
Technology Impacts of CMOS Scaling on

Microprocessor Core Design for Hard-Fault Tolerance

in Single-Core Applications and Optimized Throughput in

Throughput-Oriented Chip Multiprocessors

by

Fred Allison Bower III

Department of Computer Science
Duke University

Date:_____________________
Approved:

Professor Daniel J. Sorin, Advisor

Dr. Steven W. Hunter

Professor Alvin R. Lebeck

Professor Christopher L. Dwyer

Professor Landon P. Cox

Dissertation submitted in partial fulfillment of
the requirements for the degree of Doctor

of Philosophy in the Department of
Computer Science in the Graduate School

of Duke University

2010

ABSTRACT

Technology Impacts of CMOS Scaling on

Microprocessor Core Design for Hard-Fault Tolerance

in Single-Core Applications and Optimized Throughput in

Throughput-Oriented Chip Multiprocessors

by

Fred Allison Bower III

Department of Computer Science
Duke University

Date:_____________________
Approved:

Professor Daniel J. Sorin, Advisor

Dr. Steven W. Hunter

Professor Alvin R. Lebeck

Professor Christopher L. Dwyer

Professor Landon P. Cox

An abstract of a dissertation submitted in partial
fulfillment of the requirements for the degree
of Doctor of Philosophy in the Department of

Computer Science in the Graduate School
of Duke University

2010

Copyright © 2010
by

Fred Allison Bower III
All rights reserved

iv

Abstract

The continued march of technological progress, epitomized by Moore’s Law provides the

microarchitect with increasing numbers of transistors to employ as we continue to shrink feature

geometries. Physical limitations impose new constraints upon designers in the areas of overall

power and localized power density. Techniques to scale threshold and supply voltages to lower

values in order to reduce power consumption of the part have also run into physical limitations,

exacerbating power and cooling problems in deep sub-micron CMOS process generations. Smaller

device geometries are also subject to increased sensitivity to common failure modes as well as

manufacturing process variability.

In the face of these added challenges, we observe a shift in the focus of the industry, away from

building ever-larger single-core chips, whose focus is on reducing single-threaded latency, toward

a design approach that employs multiple cores on a single chip to improve throughput. While the

early multicore era utilized the existing single-core designs of the previous generation in small

numbers, subsequent generations have introduced cores tailored to multicore use. These cores seek

to achieve power-efficient throughput and have led to a new emphasis on throughput-oriented

computing, particularly for Internet workloads, where the end-to-end computational task is domi-

nated by long-latency network operations. The ubiquity of these workloads makes a compelling

argument for throughput-oriented designs, but does not free the microarchitect fully from latency

demands of common workloads in enterprise and desktop application spaces.

We believe that a continued need for both throughput-oriented and latency-sensitive processors

will exist in coming generations of technology. We further opine that making effective use of the

additional transistors that will be available may require different techniques for latency-sensitive

v

designs than for throughput-oriented ones, since we may trade latency or throughput for the

desired attribute of a core in each of the respective paradigms.

We make three major contributions with this thesis. Our first contribution is a fine-grained fault

diagnosis and deconfiguration technique for array structures, such as the ROB, within the micro-

processor core. We present and evaluate two variants of this technique. The first variant uses an

existing fault detection and correction technique whose scope is the processor core execution pipe-

line to ensure correct processor operation. The second variant integrates fault detection and correc-

tion into the array structure itself to provide a self-contained, fine-grained, fault detection,

diagnosis, and repair technique.

In our second contribution, we develop a lightweight, fine-grained fault diagnosis mechanism

for the processor core. In this work, we leverage the first contribution’s methods to provide decon-

figuration of faulty array elements. We additionally extend the scope of that work to include all

pipeline circuitry from instruction issue to retirement.

In our third and final contribution, we focus on throughput-oriented core data cache design. In

this work, we study the demands of the throughput-oriented core running a representative work-

load and then propose and evaluate an alternative data cache implementation that more closely

matches the demands of the core. We then show that a better-matched cache design can be

exploited to provide improved throughput under a fixed power budget.

Our results show that typical latency-sensitive cores have sufficient redundancy to make fine-

grained hard-fault tolerance an affordable alternative for hardening complex designs. Our designs

suffer little or no performance loss when no faults are present and retain nearly the same perfor-

mance characteristics in the presence of small numbers of hard faults in protected structures. In our

study of the latency-sensitive core, we have shown that SRAM-based designs have low latencies

vi

that end up providing less benefit to a throughput-oriented core and workload than a better-fitted

data cache composed of DRAM. The move from a high-power, low-latency technology to a lower-

power, high-latency technology allows us to increase L1 data cache capacity, which is a net benefit

for the throughput-oriented core.

vii

Dedication

To the Doctors Bower that precede me, those that may follow, and for Ronnie.

viii

Table of Contents

Abstract iv

List of Figures xiii

List of Tables xv

Acknowledgements xvi

Copyright Acknowledgements xviii

1 Introduction 1

1.1 Single Core Trends in Latency Sensitive Applications 3

1.2 Throughput-Oriented CMP Trends 4

1.3 Thesis Statement and Contributions 6

1.4 Thesis Outline 7

2 Fine-Grained Hard Fault Tolerance in Single Core Applications 8

2.1 Fault Tolerance Background 10

2.1.1 Hard Faults in Submicron CMOS Technology 11

2.1.1.1 Fault Models 11

 2.1.1.2 Underlying Physical Phenomena 11

2.1.2 Existing Fault Tolerance Techniques 14

2.2 Self-Repairing Arrays 16

2.2.1 Microprocessor Array Structures 18

2.2.1.1 Reorder Buffer 18

2.2.1.2 Branch History Table 19

2.2.2 Design Space 20

ix

2.2.3 SRAS-CheckRow (SRAS-CR) 21

2.2.3.1 Detection and Diagnosis 21

2.2.3.2 Recovery 23

2.2.3.3 Mapping Out Faulty Sub-arrays 23

2.2.3.4 ROB Remapper 24

2.2.3.5 BHT Remapper 25

2.2.4 SRAS-CR Costs 27

2.2.5 Limitations of SRAS-CR 28

2.2.6 SRAS-EDC: Self-Repair Design Without DIVA Backstop 29

2.2.6.1 Detection and Diagnosis 31

2.2.6.2 Recovery 34

2.2.6.3 Remapping 34

2.2.6.4 SRAS-EDC Costs 35

2.2.6.5 Limitations of SRAS-EDC 35

2.2.7 Applicability of SRAS to Specific Structures 35

2.2.7.1 Instruction Buffer 35

2.2.7.2 Instruction Scheduling Window 36

2.2.7.3 Load-Store Queue 37

2.2.7.4 Branch History Table 38

2.2.7.5 Reorder Buffer 38

2.3 Online Diagnosis of Hard Faults in Microprocessors 38

2.3.1 Fault Diagnosis 39

2.3.2 A New Online Diagnosis Mechanism 40

2.3.2.1 Design Issues 41

x

2.3.2.2 Heuristics for Choosing Error Counter Values 43

2.3.2.3 Discussion 45

2.3.2.4 Alternative Design Options 47

2.3.3 Deconfiguring Faulty Components 49

2.3.4 Costs and Limitations 51

2.3.4.1 Hardware Costs 51

2.3.4.2 Limitations 51

2.4 Evaluation 53

2.4.1 Experimental Methodology and System Model 53

2.4.2 SRAS-CR and SRAS-EDC 56

2.4.2.1 Fault-Free Performance 56

2.4.2.2 Performance in Presence of Faults 57

2.4.2.3 Relative Performance Impact of Protecting Different
Arrays 60

2.4.2.4 Implementation Costs 62

2.4.3 Online Diagnosis 63

2.4.3.1 Detection and Diagnosis of Hard Faults 64

2.4.3.2 Performance After Deconfiguring FDU 70

2.4.3.3 Performance with Just DIVA Recovery
(But No Diagnosis) 71

2.4.4 Summary and Discussion of Results 77

2.4.5 Related Work 80

3 Extending DRAM Use to the Level 1 Data Cache in Throughput-Oriented CMPs 83

3.1 Experimental Methodology 85

xi

3.2 Demands of Throughput-Oriented Workloads 88

3.2.1 Bandwidth Demands of the Throughput-Oriented Core 88

3.2.2 L1 Data Cache Latency Sensitivity 90

3.2.3 Throughput-Oriented Cache Demand Summary 92

3.3 Cache Building Block Technology Alternatives 92

3.3.1 Build a Better SRAM Cell 93

3.3.2 Embedded DRAM as an Alternative to SRAM 94

3.3.3 Hybrid Caches 94

3.4 Experimental Cache Design Space Exploration 95

3.4.1 L1 Data Cache Evaluation 96

3.4.1.1 Bandwidth and Power 96

3.4.1.2 Cache Area 100

3.4.1.3 Cache Latency 101

3.4.1.4 Summary of L1 Data Cache Evaluation 102

3.4.2 L2 Cache Evaluation 102

3.4.3 Putting it All Together: Evaluation of a Throughput-Oriented
Cache 104

3.4.3.1 Improvements in the L1 Data Cache 105

3.4.3.2 Opportunities in the L2 Cache 107

3.5 Related Work 108

4 Summary and Conclusions 109

4.1 Summary of Results 110

4.2 Conclusions 112

References 114

xii

Biography 123

xiii

List of Figures

Figure 2-1. Oxide Breakdown Process and its Circuit Level Implications 12

Figure 2-2. Broader Impact of OBD in the Circuit 12

Figure 2-3. Array Remapping 24

Figure 2-4. Deconfiguration of Entries in a Circular Buffer
(e.g., Reorder Buffer) 24

Figure 2-5. Deconfiguration of Entries in a Tabular Structure
(e.g., Reservation Station) 24

Figure 2-6. Datapath Design with SRAS-EDC 30

Figure 2-7. Fault-Free Runtime 58

Figure 2-8. Runtime with Hard Faults Injected into the Reorder Buffer 59

Figure 2-9. Impact on Runtime of Hard Faults on Other Array Structures 61

Figure 2-10. Error-Free Performance (SPECfp and SPECint) for Each of the Three
Evaluated Processor Configurations 64

Figure 2-11. Hard Fault Diagnosis Latency, Averaged Over All Benchmarks, for
Narrow Configuration 65

Figure 2-12. Performance Impact of Losing One Component to a Hard Fault for
Each of the Three Evaluated Processor Configurations 67

Figure 2-13. Performance of DIVA-Only Correction for Combinational Logic Units
(SPECint) 72

Figure 2-14. Performance of DIVA-Only Correction for Combinational Logic
(SPECfp) 73

Figure 2-15. Performance of DIVA-Only Correction for Array Logic Units (SPECint) 74

Figure 2-16. Performance of DIVA-Only Correction for Array Logic Units (SPECfp) 75

Figure 3-1. Dynamic Instruction Stream Memory Instruction Mix 89

Figure 3-2. Throughput-Oriented Core Bandwidth Demands on L1 Data Cache 89

xiv

Figure 3-3. Apache Web Server and SPECjbb Normalized Throughput on
Out-of-Order, Multithreaded Cores with Varying L1 Data Cache Latency 91

Figure 3-4. Apache Web Server and SPECjbb Normalized Throughput on In-Order,
Multithreaded Cores with Varying L1 Data Cache Latency 91

Figure 3-6. Power Comparison of SRAM, 1T1C DRAM, and Hybrid [77] L1 Data
Cache Designs 97

Figure 3-5. L1 Data Cache Bandwidth for Selected Designs as Core Frequency is
Varied 97

Figure 3-8. Latency of SRAM and DRAM-Based L1 Data Cache Implementations 100

Figure 3-7. L1 Data Cache Area for Energy-Delay Optimized Designs Implemented
with SRAM, DRAM, or Hybrid Cells 100

Figure 3-9. Area and Power Characteristics of Large L2 Cache Configurations for
Large-Scale CMPs 104

Figure 3-10. Latency to Access SRAM and DRAM L2 Caches at 750MHz Operating
Frequency 104

Figure 3-11. Speedup by 8-Thread Configurations Over 2-Thread Core with 16 KB,
1-Cycle L1 Data Cache at L1 Data Cache Capacities From 16KB to
1MB and 1, 2, and 4-Cycle Latencies 106

xv

List of Tables

Table 2-1. Fault Tolerance Techniques: Design Points and Limitations 17

Table 2-2. Error Counter Thresholds 45

Table 2-3. SRAS Target System Parameters 54

Table 2-4. Parameters of Target Systems for Online Diagnosis Evaluation 55

Table 2-5. Number of Diagnoses Needed to Identify Correct Failing Unit 68

Table 3-1. Processor Configuration for L1 Data Cache Latency Sensitivity Study 86

Table 3-2. L1 Data Cache Configurations Explored 87

Table 3-3. L2 Cache Configurations Explored 103

Table 3-4. Cache Power, in Milliwatts at Maximum Throughput 105

xv

Acknowledgements

There are many people to whom I owe a debt of gratitude for their support of my work. I would

like to acknowledge that support here. First and foremost, I am grateful for the support of my par-

ents, who have provided me with an upbringing that values education and who have backed my

efforts fully. I am also thankful for the support of my extended family throughout my long journey.

I am most appreciative of the patience of my wife, son, and dogs, all of whom have had to often

come in second place as I have worked toward this goal. They share this accomplishment, though

their contributions are not directly written here.

I am appreciative of the patience of my advisor, Dan Sorin, and my IBM advisor, Steve Hunter,

both of whom have helped me achieve this goal, despite the many challenges that presented them-

selves along the way. Gauging the abilities and motivators of another is a skill that Dan has

acquired new depth in throughout his tenure advising this dissertation, and I am grateful that he

has endured through the process to my definition of success.

I have many IBM colleagues to thank, but those that have been the most instrumental to my

success are Celia Schreiber, Bill Ott, and Steve Levesque. Celia and Bill supported me at the

beginning and Steve has supported me at the end, when time has been hard to come by. The under-

standing and commitment on the part of the company, as personified by the support of these three

has made this accomplishment possible.

To my extended Durham community, I am also thankful. My Duke Architecture office mates,

Dr. Tong Li, Dr. Albert Meixner, and Dr. Anita Lungu all precede me in the alumni ranks and their

example has helped to guide me to completion. My village of coffee shop denizens has been sup-

portive in ways that they could not have possibly recognized the value of at the time, but their con-

stant presence has been part of my success here.

xvi

My final note of gratitude is due to Diane Riggs, my personal guide through the administrative

maze that is the Duke Graduate School and Computer Science Department. More so than for a typ-

ical student, Diane has been a constant shepherd of my progress and guide through the process of

completing my degree requirements. Without her help, I would not be writing these words now. I

wish her the best in her life after Duke and can only hope that those that may follow have as good

a guide as Diane has been.

xvii

Copyright Acknowledgements

Content found in Chapter 2 has been previously published and is republished here with permis-

sion from ACM and IEEE. The following copyright notices apply to the applicable content in

Chapter 2.

©ACM, 2007. This is the author’s version of the work. It is posted here by permission of ACM

for your personal use. Not for redistribution. The definitive version was published in ACM Trans-

actions on Architecture and Code Optimization (TACO), {4, 2, (June 2007)}

http://doi.acm.org/10.1145/1250727.1250728

This material is posted here with permission of the IEEE. Such permission of the IEEE does

not in any way imply IEEE endorsement of any of Duke University's products or services. Internal

or personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistri-

bution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to

view this material, you agree to all provisions of the copyright laws protecting it.

1

1 Introduction
As computer architects, we continue to benefit from the decades-long progression of Moore’s

Law [46]. Increasing device densities into deep sub-micron feature geometries have enabled fur-

ther performance gains in latency-sensitive single-core applications, and have also ushered in the

generation of throughput-oriented computing. Chip multiprocessors (CMPs) now are ubiquitous in

personal computers and servers. With the technological advances that enable these increased den-

sities comes a set of additional challenges.

First, with smaller device geometries and lower operating voltages, devices are more sensitive

to many of the fault causing effects. These effects stem from manufacturing defects, such as parti-

cle contamination or process variation, and from wearout effects due to gate oxide breakdown and

electromigration [13, 30, 51, 68]. Increased sensitivity presents additional challenges in process

yield at the factory. It also makes parts more sensitive to progressive field wearout effects [8] and

the phenomena that incur transient faults.

This increased sensitivity has caused device reliability in high-performance to become a greater

concern with smaller geometries. Techniques that help to maintain or improve manufacturing

yields, extend part lifetimes, and provide graceful degradation in the presence of common faults in

critical structures are increasingly important in these designs as they incorporate ever-more tran-

sistors and per-transistor fault rates fail to keep pace with these increases.

Next, while we continue to lower operating voltages to reduce power consumption, we are

approaching a point where the ability to scale voltage further is limited by physical limits. Until

recent technology generations, scaling of voltage provided an effective means to keep chip power

from growing as we add more devices to the same area. With this technique losing its ability to

keep pace with further scaling, we now face a challenge to reduce power via other means, such as

2

reducing the average activity factor of transistors on the part. Reduction of threshold voltage has

also brought with it an increase in the leakage component of the power consumption by traditional

device designs such as the six-transistor (6T) SRAM cell commonly employed as a building block

for on-chip storage, both within the core and in the cache hierarchy.

Finally, as densities have increased, basic cooling limits of the total microprocessor package

have not. This is due to the fact that maximum die area has remained relatively fixed at roughly

400 mm2 and advances in heatsink technology have not provided significant additional gains in

heat dissipation from the package. With a physical cap on power dissipation, power has become a

first-class design constraint.

These challenges present a new set of boundaries that constrain the microarchitect in extracting

additional value from the ever-increasing transistor budget. At the same time, efforts to improve

single-threaded performance have been thwarted by challenges with scalability of performance-

critical structures in the core and the power challenges of increasing chip frequency. This has led

the microarchitecture community away from techniques that seek to increase ILP in single-

threaded applications. Instead, we are now seeing increased focus on optimizing energy-delay to

achieve balanced throughput per unit power with reasonable latency in many applications, particu-

larly in the commercial application space of the Internet.

As a result of these trends, we develop techniques to cope with these fundamental challenges in

both latency-sensitive and throughput-oriented paradigms. In latency-sensitive core design space,

we propose and evaluate fine-grained hard fault tolerance mechanisms within the core. In the

throughput-oriented CMP design space, we study the demands of the throughput-oriented core and

data cache alternatives that provide a better match to these demands than traditional cache designs.

3

The rest of this chapter is organized as follows. In Section 1.1, we discuss trends that motivate

our research in the latency-sensitive core design space. In Section 1.2, we explore how these gen-

eral trends impact the throughput-oriented core design space. Section 1.3 presents our thesis state-

ment and the hypotheses that we test in this work. We conclude in Section 1.4 with an outline of

the rest of the dissertation.

1.1 Single Core Trends in Latency Sensitive Applications

As technological trends continue to lead toward smaller device and wire dimensions in inte-

grated circuits, the probability of hard (permanent) faults in microprocessors increases. These

faults may be introduced during fabrication, as defects, or they may occur during the operational

lifetime of the microprocessor. Well-known physical phenomena that lead to operational hard

faults are gate oxide breakdown, electromigration, and thermal cycling. Microprocessors become

more susceptible to all of these phenomena as device dimensions shrink [68], and the semiconduc-

tor industry’s roadmap has identified both operational hard faults and fabrication defects (which

we will collectively refer to as “hard faults”) as critical challenges [28]. In the near future, it may

no longer be a cost-effective strategy to discard a microprocessor with one or more hard faults,

which is what, for the most part, we do today.

Traditional approaches to tolerating hard faults have masked them using macro-scale redun-

dancy, such as triple modular redundancy (TMR). TMR is an effective approach, but it incurs a

200% overhead in terms of hardware and power consumption. There are some other, lightweight

approaches that use marginal amounts of redundancy to protect specific portions of the micropro-

cessor, such as the cache [49, 84], but none of these are comprehensive.

Our goal in this work is to create a microprocessor design that can tolerate hard faults without

adding significant redundancy. The key observation, made also by previous research [64, 67, 69],

4

is that modern latency-sensitive, superscalar microprocessors, particularly those supporting simul-

taneously multithreading (SMT) [76], already contain significant amounts of redundancy for pur-

poses of exploiting ILP and enhancing performance. We want to use this redundancy to mask hard

faults, at the cost of a graceful degradation in performance for microprocessors with hard faults. In

this work, we do not consider adding extra redundancy strictly for fault tolerance, because cost is

such an important factor for commodity microprocessors. The viability of our approach depends

only on whether, given a faulty microprocessor core, being able to use it with somewhat degraded

performance provides any utility over having to discard it.

To achieve our goal, the microprocessor core must be able to do three things while it is running.

1) It must detect and correct errors caused by faults (both hard and transient).

2) It must diagnose where a hard fault is, at the granularity of the field deconfigurable unit (FDU).

3) It must deconfigure a faulty FDU in order to prevent its fault from being exercised.

While previous work in this area has explored aspects of this problem, none has developed an

integrated solution. Some work has used deconfiguration to tolerate strictly fabrication defects and

thus assumed pre-shipment testing instead of online error detection and diagnosis [64]. Other work

has explored deconfiguration and has left detection and diagnosis as open problems [69]. We will

discuss integrated design options for microprocessors that achieve all three of these goals in

Chapter 2.

1.2 Throughput-Oriented CMP Trends

Multicore processors are now the standard commodity computing platform. Many researchers

argue that Moore’s law will lead to exponential increases in the number of cores per chip. In this

scenario the memory system that serves these cores becomes a crucial system component in terms

5

of performance and power. As power and energy efficiency become first-class design constraints,

the ability to increase clock frequencies as the primary means for improved performance becomes

infeasible.

The response by system designers has been to place greater emphasis on exploiting coarse-

grained, thread-level parallelism (TLP) by increasing the number of cores on a single chip. This

new paradigm represents an opportunity to revisit single-chip designs. Specifically, for many

server workloads, throughput is the primary performance metric. The realization that a more

energy-efficient design point can be achieved for throughput-oriented computing led to a redesign

of the cores. Recent chip multiprocessors (e.g. UltraSparc T2 [62]) have a large number of simpler

low-power processor cores, often with multithreading for tolerating long latency events, instead of

a small number of sophisticated high-power cores.

Although core microarchitectures have been re-designed for throughput-oriented computing,

the memory systems are still tailored to the demands of high-performance, latency-centric cores.

Instead, designs should seek to balance latency, bandwidth, and capacity for optimum throughput.

The aim of the work we present in Chapter 3 is to identify and exploit mis-matches in the capabil-

ities of the on-chip data cache and the throughput-oriented core. The first part of this work is to

show that the low latency caches of the late single-core and early multicore era over-emphasize the

criticality of latency for a throughput-oriented workload. With the magnitude and nature of the

miss-match better understood, we explore ways in which we can trade over-provisioned attributes,

such as latency, for attributes that will benefit the throughput-oriented CMP, namely additional

cache capacity and power savings.

6

1.3 Thesis Statement and Contributions

With this thesis, our goal is to validate two primary hypotheses motivated by the high-level

trends we have reviewed in this introduction: 1) fine-grained techniques for detecting, diagnosing,

and tolerating hard faults in latency-sensitive cores can provide performance of a fault-free core in

both fault-free and fault-present states at a fraction of the hardware and power costs of traditional

coarse-grained fault-tolerance methods and 2) a throughput-oriented cache design, better matched

to core demands, enables additional throughput gains over present designs under a fixed power

budget.

In support of these hypotheses, we make three primary contributions:

1) Our first contribution is a fine-grained fault diagnosis and deconfiguration technique for array

structures, such as the ROB, within the microprocessor core. We present and evaluate two

variants of this technique. The first variant uses an existing fault detection and correction tech-

nique scoped to the processor core execution pipeline to ensure correct processor operation.

The second variant integrates fault detection and correction into the array structure itself to

provide a self-contained, fine-grained, fault detection, diagnosis, and repair technique.

2) In our second contribution, we develop a lightweight, fine-grained fault diagnosis mechanism

for the processor core. In this work, we leverage the first contribution’s methods to provide

deconfiguration of faulty array elements. We additionally extend the scope of that work to

include all pipeline circuitry from instruction-issue to retirement.

3) In our third and final contribution, we study the demands of the throughput-oriented core run-

ning a representative workload and then propose and evaluate an alternative data cache imple-

mentation that more closely matches the demands of the core. We then show that a better-

7

matched cache design can be exploited to provide improved throughput under a fixed power

budget.

1.4 Thesis Outline

We begin our presentation of contributions in Chapter 2, with a presentation of our fine-grained

fault tolerance and diagnosis techniques. In Chapter 3, we present our work on throughput-ori-

ented cache design. The thesis concludes with a summary of contributions and conclusions in

Chapter 4.

8

2 Fine-Grained Hard Fault Tolerance in Single Core
Applications1

In this chapter we develop and evaluate techniques to provide fine-grained hard-fault tolerance

in the high-performance microprocessor core. With large, complex core implementations, fine-

grained techniques afford the designer with a way to provide graceful degradation of performance

in the presence of small numbers of faults, even in critical structures. With the methods that we

develop, our evaluation shows that performance losses can be mitigated to a point where utility of

the part is retained for extended periods of operation after faults are encountered. The chapter

begins with a definition of the fault models that we use and a discussion of existing techniques for

providing fault tolerance in the microprocessor core.

We then discuss the design space for self-repairing microprocessor array structures, and we

present two specific designs. Array structures include the reorder buffer, load-store queue, instruc-

tion queue, branch history table, etc. Our goal is to develop self-repairing arrays that enable auto-

nomic execution. In both of our designs for self-repairing array structures (SRAS), spare rows are

built into each array structure and are mapped in to replace faulty rows using a level of indirection.

This approach is similar to how disks map out faulty sectors and how hard faults in DRAMs can be

tolerated with schemes that map out faulty locations [19, 44, 59]. Our first design, SRAS-Check-

Row (SRAS-CR), uses dedicated check rows to detect and diagnose hard faults. SRAS-CR relies

upon DIVA [6] to recover from transient errors and errors due to hard faults that have not yet been

classified as hard. Our second design, SRAS-EDC, uses error detecting codes (EDC) for error

1. This chapter contains previously published work that is covered by the following copyrights:

©2005 IEEE. Reprinted, with permission, from IEEE Transactions on Dependable and Secure Computing, Autonomic
Microprocessor Execution via Self-Repairing Arrays, Fred A. Bower, Sule Ozev, and Daniel J. Sorin.

©ACM, 2007. This is the author’s version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published in ACM Transactions on Architecture and Code Optimiza-
tion (TACO), {4, 2, (June 2007)} http://doi.acm.org/10.1145/1250727.1250728

9

detection/diagnosis, and it uses the pre-existing branch misprediction recovery mechanism to

recover from transient errors and errors due to hard faults that have not yet been classified as hard.

After a hard fault has been diagnosed and mapped out, neither SRAS-CR nor SRAS-EDC incurs a

performance penalty due to that fault, unlike lightweight schemes that incur a costly recovery for

every manifestation of a hard fault.

Our experimental results show that SRAS-EDC adds some performance overhead in the fault-

free case, but that both SRAS-CR and SRAS-EDC mask hard faults (a) without the hardware costs

of high-level redundancy (e.g., IBM mainframes [66]) and (b) without the per-error performance

penalty of existing low-cost techniques (e.g., DIVA). When hard faults are present in arrays, due to

operational faults or fabrication defects, then our SRAS schemes outperform low-cost techniques

that require a pipeline recovery per error. Given the increasing frequencies of fabrication defects

and operational hard faults, the likelihood of wanting to be able to operate correctly with one or

more hard faults makes array self-repair appealing.

With our two SRAS implementations defined, we expand our scope to develop an online, fine-

grained fault diagnosis and deconfiguration mechanism for the microprocessor core. In this work,

we utilize SRARS-style methods for deconfiguration of faulty array structures. We also extend our

ability to diagnose faults to include functional units and data paths within the processor pipeline.

Our experimental results show that our new diagnosis mechanism quickly and accurately diag-

noses hard faults. Moreover, our reliable microprocessor can function quite capably in the pres-

ence of hard faults, despite not using redundancy beyond that which is already available in a

modern microprocessor. This technique can turn otherwise useless microprocessors into micropro-

cessors that can function at a gracefully degraded level of performance. This capability can

improve reliability by tolerating operational hard faults. We can improve yield by shipping micro-

10

processors with defects that we have tolerated—it is as if they are regular microprocessors that

will get “binned” into a lower performance bin. Although binning is typically by clock frequency,

recent proposals have suggested more general performance binning [64]. As long as these bins are

not so low-performing as to be useless, then our improvement in yield is a benefit. Our scheme

also vastly outperforms a system with only DIVA or a comparable recovery-based scheme, since

the performance cost of recoveries is quite high for hard faults that get exercised frequently; more-

over, our scheme can tolerate a hard fault in a DIVA checker.

The rest of this chapter is organized as follows. Section 2.1 provides background on our hard

fault model. The underlying physical phenomena that lead to hard faults are discussed in some

detail to familiarize the reader with these mechanisms as well as to further motivate the case for

providing hard-fault tolerance in coming microprocessor core designs. Section 2.2 presents SRAS-

CR and SRAS-EDC in detail, explaining the mechanisms, how they operate, and their limitations

and advantages in the application of providing hard-fault tolerance to microprocessor core array

structures. In Section 2.3, we present our fine-grained diagnosis and deconfiguration framework

for high-performance microprocessor cores. We conclude this chapter in Section 2.4, with the

experimental evaluation of these techniques.

2.1 Fault Tolerance Background

In this section, we first define terminology around fault tolerance that we will utilize through-

out the rest of the chapter. We also present the historical progression of designs that has led up to

this point and motivated the work in this chapter.

11

2.1.1 Hard Faults in Submicron CMOS Technology

We start with a presentation of existing high-level models for hard faults (Section 2.1.1.1) and

then we delve into the underlying physical phenomena that cause hard faults (Section 2.1.1.2). In

this process, we show that existing fault models are applicable to the physical faults that we con-

sider in this work

2.1.1.1 Fault Models

To facilitate fault tolerant design and testing for physical faults that lead to errors at the circuit

level, several structural fault models have been developed for logic circuits and storage compo-

nents over the past few decades [1]. The stuck-at fault model is the most commonly used model in

VLSI testing and fault tolerance schemes. In this model, a physical defect manifests itself as a sig-

nal consistently having a certain value (either zero or one) independent of the input. For example,

an unintended short circuit between the two inputs of an XOR gate results in a stuck-at-zero fault

at the output signal. The coupling fault model—in which a write to a certain memory location

always prompts a write to a neighboring location or locations—has been defined for storage com-

ponents [18]. The recently defined transition fault model represents a slow charging or discharging

of a circuit node [53, 60, 75]. This delay can cause incorrect logic values to be latched.

Next, in Section 2.1.1.2, we see that stuck-at and coupling fault models will be sufficient for

the hard faults that we consider.

2.1.1.2 Underlying Physical Phenomena

The reliability of electronic devices under discrete environmental stress, such as radiation [70],

and continuous functional stress due to the applied electric field [11, 57, 72] has been a topic of

vast research since the early days of semiconductor manufacturing. Extensive research has been

conducted on the failure-causing physical phenomena, such as electromigration [11, 34, 72] and

12

transistor gate oxide breakdown (OBD) [23]. There have been several recent studies of operational

hard faults [30, 68], that is, hard faults that occur over the lifetime of the microprocessor. Srini-

vasan et al. [68] determine that electromigration and gate oxide breakdown are likely to be the two

dominant phenomena that cause operational hard faults, thus we focus on them in developing our

fault models in this work. Electromigration results in highly resistive interconnects or contacts and

eventually leads to open circuits. Such defects are typically modeled as transition faults during

manufacturing testing, but they become stuck-at faults during operation due to their progressive

nature.

Gate oxide breakdown (OBD) results in the malfunction of a single transistor due to the cre-

ation of a highly conductive path between its gate and its bulk. As illustrated in Figure 2-1, a

newly manufactured oxide contains inherent electron traps due to imperfections in the fabrication

process. Over the lifetime of the device, the number of such traps increases due to electric field

stress and electron tunneling. At some point, the electron traps may line up and constitute a con-

ductive path between the gate and the bulk of the device. The onset of this phenomenon is called a

soft breakdown (SBD). OBD increases switching delay. It can lead to delay faults that manifest

themselves as bit flips [16]. Initially, the conductive path may be transient since the high heat

Gate
Source

BulkDrain

nn

p
n

p+

soft breakdown leading to
transient conductive path
and high thermal energy

melted conductor filling the gap
caused by diffused oxide material
leading to permanent conductive path

circuit-level
implication

Gate oxide

after manufacturing

oxide defects
caused by traps,
radiation, etc

Figure 2-1. Oxide Breakdown Process and its
Circuit Level Implications

VDD

GND

…
…

…

M1

M2
M3

Figure 2-2. Broader Impact of
OBD in the Circuit

13

caused by high current density may relocate some of the traps. However, after several SBD inci-

dents, the oxide layer diffuses and highly conductive melted metal fills the void and solidifies into

a consistent path. This phenomenon is called hard breakdown (HBD). Similar to the electromigra-

tion case, the initial circuit level manifestation of SBD is a transition fault, whereas the effect of

the subsequent HBD is a stuck-at fault. OBD defects are potentially more dangerous than elec-

tromigration defects due to the consistent path between a charged node and ground or supply. For

the circuit illustrated in Figure 2-2, an OBD defect in transistor M2 forms a conductive path

between the drain of M1 (and the gate of M2) and the ground node. As long as the logic value at

the gate of M1 is LOW, there is a sustained resistive path from the supply to the ground, resulting

in sustained current flow through transistor M1. Since the resistance of this transistor for a LOW

input is typically small, the current can be large, potentially damaging M1 or causing regional

drops in the supply. Thus, detection and isolation of memory locations with OBD defects is essen-

tial for the operational health of computing devices.

Both the electromigration and OBD defects are progressive in nature. The mean time to failure

(MTTF) for both defects depends on the thickness and the initial health of the structure. Reported

laboratory data on OBD indicates that MTTF is on the order of four million seconds (around 46

days) for 15Å gate oxides under constant stress of 2.1V [40] (scaling the supply voltage down to

1.0V, we can estimate the MTTF for this oxide thickness to be 375 days). However, MTTF also

depends heavily on the number and location of initial traps within the oxide; thus it can be much

shorter for some transistors with inherent weaknesses. A similar analysis can be made for elec-

tromigration defects [12].

In the early stages of the progression of both electromigration defects and OBD defects, bit

errors only occur if the defects are sequentially excited. However, in later stages, both defects

14

resemble stuck-at faults. Moreover, in addition to affecting the output node to which the defective

transistor is connected, the OBD defects may result in coupling faults due to their current driving

nature. Thus, in our evaluation experiments, we inject stuck-at faults and coupling faults since they

correspond to the manifestations of electromigration and OBD defects.

Defects introduced during chip fabrication are another source of hard faults. Their causes differ

from those of operational hard faults, but they often manifest themselves in a similar fashion. For

example, a fabrication defect could result in a discontinuity in a wire, which is equivalent to the

situation in which electromigration leads to an open circuit. A fabrication defect could also lead to

the growth of an insufficiently thick gate oxide, which is functionally equivalent to OBD. The

impact of technology trends on fabrication defects is less clear than it is for operational faults. In

general, though, smaller wire and device dimensions are more prone to defects, since the margin

for error is smaller.

2.1.2 Existing Fault Tolerance Techniques

A canonical design for autonomic operation is the IBM mainframe [66]. Mainframes not only

have redundant processors, but they also incorporate redundancy within the processor in order to

seamlessly tolerate hard faults. The IBM G5 microprocessor, for example, has redundant units for

fetch/decode and for instruction execution. Some other traditional fault-tolerant computers, such

as the Stratus [82] and the Tandem S2 [31], simply replicate entire processors. While these systems

all provide excellent reliability, such heavyweight redundancy incurs significant costs in terms of

hardware and power consumption.

As a low cost and low power alternative to heavyweight redundancy, DIVA [6] dynamically

verifies an aggressive microprocessor core with a simple, provably correct checker core. DIVA

sacrifices some amount of reliability in order to greatly reduce these costs. DIVA’s small amount

15

of redundancy uses far less power than mainframe redundancy, but it incurs significant perfor-

mance and energy penalties for each error that it must correct. Each error detected and corrected

by the checker core triggers a pipeline flush of the aggressive core. Since DIVA was designed pri-

marily for soft faults (not the hard faults we target), these flushes are not a performance problem.

However, permanent faults in frequently accessed structures, such as the reorder buffer, will fre-

quently manifest themselves as errors and will thus greatly degrade performance. Researchers

have also proposed using redundant threads to achieve lightweight redundancy, primarily for soft

faults. Of these schemes, the ones that perform recovery as well as error detection include AR-

SMT [58], Slipstream [71], and SRTR [78]. All of these schemes share the same drawback as

DIVA, with respect to hard faults, since they incur a pipeline squash (and its corresponding perfor-

mance and energy penalty) every time a hard fault manifests itself. Redundant thread schemes,

unlike DIVA, may not be able to guarantee forward progress in the presence of hard faults.

One option for array structures is to protect them with error correcting codes (ECC), as in IBM

mainframes [66]. Combining ECC for arrays with DIVA avoids costly DIVA recoveries. However,

ECC protection of arrays is on the critical path for array access (both read and write). Current ECC

implementations can calculate ECC on a representative datum in 4 cycles on a 2 GHz Itanium2

[81]. Since ECC must be calculated on the microprocessor’s critical path, a 4-cycle penalty per

ECC calculation results in highly-degraded performance, even in the fault-free case. This lost per-

formance makes ECC inappropriate for application in the timing-critical microprocessor pipeline.

With the advent of chip multi-processing (CMP) in commodity microprocessor designs,

another hard-fault tolerance option is to disable any core that is detected to have a hard fault.

While this works, we seek to provide a more cost-effective option than to lose 1/Nth (for an N-core

design) of the chip’s capacity for each hard fault that is detected. Aggarwal et al. [2, 3] extend this

16

idea to include other shared CMP structures, such as memory controllers and on-chip busses. In

their presented methodology, a designer can add on-chip wiring complexity and mulitplexor delay

to gain the ability to route around faulty shared components. Shivakumar et al. [64] propose a

more cost-effective, fine-grained solution that utilizes inherent redundancy in CMP and SMT

designs. This work is limited to manufacturing-time detection (i.e., testing) and deconfiguration.

The methods that we present in this work, SRAS-CR, SRAS-EDC, and our new online fault diag-

nosis mechanism, provide a means for both manufacturing-time and in-situ operational detection

and deconfiguration of sub-units within the microprocessor core, giving the designer additional

options in designing for hard-fault tolerance.

Table 2-1 summarizes all of these techniques, including our SRAS-CR, SRAS-EDC, and

online diagnosis (labeled Microarchitectural Redundancy Exploitation) designs. Included are the

original fault-tolerance targets of the techniques (soft, hard, or design), and notes on the limitations

of using these in a commodity microprocessor design. Note that our online fault isolation design

extends previous work [2, 3, 64] to provide a finer-granularity of redundancy exploitation within

the core.

As can be seen in the table, each technique has certain advantages and certain disadvantages.

The characteristics of a given technique make it more or less appropriate for application to a given

design space.

2.2 Self-Repairing Arrays

Technology and microprocessor architecture trends are leading towards larger array structures

within microprocessors. These structures include the instruction queue, reorder buffer (ROB), reg-

ister file, reservation stations, register map table, branch history table (BHT), etc. These structures

17

are the single-largest consumer of microprocessor core die area, comprising up to 33% of the area

of microprocessor core (i.e., not including caches) in recent microprocessor designs [64]. We

would like to protect these structures from hard faults as the probability of hard faults continues to

increase, but we cannot afford to fully replicate these structures. Thus, our SRAS schemes protect

array structures in a fashion similar to the way in which existing on-line (dynamic) techniques pro-

tect large memory storage structures. The basic idea is to use a level of indirection to map out

faulty portions of the structure. Especially as structures grow larger, the probability of a hard fault

within them increases. Disk sizes, for example, long ago reached the point at which hard faults

were expected and had to be tolerated. Whole disk failures were addressed by RAID [52]. For disk

faults that did not incapacitate the entire disk, the solution was to map out faulty portions at the

Table 2-1. Fault Tolerance Techniques: Design Points and Limitations

Technique
Primary Fault
Target(s)

Limitations of Use for Hard-Fault Tolerance In the
Microprocessor Core

DIVA Soft, Design Excessive performance penalty for frequent pipeline flushes
due to faults in frequently-accessed structures

Redundant
Multithreading

Soft May be subject to livelock

Excessive performance penalty for frequent pipeline flushes
due to faults in frequently-accessed structures

Triple Modular
Redundancy (TMR)

Soft, Hard Over 3x cost in terms of die area and power consumption
over unprotected core design point

CMP Core
Sparing

Hard High performance penalty per hard fault (1 of N cores) in
designs where N is relatively small

ECC Soft, Hard Adds excessive latency to critical path of microprocessor

Only localized fault tolerance

Microarchitectural
Redundancy
Exploitation

Hard Manufacturing-time only, as described in [64], coarse-
grained in [2, 3], extended in this work to include faults in
the field at a finer granularity within the core

Only localized fault tolerance

SRAS-CR Hard Requires fault detection mechanism to trigger hard-fault tol-
erance

Only localized fault tolerance

SRAS-EDC Hard Adds latency to fault-free operation of microprocessor

Only localized fault tolerance

18

sector granularity. Thus, a faulty disk could continue to operate correctly in the presence of hard

faults. Similar approaches have been developed for DRAM main memory. Whole chip failures are

tolerated by chipkill memory and RAID-M [22, 27], and partial failures are tolerated with schemes

that map out faulty locations [19, 44, 59]. For SRAM caches, techniques have been developed to

map out defective locations during fabrication [84] and, more recently, during execution [49].

While providing insight for the use of spare memory locations for repair, direct application of the

aforementioned methods to array structures within the processor bears little hope due to the perfor-

mance criticality within microprocessors.

In the rest of this section, we discuss the arrays that we will protect (Section 2.2.1), and we

present the design space for self-repairing arrays (Section 2.2.2). We then present two specific

implementations (Section 2.2.3 and Section 2.2.6).

2.2.1 Microprocessor Array Structures

We can classify array structures within the microprocessor core into two categories: non-

addressable buffers for which the data location is determined at the time of access, and randomly

addressable tables for which the data location is determined before access. In order to allow timing

efficient implementation of the repair logic, we exploit these distinct features of each type of array

structures. Without loss of generality, we focus the discussion of SRAS on one specific array struc-

ture from each of the two categories: the reorder buffer (ROB) and the branch history table (BHT).

The ROB and BHT are representative of the kinds of array structures found in modern micropro-

cessors, and thus the arguments and results here apply broadly.

2.2.1.1 Reorder Buffer

The ROB is a circular buffer that is used in dynamically scheduled (a.k.a. “out-of-order”) pro-

cessors to implement precise exceptions by ensuring that instructions are committed in program

19

order. There is an entry in the ROB for each in-flight instruction, and there are pointers to the head

and tail entries in the ROB. An entry is added to the tail of the ROB once it has been decoded and

is ready to be scheduled. An entry is removed from the head of the ROB when it is ready to be

committed. We focus on processors that perform implicit register renaming with reservation sta-

tions—such as the Intel PentiumPro, IBM PowerPC, and AMD K6—in which an ROB entry con-

tains the physical register tags for the destination register and the data result of the instruction.

When an instruction commits from the head of the ROB, the data in the head entry is written to the

destination register. Alternative ROB designs exist, in which ROB entries do not hold the data

results of completed instructions (data is instead held in the physical registers). Designing SRAS

for these alternative designs is straightforward and actually simpler (but not discussed in this

work).

ROB sizes are on the order of 32-128 entries, which is large enough to have a non-negligible

probability of a hard fault. The ROB has a high architectural vulnerability factor [48], in that a

fault in an entry is likely to cause an incorrect execution. A fault in an ROB entry is not guaranteed

to cause an incorrect execution for its instruction, though, since the fault might not change the data

(i.e., logical masking) or the ROB entry might correspond to a squashed instruction (i.e., func-

tional masking).

2.2.1.2 Branch History Table

The BHT is a table that is accessed during branch prediction. Common two-level branch pre-

dictor designs [83] use some combination of the branch program counter (PC) and the branch his-

tory register (BHR) to index into a BHT. The BHR is a k-bit shift register that contains the results

of the past k branches. The indexed BHT entry contains the prediction (i.e., taken or not taken, but

not the destination). A typical BHT entry is a 2-bit saturating counter [65] that is incremented

20

(decremented) when the corresponding branch is taken (not taken). A BHT value of 00 or 01 (10

or 11) is interpreted as a not-taken (taken) prediction.

BHRs and/or BHTs can be either local (one per branch PC), global (shared across all branch

PCs), or shared (by sets of branch PCs). In this paper, we focus on the gshare two-level predictor

[45], in which the BHT is indexed by the exclusive-OR of the branch PC and a global BHR. Since

the BHT is a table, our remapper implementation for it is fairly similar to the logical abstraction

presented earlier. The BHT has an architectural vulnerability factor of zero, in that no fault in it

can ever lead to incorrect execution. However, a BHT fault can lead to incorrect branch predic-

tions, which can degrade performance.

2.2.2 Design Space

Self-repairing arrays require three features, and the designs of each collectively comprise the

design space:

• Detection of errors and diagnosis of faults

How does the hardware detect an error in an array, and then how does it isolate which part of

the array is faulty? While there are several schemes for dynamically verifying microprocessor exe-

cution as a whole [6, 55, 58], they sacrifice diagnosis capability in order to not degrade perfor-

mance.

• Recovery from errors

How does the hardware recover from an error such that it can ensure that the error does not

propagate corrupted data into committed architectural state? The most basic option for recovery is

to halt the system when an error is detected (fail-stop), thereby protecting system state from being

corrupted, at the cost of more downtime and thus less availability. Other alternatives exist, such as

using the microprocessor’s branch misprediction recovery mechanism.

21

• Mapping out faulty sub-arrays

Once the faulty sub-array (e.g., row, column) has been diagnosed, how does the hardware map

it out and thus avoid future manifestations of this fault? The design choices for this aspect mainly

involve the granularity of mapping, e.g., row, column, or even the whole array. Another design

decision is the number of spares to provide. These design decisions may be influenced by the

array’s position in the microprocessor pipeline, particularly if accessing the array is on the critical

path and performance is thus crucial.

There are numerous design decisions for each of these three aspects, but the decisions for each

aspect are not completely independent. For example, ECC protection of arrays would serve as the

detection and recovery mechanism, and it does not require remapping, provided that the errors do

not exceed the correction abilities of the chosen correction code.

The design decisions, particularly for the recovery mechanism, also determine which array

structures can be protected. For example, since SRAS-EDC uses the misprediction recovery mech-

anism, it thus cannot tolerate errors in the recovery state (i.e., committed architectural state, such

as the register file or condition codes).

2.2.3 SRAS-CheckRow (SRAS-CR)

The first SRAS design that we present, SRAS-CheckRows (SRAS-CR) uses dedicated check

rows to detect and diagnose errors in array rows. SRAS-CR protects each array structure in isola-

tion, i.e., the decision to protect an array with SRAS does not affect the decision to protect any

other array. We will see in Section 2.2.6 that SRAS-EDC differs in that it is an integrated approach

for protecting multiple arrays.

2.2.3.1 Detection and Diagnosis

22

SRAS-CR uses DIVA for end-to-end error detection and correction. However, DIVA cannot

isolate the row or even the structure that is faulty. Thus, SRAS-CR combines DIVA with a simple

scheme for detecting row errors and diagnosing which row is faulty. SRAS-CR adds a handful of

check rows (some are spares, which are used to avoid a single point of failure) to each structure we

wish to protect. For buffer structures such as the ROB, each time an entry is allocated, initializa-

tion data is written to both the entry and the check row. This initialization data consists of the

available target data for the entry (for example, the source and destination register tags for an ROB

entry) and pseudo-random data for the parts of the entry that will be written later (for example, the

actual result value for an ROB entry). Where pseudo-random data is needed, the tick counter is

used, with appropriate scaling to provide the proper number of bits to fully populate the entry. For

tables, every write to a location will have a mirrored write to the structure’s affiliated check row.

Any partial write to a row must be implemented as a read-modify-write (RMW) action in order to

support SRAS-CR checking. The issue here is that the check row and array entry to be checked

must have identical data written into their contents in order for a meaningful comparison to be

made. Immediately after the two writes, both locations are read and their data are compared (all off

the critical path of execution). If the data differ, then one of the rows is faulty. Several options exist

for determining which one is faulty, and we will explain a simple one after we first describe the

mechanism we exploit for distinguishing hard faults from soft faults. SRAS-CR maintains small

saturating counters for each row, which are periodically reset, and a counter value above a thresh-

old identifies a hard fault. Now, to determine if the operational row or the check row is faulty, we

can simply increment both of their counters in the case of a mismatch in their values, as long as we

initially set the threshold for check row counters to be much higher than that for operational rows.

Detection and diagnosis is the same for both tables and buffers. While we logically need only k

check rows in a k-way superscalar processor to detect and diagnose faults, the SRAS-CR imple-

23

mentation may necessitate having even more check rows. Having only k check rows could lead to

an unreasonably long delay to transfer the data along wires from one end of the array to the other.

Wire delays are already a problem in multi-GHz microprocessors—for example, the Intel

Pentium4 has multiple pipeline stages allocated strictly to wire delay—and we cannot ignore them

in our design. A simple option is to divide the array into sub-arrays, each of which has k check

rows.

2.2.3.2 Recovery

If an error is detected, but the hard fault threshold has not yet been reached, then the fault is

considered to be transient and it is tolerated with a DIVA recovery and its associated performance

penalty. If the detected error raises the counter to the hard fault threshold, then DIVA also tolerates

this fault, but the system then repairs itself so as to prevent this hard fault from being exercised

again.

2.2.3.3 Mapping Out Faulty Sub-arrays

We logically add a level of indirection that can map out faulty rows in microprocessor array

structures, as shown in Figure 2-3. The remapper serves as the interface between the array and the

rest of the microprocessor.

The repair actions taken depend on whether the faulty row is a non-check row or a check row.

If it is a non-check row, then it can be immediately mapped out and a spare row can be mapped in

to take its place. The spare row can get the correct data from the check row. If the faulty row is a

check row, then SRAS-CR maps in a spare check row.

While remapping with a level of indirection is straightforward in the abstract, implementing it

in a high performance microprocessor pipeline requires careful consideration. We now present

remapper implementations for the ROB and BHT.

24

2.2.3.3.1 ROB Remapper

In buffer structures, as in the case of the ROB, the address of the data to be accessed is deter-

mined at the time of the access. Typically, two pointers are used to mark the head and the tail loca-

tion of the active rows. When a new ROB entry is allocated, the tail pointer is advanced and the

corresponding address becomes the physical address of the data. Similarly, when an entry is

removed, the head pointer is advanced. Thus, the physical as well as logical address of the data is

abstracted and all rows have the same functionality. The faulty row can easily be mapped out by

modifying the pointer advancement logic when a hard fault is detected. Figure 2-4 illustrates the

data

address

storage
array

address
decode

remap

fault
info

Figure 2-3. Array Remapping

Figure 2-4. Deconfiguration of Entries in
a Circular Buffer (e.g., Reorder Buffer)

Figure 2-5. Deconfiguration of Entries in a
Tabular Structure (e.g., Reservation Station)

2nd faulty row

1st faulty row

spare

spare

head

buffer size

+

commit

0

0

1

0

1

0

0

0

0

tail+

dispatch

fault detect

+1

reset

1

1

2

2

Check row

1st faulty row

Spare replacing
1st faulty row

Spare replacing
2nd faulty row

A
d
d
re

s
s

D
e
c
o
d

e

read/write
enable

read/write
enable

data in

data
out

2nd faulty row

Fault/spare
match map

110
100

0 0 0 1 0 1 0

compare

fault map

Shading indicates hardware added for entry
deconfiguration purposes.

Shading indicates hardware added for entry
deconfiguration purposes.

25

implementation of the self-repair mechanism for buffers, with SRAS-CR hardware shaded in gray.

SRAS-CR uses a shifted fault map bit-array to track faulty rows. If a row is determined to contain

a hard fault, the faulty bit in the previous row is set to 1. The fault map is used by the pointer

advancement circuit to determine how far the pointer needs to be advanced. Upon the reception of

a dispatch signal, the pointer is advanced by one or two depending on whether the next row is fault

or not. The shifted faulty row information enables the preprocessing of the pointer advance logic.

Upon the reception of the commit signal, the head pointer is advanced in the same manner. Once

the pointer is updated accordingly, reads and writes of the buffer entries proceed unmodified.

Since the pre-processing for pointer advancement can be done off the critical path, the proposed

modification does not impact the read or write access time.

In order to avoid a reduction in the effective buffer capacity due to hard faults, spare rows can

be used. Since there is no need to replace the faulty row with any particular spare row, the detec-

tion of the faulty row prompts incrementing the total buffer capacity by one entry (by adding the

spare) while maintaining the same effective capacity. SRAS-CR can tolerate as many hard faults

as there are spares without any degradation of buffer performance. If the number of faulty rows

exceeds the number of spare rows, then the effective buffer capacity is allowed to shrink, resulting

in graceful degradation of the buffer performance. Assuming that adding one or two to the pointers

does not dramatically change timing or power consumption, the only overhead of this repair mech-

anism is the small additional area taken by the fault map and the additional power consumed for

pointer pre-processing, updating fault map entries, and updating the buffer size. Section 2.2.4 dis-

cusses the overall overhead of the complete SRAS-CR architecture in more detail.

2.2.3.3.2 BHT Remapper

26

In tables, the logical address of the data is determined by the program execution prior to access-

ing the data. Since rows do not have equal functionality in tables, a faulty row needs to be replaced

by a specific spare row. In this case, we need a logical indirection to map out the faulty rows. This

problem is quite similar to the memory repair problem, and many on-line repair mechanisms have

been proposed [11, 21]. However, in microprocessor array structures, logic inserted into the criti-

cal path directly impacts performance, so we must implement a timing-efficient repair mechanism.

In SRAS-CR, we distribute spare rows over sub-arrays of the table, and a spare can only replace a

row within its own sub-array. This choice may make the use of spares inefficient for highly local-

ized faults, but it enables timing efficient implementation of the repair logic, as shown in Figure 2-

5. Once again, hardware for SRAS-CR is shown in gray.

Similar to the buffer case, we keep the fault map information in a table. However, we also use a

fault/spare match map which contains information on which functional row each spare row is

replacing. If a row is identified faulty and an unused spare is found to replace it, the faulty entry of

the row is set to 1. In addition, the physical address of the faulty row is written into the correspond-

ing entry of the fault/spare match map. In the example shown in Figure 2-5, we can see that the 1st

spare is allocated to the 6th entry and the 2nd spare is allocated to the 4th entry, hence the 1 in the

fault map at the 6th position of the 1st column and the 4th position of the 2nd column. The address

decode logic, which is present in all tables, enables a row of the table to be read or written by gen-

erating the individual read/write enable signals for the table rows. During a read or write access,

these signals are modified by the remap logic to generate the updated read/write enable signals for

the table entries as well as the read/write enable signals for the spare entries. The remap logic con-

sists of n inverters and n 2-input NOR gates, where n is the size of the subarray. To generate the

read/write enable signals for the spare rows, k log(n) 2-input XOR gates and the equivalent of k

log(n)-input NOR gates (denoted by the compare block in Figure 2-5) are needed, where k is the

27

number of spares assigned to the subarray. Note that, the fault/spare match map will contain one

more bit than the physical address of the table to indicate whether the spare rows are active or not.

This bit is not shown in the figure to avoid confusion with the address value.

Assuming the compare logic can execute faster than the address decode logic, SRAS-CR will

add two gate delays (one INV and one NOR gate delay) to the table access time. Since the addi-

tional level of indirection for accessing the physical table entries is on the critical path, this addi-

tional time cannot be ignored. In order to avoid set-up or hold time violations, we very

conservatively use a second pipeline stage to access the table entries. This additional pipeline stage

will impose a penalty in the normal mode of operation. While we expect that the actual perfor-

mance penalty would be far less than a pipeline stage (e.g., if BHT access latency is not the deter-

mining factor in pipeline stage latency), we choose this pessimistic design point as a lower bound

on SRAS's benefit. In Section 2.4.1, we run experiments to assess the impact of this additional

pipeline stage on the execution time in the absence of hard faults.

2.2.4 SRAS-CR Costs

The cost of a fault tolerance scheme has three aspects: hardware (area) overhead, performance

(timing) overhead, and power consumption overhead. For aggressive microprocessor architec-

tures, the performance overhead during fault-free execution is often the most critical parameter.

In order to keep the performance overhead at a minimum, buffers and tables are handled differ-

ently in SRAS. The distinct nature of buffers that makes all of their rows have equal functionality

enables a no-timing-overhead implementation. Tables, however, require a definitive logical

address for the data, which results in a need for an additional level of indirection. This indirection

results in two gate delays in access times (e.g., for the Pentium4, an inverter delay is about 1-2% of

the clock period [73]). Since gate delay will be larger than inverter delay, and since we cannot

28

know how much margin exists in an existing design, we very conservatively add a pipeline stage

for access to tables. The additional pipeline stage results in increased latency and an increased

number of stalls, and we evaluate its performance overhead in Section 2.4.1.

The increase in power consumption in SRAS-CR stems mostly from increased data read/write

activity due to the check rows. Since the write/read activity is doubled, the dynamic power con-

sumption in the array structures will roughly be doubled as well. If power consumption is still a

concern, accesses to check rows can be reduced at the expense of increasing the fault detection

latency.

Finally, the hardware overhead of SRAS-CR includes the need for (a) DIVA, (b) spare rows

(including spare check rows), (c) one logic circuit for repair and check per array structure, (d) the

per-row counters for diagnosing hard faults, and (e) two additional read and one additional write

ports on the protected array structures to support simultaneous writing of the check row and read-

ing of the result and check rows. DIVA is the primary cost yet, according to Weaver and Austin

[80], a DIVA checker’s size is less than 5% of an Alpha 21264 core. Thus, there is an engineering

trade-off between availability and the area overhead incurred for spare rows.

2.2.5 Limitations of SRAS-CR

The implementation of SRAS-CR we present here does not tolerate all microprocessor faults.

We divide these untolerated faults into three categories. First, SRAS-CR does not tolerate faults in

its own logic, e.g., the pointer remapping logic or the fault map. These structures are far smaller

than the structures they are protecting, which makes them less prone to hard faults, but they could

still fail. Second, SRAS-CR does not tolerate a fault in a table sub-array if no more spare rows are

available in that sub-array. This limitation does not apply to buffers except in the extreme case in

29

which every row of the buffer, including spares, is faulty. Third, SRAS-CR does not tolerate a fault

in a sub-array (for a buffer or table) if all of the check rows for that sub-array are faulty.

All of these untolerated faults present the designer with a classic engineering trade-off: fault

tolerance versus hardware cost. Future SRAS-CR implementations could develop hardened logic

if the first fault model is considered important. The probabilities of the latter two categories can be

decreased by designing the SRAS-CR protection to use more spare rows and more check rows.

2.2.6 SRAS-EDC: Self-Repair Design Without DIVA Backstop

In this section, we present a design for array self-repair that is independent of DIVA and that is

fully integrated into the microprocessor datapath. The design attempts to minimize the amount of

logic, particularly on critical paths. An illustration of our design (simplified for purposes of illus-

tration) is shown in Figure 2-6. As we mentioned previously in Section 2.2.1, the microarchitec-

ture is similar to that of the Intel PentiumPro in that the reorder buffer holds the results of

completed but not yet committed instructions (rather than keeping them in the physical register

file). The array structures we protect are the instruction buffer, instruction scheduling window,

reorder buffer, load-store queue, and BHT. In the figure, unprotected instructions are fetched into

the datapath, and protected data is eventually written back to the register file or data cache. The

register file and data cache are highlighted to emphasize that they hold architectural state and that

they cannot be recovered using the core’s misprediction recovery mechanism. Note that, with

minor modifications, our scheme could be adapted for use in microarchitectures with register

update units (RUUs) or microarchitectures that keep the results of completed but uncommitted

instructions in the physical register file and use explicit register renaming with a map table. Our

design treats the combinational logic that manipulates the data that flows through the microproces-

30

sor (e.g., instruction decoders, functional units) as black boxes. Protecting this logic from hard

faults is an orthogonal issue.

As an instruction progresses through the pipeline, every time it is modified, an EDC write must

occur. As Figure 2-6 shows, this activity occurs after instruction fetch, instruction decode, ALU

operation, memory reads, and before updating the BHT, assuming it is optionally protected. With

the exception of the BHT update, these EDC write operations must be on the critical path of the

pipeline, and thus add additional latency to the instruction’s processing time. The use of EDC, as

opposed to ECC, is advantageous in that it provides for a lower-latency operation that takes less

logic to implement in the timing and space-constrained pipeline. EDC must be checked after any

access to a datum contained in a protected structure. However, the only time that this EDC check

Figure 2-6. Datapath Design with SRAS-EDC

Instruction
Buffer

fetched

ROB

Instruction

Window

Register
File

EDC check

EDC write

unprotected data

protected data

Legend

Data
Result

Bus

decoded
instrsinstrs

Decode
Functional
Units

Load L1 D$
Queue

Scheduling

Branch
History
Table

fetch
logic

BHT updates

The register file and L1 data cache (L1 D$) are highlighted to emphasize that they hold architec-
tural state. This simplified figure ignores the store queue, since stores are handled just like non-
load instructions, except that they write their results to the L1 D$ instead of the register file.

31

activity is on the critical path of an instruction’s execution is when the instruction’s result is to be

committed to architectural state at the end of the pipeline. At all other times, the datum can be used

by a subsequent pipeline stage without knowing the EDC result, since the later discovery of an

error in the EDC check can be contained by flushing the pipeline.

2.2.6.1 Detection and Diagnosis

SRAS-EDC uses error detecting codes (EDC) to detect and diagnose errors in array rows.

There are numerous kinds of EDCs, including parity and cyclic redundancy check (CRC) codes.

EDCs add some number of check bits, k, to the original d data bits, and the tradeoff is between the

cost due to the number of check bits added and the added error detection capabilities of having

more check bits. For example, a single parity bit adds a 1/d cost and can detect all single-bit errors.

For implementation purposes, we prefer a separable EDC, i.e., the check bits are not interleaved

with the data bits. Thus, each array row consists of d data bits followed by k check bits. We also

want an EDC that can detect all single-bit errors and many types of multiple-bit errors, particularly

unidirectional errors (i.e., all 0->1 or 1->0). Many EDC options exist—a designer can choose the

EDC that best suits the system, based on the tradeoff between error detection capability and imple-

mentation cost. Because of our fault model, we choose Berger codes [10] to protect all arrays

except the BHT, since Berger codes can detect all single-bit errors and all unidirectional multiple-

bit errors. A Berger code will detect all single stuck-at faults and coupling faults (from one bit to

any number of neighboring bits). In a Berger code, the k check bits are the binary representation of

the number of zeros in the original data, and thus . For the BHT, which has only

2-bit entries, we simply use a parity bit for EDC.

As in SRAS-CR, to distinguish hard faults from soft faults, we add a small counter to each row

that is incremented for every error detected in it, and all counters are periodically cleared. If an

k
2

d 1+()log=

32

error increments a counter such that it exceeds a specified threshold, then this row is considered to

have a permanent fault; otherwise the error is considered transient. All data written into arrays is

protected with EDC, and all data read from arrays has its EDC checked. We also maintain EDC

bits in the register file, in order to not have to re-compute EDC for data that is read from the regis-

ter file to be written into the instruction window. Nevertheless, we are not protecting the register

file from hard faults—a hard fault would be detectable but unrecoverable.

The only six instances in which EDC logic (writing EDC bits to the end of a datum or checking

EDC bits) can potentially impact performance are when:

• Fetched instructions go through logic that adds EDC bits to them before inserting them into

the instruction buffer.

• Decoded instructions go through logic that adds EDC bits to them before inserting them into

the instruction scheduling window. EDC needs to be recomputed here, since the process of

decoding the instructions modifies their data payload.

• Data produced by functional units goes through logic that adds EDC bits before being written

into the instruction window (as operands) and the ROB (as results). EDC needs to be recom-

puted here, since the functional units produce new data. This EDC logic could be associated

with the functional units or with the data result bus. An optimization is to compute the EDC

(for the outputs of the functional units) in parallel with the outputs. This requires more hard-

ware but hides the latency of the EDC logic, and we will explore the potential of this approach

in our evaluation in Section 2.4.1. In this work, we do not consider use of self-checking cir-

cuits [79], in which EDC codewords (using arithmetic codes) are produced by the combina-

tional logic (e.g., functional units). This technique would enable us to check the functional

units themselves (but not to map out hard faults in them), and it would also remove the need

33

for this EDC recomputation logic. The techniques we use and results we present in our evalua-

tion represent a pessimistic performance bound since a self-checking implementation would

remove all EDC generation logic from the critical path of the processor pipeline.

• Data loaded from the L1 data cache goes through logic that adds EDC bits before being writ-

ten into the ROB. EDC needs to be recomputed here, since we do not assume that the caches

implement the same EDC. If we were to relax this assumption, then this logic for recomputing

EDC would no longer be necessary.

• Data from the ROB goes through logic that checks the EDC before being committed into the

register file (or into the L1 data cache, for stores). In the figure (which omits stores, for clar-

ity), this data is shown as unprotected (before it is checked) despite coming from the protected

ROB. This is because, unlike for other structures, the EDC check on this data cannot be done

later and thus undo the effects of writing this potentially erroneous data into the register file or

data cache.

• Updates to the branch history table go through logic that adds a parity bit. However, checking

the parity bit of data that is read from BHT is off the critical path.

In the first five of these situations, EDC logic is on the critical path, and we pessimistically

assume that we must add an extra pipeline stage to accommodate this latency. The exception is

adding the parity bit to the BHT—we assume that this simple operation will not force the addition

of a pipeline stage. In all other instances, EDC logic is off the critical path. For example, when

instructions pass from the instruction buffer to the instruction window (after being decoded and

renamed), their EDCs are checked off the critical path. That is, erroneous data could be written

into the instruction window before the EDC check is complete; however, the EDC check will fail

soon thereafter and trigger a system recovery which will eliminate the effects of the error before

34

they can be committed to architectural state. Other EDC checks are between the instruction win-

dow and the functional units, between the load queue and the data cache, and between the ROB

and the instruction window.

One potential challenge for fast implementation of EDC (or ECC, for that matter) is that partial

writes to a structure (i.e., writes that do not modify the entire data) turn into RMW operations.

Recall that this limitation is also present for SRAS-CR for any write that will have a check per-

formed. The read is necessary to help compute the EDC over the entire data before writing it.

Since RMWs are slower and require extra array bandwidth, we would like to avoid them if possi-

ble. Our solution is to compute EDCs over independently written fields of array rows, instead of

over the entire row, in order to avoid any possible partial writes. For example, in the ROB, we

compute separate EDCs for the result data and for the rest of the entry. Thus, when the entry is

allocated, we must compute both, but this is no more complex than computing it over the whole

entry. The key savings is when the result is written during instruction completion, since we no

longer need to do a RMW.

2.2.6.2 Recovery

Recovery is implemented with the microprocessor’s normal misprediction recovery mecha-

nism. Thus, unlike SRAS-CR, SRAS-EDC does not need DIVA. This recovery mechanism effec-

tively deletes all speculative, uncommitted microprocessor state (e.g., contents of the instruction

buffer, instruction window, ROB, etc.), but it cannot undo changes made to architectural state such

as the register file. This is why the EDC check between the ROB and register file is on the critical

path.

2.2.6.3 Remapping

We use the same techniques as SRAS-CR for mapping out faulty rows of arrays.

35

2.2.6.4 SRAS-EDC Costs

The costs for SRAS-EDC are less than those of SRAS-CR in two important ways. First, SRAS-

EDC does not require DIVA. Second, SRAS-EDC does not require all of the extra reads and writes

that were necessary for the check rows. However, SRAS-EDC does add some hardware for per-

forming EDC computations. It also adds some performance overhead because of those instances in

which EDC logic is on the critical path.

2.2.6.5 Limitations of SRAS-EDC

There are a few limitations of SRAS-EDC. First, the fault coverage is limited by the strength of

the particular EDC that we choose. This is parameter can be tuned to allow a designer to trade off

error detection capability against implementation cost. Second, we can only protect structures that

do not hold committed architectural state. Thus, we can protect the ROB, LSQ, IQ, IW, etc., but

we cannot protect the register file, processor status word, condition codes, etc. In order to extend

SRAS-EDC to cover this portion of the microprocessor core, an additional state save and recovery

mechanism would be required (e.g. a checkpointing scheme).

2.2.7 Applicability of SRAS to Specific Structures

In developing SRAS-CR and SRAS-EDC, we have studied the common structures within the

microprocessor core and applied SRAS techniques to those structures that we believe support it

economically (that is, without undue redesign or timing constraints). While we generalize struc-

tures as buffer-like or table-like, each structure must be considered in detail to understand how

SRAS can be made to work on it. This section presents the detailed assumptions about the differ-

ent structures we studied to give the reader better intuition in applying SRAS techniques to a spe-

cific design that we have not specifically addressed with this study.

2.2.7.1 Instruction Buffer

36

The instruction buffer is a straight-forward structure to protect with SRAS. As the holding

place for fetched instructions awaiting decode, this buffer is a FIFO queue, with each entry written

once. There is no requirement to modify its basic structure to accommodate SRAS application.

2.2.7.2 Instruction Scheduling Window

After instructions are decoded, they are cached in this structure until their operands are ready

and functional units are available to execute them. Allocation of entries is buffer-like in nature and

we treat it thusly for SRAS application. In order to do this, however, we must consider the follow-

ing aspects of the instruction scheduling window that are not queue-like. First, the structure is

implemented as a content-addressable memory (CAM) to enable wake-up and select logic to prop-

erly find ready instructions as well as to allow operand readiness to be properly updated each

cycle. Second, this structure is the beginning of the out-of-order execution of the microprocessor

core. Instructions are removed as they become ready, not in FIFO order. Typical implementations

perform a compaction of the structure at the end of each cycle to keep oldest instructions near the

head of the queue and to simplify allocation of entries in the next decode cycle. Finally, the con-

tents of this structure will typically be updated between the initial write to it and its eventual use

and entry retirement.

For SRAS-CR, these factors are mitigated by performing a full write of the entry at its point of

allocation and performing the check at that time. As mentioned in the discussion of SRAS-CR,

pseudo-random data from the tick counter is used to populate the uninitialized fields of this struc-

ture to allow for the check to be calculated properly without requiring partial updates be converted

to RMW activities and to have a fixed upper bound on the number of check circuits required to

perform checks (for n-wide decode circuitry, we need n check circuits). Subsequent overwriting of

partial data and movement during compaction is effectively ignored by SRAS-CR. This is tolera-

37

ble since DIVA will correct any errors introduced by moving a good datum to an array entry that

has a hard fault present that has yet to be deconfigured.

For SRAS-EDC, EDC must be recalculated for every update to the structure. We can avoid

RMW requirements by dividing the EDC into separate EDC fields for each of the written sub-

pieces of the entry. This also provides the advantage of only requiring 2n EDC calculation circuits,

since at most n operands will become ready in a given cycle in an n-wide processor. The calculated

EDC for a particular operand becoming ready is independent of the rest of the instruction window

data. This allows a single EDC calculation to be written multiple times at all applicable locations

in the instruction window. So, in a given cycle, n EDC calculations will be required for the incom-

ing n decoded instructions and the newly-computed n ready operands (making for a total of 2n).

Compaction activity is not a problem, since the EDC travels with the entry and remains valid dur-

ing the compaction (that is, compaction performs no update on the data, only moving it to a new

location in the buffer). As with SRAS-CR, the number of EDC checking circuits required for the

structure is equivalent to the issue width of the processor.

2.2.7.3 Load-Store Queue

The LSQ is FIFO in nature, but is also implemented as a CAM to allow for searching. This

additional implementation complexity does not adversely impact either of the SRAS schemes.

SRAS-CR again uses pseudo-random data if necessary to perform the check at the time of entry

allocation. SRAS-EDC must maintain 2n EDC calculation circuitry sets (one for the initial write of

the entry and one for address calculation arrival from an ALU) in order to allow for a peak sus-

tained memory bandwidth of n instructions per cycle on an n-wide processor. Only n copies of the

EDC check circuit are required. As with the instruction scheduling window, the sub-fields of an

38

entry may have their EDC calculated separately to simplify the EDC calculation circutry’s imple-

mentation.

2.2.7.4 Branch History Table

The BHT is a table with addressable content on a very small granularity. The descriptions of

SRAS operation for table structures were crafted with the BHT as a motivating example. For other

tabular structures, the aforementioned techniques of writing pseudo-random data (for SRAS-CR)

or splitting the table entry into separate EDC fields (for SRAS-EDC) may be applicable.

2.2.7.5 Reorder Buffer

The ROB is a FIFO queue with the potential of multiple partial writes during the lifetime of an

instruction. Issues here are similar to those found in the instruction scheduling window. The same

techniques would apply here for the two SRAS methods.

2.3 Online Diagnosis of Hard Faults in Microprocessors

With a fine-grained hard-fault tolerance mechanism for array structures established, we now

seek to extend our fine-grained techniques to include capability to diagnose hard faults in the

microprocessor core. By using existing techniques, including the SRAS methods developed above,

we will arrive at a diagnosis mechanism capable of detecting hard faults in a bounding box that

surrounds a majority of the microprocessor core logic from decode through retirement of instruc-

tions. As with SRAS-CR, we use DIVA[6] as an error detection and correction mechanism upon

which we develop our diagnosis technique. We begin with a presentation of existing diagnosis

alternatives in Section 2.3.1 before we describe our diagnosis mechanism in detail in

Section 2.3.2. This section concludes with a presentation of deconfiguration techniques in

Section 2.3.3 and a discussion of the limitations of our presented method in Section 2.3.4.

39

2.3.1 Fault Diagnosis

DIVA checkers do not provide fault diagnosis. They are only capable of detecting and correct-

ing errors, not determining their underlying causes. For transient faults, this is appropriate, since

the desired remedy never involves altering the configuration of the core. For hard faults, however,

we show in Section 2.4 that it is often desirable to deconfigure part of the superscalar core in order

to prevent frequent errors and the performance penalty that frequent pipeline flushes from DIVA

corrections (or redundant thread corrections) would require.

We define sub-structures within the processor core that we wish to be able to deconfigure as

field deconfigurable units (FDUs). To diagnose hard faults in the processor core, we first have to

select the FDU granularity at which we wish to be able to diagnose. Many structures are replicated

within a typical superscalar core, and the granularity of replication represents a natural FDU gran-

ularity. The choice of FDU is a design decision for a given implementation. Because deconfigura-

tion is more easily achieved with this FDU selection, we favor it over an FDU selection that seeks

to have equal amounts of logic in each FDU. For the processors that we model in our evaluation,

the identified FDUs for which we track diagnosis information are: individual entries in the instruc-

tion fetch queue (IFQ), individual reservation stations (RS), individual entries in the load-store

queue (LSQ), individual entries in the re-order buffer (ROB), individual arithmetic logic units

(ALU), and the individual DIVA checkers. While our chosen processor designs have only one of

some of the more complex ALUs (for example, the integer multiplier), we include them in our

diagnosis evaluation to show that the diagnosis is capable of identifying hard faults in these units.

We have chosen a fairly fine FDU granularity, but one could choose coarser or even finer granular-

ities if so desired; we discuss this engineering tradeoff later. The hardware bounds of our diagnosis

mechanism are the components in which the selected error checker (in our design, DIVA) can

40

detect a fault. Therefore, we do not consider the register file, because DIVA cannot recover from

errors in it.

2.3.2 A New Online Diagnosis Mechanism

We propose to dynamically attribute errors to FDUs as the system is running. Given an error

detection mechanism, if an instruction (or micro-op, in the case of IA-32) is determined to be in

error, the system records which FDUs that instruction used during its lifetime. If, over a period of

time, more than a pre-specified threshold of errors has been attributed to a given FDU, it is very

likely that this resource has a hard fault.

To track each instruction’s FDU usage, bits are carried with each instruction from the point of

FDU usage to commit. For those structures that the instruction owns at commit, this information is

already implicitly available and no extra wires are needed to carry this resource usage info through

the pipeline. In our modeled processor, the ROB entries and DIVA checkers use implicit tracking.

For the remaining FDUs, the number of bits required is a function of the size of the structure and

the granularity into which we are allowing it to be sub-divided for later deconfiguration. This rep-

resents an engineering trade-off in our design that will allow implementations to select the appro-

priate FDU granularity/overhead trade-off. For typical superscalar microprocessor designs,

including those that we evaluate in Section 2.4, roughly 20 bits are required to track this fine-

grained FDU utilization information. Carrying these extra bits through the pipeline incurs two

costs: pipeline latches will be marginally wider and there will be more wires to route through the

pipeline. However, compared to the 64-bit operands that are carried through the pipeline, these

extra bits are a small addition, especially since not all of the bits need to traverse the whole pipe-

line.

41

For each FDU we track, the processor maintains a small, saturating error counter. The purpose

of the error counter is to differentiate hard faults from soft faults. At the scope of the error detec-

tion and correction mechanisms considered (that is, at the instruction granularity), hard faults are

not distinguishable from soft faults at the time an error is detected and corrected. For hard faults

affecting frequently used structures, we observe an error detection and correction rate that is orders

of magnitude higher than that observed for transient faults. Occasional corrections due to soft

faults do not trigger diagnosis because they do not saturate the error counter for any given FDU in

the system. Periodic clearing of the error counters prevents soft fault corrections from accumulat-

ing to a point where diagnosis is triggered.

2.3.2.1 Design Issues

Using saturating error counters for diagnosis of hard faults presents four challenges. First, after

the FDUs have been selected and configured for diagnosis in an implementation of our mecha-

nism, all remaining logic for which the error detection and correction mechanism detects and cor-

rects errors must also be tracked by our diagnosis scheme. For our design, this critical logic

includes all logic that is not within an FDU but that is in the portion of the superscalar core for

which DIVA is capable of detecting errors. This includes instruction issue, any singleton arith-

metic logic units (ALUs) (for example, a floating point multiply/divide unit), floating point ALUs,

and any common datapaths that all instructions must traverse.

The second issue with using saturating error counters is that transient errors must not lead to

above-threshold error rates. Thus, we must have error counter thresholds that are not too small,

and the microprocessor must periodically clear the error counters to prevent transient errors from

accumulating past the hard fault threshold. The frequency of counter clearing is an adjustable

parameter that depends on expected transient error rates. Counter clearing is a low-cost operation,

42

so we recommend clearing once every ten seconds, even though current terrestrial transient fault

rates do not approach this frequency. This rate is based upon our experimental results for latency to

diagnose hard faults. Our experimental results show that the latency to diagnose a hard fault in the

FDUs we evaluate is less than 1/10th of a second at multi-gigahertz frequencies, even in infre-

quently-used FDUs. By clearing at an interval well above the diagnosis latency of FDUs we care

to diagnose, we ensure that we will diagnose hard faults that greatly affect system performance if

they are allowed to continue to cause error detection and correction to occur. If diagnosis spans a

clearing interval, we are merely postponing the deconfiguration temporarily. Also, if a hard fault is

detected and deconfiguration is activated, the deconfiguration process clears the error counters.

Third, the error rate threshold for a resource must be related to its usage. For example, a very

high threshold for a resource that is rarely used will preclude the system from ever diagnosing a

hard fault in it. To illustrate this, consider the case where we have a single adder and two ROB

entries. Assuming we use the adder and one of the ROB entries each cycle, we can observe that a

fault in the ALU will cause both ROB entries’ error counters to accumulate errors at a rate of 1/2

that of the adder. To avoid mis-diagnosis, we would need the adder’s saturation value to be greater

than that of an ROB entry, but not more than twice the ROB entry value. Thus, for frequently uti-

lized FDUs, a larger counter value is required to prevent the mis-diagnosis of a fault in an

upstream or downstream structure.

The final challenge is that the chosen FDUs must be used reasonably independently. Otherwise,

for example, if every time an instruction uses FDU A it also uses FDU B, then the diagnosis mech-

anism will not be able to distinguish between a hard fault in A and a hard fault in B. To guarantee

that instructions take many different and independent paths through the pipeline, we slightly

change the scheduling of resources that are normally scheduled non-uniformly (e.g., higher prior-

43

ity for ALU0) to add a round-robin aspect to it. For example, instead of always allocating the low-

est-numbered ALU that is available, the microprocessor allocates available ALUs in a round-robin

fashion. Otherwise, the usage of ALU0 could be significantly greater than that of other ALUs and

thus preclude hard faults in them from being diagnosed (since the thresholds assume uniform utili-

zation). This scheduling modification is not necessary for resources that are naturally scheduled

uniformly, like ROB entries. We found that round-robin scheduling alone does not avoid all lock-

step allocation of resources, though. For example, with three ALUs and three DIVA checkers, we

found that a long string of instructions that all used ALUs led to undiagnosable errors. In one par-

ticular scenario, an instruction that used ALU0 always used Checker1, ALU1 was perfectly corre-

lated with Checker2, and ALU2 was perfectly correlated with Checker0. To avoid this lockstep

allocation, we introduced a small amount of pseudo-randomness into the scheduling of checkers.

Every cycle, the first checker to be considered for allocation is determined based on pseudo-ran-

dom data (e.g., low order bits of the tick counter), and then subsequent checkers are allocated

sequentially (mod width) after the first one. This pseudo-randomness, combined with round-robin

scheduling, prevents lockstep allocation and achieves reasonably uniform utilization of each set of

identical FDUs.

2.3.2.2 Heuristics for Choosing Error Counter Values

Given these four challenges, we developed a heuristic for choosing appropriate threshold val-

ues for the saturating error counters. As it is always possible to craft an instruction sequence that

leads to saturation of the wrong counter, the best that we can do is to choose saturating values and

then verify correct diagnosis operation via simulation. Using this heuristic for the designs we eval-

uate in Section 2.4, we will see that it does provide effective threshold values that lead to low-

latency diagnoses of a wide range of FDUs. The heuristic is as follows:

44

4) Select a minimum power-of-two threshold value well above what transient or intermittent

faults would cause in a counter-clearing interval.

5) Segregate FDU types by the population of units for each type. For FDUs that have a population

that is not a power of two, round the population to either the next larger power of two, if it is a

heavily-utilized resource, or the next smaller if it is a less-heavily utilized resource. Resource

utilization information may need to be gathered via simulation of representative workloads at

this point. Group like-population FDUs together. Assuming that there is some logic for which

error detection and correction can contain a fault, but for which there is no associated FDU,

create a singleton group for “critical logic.”

6) Assign the minimum threshold chosen in step 1 to the highest-populated FDU group.

7) Assign the next power-of-two as the error counter threshold for the next-most-populated FDU

group.

8) Repeat step 4 for all remaining FDU groups, assigning the highest threshold to the “critical

logic” group.

9) Simulate the processor with a representative set of workloads and FDU faults to verify that the

thresholds chosen cause the diagnosis mechanism to converge on the faulty FDU.

10) Using the simulation results from step 6, reduce the threshold by a factor of two (one bit) for

those items whose diagnosis latency is large. If this threshold reduction results in no FDUs

with an error counter threshold in the middle of the threshold range, reduce all higher error

counter thresholds by a factor of two. This will result in a set of error counters whose bit width

is monotonically increasing, without any gaps from lowest to highest. Repeat the simulation to

verify correct operation.

45

In Table 2-2, we list the counter thresholds for the FDUs we consider in this paper, including

the per-unit storage cost for each FDU’s counter. These values were derived for our three evalu-

ated processor design points using the above heuristic with a minimum threshold value of 16. For

resources that are less utilized, such as the floating point units, our mechanism may take additional

time to diagnose, even with the lower threshold than their more heavily-utilized integer counter-

parts. Any hard fault that gets exercised so rarely as to not exceed our error counter threshold

between periodic counter zeroing is also so rare that it incurs little performance penalty for its

infrequent error recoveries. In this situation, simply using DIVA to correct errors due to a hard

fault in a lightly-utilized FDU is sufficient. The key observation is that our scheme can diagnose

hard faults in the highly utilized resources, so that the microprocessor avoids frequent recoveries.

2.3.2.3 Discussion

We include the DIVA checkers in the error diagnosis design, so that we can enable the micro-

processor to tolerate hard faults in the checkers. Since a k-way superscalar microprocessor requires

approximately k checkers to avoid having the checkers become a bottleneck, we would like to be

able to tolerate a hard fault in one of them by leveraging their redundancy.

Table 2-2. Error Counter Thresholds

FDU threshold storage requirements for diagnosis

instruction fetch queue entry 32 5 bits/entry

reservation station 32 5 bits/entry

reorder buffer entry 16 4 bits/entry

load/store queue entry 16 4 bits/entry

integer ALU 64 6 bits/unit

floating point ALU 64 6 bits/unit

integer multiplier 32 5 bits/unit

floating point multiplier 32 5 bits/unit

DIVA checker 64 6 bits/checker

critical logic (issue, etc.) 128 7 bits

46

Using DIVA for error detection and correction provides three unique issues related to diagnosis

and deconfiguration of a hard-faulted unit. First, uncached loads and stores commit without any

redundant check of the operation, making them undiagnosable. A fault affecting the logic unique

to these operations will not be covered by our mechanism. The system will perform exactly as it

would if it only had DIVA checkers active. Second, the microprocessor is vulnerable to transient

errors in DIVA checkers, but DIVA assumes that small checkers can be designed to be more resil-

ient to transient faults by using more robust feature sizes. Third, because the microprocessor trusts

a DIVA checker until its error counter exceeds its threshold, the microprocessor is vulnerable to

incorrect execution in the window between when a hard fault occurs in a checker and when it diag-

noses that the checker is the culprit. We further discuss this window of vulnerability in

Section 2.3.4.2.

There are certain scenarios in which the diagnosis mechanism can temporarily deconfigure a

fault-free FDU. A transient or hard fault in our added hardware—error counters, wires for tracking

resource usage, and deconfiguration logic—could lead to deconfiguring a fault-free component.

Also, the use of saturating counters for the FDUs within the processor introduces the possibility

that the wrong unit’s counter will saturate first for a particular instruction sequence. To address this

issue, we use an iterative diagnosis process. Diagnosis is not considered complete until fault rates

fall below a hard-wired threshold set by the designer We set this threshold sufficiently high to

allow for all hard faults that we wish to diagnose to be accounted for. The final unit deconfigured

before this error rate change is considered faulty, while all other units deconfigured in the affiliated

diagnosis cycles are returned to operation. In general, if deconfiguration does not help (i.e., as

unit(s) are deconfigured, error counters continue to saturate in close temporal proximity), then the

system can reconfigure the previously mapped out unit(s) back into the system (under the common

47

assumption of one hard fault at a time) once the correct unit has been identified and deconfigured.

Our evaluation in Section 2.4 will show that one iteration is sufficient a vast majority of the time.

The microprocessor also tolerates faults in the error counters by testing them. After clearing the

counters, it checks that they are indeed all zero. It also uses a small amount of hardware to period-

ically test that the counters can be incremented correctly. If a counter is faulty, the corresponding

FDU is then permanently either configured or deconfigured, based upon whether it is mapped back

in or left deconfigured. Mapping it back in leaves the system vulnerable to a hard fault in this

FDU, but leaving it deconfigured is potentially a loss of useful hardware.

2.3.2.4 Alternative Design Options

There exist other ways to perform fault diagnosis. The most obvious approach is to use TMR—

if two modules produce one result and the third module produces a different result, then the system

diagnoses the third module as faulty (assuming a single-fault model). TMR, however, has a 200%

hardware and power overhead.

Another well-known diagnosis approach is built-in self-test (BIST). After detecting an error

and determining that it is due to a hard fault (e.g., by detecting it repeatedly), systems with dedi-

cated BIST hardware can test themselves in order to diagnose the location of the hard fault. To its

advantage, unlike our new diagnosis mechanism, BIST does not have to worry about the statistical

nature of online error counting. BIST can be applied to a microprocessor like the ones we study,

and one concurrent BIST mechanism can be used for all components in the path, although the

number of BIST test vectors to generate—either deterministically or pseudo-randomly—would be

extremely large. BIST requires the processor to be offline for testing to occur. Our online error

counting differs from BIST by diagnosing faults via the observation of the execution of actual soft-

ware with the software’s instructions acting as test vectors and the error detection and correction

48

acting as output verifier. This ensures that we always have a test vector that exposes a detected

fault. Finally, BIST adds performance overhead due to the extra multiplexers that choose between

normal inputs and BIST inputs. Unlike our diagnosis overhead, this overhead is on the critical path

of instruction flow through the processor. Since many processors have some form of BIST support

already in their design, use of our mechanism presents an opportunity to remove this hardware

from the critical path, replacing BIST with our mechanism.

Within our diagnosis mechanism, there are also design options. If, instead of using DIVA, we

used redundant threading for error detection and correction, this would also affect our diagnosis

mechanism. DIVA assumes that the checker core is always fault-free and thus it can diagnose with

only two copies of a given unit (e.g., the multiplier in the out-of-order core and the multiplier in

the checker). If a redundant threading scheme is used for detection and correction of hard faults, it

must use independent resources for each of the primary and redundant threads in order to guaran-

tee that results are not derived from the same faulty hardware. Since with redundant threading,

there is no known-good unit, we need at least three copies of a given unit to ensure forward

progress is achieved in the presence of a hard fault. Otherwise, for example, a hard fault in one of

two multipliers would cause repeated miss-matched results with no way to determine which result

is correct. In this case, the instruction would replay continually until a higher-level deadlock detec-

tion mechanism activated. With at least three copies of a unit, the two fault-free copies will calcu-

late the correct result, allowing us to isolate the faulty functional unit and then increment its

associated error counter.

Finally, an alternative, related diagnosis mechanism bears mentioning. As an alternative to

keeping saturating error counters for each FDU and all logic covered by the chosen error detection

and correction mechanism, a microarchitect could opt to have a single, saturating error counter

49

that triggers diagnosis. This counter, when saturated, would lead the system to replay the faulted

instruction, deconfiguring and replacing each FDU involved in the last erroneous result until a cor-

rect result is obtained. At that point, the currently-deconfigured FDU would be deemed faulty and

would remain deconfigured from the system, with normal operation resuming. This method pre-

sents three drawbacks. First, to use this alternative, the microarchitecture would have to support

directed steering of instructions through specific FDUs to allow for multiple replays with only a

single suspect removed from the processing of each replay. This would add additional complexity

to every stage of the pipeline. Second, if a transient fault happens to cause the diagnosis in this

alternative scheme, diagnosis will take the maximum amount of time and will result in no unit

deconfigured, requiring a subsequent diagnosis attempt on the next encountered error. Finally, if a

transient occurs during diagnostic replay, it will result in either the diagnosis missing the suspect

unit, requiring another round of diagnosis, or a double-fault case, which greatly complicates error

detection. Given these issues, we chose the use of error counters for each FDU, which leads to a

single deconfiguration action upon saturation without requiring any directed replay of instructions.

2.3.3 Deconfiguring Faulty Components

After an FDU has been diagnosed as having a hard fault present, deconfiguring the faulty FDU

is desired to avoid the frequent pipeline flushes that DIVA would trigger due to continued manifes-

tation of the fault. In this section, we describe several pre-existing methods for deconfiguring typ-

ical microprocessor structures, plus a new way to deconfigure a faulty DIVA checker.

For circular access array structures—such as the instruction fetch queue (IFQ), reorder buffer

(ROB), and load/store queue (LSQ)—previous work has shown how to add a level of indirection

to allow for de-configuration of a single entry with little additional latency added to access time

for the structure [64]. If we use SRAS-style remapping, each structure maintains a fault map. This

50

fault map information feeds into the head and tail pointer advancement logic, causing the advance-

ment logic to skip an entry that is marked as faulty. If cold spares are available, as in our SRAS

designs, shown in Figure 2-4, the structure size can be maintained at the original processor design

point. If no spares are provisioned, which is what we assume in our analysis, then the structure size

must be updated when the fault map is updated.

For some tabular (i.e., directly addressed) structures—such as reservation stations, register

files, etc.—a simple solution is to permanently mark the resource as in-use, thus removing it from

further operation [64]. Once again, use of SRAS assumes that cold spares may be available, as

shown previously in Figure 2-5, even though we assume no provisioning of cold spares in the

evaluation of our new diagnosis mechanism.

For a functional unit (ALU, etc.), similar to a reservation station, we can mark the resource as

permanently busy, preventing further instructions from issuing to it [64]. Cold sparing of func-

tional units is possible, but it may require too much hardware area, as functional units are rela-

tively large compared to individual ROB entries or reservation stations. We focus on using existing

redundancy, since the cost of adding extra redundancy may be too great for commodity micropro-

cessors.

For one of the multiple DIVA checkers, we can map it out if we diagnose it as being perma-

nently faulty. Depending on how DIVA checkers are scheduled, deconfiguration is just as simple

as for ALUs; just marking a faulty checker as permanently busy will deconfigure it. Prior work has

not looked into deconfiguring DIVA checkers, because no fault diagnosis schemes prior to this

work could diagnose hard faults in a checker.

51

2.3.4 Costs and Limitations

The design that we have presented in Sections 2.3.1-2.3.3 is not free, nor is it without limita-

tions. In this section, we present its hardware costs and limitations.

2.3.4.1 Hardware Costs

We add hardware to an unprotected microprocessor to achieve hard fault tolerance. The largest,

single addition to the processor is the DIVA checkers, each of which has been estimated at 6% of

the size of an Alpha 21264 core [80]. In addition to DIVA, which provides benefits even without

our additions, we also add: error counters, wires for tracking each instruction’s resource usage, and

logic for deconfiguring FDUs. None of these additional hardware costs are large; moreover, they

can all be reduced at the expense of a coarser granularity of diagnosis and deconfiguration. For

example, we can share one error counter and one wire among k entries in the instruction window,

at the cost of having to deconfigure all k entries if any of them incurs a hard fault.

2.3.4.2 Limitations

We now discuss three limitations of our current implementation and approaches for addressing

them in the future. First, there are certain structures that we either cannot protect or that are very

difficult to protect. Our current implementation cannot protect the register file, because it is part of

the recovery point for DIVA recovery. We cannot diagnose faults in singleton resources that are

used with a majority of instructions, due to ambiguity reasons stated at the end of Section 2.3.2.

Examples of these resources include issue logic and common datapath lines. These singletons are

always in lock-step scheduling with each other. Utilizing a modular implementation for these cur-

rently monolithic structures could make them configurable as FDUs in our diagnosis scheme, but

such designs are beyond the scope of this work.

52

Related to this issue is the impact of hard faults in the datapaths and unique logic for each FDU.

For some FDUs selected, there is a unique set of logic and data paths that will affect correct execu-

tion for a subset of instruction paths through the processor if hard faults are present, but for which

diagnosis will lead to deconfiguration of a downstream unit. In these instances, the deconfigura-

tion action results in discontinued use of the faulted portion of the circuit via deconfiguration of

the downstream FDU, so the right thing happens with our diagnosis mechanism despite the prob-

lem actually residing in a different FDU.

For example, consider bypass paths between ALUs. A fault in a bypass path will be flagged as

a fault in the destination ALU by our mechanism, even though that ALU is able to correctly pro-

cess instructions where the bypass path is not active. By discontinuing use of the ALU, however,

we observe that the bypass path is no longer used, thus eliminating the fault from further activa-

tion. To prevent this effect, we could treat bypass paths as separate FDUs, but their deconfigura-

tion would not be straightforward, so we choose to lump them with the ALU FDUs for simplicity

of the overall design. The tradeoff here is that a fully-functional ALU is deconfigured to prevent

the effects of a hard fault in a bypass path.

Second, there is a window of vulnerability in which a faulty microprocessor can unwittingly

produce erroneous results. Being able to deconfigure a faulty DIVA checker enables the micropro-

cessor to improve reliability by preventing the fault from continuing to silently corrupt system

state; in a DIVA-only system, it would go unnoticed until visible data corruption was recognized

by a downstream entity. However, there is still a window of vulnerability between when the hard

fault occurs in the checker and when it is diagnosed and deconfigured. In that window, a number

of instructions equal to the error counter threshold for the checker times the number of DIVA

checkers could have been committed in error, since DIVA checkers assume they are correct in the

53

case of a mis-comparison. Without a higher-level recovery scheme, such as checkpointing, this

erroneously committed state represents an unrecoverable error. It should be noted that DIVA also

can cause silent data corruption when a transient fault affects a checker. Since this is not detectable

by DIVA or our diagnosis mechanism, it remains an exposure of any DIVA-based system.

Finally, because we elected to use DIVA in our designs, we are unable to detect and correct

problems in uncached loads and stores. This is a limitation of DIVA that we inherit. This adds

complexity to recovery, particularly in the case where the checker is at fault. Discussion of tech-

niques to work around this limitation is beyond the scope of this work. This problem is not new to

checkpointing research. If a designer requires containment of this escape in the scheme, an appro-

priate checkpointing scheme will be required. The use of an alternative error detection and correc-

tion mechanism, capable of detecting and correcting these errors, would also correct this issue.

2.4 Evaluation

Having presented SRAS and SRAS-EDC as techniques for deconfiguration of faulty array sub-

structures and then developing a fine-grained fault diagnosis mechanism for the microprocessor

core, we now present our evaluation of these designs. First, we present the common experimental

methodology that was used in this work in Section 2.4.1. Our evaluation starts with SRAS in

Section 2.4.2 and then concludes with analysis of our diagnosis mechanism in Section 2.4.3.

2.4.1 Experimental Methodology and System Model

To evaluate our designs’ operation under the fault models considered, we modified sim-mase,

as made available by SimpleScalar [5]. For SRAS, we model a dynamically scheduled micropro-

cessor that is similar to currently available single-threaded microprocessors, such as the Intel

Pentium4 [25] and Alpha 21364 [24]. The details of the target system are shown in Table 2-3. We

54

protect the instruction buffer, instruction scheduling window, reorder buffer, and load-store queue

with SRAS techniques.

For the evaluation of our online diagnosis mechanism, we model three separate microprocessor

designs, each patterned after an existing SMT-enabled, commodity microprocessor design. The

first design, Narrow, is a superscalar processor that is patterned roughly after the original, pre-

SMT-enabled Intel Pentium 4 [14, 25]. We modify this design to include like-sized caches to the

SMT-enabled design points to avoid performance side-effects from mis-matched supporting struc-

tures. The second design, Deep-Narrow, is a more deeply-pipelined implementation of Narrow,

patterned on current SMT-enabled Intel Pentium 4 designs [14]. Deep-Narrow differs from Nar-

row in the depth of its pipeline, carrying an additional 11 stages to allow for faster clocking. The

final processor configuration, Short-Wide, is inspired by the AMD Athlon/Opteron processor fam-

ily [4, 26]. This design point favors a wider, shorter pipeline that, in practice, is clocked at a lower

rate than competing designs from Intel. Since the register renaming scheme does not affect our

experiments, all of the processor configurations use implicit renaming via the reservation stations

(i.e., without an explicit register map table). Table 2-4 shows the details of all three configurations,

Table 2-3. SRAS Target System Parameters
pipeline depth 22

pipeline width 3

instruction fetch buffer 64

scheduling window 32

load-store queue 48

reorder buffer 126

functional units 4 integer adders and multiplier, 1 FP adder, 1 FP multiplier

branch predictor gshare: BHT is 4096 entries, BHT entry is 2-bit counter, BHR is 8 bits

registers 192

L1 D-cache 8K total size, 4-way, 2-cycle

L1 I-cache 8K total size, 4-way, 2-cycle

L2 cache 256K size, 8-way, 7-cycle

55

including the overheads for our diagnosis scheme. We utilize the DIVA-style checker capability

provided by sim-mase and additionally modified SimpleScalar to allow for hard fault injection.

We simulate the SPEC2000 CPU benchmarks, and we use the SimPoint toolset [63] to choose

statistically representative samples of these long benchmarks for detailed simulation. We inject

varying numbers of both stuck-at errors and coupling errors into the protected structures. Due to

fault masking, injected hard faults do not always lead to errors when the faulty structures are

Table 2-4. Parameters of Target Systems for Online Diagnosis Evaluation

Feature Narrow Deep-Narrow Short-Wide

pipeline stages 20 31 12

width: fetch/issue/com-
mit/check

3/6/3/3 3/6/3/3 9/9/9/9

branch predictor 2-level GShare, 4K
entries

2-level GShare, 4K
entries

2-level GShare, 4K
entries

instruction fetch queue 64 entries 64 entries 72 entries

reservation stations 32 32 54

reorder buffer 128 entries 128 entries 216 entries

load/store queue 48 entries 48 entries 44 entries

integer ALUs 3 units, 1-cycle 3 units, 1-cycle 6 units, 1-cycle

integer multiply/divide 1 unit, 14-cycle multi-
ply, 60-cycle divide

1 unit, 14-cycle multi-
ply, 60-cycle divide

1 unit, 8-cycle multi-
ply, 74-cycle divide

floating point ALUs 2 units, 1-cycle 2 units, 1-cycle 3 units, 5-cycle

floating point multi-
ply/divide/square root

1 unit, 1-cycle multi-
ply, 16-cycle
divide/square root

1 unit, 1-cycle multi-
ply, 16-cycle
divide/square root

1 unit, 24-cycle multi-
ply, 26-cycle divide,
35-cycle square root

L1 I-Cache 16KB, 8-way, 64-byte
blocks, 2-cycles

16KB, 8-way, 64-byte
blocks, 2-cycles

64KB, 2-way, 64-byte
blocks, 3-cycles

L1 D-Cache 16KB, 8-way, 64-byte
blocks, 2-cycles

16KB, 8-way, 64-byte
blocks, 2-cycles

64KB, 2-way, 64-byte
blocks, 3-cycles

L2 cache (unified) 1MB, 8-way, 128-byte
blocks, 7-cycles

1MB, 8-way, 128-byte
blocks, 7-cycles

1MB, 16-way, 128-
byte blocks, 20-cycles

Diagnosis: error counters 1249 bits 1249 bits 1219 bits

Diagnosis: FDU tracking 19 lines 19 lines 22 lines

Shaded entries for Deep-Narrow are identical to those of Narrow

56

accessed. For example, a stuck-at-one fault does not effect a bit that is dynamically set to one dur-

ing execution.

2.4.2 SRAS-CR and SRAS-EDC

In this section, we evaluate the benefits and costs of adding self-repair to microprocessor

arrays. Our goal is to determine whether self-repair is viable, primarily in terms of performance, as

performance is of critical importance in the commodity processor design space. We will compare

both SRAS-CR and SRAS-EDC to systems protected with DIVA as well as to each other. Compar-

ing SRAS to DIVA is somewhat unfair, since DIVA was not designed to handle hard faults, but it

is the best alternative currently available. An important question we seek to answer is whether

SRAS-EDC can achieve comparable performance to SRAS-CR despite not requiring DIVA sup-

port or the other drawbacks of SRAS-CR. While we compare performance quantitatively, the

implementation costs and power consumption comparisons are qualitative.

First, we present the results of our evaluation of both SRAS-CR and SRAS-EDC. Our focus,

detailed in the results and discussion that follows, is on comparing performance of fault-free

microprocessors with performance of both fault-free and faulted microprocessors with SRAS in

place. Another important factor to consider is the area of the processor core that we can effectively

protect with SRAS. The percentage of the microprocessor core that SRAS protects depends on

implementation. Specific details are proprietary, but estimation can be done with annotated die

photos of a representative chip. Such analysis of the Alpha 21264 [64] shows that these array

structures comprise roughly 33% of the non-cache microprocessor core die area.

2.4.2.1 Fault-Free Performance

Our first experiment explores the performance impact of SRAS for a system with no faults

injected. The goal of this experiment is to determine the fault-free performance overhead of our

57

schemes relative to a system with DIVA. In Figure 2-7, we plot the fault-free runtimes (taller bars

correspond to worse performance) of several systems, normalized to the baseline case of a system

with DIVA (or an unprotected system), for all of the SPEC integer and floating point benchmarks.

For each benchmark, we plot: (a) the baseline, (b) SRAS-CR (protecting just the ROB2), (c) unop-

timized SRAS-EDC, (c) SRAS-EDC with a partial optimization in which we compute functional

unit EDC in parallel for addition and subtraction, since these are the most common and the easiest

to perform in parallel (i.e., they require the least extra hardware for parallel EDC computation),

and (d) SRAS-EDC with the full optimization described in Section 2.2.6 to compute all functional

unit EDCs in parallel (or not compute them at all, for self-checking circuits). The results show that

SRAS-CR has the same performance as the baseline and that SRAS-EDC unsurprisingly incurs

some penalty with respect to DIVA, due to adding some EDC logic on the critical path. The full

optimization for SRAS-EDC helps quite a bit on most benchmarks, and the partial optimization

does almost as well. One trend is that SRAS-EDC tends to suffer worse degradation in perfor-

mance on the integer benchmarks, explained by the fact that the extra pipeline stages in SRAS-

EDC exacerbate the branch misprediction penalty which is incurred more frequently by the integer

benchmarks.

2.4.2.2 Performance in Presence of Faults

In this experiment, we study the performance benefit of self-repair for a system in which hard

faults have been injected. Our goal is to determine whether self-repair provides enough benefit in

the presence of hard faults to be worth its costs (in terms of implementation and fault-free perfor-

mance). In Figure 2-8, we plot the runtime of SRAS-EDC versus that of a system protected by

2. Results discussed later will show that protecting the BHT is not worthwhile, and thus we do not wish to incur its
fault-free performance penalty in this experiment.

58

0.0

0.5

1.0

1.5

2.0

N
o

rm
a

liz
e

d
 r

u
n

tim
e

SPEC 2000 Integer Benchmarks

DIVA-protected processor

SRAS-CR

SRAS-EDC unoptimized

SRAS-EDC with partial optimization

SRAS-EDC fully optimized

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr

0.0

0.5

1.0

1.5

2.0

N
o

rm
a

liz
e

d
 r

u
n

tim
e

SPEC 2000 FP Benchmarks

DIVA-protected processor

SRAS-CR

SRAS-EDC unoptimized

SRAS-EDC with partial optimization

SRAS-EDC fully optimized

ammp applu apsi art equake facerec fma3d galgel lucas mesa mgrid sixtrack swim wupwise

Figure 2-7. Fault-Free Runtime

59

0

1

2

3

4

N
o

rm
a

liz
e

d
 r

u
n

ti
m

e

SPEC 2000 Integer Benchmarks

DIVA with no faults

optimized SRAS-EDC with 1 fault

DIVA with 1 fault, single bit stuck-at 1

optimized SRAS-EDC with 4 faults

DIVA with 4 faults, single bit stuck-at 1

optimized SRAS-EDC with 8 faults

DIVA with 8 faults, single bit stuck-at 1

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr

0

1

2

3

4

N
o

rm
a

liz
e

d
 r

u
n

ti
m

e

SPEC 2000 FP Benchmarks

DIVA with no faults

optimized SRAS-EDC with 1 fault

DIVA with 1 fault, single bit stuck-at 1

optimized SRAS-EDC with 4 faults

DIVA with 4 faults, single bit stuck-at 1

optimized SRAS-EDC with 8 faults

DIVA with 8 faults, single bit stuck-at 1

ammp applu apsi art equake facerec fma3d galgel lucas mesa mgrid sixtrack swim wupwise

Figure 2-8. Runtime with Hard Faults Injected into the Reorder Buffer

60

DIVA, in the presence of hard faults injected into the reorder buffer. We do this to show that the

SRAS-EDC fault-free performance costs are well-justified if hard faults are likely to be present

over the lifetime of the part. Since SRAS-CR has no fault-free performance penalty, we do not

include it in this plot (the bars would all show SRAS-CR equal to the bar labeled “DIVA with no

faults”). We inject 1, 4, and 8 stuck-at-1 hard faults in order to evaluate the relative impact of vary-

ing numbers of hard faults. We normalize the results to the case of DIVA with no faults injected.

Here we see that, in general, the presence of hard faults leads to SRAS-EDC outperforming DIVA.

For the few integer benchmarks for which SRAS-EDC incurs the greatest fault-free performance

degradation, however, DIVA may still have a slight advantage in the case of only one hard fault,

but SRAS-EDC always outperforms DIVA for 4 and 8 faults. Considering that defect and fault

rates are increasing, and we cannot eliminate all of them with burn-in testing [8, 56], these results

demonstrate that SRAS is worthwhile. We observe that the floating point benchmarks derive rela-

tively more benefit from self-repair. This effect is due to these benchmarks tending to better utilize

the pipeline and thus incur more of a loss when an error causes DIVA to have to flush the pipeline.

2.4.2.3 Relative Performance Impact of Protecting Different Arrays

In this experiment, we explore the impact of hard faults on the other array structures that we are

protecting with self-repair. Having shown in the previous experiment that ROB self-repair is bene-

ficial in the presence of hard faults, we now compare the relative benefits of self-repair for other

arrays. For each of the five structures we are protecting with self-repair—ROB, load-store queue,

instruction window (scheduling window), instruction buffer (fetch buffer), and branch history

table (BHT)—we injected a single stuck-at fault in that structure (i.e., we created five systems,

each with a single fault in a different array). We then simulated each system’s performance on a

system with DIVA (i.e., without self-repair), to gauge the performance degradation that DIVA

61

0

1

2
N

o
rm

a
liz

e
d

 r
u

n
ti
m

e

SPEC 2000 Integer Benchmarks

fault-free operation

1 fault, single bit stuck-at-1 in ROB

1 fault, single bit stuck-at-1 in LSQ

1 fault, single bit stuck-at-1 in InstrWindow

1 fault, single bit stuck-at-1 in InstrBuffer

1 fault, single bit stuck-at-1 in BHT

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr

0

1

2

N
o

rm
a

liz
e

d
 r

u
n

ti
m

e

SPEC 2000 FP Benchmarks

fault-free operation

1 fault, single bit stuck-at-1 in ROB

1 fault, single bit stuck-at-1 in LSQ

1 fault, single bit stuck-at-1 in InstrWindow

1 fault, single bit stuck-at-1 in InstrBuffer

1 fault, single bit stuck-at-1 in BHT

ammp applu apsi art equake facerec fma3d galgel lucas mesa mgrid sixtrack swim wupwise

Figure 2-9. Impact on Runtime of Hard Faults on Other Array Structures

62

would incur (and that a system with self-repair would not incur). In Figure 2-9, we plot the runt-

imes for these five systems, normalized to a fault-free system. Thus a taller bar in the graph indi-

cates that self-repair is more important for this structure. We observe that there is no one particular

structure that is always the most important to protect with self-repair, although there are some pat-

terns. For example, the instruction window benefits more from self-repair than the ROB, as does

the instruction buffer for most benchmarks. A significant result is that faults in the BHT have vir-

tually no impact on performance. This is because the BHT is a large structure that is accessed

sparsely, and faults in the BHT are likely to be masked. Moreover, faults in the BHT can only lead

to incorrect branch predictions, not incorrect execution, so the corresponding pipeline squashes

can be initiated earlier (after the execution stage, instead of at the commit stage) and thus incur less

performance penalty.

2.4.2.4 Implementation Costs

It would be unfair to favorably compare the implementation costs of SRAS against DIVA, since

DIVA is mainly targeting a different problem (i.e., transient faults) and it can also tolerate hard

faults beyond just the array structures (albeit with performance and energy penalties). A compari-

son of SRAS-CR and SRAS-EDC is reasonable, though. SRAS-CR requires DIVA (or some simi-

lar dynamic verification scheme) as an error correction backstop before a fault is determined to be

hard, which is a significant cost for systems that would not have otherwise chosen to use DIVA.

Besides needing DIVA, SRAS-CR adds dedicated check rows to each array for performing error

detection/diagnosis. Moreover, SRAS-CR adds extra ports to the arrays in order to perform error

detection/diagnosis (by writing and reading the check row and operational row to compare them).

SRAS-EDC, unlike SRAS-CR, adds EDC bits to array entries. SRAS-EDC also adds EDC compu-

tation logic and EDC check logic at certain points in the pipeline. Both SRAS techniques provide

63

what we believe to be a low-cost alternative to traditional large-scale replication with better perfor-

mance than a low-cost BER technique in the presence of hard faults in frequently accessed struc-

tures. The question of which SRAS technique is better has no definitive answer. For designs

requiring the highest fault-free performance, SRAS-CR is better. SRAS-EDC, however does pro-

vide an implementation that does not require an additional fault detection mechanism to operate,

which gives it the advantage of extra flexibility in its application.

2.4.3 Online Diagnosis

Our evaluation of our fine-grained online diagnosis mechanism consists of experiments to

explore the effectiveness of our diagnosis scheme in a representative sample of processor designs.

Our evaluation has the following goals:

• First, we want to show that commodity design points using our reliable architectural exten-

sions can quickly and correctly detect and diagnose hard faults, even in the presence of tran-

sient faults.

• Second, we want to demonstrate that, after our scheme deconfigures a permanently faulty

FDU, the microprocessor’s performance is still good enough to be useful.

• Third, we want to compare our scheme against a microprocessor that simply relies on DIVA

checkers to tolerate hard faults; while DIVA was designed primarily for soft faults, it can also

tolerate hard faults, and we want to determine if our scheme outperforms this simpler solution.

• Fourth, we want to perform a sensitivity analysis for singleton complex, combinational logic

units such as the integer and floating point multipliers in order to determine if protection of

these units warrants further investigation.

• Finally, taking all three of our chosen design points together, we show the general applicability

of the technique to a broad set of designs from the commodity microprocessor design space.

64

Since we present results in the rest of this section in terms of normalized performances, we pro-

vide baseline error-free IPC results for each of the three processor design points in Figure 2-10.

The goal of all of our evaluation is to show how the processor behaves in the presence of a hard

fault. The likelihood of a hard fault affecting processor operation is highly dependent upon the

process used to manufacture the part, the complexity of the design, and the operating environment

that the part is deployed in. The discussion of these issues is an active body of research and is

beyond the scope of this evaluation.

2.4.3.1 Detection and Diagnosis of Hard Faults

Our first set of experiments explores how accurately and quickly our scheme detects and diag-

noses hard faults. In each experiment, we injected one hard fault in a single structure. All injected

hard faults manifest as a single bit stuck-at-1. To accurately account for masking effects, we inject

the hard fault at a specific site in the FDU, with the exception of complex FDUs for which we lack

a detailed implementation. Our hard fault selection attempts to provide greater masking of fault

effects, which leads to a smaller performance penalty and longer diagnosis latency due to fewer

0

1

2
IP

C

SPEC 2000 FP Benchmarks

ammp
applu

apsi art

equake

face
re

c

fm
a3d

galgel
luca

s
mesa

mgrid

six
tra

ck
sw

im

wupwise
0

1

2

IP
C

SPEC 2000 Int Benchmarks

Narrow

Deep-Narrow

Short-Wide

bz
ip
2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
ol
f

vo
rte

x
vp

r

Figure 2-10. Error-Free Performance (SPECfp and SPECint) for Each of the Three
Evaluated Processor Configurations

65

error detections and corrections. We do this because it is a pessimistic case for the operation of our

mechanism.

Because transient faults are relatively rare for the intervals we are simulating, we expect no

more than one transient to occur during a diagnosis interval. To model the effects of this scenario,

we ran each simulation with the effect of a single, observed transient added at the beginning of the

simulation (that is, one random set3 of FDUs’ counters started with an error count of one, rather

than zero at the beginning of diagnosis). We observed no difference in the behavior of the diagno-

sis algorithm for these experiments, leading us to believe that the mechanism is robust in the pres-

ence of typical transient faults.

In order to accurately account for masking effects in our simulation environment, we extended

SimpleScalar to include detailed simulation of the fault sites we inject errors at. To avoid excessive

3. A set is defined as one of each required FDU type for a particular instruction’s processing. Recall that DIVA cannot
determine whether an error came from a transient or hard fault and also cannot diagnose a fault’s source, requiring the
diagnosis mechanism to treat all errors detected by DIVA in the same fashion, with the counters for all FDUs involved in
the calculation of the erroneous result getting incremented upon DIVA correction. For example, for an integer add
instruction, a set would include critical logic, one integer ALU, one reservation station, one ROB entry, one IFQ entry,
and one checker.

0

5000

10000

15000

20000

25000

D
ia

gn
os

is
 L

at
en

cy
 (C

yc
le

s)

Faulted Structures, Narrow Configuration
1 IF

Q entry
1 R

S

1 A
LU

64
20

6
1 F

PU

28
88

31
1 In

t M
ult

39
53

3

1 F
P M

ult

1 LSQ entry

1 R
OB entry

1 C
heck

er

48
54

6

Criti
ca

l L
ogic

Figure 2-11. Hard Fault Diagnosis Latency,
Averaged Over All Benchmarks, for Narrow
Configuration
Error bars show one standard deviation for diag-
nosis latency above the average.

66

simulation times, we extended SimpleScalar only in the areas required to sufficiently evaluate the

effects of masking for the injected fault. Fault sites were chosen for each of the FDUs in the sys-

tem with the goal of providing a representative fault for the given structure, with nominal or

slightly pessimistic behavior sought to ensure that our study would apply for the broader set of

possible faults that could occur in the system.

For storage structures, we selected a representative bit to corrupt for a faulted unit. For the

ROB, we inject the fault into the least-significant bit (LSB) of the data result. This causes the com-

mon value of 1 to provide data masking for the injected fault. For the RS and IFQ, we corrupt the

LSB of the register identifier for the second argument of the instruction. This causes single-argu-

ment instructions to functionally mask this error and gives an even probability that two-argument

instructions will experience data-masking for the injected fault. For the LSQ, we inject the fault in

bit 16 of the address. This prevents data mis-alignment exceptions and provides an average-case

data masking scenario.

For combinational logic units, such as the ALUs, corrupting a single bit of output is not an

accurate fault model. This is due to the fact that combinational logic differs from storage in that

faults may propagate to different outputs or may be functionally masked for different inputs and

operations. This requires us to either simulate a gate-level design of the faulted unit or to utilize a

statistical fault model.

For the integer ALUs, we model faults as manifesting in the adder. We used a gate-level design

for a 32-bit adder and selected a representative gate whose output is stuck-at-1 when the fault is

injected. We performed a thorough gate-level fault simulation of the adder. We then simulated all

possible inputs and all possible fault locations for the adder to gain intuition on how masking

affects observation of fault effects. The gate we selected for fault injection in our simulations rep-

67

resents the nominal masking case with a shading toward more masking, as this is a pessimistic

assumption in our experiments. Masking was then evaluated for every instruction that accessed the

ALU with the faulty adder.

For the integer multiplier, floating point multiplier, and floating point ALUs, we used a statisti-

cal model for fault injection. In this model, we assume that there is a 50% chance that data mask-

ing will mask the injected fault. We use a random number generator to select which instructions

observe this data masking effect.

In all of our experiments, the microprocessor detected and diagnosed the injected hard fault and

did not mis-diagnose a soft fault as being hard. We measured how many cycles elapsed before an

injected hard fault was correctly diagnosed, and we plot the results of this experiment for the worst

0.8

1.0

1.2

N
o

rm
a

liz
e

d
 r

u
n

tim
e

Faulted Structures, Narrow Configuration

SPECint 2000

SPECfp 2000

fa
ult

-fr
ee

-1
 IF

Q e
nt

ry

-1
 R

S

-1
 A

LU

-1
 F

PU

-1
 L

SQ e
nt

ry

-1
 R

OB e
nt

ry

-1
 C

he
ck

er
0.8

1.0

1.2

N
o

rm
a

liz
e

d
 r

u
n

tim
e

Faulted Structures, Deep-Narrow Configuration

SPECint 2000

SPECfp 2000

fa
ult

-fr
ee

-1
 IF

Q e
nt

ry

-1
 R

S

-1
 A

LU

-1
 F

PU

-1
 L

SQ e
nt

ry

-1
 R

OB e
nt

ry

-1
 C

he
ck

er

0.8

1.0

1.2

N
or

m
al

iz
ed

 r
un

tim
e

Faulted Structures, Short-Wide Configuration

SPECint 2000

SPECfp 2000

fa
ult

-fr
ee

-1
 IF

Q e
nt

ry

-1
 R

S

-1
 A

LU

-1
 F

PU

-1
 L

SQ e
nt

ry

-1
 R

OB e
nt

ry

-1
 C

he
ck

er

Figure 2-12. Performance Impact of Losing One Component to a Hard Fault for Each of
the Three Evaluated Processor Configurations

68

of the three configurations (Narrow) in Figure 2-11. The other two configurations exhibited quali-

tatively similar performance, so are not shown here. Since the results were relatively insensitive to

the benchmarks, we present the mean results for the entire SPEC2000 benchmark suite; the error

bars in the figure represent one standard deviation above the mean. The results show that most

hard faults are diagnosed within fewer than 15,000 cycles, but that there are irregular diagnoses

that take significantly more time, leading to a high variance in the data. These irregular diagnoses

come from two sources.

The first source is initial mis-diagnosis of non-faulty hardware. To gain intuition on how often

this will be a factor in diagnosis latency, we gathered statistics on how many diagnoses are

required before converging on the correct diagnosis. In these simulations, the fault was always left

active, allowing for continual diagnosis of the same faulty unit. Table 2-5 shows the results of

Table 2-5. Number of Diagnoses Needed to Identify Correct Failing Unit

Faulted Unit 1 Diagnosis
2

Diagnoses
3

Diagnoses
4

Diagnoses
5

Diagnoses
6+

Diagnoses

instruction
fetch queue
entry

>99.99% <0.01% 0%a 0%a 0%a <0.01%

reservation
station

>99% <2% <0.01% <0.01% <0.01% <0.1%

integer ALU >99% <0.1% <0.1% 0%a 0%a <0.1%

floating point
ALU

>99% <0.1% <0.1% <0.01% <0.1% <0.1%

integer multi-
plier

>99.999% 0% 0%a 0%a 0% 0%a

floating point
multiplier

>99.99999% 0% 0% 0% 0%a 0%

load/store
queue entry

100% 0% 0% 0% 0% 0%

rob entry >99.99% 0%a 0%a 0%a 0%a 0%a

DIVA checker >99% <1% <0.01% 0%a 0% 0%a

critical logic >94% <4% <1% <1% <1% <1%

a. Value less than 0.001%, but non-zero value.

69

these experiments. Because the results for all processor configurations are similar, we combine

them in the data presented. While only the load/store queue entry has perfect diagnosis across all

configurations, all units except critical logic are diagnosed initially with at least 99% accuracy.

With critical logic, the fact that multiple units get deconfigured before the correct problem is iden-

tified is unimportant because a fault in the critical logic will require that the processor be shut-

down. As the latency data in Figure 2-11 shows, this still happens in a very short period of time. In

effect, the counter threshold selection for critical logic allows the greatest opportunity for correct

diagnosis of an FDU prior to drawing a conclusion that critical logic has been affected by a hard

fault. Since the reaction to such a hard fault is more drastic than deconfiguring a single FDU, we

feel that this is a wise design decision.

The second source of variance in diagnosis latency is programmatic phase behavior. The mix of

instructions varies throughout the various phases of program operation. During certain phases,

FDU utilization patterns will shift, causing diagnosis behavior to vary. In rare circumstances, a

string of instructions that causes the wrong error counter to saturate first will occur (for example, a

loop that repeats many times). This can lead to a large number of mis-diagnoses before the faulted

unit gets properly deconfigured. As mentioned previously, the diagnosis mechanism tolerates these

mis-diagnoses without significant impact to the performance of the processor. The largest

observed latencies were on the order of millions of cycles, which is a small amount of time for a

modern microprocessor running at multiple-gigahertz clock frequencies.

Our diagnosis latency study shows that the window of vulnerability for a faulty DIVA checker

is, on average, around 2,000 instructions, which is easily within the recovery capabilities of typical

hardware and software backward error recovery (BER) mechanisms. The different diagnosis laten-

cies for different FDUs are a function of the relative usages of these structures as well as their error

70

counter thresholds. Nevertheless, for all structures other than the DIVA checkers, the diagnosis

latency is relatively unimportant, since between when the fault occurs and when it is diagnosed

and the FDU deconfigured, the checkers mask its effect with only a performance penalty caused

by the number of pipeline flushes equal to the error counter threshold for the faulty FDU. Over the

course of even thousands of cycles, this performance penalty is still negligible. The key is not

incurring that performance penalty over the entire lifetime of the processor, as results in

Section 2.4.3.3 show.

For the microarchitectures in our experiments, there are no spare units for the integer multiplier

or floating point multiplier. Thus, we are unable to evaluate the effects of deconfiguring these units

in Section 2.4.3.2, because they are essential to correct operation of the processor. The latency and

accuracy data do suggest that considering these units as FDUs is possible. In Section 2.4.3.3, we

show that protecting these units from hard faults with a diagnosis and deconfiguration strategy is

worth considering in future designs.

2.4.3.2 Performance After Deconfiguring FDU

The second set of experiments evaluates the performance impact of de-configuring an FDU

after having diagnosed it as being permanently faulty. In each of these experiments, we remove

one of each type of FDU that we study. Figure 2-12 plots the runtime for each of these experi-

ments, normalized to the error-free (fully-configured) case. Since there is little variation in the

results across benchmarks, we plot the average results (geometric means of normalized runtimes)

across the SPECint and SPECfp benchmarks for each processor configuration. The data show that

the performance impact of deconfiguring an FDU is often small. This result, which corroborates

prior work [64, 69], is in part due to the fact that the processor configurations we are modeling are

over-provisioned for single SPEC benchmarks; both of the Pentium 4-styled configurations (Nar-

71

row and Deep-Narrow) are designed to run multiple threads simultaneously, and the extreme width

of the Athlon-styled configuration (Short-Wide) has it provisioned with multiple units. Thus,

resources are often idle in a typical single-threaded workload. There is a non-negligible perfor-

mance degradation due to deconfiguring an ALU or DIVA checker in the Narrow configuration.

This penalty all but disappears in the other two configurations. In Deep-Narrow, the longer pipe-

line suffers more from pipeline flushes, which degrade performance to a point where the perfor-

mance loss of the execute and commit bandwidth is effectively masked. In Short-Wide, the extra

units provisioned to support the width of the processor effectively mask the penalty for removing a

single unit. Stated another way, removing a single unit in Short-Wide is removing a smaller per-

centage of available computing bandwidth than in the Narrow configurations. All of these faulty

systems continue to function correctly and with reasonable performance.

2.4.3.3 Performance with Just DIVA Recovery (But No Diagnosis)

In this last set of experiments, we evaluate the performance of a microprocessor that relies

strictly on the DIVA checkers to tolerate hard faults. While DIVA was designed primarily for soft

faults and thus this is not a basis for a perfectly fair comparison, DIVA can tolerate hard faults and

it is instructive to compare against this option. A DIVA-only system is also similar to a system that

uses redundant threads for error detection and flushes the pipeline to recover from errors (assum-

ing forward progress can be ensured). Figure 2-13 and Figure 2-14 show the effects of allowing

complex, combinational logic sub-structures with hard faults to remain in use with the DIVA

checkers correcting the errors that they activate for the SPECint and SPECfp benchmarks, respec-

tively. Figure 2-15, for SPECint, and Figure 2-16, for SPECfp, show the effects of allowing regu-

lar array structures with hard faults to remain in use with only DIVA correction. In all four figures,

we plot runtimes that are normalized to the error-free case for each configuration, but we do not

72

0

1

2

3

4

N
o

rm
a

liz
e

d
 r

u
n

tim
e

SPEC 2000 Integer Benchmarks, Narrow Configuration

fault-free configuration

1 faulted ALU

1 faulted Int Mult

1 faulted FPU

1 faulted FP Mult

bz
ip
2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
ol
f

vo
rte

x
vp

r

0

1

2

3

4

N
o

rm
a

liz
e

d
 r

u
n

tim
e

SPEC 2000 Integer Benchmarks, Deep-Narrow Configuration

fault-free configuration

1 faulted ALU

1 faulted Int Mult

1 faulted FPU

1 faulted FP Mult

bz
ip
2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
ol
f

vo
rte

x
vp

r

0

1

2

3

4

N
o

rm
a

liz
e

d
 r

u
n

ti
m

e

SPEC 2000 Integer Benchmarks, Short-Wide Configuration

fault-free configuration

1 faulted ALU

1 faulted Int Mult

1 faulted FPU

1 faulted FP Mult

bz
ip
2

cr
af
ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs
er

pe
rlb

m
k

tw
ol
f

vo
rte

x
vp

r

Figure 2-13. Performance of DIVA-Only Correction for Combinational Logic Units
(SPECint)

73

0

1

2

3

4

N
o

rm
a

liz
e

d
 r

u
n

tim
e

SPEC 2000 FP Benchmarks, Narrow Configuration

fault-free configuration

1 faulted ALU

1 faulted Int Mult

1 faulted FPU

1 faulted FP Mult

am
m

p

5
.0

7

ap
pl
u

7
.0

8

ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg
el

lu
ca

s
m

es
a

6
.9

5

m
gr

id

six
tra

ck

8
.1

0

4
.8

6

sw
im

wup
wise

0

1

2

3

4

N
o

rm
a

liz
e

d
 r

u
n

tim
e

SPEC 2000 FP Benchmarks, Deep-Narrow Configuration

fault-free configuration

1 faulted ALU

1 faulted Int Mult

1 faulted FPU

1 faulted FP Mult

am
m

p

4
.7

7

ap
plu

6
.9

9

ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a

6
.3

6

m
gr

id

six
tra

ck
7

.8
2

sw
im

wup
wise

0

1

2

3

4

N
o

rm
a

liz
e

d
 r

u
n

tim
e

SPEC 2000 FP Benchmarks, Short-Wide Configuration

fault-free configuration

1 faulted ALU

1 faulted Int Mult

1 faulted FPU

1 faulted FP Mult

am
m

p

ap
pl
u

4
.9

7

ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg
el

lu
ca

s
m

es
a

m
gr

id

six
tra

ck

5
.7

3

sw
im

wup
wise

Figure 2-14. Performance of DIVA-Only Correction for Combinational Logic (SPECfp)

74

0

1

2

3

4

N
o

rm
a

liz
e

d
 r

u
n

tim
e

SPEC 2000 Integer Benchmarks, Narrow Configuration

fault-free configuration

1 faulted IFQ entry

1 faulted RS

1 faulted LSQ entry

1 faulted ROB entry

bz
ip
2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
ol
f

vo
rte

x
vp

r

0

1

2

3

4

N
o

rm
a

liz
e

d
 r

u
n

ti
m

e

SPEC 2000 Integer Benchmarks, Deep-Narrow Configuration

fault-free configuration

1 faulted IFQ entry

1 faulted RS

1 faulted LSQ entry

1 faulted ROB entry

bz
ip
2

cr
af
ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs
er

pe
rlb

m
k

tw
ol
f

vo
rte

x
vp

r

0

1

2

3

4

N
o

rm
a

liz
e

d
 r

u
n

ti
m

e

SPEC 2000 Integer Benchmarks, Short-Wide Configuration

fault-free configuration

1 faulted IFQ entry

1 faulted RS

1 faulted LSQ entry

1 faulted ROB entry

bz
ip
2

cr
af
ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs
er

pe
rlb

m
k

tw
ol
f

vo
rte

x
vp

r

Figure 2-15. Performance of DIVA-Only Correction for Array Logic Units (SPECint)

75

0

1

2

3

4

N
o

rm
a

liz
e

d
 r

u
n

tim
e

SPEC 2000 FP Benchmarks, Narrow Configuration

fault-free configuration

1 faulted IFQ entry

1 faulted RS

1 faulted LSQ entry

1 faulted ROB entry

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a

m
gr

id

six
tra

ck
sw

im

wup
wise

0

1

2

3

4

N
o

rm
a

liz
e

d
 r

u
n

tim
e

SPEC 2000 FP Benchmarks, Deep-Narrow Configuration

fault-free configuration

1 faulted IFQ entry

1 faulted RS

1 faulted LSQ entry

1 faulted ROB entry

am
m

p

ap
pl
u

ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg
el

lu
ca

s
m

es
a

m
gr

id

six
tra

ck
sw

im

wup
wise

0

1

2

3

4

N
o

rm
a

liz
e

d
 r

u
n

ti
m

e

SPEC 2000 FP Benchmarks, Short-Wide Configuration

fault-free configuration

1 faulted IFQ entry

1 faulted RS

1 faulted LSQ entry

1 faulted ROB entry

am
m
p

ap
pl
u

ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg
el

lu
ca

s
m
es

a

m
gr

id

six
tra

ck

sw
im

wup
wise

Figure 2-16. Performance of DIVA-Only Correction for Array Logic Units (SPECfp)

76

aggregate results across benchmarks because there is significant variability across benchmarks. In

these figures, the bar order, from left to right, matches the order of items in the legend, from top to

bottom, with a full set of bars provided for each of the SPEC2000 benchmarks. We do not inject

hard faults into the DIVA checkers because they cannot tolerate them without our diagnosis/recon-

figuration.

In the case of the complex combinational logic units, the structures into which we are injecting

faults are used frequently and are critical to the correctness of the processor. The results show that

hard faults have a drastic impact on system performance when DIVA is forced to correct the errors

they create. The performance of the DIVA-only system is far worse than the performance we dem-

onstrated for our system in Section 2.4.3.2. Technology trends toward deeper pipeline implemen-

tations will only serve to make the performance penalty for each error’s recovery (i.e., pipeline

flush) more severe. The data for the singleton units in our study (the integer and floating point

multipliers) shows that, for certain workloads, there is motivation to provide a less-costly alterna-

tive to pipeline-flushing error correction mechanisms.

For the array structures, there are many more units present in typical architectures than there

are combinational logic units. Because of their greater population in modern designs, these units

are naturally used less often than the combinational logic units. This functional masking effect

results in the lessened effects we observe. These units are still used often enough to cause frequent

pipeline flushes from DIVA corrections to noticeably, negatively impact performance.

The relative difference in magnitude of the structure-to-structure penalty is directly related to

how frequently a given sub-structure is used by the workload. Benchmark-to-benchmark variation

for a given type of FDU is a result of the distribution and frequency of pre-existing stall events in a

given benchmark. The causes of these events, such as cache misses or branch mispredictions,

77

result in a percentage of corrected errors falling in the shadow of another pipeline-clearing event,

thus diminishing the penalty associated with the error correction. For example, a benchmark with

many branch mispredictions is less sensitive to pipeline flushes due to errors, if the errors tend to

occur soon after branch mispredictions, since there is less state that gets flushed by the error.

2.4.4 Summary and Discussion of Results

In this work, we have presented a framework for designs for self-repair of microprocessor array

structures, and we have developed two particular designs based on that framework: SRAS-CR and

SRAS-EDC. These designs are motivated by the belief that per-part hard fault rates will increase

as we scale CMOS to smaller and smaller device geometries and pack ever more devices into a

single microprocessor. This motivation is grounded in cautionary statements from the ITRS [28]

and detailed studies of lifetime reliability by Srinivasan et al. [68].

A survey of methods for achieving hard-fault tolerance in the microprocessor core shows that

we have a gap in capability for protecting the non-cache area (the processor pipeline). This gap

stems from the following two facts:

1. Traditional hard-fault tolerance design points could afford large-scale redundancy, for exam-

ple replication of the entire core, so they employed techniques like TMR to achieve fault tolerance

2. Newly-developed low-cost fault-tolerance techniques are not designed to tolerate hard

faults—even though they sometimes can, this tolerance comes at a high performance cost.

In the commodity microprocessor market, performance and cost are the key motivating con-

straints. As the aforementioned CMOS trends begin to impact this design space, we believe that

fault tolerance will gain in importance. Low-cost methods to achieve hard fault tolerance will

become necessary as a result. The two SRAS methods presented are two such designs.

78

In the case of fault-free execution, both SRAS methods may add some performance overhead

compared to an unprotected system, due to the few instances in which self-repair logic is on the

critical path. However, if hard faults exist in arrays, then SRAS outperforms the existing light-

weight approaches for tolerating faults while avoiding large-scale replication of microprocessor

cores. As hard fault rates continue to increase, we believe that SRAS will become an increasingly

attractive design point.

To address the emerging problem of operational hard faults and fabrication defects in micro-

processors, we have developed a microprocessor design that leverages the existing redundancy in

current microprocessors. This redundancy, which exists to improve performance by exploiting ILP

and thread level parallelism, can be used to mask hard faults. Our microprocessor design integrates

DIVA-style error detection with a new mechanism for diagnosing hard faults. After diagnosis, it

de-configures the faulty FDU and continues operation. Experimental results demonstrate that our

scheme can accurately and quickly diagnose hard faults and reconfigure around faulty FDUs to

provide a microprocessor that performs only somewhat worse than a fault-free system.

As technology trends continue to drive higher-complexity designs, implemented with smaller

transistor geometries, we believe that the incidence of hard faults will increase, both from manu-

facturing defects and lifetime wearout effects. In response to this increase in hard faults, commod-

ity microprocessor designs will require that hard fault tolerance be considered in their designs.

Traditional approaches in the fault-tolerant computing space have not been limited by the same

cost constraints as the commodity space, making direct application of existing techniques inappro-

priate. We believe that the commodity microprocessor design space will drive the following con-

straints into a fault-tolerant design:

• Low-cost implementation in terms of hardware and power consumption characteristics.

79

• Graceful degradation in performance in the presence of hard faults.

• Effective containment of lifetime-reliability induced defects.

To meet these constraints, fine-grained diagnosis schemes will be required, since coarse-

grained solutions tend to incur too much performance penalty per fault tolerated. The present

online techniques will have to be adapted to work in concert with existing features in the commod-

ity design space, including low-cost error detection and correction mechanisms.

The experimental results in this section confirm that existing microprocessors have redundancy

that can be exploited to tolerate hard faults. We have also shown that, for a variety of processor

configurations, we can accurately and quickly diagnose hard faults and reconfigure around faulty

FDUs to provide a microprocessor that performs only slightly worse than a fault-free microproces-

sor. Moreover, it vastly outperforms the alternative of just relying on DIVA.

Technological and architectural trends drive this work and encourage further work in this area.

The incidences of hard faults and fabrication defects will continue to increase. This will lead to

decreased yield, higher FIT rates, and lower MTTF for future generation parts. We have shown

that use of a diagnosis and deconfiguration mechanism will allow for parts to operate in the pres-

ence of hard faults until they begin to experience larger numbers of hard faults near their end of

life. This will lead to higher MTTF/lower FIT rates for parts that use this sort of scheme over their

unprotected peers. Also, as microarchitects try to exploit ever more ILP and thread level parallel-

ism, there will be even more redundancy that can be leveraged for improving reliability and yield.

In particular, emerging SMT processors will have more redundant hardware and fewer singleton

resources. Thus the advantages of our approach will increase due to these trends. The caveat is

that, as workloads evolve to take advantage of this extra hardware, the performance impact of hav-

ing to deconfigure an FDU will increase. If that is the case, cold sparing of performance-essential

80

FDUs may be employed to effectively increase the MTTF/decrease the FIT rate of a part employ-

ing our scheme. As mentioned previously, quantitative analysis of how much MTTF/FIT rate

improvement will be gained is dependent upon fault rates, which are dependent upon process and

design details that we do not consider in this work. Nevertheless, even without cold spares, a

heavily loaded microprocessor will continue to function correctly and with better performance

than just DIVA in the presence of operational hard faults and fabrication defects.

2.4.5 Related Work

In this section, we present prior research in tolerating hard faults and fabrication defects. A

canonical design for tolerating hard faults is the IBM mainframe [66]. Mainframes not only have

redundant processors, but they also incorporate redundancy within the processor in order to seam-

lessly tolerate hard faults. The IBM G5 microprocessor, for example, has redundant units for

fetch/decode and for instruction execution. Some other traditional fault-tolerant computers, such

as the Stratus [82] and the Tandem S2 [31], simply replicate entire processors. An even more

extreme case of using redundancy to tolerate fabrication defects and, to a lesser extent, operational

hard faults, is the Teramac [20]. The Teramac is designed to make use of components that are

likely to be faulty, and it is motivated by expected defect rates in nanotechnology. While these sys-

tems all provide excellent resilience to hard faults, such heavyweight redundancy incurs signifi-

cant costs in terms of hardware and power consumption.

DIVA [6] and redundant thread schemes provide low cost and low power alternatives to heavy-

weight redundancy. All of the redundant threading schemes (AR-SMT [58], Slipstream [71], SRT

[47, 55], and SRTR [78]) provide error detection and either use pipeline squashing for error cor-

rection or could easily provide error correction via pipeline squashing. All of these schemes were

designed for transient faults and thus share the same drawback as DIVA, with respect to hard

faults, since they incur a pipeline squash (and its corresponding performance and energy penalty)

81

every time a fault manifests itself. For hard faults in frequently-used microprocessor structures,

fault manifestation is too frequent and the performance of these schemes suffers.

There are lightweight approaches by Aggarwal et al. [2, 3], Shivakumar et al. [64] and Srini-

vasan et al. [69] that, similar to our work, leverage existing redundancy in microprocessors.

Aggarwal et al.’s work differs in that it treats the core as a field-deconfigurable unit and explores

opportunity to exploit on-chip redundancy for the core and other structures outside of the core,

such as memory controllers. Shivakumar et al.’s work differs in that it is strictly for tolerating fab-

rication defects and does not extend to hard faults that occur during execution. They combine

offline (pre-shipment) testing and diagnosis of microprocessors with deconfiguration capabilities

to improve effective yield. Our approach combines deconfiguration with online error detection and

fault diagnosis to improve both yield and reliability. Srinivasan et al.’s work does not address error

detection or fault diagnosis.

An approach to improving microprocessor reliability in the presence of operational hard faults

(but not fabrication defects) is to use dynamic reliability management [67]. In this approach, the

processor dynamically adapts, based on a model of its estimated lifetime, in order to achieve a

desired lifetime. In particular, if the processor is running too hot, due to a particular workload, it

may use dynamic voltage scaling to cool down and improve its reliability. This approach is orthog-

onal and complementary to ours.

Another scheme for tolerating only fabrication defects, called Rescue [61], utilizes circuit

transformations to improve testability and enable coarse-grain diagnosis of defective components

(ways of a superscalar processor). The finer grain diagnosis in our research enables us to discard

less fault-free hardware, and it may enable us to tolerate more hard faults before failure.

82

There are other non-comprehensive approaches to tolerating hard faults in specific parts of a

computer system. One option for storage structures is to protect them with error correcting codes

(ECC), as in IBM mainframes [66]. Combining ECC for arrays with DIVA avoids costly DIVA

recoveries. However, ECC protection of arrays is on the critical path for array access (both read

and write), and it will thus add to the microprocessor’s critical path and degrade its performance in

the fault-free case. Storage structures can also be protected by using a level of indirection to map

out faulty portions of the structure. Whole disk failures were addressed by RAID [52]. For disk

faults that did not incapacitate the entire disk, the solution was to map out faulty portions at the

sector granularity. Similar approaches have been developed for DRAM main memory. Whole chip

failures are tolerated by chipkill memory and RAID-M [22, 27], and partial failures are tolerated

with schemes that map out faulty locations [19, 44, 59]. For SRAM caches, techniques have been

developed to map out defective locations during fabrication [84] and, more recently, during execu-

tion [49].

83

3 Extending DRAM Use to the Level 1 Data Cache in
Throughput-Oriented CMPs

We present work in this chapter that is motivated by the same basic trends that we outlined in

Chapter 1, but here we shift our focus from single-threaded performance-oriented cores to a

throughput-oriented paradigm. With throughput-oriented workloads, the latency demands of indi-

vidual threads are relaxed due to longer-latency events dominating end-to-end application

response time. With subsequent CMOS process generations, microarchitects are afforded more

transistors to work with, but physical packaging limits continue to stifle the growth of the power

and cooling budget for a chip package.

The shift to chip multiprocessors (CMPs) has been fueled by these trends. While it is common

to find a small number of concurrent threads to run on a CMP in most server and desktop settings,

exploitation of tens to hundreds to thousands of schedulable contexts is limited in the general case.

Fortunately, the Internet has brought with it a group of applications that commonly scale to tens of

thousands of concurrent threads for popular sites. Web serving and web commerce middleware

present the throughput-oriented CMP architect with a strong motivation to optimize a design for

power-efficient throughput.

Throughput-intensive computing is not a new concept in the architecture community. Proces-

sors such as Piranha [9] and Niagara [62] have designs that favor throughput over single-thread

latency reduction. The realization that power will constrain future CMP designs more than transis-

tor budgets has led to a series of studies of what the optimal core design is for a throughput-inten-

sive CMP. Li et al. [35] and Davis et al. [21] both survey the design space for cores by looking at

in-order and out-of-order scalar and superscalar core architectures. They sweep the design space of

the cache hierarchy as well by varying capacity and latency based upon the core that the cache is

paired with. These studies started with a supposition that low latency would provide best perfor-

84

mance for the core. Cache designs that were paired with the various cores studied were chosen

with low-latency favored. The work in this chapter is motivated by the observation that this focus

on low-latency has resulted in the architecture community overlooking better-suited cache alterna-

tives in deep submicron CMOS technology generations. Our hypothesis is that shifting from a

low-latency cache design to one that more closely matches throughput-oriented core demands will

create opportunity to trade latency for power savings or additional capacity, both of which are

more beneficial to the throughput-oriented core.

In Section 3.1 we begin with an overview of the experimental methodology we employ for this

work. Our research is then presented as a three-step progression to show that a DRAM-based L1

data cache is well-suited to a throughput-oriented core and workload. The three pieces of research

that bring us to our conclusion are presented as follows:

1) First, we seek to understand the demands of throughput-oriented workloads on the on-chip

cache hierarchy. In Section 3.2, we study two common throughput-oriented workloads to

understand their demands.

2) After understanding the demands of the core and its workload, we then must look at what alter-

natives exist in the cache implementation. In Section 3.3 we present alternative cache designs

to match the implementation of the throughput-oriented core to its cache hierarchy.

3) Finally, we present an evaluation of an L1 data cache, based upon DRAM storage cells, in a

throughput-oriented system. In Section 3.4, we compare a throughput-oriented cache imple-

mentation to existing and possible proposed alternatives. In our evaluation, we show that our

throughput-oriented L1 cache, matched to our core demands, provides better power-perfor-

mance than existing or proposed alternatives. We also show the opportunity presented in shift-

85

ing the L2 cache from a traditional SRAM-based implementation to a DRAM-based

implementation.

We conclude the chapter with a review of related work in Section 3.5.

3.1 Experimental Methodology

In contrast to the research conducted on fault-tolerance in Chapter 2, our work here has a scope

that is beyond the single microprocessor core. Since we are evaluating cache architectures for

throughput-oriented CMP core designs, we require a system-level simulation capability that

includes a detailed model of the core and on-chip cache hierarchy.

We examine the throughput-intensive workloads’ memory demands with Simics [42] using the

GEMS [43] detailed processor and memory simulation modules (Opal and Ruby), modified to

allow us to simulate simple in-order and out-of-order cores. We utilize a base, 2-wide core design,

evaluating both in-order and out-of-order versions of this base. Details of the simulated machine

configurations can be found in Table 3-1. For all simulations performed with these workloads, we

run a fixed unit of work, to measure the application-level throughput improvements from the con-

figuration changes we apply.

For purposes of normalized performance comparison, we utilize a baseline core design that

supports two simultaneous threads. We focus our study on 8-threaded and 16-threaded core con-

figurations, based upon the previously published results on throughput-oriented core design [21,

35]. Early experiments we performed to assess the design space corroborated the results from

these previous studies and showed no advantage to the 4-threaded core configuration, so we dis-

carded it from further consideration.

86

We use Cacti 5.3 [74] to model the caches with capacity from 16 KB to 1 MB, from 1 to 64

banks, and with different storage cell technologies. Details of our cache configurations are shown

in Table 3-2. We compare caches composed entirely of SRAM (traditional designs), those that use

DRAM as the data and tag storage array element, and those that use a hybrid SRAM/DRAM stor-

age cell with SRAM tags [77]. We modified Cacti to model the implementation of both tags and

data in the DRAM process.

We estimate hybrid cell values from Cacti data for SRAM and DRAM combined with data

from [77]. Specifically, for power, we use SRAM values for dynamic energy per read or write.

This is because more than 95% of accesses hit in the SRAM way of the hybrid cache. We factor a

75% reduction in bank leakage power over SRAM, as the authors forecast. We derive rough area

estimates for the hybrid cell-based cache by scaling the cell-technology independent components

Table 3-1. Processor Configuration for L1 Data Cache Latency Sensitivity Study

Property Configuration

Core Configuration In-Order/Out-of-Order, SPARC III+, 7-Stage
Pipelined

Width (Fetch/Decode/Issue/Execute/Commit) 2/2/2/2/2

Scheduling/Instruction Window Size 4/16

L1 Instruction Cache Size/Latency/Associativity 16KB/1 Cycle/4-Way Set-Associative, 64B
Lines

L1 Data Cache Size/Latency/Associativity 16KB/1-8 Cycles/4-Way Set-Associative, 64B
Lines

L2 Unified Cache Size/Latency/Associativity 16MB/12 Cycles/4-Way Set-Associative

Main Memory Latency 160 Cycles

Branch Predictor YAGS

SMT Support 2, 8, or 16 Threads

SMT Fetch Policy 1 Thread/ Cycle, Lowest Retired Count First

Operating System OpenSolaris Nevada Build 87

Workloads (Units of Work) Apache 2.2.9 (1,000 web transactions),
SPECjbb 2000 (10,000 transactions)

87

of the area data Cacti provides and factoring a 50% reduction in area of the data array over that of

an equivalent 6T SRAM cell array, as the authors indicate.

Additional performance factors must be considered when hybrid cells are in use. The hybrid

cell may incur additional L1 to L2 traffic due to its writeback policies to avoid having to refresh

the DRAM part of the cell. This will be workload dependent, so we assume a best case workload

that incurs no additional writeback traffic. We also do not factor the additional circuitry for manag-

ing the swapping of data from the DRAM storage to the SRAM storage in the cell nor do we factor

the canary cell for managing early writeback. Finally, we assume that all hits in the hybrid cache

can be serviced in 1 cycle (DRAM hits take 3 cycles in the proposed implementation). We factor

the extra reads and writes that a swap incurs and assume that 5% of the accesses to the cache incur

a swap, based upon data from [77] on 16 and 32KB, 4-way set-associative hybrid caches running

SPEC benchmarks.

Table 3-2. L1 Data Cache Configurations Explored

Parameter Value

Technology 32nm

Cache Size 16KB, 32KB, 64KB, 128KB, 256KB, 512KB, or1MB

Width 64-Bit Data, 64B Blocks

Storage and Tag Cells All SRAM or All 1T1C DRAM or Hybrid [77]

Optimization Target Energy-Delay

Banksa 1, 2, 4, 8, 16, 32, or 64

Architecture Uniform, Non-Blocking Cache Architecture with Pipelining

Port Configuration 2 (1 Read/Write, 1 Single-Ended Read)

Associativity 4-Way, Set-Associative

a. Cacti enforces a minimum bank size of 32 sets, limiting some configurations.

88

3.2 Demands of Throughput-Oriented Workloads

In order to develop a throughput-oriented cache design, we first must understand the demands

of the throughput-oriented core, running representative applications, on the cache hierarchy. In this

section, we determine the demands of the throughput-oriented core on the cache. We leverage past

work on throughput-oriented core design, which indicates that a relatively simple, narrow core

with SMT support is a power-efficient throughput engine. We first address how much bandwidth is

demanded by such a core (Section 3.2.1). We then explore whether the core’s cache demands are

sensitive to L1 data cache latency (Section 3.2.2).

3.2.1 Bandwidth Demands of the Throughput-Oriented Core

Our desire is to balance the core’s demands with the cache’s supply to optimize throughput. To

that end, we need to understand the memory bandwidth demands of a throughput-oriented work-

load, then map it to our core building block to arrive at an upper bound for what the core will

require. In order to maximize the throughput of a highly-threaded CMP, we need the cache sub-

system to meet the bandwidth demands of the workload.

Our bandwidth study consists of an experimental evaluation of a representative throughput-ori-

ented core design. Memory operation mixes for different thread-counts on the core for each bench-

mark only differ in a statistically significant way for the 16-thread SPECjbb configuration, where

we see almost 2% more loads in the dynamic instruction stream over its 2-threaded and 8-threaded

counterparts. Apache has ~20% loads and ~9% stores in the dynamic instruction stream. SPECjbb

has ~17% loads and ~7% stores. This data is detailed in Figure 3-1. Apache’s greater proportion of

memory instructions should result in a higher overall bandwidth demand. Averages were taken

over tens of runs for each thread configuration shown. Error bars show one standard deviation

from the averages.

89

We show bandwidth demands for core operating frequencies between 1 and 2.5 GHz in

Figure 3-2. The maximum theoretical demand is derived by assuming perfect utilization on our

core (i.e., IPC=2) multiplied by the measured memory instruction mix and core operating fre-

quency. This represents an upper bound for these workloads on a 2-wide superscalar core. At 2.5

GHz, this upper bound is just over 11 GB/s for Apache and just under 10 GB/s for SPECjbb.

Actual bandwidth requirements were calculated by taking the actual IPC instead of ideal IPC for

the maximum theoretical limit. We found in our simulations that bandwidth demands were just

over 8 GB/s for Apache and just over 7 GB/s for SPECjbb. The disparity here represents the gap

between the actual IPC of the core during our experiments and the theoretical maximum IPC of 2.

Figure 3-1. Dynamic Instruction Stream Memory Instruction Mix

Figure 3-2. Throughput-Oriented Core Bandwidth Demands on L1 Data Cache

Data collected shows similarity across core thread configurations. We observe slightly greater
memory instruction percentage in Apache with behavior for both benchmarks within established
norms of roughly 33% memory instructions with a 2:1 load:store ratio within that 33%.

Results show actual measured bandwidth consumed on throughput-oriented 2-wide superscalar
core as well as theoretical maximum if core IPC is equal to core width of 2.

90

From this study, we conclude that the throughput-oriented core bandwidth demands on the L1

are met by a wide variety of cache implementations. The use of a simple, low-power core and the

typical instruction mix of the workloads we target are the essential elements that lead to the rela-

tively low bandwidth demands on the L1. We do note that meeting the bandwidth demands of a

core running at the top of the frequency range we examine will require an average of more than

one 8-byte datum per cycle to be served from the cache to the core. This leads us to focus on 2-port

caches with the ability to issue two reads or one read and one write per cache cycle in

Section 3.4.1.

3.2.2 L1 Data Cache Latency Sensitivity

The second aspect of cache demand, in addition to bandwidth, is whether the core is sensitive

to cache latency. While evidence exists in the prior design space studies [21, 35] to support the

intuition that throughput-oriented cores may not need low-latency caches to perform well, the

design space is sparsely explored. In order to better understand the sensitivity of representative

Internet workloads to first-level cache latency, we performed a simple limit study. In this set of

experiments, we ran Simics with Opal and Ruby GEMS modules configured as originally shown

in Table 3-1. The goal here is to determine if we can mask latency effectively by increasing the

number of threads.

The results of our study are shown in Figure 3-3 and Figure 3-4. We use a 2-threaded core as

our base configuration for comparison purposes and show results for the 8-thread and 16-thread

core configurations. For both in-order and out-of-order core configurations, we observe improved

throughput when we have eight threads, even though we hold other core resources fixed. The

improvement in throughput by adding additional threads confirms our hypothesis that additional

thread contexts can mask data cache access latencies as well as other stall-inducing events in indi-

91

vidual threads’ dynamic execution. The reduction in speedup as we increase L1 data cache access

latency is evidence that we cannot fully mask latency effects with this technique. We observe no

loss of speedup over the range of L1 data cache latencies we studied with the 16-thread core con-

figuration. However, at low latencies, the 16-thread core under-performs the 8-thread core and

only reaches parity performance with its 8-thread counterpart at 8-cycle L1 data cache latency for

SPECjbb. We conclude that the 16-thread core is overthreaded.

There are multiple potential bottlenecks within the core that lead to this overthreaded situation.

The use of small instruction windows and issue queues as part of our low-power core model limits

the ability of out-of-order execution to extract instruction-level-parallelism (ILP) from the individ-

ual threads running on the core. This effect is compounded as we increase the number of simulta-

Figure 3-3. Apache Web Server and SPECjbb Normalized Throughput on Out-of-Order,
Multithreaded Cores with Varying L1 Data Cache Latency

Figure 3-4. Apache Web Server and SPECjbb Normalized Throughput on In-Order,
Multithreaded Cores with Varying L1 Data Cache Latency

92

neously-active threads. In cases where we have 8 or 16 threads, the in-order core effectively has 8

or 16 instructions, respectively, ready or executing in a given cycle. With the size of window we

use, that means that the number of additional instructions that out-of-order execution makes possi-

bly executable is 0 or 8 for these highly-threaded cores. For this reason, we see little difference

between in-order and out-of-order performance, and the level of threading is the primary driver of

the observed effects.

3.2.3 Throughput-Oriented Cache Demand Summary

From this study, we arrive at a compound answer to the question of what the core demands are

on the cache. For bandwidth, we need a maximum of 12 GB/s and we can achieve additional

throughput with extra threads, thus effectively overcoming performance losses due to L1 data

cache latency at lower numbers of threads per core. We will use this fact in Section 3.4.3.1 to show

how this latency tolerance can be converted to additional throughput by tailoring of the L1 data

cache design. This correlates with results from previous core design studies [21, 35] and it is the

design point that we focus our efforts on meeting the demands of throughout the rest of this chap-

ter.

3.3 Cache Building Block Technology Alternatives

Now that we understand the basic demands of our core, we next want to examine alternatives to

meeting those needs in our cache design. In this section, we are seeking the building block that

provides a resulting cache that best matches our core demands to provide optimum throughput

under a fixed power budget. To get to that cache design, we will first dive into technology alterna-

tives we can employ as the building block base for our cache. We review alternative memory cell

technologies that have been proposed first. Some of these are already in use in applications inside

or outside of the L1 cache. We compare and contrast the primary operating characteristics of these

93

building blocks before evaluating their performance in the data cache, starting with the L1 data

cache in Section 3.4.1 and concluding with the L2 cache in Section 3.4.2.

As we move into deep submicron CMOS processes, leakage effects on a traditional 6T SRAM

cell have inspired research into alternative cache implementation technologies. Here, we review

the techniques most germane to a throughput-oriented design. These fall into three major catego-

ries - improving SRAM-based implementations by reducing their susceptibility to leakage effects,

replacing SRAM with embedded DRAM, or utilizing a hybrid approach that combines SRAM and

DRAM to meet the desired characteristics of the cache that the cell is used in.

To understand what cache technology best meets throughput-oriented core demands, we need

to understand the strengths and weaknesses of these three option categories and then employ the

most appropriate technology for the design. In the next three sub-sections, we will discuss the

alternatives and their general properties before we propose a throughput-oriented design and move

into a more detailed comparison of caches composed of these three types of cell.

3.3.1 Build a Better SRAM Cell

In complement to materials efforts, new SRAM cell designs have been proposed in order to

limit the static power dissipation of SRAM-based caches at sub-threshold voltages. Techniques

proposed include asymmetric designs [7], use of low-voltage standby modes [50, 54], and deacti-

vation of SRAM cells that are unused or not likely to be used soon [32, 33]. These improve cell

leakage characteristics, but do not eliminate them.

A number of novel SRAM cell designs that utilize additional transistors have been proposed to

support stable operation at lower operating voltages. Examples of these techniques include 8T

[17], 9T [39], and 10T [15] cell designs. Each of these trades additional die area and active power

94

for better performance and/or leakage characteristics. Latency for these designs is similar to stan-

dard 6T cell design latencies.

3.3.2 Embedded DRAM as an Alternative to SRAM

With its low static power consumption and higher density, DRAM has emerged as an on-chip

alternative to SRAM for the last-level caches on the chip. Initial implementations [29] have uti-

lized a 1T1C cell design, typical of off-chip memories. The relatively long cycle time of 1T1C

DRAM memories, due in part to destructive reads, has prevented their use closer to the processor

core. We focus on the use of 1T1C DRAM cells and will show that the latency drawbacks they

bring to the design can be overcome for a throughput-oriented application.

Luk et al. [41] proposed a 3T1D DRAM memory cell design with latency comparable to 6T

SRAM and non-destructive reads. Liang et al. [37] propose use of this cell for a register file appli-

cation and show how a short refresh time allows the latency of the design to match its SRAM

counterpart with better process variation tolerance and comparable power characteristics. Liang et

al. also explore use of this cell in future CMOS generations as a replacement for the 6T SRAM cell

[36, 38]. These efforts seek to maintain parity performance characteristics of SRAM with an alter-

native cell design that provides better process variability tolerance. Our use of a 1T1C DRAM cell

also evades the issues with the 6T cell’s sensitivity to process variation, and we show that, for a

fixed cache power budget, a cache composed of 1T1C DRAM is a better throughput booster for a

throughput-intensive workload than a lower-latency SRAM or DRAM alternative. In our work, we

do assume that 3T1D cell would be used in the L1 instruction cache and the register file, where

latency is critical to throughput.

3.3.3 Hybrid Caches

A novel hybrid cache design has been proposed to bring eDRAM to the L1 cache [77]. In this

design, the first way of the L1 is implemented with SRAM, with subsequent ways of an n-way set-

95

associative L1 cache being implemented with eDRAM. A most-recently used (MRU) heuristic is

developed to optimize the hits to the SRAM way by moving data dynamically based upon pre-

dicted hit patterns. Analysis of the MRU algorithm with single-threaded SPEC benchmarks on a

fast, wide, out-of-order core show that less than 5% of the hits to the L1 fall in the slow ways.

The goal of the hybrid implementation is to provide nearly the energy-efficiency of eDRAM

with nearly the low latency of SRAM. In effect, this work provides a two-part L1 cache. The first

way is the fast-hit way, and efforts are made to ensure that the most-likely-to-be-accessed data is

kept in this way (at the expense of extra power and logic to heuristically migrate data from the

other ways). The remaining ways are slower to access, but faster than the L2. We argue that the

effort to retain high-frequency, low-latency operation is unneeded and show that this technique, at

best, provides parity performance in a throughput-oriented application at a higher power cost.

3.4 Experimental Cache Design Space Exploration

We propose using DRAM instead of SRAM to arrive at a throughput-optimized L1-data and L2

cache design. We hypothesize that, of the available cell technology alternatives, use of DRAM will

provide the greatest opportunity to improve throughput under a fixed power budget. We now test

this hypothesis experimentally for the L1-data and L2 cache. For our study, we select the 6T

SRAM cell as our basis of comparison, as it is pervasive in its use in the L1 data cache today and

widely used in the L2 as well. For alternative storage cell technologies in the L1 data cache, we

use 1T1C DRAM and the hybrid cache proposed in [77]. With these three alternatives, we will

model typical cache capacities in each technology and compare bandwidth, power, area, and

latency characteristics to find the best match for our core in Section 3.4.1. We then compare 6T

SRAM and 1T1C DRAM for the L2 cache in Section 3.4.2 and conclude in Section 3.4.3 with a

96

summary of our results and the unified cache design proposal that our experimental evaluation

arrives at for a throughput-oriented design.

3.4.1 L1 Data Cache Evaluation

Our first set of experiments seeks to examine the alternatives for a throughput-oriented L1 data

cache. We choose capacities in a range from present L1 data cache norms to the point at which the

capacity of the cache would likely overwhelm the L2 cache capacity in an inclusive cache hierar-

chy. The goal of this evaluation is to find the best match for the bandwidth demands of our core as

a segue to exploring how a better-matched cache can improve core throughput.

For each of the cache capacities and technologies we compare, we simulated all possible bank

configurations up to 64 banks. Cacti returned energy-delay optimal configurations for each valid

configuration. From the set of results at a given technology and capacity node, we selected the

cache design that provided the lowest energy cost per unit of bandwidth at an operating frequency

of 1.5GHz1.

3.4.1.1 Bandwidth and Power

Our intuition is that bandwidth and power will be the two most critical factors to match to the

core demands. Because we can easily trade bandwidth for power if we run the cache at a lower

clock rate, we consider these two metrics together in our discussion. Figure 3-5 shows the cache

bandwidth available to a core operating at frequencies depicted on the x-axis. We show the maxi-

mum theoretical bandwidth demands of the workloads from our study in Section 3.2.2 with dashed

lines for reference. Because all of our selected cache configurations, regardless of technology of

the storage cell, have at least two ports and at least two banks, the solid lines reflect the bandwidth

1. The 1MB DRAM design is only capable of sustaining a 1.2GHz maximum clock, so all data is shown relative to that
reduced maximum clock rate, and labeled explicitly. While other designs in 1MB DRAM space meet the speed criteria,
they come with increased power per unit throughput, so were not selected.

97

available from the cache to a core at core:cache clock ratios of 1:1, 1:2, and 1:4. For 1T1C DRAM-

cell based configurations, we cannot support 1:1 and 1:2 core:cache clock ratios for all frequencies

in the displayed range. The frequencies at which a particular DRAM design is limited on a given

line are shown and labeled explicitly in the figure. Specifically, with DRAM, we observe that the

bank cycle time limits us to an achievable frequency of 1.2 GHz for our selected 1 MB cache

designs and 1.87 GHz for 256 KB and 512 KB cache designs. This maximum frequency increases

if we shrink the cache size or select a less energy-efficient design.

We based our bandwidth figures on a hypothetical maximum achieved when one bank per port

was active every cycle. In designs with an equal number of banks and ports, it is assumed that all

available banks are used every cycle to arrive at the maximum theoretical bandwidth value.

The other element of bandwidth is operating frequency of the cache. This is limited by the bank

access time, which cannot be pipelined, and therefore becomes the limiting factor for increasing

the cache frequency. For larger DRAM designs, this is a direct limitation in the operating fre-

quency range of the core that we study. For SRAM designs, we are not constrained by bank cycle

time in any of the studied designs. In the case of the hybrid cell, we believe that bank cycle times

Figure 3-6. Power Comparison of SRAM,
1T1C DRAM, and Hybrid [77] L1 Data
Cache Designs

Figure 3-5. L1 Data Cache Bandwidth for
Selected Designs as Core Frequency is Varied
Bank cycle time limits larger DRAM configura-
tions to a lower maximum frequency.

98

would be faster than DRAM-only alternatives, since the hybrid cell allows reads to be destructive,

avoiding the additional time to refresh the cell data after the read. We assume this would allow the

hybrid design to equal SRAM in the core frequency range that we focus on.

From our previous study of core demands, we find that we have ample bandwidth available,

even when we are unable to run the cache at the core frequency. We therefore model running the

cache at a clock rate less than the core in order to reduce its power footprint. The result of slowing

the clock is a net reduction in maximum dynamic power due to a reduction in bandwidth, since we

limit the number of memory operations per second that the cache can support. We model a simple

clock slowing solution that utilizes the core clock, creating a virtual cache clock that transitions on

every nth edge where n is a factor of 2. We also assume that static (leakage) power remains fixed,

since we do not assume a reduction in operating voltage with the speed reduction.

In our sweep of the design space, we explored core to cache clock ratios of up to 1:4, since we

show that we cannot provide sufficient bandwidth to meet core demands at speeds slower than

25% of core frequency. In Figure 3-6, we show the power dissipation for caches implemented in

the three technologies. For each base storage cell technology alternative, we plot three curves, one

for each of the core:cache ratios we show in our bandwidth figure. We set the core frequency to 1.5

GHz, which represents a median value for where we forecast throughput-oriented CMPs to clock

cores at. We cap maximum frequency to avoid distortion of the SRAM and hybrid values from the

additional active power from operating at a higher frequency. That is, the SRAM and hybrid

caches can run at a higher clock rate to provide greater bandwidth, and therefore, greater active

power.

At small cache capacities, the absolute power numbers for all caches are small - less than 19

mW for the 6T SRAM 16 KB design running at 1.5 GHz. Despite the low absolute power values,

99

the clear power advantage of hybrid and DRAM-based cache designs is evident. Their 16 KB-

capacity cache power comes in at roughly 15 mW and 10 mW, respectively. These gains are due to

the reduced leakage power component for the DRAM and hybrid designs. As we scale to larger

capacities, this advantage is amplified as data and tag cells become the dominant contributors to

overall cache power footprint.

Scaling cache operating frequency to reduce dynamic power is effective, netting additional

gains that are relatively constant across the sweep of cache sizes. The uniformity of power reduc-

tion effect across technologies with cache frequency reduction is to be expected, as the bandwidth

of all of these caches is independent of their capacity and is constant at a given cache frequency2.

We show the 1:2 core:cache clock ratio in Figure 3-6 with a fine-dashed line and the 1:4 ratio with

a coarse-dashed line. The series markers are matched to the cell-basis of the cache implementation

to help the reader discern the important relationships between the three cache bases we study. Note

that the three SRAM curves appear to converge as cache size increases. This is due to the leakage

power domination of the total power of the SRAM cache. The reduced leakage power of the alter-

native-cell based caches makes reducing the operating frequency of the cache to reduce total cache

power more effective.

Our examination of this data leads us to two conclusions. First, all of our cache designs provide

ample bandwidth to satisfy the demands of the core when clocked at the core frequency. Even

when we move to a 1:4 core:cache clock ratio, we still see sufficient bandwidth to support almost

all of the maximum theoretical bandwidth that our workloads will demand on our core. Second,

DRAM and hybrid cell-based caches have a distinct power advantage over their SRAM counter-

2. The exception in the presented data is the 1 MB DRAM cache solid-curve (1:1 core:cache clock ratio) data point,
which reflects its maximum operating frequency of 1.2 GHz. It is explicitly labeled in the figure.

100

parts, but this advantage is small, in absolute terms, at the relatively small cache capacities typical

of an L1.

3.4.1.2 Cache Area

At the typical capacities of L1 caches that we see today, cache area is not generally seen as a

limiting factor. We included it in our study since we do examine larger-than-typical cache capaci-

ties, which start to see non-trivial area differences between various designs.

We show the areas of the selected cache configurations in Figure 3-7. Our optimization on

energy-delay efficiency results in Cacti converging on different bank configurations when we

move from SRAM or hybrid cells in the data array to DRAM at sizes of 512 KB and 1 MB. The

result is 512 KB designs that have more banks than their 1MB counterparts in the SRAM and

hybrid cell implementations. This causes the 512 KB caches to be less area-efficient, which makes

them significantly larger. At 1 MB capacity, the SRAM and hybrid-cell based caches have 8 banks,

while the DRAM-based cache has 16, leading to the non-intuitive larger size of the DRAM-based

cache. We note that areas for caches smaller than 128 KB are dominated by port and wire layout,

Figure 3-8. Latency of SRAM and DRAM-
Based L1 Data Cache Implementations

Figure 3-7. L1 Data Cache Area for
Energy-Delay Optimized Designs
Implemented with SRAM, DRAM, or
Hybrid Cells
Trend discrepancies in 512KB and 1MB areas
are due to differing bank configurations.

Note equivalence of these technologies at a tar-
get core frequency of 1.5 GHz. Hybrid cells
have variable latency, so are not shown.

101

leading to very little overall difference in footprint when moving between these capacities. Start-

ing at 128 KB, storage cell area begins to dominate, at which point we see a marked advantage for

1T1C DRAM over the other two alternatives for configurations where we have identical numbers

of banks. Since we assume area is at less of a premium than power in our study, we are willing to

select area-inefficient configurations when they provide lower power per unit bandwidth.

3.4.1.3 Cache Latency

Latency is important when we compare designs; while we can tolerate latency in a throughput-

oriented core, we do observe better throughput at lower latencies, so, all other factors being equal,

we would prefer low-latency operation. When we examine latency characteristics of the selected

cache designs, we see relative homogeneity of access latency at the frequencies and capacities we

target. Latency data in Figure 3-8 shows that sizes above 512 KB require a single pipeline stage be

placed into the cache in order to sustain a 1.5 GHz3 cache clock. For all of the designs we present,

this single pipeline stage would be sufficient to sustain up to the 2.5 GHz clock rate that we use as

an upper bound for core frequency. Further, none of the configurations with single-cycle latency at

1.5 GHz would require an additional cycle of latency at 2.5 GHz.

The latency of the hybrid cache is variable, by design. In the proposed implementation [77], the

authors indicate that tags and way 0 are accessed in parallel and that hits to the DRAM ways are

serviced only after a tag hit is verified. This causes DRAM-way hits to have a latency that is longer

than their counterparts in an all-DRAM cache, but this effect is mitigated by the relatively low

fraction of hits in the DRAM ways. While they might not reach the same speed as their SRAM

counterparts, we optimistically assume that the hybrid cell designs will have latency characteris-

tics that match the SRAM and DRAM data when we do throughput improvement comparisons.

3. Again, the exception is the 1MB DRAM cache, which can only run at a maximum frequency of 1.2 GHz, and requires
a pipeline stage at that frequency.

102

3.4.1.4 Summary of L1 Data Cache Evaluation

The point of this study was to answer find an L1 data cache that best fits throughput-oriented

core demands. Our finding that all of our caches provide more than enough bandwidth at their

maximum operating frequency leads us to conclude that a balanced implementation may intention-

ally lower the frequency of the L1 data cache, introducing latency, reducing superfluous band-

width and dynamic power in the process. We now turn to the question of how we can gain

additional chip throughput with a cache better matched to our core. We only want to constrain the

design if it results in an opportunity for throughput improvement. That is, we do not want to con-

strain the cache if doing so nets no additional throughput benefit to the overall CMP.

The most obvious benefit we get in exchange for capping our bandwidth is a reduction in

power. Moving from SRAM to DRAM gives us the best power savings. Slowing the L1 data cache

down by reducing its operating frequency and introducing additional latency amplifies this effect,

while keeping us within our core’s bandwidth demands. Unfortunately, the absolute numbers we

find for typical L1 data cache sizes do not give us a large amount of power to work with if we seek

to employ the savings we gain from moving to DRAM. An alternative to reallocating the power

savings to another component is to expand the size of the L1 data cache. Our shift in technology

puts us on a different power curve. This leap allows us to increase capacity in the cache. The ben-

efits of this trade-off are something that we explore in Section 3.4.3.

3.4.2 L2 Cache Evaluation

For the L2 cache, the argument for use of DRAM is compelled equally by density as it is by

power savings. L2 caches on throughput-oriented CMPs scale as the number of cores (and L1s)

that they have to support. This scaling quickly becomes problematic with SRAM in a 32 nm pro-

cess. When we simulate 16 MB, 32 MB, and 64 MB L2 cache configurations, we see the chal-

103

lenges facing the throughput-oriented architect. The details of the L2 cache configurations we

simulated are shown in Table 3-3. We did not include an evaluation of hybrid cell-based L2 caches

since the hybrid cell design requires an on-chip backing store for the dynamic ways, which are not

refreshed (we do not assume an L3 cache). The results here also do not factor any on-chip inter-

connection network nor do they include modeling of contention for ports, which is workload and

chip-design dependent. The use of NUCA cache architectures here may be warranted if latency or

maximum operating frequency are found to be critical factors in a design. L2 interaction with on-

chip networks is outside of the scope of this work.

We see in Figure 3-9 that a 16 MB SRAM cache has an area of ~120 mm2 - a large portion of

available die capacity - with DRAM coming in an order of magnitude smaller at ~12 mm2.

Figure 3-10 shows that this reduction in size does enable faster access, but the properties of

DRAM again keep cycle times (and maximum clock rates) limited. We found maximum clock

rates for SRAM in the 2.5 GHz range, while the DRAM caches were limited to between 980 MHz

and 1.33 GHz. The SRAM designs require twice the pipelining of their DRAM counterparts, again

due to the order of magnitude difference in the size of the cache. Here, the density advantage of

Table 3-3. L2 Cache Configurations Explored

Parameter Value

Technology 32nm

Cache Size 16MB, 32MB, and 64MB

Width 256 Bits, 256B Blocks

Storage and Tag Cells All SRAM or All 1T1C DRAM

Optimization Target Energy-Delay

Banks 1, 2, 4, 8, 16, 32, or 64

Architecture Uniform, Non-Blocking Cache Architecture with Pipelining

Port Configuration 12 (4 Exclusive Write, 8 Single-Ended Read)

Associativity 4, 8, and 32-Way, Set-Associative

104

DRAM, which is the source of the order-of-magnitude area reduction also results in less wire

delay from the port to the banks in the cache. So, the bank cycle time limits DRAM to lower fre-

quencies, but the density of DRAM provides area and latency improvements over SRAM.

The most important result here is the power footprint of a DRAM-based L2 cache. A 16 MB L2

SRAM-based cache consumes ~10 W, or roughly 5-10% of the chip’s power budget. If we switch

to DRAM-based cache, we reduce power to less than 700 mW. Moving to cache capacities that are

unrealizable with SRAM, we still have power footprints less than the 16 MB SRAM. A 64 MB

DRAM L2 at 750 MHz operating frequency consumes just under 6 W of power at maximum band-

width.

3.4.3 Putting it All Together: Evaluation of a Throughput-Oriented

Cache

We have shown that running the L1 data cache at a lower frequency than the core will provide

additional power savings with a limited impact on core throughput. Note that running the cache at

a reduced clock rate both increases latency and reduces bandwidth. If we do run the cache at a

reduced frequency, data in Figure 3-6 suggests that the power savings in the L1 data cache are not

sufficient to amortize the power costs of an additional core on the die. Even if we assume the max-

Figure 3-9. Area and Power Characteristics
of Large L2 Cache Configurations for Large-
Scale CMPs

Figure 3-10. Latency to Access SRAM and
DRAM L2 Caches at 750MHz Operating
Frequency

Note that 32 MB and 64 MB capacities would not
fit on chip in 32nm process with SRAM.

DRAM advantage is due to smaller area,
which results in shorter wires.

105

imum power savings of roughly 15 mW per core, a 2 W core would only be amortized if we had

133 cores already on the die. At a roughly 100 W power budget for the package, this math does not

work out in our favor. Our data does, however, indicate that we can allocate the power savings

from this technique to larger cache capacity per core.

The next two sub-sections explore what we can do to improve CMP throughput if we match the

cache to the core at both an L1 data and L2 level. In each section, we show possible tradeoffs that

might be made and discuss their effects on throughput.

3.4.3.1 Improvements in the L1 Data Cache

In this study, we explored equal-power configurations that trade L1 data cache latency for

capacity to see if further improvements in throughput can be gained. Since all of our modeled

caches provide sufficient bandwidth to meet core needs, we include cache frequency reductions

that trade both latency and bandwidth for additional power, which we put toward increasing capac-

ity. We base our power budget on the 16 KB SRAM cache running at the core clock rate. We show

a summary of cache power footprints in Table 3-4 to help clarify the equal-power alternatives. We

Table 3-4. Cache Power, in Milliwatts at Maximum Throughputa

Type/Capacity 16 KB 32 KB 64 KB 128 KB 256 KB 512 KB 1 MB

SRAM @ 1.5 GHz 18.6 26.6 41.8 69.5 125.6 231.6 437.7

DRAM @ 1.5 GHz 10.0 12.3 15.0 23.5 34.1 74.4 141.2

Hybrid @ 1.5 GHz 15.2 18.8 25.5 35.3 55.9 90.4 158.6

SRAM @ 750 MHz 12.4 19.4 32.9 59.0 111.2 212.4 408.7

DRAM @ 750 MHz 5.4 7.1 9.1 14.8 21.1 45.1 96.5

Hybrid @ 750 MHz 8.4 10.9 15.7 23.7 40.1 69.4 126.8

SRAM @ 375 MHz 9.3 15.9 28.5 53.7 103.9 202.9 394.3

DRAM @ 375 MHz 3.1 4.6 6.1 10.5 14.6 30.4 59.2

Hybrid @ 375 MHz 5.0 7.0 10.9 17.9 32.1 58.9 110.9

a. Highlighted cells show configurations that fit within the budget of a 16 KB SRAM cache at
1.5 GHz.

106

highlight the largest-capacity alternatives that fit within the budget of a 16 KB SRAM-based cache

running at 1.5 GHz in bold in each row of the table. For hybrid implementations, we can afford a

64 KB at a 1:2 core:cache clock ratio and 128 KB in capacity at 1:4 core:cache clock ratio. When

we move from an SRAM based cache to a 1T1C DRAM-based cache, we can afford 64 KB, 128

KB and 256 KB capacities at 1:1, 1:2, and 1:4 core:cache clock ratios, respectively. The disparity

between DRAM and the hybrid cell is because the hybrid cell only achieves, at best, 75% static

energy reduction in a 4-way set-associative cache because it implements one way in SRAM. The

dynamic power difference between SRAM and DRAM does not compensate for this with the

bandwidth we achieve in our cache designs. The latency advantages of SRAM and the hybrid cell

are of less use than the density and capacity advantages of DRAM toward our throughput-oriented

design goals.

To illustrate the benefits of moving from SRAM to DRAM and then trading some latency for

additional capacity, we show the speedup of the different core/cache/workload configurations in

Figure 3-11. Each graph displays the speedup of an 8-threaded core’s execution over its 2-threaded

counterpart operating with a 16 KB L1 data cache with 1-cycle latency. If we select the largest-

Figure 3-11. Speedup by 8-Thread Configurations Over 2-Thread Core with 16 KB, 1-
Cycle L1 Data Cache at L1 Data Cache Capacities From 16KB to 1MB and 1, 2, and 4-
Cycle Latencies
This figure shows the possible trade-offs that can be made in a design between adding additional capacity
and increasing access latency.

107

capacity caches from Table 3-4 for our 18.6 mW power budget, we see the following effects. For

SPECjbb, if we go from a 16 KB to a 64 KB L1 data cache capacity at the same latency, we get a

throughput speedup of 14%, for in-order, and 18%, for out-of order cores. When we examine the

longer-latency alternatives, either a 128 KB cache with a 2-cycle latency or a 256 KB cache with a

4-cycle latency, we see no additional speedup for the 128 KB cache and a reduction in throughput

for the 256 KB, 4-cycle cache design. For Apache, the configuration that maximizes throughput is

the 128 KB, 2-cycle latency cache. This nets a 45% and 43% improvement in speedup and for in-

order and out-of-order configurations, respectively. The sweep of latencies and cache sizes shows

that additional benefit (beyond that achieved with multithreading the core) is possible if we extend

the cache capacity, even if it means a modest increase in latency to access the cache.

We do note that, while the bandwidth needs of the workload are most closely matched by the

L1 clocked at a 1:4 core:cache ratio, the speedups gained are smaller. Here, the sensitivity of the

core and workload to the extra latency of access outweighs benefits from additional capacity.

In this study, we assume that the cost of adding SMT support to the core has already been cov-

ered in the core’s power budget. If that is not the case, it is clear that 8-thread SMT support is a

first priority. Using Cacti to model the leakage power of an SRAM-based register file with 4 read

and 2 write ports gives us an estimate of the magnitude of extra power cost that the core must carry

to support multithreading. We do not scale the dynamic power of the register file in this estimate,

since the width of the core remains fixed in an SMT configuration, limiting the bandwidth

demands on the register file. Using this rough estimation technique, we find that roughly 40 mW

of leakage power would need to be budgeted toward moving from 1 to 8 threaded SMT support in

the register file.

3.4.3.2 Opportunities in the L2 Cache

108

In the L2, the magnitude of power savings when we move from SRAM to DRAM is signifi-

cant. Here, we do have opportunity to trade cache capacity for additional cores. The gains in area-

efficiency and power reduction (both static from cell leakage and dynamic from reduced wiring)

result in a large enough savings to expect that the addition of one or more additional cores may be

an option in the 32 nm process generation.

At a 750 MHz operating frequency, we find the DRAM L2 power to be 600 mW for the 16 MB

configuration, 1.5 W for the 32 MB configuration, and 5.3 W for the 64 MB configuration. All of

these caches also fit within a reasonable area on a 32 nm die, at 14, 32, and 70 mm2, for the three

sizes studied. The microarchitect has a choice for more capacity, more cores, or possibly more of

another core resource that is shared amongst clusters of cores. Because the power and area savings

here are orders of magnitude higher than in the L1 data cache, the possibilities expand. We leave

detailed studies of possible tradeoffs in this space to future work.

3.5 Related Work

Our focus has been on finding a cache design that best meets the demands of a simple, low-

power, throughput-oriented core. Both Davis et al.[21] and Li et al. [35] have done extensive stud-

ies of the throughput-oriented core design space. We leverage this work to build our model

throughput-oriented core. These efforts did examine various cache configurations, but they did not

propose and evaluate caches implemented with different storage cell technologies. We show that

moving from SRAM to DRAM opens up a new area of the design space to possible implementa-

tion.

The other major area of effort that we utilize in this work is work on storage cell alternatives for

on-chip cache memories. The literature is rich with circuit alternatives to the traditional 6T SRAM

cell. SRAM-based options seek to limit leakage effects with additional transistors [7, 15, 17, 39],

109

to enable standby states in the cell [32, 50, 54] or drowsy caches [33], which use microarchitec-

tural techniques to put unused cells into low-power states. They improve upon the 6T’s leakage

properties, but still suffer from leakage effects.

The use of DRAM includes the traditional 1T1C cell [29] and a newer, low-latency 3T1D cell

[41]. The latter does not suffer from destructive reads, but has a power footprint similar to 6T

SRAM in applications that require low-latency due to refresh requirements. We employ the 1T1C

cell in our work in a new application within the cache hierarchy, showing that throughput-oriented

cores perform well with an L1 data cache implemented with 1T1C DRAM cells.

Finally, hybrid cache cells have been proposed [77] to provide both low leakage power and low

latency performance at a reduced area to 6T SRAM. While they may indeed deliver on this prom-

ise, we find the latency characteristics of caches implemented with these cells to not be as well-

matched to our throughput-oriented core’s demands as the 1T1C DRAM cell-based caches are.

The use of 25% 6T SRAM in a 4-way set-associative cache also limits the opportunity to increase

capacity under a fixed power budget. If we consider the use of one of the mentioned SRAM cell

designs that has lower leakage current, we mitigate this deficiency, but only approach the 1T1C

DRAM power characteristics asymptotically.

110

4 Summary and Conclusions
This thesis has been motivated by the challenges presented to the microarchitect by deep sub-

micron CMOS process technology. The availability of more transistors than we can effectively

cool in a high-performance chip has caused the industry to focus on extracting value in new ways.

In this work, we have looked at hard fault tolerance in the high-performance core and the data

cache in a throughput-oriented design. In this chapter, we will briefly summarize our work in

Section 4.1and then provide conclusions we draw from it in Section 4.2.

4.1 Summary of Results

In the first part of this work, we explored techniques to provide fine-grained, low-cost, hard-

fault tolerance in the microprocessor core. The goal was to show that hard faults can be tolerated

effectively within the core without macro-scale replication, thus allowing traditionally unprotected

designs to adopt fault tolerance mechanisms without the traditional costs. The exchange we were

willing to make for this low-cost protection was the loss of some performance and the introduction

of additional complexity within the design. We proposed and evaluated three mechanisms in this

space. The first two both work with array structures in the microprocessor core, while the third

extended the scope of diagnosis to include all processing after instructions are decoded until their

results are checked at the end of the pipeline.

In our presentation of self-repairing array structures (SRAS), our first implementation, using

check rows within the array structure (SRAS-CR) utilized a small amount of redundancy within

the array itself to provide for local diagnosis of faulty entries. Error detection and correction was

left to an external mechanism. We selected DIVA [6] for this purpose given its relatively low cost

and ease of integration into an existing commercial design. Our second implementation used error-

detecting codes (EDC). In SRAS-EDC, we add delay to the access time of the array structures pro-

111

tected, but eliminate the need for an external detection and correction mechanism. In both SRAS-

CR and SRAS-EDC, we provide the microarchitect with a tunable overhead for fault tolerance.

The designer can choose how many spare array elements are available to maintain a fixed array

size or, alternatively, can elect to reduce array size in the presence of failures in exchange for the

consequential reduction in performance that will come from reduced capacity.

Our experimental evaluation of SRAS techniques shows that the primary advantage of SRAS is

realized in structures with a high architectural vulnerability factor. This owes to the cost of error

detection and correction in DIVA and related techniques, where we must flush the pipeline in order

to correct a fault. In comparing SRAS-CR with SRAS-EDC, we observe that SRAS-CR can

extend existing soft-fault tolerance mechanisms, such as DIVA to tolerate hard faults without great

loss of performance, but that we can eliminate the need for an external detection and diagnosis

mechanism altogether for a small performance penalty in the fault-free case with SRAS-EDC.

We extended the basic principles of fine-grained, low-cost hard-fault tolerance from SRAS into

a processor-core global detection and diagnosis mechanism. In this design, we again relied upon

DIVA for error detection and correction, but we were able to track utilization of replicated

resources to identify those with hard faults present. We showed that deconfiguration of units with a

high architectural vulnerability is favorable to continued error detection and correction by DIVA

checkers. As with SRAS, the exploitation of redundancy within the core enables us to avoid costly

recoveries in the faulted case while still retaining fault-free performance at or near parity with the

unprotected design.

In our final piece of work, we presented an argument for the replacement of traditional low-

latency SRAM-based data caches with lower-power, area-efficient DRAM-based data cache on

the chip. To motivate our argument, we examined the demands of a throughput-oriented core and

112

workload on the on-chip data cache hierarchy. We then showed how a DRAM-based cache can

meet the demands of this workload within a lower power envelope. We further showed that we can

increase L1 data cache capacity at parity power to an SRAM-based counterpart. This nets a nota-

ble improvement in throughput over the SRAM cache. Application of these techniques to the last-

level on-chip cache result in much greater power savings, opening the opportunity for a wider vari-

ety of alternatives to increase throughput at parity power, including addition of more cores as well

as more cache capacity.

4.2 Conclusions

As a result of the insights this research has provided us, we draw the following three conclu-

sions:

1) In coming generations, the trend to have more transistors than we can effectively power and

cool in traditional designs will lead to an increased focus on architectural techniques that

exploit this characteristic. Techniques that provide desirable features to a design while reduc-

ing hot spots and overall power density will become attractive as concerns over die area and

transistor budget are viewed with less importance than power consumption. Our hard-fault tol-

erance mechanisms are examples of this exploitation. The extra hardware internal to the core

makes for a larger overall core footprint, but the addition of storage elements for error count-

ing and additional cold spare capacity represents die area and transistor budget consumed with

a much smaller activation rate for the transistors added to the design. The net benefits of

extended lifetime and part performance come at a much lower power cost than other space-

consuming alternatives (e.g. triple-modular redundancy).

113

2) Throughput-oriented computing trends will lead microarchitects to focus on off-chip band-

width as first-class constraints, with latency taking on a role of lesser importance in designs

supporting hundreds of threads on a chip. As an extension to the work we have presented here,

we conclude that this will lead to the on-chip memories’ primary role moving from one of

latency hiding to one of pin bandwidth buffering, with new techniques favoring bandwidth

conservation favored over those in use today.

3) Our final conclusion is an insight gained from looking at both latency-sensitive and through-

put-oriented problem domains. With more transistors to work with, but tighter power con-

straints, the use of a single core design for both latency-sensitive and throughput-oriented

workloads will decline in popularity. Since many of the goals of these two compute paradigms

are mutually exclusive, compromising a design to achieve characteristics desirable to both

domains becomes ever more inefficient as we progress to smaller device geometries.

The work of the microarchitect is one of balancing demands and constraints. Technological

breakthroughs challenge us to revisit past design decisions and examine them from a different per-

spective. As we move into deep sub-micron CMOS technology nodes, we see an increasing num-

ber of device manufacturing and process challenges for which no known solution exists. This

increasing set of challenges will continue to provide the computer architecture community with a

ready set of new problems to work on and old solutions to re-assess in new ways.

114

References

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman. Digital Systems Testing and Testable
Design. IEEE Press, 1990.

[2] N. Aggarwal, P. Ranganathan, N. Jouppi, and J. Smith. Configurable Isolation: Building
High Availability Systems with Commodity Multicore Processors. In Proc. of the 34th
Annual Int’l Symposium on Computer Architecture (ISCA-34), pages 470–481, June 2007.

[3] N. Aggarwal, P. Ranganathan, N. Jouppi, and J. Smith. Isolation in Commodity Multicore
Processors. Computer, 40(6):49–59, June 2007.

[4] AMD. Software Optimization Guide for AMD64 Processors. Publication 25112, Rev. 3.06,
Sept. 2005.

[5] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An Infrastructure for Computer System
Modeling. IEEE Computer, 35(2):59–67, Feb. 2002.

[6] T. M. Austin. DIVA: A Reliable Substrate for Deep Submicron Microarchitecture Design. In
Proc. of the 32nd Annual IEEE/ACM Int’l Symposium on Microarchitecture, pages 196–207,
Nov. 1999.

[7] N. Azizi, A. Moshovos, and F. Najm. Low-Leakage Asymmetric-Cell SRAM. In Proc. of
the 2002 Int’l Symposium on Low Power Electronics and Design (ISLPED’02), pages 48–51,
Aug. 2002.

[8] T. S. Barnett, A. D. Singh, and V. P. Nelson. Extending Integrated-Circuit Yield-Models to
Estimate Early-Life Reliability. IEEE Trans. on Reliability, 52(3):296–300, Sept. 2003.

[9] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano, S. Smith,
R. Stets, and B. Verghese. Piranha: a scalable architecture based on single-chip
multiprocessing. In Proc. of 27th Annual Int’l Symposium on Computer Architecture (ISCA
’00), pages 282–293, June 2000.

[10] J. M. Berger. A Note on Error Detecting Codes for Asymmetric Channels. Information and
Control, 4:68–73, Mar. 1961.

115

[11] D. T. Blaauw, C. Oh, V. Zolotov, and A. Dasgupta. Static Electromigration Analysis for On-
Chip Signal Interconnects. IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems, 22(1):39–48, Jan. 2003.

[12] J. R. Black. Electromigration Failure Modes in Aluminum Metallization for Semiconductor
Devices. Proc. of the IEEE, 57(9), Sept. 1969.

[13] R. Blish et al. Critical Reliability Challenges for The Int’l Technology Roadmap for
Semiconductors (ITRS). Technical Report 03024377A-TR, Int’l SEMATECH, Mar. 2003.

[14] D. Boggs et al. The Microarchitecture of the Intel Pentium 4 Processor on 90nm Technology.
Intel Technology Journal, 8(1), Feb. 2004.

[15] B. Calhoun and A. Chandrakasan. A 256kb Sub-threshold SRAM in 65nm CMOS. In Digest
of Technical Papers 2006 IEEE Int’l Solid-State Circuits Conference (ISSCC 2006), pages
2592–2601, Feb. 2006.

[16] J. R. Carter, S. Ozev, and D. J. Sorin. Circuit-Level Modeling for Concurrent Testing of
Operational Defects due to Gate Oxide Breakdown. In Proc. of Design, Automation, and Test
in Europe (DATE), pages 300–305, Mar. 2005.

[17] L. Chang, D. Fried, J. Hergenrother, J. Sleight, R. Denard, R. Montoye, L. Sekaric,
S. McNab, A. Topol, C. Adams, K. Guarini, and W. Haensch. Stable SRAM cell design for
the 32 nm node and beyond. In Digest of Technical Papers 2005 Symposium on VLSI
Technology, pages 128–129, June 2005.

[18] T. Chen and G. Sunada. A Self-Testing and Self-Repairing Structure for Ultra-Large
Capacity Memories. In Proc. of the Int’l Test Conference, pages 623–631, Oct. 1992.

[19] T. Chen and G. Sunada. An Ultra-Large Capacity Single-Chip Memory Architecture with
Self-Testing and Self-Repairing. In Proc. of the Int’l Conference on Computer Design
(ICCD), pages 576–581, Oct. 1992.

[20] W. B. Culbertson, R. Amerson, R. J. Carter, P. Kuekes, and G. Snider. The Teramac Custom
Computer: Extending the Limits with Defect Tolerance. In Proc. of the IEEE Int’l
Symposium on Defect and Fault Tolerance in VLSI Systems, Nov. 1996.

116

[21] J. Davis, J. Laudon, and K. Olukotun. Maximizing CMP Throughput with Mediocre Cores.
In Proc. of 14th Int’l Conference on Parallel Architectures and Compilation Techniques
(PACT 2005), pages 51–62, Sept. 2005.

[22] T. J. Dell. A White Paper on the Benefits of Chipkill-Correct ECC for PC Server Main
Memory. IBM Microelectronics Division Whitepaper, Nov. 1997.

[23] D. J. Dumin. Oxide Reliability: A Summary of Silicon Oxide Wearout, Breakdown and
Reliability. World Scientific Publications, 2002.

[24] L. Gwennap. Alpha 21364 to Ease Memory Bottleneck. Microprocessor Report, Oct. 1998.

[25] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel. The
Microarchitecture of the Pentium 4 Processor. Intel Technology Journal, Feb. 2001.

[26] J. Huynh. The AMD Athlon XP Processor with 512KB L2 Cache. AMD White Paper, Feb.
2003.

[27] IBM. Enhancing IBM Netfinity Server Reliability: IBM Chipkill Memory. IBM Whitepaper,
Feb. 1999.

[28] Int’l Technology Roadmap for Semiconductors, 2003.

[29] S. Iyer, J. Barth, P. Parries, J. Norum, J. Rice, L. Logan, and D. Hoyniak. Embedded DRAM
Technology Platform for the Blue Gene/L Chip. IBM Journal of Research and Development,
49(2/3):333–350, March/May 2005.

[30] JEDEC Solid State Technology Association. Failure Mechanisms and Models for
Semiconductor Devices. JEDEC Publication JEP122-B, Aug. 2003.

[31] D. Jewett. Integrity S2: A Fault-Tolerant UNIX Platform. In Proc. of the 21st Int’l
Symposium on Fault-Tolerant Computing Systems, pages 512–519, June 1991.

[32] C. Kim and K. Roy. Dynamic Vt SRAM: a leakage tolerant cache memory for low voltage
microprocessors. In Proc. of the 2002 Int’l Symposium on Low Power Electronics and
Design (ISLPED’02), pages 251–254, Aug. 2002.

117

[33] N. Kim, K. Flautner, D. Blaauw, and T. Mudge. Circuit and Microarchitectural Techniques
for Reducing Cache Leakage Power. IEEE Trans. on Very Large Scale Integration (VLSI)
Systems, 12(2):167–184, Feb. 2004.

[34] S. Krumbein. Metallic Electromigration Phenomena. IEEE Trans. on Components, Hybrids,
and Manufacturing Technology, 11(1):5–15, Mar. 1988.

[35] Y. Li, K. Skadron, B. Lee, and D. Brooks. Quantifying Latency and Throughput
Compromises in CMP Design. Technical Report CS-2006-26, University of Virginia
Department of Computer Science, 2006.

[36] X. Liang, R. Canal, G. Wei, and D. Brooks. Process Variation Tolerant 3T1D-Based Cache
Architectures. In Proc. of the 40th IEEE Int’l Symposium on Microarchitecture (MICRO-40),
Dec. 2007.

[37] X. Liang, R. Canal, G. Wei, and D. Brooks. Process Variation Tolerant Register Files Based
On Dynamic Memories. In Workshop on Architectural Support for Gigascale Integration,
held with Int’l Symposium on Computer Architecture (ISCA-34), June 2007.

[38] X. Liang, R. Canal, G. Wei, and D. Brooks. Replacing 6T SRAMs with 3T1D DRAMSs in
the L1 Data Cache to Combat Process Variability. IEEE MICRO, 28(1):60–68,
January/February 2008.

[39] S. Lin, Y.-B. Kim, and F. Lombardi. A 32nm SRAM Design for Low Power and High
Stability. In Proc. of the 51st Midwest Symposium on Circuits and Systems (MWSCAS 2008),
pages 422–425, Aug. 2008.

[40] B. P. Linder, J. H. Stathis, D. J. Frank, S. Lombardo, and A. Vayshenker. Growth and
Scaling of Oxide Conduction After Breakdown. In 41st Annual IEEE Int’l Reliability Physics
Symposium Proc. , pages 402–405, Mar. 2003.

[41] W. Luk, J. Cai, M. Immediato, and S. Kosonocky. A 3-Transistor DRAM Cell with Gated
Diode for Enhanced Speed and Retention Time. In 2006 Technical Symposium on VLSI
Circuits, pages 184–185, June 2006.

[42] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, F. Larsson,
A. Moestdedt, and B. Werner. Simics: A full system simulation platform. IEEE Computer,
35(2):50–58, Feb. 2002.

118

[43] M. Martin, D. Sorin, M. Beckman, M. Marty, A. Xu, A. Alameldeen, M. Moore, M. Hill,
and D. Wood. Multifacet’s General Execution-Driven Multiprocessor Simulator (GEMS)
Toolset. Computer Architecture News, 33(4):92–99, Sept. 2005.

[44] P. Mazumder and J. S. Yih. A Novel Built-In Self-Repair Approach to VLSI Memory Yield
Enhancement. In Proc. of the Int’l Test Conference, pages 833–841, 1990.

[45] S. McFarling. Combining Branch Predictors. Technical Report TN-36, Digital Western
Research Laboratory, June 1993.

[46] G. Moore. Cramming More Components onto Integrated Circuits. Electronics, 38(8), 1965.

[47] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed Design and Implementation of
Redundant Multithreading Alternatives. In Proc. of the 29th Annual Int’l Symposium on
Computer Architecture, pages 99–110, May 2002.

[48] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin. A Systematic
Methodology to Compute the Architectural Vulnerability Factors for a High-Performance
Microprocessor. In Proc. of the 36th Annual IEEE/ACM Int’l Symposium on
Microarchitecture, Dec. 2003.

[49] M. Nicolaidis, N. Achouri, and S. Boutobza. Dynamic Data-bit Memory Built-In Self-
Repair. In Proc. of the Int’l Conference on Computer Aided Design, pages 588–594, Nov.
2003.

[50] K. Nii, Y. Tsukamoto, T. Yoshizawa, S. Imaoka, Y. Yamagami, T. Susuki, A. Shibayama,
H. Makino, and S. Iwade. A 90-nm low-power 32-kB embedded SRAM with gate leakage
suppression circuit for mobile applications. IEEE Journal of Solid State Circuits, 39(4):684–
693, Apr. 2004.

[51] K. Nikolic, A. Sadek, and M. Forshaw. Fault-Tolerant Techniques for Nanocomputers.
Nanotechnology, 13:357–362, 2002.

[52] D. A. Patterson, G. Gibson, and R. H. Katz. A Case for Redundant Arrays of Inexpensive
Disks (RAID). In Proc. of 1988 ACM SIGMOD Conference, pages 109–116, June 1988.

[53] I. Pomeranz and S. M. Reddy. On n-detection Test Sets and Variable n-detection Test Sets

119

for Transition Faults. In Proc. of the 17th IEEE VLSI Test Symposium, pages 173–180, Apr.
1999.

[54] H. Qin, Y. Cao, D. Markovic, A. Vladimirescu, and J. Rabaey. SRAM Leakage Suppression
by Minimizing Standby Supply Voltage. In Proc. of the 5th Int’l Symposium on Quality
Electronic Design (ISQED’04), pages 55–60, Mar. 2004.

[55] S. K. Reinhardt and S. S. Mukherjee. Transient Fault Detection via Simultaneous
Multithreading. In Proc. of the 27th Annual Int’l Symposium on Computer Architecture,
pages 25–36, June 2000.

[56] W. C. Riordan, R. Miller, J. M. Sherman, and J. Hicks. Microprocessor Reliability
Performance as a Function of Die Location for a 0.25um, Five Layer Metal CMOS Logic
Process. In Proc. of the 37th Annual IEEE Int’l Reliability Physics Symposium, pages 1–11,
Mar. 1999.

[57] R. Rodriguez, R. V. Joshi, J. H. Stathis, and C. T. Chuang. Oxide Breakdown Model and Its
Impact on SRAM Cell Functionality. In Simulation of Semiconductor Processes and Devices
(SISPAD), pages 283–286, Sept. 2003.

[58] E. Rotenberg. AR-SMT: A Microarchitectural Approach to Fault Tolerance in
Microprocessors. In Proc. of the 29th Int’l Symposium on Fault-Tolerant Computing
Systems, pages 84–91, June 1999.

[59] K. Sawada, T. Sakurai, Y. Uchino, and K. Yamada. Built-in Self Repair Circuit for High
Density ASMIC. In Proc. of the IEEE Custom Integrated Circuits Conference, 1989.

[60] J. Saxena et al. Scan-Based Transition Fault Testing - Implementation and Low Cost Test
Challenges. In Proc. of the Int’l Test Conference, pages 1120–1129, Oct. 2002.

[61] E. Schuchman and T. N. Vijaykumar. Rescue: A Microarchitecture for Testability and
Defect Tolerance. In Proc. of the 32nd Annual Int’l Symposium on Computer Architecture,
pages 160–171, June 2005.

[62] M. Shah, J. Barren, J. Brooks, R. Golla, G. Grohoski, N. Gura, R. Hetherington, P. Jordan,
M. Luttrell, C. Olson, B. Sana, D. Sheehan, L. Spracklen, and A. Wynn. UltraSPARC T2: A
Highly-Threaded, Power-Efficient, SPARC SOC. In Proc. of the IEEE Asian Solid-State
Circuits Conference (ASSCC ’07), pages 22–25, Nov. 2007.

120

[63] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically Characterizing Large
Scale Program Behavior. In Proc. of the Tenth Int’l Conference on Architectural Support for
Programming Languages and Operating Systems, Oct. 2002.

[64] P. Shivakumar, S. W. Keckler, C. R. Moore, and D.Burger. Exploiting Microarchitectural
Redundancy For Defect Tolerance. In Proc. of the 21st Int’l Conference on Computer
Design, Oct. 2003.

[65] J. E. Smith. A Study of Branch Prediction Strategies. In Proc. of the 8th Annual Symposium
on Computer Architecture, pages 135–148, May 1981.

[66] L. Spainhower and T. A. Gregg. IBM S/390 Parallel Enterprise Server G5 Fault Tolerance:
A Historical Perspective. IBM Journal of Research and Development, 43(5/6),
September/November 1999.

[67] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The Case for Lifetime Reliability-Aware
Microprocessors. In Proc. of the 31st Annual Int’l Symposium on Computer Architecture,
June 2004.

[68] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The Impact of Technology Scaling on
Lifetime Reliability. In Proc. of the Int’l Conference on Dependable Systems and Networks,
June 2004.

[69] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. Exploiting Structural Duplication for
Lifetime Reliability Enhancement. In Proc. of the 32nd Annual Int’l Symposium on
Computer Architecture, June 2005.

[70] J. R. Srour, D. Long, D. Millward, R. L. Fitzwilson, and W. L. Chadsey. Radiation Effects
on and Dose Enhancement of Electronic Materials. Noyes Publications, 1984.

[71] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream Processors: Improving both
Performance and Fault Tolerance. In Proc. of the Ninth Int’l Conference on Architectural
Support for Programming Languages and Operating Systems, pages 257–268, Nov. 2000.

[72] J. Tao, J. F. Chen, N. W. Cheung, and C. Hu. Modeling and Characterization of
Electromigration Failures Under Bidirectional Current Stress. IEEE Trans. on Electron
Devices, 43(5):800–808, May 1996.

121

[73] S. Thompson et al. An Enhanced 130nm Generation Logic Technology Featuring 60nm
Transistors for High Performance and Low Power at 0.7-1.4V. In Proc. of the Int’l Electron
Devices Meeting, pages 257–260, Dec. 2001.

[74] S. Thoziyoor, N. Muralimanohar, J. Ahn, and N. Jouppi. CACTI 5.1. Technical Report HPL-
2008-20, Hewlett-Packard Laboratories, Apr. 2008.

[75] C.-W. Tseng and E. J. McCluskey. Multiple-Output Propagation Transition Fault Test. In
Proc. of the Int’l Test Conference, pages 358–366, Nov. 2001.

[76] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R. L. Stamm. Exploiting
Choice: Instruction Fetch and Issue on an Implementable Simultaneous Multithreading
Processor. In Proc. of the 23rd Annual Int’l Symposium on Computer Architecture, pages
191–202, May 1996.

[77] A. Valero, J. Sahuquillo, S. Petit, V. Lorente, R.Canal, P. Lopez, and J. Duato. An Hybrid
eDRAM/SRAM Macrocell to Implement First-Level Data Caches. In Proc. of the 42nd IEEE
Int’l Conference on Microarchitecture (MICRO 42), pages 213–221, Dec. 2009.

[78] T. N. Vijaykumar, I. Pomeranz, and K. K. Chung. Transient Fault Recovery Using
Simultaneous Multithreading. In Proc. of the 29th Annual Int’l Symposium on Computer
Architecture, pages 87–98, May 2002.

[79] J. F. Wakerly. Error Detecting Codes, Self-Checking Circuits and Applications. North-
Holland, 1978.

[80] C. Weaver and T. Austin. A Fault Tolerant Approach to Microprocessor Design. In Proc. of
the Int’l Conference on Dependable Systems and Networks, pages 411–420, July 2001.

[81] D. Weiss, J. J. Wuu, and V. Chin. The On-Chip 3MB Subarray Based 3rd Level Cache on an
Itanium Microprocessor. In Proc. of the Int’l Solid-State Circuits Conference, pages 112–
113, Feb. 2002.

[82] D. Wilson. The Stratus Computer System. In Resilient Computer Systems, pages 208–231,
1985.

[83] T.-Y. Yeh and Y. Patt. Two-level Adaptive Training Branch Prediction. In Proc. of the 24th

122

Annual IEEE/ACM Int’l Symposium on Microarchitecture, pages 51–61, Nov. 1991.

[84] L. Youngs and S. Paramanandam. Mapping and Repairing Embedded-Memory Defects.
IEEE Design & Test of Computers, pages 18–24, January-March 1997.

123

Biography
Fred Allison Bower III was born September 3, 1972 in Florence, Oregon, United States of

America. He received his B.S. in Mechanical Engineering and B.S. in Computer Science from

Oregon State University in 1996. He received his M.S. in Computer Science and Engineering from

The Oregon Graduate Institute of Science and Technology in 1999. He has published the following

in pursuit of his research for this dissertation:

• Tolerating Hard Faults in Microprocessor Array Structures

• Autonomic Microprocessor Execution via Self-Repairing Arrays

• A Mechanism for Online Diagnosis of Hard Faults in Microprocessors

• Applying Architectural Vulnerability Analysis to Hard Faults in the Microprocessor

• Online Diagnosis of Hard Faults in Microprocessors

• The Impact of Dynamically Heterogeneous Multicore Processors on Thread Scheduling

Fred is a full-time employee in IBM’s Systems and Technology Group where he is a Senior

Technical Staff Member in System x Software Architecture.

