruction Buffer
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The instruction buffer is a straight-forward sturet to protect with SRAS. As the holding
place for fetched instructions awaiting decodes thiffer is a FIFO queue, with each entry written

once. There is no requirement to modify its basiecsure to accommodate SRAS application.
2.2.7.2 Instruction Scheduling Window

After instructions are decoded, they are cachatlisistructure until their operands are ready
and functional units are available to execute th&location of entries is buffer-like in nature and
we treat it thusly for SRAS application. In orderdo this, however, we must consider the follow-
ing aspects of the instruction scheduling windowat tare not queue-like. First, the structure is
implemented as a content-addressable memory (CAMhable wake-up and select logic to prop-
erly find ready instructions as well as to allowecgnd readiness to be properly updated each
cycle. Second, this structure is the beginninghef dut-of-order execution of the microprocessor
core. Instructions are removed as they become readyn FIFO order. Typical implementations
perform a compaction of the structure at the endaah cycle to keep oldest instructions near the
head of the queue and to simplify allocation ofriestin the next decode cycle. Finally, the con-
tents of this structure will typically be updateetween the initial write to it and its eventual use

and entry retirement.

For SRAS-CR, these factors are mitigated by perifogra full write of the entry at its point of
allocation and performing the check at that tims.mMentioned in the discussion of SRAS-CR,
pseudo-random data from the tick counter is usgabpmlate the uninitialized fields of this struc-
ture to allow for the check to be calculated propetithout requiring partial updates be converted
to RMW activities and to have a fixed upper boumdtlee number of check circuits required to
perform checks (fon-wide decode circuitry, we needcheck circuits). Subsequent overwriting of

partial data and movement during compaction iscéffely ignored by SRAS-CR. This is tolera-
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ble since DIVA will correct any errors introducey moving a good datum to an array entry that

has a hard fault present that has yet to be dejmefil.

For SRAS-EDC, EDC must be recalculated for everglatg to the structure. We can avoid
RMW requirements by dividing the EDC into separai@C fields for each of the written sub-
pieces of the entry. This also provides the adgentd only requiringn EDC calculation circuits,
since at most operands will become ready in a given cycle imavide processor. The calculated
EDC for a particular operand becoming ready is freshelent of the rest of the instruction window
data. This allows a single EDC calculation to bétem multiple times at all applicable locations
in the instruction window. So, in a given cyate:DC calculations will be required for the incom-
ing n decoded instructions and the newly-computedady operands (making for a total2).
Compaction activity is not a problem, since the Eidvels with the entry and remains valid dur-
ing the compaction (that is, compaction performsupdate on the data, only moving it to a new
location in the buffer). As with SRAS-CR, the numbé& EDC checking circuits required for the
structure is equivalent to the issue width of thecpssor.

2.2.7.3 Load-Store Queue

The LSQ is FIFO in nature, but is also implemerdsda CAM to allow for searching. This
additional implementation complexity does not ade&r impact either of the SRAS schemes.
SRAS-CR again uses pseudo-random data if necessg@erform the check at the time of entry
allocation. SRAS-EDC must mainta2m EDC calculation circuitry sets (one for the inlitizite of
the entry and one for address calculation arrik@hfan ALU) in order to allow for a peak sus-
tained memory bandwidth of n instructions per cyameann-wide processor. Onlg copies of the

EDC check circuit are required. As with the instime scheduling window, the sub-fields of an
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entry may have their EDC calculated separatelynplkfy the EDC calculation circutry’s imple-
mentation.

2.2.7.4 Branch History Table

The BHT is a table with addressable content onrg small granularity. The descriptions of
SRAS operation for table structures were crafteth thie BHT as a motivating example. For other
tabular structures, the aforementioned technigfiegiting pseudo-random data (for SRAS-CR)
or splitting the table entry into separate EDCdie{for SRAS-EDC) may be applicable.

2.2.7.5 Reorder Buffer

The ROB is a FIFO queue with the potential of npldtipartial writes during the lifetime of an
instruction. Issues here are similar to those fauarttie instruction scheduling window. The same

technigues would apply here for the two SRAS method

2.3 Online Diagnosis of Hard Faults in Microprocessors

With a fine-grained hard-fault tolerance mechanfemarray structures established, we now
seek to extend our fine-grained techniques to deloapability to diagnose hard faults in the
microprocessor core. By using existing techniquediiding the SRAS methods developed above,
we will arrive at a diagnosis mechanism capabldeaitcting hard faults in a bounding box that
surrounds a majority of the microprocessor coréclém decode through retirement of instruc-
tions. As with SRAS-CR, we use DIVA[6] as an erdatection and correction mechanism upon
which we develop our diagnosis technique. We begth a presentation of existing diagnosis
alternatives in Section 2.3.1 before we describe diagnosis mechanism in detail in
Section 2.3.2. This section concludes with a predem of deconfiguration techniques in

Section 2.3.3 and a discussion of the limitationswfpresented method in Section 2.3.4.
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2.3.1 Fault Diagnosis

DIVA checkers do not provide fault diagnosis. Tteeg only capable of detecting and correct-
ing errors, not determining their underlying causes transient faults, this is appropriate, since
the desired remedy never involves altering theigonétion of the core. For hard faults, however,
we show in Section 2.4 that it is often desirabld@oonfigure part of the superscalar core in order
to prevent frequent errors and the performancelpetieat frequent pipeline flushes from DIVA

corrections (or redundant thread corrections) woetglire.

We define sub-structures within the processor tioa¢ we wish to be able to deconfigure as
field deconfigurable units (FDUs). To diagnose hiadts in the processor core, we first have to
select the FDU granularity at which we wish to biedo diagnose. Many structures are replicated
within a typical superscalar core, and the graiiylaf replication represents a natural FDU gran-
ularity. The choice of FDU is a design decisiondagiven implementation. Because deconfigura-
tion is more easily achieved with this FDU selettiove favor it over an FDU selection that seeks
to have equal amounts of logic in each FDU. Forplozessors that we model in our evaluation,
the identified FDUs for which we track diagnosifoiation are: individual entries in the instruc-
tion fetch queue (IFQ), individual reservation stas (RS), individual entries in the load-store
queue (LSQ), individual entries in the re-orderfeuiROB), individual arithmetic logic units
(ALU), and the individual DIVA checkers. While oahosen processor designs have only one of
some of the more complex ALUs (for example, theder multiplier), we include them in our
diagnosis evaluation to show that the diagnostgsble of identifying hard faults in these units.
We have chosen a fairly fine FDU granularity, bne@ould choose coarser or even finer granular-
ities if so desired; we discuss this engineeringenff later. The hardware bounds of our diagnosis

mechanism are the components in which the selested checker (in our design, DIVA) can
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detect a fault. Therefore, we do not consider dugster file, because DIVA cannot recover from
errors in it.
2.3.2 A New Online Diagnosis Mechanism

We propose to dynamically attribute errors to FQddsthe system is running. Given an error
detection mechanism, if an instruction (or micrg-mpthe case of IA-32) is determined to be in
error, the system records which FDUs that instamctised during its lifetime. If, over a period of
time, more than a pre-specified threshold of erh@s been attributed to a given FDU, it is very

likely that this resource has a hard fault.

To track each instruction’s FDU usage, bits areiedwith each instruction from the point of
FDU usage to commit. For those structures thairtbteuction owns at commit, this information is
already implicitly available and no extra wires ageded to carry this resource usage info through
the pipeline. In our modeled processor, the ROBiesaind DIVA checkers use implicit tracking.
For the remaining FDUs, the number of bits requiged function of the size of the structure and
the granularity into which we are allowing it to deb-divided for later deconfiguration. This rep-
resents an engineering trade-off in our designwlilagllow implementations to select the appro-
priate FDU granularity/overhead trade-off. For tgi superscalar microprocessor designs,
including those that we evaluate in Section 2.4ghty1 20 bits are required to track this fine-
grained FDU utilization information. Carrying thesgtra bits through the pipeline incurs two
costs: pipeline latches will be marginally widedahere will be more wires to route through the
pipeline. However, compared to the 64-bit operaihds$ are carried through the pipeline, these
extra bits are a small addition, especially sinoeall of the bits need to traverse the whole pipe-

line.
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For each FDU we track, the processor maintainsall sgaturating error counter. The purpose
of the error counter is to differentiate hard fadtbom soft faults. At the scope of the error detec
tion and correction mechanisms considered (thattithe instruction granularity), hard faults are
not distinguishable from soft faults at the timeearor is detected and corrected. For hard faults
affecting frequently used structures, we observeraor detection and correction rate that is orders
of magnitude higher than that observed for transiaults. Occasional corrections due to soft
faults do not trigger diagnosis because they deattrate the error counter for any given FDU in
the system. Periodic clearing of the error counpeevents soft fault corrections from accumulat-

ing to a point where diagnosis is triggered.
2.3.2.1 Design Issues

Using saturating error counters for diagnosis efiHaults presents four challenges. First, after
the FDUs have been selected and configured fomdigig in an implementation of our mecha-
nism, all remaining logic for which the error ddten and correction mechanism detects and cor-
rects errors must also be tracked by our diagnesiieme. For our design, this critical logic
includes all logic that is not within an FDU bugths in the portion of the superscalar core for
which DIVA is capable of detecting errors. Thislimes instruction issue, any singleton arith-
metic logic units (ALUs) (for example, a floatingipt multiply/divide unit), floating point ALUs,
and any common datapaths that all instructions mnagerse.

The second issue with using saturating error cogrigethat transient errors must not lead to
above-threshold error rates. Thus, we must hawe egunter thresholds that are not too small,
and the microprocessor must periodically cleardaitier counters to prevent transient errors from
accumulating past the hard fault threshold. Theguemcy of counter clearing is an adjustable

parameter that depends on expected transientrates. Counter clearing is a low-cost operation,
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so we recommend clearing once every ten seconds, thteugh current terrestrial transient fault
rates do not approach this frequency. This rabased upon our experimental results for latency to
diagnose hard faults. Our experimental results sthatvthe latency to diagnose a hard fault in the
FDUs we evaluate is less than 1/10th of a secondudti-gigahertz frequencies, even in infre-
quently-used FDUs. By clearing at an interval vedlbve the diagnosis latency of FDUs we care
to diagnose, we ensure that we will diagnose haunttS that greatly affect system performance if
they are allowed to continue to cause error detecnd correction to occur. If diagnosis spans a
clearing interval, we are merely postponing theodéiguration temporarily. Also, if a hard fault is

detected and deconfiguration is activated, the wiiguaration process clears the error counters.

Third, the error rate threshold for a resource nastelated to its usage. For example, a very
high threshold for a resource that is rarely usédpreclude the system from ever diagnosing a
hard fault in it. To illustrate this, consider thase where we have a single adder and two ROB
entries. Assuming we use the adder and one of @8 &tries each cycle, we can observe that a
fault in the ALU will cause both ROB entries’ erroounters to accumulate errors at a rate of 1/2
that of the adder. To avoid mis-diagnosis, we wawddd the adder’s saturation value to be greater
than that of an ROB entry, but not more than twieeROB entry value. Thus, for frequently uti-
lized FDUs, a larger counter value is required tevpnt the mis-diagnosis of a fault in an
upstream or downstream structure.

The final challenge is that the chosen FDUs mustdael reasonably independently. Otherwise,
for example, if every time an instruction uses FR@ also uses FDU B, then the diagnosis mech-
anism will not be able to distinguish between alfault in A and a hard fault in B. To guarantee
that instructions take many different and indepandeaths through the pipeline, we slightly

change the scheduling of resources that are norreelieduled non-uniformly (e.g., higher prior-

42



ity for ALU ) to add a round-robin aspect to it. For exampistead of always allocating the low-
est-numbered ALU that is available, the micropreoesllocates available ALUs in a round-robin
fashion. Otherwise, the usage of A} ould be significantly greater than that of otA&itUs and
thus preclude hard faults in them from being diagmb(since the thresholds assume uniform utili-
zation). This scheduling modification is not neeggdor resources that are naturally scheduled
uniformly, like ROB entries. We found that roundsio scheduling alone does not avoid all lock-
step allocation of resources, though. For examvpitiy, three ALUs and three DIVA checkers, we
found that a long string of instructions that aled ALUs led to undiagnosable errors. In one par-
ticular scenario, an instruction that used Ajdlways used CheckgrALU, was perfectly corre-
lated with Checker and ALU, was perfectly correlated with Checkeffo avoid this lockstep
allocation, we introduced a small amount of psetai@omness into the scheduling of checkers.
Every cycle, the first checker to be consideredaltwcation is determined based on pseudo-ran-
dom data (e.g., low order bits of the tick countand then subsequent checkers are allocated
sequentially (mod width) after the first one. Thigudo-randomness, combined with round-robin
scheduling, prevents lockstep allocation and adseegasonably uniform utilization of each set of

identical FDUs.
2.3.2.2 Heuristics for Choosing Error Counter Values

Given these four challenges, we developed a h&ufist choosing appropriate threshold val-
ues for the saturating error counters. As it isagisvpossible to craft an instruction sequence that
leads to saturation of the wrong counter, the thegtwe can do is to choose saturating values and
then verify correct diagnosis operation via simolatUsing this heuristic for the designs we eval-
uate in Section 2.4, we will see that it does previdfective threshold values that lead to low-

latency diagnoses of a wide range of FDUs. Theisiwurs as follows:
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4) Select a minimum power-of-two threshold valuellvabove what transient or intermittent

faults would cause in a counter-clearing interval.

5) Segregate FDU types by the population of ubitgach type. For FDUs that have a population

that is not a power of two, round the populatioritber the next larger power of two, if it is a
heavily-utilized resource, or the next smallett isia less-heavily utilized resource. Resource
utilization information may need to be gatheredsiraulation of representative workloads at
this point. Group like-population FDUs togethersAsiing that there is some logic for which
error detection and correction can contain a fdaut,for which there is no associated FDU,

create a singleton group for “critical logic.”

6) Assign the minimum threshold chosen in step thé highest-populated FDU group.

7

8)

Assign the next power-of-two as the error ceuttireshold for the next-most-populated FDU

group.

Repeat step 4 for all remaining FDU groupsigaisg the highest threshold to the “critical

logic” group.

9) Simulate the processor with a representativefssorkloads and FDU faults to verify that the

thresholds chosen cause the diagnosis mechanisomt@rge on the faulty FDU.

10) Using the simulation results from step 6, mthe threshold by a factor of two (one bit) for

those items whose diagnosis latency is large.i#f tfireshold reduction results in no FDUs
with an error counter threshold in the middle a# threshold range, reduce all higher error
counter thresholds by a factor of two. This wiku# in a set of error counters whose bit width

is monotonically increasing, without any gaps frionvest to highest. Repeat the simulation to

verify correct operation.
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Table 2-2. Error Counter Thresholds

FDU threshold storage requirementsfor diagnosis
instruction fetch queue entry 32 5 bits/entry
reservation station 32 5 bits/entry
reorder buffer entry 16 4 bits/entry
load/store queue entry 16 4 bits/entry
integer ALU 64 6 bits/unit
floating point ALU 64 6 bits/unit
integer multiplier 32 5 bits/unit
floating point multiplier 32 5 bits/unit
DIVA checker 64 6 bits/checker
critical logic (issue, etc.) 128 7 bits

In Table 2-2, we list the counter thresholds for BigUs we consider in this paper, including
the per-unit storage cost for each FDU’s countBesk values were derived for our three evalu-
ated processor design points using the above tieusish a minimum threshold value of 16. For
resources that are less utilized, such as thdripabint units, our mechanism may take additional
time to diagnose, even with the lower thresholdttieir more heavily-utilized integer counter-
parts. Any hard fault that gets exercised so raasljto not exceed our error counter threshold
between periodic counter zeroing is also so raa¢ ithincurs little performance penalty for its
infrequent error recoveries. In this situation, glynusing DIVA to correct errors due to a hard
fault in a lightly-utilized FDU is sufficient. Thkey observation is that our scheme can diagnose
hard faults in the highly utilized resources, sattthe microprocessor avoids frequent recoveries.

2.3.2.3 Discussion

We include the DIVA checkers in the error diagnaiisign, so that we can enable the micro-
processor to tolerate hard faults in the checl&mne &k-way superscalar microprocessor requires

approximatelyk checkers to avoid having the checkers becometkebetk, we would like to be

able to tolerate a hard fault in one of them byefeging their redundancy.
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Using DIVA for error detection and correction praes three unique issues related to diagnosis
and deconfiguration of a hard-faulted unit. Fitgicached loads and stores commit without any
redundant check of the operation, making them gmtiaable. A fault affecting the logic unique
to these operations will not be covered by our raa@m. The system will perform exactly as it
would if it only had DIVA checkers active. Secortlde microprocessor is vulnerable to transient
errors in DIVA checkers, but DIVA assumes that drolaéckers can be designed to be more resil-
ient to transient faults by using more robust feagizes. Third, because the microprocessor trusts
a DIVA checker until its error counter exceedstlitgeshold, the microprocessor is vulnerable to
incorrect execution in the window between whenra fiault occurs in a checker and when it diag-
noses that the checker is the culprit. We furthexcubs this window of vulnerability in

Section 2.3.4.2.

There are certain scenarios in which the diagnosishanism can temporarily deconfigure a
fault-free FDU. A transient or hard fault in ourded hardware—error counters, wires for tracking
resource usage, and deconfiguration logic—could teadeconfiguring a fault-free component.
Also, the use of saturating counters for the FDlithiw the processor introduces the possibility
that the wrong unit’s counter will saturate first & particular instruction sequence. To addréss th
issue, we use an iterative diagnosis process. D#glis not considered complete until fault rates
fall below a hard-wired threshold set by the desigWe set this threshold sufficiently high to
allow for all hard faults that we wish to diagndsdbe accounted for. The final unit deconfigured
before this error rate change is considered fawlyle all other units deconfigured in the affikalt
diagnosis cycles are returned to operation. In @dn# deconfiguration does not help (i.e., as
unit(s) are deconfigured, error counters contirtugaturate in close temporal proximity), then the

system can reconfigure the previously mapped oiifs)iiback into the system (under the common
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assumption of one hard fault at a time) once thieecounit has been identified and deconfigured.

Our evaluation in Section 2.4 will show that onedt®n is sufficient a vast majority of the time.

The microprocessor also tolerates faults in therewunters by testing them. After clearing the
counters, it checks that they are indeed all Zélso uses a small amount of hardware to period-
ically test that the counters can be incrementeckctly. If a counter is faulty, the corresponding
FDU is then permanently either configured or deigued, based upon whether it is mapped back
in or left deconfigured. Mapping it back in leavtbe system vulnerable to a hard fault in this

FDU, but leaving it deconfigured is potentiallyos$ of useful hardware.
2.3.2.4 Alternative Design Options

There exist other ways to perform fault diagnosie most obvious approach is to use TMR—
if two modules produce one result and the third ob@groduces a different result, then the system
diagnoses the third module as faulty (assumingglesifault model). TMR, however, has a 200%

hardware and power overhead.

Another well-known diagnosis approach is built-glfgest (BIST). After detecting an error
and determining that it is due to a hard fault .(eog detecting it repeatedly), systems with dedi-
cated BIST hardware can test themselves in orddiagnose the location of the hard fault. To its
advantage, unlike our new diagnosis mechanism, BI&E not have to worry about the statistical
nature of online error counting. BIST can be agptie a microprocessor like the ones we study,
and one concurrent BIST mechanism can be usedllifeoomponents in the path, although the
number of BIST test vectors to generate—eitherrdetastically or pseudo-randomly—would be
extremely large. BIST requires the processor toffije for testing to occur. Our online error
counting differs from BIST by diagnosing faults e observation of the execution of actual soft-

ware with the software’s instructions acting ag testors and the error detection and correction
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acting as output verifier. This ensures that weaghvhave a test vector that exposes a detected
fault. Finally, BIST adds performance overhead tiuthe extra multiplexers that choose between
normal inputs and BIST inputs. Unlike our diagnasierhead, this overhead is on the critical path
of instruction flow through the processor. Sincengnprocessors have some form of BIST support
already in their design, use of our mechanism pitesan opportunity to remove this hardware

from the critical path, replacing BIST with our nh@nism.

Within our diagnosis mechanism, there are alsoglesptions. If, instead of using DIVA, we
used redundant threading for error detection amcection, this would also affect our diagnosis
mechanism. DIVA assumes that the checker coraniaya fault-free and thus it can diagnose with
only two copies of a given unit (e.g., the mult@plin the out-of-order core and the multiplier in
the checker). If a redundant threading schemedd o detection and correction of hard faults, it
must use independent resources for each of theapriand redundant threads in order to guaran-
tee that results are not derived from the sameéyfdndrdware. Since with redundant threading,
there is no known-good unit, we need at least tlw@ges of a given unit to ensure forward
progress is achieved in the presence of a hartl fatherwise, for example, a hard fault in one of
two multipliers would cause repeated miss-matclesdlts with no way to determine which result
is correct. In this case, the instruction wouldaggontinually until a higher-level deadlock detec
tion mechanism activated. With at least three copfea unit, the two fault-free copies will calcu-
late the correct result, allowing us to isolate fhelty functional unit and then increment its

associated error counter.

Finally, an alternative, related diagnosis mechani®ars mentioning. As an alternative to
keeping saturating error counters for each FDUahldgic covered by the chosen error detection

and correction mechanism, a microarchitect couldtoghave a single, saturating error counter

48



that triggers diagnosis. This counter, when saggkatvould lead the system to replay the faulted
instruction, deconfiguring and replacing each FDubived in the last erroneous result until a cor-
rect result is obtained. At that point, the curigieconfigured FDU would be deemed faulty and
would remain deconfigured from the system, withmalr operation resuming. This method pre-
sents three drawbacks. First, to use this altammathe microarchitecture would have to support
directed steering of instructions through spedfigUs to allow for multiple replays with only a
single suspect removed from the processing of egqglay. This would add additional complexity
to every stage of the pipeline. Second, if a tmisfault happens to cause the diagnosis in this
alternative scheme, diagnosis will take the maximamount of time and will result in no unit
deconfigured, requiring a subsequent diagnosisnatten the next encountered error. Finally, if a
transient occurs during diagnostic replay, it wésult in either the diagnosis missing the suspect
unit, requiring another round of diagnosis, or alle-fault case, which greatly complicates error
detection. Given these issues, we chose the usea@fcounters for each FDU, which leads to a

single deconfiguration action upon saturation with@quiring any directed replay of instructions.

2.3.3 Deconfiguring Faulty Components

After an FDU has been diagnosed as having a haftdfeesent, deconfiguring the faulty FDU
is desired to avoid the frequent pipeline flustneg DIVA would trigger due to continued manifes-
tation of the fault. In this section, we descrilbgeral pre-existing methods for deconfiguring typ-
ical microprocessor structures, plus a new wayetmdfigure a faulty DIVA checker.

For circular access array structures—such as steuittion fetch queue (IFQ), reorder buffer
(ROB), and load/store queue (LSQ)—previous work $tasvn how to add a level of indirection
to allow for de-configuration of a single entry kvilittle additional latency added to access time

for the structure [64]. If we use SRAS-style renmiagpeach structure maintains a fault map. This
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fault map information feeds into the head andpaihter advancement logic, causing the advance-
ment logic to skip an entry that is marked as fadftcold spares are available, as in our SRAS
designs, shown in Figure 2-4, the structure sizebeamaintained at the original processor design
point. If no spares are provisioned, which is wkatassume in our analysis, then the structure size

must be updated when the fault map is updated.

For some tabular (i.e., directly addressed) stresta-such as reservation stations, register
files, etc.—a simple solution is to permanently kiidre resource as in-use, thus removing it from
further operation [64]. Once again, use of SRASuaEs that cold spares may be available, as
shown previously in Figure 2-5, even though we agsmm provisioning of cold spares in the

evaluation of our new diagnosis mechanism.

For a functional unit (ALU, etc.), similar to a ezgation station, we can mark the resource as
permanently busy, preventing further instructiorerf issuing to it [64]. Cold sparing of func-
tional units is possible, but it may require tooamthardware area, as functional units are rela-
tively large compared to individual ROB entriegeservation stations. We focus on using existing
redundancy, since the cost of adding extra redwndaray be too great for commodity micropro-
cessors.

For one of the multiple DIVA checkers, we can mapdit if we diagnose it as being perma-
nently faulty. Depending on how DIVA checkers acheduled, deconfiguration is just as simple
as for ALUs; just marking a faulty checker as pemeraly busy will deconfigure it. Prior work has
not looked into deconfiguring DIVA checkers, becaum fault diagnosis schemes prior to this

work could diagnose hard faults in a checker.
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2.3.4 Costs and Limitations

The design that we have presented in Sections-2.3.3 is not free, nor is it without limita-

tions. In this section, we present its hardwardscasd limitations.
2.3.4.1 Hardware Costs

We add hardware to an unprotected microprocessamhi@ve hard fault tolerance. The largest,
single addition to the processor is the DIVA cheskeach of which has been estimated at 6% of
the size of an Alpha 21264 core [80]. In additiorDdVA, which provides benefits even without
our additions, we also add: error counters, wioesraicking each instruction’s resource usage, and
logic for deconfiguring FDUs. None of these addiibhardware costs are large; moreover, they
can all be reduced at the expense of a coarseulgréay of diagnosis and deconfiguration. For
example, we can share one error counter and omeamiongd entries in the instruction window,

at the cost of having to deconfigure lakéntries if any of them incurs a hard fault.
2.3.4.2 Limitations

We now discuss three limitations of our currentliempentation and approaches for addressing
them in the future. First, there are certain strirgg that we either cannot protect or that are very
difficult to protect. Our current implementationneet protect the register file, because it is péart
the recovery point for DIVA recovery. We cannotghiase faults in singleton resources that are
used with a majority of instructions, due to amlifigweasons stated at the end of Section 2.3.2.
Examples of these resources include issue logiccaminon datapath lines. These singletons are
always in lock-step scheduling with each otherlititig a modular implementation for these cur-
rently monolithic structures could make them coafaple as FDUs in our diagnosis scheme, but

such designs are beyond the scope of this work.
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Related to this issue is the impact of hard fanlthe datapaths and unique logic for each FDU.
For some FDUs selected, there is a unique segaf &md data paths that will affect correct execu-
tion for a subset of instruction paths throughpghacessor if hard faults are present, but for which
diagnosis will lead to deconfiguration of a dowrsain unit. In these instances, the deconfigura-
tion action results in discontinued use of the tidilportion of the circuit via deconfiguration of
the downstream FDU, so the right thing happens withdiagnosis mechanism despite the prob-

lem actually residing in a different FDU.

For example, consider bypass paths between ALUaukin a bypass path will be flagged as
a fault in the destination ALU by our mechanismemthough that ALU is able to correctly pro-
cess instructions where the bypass path is noteadBly discontinuing use of the ALU, however,
we observe that the bypass path is no longer ukad,eliminating the fault from further activa-
tion. To prevent this effect, we could treat byppaths as separate FDUSs, but their deconfigura-
tion would not be straightforward, so we choos&top them with the ALU FDUs for simplicity
of the overall design. The tradeoff here is th&illy-functional ALU is deconfigured to prevent
the effects of a hard fault in a bypass path.

Second, there is a window of vulnerability in whigHaulty microprocessor can unwittingly
produce erroneous results. Being able to decordigdaulty DIVA checker enables the micropro-
cessor to improve reliability by preventing the Ifabtom continuing to silently corrupt system
state; in a DIVA-only system, it would go unnoticeuntil visible data corruption was recognized
by a downstream entity. However, there is stilliadew of vulnerability between when the hard
fault occurs in the checker and when it is diagdamed deconfigured. In that window, a number
of instructions equal to the error counter threghiolr the checker times the number of DIVA

checkers could have been committed in error, M4 checkers assume they are correct in the
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case of a mis-comparison. Without a higher-levebvery scheme, such as checkpointing, this
erroneously committed state represents an unregbheeerror. It should be noted that DIVA also
can cause silent data corruption when a transsiit &ffects a checker. Since this is not deteetabl

by DIVA or our diagnosis mechanism, it remains &pasure of any DIVA-based system.

Finally, because we elected to use DIVA in our glesj we are unable to detect and correct
problems in uncached loads and stores. This im#alion of DIVA that we inherit. This adds
complexity to recovery, particularly in the caseemhthe checker is at fault. Discussion of tech-
niques to work around this limitation is beyond fuwepe of this work. This problem is not new to
checkpointing research. If a designer requiresainment of this escape in the scheme, an appro-
priate checkpointing scheme will be required. The af an alternative error detection and correc-

tion mechanism, capable of detecting and corredhtirge errors, would also correct this issue.

2.4 Evaluation

Having presented SRAS and SRAS-EDC as techniqueatetmnfiguration of faulty array sub-
structures and then developing a fine-grained fdialgnosis mechanism for the microprocessor
core, we now present our evaluation of these desiginst, we present the common experimental
methodology that was used in this work in Sectighl2. Our evaluation starts with SRAS in
Section 2.4.2 and then concludes with analysis ofi@agnosis mechanism in Section 2.4.3.

2.4.1 Experimental Methodology and System Model

To evaluate our designs’ operation under the faugtels considered, we modified sim-mase,
as made available by SimpleScalar [5]. For SRASmeeel a dynamically scheduled micropro-
cessor that is similar to currently available siatiireaded microprocessors, such as the Intel

Pentium4 [25] and Alpha 21364 [24]. The detailshaf target system are shown in Table 2-3. We
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Table 2-3. SRAS Target System Parameters

pipeline depth 22

pipeline width 3

instruction fetch buffer 64

scheduling window 32

load-store queue 48

reorder buffer 126

functional units 4 integer adders and multiplieERLadder, 1 FP multiplier
branch predictor gshare: BHT is 4096 entries, BHfFyeis 2-bit counter, BHR is 8 bits
registers 192

L1 D-cache 8K total size, 4-way, 2-cycle

L1 I-cache 8K total size, 4-way, 2-cycle

L2 cache 256K size, 8-way, 7-cycle

protect the instruction buffer, instruction schadglwindow, reorder buffer, and load-store queue
with SRAS techniques.

For the evaluation of our online diagnosis mechanise model three separate microprocessor
designs, each patterned after an existing SMT-edaldommaodity microprocessor design. The
first design,Narrow, is a superscalar processor that is patternedhtpuaiter the original, pre-
SMT-enabled Intel Pentium 4 [14, 25]. We modifystlliesign to include like-sized caches to the
SMT-enabled design points to avoid performance-sitects from mis-matched supporting struc-
tures. The second desigbeep-Narrow is a more deeply-pipelined implementation of barr
patterned on current SMT-enabled Intel Pentium gigihes [14]. Deep-Narrow differs from Nar-
row in the depth of its pipeline, carrying an aditl 11 stages to allow for faster clocking. The
final processor configuratioshort-Wideis inspired by the AMD Athlon/Opteron processamf
ily [4, 26]. This design point favors a wider, stesrpipeline that, in practice, is clocked at adow
rate than competing designs from Intel. Since #gister renaming scheme does not affect our
experiments, all of the processor configurations ingplicit renaming via the reservation stations

(i.e., without an explicit register map table). Teap-4 shows the details of all three configurations
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Table 2-4. Parameters of Target Systemsfor Online Diagnosis Evaluation

Feature Narrow Deep-Narrow Short-Wide

pipeline stages 20 31 12

width: fetch/issue/com- | 3/6/3/3 3/6/3/3 9/9/9/9

mit/check

branch predictor 2-level GShare, 4K | 2-level GShare, 4K 2-level GShare, 4K
entries entries entries

instruction fetch queue 64 entries 64 entries 72 entries

reservation stations 32 32 54

reorder buffer 128 entries 128 entries 216 entries

load/store queue 48 entries 48 entries 44 entries

integer ALUs 3 units, 1-cycle 3 units, 1-cycle 6 units, 1-cycle

integer multiply/divide 1 unit, 14-cycle multi- 1 unit, 14-cycle multi- | 1 unit, 8-cycle multi-
ply, 60-cycle divide ply, 60-cycle divide ply, 74-cycle divide

floating point ALUs 2 units, 1-cycle 2 units, 1-cycle 3 units, 5-cycle

floating point multi- 1 unit, 1-cycle multi- | 1 unit, 1-cycle multi- | 1 unit, 24-cycle multi-

ply/divide/square root ply, 16-cycle ply, 16-cycle ply, 26-cycle divide,
divide/square root divide/square root 35-cycle square root

L1 I-Cache 16KB, 8-way, 64-byte| 16KB, 8-way, 64-byte | 64KB, 2-way, 64-byte
blocks, 2-cycles blocks, 2-cycles blocks, 3-cycles

L1 D-Cache 16KB, 8-way, 64-bytel 16KB, 8-way, 64-byte | 64KB, 2-way, 64-byte
blocks, 2-cycles blocks, 2-cycles blocks, 3-cycles

L2 cache (unified) 1MB, 8-way, 128-byt{ 1MB, 8-way, 128-byte| 1MB, 16-way, 128-
blocks, 7-cycles blocks, 7-cycles byte blocks, 20-cycles

Diagnosis: error counters 1249 bits 1249 bits 1219 bits

Diagnosis: FDU tracking 19 lines 19 lines 22 lines

Shaded entries for Deep-Narrow are identical tee¢haf Narrow
including the overheads for our diagnosis scheme.utllize the DIVA-style checker capability
provided by sim-mase and additionally modified SieSezalar to allow for hard fault injection.
We simulate the SPEC2000 CPU benchmarks, and wthesgimPoint toolset [63] to choose
statistically representative samples of these loegchmarks for detailed simulation. We inject
varying numbers of both stuck-at errors and cowgpérrors into the protected structures. Due to

fault masking, injected hard faults do not alwagad to errors when the faulty structures are

55



accessed. For example, a stuck-at-one fault daesffeat a bit that is dynamically set to one dur-
ing execution.
2.4.2 SRAS-CR and SRAS-EDC

In this section, we evaluate the benefits and cobtadding self-repair to microprocessor
arrays. Our goal is to determine whether self-rejgaiiable, primarily in terms of performance, as
performance is of critical importance in the comitpgrocessor design space. We will compare
both SRAS-CR and SRAS-EDC to systems protected DA as well as to each other. Compar-
ing SRAS to DIVA is somewhat unfair, since DIVA wast designed to handle hard faults, but it
is the best alternative currently available. An artpnt question we seek to answer is whether
SRAS-EDC can achieve comparable performance to SBRSlespite not requiring DIVA sup-
port or the other drawbacks of SRAS-CR. While wenpare performance quantitatively, the
implementation costs and power consumption compasisire qualitative.

First, we present the results of our evaluatiobath SRAS-CR and SRAS-EDC. Our focus,
detailed in the results and discussion that folloisson comparing performance of fault-free
microprocessors with performance of both fault-feeel faulted microprocessors with SRAS in
place. Another important factor to consider isahea of the processor core that we can effectively
protect with SRAS. The percentage of the micropssoe core that SRAS protects depends on
implementation. Specific details are proprietanyt bstimation can be done with annotated die
photos of a representative chip. Such analysihefAlpha 21264 [64] shows that these array

structures comprise roughly 33% of the non-cach@oprocessor core die area.
2.4.2.1 Fault-Free Performance

Our first experiment explores the performance impdcSRAS for a system with no faults

injected. The goal of this experiment is to detemihe fault-free performance overhead of our
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schemes relative to a system with DIVA. In Figuré,2ve plot the fault-free runtimes (taller bars
correspond to worse performance) of several systearmalized to the baseline case of a system
with DIVA (or an unprotected system), for all oet& PEC integer and floating point benchmarks.
For each benchmark, we plot: (a) the baselineSBAS-CR (protecting just the RéB (c) unop-
timized SRAS-EDC, (c) SRAS-EDC with a partial optiation in which we compute functional
unit EDC in parallel for addition and subtractigimce these are the most common and the easiest
to perform in parallel (i.e., they require the keastra hardware for parallel EDC computation),
and (d) SRAS-EDC with the full optimization desebin Section 2.2.6 to compute all functional
unit EDCs in parallel (or not compute them at fall, self-checking circuits). The results show that
SRAS-CR has the same performance as the baselhthanSRAS-EDC unsurprisingly incurs
some penalty with respect to DIVA, due to addingnedEDC logic on the critical path. The full
optimization for SRAS-EDC helps quite a bit on mbehchmarks, and the partial optimization
does almost as well. One trend is that SRAS-ED@gdn suffer worse degradation in perfor-
mance on the integer benchmarks, explained byatetiat the extra pipeline stages in SRAS-
EDC exacerbate the branch misprediction penaltgkwis incurred more frequently by the integer
benchmarks.

2.4.2.2 Performance in Presence of Faults

In this experiment, we study the performance beéwéfself-repair for a system in which hard
faults have been injected. Our goal is to determihether self-repair provides enough benefit in
the presence of hard faults to be worth its castsefms of implementation and fault-free perfor-

mance). In Figure 2-8, we plot the runtime of SRASEEversus that of a system protected by

2. Results discussed later will show that protgcthe BHT is not worthwhile, and thus we do noslwto incur its
fault-free performance penalty in this experiment.
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Figure 2-8. Runtimewith Hard FaultsInjected into the Reorder Buffer

59



DIVA, in the presence of hard faults injected ithe reorder buffer. We do this to show that the
SRAS-EDC fault-free performance costs are wellijiest if hard faults are likely to be present
over the lifetime of the part. Since SRAS-CR hadfandt-free performance penalty, we do not
include it in this plot (the bars would all show S&CR equal to the bar labeled “DIVA with no
faults”). We inject 1, 4, and 8 stuck-at-1 hardifsiin order to evaluate the relative impact ofyvar
ing numbers of hard faults. We normalize the residtthe case of DIVA with no faults injected.
Here we see that, in general, the presence offaals leads to SRAS-EDC outperforming DIVA.
For the few integer benchmarks for which SRAS-EDCuis the greatest fault-free performance
degradation, however, DIVA may still have a sligldvantage in the case of only one hard fault,
but SRAS-EDC always outperforms DIVA for 4 and 8ilfa. Considering that defect and fault
rates are increasing, and we cannot eliminatef dfileem with burn-in testing [8, 56], these results
demonstrate that SRAS is worthwhile. We observettiafloating point benchmarks derive rela-
tively more benefit from self-repair. This effestdue to these benchmarks tending to better utilize

the pipeline and thus incur more of a loss whearaor causes DIVA to have to flush the pipeline.
2.4.2.3 Relative Performance Impact of Protecting Different Arrays

In this experiment, we explore the impact of handts on the other array structures that we are
protecting with self-repair. Having shown in theyious experiment that ROB self-repair is bene-
ficial in the presence of hard faults, we now corepae relative benefits of self-repair for other
arrays. For each of the five structures we areeptitg with self-repair—ROB, load-store queue,
instruction window (scheduling window), instructidmuffer (fetch buffer), and branch history
table (BHT)—we injected a single stuck-at faulttivat structure (i.e., we created five systems,
each with a single fault in a different array). Wen simulated each system’s performance on a

system with DIVA (i.e., without self-repair), to gge the performance degradation that DIVA
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would incur (and that a system with self-repair Wowiot incur). In Figure 2-9, we plot the runt-
imes for these five systems, normalized to a faek-system. Thus a taller bar in the graph indi-
cates that self-repair is more important for thiscture. We observe that there is no one particula
structure that is always the most important togobtvith self-repair, although there are some pat-
terns. For example, the instruction window benefitwre from self-repair than the ROB, as does
the instruction buffer for most benchmarks. A siigaint result is that faults in the BHT have vir-
tually no impact on performance. This is becauseBHT is a large structure that is accessed
sparsely, and faults in the BHT are likely to beskeal. Moreover, faults in the BHT can only lead
to incorrect branch predictions, not incorrect esiEn, so the corresponding pipeline squashes
can be initiated earlier (after the execution staggead of at the commit stage) and thus inasg le

performance penalty.
2.4.2.4 Implementation Costs

It would be unfair to favorably compare the impleration costs of SRAS against DIVA, since
DIVA is mainly targeting a different problem (i.@¢ransient faults) and it can also tolerate hard
faults beyond just the array structures (albeihyaigrformance and energy penalties). A compari-
son of SRAS-CR and SRAS-EDC is reasonable, thoBBAS-CR requires DIVA (or some simi-
lar dynamic verification scheme) as an error cdivacbackstop before a fault is determined to be
hard, which is a significant cost for systems thiatild not have otherwise chosen to use DIVA.
Besides needing DIVA, SRAS-CR adds dedicated chewals to each array for performing error
detection/diagnosis. Moreover, SRAS-CR adds extrésfio the arrays in order to perform error
detection/diagnosis (by writing and reading theckhew and operational row to compare them).
SRAS-EDC, unlike SRAS-CR, adds EDC bits to arrayies. SRAS-EDC also adds EDC compu-

tation logic and EDC check logic at certain poiimtshe pipeline. Both SRAS techniques provide
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what we believe to be a low-cost alternative tditianal large-scale replication with better peffor
mance than a low-cost BER technique in the presehbard faults in frequently accessed struc-
tures. The question of which SRAS technique isebbdtias no definitive answer. For designs
requiring the highest fault-free performance, SR&S-is better. SRAS-EDC, however does pro-
vide an implementation that does not require aritiadél! fault detection mechanism to operate,
which gives it the advantage of extra flexibilityits application.
2.4.3 Online Diagnosis

Our evaluation of our fine-grained online diagnosischanism consists of experiments to
explore the effectiveness of our diagnosis schengerepresentative sample of processor designs.

Our evaluation has the following goals:

* First, we want to show that commodity design poimgig our reliable architectural exten-
sions can quickly and correctly detect and diagrase faults, even in the presence of tran-

sient faults.

e Second, we want to demonstrate that, after ournsehgeconfigures a permanently faulty

FDU, the microprocessor’s performance is still geodugh to be useful.

* Third, we want to compare our scheme against aamiocessor that simply relies on DIVA
checkers to tolerate hard faults; while DIVA wasideed primarily for soft faults, it can also

tolerate hard faults, and we want to determineiifacheme outperforms this simpler solution.

* Fourth, we want to perform a sensitivity analysis gingleton complex, combinational logic
units such as the integer and floating point mliétip in order to determine if protection of

these units warrants further investigation.

* Finally, taking all three of our chosen design peitogether, we show the general applicability

of the technique to a broad set of designs fronttimemodity microprocessor design space.
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Figure 2-10. Error-Free Performance (SPECfp and SPECint) for Each of the Three
Evaluated Processor Configurations

Since we present results in the rest of this sedtiderms of normalized performances, we pro-
vide baseline error-free IPC results for each efttiree processor design points in Figure 2-10.

The goal of all of our evaluation is to show how firocessor behaves in the presence of a hard
fault. The likelihood of a hard fault affecting pessor operation is highly dependent upon the
process used to manufacture the part, the complekihe design, and the operating environment
that the part is deployed in. The discussion os¢hissues is an active body of research and is
beyond the scope of this evaluation.

2.4.3.1 Detection and Diagnosis of Hard Faults

Our first set of experiments explores how accuyaaeld quickly our scheme detects and diag-
noses hard faults. In each experiment, we injesteddhard fault in a single structure. All injected
hard faults manifest as a single bit stuck-at-ladourately account for masking effects, we inject
the hard fault at a specific site in the FDU, vitie exception of complex FDUs for which we lack
a detailed implementation. Our hard fault selecttempts to provide greater masking of fault

effects, which leads to a smaller performance peraaid longer diagnosis latency due to fewer
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Error bars show one standard deviation for di:
nosis latency above the average.

error detections and corrections. We do this bexéus a pessimistic case for the operation of our
mechanism.

Because transient faults are relatively rare fer ititervals we are simulating, we expect no
more than one transient to occur during a diagriogésval. To model the effects of this scenario,
we ran each simulation with the effect of a singleserved transient added at the beginning of the
simulation (that is, one random 3af FDUs' counters started with an error count néprather
than zero at the beginning of diagnosis). We oleEno difference in the behavior of the diagno-
sis algorithm for these experiments, leading usel@®ve that the mechanism is robust in the pres-
ence of typical transient faults.

In order to accurately account for masking efféetsur simulation environment, we extended

SimpleScalar to include detailed simulation of fln@t sites we inject errors at. To avoid excessive

3. A setis defined as one of each required FOi¢ fpr a particular instruction’s processing. Retwt DIVA cannot
determine whether an error came from a transiehtaod fault and also cannot diagnose a fault's@@uequiring the
diagnosis mechanism to treat all errors detectedIbi in the same fashion, with the counters fdDUs involved in
the calculation of the erroneous result gettingenented upon DIVA correction. For example, foriareger add
instruction, a set would include critical logic,eoimteger ALU, one reservation station, one ROByewne IFQ entry,
and one checker.
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simulation times, we extended SimpleScalar onlihanareas required to sufficiently evaluate the
effects of masking for the injected fault. Fautesiwere chosen for each of the FDUs in the sys-
tem with the goal of providing a representativeltfdar the given structure, with nominal or
slightly pessimistic behavior sought to ensure that study would apply for the broader set of

possible faults that could occur in the system.

For storage structures, we selected a represemthaiivto corrupt for a faulted unit. For the
ROB, we inject the fault into the least-significéitt (LSB) of the data result. This causes the com-
mon value of 1 to provide data masking for thedted fault. For the RS and IFQ, we corrupt the
LSB of the register identifier for the second argunnof the instruction. This causes single-argu-
ment instructions to functionally mask this erradagives an even probability that two-argument
instructions will experience data-masking for thjgcted fault. For the LSQ, we inject the fault in
bit 16 of the address. This prevents data mis-algmt exceptions and provides an average-case

data masking scenario.

For combinational logic units, such as the ALUsirgpting a single bit of output is not an
accurate fault model. This is due to the fact ttmahbinational logic differs from storage in that
faults may propagate to different outputs or mayuretionally masked for different inputs and
operations. This requires us to either simulatata-tgvel design of the faulted unit or to utilze
statistical fault model.

For the integer ALUs, we model faults as manifestmthe adder. We used a gate-level design
for a 32-bit adder and selected a representatite yghose output is stuck-at-1 when the fault is
injected. We performed a thorough gate-level faintulation of the adder. We then simulated all
possible inputs and all possible fault locations tfte adder to gain intuition on how masking

affects observation of fault effects. The gate eleced for fault injection in our simulations rep-
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Figure 2-12. Performance Impact of Losing One Component to a Hard Fault for Each of
the Three Evaluated Processor Configurations

resents the nominal masking case with a shadingrtbwore masking, as this is a pessimistic
assumption in our experiments. Masking was thefuated for every instruction that accessed the
ALU with the faulty adder.

For the integer multiplier, floating point multipl, and floating point ALUs, we used a statisti-
cal model for fault injection. In this model, wesame that there is a 50% chance that data mask-
ing will mask the injected fault. We use a randoamber generator to select which instructions
observe this data masking effect.

In all of our experiments, the microprocessor dedand diagnosed the injected hard fault and
did not mis-diagnose a soft fault as being hard.méasured how many cycles elapsed before an

injected hard fault was correctly diagnosed, anglwethe results of this experiment for the worst
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Table 2-5. Number of Diagnoses Needed to I dentify Correct Failing Unit

2 3 4 5 6+
Faulted Unit | 1 Diagnosis | Diagnoses | Diagnoses | Diagnoses | Diagnoses | Diagnoses
instruction >99.99% <0.01% 0% 0%? 09%* <0.01%
fetch queue
entry
reservation >99% <2% <0.01% <0.01% <0.01% <0.1%
station
integer ALU >99% <0.1% <0.1% 0% 0%? <0.1%
floating point >99% <0.1% <0.1% <0.01% <0.1% <0.1%
ALU
integer multi- | >99.999% 0% 0% 0% 0% 098
plier
floating point | >99.99999% 0% 0% 0% 0% 0%
multiplier
load/store 100% 0% 0% 0% 0% 0%
queue entry
rob entry >99.99% 0% 0% 0% 0%? 0%?
DIVA checker >99% <1% <0.01% 0% 0% 096
critical logic >94% <4% <1% <1% <1% <1%

a. Value less than 0.001%, but non-zero value.

of the three configurations (Narrow) in Figure 2-The other two configurations exhibited quali-
tatively similar performance, so are not shown h8iece the results were relatively insensitive to
the benchmarks, we present the mean results fagrttiee SPEC2000 benchmark suite; the error
bars in the figure represent one standard deviatimve the mean. The results show that most
hard faults are diagnosed within fewer than 15,0@¢les, but that there are irregular diagnoses
that take significantly more time, leading to athigariance in the data. These irregular diagnoses
come from two sources.

The first source is initial mis-diagnosis of nondtst hardware. To gain intuition on how often
this will be a factor in diagnosis latency, we gatd statistics on how many diagnoses are
required before converging on the correct diagnasithese simulations, the fault was always left

active, allowing for continual diagnosis of the safaulty unit. Table 2-5 shows the results of
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these experiments. Because the results for allggsmr configurations are similar, we combine
them in the data presented. While only the loadéstiueue entry has perfect diagnosis across all
configurations, all units except critical logic aeagnosed initially with at least 99% accuracy.
With critical logic, the fact that multiple unitegdeconfigured before the correct problem is iden-
tified is unimportant because a fault in the caltitogic will require that the processor be shut-
down. As the latency data in Figure 2-11 shows,gtiishappens in a very short period of time. In
effect, the counter threshold selection for criticgic allows the greatest opportunity for correct
diagnosis of an FDU prior to drawing a conclusibattcritical logic has been affected by a hard
fault. Since the reaction to such a hard fault @verdrastic than deconfiguring a single FDU, we

feel that this is a wise design decision.

The second source of variance in diagnosis latengsogrammatic phase behavior. The mix of
instructions varies throughout the various phadegroagram operation. During certain phases,
FDU utilization patterns will shift, causing diagi® behavior to vary. In rare circumstances, a
string of instructions that causes the wrong ecoamter to saturate first will occur (for exampe,
loop that repeats many times). This can lead &ovgelnumber of mis-diagnoses before the faulted
unit gets properly deconfigured. As mentioned presly, the diagnosis mechanism tolerates these
mis-diagnoses without significant impact to the fpenance of the processor. The largest
observed latencies were on the order of millionsyafles, which is a small amount of time for a
modern microprocessor running at multiple-gigaheltzk frequencies.

Our diagnosis latency study shows that the windbwutnerability for a faulty DIVA checker
is, on average, around 2,000 instructions, whigaisly within the recovery capabilities of typical
hardware and software backward error recovery (BE&)hanisms. The different diagnosis laten-

cies for different FDUs are a function of the rilatusages of these structures as well as thair err
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counter thresholds. Nevertheless, for all structwher than the DIVA checkers, the diagnosis
latency is relatively unimportant, since betweerewlthe fault occurs and when it is diagnosed
and the FDU deconfigured, the checkers mask ieceffith only a performance penalty caused
by the number of pipeline flushes equal to therazounter threshold for the faulty FDU. Over the
course of even thousands of cycles, this perforemgmnalty is still negligible. The key is not
incurring that performance penalty over the entifetime of the processor, as results in

Section 2.4.3.3 show.

For the microarchitectures in our experiments,alae no spare units for the integer multiplier
or floating point multiplier. Thus, we are unabdedvaluate the effects of deconfiguring these units
in Section 2.4.3.2, because they are essentialrtectmperation of the processor. The latency and
accuracy data do suggest that considering thesg amiFDUs is possible. In Section 2.4.3.3, we
show that protecting these units from hard faulith & diagnosis and deconfiguration strategy is

worth considering in future designs.
2.4.3.2 Performance After Deconfiguring FDU

The second set of experiments evaluates the peafarenimpact of de-configuring an FDU
after having diagnosed it as being permanentlytyaih each of these experiments, we remove
one of each type of FDU that we study. Figure 2-li?spthe runtime for each of these experi-
ments, normalized to the error-free (fully-configdy case. Since there is little variation in the
results across benchmarks, we plot the averagéisédgeometric means of normalized runtimes)
across the SPECint and SPECfp benchmarks for eackgsor configuration. The data show that
the performance impact of deconfiguring an FDUfterosmall. This result, which corroborates
prior work [64, 69], is in part due to the factthlae processor configurations we are modeling are

over-provisioned for single SPEC benchmarks; bétthe Pentium 4-styled configurations (Nar-
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row and Deep-Narrow) are designed to run multiptedads simultaneously, and the extreme width
of the Athlon-styled configuration (Short-Wide) hasprovisioned with multiple units. Thus,
resources are often idle in a typical single-thesad/orkload. There is a non-negligible perfor-
mance degradation due to deconfiguring an ALU ovADthecker in the Narrow configuration.
This penalty all but disappears in the other twofigurations. In Deep-Narrow, the longer pipe-
line suffers more from pipeline flushes, which detg performance to a point where the perfor-
mance loss of the execute and commit bandwidtlfféstesely masked. In Short-Wide, the extra
units provisioned to support the width of the pssm effectively mask the penalty for removing a
single unit. Stated another way, removing a singli in Short-Wide is removing a smaller per-
centage of available computing bandwidth than @ Narrow configurations. All of these faulty

systems continue to function correctly and withsoeeable performance.
2.4.3.3 Performance with Just DIVA Recovery (But No Diagnhosis)

In this last set of experiments, we evaluate thdopmance of a microprocessor that relies
strictly on the DIVA checkers to tolerate hard fauMWhile DIVA was designed primarily for soft
faults and thus this is not a basis for a perfefetiycomparison, DIVA can tolerate hard faults and
it is instructive to compare against this optionDB/A-only system is also similar to a system that
uses redundant threads for error detection antidkighe pipeline to recover from errors (assum-
ing forward progress can be ensured). Figure 2-I3Fagure 2-14 show the effects of allowing
complex, combinational logic sub-structures witlrchéaults to remain in use with the DIVA
checkers correcting the errors that they activatéhfe SPECint and SPECfp benchmarks, respec-
tively. Figure 2-15, for SPECint, and Figure 2-1&, &PECfp, show the effects of allowing regu-
lar array structures with hard faults to remainise with only DIVA correction. In all four figures,

we plot runtimes that are normalized to the erreefcase for each configuration, but we do not
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aggregate results across benchmarks because shggaificant variability across benchmarks. In
these figures, the bar order, from left to righgtanes the order of items in the legend, from top t
bottom, with a full set of bars provided for eadhtle SPEC2000 benchmarks. We do not inject
hard faults into the DIVA checkers because theyoaitolerate them without our diagnosis/recon-

figuration.

In the case of the complex combinational logic sirtthe structures into which we are injecting
faults are used frequently and are critical todberectness of the processor. The results show that
hard faults have a drastic impact on system pedona when DIVA is forced to correct the errors
they create. The performance of the DIVA-only syste far worse than the performance we dem-
onstrated for our system in Section 2.4.3.2. Teaptrends toward deeper pipeline implemen-
tations will only serve to make the performancegtgnfor each error’s recovery (i.e., pipeline
flush) more severe. The data for the singletonsuinitour study (the integer and floating point
multipliers) shows that, for certain workloads,réhés motivation to provide a less-costly alterna-
tive to pipeline-flushing error correction mechamnss

For the array structures, there are many more pnésent in typical architectures than there
are combinational logic units. Because of theiragge population in modern designs, these units
are naturally used less often than the combinattimgac units. This functional masking effect
results in the lessened effects we observe. Thaseare still used often enough to cause frequent
pipeline flushes from DIVA corrections to noticeghtegatively impact performance.

The relative difference in magnitude of the struetto-structure penalty is directly related to
how frequently a given sub-structure is used bywbekload. Benchmark-to-benchmark variation
for a given type of FDU is a result of the distttibn and frequency of pre-existing stall eventain

given benchmark. The causes of these events, sudache misses or branch mispredictions,
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result in a percentage of corrected errors falimthe shadow of another pipeline-clearing event,
thus diminishing the penalty associated with tlrerecorrection. For example, a benchmark with
many branch mispredictions is less sensitive telpip flushes due to errors, if the errors tend to

occur soon after branch mispredictions, since theless state that gets flushed by the error.

2.4.4 Summary and Discussion of Results

In this work, we have presented a framework foiglesfor self-repair of microprocessor array
structures, and we have developed two particulgsigds based on that framework: SRAS-CR and
SRAS-EDC. These designs are motivated by the bislafper-part hard fault rates will increase
as we scale CMOS to smaller and smaller device gaten and pack ever more devices into a
single microprocessor. This motivation is groundedautionary statements from the ITRS [28]

and detailed studies of lifetime reliability by Sikiasan et al. [68].

A survey of methods for achieving hard-fault tofera in the microprocessor core shows that
we have a gap in capability for protecting the wache area (the processor pipeline). This gap
stems from the following two facts:

1. Traditional hard-fault tolerance design poirdsld afford large-scale redundancy, for exam-
ple replication of the entire core, so they emptbterhniques like TMR to achieve fault tolerance

2. Newly-developed low-cost fault-tolerance teclugis) are not designed to tolerate hard
faults—even though they sometimes can, this totra@omes at a high performance cost.

In the commodity microprocessor market, performasiceé cost are the key motivating con-
straints. As the aforementioned CMOS trends begjiimpact this design space, we believe that
fault tolerance will gain in importance. Low-cosethods to achieve hard fault tolerance will

become necessary as a result. The two SRAS mefinesiented are two such designs.
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In the case of fault-free execution, both SRAS méthmay add some performance overhead
compared to an unprotected system, due to therstarces in which self-repair logic is on the
critical path. However, if hard faults exist in @&ys, then SRAS outperforms the existing light-
weight approaches for tolerating faults while auugdlarge-scale replication of microprocessor
cores. As hard fault rates continue to increasehelieve that SRAS will become an increasingly

attractive design point.

To address the emerging problem of operational Feutls and fabrication defects in micro-
processors, we have developed a microprocessayndisit leverages the existing redundancy in
current microprocessors. This redundancy, whichtse:to improve performance by exploiting ILP
and thread level parallelism, can be used to mastk faults. Our microprocessor design integrates
DIVA-style error detection with a new mechanism ébagnosing hard faults. After diagnosis, it
de-configures the faulty FDU and continues operatiexperimental results demonstrate that our
scheme can accurately and quickly diagnose hattsfand reconfigure around faulty FDUs to

provide a microprocessor that performs only soméwduaise than a fault-free system.

As technology trends continue to drive higher-carjty designs, implemented with smaller
transistor geometries, we believe that the incidasfchard faults will increase, both from manu-
facturing defects and lifetime wearout effectstdaponse to this increase in hard faults, commod-
ity microprocessor designs will require that haadlf tolerance be considered in their designs.
Traditional approaches in the fault-tolerant conmgutspace have not been limited by the same
cost constraints as the commodity space, makiregtapplication of existing techniques inappro-
priate. We believe that the commodity microprocessign space will drive the following con-

straints into a fault-tolerant design:

* Low-cost implementation in terms of hardware andi@oconsumption characteristics.
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* Graceful degradation in performance in the preseftard faults.

» Effective containment of lifetime-reliability inded defects.

To meet these constraints, fine-grained diagnosierses will be required, since coarse-
grained solutions tend to incur too much perforneapenalty per fault tolerated. The present
online techniques will have to be adapted to wor&dncert with existing features in the commod-

ity design space, including low-cost error detatémd correction mechanisms.

The experimental results in this section confirmt #xisting microprocessors have redundancy
that can be exploited to tolerate hard faults. \Weehalso shown that, for a variety of processor
configurations, we can accurately and quickly d@gmhard faults and reconfigure around faulty
FDUs to provide a microprocessor that performs shightly worse than a fault-free microproces-

sor. Moreover, it vastly outperforms the alternatdf just relying on DIVA.

Technological and architectural trends drive thiskvand encourage further work in this area.
The incidences of hard faults and fabrication disfedll continue to increase. This will lead to
decreased vyield, higher FIT rates, and lower MTaFféiture generation parts. We have shown
that use of a diagnosis and deconfiguration meshamill allow for parts to operate in the pres-
ence of hard faults until they begin to experielazger numbers of hard faults near their end of
life. This will lead to higher MTTF/lower FIT ratder parts that use this sort of scheme over their
unprotected peers. Also, as microarchitects trgxaloit ever more ILP and thread level parallel-
ism, there will be even more redundancy that caleweraged for improving reliability and yield.
In particular, emerging SMT processors will haverenedundant hardware and fewer singleton
resources. Thus the advantages of our approachineitase due to these trends. The caveat is
that, as workloads evolve to take advantage ofetkiisa hardware, the performance impact of hav-

ing to deconfigure an FDU will increase. If thatli® case, cold sparing of performance-essential
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FDUs may be employed to effectively increase theltecrease the FIT rate of a part employ-
ing our scheme. As mentioned previously, quantigagnalysis of how much MTTF/FIT rate
improvement will be gained is dependent upon featks, which are dependent upon process and
design details that we do not consider in this witkvertheless, even without cold spares, a
heavily loaded microprocessor will continue to fiio correctly and with better performance
than just DIVA in the presence of operational himults and fabrication defects.
2.4.5 Related Work

In this section, we present prior research in &dileg hard faults and fabrication defects. A
canonical design for tolerating hard faults is BB® mainframe [66]. Mainframes not only have
redundant processors, but they also incorporatgndahcy within the processor in order to seam-
lessly tolerate hard faults. The IBM G5 micropramgs for example, has redundant units for
fetch/decode and for instruction execution. Sonfeiotraditional fault-tolerant computers, such
as the Stratus [82] and the Tandem S2 [31], sim@plicate entire processors. An even more
extreme case of using redundancy to tolerate fativic defects and, to a lesser extent, operational
hard faults, is the Teramac [20]. The Teramac sghed to make use of components that are
likely to be faulty, and it is motivated by expet@efect rates in nanotechnology. While these sys-
tems all provide excellent resilience to hard fgusiuch heavyweight redundancy incurs signifi-
cant costs in terms of hardware and power consompti

DIVA [6] and redundant thread schemes provide loat@nd low power alternatives to heavy-
weight redundancy. All of the redundant threadiolgesnes (AR-SMT [58], Slipstream [71], SRT
[47, 55], and SRTR [78]) provide error detectior aither use pipeline squashing for error cor-
rection or could easily provide error correctioa pipeline squashing. All of these schemes were
designed for transient faults and thus share theesdrawback as DIVA, with respect to hard

faults, since they incur a pipeline squash (andatsesponding performance and energy penalty)
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every time a fault manifests itself. For hard falt frequently-used microprocessor structures,

fault manifestation is too frequent and the perfance of these schemes suffers.

There are lightweight approaches by Aggarwal ef2al3], Shivakumar et al. [64] and Srini-
vasan et al. [69] that, similar to our work, levggaexisting redundancy in microprocessors.
Aggarwal et al.’s work differs in that it treatsetloore as a field-deconfigurable unit and explores
opportunity to exploit on-chip redundancy for therec and other structures outside of the core,
such as memory controllers. Shivakumar et al.’skvdiffers in that it is strictly for tolerating fab
rication defects and does not extend to hard fabls$ occur during execution. They combine
offline (pre-shipment) testing and diagnosis of mjrocessors with deconfiguration capabilities
to improve effective yield. Our approach combinesahfiguration with online error detection and
fault diagnosis to improve both yield and relialiliSrinivasan et al.’s work does not address error

detection or fault diagnosis.

An approach to improving microprocessor reliabilitythe presence of operational hard faults
(but not fabrication defects) is to use dynamicatelity management [67]. In this approach, the
processor dynamically adapts, based on a modet afstimated lifetime, in order to achieve a
desired lifetime. In particular, if the processsrrinning too hot, due to a particular workload, it
may use dynamic voltage scaling to cool down angrave its reliability. This approach is orthog-
onal and complementary to ours.

Another scheme for tolerating only fabrication a$e called Rescue [61], utilizes circuit
transformations to improve testability and enaldarse-grain diagnosis of defective components
(ways of a superscalar processor). The finer gi@gnosis in our research enables us to discard

less fault-free hardware, and it may enable uslerdate more hard faults before failure.
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There are other non-comprehensive approachesdmtiwig hard faults in specific parts of a
computer system. One option for storage structisrés protect them with error correcting codes
(ECC), as in IBM mainframes [66]. Combining ECC forays with DIVA avoids costly DIVA
recoveries. However, ECC protection of arrays igtancritical path for array access (both read
and write), and it will thus add to the microprosss critical path and degrade its performance in
the fault-free case. Storage structures can algdiected by using a level of indirection to map
out faulty portions of the structure. Whole diskfees were addressed by RAID [52]. For disk
faults that did not incapacitate the entire disle $olution was to map out faulty portions at the
sector granularity. Similar approaches have begrldped for DRAM main memory. Whole chip
failures are tolerated by chipkill memory and RAMD{22, 27], and partial failures are tolerated
with schemes that map out faulty locations [19,%8], For SRAM caches, techniques have been
developed to map out defective locations duringi€altion [84] and, more recently, during execu-

tion [49].

82



3 Extending DRAM Use to the Level 1 Data Cache in
Throughput-Oriented CMPs

We present work in this chapter that is motivatgdhie same basic trends that we outlined in
Chapter 1, but here we shift our focus from singleaded performance-oriented cores to a
throughput-oriented paradigm. With throughput-oréghworkloads, the latency demands of indi-
vidual threads are relaxed due to longer-latencgn®s dominating end-to-end application
response time. With subsequent CMOS process g@amamicroarchitects are afforded more
transistors to work with, but physical packagingits continue to stifle the growth of the power

and cooling budget for a chip package.

The shift to chip multiprocessors (CMPs) has bereld by these trends. While it is common
to find a small number of concurrent threads toonra CMP in most server and desktop settings,
exploitation of tens to hundreds to thousands bédalable contexts is limited in the general case.
Fortunately, the Internet has brought with it augref applications that commonly scale to tens of
thousands of concurrent threads for popular sideh serving and web commerce middleware
present the throughput-oriented CMP architect wititrong motivation to optimize a design for

power-efficient throughput.

Throughput-intensive computing is not a new conéefhe architecture community. Proces-
sors such as Piranha [9] and Niagara [62] havegdsghat favor throughput over single-thread
latency reduction. The realization that power wilhstrain future CMP designs more than transis-
tor budgets has led to a series of studies of wieabptimal core design is for a throughput-inten-
sive CMP. Li et al. [35] and Davis et al. [21] bathrvey the design space for cores by looking at
in-order and out-of-order scalar and superscalar acchitectures. They sweep the design space of
the cache hierarchy as well by varying capacity latehcy based upon the core that the cache is

paired with. These studies started with a supmositiat low latency would provide best perfor-
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mance for the core. Cache designs that were paiidthe various cores studied were chosen
with low-latency favored. The work in this chaptemotivated by the observation that this focus
on low-latency has resulted in the architecture momity overlooking better-suited cache alterna-
tives in deep submicron CMOS technology generatiGhg hypothesis is that shifting from a

low-latency cache design to one that more closeichres throughput-oriented core demands will
create opportunity to trade latency for power sgsior additional capacity, both of which are

more beneficial to the throughput-oriented core.

In Section 3.1 we begin with an overview of the ekpental methodology we employ for this
work. Our research is then presented as a threepstgression to show that a DRAM-based L1
data cache is well-suited to a throughput-oriewte®@ and workload. The three pieces of research

that bring us to our conclusion are presented lésafs:

1) First, we seek to understand the demands ofigfput-oriented workloads on the on-chip
cache hierarchy. In Section 3.2, we study two commiooughput-oriented workloads to

understand their demands.

2) After understanding the demands of the coreitsnalorkload, we then must look at what alter-
natives exist in the cache implementation. In $&c8i.3 we present alternative cache designs

to match the implementation of the throughput-aedrcore to its cache hierarchy.

3) Finally, we present an evaluation of an L1 d=ehe, based upon DRAM storage cells, in a
throughput-oriented system. In Section 3.4, we campathroughput-oriented cache imple-
mentation to existing and possible proposed alter@s In our evaluation, we show that our
throughput-oriented L1 cache, matched to our cemmahds, provides better power-perfor-

mance than existing or proposed alternatives. \&& stiow the opportunity presented in shift-
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ing the L2 cache from a traditional SRAM-based iempkntation to a DRAM-based

implementation.

We conclude the chapter with a review of relatedkwo Section 3.5.

3.1 Experimental Methodology

In contrast to the research conducted on faultdolee in Chapter 2, our work here has a scope
that is beyond the single microprocessor core. eSime are evaluating cache architectures for
throughput-oriented CMP core designs, we requirgystem-level simulation capability that

includes a detailed model of the core and on-chighe hierarchy.

We examine the throughput-intensive workloads’ mgntmands with Simics [42] using the
GEMS [43] detailed processor and memory simulatioydules (Opal and Ruby), modified to
allow us to simulate simple in-order and out-of@rdores. We utilize a base, 2-wide core design,
evaluating both in-order and out-of-order versiofshis base. Details of the simulated machine
configurations can be found in Table 3-1. For atidiations performed with these workloads, we
run a fixed unit of work, to measure the applicatievel throughput improvements from the con-

figuration changes we apply.

For purposes of normalized performance comparis@nutilize a baseline core design that
supports two simultaneous threads. We focus oulysbtm 8-threaded and 16-threaded core con-
figurations, based upon the previously publisheulite on throughput-oriented core design [21,
35]. Early experiments we performed to assess #sigd space corroborated the results from
these previous studies and showed no advantadee t-threaded core configuration, so we dis-

carded it from further consideration.
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Table 3-1. Processor Configuration for L1 Data Cache Latency Sensitivity Study

Property

Configuration

Core Configuration

In-Order/Out-of-Order, SPARC llI+, 7-Stage
Pipelined

Width (Fetch/Decode/l ssue/Execute/Commit)

212121212

Scheduling/Instruction Window Size

4/16

L 1Instruction Cache Size/L atency/Associativity

16KB/1 Cycle/4-Way Set-Associative, 64B
Lines

L 1 Data Cache Size/L atency/Associativity

16KB/1-8 Cycles/4-Way Set-Associative, 64B
Lines

L 2 Unified Cache Size/L atency/Associativity

16MB/12 Cycles/4-Way Set-Associative

Main Memory Latency

160 Cycles

Branch Predictor

YAGS

SMT Support

2,8, or 16 Threads

SMT Fetch Policy

1 Thread/ Cycle, Lowest Retired Count First

Operating System

OpenSolaris Nevada Build 87

Workloads (Units of Work)

Apache 2.2.9 (1,000 web transactions),

SPECjbb 2000 (10,000 transactions)

We use Cacti 5.3 [74] to model the caches with ciépdrom 16 KB to 1 MB, from 1 to 64
banks, and with different storage cell technologigsstails of our cache configurations are shown
in Table 3-2. We compare caches composed entireBR#M (traditional designs), those that use
DRAM as the data and tag storage array elementtterse that use a hybrid SRAM/DRAM stor-
age cell with SRAM tags [77]. We modified Cactirtodel the implementation of both tags and
data in the DRAM process.

We estimate hybrid cell values from Cacti data $®8AM and DRAM combined with data
from [77]. Specifically, for power, we use SRAM wak for dynamic energy per read or write.
This is because more than 95% of accesses hiei8RAM way of the hybrid cache. We factor a
75% reduction in bank leakage power over SRAM hasauthors forecast. We derive rough area

estimates for the hybrid cell-based cache by sgdhe cell-technology independent components
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Table 3-2. L1 Data Cache Configurations Explored

Parameter Value

Technology 32nm

Cache Size 16KB, 32KB, 64KB, 128KB, 256KB, 512KB, or1MB
Width 64-Bit Data, 64B Blocks

Sorage and Tag Cells | All SRAM or All 1T1C DRAM or Hybrid [77]
Optimization Tar get Energy-Delay

Banks? 1,2,4,8, 16, 32, or 64

Architecture Uniform, Non-Blocking Cache Architecture with Pijpehg
Port Configuration 2 (1 Read/Write, 1 Single-Ended Read)

Associativity 4-Way, Set-Associative

a. Cacti enforces a minimum bank size of 32 setdtihg some configurations.

of the area data Cacti provides and factoring a &ddaction in area of the data array over that of

an equivalent 6T SRAM cell array, as the authodécite.

Additional performance factors must be considerdamwhybrid cells are in use. The hybrid
cell may incur additional L1 to L2 traffic due tts iwriteback policies to avoid having to refresh
the DRAM part of the cell. This will be workload plendent, so we assume a best case workload
that incurs no additional writeback traffic. Weatio not factor the additional circuitry for manag-
ing the swapping of data from the DRAM storageh® $RAM storage in the cell nor do we factor
the canary cell for managing early writeback. Hinalle assume that all hits in the hybrid cache
can be serviced in 1 cycle (DRAM hits take 3 cydfethe proposed implementation). We factor
the extra reads and writes that a swap incurs ssuhae that 5% of the accesses to the cache incur
a swap, based upon data from [77] on 16 and 32KiBay! set-associative hybrid caches running

SPEC benchmarks.
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3.2 Demands of Throughput-Oriented Workloads

In order to develop a throughput-oriented cachégdesve first must understand the demands
of the throughput-oriented core, running repredergapplications, on the cache hierarchy. In this
section, we determine the demands of the througbypemted core on the cache. We leverage past
work on throughput-oriented core design, which datkés that a relatively simple, narrow core
with SMT support is a power-efficient throughpugare. We first address how much bandwidth is
demanded by such a core (Section 3.2.1). We thelorexphether the core’s cache demands are

sensitive to L1 data cache latency (Section 3.2.2).

3.2.1 Bandwidth Demands of the Throughput-Oriented Core

Our desire is to balance the core’s demands weélt#the’s supply to optimize throughput. To
that end, we need to understand the memory bankidi&ihands of a throughput-oriented work-
load, then map it to our core building block toiarat an upper bound for what the core will
require. In order to maximize the throughput ofighty-threaded CMP, we need the cache sub-

system to meet the bandwidth demands of the wadkloa

Our bandwidth study consists of an experimentaluatesn of a representative throughput-ori-
ented core design. Memory operation mixes for chffé thread-counts on the core for each bench-
mark only differ in a statistically significant wdgr the 16-thread SPECjbb configuration, where
we see almost 2% more loads in the dynamic instnustream over its 2-threaded and 8-threaded
counterparts. Apache has ~20% loads and ~9% stothe dynamic instruction stream. SPECjbb
has ~17% loads and ~7% stores. This data is defaileigure 3-1. Apache’s greater proportion of
memory instructions should result in a higher olfdvandwidth demand. Averages were taken
over tens of runs for each thread configurationnshoError bars show one standard deviation

from the averages.
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Figure 3-1. Dynamic Instruction Stream Memory Instion Mix

Data collected shows similarity across core threadfigurations. We observe slightly grea
memory instruction percentage in Apache with bebrafidgr both benchmarks within establish
norms of roughly 33% memory instructions with a B:dd:store ratio within that 33%.
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Figure 3-2. Throughput-Oriented Core Bandwidth Dedsaon L1 Data Cache
Results show actual measured bandwidth consumelronghput-oriented 2-wide supersca

core as well as theoretical maximum if core IP€qgsaal to core width of 2.

We show bandwidth demands for core operating freges between 1 and 2.5 GHz in
Figure 3-2. The maximum theoretical demand is deribg assuming perfect utilization on our
core (i.e., IPC=2) multiplied by the measured mgmastruction mix and core operating fre-
quency. This represents an upper bound for theskl@eals on a 2-wide superscalar core. At 2.5
GHz, this upper bound is just over 11 GB/s for Apa@nd just under 10 GB/s for SPECjbb.
Actual bandwidth requirements were calculated byntathe actual IPC instead of ideal IPC for
the maximum theoretical limit. We found in our siations that bandwidth demands were just
over 8 GB/s for Apache and just over 7 GB/s for SPlB. The disparity here represents the gap

between the actual IPC of the core during our érparts and the theoretical maximum IPC of 2.
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From this study, we conclude that the throughpigried core bandwidth demands on the L1
are met by a wide variety of cache implementatidie use of a simple, low-power core and the
typical instruction mix of the workloads we targee the essential elements that lead to the rela-
tively low bandwidth demands on the L1. We do rihi meeting the bandwidth demands of a
core running at the top of the frequency range xamine will require an average of more than
one 8-byte datum per cycle to be served from tbae#o the core. This leads us to focus on 2-port
caches with the ability to issue two reads or oeadrand one write per cache cycle in
Section 3.4.1.

3.2.2 L1 Data Cache Latency Sensitivity

The second aspect of cache demand, in additioandvaidth, is whether the core is sensitive
to cache latency. While evidence exists in therpdiesign space studies [21, 35] to support the
intuition that throughput-oriented cores may noedéow-latency caches to perform well, the
design space is sparsely explored. In order tebettiderstand the sensitivity of representative
Internet workloads to first-level cache latency, pegformed a simple limit study. In this set of
experiments, we ran Simics with Opal and Ruby GERt#lules configured as originally shown
in Table 3-1. The goal here is to determine if wa ozask latency effectively by increasing the
number of threads.

The results of our study are shown in Figure 3-3 Rigdire 3-4. We use a 2-threaded core as
our base configuration for comparison purposessiayv results for the 8-thread and 16-thread
core configurations. For both in-order and out-ofey core configurations, we observe improved
throughput when we have eight threads, even thawghhold other core resources fixed. The
improvement in throughput by adding additional #ut® confirms our hypothesis that additional

thread contexts can mask data cache access latescieell as other stall-inducing events in indi-
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vidual threads’ dynamic execution. The reductiospeedup as we increase L1 data cache access
latency is evidence that we cannot fully mask leyeeffects with this technique. We observe no
loss of speedup over the range of L1 data cackedsgs we studied with the 16-thread core con-
figuration. However, at low latencies, the 16-tlirere under-performs the 8-thread core and
only reaches parity performance with its 8-threadnterpart at 8-cycle L1 data cache latency for
SPECjbb. We conclude that the 16-thread core igtloreaded.

There are multiple potential bottlenecks within toee that lead to this overthreaded situation.
The use of small instruction windows and issue qaas part of our low-power core model limits
the ability of out-of-order execution to extracstiruction-level-parallelism (ILP) from the individ-

ual threads running on the core. This effect is poumded as we increase the number of simulta-
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neously-active threads. In cases where we havel8 thireads, the in-order core effectively has 8
or 16 instructions, respectively, ready or exe@itima given cycle. With the size of window we
use, that means that the number of additionalingtns that out-of-order execution makes possi-
bly executable is 0 or 8 for these highly-threadetks. For this reason, we see little difference
between in-order and out-of-order performance,taadevel of threading is the primary driver of
the observed effects.
3.2.3 Throughput-Oriented Cache Demand Summary

From this study, we arrive at a compound answéhneéajuestion of what the core demands are
on the cache. For bandwidth, we need a maximum2oGB/s and we can achieve additional
throughput with extra threads, thus effectively rmeening performance losses due to L1 data
cache latency at lower numbers of threads per ¥deewill use this fact in Section 3.4.3.1 to show
how this latency tolerance can be converted totimaail throughput by tailoring of the L1 data
cache design. This correlates with results fronvipres core design studies [21, 35] and it is the
design point that we focus our efforts on meethgydemands of throughout the rest of this chap-

ter.

3.3 Cache Building Block Technology Alternatives

Now that we understand the basic demands of oer;, 8@ next want to examine alternatives to
meeting those needs in our cache design. In tloisoge we are seeking the building block that
provides a resulting cache that best matches o @emands to provide optimum throughput
under a fixed power budget. To get to that caclsigde we will first dive into technology alterna-
tives we can employ as the building block baseofarcache. We review alternative memory cell
technologies that have been proposed first. Sontleesk are already in use in applications inside

or outside of the L1 cache. We compare and conttnagbrimary operating characteristics of these
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building blocks before evaluating their performartahe data cache, starting with the L1 data

cache in Section 3.4.1 and concluding with the Léheain Section 3.4.2.

As we move into deep submicron CMOS processesatgakffects on a traditional 6T SRAM
cell have inspired research into alternative cdofyf@ementation technologies. Here, we review
the techniques most germane to a throughput-odesidsign. These fall into three major catego-
ries - improving SRAM-based implementations by i@dg their susceptibility to leakage effects,
replacing SRAM with embedded DRAM, or utilizing glnid approach that combines SRAM and

DRAM to meet the desired characteristics of théheabat the cell is used in.

To understand what cache technology best meetaghput-oriented core demands, we need
to understand the strengths and weaknesses of ttireseoption categories and then employ the
most appropriate technology for the design. Innb&t three sub-sections, we will discuss the
alternatives and their general properties befor@rpose a throughput-oriented design and move
into a more detailed comparison of caches compoft#tese three types of cell.

3.3.1 Build a Better SRAM Cell

In complement to materials efforts, new SRAM calkidns have been proposed in order to
limit the static power dissipation of SRAM-basectlvas at sub-threshold voltages. Techniques
proposed include asymmetric designs [7], use ofloltage standby modes [50, 54], and deacti-
vation of SRAM cells that are unused or not likedybe used soon [32, 33]. These improve cell

leakage characteristics, but do not eliminate them.

A number of novel SRAM cell designs that utilized@bnal transistors have been proposed to
support stable operation at lower operating vokadgexamples of these techniques include 8T

[17], 9T [39], and 10T [15] cell designs. Each lnése trades additional die area and active power
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for better performance and/or leakage charactesistiatency for these designs is similar to stan-
dard 6T cell design latencies.
3.3.2 Embedded DRAM as an Alternative to SRAM

With its low static power consumption and highensly, DRAM has emerged as an on-chip
alternative to SRAM for the last-level caches oa ¢thip. Initial implementations [29] have uti-
lized a 1T1C cell design, typical of off-chip menss. The relatively long cycle time of 1T1C
DRAM memories, due in part to destructive reads, pr@vented their use closer to the processor
core. We focus on the use of 1T1C DRAM cells antil stiow that the latency drawbacks they

bring to the design can be overcome for a througbpented application.

Luk et al. [41] proposed a 3T1D DRAM memory celkidm with latency comparable to 6T
SRAM and non-destructive reads. Liang et al. [30jppse use of this cell for a register file appli-
cation and show how a short refresh time allowslalbency of the design to match its SRAM
counterpart with better process variation toleraanog comparable power characteristics. Liang et
al. also explore use of this cell in future CMOS@etions as a replacement for the 6T SRAM cell
[36, 38]. These efforts seek to maintain parityfgmnance characteristics of SRAM with an alter-
native cell design that provides better procesgbaity tolerance. Our use of a 1T1C DRAM cell
also evades the issues with the 6T cell's sensitiai process variation, and we show that, for a
fixed cache power budget, a cache composed of IREBM is a better throughput booster for a
throughput-intensive workload than a lower-lateB&AM or DRAM alternative. In our work, we
do assume that 3T1D cell would be used in the Istriiction cache and the register file, where
latency is critical to throughput.

3.3.3 Hybrid Caches
A novel hybrid cache design has been proposeding BDRAM to the L1 cache [77]. In this

design, the first way of the L1 is implemented wBRAM, with subsequent ways of atway set-
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associative L1 cache being implemented with eDRAMnost-recently used (MRU) heuristic is
developed to optimize the hits to the SRAM way bgving data dynamically based upon pre-
dicted hit patterns. Analysis of the MRU algorithwith single-threaded SPEC benchmarks on a

fast, wide, out-of-order core show that less th#nds the hits to the L1 fall in the slow ways.

The goal of the hybrid implementation is to provitearly the energy-efficiency of eDRAM
with nearly the low latency of SRAM. In effect, shivork provides a two-part L1 cache. The first
way is the fast-hit way, and efforts are made tsued that the most-likely-to-be-accessed data is
kept in this way (at the expense of extra power lagit to heuristically migrate data from the
other ways). The remaining ways are slower to a;dmst faster than the L2. We argue that the
effort to retain high-frequency, low-latency opéatis unneeded and show that this technique, at

best, provides parity performance in a throughpigrted application at a higher power cost.

3.4 Experimental Cache Design Space Exploration

We propose using DRAM instead of SRAM to arriva #firoughput-optimized L1-data and L2
cache design. We hypothesize that, of the availddldechnology alternatives, use of DRAM will
provide the greatest opportunity to improve thrqughunder a fixed power budget. We now test
this hypothesis experimentally for the L1-data arfdcache. For our study, we select the 6T
SRAM cell as our basis of comparison, as it is psive in its use in the L1 data cache today and
widely used in the L2 as well. For alternative atg cell technologies in the L1 data cache, we
use 1T1C DRAM and the hybrid cache proposed in.[With these three alternatives, we will
model typical cache capacities in each technology eompare bandwidth, power, area, and
latency characteristics to find the best matchdiar core in Section 3.4.1. We then compare 6T

SRAM and 1T1C DRAM for the L2 cache in Section 3.4l conclude in Section 3.4.3 with a
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summary of our results and the unified cache depipposal that our experimental evaluation
arrives at for a throughput-oriented design.
3.4.1 L1 Data Cache Evaluation

Ouir first set of experiments seeks to examine lteeratives for a throughput-oriented L1 data
cache. We choose capacities in a range from prédetita cache norms to the point at which the
capacity of the cache would likely overwhelm thedaZhe capacity in an inclusive cache hierar-
chy. The goal of this evaluation is to find the tmsitch for the bandwidth demands of our core as

a segue to exploring how a better-matched cachénganmove core throughput.

For each of the cache capacities and technologiesompare, we simulated all possible bank
configurations up to 64 banks. Cacti returned endejay optimal configurations for each valid
configuration. From the set of results at a givechhology and capacity node, we selected the
cache design that provided the lowest energy astipit of bandwidth at an operating frequency

of 1.5GHZ.
3.4.1.1 Bandwidth and Power

Our intuition is that bandwidth and power will eettwo most critical factors to match to the
core demands. Because we can easily trade bandfeidgower if we run the cache at a lower
clock rate, we consider these two metrics togeitheur discussion. Figure 3-5 shows the cache
bandwidth available to a core operating at freqigendepicted on the x-axis. We show the maxi-
mum theoretical bandwidth demands of the workldeats our study in Section 3.2.2 with dashed
lines for reference. Because all of our selectaheaonfigurations, regardless of technology of

the storage cell, have at least two ports andaat evo banks, the solid lines reflect the banduvidt

1. The 1MB DRAM design is only capable of sustagna 1.2GHz maximum clock, so all data is showatie to that
reduced maximum clock rate, and labeled explicitnile other designs in 1IMB DRAM space meet theespeiteria,
they come with increased power per unit throughpaitivere not selected.
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Figure 3-5. L1 Data Cache Bandwidth forFigure 3-6. Power Comparison of SRAI

Selected Designs as Core Freﬂuency is vVanéd€ DRAM, and Hybrid [77] L1 Data
Bank cycle time limits larger DRAM configur@ache Designs

tions to a lower maximum frequency.

available from the cache to a core at core:caaekahtios of 1:1, 1:2, and 1:4. For 1T1C DRAM-
cell based configurations, we cannot support 1dl1a@ core:cache clock ratios for all frequencies
in the displayed range. The frequencies at whiparséicular DRAM design is limited on a given
line are shown and labeled explicitly in the figuBpecifically, with DRAM, we observe that the
bank cycle time limits us to an achievable freqyeof 1.2 GHz for our selected 1 MB cache
designs and 1.87 GHz for 256 KB and 512 KB caclsigds. This maximum frequency increases
if we shrink the cache size or select a less enreffigient design.

We based our bandwidth figures on a hypotheticadiniam achieved when one bank per port
was active every cycle. In designs with an equahlber of banks and ports, it is assumed that all
available banks are used every cycle to arriveetiaximum theoretical bandwidth value.

The other element of bandwidth is operating fregyesf the cache. This is limited by the bank
access time, which cannot be pipelined, and thexdfecomes the limiting factor for increasing
the cache frequency. For larger DRAM designs, ihia direct limitation in the operating fre-
guency range of the core that we study. For SRABgihes, we are not constrained by bank cycle

time in any of the studied designs. In the casthefybrid cell, we believe that bank cycle times
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would be faster than DRAM-only alternatives, sitlee hybrid cell allows reads to be destructive,
avoiding the additional time to refresh the celladafter the read. We assume this would allow the

hybrid design to equal SRAM in the core frequeranyge that we focus on.

From our previous study of core demands, we firad the have ample bandwidth available,
even when we are unable to run the cache at treefemguency. We therefore model running the
cache at a clock rate less than the core in ooderduce its power footprint. The result of slowing
the clock is a net reduction in maximum dynamic podue to a reduction in bandwidth, since we
limit the number of memory operations per secorad the cache can support. We model a simple
clock slowing solution that utilizes the core clpckeating a virtual cache clock that transitions o
everynth edge whera is a factor of 2. We also assume that static gek power remains fixed,

since we do not assume a reduction in operatinggelwith the speed reduction.

In our sweep of the design space, we exploredtootache clock ratios of up to 1:4, since we
show that we cannot provide sufficient bandwidthrieet core demands at speeds slower than
25% of core frequency. In Figure 3-6, we show thevgrodissipation for caches implemented in
the three technologies. For each base storageechlology alternative, we plot three curves, one
for each of the core:cache ratios we show in ondbédth figure. We set the core frequency to 1.5
GHz, which represents a median value for whereasechst throughput-oriented CMPs to clock
cores at. We cap maximum frequency to avoid distoidf the SRAM and hybrid values from the
additional active power from operating at a higfrequency. That is, the SRAM and hybrid
caches can run at a higher clock rate to proviégatgr bandwidth, and therefore, greater active

power.

At small cache capacities, the absolute power nusntog all caches are small - less than 19

mW for the 6T SRAM 16 KB design running at 1.5 GBespite the low absolute power values,
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the clear power advantage of hybrid and DRAM-bassgche designs is evident. Their 16 KB-
capacity cache power comes in at roughly 15 mWIghehW, respectively. These gains are due to
the reduced leakage power component for the DRAM lybrid designs. As we scale to larger
capacities, this advantage is amplified as datatagaells become the dominant contributors to

overall cache power footprint.

Scaling cache operating frequency to reduce dyngroiger is effective, netting additional
gains that are relatively constant across the swéepche sizes. The uniformity of power reduc-
tion effect across technologies with cache frequerduction is to be expected, as the bandwidth
of all of these caches is independent of their cié&ypand is constant at a given cache frequéncy
We show the 1:2 core:cache clock ratio in Figure\gité a fine-dashed line and the 1:4 ratio with
a coarse-dashed line. The series markers are nodizliee cell-basis of the cache implementation
to help the reader discern the important relatigoshetween the three cache bases we study. Note
that the three SRAM curves appear to converge @scsize increases. This is due to the leakage
power domination of the total power of the SRAMIwacThe reduced leakage power of the alter-
native-cell based caches makes reducing the opgraéquency of the cache to reduce total cache

power more effective.

Our examination of this data leads us to two casiohs. First, all of our cache designs provide
ample bandwidth to satisfy the demands of the @dren clocked at the core frequency. Even
when we move to a 1:4 core:cache clock ratio, Wesse sufficient bandwidth to support almost
all of the maximum theoretical bandwidth that owrlwoads will demand on our core. Second,

DRAM and hybrid cell-based caches have a distingtgy advantage over their SRAM counter-

2. The exception in the presented data is the 1DMBM cache solid-curve (1:1 core:cache clock fatiata point,
which reflects its maximum operating frequency & GHz. It is explicitly labeled in the figure.
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parts, but this advantage is small, in absolut@seat the relatively small cache capacities typica
of an L1.
3.4.1.2 Cache Area

At the typical capacities of L1 caches that we teglay, cache area is not generally seen as a
limiting factor. We included it in our study sinee do examine larger-than-typical cache capaci-
ties, which start to see non-trivial area diffeembetween various designs.

We show the areas of the selected cache confignsin Figure 3-7. Our optimization on
energy-delay efficiency results in Cacti convergimy different bank configurations when we
move from SRAM or hybrid cells in the data arrayDBAM at sizes of 512 KB and 1 MB. The
result is 512 KB designs that have more banks thaitr 1MB counterparts in the SRAM and
hybrid cell implementations. This causes the 512d&Bhes to be less area-efficient, which makes
them significantly larger. At 1 MB capacity, the SR and hybrid-cell based caches have 8 banks,
while the DRAM-based cache has 16, leading to theintuitive larger size of the DRAM-based

cache. We note that areas for caches smaller B&i#KB are dominated by port and wire layout,
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leading to very little overall difference in footpt when moving between these capacities. Start-
ing at 128 KB, storage cell area begins to domirattevhich point we see a marked advantage for
1T1C DRAM over the other two alternatives for confiations where we have identical numbers
of banks. Since we assume area is at less of aiygrethan power in our study, we are willing to

select area-inefficient configurations when theguvidle lower power per unit bandwidth.
3.4.1.3 Cache Latency

Latency is important when we compare designs; whéecan tolerate latency in a throughput-
oriented core, we do observe better throughpuivegt latencies, so, all other factors being equal,
we would prefer low-latency operation. When we exeniatency characteristics of the selected
cache designs, we see relative homogeneity of adascy at the frequencies and capacities we
target. Latency data in Figure 3-8 shows that sibewe 512 KB require a single pipeline stage be
placed into the cache in order to sustain a 1.5%dehe clock. For all of the designs we present,
this single pipeline stage would be sufficientastain up to the 2.5 GHz clock rate that we use as
an upper bound for core frequency. Further, north@tonfigurations with single-cycle latency at

1.5 GHz would require an additional cycle of lateat 2.5 GHz.

The latency of the hybrid cache is variable, byigiedn the proposed implementation [77], the
authors indicate that tags and way 0 are accesspdrallel and that hits to the DRAM ways are
serviced only after a tag hit is verified. This sas DRAM-way hits to have a latency that is longer
than their counterparts in an all-DRAM cache, this effect is mitigated by the relatively low
fraction of hits in the DRAM ways. While they mighot reach the same speed as their SRAM
counterparts, we optimistically assume that theridybell designs will have latency characteris-

tics that match the SRAM and DRAM data when wehdoughput improvement comparisons.

3. Again, the exception is the 1IMB DRAM cache, efh¢an only run at a maximum frequency of 1.2 Gitrl requires
a pipeline stage at that frequency.
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3.4.1.4 Summary of L1 Data Cache Evaluation

The point of this study was to answer find an Liadzache that best fits throughput-oriented
core demands. Our finding that all of our cachesvigle more than enough bandwidth at their
maximum operating frequency leads us to concludealbalanced implementation may intention-
ally lower the frequency of the L1 data cache,ddtrcing latency, reducing superfluous band-
width and dynamic power in the process. We now tiarrthe question of how we can gain
additional chip throughput with a cache better nattcto our core. We only want to constrain the
design if it results in an opportunity for througlhgmprovement. That is, we do not want to con-

strain the cache if doing so nets no additionalufjhput benefit to the overall CMP.

The most obvious benefit we get in exchange fopirap our bandwidth is a reduction in
power. Moving from SRAM to DRAM gives us the bestyer savings. Slowing the L1 data cache
down by reducing its operating frequency and intimdg additional latency amplifies this effect,
while keeping us within our core’s bandwidth demsndnfortunately, the absolute numbers we
find for typical L1 data cache sizes do not giveadarge amount of power to work with if we seek
to employ the savings we gain from moving to DRAM alternative to reallocating the power
savings to another component is to expand thedfilee L1 data cache. Our shift in technology
puts us on a different power curve. This leap adlas to increase capacity in the cache. The ben-
efits of this trade-off are something that we explim Section 3.4.3.

3.4.2 L2 Cache Evaluation

For the L2 cache, the argument for use of DRAMdmpelled equally by density as it is by
power savings. L2 caches on throughput-oriented €8tfale as the number of cores (and L1s)
that they have to support. This scaling quicklydmes problematic with SRAM in a 32 nm pro-

cess. When we simulate 16 MB, 32 MB, and 64 MB B2he configurations, we see the chal-
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Table 3-3. L2 Cache Configurations Explored

Parameter Value

Technology 32nm

Cache Size 16MB, 32MB, and 64MB

Width 256 Bits, 256B Blocks

Sorage and Tag Cells All SRAM or All 1IT1C DRAM

Optimization Tar get Energy-Delay

Banks 1,2, 4,8, 16, 32, or 64

Architecture Uniform, Non-Blocking Cache Architecture with Pipehg
Port Configuration 12 (4 Exclusive Write, 8 Single-Ended Read)
Associativity 4, 8, and 32-Way, Set-Associative

lenges facing the throughput-oriented architecte Tetails of the L2 cache configurations we
simulated are shown in Table 3-3. We did not incladesvaluation of hybrid cell-based L2 caches
since the hybrid cell design requires an on-chigklyey store for the dynamic ways, which are not
refreshed (we do not assume an L3 cache). Thetsasere also do not factor any on-chip inter-
connection network nor do they include modelingaftention for ports, which is workload and

chip-design dependent. The use of NUCA cache a&cthites here may be warranted if latency or
maximum operating frequency are found to be clifiaetors in a design. L2 interaction with on-

chip networks is outside of the scope of this work.

We see in Figure 3-9 that a 16 MB SRAM cache haaraa of ~120 m- a large portion of
available die capacity - with DRAM coming in an erdof magnitude smaller at ~12 rfim
Figure 3-10 shows that this reduction in size doesbke faster access, but the properties of
DRAM again keep cycle times (and maximum clock salenited. We found maximum clock
rates for SRAM in the 2.5 GHz range, while the DR&lthes were limited to between 980 MHz
and 1.33 GHz. The SRAM designs require twice tipelpiing of their DRAM counterparts, again

due to the order of magnitude difference in the sizthe cache. Here, the density advantage of
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DRAM, which is the source of the order-of-magnitualea reduction also results in less wire
delay from the port to the banks in the cache.tlsbank cycle time limits DRAM to lower fre-

quencies, but the density of DRAM provides arealatehcy improvements over SRAM.

The most important result here is the power footmf a DRAM-based L2 cache. A 16 MB L2
SRAM-based cache consumes ~10 W, or roughly 5-108teochip’s power budget. If we switch
to DRAM-based cache, we reduce power to less th@mwV. Moving to cache capacities that are
unrealizable with SRAM, we still have power footgs less than the 16 MB SRAM. A 64 MB
DRAM L2 at 750 MHz operating frequency consumes jusler 6 W of power at maximum band-
width.

3.4.3 Putting it All Together: Evaluation of a Throughput-Oriented

Cache

We have shown that running the L1 data cache aarlfrequency than the core will provide
additional power savings with a limited impact amecthroughput. Note that running the cache at
a reduced clock rate both increases latency anacesdbandwidth. If we do run the cache at a
reduced frequency, data in Figure 3-6 suggestdhkgbiower savings in the L1 data cache are not

sufficient to amortize the power costs of an addil core on the die. Even if we assume the max-
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Table 3-4. Cache Power, in Milliwatts at Maximum Throughput?®

Type/Capacity 16KB | 32KB | 64KB | 128KB | 256KB | 512KB | 1MB
SRAM @15GHz | 186 |266 | 418 | 695 125.6 | 231.6 | 437.7
DRAM @15GHz | 100 | 123 | 150 | 235 34.1 74.4 141.2
Hybrid @ 1.5GHz | 152 | 18.8 255 | 353 55.9 90.4 158.6
SRAM @750 MHz | 124 | 19.4 329 | 59.0 1112 | 212.4| 4087
DRAM @ 750 MHz | 5.4 7.1 9.1 14.8 21.1 45.1 96.5
Hybrid @ 750 MHz | 8.4 109 | 157 | 237 40.1 69.4 126.8
SRAM @375MHz | 9.3 159 | 285 | 53.7 103.9 | 202.9 | 394.3
DRAM @375MHz | 3.1 4.6 6.1 105 | 146 30.4 59.2
Hybrid @ 375 MHz | 5.0 7.0 10.9 | 17.9 32.1 58.9 110.9

a. Highlighted cells show configurations that fithin the budget of a 16 KB SRAM cache at
1.5 GHz.

imum power savings of roughly 15 mW per core, a Za&ke would only be amortized if we had
133 cores already on the die. At a roughly 100 Werdoudget for the package, this math does not
work out in our favor. Our data does, however, datk that we can allocate the power savings
from this technique to larger cache capacity pee.co

The next two sub-sections explore what we can dmpoove CMP throughput if we match the
cache to the core at both an L1 data and L2 Iéwelach section, we show possible tradeoffs that
might be made and discuss their effects on throughp

3.4.3.1 Improvements in the L1 Data Cache

In this study, we explored equal-power configunagidhat trade L1 data cache latency for
capacity to see if further improvements in throughpan be gained. Since all of our modeled
caches provide sufficient bandwidth to meet coredsewe include cache frequency reductions
that trade both latency and bandwidth for additiguoaver, which we put toward increasing capac-
ity. We base our power budget on the 16 KB SRAMheatinning at the core clock rate. We show

a summary of cache power footprints in Table 3-Hdlp clarify the equal-power alternatives. We
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This figure shows the possible trade-offs thatlsamade in a design between adding additional dgp
and increasing access latency.

highlight the largest-capacity alternatives thawithin the budget of a 16 KB SRAM-based cache
running at 1.5 GHz in bold in each row of the talfler hybrid implementations, we can afford a
64 KB at a 1:2 core:cache clock ratio and 128 KBdpacity at 1:4 core:cache clock ratio. When
we move from an SRAM based cache to a 1T1C DRAMbMamche, we can afford 64 KB, 128
KB and 256 KB capacities at 1:1, 1:2, and 1:4 aaehe clock ratios, respectively. The disparity
between DRAM and the hybrid cell is because theribytell only achieves, at best, 75% static
energy reduction in a 4-way set-associative caduaudse it implements one way in SRAM. The
dynamic power difference between SRAM and DRAM does compensate for this with the
bandwidth we achieve in our cache designs. Thadgtadvantages of SRAM and the hybrid cell
are of less use than the density and capacity éalgas of DRAM toward our throughput-oriented
design goals.

To illustrate the benefits of moving from SRAM td&RBM and then trading some latency for
additional capacity, we show the speedup of thiemiht core/cache/workload configurations in
Figure 3-11. Each graph displays the speedup ofthne&ded core’s execution over its 2-threaded

counterpart operating with a 16 KB L1 data cachthwicycle latency. If we select the largest-
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capacity caches from Table 3-4 for our 18.6 mW poletget, we see the following effects. For
SPECjbb, if we go from a 16 KB to a 64 KB L1 daézlte capacity at the same latency, we get a
throughput speedup of 14%, for in-order, and 1836 olit-of order cores. When we examine the
longer-latency alternatives, either a 128 KB cawfib a 2-cycle latency or a 256 KB cache with a
4-cycle latency, we see no additional speeduphierl28 KB cache and a reduction in throughput
for the 256 KB, 4-cycle cache design. For Apache,donfiguration that maximizes throughput is
the 128 KB, 2-cycle latency cache. This nets a 4% 43% improvement in speedup and for in-
order and out-of-order configurations, respectivélye sweep of latencies and cache sizes shows
that additional benefit (beyond that achieved withitithreading the core) is possible if we extend

the cache capacity, even if it means a modestasere latency to access the cache.

We do note that, while the bandwidth needs of thekisad are most closely matched by the
L1 clocked at a 1:4 core:cache ratio, the speedap®d are smaller. Here, the sensitivity of the

core and workload to the extra latency of accesseighs benefits from additional capacity.

In this study, we assume that the cost of adding Shkpport to the core has already been cov-
ered in the core’s power budget. If that is notc¢hse, it is clear that 8-thread SMT support is a
first priority. Using Cacti to model the leakagenms of an SRAM-based register file with 4 read
and 2 write ports gives us an estimate of the miadaiof extra power cost that the core must carry
to support multithreading. We do not scale the dyiogpower of the register file in this estimate,
since the width of the core remains fixed in an SkEOnfiguration, limiting the bandwidth
demands on the register file. Using this roughnesstion technique, we find that roughly 40 mw
of leakage power would need to be budgeted towardng from 1 to 8 threaded SMT support in

the register file.

3.4.3.2 Opportunities in the L2 Cache
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In the L2, the magnitude of power savings when veeenfrom SRAM to DRAM is signifi-
cant. Here, we do have opportunity to trade caepadity for additional cores. The gains in area-
efficiency and power reduction (both static fronil ésakage and dynamic from reduced wiring)
result in a large enough savings to expect thaattttion of one or more additional cores may be

an option in the 32 nm process generation.

At a 750 MHz operating frequency, we find the DRARI power to be 600 mW for the 16 MB
configuration, 1.5 W for the 32 MB configuratiomda5.3 W for the 64 MB configuration. All of
these caches also fit within a reasonable area3thran die, at 14, 32, and 70 n’-;rfor the three
sizes studied. The microarchitect has a choicenfare capacity, more cores, or possibly more of
another core resource that is shared amongst dusiteores. Because the power and area savings
here are orders of magnitude higher than in thelath cache, the possibilities expand. We leave

detailed studies of possible tradeoffs in this spaduture work.

3.5 Related Work

Our focus has been on finding a cache design thstt ineets the demands of a simple, low-
power, throughput-oriented core. Both Davis eP4l.[and Li et al. [35] have done extensive stud-
ies of the throughput-oriented core design space.|&Verage this work to build our model
throughput-oriented core. These efforts did examaréous cache configurations, but they did not
propose and evaluate caches implemented with iffestorage cell technologies. We show that
moving from SRAM to DRAM opens up a new area of design space to possible implementa-

tion.

The other major area of effort that we utilizehistwork is work on storage cell alternatives for
on-chip cache memories. The literature is rich withuit alternatives to the traditional 6T SRAM

cell. SRAM-based options seek to limit leakage @ffevith additional transistors [7, 15, 17, 39],
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to enable standby states in the cell [32, 50, $4jrowsy caches [33], which use microarchitec-
tural techniques to put unused cells into low-postates. They improve upon the 6T’s leakage

properties, but still suffer from leakage effects.

The use of DRAM includes the traditional 1T1C ¢2B] and a newer, low-latency 3T1D cell
[41]. The latter does not suffer from destructieads, but has a power footprint similar to 6T
SRAM in applications that require low-latency doeaefresh requirements. We employ the 1T1C
cell in our work in a new application within thecte hierarchy, showing that throughput-oriented

cores perform well with an L1 data cache impleméntéh 1T1C DRAM cells.

Finally, hybrid cache cells have been proposed {@ provide both low leakage power and low
latency performance at a reduced area to 6T SRANII&Nhey may indeed deliver on this prom-
ise, we find the latency characteristics of cadhgdemented with these cells to not be as well-
matched to our throughput-oriented core’s demarsdthe 1T1C DRAM cell-based caches are.
The use of 25% 6T SRAM in a 4-way set-associata@he also limits the opportunity to increase
capacity under a fixed power budget. If we consitieruse of one of the mentioned SRAM cell
designs that has lower leakage current, we mitif@gedeficiency, but only approach the 1T1C

DRAM power characteristics asymptotically.
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4 Summary and Conclusions
This thesis has been motivated by the challengesepted to the microarchitect by deep sub-

micron CMOS process technology. The availabilitynodre transistors than we can effectively
cool in a high-performance chip has caused thesimguo focus on extracting value in new ways.
In this work, we have looked at hard fault tolemric the high-performance core and the data
cache in a throughput-oriented design. In this tdrapve will briefly summarize our work in

Section 4.1and then provide conclusions we draw ftdmSection 4.2.

4.1 Summary of Results

In the first part of this work, we explored techmés to provide fine-grained, low-cost, hard-
fault tolerance in the microprocessor core. Thd g@s to show that hard faults can be tolerated
effectively within the core without macro-scaleliegtion, thus allowing traditionally unprotected
designs to adopt fault tolerance mechanisms wittimaitraditional costs. The exchange we were
willing to make for this low-cost protection wagtloss of some performance and the introduction
of additional complexity within the design. We poged and evaluated three mechanisms in this
space. The first two both work with array structune the microprocessor core, while the third
extended the scope of diagnosis to include allgssing after instructions are decoded until their

results are checked at the end of the pipeline.

In our presentation of self-repairing array struetu(SRAS), our first implementation, using
check rows within the array structure (SRAS-CRJizdd a small amount of redundancy within
the array itself to provide for local diagnosisfafilty entries. Error detection and correction was
left to an external mechanism. We selected DIVAf§#]this purpose given its relatively low cost
and ease of integration into an existing commeurzgagign. Our second implementation used error-

detecting codes (EDC). In SRAS-EDC, we add delahecaccess time of the array structures pro-
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tected, but eliminate the need for an externalaiete and correction mechanism. In both SRAS-
CR and SRAS-EDC, we provide the microarchitect veittunable overhead for fault tolerance.
The designer can choose how many spare array eleragnavailable to maintain a fixed array
size or, alternatively, can elect to reduce ariag & the presence of failures in exchange for the

consequential reduction in performance that withedrom reduced capacity.

Our experimental evaluation of SRAS techniques shihvat the primary advantage of SRAS is
realized in structures with a high architecturaheuability factor. This owes to the cost of error
detection and correction in DIVA and related tecfugis, where we must flush the pipeline in order
to correct a fault. In comparing SRAS-CR with SREBC, we observe that SRAS-CR can
extend existing soft-fault tolerance mechanismehss DIVA to tolerate hard faults without great
loss of performance, but that we can eliminatertbed for an external detection and diagnosis

mechanism altogether for a small performance pgirathe fault-free case with SRAS-EDC.

We extended the basic principles of fine-grainedi-€ost hard-fault tolerance from SRAS into
a processor-core global detection and diagnosishaméem. In this design, we again relied upon
DIVA for error detection and correction, but we weable to track utilization of replicated
resources to identify those with hard faults préséfe showed that deconfiguration of units with a
high architectural vulnerability is favorable tontimued error detection and correction by DIVA
checkers. As with SRAS, the exploitation of redurawithin the core enables us to avoid costly
recoveries in the faulted case while still retainfault-free performance at or near parity with the

unprotected design.

In our final piece of work, we presented an argunienthe replacement of traditional low-
latency SRAM-based data caches with lower-powera-gfficient DRAM-based data cache on

the chip. To motivate our argument, we examinedd#m@ands of a throughput-oriented core and
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workload on the on-chip data cache hierarchy. Vém tthowed how a DRAM-based cache can
meet the demands of this workload within a lowexr@oenvelope. We further showed that we can
increase L1 data cache capacity at parity powent8RAM-based counterpart. This nets a nota-
ble improvement in throughput over the SRAM cadkgplication of these techniques to the last-
level on-chip cache result in much greater poweinggs, opening the opportunity for a wider vari-
ety of alternatives to increase throughput at pagritwer, including addition of more cores as well

as more cache capacity.

4.2 Conclusions

As a result of the insights this research has pexlius, we draw the following three conclu-

sions:

1) In coming generations, the trend to have miaesistors than we can effectively power and
cool in traditional designs will lead to an incredsfocus on architectural techniques that
exploit this characteristic. Techniques that prewvitésirable features to a design while reduc-
ing hot spots and overall power density will becoateactive as concerns over die area and
transistor budget are viewed with less importahes fpower consumption. Our hard-fault tol-
erance mechanisms are examples of this exploitafioe extra hardware internal to the core
makes for a larger overall core footprint, but #ulition of storage elements for error count-
ing and additional cold spare capacity represemtaima and transistor budget consumed with
a much smaller activation rate for the transistddged to the design. The net benefits of
extended lifetime and part performance come at ehnhower power cost than other space-

consuming alternatives (e.g. triple-modular redumoga
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2) Throughput-oriented computing trends will lemétroarchitects to focus on off-chip band-
width as first-class constraints, with latency takon a role of lesser importance in designs
supporting hundreds of threads on a chip. As aensitn to the work we have presented here,
we conclude that this will lead to the on-chip meies primary role moving from one of
latency hiding to one of pin bandwidth bufferingittwnew techniques favoring bandwidth

conservation favored over those in use today.

3) Our final conclusion is an insight gained frémoking at both latency-sensitive and through-
put-oriented problem domains. With more transistorsvork with, but tighter power con-
straints, the use of a single core design for batbncy-sensitive and throughput-oriented
workloads will decline in popularity. Since manythé goals of these two compute paradigms
are mutually exclusive, compromising a design thieae characteristics desirable to both

domains becomes ever more inefficient as we pregresmaller device geometries.

The work of the microarchitect is one of balancalgmands and constraints. Technological
breakthroughs challenge us to revisit past desggisthns and examine them from a different per-
spective. As we move into deep sub-micron CMOSneldgy nodes, we see an increasing num-
ber of device manufacturing and process challerigesvhich no known solution exists. This
increasing set of challenges will continue to pdevihe computer architecture community with a

ready set of new problems to work on and old soh#ito re-assess in new ways.
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