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Abstract

Large-scale networked computing systems are widely deployed to run business-

critical applications in environments where changes are frequent. Manual man-

agement of these complex systems can be tedious and error-prone. Meanwhile, the

high costs of application downtime make it critical to ensure system availability

and reliability. Recent progress in monitoring tools enables system administrators

to collect fine-grained data about system activity with low overhead. This data pro-

vides valuable information for system management. However, the monitoring data

collected from production systems is massive in size and noisy; which makes it hard

for system administrators to fully utilize this data for effective system management.

This dissertation describes a data-management platform, called Fa, where sys-

tem administrators can pose declarative queries over system monitoring data. Fa

automatically finds fairly accurate and efficient execution plans for given queries,

and returns query results in easy-to-interpret formats. Fa supports three key query

types, namely, forecasting queries (for predicting or detecting performance prob-

lems), diagnosis queries (for finding the cause of performance problems), and tun-

ing queries (for recommending changes to system configuration to resolve diagnosed

problems):

(a) For processing diagnosis queries, Fa constructs problem signatures from sys-

tem monitoring data to identify recurrent problems and to reuse past diag-

nostic information. For a rare or new problem, Fa employs an anomaly-based

clustering technique to generate performance baselines and to characterize
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the deviation from baselines to pinpoint root causes. Fa also incorporates

an active-learning component that identifies diagnosis queries whose results,

if provided or confirmed by system administrators, can be used to update

problem signatures and to improve the accuracy and efficiency for processing

future queries.

(b) For processing tuning queries to resolve problems caused by system miscon-

figuration, Fa employs an adaptive sampling algorithm that plans experi-

ments to efficiently identify high-impact configuration parameters and high-

performance settings. These experiments bring in information—required for

generating accurate query results—that is missing in the monitoring data col-

lected so far.

(c) For both one-time and continuous forecasting queries, Fa automatically searches

for efficient execution plans in a large space of plans composed of data-

transformation operators as well as synopsis-learning and prediction opera-

tors. Forecasting queries can be composed with diagnosis and tuning queries

to enable proactive system management that avoids potential problems.

We have evaluated the Fa platform with monitoring data collected from database-

backed multitier services, and with synthetic data that models the noisy nature of

monitoring data from production systems. Our evaluation shows that Fa’s query

plan selection and execution strategies provide actionable information for system

management automatically, accurately, and efficiently. Critical features like reliable

confidence estimates, robustness to noise, and providing supporting evidence for

query results make Fa a practical and useful platform.
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Chapter 1

Introduction

Due to the rapid advances in computing power and network capabilities over the past

few decades, large-scale networked computing systems are now deployed widely to

run popular Web services and business-critical applications. For example, Google’s

services were run on about 24 server farms (as per data from 2006) consisting of

450,000 servers around the world [44]. Corporate data centers usually house thou-

sands of interconnected components including storage systems, database servers,

applications, and Web services [50]. As system scale increases, so does the com-

plexity that arises from the interactions between system hardware, software, and

workloads [25]. Furthermore, these systems are highly dynamic environments where

data, workloads, and system characteristics change over time. For example, a Web

site may experience a surge in traffic due to a newly released advertisement, which

could lead to unexpected system behavior. Even a small change in hardware or

software may have a big impact on the overall system performance.

1.1 Complexity of System Management

The scale, complexity, and dynamic characteristics of networked computing sys-

tems make it hard for administrators to understand system behavior and perform
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effective management. A study [71] found that 72% of the top-40 Web sites suffer

user-visible problems, such as slow responses, blank pages or error messages be-

ing displayed, items not being added to shopping carts, and unexpected database

slowdowns. Although the reliability of individual hardware units has improved

significantly in recent years, a networked system comprising tens of thousands of

such units, maybe from multiple vendors, is still notoriously unreliable. Meanwhile,

despite the progress in programming languages and software design principles, sys-

tem software is still far from being bug-free. In addition to hardware failure and

software bugs, another critical factor that causes system problems or outage is

human-operator error; misconfiguration is a leading cause [60]. Networked systems

have so many parameters to set that administrators can easily make mistakes dur-

ing the system deployment or tuning phases. For instance, Web service systems,

middleware (e.g., WebSphere) or database systems (e.g., Oracle, DB2) have several

hundred parameters that need to be tuned carefully to achieve desired performance.

Moreover, these complex components may be integrated with other complex parts

to compose a complete system. Since these components are interdependent, tun-

ing configuration parameters of one component may impact the behavior of other

components, and even result in a system-wide problem [51].

While managing networked systems is becoming increasingly challenging, it is

more important than ever to ensure system reliability, availability, and serviceability.

Poor system performance or service downtime can lead to user dissatisfaction and

huge loss of revenue. For example, brokerages and banking firms can lose up to

$75,000 per minute of downtime [48]. A 22-hour outage at eBay cost the company

more than $3 Million in customer credits and $6 Billion in market capitalization [50].

Although there exist several commercial frameworks such as HP’s OpenView [59]
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and IBM’s Tivoli [79] that aggregate system monitoring data and enable adminis-

trators to visualize this data, these tools are insufficient to provide the intelligence

necessary for effective system management [25]. Administrators often rely on rules-

of-thumb or write their own scripts in an ad-hoc way for various management tasks.

Unfortunately, rules can be easily invalided as the managed system evolves, and

the scripts may take a lot of time to write and tune on a per-task basis. Since

administrators have so many complex tasks to deal with, they often do not realize

the opportunities for system tuning or diagnosis. What is even worse is that ad-

ministrators may inadvertently cause system misconfiguration that lead to system

problems [60].

The scale and complexity of modern networked systems have made it impos-

sible for any individual administrator to understand the entire system behavior.

These systems are typically managed by a team of administrative staff, with each

individual administrator responsible for a small system component. A challenging

situation is that system components could be from different vendors and managed by

different teams or even different companies. Consequently, system-wide diagnosis or

tuning become time-consuming due to the manual interactions and communication

required. Because of the lack of useful tools for system management, the effective-

ness of managing complex systems depends highly on the expertise and skills of

administrators; but experienced administrators are expensive to get and retain. All

these factors conspire to drive the total cost of system ownership up to 18 times the

original purchase price [63].

The complexity and indispensability of effective system management have mo-

tivated a research trend towards autonomic computing [48], i.e., making systems

self-managing. However, this field is still at a very initial stage. This dissertation
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makes major steps towards realizing the vision of autonomic computing by provid-

ing a platform where administrators can specify management tasks easily and get

actionable intelligence automatically.

1.2 Data-driven System Management

The progress in monitoring tools (e.g., DTrace [17], SystemTap [77], sar [69], OPro-

file [58], VTune [85]) enables administrators to collect fine-grained data about sys-

tem activity and configuration with low overhead. These tools can collect data at

multiple system levels, including hardware-level metrics such as power consump-

tion, network-level metrics such as packet rate, operating-system-level metrics such

as CPU utilization, and application-level metrics such as throughput. Valuable

information for system management may be hidden in the monitoring data. The

more detailed the data that is collected, the higher the chance that information

needed to address a specific management task (e.g., diagnosis of a system problem)

is contained in the data. As system scale and complexity increase, the size of mon-

itoring data also grows drastically. The data collected from a busy corporate data

center can be easily over one Terabyte per day, or much larger if more fine-grained

monitoring is enabled [90]. Data of this size is well beyond human ability to analyze

manually. It is impractical for administrators to wade through the huge amounts

of monitoring data to find information relevant to the management tasks at hand;

which is like looking for a needle in a haystack.

Recently, there is a trend towards applying data mining techniques to analyze

system monitoring data and to extract information for various management tasks,

e.g., [24,25,65]. Such a data-driven approach to system management has the advan-

tage of being more robust to dynamic characteristics of the managed system than
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Figure 1.1: Overview of Fa

those approaches dependent on a priori knowledge of the system. However, the

previous work was mostly done on a per-task basis, each focused on one aspect of

system management. What administrators really need is a platform, with a simple

and intuitive interface, where they can easily specify system management tasks of

interest and get actionable intelligence quickly and with reasonable accuracy.

In this dissertation, we build such a platform, called Fa1, for data-driven system

management. Fa treats a complex networked system as a rich source of monitor-

ing data (also called system data), and supports queries from administrators or

self-healing components (that automate the process of maintaining system perfor-

mance at a satisfactory level). Figure 1.1 shows a high-level overview of Fa. As the

managed system runs, monitoring data is periodically collected at specified inter-

vals. The data is fed into a data stream management system to support continuous

queries over the data [6, 7, 33]. For instance, an observational query from a system

administrator may ask “how many transactions had a response time over 5 seconds

1African god of fate and destiny
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during the past hour”. On the other hand, administrators or self-healing compo-

nents can pose system-management queries such as “what will average transaction

response time be one hour from now”. Fa’s query processor automatically finds a

good execution strategy that analyzes the collected system data and produces a

query result, usually with confidence estimates about the result.

1.2.1 Research Questions

To make Fa a practical and useful platform to assist administrators in managing

large-scale and complex systems, we need to address the following research ques-

tions:

• What is the right interface for expressing queries over system data?

The interface needs to be simple to use and intuitive to express both (i)

observational queries in query languages such as SQL (for snapshot queries)

and CQL [7] (for continuous queries), and (ii) management queries for tasks

such as diagnosing system problems in a declarative fashion.

• What is the right format to represent query results? Visualization of

the supporting evidence used for generating query results is useful for adminis-

trators to validate the reasoning behind result generation. Also, features like

reliable confidence estimates about query results can help administrators to

decide how much to trust the results, and gradually build confidence in the

Fa platform.

• How to find a good execution plan to process a given query auto-

matically and efficiently? There may be a huge space of execution plans

for a given query. Fa’s query processor needs to have an efficient plan search
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algorithm that automatically identifies good execution plans, even when there

is no model to estimate the quality of a plan without running it.

• How to design practical algorithms to analyze massive, noisy, and

streaming system data? Monitoring data collected from large-scale net-

worked systems is often huge in volume and arrives as continuous data streams,

so it is infeasible for any analytic algorithm to make multiple passes over the

data. The massive and streaming nature of the data raises challenges from

both the efficiency and and the accuracy perspective. In addition to the mas-

sive data size, monitoring data is always noisy due to natural system dynamics

and external influences. The analytic algorithms need to be robust to the su-

perficial noisy property of system data so that reliable results can be generated

for given queries.

• How to detect situations where existing system data is insufficient to

generate a high-quality result for a given query? It is possible that the

system data that has been collected does not cover the entire system operating

range well, and query results based on such data can be inaccurate and even

misleading. For example, the knowledge learned from system data collected

for one workload type W1 may be inapplicable for tuning the system in the

face of a workload type W2 that is quite different from W1. It is important

to detect such situations of data inadequacy to avoid producing inaccurate

information that might lead to misconfiguration or improper tuning.

• How to design an active data collection strategy for missing infor-

mation necessary to process a query with minimal cost? Active data

collection may incur extra costs in terms of system resources, time, and hu-
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man efforts. For instance, an experiment that collects performance data for a

given workload at one configuration setting could take considerable amounts

of system resources and several hours to complete. To process a configuration

tuning query, it may require multiple such experiments to collect enough per-

formance data in order to produce a good tuning recommendation. Therefore,

active data collection needs to maximize the value of each experiment (i.e.,

minimizing the total cost of experiments) while improving the quality of the

result for a given query.

1.3 Contributions

This dissertation describes the Fa data-management platform where administrators

can pose queries declaratively over monitoring data collected from the managed

system, and get reliable and actionable intelligence from Fa’s query results, in an

automatic and efficient manner. Specifically, this dissertation makes the following

contributions.

• Fa provides simple and intuitive interfaces for administrators to express system

management queries (specifically, diagnosis, tuning, and forecasting queries

are the focus of this dissertation) declaratively [33, 37]. The query results

can be visualized by administrators, possibly with supporting evidence and

confidence estimates for the results.

• For automated processing of diagnosis queries, Fa uses a two-phase approach

to make best use of two distinct types of system data: (i) data about previously

diagnosed problems and (ii) data about normal system behavior. In Phase

I, Fa constructs a database of problem signatures that distills the essential
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properties of problems that have already been diagnosed from system data,

and matches undiagnosed problems against the signature database; producing

reliable confidence estimates for matches. In this way, Fa detects recurrent

problems and leverages past diagnostic efforts through annotations (e.g., root

cause or corrective action) associated with the problem signatures. For an

undiagnosed problem without high-confidence matches, Fa triggers Phase II,

where a novel anomaly-based clustering technique is used to group normal

system behavior data based on how they deviate from the data representing

the problem to be diagnosed. Fa characterizes the deviation with a few con-

cise attribute sets that pinpoint possible causes of the problem. Both the

signature construction and matching techniques in Phase I and the anomaly-

based clustering technique in Phase II are robust to noise that is common in

monitoring data from production systems. This part of the dissertation was

published in [38].

• Phase II of diagnosis query processing has a harder task than Phase I. Intu-

itively, Phase I deals with a supervised learning problem, while Phase II deals

with an unsupervised learning problem. Therefore, Phase II usually has poorer

diagnosis accuracy and requires more human efforts than Phase I when the lat-

ter produces high-confidence matches from the signature database. However,

to construct a high-quality signature database, Phase I requires a sufficient

number of diagnosed instances of each problem type; which might not be the

case in the available system data. Fa incorporates an active-learning com-

ponent that picks informative undiagnosed problems and presents them to

administrators for diagnosis. The signature database is then updated with

the data and annotations from the newly diagnosed problems. The objective
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of the active-learning component is to maximize the informative value that

will result from each undiagnosed problem selected; thus, minimizing the total

amount of manual diagnostic effort involved while improving the quality of

the signature database to a desired level. This part of the dissertation was

published in [36].

• For automated processing of configuration tuning queries, Fa adopts an

experiment-driven tuning approach that plans and conducts experiments to

find optimal settings of system configuration parameters. Gaussian process

regression models are learned from system data (collected from historical runs

or through planned experiments) to represent the response surface of a target

performance metric with regard to system configuration parameters; confi-

dence intervals are generated around the predicted performance at each hy-

pothetical configuration setting. The response surface can be visualized by

administrators to gain insights into the behavior of the system in its op-

erating range. Fa employs a novel adaptive sampling technique that picks

iteratively from a set of candidate experiments the one with maximum es-

timated utility for the next run based on the response surface learned so

far. The adaptive sampling technique is able to quickly eliminate parameters

with low performance impact from the tuning process, and identify poten-

tial high-performance settings with confidence estimates. Fa also employs a

novel experimentation technique that allows conducting planned experiments

in a production environment through a cycle-stealing paradigm while ensuring

near-zero overhead on the production workload. This part of the dissertation

was published in [40].

• Fa considers two type of forecasting queries, namely, one-time queries over
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data snapshots and continuous queries over data streams. For a one-time

forecasting query over data snapshots, Fa employs a plan selection algorithm

that automatically searches in the huge space of execution plans. Each plan

consists of a sequence of various data transformers and synopsis learning and

prediction operators. Fa’s plan selection algorithm converges quickly to fairly-

accurate plans by running as few plans as possible. For continuous queries over

data streams, Fa has an adaptive plan selection algorithm that automatically

adapts to the time-varying properties of the data with minimal overhead.

Along with the prediction result to a forecasting query, Fa also outputs a

reliable estimate about the prediction accuracy. A novel feature of Fa is how

it balances the accuracy of a prediction and the computation time needed to

generate this prediction. This part of the dissertation was published in [34].

1.4 Organization

The rest of this dissertation is organized as follows. Chapter 2 briefly introduces

multi-tier systems and the format of the system data we work with in this disser-

tation. We also give an overview of the Fa platform.

Chapter 3 presents the techniques for processing diagnosis queries. We first

describe how to construct a database of problem signatures from system data and

how to use the signature database for diagnosis. We then describe the anomaly-

based clustering technique for diagnosing problems without high-confidence matches

from the signature database.

Chapter 4 presents an active learning technique to improve the overall accu-

racy for diagnosis query results. The active learning technique intelligently picks

informative undiagnosed problems for administrators to diagnose. The diagnos-
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tic information from the newly diagnosed problems is then incorporated into the

signature database to improve its coverage and matching quality.

Chapter 5 presents the experiment-driven technique for processing tuning queries.

This technique employs adaptive sampling with Gaussian process regression mod-

els. We apply the tuning technique in database systems to set their configuration

parameters.

Chapter 6 presents the techniques for processing forecasting queries. For snap-

shot forecasting queries, we present a plan selection algorithm that automatically

identifies good execution plans composed of data transformation operators and

model learning and prediction operators. For continuous forecasting queries over

data streams, we present an adaptive plan selection algorithm to handle time-

varying data properties.

Finally, Chapter 7 discusses future work and concludes.
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Chapter 2

Overview

2.1 Multi-tier Systems and System (Monitoring)

Data

Architecturally, popular Web services deployed for e-commerce, report generation,

and other applications consist of three tiers:

• The bottom tier is the database and storage layer which manages persistent

data to process queries from the higher tiers.

• The middle tier is the application logic layer which implements the business

logic that represents the core functionalities of the Web service.

• The top tier is the presentation layer consisting of Web servers that serve

static and dynamic content while interacting with the lower tiers to process

incoming user requests.

In this dissertation, we chose Web service systems as our focus system since

these systems raise various challenges for management tasks, thereby offering com-

prehensive evaluation opportunities for the Fa platform:
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• In complex multi-tier systems, performance and availability problems happen

frequently, and it is hard to find the cause. Recent studies show that 20%

to 30% of the problems in Web service systems remain undiagnosed [70], and

more than 50% of the problems are recurrent ones [60]. The monitoring data

collected from these systems makes it possible to evaluate automated diagnosis

query processing techniques in Fa comprehensively.

• The setting of database configuration parameters has a big impact on the

overall performance of a Web service system. However, since there are many

configuration parameters in database systems (e.g., over 100 parameters in

DB2, Oracle, and PostgreSQL), database misconfiguration is a common cause

of system problems [51]. The issue of configuration tuning in database systems

is thus a good setting for evaluating the tuning query processing techniques

in Fa.

• Workloads running on Web service systems often display periodic and trend

patterns that present realistic settings for evaluating the forecasting query

processing techniques in Fa.

Figure 2.1 is an overview of the Fa platform with a Web service system as the

managed system. Monitoring data can be collected for a Web service system at

multiple levels:

• At the operating-system level, a tool like sar [69] can track low-level metrics

such as processor utilization, memory utilization, and number of I/O transfers

to the disk subsystem.

• At the database and Web server level, there are status variables about server

operation. For instance, MySQL database systems have over 200 status vari-
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Figure 2.1: Fa platform for managing a Web service system

ables like number of index accesses, number of full table scans, and locks

acquired with zero waiting [57].

• At the application level, monitoring tools can track high-level metrics like

throughput (i.e., number of requests processed during each measurement in-

terval) and average request response time.

While the system is running, monitoring tools can periodically collect such data

at specified measurement intervals and store it into database or storage servers.

Figure 2.2 shows a snapshot D in time of the data with a relational schema ⟨Γ, X1,

X2, . . . , Xn⟩. Γ is a timestamp attribute with values drawn from a discrete, ordered

domain dom(Γ). Xi (1 ≤ i ≤ n) is a system metric. The monitoring data is

essentially a high-dimensional time series. Commercial monitoring frameworks such

as HP’s OpenView [59] and IBM’s Tivoli [79] collect similar data.

Web service systems are often required to meet service level objectives (SLOs)

that are specified by users or third parties implicitly or explicitly. For instance, an
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Figure 2.2: Sample system monitoring data

SLO for an online brokerage may stipulate that all transactions complete within 1

second, regardless of how much middleware, databases, or networks are involved.

Violations of SLOs indicate that there are system problems or system failures. When

a system meets all specified SLOs, it is in a healthy state; otherwise, it is in a

failure state. Failures may be caused by a variety of factors including performance

problems like resource contention, crashes due to hardware failures or software bugs,

and misconfiguration by system administrators.

2.2 System Management Queries

One of the goals of system administrators is to ensure that the managed system

continuously meets SLO requirements. Most of the administrators’ time is spent

looking for answers to various management queries over monitoring data. Next we

show some example management queries.

Change-detection queries: Changes in system behavior may indicate per-

formance problems or malicious attacks, so it is important to detect unexpected
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changes in real-time. To that end, an administrator may ask change-detection

queries like:

• Was there any significant change in the intensity of the workload faced by the

Web server within the last hour?

• Has the utilization of system resources such as CPU, memory, and network

changed drastically in usage pattern?

Diagnosis queries: Administrators often have a hard time figuring out the

causes of service outage or poor system performance, since diagnosis is very chal-

lenging in complex networked systems. Below are some sample diagnosis queries

for which an administrator may have to find the answer at short notice:

• Why was there a big increase in the processing time of query Q in the database

server over the past hour?

• Why was there a slowdown in the end-to-end batch processing of the business

intelligence workload, while it was fine last week?

What-if queries: Before applying a change to the production system, a com-

mon practice for administrators is to estimate and validate the impact of the pro-

posed change on the overall system performance. What-if queries can be used to

estimate the performance impact of a change as follows:

• What will the query processing time be if the database buffer pool size is

doubled?

• How will the overall report generation time change if three instances of query

type Q′ are added to the query batch workload?

17



Tuning queries: A frequent tuning task that administrators face is to adjust

the setting of system configuration parameters, as misconfiguration is a major cause

of system problems. For this purpose, administrators may need answers for tuning

queries like:

• What is the right database buffer pool size to resolve the performance problem

caused by the I/O bottleneck?

• What should be the best multi-programming level setting in the database

server to avoid concurrency problems for my business intelligence workload?

Forecasting queries: Accurate and timely prediction of system problems can

be very useful — administrators will gain more time for diagnosis and will also

be able to take remedial actions proactively to prevent problems from actually

occurring. To that end, administrators may ask forecasting queries like:

• Will there be a performance problem in the next hour in the sense that the

average query processing time is over 10 seconds in the database system?

• Given the historical data about workloads running on the Web server, what

are the chances of a surge in workload intensity in the next hour?

System performance management There are four key steps involved in man-

ual management of system performance:

(1) Detect system problems, by monitoring target performance values and com-

paring them against thresholds specified in SLOs.

(2) Diagnose the detected problem to find the root cause, by searching past di-

agnosis history or trying to correlate current and historical system data with

the problem.
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Figure 2.3: System management queries

(3) Decide tuning strategies, by applying rules-of-thumb or custom scripts.

(4) Evaluate the proposed tuning strategy on the managed system to see if it

solves the problem; go to step (1) and continue the loop.

As these steps rely much on trial-and-error and the expertise of administrators,

manual performance management can be reactive, time-consuming, and error-prone.

In comparison, the Fa platform can provide administrators with an altogether dif-

ferent experience (see Figure 2.3):

(1) Rather than being reactive, Fa enables proactive management through fore-

casting queries that predict future system performance and identify potential

system problems automatically.

(2) Administrators can issue a diagnosis query to find the cause of a detected or

predicted problem.
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(3) Once a problem is diagnosed, administrators can pose a tuning query to solve

the problem. Fa’s query processor will automatically search and compare

the candidate tuning strategies and return the one that is potentially most

effective and cost-efficient.

(4) Administrators can either apply the recommended tuning strategy to the pro-

duction system or wait to get more information to answer the diagnosis or

tuning query more accurately.

To process diagnosis queries, Fa may need to detect changes in data patterns to

pinpoint the root cause. Also, what-if queries may be triggered to answer tuning

queries when comparing different potential tuning recommendations.

2.3 Architecture of Fa

The Fa platform allows administrators or self-healing components to pose queries

over system data and get answers through a declarative interface. The technical de-

tails of how the queries are processed are hidden from users. As shown in Figure 2.1,

administrators may pose conventional continuous queries (over the system data

treated as data streams) or system-management queries to Fa’s management-query

processor. The development of Fa involves several design decisions (see Figure 2.4):

• Interface for interacting with the managed system, including data collection

through monitoring tools and changing system settings through tuning knobs.

• Query interface for expressing management queries and returning query re-

sults; the interface needs to enable system management tasks to be described

in a declarative way and intuitive presentation of query results.
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Figure 2.4: Fa architecture

• Data representations that provide the basis for efficient and accurate query

processing.

• Query processor, which parses a submitted query Q, does any preprocessing

required, finds an efficient and fairly-accurate execution plan for Q, and finally

executes the plan to generate query results.

2.3.1 Interfacing with the Managed System

Recent progress in systems research has made system monitoring and operation

easier. Some monitoring tools such as DTrace [17] provide flexible control on the

granularity and overhead of data collection through software probes, which act like

hardware sensors to track the status of system components of interest. Fa uses these
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tools to collect fine-grained monitoring data with controlled overhead. System oper-

ation has also been simplified. For instance, many system configuration parameters

can be now changed at run-time without shutting down the system [43,57]. Mech-

anisms for microreboot [16] enable fine-grained rebooting of system components

without restarting the entire system. Microreboots can be done orders-of-magnitude

faster than full system reboots. System virtualization techniques make it possible

to monitor, isolate, and dynamically adjust system resources easily. All these tech-

niques provide Fa with a lot of opportunities for data collection and system control.

2.3.2 Interface for Expressing Queries

The query interface should be user-friendly with (i) intuitive ways to express queries

over system data, and (ii) query results that are easy to interpret. Fa needs to

support both snapshot queries, which are processed once on a certain version of the

data, and continuous queries, the results of which are continuously updated as new

data comes in. Furthermore, to realize proactive system management, Fa needs

to support smooth composition of forecasting queries with diagnosis and tuning

queries. When possible, query results should be visualized to help administrator

make sense of the results and the associated confidence estimates. Next we briefly

describe how to express forecasting, diagnosis, and tuning queries in a declarative

way.

Diagnosis query A diagnosis query can be expressed in Fa as “Q = Diagnose(F,

History)”, where F is the data collected during a system problem (or right before

the problem in case of a crash), andHistory is the system data collected so far. This

query asks for diagnosis of the problem represented by F , based on the information
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contained in F and the historical data represented by History. Diagnosis queries

are discussed further in Chapter 3.

Tuning query A tuning query can be expressed in Fa as “Q = Tune(W,X,DOM,

y)”, where W describes the properties of the workload running on the managed sys-

tem (e.g., number of users accessing the system), X is a set of system configuration

parameters (e.g., buffer cache size, CPU resource allocation) that need to be tuned,

DOM is the space of possible settings of these parameters that the system can

have, and y is the performance metric of interest (e.g., throughput, average re-

sponse time). The result of this query is a setting of X that is expected to achieve

the optimal performance for y. Tuning queries are discussed further in Chapter 5.

Forecasting query A forecasting query can be expressed in Fa as “Q = Forecast

(D,Xi, L)”, whereD is a data snapshot or data streams with most recent timestamp

τ . The result of this query is the forecast of attribute Xi at time τ +L. Forecasting

queries are discussed further in Chapter 6.

Visualization When possible, query results should be visualized to help admin-

istrators interpret the results. For example, part of the result of a diagnosis query

can be visualized with the failure data F and a group of data points that represent a

system baseline (i.e., data about a specific type of normal behavior of the system) —

the difference between them is characterized to generate the diagnosis result. Such

visualization gives administrators deeper understanding of the diagnosis result so

that they can take actions for problem resolution with more confidence.
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2.3.3 Representation of Base and Derived System Data

Since monitoring data from complex networked systems is massive and noisy, it is

critical to transform and store the data in appropriate formats to facilitate query

processing. Currently, Fa supports the following representations of system data:

Data stream Monitoring data arrives continuously from the managed system, so

it is natural to choose the data stream model. A stream is a bag of elements ⟨t, e⟩,

where e is a record (with a well-defined schema [X1, X2, . . . , Xn]) that is generated

at time t. The bag size grows as time goes by and could be infinite. The data

stream model is important to extract information from monitoring data in a real-

time fashion (e.g., to enable rapid detection or prediction of performance problems).

A lot of work has been done on query processing in data stream management systems

(e.g., [1, 7]).

Snapshot To provide time-series analysis over historical data, we adopt the snap-

shot model — a bag of unordered records or a bag of records ordered by their

timestamps.

View Like traditional databases, we employ the concept of views to store a version

of data that is derived from the base system data for efficient query processing. The

views can be in the format of snapshots or data streams, and they could be logical

views without materialization. For example, we could create a view composed of

system configuration settings and system performance values over time. Then,

administrators can pose a diagnosis query to check whether misconfiguration is the

cause of a system problem, by detecting the correlation between the configuration

settings and the corresponding performance values in the view.
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Synopsis A synopsis is an abstract representation (i.e., summarization) of the

relationships between system metrics, such as low-level metrics about system ac-

tivity and high-level metrics about system performance. For instance, a synopsis

may be represented with a graphical model (e.g., Bayesian network [88], queueing

network model [54]) or a quantitative model such as a multivariate linear regres-

sion model [88]. In this dissertation, we evaluate the hypothesis that there are

statistical relationships between low-level measurements such as OS-level metrics

and high-level performance metrics such as SLO state (i.e., violation or not). Syn-

opses are used to capture such relationships and provide the basis for processing

system-management queries. For instance, synopses can be used to:

(1) Construct problem signatures for processing diagnosis queries.

(2) Construct response surfaces for processing tuning queries.

(3) Extract predictive patterns from historical data for processing forecasting

queries.

Furthermore, as synopses learned from system data can extract and represent

system behavior, query results based on the learned synopses are often more robust

to noise in the data compared to results based on base data.

2.3.4 Query Processor

Fa’s query processor is responsible for parsing a given system-management query,

preprocessing the query, finding a good execution plan for it through the query

optimizer, and executing the plan to produce query results. In principle, these

steps in Fa’s query processor are similar to the corresponding ones in conventional

database systems, but the actual techniques involved in each step differ significantly.
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Query preprocessor Sometimes accuracy and efficiency concerns or require-

ments make it necessary to rewrite a user query. Consider the case of diagnosis

queries. There exist several diagnosis techniques developed for different systems,

different performance problems, and different types of system data; and there is no

general winner as we have shown [35]. Fa’s query preprocessor may transform a

user query into a series of queries, each of which can be best processed by a specific

diagnosis technique. The transformation depends on the existing system data, the

diagnosis techniques in consideration, and the current system state. After rewriting,

query processing may take less time, and more importantly, the final query results

may be more accurate.

Query optimizer The execution plan for a system management query is signifi-

cantly different from the execution plans for conventional SQL queries in relational

databases. Consider the case of forecasting queries. An execution plan for a fore-

casting query consists of a series of data transformers and a predictor which is based

on a synopsis learned from the transformed data. (Section 2.4 shows an example ex-

ecution plan.) For system management queries, it is important to find an execution

plan that produces accurate query results. At the same time, it is also important

to minimize the overall query processing cost, which includes the time required

to find such a plan and execute it to generate query results. Conventional query

optimizers typically employ a cost model to estimate the quality of a plan in the

plan space. However, for system management queries such as forecasting queries,

it is almost impossible to get a reliable estimate of the accuracy of a plan without

running the plan. Fa’s query optimizer then needs to balance the time spent on

query optimization and the quality of the best plan found. For system management

queries such as diagnosis queries, another factor is the human effort involved to
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generate diagnosis results, which needs to be considered in Fa’s query optimizer as

another optimization metric. All these special characteristics of system manage-

ment queries require Fa’s query optimizer to be novel and fundamentally different

from conventional query optimizers.

Query executor Query executor runs the plan found by the query optimizer and

returns the results to users. For forecasting queries, the results may contain pre-

dicted values, confidence about the prediction, and the synopsis used to generate the

prediction. A synopsis is returned to help users understand why the specific predic-

tion was produced [33]. A side benefit is that users may derive useful information

from the synopsis itself, especially when the synopsis is a graphical model (e.g.,

Bayesian network, decision tree). For diagnosis queries and tuning queries, it is

possible that existing system data is insufficient to generate query results with high

accuracy. The query executor needs to detect such a situation of data inadequacy

and also identify what data needs to be collected to improve query results.

• Consider the case of diagnosis queries. If the instances of diagnosed prob-

lem types in existing system monitoring data are insufficient to produce a

high-confidence result for a diagnosis query, then the output of Fa’s query

executor may be data about an undiagnosed problem carefully selected for

additional user input; once it is diagnosed, the accuracy of diagnosing this

type of problem will be improved.

• Consider the case of tuning queries. The execution plan often involves a syn-

opsis that represents the relationship between the target performance metric

and the system configuration parameters that need to be tuned. If the ex-

isting system data only covers a small part of the operating range, then the
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synopsis learned from such data may be inaccurate for the rest of the oper-

ating range. In this case, one intermediate output from Fa’s query executor

could suggest running experiments on the managed system at a set of spe-

cific settings. With data collected from the newly performed experiments, the

quality of the synopsis will be improved, resulting in a more accurate result

for the tuning query.

2.4 Illustration with Forecasting Queries

Next we illustrate how Fa’s query optimizer automatically generates an execution

plan for a forecasting query “Q = Forecast(D,Xi, L)”. Recall that this query

predicts the value of attribute Xi at time τ + L based on the data snapshot D,

where τ is the current time and L is the lead time for forecasting.

2.4.1 Execution Plans

A plan for a forecasting query consists of a summary data representation, syn-

opsis, and three types of logical operators—transformers, predictors, and synopsis

learners. Figure 2.5 shows the structure of an example execution plan.

• A transformer T (D) takes a dataset D(Γ, X1, X2, . . . , Xn) as input, and out-

puts a new dataset D′(Γ, Y1, Y2, . . . , YN , Z) that may have a different schema

from D.

• A synopsis Syn({Y1, . . . , YN}, Z) captures the relationship between attribute

Z and attributes Y1, . . . , YN , such that a predictor P (Syn, u) can use Syn to

estimate the value of Z in a tuple u from the known values of Y1, . . . , YN in
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Figure 2.5: Example execution plan for a forecasting query

u. Z is called Syn’s output attribute, and Y1, . . . , YN are called Syn’s input

attributes.

• A synopsis learner B(D,Z) takes a dataset D(Γ, Y1, . . . , YN , Z) as input and

generates a synopsis Syn({Y1, . . . , YN}, Z).

Next, we give two example physical implementations of transformers.

Project transformer: A project transformer πlist retains attributes in the input

that are part of the attribute list list, and drops all other attributes in the input

dataset; so it is similar to a duplicate-preserving project in SQL.

Shift transformer: Shift(Xj, δ), where 1 ≤ j ≤ n and δ is an interval from

dom(Γ), takes a dataset D(Γ, X1, . . . , Xn) as input, and outputs dataset D′(Γ, X1,
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. . ., Xn, X
′) where the newly-added attribute X ′(τ) = Xj(τ+δ). When δ is positive

(negative), then X ′ is copy of Xj that is shifted backward (forward) in time.

Next, we discuss two popular synopses and their corresponding learners and

predictors from the machine learning literature. There are many other synopses

that Fa supports, e.g., support vector machines, classification and regression trees,

and random forests [88].

Multivariate Linear Regression (MLR): An MLR synopsis with input at-

tributes Y1, . . . , YN and output attribute Z estimates the value of Z as a linear

combination of the Yj values [88]. Mathematically:

Z = c +
N∑
j=1

αjYj (2.1)

The MLR-learner uses a dataset D(Γ, Y1, . . . , YN , Z) to compute the regression co-

efficients αj and the constant c in Equation 2.1. Note that Equation 2.1 is actually

a system of linear equations, one equation for each tuple in D. The MLR-learner

computes the least-squares solution of this system of equations, namely, the values

of αjs and c that minimize the sum of (Z(τ)− Ẑ(τ))2 over all the tuples in D [93].

Here, Z(τ) and Ẑ(τ) are respectively the actual and estimated values of Z in the

tuple with timestamp τ in D. Once all αjs and c have been computed, the MLR-

predictor uses Equation 2.1 to estimate Z in a tuple given the values of attributes

Y1, . . . , YN .

Bayesian Networks (BN): A BN synopsis is a summary structure that can

represent the joint probability distribution Prob(Y1, . . ., YN , Z) of a set of random

variables Y1, . . ., YN , Z. A BN for variables Y1, . . . , YN , Z is a directed acyclic
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graph (DAG) with N + 1 vertices corresponding to the N + 1 variables. Ver-

tex X in the BN is associated with a conditional probability table that captures

Prob(X|Parents(X)), namely, the conditional probability distribution of X given

the values of X’s parents in the DAG. The DAG structure and conditional prob-

ability tables in the BN satisfy the following equation for all (Y1 = y1, . . . , YN =

yN , Z = z) [88]:

Prob(y1, . . . , yN , z) =
N∏
i=1

Prob(Yi = yi|Parents(Yi))

×Prob(Z = z|Parents(Z))

Given a dataset D(Γ, Y1, . . . , YN , Z), the BN-learner finds the DAG structure and

conditional probability tables that approximate the above equation most closely for

the tuples in D. Since this problem is NP-hard, the BN-learner uses heuristic search

over the space of DAG structures for Y1, . . ., YN , Z [88].

The BN-predictor uses the synopsis generated by the BN-learner fromD(Γ, Y1,. . .,

YN ,Z) to estimate the unknown value of Z in a tuple u from the known values of

u.Y1, . . ., u.YN . The BN-predictor first uses the synopsis to infer the distribution

Prob(u.Z = z|u.Yj = yj, 1 ≤ j ≤ N). The exact value of u.Z is then estimated

from this distribution, e.g., by picking the expected value.

2.4.2 Finding a Good Plan Automatically and Efficiently

Space of Execution Plans: An execution plan for a forecasting query

Forecast(D,Xi, L) first applies a sequence of transformers to D, then uses a synopsis

learner to generate a synopsis from the transformed dataset, and finally uses a

31



predictor to make a forecast based on the synopsis and the transformed dataset.

For each logical operator, there is a wealth of physical implementations from the

machine-learning literature [88].

The best plan for a forecasting query Q is the one with the highest prediction

accuracy in the space of candidate execution plans. The best plan involves the right

combination of a sequence of transformers, a synopsis type, and the synopsis learner

and predictor. Therefore, the search space for the best plan is large and complex.

Unlike query optimizers in relational database systems, there is no reliable cost

model to estimate the accuracy of a plan for a forecasting query without running

the plan. Since running a plan takes time, it is nontrivial to optimize the time Fa

takes to produce a prediction result after a forecasting query is submitted. There is

a tradeoff between the processing time required to generate a prediction result and

the accuracy of the prediction. Fa’s query optimizer needs to take this tradeoff into

account during automatic plan generation.

2.5 Summary

This chapter introduced multi-tier Web service systems as our focus systems and

described the format of monitoring data we consider in this dissertation. As part

of system administration, administrators face the need to answer various manage-

ment queries over the system monitoring data. We identified three key query types

(namely, diagnosis, tuning, and forecasting queries) that are needed routinely in

system performance management. Next, we described the Fa platform which con-

tains a simple query interface for expressing the three management queries, a query

processor that automatically finds a good execution plan and executes the plan

(with the support of appropriate representations of the system data) to generate
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the query result. Finally, we illustrated the optimization challenges, using an ex-

ample forecasting query, that Fa faces while processing system-management queries

automatically, accurately, and efficiently.
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Chapter 3

Automated Processing of
Diagnosis Queries

3.1 Motivation

A recent study [71] found that 72% of the top-40 Web sites suffer user-visible prob-

lems, such as slow responses, blank pages or error messages being displayed, items

not being added to shopping carts, unexpected database slowdowns, and others.

Walmart.com was unavailable for almost 10 hours during the peak U.S. 2006 holiday

season. Such deviation of systems from desired behavior may violate service-level

objectives (SLOs) that specify what an acceptable level of service is. For example,

an SLO for an online brokerage may stipulate that all transactions complete within

1 second, regardless of how much middleware, databases, or networks are involved.

SLO violations in a system indicate failures. When a system meets all specified

SLOs, it is in a healthy state; otherwise, it is in a failure state. Failures may be

caused by a variety of factors including performance problems like resource con-

tention, crashes due to hardware or software faults, and misconfiguration by system

administrators. The increasing scale, complexity, and dynamics of modern systems

make it laborious and time-consuming to track down the cause of failures manu-

ally [25,48].
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At the same time, it is important to diagnose failures and recover systems

quickly. Brokerages and banking firms can lose up to $75,000 per minute of down-

time [48]. A 22-hour outage at eBay cost the company more than $3 Million in

customer credits and $4 Billion in market capitalization. These factors motivate

automated processing of diagnosis queries in an efficient and reasonably-accurate

way to diagnose failures using system monitoring data; a way that is also easy

and intuitive for system administrators to use. However, automated processing of

diagnosis queries based on system monitoring data poses nontrivial challenges:

• Noisy data: Monitoring data collected from production systems contains

various types of errors that can mislead diagnosis: (i) natural system vari-

ability injects Gaussian noise; (ii) failures may corrupt observations; and (iii)

rapid system state transitions cause observations from different states to get

mixed up.

• High dimensionality: Some of our monitoring datasets have 100-300 at-

tributes per server, posing challenges from an accuracy as well as running-time

perspective.

• Dynamic systems: Conventional approaches like defining a baseline system

behavior, and pinpointing deviations from the baseline do not work when

workloads and system configuration change over time.

• Reuse: Since failure diagnosis is expensive in large-scale and complex sys-

tems, it is valuable to leverage past diagnosis efforts whenever possible; par-

ticularly since 50-90% of failures seen are recurrences of previous failures [14].

• Trust: Features like reliable confidence estimates and evidence for diagnosis
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time lock_time num_io failures

51.3          76.1          0 1

4          51.9          97.9           0
5          49.0          43.6           0
8          50.4          13.5           0
9          50.8          51.2           0

 2          48.5          63.6           0         

11        49.8         119.5          0      
12        49.3         141.2          0    
13        72.4          65.4           0

h1
h2
h3
h4
h5
h6
h7
h8
h9

(a) Healthy data H

time lock_time failuresnum_io

 6        75.6          83.5           1
 7        72.4          83.8           1

(c) Unannotated failure data U 

(d) Failure data F

lock_time failuresnum_iotime

14         70.0          80.7           1
15         71.9          85.6           1

time lock_time failuresnum_io annotation

3           95.4          43.5           1        Lock prob
10         89.6         123.2          1        Buffer prob

(b) Annotated failure data L

Figure 3.1: Sample monitoring data used in diagnosis query processing

results are important for an automated diagnosis tool to gain administrators’

trust; otherwise the tool will not be used in practice.

This chapter describes how Fa addresses the above challenges while performing au-

tomated processing of diagnosis queries. We begin with an overview of the process.

3.2 Abstraction of Diagnosis Queries

System Monitoring Data: When a system is running, Fa collects monitoring

data periodically and stores it in a database. In this chapter, we consider moni-

toring data with a relational schema as shown in Figure 3.1. For example, Fa uses

the sar [69] utility to collect more than 100 performance metrics (e.g., average CPU

utilization, number of disk I/Os) periodically from Linux servers. Database servers

maintain performance counters (e.g., number of index updates, number of full ta-

ble scans) that Fa reads periodically. Most enterprise monitoring systems like HP

OpenView [59] and IBM Tivoli Monitoring [79] collect similar data.
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Over a period of time, the monitoring data collected by Fa will contain three

types of instances (as illustrated in Figure 3.1):

• Healthy data H, which is monitoring data collected when the system was in

a healthy state. Recall that a system is in a healthy state when it experiences

no SLO violations; and in a failure state otherwise.

• Unannotated failure data U , which is monitoring data collected from fail-

ure states of the system where the cause of failure has not been diagnosed so

far.

• Annotated failure data L, which is monitoring data collected from failure

states of the system where the cause of failure has been diagnosed. A success-

ful diagnosis can happen any time after the failure occurs. Upon diagnosis,

information about the type and cause of failure is attached as an annotation

(or metadata) to the corresponding monitoring data. Specifically, the addi-

tion of an annotation to an instance t in the unannotated data U , moves t

from U to L.

Example 3.2.1. Figure 3.1(a) displays the historical data for a database server

collected by monitoring the server at one-minute intervals. In each interval, at-

tribute lock time is the average wait time to acquire locks; num io is the number of

disk I/Os; failures denotes whether the average response time of database trans-

actions in that interval exceeded a threshold (causing SLO violations) or not; and

annotation records the cause of each diagnosed failure. In this historical data,

healthy data H consists of instances h1–h9, annotated data L consists of failure

instances l1 and l2, and unannotated data U consists of failure instances u1 and

u2.
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Figure 3.2: Control and data flow in Fa during diagnosis query processing

Diagnosis Queries: When the monitored system experiences a failure, an ad-

ministrator or system-management software can diagnose the cause of the failure

by posing a diagnosis query to Fa of the form Q=Diagnose(F,H ∪ U ∪ L).

• F is monitoring data from the system during the failure (or just before the

failure in the case of a system crash).

• H ∪ U ∪ L is the historical data collected so far.

Example 3.2.2. Figure 3.1(b) shows recent monitoring data F from the same

server as in Example 3.2.1. The values of the failures attribute in F indicate

that the server is experiencing some type of failure.

Fa processes a diagnosis query Q=Diagnose(F,H ∪ U ∪ L) in two phases, as illus-

trated in Figure 3.2.

Phase I (Figure 3.2(a), Section 3.3): First, Fa finds whether the failure rep-

resented by F is the same as a previously-diagnosed failure in L. That is, Phase I

translates Q to QI=Diagnose(F,L). If the diagnosis result produced by this phase
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has confidence higher than a specified threshold, then Fa returns this result to the

issuer of the query; otherwise Fa goes to a more expensive Phase II of diagnosis.

Phase II (Figure 3.2(b), Section 3.4): Here, Fa compares F with the healthy

data H collected so far, to see whether the cause of the failure can be characterized

succinctly as attributes whose values in F deviate from their values in the data

representing different healthy states of the system. That is, Phase II translates Q

to QII=Diagnose(F,H).

Background Phase (Figure 3.2(c)) : Fa supports techniques to guide manual

diagnosis efforts by actively selecting informative unannotated instances from U

for diagnosis. These techniques run constantly in a background phase, transferring

data from U to L to improve the signature database’s accuracy and coverage. This

background phase will be described in Chapter 4.

3.3 Phase I: Generating and Using a Signature

Database

In this section, we present a systematic way to utilize the diagnosis information

exposed by the annotated failure instances L. Table 3.1 summarizes the notation

we use in this chapter.

We are given L, the historical data with annotations about m distinct failures,

denoted A1, A2, . . ., Am. Our goal is to generate a signature database from L

that contains entries of the form ⟨sig, Ai⟩ where sig is a signature for failure Ai.

Each failure can be represented by any number of signatures, including zero. As

illustrated in Figure 3.2(a), instances F from an undiagnosed failure can be matched
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Notation Description

H Healthy monitoring data

L historical failure data with annotations

U historical failure data without annotations

F Data from a failure to be diagnosed

xi System metrics

A Annotation

si Separating functions

S Signature database

S(i, :) ith signature in S

S(:, j) jth column in S

Ci (1 ≤ i ≤ l) Clusters of H
−→w1,

−→w2, . . . ,
−→wl Weight vectors of diagnosis results

Table 3.1: Notation table
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Figure 3.3: (a) Clustering Vs. separating functions; (b), (c) improving robustness
of signature databases

against the database to find the signature nearest to F . The annotation of this

signature will be returned along with a confidence estimate in the match if the

confidence exceeds a threshold.

We will first illustrate our ideas using a series of examples. Suppose L is as shown

in Figure 3.3(a). Each instance has two attributes, x (denoting lock time) and y

(denoting num io), plotted along the horizontal and vertical axes respectively; and

one of four distinct annotations A1 (cross), A2 (plus), A3 (triangle), or A4 (circle).

Clustering: One way to generate the signature database is by clustering the data

in L using a technique like K-means [88]. Figure 3.3(a) shows the clusters per
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A 1

A 1

A 2
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A 3
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A 3

A 4

A 1

2SDSD1
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s 1

lock_time num_io annotation

7.9            27.2    

7.5            40.9    

42.8          51.5    

55.1          61.7    

87.8          39.0    

61.3          5.9    

65.8          16.7

annotation

1        0       0        0

0        1       0        0

0        0       1        0

0        0       0        1

= 1 if y > 45, otherwise 0
s 2 = 1 if x < 38, otherwise 0

Figure 3.4: Signature databases: (a) SD1, (b) SD2

failure type. The centroids of these clusters—represented by blue stars (“⋆”) in

Figure 3.3(a)—become the signatures for the corresponding failure type, giving a

signature database SD1 as shown in Figure 3.4 (a).

Suppose the query instance f1 = ⟨32, 41⟩ in Figure 3.3(a) is a failure instance

that we want to diagnose. f1 can be matched with SD1 to find the centroid (sig-

nature) nearest to f1; which is a centroid for Failure A1 (cross) given the data

distribution. However, this diagnosis is incorrect since it is obvious from Figure

3.3(a) that f1 is an instance of Failure A2 (plus). This example illustrates that

although clustering-based signatures are conceptually simple, they have drawbacks.

(They work poorly on real data in our experiments.)

Separating functions: Instead of clustering, suppose we identify separating func-

tions s1(x, y), s2(x, y), s3(x, y), and s4(x, y) that separate each type of failure in-

stances from the others. These functions can take many different forms. To convey

our ideas while keeping the example simple, we will use a simple form, namely,

separating lines in the 2D plane. Figure 3.3(a) shows s1–s4 as dotted lines. For

example, s1(x, y) separates the instances of Failure A1 from the others, and has the

form: s1(x, y)=1 if y > 45, otherwise 0.
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Matrix: Figure 3.4(b) shows a signature database SD2 generated using s1–s4.

SD2 is a matrix with each row representing the signature of some failure. For exam-

ple, the signature of Failure A1 is ⟨s1(x, y) = 1, s2(x, y) = 0, s3(x, y) = 0, s4(x, y) =

0⟩, denoted ⟨1, 0, 0, 0⟩. Each column represents a separating function. For example,

the first column represents s1(x, y) which maps instances of Failure A1 to 1, and

instances of all other failures to 0.

To match a query instance f = ⟨x, y⟩ with SD2, we compute s⃗(x, y) = ⟨s1(x, y),

s2(x, y), s3(x, y), s4(x, y)⟩ and find the signature nearest to s⃗(x, y) in SD2. For

example, s⃗(32, 41) is ⟨0, 1, 0, 0⟩ for the query instance f1 = ⟨32, 41⟩. (Note that

⟨0, 1, 0, 0⟩ matches Failure A2’s signature perfectly.) For now, we will measure

distances in terms of the Hamming distance, namely, the number of bits that are

different. Thus, the distances of s⃗(32, 41) to the four signatures in Figure 3.4(b) are

respectively 2, 0, 2, 2. Since s⃗(32, 41) is nearest to A2’s signature, f1 is diagnosed

correctly.

Handling errors: Now consider the query instance f2 = ⟨39, 41⟩ shown in Figure

3.3(b). f2 is of failure type A2, but has higher error in the x dimension than the

instances in L. If we match f2 against SD2, s⃗(39, 41) is ⟨0, 0, 0, 0⟩. Since s⃗(39, 41)

is equidistant from all the signatures in SD2, f2 will not be diagnosed correctly by

SD2.

Now suppose we use the signature database SD3 from Figure 3.5(a) to diagnose

f2. SD3 contains two new separating functions, s5(x, y) and s6(x, y). s5 separates

instances of Failures A1 and A2 from those of A3 and A4, and s6 separates instances

of A1 and A3 from those of A2 and A4; as represented by the columns for s5 and s6 in

Figure 3.5(a). The separating planes for s5 and s6 are shown in Figure 3.3(b). Now,

s⃗(x, y) = ⟨s1(x, y), s2(x, y), s3(x, y), s4(x, y), s5(x, y), s6(x, y)⟩. For f2, s⃗(39, 41) =
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Figure 3.5: Signature databases: (a) SD3, (b) SD4

⟨0, 0, 0, 0, 1, 0⟩. s⃗(39, 41) has least Hamming distance to the signature for Failure

A2 in Figure 3.5(a), so f2 will now be diagnosed correctly.

Why did SD3 diagnose f2 correctly, while SD2 did not? The reason can be

understood from an analogy to error correction in telecommunications. Error cor-

rection is the ability to reconstruct the original, error-free data at the destination

in the presence of errors caused by noise or other impairments during transmission

from source to destination. The central idea in error correction is as follows: a

bit string b to be transmitted is interleaved with some carefully-chosen extra bits,

to transmit a new bit string b′ such that a fixed number or less of bit-flip errors

during transmission will not convert b′ to a new bit string a′ that corresponds to

the transmitted version of another bit string a, a ̸= b. (If this case arises, then the

destination cannot tell whether a was transmitted or b.)

For f2, s2 predicts 0 instead of the correct 1; causing a 1-bit error. SD3 is robust

to 1-bit errors, but SD2 is not. The Hamming distance between any two signatures
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in SD3 is ≥ 3. Thus, even though s⃗(39, 41) was computed as ⟨0, 0, 0, 0, 1, 0⟩—a

1-bit error from the ideal ⟨0, 1, 0, 0, 1, 0⟩—s⃗(39, 41) still remained nearest to A2’s

signature. However, the Hamming distance between any two signatures in SD2 is

≥ 2. Thus, a 1-bit error in s⃗(39, 41) leaves it in an ambiguous position for SD2;

causing incorrect diagnosis.

The previous example shows that selected redundancy in the set of separating

functions can overcome incorrect predictions by some of the functions. Learning

more functions increases the cost of generating the signature database. However,

that is not a concern since the bulk of this work is done offline, and can be made

very efficient with parallel learning of functions. The more pressing issue is that

some functions are less reliable than others, and their presence can hurt diagnosis

accuracy and confidence significantly.

Functions s2 and s3 are two less reliable functions in our example. Note that

the data for each type of failure in Figure 3.3(a) shows larger spread along the x

axis than the y axis. Intuitively, there are larger chances of error in the x values.

Since s2 and s3 separate exclusively along the x axis, they are likely to get their

predictions wrong when errors in x arise (like what happened for f2). We can drop

s2 and s3, and generate a new signature database SD4 that has the four functions

s1, s4, s5, and s6 only (Figure 3.3(b)). SD4 is shown in Figure 3.5 (b). Note that

SD4 will give a perfect match for f2.

Takeaway points: Our series of examples show that the following is a power-

ful representation of the signature database to achieve both good accuracy and

robustness to errors:
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• Binary matrix M : The ith row in M , denoted M(i, :), is the signature of

failure Ai, 1 ≤ i ≤ m. The jth column in M , denoted M(:, j), corresponds to

the separating function sj(x⃗). The number of columns d depends both on m

and the built-in error tolerance desired.

• Separating functions s1(x⃗)–sd(x⃗): Each function separates one or more types

of failure instances from the others. These functions can take many different

forms. Fa uses Classification and Regression Trees (CART) [88] that are

learned automatically from L.

• Weights β1–βd for the respective functions: For robustness to errors, the pre-

diction sj(x⃗) from a less reliable separating function sj is given a smaller

weight while computing the distance of s⃗(x⃗) to the signatures. For example,

reasonable weights for s1–s6 in SD4 are {1, 0, 0, 1, 1, 1} because s2 and s3 are

less reliable.

Next, we describe the offline generation of the signature database, its use for diag-

nosis, and online maintenance.

3.3.1 Generating the Binary Matrix

There are four rules to generate a valid matrix M :

1. Each row should be distinct since no two failures can have the same signature.

2. Columns that contain all 0s or 1s should be excluded, since they do provide

no differentiation among failures.

3. Two columns cannot be the same or complementary since they derive the
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same separating function. (A 0-1 exchange in a column generates its comple-

mentary.)

4. The radius r of M , defined as half the minimum Hamming distance over all

⟨M(i, :),M(j, :)⟩ pairs, i ̸= j, should be above a given threshold. Intuitively,

the higher the radius, the higher the error-correction ability of M . For a query

instance x⃗, s⃗(x⃗) can be matched with the correct signature even when up to

r − 1 separating functions produce wrong predictions for x⃗.

We use a random search algorithm to generate M given a threshold Rt on M ’s

radius. The algorithm is as follows:

1. Generate m random binary vectors of length d = Rt(2 + δ). δ is a positive

integer (we set δ =1). The expected Hamming distance between each pair of

vectors is d/2.

2. Remove columns containing all 0s or 1s (Rule II).

3. For any identical or complementary column pair, retain one column only (Rule

III).

4. If the matrix generated by Steps 1-3 has a radius smaller than the threshold

Rt, then go to Step 1.

This simple algorithm is surprisingly effective. The radius threshold Rt is a design

choice best left to the administrator. Rt balances diagnosis accuracy and robustness

against the time to generate the signature database—higher Rt means more columns

(functions), and hence longer time to generate the database. Based on our empirical

observations, Rt = 5log2(m) is a balanced choice, and is Fa’s default.
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3.3.2 Generating the Separating Functions

For each column M(:, j) of the matrix, Fa learns the separating function sj(x⃗) as

a binary classification tree (CART) [88] separating the instances with annotation

M(i, j) = 1 from the instances with annotation M(i, j) = 0. In separate work [34]

with many types of functions from statistical machine-learning, we found CARTs

to best balance prediction accuracy and learning time.

3.3.3 Weighting the Separating Functions

Suppose the jth separating function sj(x⃗) has weight βj, and the overall weight

vector is β⃗ = ⟨β1, β2, . . . , βd⟩. A query instance x⃗ whose true annotation is Ai will

be matched with Ai’s signature M(i, :) if the following condition holds:

min
k ̸=i

{Dist(s⃗(x⃗),M(k, :); β⃗)− Dist(s⃗(x⃗),M(i, :); β⃗)} > 0 (3.1)

Here, Dist is the weighted Euclidean distance: Dist(u⃗, v⃗; β⃗) =
√∑d

j=1 βj(uj − vj)2.

For binary vectors u⃗ and v⃗, the Euclidean distance is the square root of the Hamming

distance.

The larger the difference in Equation 3.1, the higher the chances of matching x⃗

to the correct signature when errors cause variations in s⃗(x⃗). Thus, to make the

signature database robust, we want to choose the weight vector β⃗ = ⟨β1, . . . , βd⟩

that maximizes this difference over all instances ⟨x⃗, Ai⟩ in the annotated failure data

L. Under the condition that ||β⃗||2(=
∑d

j=1 β
2
j ) is fixed, this optimization is:

max
β⃗

min
⟨x⃗,Ai⟩∈L,k ̸=i

{Dist(s⃗(x⃗),M(k, :); β⃗)− Dist(s⃗(x⃗),M(i, :); β⃗)}

If there exists some weight vector β⃗ that satisfies Equation 3.1 for all instances
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⟨x⃗, Ai⟩ in L, then the above optimization problem is equivalent to the following

one:

min
β⃗

1

2
||β⃗||2

such that, ∀⟨x⃗, Ai⟩ ∈ L and ∀k ̸= i:

Dist(s⃗(x⃗),M(k, :); β⃗)− Dist(s⃗(x⃗),M(i, :); β⃗) ≥ 1 (3.2)

This equivalence is shown in [82] which reports recent results on learning Support

Vector Machines (SVMs) for complex problems like sequence alignment and gram-

mar learning. (Reference [82] does not consider signatures or failure diagnosis.) The

above optimization problem is a general version of the maximum-margin principle

used in SVM learning, and can also be solved using SVM learning to generate β⃗ [82].

However, there are two reasons why we do not want to use the weights learned

from Equation 3.2:

• There may not be a feasible β⃗ that satisfies Equation 3.1 for all instances

⟨x⃗, Ai⟩ in L.

• We want to avoid the classic problem of overfitting [88], where β⃗ is too well

tuned for L that it performs poorly for undiagnosed failure instances not in

L.

Both these issues can be addressed by introducing a slack variable εi ≥ 0 per

⟨x⃗, Ai⟩ ∈ L to relax the corresponding constraints in Equation 3.2; for a new opti-

mization problem:
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min
β⃗,ε

1

2
||β||2 + c

|L|∑
i=1

εi
|L|

such that, ∀⟨x⃗, Ai⟩ ∈ L and ∀k ̸= i:

Dist(s⃗(x⃗),M(k, :); β⃗)− Dist(s⃗(x⃗),M(i, :); β⃗) ≥ 1− εi (3.3)

Here, |L| is the number of instances in L. The constant c > 0 controls the tradeoff

between matching training instances in L correctly and the robustness to errors. Fa

uses SVM learning algorithms from [82] to learn the weights β⃗ = ⟨β1, . . . , βd⟩ by

solving this optimization problem. A good value of c is determined via 5-fold cross

validation over L [88].

3.3.4 Online Use and Maintenance

So far we discussed how the signature database is generated offline from L. We

now discuss the online use of the database for diagnosis, and its maintenance as

new instances and annotations are added to L. When the database is queried

with an undiagnosed failure instance x⃗, Fa first computes s⃗(x⃗) = ⟨s1(x⃗), . . . , sd(x⃗)⟩,

and then finds the signature nearest to s⃗(x⃗), namely, the signature that minimizes

Dist(s⃗(x⃗),M(i, :); β⃗), 1 ≤ i ≤ m. As shown in Figure 3.2(a), a confidence estimate

conf is generated for this match and compared with the confidence threshold Ct. If

conf ≥ Ct, then the annotation of the matched signature is returned as the diagnosis

result; otherwise Phase II is invoked.

Confidence estimate: When x⃗ is matched with the signature M(i, :), the confi-

dence in this match is defined as:
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conf = min
k ̸=i

{Dist(s⃗(x⃗),M(k, :); β⃗)− Dist(s⃗(x⃗),M(i, :); β⃗)} (3.4)

Intuitively, conf is high when the second-nearest neighbor N2 of s⃗(x⃗) is far from

the first-nearest neighbor N1, indicating an unambiguous match to N1. As the gap

between N1 and N2 shrinks, the ambiguity in the match to N1 increases, and the

confidence decreases.

To make the confidence estimate easier for administrators to understand, Fa

converts it into a value in [0, 100]. This conversion is done using an equi-depth

histogram (quantiles) with 100 buckets generated from the distribution of confidence

estimates over all instances of L. Let pk, 0 ≤ k < 100, denote the quantiles of this

distribution. For a confidence estimate conf from Equation 3.4, Fa finds i such that

pi ≤ conf < pi+1; and reports i as the confidence estimate.

Setting the confidence threshold Ct: The value of Ct is critical because a low

Ct can lead to incorrect diagnosis, while a high Ct can invoke the more expensive

Phase II more often than needed. (Compared to Phase I, Phase II involves higher

run-time overhead and more efforts from administrators to interpret diagnosis re-

sults.) Fa’s approach is to let the administrator specify the minimum diagnosis

accuracy she wants from the signature database. Then, Fa automatically derives

the appropriate Ct that gives this diagnosis accuracy while minimizing the chances

of invoking Phase II. The algorithm works as follows:

1. Divide L into a training set and a test set. Generate a signature database SD

from the training set (Sections 3.3.1–3.3.3). For each instance in the test set,

use SD to find the matched signature and confidence estimate.

2. Pick an integer value x ∈ [0, 100]. For test instances whose confidence estimate
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is≥ x, compute the percentage of instances matched to the correct signature in

SD. This percentage is the expected diagnosis accuracy when the confidence

threshold is x, denoted acc(x). Vary x in [0, 100] to get enough ⟨x, acc(x)⟩

points to plot the accuracy-confidence curve (AC-Curve) for SD as shown

in Figure 3.6. Note that as x increases, the accuracy is being computed

on higher-confidence answers from SD; so we expect the AC-Curve to be

nondecreasing.

3. Pick the minimum xt in the AC-Curve such that ∀x, x ≥ xt, acc(x) is above

the diagnosis accuracy desired by the administrator. xt is a sample of the

desired value of Ct.

4. Repeat Steps 1, 2, and 3 with different training and test sets from L to get

multiple independent samples of Ct; and set Ct to their mean.

Figure 3.6 is a sample graph from our experiments which plots the AC-Curves

for both Fa’s signature database (FA) and the clustering-based signature database

(CLUS). If the administrator desires a diagnosis accuracy of 95%, the Fa’s Ct = 20

while CLUS’s Ct = 80. That is, Fa is four times less likely to trigger Phase II than

CLUS.

Incremental Maintenance: When new instances are added to L, we need to

update two components of the signature database: its separating functions and its

weight vector. Recall that CARTs are used as the separating functions and the

weight vector is determined via an SVM learning algorithm. Both the separating

functions and the weight vector can be updated efficiently with new instances using

an incremental CART learning algorithm [88] and an incremental SVM learning

algorithm [19] respectively.
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Figure 3.6: Sample AC-Curve

When new annotations are added to L, we also need to update the Matrix. One

row (signature) is generated for each added annotation. The existing separating

functions can be updated incrementally. If the radius of the new Matrix goes below

the threshold Rt specified in Section 3.3.1, then more columns will need to be added

to the Matrix to bring its radius above the threshold. New separating functions will

have to be learned from scratch for the newly added columns. As we do not expect

frequent additions of new annotations, the time amortized for learning new CARTs

over a long interval should be small. Again the amortized time for computing the

weight vector from scratch via SVM learning is also small. Note that the weight

vector can be updated incrementally if the Matrix does not grow in columns.

3.3.5 Error-Aware Signature Databases

This section considers how Fa can make the signature database more accurate and

robust if it has models that represent errors expected in the monitoring data. These

models could be derived from historical data.
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Types of Error: We have seen two types of errors in our monitoring data: Gaus-

sian and non-Gaussian.

• Gaussian error is caused by natural variability in real systems. If we take mul-

tiple observations of an attribute from a particular system state, a goodness-

of-fit test to a normal distribution will often be positive.

• Two significant causes of error in our monitoring data cannot be modeled by

Gaussian distributions: (i) the onset or presence of failure corrupts readings of

some attributes (seen with JBoss application server and MySQL); (ii) obser-

vations from different states get mixed up in the same instance due to rapid

system state transitions, or due to delays in measuring different attributes

under system overload. (A third probable cause is incorrect filling of missing

values by monitoring tools.)

Error Models: Both the above types of error can be captured using error models.

Plenty of literature exists on error models that vary from simple to complex (e.g.,

[96]). For example, an attribute xi with Gaussian error can be represented by a

new attribute x′
i of the form x′

i = xi + Gaussian(0, δi), where δi controls the scale

of error. The value of δi can be learned from historical data. Error modeling is

complementary to our robust signature construction techniques.

Error-Aware Matrix: The Matrix’s role is to provide redundancy at the level

of separating functions. Intuitively, if more error is expected, then we should have

a Matrix with a larger radius (recall Section 3.3.1). The radius of a given Matrix

can be increased by adding columns.
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Error-Aware Separating Functions: Algorithms for learning separating func-

tions can be modified to utilize error information. Fa’s CARTs pick attributes to

use in decision nodes in the tree based on a metric called information gain (Info-

Gain) [88]:

InfoGain(A, xi) = Entropy(A)− Entropy(A|xi)

This classic formula represents the extra information we gain about the annotation

A of an instance given the value of attribute xi in that instance. As expected,

attributes with larger InfoGain are preferred while picking attributes to use in de-

cision nodes. However, an attribute xi with higher chances of error—like attribute

x in our running example in Section 3.3—should be preferred less because decisions

made based on xi’s value are less reliable. We can achieve this property by rewriting

InfoGain(A, xi) as:

InfoGain(A, xi) = Entropy(A)− Entropy(A|x′
i)

Here, x′
i is the distribution of xi once the expected error is added based on the

known error model.

Error-Aware Weights: Finally, learning weights for separating functions can be

made error-aware by appropriately choosing the set of ⟨x⃗, A⟩ instances used to learn

the weights in Section 3.3.3. Along with the original instances in L, we can use new

instances generated by injecting expected error (based on the error models) into the

original instances in L.
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3.4 Phase II: Anomaly-based Clustering

If the instances F to diagnose in a Diagnose(F ) query correspond to a failure type

that was not seen previously, then the match from the signature database will have

low confidence. Phase II of diagnosis runs in this setting. The basic approach in

Phase II is to determine how F differs from the data H representing the system in

healthy states. We will first illustrate the main ideas using a series of examples.

SupposeH consists of the instances in Figure 3.7(a) shown using the “x” symbol.

Each instance has two attributes, x and y, plotted along the horizontal and vertical

axes respectively. The figure also shows the failure instances F , indicated using

the “+” symbol, in a Diagnose(F ) query. It is clear from the figure that there are

two distinct healthy states of the system: (i) C1 with x ∈ [10, 30] and y ∈ [65, 80],

differing from F primarily along the x attribute; and (ii) C2 with x ∈ [60, 80] and

y ∈ [15, 30], differing from F primarily along the y attribute. A clustering algorithm

like K-means or locally adaptive clustering (LAC) [32] can identify these clusters in

H, and link both attributes x and y to the failure. The LAC algorithm associates

each cluster C with a weight vector that reflects the correlation among instances in

C. Attributes on which the instances in C are strongly (weakly) correlated receive

a large (small) weight, which has the effect of constricting (elongating) distances

along those dimensions.

Next, suppose H (“x”) and F (“+”) are as shown in Figure 3.7(b). A conven-

tional clustering algorithm will now group the instances in H into three distinct

clusters (C1, C2, and C3 in Figure 3.7(b)). Since each of these clusters differs from

F along both the x and y attributes, both attributes will be linked to this failure as

well. However, a closer look at Figure 3.7(b) indicates that this answer is incorrect.

Both the failure data and the healthy data have similar distribution along the y
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axis, and differ along the x axis only. So, the correct answer should link the failure

to x only.

What went wrong in the second example? Conventional clustering algorithms

ignore the failure (query) instances F while deciding how to group the instances in

H into clusters. Thus, the clusters generated by these algorithms are independent

of the failure instances to be diagnosed, causing two major weaknesses: (i) generat-

ing clusters that do not give the correct diagnosis, and (ii) generating many more

clusters than needed, which can mislead the system administrator. Section 3.5.3

validates both observations empirically.

We have developed a new algorithmic framework, called anomaly-based cluster-

ing, that clusters H with consideration of the instances F to be diagnosed. (That

is, the same H may be clustered differently for a different F .) Intuitively, anomaly-

based clustering will place two instances h1, h2 ∈ H into the same cluster iff they

have similar deviations from F . This strategy gives the right answer for the ex-

ample in Figure 3.7(b), generating a single cluster for H, and linking the failure to
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attribute x only. The rest of this section describes anomaly-based clustering.

3.4.1 Diagnosis Vectors and Margin Classifiers

Fa processes a Diagnose(F , H) query by first clustering the healthy data H into

a set of clusters C1, C2, . . ., Cl, and then outputting the deviation of F from

these clusters in the form {⟨w⃗1, C1⟩, ⟨w⃗2, C2⟩, . . . ⟨w⃗l, Cl⟩} as the diagnosis result. l

depends on the query, and is not a predetermined constant. C1 ∪C2 ∪ · · · ∪Cl need

not include all the instances in H. Thus, outlier instances in H will be ignored.

Each w⃗ ∈ {w⃗1, . . . , w⃗l} is called a diagnosis vector. w⃗ has the form: w⃗ =

⟨w1, w2, . . . , wn⟩, where each attribute xj ∈ ⟨x1, x2, . . . , xn⟩ is given a weight wj

such that −1 ≤ wj ≤ 1 and
∑n

j=1 |wj| = 1. Intuitively, w⃗i ∈ {w⃗1, . . . , w⃗l} specifies

the weighted list of attributes to which the failure can be localized by comparing

the instances in Ci to the failure instances F . Ci serves as the evidence why w⃗i is

reported in the diagnosis result.

Computing the Diagnosis Vector: Since we are dealing with high-dimensional

data, a most desirable property of each ⟨w⃗, C⟩ is to make w⃗ as concise as possible.

That is, the weights of all attributes that do not help differentiate between C and F

should be zero. This property enables the system administrator to zoom in quickly

on likely causes of the failure without being misled by false positives. Fa uses margin

classifiers (MC) to achieve this property. A margin classifier MC(F,C), C ⊆ H,

finds the linear combination
∑n

j=1 wjxj of attributes ⟨x1, . . . , xn⟩ that produces the

maximum separation between C and F . This maximum separation is called the

margin between C and F .

Example 3.4.1. Consider query Q=Diagnose(F,H) from Example 3.2.1 and Fig-
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Figure 3.8: Plot of data in Fig.3.1

ure 3.8. Let C = H − {h9}. (h9 is an erroneous observation generated while the

system transitioned from a healthy state to a failure state.) The margin between C

and F is produced between the two dotted lines in Figure 3.8: the line lock time

= 51.9 and the line lock time = 70.0. Thus, margin = 18.1. Since the margin

is produced along lock time, the diagnosis vector w⃗ = ⟨w1, w2⟩ (corresponding to

⟨lock time, num io⟩) that produces the margin is w1=−1 and w2 = 0. ⟨1, 0⟩ also

produces the same margin.

Figure 3.9 shows how a margin classifier MC(F,C), C ⊆ H, works by solving

a linear program to compute the margin between C and F . MC(F,C) also finds

the diagnosis vector that produces the margin. Section 3.5.3 gives an empirical

validation of how margin classifiers produce concise and correct diagnosis vectors.
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Procedure Margin Classifier (MC)
Input: Healthy instances C, Failure instances F
Output: Margin m between C and F , and the diagnosis vector

w⃗ = ⟨w1, w2, . . . , wn⟩ that produces the margin
MC solves the following linear program:
1. Variables in the linear program:

(i) Xi, Yi, 1 ≤ i ≤ n, such that output wi = Xi − Yi
(ii) High, Low such that output m = High − Low

2. Constraints in the linear program:
(i)

∑n
i=1(Xi − Yi)t.xi ≥ High, ∀t ∈ C

(ii)
∑n

i=1(Xi − Yi)t.xi ≤ Low, ∀t ∈ F
(iii)

∑n
i=1(Xi + Yi) = 1

(iv) Xi ≥ 0, Yi ≥ 0, 1 ≤ i ≤ n
3. Optimization objective: Maximize High − Low
4. Solve the linear program; Return m and w⃗

Figure 3.9: Margin Classifier (MC(F,C))

3.4.2 Strawman: Margin-based Agglomerative

Clustering (MAC)

We begin with a strawman algorithm, called margin-based agglomerative clustering

(MAC), for anomaly-based clustering of H. MAC was proposed originally in [56]

for analyzing cancer-related microarray data, and we have extended it to process

diagnosis queries. MAC starts with an agglomerative hierarchical clustering [88]

of the instances in H. The margin from the failure instances F is used as the

metric for clustering. (Conventional clustering schemes use distance-based metrics

like Euclidean distance.) Each instance in H is first placed in its own active cluster.

In each iteration, MAC computes MC(Ci ∪ Cj, F ) for each pair ⟨Ci, Cj⟩ of clusters

among the remaining active clusters. MAC then picks the cluster pair ⟨Ci′ , Cj′⟩

that gives the maximum margin with respect to F , and merges (agglomerates)

them together to form a single combined cluster. The merged clusters Ci′ and Cj′
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Figure 3.10: Dendogram

are no longer considered active. This process is repeated until all instances are

merged into a single cluster. The entire process can be represented as a dendogram,

which is a tree with the instances in H as leaves, and each new cluster formed by

MAC as a nonleaf node.

Example 3.4.2. Figure 3.10 shows the dendogram generated by MAC for the healthy

data in Example 3.2.1 and Figure 3.8. The margin (computed after normalizing the

data) and diagnosis vector for the cluster at each nonleaf node are also shown.

We can generate clusters from the dendogram by selectively deleting nonleaf nodes

which will partition the dendogram into a forest of trees. The instances comprising

the leaves of each tree form a cluster C that will be output as a ⟨w⃗, C⟩ pair in the

query result after computing MC(F,C).

Consider a node P in the dendogram with child nodes L and R. Let the clusters

corresponding to these three nodes be Cp, Cl, and Cr respectively. (Note that Cl and

Cr were merged to form Cp in the dendogram, i.e., Cp = Cl ∪ Cr.) Let the margin

and corresponding diagnosis vector for these three clusters be ⟨mp, w⃗p⟩, ⟨ml, w⃗l⟩,

and ⟨mr, w⃗r⟩ respectively. We will delete P if any of the following conditions is

satisfied: (i) Margin(Cl, F, w⃗p) < (1− α)ml, or (ii) Margin(Cr, F, w⃗p) < (1− α)mr.
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Procedure Margin(C,F, w⃗)
Input: Cluster of healthy instances C, failure instances F , and
diagnosis vector w⃗ = ⟨w1, w2, . . . , wn⟩;

Output: Margin between C and F along vector w⃗;
/* Find the minimum value of w⃗ · h among all instances h ∈ C */
1. hmin = argminh∈C

∑n
i=1wi × h.xi;

/* Find the maximum value of w⃗ · f among all instances f ∈ F */
2. fmax = argmaxf∈F

∑n
i=1wi × f.xi;

3. Return
∑n

i=1wi × hmin.xi −
∑n

i=1wi × fmax.xi

Figure 3.11: Margin along a diagnosis vector

Here, Margin(C,F, w⃗) denotes the margin (separation) of a cluster of instances C

from the failure instances F along the diagnosis vector w⃗; the details are given in

Figure 3.11. α is a small positive constant, e.g., α = 0.2.

Note that w⃗p is the diagnosis vector that gives the margin for the combination

of Cl and Cr. Intuitively, if the margin of Cl (Cr) along w⃗p is significantly less than

the margin of Cl (Cr), then merging Cl with Cr is diluting the “clusteredness” of Cl

(Cr) with respect to the failure instances F . (Note that MC(Cl, F ) computes Cl’s

maximum margin across all possible diagnosis vectors.)

This intuition is applied in the second phase of MAC—see Lines 6 and higher in

Figure 3.12—to partition the dendogram into clusters that are then output in the

query result.

Example 3.4.3. When the dendogram in Figure 3.10 is partitioned, the nonleaf

node N8 will be deleted, to generate two output clusters {h1, h2, h3, h4, h5, h6, h7, h8}

and {h9}; precisely what we expect based on Figure 3.8. Recall that h9 is an erro-

neous observation generated during system transition.
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Algorithm Margin-based Agglomerative Clustering (MAC)
Input: Diagnose(H,F ) query; Value of α (default is 0.2)
Output: Result in the {⟨w⃗1, C1⟩, ⟨w⃗2, C2⟩, . . . ⟨w⃗l, Cl⟩} format
/* Phase 1: generate a dendogram for the instances in H */
1. Initialize the dendogram by creating a leaf node for each instance

in H, and place each H instance in its own cluster;
2. While (more than one cluster remains) {
3. For each cluster-pair Ci,Cj from the remaining clusters

Compute ⟨mij , w⃗ij⟩ = MC({Ci ∪ Cj}, F );
4. Pick the Ci,Cj pair that has the maximum margin mij ;
5. Merge Ci and Cj to form a new cluster C. Create a new

node in the dendogram for C, with nodes for Ci and Cj as
children. Drop Ci and Cj from consideration for merging;

} /* end while */
/* Phase 2: partition dendogram to generate the output clusters */
6. For (each node P in the dendogram) {
7. Let w⃗p be the diagnosis vector of P . Let ml and mr be the

margins of P ’s children L and R. Let Cl and Cr be the
respective clusters for nodes L and R;

8. Delete P if Margin(Cl, F, w⃗p) < (1− α)ml, or if
Margin(Cr, F, w⃗p) < (1− α)mr;

} /* end for */
9. For each tree T in the partitioned dendogram
10. Let C ⊆ H be the cluster formed by the instances in T ’s

leaves; compute ⟨m, w⃗⟩=MC(C,F ), and output ⟨w⃗, C⟩

Figure 3.12: Margin-based Clustering (MAC)

MAC is inefficient: MAC requires O(|H|2) invocations of MC since MAC starts

by invoking MC({t1, t2}, F ) for every pair of instances t1, t2 in H. Thus, MAC

scales poorly with |H|, but it gives good diagnosis accuracy; we will validate both

observations empirically in Section 3.5.3.

3.4.3 Partition-Check-Merge (PCM) Algorithms

We now propose an algorithmic framework that combines the good features of MAC,

which is accurate, but inefficient, with those of conventional Distance-based Parti-
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tional1 Clustering (DPC) algorithms that are efficient, but less accurate. We later

describe clustering algorithms that instantiate this framework. This new framework

is called Partition-Check-Merge (PCM) because it has the following structure:

• One or more partitioning phases that use an efficient DPC algorithm to parti-

tion the data progressively into more and more clusters until the check in Step

2 is satisfied. This progressive cluster refinement is achieved by increasing the

input parameter k to the DPC algorithm that specifies the number of clusters

to generate.

• One or more checking phases that perform checks, namely, evaluating the

current partitioning of instances to see whether this partition is good enough

to be the set of clusters produced during an intermediate stage of MAC. If a

check succeeds, then PCMmoves to the merging phase; otherwise, partitioning

is continued, possibly with a larger k.

• A merging phase where the current set of clusters are merged progressively,

like in MAC, to possibly consolidate several small clusters into a minimal set

of clusters (representing diagnosis vectors and evidence) that can be output

in the query result.

A degenerate case of PCM is one where the check never succeeds, so the partitioning

phase eventually places each instance into a separate cluster. In this case, the merge

phase will resemble running MAC from scratch. However, for most monitoring

datasets, the check will succeed much earlier—e.g., once k becomes equal to or

larger than the best k for the data—avoiding the O(|H|2) complexity of MAC.

1Intuitively, partitional algorithms work in a top-down fashion, while agglomerative algorithms
work bottom-up.
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If the partitioning phase generates more clusters than optimal, then the merging

phase will glue back clusters that should not have been split in the first place; at

some loss of efficiency. In effect, PCM can be as accurate as MAC, while leveraging

the efficiency of DPC. The challenge in PCM is in the implementation of the check

phase. Next, we discuss two concrete instantiations of PCM.

3.4.4 PCM-Conservative (PCM-C)

PCM-Conservative (PCM-C) (Figure 3.13) uses a conservative implementation of

check to process a Diagnose(F,H) query. For each instance t ∈ H, PCM-C first

computes mt, the individual margin between t and the failure instances F .

For partitioning data instances, PCM-C does DPC using the LAC [32] algo-

rithm (Line 7 in Figure 3.13). Suppose the clusters {C1, . . . , Ck} are produced by

a partitioning step. For each C ∈ {C1, . . . , Ck}, let ⟨mC , w⃗C⟩ be the margin and

corresponding diagnosis vector for C and F . PCM-C’s check phase lists an instance

t ∈ C as covered by C if Margin({t},F,w⃗C) ≥ (1−α)mt. (Recall from Section 3.4.2

that Margin({t}, F, w⃗C) ≤ mt, since mt is t’s maximum margin across all vectors.)

That is, t is covered by the cluster C that t was assigned to by DPC if t’s margin

along C’s diagnosis vector is close enough to t’s individual margin.

If t is covered by C, then (i) t will not be considered again during partitioning

(Line 21), and (ii) t will be associated with C in the input to the merge phase.

PCM-C iterates through the partitioning and merge phases until all instances get

covered. If check finds that the current set of clusters {C1, . . . , Ck} do not cover a

significant fraction of the remaining instances, then partitioning is redone with a

larger k; currently, we double k when this situation arises (Lines 16-17). Thus, while

PCM-C starts with a small default value of k, k will get incremented automatically
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Algorithm Partition-Check-Merge-Conservative (PCM-C)
Input: Diagnose(F,H) query; Value of α (default is 0.2)
Output: Result in the {⟨w⃗1, C1⟩, ⟨w⃗2, C2⟩, . . . ⟨w⃗l, Cl⟩} format
/* First compute the individual margin of each instance t ∈ H */
1. Compute ⟨mt, w⃗t⟩ = MC({t}, F ) for each instance t ∈ H;
2. k = default value; /* LAC’s number of clusters parameter */
3. Rem pts = H; /* instances not assigned to clusters yet */
4. Coverings = ϕ; /* assignment of instances to clusters */
5. While (Rem pts ̸= ϕ) {
6. /* Partitioning phase */
7. Partition Rem pts with LAC into clusters {C1, . . . , Ck};
8. Outliers = ϕ;
9. /* Check phase: Lines 10-22 below */
10. For (each instance t ∈ Rem pts) {
11. Let Ci be the cluster that t was assigned to by LAC;
12. If (Margin({t}, F, w⃗Ci) ≥ (1− α)mt)
13. Mark t as covered by Ci;
14. Else Add t to Outliers;
15. } /* end for */

16. If ( |Outliers|
|Rem pts| > 0.9)

17. k = k × 2; /* increase k, Rem pts is unchanged */
18. Else {
19. For (each cluster Ci ∈ {C1, . . . , Ck} that covers instances)
20. Add Ci and the instances Ci covers to Coverings;
21. Rem pts = Outliers; /* remove covered instances */
22. } /* end else */
23. } /* end while */
24. /* Merge phase */
25. Initialize a partially-built dendogram with the clusters in
26. Coverings as the leaves of the dendogram;
27. Proceed with MAC using this partially-built dendogram;

Figure 3.13: PCM-Conservative (PCM-C)

if required.

Once all instances in H have been covered by a set of clusters generated by DPC,

these clusters are input to the merge phase. Merge does MAC-style agglomerative

clustering—starting with these clusters as the leaves of the dendogram, instead of

the |H| individual instances—to generate the final query output.
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3.4.5 PCM-Eager (PCM-E)

We found empirically (Section 3.5.3) that PCM-C tends to generate many clusters as

input to the merge phase. While merge can glue back clusters that should not have

been split, PCM-C’s merge remains inefficient because of the quadratic dependence

on the number of input clusters. PCM-E tackles this problem.

Recall that PCM-C’s check phase will list a instance t as covered only if t’s

margin along the diagnosis vector of the cluster C that t was assigned to by DPC is

close enough to t’s individual margin. PCM-Eager (PCM-E) relaxes this condition

as follows: PCM-E’s check lists t as covered if t’s margin along the diagnosis vector

of any of the clusters generated by DPC so far is close enough to t’s individual

margin. As before, if t is covered by C, then t will be assigned to C in the input

to the merge phase. (Note that DPC may not have assigned t to C.) Intuitively,

PCM-E reduces DPC’s role to identifying significant diagnosis vectors w⃗ from the

data. The Margin({t}, F, w⃗) ≥ (1 − α)mt condition is used to associate instances

with each w⃗, creating clusters that are input to the merge phase. The rest of PCM-E

is similar to PCM-C.

3.4.6 Filtering and Ranking Diagnosis Results

Fa takes the set of ⟨w⃗i, Ci⟩ pairs generated by anomaly-based clustering, and outputs

the final diagnosis result as a filtered and ranked list.

• Filtering: Fa removes ⟨w⃗i, Ci⟩ pairs where the cluster size |Ci| does not sat-

isfy a minimum support threshold; similar to support thresholds in frequent-

itemset mining. Clusters composed of outliers get eliminated here.
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Name a i Description of data and failures

1. Rubis-60 110 8184 Contains annotated data about 60 distinct
single-EJB failures injected in our testbed

2. Rubis-complex 110 1797 Contains annotated data about 14 distinct
multiple-EJB failures injected in our testbed

3. Synthetic 16 10992 Synthetic annotated data about 10 distinct fail-
ures; patterns in the data are complex

4. Dolphin, 5. ECE 43 4881 OS-level data collected for 55 days from two
heavily-used departmental servers at Duke

6. Rubis-bug 110 900 Data access by the BuyNow EJB gets null result
occasionally (bug in application logic)

7. Rubis-jndi 110 1500 JNDI naming-directory entry of the
SB SearchItemsByRegion EJB gets corrupted

8. OLTP-single 42 3660 Occasional CPU contention caused by an appli-
cation on OLTP server (no disk contention)

9. OLTP-multi 28 696 Both CPU and disk contention caused sepa-
rately by an application on the OLTP server

Table 3.2: Monitoring datasets used in the evaluation. Columns a and i are the
number of attributes and instances respectively. Datasets 1-3 are used to evaluate
Phase I, and datasets 4-9 to evaluate Phase II

• Ranking: The remaining ⟨w⃗i, Ci⟩ pairs are ranked in decreasing order of

cluster size |Ci|.

3.5 Experimental Evaluation

3.5.1 Experimental Setting

All the diagnosis techniques described in this chapter were implemented in the Fa

system. We evaluate these techniques in the context of a three-tier Web service

composed of a Web server, an application server, and a database server. The eval-

uation is based on common types of failures in each tier. Table 3.2 summarizes our

datasets and failure scenarios.
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Failures injected in a testbed: We have implemented a testbed that runs Ru-

bis [20]—a multitier auction service modeled after eBay—on a JBoss application

server (with an embedded Web server) and a MySQL DBMS. It has been reported

that software problems and operator errors are the common causes of failure in Web

services [60]. We inject such failures into a running Rubis instance using a compre-

hensive failure-injection tool [15]. This setting makes it easy to study the accuracy

of Fa’s diagnosis algorithms because we always know the true cause of each failure.

Specifically, we can inject 3 independent causes of failure—software bugs, data

corruption, and uncaught Java exceptions—into any of the 25 Java modules (en-

terprise Java beans (EJBs)) that comprise the component of Rubis running in the

application server. Using this mechanism, we can inject 75 distinct single-EJB fail-

ures and any number of independent multiple-EJB failures (concurrent single-EJB

failures). Intuitively, multiple-EJB failures are harder to diagnose. The Rubis-

60, Rubis-complex, Rubis-bug and Rubis-jndi monitoring datasets in Table 3.2 are

from this setting. These datasets contain the number of times each distinct EJB

procedure call is invoked per minute.

We can also inject failures caused by contention for CPU, memory, and disk

resources. The OLTP-single and OLTP-multi monitoring datasets in Table 3.2 are

collected from a MySQL DBMS running an OLTP workload, where we injected

resource contention to cause failures. The datasets record OS metrics (e.g., CPU

utilization, paging), DBMS performance counters (e.g., number of index accesses

and table scans), and transaction-level performance metrics (e.g., average transac-

tion response time) per minute.

Real failures in a production system: Software aging—progressive degra-

dation in performance caused by, e.g., memory leaks, unreleased file locks, and
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fragmented storage space—is a common cause of system failure, especially in Web

servers [84]. The Dolphin and ECE datasets were collected from two production

servers at Duke over the course of two months. This data records OS metrics at

10-minute intervals. Both servers crashed once or more during this period due to

aging of different resources, as found by a previous study [84]. We validate Fa’s

automated diagnosis results with the results from this human-intensive study.

Synthetic data: Synthetic is a complex dataset (PENDIGITS) from the UCI

machine-learning repository. Rather than generating our own synthetic data, we

decided to use this dataset for the purpose of experimental repeatability.

3.5.2 Evaluation of Phase I

Queries: We consider Diagnose(F,L) queries over the Rubis-60, Rubis-complex,

and Synthetic datasets. By default, L contains 60% of the failure instances in each

dataset, and is used to generate the signature database. The remaining 40% of the

failure instances are used to query the signature database to compute its diagnosis

accuracy (% of times the correct annotation is returned).

Techniques: We compare four techniques: (i) CLUS, signature database imple-

mented using K-means clustering with 10 clusters per annotation2; (ii) FA, Fa’s sig-

nature database; (iii) FA-EA, Fa’s error-aware signature database; and (iv) CART,

a multi-class classifier implemented using classification and regression trees. By

treating each annotation in L as a distinct class label, a multi-class classifier learned

from L can predict the annotation of a new failure instance. We chose CART over

2We also tried the state-of-the-art LAC clustering [32], and got similar results.
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Figure 3.14: AC-Curves for Rubis-60, Rubis-complex

other multi-class classifiers for three reasons: (i) CARTs are being used for diagno-

sis in production settings like eBay.com [24]; (ii) CARTs provide a principled way

to compute confidence estimates; and finally, (iii) Fa uses CARTs as separating

functions.

Comparing Accuracy-Confidence Curves: The goal of Phase I is to provide

high diagnosis accuracy while invoking Phase II only when required. The Accuracy-

Confidence Curves (AC-Curves) in Figure 3.14 show how well each technique meets

this goal. No error is injected into the query instances (unlike the experiments in

Section 3.5.2). Recall the definition of confidence estimates, confidence thresholds,

and AC-Curves from Section 3.3. To diagnose a query instance, CARTs compute

a probability distribution over annotations, and output the most-likely annotation.

The confidence estimate is the difference in probabilities between the most-likely

annotation and the second most-likely annotation, mapped to [0, 100] as discussed

in Section 3.3.4.

Suppose the administrator wants a diagnosis accuracy of 90%. Then, Figure

3.14(a) for Rubis-60 shows that the confidence thresholds (Ct) for FA and CLUS
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Figure 3.15: AC-Curves for Rubis-60 with two groups: (a) existing annotations,
(b) new annotations

can be set to 20 and 80 respectively. Since FA’s Ct is 4 times less that of CLUS,

FA is four times less likely to invoke Phase II at the same accuracy level. More

interestingly, CART is unusable when required accuracy is 90%. FA maintains its

superior performance for Rubis-complex, while CLUS now becomes unusable when

the required accuracy is over 90%.

Figure 3.14 used our default setting where for each query instance ⟨x⃗, A⟩, the

signature database contains at least one signature for annotation A. That is, we

evaluated how good the signature database is in diagnosing previously-seen failures

(which does not mean previously-seen instances). This setting is practical because

as much as 90% of all software failures reported by users today are previously-seen

failures [14]. We will now consider query instances whose correct annotations are

not in the signature database. An accurate response from Phase I in this case is an

answer with confidence below the threshold Ct; thereby invoking Phase II.

To create this setting, we divide the instances in Rubis-60 into two groups with

nonoverlapping annotations: Group G1 with 40 annotations and Group G2 with the

remaining 20 annotations. A subset of the instances from G1 are used to construct

the signature database. The remaining instances inG1 (previously-seen failures) and
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Figure 3.16: Normal probability plot for attribute CPU utilization ∈ (72, 73) in
OLTP-single

the instances in G2 (new failures) form the set of query instances. Figures 3.15(a)

and (b) show the diagnosis accuracy of different techniques in these two cases. The

behavior of signature databases (FA and CLUS) for both types of failures is as we

saw in Figure 3.14(a). However, CART performs poorly on the new failures, which

shows a key advantage of using signature databases for Phase I rather than multi-

class classifiers. Intuitively, signature databases have a better chance of detecting

when a failure does not have the symptoms of any previously-seen failure. Our

algorithm for setting Ct (described in Section 3.3.4) considers both types of plots

in Figure 3.15.

Verification of Error Models: Section 3.3.5 has discussed the Gaussian error

model. To verify the presence of Gaussian error in our monitoring data collected for

an attribute (e.g., CPU utilization), we took multiple measurements of this attribute

from a particular system state. The normal probability plot of these values in Figure
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Figure 3.17: Cluster timeline for a subset of OLTP-single

3.16 and a hypothesis test for goodness of fit to a normal distribution (Matlab’s

Lillietest) prove that Gaussian error exists in the monitoring data.

As mentioned in Section 3.3.5, some errors cannot be captured by the Gaussian

distribution, e.g., when observations from different system states get mixed into

an instance due to rapid system state transition. We verify such a situation with

Figure 3.17 and Figure 3.18. Figure 3.17 is a cluster timeline generated from a

subset of the OLTP-single dataset when clustered using LAC with k = 2. A cluster

timeline shows the progress of time on the x-axis and the current cluster identifier

on the y-axis. In the OLTP-single dataset, CPU contention happens on the OLTP

server in a periodic fashion with a period of 4 minutes; this pattern is clear from

the cluster timeline. Figure 3.18 is a cluster transition diagram that shows how the

diagnosis vectors change over time. (This figure is best viewed in color.) Like Figure

3.17, Figure 3.18 was also generated from a subset of the OLTP-single dataset when

clustered using LAC with k = 2. The x-axis and y-axis are two relevant attributes
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Figure 3.18: Cluster transition diagram for a subset of OLTP-single

in the data, namely, cpu sys, the CPU utilization (in OS space) on the OLTP

server, and bwrites ps, the number of disk blocks written per second on the OLTP

server. Points belonging to the two clusters in the data are indicated respectively

using a red “+” symbol and a blue “.” symbol. A line Lp1,p2 from point p1 to p2

in Figure 3.18 indicates that the system was in state p1, and then transitioned to

state p2 in the next measurement interval; the color of Lp1,p2 is the same as the

color of point p2 in Figure 3.18. Figure 3.18 illustrates some interesting aspects of

the OLTP-single dataset:

• The red “+” points predominantly have smaller cpu sys than the blue “.”

points.

• The system tends to stay in the red (blue) state for four measurement intervals,

and then transitions to the blue (red) state.

• There are transitionary points in the data. These are points that are collected
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when the system is transitioning from one state to another, so these points

may belong to different (similar) clusters, but have similar (different) attribute

values.

Transitionary points contain non-Gaussian errors that are affected by which

states are involved in the transition. We adopt a probabilistic model to describe

such non-Gaussian errors. This model assigns a probability pi to attribute xi that

specifies how probable the reading of xi is an incorrect value, a value in its observa-

tion range that is not the true value. pi represents the scale of non-Gaussian error

for xi.

Comparing Robustness to Error: The query instances used so far to compute

the accuracy of our diagnosis techniques were taken directly from the monitoring

data. We now inject errors into these query instances based on error models to

study how accuracy degrades as error increases.

Note that the model we use for Gaussian error is described in Section 3.3.5.

In our experiments with Gaussian-error model, the parameter δi for xi is set to

0.2 ∗ rand ∗ error level multiplied by xi’s true value, where rand is a random value

within [0, 1] and error level ∈ {1, 2, 3, 4} controls the scale of errors. For non-

Gaussian error model, the parameter pi for xi is set to 0.2∗rand∗error level. rand

is to make different attributes have different scale of errors. Roughly speaking, for

an attribute x: (i) Gaussian error of level e means that observations of x have a

variance of 10e% from their true value; and (ii) non-Gaussian error of level e means

that each observation of x has a 10e% chance of being an arbitrary value from the

range of values of x.

Figures 3.19 and 3.20 show the AC-Curves for error levels 1 and 2 for Gaussian

75



0 20 40 60 80 100
65

70

75

80

85

90

95

100

Confidence threshold

A
cc

ur
ac

y 
(%

)
Gaussian−error level = 1

 

 

FA
CART
CLUS

0 20 40 60 80 100
65

70

75

80

85

90

95

100

Confidence threshold

A
cc

ur
ac

y 
(%

)

Gaussian−error level = 2

 

 

FA
CART
CLUS

Figure 3.19: AC-Curves for Rubis-complex with Gaussian error: (a) error level =
1, (b) error level = 2

and non-Gaussian error in Rubis-complex respectively. (Note that Figure 3.14(b)

is the AC-Curve at error level 0.) It is clear from comparing these graphs that

the gap between FA and CLUS/CART increases as the error increases. CLUS is

highly sensitive to non-Gaussian errors. Further evidence is provided by Figure 3.21

where the confidence threshold Ct is set at 40. Figure 3.21 shows the accuracy of

different techniques as the error level, both for Gaussian and non-Gaussian error,

increases from 0 to 4 for Rubis-complex. Also note that FA’s performance is very

close to that of the FA-EA algorithm which has knowledge of the expected error.

The observations validate FA’s robustness to error.

Figures 3.22 and 3.23 show the AC-Curves for error levels 1 and 2 for Gaussian

and non-Gaussian error in Rubis-60 respectively. Note that Figure 3.14(a) is the

AC-Curve at error level 0. Figure 3.24 shows the accuracy of different techniques

as the error level (for Gaussian and non-Gaussian error) increases from 0 to 4 for

Rubis-60. These figures again validate FA’s robustness to error.

Scalability with Number of Annotations: Figure 3.25 shows the trend as the

number of annotations—distinct single-EJB failures—is increased from 20 to 80.
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Figure 3.20: AC-Curves for Rubis-complex with Non-Gaussian error: (a) error
level = 1, (b) error level = 2

0 1 2 3 4
60

70

80

90

100

Gaussian−error level

A
cc

ur
ac

y 
(%

)

Confidence threshold = 40

 

 

FA
CART
CLUS

0 1 2 3 4
0

20

40

60

80

100

Non−Gaussian−error level

A
cc

ur
ac

y 
(%

)
Confidence threshold = 40

 

 

FA
CART
CLUS

Figure 3.21: Robustness curves for Rubis-complex: (a) Gaussian error, (b) non-
Gaussian error

Since we can generate at most 75 distinct single-EJB failures (recall Section 3.5.1),

the 80-failure dataset contains 5 multiple-EJB failures as well. The gap between

FA and CLUS/CART increases as the number of failures increases.

In the offline phase of signature database generation, FA is less efficient than

CART or CLUS. If the separating functions are not learned in parallel, FA can take

an order of magnitude more time to generate the database than CART or CLUS.

However, these offline efforts make FA much better in the online phase because: (i)

FA is comparable to CLUS and CART in the time for Phase I; and (ii) FA invokes
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Figure 3.22: AC-Curves for Rubis-60 with Gaussian error: (a) error level = 1, (b)
error level = 2
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Figure 3.23: AC-Curves for Rubis-60 with Non-Gaussian error: (a) error level =
1, (b) error level = 2

Phase II much less often.

3.5.3 Evaluation of Phase II

Queries: We now evaluate the processing of Diagnose(F,H) queries in Phase II.

For datasets 4-9 listed in Table 3.2, H contains the historical healthy monitoring

data and F contains 5-10 instances from the listed failures. For Dolphin and ECE, F

contains 5 instances collected just before each server’s first crash. We consider two

cases for OLTP-multi, one where F contains failure instances from CPU contention,
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Figure 3.24: Robustness curves for Rubis-60: (a) Gaussian error, (b) non-Gaussian
error
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Figure 3.25: Trend as the number of failures increases

and the other where F contains failure instances from disk contention. We can

evaluate the accuracy of diagnosis results since the cause of failure in each case is

known.

Algorithms and Defaults: We evaluate four algorithms for Phase II: (i) MAC

(Section 3.4.2), (ii) PCM-C (Section 3.4.4), (iii) PCM-E (Section 3.4.5), and (iv)

LAC-Silhouette (LAC-S). LAC-S applies LAC on H after computing the number-

of-clusters parameter k that maximizes a validity index called Silhouette [12]. Sil-

houette aims to maximize the inter-cluster distances (the average distance of pairs

79



Dataset LAC-S MAC PCM-C PCM-E

Dolphin 260.3 5137.0 87.4 32.7
k=19 (|H|= Tp=23.5 Tp=18.8

1000) Tm=63.9 Tm=13.9

ECE 229.6 5187.9 89.1 26.1
k=2 (|H|= Tp=18.9 Tp=17.2

1000) Tm=70.2 Tm=8.9

Rubis-bug 28.3 1318.5 45.8 34.7
k=3 (|H|= Tp=40.1 Tp=28.8

600) Tm=5.7 Tm=5.9

Rubis-jndi 75.1 1399.6 108.2 95.8
k=2 (|H|= Tp=92.6 Tp=87.0

600) Tm=15.6 Tm=8.8

OLTP-single 214.5 5116.0 173.3 88.1
k=2 (|H|= Tp=137.4 Tp=70.6

1000) Tm=35.9 Tm=17.5

OLTP-multi,F= 7.2 1526.1 7.1 3.8
CPU contention k=15 Tp=4.3 Tp=3.2

Tm=2.8 Tm=0.6

OLTP-multi,F= 6.2 1516.1 7.4 4.1
Disk contention k=14 Tp=3.3 Tp=3.6

Tm=4.1 Tm=0.5

Table 3.3: Comparing running times (seconds)

of points from different clusters) and minimize the intra-cluster distances (the av-

erage distance of pairs of points from the same cluster). For each cluster C ⊆ H

generated by LAC, LAC-S outputs ⟨w⃗, C⟩ computed using MC(F,C).

Comparing Running Times: Table 3.3 shows the running time of our algo-

rithms on the different datasets. Each reported time was averaged over 10 runs.

For LAC-S, the time shown is the time to compute silhouette indices for 10 differ-

ent values of k. This time is an optimistic estimate of the running time of LAC-S

because we expect that more than 10 choices of k will have to be explored before

finding the k that maximizes the silhouette index. We currently try all values of

k ∈ [2, 30]. The best k is reported in LAC-S’s column in Table 3.3.
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Because of its poor scalability, we had trouble running MAC on the full version

of all but the smallest dataset (OLTP-multi) in Table 3.2. Therefore, the times for

MAC are for scaled-down versions of the datasets. The scaled-down size is shown

in MAC’s column in Table 3.3. The times for PCM-C and PCM-E are split into

the time for the partitioning and checking phases, denoted Tp in Table 3.3, and the

time for the merge phase, denoted Tm. The following trends are clear in Table 3.3.

• MAC is very inefficient because of O(|H|2) MC calls.

• PCM-E is by far the most efficient algorithm. Note that PCM-E’s Tm is

usually significantly better than that of PCM-C. This trend is because PCM-

E’s aggressive strategy to map points to clusters leads to a much lower number

of clusters being input to the (quadratic) merge phase. Furthermore, PCM-

E’s Tp is usually better than that of PCM-C because PCM-E’s aggressive

strategy gets all points covered in fewer iterations of the partitioning and

checking phases.

• PCM-E typically matches or outperforms LAC-S, which is because the silhou-

ette computations in LAC-S perform O(|H|2) distance computations.

Comparing Diagnosis Accuracy of Phase II: Table 3.4 summarizes the di-

agnosis accuracy of our algorithms on the datasets. Numbers like 1st and 2nd in

Table 3.4 indicate the smallest rank of a cluster C whose diagnosis vector gives

non-zero weights to attributes relevant to the failure (smaller rank is better). The

non-zero weights in this diagnosis vector are shown for PCM-E, with the weights

for attributes relevant to the failure shown in bold font. Each cell also shows the

% size of C with respect to the number of historical points |H|, and the number
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Dataset LAC-S MAC PCM-C PCM-E Diagnosis vec-
tor for PCM-E

Dolphin 8th, 5%,
14

Not
found

1st, 39%,
8

1st, 37%,
7

2 nonzero weights,
(0.77,0.23)

ECE Not
found

2nd, 9%,
2

1st, 68%,
3

1st, 73%,
4

2 nonzero weights,
(0.75,0.25)

Rubis-bug 2nd,
25%, 3

1st, 14%,
7

1st, 19%,
3

1st, 21%,
6

2 nonzero weights,
(0.61, 0.39)

Rubis-jndi Not
found

1st, 43%,
2

1st, 21%,
2

1st, 48%,
5

1 nonzero weight,
1

OLTP-single Not
found

2nd,
10%, 2

1st, 33%,
4

2nd,
26%, 5

4 nonzero weights,
(0.3, 0.34, 0.11,
0.25)

OLTP-
multi,CPU

3rd,
10%, 15

2nd,
25%, 4

2nd,
19%, 4

2nd,
26%, 5

3 nonzero weights,
(0.49, 0.43, 0.08)

OLTP-
multi,Disk

1st, 20%,
14

1st, 69%,
4

1st, 70%,
4

2nd,
74%, 4

3 nonzero weights,
(0.55, 0.24, 0.19)

Table 3.4: Comparing diagnosis accuracy. Numbers like 1st and 2nd indicate the
rank of the cluster C whose diagnosis vector contains the relevant attributes in
decreasing order of cluster size (smaller rank is better). The % value is the size of
C wrt the number of historical points |H|. The third integer value indicates the
number of diagnosis vectors returned after filtering with a support threshold of 2%

of ⟨w⃗, C⟩ pairs in the result after filtering with a support threshold of 2%. The

following trends are clear in Table 3.4.

• PCM-C and PCM-E give the best accuracy in all cases.

• MAC gives good accuracy in most cases. Recall from Section 3.5.3 that MAC

uses only a subset of the full historical data since we had to scale down the

datasets to get MAC to run in reasonable time.

• LAC-S gives poor accuracy in many cases.

As shown in Table 3.4, the diagnosis accuracy of LAC-S is poor for the Dolphin

dataset when we use k = 19 for which the silhouette cluster validity index is max-

imized. We tried LAC on this dataset with different values of k ranging from 2 to
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30. In most cases, the relevant attribute—the attribute measuring available swap

space, since the failure in Dolphin is because of swap space exhaustion—was not

part of the diagnosis result. In the few cases where the relevant attribute was part

of the diagnosis result, it appears in some lowly-ranked cluster (as for k = 19 in

Table 3.4) and/or as one among many attributes with nonzero weight in a diagnosis

vector. Furthermore, as we increase k, LAC reports more and more clusters in the

result, each cluster with its own diagnosis vector; so we can’t be confident about

any of the output clusters or diagnosis vectors.

On the other hand, note from Table 3.4 that both PCM-C and PCM-E re-

port the relevant attribute (as one of two attributes) in the diagnosis vector of the

top-ranked cluster, which contains close to 40% of the total historical data. This

result illustrates the power of PCM’s anomaly-based clustering. The Dolphin data

contains many patterns because of the general effects of software aging, causing

LAC’s query-unaware clustering to generate clusters that are not relevant to the

query-specified failure points.

Conciseness of PCM-E’s Diagnosis Vectors: Diagnosis vectors from PCM-

E usually have very few attributes of nonzero weight, even for high-dimensional

datasets. This property makes it easy to interpret results. The last column of

Table 3.4 gives the diagnosis vector of the relevant cluster produced by PCM-E.

For example, PCM-E’s diagnosis vector for Rubis-bug contains only 2 attributes

(out of 110) with nonzero weights: one with weight 0.39, and the other with weight

0.61. (Sum of absolute weights is 1.) The latter attribute pinpoints the buggy Java

bean. PCM-E’s diagnosis vector for Dolphin contains only 2 attributes (out of 41)

with nonzero weights: one with weight 0.77 and the other with weight 0.23; both

pinpoint the swap space exhaustion problem causing the crash.
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3.5.4 Details of Diagnosis Results for Phase II

In this section we give the details of the results summarized in Table 3.4. The

results are given per dataset.

Dolphin

The most relevant attribute for the Dolphin dataset measures available swap space

(usedSwapSpace), since the failure in Dolphin is because of swap space exhaustion.

Also relevant are attributes that are related to the temporary space available, e.g.,

tmpDirUsed and tmpDirAvail.

LAC-S: There are 14 clusters with a support of 2%. The diagnosis vector of the

top-ranked cluster has weight 0.1 for tmpDirUsed, and three other attributes. This

cluster has a margin of 0.38. The number of tuples in this cluster is 667, of which

100% comes from points that are not categorized as failures. The 8th-ranked cluster

has weight 0.19 for userSwapSpace, and seven other attributes. This cluster has a

margin of 0.1. The number of tuples in this cluster is 260, of which 98% comes from

points that are not categorized as failures.

MAC: There are 3 clusters with a support of 2%. The relevant attributes are not

part of the diagnosis vectors of these three clusters.

PCM-C: The top-ranked cluster has a diagnosis vector with weight −0.74 for

tmpDirUsed and weight −0.26 for usedSwapSpace. This cluster has a margin of

0.39. The number of tuples in this cluster is 1923, of which 96.5% comes from

points that are not categorized as failures. There are 8 clusters with 2% support.
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PCM-E: The top-ranked cluster has a diagnosis vector with weight −0.77 for

tmpDirAvail and and weight −0.23 for usedSwapSpace. This cluster has a margin

of 0.39. The number of tuples in this cluster is 1790, of which 96.2% comes from

points that are not categorized as failures. There are 7 clusters with 2% support.

ECE

The failure is because of exhaustion of free memory. The relevant attribute in the

data is realMemFree.

LAC-S: There are 2 clusters with a support of 2%. The relevant attribute is not

part of the diagnosis vectors of these clusters.

MAC: The 2nd-ranked cluster has a diagnosis vector with weight−0.99 for realMem-

Free. (realMemFree is also part of the top-ranked cluster, but with a very small

weight.) This cluster has a margin of 0.48. The number of tuples in this cluster is

94, of which 89.4% comes from points that are not categorized as failures. There

are 2 clusters with 2% support.

PCM-C: The top-ranked cluster has a diagnosis vector with weight −0.98 for

realMemFree. This cluster has a margin of 0.47. The number of tuples in this cluster

is 3200, of which 85.1% comes from points that are not categorized as failures. There

are 3 clusters with 2% support.

PCM-E: The top-ranked cluster has a diagnosis vector with weight −0.74 for

realMemFree. This cluster has a margin of 0.27. The number of tuples in this cluster

is 3450, of which 84.7% comes from points that are not categorized as failures. There

are 4 clusters with 2% support.
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Rubis-bug

The relevant attributes measure the number of invocations per minute for different

procedures of the BuyNow Java module in the application server.

LAC-S: The 2nd-ranked cluster has a diagnosis vector with weight 1 for the

invocation of the getItemId procedure in the BuyNow Java module. This cluster

has a margin of 0. The number of tuples in this cluster is 363, of which 50.1%

comes from points that are not categorized as failures. There are 3 clusters with

2% support.

MAC: The top-ranked cluster has a diagnosis vector with weight 1 for the invo-

cation of the getItemId procedure in the BuyNow Java module. This cluster has

a margin of 0.1. The number of tuples in this cluster is 83, of which 98.8% comes

from points that are not categorized as failures. The 2nd-ranked cluster has a diag-

nosis vector with weight 1 for the invocation of the getNextBuyNowID procedure in

the IDManagerHome Java module which invokes procedures in the BuyNow module

(and thus, is affected by the failure of the BuyNow module.) This cluster has a mar-

gin of 0.11. The number of tuples in this cluster is 75, of which 100% comes from

points that are not categorized as failures. There are 7 clusters with 2% support.

PCM-C: The top-ranked cluster has a diagnosis vector with weight −0.26 for the

invocation of the getItemId procedure in the BuyNow Java module. This cluster

has a margin of 0.07. The number of tuples in this cluster is 173, of which 98%

comes from points that are not categorized as failures. The 3rd-ranked cluster

has a diagnosis vector with weight 1 for the invocation of the getNextBuyNowID

procedure in the IDManagerHome Java module which invokes procedures in the

BuyNow module (and thus, is affected by the failure of the BuyNow module.) This
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cluster has a margin of 0.06. The number of tuples in this cluster is 48, of which

98% comes from points that are not categorized as failures. There are 3 clusters

with 2% support.

PCM-E: The top-ranked cluster has a diagnosis vector with weight −0.21 for the

invocation of the getItemId procedure in the BuyNow Java module. This cluster

has a margin of 0.07. The number of tuples in this cluster is 186, of which 97.8%

comes from points that are not categorized as failures. The 2nd-ranked cluster

has a diagnosis vector with weight 1 for the invocation of the getNextBuyNowID

procedure in the IDManagerHome Java module which invokes procedures in the

BuyNow module (and thus, is affected by the failure of the BuyNow module.) This

cluster has a margin of 0.06. The number of tuples in this cluster is 121, of which

99% comes from points that are not categorized as failures. There are 6 clusters

with 2% support.

Rubis-jndi

The relevant attributes measure the number of invocations per minute for different

procedures of the SearchItemsByRegion Java module in the application server.

LAC-S: There are 2 clusters with a support of 2%. The relevant attributes are

not part of the diagnosis vectors of these clusters.

MAC: The top-ranked cluster has a diagnosis vector with weight 0.73 for the in-

vocation of the create procedure in the SearchItemsByRegion Java module. This

cluster has a margin of 0.11. The number of tuples in this cluster is 257, of which

96.1% comes from points that are not categorized as failures. There are 2 clusters

with a support of 2%.
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PCM-C: The top-ranked cluster has a diagnosis vector with weight 0.92 for the

invocation of the create procedure in the SearchItemsByRegion Java module. This

cluster has a margin of 0.09. The number of tuples in this cluster is 316, of which

99.4% comes from points that are not categorized as failures. There are 2 clusters

with a support of 2%.

PCM-E: The top-ranked cluster has a diagnosis vector with weight 1 for the

invocation of the create procedure in the SearchItemsByRegion Java module. This

cluster has a margin of 0.07. The number of tuples in this cluster is 717, of which

95.7% comes from points that are not categorized as failures. There are 5 clusters

with a support of 2%.

OLTP-single

The relevant attribute measures CPU utilization on the OLTP server.

LAC-S: There are 2 clusters with a support of 2%. The relevant attribute is not

part of the diagnosis vectors of these clusters.

MAC: The 2nd-ranked cluster has a diagnosis vector with weight 1 for the attribute

measuring CPU utilization (in OS space) on the OLTP server. This cluster has a

margin of 0.76. The number of tuples in this cluster is 103, of which 0% comes from

points that are not categorized as failures.

PCM-C: The top-ranked cluster has a diagnosis vector with weight 0.48 for the

attribute measuring CPU utilization (in OS space) on the OLTP server. This cluster

has a margin of 0.61. The number of tuples in this cluster is 1222, of which 88.9%

comes from points that are not categorized as failures. There are 4 clusters with a
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support of 2%.

PCM-E: The top-ranked cluster has a diagnosis vector with weight 0.3 for the

attribute measuring CPU utilization (in OS space) on the OLTP server. This cluster

has a margin of 0.01. The number of tuples in this cluster is 1162, of which 78.66%

comes from points that are not categorized as failures. There are 5 clusters with a

support of 2%.

OLTP-multi (CPU-based Failure)

The relevant attribute measures CPU utilization on the OLTP server.

LAC-S: The 3rd-ranked cluster has a diagnosis vector with weight 0.47 for the

attribute measuring CPU utilization (in OS space) on the OLTP server. This cluster

has a margin of 0.34. The number of tuples in this cluster is 71, of which 28.2%

comes from points that are not categorized as failures. There are 15 clusters with

a support of 2%.

MAC: The 2nd-ranked cluster has a diagnosis vector with weight 0.58 for the

attribute measuring CPU utilization (in OS space) on the OLTP server. This cluster

has a margin of 0.33. The number of tuples in this cluster is 176, of which 42.6%

comes from points that are not categorized as failures. There are 4 clusters with a

support of 2%.

PCM-C: The 2nd-ranked cluster has a diagnosis vector with weight 0.47 for the

attribute measuring CPU utilization (in OS space) on the OLTP server. This cluster

has a margin of 0.34. The number of tuples in this cluster is 130, of which 42.3%

comes from points that are not categorized as failures. There are 4 clusters with a
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support of 2%.

PCM-E: The 2nd-ranked cluster has a diagnosis vector with weight 0.57 for the

attribute measuring CPU utilization (in OS space) on the OLTP server. This cluster

has a margin of 0.33. The number of tuples in this cluster is 179, of which 39.1%

comes from points that are not categorized as failures. There are 5 clusters with a

support of 2%.

OLTP-multi (Disk-based Failure)

The relevant attributes measure disk-usage (e.g., number of bytes or disk blocks

read or written) on the OLTP server.

LAC-S: The top-ranked cluster has a diagnosis vector with weight −1 for the

attribute measuring disk blocks read per second on the OLTP server. This cluster

has a margin of 0.81. The number of tuples in this cluster is 137, of which 64.96%

comes from points that are not categorized as failures. There are 14 clusters with

a support of 2%.

MAC: The top-ranked cluster has a diagnosis vector with weight −1 for the at-

tribute measuring disk blocks read per second on the OLTP server. This cluster

has a margin of 0.8. The number of tuples in this cluster is 482, of which 44.8%

comes from points that are not categorized as failures. There are 4 clusters with a

support of 2%.

PCM-C: The top-ranked cluster has a diagnosis vector with weight −0.74 for the

attribute measuring disk blocks read per second on the OLTP server. This cluster

has a margin of 0.29. The number of tuples in this cluster is 485, of which 45.6%
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comes from points that are not categorized as failures. There are 2 clusters with a

support of 2%.

PCM-E: The top-ranked cluster has a diagnosis vector with weights−0.47, −0.23,

and 0.24 for the attributes measuring disk blocks read per second, disk blocks writ-

ten per second, and number of OS-level writes per second respectively on the OLTP

server. This cluster has a margin of 0.04. The number of tuples in this cluster is

513, of which 41.3% comes from points that are not categorized as failures. There

are 4 clusters with a support of 2%.

3.5.5 Experimental Comparison with Previous Work

We used the Dolphin dataset in Table 3.2 to compare our algorithms for diagnosis

query processing with the following algorithms from previous work:

• Themetric-attribution approach from [25] first learns a Tree-augmented Bayesian

network classifier [88] usingH∪F , and then infers which attributes inA1, . . . , An

correlate highly with the attribute that tracks failures in the data (e.g., failures

in Example 3.2.1). The highly-correlated attributes are output as the single

diagnosis vector in the query result. Note that this technique does not par-

tition the data into one or more clusters; the entire data is considered to be

a single cluster. We did not consider the extended approach in [26]—which

first partitions H ∪ F into windows of fixed size W , and then applies metric

attribution per window—because there is no principled approach for choosing

the window size W .

• The CART-based diagnosis approach [24] learns a decision tree T from H∪F ,

and then outputs the attributes used in the top-level decision nodes in T
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Diagnosis approach Causative attributes found

Correct result Primary attribute: usedSwapSpace attribute (see Sec-
tion 3.5.3);
Secondary attributes: tmpDirAvail, tmpDirSize, or
tmpDirUsed

PCM-E usedSwapSpace (w1 = −0.23), tmpDirAvail (w2 =
−0.77) in first cluster with 37% points

Metric attribution None of the primary or secondary attributes in top-5
attributes in diagnosis vector

CART-based diagnosis None of the primary or secondary attributes in top-5
attributes in diagnosis vector

KDE-based diagnosis Attribute usedSwapSpace has weight = 1.0 and is one
among five attributes in the
diagnosis vector with weight = 1.0, and one among 20
attributes with weight > 0.99

Gaussian-based diagnosis None of the primary or secondary attributes in top-5
attributes in diagnosis vector

Table 3.5: Comparison with previous approaches

as part of the single diagnosis vector. Partitioning H into clusters is not

considered in [24].

• The baselining-based approach described in [11] first captures the distribution

DAi
of each attribute Ai, 1 ≤ i ≤ n, using the historical data H. The

distribution can be approximated by a Gaussian distribution or using Kernel

Density Estimation (KDE) [62]. Then, [11] computes the probability of DAi

having produced the measurements of Ai in F . If this probability is low, then

Ai is included in the output diagnosis vector with a weight equal to the inverse

of this probability.

The experimental results on the Dolphin dataset are summarized in Table 3.5. For

the metric attribution, CART-based diagnosis, and baselining-based approaches,

we include the five most relevant metrics from the output diagnosis vector. Note

that the results show a clear advantage of our PCM-E algorithm over the previous
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approaches in terms of diagnosis accuracy.

3.6 Related Work

Fa’s diagnosis query processing differs from all previous work on automated diagno-

sis in three significant ways: (i) integration of Phase I (diagnosing recurrent failures)

and Phase II (diagnosing failures not seen previously); (ii) considering robustness

of diagnosis to errors in monitoring data; and (iii) providing reliable confidence

estimates.

Diagnosis Phase I: Automated diagnosis of recurrent problems has been con-

sidered in previous work, e.g., [14, 26, 92, 95]. Reference [95] builds a multi-class

classifier on system event traces to classify previously-solved problems. We have

empirically shown the advantages of signature databases over multi-class classifiers,

especially in terms of robustness. Reference [92] gives signature-generation tech-

niques which assume that symptoms of each failure have been identified in the

monitoring data; which is impractical in the settings we consider where only raw

monitoring data is available. Reference [14] considers a very different type of mon-

itoring data—function call stacks from system failures—and gives stack matching

and indexing algorithms. Reference [26] extracts indexable signatures from failure

data by finding metrics that differentiate a failure state from the healthy states.

Instead, Fa captures the difference between one or more failure states from other

failure states using annotation information which is ignored in [26].

Fa’s signature database generation resembles solving a multi-class classification

problem using an ensemble of binary classifiers (e.g., see [5]). However, our focus

on robustness to errors and reliable confidence estimates, and our new weighting

algorithm in Section 3.3.3, differentiate Fa’s Phase I from previous work by the
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machine-learning community.

Diagnosis Phase II: Unlike anomaly-based clustering, previous work on Phase

II of diagnosis predominantly takes one of the correlation-based (e.g., [24, 25]) or

baselining-based approaches (e.g., [11]). Reference [24] applies decision-tree learn-

ing techniques to rank different system components based on their correlation with

system failures. Reference [25] applies Bayesian-network learning techniques to

correlate performance metrics with high-level system behavior. Reference [11] pro-

poses a heuristic to represent the baseline behavior of a Web service; and applies

anomaly detection techniques to categorize deviation from the baseline behavior.

We have compared PCM-E empirically on real monitoring datasets with the algo-

rithms in [11, 24, 25]. PCM-E performed the best due to the noisy and dynamic

nature of the monitoring data.

Failure diagnosis in database systems: Oracle’s recent ADDM tool [31]

shows the growing interest among database vendors on automated diagnosis of

database failures. Fa differs from ADDM in two ways: (i) Fa targets a broader class

of systems (e.g., multitier services); and (ii) ADDM relies on a static knowledge

base gathered by Oracle experts over the years, while Fa automates the process

of generating the signature database from monitoring data. ADDM and Fa can

complement each other.

3.7 Summary

We showed how Fa’s new contributions address the five challenges from Section 3.1

for automated processing of diagnosis queries:
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• Noisy data: Our empirical evaluation (Sections 3.5.2 and 3.5.3) showed how Fa

maintains high diagnosis accuracy in the presence of errors in the monitoring

data.

• High dimensionality: Fa can pinpoint the 1-2 attributes related to a failure

even in the presence of 50-100 attributes (Section 3.5.3).

• Dynamic systems: Both Fa’s signature database generation and anomaly-

based clustering can deal with multiple healthy and failure system states and

rapid state transitions.

• Reuse: Fa’s techniques for Phase I increase reuse of previous diagnosis results

by enabling high accuracy while minimizing invocations of Phase II (Section

3.5.2).

• Trust: Our empirical evaluation showed how Fa’s confidence estimates and

diagnosis vectors are very reliable.
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Chapter 4

Guided Diagnosis Through Active
Learning

4.1 Motivation

In Chapter 3, we described how Fa processes diagnosis queries in two phases:

(i) Phase I — constructing and using problem signatures to identify recurrent

problems and reusing past diagnosis results if the match with the signature

database has high confidence.

(ii) Phase II — constructing system baselines through anomaly-based clustering

and characterizing the deviation of the failure data from the baselines to

pinpoint the root cause.

While both Phase I and Phase II have their pros and cons, Phase II has a harder

task to solve than Phase I. Consequently, diagnosis results from Phase II tend to

be less accurate than those from Phase I. In machine-learning terminology, Phase

I is a supervised learning task and Phase II is an unsupervised learning task [88].

In supervised learning, the training data consists of pairs of input objects (L in

Fa) and the corresponding outputs (annotations in Fa). The goal is to create a

function (e.g., a classifier like a decision tree) that can predict the output for any
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legal input. However, in unsupervised learning, the training data contains input

objects only—the outputs are unknown—and the goal is to learn a model that fits

the input (e.g., a clustering of the input).

Recall that our monitoring datasets contain 100-300 attributes. Supervised

learning often has an accuracy advantage over unsupervised learning on such high-

dimensional datasets. Reference [27] empirically evaluates techniques for Phase I

and Phase II and comes up with similar observations. For example, Phase II is

shown to be prone to misdiagnosis under multiple correlated failures.

A New Background Phase III: The above observations about Phases I and II

motivated us to consider a new phase in Fa where data is moved proactively from U

to L; with the goal of increasing the accuracy and coverage of Phase I with the least

manual effort. Figure 3.2(c) illustrates this step. We can move a failure instance

t from U to L after annotating t with the cause of the failure that it represents.

To get the correct annotation for t, we can leverage the manual diagnosis efforts of

system administrators.

Phase III is implemented using a new algorithm, called Falcon1, that can select

some instances u from U , and pose an annotation query to the system administrator

of the form: What are the annotations for the instances in u? To answer this

annotation query, the system administrator will have to actually diagnose the cause

of the failure represented by u. She can take the help of Fa’s Phase II for this

purpose. If the system administrator is able to respond back with the annotations

for u, then Falcon will remove u from U , and add u and its annotations to L.

Otherwise, these instances are left in U . Falcon then iterates by selecting a new set

of instances from U , and posing a new annotation query to the system administrator.

1Fa’s Active Learning with Clustering Online
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Phase III can be run continuously in the background as the system executes,

or it can be invoked on demand by the system administrator—e.g., when she has

the time to do more diagnosis, or when she feels that the classifier trained from

the current L needs to be improved. As new annotated instances appear in L, the

classifier used by Phase I can be retrained on the new L to potentially improve its

accuracy and coverage. The main challenge we need to address in Phase III is to

design the sequence of annotation queries posed to the system administrator. Since

diagnosis is expensive and time-consuming, Fa’s goal is to make the best use of

manual diagnosis efforts while maximizing the information gained from the newly

diagnosed instances.

In Section 4.2, we present guidelines that algorithms for Phase III should meet.

We then give an overview of how Falcon adheres to these guidelines. Sections 4.3

and 4.4 will describe the components of Falcon.

4.2 Overview

Recall that Fa’s Phase III poses a sequence of annotation queries to the system

administrator. For efficiency and ease of use, we require this sequence to adhere to

three guidelines G1, G2, and G3 that we discuss next.

Guideline G1: Each individual annotation query posed to a system administrator

should contain multiple instances belonging to a single type of failure. The intuition

behind this guideline is that it will be hard for a system administrator to diagnose

the cause of a failure from a single instance of monitoring data. Multiple distinct

instances per failure make it easier to spot patterns both manually as well as when

Fa’s Phase II is used [10]. It is even more important to ensure (as much as possible)
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that the instances in an annotation query correspond to the same type of failure. A

query that mixes instances from an assorted set of failures will easily confuse system

administrators. The consequences can be higher cost and labor for diagnosis, higher

chances of misdiagnosis, and subsequent loss of faith in the usefulness of Phase III.

Guideline G2: The instances selected in each annotation query should be suf-

ficiently different from the existing annotated instances in L. Adhering to this

guideline ensures that manual diagnosis efforts are not duplicated needlessly.

Guideline G3: The instances selected in each annotation query should be rep-

resentative of the failures seen in the system that are not covered by the existing

annotated instances in L. Adhering to this guideline ensures that manual diagnosis

efforts are spent on failures actually seen in the production system.

Our goal is to design an algorithm that adheres to all three guidelines. Guidelines

G2 and G3 can be met using techniques for active learning from supervised machine

learning [61]. In conventional supervised learning, a classifier C is trained on a

pool of instances that are all annotated. C can then be used to predict annotations

for instances with unknown annotations. Active learning is used when the training

pool consists largely of unannotated instances for which getting annotations are

costly. These techniques have been applied to many applications, e.g., text and

image classification, speech recognition, and software testing [61].

Starting with a small set of annotated instances, an active learner searches

the unannotated pool for instances that provide useful information in creating an

accurate classifier. Once an unannotated instance t is chosen, a request is made

to a human expert (in general, an oracle) to provide the correct annotation for t.

The expert annotates t at some cost, and the classifier is retrained on the new set
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Algorithm Falcon /* Fa’s implementation of diagnosis Phase III */
1. Let L be the current set of annotated failure instances, and U

be the current set of unannotated failure instances;
/* Clustering step to adhere to guideline G1 */

2. Group instances in U into a minimal set of clusters where each
cluster has instances of same failure type with high probability;
/* Use of active learning to adhere to guidelines G2 and G3 */

3. Use an active learner to pick one cluster from the set of
clusters generated in the previous step;

4. Pick some k ≥ 1 instances from the chosen cluster in U to
pose an annotation query to the system administrator;

5. Move the annotated instances returned by the system administrator, if
any, from U to L. Update the classifier trained from L;

6. Go to Step 1;

Figure 4.1: Outline of our Falcon algorithm

of annotated instances. Based on the newly gained information, the active learner

searches the unannotated pool again; and the process repeats.

Notice that an active learner is exactly what we need to implement Phase III.

However, conventional active learners (described in Section 4.3) adhere to guidelines

G2 and G3, but not to G1. The complication posed by G1 is that the cost incurred by

the system administrator to answer an annotation query is very high if the instances

belong to more than one type of failure. Falcon, illustrated in Figure 4.1, addresses

this issue.

Falcon proceeds in iterations where each iteration picks an annotation query—

i.e., a set of unannotated instances from U—that is posed to the system adminis-

trator for annotation. Falcon adheres to guideline G1 by ensuring that each query

contains multiple instances that all correspond to the same type of failure with

high probability. To meet this requirement, Falcon first groups instances in U into

clusters such that instances from the same failure type go into the same cluster.

Section 4.4 describes Falcon’s clustering techniques.
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Once the clusters are generated, Falcon uses an active learner to pick one cluster

from which all instances in the current annotation query will be chosen. This step

requires some modifications to conventional active learners which are designed to

pick one instance from a pool of unannotated instances, rather than one cluster from

a pool of clusters. In Section 4.3, we describe some conventional active learners and

our extensions that enable Falcon to adhere to guidelines G2 and G3.

After picking a cluster, Falcon has to decide which subset of instances from this

cluster to include in the annotation query posed to the system administrator. This

decision is discussed in Section 4.4. The response given by the system administrator

will be annotations for some subset of the queried instances. This subset could

range from all queried instances to an empty set. The cost incurred by the system

administrator for finding the annotations adds to the overall cost of Falcon so far.

The newly annotated instances will be added to L, and the classifier that Phase I

trains from L will be updated. Falcon then proceeds to design the next annotation

query.

The next two sections present the details of each step of Falcon from Figure 4.1.

4.3 Active Learners

In this section, we first describe three popular active learners from the machine-

learning literature. We will then describe how Falcon adapts these learners to also

adhere to guideline G1 from Section 4.2. Conventional active learners are best

described by where they are positioned in the classical “exploration” Vs. “exploita-

tion” spectrum in machine learning [61].

A popular active learner that we consider in Falcon is called the least-confidence

learner (LC) (or uncertainty sampling) [61]. The unannotated instance t ∈ U that
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LC will pick for manual annotation next is the one on which the classifier C trained

from the current L is the least confident about the true annotation. A generic way

to quantify the confidence in C’s prediction of t’s annotation is to measure how

close t is to a decision boundary in C. (Intuitively, each side of a decision boundary

in a classifier will give a different prediction of t’s annotation.) The closer t is to

a decision boundary in C, the less C is confident about its prediction of t’s true

annotation; hence, the larger the uncertainty in t.

LC is good at exploitation—namely, acquiring annotations for instances near

decision boundaries so that the boundaries can be refined—but, it does not conduct

exploration where the goal is to acquire annotations for instances so as to create

new decision boundaries if required. Pure exploitation will not find regions of the

input space that contain many unannotated instances for which the current classifier

learned from L predicts the true annotation incorrectly. Exploration searches for

such regions. A popular active learner in the exploration category that we consider

in Falcon is called Kernel Furthest First; discussed in Section 4.3.

The third type of active learner that we consider balances exploration and ex-

ploitation by defining a probability—varied suitably over time—of choosing whether

to explore or exploit whenever an annotation query has to be chosen [61]. The rest

of this section gives the details of how we implemented these three active learners

in Fa.

4.3.1 Least-Confidence Sampling (LC)

LC first learns a classifier C from the current set of annotated failure instances

L. For each instance t ∈ U , LC then uses C for two things: (i) predicting t’s

(unknown) annotation; and (ii) estimating the confidence in this prediction. The

102



details of confidence estimation are specific to the type of classifier we train from

L, and works as follows for the two types of classifiers discussed in Section 4.1:

• While predicting the annotation of an instance t ∈ U , a decision tree classifier

can compute the probability of t having each possible annotation from the

space of all annotations (i.e., failure types). The annotation predicted for t

will be the one with the highest probability. The confidence in this prediction

is the difference in probabilities between the most probable annotation and

the second most probable annotation.

• A signature-based classifier will predict t’s annotation to be the same as that

of the signature whose distance to t is minimum, i.e., t’s nearest neighbor in

the signature database. (The distance metrics we consider will be defined

momentarily.) The confidence in this prediction is d2 − d1, where d1 is t’s

distance to its nearest neighbor in the signature database, and d2 is t’s distance

to its second nearest neighbor in the database.

Notice that both the above differences estimate the distance to a decision boundary.

When LC has to pick k, k ≥ 1, instances to pose an annotation query to the system

administrator, it will pick the k instances from U whose predictions have the lowest

confidence. Ties are broken randomly.

4.3.2 Kernel-Furthest-First Learner (KFF)

For each instance t ∈ U , KFF computes t’s distance to its nearest neighbor in L,

i.e., the instance in L that t is closest to among all instances in L. A popular metric

for estimating distances is called the L2 norm (or Euclidean distance). The L2 norm

for a pair of instances t and t′ is
√∑n

i=1(t.Ai − t′.Ai)2, where A1, . . . , An are the
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data attributes in each instance. Another distance metric, which we use by default

is the cosine distance: 1 − cos(θ). Here, θ is the angle between instances t and t′

treated as vectors. cos(θ) = ⟨t,t′⟩
||t|| ||t′|| , i.e., the inner product of t and t′ normalized by

the product of their lengths. When KFF has to pick k, k ≥ 1, instances to pose an

annotation query to the system administrator, it will pick the k instances from U

with the largest distance to their nearest neighbor in L. Ties are broken randomly.

4.3.3 Hybrid Learner (Hybrid)

Whenever an annotation query has to be chosen, Hybrid decides whether to do an

exploration with probability p, or to do an exploitation with probability 1-p [61].

KFF is used if exploration is chosen, and LC is used if exploitation is chosen. A

simple option is to use a fixed p. Reference [61] describes a better approach which

we implemented as Hybrid in Falcon. Hybrid varies p dynamically such that p is

high initially, and p is reduced gradually as the classifier trained from L becomes

more accurate. After each exploration step, Hybrid estimates how “successful” this

step was. Intuitively, if the exploration was successful, then p should be kept high;

otherwise it should be reduced.

Let Cb and Ca be the classifiers trained from the set of annotated instances L

before and after an exploration step. LetHb (Ha) be the vector containing the anno-

tations predicted by Cb (Ca) for the instances in L∪U . If Ha is significantly different

from Hb—which can be computed using distance metrics from Section 4.3.2—then

Hybrid estimates that the exploration was successful; otherwise it reduces p. The

full details of Hybrid are given in [61].
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4.3.4 How Falcon Uses an Active Learner

The conventional active learners discussed so far in this section work at the level

of individual instances in U . However, recall from Section 4.2 that guideline G1

requires Falcon to work at the level of clusters in U , where each cluster contains

instances of the same failure type with high probability. When LC is used as the

active learner, Falcon will compute the confidence of each cluster as the average

confidence across all instances in that cluster. The cluster with the least confidence

is chosen for the annotation query in Step 3 of Falcon in Figure 4.1.

A similar approach is used for KFF. Here, for each cluster, Falcon will compute

the average, over all instances in the cluster, of the distance to the nearest neighbor

in L. The cluster with the largest average distance will be chosen for the annotation

query. Note that Hybrid uses one of LC or KFF in each iteration.

4.4 Clustering in Falcon

We first considered conventional distance-based clustering techniques to group in-

stances in U into clusters that contain instances of the same failure type with high

probability. However, these techniques performed poorly, so we developed a new

technique that we call time-based chunking. Both techniques are described next.

4.4.1 Distance-based Clustering

We will give a brief description of K-means which is one of the most commonly-

used distance-based clustering techniques [88]. K-means uses an iterative refinement

algorithm that starts by partitioning the input instances in U into k initial sets,

either at random or using some heuristic. It then calculates the mean instance,
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or centroid, of each set; and constructs a new partition of the instances in U by

associating each instance with its closest centroid. Any of the distance metrics from

Section 4.3.2 can be used for measuring distances between instances. The centroids

are recalculated for the new clusters, and the algorithm is repeated by alternate

application of these two steps until the instances no longer switch clusters or the

centroids no longer change.

Falcon’s active learner will pick one of the clusters generated by K-means, as

discussed in Section 4.3.4. The annotation query posed to the system administrator

will consist of the centroid of this cluster, and, if k > 1, a random sample of

k − 1 instances from this cluster. As we report in Section 4.5, K-means performed

poorly when used in Falcon. Recall that the monitoring datasets collected by Fa

contain 100-300 attributes, i.e., these datasets are high dimensional. Distance-based

clustering suffers from the curse of dimensionality in high dimensional spaces [32].

For any pair of instances in such spaces, it is highly likely that there are some

attributes on which the instances are highly distant from each other. Thus, the

clusters generated by K-means from U tend to be impure in that they contain

instances from different failure types.

4.4.2 Time-based Chunking

We developed a different technique to address the problems with distance-based

clustering. In the system management domain, it is reasonable to expect a strong

time-based correlation among annotation values. That is, it is more likely that two

failure instances that are close together in time belong to the same failure type,

compared to two failure instances that are distant in time. This property can be

leveraged while clustering instances in U . However, the challenge that we need to
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solve is how to identify change-points in U—where one type of failure finishes, and

another type of failure starts.

Often, there are external indicators that make it easy to detect change-points.

For example, instances from two different types of failure may be separated in time

by a long intermediate phase where the system was in a healthy state. While such

external indicators are useful, we cannot rely solely on such indicators to identify

all change-points. For example, a type of failure may be workload dependent,

causing failure instances to be interleaved naturally with healthy instances. We

have developed a technique to identify change-points that can leverage external

indicators where available, but does not depend on them.

The basic idea behind our technique is to use patterns in the confidence estimates

of instances in U that are close together in time. As discussed in Section 4.3.1, these

confidence estimates are generated by first training a classifier C on the current set

of annotated instances L; and then using C to predict the annotation and associated

confidence for each instance t ∈ U .

Figure 4.2 illustrates the type of patterns we hope to see, namely, the values of

confidence estimates for instances of the same failure that are contiguous in time are

relatively close to one another (compared to the confidence estimates for instances of

other failure types). The x axis in Figure 4.2 corresponds to the instances in U laid

out in increasing order of timestamp. These instances are from a real experiment,

and were generated in our testbed by injecting different failure types at different

points of time. The top graph in the figure shows the actual change-points in the

data that we generated by changing the type of failure injected.

A small random sample of the failure data was used as the current set of anno-

tated instances L, and a decision tree classifier C was trained. The middle graph
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Figure 4.2: Time-based chunking

in Figure 4.2 shows the confidence estimate from C for each respective instance in

the top graph. Note that for most of the failure types, the majority of confidence

estimates for instances of this type tend to fall within a small range of one another.

Thus, most of the actual change-points in the data can be captured by change-points

in the confidence-estimate plot. This idea forms the crux of time-based chunking.

Time-based chunking can be implemented in many ways, e.g., [2, 52]. We have

implemented a relatively straightforward technique that has worked satisfactorily

so far. The bottom graph in Figure 4.2 shows the chunks generated by our imple-

mentation; which are reasonably accurate. We scan the instances in U in increasing

order of timestamp, grouping the instances into chunks. Let N be the current

chunk, and let e be the confidence estimate of the earliest instance in this chunk.

The scan will close chunk N , and start a new chunk, when it finds an interval that

contains many instances whose confidence estimates fall outside [e−δ, e+δ]. Here, δ
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is a user-specified constant. Once Falcon’s active learner picks one of the generated

chunks (as discussed in Section 4.3.4), the annotation query posed to the system

administrator will consist of the instance at the center of this chunk, and k − 1

instances around it that belong to the same chunk.

4.5 Experiments

4.5.1 Testbed

Our experiments are run with monitoring data from a controlled testbed, which is

built from a software framework developed by the UC Berkeley / Stanford Recovery-

Oriented Computing (ROC) project [63]. The testbed runs a multitier Web service

named Rubis [20]—an auction service modeled on eBay—running on a JBoss appli-

cation server, with an embedded Web server, and a MySQL DBMS. The monitoring

data primarily includes the number of procedure invocations per minute of various

Java modules (Java beans) in the application server while the Web service is in

operation. We employ a fault injection tool [15] to systematically inject faults into

Rubis and the JBoss application server. The types of faults injected in our exper-

iments include Java exceptions, message drops, deadlocks, jndi-corruptions, data

corruptions, memory leaks, and infinite loops. In addition to independent faults,

we also injected correlated faults, because correlated faults are common in large

scale production systems [15]. The testbed is run on a machine with 1GHz CPU

and 1GB memory.
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Name #Attributes #Instances #Distinct failures

1. Rubis-1 105 1334 9
2. Rubis-2 105 1796 14
3. Synthetic 10 528 11

Table 4.1: Datasets used in Section 4.5

4.5.2 Evaluation Methodology

Datasets: Table 4.1 summarizes the datasets used in our experiments. Rubis-1

contains independent failures and two-way correlated failures, and Rubis-2 contains

independent, two-way correlated, three-way correlated, and four-way correlated fail-

ures. As we have knowledge of the failures injected, each failure instance in Rubis-1

and Rubis-2 is annotated with the actual causes, which provides ground truth for

evaluating diagnosis accuracy of our techniques. To test our approach on datasets

with complex patterns, we also consider a synthetic multi-class dataset (which is

actually the VOWEL dataset from UCI machine-learning repository [83]).

In each dataset, 30% of the instances are used as the independent test data

to compute the accuracy of the classifier trained from the current set of annotated

instances in L. The rest of the instances appear in the pool of unannotated instances

(U). We randomly pick 20% instances from U and get their annotations to generate

the initial annotated dataset L.

We consider two experimental settings: (I) all the failures that appear in U also

appear in the initial annotated data L, and (II) some types of failure that appear

in U are missing from the initial annotated data L. For setting II, we assume the

ratio of known failures in L is 75% of all the failures in L ∪ U in our experiments.

Annotation query: Each annotation query poses one representative instance R

and k− 1 supporting instances for the system administrator to diagnose; k is set to
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10 in our experiments. We approximate the diagnosis effort for an annotation query

as the number of distinct failures in it. The intuition is that system administrators

may be distracted from diagnosing the failure represented by R if the supporting

instances belong to failure types that are different from the failure type of R. In

response, we assume that the system administrator annotates the representative

instance R, and all supporting instances that has the same annotation as that of

R. Thus, it is desirable to submit a query with k instances from the same failure

state.

Algorithms and Defaults: The Falcon algorithm can be implemented with var-

ious combinations of clustering algorithms (K-means or time-based chunking) and

active learners (LC, KFF, or Hybrid). Decision tree is used as the classifier, as its

paths from the root to the leaf nodes help understand the classification results for

diagnosis. We set 10 as a default value for the number of clusters in K-means clus-

tering. The combination of time-based chunking and hybrid learner is our default

strategy for the Falcon algorithm.

Evaluation Metrics : The accuracy metric preferred for a classifier in the system

management domain is called balanced accuracy [65]. Suppose there are N types

of annotations, and for the given annotation Ai, the classifier makes M ′
i correct

predictions for the Mi instances present in the test data that have annotation Ai,

then the balanced accuracy is 1
N
∗
∑

i
M ′

i

Mi
. In all the plots in this section, the value of

each point on the x-axis records the accumulated system administrators’ diagnosis

efforts for the submitted annotation queries so far, and the value on the y-axis

records the balanced accuracy of the latest classifier (i.e., the classifier trained on

the current L) on the test data. The maximum number of annotation queries in
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Figure 4.3: Setting I: (a) Rubis-1, (b) Rubis-2

our experiments is set to 30. A good instance selection algorithm is expected to

help the classifier achieve good balanced accuracy at minimal diagnosis efforts from

system administrators.

4.5.3 End-to-End Validation: Falcon Vs. Random Sam-

pling

We compare our Falcon algorithm using the default strategy (Hybrid) with ran-

dom sampling (RS) which works as follows: a representative instance is randomly

picked from U , and its k − 1 neighbors (in time) are used as supporting instances.

Figure 4.3 and Figure 4.4 plots the performance of Falcon and random sampling in

experimental setting I and setting II respectively.

In setting I, it is clear that Falcon requires less diagnosis efforts from system

administrators (i.e., sysadmin efforts in the figures) than random sampling and

achieves even better balanced accuracy. In setting II, as we do not have information

for the failures not seen in L, it requires some exploration effort to get instances

with failures not seen in L to improve the coverage of L. Random sampling is

good at exploration, which explains why random sampling performs comparable to
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Figure 4.4: Setting II: (a) Rubis-1, (b) Rubis-2

Falcon for Rubis-1 in setting II.

In production systems, it is possible that U ∪L has unbalanced failure instances,

which means that some failures can have many more instances than other failures.

To simulate this situation, we intentionally replicate the instances with some specific

failures to make our datasets unbalanced. Then we compare Falcon again with

random sampling in two settings. Figures 4.4 and 4.5 show the results. It is clear

that our Falcon algorithm is consistently better than random sampling, because

random sampling could keep picking instances with the most popular failure type,

say Ai, although the information contained in the newly annotated instances of

failure Ai drops significantly.

These experiments show that Falcon can perform significantly better overall that

simple strategies for guiding the diagnosis efforts of system administrators.

4.5.4 Comparing Clustering Methods

In Figure 4.6 and Figure 4.7, we compare the performance of time-based chunking

(CHUNK) with K-means clustering when they are combined with an active learner

(LC) to select unannotated instances for diagnosis in the two experimental settings
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Figure 4.5: Setting II: (a) Unbalanced Rubis-1, (b) Unbalanced Rubis-2
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Figure 4.6: Setting I: (a) Rubis-1 (b) Synthetic

respectively. The trend is that time-based chunking is much better than K-means

clustering. Note that our datasets contain 105 attributes. Distance-based clustering

like K-means can perform poorly by putting instances from different failures into

one cluster. Therefore, the instances selected from a cluster picked by the active

learner may contain several distinct failures, which incur high diagnosis cost for

each annotation query with little information added into L.
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Figure 4.7: Setting II: (a) Rubis-1 (b) Synthetic
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Figure 4.8: Setting I: (a) Rubis-2 (b) Synthetic

4.5.5 Comparing Active Learners

We now compare the three active learners described in Section 4.3, namely, LC,

KFF, and Hybrid. Figures 4.8 and 4.9 compare these three active learners for

datasets Rubis-2 and Synthetic in the two respective settings. Figure 4.10 considers

Setting II for Rubis-1 in the regular and unbalanced cases. The results are mostly

along expected lines: Hybrid is able to match up to the best of LC and KFF in

each setting. Also note that in Figure 4.10(b), KFF performs well. This is a setting

where exploration is very important.
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Figure 4.9: Setting II: (a) Rubis-2 (b) Synthetic
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Figure 4.10: Setting II: (a) Rubis-1, (b) Unbalanced Rubis-1

4.6 Related Work

There has been plenty of previous work on wholly- or partially-automated techniques

for diagnosing performance and availability problems in systems. However, previous

techniques tend to focus on what we identified in Section 4.1 as Phases I and II of

diagnosis. To the best of our knowledge, ours is the first work to focus on Phase

III, where the goal is to make the best use of the manual diagnosis efforts of system

administrators while maximizing the information gained from the newly diagnosed

instances.

References [14] and [95] are recent examples of work on Phase I that build
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different forms of classifiers to map current failures to previously-diagnosed failures.

There has also been work on constructing signatures to characterize different system

states [26, 92]. Reference [26] extracts indexable signatures from system states,

which are characterized by correlations between low-level system metrics and the

overall performance metric, so that a searchable database of historical system states

can be created to identify recurrent problems. Reference [92] utilizes signatures to

represent correlations between failures and their symptoms in networking systems.

Previous work on automated or semi-automated diagnosis based on unannotated

monitoring data (i.e., Phase II) predominantly takes one of the correlation-based or

baselining-based approaches. Recent examples of the correlation-based approach

include [24, 25]. Reference [24] applies decision-tree learning techniques to rank

different system components based on their correlation with system failures. Ref-

erence [25] applies Bayesian-network learning techniques to correlate performance

metrics with high-level system behavior. Reference [11] is a recent example of the

baselining-based approach where a heuristic is proposed to capture and represent

the baseline behavior of a Web service; and two techniques—one based on the χ2

statistical test, and another based on naive Bayesian networks—are proposed to de-

tect and categorize deviation from the baseline behavior. Reference [27] empirically

evaluates techniques for Phase I and Phase II, and points out many challenges that

Phase II faces.

Active learning and change-point detection are two techniques that we leverage

in our algorithm for Phase III. Reference [61] contains a survey of existing active

learners, including detailed descriptions of the active learners that Falcon uses.

References [2] and [52] are examples of recent work on change-point detection that

Falcon could leverage in future.
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4.7 Summary

Processing of diagnosis queries in Fa based on system monitoring data consists of

multiple phases. Phase I of diagnosis uses annotated failure data L, which is moni-

toring data collected from failure states of the system where the cause of failure has

been diagnosed and attached as annotations with the data. Previous work (includ-

ing ours) has shown that this phase can be extremely valuable—because failures

often reoccur—and accurate. However, this phase can be effective only if unanno-

tated failure instances are diagnosed accurately, and moved to L in a timely fashion.

Such movement requires manual diagnosis effort from system administrators. Since

manual diagnosis is expensive and time-consuming, we proposed an algorithm to

make the best use of manual effort while maximizing the benefit gained from newly

diagnosed instances. An extensive experimental evaluation using data from a vari-

ety of failures—both single failures and multiple correlated failures—injected in a

testbed, as well as with synthetic data, showed the effectiveness of our algorithm.
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Chapter 5

Automated Processing of Tuning
Queries

5.1 Motivation

Once a problem in the system is diagnosed, the system administrator’s usual next

task is to find an effective and cost-efficient strategy to resolve the problem. As

there are many configuration parameters in database systems (e.g., more than 100

parameters in DB2, Oracle, and PostgreSQL), misconfiguration of these parameters

is a common cause of performance problems in Web service systems [51]. Therefore,

there is a strong need in Fa for automated techniques to process tuning queries that

ask for settings of database configuration parameters to eliminate misconfiguration

problems. This chapter first introduces the approach of experiment-driven query

processing for system tuning and then describes algorithms for processing tuning

queries in the context of configuration parameters in database systems.

Consider the following scenario from a small to medium business (SMB) enter-

prise. Peter, a Web-server administrator by training, maintains the Web-site of a

ticket brokering company that employs eight people. Over the past few days, the

Web-site has been sluggish. Peter collects system monitoring data, and tracks the

problem down to poor performance of queries issued by the Web server to a backend
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database.

Realizing that the database needs tuning, Peter runs the database tuning advi-

sor. (SMBs often lack the financial resources to hire full-time database administra-

tors, or DBAs.) Peter uses system logs to identify the workload W of queries and

updates to the database. With W as input, the advisor recommends a database

design (e.g., which indexes to build, which materialized views to maintain, how

to partition the data). However, this recommendation does not solve the current

problem: Peter has already designed the database this way based on a previous

invocation of the advisor.

Peter recalls that the database has configuration parameters. For lack of better

understanding, he had set them to default values during installation. Maybe the

parameters need tuning, so Peter pulls out the 1000+ page database tuning manual.

He finds many dozens of configuration parameters like buffer pool sizes, number of

concurrent I/O daemons, parameters to tune the query optimizer’s cost model, and

others. Being unfamiliar with most of these parameters, Peter has no choice but to

follow the tuning guidelines given. One of the guidelines look promising: if the I/O

rate is high, then increase the database buffer pool size. However, on following this

advice, the database performance drops even further. (We will show an example of

such behavior.) Peter is puzzled, frustrated, and undoubtedly displeased with the

database vendor.

Most of us would have faced similar situations before. Tuning database config-

uration parameters is hard but critical: bad settings can be orders of magnitude

worse in performance than good ones. Changes to some parameters cause local and

incremental effects on resource usage, while others cause drastic effects like changing

query plans or shifting bottlenecks from one resource to another. These effects vary
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depending on hardware platforms, workload, and data properties. Groups of pa-

rameters can have nonindependent effects, e.g., the performance impact of changing

one parameter may vary based on different settings of another parameter.

With Fa, Peter can pose a declarative query that asks for a good setting of the

database configuration parameters. The overall technique used by Fa to process

tuning queries is called iTuned. iTuned can provide a very different experience to

Peter. When Peter submits a tuning query to Fa with the database workload W

as input, iTuned starts in the background; and Peter can resume his other work.

He checks back after half an hour, but iTuned has nothing to report yet. When

Peter checks back thirty minutes later, iTuned shows him an intuitive visualiza-

tion of the performance impact each database configuration parameter has on W .

iTuned also reports a setting of parameters that is 18% better than the current

one. Another hour later, iTuned has a 35% better configuration, but Peter wants

more improvement. Three hours into its invocation, iTuned reports a 52% better

configuration. Now, Peter asks for the configuration to be applied to the database.

Within minutes, the actual database performance improves by 52%; and Peter is

very happy.

To understand the technical innovations in iTuned, let us now consider a sim-

ple, but real, example. Figure 5.1 is a response surface that shows how the perfor-

mance of a complex TPC-H query [80] in a PostgreSQL database depends on the

shared buffers and effective cache size parameters. shared buffers is the size of Post-

greSQL’s main buffer pool for caching disk blocks. The value of effective cache size

is used to determine the chances of an I/O hitting in the OS file cache; so its rec-

ommended setting is the size of the OS file cache. Some observations from Figure

5.1:
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Figure 5.1: 2D projection of a response surface for TPC-H Query 18; total database
size = 4GB, physical memory = 1GB

• The surface is complex and nonmonotonic.

• Performance drops sharply as shared buffers is increased beyond 20% (200MB)

of available memory; causing a “increase buffer pool size” rule of thumb to

degrade performance.

• The effect of changing effective cache size is different for different settings of

shared buffers. Surprisingly, the best performance comes when both parame-

ters are set low.

Typical database systems contain few tens of parameters whose settings can signif-

icantly impact workload performance.1 What automated tools do users have today

for holistic tuning of these parameters? Perhaps shockingly, the answer would be

“very few or none”.

1The total number of parameters may be more than a hundred, but most have reasonable
defaults.
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The majority of tuning tools focus on the logical or physical design of the

database. For example, index tuning tools are relatively mature (e.g., [23]). These

tools use the query optimizer’s cost model to answer what-if questions of the form:

how will performance change if index I were to be created? Unfortunately, such

tools do not apply to parameter tuning because the settings of many high-impact

parameters are not accounted for by these models.

Many tools (e.g., [75,81]) are limited to specific classes of parameters like buffer

pool sizes. IBM DB2’s Configuration Advisor recommends default parameter set-

tings based on answers provided by users to some high-level questions (e.g., is the

environment OLTP or OLAP?) [53]. These tools are based on predefined models

of how parameter settings affect performance. Developing such models is nontriv-

ial [86] or downright impossible because response surfaces can differ markedly across

database systems (e.g., DB2 Vs. PostgreSQL), platforms (e.g., Linux Vs. Solaris;

databases that are run on virtual machines), workloads, and data properties.2 Fur-

thermore, DB2’s Configuration Advisor is helpless if the recommended defaults are

still unsatisfactory.

Users are forced to rely on trial-and-error or rules-of-thumb from manuals and

experts. The following tuning rule from an authoritative PostgreSQL source [66]

highlights their predicament (work mem is memory used by sort and hash opera-

tors):

Adjust work mem upwards for: large databases, complex queries, lots of

available RAM. Adjust it downwards for: low available RAM or many

concurrent users. Finding the right balance spot can be hard.

How do expert DBAs overcome these hurdles? They often run experiments to

2Section 5.7 provides empirical evidence.
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perform what-if analysis during parameter tuning. A typical experiment would

consist of:

• Create a replica of the production database on a test system.

• Initialize database parameters on the test system to a chosen setting. Run

the workload that needs tuning, and observe the resulting performance.

iTuned takes a leaf from the book of expert DBAs. Each experiment gives a point

on the response surface. Since reliable techniques for parameter tuning have to be

aware of the underlying response surface, a series of carefully-planned experiments

is a natural approach to parameter tuning. iTuned is not the first to advocate an

experiment-driven approach for parameter tuning. [76] applied such an approach to

tune four parameters in BerkeleyDB. The tuned settings were impressive, however,

37 days were spent in running experiments in parallel on five machines.

Users don’t always expect instantaneous results from parameter tuning; they

would rather get recommendations that work as described. (Reference [53] esti-

mates that configuring large database systems takes on the order of 1-2 weeks.)

Nevertheless, to be practical, an automated approach to parameter tuning has to

produce good results within few hours. In addition, several questions need to be

answered like: which experiments to run? where to run experiments? what-if the

SMB does not have a test database platform?

5.2 Abstraction of Tuning Queries

Consider a database system with workload W and d parameters X = [x1, . . . , xd]

that a user wants to tune. (The notation used throughout this chapter is summa-

rized in Table 5.1.) The values of parameter xi, 1 ≤ i ≤ d, come from a known
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Notation Description

X = x1,...,xd Parameters for tuning

Xt Transpose of X

y Performance metric of interest

ŷ(X) Estimate of y at the setting X

v(X) Variance of the estimation at X

Y (X) Density distribution function of the estimate of y

dom(xi) Domain of feasible settings for xi
< X(i), y(i) > Samples collected so far through experiments

f⃗(X) A vector of basis functions

β⃗ A vector of regression coefficients

GPR Gaussian process representation of response surface

corr(X,X ′) Correlation function in GPR

Z(X) Zero-mean Gaussian process in GPR

EIP(X) Expected improvement at setting X

W Workload under consideration

Table 5.1: Notation used in this chapter

domain dom(xi). Let DOM, where DOM ⊆ Πd
i=1dom(xi), represent the space of

possible settings of x1, . . . , xd that the database can have. Let y denote the perfor-

mance metric of interest (e.g., throughput, average response time). With Fa, the

user can submit a tuning query like the following:

Q: Tune(W , X, DOM , y)

The result of this query generated by Fa is a setting (X⋆ ∈ DOM) that is expected

to achieve the optimal performance of y for workload W .

Response Surfaces: There exists a response surface, denoted SW , that deter-

mines the value of y for workload W for each setting of x1, . . . , xd in DOM. That

is, y = SW (x1, . . . , xd). SW is unknown to iTuned to begin with. The core task of

iTuned is to find settings of x1, . . . , xd in DOM that give close-to-optimal values of

y. In iTuned:

125



• Because iTuned runs experiments, it is very flexible in how the database work-

load W can be specified. iTuned supports the whole spectrum from the con-

ventional format where W is a set of queries with individual query frequen-

cies [23], to mixes of concurrent queries at some multi-programming level, as

well as real-time workload generation by an application.

• y is any performance metric of interest; for example, y in Figure 5.1 is the time

to completion of the workload. In OLTP settings, y could be, for example,

average transaction response time or throughput.

• Parameter xi can be one of three types: (i) database or system configuration

parameters (e.g., buffer pool size), (ii) knobs for physical resource allocation

(e.g., % of CPU), or (iii) knobs for workload admission control.

Experiments and Samples: The execution plan for a tuning query in Fa consists

of two interrelated phases: (i) a planning phase that plans experiments, and (ii) an

execution phase that conducts experiments using some novel features proved by the

.eX framework (see Fa’s architecture in Figure 2.4). An experiment involves the

following actions:

1. Set each xi in the database to a chosen setting vi ∈ dom(xi).

2. Run the database workload W .

3. Measure the performance metric y = p for the run.

The above experiment is represented by the setting ⟨X⟩ = ⟨x1 = v1,. . .,xd =

vd⟩. The outcome of this experiment is a sample from the response surface y =

SW (x1, . . . , xd). The sample in the above experiment is ⟨X, y⟩ = ⟨x1 = v1, . . . , xd =

vd, y = p⟩.

126



As iTuned collects such samples through experiments, it learns more about the

underlying response surface. However, experiments cost time and resources. Thus,

iTuned aims to minimize the number of experiments required to find good parameter

settings.

5.3 Overview of Fa’s iTuned Approach to Process

Tuning Queries

Gridding: Gridding is a straightforward technique to decide which experiments

to conduct. Gridding works as follows. The domain dom(xi) of each parameter

xi is discretized into k values li1, . . . , lik. (A different value of k could be used per

xi.) Thus, the space of possible experiments, DOM ⊆ Πd
i=1dom(xi), is discretized

into a grid of size kd. Gridding conducts experiments at each of these kd settings.

Gridding is reasonable for a small number of parameters. This technique was used

in [76] while tuning four parameters in the Berkeley DB database. However, the

exponential complexity makes gridding infeasible (curse of dimensionality) as the

number of parameters increase. For example, it takes 22 days to run experiments via

gridding for d = 5 parameters, k = 5 distinct settings per parameter, and average

run-time of 10 minutes per experiment.

SARD: The authors of [29] proposed SARD (Statistical Approach for Ranking

Database Parameters) to address a subset of the parameter tuning problem, namely,

ranking x1, . . . , xd in order of their effect on y. SARD decides which experiments

to conduct using a technique known in Statistics as the Plackett Burmann (PB)

Design [47]. This technique considers only two settings per parameter—giving a 2d
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grid of possible experiments—and picks a predefined 2d number of experiments from

this grid. Typically, the two settings considered for xi are the lowest and highest

values in dom(xi). Since SARD only considers a linear number of corner points

of the response surface, it can be inaccurate for surfaces where parameters have

nonmonotonic effects (Figure 5.1). The corner points alone can paint a misleading

picture of the shape of the full surface.3

Adaptive Sampling: The problem of choosing which experiments to conduct is

related to the sampling problem in databases. We can consider the information

about the full response surface SW to be stored as records in a (large) table TW

with attributes x1, . . . , xd, y. An example record ⟨x1 = v1, . . . , xd = vd, y = p⟩ in TW

says that the performance at the setting ⟨x1 = v1,. . .,xd = vd⟩ is p for the workload

W under consideration. Experiment selection is the problem of sampling from this

table. However, the difference with respect to conventional sampling is that the

table TW is never fully available. Instead, we have to pay a cost—namely, the cost

of running an experiment—in order to sample a record from TW .

The gridding and SARD approaches collect a predetermined set of samples from

TW . A major deficiency of these techniques is that they are not feedback-driven.

That is, these techniques do not use the information in the samples collected so

far in order to determine which samples to collect next. (Note that conventional

random sampling in databases is also not feedback-driven.) Consequently, these

techniques either bring into too many samples or too few samples to address the

parameter tuning problem.

3The authors of SARD mentioned this problem [29]. They recommended that, before invoking
SARD, the DBA should split each parameter xi with nonmonotonic effect into distinct artificial
parameters corresponding to each monotonic range of xi. This task is nontrivial since the true
surface is unknown to begin with. Ideally, the DBA, who may be a naive user, should not face
this burden.
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iTuned is based on a novel feedback-driven algorithm, called Adaptive Sampling,

for experiment selection in parameter tuning. Adaptive Sampling analyzes the

samples collected so far to understand how the surface looks like, and where the

good settings are likely to be. Based on this analysis, more experiments are done

to collect new samples that add maximum utility to the current samples.

Suppose n experiments have been run at settings X(i), 1 ≤ i ≤ n, so far. Let the

corresponding performance values observed be y(i) = y(X(i)). Thus, the samples

collected so far are ⟨X(i), y(i)⟩. Let X⋆ denote the best-performing setting found so

far. Without loss of generality, we assume that the tuning goal is to minimize y.

X⋆ = arg min
1≤i≤n

y(X(i))

Which sample should Adaptive Sampling collect next? Suppose the next experiment

is done at settingX, and the performance observed is y(X). Then, the improvement

IP(X) achieved by the new experiment X over the current best-performing setting

X⋆ is:

IP(X) =

 y(X⋆)− y(X) if y(X) < y(X⋆)

0 otherwise
(5.1)

Ideally, we would like to pick the next experiment X so that the improvement

IP(X) is maximized. However, a proverbial chicken-and-egg problem arises here

since the improvement depends on the value of y(X) which will be known only

after the experiment is done. We can only estimate y(X) based on information

captured in the experiments that have been done; denote the estimation of y(X)

as ŷ(X). Ideally there is probability distribution about this estimation to represent
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uncertainty in it. We can compute EIP(X), the expected improvement when the next

experiment is done at setting X. Then, the experiment that gives the maximum

expected improvement is selected.

Xnext = arg max
X∈DOM

EIP(X) (5.2)

EIP(X) =

∫ p=y(X⋆)

p=0

(y(X⋆)− p)pdfŷ(X)(p)dp (5.3)

Here, pdfŷ(X)(p) is the probability density function of the predicted performance

ŷ(X) at setting X. Recall that DOM is the set of all feasible parameter settings.

iTuned’s Workflow: The challenge in Adaptive Sampling is to compute EIP(X)

based on the ⟨X(i), y(i)⟩ samples collected so far. The crux of this challenge turns out

to be the generation of the probability density function of the predicted performance

at X.

Figure 5.2 lists the steps involved in iTuned’s Adaptive Sampling algorithm to

process a tuning query. Once invoked, iTuned starts with an initialization phase

where some experiments are conducted for bootstrapping. Adaptive Sampling starts

with the initial set of samples, and continues to bring in new samples through exper-

iments selected based on EIP(X). Experiments are conducted in a seamless fashion

in the production environment using mechanisms provided by the .eX framework.
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Adaptive Sampling: Algorithm run by iTuned’s Planner
1. Initialization: Conduct experiments based on Latin Hypercube Sampling,

and initialize GRS and X⋆=argmin
i

y(X(i)) with collected samples;

2. Until the stopping condition is reached, do
3. Find Xnext = arg max

X∈DOM
EIP(X);

4. .eX framework conducts the next experiment at Xnext to get a new sample;
5. Update the GRS and X⋆ with the new sample; Go to Line 2;

Figure 5.2: Steps in iTuned’s Adaptive Sampling algorithm

5.4 Adaptive Sampling

5.4.1 Initialization

As the name suggests, this phase bootstraps Adaptive Sampling by bringing in

samples from an initial set of experiments. A straightforward technique is random

sampling which will pick the initial experiments randomly from the space of pos-

sible experiments. However, random sampling is often ineffective when only a few

samples are collected from a fairly high-dimensional space. More effective sampling

techniques come from the family of space-filling designs [68]. iTuned uses one such

sampling technique, called Latin Hypercube Sampling (LHS) [47], for initialization.

LHS selectsm experiments from a space of dimension d (i.e., parameters x1, . . . , xd)

as follows: (1) the domain dom(xi) of each parameter is partitioned into m equal

subdomains; and (2) m experiments are chosen from the space such that each sub-

domain of any parameter has one and only one sample in it. LHS has two important

advantages:

• LHS samples are very efficient to generate because of their similarity to per-

mutation matrices from matrix theory. Generating m LHS samples involves

generating d independent permutations of 1, . . . ,m, and joining the permuta-
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tions on a position-by-position basis.

• In general, experiments done through LHS give much better space coverage

than through random sampling. LHS guarantees that the settings in the

chosen experiments are spread evenly over the ranges of each parameter.

However, LHS by itself does not rule out bad spreads (e.g., all samples spread

along the diagonal). iTuned addresses by problem by generating multiple sets of

LHS samples, and finally choosing the one which maximizes the minimum distance

between any pair of samples. That is, suppose l different sets of LHS samples

L1, . . . , Ll were generated. iTuned will select the set L⋆ such that:

L⋆ = arg max
1≤i≤l

min
X(j),X(k)∈Li,j ̸=k

dist(X(j), X(k))

Here, dist is a common distance metric like the Euclidean distance. This technique

avoids bad spreads.

5.4.2 Picking the Next Experiment

Let the samples collected so far be ⟨X(i), y(i)⟩, 1 ≤ i ≤ n. As discussed in Section

5.3, we need to compute the expected improvement that comes from doing the

next experiment at a setting X. One approach is to derive a regression model [47]

that can estimate y(X) based on the ⟨X(i), y(i)⟩ samples available so far. Such a

regression model would have the form:

y(X) = f⃗ t(X)β⃗ + ε(X) (5.4)

Here, f⃗(X) = [f1(X), f2(X), . . . , fh(X)]t is a vector of basis functions, and β⃗ is

the corresponding h× 1 vector of regression coefficients. The t notation is used to
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represent the matrix transpose operation. ε(X), given by ε(X) = y(X) − f⃗ t(X)β⃗,

is called the residual because it represents the difference between the true value and

the value estimated via regression. The residuals are assumed to follow identical

and independent normal distributions.

For example, some response surface may be represented well by the regression

model: ŷ = 0.1+3x1− 2x1x2+x2
2. In this case, f⃗(X) = [1, x1, x2, x1x2, x

2
1, x

2
2]

t, and

β⃗ = [0.1, 3, 0,−2, 0, 1]t.

Problems with conventional regression models, and iTuned’s solution:

Conventional regression models assume that the residuals εi and εj at any pair of

settings X(i) and X(j) are independent. However, the response surface of perfor-

mance with respect to parameter settings is predominantly continuous. Thus, the

residuals at two nearby settings tend to be correlated, violating the assumption of

independent errors in the model. A related, but bigger, problem with these models

is that they do not capture the probability density function pdfŷ(X)(p) of the per-

formance metric. The regression model could be inaccurate due to bias incurred by

too few experiments, so it is necessary to capture uncertainty about the estimation

of performance to reduce the bias of the regression model.

iTuned addresses both these problems by modeling the residual ε(X) using a

Gaussian process Z(X). We first define Gaussian processes, and then describe

how iTuned uses them to create the Gaussian process Representation of a response

Surface (GRS).

Definition 5.4.1. Gaussian Process: Let χ be a subspace of DOM. We say that

Z(X), for X ∈ χ, is a Gaussian process provided that for any l ≥ 1 and any choice

of X(1), . . . , X(l) in χ, the vector [Z(X(1)), . . . , Z(X(l))] has a multivariate normal

distribution. Z(X) is determined by its mean and covariance functions. �

133



Intuitively, a Gaussian process is a stochastic process for which any finite linear

combination of samples are normally distributed.

Definition 5.4.2. Gaussian process Representation of a response Surface

(GRS): A GRS represents a response surface ŷ(X) as: ŷ(X) = f⃗ t(X)β⃗ + Z(X).

Here, the residual in the regression is modeled by a Gaussian process Z(X) with zero

mean and covariance function Cov(Z(X(i)), Z(X(j))) = α2corr(X(i), X(j)). corr is

a pairwise correlation function defined as corr(X(i), X(j)) = Πd
k=1exp(−θk|x(i)

k −

x
(j)
k |γk). α, θk ≥ 0, γk > 0, 1 ≤ k ≤ d are constants. �

GRS’s covariance function Cov(Z(X(i)), Z(X(j))) represents the predominant phe-

nomenon in response surfaces that if settings X(i) and X(j) are close to each other,

then their respective residual values are correlated. As the distance between X(i)

and X(j) increases, the correlation decreases. The parameter-specific constants θk

and γk capture the fact that each parameter may have its own rate at which the

residuals become uncorrelated. We will describe how these constants are set and

give an example momentarily. GRS has the following attractive features:

• Unlike conventional regression models, GRS enables us to capture the prob-

ability density function pdfŷ(X)(p) based on the samples collected through

experiments conducted so far. We prove that GRS helps even further by

enabling us to derive a closed form for EIP(X) from Equation 5.3.

• We will prove empirically using real and synthetic data that GRS is power-

ful enough to capture the response surfaces that arise in parameter tuning.

(Gaussian processes have been used to great success on complex tasks like

simulation of fire evolution and aircraft flight [68].)
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• As we show momentarily, GRS enables us to naturally balance the twin tasks

of exploration (understanding the surface) and exploitation (going after known

high-performance regions) that arise in parameter tuning. It is nontrivial to

achieve this balance, and many previous techniques [29, 76] lack it. Further-

more, GRS enables easy update as well as validation.

Lemma 5.4.3. Prediction using GRS: Suppose a GRS is generated from n

collected samples ⟨X(i), y(i)⟩, 1 ≤ i ≤ n. For any X, the GRS generates an estimate

of y(X) that is normally distributed with mean u(X) and variance v2(X) where:

u(X) = f⃗ t(X)β⃗ + c⃗t(X)C−1(y⃗ − Fβ⃗) (5.5)

v2(X) = α2[1− c⃗t(X)C−1c⃗(X)] (5.6)

c⃗(X) = [corr(X,X(1)), . . . , corr(X,X(n))]t, C is an n×n matrix with element i, j

equal to corr(X(i), X(j)), 1 ≤ i, j ≤ n, y⃗ = [y(1), . . . , y(n)]t, and F is an n×h matrix

with the ith row composed of f⃗ t(X(i)).�

Proof: Recall that the joint distribution of y(X) and Y n = [y(X1), y(X2), . . . , y(Xn)]
t

is a (1 + n)-dimensional Gaussian distribution

(
y(X)

Y n

)
∼ N1+n

(f⃗ t(X)

F

)
β, α2

 1 c⃗t(X)

c⃗(X) C




The conditional distribution of y(X) given Y n is still a Gaussian distribution with

mean and variance as expressed in Equation (5.5) and (5.6) [68]:

(y(X)|Y n = [y1, y2, . . . yn]
t) ∼ N

[
ŷ(X), v2(X)

]
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Note that f⃗ t(X)β⃗ in Equation 5.5 is simply a plug in of X into the regression

model from Definition 5.4.2. The second term in Equation 5.5 is an adjustment

of the prediction based on the errors (residuals) seen at the sampled settings, i.e.,

y(i) − f⃗ t(X(i))β⃗, 1 ≤ i ≤ n. Intuitively, the prediction at X can be seen as a

weighted sum of the values y(i) observed through experiments; where the weights are

determined by the correlation function from Definition 5.4.2. Since the correlation

function weighs nearby settings more than distant settings, the prediction at X is

affected more by y values observed at the nearby settings.

Also note that the variance at X—which is the uncertainty in the GRS’s esti-

mate ŷ(X) at X—depends on the distance between X and the settings X(i) where

experiments were done to collect samples. Intuitively, if X is close to one or more

settings X(i) where we have collected samples, then we will have more confidence

in the prediction than the case where X is far away from all settings where exper-

iments were done. Thus, GRS captures the uncertainty in estimated values in an

intuitive fashion.

Lemma 5.4.3 gives us the necessary building blocks to compute the expected

improvements from experiments that have not been done yet. We first give an

example to illustrate the basic ideas of GRS.

Example 5.4.4. The solid (red) line near the top of Figure 5.3 is a true one-

dimensional response surface. Suppose five experiments are done, and the collected

samples are shown as circles in Figure 5.3. iTuned creates a GRS from these sam-

ples. The (green) line marked with “+” symbols represents the predictions u(X)

generated by the GRS as per Lemma 5.4.3. The two (black) dotted lines around

this line denote the 95% confidence interval, namely, [u(X)−2v(X), u(X)+2v(X)].
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Figure 5.3: Example GRS from five samples

For example, at x1 = 8, the predicted value is 7.2 with confidence interval [6.4, 7.9].

Note that, at all points, the true value (solid line) is within the confidence interval;

meaning that the GRS learned from the five samples is a good approximation of

the true response surface. Also, note that at points close to the collected samples,

the uncertainty in prediction is low. The uncertainty increases as we move further

from the collected samples. �

Recall from Lemma 5.4.3 that the estimate of y(X) based on the n collected samples

⟨X(i), y(i)⟩, 1 ≤ i ≤ n, is normally distributed with mean u(X) and variance v2(X).

Hence it follows that the probability density function of ŷ(X) is:

pdfŷ(X)(p) =
1√

2πv(X)
exp(

−(p− u(X))2

2v2(X)
) (5.7)

Theorem 5.4.5. The expected improvement from conducting an experiment at X

is:

137



EIP(X) =

∫ p=y(X⋆)

p=0

(y(X⋆)− p)pdfŷ(X)(p)dp (5.8)

EIP(X) has the following closed form:

EIP(X) = v(X)[µ(X)Φ(µ(X)) + ϕ(µ(X))] (5.9)

Here, µ(X) = y(X⋆)−u(X)
v(X)

. Φ and ϕ are N(0, 1) normal cumulative distribution and

density functions respectively.

Proof: Substituting Equation 5.1 into Equation 5.3, we have

EIP(X) =

∫ p=+∞

p=−∞
IP(X)pdfŷ(X)(p)dp

=

∫ p=y(X⋆)

p=−∞
(y(X⋆)− p)pdfŷ(X)(p)dp

=

∫ p=y(X⋆)

p=−∞
[y(X⋆)− ŷ(X) + ŷ(X)− p]pdfŷ(X)(p)dp

Note that

∫ p=y(X⋆)

p=−∞
[y(X⋆)− ŷ(X)]pdfŷ(X)(p)dp

= [y(X⋆)− ŷ(X)]Φ(
y(X⋆)− ŷ(X)

v(X)
)

= v(X)µ(X)Φ(µ(X))

and

∫ p=y(X⋆)

p=−∞
[ŷ(X)− p]pdfŷ(X)(p)dp

= −
∫ t=

y(X⋆)−ŷ(X)
v(X)

t=−∞
t ∗ v(X)ϕ(t)dt {let t =

p− ŷ(X)

v(X)
}

= v(X)ϕ(µ(X))

138



So

EIP(X) = v(X)µ(X)Φ(µ(X)) + v(X)ϕ(µ(X))

= v(X)[µ(X)Φ(µ(X)) + ϕ(µ(X))]

�

Therefore, the next experiment should be run at the setting

Xnext = arg max
X∈DOM

EIP(X)

Recall that DOM is the set of all the feasible configuration settings. Intuitively,

the next experiment to run should be picked from regions where there is high un-

certainty, which is expressed as v(X) in (5.9), or the predicted value can improve

over the current best setting, which is expressed as µ(X) in (5.9). In regions where

the current GRS from the observed samples is uncertain about its estimate, i.e.,

where v(X) is high, exploration is preferred to reduce the model uncertainty. At

the same time, in regions where it is possible to achieve better performance, i.e.

µ(X)Φ(µ(X)) + ϕ(µ(X)) is high, the current GRS is used to pick samples around

the current good settingX⋆ for exploitation. There is a tradeoff between exploration

(global search) and exploitation (local search).

Example 5.4.6. The dotted line at the bottom of Figure 5.3 shows EIP(X) along

the x1 dimension. (All EIP values have been scaled by 40 to make the plot fit in

this figure.) There are two peaks in the EIP plot. (I) EIP values are high around

the current best sample (X∗ with x1=10.3), encouraging local search (exploitation)

in this region. (II) EIP values are also high in the region between x1=4 and x1=6

because no samples have been collected near this region; the higher uncertainty mo-
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Figure 5.4: Example of EIP computation

tivates exploring this region. Adaptive Sampling with conduct the next experiment

at the highest EIP point, namely, x1=10.9. Figure 5.4 shows the new set of samples

as well as the new EIP(X) after the GRS is updated with the new sample. As

expected, EIP around x1=10.9 has reduced. EIP(X) now has a maximum value at

x1=4.7 because the uncertainty in this region is still high. Adaptive Sampling will

experiment here next, bringing in a sample close to the global optimum at x1=4.4.

5.4.3 Overall Algorithm and Implementation

Figure 5.2 shows the overall structure of iTuned’s Adaptive Sampling algorithm. So

far we described how the initialization is done and how EIP(X) is derived. We now

discuss how iTuned implements the other steps in Figure 5.2.

Finding the Setting that Maximizes EIP: Line 3 in Figure 5.2 requires us to

find the setting X ∈ DOM that has the maximum EIP. Since we have a closed form

for EIP, it is efficient to evaluate EIP at a given point. In our implementation, we
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pick k = 1000 settings (using LHS sampling) from the space of feasible settings,

compute their EIP values, and pick one that has the maximum value to run the

next experiment.

Initializing the GRS and Updating it with New Samples: It follows from

Definition 5.4.2 that initializing the GRS with a set of ⟨X(i), y(i)⟩ samples, or updat-

ing the GRS with a newly collected sample, involves deriving the best values of the

constants α, θk, and γk, for 1 ≤ k ≤ d, based on the current samples. This step can

be implemented in different ways. Our current implementation uses the well-known

and efficient statistical technique of maximum likelihood estimation [88].

When to Stop: When does Adaptive Sampling stop (Line 2 in Figure 5.2)? The

easy case is when the user issues an explicit stop command once they are satisfied

with the tuned performance. iTuned incorporates a novel stopping condition that

can handle the harder cases, namely, when iTuned is invoked (i) in the auto-tuning

mode, and (ii) by a nonexpert user.

Intuitively, Adaptive Sampling can stop when the maximum expected improve-

ment over all settingsX ∈ DOM falls below a threshold. However, there is a possible

pitfall: if the current GRS does not represent the underlying response surface rea-

sonably well, then the expected improvement values at some settings X may differ

from the actual improvement that X gives. iTuned safeguards against this problem

by leveraging the properties of a GRS and the statistical testing methodology of

cross validation [88]. The same technique can be used to find the right number of

samples to collect during initialization.
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5.5 A Platform for Running Online Experiments

We now consider where and when iTuned will run experiments. There are some

simple answers. If parameter tuning is done before the database goes into produc-

tion use, then the experiments can be done on the production platform itself. If the

database is already in production use and serving real users and applications, then

experiments could be done on an offline test platform. Previous work on param-

eter tuning (e.g., [29, 76]) assume that experiments are conducted in one of these

settings.

While the two settings above—preproduction database and test database—are

practical solutions, there are not sufficient because:

• The workload may change while the database is in production use, necessitat-

ing retuning.

• A test database platform may not exist (e.g., in an SMB).

• It can be nontrivial or downright infeasible to replicate the production re-

sources, data, and workload on the test platform.

iTuned leverages a comprehensive solution, called the .eX framework, that addresses

concerns like these.4 The guiding principle behind this solution is: exploit under-

utilized resources in the production environment for experiments, but never harm

the production workload. The two salient features of the solution are:

• Designated resources: An interface is proved for users to designate which

resources can be used for running experiments. Candidate resources include

4This solution for running experiments was designed and implemented by Vamsidhar Thum-
mala. It is described here for completeness.
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(i) the production database (the default for running experiments), (ii) standby

(failover) databases backing up the production database, (iii) test database(s)

used by DBAs and developers, and (iv) staging database(s) used for end-to-

end testing of changes (e.g., bug fixes) before they are applied to the produc-

tion database. Resources designated for experiments are collectively called

the workbench.

• Policies: A policy is specified with each resource that dictates when the

resource can be used for experiments. The default policy associated with

each of the above resources is: “if the CPU, memory, and disk utilization

of the resource for its home use is below 10% (threshold t1) for the past 10

minutes (threshold t2), then the resource can be used for experiments.” Home

use denotes the regular (i.e., nonexperimental) use of the resource. The two

thresholds are customizable. Only the default policy is implemented currently,

but we are exploring other policies.

iTuned’s implementation in Fa consists of a front-end module that interacts with

users, and a planner module which plans experiments using Adaptive Sampling.

The planned experiments are submitted to the .eX framwork which schedules these

experiments on the workbench as per user-specified (or default) policies. Monitoring

data needed to enforce policies is obtained through database monitoring tools.

The design of the workbench is based on splitting the functionality of each

resource into two: (i) home use, where the resource is used directly or indirectly to

support the production workload, and (ii) garage use, where the resource is used

to run experiments. We will describe the home/garage design using the standby

database as an example, and then generalize to other resources.

All database systems support one or more hot standby databases whose home
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use is to keep up to date with the (primary) production database by applying redo

logs shipped from the primary. If the primary fails, a standby will quickly take

over as the new primary. Hence, the standby databases run the same hardware and

software as the production database. It has been observed that standby databases

usually have very low utilization since they only have to apply redo log records.

In fact, [43] mentions that enterprises that have 99.999% (five nines) availability

typically have standby databases that are idle 99.999% of the time.

Thus, the standby databases are a valuable and underutilized asset that can

be used for online experiments without impacting user-facing queries. However,

their home use should not be affected, i.e., the recovery time on failure should not

have any noticeable increase. The .eX framework achieves this property using two

resource containers: the home container for home use, and the garage container

for running experiments. The current implementation of resource containers uses

the zones feature in the Solaris OS [73]. CPU, memory, and disk resources can be

allocated dynamically to a zone, and the OS provides isolation between resources

allocated to different zones. Resource containers can also be implemented using

virtual machine technology which is becoming popular [74].

The home container on the standby machine is responsible for applying the

redo log records. When the standby machine is not running experiments, the home

container runs on it using all available resources; the garage lies idle. The garage

container is booted—similar to a machine booting, but much faster—only when a

policy fires and allows experiments to be scheduled on the standby machine. During

an experiment, both the home and the garage containers will be active, with a

partitioning of resources as determined by the .eX framework. Figure 5.5 provides

an illustration. For example, as per the default policy stated earlier, home and
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Figure 5.5: The .eX framework in action for standby databases

garage will get 10% and 90%, repectively, of the resources on the machine.

Both the home and the garage containers run a full and exactly the same copy

of the database software. However, on booting, the garage is given a snapshot of

the current data (including physical design) in the database. The garage’s snapshot

is logically separate from the snapshot used by the home container, but it is phys-

ically the same except for copy-on-write semantics. Thus, both home and garage

have logically-separate copies of the data, but only a single physical copy of the

data exists on the standby system when the garage boots. When either container

makes an update to the data, a separate copy of the changed part is made that is

visible to the updating container only (hence the term copy-on-write). The redos

applied by the home container do not affect the garage’s snapshot. The current

implementation of snapshots and copy-on-write semantics in the .eX framework

leverages the Zettabyte File System [73], and is extremely efficient (as we will show
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in the empirical evaluation).

The garage is halted immediately under three conditions: when experiments are

completed or the primary fails or there is a policy violation. All resources are then

released to the home container which will continue functioning as a pure standby or

take over as the primary as needed. Setting up the garage (including snapshots and

resource allocation) takes less than a minute, and tear-down takes even less time.

The whole process is so efficient that recovery time is not increased by more than a

few seconds.

While the above description focused on the standby resource, the .eX framework

applies the same home/garage design to all other resources in the workbench (in-

cluding the production database). The only difference is that each resource has its

own distinct type of home use which is encapsulated cleanly into the corresponding

home container. Thus, the overall approach of iTuned works even in settings where

there are no standby or test databases.

5.6 Improving iTuned’s Efficiency

Experiments take time to run. This section describes features that can reduce

the time iTuned takes to return good results as well as make iTuned scale to large

numbers of parameters. Table 5.2 gives a short summary. The first three features are

fully integrated into iTuned, workload compression is currently a simple standalone

tool, and the last three features will be implemented in future.
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Feature Description and Use

Sensitivity analysis Identify and eliminate low-effect parameters

Parallel experiments Use multiple resources to run parallel expts

Early abort Identify and stop low-utility expts quickly

Workload compression Reduce per-experiment running time without
reducing overall tuning quality

Semantic knowledge Exploit advisory parameters in database systems

Incremental tuning Cluster parameters to ensure independent effects
across clusters; tune one cluster at a time

Interactive tuning Get user feedback from intermediate results

Table 5.2: Features that improve iTuned’s efficiency

5.6.1 Eliminating Unimportant Parameters Using Sensitiv-

ity Analysis

Suppose we have generated a GRS using n samples ⟨X(i), y(i)⟩. Recall that, given

any setting X, the GRS can produce a prediction with mean u(X) and variance

v2(X). Using the GRS, we can compute the expected value of y when x1=v as:

E(y|x1=v)=
1

M

∫
dom(x2)

· · ·
∫
dom(xd)

ŷ(v, x2, . . . , xd)dx2 · · · dxd (5.10)

where M = |dom(x2)| ∗ . . . ∗ |dom(xd)| and |dom(xi)| is the length of the domain

of xi. Intuitively, Equation 5.10 averages out the effects of all parameters other

than x1, and E(y|x1) is a function of x1 measuring its effect on y. If we consider l

equally-spaced values vi ∈ dom(x1), 1 ≤ i ≤ l, then we can use Equation 5.10 to

compute the expected value of y at each of these l points. A plot of these values,

e.g., as shown in Figure 5.3, gives a visual feel of the overall effect of parameter x1

on y. We term such plots effect plots. In addition, we can consider the variance of

these values, denoted V1 = Var(E(y|x1)). Intuitively, if V1 is low, then y does not

vary much as x1 is changed; hence, the effect of x1 on y is low. On the other hand,

147



large V1 means that y is sensitive to x1’s setting.

Therefore, we define the main effect of x1 as
V1

Var(y)
which represents the fraction

of the overall variance in y that is explained by the variance seen in E(y|x1). The

main effect of the other parameters x2, . . . , xd is defined in a similar fashion. Any

parameter with low main effect can be set to its default value with little negative

impact on performance, and need not be considered for tuning.

5.6.2 Running Multiple Experiments in Parallel

If the .eX framework can find enough resources on the workbench, then iTuned

can run k > 1 experiments in parallel. The batch of experiments from LHS during

initialization can be run in parallel. Running k experiments from Adaptive Sampling

in parallel is nontrivial because of its sequential nature. A naive approach is to

pick the top-k settings that maximize EIP. However, the pitfall is that these k

samples may be from the same region (around the current minimum or with high

uncertainty), and hence redundant.

We set two criteria for selecting k parallel experiments: (I) Each experiment

should improve the current best value (in expectation); (II) The selected exper-

iments should complement each other in improving the GRS’s quality. iTuned

determines the next k experiments to run in parallel as follows:

1. Select the experiment X(i) that maximizes the current EIP.

2. An important feature of GRS is that the uncertainty in prediction (Equation

5.6) depends only on the X values of collected samples. Thus, after X(i)

is selected, we update the uncertainty estimate at each remaining candidate

setting. (The predicted value, from Equation 5.5, at each candidate remains

unchanged.)

148



3. We compute the new EIP values with the updated uncertainty term v(X), and

pick the next sample X(i+1) that maximizes EIP. The nice property is that

X(i+1) will not be clustered with X(i): after X(i) is picked, the uncertainty in

the region around X(i) will reduce, therefore EIP will decrease in that region.

4. The above steps are repeated until k experiments are selected.

5.6.3 Early Abort of Low-Utility Experiments

While the exploration aspect of Adaptive Sampling has its advantages, it can cause

experiments to be run at poorly-performing settings. Such experiments take a long

time to run, and contribute little towards finding good parameter settings. To

address this problem, we added a feature to iTuned where an experiment at X(i)

is aborted after ∆× tmin time if the workload running time at X(i) is greater than

∆× tmin. Here, tmin is the workload running time at the best setting found so far.

Be default, ∆ = 2.

5.6.4 Workload Compression

Work on physical design tuning has shown that there is a lot of redundancy in real

workloads which can be exploited through workload compression to give 1-2 orders

of magnitude reduction in tuning time [22]. [22] proposed an approach where the

given workload is partitioned based on distinct query templates, and a representative

subset is picked per partition via clustering. To demonstrate the utility of workload

compression in iTuned, we came up with a modified approach. We treat a workload

as a series of execution of query mixes, where a query mix is a set of queries that

run concurrently. An example could be ⟨3Q1, 6Q18⟩ which denotes three instances

of TPC-H query Q1 running concurrently with six instances of Q18. We partition
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the given workload into distinct query mixes, and pick the top-k mixes based on

the overall time for which each mix ran in the workload.

5.6.5 Using Database-specific Knowledge

It is common to have database parameters whose settings affect the query execu-

tion plan chosen by the optimizer, but do not affect anything else including resource

allocation and database configuration. We term such parameters advisory parame-

ters. PostgreSQL’s effective cache size parameter (recall Section 5.1) is an example.

More common examples include parameters used as inputs to the optimizer’s cost

model, e.g., the cost of a sequential I/O.

Consider two settings X(i) and X(j) that differ in the settings of advisory pa-

rameters only. Despite this difference, suppose the optimizer picks the same set of

execution plans for X(i) and X(j). If iTuned “knows” about advisory parameters,

then it can avoid running an experiment at X(j) if an experiment has already been

done at X(i) (since the same plans would run in the same environment). This op-

timization is important and frequently applicable because typical databases have a

number of advisory parameters, most of which are high-impact because they can

change execution plans.

5.6.6 Other Techniques

A number of other features could be added to iTuned. One feature is early aborting

of an experiment if during the experiment we see that the eventual performance

value will not be better that the best performance found so far. This optimization

has to be applied with care because early abortion may not give us a sample to

update the GRS.
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Another approach for scalability is analyze interactions among the effects of dif-

ferent parameters. Recall that the main effect of parameter x1 is defined as V1

Var(y)
.

Similarly, an interaction effect between x1 and x2 can be defined as Var(E(y|x1,x2))−V1−V2

Var(y)
,

where:

E(y|x1=v1, x2=v2)=

∫
dom(x3)

· · ·
∫
dom(xd)

ŷ(v1, v2, x3, . . . , xd)dx3 · · · dxd

Intuitively, the interaction effect between x1 and x2 is high if the effect of x1 on y is

very sensitive to x2’s setting. That is, different settings of x2 cause different effects

from x1. We can identify important interaction effects using the above equation,

and then partition the parameters in disjoint groups such that no cross-group inter-

actions exist. iTuned could then take a divide-and-conquer approach to parameter

tuning, i.e., tuning one group of parameters at a time, probably ranking the groups

in some order.

5.7 Empirical Evaluation

Our experimental setup involves a local cluster of machines, each with four 2GHz

processors and 3GB memory, running PostgreSQL 8.2 on Solaris 10. One machine

runs the production database. The other machines are used as hot standbys, test

platforms, or workload generators. Recall from Section 5.5 that the .eX framework

used by iTuned can run experiments on the production database, standbys, and

test platforms. By default, we use a standby database for experiments.
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5.7.1 Methodology and Summary

We first summarize the different types of empirical evaluation conducted and the

results obtained.

• Section 5.7.2 breaks down the overhead of various operations in the API pro-

vided by the .eX framework for running experiments on demand in a produc-

tion setting; and shows that this framework is noninvasive and efficient.

• Section 5.7.3 shows real response surfaces that highlight the issues motivating

our work, e.g., (i) why database parameter tuning is not easy for the aver-

age user; (ii) how parameter effects are highly sensitive to workloads, data

properties, and resource allocations; and (iii) why optimizer cost models are

insufficient for effective parameter tuning, but it is important to keep the

optimizer in the tuning loop.

• Section 5.7.4 presents tuning results for OLAP and OLTP workloads of in-

creasing complexity that show iTuned’s ease of use and up to 10x improve-

ments in performance compared to default parameter settings, rule-based tun-

ing based on popular heuristics, and a state-of-the-art automated parameter

tuning technique. We show how iTuned can leverage parallelism, early aborts,

and workload compression to cut down tuning times drastically with negligible

degradation in tuning quality.

• iTuned’s performance is consistently good with both PostgreSQL and MySQL

databases, demonstrating iTuned’s portability.

• Section 5.7.5 shows how iTuned can be useful in other ways apart from rec-

ommending good parameter settings, namely, visualizing parameter impact
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as well as approximate response surfaces. This information can guide further

manual tuning.

The tuning tasks in our empirical evaluation consider up to 30 database con-

figuration parameters. By default, we consider the following 11 parameters for

OLAP workloads in PostgreSQL: (P1) shared buffers, (P2) effective cache size, (P3)

work mem, (P4) maintenance work mem, (P5) default statistics target, (P6) ran-

dom page cost, (P7) cpu tuple cost, (P8) cpu index tuple cost, (P9) cpu operator cost,

(P10) memory allocation, and (P11) CPU allocation.

5.7.2 Performance of the .eX framework for Conducting

Experiments

Recall the implementation of the .eX framework from Section 5.5. Table 5.3 shows

the various operations in the interface provided by the .eX framework, and the

overhead of each operation. The Create Container operation is done once to set up

the OS environment for a particular tuning task; so its 10-minute cost is amortized

over an entire tuning session. This overhead can be cut down to 17 seconds if the

required type of container has already been created for some previous tuning task.

Note that all the other operations take on the order of a few seconds. For starting a

new experiment, the cost is at most 48 seconds to boot the container and to create a

read-write snapshot of the database (for workloads with updates). A container can

be halted within 2 seconds, which adds no noticeable overhead if, say, the standby

has to take over on a failure of the primary database.
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Operation by the .eX
framework

Time
(sec)

Description

Create Container 610 Create a new garage (one time process)

Clone Container 17 Clone a garage from already existing
one

Boot Container 19 Boot garage from halt state

Halt Container 2 Stop garage and release resources

Reboot Container 2 Reboot the garage (required for adding
additional resources to a container)

Snapshot-R DB 7 Create read-only snapshot of database

Snapshot-RW DB 29 Create read-write snapshot of database

Table 5.3: Overheads of operations in the .eX framework

5.7.3 Why Parameter Tuning is Nontrivial

The OLAP (Business Intelligence) workloads used in our evaluation were derived

from TPC-H running at scale factors (SF) of 1 and 10 on PostgreSQL [80]. The

physical design of the databases are well tuned, with indexes approximately tripling

and doubling the database sizes for SF=1 and SF=10 respectively. Statistics are

always up to date. The heavyweight TPC-H queries in our setting include Q1, Q7,

Q9, Q13, and Q18.

Figure 5.1 shows a 2D projection of a response surface that we generated by

running Q18 on a TPC-H SF=1 database for a number of different settings of

the eleven parameters from Section 5.7.1. The database size with indexes is around

4GB. The physical memory (RAM) given to the database is 1GB to create a realistic

scenario where the database is 4x the amount of RAM. This complex response

surface is the net effect of a number of individual effects:

• Q18 (Large Volume Customer Query) is a complex query that joins the

Lineitem, Customer, and Order tables. It also has a subquery over Lineitem

(which gets rewritten as a join), so Q18 accesses Lineitem—the biggest table
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in TPC-H—twice.

• Different execution plans get picked for Q18 in different regions of the response

surface because changes in parameter settings lead to changes in estimated

plan costs. These plans differ in operators used, join order, and whether the

same or different access paths are used for the two accesses to the Lineitem

table.

• Operator behavior can change as we move through the surface. For example,

hybrid hash joins in PostgreSQL change from one pass to two passes if the

work mem parameter is lower than the memory required for the hash join’s

build phase.

• Resource interference can happen. For example, if a hybrid hash join in Post-

greSQL starts to create temporary files on disk, the accesses go through the

OS file cache which competes for RAM with shared buffers. Thus, increasing

shared buffers can degrade performance if hybrid hash joins are spilling to

disk.

It took us several days of effort, more than a hundred experiments with PostgreSQL,

as well as email conversations with PostgreSQL developers to understand the un-

expected nature of Figure 5.1. It is unlikely that a non-expert who wants to use a

database for some application—say, Peter in Section 5.1—will have the knowledge

(or patience) to tune the database like we did. Surfaces like Figure 5.1 show how

critical experiments are to understand which of many different effects dominate in

a particular setting.

The average running time of a query can change drastically depending on whether

it is running alone in the database or it is running in a concurrent mix of queries of
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Figure 5.6: Impact of shared buffers Vs. effective cache size for workload W4
(TPC-H SF=10)

the same or different types. For example, consider Q18 running alone or in a mix of

six concurrent instances of Q18 (each instance has distinct parameter values). At

the default parameter setting of PostgreSQL for TPC-H SF=1, we have observed

the average running time of Q18 to change from 46 seconds (when running alone)

to 1443 seconds (when running in the mix). For TPC-H SF=10, there was a change

from 158 seconds (when running alone) to 578 seconds (when running in the mix).

Two insights come out from the results presented so far. First, query optimizers

compute the cost of a plan independent of other plans running concurrently. Thus,

optimizer cost models cannot capture the true performance of real workloads which

consist of query mixes. Second, it is important to keep the optimizer in the loop

while tuning parameter settings because the optimizer can change the plan for a

query when we change parameter settings. While keeping the optimizer in the loop

is accepted practice for physical design tuning (e.g., [23]), to our knowledge, we are

the first to bring out its importance and enable its use in configuration parameter

156



0

100

200

300

400 1
2

3
4

1000

1500

2000

2500

work_mem(MB)

TPC−H Workload 3Q7+3Q13

shared_buffers(MB)

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e 
(s

ec
)

Figure 5.7: Impact of shared buffers Vs. work mem for workload W5 (TPC-H
SF=10)

tuning.

Figure 5.6 shows a 2D projection of the response surface for Q18 when run

in the 6-way mix in PostgreSQL for TPC-H SF=10. The key difference between

Figures 5.1 (Q18 alone, TPC-H SF=1) and 5.6 (Q18 in 6-way mix, TPC-H SF=10)

is that increasing shared buffers has an overall negative effect in the former case,

while the overall effect is positive in the latter. We attribute the marked effect

of shared buffers in Figure 5.6 to the increased cache hits across concurrent Q18

instances.

Figures 5.7 and 5.8 show the response surface for a workload where shared buffers

has limited impact. The highest impact parameter is work mem. This workload has

three instances of Q7 and 3 instances of Q13 running in a 6-way mix in PostgreSQL

for TPC-H SF=10. All these results show why users can have a hard time set-

ting database parameters, and why experiments that can bring out the underlying

response surfaces are inevitable.
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Figure 5.8: Impact of shared buffers Vs. effective cache size for workload W5
(TPC-H SF=10)

5.7.4 Tuning Results

We now present an evaluation of iTuned’s effectiveness on different workloads and

environments. iTuned should be judged both on its quality—how good are the

recommended parameter settings?—and efficiency—how soon can iTuned generate

good recommendations? Our evaluation compares iTuned against:

• Default parameter settings that come with the database.

• Manual rule-based tuning based on heuristics from database administra-

tors and performance tuning experts. We use an authoritative source for

PostgreSQL tuning [66].

• Smart Hill Climbing (SHC) is a state-of-art automated parameter tuning

technique [89]. It belongs to the hill-climbing family of optimization tech-

niques for complex response surfaces. Like iTuned, SHC plans experiments

while balancing exploration and exploitation (Section 5.4.2). But, SHC lacks
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key features of iTuned like GRS representation of response surfaces, .eX frame-

work, and efficiency-oriented features like parallelism, early aborts, sensitivity

analysis, and workload compression.

• Approximation to the optimal setting: Since we do not know the opti-

mal performance in any tuning scenario, we run a large number of experiments

offline for each tuning task. We have done at least 100 (often, 1000+) exper-

iments per tuning task over the course of six months. The best performance

found is used as an approximation of the optimal. This technique is labeled

Brute Force.

iTuned and SHC do 20 experiments each by default. iTuned uses the first 10

experiments for initialization. Strictly for the purposes of evaluation, by default

iTuned uses only early abort among the efficiency-oriented techniques from Section

5.6.

Figure 5.9 compares the tuning quality of iTuned (I) with Default (D), manual

rule-based (M), SHC (S), and Brute Force (B) on a range of TPC-H workloads at

SF=1 and SF=10. The performance metric of interest is workload running time;

lower is better. The workload running time for D is always shown as 100%, and the

times for others are relative. To further judge tuning quality, these figures show the

rank of the performance value that each technique finds. Ranks are reported with

the prefix R, and are based on the range of performance values observed by Brute

Force; lower rank is always better. Figures 5.9 also shows (above I’s bar) the total

time that iTuned took since invocation to give the recommended setting. Detailed

analysis of tuning times is done later in this section.

Figure 5.9 involves 11 distinct workloads, all of which are nontrivial to tune.

Workloads W1, W2, and W3 consist of individual TPC-H queries Q1, Q9, and
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Figure 5.9: Comparison of tuning quality. iTuned’s tuning times are shown in
minutes (m) or hours (h). Ri denotes Rank i

Q18 respectively running at a Multi-Programming Level (MPL) of 1. MPL is the

maximum number of concurrent queries. TPC-H queries have input parameters.

Throughout our evaluation, we generate each query instance randomly using a TPC-

H query generator. Different instances of the same query are distinct with high

probability.

Workloads W4, W5, and W6 go one step higher in tuning complexity because

they consist of mixes of concurrent queries. W4 (MPL=6) consists of six concur-
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rent (and distinct) instances of Q18. W5 (MPL=6) consists of three concurrent

instances of Q7 and three concurrent instances of Q13. W6 (MPL=10) consists of

five concurrent instances of Q5 and five concurrent instances of Q9.

Workloads W7∼W11 in Figure 5.9 go the final step in tuning complexity by

bringing in many more complex query types, much larger numbers of query in-

stances, and different MPLs. W7 (MPL=9) contains 200 query instances com-

prising queries Q1 and Q18, in the ratio 1:2. W8 (MPL=24) contains 200 query

instances comprising TPC-H queries Q2, Q3, Q4, and Q5, in the ratio 3:1:1:1. W9

(MPL=10), W10 (MPL=20), and W11 (MPL=5) contain 100 query instances each

with 10, 10, and 15 distinct TPC-H query types respectively in equal ratios. The

results for W7-N shown in Figure 5.9 are from tuning 30 parameters.

Figure 5.9 shows that the parameter settings recommended by iTuned consis-

tently outperform the default settings, and is usually significantly better than the

settings found by SHC and common tuning rules. iTuned gives 2x-5x improvement

in performance in many cases. In fact, iTuned’s recommendation is usually close

in performance to the approximate optimal setting found (exhaustively) by Brute

Force. It is interesting to note that expert tuning rules are more geared towards

complex workloads (compare the M bars between the top and bottom halves of of

Figure 5.9).

As an example, consider the workload W7-SF10 in Figure 5.9. The default set-

tings give a workload running time of 1085 seconds. Settings based on tuning rules

and SHC give running times of 386 and 421 seconds respectively. In comparison,

iTuned’s best setting after initialization gave a performance of 318 seconds, which

was improved to 246 seconds by Adaptive Sampling (77% improvement over de-

fault). iTuned’s sensitivity analysis found the shared buffers parameter to have the
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most impact on performance. The default setting of 32 MB for shared buffers is

poor. The rule-based setting of 200 MB is better, but iTuned found a setting close

to 400 MB where the performance is far better.

Figure 5.9 shows that iTuned takes at the order of tens of hours to find good

settings for complex workloads. Table 5.4 gives the absolute tuning values by exe-

cuting a single instance of workload in seconds. Query mix CM1 and CM2 contains

100 query instances with 10 and 15 distinct TPC-H query types in equal ratios

respectively. Reference [53] estimates that configuring large database management

systems takes at the order of one to two weeks, so one to two days of time spent

parameter tuning is acceptable; especially considering that iTuned gives 2x-5x im-

provement in performance in many cases. More importantly, Figure 5.10 shows that

iTuned’s tuning time can be reduced by orders of magnitude using the techniques

we proposed in Section 5.6. Early Abort uses ∆ = 2 and workload compression

picks the top mix in the workload.

For each of the complex workloads from Figure 5.9, we show iTuned’s tuning time

with and without different techniques. It is clear that these techniques can reduce

iTuned’s tuning time to at most a few hours. The drop in tuning quality across

all these scenarios was never more than 1%. In general, we have found workload

compression to be even more effective in parameter tuning than in physical design

tuning. Intuitively, parameter settings are less sensitive to which queries get picked

in the compressed workload compared to, say, index selection.

Table 5.5 gives a brief summary that shows iTuned’s consistent good perfor-

mance. TPC-W is an e-Commerce benchmark that simulates the activities of a

retail website. Our experiments with TPC-W are based on a 48000-transaction

workload on a 6GB database. RUBiS [20] is Web service benchmark that imple-
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Figure 5.10: Comparison of iTuned’s tuning times in the presence of various
efficiency-oriented features

ments the core functionality of an auction site like eBay.

5.7.5 Sensitivity Analysis

This section evaluates two important features of iTuned: sensitivity analysis of

database parameters and effects plots for visualization; see Section 5.6.1. We use

both real workloads and complex synthetic response surfaces in our evaluation. We

compare iTuned’s performance against SARD [29] which is described in Section 5.3.

Recall that, unlike iTuned, SARD is not an end-to-end tuning tool, and can be

misled by nonmonotonic effects of parameters.

Our concerns about SARD were validated by a simple evaluation. We chose three

popular and hard benchmark functions from the optimization literature: Griewank,

Rastrigin, and Rosenbrock [89]. All three functions have a global optimum of 0.

We used the functions to generate response surfaces with 20 parameters each. Of
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Workload type Query mix Default Rule-based SHC Optimal iTuned

W1-SF1 Q1 107 107 101 101 101

W2-SF1 Q9 310 282 231 95 95

W3-SF1 Q18 315 267 250 183 184

W3-SF10 Q18 158 138 140 131 131

W4-SF1 6Q18 1443 1505 55 51 52

W4-SF10 6Q18 578 167 148 128 133

W5-SF10 3Q7, 3Q13 1167 1057 1237 1057 1173

W6-SF1 5Q1, 5Q9 907 943 838 738 765

W7-SF1 66Q1,134Q18 338 158 98 78 84

W7-SF10 66Q1,134Q18 1085 386 421 246 248

W7-N-SF10 66Q1,134Q18 1085 386 295 246 283

W8-SF1 100Q2,33Q3,
33Q4,34Q5

406 423 366 208 209

W9-SF10 CM1 1451 1240 979 601 601

W10-SF10 CM1 5910 5089 1674 1505 1583

W11-SF10 CM2 1152 1020 1052 971 1014

Table 5.4: Comparison of tuning quality in terms of workload running time after
tuning (all the tuning times are shown in seconds.)

these 20 parameters, 5 are important—i.e., they impact the shape of the surface

significantly—while the remaining 15 are unimportant. On the Griewank and Ras-

trigin surfaces—which have significant nonmonotonic behavior—SARD completely

failed to identify the unimportant parameters. As iTuned did experiments progres-

sively, it never classified any important parameter as unimportant. By the time

fifty experiments were done, iTuned was able to clearly separate the five important

parameters from the unimportant ones.

Tables 5.6 and 5.7 gives end-to-end tuning results for three techniques: (i)

SARD+AS, where SARD is used to identify the important parameters, and then

Adaptive Sampling is started with the samples collected by SARD used for initial-

ization; (ii) SHC (does not do sensitivity analysis), and (iii) iTuned. Note that

lower numbers are better in all cases. iTuned clearly outperforms the alternatives.

A very useful feature of iTuned is that it can provide intuitive visualizations of
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Workload Performance
Metric

#Parameters Quality
(Rank)

Tuning time
(Hours)

TPC-W
(MySQL)

Response
time

7 R1 3.2

TPC-W
(MySQL)

Throughput 7 R4 7.6

TPC-W
(PostgreSQL)

Response
time

20 R23 2.5

TPC-W
(PostgreSQL)

Throughput 20 R8 2.5

RUBiS
(MySQL)

Response
time

6 R1 6.1

RUBiS
(MySQL)

Throughput 6 R2 6.6

Table 5.5: Sample of iTuned’s results

Workload Optimal SARD+AS SHC iTuned

Griewank 0 28.6 28.7 2.0

Rastrigin 0 200.8 209.1 26.1

Rosenbrock 0 40.2 160.5 7.9

W2-SF1 95 240 (R29) 231 (R24) 95 (R1)

W3-SF1 11 43 (R20) 67 (R24) 12 (R4)

W6-SF1 390 450 (R63) 417 (R20) 403 (R5)

W8-SF1 208 208 (R1) 289 (R4) 208 (R1)

Table 5.6: Sensitivity analysis. For W2, W3, W6, W8, rank and performance of
best setting (secs) are shown. Lower is better

its current results. Figure 5.11 shows an effect plot (recall Section 5.6.1) generated

by iTuned based on 10 experiments for the workload whose surface is shown in

Figures 5.7 and 5.8. Figures 5.12 and 5.13 shows the effect plot for workload W4 for

SF=1 and SF=10. The parameters P1-P9 correspond to the first nine PostgreSQL

parameters listed in Section 5.7.1. Without knowing the actual response surface,

a user can quickly grasp the main trends in parameter impact based on the effect

plot. Note how the plot mirrors the trends in Figures 5.7 and 5.8.
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Workload Optimal SARD+AS SHC iTuned

Griewank 0 28.6 28.7 2.0

Rastrigin 0 200.8 209.1 26.1

Rosenbrock 0 40.2 160.5 7.9

W2-SF1 95 240 (R29) 231 (R24) 95 (R1)

W3-SF1 11 43 (R20) 67 (R24) 12 (R4)

W6-SF1 390 450 (R63) 417 (R20) 403 (R5)

W8-SF1 208 208 (R1) 289 (R4) 208 (R1)

Table 5.7: Sensitivity analysis. For W2, W3, W6, W8, rank and performance of
best setting (secs) are shown. Lower is better

In summary, as few as twenty experiments chosen smartly by iTuned can produce

a wealth of information in a reasonable amount of time to aid both naive users and

expert DBAs in tuning database configuration parameters.

5.8 Related Work

Databases have fairly mature tools for physical design tuning (e.g., index selec-

tion [23]). However, these tools do not address configuration parameter tuning.

Furthermore, these tools depend on the cost models in the query optimizer so are

limited in that these models do not capture the effects of many parameters.

Surprisingly, very little work has been done on tools for holistic tuning of the

many configuration parameters in modern database systems. Most work in this area

has either focused on specific classes of parameters (e.g., [75]) or on restricted sub-

problems of the overall parameter tuning problem (e.g., [29]). IBM DB2 provides

an advisor for setting default values for a large number of parameters [53]. DB2’s

advisor does not generate response surfaces, instead it relies on built-in models of

how various parameters affect performance [29]. As we show this chapter, predeter-

mined models may not be accurate in a given setting. SARD (discussed in Section
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Figure 5.11: Effect plot for workload W5 (SF=10)

5.3) and [76] are also related to iTuned. SARD focuses on ranking parameters in

order of impact, and is not an end-to-end tuning tool. Reference [76] proposed

techniques to learn a probabilistic model using samples generated from gridding,

which was then applied to tune four parameters in Berkeley DB. Gridding becomes

very inefficient as the number of parameters increase. Section 5.7 also compared

iTuned with a technique based on hill climbing (e.g., [89]) that has been applied to

parameter tuning. None of the above techniques have an equivalent component of

the .eX framework or the efficiency-oriented features from Section 5.6.

Techniques for tuning specific classes of parameters include solving analytical

models [81], using simulations of database performance (e.g., in Oracle database),

and control-theoretic approaches for online tuning [75]. These techniques are all

based on predefined models of how changes in parameter settings affect performance.

Reference [74] proposed techniques to tune the CPU and memory allocations to

databases running inside virtual machines. However, the focus was not on planning
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Figure 5.12: Effect plot for workload W4 (SF=1)

experiments to learn the underlying response surfaces. All the above techniques

can benefit from the Adaptive Sampling and experiment execution ideas used in

iTuned.

Traditional database sampling deals with the problem of sampling from a large

dataset, while our approach of Adaptive Sampling is about drawing samples from

a response surface that is never materialized fully. Adaptive Sampling shares

goals, but not techniques, with conventional database problems like online aggre-

gation [46], acquisitional query processing [55], and sampling for statistics estima-

tion [21]. For example, reference [21] gives a two-phase adaptive method in which

the sample size required to reach a desired accuracy is decided based on a first

phase of sampling. In contrast, Adaptive Sampling can adapt after each sample is

brought in.

Oracle 11g introduced the SQL Performance Analyzer (SPA) to help DBAs

measure the impact of database changes like upgrades, parameter changes, schema
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Figure 5.13: Effect plot for workload W4 (SF=10)

changes, and gathering optimizer statistics [91]. (Quoting from [91], “it is almost

impossible to predict the impact of such changes on SQL performance before ac-

tually trying them.”) SPA conducts experiments where SQL statements in the

workload are executed with and without applying a change. However, Oracle 11g

does not provide an experiment planner that can automatically handle complex

tuning tasks like parameter tuning. Finally, experiments are used to collect data in

many domains like chemical and mechanical engineering, social science, and com-

puter simulation. While iTuned shares overall guiding principles with experiment

planning in these domains, the requirements and algorithms differ.

5.9 Summary

We described the iTuned approach used by Fa to process tuning queries. Specifically,

iTuned automates the task of recommending good settings for database configura-

tion parameters. iTuned has three novel features: (i) Adaptive Sampling to proac-
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tively bring in appropriate data through planned experiments to find high-impact

parameters and high-performance parameter settings, (ii) use of the .eX frame-

work to support online experiments in production database environments through a

cycle-stealing paradigm that places near-zero overhead on the production workload,

and (iii) portability across different database systems. We showed the effectiveness

of iTuned through an extensive evaluation based on different types of workloads,

database systems, and usage scenarios.
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Chapter 6

Automated Processing of
Forecasting Queries

6.1 Motivation

The previous chapters presented techniques for processing diagnosis and tuning

queries to resolve system problems that have already happened. Since system slow-

downs or outage can lead to financial losses, it is more attractive to provide proactive

system management— where diagnosis and resolution of potential problems occur

before the problems actually happen. To that end, Fa needs the ability to process

forecasting queries that ask about future system performance based on historical

system data.

Apart from proactive system management, forecasting future events based on

historical data is applicable and useful in a range of domains like inventory planning,

adaptive query processing, and sensor data management. On-demand computing

systems, e.g., Amazon’s Elastic Cloud [41], treat physical resources like servers

and storage as a part of a shared computing infrastructure, and allocate resources

dynamically to support changing application demands. These systems benefit sig-

nificantly from early and accurate forecasts of workload surges and potential fail-

ures [65].
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Adaptive query processing [9], where query plans and physical designs adapt

to changes in data properties and resource availability, becomes very effective if

these changes can be predicted with reasonable accuracy. Forecasting also plays

an important role in personal and enterprise-level decision making. For example,

inventory planning involves forecasting future sales based on historical data; and

day traders rapidly buy and sell stocks based on forecasts of stock performance [93].

In this chapter, we describe how Fa processes declarative forecasting queries

posed by users and applications. Fa supports efficient algorithms to generate ex-

ecution plans for these queries, and returns forecasts and accuracy estimates in

real-time. A forecasting query is posed over a multidimensional time-series dataset

that represents historical data, as illustrated by the following example query.

Q1: Select C

From Usage

Forecast 1 day

The full syntax and semantics of forecasting queries will be given in Section 6.2.

The From clause in a forecasting query specifies the historical time-series data on

which the forecast will be based. The query result will contain forecasts for the

attributes listed in the Select clause, with the forecasts given for the timestamp(s)

specified in the (new) Forecast clause. By default, this timestamp is specified as

an interval, called lead-time, relative to the maximum timestamp in the historical

data.

The time-series dataset “Usage” used in example query Q1 is shown in Figure

6.1(a). Usage contains daily observations from Day 5 to Day 17 of the bandwidth

used on three links in an Internet Service Provider’s network. Since Q1 specifies a

lead-time of 1 day, Q1’s result will be a forecast of attribute C for Day 18. Q1 is
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Figure 6.1: Example datasets. (a) Usage; (b) and (c) are transformed versions of
Usage

a one-time query posed over a fixed dataset, similar to a conventional SQL query

posed over relations in a database system. Our next example forecasting query Q2

is posed as a continuous query over a windowed data stream.

Q2: Select cpu util, num io, resp time

From PerfMetricStream [Range 300 minutes]

Forecast 15 minutes, 30 minutes

Q2 is expressed in the CQL continuous query language [7] extended with the Fore-

cast clause. Here, “PerfMetricStream” is a continuous stream of performance met-

rics collected once every minute from a production database server. At timestamp τ

(in minutes), Q2 asks for forecasts of CPU utilization, number of I/Os, and response

time for all timestamps in [τ + 15, τ + 30]. This forecast should be based on the

window of data in PerfMetricStream over the most recent 300 minutes, i.e., tuples

with timestamps in [τ − 299, τ ].

The problem we address in this chapter is how to process forecasting queries

automatically and efficiently in order to generate the most accurate answers possible

based on patterns in the historical data; also giving accuracy estimates for forecasts.
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A forecasting query can be processed using an execution plan that builds and uses

a statistical model from the historical data. The model captures the relationship

between the value we want to forecast and the recent data available to make the

forecast. Before building the model, the plan may apply a series of transformations

to the historical data.

Let us consider a plan p to process our example query Q1. Plan p first transforms

the Usage dataset to generate the dataset shown in Figure 6.1(b). A tuple with

timestamp τ in this transformed dataset contains the values of attributes A, B, and

C for timestamps τ − 1 and τ from Usage, as well as the value of C for timestamp

τ+1. These figures use the notation Xδ to denote the attribute whose value at time

τ is the value of attribute X ∈ Usage at time τ + δ. Using the tuples from Day 6 to

Day 16 in the transformed dataset as training samples, plan p builds a Multivariate

Linear Regression model (MLR) [93] that can estimate the value of attribute C3

from the values of attributes A, B, C, A−1, B−1, and C−1. The MLR model built

is:

C1=−0.7A− 1.04B − 0.43C − A−1 + 1.05B−1 − 0.32C−1 + 114.4

Once this model has been built, it can be used to compute Q1’s result, which is

the “?” in Figure 6.1(b) because C1 for Day 17 is equal to C for Day 18 given our

transformation. By substituting A = 12, B = 25, C = 16, A−1 = 13, B−1 = 47,

and C−1 = 68 from Day 17 (Figure 6.1(b)) into the MLR model, we get the forecast

87.78.

However, plan p has some severe shortcomings that illustrate the challenges in

accurate and efficient forecasting:

(1) It is nontrivial to pick the best set of transformations to apply before building
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the model. For example, if plan p had performed the appropriate attribute

creation and removal to generate the transformed dataset shown in Figure

6.1(c), then the MLR built from this data forecasts 64.10 as Q1’s result. 64.10

is more accurate than 87.78; notice from the Usage data that when A−2 and

B−1 are around 35 and 47 respectively, then C1 is around 68.

(2) Linear regression may fail to capture complex data patterns needed for ac-

curate forecasting. For example, by building and using a Bayesian Network

synopsis on the dataset in Figure 6.1(c), the forecast can be improved to

68.5 (see Example 6.3.2 in Section 6.3). This observation raises a challenging

question: how can we pick the best statistical model to use in a forecasting

plan?

(3) For high-dimensional datasets, most statistical models (including MLR) have

very high model-building times, and often their accuracy degrades as well.

This fact is problematic when forecasts are needed for real-time decisions,

particularly in high-speed streaming applications. Furthermore, plans must

adapt as old patterns disappear and new patterns emerge in time-varying

streams.

6.2 Abstraction of Forecasting Queries

Consider multidimensional time-series datasets in Fa that have a relational schema

Γ, X1, X2, . . . , Xn. Γ is a timestamp attribute with values drawn from a discrete,

ordered domain dom(Γ). A dataset can contain at most one tuple for any timestamp

τ ∈ dom(Γ). Each Xi is a time series. We use Xi(τ) to denote Xi’s value at time τ .

We will defer the discussion of continuous forecasting queries over windowed
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data streams to Section 6.9. A one-time forecasting query over a fixed dataset has

the general form:

Select AttrList

From D

Forecast [absolute] L [, [absolute] L′]

D(Γ, X1, . . . , Xn) is a time-series dataset, AttrList is a subset of X1, . . . , Xn, and L,

L′ are intervals or timestamps from dom(Γ). Terms enclosed within “[“ and “]” are

optional.

Before we consider the general case, we will first explain the semantics of a

simple forecasting query “Select Xi From D Forecast L,” which we denote as

Forecast(D,Xi,L). Let D consist of m tuples with respective timestamps τ1 < τ2 <

· · · < τm. Then, the result of Forecast(D,Xi, L) is the two-tuple ⟨Xi(τm + L), acc⟩;

Xi(τm + L) is the forecast and acc is the estimated accuracy of this forecast. Intu-

itively, the result of Forecast(D,Xi, L) is the forecast of attributeXi for a timestamp

that is L time units after the maximum timestamp in D; hence, L is called the lead-

time of the forecast.

The extension to forecasting multiple attributes is straightforward. For example,

the result of “Select Xi, Xj From D Forecast L,” is a four-tuple ⟨Xi(τm + L), acci,

Xj(τm+L), accj⟩, where acci and accj are the accuracy estimates of the Xi(τm+L)

and Xj(τm + L) forecasts.

If the query specifies two lead-times L and L′, then the query is called a range

forecasting query, as opposed to a point forecasting query that specifies a single

lead-time. The result of a range forecasting query contains a forecast and accuracy

estimate for each specified attribute for each timestamp in the [L,L′] range. If

the keyword absolute is specified before a lead-time L, then L is a treated as an
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absolute timestamp (e.g., March 1, 2007) rather than as an interval relative to the

maximum timestamp in D.

Problem Setting: In this chapter we consider point forecasting queries of the

form Forecast(D,Xi, L) only, since the main technical contributions we want to

present are the algorithms for plan-selection and adaptive query processing. (Range

forecasting is not a straightforward extension of point forecasting.) Also, we have

chosen to output forecasting query results as forecasts and accuracy estimates.

Other options exist, e.g., outputting a probability distribution over possible val-

ues (which some of our plans can do).

6.3 Execution Plans

A plan for a forecasting query contains three types of logical operators—transformers,

predictors, and builders—and a summary data structure called synopsis.

• A transformer T (D) takes a dataset D as input, and outputs a new dataset

D′ that may have a different schema from D.

• A synopsis Syn({Y1, . . . , YN}, Z) captures the relationship between attribute

Z and attributes Y1, . . . , YN , such that a predictor P (Syn, u) can use Syn to

estimate the value of Z in a tuple u from the known values of Y1, . . . , YN in

u. Z is called Syn’s output attribute, and Y1, . . . , YN are called Syn’s input

attributes.

• A builder B(D,Z) takes a dataset D(Γ, Y1, . . . , YN , Z) as input and generates

a synopsis Syn({Y1, . . . , YN}, Z).
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Next, we give two example physical implementations each for the logical entities

defined above.

Project transformer: A project transformer πlist retains attributes in the input

that are part of the attribute list list, and drops all other attributes in the input

dataset; so it is similar to a duplicate-preserving project in SQL.

Shift transformer: Shift(Xj,δ), where 1 ≤ j ≤ n and δ is an interval from

dom(Γ), takes a dataset D(Γ, X1, . . . , Xn) as input, and outputs dataset D′(Γ, X1,

. . ., Xn, X
′) where the newly-added attribute X ′(τ) = Xj(τ+δ). When δ is positive

(negative), then X ′ is copy of Xj that is shifted backward (forward) in time.

Example 6.3.1. The dataset in Figure 6.1(c) was computed from the Usage(A,B,C)

dataset in Figure 6.1(a) by applying the transformers Shift(A,−2), Shift(B,−1),

Shift(C, 1), and the transformer πA−2,B−2,C1 in sequence.

Multivariate Linear Regression (MLR): An MLR synopsis with input at-

tributes Y1, . . . , YN and output attribute Z estimates the value of Z as a linear

combination of the Yj values [88]. Mathematically:

Z = c +
N∑
j=1

αjYj (6.1)

The MLR-builder uses a dataset D(Γ, Y1, . . . , YN , Z) to compute the regression co-

efficients αj and the constant c in Equation 6.1. Note that Equation 6.1 is actually

a system of linear equations, one equation for each tuple in D. The MLR-builder

computes the least-squares solution of this system of equations, namely, the values

of αjs and c that minimize the sum of (Z(τ)− Ẑ(τ))2 over all the tuples in D [93].

178



Here, Z(τ) and Ẑ(τ) are respectively the actual and estimated values of Z in the

tuple with timestamp τ in D. Once all αjs and c have been computed, the MLR-

predictor uses Equation 6.1 to estimate Z in a tuple given the values of attributes

Y1, . . . , YN .

Bayesian Networks (BN): A BN synopsis is a summary structure that can

represent the joint probability distribution Prob(Y1, . . ., YN , Z) of a set of ran-

dom variables Y1, . . ., YN , Z [88]. A BN for variables Y1, . . . , YN , Z is a directed

acyclic graph (DAG) with N + 1 vertices corresponding to the N + 1 variables.

Vertex X in the BN is associated with a conditional probability table that captures

Prob(X|Parents(X)), namely, the conditional probability distribution of X given

the values of X’s parents in the DAG. The DAG structure and conditional prob-

ability tables in the BN satisfy the following equation for all (Y1 = y1, . . . , YN =

yN , Z = z) [88]:

Prob(y1, . . . , yN , z) =
N∏
i=1

Prob(Yi = yi|Parents(Yi))

×Prob(Z = z|Parents(Z))

Given a dataset D(Γ, Y1, . . . , YN , Z), the BN-builder finds the DAG structure and

conditional probability tables that approximate the above equation most closely for

the tuples in D. Since this problem is NP-hard, the BN-builder uses heuristic search

over the space of DAG structures for Y1, . . ., YN , Z [88].

The BN-predictor uses the synopsis generated by the BN-builder fromD(Γ, Y1,. . .,

YN ,Z) to estimate the unknown value of Z in a tuple u from the known values of

u.Y1, . . ., u.YN . The BN-predictor first uses the synopsis to infer the distribution
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B−1

Figure 6.2: BN synopsis built from data in Fig. 6.1(c)

Prob(u.Z = z|u.Yj = yj, 1 ≤ j ≤ N). The exact value of u.Z is then estimated

from this distribution, e.g., by picking the expected value.

Example 6.3.2. Figure 6.2 shows the BN synopsis built by the BN-builder from the

transformed Usage(A,B,C) dataset in Figure 6.1(c). To compute example query

Q1’s result, the BN-predictor will use the synopsis to compute Prob(C1 ∈ [16 −

17]|A−2 = 35, B−1 = 47) and Prob(C1 ∈ [68 − 69]|A−2 = 35, B−1 = 47), which are

0 and 1 respectively; hence the forecast 68.5 will be output.

6.3.1 Initial Plan Space Considered (Φ)

There is a wealth of possible synopses, builders, predictors, and transformers from

the statistical machine-learning literature [88]. For clarity of presentation, we begin

by considering a focused physical plan space Φ. Section 6.7 describes how our

algorithms can be applied to larger plan spaces.

An execution plan p ∈ Φ for a Forecast(D,Xi, L) query first applies a sequence of

transformers to D, then uses a builder to generate a synopsis from the transformed

dataset, and finally uses a predictor to make a forecast based on the synopsis and

the transformed dataset. For example, the transformers in Example 6.3.1, followed
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by the BN synopsis built by the BN-builder and used to make the forecast by the

BN-predictor in Example 6.3.2, is one complete plan in Φ.

Transformers: The transformers in a plan p ∈ Φ are limited to Shift and π.

From working with a number of transformers for adding, dropping, and mapping

attributes (Section 6.7), we have found that Shift and π play a critical role in

presenting the input data in ways that a synopsis built from the data can capture

patterns useful for forecasting. Shift creates relevant new attributes—not present

in the original input dataset—to include in a synopsis. π eliminates irrelevant

and redundant attributes that harm forecasting if included in synopses: (i) these

attributes can reduce forecasting accuracy by obscuring relevant patterns, and (ii)

these attributes can increase the time required to build synopses.

Synopses, Builders, and Predictors: A plan p ∈ Φ contains one of five pop-

ular synopses—along with builder and predictor for that synopsis—from the statis-

tical machine-learning literature: Multivariate Linear Regression (MLR), Bayesian

Networks (BN), Classification and Regression Trees (CART), Support Vector Ma-

chines (SVM), and Random Forests (RF) [88]. The choice of which synopses to

include in Φ was guided by some very recent studies that compare various synopses.

MLR and BN are described in Section 6.3. The following describes the synopses

and their respective builders and predictors. It is not necessary to understand the

specific details of these synopses to understand our contributions.

Classification and Regression Tree (CART)

CART is a technique that builds a classification tree for predicting a categorical

attribute and builds a regression tree for predicting a continuous-valued attribute
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[88].

Given a datasetD(Γ, Y1, . . . , YN , Z), the CART-builder learns a CART T fromD

that represents the important interactions between the attribute Z to be predicted

and the other attributes Yi.

When making a prediction of the unknown value of Z in a tuple u, the CART-

predictor determines a path in T from the root to a certain leaf node nodek based

on the known values of u.Y1, . . ., u.YN . The value of Z is finally derived from the

value distribution in nodek.

Support Vector Machines (SVM)

SVM is a popular technique for classification. It maps training data into a higher

dimensional space using a kernel function, and determines a linear hyperplane to

separate the training data with maximal margin in the higher dimensional space

for the purpose of classification [49].

Given a dataset D(Γ, Y1, . . . , YN , Z), the SVM-builder learns an SVM S from D

with the type of kernel Radial Basis Function (RBF). There are two parameters to

configure for the SVM-builder, namely, cost and gamma. These two parameters are

found to be sensitive to prediction accuracy, and take much time to tune [49].

When making a prediction of the unknown value of Z in a tuple u, the SVM-

predictor maps a vector of the known values of u.Y1, . . ., u.YN into a new vector V in

the higher dimensional space using the specified kernel function of RBF, and predicts

the value of Z based on the position of V relative to the separating hyperplane in

S.
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Random Forests (RF)

RF represents ensemble learning [88] that is used widely in machine learning today.

RF constructs an ensemble of tree predictors h(y; θk) (k = 1, . . . , K) where y is a

vector of values for the observable attributes and θk (k = 1, . . . , K) are independent

and identically distributed random vectors [13]. Random forests have several nice

properties for prediction. For example, it is excellent in accuracy among current

prediction techniques, and it can avoid overfitting [18].

Given a dataset D(Γ, Y1, . . . , YN , Z), RF-builder determines each tree predictor

h(y; θk) from the randomly selected attributes in D. The RF-builder needs to

configure two parameters, the number of tree predictors in the RF and the number

of attributes in each tree [13].

When making a prediction of the unknown value of Z in a tuple u, the RF-

predictor gets a prediction from each tree predictor based on the known values

of u.Y1, . . ., u.YN , and combines these predictions for the final prediction using

weighted averaging or voting strategies [13].

6.4 Plan-Selection Preliminaries

In this section we describe the important characteristics of the problem of selecting

a good plan from Φ for a Forecast(D, Xi, L) query. We describe the structure of

plans from Φ, estimate the total size of the plan space, and show the difficulty in

estimating the forecasting accuracy of a plan.

Observation 6.4.1. (Plan structure) Let D(Γ, X1, . . . , Xn) be a time-series dataset.

A plan p ∈ Φ for a Forecast(D,Xi, L) query can be represented as ⟨Y1, . . ., YN , type,

Z⟩ where:
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• type ∈ {MLR,BN,CART,SVM,RF} is p’s synopsis type. The synopsis type

uniquely determines both p’s builder and p’s predictor.

• Y1, . . . , YN are attributes such that each Yi = Xj(τ + δ) for some j and δ,

1 ≤ j ≤ n and δ ≤ 0. Y1, . . . , YN are the input attributes of p’s synopsis.

• Attribute Z = Xi(τ + L) is the output attribute of p’s synopsis.

This observation can be justified formally based on our assumptions about Φ and

the definitions of synopses, builders, predictors, and transformers. Because of space

constraints, we provide an intuitive explanation only.

Recall that plan p for Forecast(D, Xi, L) will use a synopsis to estimate the query

result, namely, the value of Xi(τm+L), where τm is the maximum timestamp in D.

p’s synopsis has access only to data in D up to timestamp τm in order to estimate

Xi(τm+L). Furthermore, ϕ has only the Shift transformer to create new attributes

apart from attributes X1, . . . , Xn. With these restrictions, the input attributes in

p’s synopsis can only be Xj(τ + δ), 1 ≤ j ≤ n and δ ≤ 0, and the output attribute

is Xi(τ + L).

Observation 6.4.2. (Size of plan space) Suppose we restrict the choice of Shift

transformers to derive input attributes for synopses in a plan to Shift(Xj, δ), 1 ≤

j ≤ n and −∆ ≤ δ ≤ 0. Then, the number of unique plans in Φ, |Φ| = 5× 2(n+1)∆.

In one of our application domains, n = 252 and ∆ = 90, so |Φ| = 5× 222,770!

6.4.1 Estimating Forecasting Accuracy of a Plan

The forecasting accuracy (accuracy) of a plan p = ⟨Y1, . . ., YN , type, Z⟩ is the

accuracy with which p’s synopsis can estimate the true value of Z given the values
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of Y1, . . . , YN . The goal of plan selection for a Q =Forecast(D,Xi, L) query is to

find a plan that has accuracy close to the best among all plans for Q in Φ. To

achieve this goal, we need a way to compute the accuracy of a given plan.

The preferred technique in statistical machine-learning to estimate the accuracy

of a synopsis is called K-fold cross-validation (K-CV) [88]. K-CV can estimate the

accuracy of a plan p that builds its synopsis from the dataset D(Γ, Y1, . . ., YN ,

Z). K-CV partitions D into K (nonoverlapping) partitions, denoted D1, . . . , DK .

(Typically, K = 10.) Let D′
i = D − Di. For i ∈ [1, K], K-CV builds a synopsis

Syni({Y1, . . . , YN}, Z) using the tuples in D′
i, and uses this synopsis to estimate the

value of u.Z for each tuple u ∈ Di. This computation will generate a pair ⟨aj, ej⟩

for each of the m tuples in D, where aj is the tuple’s actual value of Z and ej is the

estimated value. Any desired accuracy metric can be computed from these pairs,

e.g., root mean squared error =
√∑m

j=1
(aj−ej)2

m
, giving an accuracy estimate for p.

Observation 6.4.3. (Estimating accuracy) K-CV is a robust technique to es-

timate the accuracy of a plan p = ⟨Y1, . . ., YN , type, Z⟩ without knowing the actual

query result. However, K-CV builds a synopsis of type type K times, and uses these

synopses to estimate Z for each input tuple.

In effect,K-CV is computationally expensive. However, discussions with researchers

in statistical machine-learning revealed that there are no known techniques to esti-

mate the accuracy of an MLR, BN, CART, SVM, or RF synopsis fairly-accurately

on a dataset D without actually building the synopsis on D. (In Section 6.6.6, we

report experimental results related to this point.) Therefore, K-CV is as good a

technique as any to estimate the accuracy of a plan, and we will use it for that

purpose.
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Algorithm Forecasting Plan Search (FPS)
Input: Forecast(D(Γ, X1, . . . , Xn), Xi, L) query
Output: Forecasts and accuracy estimates are output as FPS
runs. FPS is terminated when a forecast with satisfactory
accuracy is obtained, or when lead-time runs out;

1. l = 0; /* current iteration number of outer loop */
BEGIN OUTER LOOP
2. Attribute set Attrs = {}; /* initialize to an empty set */
3. l = l + 1; /* consider ∆ more shifts than in last iteration */
4. FOR j ∈ [1, n] and δ ∈ [−l∆, 0]

Add to Attrs the attribute created by Shift(j, δ) on D;
5. Generate attribute Z = Xi(τ + L) using Shift(Xi, L) on D;
6. Let the attributes in Attrs be Y1, . . . , Yq. Rank Y1, . . . , Yq

in decreasing order of relevance to Z; /* Section 6.5.2 */
/* Traverse the ranked list of attributes from start to end */

BEGIN INNER LOOP
7. Pick next chunk of attributes from list; /* Section 6.5.3 */
8. Decide whether a complete plan should be generated

using the current chunk of attributes; /* Section 6.5.5 */
9. IF Yes, find the best plan p that builds a synopsis using

attributes in the chunk. If p has the best accuracy among
all plans considered so far, output the value forecast
by p, as well as p’s accuracy estimate; /* Section 6.5.4 */

END INNER LOOP
END OUTER LOOP

Figure 6.3: Plan selection and execution algorithm for one-time forecasting queries

6.5 Processing One-Time Queries

The observations in Section 6.4 motivate our algorithm, called Forecasting Plan

Search (FPS), to process a one-time forecasting query Forecast(D, Xi, L) query.

6.5.1 Overview of FPS

Figures 6.3 and 6.4 give an overview of FPS which runs as a two-way nested for

loop. For simplicity of presentation, Figure 6.3 does not show how computation can

be shared within and across the loops of FPS; sharing and other scalability issues
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Figure 6.4: Pictorial view of FPS processing Example query Q1 from Section 6.1

are discussed in Section 6.5.6.

FPS’s outer loop enumerates a large number of attributes of the form Xj(τ + δ),

1 ≤ j ≤ n and −l∆ ≤ δ ≤ 0, where ∆ ≥ 0 is a user-defined constant. The

value of l is increased across iterations of the loop so that more and more attributes

will be enumerated progressively. FPS aims to pick subsets of attributes from the

enumerated set such that synopses built from these subsets give good accuracy.

Intuitively, a combination of a highly-predictive attribute subset Y1, . . . , YN and an

appropriate synopsis type type gives a plan p = ⟨Y1, . . . , YN , type, Z⟩ for estimating

Z = Xi(τ + L) with good accuracy.

As illustrated in Figure 6.4 and Line 6 of Figure 6.3, FPS ranks the enumerated

attributes in decreasing order of relevance to attribute Z. Techniques for ranking

are described in Section 6.5.2. In its inner loop, FPS traverses the ranked list from
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highly relevant to less relevant attributes, and extracts one chunk of attributes at

a time. Techniques for traversing the ranked list are described in Section 6.5.3.

For each chunk C, FPS decides whether or not to derive a complete plan from C.

Section 6.5.5 describes how this decision is made, and the implications of making a

wrong decision. If the decision is to derive a plan, then FPS finds a highly-predictive

subset of attributes Y1, . . . , YN from C, and an appropriate synopsis type type, to

produce the best plan p = ⟨Y1, . . . , YN , type, Z⟩ possible from C. These techniques

are described in Section 6.5.4. Recall from Section 6.4.1 that FPS has to build p’s

synopsis in order to estimate p’s accuracy. Once the synopsis is built, the extra cost

to use the synopsis to compute the value forecast by p is small.

Whenever FPS finds a plan p whose accuracy estimate is better the accuracy

estimates of all plans produced so far, FPS outputs the value forecast by p as well

as p’s accuracy estimate. Thus, FPS produces more and more accurate forecasts

in a progressive fashion, similar to online aggregation techniques proposed for long-

running SQL queries [46]. FPS runs until it is terminated by the application/user

who issued the query, e.g., a user may terminate FPS when she is satisfied with the

current accuracy estimate.

We now present the options we considered to implement each step in FPS. These

options are evaluated experimentally in Section 6.6, and a concrete instantiation of

FPS is presented in Section 6.7.

6.5.2 Ranking Attributes

Line 6 in Figure 6.3 ranks the attributes enumerated by FPS’s outer loop in decreas-

ing order of relevance to the output attribute Z. Intuitively, attributes more relevant

to Z are more likely to give good forecasts when included in a synopsis to forecast
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Z. Such relevance can be computed in one of two ways: (i) correlation-based, where

attributes are ranked based on their correlation with Z; and (ii) time-based, where

attributes whose values are more recent are ranked higher.

Correlation-based Ranking: There exist two general approaches to measure

correlation between attributes Y and Z, one based on linear-correlation theory and

the other based on information theory [94]. Linear correlation coefficient (LCC) is

a popular measure of linear correlation [88].

LCC(Y, Z) = LCC(Z, Y ) =

∑
i(yi − Y )(zi − Z)√∑

i(yi − Y )2
√∑

i(zi − Z)2

Each (yi, zi) is a pair of (Y, Z) values in a tuple in the input dataset, and Y and Z

denote the respective means. LCC is efficient to compute, but it may not capture

nonlinear correlation.

Information gain of Z given Y , denoted IG(Z, Y ), is an information-theoretic

measure of correlation between Y and Z computed as the amount by which the

entropy of Z decreases after observing the value of Y . IG(Z, Y ) = H(Z)−H(Z|Y ) =

H(Y )−H(Y |Z) = IG(Y, Z), where H denotes entropy, e.g., H(Y ) = −
∑

i Prob(yi)

log2(Prob(yi)).

IG(Z, Y ) = IG(Y, Z) = −
∑
i

Prob(zi) log2(Prob(zi)) +∑
j

Prob(yj)
∑
i

Prob(zi|yj) log2(Prob(zi|yj))

Information gain is biased towards attributes with many distinct values, so a nor-

malized variant called symmetrical uncertainty (SU) is often used to measure cor-
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relation.

SU(Y, Z) = SU(Z, Y ) = 2

[
IG(Y, Z)

H(Y ) +H(Z)

]
(6.2)

Time-based Ranking: Time-based ranking is based on the notion that an at-

tribute whose value was collected closer in time to τ is more predictive of Z(τ)

than an attribute whose value was collected earlier in time. For example, con-

sider attributes Y1 and Y2 created from the input dataset D by Shift(X1, δ1) and

Shift(X2, δ2) transformers respectively. Because of the shift, the value of Y1(τ)

(Y2(τ)) comes from a tuple in D with timestamp τ + δ1 (τ + δ2). Let δ1 < δ2 ≤ 0.

Then, Y2(τ) is more relevant to Z(τ) than Y1(τ).

6.5.3 Traversal of the Ranked List in Chunks

Single Vs. Multiple Chunks: FPS traverses the ranked list in multiple over-

lapping chunks C1 ⊂ C2 ⊂ · · · ⊂ Ck that all start from the beginning of the list (see

Figure 6.4). If all the attributes are considered as a single chunk (i.e., if k = 1),

then the time for attribute selection and synopsis learning can be high because these

algorithms are nonlinear in the number of attributes. Overlapping chunks enable

FPS to always include the highly relevant attributes that appear at the beginning

of the list. The potential disadvantage of overlapping chunks is the inefficiency

caused by repetition of computation when the same attributes are considered mul-

tiple times. However, as we will show in Section 6.5.6, FPS can share computation

across overlapping chunks, so efficiency is not compromised.
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Fixed-size Vs. Variable-size Increments: Successive overlapping chunks C1 ⊂

C2 ⊂ · · · ⊂ Ck can be chosen with fixed-size increments or variable-size increments.

An example of consecutive chunk sizes with fixed-size increments is |C1| = 10, |C2| =

20, |C3| = 30, |C4| = 40 and so on (arithmetic progression), while an example with

variable-size increments is |C1| = 10, |C2| = 20, |C3| = 40, |C4| = 80 and so on

(geometric progression).

6.5.4 Generating a Plan from a Chunk

At Line 9 in Figure 6.3, we need to generate a complete plan from a chunk of

attributes C. This plan ⟨Ω, type, Z⟩ should contain attributes Ω ⊆ C and a synopsis

type type that together give the best accuracy in estimating the output attribute Z

among all choices for (Ω, type). We break this problem into two subproblems: (i)

finding an attribute subset Ω ⊆ C that is highly predictive of Z, and (ii) finding a

good synopsis type for Ω.

Selecting a Predictive Attribute Subset

The problem of selecting a predictive attribute subset Ω ⊆ C can be attacked as

a search problem where each state in the search space represents a distinct subset

of C [45]. Since the space is exponential in the number of attributes, heuristic

search techniques can be used. The search technique needs to be combined with

an estimator that can quantify the predictive ability of a subset of attributes. We

consider three methods for attribute selection:

1. Wrapper, described in [88], estimates the predictive ability of an attribute

subset Ω by actually building a synopsis with Ω as the input attribute set, and

using K-CV to estimate accuracy. Wrapper uses Best First Search (BFS) [88] as
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its heuristic search technique. BFS starts with an empty set of attributes and

enumerates all possible single attribute expansions. The subset with the highest

accuracy estimate is chosen and expanded in the same manner by adding single

attributes. If no improvement results from expanding the best subset, up to k

(usually, k = 5) next best subsets are considered. The best subset found overall is

returned when the search terminates. Building synopses for all enumerated subsets

makes Wrapper good at finding predictive subsets, but computationally expensive.

2. Correlation-based Feature Selection (CFS), described in [45], is based on

the heuristic that a highly-predictive attribute subset Ω is composed of attributes

that are highly correlated with the (output) attribute Z, yet the attributes in Ω are

uncorrelated with each other [45]. This heuristic gives the following estimator, called

CFS Score, to evaluate the ability of a subset Ω, containing k (input) attributes

Y1, . . . , Yk, to predict the (output) attribute Z (Equation 6.2 defines SU):

CFS Score(Ω) =

∑k
i=1 SU(Yi, Z)√

k +
∑k

i=1

∑k
j ̸=i,j=1 SU(Yi, Yj)

(6.3)

The numerator in Equation 6.3 is proportional to the input-output attribute corre-

lation, so it captures how predictive Ω is of Z. The denominator is proportional to

the input-input attribute correlation within Ω, so it captures the amount of redun-

dancy among attributes in Ω. CFS uses BFS to find the attribute subset Ω ⊆ C

with the highest CFS Score.

3. Fast Correlation-based Filter (FCBF), described in [94], is based on the

same heuristic as CFS, but it uses an efficient deterministic algorithm to eliminate

attributes in C that are either uncorrelated with the output attribute Z, or redun-

dant when considered along with other attributes in C that have higher correlation

with Z. While CFS’s processing-time is usually proportional to n2 for n attributes,
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FCBF’s processing-time is proportional to n log n.

Selecting a Synopsis Type

To complete a plan from an attribute subset Ω, we need to pick the synopsis type

that gives the maximum accuracy in estimating Z using Ω. Recall from Section

6.4.1 that there are no known techniques to compute the accuracy of a synopsis

without actually building the synopsis. One simple, but expensive, strategy in this

setting is to build all five synopsis types, and to pick the best one. As an alternative,

we tried to determine experimentally whether one or more synopsis types in BN,

CART, MLR, SVM, and RF compare well in general to the other types in terms of

both the accuracy achieved and the time to build. The results are very encouraging,

and reported in Section 6.6.5.

6.5.5 Decision to Generate a Plan or Not

At Line 8 in Figure 6.3, we need to decide whether to generate a complete plan using

the current chunk of attributes C. Generating a complete plan p from C involves

an attribute selection and building one or more synopses, so it is desirable to avoid

or reduce this cost if p is unlikely to be better than the current best plan. To make

this decision efficiently, we need an estimator that gives a reasonably-accurate and

efficiently-computable estimate of the best accuracy possible from chunk C. We can

prune C if the estimated best accuracy from C is not significantly higher than the

accuracy of the current best plan. We considered two options:

• No Pruning, where a plan is generated for all chunks.

• Pruning(k), where chunk C is pruned if the best CFS Score (Equation 6.3)

among attribute subsets in C is worse than the k-th best CFS score among
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all chunks so far.

6.5.6 Sharing Computation in FPS

Recall from Section 6.5.3 that FPS traverses the ranked list of attributes in over-

lapping chunks C1 ⊂ C2 ⊂ · · · ⊂ Ck starting from the beginning of the list. The

version of FPS described in Figure 6.3—which we call FPS-full—performs attribute

selection and synopsis building from scratch for each chunk where a complete plan

is generated.

An incremental version of FPS, called FPS-incr, shares (or reuses) computation

across chunks by generating a plan from the attributes Θ ∪ {Ci − Ci−1} at the ith

chunk, instead of generating the plan from Ci. Here, Ci−Ci−1 is the set of attributes

in Ci that are not in Ci−1, and Θ ⊆ Ci−1 enables reuse of computation done for

previous chunks. We consider two options for choosing Θ:

Θ =

 Θi−1 (FPS-incr-cum)

Θj′ , j′ = argmax1≤j≤i−1 accj (FPS-incr-best)

Here, Θj ⊆ Cj is the attribute subset chosen in the plan for chunk Cj (Section

6.5.4), with corresponding accuracy accj. Intuitively, Θ in FPS-incr-cum tracks

the cumulative attribute subset selected so far, while FPS-incr-best uses the best

attribute subset among all chunks so far.

Note that sharing can be done across chunks in a ranked list—like we described

above—as well as across the much larger overlapping chunks of attributes considered

by successive iterations of FPS’s outer loop; our description applies to this case as

well.
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Parameter/Option name Default

Forecast lead time (Sec. 6.2) 25

∆ in FPS (Fig. 6.3) 90

Ranking attributes (Sec. 6.5.2) Correlation-based (LCC)

Ranked-list traversal (Sec. 6.5.3) Variable-sized (10× 2i)

Attribute selection (Sec. 6.5.4) FCBF

Synopsis type (Sec. 6.5.4) BN

Generate plan or not? (Sec. 6.5.5) No pruning

Sharing across chunks (Sec. 6.5.6) FPS-incr-cum

Table 6.1: Defaults for experiments

6.6 Experimental Evaluation

Our algorithms for processing one-time and continuous forecasting queries have been

implemented in Fa. The implementation of all synopses is based on the open-source

WEKA toolkit [88]. Table 6.1 indicates the experimental defaults.

6.6.1 Datasets, Queries, and Balanced Accuracy

Since Fa’s target domain is system and database monitoring, the datasets, forecast-

ing queries, and accuracy metrics used in our experimental evaluation are drawn

primarily from this domain. We used real, testbed, and synthetic datasets; described

next and in Table 6.2.

Real datasets: We consider three real datasets: Aging-real, FIFA-real, andMotes-

real. Aging-real is a record of OS-level data collected over a continuous period of

two months from nine production servers in the Duke EE departmental cluster; [84]

gives a detailed analysis. The predictive patterns in this dataset include the effects

of software aging—progressive degradation in performance due to, e.g., memory

leaks, unreleased file locks, and fragmented storage space—causing transient sys-

tem failures. We use Aging-real to process queries that forecast with lead-time L
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Name n m I Description

1. Aging-real 44 4820 15 OS-level data collected for 55 days from
nine Duke EE departmental servers

2. FIFA-real 124 2068 60 Load metrics collected for 92 days from
the 1998 Soccer World Cup Web-site

3. Periodic-small-tb 196 4315 1 10-minute period; query parameter val-
ues varied to vary transaction response
time

4. Periodic-large-tb 252 6177 1 90-minute period; resource contention
created by varying number of DBMS
threads

5. Aging-fixed-tb 252 1499 1 non-periodic; resource contention caused
by an aging [84] CPU-intensive thread

6. Multi-large-tb 252 5000 1 non-periodic; resource contention caused
by both CPU and disk contention

7. Multi-small-tb 252 719 1 16-minute period; resource contention
caused by both CPU and disk contention

8. Aging-variant-syn 3 7230 1 non-periodic; rate of aging is not fixed
like in Aging-fixed-tb

9. Complex-syn 6 14760 1 non-periodic; pattern simulating a prob-
lem that affects response time with a lag

10. Complex-noisy-
syn

3 8162 1 non-periodic; the pattern is similar to
that in Complex-syn, with white noise
added

11. Motes-real 48 7712 1 sensor measurements collected from wire-
less sensors [30]

Table 6.2: Datasets used in experiments; n, m, and I are the number of attributes,
tuples, and measurement interval (minutes) respectively; real, tb, and syn represent
real, testbed, and synthetic datasets respectively

whether a server’s average response time will exceed a specified threshold.

The Motes-real dataset is a trace of readings collected from 54 sensors in the Intel

Research lab at Berkeley. The sensors collect readings of attributes like humidity,

light, temperature, and voltage. This dataset contains 8 days of readings [30]. In

our experiments, we consider queries that forecast the humidity and light attributes.

FIFA-real is derived from a 92-day log for the 1998 FIFA Soccer World Cup Web-

site; [8] gives a detailed analysis. We use this dataset to process queries that forecast
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with lead-time L whether the Web-site load will exceed a specified threshold. The

load on the FIFA Web-site is characteristic of most popular Web-sites—with peri-

odic segments, high burstiness at small time scales, but more predictability at larger

time scales, and occasional traffic spikes.

Testbed datasets: These datasets contain OS, DBMS, and transaction-level per-

formance metrics collected from a MySQL DBMS running an OLTP workload on

a monitoring testbed we have developed [33]. Table 6.2 gives brief descriptions.

These datasets are used to process queries that forecast with lead-time L whether

the average transaction response time will exceed a specified threshold. Our testbed

datasets cover (i) periodic workloads—with different period lengths and complexity

of pattern—(ii) aging behavior—both periodic and non-periodic, fixed and varying

rate of aging—and (iii) multiple performance problems (e.g., both CPU and I/O

contention) happening in overlapping and nonoverlapping ways.

Synthetic datasets: We also generated synthetic time-series datasets using Mat-

lab to study the robustness of our algorithms; see Table 6.2.

Balanced Accuracy (BA): Notice that the queries we consider in our experi-

mental evaluation forecast whether the system will experience a performance prob-

lem L time units from now. The accuracy metric preferred for such queries in the

system management domain is called Balanced Accuracy (BA) [65]. BA is com-

puted using K-CV (Section 6.4.1) as: BA = 0.5(1 - FP) + 0.5(1 - FN). Here, FP is

the ratio of false positives (predicting a problem when there is none) in the ⟨actual

value, estimated value⟩ pairs. Similarly, FN is the ratio of false negatives (failing

to predict an actual problem).
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Figure 6.5: (a) Comparing correlation metrics, (b) Correlation Vs. time-
based ranking. These two experiments use the Periodic-large-tb dataset.

Graphs: The majority of our graphs track the progress of FPS over time; the X

axis shows the elapsed time since the query was submitted, and the Y axis shows

the best BA among plans generated so far. Fast convergence to the maximum BA

possible indicates good performance. BA is always≥0.5, so the minimum Y value

in these graphs is 0.5.

6.6.2 Ranking Attributes

Recall from Section 6.5.2 that FPS can choose to do time-based ranking of enumer-

ated attributes, or correlation-based ranking using LCC, IG, or SU. Figures 6.5(a)

and 6.5(b) show the general trend that we have seen across all our datasets and

queries:

• FPS using LCC converges much faster and to almost the same BA as SU and

IG. The worst results for LCC were for the synthetic Complex-syn dataset

where we forced the predictive attributes to have nonlinear correlation with

the output attribute Z. Even in this case, LCC converged to the same BA as
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Figure 6.6: Comparing correlation metrics: (a) Aging-real, (b) Multi-large-tb

IG and SU, with 20% more time than SU and 14% more time than IG.

• Correlation-based ranking using LCC is more robust than time-based ranking.

Note the sensitivity of time-based ranking to the lead-time in Figure 6.5(b):

time-based ranking will converge quickly only when the predictive patterns

are “close by” in time, which depends on the lead-time for Periodic-large-tb.

Figure 6.6(a) and 6.6(b) show that FPS using LCC metric to rank attributes

converges faster than that using IG or SU metrics while achieving comparable pre-

diction accuracies. Figure 6.7(a) shows that IG and SU are more accurate and robust

ranking metrics than LCC in terms of the predictability of an attribute. Please note

that Figure 6.7(a) uses the Complex-syn dataset in which there is strong nonlinear

correlation between the attribute to be predicted and the other attributes. As the

LCC metric only captures linear correlations between two attributes, it is hard to

get a good ranking of the attributes in the Complex-syn dataset using the LCC

metric.
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Figure 6.8: (a) Importance of chunk-based traversal, (b) Choosing chunk
sizes (∆=30 in Fig. 6.3). These two experiments use the Periodic-large-tb
dataset.

6.6.3 Traversal of Ranked List

The trend in Figure 6.8(a) was consistent across all our datasets: it is significantly

better to consider attributes in the ranked list in multiple overlapping chunks rather

than considering all attributes all-at-once. The main reason is that the time for at-

tribute selection and synopsis learning is nonlinear in the number of attributes.

With multiple overlapping chunks, the chunks are smaller since the effects of com-

putation sharing from Section 6.5.6 kick in.
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We have found variable-size traversal (Section 6.5.3)—with chunk sizes increas-

ing in a geometric progression 10× 2i up to a maximum size, then switching to an

arithmetic progression with the last increment—to be more effective than fixed-size

traversal:

• If ranking correctly brings the most predictive attributes to the beginning of

the ranked list, then FPS gets close to the best accuracy from the first few

chunks. Here, fixed-size and variable-size traversal are comparable.

• If the predictive attributes are not at the beginning of the ranked list—e.g.,

because the use of LCC for ranking failed to capture nonlinear correlation, or

∆ was too low—then FPS may not get good accuracy until the middle/last

chunks are considered or until more attributes are enumerated; variable-size

traversal can get there sooner. This effect is clear in Figure 6.8(b) which

considers a case where ∆ = 30 was low, so multiple iterations of the outer

loop in Figure 6.3 were required to get to the best BA possible. Note the log

scale on the X axis.

6.6.4 Selecting a Predictive Attribute Subset

Figure 6.9(a) represents the consistent trend we observed: (i) The running times

of the attribute-selection techniques are in the order FCBF < CFS ≪ Wrapper,

with Wrapper being about an order of magnitude slower than FCBF and CFS,

without any significant advantage in accuracy; (ii) FCBF tends to perform better

on average than CFS, but other features of FPS—mainly, sharing of computation

(Section 6.5.6)—blur the difference between FCBF and CFS. (Principal Component

Analysis also performs worse than FCBF/CFS.)
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Figure 6.9: (a) Comparing attribute-selection techniques (Aging-real), (b)
CFS-Score Vs. BA for random subsets (Multi-large-tb)
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Figure 6.10: Comparing attribute-selection techniques: (a) Aging-variant-
syn, (b) Aging-fixed-tb

Figure 6.10 and Figure 6.11 show that the increasing order in running times of

the attribute selection techniques is FCBF < CFS << Wrapper (please note that

the X-axis is in log scale). At the same time, FPS using FCBF and CFS can get

comparable accuracies that are no worse than the accuracy achieved by FPS using

Wrapper.
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Figure 6.11: Comparing attribute-selection techniques: (a) Multi-large-tb,
(b) Periodic-large-tb

6.6.5 Selecting a Synopsis

Table 6.3 shows the time to produce the best plan, and the corresponding BA, for

FPS when using BN, CART, MLR, and SVM synopses. As a comparison point,

we provide the best performance of RF synopses which were found to be one of the

best synopses available today in a recent comprehensive study [18]. (More detailed

comparisons with RFs are provided in Section 6.6.7.)

• The running times for SVM and RF are consistently worse than for BN/CART/

MLR. The missing data points for SVM and RF are cases where Java runs

out of heap space on our machine before the algorithms converge; showing the

high memory overhead of these algorithms.

• BNs are competitive with all other synopses both in terms of accuracy and

running time; we attribute this performance to the fact that once the right

transformations are made, a reasonably-sophisticated synopsis can attain close

to the best accuracy possible.
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FPS (BN) FPS (CART) FPS (MLR) FPS (SVM) RF

Dataset BA Time BA Time BA Time BA Time BA Time

Aging-real 0.71 62.4 0.71 134.9 0.64 35.8 0.51 1948.7

FIFA-real 0.87 28.8 0.85 36.6 0.84 201.4

Periodic-
small-tb

0.84 44.9 0.85 249.3 0.80 130.3 0.86 22339.7

Periodic-
large-tb

0.98 71.98 0.98 167.7 0.97 92.6

Aging-
fixed-tb

0.91 27.5 0.93 56.8 0.89 145.3

Multi-
large-tb

0.72 99.7 0.73 197 0.71 100.8

Multi-
small-tb

0.91 53.2 0.91 49.7 0.85 19.1 0.86 482.3 0.91 933.2

Aging-
variant-syn

0.82 14.2 0.81 109.4 0.80 24.2 0.85 3200.1

Complex-
syn

0.99 130.1 0.99 506.4 0.99 134.7

Table 6.3: Synopsis comparisons. The time in seconds to produce the best plan,
and the corresponding BA, are shown. The missing data points are cases where
Java ran out of heap space before convergence.

Figure 6.12 and Figure 6.13 show plots of the experimental results in Table 6.3.

SVM and RF are not included in these figures because their running times are at

least an order of magnitude longer than that of BN, MLR, and CART. Note that

the running time in Table 6.3 corresponds to the time in seconds needed to reach

a BA close to (within 1%) the maximum BA possible in each case; so the time in

Table 6.3 do not always correspond to the maximum BA in Figure 6.12 and Figure

6.13. Recall that Fa’s goal is to produce a reasonably-accurate plan quickly for a

given query, balancing the tradeoff between accuracy and plan-selection time.

Figure 6.14 shows the experimental results with the Motes-real dataset.
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Figure 6.12: Comparing synopses: (a) FIFA-real, (b) Aging-fixed-tb
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Figure 6.13: Comparing synopses: (a) Multi-large-tb, (b) Periodic-small-tb

6.6.6 Decision to Generate a Plan or Not

Our attempts to use the best CFS Score from a set of attributes Ω as an estimator

of the best BA from Ω gave mixed results. Figures 6.9(b) and 6.7(b) plot the CFS

Score and corresponding BA for a large set of randomly chosen attribute subsets

from Multi-large-tb and Periodic-large-tb: CFS Score seems to be a reasonable in-

dicator of BA for Multi-large-tb (note the almost linear relationship), but not so for

Periodic-large-tb (note the points where CFS Score is reasonably high, but BA is far

below the best). Figure 6.15(a) shows the performance of CFS-Score-based pruning,

for k=1 and k=5, for Periodic-large-tb. While pruning does sometimes reduce the
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Figure 6.14: Comparing synopses: (a) Forecasting humidity in Motes-real,
(b) Forecasting light in Motes-real
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Figure 6.15: (a) CFS-Score-based pruning (Periodic-large-tb), (b) Improve-
ments with sharing (Periodic-large-tb)

total processing-time considerably, it does not translate into faster convergence; in

fact, convergence can be delayed significantly as seen in Figure 6.15(a).

Figure 6.16 and Figure 6.17 show that in most cases CFS-Score-based pruning

does not help reducing the time to convergence, although the prediction accuracy

is sacrificed.
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Figure 6.16: CFS-Score-based pruning: (a) Aging-fixed-tb, (b) Aging-real
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Figure 6.17: CFS-Score-based pruning: (a) Multi-large-tb, (b) Periodic-
small-tb

6.6.7 Effect of Sharing

Figure 6.15(b) shows the consistent trend we observed across all datasets: com-

putation sharing improves the speed of convergence of FPS significantly, without

any adverse effect on accuracy. Note that sharing can be done across chunks in

a ranked list as well as across the much larger chunks of attributes considered by

successive iterations of FPS’s outer loop. To show both effects, we set ∆ = 30

instead of the default 90 in Figure 6.15(b), so multiple iterations of the outer loop

are required to converge. We found no significant difference between FPS-incr-cum

and FPS-incr-best.
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Figure 6.18: Improvements with sharing: (a) Aging-fixed-tb, (b) Aging-
variant-syn
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Figure 6.19: Improvements with sharing: (a) Multi-large-tb, (b) Complex-
syn

Figure 6.18 and Figure 6.19 show that the computation sharing within chunks

and across chunks can reduce the time to convergence without any significant loss

in accuracy.

6.7 Making FPS Concrete

The trends observed in our experimental evaluation point to reasonable defaults for

each step of FPS in Figure 6.3, to find a good plan quickly from Φ for a one-time
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Figure 6.20: FPS Vs. State-of-the-art synopsis (RF): (a)Aging-real, (b)
Complex-syn

Forecast(D, Xi, L) query:

• Use LCC for ranking attributes.

• Traverse the ranked list in multiple overlapping chunks, with increasing incre-

ments in chunk-size up to a point.

• Generate a good plan from each chunk considered.

• Use FCBF or CFS for attribute selection.

• Build BN synopses only.

• Use FPS-incr-cum for computation sharing.

A recent comprehensive study [18] found RFs to be one of the best synopses avail-

able today. Figure 6.20, Figure 6.21 and Table 6.4 compare the above concrete

instantiation of FPS with:

• RF-base, which builds an RF synopsis on the original input dataset. Intu-

itively, RF-base is similar to applying today’s most-recommended synopsis on

the input data. Note that RF-base does not consider transformations.
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Figure 6.21: FPS Vs. State-of-the-art synopsis (RF): (a) Multi-large-tb, (b)
Aging-variant-syn

FPS (BN) RF-shifts RF-base

Dataset BA Time BA Time BA Time

FIFA-real 0.86 10.8 0.79 2357.9 0.76 112

Aging-fixed-tb 0.91 13.6 0.91 1660.6 0.91 45.1

Periodic-large-tb 1 13.9 0.52 2839.8 0.52 69.1

Table 6.4: FPS Vs. RF; The datasets had to be scaled down to get RF to run
within reasonable time

• RF-shifts, which builds an RF synopsis on the input after applying all Shift(j, δ)

transformers, 1 ≤ j ≤ n and −∆ ≤ δ ≤ 0.

These results in Figure 6.20, Figure 6.21 and Table 6.4 demonstrate FPS’s superior-

ity over RF-base and RF-shifts in finding a good plan quickly for one-time forecast-

ing queries. Furthermore, FPS’s ranking-based approach and scalable attribute-

selection algorithms make it robust to noisy and redundant attributes in the input.

In Section 6.8, we extend FPS to consider a much larger space of transformers

than Φ. This extension is based on two main observations:

1. FPS handles a large space of possible shift transformations by first applying

all these transformations to create the corresponding attributes, and then

applying efficient attribute traversal and selection techniques to find good
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transformations quickly. The same technique can be used to incorporate more

transformers, e.g., we consider log, wavelet, and difference transformers.

2. FPS can first apply simple transformers (e.g., Shift, π) and synopses (e.g., BN)

to identify the small subset Ω of original and new attributes that contribute

to good plans. Then, more complex transformers and synopses can be applied

only on Ω.

6.8 More Transformations

In addition to Shift and π, we consider more transformers such as Wavelet, Log, and

Difference to enhance FPS ’s ability to find a good execution plan quickly. Figure

6.22 shows the extension of FPS with the Wavelet transformer; Line 1 is a new

line. The other transformers can be applied in a similar way. All the experiments

in this section use the Complex-noisy-syn dataset.

6.8.1 Wavelet Transformer

The transformer Wavelet(X, level) applies wavelet transform to a time series X,

and generates level + 1 time series, among which one is an approximation series

(low-frequency component of X ) and the others are detail series (high-frequency

component of X ) [64].

Notice that Wavelet transformers have the potential to improve overall accuracy

and reduce the time to convergence. We found MLR synopses to get the most benefit

from Wavelet transformers, as seen in Figure 6.23.
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Algorithm Extended Forecasting Plan Search
Input: Forecast(D(Γ, X1, . . . , Xn), Xi, L) query
Output: Forecasts and accuracy estimates are output as FPS
runs. FPS is terminated when a forecast with satisfactory
accuracy is obtained, or when lead-time runs out;

/* the newly added line to FPS */
1. Apply Wavelet transformers to the attributes X1, . . . , Xn

in D with level = 2, and generate a new dataset D′;
2. l = 0; /* current iteration number of outer loop */
BEGIN OUTER LOOP
3. Attribute set Attrs = {}; /* initialize to an empty set */
4. l = l + 1; /* consider ∆ more shifts than in last iteration */
5. FOR j ∈ [1, n] and δ ∈ [−l∆, 0]

Add to Attrs the attribute created by Shift(j, δ) on D′;
6. Generate attribute Z = Xi(τ + L) using Shift(Xi, L) on D′;
7. Let the attributes in Attrs be Y1, . . . , Yq. Rank Y1, . . . , Yq

in decreasing order of relevance to Z; /* Section 6.5.2 */
/* Traverse the ranked list of attributes from start to end */

BEGIN INNER LOOP
8. Pick next chunk of attributes from list; /* Section 6.5.3 */
9. Decide whether a complete plan should be generated

using the current chunk of attributes; /* Section 6.5.5 */
10. IF Yes, find the best plan p that builds a synopsis using

attributes in the chunk. If p has the best accuracy among
all plans considered so far, output the value forecast
by p, as well as p’s accuracy estimate; /* Section 6.5.4 */

END INNER LOOP
END OUTER LOOP

Figure 6.22: Extended Plan Selection Algorithm

6.8.2 Log Transformer

The transformer Log(X) transforms a time series X into a new time series X ′, where

X ′(i) = log(X(i)) (1 ≤ i ≤ m).

The experimental results shown in Figure 6.24 demonstrate that all the three

synopses benefit from the Log transformers, because the Log transformers can help

reduce the nonlinearity in the patterns useful for forecasting, which makes the pat-

terns easy to be captured by the synopses.
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Figure 6.23: Using Wavelet transformers in extended FPS (a) with CART,
(b) with MLR, (c) with BN synopses
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Figure 6.24: Using Log transformers in extended FPS (a) with CART, (b)
with MLR, (c) with BN synopses

6.8.3 Difference Transformer

The transformer Difference(X) transforms a time series X into a new time series

X ′, where X ′(i) = X(i)−X(i− 1) (2 ≤ i ≤ m).

The experimental results shown in Figure 6.25 indicate that the extended FPS

incorporating Difference transformers can gain some improvement in the prediction

accuracy with BN, MLR, and CART synopses, because the Difference transformers

can bring out temporal trends in the time series that contribute to making accurate

prediction.
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Figure 6.25: Using Difference transformers in extended FPS (a) with CART,
(b) with MLR, (c) with BN synopses

6.9 Continuous Forecasting Queries

So far we considered one-time forecasting of the form Forecast(D,Xi, L) where the

dataset D is fixed for the duration of the query. We now extend our techniques

to handle continuous queries of the form Forecast(S[W ], Xi, L) where S is a data

stream of relational tuples, andW is a sliding window specification over this stream.

Semantics: The semantics of a Forecast(S[W ], Xi, L) query is a straightforward

extension of the one-time semantics from Section 6.2. (This design principle comes

from the CQL continuous query language [7] on which our extensions are based;

see example query Q2 in Section 6.1.) The result of a Forecast(S[W ], Xi, L) query

at time τ is the same as the result of Forecast(D,Xi, L), where D is the time-series

dataset containing the window W of data in stream S at τ . As time advances, this

window of data shifts, and a continuous stream of forecasts will be produced in the

result of Forecast(S[W ], Xi, L).

Example 6.9.1. Consider the example continuous query Forecast(Usage[Range 5

days],C,1 day) that treats the Usage data in Figure 6.1(a) as a stream. CQL syntax

is used to specify a sliding window containing tuples in the last 5 days. Thus, for

example, on Day 10, a forecast will be output for C for Day 11, based on the data

(window) for Days 6-10.
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6.9.1 FPS-Adaptive (FPS-A)

We could process a Forecast(S[W ], Xi, L) query by running FPS on the initial win-

dow of data to get the best plan p, and then keep producing new forecasts using

p as the window of data changes. However, this technique will produce inaccurate

forecasts as the predictive patterns in the data change over time. Another option is

to rerun FPS from scratch to generate the current best plan whenever the window

changes; which is inefficient.

A good algorithm for processing Forecast(S[W ], Xi, L) should use the same plan

that FPS would find for each window of data, but incur minimal cost to maintain

this plan as the window slides. FPS-A (FPS-Adaptive) is our attempt at such an

algorithm. FPS-A exploits the structure (Figure 6.4) and defaults (Section 6.7) we

established for FPS. FPS-A works as follows:

• The ranked list of all enumerated attributes is maintained efficiently. Because

FPS uses LCC for ranking, FPS-A gets two useful properties. First, LCC

can be updated incrementally, and batched updates make this overhead very

low. Second, recent work [97] shows how tens of thousands of LCCs can be

maintained in real-time; we haven’t used this work yet since batched updates

give us the desired performance.

• If there are significant changes to the ranked list, then the overall “plan struc-

ture” is updated efficiently (e.g., the best attribute subset for a chunk may

have changed, giving a new best plan).

At all points of time, FPS-A maintains a reference rank list Rr composed of k

chunks Cr
1 ⊂ Cr

2 ⊂ · · · ⊂ Cr
k , the best plans pr1, . . . , p

r
k for these chunks, and the

overall best plan prbest. The current p
r
best is used for producing forecasts and accuracy
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Algorithm Fa’s Adaptive Maintenance of Plans for Forecasting Queries (FPS-A)
Input: A β-sized batch of tuples inserted/deleted from the
sliding window for a Forecast(S[W ], Xi, L) query. R

r,
Cr
1 , . . . , C

r
k , p

r
1, . . . , p

r
k, p

r
best are the current reference values;

Output: The reference values will be updated if required;
1. Do batched update of all LCC values to get the new ranked

list R and its chunks C1, . . . , Ck;
2. For attribute Y , let LCC(Y, Z)r and LCC(Y, Z) be the

reference and current LCC between Y and Z = Xi(τ + L);
3. For attribute Y , Level(Y )r = i if Y ∈ Cr

i and Y /∈ Cr
i+1;

4. For attribute Y , Level(Y ) = i if Y ∈ Ci and Y /∈ Ci+1;
// Attributes that gained LCC significantly and moved up levels
5. Gainers = Set of Y such that Level(Y )r > Level(Y )

AND |LCC(Y, Z)r − LCC(Y,Z)| > α);
// Attributes that lost LCC significantly and moved down levels
6. Losers = Set of Y such that Level(Y )r < Level(Y )

AND |LCC(Y, Z)r − LCC(Y,Z)| > α);
7. IF (|Gainers| = 0 AND |Losers| = 0)
8. No changes are required for reference values. Exit;
9. FOR (i going from 1 to number of chunks k) {
10. IF (there exists a Y ∈ Losers such that Y ∈ pri ) {
11. Regenerate pri using the attribute subset in pri−1 and

the attributes in Ci − Ci−1, and using BN synopsis;
12. } /* END IF */
13. ELSE {
14. NewAttrs = Set of attributes Y ∈ Gainers such that

Y ∈ Ci and Y /∈ pri ;
15. If |NewAttrs| > 0, then regenerate pri using NewAttrs

and current attribute subset in pri , and BN synopsis;
16. } /* END ELSE */
17. } /* END FOR */
18. Update the reference rank list, chunks, and best plan;

Figure 6.26: FPS-Adaptive (FPS-A)
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estimates at any point of time. The reference values are initialized by running FPS

on the initial window of tuples. Figure 6.26 shows how FPS-A maintains these

values as the window slides over time. FPS-A uses two user-defined thresholds: α

for detecting significant changes in LCC values, and β that determines the batch

size for updating LCC values. The notation Level(Y )r is used to denote the number

of the largest chunk to which attribute Y belongs in Rr. That is, Level(Y )r = i if

Y ∈ Cr
i and Y /∈ Cr

i+1.

After updating LCC scores, FPS-A computes two sets of attributes: Gainers

(Losers) that moved up (down) one or more levels in the ranked list, and whose

LCC values changed significantly. If there are no Gainers or Losers, then the current

reference values are fine as is. If one or more attributes in the attribute subset of

plan pri for the ith chunk are in Losers, then pri may have become suboptimal. So,

FPS-A regenerates pri using the best attribute subset for the previous chunk and

the attributes at this level (recall Section 6.5.6). Similarly, if new attributes have

moved into the ith chunk, then pri can be updated efficiently to (possibly) include

these attributes. FPS-A builds BN synopses (only), and updates the synopsis in the

current best plan after every batch of tuples are processed. While this synopsis can

be updated incrementally, we have got equally efficient performance from simply

rebuilding the synopsis on the few (< 10) attributes chosen by attribute selection.

Notice that FPS-A reacts to changes in the ranked list only when attributes

transition across levels. (The threshold α filters out spurious transitions at chunk

boundaries.) This feature makes FPS-A react aggressively to changes at the head of

the ranked list—where attributes have a higher chance of contributing to the best

plan—and be lukewarm to changes in the tail. FPS-A gets this feature from the fact

that successive overlapping chunk sizes in FPS increase in a geometric progression.
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Figure 6.27: Adaptivity and convergence properties

We now report experiments where we evaluate FPS-A on the three metrics for

adaptive query processing defined in [9]: (i) speed of adaptivity (how quickly can

FPS-A adapt to changes in stream properties?), (ii) convergence properties (when

stream properties stabilize, can FPS-A produce the accuracy that FPS gives for

the stable properties?), and (iii) run-time overhead (how much extra overhead does

FPS-A incur in settings where stream properties are stable, and in settings where

properties change over time?).

We consider continuous queries with a 200-minute window on the input stream.

α = 0.1 for FPS-A. Figures 6.27(a) and (b) show FPS-A’s speed of adaptivity and

convergence properties for two input streams. The input stream used in Figure

6.27(a) concatenates the Aging-fixed-tb and Multi-large-tb datasets from Table 6.2

to create a scenario where predictive patterns change because of a change in the

workload on the monitored system. The second stream is more adversarial where

we randomly permute the attributes in the Multi-small-tb dataset over time.

We compare FPS-A’s performance with that of Strawman which runs FPS on the

initial window of data to choose the initial best plan. Like FPS-A, Strawman up-

dates the BN synopsis in the current best plan after every batch of tuples have been

processed. However, unlike FPS-A, Strawman never updates the set of attributes
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β Without property changes With property changes

FPS-A Strawman % FPS-A Strawman %

5 32.02 32.83 2.53 33.41 36.69 9.82

10 61.17 62.24 1.74 66.37 60.73 -8.5

15 89.5 90.99 1.56 81.87 88.33 7.89

20 116.27 118.17 1.64 95.50 112.82 18.13

25 129.34 132.10 2.13 108.54 126.24 16.30

Table 6.5: Run-time overhead. Values for FPS-A and Strawman are tuples pro-
cessed per second. % is FPS-A’s degradation relative to Strawman

selected. The X-axis in Figure 6.27 shows the number of tuples processed so far,

and the Y axis show the estimated accuracy of the current best plan. Note that

FPS-A adapts fairly quickly in Figure 6.27(a) when the stream properties change

X = 2000, but Strawman does not because the set of predictive attributes has

changed. Comparing the accuracies before and after the change in Figure 6.27(a)

with the respective individual best accuracies for the Aging-fixed-tb and Multi-

large-tb datasets in Table 6.3, shows that FPS-A indeed finds plans comparable to

FPS. The behavior in Figure 6.27(b) is similar.

Table 6.5 shows the extra overhead for FPS-A over Strawman for the adversarial

stream. When there are no changes in stream properties, FPS-A’s extra overhead

is limited to LCC maintenance; which is around 2%. Even when stream properties

change and FPS-A has to update attribute subsets, the worst-case overhead is

< 20%. Note that FPS-A’s overhead can be lower than that of Strawman if FPS-A

finds a smaller attribute subset.

6.10 Related Work

Forecasting based on historical data is useful in many domains. The motivation of

making systems and DBMSs easier to manage (ideally self-managing) has driven

219



recent interest in forecasting. References [65, 67] show how various synopses can

successfully forecast performance problems and system failures in real enterprise

environments. Transformations are selected manually in [65, 67]. Muscles [93] uses

MLR synopses to process continuous forecasting queries by maintaining the synopses

incrementally over streams. Unlike FPS-A, transformations are not maintained over

time in Muscles. Our work differs from previous work on forecasting in two funda-

mental ways: (i) we consider declaratively-specified forecasting queries, and develop

automated algorithms for choosing plans composed of transformation, prediction,

and synopsis-building operators; (ii) our algorithms balance accuracy against the

time to generate forecasts.

The design of FPS has been influenced by some recent studies that compare

various synopses and transformations. Reference [18] reports a large-scale empiri-

cal comparison of the accuracy (processing-time is not considered) of ten synopses,

including regression, BN, CART, SVM, and RF. This study finds RF to be one

of the best synopses available. Reference [87] is a similar study, but with a much

smaller scope—only BN and CART synopses are considered. However, reference [87]

evaluates processing-time and considers some attribute-selection algorithms. Ref-

erence [45] is a comprehensive evaluation of attribute-selection algorithms, with

findings similar to ours. None of this work considers algorithms for learning a good

combination of synopses and transformations.

Synopses are used widely in database and data stream systems, e.g., for approx-

imate query answering, acquisitional query processing, prediction of completion

times of business intelligence workloads, and query optimization, e.g., [4, 55]. This

class of work focuses on conventional SQL/XML-style queries. Synopses are being

applied to system management, e.g., [65, 67]. Self-tuning capabilities of commer-
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cial DBMSs have been enhanced significantly, e.g., [72]. Currently, all these systems

take a predominantly reactive approach to tuning and diagnosis, which can be made

proactive with Fa’s accurate and automated forecasting. Our work can benefit from

recent work on maintaining synopses and correlation metrics over high-speed data

streams.. For example, [97] develops techniques to maintain a large number of LCCs

in real-time.

There is work in the data-mining literature that is related to Fa, e.g., work on

extracting rules from time-series data [28], mining sequential patterns [3], and inter-

transaction association rules [42]. The focus here is on finding interesting/surprising

local relationships or patterns in the data. Some of these patterns can be useful for

forecasting.

6.11 Summary

In this chapter, we described how users and applications can pose declarative fore-

casting queries in Fa — both one-time and continuous queries — and get forecasts

in real-time along with accuracy estimates. We described the FPS algorithm to

process one-time forecasting queries using plans composed of operators for trans-

forming data, building statistical models from data, and doing inference using these

models. We also described the FPS-A algorithm that adapts plans for continu-

ous forecasting queries based on the time-varying properties of input data streams.

Our experimental evaluation demonstrates the effectiveness and scalability of both

algorithms.

Fa combines data-management techniques with statistics and machine-learning

to make three important contributions: (i) automated algorithms for choosing fore-

casting plans composed of transformation, prediction, and synopsis-learning opera-
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tors; (ii) plan-selection algorithms that balance result accuracy against the time to

generate results; and (iii) extensive evaluation of forecasting plans using synthetic,

testbed, and real datasets; showing 10x improvement over using (just) state-of-the-

art synopses.
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Chapter 7

Conclusions

Networked computing systems are increasingly hard to manage due to their scale,

complexity, and dynamic characteristics. Manual management of these systems

based on rules-of-thumb or custom scripts is often tedious and error-prone. Recent

progress in monitoring tools enables system administrators to collect fine-grained

data about system activity to improve system efficiency and to avoid costly system

downtime. However, the monitoring data collected from production systems is

massive in size and noisy; which makes it hard for system administrators to fully

utilize this data for effective system management.

This dissertation described the Fa data-management platform where system ad-

ministrators can express observational queries and system-management queries over

the monitoring data in a declarative manner. For a given query, Fa automatically

finds a reasonably-good execution plan quickly and executes the plan to generate

query result with confidence estimates and supporting evidence about the result.

With Fa, the tedious task of maintaining system performance can be simplified

as a sequence of management queries: (i) Detect or predict system performance

problems with forecasting queries; (ii) Find the cause of performance problems with

diagnosis queries; (iii) Recommend changes to system configurations to resolve the

diagnosed problems with tuning queries, and validate the recommendation on the
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production system.

Fa processes diagnosis queries in two phases:

(i) A database of problem signatures is constructed from numeric and categorical

system monitoring data to distill the essential properties of already diagnosed

problems. In Phase I of diagnosis query processing, the problem to diagnose

is matched against the signature database, with confidence estimates about

the matches. High-confidence matches are valuable since they enable lever-

aging past diagnostic information associated with the matched signatures.

Empirical evaluation validated that our signature construction and matching

techniques are robust to noise that is common in system data from production

systems; the drop in accuracy of matching undiagnosed problems with the sig-

nature database is slower than competing techniques as noise in system data

increases. Also the confidence estimates about matches are reliable — diag-

nosis based on high-confidence matches of signatures is often more accurate

than that based on low-confidence matches.

(ii) If there is no high-confidence match from Phase I for a given problem rep-

resented in the diagnosis query, which may indicate rare or new types of

problems, it is necessary to trigger Phase II of diagnosis query processing for

further investigation. We presented an anomaly-based clustering technique

that groups data about normal system activity to build system baselines,

based on how it deviates from the problem data in diagnosis. The devia-

tion is characterized by a few succinct attribute sets, although the system

data is of high dimensionality, to pinpoint the cause of problem. Empirical

evaluation validated that anomaly-based clustering outperforms conventional

clustering techniques such as K-means and hierarchical clustering in terms of
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both efficiency and accuracy of diagnosis query results.

To decide whether to trust the query result from Phase I (if not, it needs to trigger

the more expensive Phase II to continue query processing), we presented a tech-

nique that automatically sets the threshold on the confidence of matches with the

signature database, based on user expectation of accuracy from Phase I of diagnosis

query processing.

Since Phase II has a harder task to solve than Phase I for diagnosis query

processing, Phase II requires more human efforts but may have a less accurate query

result than Phase I. However, Phase I requires a considerable number of instances

of diagnosed problem types to construct a high-quality signature database. The

available system data may not meet this requirement. We presented an active-

learning technique that formulates annotation queries asking for diagnosis results

of some carefully picked undiagnosed problems. Once the picked problems are

diagnosed, they are used to update the signature database. Empirical evaluation

validated that the active-learning technique is able to maximize the value of human

efforts involved to process annotation queries while improving the quality of the

signature database to a desired level.

Fa employs an experiment-driven approach, called iTuned, to process tuning

queries in the context of database configuration parameters. Gaussian process re-

gression models are learned based on system monitoring data (e.g., from experi-

ments) to represent the response surface of a performance metric with regard to

system configuration parameters. Confidence estimates are produced around the

predicted performance at each hypothetical setting. iTuned has two interleaved

phases: (i) a planning phase that employs a novel Adaptive Sampling algorithm

to plan experiments, and (ii) an execution phase that conducts the planned ex-
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periments with the .eX framework. Adaptive Sampling estimates the utility of

candidate experiments using the response surface constructed from system moni-

toring data collected so far; and picks the experiment with the maximum expected

utility to conduct next. With a sensitivity analysis technique, iTuned is able to

visualize and rank configuration parameters in terms of their performance impact,

thus quickly eliminating parameters with minimal performance impact to simplify

the tuning query. Furthermore, iTuned can quickly identify regions of potentially

high-performance settings. Empirical evaluation validated that the Adaptive Sam-

pling technique balances well between exploration of under-sampled regions and

exploitation of promising regions in the response surface. iTuned supports conduct-

ing the planned experiments in a production environment through a cycle-stealing

paradigm while ensuring near-zero overhead on the production workload. To make

Fa a practical platform for processing tuning queries, iTuned has incorporated sev-

eral scalability features, including planning and conducting parallel experiments,

early stopping of low-utility experiments, and workload compression. Empirical

evaluation validated that iTuned outperforms existing tuning techniques, in terms

of both the time needed for processing the tuning query and the system performance

achieved from the result of the tuning query.

Rather than being reactive, Fa enables proactive system management by sup-

porting forecasting queries over system data that predict future system performance

and identify potential system problems automatically. For one-time forecasting

queries, we presented a plan selection algorithm that automatically searches in the

space of execution plans. Each execution plan consists of a sequence of data trans-

formation operators and synopsis learning and prediction operators. The plan se-

lection algorithm converges to fairly-accurate plans quickly by running as few plans
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as possible. For continuous queries over data streams, we presented an adaptive

plan selection algorithm that automatically adapts to the time-varying properties

of system data. Empirical evaluation validated that the plan selection algorithms

for processing both one-time and continuous queries strike a good balance between

maximizing the accuracy of the forecasting query result and minimizing the time

required to process the forecasting query.

We have evaluated the Fa platform with monitoring data collected from database-

backed multitier services, and with synthetic data that models the noisy nature of

monitoring data from production systems. The evaluation showed that Fa’s query

plan selection and execution strategies provide actionable information for system

management automatically, accurately, and efficiently. Critical features like reliable

confidence estimates, robustness to noise, and providing supporting evidence for

query results make Fa a practical and useful platform.
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Chapter 8

Future Work

To improve the applicability and practicality of Fa as a platform to simplify system

management, we think the following extensions are worth exploring:

• There is room for further improvements to various components of the current

Fa platform. The query interface (see Figure 2.4) can be extended to handle

new requirements that arise from system management tasks. For instance, the

tuning queries can be adapted to consider more than one high-level perfor-

mance metric for optimization. Furthermore, the query processing techniques

in Fa can be improved in terms of both the accuracy of query results and the

efficiency to produce the query results.

• Our evaluation of Fa’s query processing techniques was performed predomi-

nantly with database-backed Web service systems. It would be valuable to

evaluate Fa with other types of computing systems or even a system from other

domains (e.g., forecasting for financial services) to make the Fa platform have

wider applicability.

• In addition to the structured system data (in the format of time-series) we con-

sider in this dissertation, it is important to leverage extensive semi-structured

and unstructured system data to improve the accuracy of Fa’s query process-
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ing techniques. The new data types require new data representation models

in the architecture of Fa (see Figure 2.4). Also, system data typically comes

from distributed monitoring points, raising the need for a data representation

model that facilitates distributed processing of system-management queries.

• Fa’s query processor needs an explicit interface for inputting domain knowl-

edge. System administrators may provide domain knowledge with regard to a

specific management task, e.g., hints or rules to consider a particular synopsis

type or parameter settings for processing a forecasting query.

• To push one step closer to realizing the vision of autonomic computing, it is

necessary to add a layer in Fa to support policy-based system management.

This layer is on top of the current query interface, and allows users to express

high-level management policies to meet the requirements of SLOs. This layer

needs to contain a core component to decide: (i) Which system-management

queries to be issued through the query interface? And (ii) how to consume the

query results returned through the query interface to decide the next action?

8.1 Multi-Goal Experimental Design

Fa’s techniques for processing tuning queries assume that only one high-level per-

formance metric is of interest to optimize. For instance, a tuning query may only

aim to maximize the system throughput. A more complex case is to optimize one

performance metric while satisfying constraints on other metrics. For instance,

system administrators may need to maximize system throughput while keeping av-

erage request response time under a certain threshold. Fa’s Adaptive Sampling

algorithm for processing tuning queries needs to be adapted to balance exploration
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and exploitation of response surfaces in the multi-goal optimization setting.

8.2 Evaluation with Other Systems

Fa’s query processing techniques were mainly evaluated with data collected from

three-tier Web service systems. Since Fa does not make any assumption about the

managed system, Fa is expected to be generally applicable for managing other com-

puting systems. It would be valuable to evaluate Fa’s query processing techniques

on a broad range of systems. Such evaluation will motivate Fa to deal with other

system-management challenges and new requirements on management-query types

and their processing techniques.

8.3 System Data Complexity

Fa’s current query processing techniques target structured system data in the for-

mat of time-series. There is an abundance of semi-structured data such as stack

traces [14] and execution traces [78], and unstructured system data such as bug

reports and error messages. It is an important next step to incorporate the rich

semi-structured and unstructured system data into the Fa platform to get a holistic

view of system behavior, thus improving the quality of Fa’s query results. At the

same time, it is important to balance the benefit of collecting more system data

and the overhead associated with collecting more data. This balance needs to be

adjusted dynamically by Fa based on system states and the system-management

queries to process. It is a great challenge to represent and query heterogenous (i.e.,

structured, semi-structured, and unstructured) system data in a seamless and ef-

ficient way. Moreover, system data often arrives as data streams in a distributed
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fashion; so online and distributed processing of system-management queries is de-

sired but very challenging: (i) How to automatically find and adapt a good execution

plan for a given system-management query as the managed system evolves? And (ii)

how to execute the plan efficiently in a distributed fashion with reasonably-accurate

query results?

8.4 Incorporating Domain Knowledge

Domain knowledge is an important source of information for system management.

Fa needs to provide an interface for taking domain knowledge. There are several

ways to incorporate domain knowledge into query processing; for example, one way

is to ask for feedback from administrators. However, the efficiency of query pro-

cessing is limited to be at the human timescale instead of at the machine timescale.

Another way to incorporate domain knowledge is through data representations such

as synopsis. For example, a synopsis represented as a Bayesian network can incorpo-

rate domain knowledge by specifying which system components should be connected

or disconnected during the process of learning model structure [88]. Synopsis learn-

ing enhanced by domain knowledge often requires less data and has better prediction

accuracy [39]. As another example, a synopsis represented as queueing networks [54]

can be constructed based on the knowledge of the internals of a system component.

8.5 Policy-based System Management

Fa’s capability of processing system-management queries automatically and effi-

ciently provides a basis to support policy-based system management, which can

further simplify the job of system administrators. Fa needs to provide a simple and
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intuitive interface for specifying management policies on top of the current query

interface. Fa also needs a core component to make action decisions. The life-cycle of

system management starts with an administrator-specified policy, e.g., the average

request response time must be less than 5 seconds. System-management queries

are automatically submitted through Fa’s query interface for problem detection

and forecasting, diagnosis, and tuning. The decision-making component picks an

action that may apply the recommended tuning strategy to the managed system

through system knobs, e.g., changing system configuration parameters online or

micro-rebooting a system component to resolve a diagnosed problem. Depending

on the actions supported by the managed system, the decision-making component

can structure the applicable actions at different system levels. For instance, if

micro-rebooting a system component does not solve the diagnosed problem, the

next action is to restart the entire system. More importantly, when there are mul-

tiple applicable actions, Fa needs a heuristic search algorithm to find the most

effective and cost-efficient action. This search algorithm requires a model to esti-

mate the performance impact of each action and a cost model to estimate the cost

associated with the action. The decision-making component then closes the loop

of performance management with support of forecasting queries, diagnosis queries,

and tuning queries. A more visionary step is to employ policy-based system man-

agement to make systems self-healing.
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