Coherent Structures in Land-Atmosphere Interaction
by
Jing Huang
Department of Civil and Environmental Engineering

Duke University

Date:

Approved:

John D. Albertson, Supervisor

Amilcare Porporato

Gabriel G. Katul

John E. Dolbow

Jonathan C. Mattingly

Dissertation submitted in partial fulfillment of
the requirements for the degree of Doctor of Philosophy in the Department of
Civil and Environmental Engineering in the Graduate School
of Duke University

2010



ABSTRACT
Coherent Structures in Land-Atmosphere Interaction
by
Jing Huang
Department of Civil and Environmental Engineering

Duke University

Date:

Approved:

John D. Albertson, Supervisor

Amilcare Porporato

Gabriel G. Katul

John E. Dolbow

Jonathan C. Mattingly

An abstract of a dissertation submitted in partial
fulfillment of the requirements for the degree
of Doctor of Philosophy in the Department of
Civil and Environmental Engineering in the Graduate School
of Duke University

2010



Copyright by
Jing Huang
2010



Abstract

Large-scale coherent structures are systematically investigated in terms of their
geometric attributes, importance toward describing turbulent exchange of energy,
momentum and mass as well as their relationship to landscape features in the context of
land-atmosphere interaction. In the first chapter, we present the motivation of this work
as well as a background review of large-scale coherent structures in land-atmosphere
interaction. In the second chapter, the methodology of large-eddy simulation (LES) and
the proper orthogonal decomposition (POD) is introduced. LES was used to serve as a
virtual laboratory to simulate typical scenarios in land-atmosphere interaction and the
POD was used as the major technique to educe the coherent structures from turbulent
tlows in land-atmosphere interaction. In the third chapter, we justify the use of the LES
to simulate the realistic coherent structures in the atmospheric boundary layer (ABL) by
comparing results obtained from LES of the ABL and direct numerical simulation (DNS)
of channel flow. In the fourth chapter, we investigate the effects of a wide range of
vegetation density on the coherent structures within the air space within and just above
the canopy (the so-called canopy sublayer, CSL). The fifth chapter presents an analysis
of the coherent structures across a periodic forest-clearing-forest transition in the
steamwise direction. The sixth chapter focuses on the role of coherent structures in
explaining scalar dissimilarity in the CSL. The seventh chapter summarizes this

dissertation and provides suggestions for future study.
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1 Introduction

1.1 Motivation

Understanding turbulent dynamics in the lower atmosphere is of intrinsic
importance to predictions of energy, momentum, heat and mass (e.g., water vapor, COz)
transport between the land and the atmosphere. It has been demonstrated that large-
scale turbulent coherent structures are responsible for the majority of the transport
generally in the atmospheric boundary layer (ABL) (e.g., Etling and Brown 1993; Sadani
and Kulkarni 2001; Katul et al. 2006a) and particularly in the canopy sublayer (CSL)
(e.g., Bergstrom and Hogstrom 1989; Katul et al. 1997b; Thomas and Foken 2007).
Turbulent transport models tied more directly to these organized motions, such as
Lagrangian stochastic (LS) models (e.g., Raupach 1989a, b; Katul et al. 1997c; Cassiani et
al. 2005; Cassiani et al. 2007) and higher-order closure (HOC) models (e.g., Lappen and
Randall 2001a, b, ¢, 2005), which utilize the information of the probability density
function (PDF) and the characteristic time scales of coherent structures, have been
shown to improve the ability of predicting turbulent dispersion. However, it requires
focused study of the three-dimensional features of the coherent structures to reach the
level of understanding required for further improvement of the modeling ability (e.g.,
Moin and Moser 1989; Robinson 1991; Finnigan and Shaw 2000).

Given this necessity, the broad goal of this work is to systematically investigate

the coherent structures arising from land-atmosphere interaction with a strong focus on:



(1) the geometrical characteristics of these structures; (2) the internal processes of the
formation and evolution of the coherent structures; (3) their role in transporting the
turbulent kinetic energy (TKE), momentum and scalar fluxes; and, (4) how the above
three aspects change as a function of landscape features. Toward this end, we seek to
first numerically simulate turbulent flows in land-atmosphere interaction. Then, the
coherent structures will be quantitatively educed in three-dimensional space using

proper detection techniques.

Simulated
Turbulent
Flows

Coherent
Structures

Detection
Techniques

A

A
g
)
g
=
Z

Simulation
Modeling

d
<

Land- . L i
an Prediction Practical
atmosphere Models
Interaction

Figure 1.1. Schematic diagram illustrating the relationships among the land-
atmosphere interaction, numerical simulations, coherent structures and practical
models

The overall picture can be approximately illustrated by the conceptual chain
diagram in Figure 1.1, which demonstrates the manifold interactions among (1) land-
atmosphere interaction; (2) numerical simulations of turbulent flows; (3) coherent
structures; (4) practical models which can assist the prediction and control of turbulent

dynamics in the regime of land-atmosphere interaction. This work mainly focuses on

2



the phase of extracting the coherent structures from databases of turbulent fields
generated through numerical simulations although preliminary efforts have been made

to develop practical models through the approach of the coherent structures.

1.2 Historical Perspective

Originally, the term “coherent structure” was used in a phenomenological sense,
to refer to large and organized eddies in turbulent flows (see e.g., Holmes et al. 1996).
The general recognition of the coherent structures in the turbulent boundary-layer can
be traced back to the work of Corrsin (1943) and Townsend (1956) (see review by
Robinson 1991). In the study of land-atmosphere interaction, this topic has received
intense attention in the recent several decades, particularly in the ABL and the CSL. The
ABL (or planetary boundary layer, PBL) covers the lowest 1 to 2 km of the atmosphere,
the region most directly influenced by the exchange of energy and mass at the earth’s
surface. The CSL is normally referred to as the region within and just above plant
canopies, which vertically ranges from the ground up to approximately twice of the
canopy height. These two flow regimes represent typical scenarios in land-atmosphere

interaction.

1.2.1 Coherent Structures in the ABL

Large-scale coherent structures, such as longitudinal roll vortices, have been
frequently observed in both convective and near-neutral ABL for decades (e.g., Brown

1980; Walter and Overland 1984; Etling and Brown 1993). These structures are often



visualized by so-called cloud streets from high resolution satellite pictures. This type of
cloud pattern can be interpreted by the conceptual model of counter-rotating vortex rolls
with axes oriented in the downwind direction: cloud bands are formed above the
updraft parts of the vortex rolls while cloud free areas are produced by downward
motions. It was concluded that these roll vortices contribute considerable vertical
transport of momentum, heat and mass between the land and the atmosphere (Etling
and Brown 1993). In fact, similar vortical structures, termed ‘hairpin’ or “horseshoe’
vortices, have been observed through flow visualization techniques in engineering flows
(e.g., Bakewell and Lumley 1967; Head and Bandyopadhyay 1981). Moin and Moser
(1989) studied the features of the roller structures by performing POD analysis on a
direct numerical simulation (DNS) database of a channel flow with Re = 3200, and
concluded that the vortices curve up in the streamwise direction. The life cycle of a
hairpin vortex is generally described as (Davidson 2004): first, the mean flow interacts
with the roughness elements to create a cross-stream (span-wise) vortex; then, the cross-
stream vortex is stretched and intensified by some streamwise gust, leading to the shape
of a hairpin; finally, the hairpin is destructed through interaction with other vortices.
Interestingly, the hairpins rarely appear as symmetric structures, but rather one leg is
typically more pronounced than the other (Davidson 2004).

In addition to the longitudinal vortical structures, the sweep-ejection cycle has

been investigated as the major contributor to momentum transport, which has been



defined through quadrant analysis (see e.g., Wallace et al. 1972; Willmart and Lu 1972;
Antonia 1981). Sweeps generally correspond to fast and downward fluids (i.e. u”>0; w’
> 0) while ejections are referred to as slow and upward fluids (i.e. u"<0; w’ < 0) (1" and
w’ represent turbulent velocities in the streamwise and vertical directions, respectively,
see Chapter 2.2). The interest in the sweep and ejection motions can be traced back to
the work of Kline et al. (1967), who demonstrated the presence of surprisingly organized
motions in the region near the wall. It was shown in an experimental study of channel
flow at Re = 7150 that in the region less than approximately 15 wall units from the wall,
the sweep motion dominates over the ejection motion; however, the ejection motion
dominants farther from the wall (Wallace et al. 1972). This result is consistent with what
was found from analysis of numerical simulations of channel flow at Re = 3300 (Kim et
al. 1987). Katul et al. (2006a) studied the relative importance of sweeps and ejections to
momentum transfer and concluded that in the outer layer ejections dominate
momentum transfer while in neutral surface layer sweeps and ejections are

approximately of equivalent importance to momentum transfer.

1.2.2 Coherent Structures in the CSL

A consensus has been reached for decades that canopy turbulence is dominated
by large-scale coherent structures of the whole canopy scale, opposing the earlier
paradigm, where the CSL is considered to be a superposition of plant wakes and the

surface layer (SL) (Raupach and Thom 1981; Finnigan 2000). The results of quadrant



analysis applied on canopy studies show that sweeps are the major contributor to
momentum transfer for dense canopies, and, ejections are the next most important
contributor (see e.g., Finnigan 2000). The contribution of sweeps to momentum transfer
is individually large and intermittent: typically half the total contribution from sweeps
comes from events greater than ten times of its ensemble average, and half the
momentum is transferred in less than ten percent of the total time (Finnigan 1979b; Shaw
et al. 1983). Poggi et al. (2004b) studied the effects of vegetation density on the
dominance of sweep/ejection motions, and concluded that the dominance tends to
switch from ejections to sweeps as the canopy vegetation density increases. Within the
CSL, large-scale structures are demonstrated as weak ejections followed by strong
sweeps in the streamwise-vertical plane; in the spanwise-vertical plane these structures
consist of a pair of counter-rotating streamwise vortices centered above the canopy and
capture large fraction of the total TKE (Finnigan and Shaw 2000).

Raupach et al. (1996) systematically compared turbulent flows within the CSL
and the plane mixing layer (PML) based on flow statistics and turbulent length scales,
and concluded that canopy turbulence can be patterned on the PML. One of the
compelling evidences is that the ratio of the streamwise separation between adjacent

coherent eddies A, over the shear length L., which basically determines the spatial

arrangement of turbulent structures along the streamwise direction, matches well with

the value computed from experiments and numerical simulations in full-developed



mixing layer (Raupach et al. 1996). However, canopy turbulence resembles the PML
only in the presence of a homogeneous and ‘sufficiently dense’ canopy, and this
resemblance gradually disappears as the canopy vegetation density decreases. In the
extreme case, i.e., in the absence of a canopy, atmospheric flows can be modeled as a
rough-wall boundary layer. Based on this fact, Poggi et al. (2004b) proposed a
phenomenological model for canopy flows of intermediate vegetation densities, which
assumes that near the canopy top the flow field is a superposition of a boundary layer

over rough surface and a PML.

1.2.3 Detection Techniques

The specific details of the definition of coherent structures tend to vary across the
different identification techniques. Robinson (1991), for example, split the history of
coherent structures research within turbulent boundary layer into four eras: the
discovery era (1932-59), the flow-visualization era (1960-71), the conditional-sampling
era (1972-79) and the computer-simulation era (1980-present). The flow visualization
technique is the most straightforward way to detect coherent structures. However, it
suffers from the following limitations: (i) it employs dye, particles, bubbles and/or
smoke to visualize large structures, and therefore is susceptible to artifacts introduced
by the tracers (Robinson 1991); (ii) digitizing of images results in possible information
loss and corruption; (iii) visualization methods are more applicable to low-Reynolds-

number (lo-Re) flows (Robinson 1991); and, (iv) it is expensive in nature to build up the



required experimental facilities. The conditional sampling methods collect data on
ensembles of turbulent events using some predefined triggering condition. However,
since each sampling method uses a different triggering condition, turbulent structures
identified by different sampling methods may vary significantly. The availability of
three-dimensional turbulence data, provided by numerical simulation techniques, has
allowed more sophisticated statistical techniques, such as the proper orthogonal
decomposition (POD), to be used for the detection of coherent structures. The POD
technique solves an eigen-problem for the two-point correlation tensor of a turbulent
velocity field. The geometrical information of coherent structures is then contained in
eigenvectors, with the associated eigenvalues indicating the relative importance of these
eigenvectors in contributing to the total TKE. Unlike conditional sampling methods, the
POD is objective in the sense that the extracted structure retains the TKE optimally
(Holmes et al. 1996). Although this method can apply to experimental data as well, its
use with simulation data is more popular than with experimental data because of the
inherent difficulty in collecting the experimental data needed to construct a two-point

correlation tensor in the three-dimensional space (Finnigan and Shaw 2000).

1.3 Overview of Contributions

The main contributions of this work are as follows:
0 Justification of the ability of the LES in producing large-scale coherent turbulent

structures.



0 Investigation of the effects of vegetation density on coherent turbulent structures
and their length scales within the CSL.

0 Investigation of coherent turbulent structures across a strong vegetation
discontinuity.

0 Investigation of the role of the coherent structures on scalar dissimilarity within
the CSL.

In Chapter 2, we introduce the LES, which is the major tool used to simulate
land-atmosphere interaction in this work, as well as the POD, which is the primary
technique used to educe the coherent structures.

In Chapter 3, the ability of LES in simulating large-scale coherent structures is
justified by comparing the coherent structures obtained from LES of ABL and from DNS
of channel flow. This is important because LES does not simulate small-scale turbulent
motions, which do interact with the large-scale coherent structures to some extent,
thereby raising the question if LES is able to simulate realistic coherent structures.

Chapter 4 investigates the effects of vegetation density on the coherent structures
within the CSL, which is motivated by the fact that variation in vegetation density is one
of the major characteristics of the terrestrial ecosystem and turbulent transport is
governed by intrinsically different mechanisms between a rough-wall boundary-layer
and the CSL.

Chapter 5 studies how the coherent structures change across a strong vegetation
discontinuity (i.e. the forest-to-clearing transition and the clearing-to-forest transition).
The organization of turbulence, represented as the percentage contribution of the
coherent structures to the total TKE, is presented as a function of fetch downstream of
the discontinuity point.

Chapter 6 examines the role of the coherent structures on scalar dissimilarity in
the CSL. This is important because scalar similarity is widely assumed in models and

interpretation of experiments and because coherent structures carry the information of

9



source/sink dissimilarity of scalars, which is considered to be the major reason

responsible for scalar dissimilarity.
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2 Methodology
2.1 Large-Eddy Simulation

Currently, LES is the state-of-the-art computational tool for investigating the
structure of hi-Re turbulence in a wide variety of settings. Its use for modeling the ABL
goes back to the pioneering work of Deardorff (1970) and since then, developments in
LES have been proliferating. Unlike DNS, LES does not resolve all the scales but models
small-scales from an arbitrary grid-linked cut-off point down to the Kolmogorov
dissipation scale. Consequently, it enjoys a computational economy that allows LES to
simulate hi-Re flows that remain beyond the reach of the DNS techniques. Comparing
with the traditional Reynolds-averaged models (e.g. Wilson and Shaw 1977; Raupach
1988; Katul and Albertson 1998), where all turbulent quantities are averaged out and
represented in total with a closure model, the LES technique simulates the dominant
flow instabilities and formation of 3D turbulent eddies, thereby supporting a richer
analysis of the dynamics of turbulent transport.

In Chapter 2.1.1, the general governing equations of LES are introduced;
Chapter 2.1.2 describes the strategy to represent vegetation canopies in LES; Chapter

2.1.3 lists the major parameters of LES experiments performed in this work.

2.1.1 Governing Equations

Modified versions of the LES code described in Albertson (1996) and Albertson
and Parlange (1999b, a) were used throughout this work. This code solves the filtered
equations based on conservation of momentum and mass without the consideration of

the Coriolis force for turbulent flows as,

ou,

rv 0, (2.1)
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where t is time, U; is the filtered velocity in direction X;. X;, X, and X;, or X, Y

2.2)

2.3)

(2.4)

(2.5)

and z

denote the streamwise, spanwise and vertical directions, respectively. And U,, U, and

U;, or U, Vv and W are the velocity components in the corresponding directions.

the pressure normalized by the density, 7; is the subgrid stress tensor, £ is the

ij
buoyancy term accounting for the influence of temperature field on the vertical

momentum equation, J; is the Kronecker delta, 6 is the potential air temperatur
the humidity, € is the CO: concentration. 72']-9, 7[? and 7Z'JC are the subgrid flux of

temperature, humidity and CO: concentration in the j direction, respectively. f,,

p is

e, ( is

h,e,

7 are the source/sink terms of momentum in the i direction, temperature, humidity and

CO, respectively, which are associated with the representation of vegetation canopy.
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2.1.2 Representation of Vegetation Canopies

Vegetation canopies are represented as a combined effect of sources/sinks of
momentum, temperature, humidity and CO: in our LES. The spatial structure of canopy
is quantified by local leaf area density a(x, Y, Z) (LAD, area of plant surface per unit
volume). An integration of a(x, Y, Z) over the vertical range of the canopy results in the

leaf area index (LAI), given by,

LAI(x,y)= J'Oh a(x,y,z)dz, (2.6)

where & is the canopy height. Figure 2.1 presents the two canopy structures used in this
work: an idealized one where the lower portion is uniform and the upper portion
gradually decreases to zero, and a realistic one measured at the Duke Forest (Ellsworth
et al. 1995), which is characterized by a primary peak around z/h =0.6 and a secondary
peak around z/h =0.45. The drag force term is then modeled as linear in LAD and
quadratic with velocity,

f, =-C,auu,, (2.7)

~ 12
where U = (uf +US +u? )1 is the modulus of the wind speed and C; is an empirical

drag coefficient.
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Figure 2.1. Vertical distributions of leaf area density normalized by canopy
height and LAI. The left panel represents an idealized profile while the right panel
represents a realistic profile measured at the Duke Forest

Since the focus in Chapter 6 is on scalar transport coupled to canopy turbulence,
the source/sink distribution of scalars is simulated as well. h, e and 7 are estimated
following biophysical considerations described in Albertson et al. (2001), which act to
maximize carbon assimilation while minimizing water loss. LES is performed under a
single mid-day period with high sun angle and a net all-wave radiation of

R,=500W m™?. R and the photosynthetically active radiation (PAR), which is a major

constraint for the local carbon assimilation rate, are distributed vertically through the
canopy using a simple radiative algorithm (Campbell and Norman 1998; Albertson et al.
2001). The latent heat flux Q¢ and the sensible heat flux Q,, at the soil surface are
estimated with the Priestley-Taylor formulation under the assumption of saturated soil

moisture:
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o, - AR -Q) -

A+y
QH = Rr? _QG _QE/ (2.9)

where er is the net radiation at the soil surface, Qg is the soil heat flux estimated as
Q. =0.15R® (Stull 1988), « (: 1.26) accounts for large-scale advection and entrainment,

% (: 0.67 mbar °C'1) is the psychrometric constant and A (mbar °C'1) is the slope of the

saturation vapor pressure curve (Campbell and Norman 1998).

2.1.3 Experiments Performed

Twelve LES experiments are performed for the specific topics involved in
Chapter 3-6. For Chapter 3, an LES experiment is performed to simulate the ABL. For
Chapter 4, to study the effects of vegetation density on the coherent structures within
the CSL, five LES experiments are performed to simulate the CSL covering a range of
LAI, viz., 0.0625, 0.25, 1, 4, 16 (m? m) to simulate extremely sparse canopy (ESC), very
sparse canopy (VSC), slightly sparse canopy (SSC), slightly dense canopy (SDC), and
extremely dense canopy (EDC), respectively. Chapter 5 simulates turbulent flows across
a forest-clearing-forest transition with the ratio between the streamwise extent of the
forest part and that of the clearing part I varying from 1/3 to 3. All the experiments
mentioned above do not simulate the dynamics of scalar transport. However, the LES
experiments performed for Chapter 6 simulate the CSL including the exchanges of COx,
water vapor and heat between the canopy and the atmosphere. Also, the simulations of
Chapter 3-5 will be performed on two nested computational staggered grids. Following

15



the method discussed in Khanna and Brasseur (1997) and Sullivan et al. (1996), an

approach of one-way coupling between the two grids will be adopted, implying that the

nested grid receives boundary conditions through interpolation of coarse mesh grids,

without feedback from the nested grid to the coarse one. This procedure allows for a

higher resolution both vertically and horizontally. The parameters of the twelve

numerical experiments are tabulated in Table 2-1. z, represents the roughness length.

Table 2-1. List of parameter settings for experiments performed in Chapter 3-6

Chapter # 3 4 5 6
Flow ABL CSL Vegetation CSL
Discontinuity
zo (m) 0.1 0.05 0.05 0.1
Node | Coarse 64x64x64 64x32x41 64x32x41 256x128x56
(#) Nested 128x128x31 256x128x41 256x128x41
Domain | Coarse | 3142x3142x500 | 1257x628x400 | 1257x628x400 | 500x250x500
(m?) Nested | 3142x3142x120 1257x628%x80 1257x628%x80
Ca N/A 0.2 0.2 0.13
Scalar Off Off Off On
Note LAI=0.0625, LAI=4/0; LAI=1,5,9
0.25,1,4,16 r=1/3,1, 3

2.2 Quadrant Analysis

In quadrant analysis, four quadrants are identified through the combination of

the signs of u” and w” with each quadrant standing for one type of coherent event, viz.,

Quadrant I (1" >0 and w’ > 0) for outward interaction, Quadrant II (1" <0 and w’ > 0) for

ejection, Quadrant III (1" < 0 and w’ < 0) for inward interaction and Quadrant IV (1" >0

and w’ < 0) for sweep (e.g. Lu and Willmart 1973; Finnigan 1979b), where the prime

represents departures from the corresponding mean quantities. AS, is a measure
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commonly used to quantify the relative importance of sweeps to ejections (Raupach

1981), defined as

ASO _ W |sweeps —u'w' |ejections ‘ (210)
u'w'

c

Although AS, is originally defined for stress, we extend the definitions of sweep

and ejection to scalar transport as well in Chapter 6 with the quadrants of sweep and
ejection being dependent on the sign of the local flux. For positive local fluxes (e.g.
latent heat flux and sensible heat flux in the entire CSL and CO: flux near the ground)
the sweeps are in quadrant Il and ejections in quadrant I. The opposite is true for

negative local fluxes (e.g. CO:z flux in upper canopy and above).

2.3 Proper Orthogonal Decomposition

The POD technique is used in this work to educe the 3D coherent structures.
Originally, it was introduced to the study of turbulence by Lumley (1967, 1970, 1981). In
comparison with other detection techniques of the coherent structures, such as
conditional sampling and wavelet transform, one merit of the POD lies in that it gives
the coherent structures a clear physical interpretation in the sense that the coherent
structure shapes identified by the POD optimally and objectively capture the ensemble-
averaged variance of turbulent quantities, the TKE in the case of velocity components,

while the criterion of the others are more or less arbitrary. This technique is outlined
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here for completeness while comprehensive reviews can be found in Sirovich (1987a, b,
c), Berkooz et al. (1993) and Holmes et al. (1996).

Let us first introduce the objects which will be analyzed using the POD before
getting into the detailed analysis. Throughout this work, three possible state vectors
B = B, (where i denotes the index of the variables) are generally considered. In
Chapter 3-6 we consider the state vector containing only the velocity components (and
hence is sensitive only to the TKE), 8, =[u’,v', W], and in Chapter 6 we additionally

consider the other two: one is an augmented vector that includes the scalars of interest

(and hence is partially sensitive to the coupling between the scalar source strength and

~

the flow)/ ﬁZ = [UI,V', VT/I, 6.7 a" 5'] where Gi': ui'/u *I
— .\ w2 ~
u* = 6/(3H )J'H (u'2+v'z+w'2 z)l , and for each scalar (e.g.s) §'=5/s*,

— 2
s*= (l/H _[HS'ZdZ)l and H is the vertical region of interest. This scaling strategy for B,

forces the velocity components contribute equally as the scalar components to the target

of optimization in the POD, i.e., IH (G'z +V'2 W }12 = IH (5'2 +q'° 40" )dz . The third one
contains only the three normalized scalars, i.e., 8; = [E g, 0 '].

2.3.1 One-Dimensional Analysis
Consider an ensemble of f,(z) realizations, each denoting a vertical profile of a
variable of interest 3, at an arbitrary (X, Y, t) on a finite vertical domain H . The central

objective of POD analysis is to decompose an ensemble of realizations /£, (z) into a
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sequence of orthogonal functions, which is optimal in the sense of capturing as much of
the total variance as possible in a finite number of functions. This constraint is

equivalent to solving an eigen-problem based on the two-point correlation tensor,

[ Ri(z.2),(2)Z = 24,(2), 2.11)

where the correlation tensor R;; (z,7)= < B.(2)B i (Z)> , the ~ over z represents a second

position, and < > represents an ensemble average for one-dimensional analysis. For
discrete implementations, the number of the solutions is proportional to the size of
Rij (Z, Z), i.e., the number of computational nodes in the vertical profile. In order to
mark individual solutions of this eigen-problem, an index m is added such that an

eigenfunction can be represented as ¢, (m)(z) and the associated eigenvalue as am,

which indicates the relative importance of the corresponding eigenfunction ¢i(m)(z) to
the total variance. Following Finnigan and Shaw (2000), we define eigenmode as an

eigenfunction scaled by the square root of the corresponding eigenvalue, i.e.,

wM(z)= (/I(m))1/2¢i(m)(z), such that 1™ (z) contains the information of both the spatial

i
structure and its importance toward the variance. The eigenfunctions are orthogonal

and a normalization condition can be imposed so that,

[, 6" @6 (2)z =5, (2.12)

where * denotes the complex conjugate. Note that * can be dropped for the current

application of one-dimensional analysis because f,(z) are real-valued quantities;

however, operations of complex numbers will be involved in multi-dimensional

analysis. Each realization of f,(Z) can be reconstructed by superposing the

eigenfunctions,
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Bi(z)=> a4 (z), 2.13)

where the coefficients a,, are defined for each realization as,
2= [, A" (2. 214

The coefficients of different order are uncorrelated:

(a,a;) =0, A" (2.15)

Consequently, the variance and covariance are determined from the eigenvalues

and eigenvectors,

(BB;) =D A" ()™ (2). (2.16)

Letting i = j and integrating both sides of (2.16) over z, we get an expression

relating the integrated variance to the eigenvalues am,

E=[ (BB)dz=2 2" 2.17)

With AV > 1% > ﬂ(m), the mode associated with the first eigenvalue contributes
the most to the variance, and then the second, and so on. In this wrok, the first
eigenmode will be generally referred to as the large-scale coherent structure in both the
one- and multi-dimensional analysis. Details for the discretization of the eigen-problem
(2.11) are specified in Moin and Moser (1989), Finnigan and Shaw (2000) and Smith et al.

(2005), and will not be repeated here.

2.3.2 Multi-Dimensional Analysis

The one-dimensional analysis depicts the vertical profile of the turbulent
structures. However, it provides no direct horizontal description of these structures. To

reveal richer spatial features it is necessary to conduct multi-dimensional POD analysis.

20



The most straightforward way to implement multi-dimensional analysis in discrete
space is to convert the multi-dimensional problem into a one-dimensional problem by
unraveling all the grid points into one dimension. However, this approach is hindered
by at least two factors. First, the associated eigenvalue problem may be unachievable
with the current computation capability due to its large size; Second, POD is not well
suited to detect coherent structures in homogenous directions. However, homogeneity
is broadly assumed for one- or multi-dimensions in turbulence simulations (Holmes et
al. 1996). Mathematically homogeneity implies translational invariance. The averaged

two-point correlation function R(X, X) is said to be homogeneous if R(X, X )= R(x - X).

Thus (2.11) can be solved by substituting Fourier representations of R(X, Y),
R(x, X)=>"c ™™, (2.18)
k

2 7ikx

which implies that €™ are exactly the eigenfunctions associated with eigenvalues C, .

However, Fourier modes are not suitable to be treated as coherent structures since they
are not spatially localized (Holmes et al. 1996).

Lumley (1981) suggested the use of the shot-effect expansion to remedy the
difficulty with the POD in homogenous directions. This technique assumes that the
field of turbulent quantities in a homogeneous direction is the convolution of coherent
structure and a random function. Assuming that we have a three-dimensional

turbulence simulation and that X and y are the homogeneous directions and Z is the

inhomogeneous direction, the shot-effect expansion can be written as:
21



By, 2.0)= [y (x=%X, y-§,2)g(X, §, t)xdy, (2.19)

where /| is the three-dimensional coherent structure, ¢ is a stochastic function and D

is the horizontal plane of the simulation domain. To force l//i(l) to retain as much of the
second-order moment of f; as possible, we require that g is 'white', implying the

second-order moment of the process g isa ¢ function in the sense of:

(g(x, y.t)g(X, ¥, 1)), =6(x-X,y-¥), (2.20)

Then by Campbell's theorem we obtain the two-point correlation tensor as:
R; (rx, r,, 2, ’z'): ”,/,i(l)(x, Y, Z)wgl)(x +r,y+T, 'i)dxdy. (2.21)
D

Taking Fourier transforms of (2.21) with respect to r, and r,, we get

o, (k. k,,2,7)=p"(k, k,, 2 ¥k, k,, 7). (2.22)
It is clear that from (2.22) we can obtain the amplitude of y?i(l) but not its phase
angle:
vk, k2] = [0k, K, 2 2) (2.23)

On the other hand, following the one-dimensional procedure, a POD analysis on

each wavenumber of the spectral-density tensor @; presents the optimal

decomposition:

Bk, k. 2.t)=3 4, (k, .k, .t K, k. 2). (2.24)
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and
(a (kx,ky,t”(kx,ky,t» = A™(k,, k, J5(m, n) (2.25)

It is the first component in (2.24) that bridges the shot-effect expansion and the

instantaneous velocity data together:
Bk, k. 2,1)=4, (k. k, . th? K, k., 2), (2.26)
where ,‘gi(l) represents the first mode component of ,éi .
The two-point spectral density tensor of ﬁA’i(l) can be computed as:

oWk, k,,z,7)= Yk, k, )3k, k,, 2 (k. k,, 7). 2.27)

Similar as the derivation from (2.22) to (2.23), the amplitude of (I)i(il) is obtained

from (2.27) as:

00k, k2,2 = (100K, k, ) Bk, K,

A9k, k z] (2.28)

Comparing (2.26) with the Fourier transform of (2.19):
,H(kx,ky, z,t ) ( Ky, )z/ ( Ky, ) (2.29)

we may let ,6A’i(1) approximate [,

. and consequently,

(I).(.l)‘ approximate |d)ii|. However,

even with the assistance of the shot-effect expansion, the POD still leaves the phase
angles undetermined, which are essential to the geometrical interpretation of coherent

structures.
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Currently, three methods have been proposed to retrieve the phase information,
all of which impose certain physical properties on the derived coherent structures. The
first method is the bispectrum or three-point correlation criterion (Lumley 1981), which
states that coherent structures should conserve as much as possible the three-point
correlation of the original velocity field. The method is the only one which is
theoretically able to determine the direction or the sense of the rotation of coherent
structures. The second method, termed the ‘compactness criterion’, was originally
proposed by Herzog (1986). It assumes that coherent structures should be spatially
compact. The third method is called the 'wavenumber continuity' or the 'spectral
smoothness' criterion, which implies that the phase angles of coherent structures should
be continuous in wavenumber space (e.g. Moin and Moser 1989; Delville et al. 1999).

In this study, the ‘compactness criterion’ is chosen based on several
considerations: 1) unlike the bispectrum criterion, it does not involve any assumption of
stochastic process for the function ¢ to bridge the three-point correlation functions of
the original velocity field and the coherent structure., 2) the bispectrum criterion is
mathematically converted to an over-determined problem of solving an O(N 2”)
equation group, where N denotes the grid number in the homogeneous directions and
N is the number of the homogeneous directions (the solution of this problem is largely
influenced by numerical instability), 3) given that the geometry of coherent structures is

very sensitive to the phase angles, it is difficult to obtain consistent results with the
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bispectrum criterion, and 4) compared to the spectral smoothness criterion, the
compactness criterion focuses separately on each wavenumber component rather than
the connection between neighbouring wavenumbers, which makes sense because
coherent structures have most of their energy in the lower wavenumber parts.

In order to apply the compactness criterion, let us consider the vertical

integration of the horizontal center of the coherent structure expressed in the streamwise

velocity J‘H l//l(l) (0, 0, Z)dZ (assume the index 1 represent u). The compactness criterion

requires the occurrence of the maximum of IH l//l(l) (0, 0, Z)dZ , which then leads to the

phase angle expressed as (Herzog 1986; Moin and Moser 1989; Finnigan and Shaw 2000),

elk,. .k, )=-anglel[ 4" (k. k, z)dz). (2.30)

With the phase angle of 1/7(1) determined, l/?i(l)

can now be expressed as:

7Ok, k. 2)= (29 (K, K, )2 9k, K, 2, (2.31)
And
Gk, K, )= (120, k, ) %4, (k, K, te ) (232)

2.3.3 Coherent Structures and Truncated Reconstruction
Because the first POD mode l//i(l) statistically carries the greatest percentage of
the overall variance of turbulent quantities, it has been treated as a ‘coherent structure’

or ‘characteristic eddy” in a number of applications, such as channel flow (Moin and

Moser 1989), PML (Delville et al. 1999), CSL (Finnigan and Shaw 2000) and ABL (Huang
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et al. 2009a). In this work, we generally refer to the coherent structures as l//i(l) (in 1D,

(2)

2D or 3D) while in a similar way referring to the secondary coherent structures as ;.

It is possible to obtain a truncated, low-dimensional reconstruction of f; using

only the first several (say p) modes. For one-dimensional analysis, the p-mode truncated

reconstruction can be written as (c.f. equation (2.13)),

BP(z)=Y 2,4 (z), (2.33)

Its contribution to the covariance is described as (c.f. equation (2.16)),

(BPBP) =D A (2)p™ (). (2.34)

p
m=1
And to the integrated variance (c.f. equation (2.17)),

J,, (87" )z = Zp:ﬁ(m) : (2.35)

For the case of multi-dimensional analysis, it is similar but a little more complex
due to the conversion between physical space and wavenumber space. The p-mode

truncated reconstruction can be expressed as (c.f. equation (2.24)),

By, 2,0) =~ > [,k K, ™k, K, 2k, (2.36)
=1

4r* &
And the contribution of ﬂip (X, Y, Z, '[) to the total temporal and horizontal

averaged covariance is,

VAVIE 471[2 i [ 20k, ke, o™k, k2™ (k2 )k, (2.37)
m=1
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It follows for the integrated (over z) variance,

J,, (B )dz = 471Tz mzp_;”ﬂ(m)(kx, k, Jdk,dk,, = mZ:A(m), (2.38)
where

Am = 471r = []A™ (K, k, Jak,dk, (2.39)
and

E= mi/\(m) : (2.40)
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3 The Atmospheric Boundary-Layer
3.1 Introduction

Since DNS is unattainable at typical hi-Re values of the ABL, LES is typically
used for the ABL. However, it does not explicitly resolve the viscous sublayer. In fact,
the study of land-atmosphere interaction in the ABL makes extensive use of wall stress
models, thereby avoiding the need to resolve the viscous sublayer (e.g., Moeng 1984;
Mason and Thomson 1992; Sullivan et al. 1996; Kosovic 1997; Albertson and Parlange
1999b, a; Porte-Agel et al. 2000; Piomelli and Balaras 2002; Stoll and Porte-Agel 2006;
Cassiani et al. 2008). However, since large-scale coherent structures arise from the
interaction of the flow with the wall surface, and small scales, which do interact to some
degree with the large-scale dynamics, are modeled as well in LES, there is the need to
investigate the ability of LES to produce realistic large-scale coherent structures.

In this chapter, the POD method is applied to extract large-scale coherent
structures from a LES database of a hi-Re neutral ABL, with the twofold objectives of
investigating the large-scale turbulent structures as well as validating the ability of the
LES in producing these structures. The structures are systematically compared to those
obtained from a set of freely available DNS data of a lo-Re channel flow to explore
similarity and difference of the structures, thereby assessing to which degree LES is able
to produce the same turbulent structures as those in DNS. Despite the differences in the

two flow types it is expected that the LES should exhibit somewhat similar structures,
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since these large-scale coherent structures arise from the same type of primary instability
generated by the interaction of the mean flow with the surface, and that the potential
differences of the coherent structures in the two simulations should be explainable in
terms of the difference of the Reynolds number. In the near-wall region, a nested grid
simulation is performed to investigate the effect of grid resolution and grid coupling on
the simulated coherent structures. The expectation is to discover the same turbulent
structures but with more detail in small scales at the finer spatial resolution. This is also
of importance in view of the increasing use and investigation of local grid refinement
methods (e.g., Sullivan et al. 1996; Sagaut et al. 2006; Moeng et al. 2007), in order to
investigate in more detail the region close to the surface and/or in specific environments
(e.g. urban, forest) while maintaining the turbulent forcing of larger scale.

This chapter is structured as follows. The results of one-dimensional POD
analysis are presented in Chapter 3.2 and the results of multi-dimensional POD analysis
are demonstrated in Chapter 3.3. Chapter 3.4 performs truncated reconstructions of the
POD through linear superimposition of varied numbers of eigenfunctions and discusses
the potential applications of this technique.

The vertical profiles of the streamwise mean velocity <U>Xyt , the velocity standard

. 2\1/2 2\? 2\1? .
deviations o, = <u > , O, = <V > , O, = <W > t and the total (i.e., the sum of the
Xy

xyt v xyt w

resolved stress and the SGS stress) Reynolds shear stress 7 of both grids are shown in
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Figure 3.1, where < > represents averaging over X,y and t and the turbulent velocities

xyt

are defined as U;'= U, — <ui >X " These profiles are normalized by the friction velocity Uu.

=0.3 m s, defined as u? = <u'w‘> ,-nz/2- The vertical direction is scaled with the

Xyt |
boundary layer depth L,. It can be seen that the higher resolution allows for a higher
fraction of the total TKE to be resolved (Sullivan et al. 1996). Note that o, o, and o,

of the refined grid all peak closer to the wall than in the coarse grid simulation, which is
probably attributed to the fact that the scale of dominant structures decreases as the wall
is approached. For a full discussion of the limitation and capability of the one-way grid
nesting methods in reproducing turbulent statistics we refer to the works of Sullivan et

al. (1996) and Khanna and Brasseur (1997).

=

0 10 20
(u) xyt/ Uy

Figure 3.1. Vertical profiles of resolved <u>xyt /u* , 0,/u., o,/u., o,/u. and

the total (i.e., the sum of the resolved stress and the SGS stress) stress T/ u?. The
solid and dashed lines represent the coarse grid and the nested grid, respectively
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A realization of channel flow produced by DNS (DNS channel flow)
(http://turbulence.ices.utexas.edu/) is analyzed in comparison with the ABL obtained
from our LES ( LES ABL) in order to explain possible effects of the SGS model and the
wall model on the derived coherent structures. Relevant parameter settings of the DNS
are listed here although the detailed methodology can be found in Del Alamo and
Jimenez (2001, 2003). The friction Reynolds number is Re,= 182 at Re = 3250 and the
normalizing velocity scale is the friction velocity u,.=0.059 m s?. The horizontal
resolutions in the X and Yy directions are Ax* = 8.9 and Ay* = 4.5 in wall units,
respectively. The simulation was carried out with a grid of 768x510x97 nodes in the x, y
and z directions, respectively. The Chebyshev polynomial representation was adopted

in the z direction.

3.2 One-Dimensional Analysis

The first three eigenfunctions of our LES ABL and the DNS channel flow are
compared in Figure 3.2. Note that L, represents the half channel width & for the DNS
channel flow. The features where the LES and DNS are in general agreement include:
(1) the number of zero-crossings increase with the eigenmode index except for v of the
LES; (2) the signs of the U and W eigenfunctions are opposite over most of z; (3) the
general patterns of the U and W eigenfunctions for the two types of simulations are
similar. However, there are also significant differences emerging from this comparison:

(1) the v eigenmodes l//él_g) have a noticeable vertical shift between our LES ABL and
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)

the DNS. For example, the zero-corssing of 3" occurs approximately at 2/L, = 0.23

for the DNS and at z/L, =0.13 for ABL.
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Figure 3.2. Comparison of the first three eigenmodes l,z/(l_g) of the entire
domain of the LES ABL (thick lines) and the DNS channel flow (thin lines) with (a, b,
¢) and (d, e, f) representing the (1st, 2nd, 3rd) eigenfunctions, respectively. In (a, b, ¢),
the solid lines and the dashed lines stand for the eigenmodes of U and w,
respectively; in (d, e, f), the lines stand for the eigenmodes of V.

As pointed out in Moin and Moser (1989), the sign change of l//gl) is likely to
indicate the existence of a streamwise vortex in the vicinity of the wall, and the zero-

crossing should be associated with the elevation of the center of this vortex.; (2)

interestingly, the first U eigenmode l//l(l) also peaks at a higher elevation for the DNS
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(z/L, =0.10) than for the LES (z/L, =0.06). This consistency can be connected back to
the hairpin structures in the near wall region and their life cycle mentioned in Chapter
1.2.1: it is the peak of l//l(l), which serves as a streamwise gust, that intensifies and curves
some pre-existing spanwise vortices, forming the hairpin structures. This issue will be
revisited in multi-dimensional analysis. The difference of the elevations of the zero-
crossings of wgl) between the LES and the DNS is not surprising in consideration of the
different nature of the two simulated flows. The LES ABL has a much higher Re than
the DNS channel flow and at the elevation of z/L, =0.13 it is fully turbulent presenting
very energetic structures. In our simulations the viscous sublayer is not simulated but
would be anyway very thin compared to the ABL depth (a few centimeters, see e.g.,
Stull 1988). On the contrary, in the DNS the effective Re is low and the viscous layer
plays a significant role moving the turbulent energetic structure relatively far from the
bottom boundary.

In addition to the comparison between the LES and the DNS, we are also
interested in the comparison between the coarse grid and the nested grid of the LES
because it examines the utility of the nesting technique in revealing additional spatial
detail of the same turbulent dynamics as the coarse grid, while maintaining the same

boundary conditions. This comparison is performed for the near wall region z — [O, Ln]

of the ABL, with the similar L, / L, ratio asin MM89, i.e., L, / L, ~0.22. The first three
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eigenmodes of the coarse grid and the nested grid of the near wall region are shown in

Figure 3.3.
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Figure 3.3. Comparison of the first three velocity eigenmodes 1/1(1_3) of the
coarse grid (thick lines) and the nested grid (thin lines) of the near-wall domain. The

line types share the same meanings as in Figure 3.2

We note that the three eigenmodes of the two different resolutions are in a good
agreement in terms of the zero-crossing numbers, the relative U and W signs, and the
general patterns. However, there are also noticeable differences: (1) the magnitude of

l//l(l) of the nested grid is considerably smaller than the coarse grid in the region close to
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wall. This is likely to arise because the greater number of grid points in the z direction
produces more modes in the expansion. Consequently, the first mode represents a
smaller percentage of the total TKE; (2) wl(l) and Wl(z) of the nested grid peak at a lower
Z than with the coarse grid. As stated before, this is consistent with the finer resolution
being able to simulate smaller eddies as found closer to the wall; (3) the zero-crossing

elevation of I//S) is slightly higher for the coarse grid than for the nested grid.
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90 1
S
W gor .
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8
c
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]
2
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2 —@— DNS
8
2 50r 7
]
O
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5 10 15 20 25 30 35 40

Eigenvalue number

Figure 3.4. Cumulative contribution of eigenvalues to the total TKE in the
near-wall domain versus eigenvalue number. The empty circles denote the results
computed for the coarse grid of the LES, the empty squares for the nested grid of the
LES and the solid circles for the DNS
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Figure 3.2 and Figure 3.3 demonstrate the shapes of one-dimensional turbulent
structures in the entire vertical domain and the near wall region, respectively. In order
to investigate the relative importance of these structures quantitatively and
systematically, we turn to Figure 3.4, in which the statistics of the eigenvalues A™ of the
two different LES resolutions and the DNS for the near wall region are showed. As
mentioned earlier, the eigenvalues presented here are computed from the ensembles of
all three turbulent velocity components. Two features can be clearly observed on the
basis of the LES-DNS comparison and the coarse-nested grid comparison: the
eigenvalues of the DNS converge faster than those of the LES while the eigenvalues of
the nested grid converge slower than those of the coarse grid. The first mode of the DNS
represents approximately 58 percent, while this value is 40 and 31 for the coarse grid
and nested grid of the LES, respectively. Many factors could affect the convergence rate
of the eigenvalues such as, Re, wall roughness, and the number of grid points. Higher
Re, smoother wall surface and greater number of grid points are considered to decrease
the organization of the simulated flow and hence reduce the convergence rate of the
eigenvalues. As stated in interpreting Figure 3.3, it is likely the greater number of grid
points in the nested grid gives rise to the slower convergence than the coarse grid. As for
the result of the LES-DNS comparison, it is suspected that the much higher Re of LES is

the main factor responsible for the low convergence rate of the LES. It is also expected

36



that eigenvalues will converge faster when z, increases in the LES but this has not been

tested here.

3.3 Multi-Dimensional Analysis
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Figure 3.5. Comparison of the vertical profiles of S, (circle) and S, (square)
for (a) the ensembles of the DNS (DNS EN); (b) l//(l) (I’y , Z) of the DNS (DNS CS); (c)
the ensembles of the LES (LES EN) (d) y“(r,, z) of the LES (LES CS)

In order to illustrate the determination of the direction of coherent structures, the

sweep/ejection profiles SS(Z) and Se(Z) computed from the ensembles (EN) and the

two-dimensional coherent structure l//(l) (I’y , Z) (CS) are depicted in Figure 3.5. Note that
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SS(Z) and Se(Z) are scaled by U for the LES and by U’ for the DNS, respectively.
Figure 3.5a shows that for the DNS sweep dominates over ejection below 14 wall units,
or z=0.08L, ; however, the dominance switches above. This result is consistent with
what has been discovered for channel flow under experiments (Wallace et al. 1972) and
simulations (Kim et al. 1987). For the LES, it can be seen from Figure 3.5¢ z =0.1L, is
the critical point for the dominance to switch. It is obvious that the velocity fields of both
the LES and the DNS satisfy S!' >S!", where H =[0,L,]. Therefore, the direction of
rotation of coherent structures should be set as in Figure 3.5b and Figure 3.5d such that
ejections dominate over sweeps. A noteworthy feature observed from comparing (a)
and (b), and (c) and (d), is that the sweep motion plays a much less important role in the
coherent structure than in the ensembles of velocity fields. The relative role of ejections
to sweeps can be quantified by r, =S’ / S!'. This value is approximately 1.5 and 1.2 for
the ensembles of the DNS and the LES, respectively; but 7.1 and 5.5 for the coherent

structure of the DNS and the LES, respectively. It is consistently found that SS(Z) and

S, (Z) peak at greater distance from the wall in the DNS than in the LES for the
ensembles as well as the two-dimensional coherent structure g//(l) (I’y , Z). This agrees

with Figure 3.2, namely that the energetic turbulent structures in the DNS are farther
from the wall than in the LES due to the lower Reynolds number and therefore the

presence of a more significant viscous layer.
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With the direction of rotation of coherent structures determined, @ (I’y , Z) of

both the DNS and the LES are visualized in Figure 3.6 in the form of the superposition of
the U -contour and the vV —W vector plots (c.f. Figure 11 in (Moin and Moser 1989)).
Note that the isovalues of U on the plot represent the normalized velocity. The

normalizing velocity is U, for the DNS and U. for the LES, respectively. The similarities

between the DNS channel and the LES ABL appear as: (1) strong ejections in the central
area with relatively weak sweeps on both sides; (2) a pair of global flow circulations
whose axes are close to and approximately parallel with the U -contour line with the
isovalue 0, which roughly indicates the sweep/ejection boundary. The circulations form
into a pair of counter-rotating vortices, with the left one rotating counter-clockwise. The
specific positions of the vortex centers in (a) and (b) can not be rigorously identified
because the overall shape of the circulations is rather flat and also the resolution of LES
ABL is not high enough. However, it can still be noticed that the vortices of LES ABL
are systematically lower than that in DNS channel flow, which is consistent with the

result of the zero-crossings of ng) in the one-dimensional analysis.

The comparison in Figure 3.3 has shown a consistent picture between the one-
dimensional turbulent structures in the coarse grid and the nested grid of the LES. This
comparison can be extended to two-dimensional analysis, as illustrated in Figure 3.7.

Note that, as with the one-dimensional analysis, since the nested grid covers only the
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lower part of the ABL domain, we need to conduct the two-dimensional analysis for the

two different resolutions over the same region (i.e., Z C [0, L, ]) to make this comparison.
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Figure 3.7. The Two-dimensional coherent structures l//(l) (I’y , Z) for (a) the

coarse grid and (b) the nested grid of the LES in the near wall domain. U -contour
lines with isovalues labelled are superposed onto V— W vector plot. All the velocity
components have been normalized by the friction velocity

Both the coarse grid and the nested grid produce strong ejections on the central
area and a pair of counter-rotating vortices. Figure 3.7a resembles the near wall portion
of Figure 3.6b while Figure 3.7b is basically a better resolved version of Figure 3.7a
except that the isovalue lines of 0 and 4 do not go through the same area. The general
consistency suggests that the nested grid demonstrates the same dynamics as the coarse
grid but with more detail. Owing to this fact, we will only focus on the nested grid
henceforward as far as the near-wall region is concerned. Even though the central

position of the counter rotating vortices and the global circulations can not be defined
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precisely, it is natural to use the V zero crossings to approximate it. In Figure 3.8, the

elevations of the V zero crossings z, are plotted versus the spanwise distance r, for the
two dimensional coherent structures. z, of the DNS channel is uniformly greater than
z, of the LES ABL by ~0.05L, . The tilt angle of inclination is approximately 45° in the
area close to the center of the coherent structure (T, /L, <0.4), and then decreases

gradually as it goes farther outward.
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Figure 3.8. Height of zero-crossings of vV in z//(l) (ry , z) versus I, for the LES and

the DNS channel flow in the entire domain. The straight line with the tilt angle of 45°
is also plotted for reference.
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The two-dimensional coherent structure in the y-z plane represents an effect of

statistical average in the x direction. In order to understand how the coherent structure

is oriented in the streamwise direction X, it is necessary to conduct the three-

dimensional analysis. In Figure 3.9, the v —W velocity vectors of cross-section of the

three-dimensional coherent structure w(l) (rx Ty Z) are projected onto the Yy —z plane at

a range of streamwise locations T, /L, = {— 0.4,-0.3,-0.2,-0.1,0, 0.1} for the nested
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grid. The three-dimensional analysis for the coarse grid obtains similar results and is not
shown here. Figure 3.9a-e resembles the two-dimensional structure wi(l) (ry , Z) in the
sense that it consists of a strong ejection in the centre and a double-roller on both sides.

The double-roller structure is inclined in the downstream direction (c.f. Figure 17 in

(Moin and Moser 1989)).

08 T T T T T T T T

z/L

Figure 3.10. Height of zero-crossings of v (at r,/L, =0.1) of the y—2Z slices of

l//(l) (I’X Ty Z) versus the streamwise position I, /L, for the LES in the entire domain
This trend is quantified in Figure 3.10 for the entire ABL domain, with the

heights of the vortex centers identified as the vV zero-crossings at r, /L, =0.1. The
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choice of this cross-wind position is motivated by the fact that in the area close to the

centre (I, /L, =0) the rotation of the vortex or the global circulation is much stronger

than far from the centre. The elevations of the centre of the vortical structure increase

rather slowly upstream of I, /L, =—0.3, with the tilt angle approximately 5° in the range
of 1, /L, =(~0.7,-0.3). Downstream of this point, the double rollers begin to climb up

dramatically, with the angle increasing to ~ 70°. Although it is difficult to precisely
identify the streamwise extent of the coherent structure solely based on Figure 3.10, we
can conclude that, it is of the order of L,. Moin and Moser (1989) obtained comparable
values for the streamwise extent and the angle of inclination as those reported for the
LES here.

In order to demonstrate the three-dimensionality of coherent structures, the

enstrophy of 1//(1) (I’ r Z) of the near wall, denoted here as p = w;®,, is computed,

X1y
where @, represents the vorticity of y ®) (rx 1y Z) in the it direction; and then the
isosurface of p is plotted in Figure 3.11a. The isovalue is set to 200 times of the spatial
average enstrophy. This value has been chosen to adequately visualize the three-
dimensional structure. The double roller structure appears as two symmetric inclined
cylinders extending along X. There is also an elongated ‘tongue’ down in the central

area, which is mainly due to the vertical gradient of the strong ejection motion. The

isosurface of the X component of enstropy p, = @@, is then presented in Figure 3.11b
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with the isovalue set as 1000 times of the spatial average, which singles out the double
roller structure by neglecting the rotations occurring in the X—Yy and X—2Z planes.
These results in terms of the geometric information of three-dimensional vortical
structures can be related to the classical hairpin structures that are normally seen using
the traditional flow visualization techniques. For example, Head and Bandyopadhyay
(1981) demonstrated hairpin vortex in the outer region of the boundary layer and
concluded that the vortex is inclined at approximately 45° to the wall in the streamwise

direction.

Figure 3.11. (a) Isosurface of enstrophy o for the nested grid of the near-wall
domain; (b) Isosurface of the X component of p (p,) for the nested grid of the near-

wall domain. The isovalues are set as (a) 200 (b) 1000 times of the spatial average,
respectively
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Finally, it is important to note that this study does not simulate the Coriolis force
effects, and consequently, the features of coherent structures caused by the Coriolis force
should not be expected here. For example, the legs of the hairpin structure turn with
height within the ABL when the Coriolis force is taken into account (e.g., Lin et al. 1996);

however, they are approximately parallel with the streamwise direction in our work.

3.4 Truncated Reconstruction
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Figure 3.12. Two-dimensional reconstruction for an instantaneous velocity
field on the y—z plane with: (a) 1; (b) 2; (c) 3; (d) 4; (e) 10 modes used, respectively; (f)
is the original v—Ww field
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Figure 3.13. Isosurfaces of TKE of a three-dimensional reconstruction for an
instantaneous velocity field with: (a) 1; (b) 2; (¢) 3; (d) 4; (e) 10 modes used,
respectively. (f) is for the original velocity field. The isovalue is set as 3 times of the
three-dimensional average
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Figure 3.14. Isosurfaces of enstrophy of a three-dimensional reconstruction for
an instantaneous velocity field with: (a) 1; (b) 2; (¢) 3; (d) 4; (e) 10 modes used,
respectively. (f) is for the original velocity field. The isovalue is set as 3 times of the
three-dimensional average

Once the important turbulent structures are identified, it is of natural interest to
explore the efficiency of these structures in describing the instantaneous turbulent fields.

Coefficients 4, (kx, K,, t) are multiplied by the corresponding eigenfunctions
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¢Al(m) (kx, k,, Z) in spectral space and a number of (say P ) modes are superimposed to

obtain a (p-mode) truncated reconstruction of an instantaneous turbulent velocity field
u’ (X, Y, Z, t) (c.f. equation (2.36)). A formula of two-dimensional reconstruction can be

defined similarly. A two dimensional example is showed in Figure 3.12. As more and
more modes are superimposed, the reconstruction approaches the original velocity field.
The 4- and 10-modes reconstructions are virtually indistinguishable from the original
field. Furthermore, we also illustrate the effects of the truncated reconstruction in three-
dimensional space by showing the isosurface of the TKE (Figure 3.13) and enstrophy
(Figure 3.14). The structures in both figures become closer to the original ones in terms
of their shapes and spatial arrangements as more modes are used in the reconstruction
process. For the case of the TKE, there is little visible difference between the 4-modes
reconstruction and the original field; however, significant differences can be discerned
based on the comparison of the 4-modes reconstruction and the original field for the
enstrophy. This difference in the efficiency of reconstructing the TKE and the enstrophy
originates from the nature of the POD technique, which optimally captures TKE rather
than vorticity.

The ability of the POD in reconstructing a similar turbulent field as the original
version using only a small fraction of the information of the original field allows us to
study the key properties of turbulent flows, such as characteristic time and length scales

and intermittency, in a much simpler way, i.e., focusing on the coefficient series
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a, (kx, ky , t) or a, (rx, r, t). In fact, Aubry et al. (1988) made use of these coefficient
series of the first few energetic modes to reduce the dimensionality of the Navier-Stokes
set of equations to a group of nonlinear ordinary differential equations, from which they

can then reveal the turbulent dynamics in the wall region of a turbulent boundary layer

using the methods of dynamical systems theory.

3.5 Conclusions

In this chapter, the POD technique was implemented to identify large-scale
coherent structures in one-, two-, and three-dimensions within a high-Reynolds-number
ABL from LES and a low-Reynolds-number channel flow from DNS.

Three assumptions were made to determine the geometries of coherent
structures as well as their direction of rotation under the framework of the POD: (i)
coherent structures are randomly located in homogeneous directions; (ii) coherent
structures are spatially compact; (iii) the sweep/ejection dominance of coherent
structures is consistent with that of the instantaneous fields in an integrated sense.

Both similarities and differences arise from this comparison. A general
consistency of the spatial patterns of coherent structures between the LES ABL and the
DNS channel flow is observed. The identified coherent structure was found to be
composed of a strong ejection region framed by a pair of counter-rotating vortices in the

Y — Z plane for both the LES and the DNS. This vortex pair inclines in y with a tilt

angle of approximately 45°, and curves up in X with the maximum tilt angle around 70°,
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which is comparable to 60° obtained for DNS in Moin and Moser (1989). The differences
are mainly composed of two aspects. First, the important structures (i.e., the energetic
ejections and the vortex pair) are consistently closer to the wall in the LES than in the
DN, if the vertical extent is scaled by the boundary depth L, for the LES and by half
channel width ¢ for the DNS, respectively. This is logically due to the viscous sublayer
being much thicker (in a scaled sense) in the low-Reynolds-number channel flow than in
the high-Reynolds-number ABL flow. This thicker viscous sublayer is able to hold these
important structures farther from the wall. Second, the eigenvalues of the DNS
converge faster than those of the LES, indicating the turbulent structures in the DNS are
more organized than in the LES, which is readily attributed to the difference of Reynolds
number as well. This comparison demonstrates the ability of LES (with its wall and SGS
models) to show realistic coherent structures since all the differences are logically
explained in term of the difference in the Reynolds number.

The consistency of the coherent structures between the coarse grid and the
nested grid in the LES shows that the nesting technique is able to reveal more detail in
small scales of the same turbulent dynamics as the coarse grid while maintaining the
same boundary conditions. Since the nested grid resolves smaller scales than the coarse
grid and the scale of the dominant structures decreases approaching the wall, the
vertical profiles of the second order statistics and the one-dimensional coherent

structures y i(l) (Z) peak closer to the wall in the nested grid than in the coarse grid.
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Another consequence which is likely to be caused by the difference of the number of
grid points of the two resolutions is the relatively slower convergence rate of the
eigenvalues of the nested grid.

In addition to justifying the use of the LES and the nesting technique in studying
the large-scale coherent structures, this chapter also (i) quantitatively showed for the
first time that the streamwise vortex pair inclines in the spanwise direction at an angle of
approximately 45 (ii) introduced a simple and robust criterion to determine the
direction of rotation of the coherent structures; and (iii) demonstrated the ability of the
POD technique in approximating instantaneous turbulent fields with only a few of the

most important POD modes ¢i(”)(x, Y, Z) and the corresponding coefficients a, (X, y,t).

Using the POD, the TKE can be more efficiently reconstructed than can the enstrophy.
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4 The Canopy Sublayer

4.1 Introduction

Large-scale coherent structures in the CSL have been under investigation for the
past several decades. These organized motions have been shown to be responsible for
the majority of mass, momentum and energy transport across the canopy-atmosphere
interface (e.g., Gao et al. 1989; Katul et al. 1998; Finnigan and Shaw 2000; Thomas and
Foken 2007). Further research indicates that both the geometrical features and the
formation mechanism of coherent structures rely on canopy vegetation density (e.g.,
Novak et al. 2000; Poggi et al. 2004b; Dupont and Brunet 2008b). Since coherent
structures play an important role in the canopy-atmosphere interaction and since
terrestrial ecosystems cover a very broad range of vegetation densities (Asner et al.
2003), it becomes necessary to understand quantitatively how these large-scale coherent
structures change as a function of vegetation density.

The overall behavior of turbulence within the CSL differs significantly from that
in the atmospheric surface layer (ASL) (Finnigan 2000) and these differences are
characterized by: (1) vertically inflected mean streamwise velocity; (2) rapidly
decreasing energy and momentum flux profiles with depth inside the canopy; (3) the
important role of large-scale coherent structures on turbulence dynamics through the
entire CSL; and (4) domination of sweeps over ejections in vertical momentum transport

(Finnigan 2000; Dupont and Brunet 2008b). Raupach et al. (1989, 1996) analyzed
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turbulent flows within the CSL and concluded that canopy turbulence behaves much
like a plane mixing layer (PML). One of the compelling features is that the ratio of the
streamwise separation between adjacent coherent eddies, A, to the shear length, L,
matches well the value computed from experiments and numerical simulations in the
tully-developed PML (Raupach et al. 1996). Finnigan (2000) described the evolution of
the turbulent structures in canopy flows, as being controlled by the Kelvin-Helmholtz
instability mechanism, which dominates the formation and evolution of turbulent
structures in the PML as well. However, canopy turbulence resembles the PML only in
the presence of a homogeneous and ‘sufficiently dense’” canopy, and this resemblance
gradually disappears as the density decreases (e.g., Novak et al. 2000; Poggi et al. 2004b;
Dupont and Brunet 2008b). In the extreme case of negligible vegetation, the turbulence
appears to resemble a rough-wall boundary layer (e.g., Poggi et al. 2004b). Poggi et al.
(2004b) drew on these observations and proposed a phenomenological model for the
effective mixing length of coherent structures within the CSL valid for intermediate
vegetation densities. This model assumes that near the canopy top the flow field is a
superposition of a rough-wall boundary layer and a PML flow. A coefficient («), which
is a function of the vegetation density, was introduced to weight the relative importance
of the PML and the boundary layer solutions in affecting turbulent structures in this

zone.
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In addition to basic flow statistics and characteristic length scales of coherent
structures, turbulence investigators have also demonstrated the similarities among
turbulent flows within the CSL, the rough-wall boundary layer and the PML in terms of
the topological features of the coherent structures as well as their role in describing the
TKE. Huang et al. (2009a) examined the large-scale coherent eddies in a large eddy
simulation (LES) of the atmospheric boundary layer (ABL) through the use of the proper
orthogonal decomposition (POD) technique (Lumley 1967, 1970, 1981). The educed
dominant structure (i.e. first eigenmode) was shown to account for over 30 percent of
the total TKE in the near-wall domain (vertically extending to approximately 1/5 of the
boundary layer depth). Multi-dimensional POD analysis revealed that coherent eddies
are comprised of a pair of streamwise counter-rotating vortices framing a strong ejection
motion between the vortex pair, which is a major contributor to the vertical momentum
transport. The vortices are found to have elliptical cross-sections that are inclined in the
span-wise direction and longitudinal alignment that curves upward in the streamwise
direction. Similar POD analysis performed on a PML also shows the existence of
streamwise vortex pairs and the significance of these structures to the total TKE (Delville
et al. 1999). Within the CSL, large-scale coherent structures have been shown to also
consist of a pair of counter-rotating streamwise vortices centered above the canopy and
represent a large fraction of the total TKE (Finnigan and Shaw 2000). Moreover,

between these vortices, there is a weak updraft downstream of a strong sweep.
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However, it is still unclear how these characteristic structures depend quantitatively on
canopy density.

In this chapter we present results from a series of LES experiments that
systematically examines the effects of vegetation density on basic flow statistics as well
as on the large-scale coherent structures within the CSL. The POD technique is applied
to identify these characteristic structures from the simulated turbulent flow fields. The
resulting turbulent structures computed from the LES are compared with those obtained
through an analysis of wind-tunnel experimental data. Efforts are also made to quantify
the relationship between vegetation density and the extent to which the canopy flow

resembles the rough-wall boundary layer and the PML, respectively.

4.2 Basic Flow Statistics

Since we will compare our findings of basic flow statistics with prior results
obtained from a wind tunnel experiment (Brunet et al. 1994) and a flume experiment
(Poggi et al. 2004b) throughout this section, we first introduce the two experiments. In
the wind tunnel experiment, elastic cylindrical nylon rods were spaced on a uniform
square grid to simulate a horizontally homogeneous canopy with a free stream Reynolds
number of 3.40x10°. The flume experiment used equally spaced steel rods of five
different densities in X — Y to study the effects of vegetation density on CSL turbulence.
The flow Reynolds number varies from 1.71x10°to 1.79x10°. Before comparing the

vegetation densities in our LES and the wind tunnel and the flume experiments, the
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difference of the definition of the drag force term should be introduced. The drag force

in the wind tunnel and flume experiments was defined as F, = —%Cdz(b2 )szUi (c.f.

equation 12 in Brunet et al. 1994; equation 3 in Poggi et al. 2004b), where C, 2(bz)
represents the drag coefficient used and b, denotes the elemental area index (EAI

frontal area per unit volume). In consideration of this difference, b, can be converted

Cd 2 (bZ )
Cq

intob as b= % b, (c.f. equation (2.7)). The LAI of the wind tunnel and the flume

Cq CZJ (b2 ) b,h,, where 52 is the
d

experiments can be calculated accordingly as LAl =

N |-

height of the rods in the two experiments. We take the relevant parameters from Brunet
et al. (1994) and Poggi et al. (2004b), and calculate the effective values for LAD (i.e. b)
and LAI (see Table 4-1).

Table 4-1. Original and normalized parameters in wind tunnel and flume

experiments
Parameters h> (m) Caz EAI (m™) LAD (m™) LAI (m? m?)

Wind tunnel 0.047 1.35 10 33.75 1.59
0.50 0.27 0.34 0.04

0.61 0.53 0.81 0.10

Flume 0.12 0.73 1.07 1.95 0.23
0.94 2.13 5.02 0.60

1.15 4.27 12.25 1.47

A series of single point turbulent flow statistics obtained from our

simulations is presented in ., and compared with the counterparts in the wind
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tunnel and the flume experiments. This comparison serves as the first test of the
LES capability to produce realistic dynamics over horizontally homogeneous
canopies of different density. The compared statistical variables include: (a)

streamwise mean velocity (u) scaled by its value at the canopy top

xyt

(u, = <U>Xyt |,_,); (b) the total stress z which is the sum of the resolved stress and

the SGS stress the mean stress scaled by the square of the friction velocity

u?=-r|,_,; (c) streamwise and (d) vertical velocity standard deviations

2\1/2 2\1/2 . .
o, = <u >th and o, = <W >th scaled by u., respectively; (e) u —w correlation
coefficient r,, = 7/o, /o, ; (f) streamwise and (g) vertical velocity skewness

Sk, = <u'3>xyI / o and Sk, = <W'3>th / o ; (h) streamwise and (i) vertical velocity

kurtosis Kr, = <u'4>xyt /G,j' and Kr,, = <W'4>th/a4

w *

From Table 4-1 it is clear that the wind tunnel experiment and the densest case of
the flume experiments should approximately correspond to the SSC case in the LES,
while the sparsest flume experiment should be comparable with the ESC. This

speculation can be verified by reference to Figure 4.1.
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Figure 4.1. Vertical profiles of (a) scaled mean streamwise wind velocity
<u>th / U, ; (b) scaled mean shear stress 2'/ u?; (c-d) scaled streamwise velocity (o, /u. )

. (f-

and vertical velocity (o, /U. ) standard deviation; (e) UW correlation coefficient r,,;

g) streamwise velocity (Sk,) and vertical velocity (Sk,) skewness; (h-i) streamwise
velocity (Kr, ) and vertical velocity (Kr,, ) kurtosis for LES simulations with varying

LAlIs, experimental data measured from flume (Poggi et al. 2004b) and wind tunnel
(Brunet et al. 1994). The arrows indicate the direction along which rod density
increases in the flume experiments

60



Note that for the flume experiment, the densest canopy case corresponds to the

left side of the shaded area inside the canopy for <U>Xyt / u,, — z‘/ u?, o,/u., o, /u. and

Sk,,, but the right side for Sk,, Kr, and Kr,. The opposite is true for the sparsest case.

Focusing on the region inside the canopy, it can be seen that the LES SSC case, the wind

tunnel experiment, and the densest flume experiment all share similar values of

<u>xyt / U,, — T/ u?, o,/u. and o, /u. ; the shaded areas of the flume experiments

basically just cover the cases of ESC, VSC and SSC in all flow statistics except o, and
I, which may be due to the fact that ci and ow are calculated from only the resolved

velocity. Close to the ground the amplitudes of the third and fourth order moments of

the streamwise and vertical velocities (Sk,, Sk,, Kr, and Kr, ) measured in the wind

tunnel are greater than those of the LES and flume experiments. This is probably caused
by the so-called ‘honami” wave in the wind tunnel experiment, which occurs only in
canopies with elastic rods, such as wheat and corn canopies, and is referred to as the
coherent waving motion of groups of rods triggered as some gust travels through the
canopy (Finnigan 1979b, a). Since the flume experiment utilized rigid steel rods and this
type of elasticity is not simulated in the LES, the ‘honami” wave can not be produced in
these two cases. This inference is evidenced from inspection of the statistics reported in

Raupach et al. (1996) (c.f. Figure 1 therein), which also shows that the amplitudes of Sk,

and Sk, are significantly greater (up to 100%) for waving canopies than most of non-
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waving canopies close to the ground. Above the canopy top, the profiles vary
significantly between the flume and the LES/wind tunnel. This is likely caused by the
smaller ratio between the boundary layer depth L, and the rod height h in the flume
than in the LES/wind tunnel.

Table 4-2. Comparison of statistical flow properties between surface layer, CSL
of various LAIs and mixing layer. Values of surface layer and mixing layer are taken

from Finnigan (2000)

Property (u) inflection o, lu. o, lu. S m |Sku| |SkW|
ASL No 2.5-3.0 1.2-1.3 ~0.3 Small Small
ESC No 2.3 1.1 0.41 0.39 0.07

LES CSC Yes 2.0 1.1 0.46 0.33 0.25
CSL  SSC Yes 1.9 1.0 0.50 0.78 0.34
(z=h) SDC Yes 1.9 1.0 0.53 1.20 0.39
EDC Yes 1.9 0.9 0.57 1.15 0.34

PML Yes 1.8 14 ~0.4 o(1) o(1)

A number of noteworthy features emerge as we focus on the effects of vegetation

density on flow statistics. As the canopy becomes denser, (1) the inflection of <u>xyt / up

at Z=h becomes stronger; (2) the shear stress and the velocity variances are damped

more rapidly with increasing depth inside canopy; (3) |ruw| increases in the vicinity of

canopy top, which implies that a denser canopy is able to transport momentum more

sk,,

7 4

efficiently than a sparse canopy across the canopy-atmosphere interface; (4) |Sku

|Kru| and |KrW| tend to increase around the treetop with Sk,, Kr, and Kr, being

positive and Sk, negative. This can be interpreted as denser canopies producing more
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and stronger sweep events than sparse canopies. These tendencies can be clearly
observed as the values of relevant statistics of the five simulated cases are aggregated,
and compared with the standard values of these statistics for an ASL and a PML taken

from Finnigan (2000) in Table 4-2. Note that I, of canopy turbulence is noticeably

greater than that of the ASL and the PML. A possible explanation for this discrepancy is
provided in Chapter 4.3. This comparison basically demonstrates that the overall
behavior of the CSL with sparse canopies (e.g., ESC) tends to resemble that of an ASL,
and as the canopy becomes denser, it changes gradually to be similar with a PML.

Overall, the comparison between our LES and the flume/wind tunnel
experiments demonstrates that our LES successfully produces basic flow statistics of
canopy turbulence. Before investigating the effects of the LAI values on the geometric
features of the large-scale coherent structures, it is necessary to examine the dependence
of characteristic length scales, such as integral length scales and mixing length, which

are fundamental properties of the coherent structures, on vegetation density.

4.3 Characteristic Length Scales

The study of length scales is a first step toward understanding the spatial
arrangement and size of turbulent structures. In a horizontally homogeneous stationary
flow, the two-point space-time correlation tensor between an arbitrary reference location

(X, Y, Z,t) and another location (X +AX,y+Ay,Z,t+ A’[) can be written as:
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_ <ui'(x, y,z,t)uj'(x+Ax,y+Ay,'i,t+At)> ,
r; (AX, Ay, At,2,7) = ~ T NPT 4.1)
(U (6 y,z,0) (u? (x,y,Z.1))

xyt xyt

The two-point integral length scales can be obtained by integrating the

correlation tensor of zero delay in y, z and t over AX:

L(z)= J': r,(Ax,0,0,2,2)dAx, (4.2)

where no summation is implied on the repeated index ii. The streamwise integral

length scale L, and the vertical integral length scale L, are plotted in Figure 4.2a and b

for canopies of five densities, respectively.
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Figure 4.2. Vertical profiles of two-point length scales normalized by h (Lu/h
and Lss/h) and the convection velocity U. scaled by (U)xy: for canopies of five LAls
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Shaw et al. (1995) performed the analysis of two-point velocity statistics on the
same experimental dataset as in Brunet et al. (1994) and demonstrated that at the canopy
top L, is ~2.8h while L, is ~ 0.6h. In the LES we obtain L, ~4.4h, L, =0.8h for SSC,
and L = 2.7h, L, = 0.55h for SDC, which are in good agreement with the wind tunnel
analysis because both the LAI value and the results of L, and L; in the wind tunnel

experiment are bounded by those of the SSC and the SDC. In addition to this

agreement, three trends can be clearly observed. First, L, tends to decrease as the
vegetation density increases with local exceptions. Since L; is a measure of the

streamwise distance over which turbulent signals become uncorrelated and is known to
be proportional to the streamwise separation of coherent structures (Raupach et al.
1996), this tendency reflects that dominant motions within the CSL of denser canopies

are positioned closer to each other in the streamwise direction. At the canopy top, L
ranges from approximately 2h for EDC to 9h for ESC, and L, from around 0.4h for

EDC to h for ESC. Second, integral length scales generally increase as it goes farther

from the ground. Third, L, behaves differently from L, in the fashion that it is less

sensitive to changes of both LAl and z.

We can calculate the convection velocity U, which describes the rate at which

the coherent structures are convected along X (Shaw et al. 1995):
u,(2)/{u),,, @) =L@/ (), (4.3)
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where [, is the traditional single-point integral length scale calculated from U,

(see e.g. Raupach et al. 1996). The ratio U, / <u>X t is a measure of the extent to which the
investigated flow obeys or disobeys Taylor’s hypothesis: the closer the ratio U, / <u>xyt is

to 1, the better the turbulence obeys this hypothesis. Here u, / <u>xyt is calculated as

L,/l,, because the vertical velocity represents the active turbulence while the
streamwise velocity is ‘contaminated” by the inactive turbulence (see e.g., Katul et al.
1996b), and is plotted in Figure 4.2c. Although the time step At is not constant in an
absolute sense due to the numerical scheme of temporal integration adopted in the LES,

the ratio between the standard deviation and the mean value o, / <At> is below 9
percent for all five cases. The normalized convection velocity U, / <u>xyt generally

increases as the canopy becomes denser except the case of EDC above z/h ~0.9. At

z=h, uc/<u>xyt varies from ~1.6 for ESC to ~3.2 for SDC. Inside the canopy, uc/<u>

Xyt
tends to increase as it goes closer to the ground, and this tendency is intensified as the
canopy becomes denser. Overall, Taylor’s hypothesis is demonstrated to be significantly
violated within the CSL and the extent of violation increases as the vegetation density
increases and it goes closer to the ground.

Another important length scale is the shear length, which is defined as

L, =u, / (d <U>Xyt / dZ)Z:h . Raupach et al. (1996) predicted that if the canopy turbulence
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can be modelled as a PML, a theoretical relationship should exist between the mean

streamwise separation of the coherent structures, A, and L, ie, A,/L, (7, 10).

This prediction was further verified in Raupach et al. (1996) by examining a number of

field and wind tunnel experiments: the ratio A, /L, was found to be approximately 8.1

and insensitive to LAI, which serves as a strong evidence supporting the mixing-layer

analogy for the CSL.
gy
T
¢ ESC
A VSC
o SSsC
20F o spC i
* EDC
4 LAI=0.42 (Novak et al. 2000)
A | AI=0.74 (Novak et al. 2000)
15+ ®  |LAI=1.7 (Novak et al. 2000) i
® LAI=4.5 (Novak et al. 2000)
< Ax: 8.1LS
X
<
10 b
5- o ¢ A i
= A
@
()
%
0 Il Il Il Il Il
0 0.5 1 15 2 2.5 3

Figure 4.3. Mean streamwise separation A, of coherent structures at canopy
top versus shear length scale L, for canopies of five LAIs. Both axes are scaled by the

canopy height h. The wind tunnel results of Novak et al. (2000) are plotted for
reference. The straight line is predicted by Raupach et al. (1996) using a number of
field experiment data
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In order to explore the extent to which this analogy is affected by variations of

vegetation density, we calculated A, /L, for the LES runs of five LAls. Following

Raupach et al. (1996) we estimate Ax as 2713, where the factor 2z relates the correlation
length of w(x) to the streamwise separation length of adjacent coherent structures. The
results are showed in Figure 4.3, where it can be clearly seen that SDC and EDC match

the straight line of A, /L, =8.1 quite well while the other three cases deviate farther

from this line with A becoming independent of Ls as the canopy becomes sparser. This
suggests that the mixing-layer analogy is applicable only to sufficiently dense canopies
with the critical minimum LAI value between 1 and 4.

Given that the canopy turbulence with relatively small vegetation densities (say
LAI <1) can not be modeled as a pure PML, Poggi et al. (2004b) argued that it is affected
by the potential mechanism of a rough-wall boundary-layer as well. They proposed a
linear superposition model to compute the effective mixing length of the CSL with the
relative importance of the PML mechanism to the boundary-layer mechanism
depending on vegetation densities. Instead of modeling the mixing length within the
CSL empirically, here we propose a theory for the estimation of the mixing length of
canopy turbulence without introduction of empirical parameters. This theory assumes
that the mixing effects of both turbulence sources add up, which is approached through
the traditional gradient transport theory. For a pure rough wall boundary layer, the

gradient transport theory can be applied to the vertical transport of momentum as:
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(u'w) =—-Kg, w, (4.4)

where Kb is the eddy diffusivity for the boundary layer. Similarly for a pure PML, we

have:
(u'w) =-Ky, @, (4.5)

where K is the eddy diffusivity for the PML. Since both turbulence sources exist in the
CSL, the eddy diffusivity of the CSL Kcst should be modeled as the sum of Ksr and Kuc:

d{u) d(u)
W)= K = Wiy 46
(Uw) = —Key == ~Ka + Ky )= (4.6)

Using the Prandtl’s mixing length theory the eddy diffusivities can be expressed

as a function of the effective mixing length, i.e.,

Kg =12, %,. 4.7)

Ky =12 ?,. (4.8)
and

Kes =130 % (4.9)

Substituting equation (4.7), (4.8) and (4.9) into equation (4.6) lcst can then be

calculated as:
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2 2 2
lese = lau + e - (4.10)
In equation (4.10) the actual value of Ics. can be obtained from the vertical

profiles of (u"w’) and (u) by combining equation (4.6) and (4.9). We use [swy to denote the

/2
modeled value of lcst (i.e. (l 2+ |,\2,|L)l ) while using Icst to represent the actual value:

1/2
oo (2) = (0w (d u) /e f (4.11)
Is. is provided by the Monin-Obukhov similarity theory as
I, (z)=k(z-d), (4.12)

where K is the von Karman constant and d is the zero plane displacement height

calculated as

h
j 7t (z)dz
d==—"—. (4.13)

L f,(z)dz

We now seek a formula for |, . A CSL is analogized as a PML under the
assumption of a vertically symmetric mean streamwise velocity profile with respect to
the horizontal plane of the canopy top. Provided that the mean streamwise velocity at

the canopy top is U, and the low speed free stream velocity is 0, the high speed free
stream velocity is 2u, . Consequently, L, can be connected to the vorticity thickness of
the PML (J,) as 0, = 2L,.

A popular expression for the mean streamwise velocity in the PML is an error

function in the form of:
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e _,, erf[*/; - h]

uh S

(4.14)

According to the direct numerical simulation (DNS) results with the thickness

Reynolds number reaching 2x10* in Rogers and Moser (1994), the Reynolds stress profile

can be fitted as the following function:

uy

S

2
T(Z) =—-0.04expy— (ZL;h]

(4.15)

(b)

0.5 1 1.5
<U>xyt/uh

2 -0.04

-0.03

-0.02
2

r/uh

-0.01 0

Figure 4.4. Comparison between our models (Equation (22) for (a) and
Equation (23) for (b)) and the DNS results in Rogers and Moser (1994) for (a) the mean
streamwise velocity profile and (b) the Reynolds stress profile of the PML
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Figure 4.5. The effective mixing length of the CSL I, of the rough-wall
boundary layer model /5. and of the PML model Im: for (a) ESC and (b) EDC; (c) Isc
versus I for all the five LAI cases; (d) ls,y versus les for SSC and SDC; (e) the measure
of the performance of the rough-wall boundary layer model (Is. — I.4)/lo for all the five
LAI cases; (f) the measure of the performance of the superposed eddy diffusivity
model (Isuy — L)/l for SSC and SDC

72



Figure 4.4 demonstrates the comparison of the mean streamwise velocity profile
and the Reynolds stress profile between the DNS results in Rogers and Moser (1994) and
the prediction using equation (4.14) and (4.15). Following Rogers and Moser (1994), the

momentum thickness J,, is converted to the vorticity thickness &, as &,, =&, /4.44.

Substituting (4.14) and (4.15) into (4.5) and (4.8), we obtain the formula of the mixing

length of the PML as:

2
1, (z)=0.2L, exp{”Tz(z—hj } (4.16)

LS

Figure 4.5a and b show the vertical profiles of Iz, Im. and lf in the vertical region
z/h < [1.0, 2.0] for ESC and EDC, respectively. For the ESC case, Ly falls between Is. and
Imi, but close to Is.. As we focus on the VDC case, lf becomes greater than both /5. and
Ime in most of the shown vertical range. An examination of the other three cases reveals
that the same trend exists for VSC, SSC and SDC as well. It can be seen clearly in Figure
4.5c that Is tends to systematically underestimate L. Figure 4.5d shows sy for the cases
of intermediate canopy densities (SSC and SDC), where the underestimation has been
corrected in lsp. To further quantify the performance of the pure rough wall boundary
layer model and the eddy diffusivity superposition model, the relative errors of the two
models have been calculated and shown in Figure 4.5e and f, respectively. The relative
error of the pure rough wall boundary layer model, (Is. — L)/, is mostly negative for all

the five LAI cases with the minimum ~ -0.5. The amplitude of this value decreases as lof
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increases, implying that this model performs better as it departs farther from the canopy.
As far as the eddy diffusivity superposition model is concerned, its relative error ranges
between ~-0.25 to =0.15 for SSC and SDC. The general consistency between lsuy and lef
also explains why canopy turbulence is able to transport vertical momentum more

efficiently than both the ASL and the PML, as suggested by the r,, values in Table 4-2.

4.4 One-Dimensional Analysis

Finnigan and Shaw (2000) analyzed the same dataset as in Brunet et al. (1994)
and revealed the geometries of coherent structures based on one- and two-dimensional
POD analyses. The first three one-dimensional POD modes of SSC are compared with
those in Finnigan and Shaw (2000) in Figure 4.6 since the adjusted LAI of the wind
tunnel experiment (LAI=1.59) is closest to that of SSC (LAI=1). In order to make our
results comparable with Finnigan and Shaw (2000), we perform one POD analysis jointly
for u and w, and another separate one for only v. All the modes of the wind tunnel
results are non-dimensionalized by the friction velocity (U." = 0.87 m s) as for the LES
by U.=0.3 ms?. The general patterns of the one-dimensional eigenmodes from both
studies are in a good agreement, which appears as: (1) the same trend of relative signs of
U and W modes; (2) similar amplitudes in all six comparisons of eigenmodes; (3) similar
elevations of zero-crossings. This comparison demonstrates that our LES is able to
produce similar canopy turbulence structures as in wind tunnel experiments with

vegetation of similar density values.
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Figure 4.6. Comparison of the first three one-dimensional eigenmodes l//(i)

between the SSC in the LES and the wind tunnel experiment
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Figure 4.7. Comparison of the first one-dimensional eigenmodes of (a) U; (b)
V; and (c) W for canopies of five different LAls
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We explore the effects of canopy vegetation density on the one-dimensional

energetic structures in Figure 4.7. The eigenmodes for the five different cases in the LES
are normalized by their values at z=h, as l//i(l) / !r//i(; ). Similar with the mean streamwise

velocity profile, the structures of denser canopies have stronger inflection for all cases
with the U structure showing a more pronounced change of curvature inside the canopy
and the v structure above the canopy.

In addition to the geometrical features in z , we are also interested in studying
the relative importance of each individual eigenmode and the effects of vegetation
density on it. For this purpose we focus on the convergence rate of the eigenvalue series
Am, which measures how efficiently the POD concentrates the TKE into the leading

mode. The cumulative contributions of all the eigenmodes to the total energy of

<u'2 +W'2> , have been computed for all the LAI cases. It is found that the LAI does not
Xy

have a significant influence on convergence rates. In the wind tunnel experiment
(Finnigan and Shaw 2000), the first mode accounts for approximately 53 percent of the
total TKE and the first five modes capture up to 82 percent of the total TKE; similarly, in
our LES results, the percentage of the first mode ranges from 54 percent (VSC) to 61

percent (ESC), and the first five modes between 85 percent (VSC) to 89 percent (EDC).

4.5 Multi-Dimensional Analysis

The one-dimensional POD analysis reveals the structural features of the coherent

eddies only in the vertical direction. In this section the POD analysis is extended to
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multi-dimensions to explore the structural features in the spanwise direction as well as

in the streamwise direction.
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Figure 4.8. u — w vector plot of the two-dimensional turbulent structure in the x
- z plane for (a) ESC, (c) SSC and (e) EDC. (b,d,f) are the zoom-in and magnified
version corresponding to the framed areas on the left side

We first conduct two-dimensional analysis in the x — z plane. Prior field and
laboratory experiments have painted a consistent picture of turbulent structures in the
CSL in the x — z plane (e.g., Gao et al. 1989; Gardiner 1994; Finnigan and Shaw 2000).
The picture is one of intermittent occurrences of strong sweep motions and relatively
weak ejection events with ejections becoming more dominant with height. Each right
panel in Figure 4.8 is the magnified version of the framed area in its corresponding left

panel. The most noticeable feature is the dominance of strong sweep motions.
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Vertically, the strength of sweep motions peaks in the range of z/h c [1, 1.5] and
decreases gradually above, which agrees well with available findings (Finnigan and
Shaw 2000). The main effect of vegetation density on this two-dimensional structure is
the rise of the energetic sweep motions as the canopy becomes denser, and
consequently, the lower and middle levels of the canopy are filled by relatively weak
circulating flows. There is an interesting pattern hidden inside the canopy ranging from

r.,/h=-2h to r,/h=0. What we see for the ESC case is a broad and weak sweep; but

for SSC a clockwise-rotating vortex emerges with its centre approximately positioned at

Z/ h=0.2. As we focus on EDC, the centre of this vortex moves upward and forward to
(rx / h,z/ h) ~ (— 0.8, 0.65). It is clear that whether and where this type of vortex is

formed relates to the canopy density: the vortex is not formed in the cases of ESC and
VSC; however, as the canopy grows denser from SSC to EDC, the vortex is formed and
its centre approaches closer to the canopy top. This type of vortex was not found in the
two-dimensional analysis of the wind tunnel experiment (c.f. Figure 9 in Finnigan and
Shaw 2000), which is possibly due to the insufficient vertical sampling resolution in the
measurement procedure. It is unclear at this point whether this type of span-wise vortex
is generated by the Kelvin-Helmholtz instability, but it is noted that the centre positions
of vortices in Figure 4.8 are not coincident with the elevation of the occurrence of the
inflection point. This type of structure can be discerned in previous field studies (c.f.
Figure 5-6 in Gao et al. 1989).
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Figure 4.9. (a) A sample of the coefficients of the two-dimensional coherent
structures in the X — z plane a, for SSC; (c) the corresponding U — W vector plot of the
instantaneous turbulent velocity field to the coefficients in (a); (b) the mean skewness

of a, versus LAIL (d) the mean kurtosis of a, versus LAI

Finnigan and Shaw (2000) demonstrated that there is a very weak updraft or
ejection around 1, /h =5 following the strong sweeps in the two-dimensional coherent
structure in the X — 2z plane. However, it should be noted that the intermittent
occurrence of the sweep/ejection motions is reflected in the sign of the coefficients a,
rather than in the coherent structure itself. Figure 4.9a and c show @, and the u —w

vector plot of the corresponding instantaneous turbulent velocity field, respectively.
Given that the most energetic component of the instantaneous field (i.e., the truncated

reconstruction with only the first eigenmode) is a convolution of &, and the coherent

structures (see e.g. Moin and Moser 1989; Huang et al. 2009a), it makes sense that a

79



positive @, with a large amplitude (e.g., X/h ~ 26.5) corresponds to a strong sweep
motion while a negative &, with a large amplitude (e.g., X/h ~ 31.8) occurs at the same
X position as a strong ejection motion. Figure 4.9b and d plot the mean skewness Sk,
and kurtosis Kr, of a, against LAI, respectively. For ESC, Sk, ~ —0.006, which

suggests that the ejection motion slightly dominates over the sweep motion. However,

as the canopy density increases, Sk, turns to positive and increases, which

demonstrates clearly how the sweep motion begins to dominate and the extent of
dominance grows from SSC to EDC. As far as the kurtosis is concerned, it slightly
decreases from VSC to SSC as the canopy experiences a transition of the sweep/ejection
dominance, and then increases as the canopy becomes denser. This implies that the
denser canopy has a higher probability to generate exceptionally strong sweep or
ejection events as long as the sweep motion dominates. Overall, the above results, in
terms of the sweep/ejection motions are consistent with the prior results that the
vegetation density increases the extent of the sweep dominance within the CSL (Novak
et al. 2000; Poggi et al. 2004b). In addition to this consistency, this analysis has
demonstrated as well that the coherent structures extracted by the POD technique
contains only the geometry information, while other aspects of the coherent structures,
such as the strength, the sign of the velocity components and the role played in the

dynamics of canopy turbulence, remain associated with the coefficients.
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Figure 4.10. v — w vector plot with u contour of the two-dimensional turbulent
structure in the y — z plane for (a) ESC and (b) EDC

The two-dimensional structures in the Y —Z plane have been investigated more
extensively than that in the X —Z plane. The results have been similar within channel
flow (Moin and Moser 1989), ABL (Huang et al. 2009a), PML (Delville et al. 1999) and
CSL (Finnigan and Shaw 2000), consisting of a strong sweep or ejection motion framed
by a pair of counter-rotating vortices. Within channel flow and the ABL, the dominant

motion is an ejection while within the CSL sweep dominates. In Figure 4.10, the vortex
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pair is plotted in combination with the u-isolines for ESC and EDC. Both the vortex pair
and the u-isolines move upward from ESC to EDC. This is in agreement with the uplift

of the sweep motion and the span-wise vortex in Figure 4.8.

2.6 ‘/‘:

z/h

45° inclined

0.8

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
ry/h

Figure 4.11. Height of v-zero-crossings of the two-dimensional coherent
structures in the y — z plane versus ry for varying LAIs. The straight line with an angle
of 45° is plotted for reference
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The heights of the v-zero-crossings (i.e., vortex centres) are reported in Figure
4.11 for the five LAI cases. It can be observed that the vortex pair tends to move upward
as the canopy vegetation density increases. Also, the centre locations of vortex pair
appears to incline along the y direction at an angle of approximately 45°, much as what
was shown in the ABL (Huang et al. 2009a).

With three-dimensional coherent structures, we are able to demonstrate the
evolution of the X —Z plane structure along Yy in Figure 4.12, and the evolution of the
Y — Z plane structure along X in Figure 4.13, respectively.

In Figure 4.12, the u—W velocity vectors of the coherent structure are projected

onto different X -2 slices at I, / h= {O, 0.4,0.8, 1.2} for the cases of SSC and EDC,

respectively. Vectors of small amplitudes are magnified so that their directions can be
easily discerned. A clockwise-rotating vortex is consistently found in accordance with
the two-dimensional version. In the case of SSC, this type of vortex develops from a

strong vertical U gradient close to ground at r, /h =0 (Figure 4.12a), and then ascends
toaround z/h=0.55 at r, / h =1.2. The rise of the span-wise vortex is less significant

for the case of EDC: the centre of the vortex moves up from approximately z/h =0.55 at

r,/h=0to z/h=07atr,/h=12.
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Figure 4.12. u — w velocity vectors of the three-dimensional turbulent structure

ted onto the x — z plane for SSC (a, ¢, e, g) and EDC (b, d, £, h) at r /h
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r,/h=0.4 (c,d), r,/h=08 (e, f) and r,/h =1.2 (g, h), respectively

In Figure 4.13, the vV —W velocity vectors of the three-dimensional coherent

{~0.8,-0.4,0,0.4} for the

structures are projected onto different y —z slices at I, /h

cases of ESC and EDC, respectively. Since the educed coherent structures in the y -z

=0, only half planes of r, are showed. The

plane are symmetric with respect to I, / h
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results are similar with their counterparts within channel flow (Moin and Moser 1989)
and the ABL (Huang et al. 2009a) with the counter-rotating vortex pairs curving upward
along X. The comparison between EDC and ESC suggests that the vortices are

positioned higher at a same streamwise location I, in EDC than in ESC.
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Figure 4.13. v — w velocity vectors of the three-dimensional turbulent structure
projected onto the y — z plane for ESC (a, ¢, e, g) and EDC (b, d, f, h) at r, /h =-0.8 (a,

b), r,/h=-0.4 (c,d), r,/h=0 (e, f) and r, /h =0.4 (g, h), respectively
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Figure 4.14. Height of v-zero-crossings of the three-dimensional turbulent
structure at 1, /h = 0.4 against I, /h for canopies of varying LAIs

In order to quantify the effects of vegetation density on the locations of the three-
dimensional coherent structure, heights of v-zero-crossings of the vortices are identified
and plotted versus I, /h for the five cases of different densities in Figure 4.14. The span-
wise position I, / h =0.4 is used to obtain this result, but other reasonable alternatives
produce similar results. The streamwise vortex pairs curve up in all five cases with the
angle of inclination increasing across a broad range. Taking the example of ESC, this

angle is ~0° for r, /h c [-0.6,—0.4], and it increases to ~80° for r,/h = [0,0.2]. Greater
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vegetation density clearly tends to cause higher elevation of the vortex pair although the

cases of ESC and VSC are slightly entangled upstream of 1, /h =-0.4.

4.6 Conclusions

In this chapter, the effects of vegetation density on the flow statistics and the
large-scale turbulent structures within the canopy sublayer (CSL) were systematically
investigated using large-eddy simulation (LES). The results of our LES were compared
to those obtained from a flume experiment in Poggi et al. (2004b) and a wind tunnel
experiment in Brunet et al. (1994), Shaw et al. (1995) and Finnigan et al. (2000). The
overall consistency arising from this comparison verifies the ability of our LES in
producing canopy turbulence structures in good agreement with the field and
laboratory measurements.

The vegetation density has significant effects on flow statistics. A denser canopy
tends to result in: (1) a greater inflection strength for the vertical profile of the mean

streamwise velocity at the canopy top; (2) a smaller o, o,, and |Z'| inside the canopy; (3)

a higher efficiency of the vertical momentum transport across the canopy-atmosphere
interface; (4) a greater amplitude of skewness and kurtosis in the upper part of the
canopy; (5) a smaller amplitude of two-point integral length scale; (6) a higher
longitudinal convection velocity (scaled by the mean streamwise velocity) inside the

canopy.
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It has been shown that as the vegetation density increases from an extremely
sparse canopy to an extremely dense canopy, a series of flow statistics properties of the
CSL, such as the (U) inflection and the sknewness of velocity components, change from a
typical value of a PML to that of a rough-wall boundary layer gradually, reflecting that
canopy turbulence transitions from boundary-layer-like to mixing-layer-like. Also, the
ratio of the streamwise separation between coherent eddies, A, to the shear length, L,
converges to the value computed from experiments and numerical simulations in the
fully-developed PML as the LAl increases. An exception is the u —w correlation
coefficient r«w , whose magnitude for a dense canopy is noticeably higher than that of a
rough-wall boundary layer and that of a PML. A reasonable hypothesis to interpret this
is that the ability of vertical momentum transport of the two turbulence sources tends to
be additive in canopy turbulence.

The large-scale coherent structures obtained from the LES were compared to
those from the wind tunnel in Finnigan and Shaw (2000). A number of similarities arise
from this comparison: (1) the one-dimensional coherent structures exhibit strong
inflections at the canopy top, and carry over 50 percent of the total turbulent variations
of U and W; (2) on the X —Z plane the coherent structures appear as strong sweep
motions with the most energetic portion in the upper part of the canopy and above the

canopy top up to z/h ~2; (3) on the y —z plane the coherent structures are composed

of a strong sweep motion framed by a counter-rotating vortex pair. In addition to these
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similarities, many features of the coherent structures have also been demonstrated: (1) a
spanwise vortex is found inside the canopy for the coherent structures projected onto
the X—Z plane, and this vortex ascends along Y ; (2) the streamwise vortex pair appears
as elliptical cross-sections inclined at a tilt angle of approximately 45 degree in Y ; (3) the
streamwise vortex pair curves upward with an inclination angle up to ~ 80 degree in X.
The effect of the vegetation density on the coherent structures was systematically
investigated. As the canopy becomes denser, (1) the inflection in the one-dimensional
coherent structures is intensified with the span-wise velocity component most sensitive
to the density change; (2) the percentage that the coherent structures contribute to the
turbulent variations of U and W does not have a significant change; (3) the peak range
of the amplitude of the sweep motion in the X —Z projected coherent structure as well as
the spanwise vortex move up; (4) the streamwise vortex pair in the y —Z projected
coherent structure is more elevated; (5) the tilt angles of the streamwise vortex pair in

both X and Yy do not vary significantly.
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5 Across a Vegetation Discontinuity
5.1 Introduction

It has been shown that landscape fragmentation is one of the more ubiquitous
characteristics of the modern world (Laurance 2004). Such fragmentation significantly
affects, among other things, the way in which mass and momentum are exchanged
between the land and the atmosphere across very broad spatial scales. In the meso-
scales (O(10 km)), the area-aggregated fluxes are strongly influenced by organized
motion that is driven by distinct surface contrasts such as irrigated areas in an arid
region (e.g. Ookouchi et al. 1984; Michels and Jochum 1995; Jochum et al. 2006); and, at
boundary layer scales (100 m — 10 km), it has been shown that the regional
evapotranspiration models should take account of the effects of spatial variability in
surface conditions on the dynamics of the atmospheric boundary layer (ABL) to achieve
reasonable performance (e.g. De Bruin 1989; Meijninger et al. 2006). Some studies (see
e.g. Albertson 1996; Bou-Zeid et al. 2007) have attempted to examine these transitions
with patchworks of roughness length in large-eddy simulation (LES). However, as one
of the most fundamental and representative scenarios in fragmented landscapes,
vegetation transition between forested canopies and non-forested areas cannot be
simply simulated by change of roughness length because the canopy morphology
cannot be neglected, nor fully represented by a single roughness length (e.g. Cassiani et

al. 2008).
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The overall behaviour of turbulent flow in and just above the canopy airspace
across the clearing-to-forest transition has been characterized as deceleration of the
streamwise mean flow, an upward deflection of the mean flow, suppression of second-
order moments of velocity components, and a marked increase of velocity skewnesses
(Yang et al. 2006). Dupont and Brunet (2008a) studied the enhanced gust zone (EGZ)
around the canopy top at several heights downstream of the leading edge of the forest.
They also investigated the effects of canopy morphology on the wind flow across a
forest edge, and concluded that the distance downstream needed for the flow to reach
equilibrium decreases for increasing canopy density. Cassiani et al. (2008) studied the
effects of canopy density on the bulk flow properties across a forest-to-clearing
transition. They observed, in LES results, two mean flow recirculation zones for dense
canopies: one is in the clearing area downstream of the forest-to-clearing trailing edge;
another is inside the forest area. A conceptual model was proposed to interpret the
mean velocity in the forest-to-clearing transition area at an intermediate canopy density
as a superposition of ‘exit flow” and back-facing-step-like flow, with the weights in the
superposition depending on canopy density.

On the other hand, it is widely recognized that the majority of mass, momentum
and energy transport between the land and the atmosphere is carried by organized
turbulent motions, i.e., coherent structures (e.g. Wilson 1996; Katul et al. 2006a; Huang et

al. 2009a). It has been shown that within the ABL the coherent structures are composed
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of a strong sweep or ejection motion framed by a pair of counter-rotating vortices
oriented generally along the streamwise direction (Huang et al. 2009a). This combined
flow pattern is responsible for over 30 percent of the total TKE, and curves up in the
streamwise direction with the maximum tilt angle around 70° (Huang et al. 2009a). This
structure has been compared to the longitudinal roll vortex observed in field studies
(Wilson 1996).

The coherent structures within the canopy sublayer (CSL) have been
demonstrated to be similar to those found in the ABL in the sense that they also consist
of a strong sweep or ejection motion framed between a pair of streamwise vortices
(Finnigan and Shaw 2000; Huang et al. 2009b). However, the coherent structures
represent a greater fraction of the TKE in the CSL than in the atmospheric surface layer
(ASL) (Finnigan and Shaw 2000). Huang et al. (2009b) investigated the effects of
vegetation density on the morphology of the coherent structures within a horizontally
homogeneous CSL. It was shown that as the canopy vegetation density increases, (1) the
vertical momentum transport at the canopy-atmosphere interface is more efficient; (2)
the inflection of the mean streamwise velocity becomes stronger; and (3) the coherent
structures are positioned higher and closer together in the streamwise direction.

Although a fair amount of information has been uncovered about coherent
structures within both the general ABL and the CSL, little is known about how the

coherent structures evolve across a strong vegetation discontinuity. Provided
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sufficiently large fetches for both the forested canopy part and the forest clearing part,
the coherent structures in the canopy side should converge to those within a pure CSL
‘far enough’ from the leading edge, and the coherent structures in the clearing side
should converge to those within a pure rough wall boundary layer. In this chapter, the
fundamental morphological characteristics of the coherent structures across a vegetation
discontinuity are explored using LES. We focus on how the following “macro-
descriptors” of the coherent structures change as a function of the fetch: (1) the
organization of the turbulence represented by the coherent structures, (2) the strength of
inflection of the mean streamwise velocity, and (3) the elevation and orientation of the
vortical structures. The effects of the ratio between the length of the forest and the
length of the clearing under a given streamwise periodicity on the spatial evolution of

the coherent structures are investigated as well.

5.2 Basic Flow Statistics

Before investigating the morphological features of the coherent structures across
the forest-clearing edge, the basic flow statistics of the numerical experiments are

examined. Figure 5.1 shows the x — z plane variations of the mean streamwise velocity

(Uyy scaled by its corresponding friction velocity u- defined as U’ = —<T MR Z=h>yt ,

where 7is the total (resolved and SGS) stress. Cassiani et al. (2008) observed a
recirculation zone downstream of the forest-to-clearing edge for the cases that they

investigated (LAl =4, 6 and 8, all with r = 1), which is of notable ecological significance
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as it affects seed and pollen deposition in colonized gaps. This recirculation zone is
consistently observed in Figure 5.1 over all three different r values, as characterized by
negative streamwise velocities (marked by grey shaded areas). In all the three cases, the
isolines are closer to each other above the forest area than above the clearing area, which
is a consequence of the drag force imposed by the canopy elements and the constraint of

the continuity equation.
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Figure 5.1. Contours of the mean streamwise velocity (u), scaled with u- for
different forest-clearing ratios: r = (a) 1/3; (b) 1; (c) 3. Grey areas correspond to negative
velocity and the positions where the forest ends are marked by dashed lines
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A feature shared by the three cases is that it takes a much greater distance for the
mean velocity to reach equilibrium following the forest-to-clearing transition compared
to the clearing-to-forest transition, which is consistent with the analysis of Albertson and
Parlange (1999b) for the smooth/rough surface transition. For instance, from Figure 5.1a
it can be noted that a fetch of at least 20/ is needed to reach equilibrium for (u)y:
downstream of the forest-to-clearing trailing edge; however, based on Figure 5.1c it is
evident that it takes less than 10i downstream of the clearing-to-forest discontinuity for
(u)yt to reach equilibrium. As r increases from 1/3 to 3 the mean wind flow generally

becomes slower, as evidenced by the rise of the isolines of (u)y. Taking the example of

<u>yt /u* =5, itis positioned around z/h = 1.2 for r=1/3, and 1.5 for r = 3 in the forest

area; around z/h = 1.2 for r = 1/3, and 1.8 for r = 3 in the clearing area.

Figure 5.2 shows similar contour plots as Figure 5.1 but for (w) (scaled by u).
Consistent with previous findings in both field (e.g., Irvine et al. 1997) and numerical
(e.g., Yang et al. 2006; Cassiani et al. 2008) experiments, a strong downward wind flow is
found downstream of the forest-to-clearing trailing edge and an even stronger upward
wind flow around the clearing-to-forest leading edge. The results at the forest-to-
clearing transition appear to be insensitive to r. Note that close to the edge and ground a
small region of positive (w)y: exists approximately within the range xpc/h < (-0.5, 1.5) in
the X direction and z/h < (0, 0.8) in the Z direction, marking the same recirculation zone

previously defined from (u)y: in Figure 5.1.
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Figure 5.2. Contours of the mean vertical velocity (W), scaled with u- for
different forest-clearing ratios: r = (a, b) 1/3; (c, d) 1; (e, f) 3: contours of positive values
are drawn in thin solid lines and negative values in thick dotted lines

The results for the clearing-to-forest transition (Figure 5.2b, d, f) show that the
location of the upward mean flow is insensitive for r. However, the strength of the

upward mean wind flow does vary with r. The maximum amplitude of <W>yt / U.

decreases from ~ 0.8 to ~ 0.6, as r increases from 1/3 to 3. This is consistent with what

was found from Figure 5.1: a smaller r generates a stronger inflow upstream of the
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clearing-to-forest leading edge, giving rise to a stronger mean vertical transport across

the clearing-to-forest transition.

z/h

z/h

XCZT/ h

Figure 5.3. Contours of the total stress (the resolved stress and the SGS stress)
scaled with u? in the forest-to-clearing transition (a) and the clearing-to-forest

transition (b) for r=1

In Figure 5.3 the total stress ris presented at both the forest-to-clearing and the
clearing-to-forest transitions for r = 1. The most pronounced features are the

establishments of internal boundary layers downstream of the two edges. The isolines
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in the upper part of canopy keep descending across the forest-to-clearing transition due
to the mean downward transport until = 34 downstream of the trailing edge. Farther
downstream, the isolines begin to climb and separate significantly from each other,
keeping with the establishment of a classic rough wall boundary layer over the surface
of the clearing. The process is similar across the clearing-to-forest transition as can be
seen in Figure 5.3b. The isolines begin to climb as a direct consequence of the upward
transport of the mean flow surrounding the leading edge. Downstream of the leading
edge, a new internal boundary layer is quickly established which is reflected by the
ascension and stabilization of the isolines (e.g. T/ u? =-1). A comparison of the stress
results with the results of the mean velocities suggests that a greater downstream
distance is needed for the stress to adjust to equilibrium than that needed for the mean
velocities to equilibrate yet their probability density functions (PDFs) are closely
associated in the equilibrium sublayer (e.g. Chu et al. 1996), which agrees with Yang et
al.(2006).

In consideration of the fundamental importance of the inflection point in the
mean streamwise velocity profile to generate coherent structures within canopy

turbulence (see e.g. Raupach et al. 1996; Finnigan 2000), the curvature of (u)y in the

vertical direction is examined. (U)y is scaled by its value at the treetop U, = <u>yI |,_, as

u (X, Z) = <u>yt (X, Z)/uh (X) Then the curvature is calculated as

S
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k(x,z)=9,0,u, / (1+ (0,u,) )3/2 . Compared to the traditional definition of curvature,
which only utilizes the amplitude of k(X, Z), the information of the sign is kept here to

indicate the concavity or convexity in the vertical profile of the mean streamwise

velocity.

Figure 5.4. Colour plots of curvature distribution of (u),:/ux on the x — z plane
for (a) r=0.33; (b) r=1; (c) r=3. The black line indicates the forest-to-clearing
transition
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It is clearly visible in Figure 5.4 that the forest area and the clearing area are
represented by different patterns of curvature profiles. In the well-developed region of
the forest area, the curvature is negative above treetop level with the amplitude peaking
around z/h =1.1. Below the treetop the curvature is positive and the amplitude peaks
approximately at z/h =0.6. In between, there is an inflection point around the treetop,
connected with the generation of Kelvin-Helmholtz instabilities and large-scale coherent
structures in the CSL (see e.g. Raupach et al. 1996). The pattern of the curvature in the
well-developed region of the clearing area is much simpler with significantly negative
curvatures below z/h = 0.5 representing the primary instability generated by the
interaction between the mean flow and the clearing surface.

Because of the upward mean flow transport, the features of curvature in the
clearing-to-forest adjustment zone (xcr (0, 10h)) vary significantly from those in the
equilibrium zone (i.e., xc2r> 10h): (1) the positive curvature is much stronger in the
adjustment zone than in the equilibrium zone and its peak amplitude is more elevated (
z = 0.7h); (2) the position of the peak negative curvature moves upward in the
adjustment zone with a distortion angle similar to that of the mean wind flow. The
increasing height of both the positive and negative curvature locations in the adjustment
zone of the forest results in the corresponding increasing elevation of the inflection and
the Kelvin-Helmholtz instabilities. Note that the elevated primary instabilities reside in

approximately the same region as the EGZ demonstrated in Dupont and Brunet (2008a).
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As r increases, the peak amplitudes of both the positive and negative curvatures in the
adjustment zone decrease, which then cause the strength of Kelvin-Helmholtz
instabilities to decrease. This is consistent with the conclusion drawn from Figure 5.1
and Figure 5.2 that at a smaller r the inflow upstream of the leading edge is stronger. In
summary, the comparison of the basic flow statistics with previous results supports the

general fidelity of the numerical experiments.

5.3 Quadrant Analysis

With the LES runs shown to be consistent with previous results, we proceed to
study the evolution of coherent structures across the vegetation discontinuities. Among
all the coherent structures reported within the CSL and the ABL, the sweep-ejection
sequence is probably one of the most common forms owing to the wide application of
the quadrant-hole technique as well as the substantial role it plays in momentum
transport. What has been consistently found in canopy studies is that the dominant
contributor of momentum transport within canopy and around the canopy top is sweep
while ejection begins to dominate as it goes upward from the canopy top (Shaw et al.
1983; Finnigan and Shaw 2000; Poggi et al. 2004b). Similar conclusion has been drawn
for the ABL that the dominant motion shifts from ejection to sweep as the ground
surface is approached with the height of sweep-ejection balance depending on the

surface roughness (Raupach 1981; Katul et al. 2006a).
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Figure 5.5. Colour plots of ASo on the x — z plane for (a) r=0.33; (b) r=1; (c) r=
3. The black line indicates the forest-to-clearing transition

As a first step towards understanding the significance of the coherent structures
in momentum transport, quadrant analysis is conducted to quantify the relative
importance of sweep and ejection across the forest-to-clearing transition and the

clearing-to-forest transition. To this purpose, we calculate ASo(x, z), which is defined as

<ulwl>yt,|v _<ulwl>yt,||

AS,(x,2)= )

, where <U'W'>y denotes the fraction of <U'W'> "

t, IV
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contributed by all the sweep events and similarly <U'W'>yt the fraction of <u'w‘> " by all

Al
the ejection events (see e.g. Raupach 1981; Poggi et al. 2004b). From the definition it is
clear that positive ASoimplies that sweep dominates over ejection and negative ASo is for
the contrary. In Figure 5.5 the result of ASo is demonstrated for three cases of different r
values. Consistent with previous results in the ABL and the CSL, sweep is dominant
below z/h = 2 in the equilibrium zone of the clearing area, and in the equilibrium zone of
the canopy area the dominant motion shifts from sweep to ejection as it goes up from the
canopy top. The mean flow has a marked effect on the sweep-ejection dominance across
the transitions. Immediately downstream of the trailing edge of the forest, the
dominance of ejection in partial vertical range of [h, 2h] continues as the mean flow
moves downward. In the adjustment zone downstream of the leading edge of the forest,
the mean flow carries upward the sweep-dominant turbulence which is generated as the
mean flow hits the canopy edge. In addition to the effect of the mean flow, it is
interesting to observe that the sweep-dominant region extends higher in the equilibrium
zone of the clearing area than in the equilibrium zone of the canopy area. This can
probably be explained by the vertical length scale of turbulence in the two areas. In the
canopy turbulence, the key length scale has been identified as the shear length (defined
as the mean streamwise velocity divided by the vertical gradient of the mean streamwise

velocity at the canopy top) (Raupach et al. 1996), which is much smaller than the
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boundary layer depth in the ABL. Finally, a larger r tends to weaken the dominance of

both sweep and ejection.

5.4 One-Dimensional Analysis

With the relative importance of sweeps and ejections quantified, we proceed next
to reveal the morphological features of the coherent structures. Note that the POD
technique itself is not able to distinguish the dominance of sweep and ejection due to its
nature of optimizing the variance rather than the covariance (see Holmes et al. 1996;

Huang et al. 2009b). The POD modes l//(m) sequentially represent the coherent

structures as they optimally contribute the largest single fraction of the TKE integrated
over the region of interest (e.g. Moin and Moser 1989; Finnigan and Shaw 2000; Huang
et al. 2009a, b). We first study the 1-D coherent structures in the vertical direction in
order to show explicitly the evolution of the inflection of the coherent structures across
the vegetation discontinuities. Then, the results of 2-D coherent structures in the x —z

plane and in the y — z plane are demonstrated, respectively.

1)

The first one-dimensional modes ;~ at six different locations downstream of

the forest-to-clearing trailing edge are demonstrated in Figure 5.6. The eigenmodes wi(l)

are scaled by their values at Z =h (denoted as l//i(ﬁ) ), where i is the velocity index, to

clarify the comparison. Inside and immediately downstream of the forest canopy (e.g.,

X e / h=0 and X, / h=0.79), l//l(l) is characterized by a strong inflection point, which
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1)

peaks around Z/ h=1.2. Farther downstream, both y; (1)

and y,’ become gradually less
inflected. There is no clear trend for the inflection of l//él); however, an examination of
the elevations at which t//él) reaches its peak values reveals that these decrease until

X;,. =3.14, and then increase. Since the vertical velocity is more suitable to reflect the
active turbulence than the streamwise and spanwise velocities in the lower part of the

ABL (see e.g. Katul et al. 1996b; Raupach et al. 1996), this suggests that the coherent

structures move down first and then move up downstream of the trailing edge.
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Figure 5.6. Evolutions of the first one-dimensional eigenmodes of (a) u; (b) V;
(c) W scaled with their corresponding values at Z = h in the forest-to-clearing
transition for r =0.33

Figure 5.7 shows the same POD modes but for four different locations
downstream of the clearing-to-forest leading edge. The inflection emerges immediately

downstream of the leading edge and is strengthened as it goes farther for all the three
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velocity components. Consistent with the mean flow results is that it takes a much

@

shorter distance for y;~ to reach equilibrium from clearing-to-forest than vice-versa.
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Figure 5.7. Evolutions of the first one-dimensional eigenmodes of (a) U; (b) v;
(c) W scaled with their corresponding values at z = h in the clearing-to-forest
transition for r =3

In addition to revealing the morphological features of the coherent structures, it
is also of interest to understand how important these structures are. One measure
frequently used to quantify this importance is the percentage that the first eigenmode

represents of the total TKE, defined as p(i) = /1“)/2 A0 (e.g. Moin and Moser 1989;

Finnigan and Shaw 2000; Huang et al. 2009a, b). Figure 5.8 demonstrates p(i) for the
tirst two eigenmodes and the three different » values. Downstream of the forest-to-
clearing transition, p(l) decreases quickly and then increases with the location of the

minimum falling in the region 2 < xp/h <4, which implies that the flow loses its
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organization to some extent immediately downstream of the canopy edge and then
redevelops gradually farther downstream as the mean flow begins to more intensely
and consistently interact with the clearing surface. The p(l) have not converged to their
equilibrium values for the cases r =1 and 3 due to their inadequate fetches downstream
of the trailing edge.

@

0.4

p(1)

0.35

0.3

0.2

g 015

0.1

Figure 5.8. Evolutions of the relative contributions of (a) the first and (b) the
second one-dimensional eigenmode to the total TKE along the streamwise direction

p(l)

begins to decrease around 5h upstream of the clearing-to-forest leading
edge, suggesting that the organization of the turbulence is being destroyed gradually in

this region. Downstream of the clearing-to-forest edge, p(l) then increases,
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corresponding to the formation process of the coherent structures from Kelvin—
Helmbholtz instabilities. Note that unlike p(l), p(z) keeps increasing across the clearing-
to-forest edge from ~ 2h upstream to ~ h downstream. Referring back to Figure 5.2, the
position at which p(z) reaches its peak value (xef/h = 1) corresponds to where the
amplitude of <W> ” is the maximum in the forest area, which indicates that the

()

“secondary coherent structures” (to coin a term) represented by y'*’ arise from

instabilities associated with the vertical transport of the mean wind.

5.5 Multi-Dimensional Analysis

Compared to the one-dimensional coherent structures investigated in the
previous subsection, the two-dimensional coherent structures provide additional
geometric information in the streamwise or the spanwise direction.

Two separate POD analyses have been carried out to educe the two-dimensional
coherent structures on the x — z plane and the y — z plane, respectively. For the
decomposition on the y — z plane, the POD analysis is performed in the frequency space
and the method of u-compactness is used for phase recovery, similarly as adopted in
Finnigan and Shaw (2000) and Huang et al. (2009b). However, for the decomposition on
the x — z plane, it is unnecessary to perform the POD analysis in the frequency space
because the streamwise direction is inhomogeneous in the transition areas of our case

due to the vegetation discontinuity (see Holmes et al. 1996). Instead, the two-
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dimensional coherent structures on the x — z plane have been educed directly from the

physical space.
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Figure 5.9. Two-dimensional coherent structures projected onto the x-z plane (r
= 0.33) for (a) the forest-to-clearing transition; (b) the framed area in (a) with the arrow
length magnified (nonuniformly) to reveal more clearly flow directions
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Figure 5.10. Two-dimensional coherent structures projected onto the x-z plane
(r=0.33) for (a) the clearing-to-forest transition; (b) the framed area in (a) with the
arrow length magnified (nonuniformly) to reveal more clearly flow directions

The two-dimensional coherent structures projected onto the x — z plane are

shown in Figure 5.9 for the forest-to-clearing transition and in Figure 5.10 for the

clearing-to-forest transition. In consideration of the result regarding the relative

importance of sweeps and ejections in Figure 5.5, the orientation of the coherent

structure in Figure 5.9 is forced to be reconciled with ejections while in Figure 5.10 it is

consistent with sweeps. Note that the velocity components revealed here are turbulent,
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which should be distinguished from the mean flow velocities shown in Figure 5.1 and
Figure 5.2. Finnigan and Shaw (2000) performed a POD analysis on turbulent velocities
measured in a wind tunnel with a horizontally uniform canopy (i.e. no discontinuity as
studied here) and found that the coherent structure in the x — z plane for a CSL consists
of a weak updraft and a strong sweep. A similar analysis was conducted by Huang et
al. (2009b) through numerical simulations with similarly homogeneous canopies and a
spanwise oriented vortex was observed below the treetop for the cases with dense
canopies. It is found here that in both the forest-to-clearing transition and the clearing-
to-forest transition the dominant motion is characterized by a cluster of sweeps or
ejections. A spanwise vortex is observed inside the canopy side of the forest-to-clearing

transition with the centre positioned around (Xf ” / h, z/ h) = (- 5.5, 0.4). The coherent

structures have weaker downward motion in the forest area than in the clearing area at

the same vertical level in Figure 5.10. Downstream of X, / h = 2 inside the canopy, the

dominant motion is an updraft.

In addition to demonstrating the two-dimensional coherent structures in the x —z
plane, the two-dimensional coherent structures in the y — z plane are shown in Figure
5.11 for the forest-to-clearing transition and in Figure 5.12 for the clearing-to-forest
transition. The orientation of the coherent structures is forced to be consistent with

sweeps for convenience of comparison.
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Finnigan and Shaw (2000) showed that within a CSL the two-dimensional
coherent structure in the y — z plane consists of a strong sweep motion framed by a pair
of counter-rotating vortices. Huang et al. (2009b) confirmed the existence of the double
roller structure. Furthermore, it was concluded in Huang et al. (2009b) that the
streamwise vortex pair is systematically positioned lower in case of sparser canopies.
Similar structures were found within the ABL (Huang et al. 2009a).

The structural pattern of a strong sweep motion framed by a pair of counter-
rotating vortices is consistently observed in this work through the forest-to-clearing
transition and the clearing-to-forest transition. However, the vertical position and
spanwise orientation of the vortex pair varies significantly across the vegetation
discontinuity. Figure 5.11 shows the two-dimensional coherent structures in the y - z
plane at three different locations downstream of the forest-to-clearing trailing edge (xp/h
=0, 2.95, and 10.21). Two trends in the X direction with respect to the vortex pair can be
noted from this figure: (i) the vortex pair descends first following the transition to a
clearing and then ascends; (ii) the angle of inclination of the vortex in the spanwise
direction decreases. Figure 5.12 presents the two-dimensional coherent structures in the
y — z plane at three different streamwise locations downstream of the clearing-to-forest
leading edge (x2/h =0, 1.96 and 3.93). Two pronounced trends emerge in Figure 5.12: (i)
the vortex pair descends downstream of the leading edge; (ii) the angle of inclination of

the vortex in the spanwise direction increases.
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Figure 5.13. (a) Elevations of the zero crossings of v at I’y/h =0.2; (b) Tilt

angles of the centres of the counter-rotating vortices in the y —z plane coherent

structures, estimated by measuring the elevations of the zero crossings of vV at
ry/h =0.2 and ry/h =1.77

In order to quantify the evolution of the geometry of the coherent structures
across vegetation discontinuity, the vertical position of the V zero-crossing z, at
r / h~0.2 is plotted against X;,. in Figure 5.13a, where z, is selected as a measure of

the vertical position of the vortex pair (another alternative is to use the w zero-crossing)

and ry represents the departure from the centre of the coherent structure in the spanwise
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direction. The equilibrium (i.e. at long fetch) value of z,/h in the canopy area increases
from 1.2 to 1.4 as r increases from 0.33 to 3. Downstream of the trailing edge of the
forest, z,/h begins to decrease to a minimum of ~ 0.8 around xzc/h = 3, revealing that the

coherent structures move down along with the mean flow. Interestingly, the streamwise

location where the minimums of z,/h take place is consistent with its counterpart for
the minimums of p (g5 /N =2 forr=033 and 3 and X, /h~4 forr=1). This

consistency implies that the coherent structures keep losing their organization in the
readjustment region downstream of the trailing edge, which makes sense as in this
region the mean flow interact less with the canopy elements, and the clearing surface,
causing the coherent structures to deform. Farther downstream, the mean flow begins
to interact with the clearing surface, generating instabilities necessary for maintaining
fresh and consistent coherent structures. Consequently, the coherent structures
represent a greater fraction of TKE as evidenced by the increase of p(l) and begin to

climb until an equilibrium value z,/h ~1.8 is reached. This is also in good agreement

with the interpretation for Figure 5.3a that an internal boundary layer begins to grow at
xpe/h = 3, and for Figure 5.6c that the elevation at which lygl) reaches its peak value is

lowest at xpc/h = 3. Downstream of the leading edge the vortex pair begins to ascend

slightly along with the mean flow until xz¢/h ~ 1, and then fall sharply with z,/h

decreasing from = 2 to its equilibrium value over the canopy (i.e. from 1.2 for r = 0.33 to

116



1.4 for r = 3). Note that the organization of the coherent structures keeps increasing in
the readjustment zone downstream of the leading edge (c.f. Figure 5.8).

The vortex pair also changes its spanwise tilt angle across vegetation
discontinuity, as shown in Figure 5.13b. This angle is estimated by measuring the

orientation of the line passing the V zero-crossings at I, /h ~0.2 and r,/h~1.8. As

shown in Huang et al. (2009b), this angle is close to 45 degrees within a homogeneous
CSL for varied vegetation densities. Downstream of the trailing edge, it gradually

decreases here to ~ 10 degrees.

5.6 Conclusions

In this chapter we have systematically examined the coherent turbulent
structures across the forest-to-clearing transition and the clearing-to-forest transition
through the use of the POD technique applied to LES results.

The mean flow is characterized by a pronounced downward movement and a
recirculation zone above the clearing surface across the forest-to-clearing transition and
a strong upward movement across the clearing-to-forest transition. The existence of the
recirculation zone implies that there is always a mean flow above the clearing surface
advecting toward the forest side regardless of the direction of the driving pressure
gradient, which has a significant effect on seed and pollen dispersal (Cassiani et al. 2005;

Cassiani et al. 2007).
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The vertical movements of the mean flow across the transitions influence the
turbulence in these regions directly in the sense that the turbulence downstream of the
transitions remains similar to some extent to the turbulence upstream. The results of
quadrant analysis reveal that the trend of the sweep-ejection dominance continues
immediately downstream of the two transitions. The vertical profiles of the coherent
structures immediately downstream of the transitions resemble those upstream of the
corresponding transitions. Also, the streamwise vortex pair has been consistently
observed across the transitions. However, the turbulence immediately downstream of
the transitions also varies significantly from the turbulence upstream. Downstream of
the transitions new boundary layers are being formed. The degree of organization of the
turbulence, which is described by the percentage that the coherent structures represent
of the total TKE, decreases sharply immediately downstream of the trailing edge of the
forest as the mean flow drops. Approximately 31 downstream of the trailing edge of the
forest, the organization of the turbulence begins to be strengthened as the mean flow
interacts more with the clearing surface and the coherent structures develop.
Immediately downstream of the leading edge of the forest, the organization of the
turbulence begins to increase as a result of the formation of Kelvin-Helmholtz
instabilities.

Although the streamwise vortex pair has been consistently observed across both

the transitions, its morphological features do change as a function of the fetches. Its
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height decreases and then increases as it goes farther downstream of the trailing edge of
the forest, much as the organization of the turbulence. Downstream of the leading edge
of the forest, the height of the vortex pair decreases sharply to its equilibrium value in
the canopy area due to the fundamental difference in the formation mechanism of the
turbulence in the canopy area and in the clearing area. A larger r systematically
enhances the height of the vortex pair at the same distance downstream of both

transitions.

119



6 On Scalar Dissimilarity

6.1 Introduction

Similarity in turbulent transport of mass (e.g. water vapour and COz), heat and
momentum is widely assumed in models and interpretation of micro-meteorological
measurements. For example, virtually all flux footprint models, which describe the
functional relationship between the distribution of a source/sink area of a scalar and the
flux of this scalar at a measurement point, assume that all scalars behave similarly (see
e.g. Leclerc and Thurtell 1990; Horst and Weil 1992; Vesala et al. 2008; Hsieh and Katul
2009). Moreover, turbulent Schmidt numbers (Prandtl number in case of temperature)
are traditionally assumed to be unity under neutral stability conditions (Oke 1987;
Garratt 1992), implying the internal mechanism in turbulent scalar transfer is similar to
that of turbulent momentum transfer.

However, in the CSL field experiments suggest that scalar similarity is generally

violated. The correlation coefficient between two scalars (s1 and s2) I, ; is commonly

used as a measure to evaluate the degree to which these two scalars conform to the
similarity assumption (e.g. Albertson et al. 1995; Katul et al. 1995; Hsieh et al. 1996; Katul
et al. 1996a; Hsieh et al. 2008; Guo et al. 2009). Its value is expected to be £1 if the
assumption of scalar similarity holds perfectly. Field measurements conducted in the

CSL do not support scalar similarity, evidenced by significant departures of I, (g for

humidity and @for potential air temperature) (e.g. Katul et al. 1995; Lamaud and Irvine
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2006) and r, (c for CO2 concentration) (e.g. Scanlon and Sahu 2008; Thomas et al. 2008)

from +1. Also, the Prandtl number is often found to be as low as 0.5 within the CSL
(Raupach and Thom 1981; Raupach et al. 1996; Harman and Finnigan 2008). De Bruin et
al. (1999), Cava et al. (2008), and Katul et al. (2008) reviewed the causes for the
dissimilarity between g and #and concluded that heterogeneity in the sources/sinks of
scalars is a common one in addition to the influence of entrainment and non-steadiness
of the data analyzed (though the latter two influences cannot be readily disentangled
using single point measurements). Williams et al. (2007) investigated how variations in
surface heterogeneity induced by seasonal changes affect the extent to which the
application of Monin-Obukhov similarity theory (MOST) is weakened in the CSL and
concluded that senescence exacerbates the violation of MOST applied to the CSL and
also degrades correlations between scalars across a wide range of eddy sizes due to
production of heterogeneity in scalar sources/sinks.

Large-scale coherent structures have been shown to contribute to the majority of
the scalar and momentum fluxes across the canopy-atmosphere interface (e.g. Gao et al.
1989; Katul et al. 1998; Finnigan and Shaw 2000; Thomas and Foken 2007), thereby
potentially ‘encoding’ significant information about the production term in the scalar-
scalar source-sink dissimilarity. Our hypothesis is that their geometric attributes and
their coupling to the source-sink scalar distribution can explain the onset and degree of

this dissimilarity. If these coherent structures are large and tightly coupled to scalar
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sources or sinks, then they are likely to imprint any scalar-scalar source dissimilarity
originating from within the canopy onto micro-meteorological measurements in the
CSL. To test this hypothesis, a large-eddy simulation (LES) model is used with carbon,
water and heat exchange included along with all key canopy biophysical considerations
to estimate scalar sources and sinks inside the canopy volume. The proper orthogonal
decomposition (POD) technique is conducted to quantitatively educe the 3D coherent
structures following the approach of Huang et al. (2009a, b, 2010). The role of these
coherent structures in explaining scalar dissimilarity is then examined with a focus on
the following research questions: (1) To what extent is the dissimilarity in the source-
sink profiles of the scalars reflected in the geometric attributes of the coherent
structures? (2) To what extent is the dissimilarity of turbulent Schmidt numbers from
unity potentially explained in terms of the degree of organization of coherent structures?
(3) To what extent do the coherent structures describe other major characteristics

connected with the sweep-ejection cycle in the scalar and momentum transport?

6.2 Scaling Analysis

Consider two scalars s1 and sz (e.g. from ¢, g and 6) emitted from sources (or

removed by sinks) in a stationary and horizontally homogeneous mean canopy flow.

The budget equation for their covariance <Sl's2 '> ot without subsidence and for

stationary conditions is expressed as (see Stull 1988; Garratt 1992; Katul et al. 2009),
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sy, s, o(w's,'s,") ©6.1)
- <W Sl>xytTyt+<W S, >xytTyt _285152 _Tyt

(S —
1

where < >X .« Tepresents a temporal and horizontal average and the prime implies a

departure from this average, Term I is the production term, Term II is the dissipation

term and Term III is the turbulent transport term.

6.2.1 Functional relationship between (s's,) ~and sources/sinks

To illustrate the basic connection between vegetation sources/sinks to <Sl' S, '>th ,

we employ standard closure models for the dissipation which is written as:

85152 - %<Sl ' S I> xyt” (6.2)

and the transport term written as

o a<81'52'>xyt
(W's,'s, )th = —Q@T, (6.3)

on\Y2 . . .
where Q = <ui u >th is the square root of the turbulent kinetic energy, 4, =a,l,, and

Ay =a,l,, with || being the mixing length inside the canopy and @, and a, two
constants (Finnigan and Belcher 2004; Katul et al. 2006b; Katul et al. 2009). Substituting

(6.2) and (6.3) into (6.1), we obtain a second-order ordinary differential equation (ODE)

for <Sl'sz'>xyt:
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52<Sl'32'>x oQ 5<81'Sz'>X 2Q
;LlQaZ—zﬂ+ ﬂ‘l ETYt_Z_s<Sl S2 >xyt

(6.4)

L 0ls), oy ols),
:<W S >xyt oz . +<W S >xyt oz : ’

The mathematical properties of this ODE were studied elsewhere (Katul et al.
2009) and we only provide a brief overview of the pertinent findings relevant to the
three questions here. Equation (6.4) suggests that the pertinent dynamical variables

describing the profile of <Sl' S, '> include a ‘geometric’ length scale connected with

xt
eddy sizes (=Iu), a velocity scale connected with the local TKE (=Q), and the strength of
the interaction between the local fluxes of one scalar and the mean concentration
gradient of the other.

The general solution to equation (6.4) can be described by a super-position of a
homogeneous solution and a particular solution. The homogeneous solution (i.e.
derived by setting the right-hand side to zero) is generally dissipative and primarily

describes how <Sl' S, '>X " introduced at some arbitrary level within the CSL is transported

and dissipated within the canopy. Its properties are only dependent on the flow

statistics, including the vertical variation of Q. The particular solution is primarily
connected to the finite value of the non-homogeneous term (i.e. the right-hand side) and

represents the main production term for <Sl' S, '>th . To link the properties of the main

production to canopy sources and sinks, consider the most idealized case - which links
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gradients to their corresponding fluxes using a standard first-order closure approach.

This linkage leads to
a<sl> yt < I 1'>xyt < 2>xyt < ISZ'>xyt
oz K. ' e K. 65

where K, is the turbulent diffusivity for scalar s; and K, the turbulent diffusivity for

scalar S,. Also, K and K, are related to their corresponding Schmidt numbers Sc,

and Sc, by,
Sc Sc
K, =—%; K, =—%, .
“ 7K e (6.6)

where K_ is turbulent momentum diffusivity defined as

u'w'
K, = _ 6.7)

a<u>xyt /az '

Then, the turbulent fluxes are related to the sources/sinks using the mean scalar

continuity equation for chemically non-reactive scalars:

z z

(w's, '>th(z) = Fl(0)+f S,(z)dz, (6.8)

0

S,(z)dz; (w's, '>th (2)=F,(0)+ I

0

where F (0) is the flux of s, at z =0 (taken as the ground or forest floor) and S,(z) is the
vertical profile of the source/sink strength of S, (sink implies S; <0) and, similarly for

S,. Substituting (6.5) and (6.8) into (6.4) results in a second-order ODE for <Sl' 32I>xyt in

terms of source/sink profiles as well as Schmidt numbers:
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a2<Sllszl>xyt 1 aQ a<Sllszl>xyt 2 T
8—2+__ N <Sl S, >xyt
z Q oz 0z A A,

__ sz ( Klsl 4 Kl J(( F,(0)+ J: Sl(z)dz)( F,(0)+ J: Sz(z)dzj) (6.9)

S2

_ —ﬁ?& s ;:’2 J(( FL0)+ [ sie)or | R.0)+ s, (a)ee ) )

Note here that the ground fluxes and the integrated sources and sinks play a

major role in the production term of <Sl' S, '>th . Having established a simplified
connection between <Sl'82'>x " and the integrated scalar sources and sinks, we now

proceed to show similar linkages between <Sl' S, '>th and the key attributes of the

coherent structures.

6.2.2 Functional relationship between <Sl'52'>xyt and the sweep-ejection
cycle

As earlier noted, since the central topic of this paper is about the role of the
coherent structure on scalar dissimilarity and since the sweep-ejection cycle can be
considered as the ‘fingerprint” of the coherent structure, we are also interested in an

expression relating <51'S2 '>th and the sweep-ejection cycle. Toward this end, the

turbulent flux <W' S'> can be written in the following form under steady state and

xyt

horizontally homogeneous mean conditions (Wilson 1989; Cava et al. 2006):
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1ot T Ve a<S>xyt a<WIW'S'>xyt 4 g "
<W S>xyt _C_4 _<W W>xy’( oz - oz +§<0>th <9 S>th , (6.10)

where C, is a closure constant and 7 is a Eulerian relaxation time scale (Raupach 1989a,

b; Massman and Weil 1999; Poggi et al. 2004a; Cava et al. 2006; Poggi et al. 2006). And,

using an incomplete third-order cumulant expansion method (CEM) originally

proposed by Katul et al. (1997a), the triple moment <W' w' S'> can be linked to the

xyt
sweep-ejection cycle by (Cava et al. 2006),
1 1 1 2 27Z- 1 1
(ww's) =( “7 ]aw<ws>xytASO, (6.11)

where y is a constant, o, is the standard deviation of the vertical velocity and AS; is a

measure commonly used to quantify the relative importance of sweeps to ejections

(Raupach 1981), defined as

ASO _ <Wlsl>xyt |swe<er\)/sVI;I<>WISI>th |ejecti0ns ' (6]_2)
xyt

Here the sweeps and ejections of <W'S'>Xyt are determined using standard

quadrant analysis classification. Four quadrants are identified through the combination
of the signs of s’ (abscissa) and w’ (ordinate). Although AS; is originally defined for
stress, we extend the definitions of sweep and ejection to scalar transport with the
quadrants of sweep and ejection being dependent on the sign of the local flux. For

positive local fluxes (e.g. latent heat flux and sensible heat flux in the entire CSL and CO:
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flux near the ground) the sweeps are in quadrant III and ejections in quadrant I. The
opposite is true for negative local fluxes (e.g. CO2 flux in upper canopy and above).
Note that expression (6.11) illustrates how the flux-transport term (often the term
leading to non-local transport and failure of K-theory for the mean flow) scales with the
ejection-sweep properties.

The analysis described above provides a simplified yet analytical framework of
how the coherent structures, manifesting themselves in the sweep-ejection cycle, affect

scalar covariance.

6.3 Basic Flow and Scalar Statistics

In this section, we present the simulation results of three cases with varying LAI
values and discuss the effects of the coherent structure on scalar dissimilarity and scalar-
momentum transport dissimilarity. We present the basic flow (velocity) statistics to
examine the general validity of the LES runs vis-a-vis well known properties of CSL
turbulence. Then, we demonstrate the profiles of source/sink strength and other basic
scalar statistics and the effects of increasing vegetation density on them. The
dissimilarities across scalars and scalar/momentum fluxes are analyzed quantitatively
using global measures including scalar-scalar correlations and turbulent Schmidt
numbers as well as local measures such as the role of the sweep-ejection cycle on scalar
and momentum transfers, respectively. Furthermore, the geometry of the 3D coherent

structure incorporating both velocity components and scalars is revealed and the
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dissimilarity in the geometric features of different scalars in the coherent structure is
then connected to scalar dissimilarity exhibited in the original flow field. The
contribution of the coherent structure to scalar dissimilarity is quantified by comparing

the results of scalar-scalar correlation, turbulent Schmidt numbers and ASo for the

coherent structure and the original field, respectively.

-1 -0.5

<> [msY
xyt

Figure 6.1. Vertical profiles of temporal and horizontal mean streamwise
velocity <u> w normalized standard deviation of mean streamwise velocity o, /uU.,

normalized standard deviation of vertical velocity o, /U. and normalized stress

<T>th / u? (from left to right)

To establish the general validity of the LES experiments, we first show the basic
flow velocity statistics for LAI =1, 5 and 9 in Figure 6.1, including the temporal and

horizontal mean streamwise velocity <u>X " the normalized u standard deviation o, / U.,

the normalized w standard deviation o, / U. , and the normalized total stress <T>th / uz,
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where 7 represents the sum of the resolved stress and the subgrid scale (5GS) stress and

U. = ‘<T> xyt

1/2

. As expected, an increase in LAl results in a decreased U in the lower
z=h

canopy; however, above the canopy there is a tendency of increasing (normalized) wind
speed with increasing LAI, which is due to a ‘skimming effect’ noted by Albertson et al.
(2001). The values of o, /u. and o,/u. (e.g. 0, /u. isaround 2 and o, /u. is around 1
at the canopy top) are consistent with previous results obtained from numerical (e.g.
Huang et al. 2009b) and wind-tunnel (e.g. Brunet et al. 1994) experiments. The small

profile irregularities around z/h =0.6 in the profiles of <U>th and o, /u. are attributed

to the primary peak in the vertical canopy structure (c.f. Huang et al. 2009b).
Furthermore, Figure 2 also illustrates major differences in how the canopy attenuates the
profiles of o, /u. and o, /u.. The LES results are suggestive that deep inside the
canopy, there is significant o, /u. (due to turbulence originating well above the canopy),
while o,,/U. is significantly attenuated, consistent with a number of field experiments
(e.g. Katul and Chang 1999; Poggi et al. 2004b). These results are suggestive that the
TKE remains significant inside the canopy even for the largest LAI due to eddies
produced above the CSL and these eddies do not contribute much to vertical velocity

fluctuations.

In Figure 6.2, we present the normalized vertical profiles of the mean

scalar (<S>th -S, )/ S. , the scalar sources and sir11<s<SS >th h / (U*S* ), the scalar flux

130



<W'S'>th /(U*S*) and the scalar variance <S'2>th /Sf , where s, = <S>th |,_,, and

S, = <W'S'> ot l,n /u* for s=¢,(,0 and LAI=1, 5 and 9. The general agreement in the

mean concentration profiles and the source-sink profiles of CO2 across the three cases of
varying vegetation density indicates the approximate linear relationship between the
local net CO2 uptake rate and the local LAD. However, there is also a minor difference
among the source-sink profiles of different LAls in the sense that the strength increases
with LAI above the primary peak of LAD but decreases with LAI below. This is due to
the dependence of the local net CO2 uptake rate on the photosynthetically active
radiation (PAR) availability, which becomes more vertically inhomogeneous as LAI
increases with a higher fraction intercepted in the upper canopy layers and less in the
sub-canopy (Albertson et al. 2001). A constant CO: source strength of 2 pmol m2 s was
assigned at the ground to account for the soil and forest floor respiration. However, the
relative importance of this CO2 source to the integrated CO: flux decreases with
increasing LAI, as shown in the near-ground portion of the source-sink profile and the

flux profile.
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The major difference of the source-sink profiles between ¢, g, &is that the canopy
and the soil sources/sinks are of opposite signs for c (canopy as a sink and soil as a
source) but of identical signs for g and & (both as sources). As expected, the vegetation
density has significant effects on the source profiles of the latent and sensible heat fluxes.
The source strength at the soil-atmosphere interface decreases while the source strength
inside the canopy increases with increasing LAI as a result of canopy radiation
interception. This results in the ground being the dominant source for the latent and
sensible heat fluxes for LAl =1 and the canopy dominating for LAI=5 and 9.
Consequently, as the canopy becomes denser, the normalized variance generally
increases for c inside the canopy and decreases for g and & from the ground up to around
the primary peak of LAD. Note that for any given LAI the ground is relatively more
important (than the canopy) as a source of the latent heat flux than of the sensible heat
flux: the ratio of the strength between the ground source strength and that at the
primary peak of LAD for LAl =1 is 11.2 for the latent heat flux but only 2.7 for the
sensible heat flux. An examination of the mean temperature profile reveals the existence
of an unstable stratification throughout the canopy for LAI =1, whereas there is a deep
stable layer (albeit a weak one) for the LAI=9 case with its strong elevated heat source.
The normalized variance of CO: concentration generally increases with higher
vegetation density inside the canopy. Given the sensitivity of the individual scalar

variances to LAl variations and given how different these normalized variances are for
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various scalars and LAI values, the addition of scalar variance in the POD analysis (i.e.
B,) does achieve extra information about the coupling between the flow and the
vegetation beyond what can be achieved by the traditional TKE approach (i.e. 8;),
which is predominantly controlled by o, /U. , and hence eddies not locally within the
canopy volume.

With these apparent contrasts in the scalar source/sink and scalar variance
profiles, and with the variability occurring on a length scale and position overlapping

with canopy coherent structures, one might expect scalar dissimilarity to arise.

6.4 Scalar Dissimilarity in the Original Field
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Figure 6.3. Vertical profiles of correlation coefficients r, rcgand rqo (from left to
right). SR I, DR, SR II stand for similarity region I, dissimilarity region, similarity

region II, respectively

One measure often used to quantify scalar similarity between two scalars (S, and

S,) is the correlation coefficient I, , which is defined as
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1 1 12 1z 12 12 . o .
les, = <31 S, >th (<S1 > <52 > j and has an expected value of +1 for strictly similar

scalars. Figure 6.3 shows the profiles of I, I, and I, for the three LAI cases. We split

the vertical range of the CSL (i.e. z/h [0, 2]) into three conceptual regions in

accordance with the ranges of the value of I, , i.e., similarity region I for

152 7

-1<r,, <-0.5, dissimilarity region for —0.5<r,  <0.5 and similarity region II for

5152

0.5<r, <1. Both r, and r, cover all the three regions. Itis clear that the formation

o, =
of similarity region I is mainly due to the role of the canopy acting as a sink of COz2 but a
source of water vapour and sensible heat flux. For c-q and c-&there is a shallow zone of
similarity region II near the soil surface, arising because of the soil being a source of all

three scalars. The combined effects of the canopy and the soil act to degrade the

modulus of I, and r,, therefore leading to strong scalar dissimilarity inside the canopy
between these two similarity regions. Similarity region I of r,, extends deeper into the

canopy for the denser cases because the processes of transpiration and photosynthesis
inside the canopy are primarily stomatally regulated, which couples tightly the carbon
source and the water sink profiles in the canopy. We should note that if the inter-cellular
to ambient CO:z concentration was approximately constant throughout the canopy
depth, then the stomatal regulation of both scalars would be complete. However, the
biochemical processes controlling photosynthesis, and their switch from temperature to

light limitations leads to some CO2 regulation above and beyond the stomatal
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regulation. Although 1, is in similarity region II for the entire CSL under all three LAI

cases, the strength of the similarity decreases with increasing LAI approximately below

the primary peak of LAD with r,, ~0.9 for LAI=1and r,, ~0.6 at z/h~0.2 for LAI=
9. This reduction in r,, for the high LAI case is expected given that the sources of water

vapour and heat from the soil surface are relatively weak.

Figure 6.4. Vertical profiles of turbulent Schmidt number for ¢, 4 and 6
(Prandtl number) (from left to right)

In Figure 6.4, we present the vertical profiles of the turbulent Schmidt number
Sc (Prandtl number for temperature) for each LAI and scalar (c.f. equation (6.6)). Note
that the total momentum and scalar transport (i.e. the sum of the resolved and SGS
fluxes) are used to calculate SC. The SC is only shown in the vertical range of

z/h < [0.7, 2] because below z/h =0.7 Sc exhibits large perturbations due to the
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vanishingly small amplitude of turbulent diffusivities. SC generally ranges from 0.4 to
0.9, which is consistent with the values reported in the literature (e.g. Koeltzsch 2000;
Flesch et al. 2002). There is a clear dependence of SC on height for all three scalars,
which agrees with the conclusion drawn from the wind tunnel experiment in Koeltzsch
(2000) and are probably caused by coherent structure transporting scalars in a more local
manner than the momentum (Koeltzsch 2000). Likewise, these values are consistent
with Harman and Finnigan (2008) — who reported Sc values as low as 0.5 for a number
of forest stands. The dissimilarity in the source-sink profile has a significant impact on

Sc as evidenced by SC; being greater than Sc, for the case of LAI=1 but of similar

magnitude for the case of LAI=9. This is in accordance with the previous recognition by
Raupach (1988) that the turbulent diffusivity are strongly influenced by the source/sink
distribution of the scalar under consideration, and can be understood in the context of

Figure 6.2: note for LAI=1 now the relatively strong ground source causes SC, to differ
greatly from Sc;. Since the relative importance of the contribution of the ground

surface decreases in the source-sink profile of carbon and water with increasing LAI,

Sc, and Sc, tend to converge to one another with increasing LAL Finally, Pr appears

insensitive to LAI, which may appear to be a puzzling result. One plausible explanation
here is that in the upper layers and above the canopy, the scalar flux budget in eq. (6.10)
reduces to an approximate balance between production and dissipation terms that can

be written as
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xyt s
thereby yielding
(<WI WI> ﬂj
e
K, = — : (6.14)
1— 4.9 M H

Al 12 1Al sl .
For temperature, <9 S >th becomes <9 >th and <W S >th becomes <W o >xyt , and noting
the insensitivity in the relationship between <9'2> , and <W' 49'>th to LAI variations (see
Xy

Figure 6.2) leads to a denominator in K, far less sensitive to LAI variations or any

potential dissimilarities in scalar sources and sinks when compared to the other two
scalars.

Figure 6.5 presents an analysis of the sweep-ejection cycle using ASo to measure
the relative importance of sweeps to ejections across the vertical range z/h [0.7, 2].
This analysis was performed using only the resolved w and scalars, which is reasonable
because the resolved momentum and scalar fluxes generally capture over 98% of their
corresponding total fluxes in the designated range. The results of ASo are shown in
comparison with previous findings from a flume experiment (Poggi et al. 2004b), field
experiments in a pine forest (Katul and Albertson 1998) and in a mixed coniferous forest

(Cava et al. 2006). ASo for momentum is in a good agreement with the flume result while
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being generally smaller than the field experiments, which are probably due to the

difference of the drag coefficients used in our LES from the actual value in field.
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Figure 6.5. Vertical profiles of ASo for momentum and scalar fluxes. Note that
for momentum and w’c’, ASo is calculated as the difference between Quadrant IV and
Quadrant II; however, for w'q” and w0’ it is between Quadrant III and Quadrant I

As vegetation density increases, sweeps tend to be more important than ejections

for Z/ h <1.5, which was shown to reflect the elevation of the coherent structure (Huang

et al. 2009b). In fact, these LES results are consistent with a scaling analysis similar to

the one reported in equation (6.11), which was shown by Poggi et al. (2004a) to yield:
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Because 0o/ 0z > Ofor the region of interest (though not the entire vertical domain),

ou'w'
and M ~C a<u>2 , increasing C,a (or the inverse of the adjustment length
oz 4N ot ‘

scale) leads to a ASo that becomes “elevated” with height with sweeps becoming the

dominant mode of momentum transport (i.e. AS, becoming progressively negative) as

evidenced by the profiles in Figure 6.1.

Comparatively, ASo for scalar transport is more influenced by the local
source/sink than momentum transport because the values of ASo are more stable above
the canopy for scalars than for momentum. LAI has a noticeable influence on ASo of
water vapour and heat transport, while appearing notably less influential on ASo of CO:
transport. This is probably caused by the role of the ground surface emitting both water
vapour and heat, which are transferred to around and above the canopy top by coherent
eddies with diameters of approximately one half of the canopy height (Scanlon and
Albertson 2001). This portion of air flow then reinforces ejection motions of latent heat
flux and sensible heat flux. Since the relative importance of the source/sink at the
ground level decreases with increasing LAI, ASo tends to increase for q and 6 with

increasing LAL
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6.5 Scalar Dissimilarity in the Coherent Structures
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We now proceed to explore the effects of the coherent structures on the observed

dissimilarity. First, we show the overall importance of the coherent structures in

capturing the resolved TKE and scalar variances as well as momentum and scalar fluxes.

Then, we describe the geometric attributes of these coherent structure using velocity
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components and flux contribution. Finally, the scalar dissimilarity captured by the
coherent structure is quantitatively compared with that in the original field through the
use of scalar-scalar correlations, turbulent Schmidt numbers and the ability of the

coherent structure in reproducing the sweep-ejection cycle.

p
Figure 6.6 shows the cumulative contribution to E (i.e. ZA(") / E, see equation
n=1

(2.38)) of the eigenmodes. Note that TKE converges faster in B, than in B, because the
structures educed on B, are optimal in the sense of both velocity components and
scalars, thereby degrading the optimization of TKE (in isolation) to some extent.
However, the coherent structures (i.e. the first eigenmode) obtained through B, still

describes approximately 55 percent of the total TKE, only 5 percent less than the

optimum value obtained through B,. Overall, the coherent structure describes
approximately 52 percent of the sum of all the integrated variances, which equally
represent the TKE and scalar variances. Scalar variances in 85 converge slower than
TKE in B, with the leading mode capturing ~55 percent of the total scalar variances,
suggesting that the coherency in terms of scalars in the coherent structure is weaker than

in velocity components. The convergence rate for all variances in B, is close, although
slightly lower, to scalar variances in ;, indicating that the leading modes in terms of
velocities in B, tightly tie to those in terms of scalars in B;. In addition to the

contribution to the variances, we investigate the percentage contribution of the coherent

142



structures to the overall vertical fluxes of momentum and scalars (i.e. the covariance)

Psp, inFigure 6.7, where p,, is defined as,

<ﬁ'(1)ﬁl(l) > Xyt

Pps = A (i), (6.16)

xyt
where ,Hi(l) is the reconstructed field described by the coherent structures (c.f. (2.36) and

(2.37)). The percentage of the contribution of the coherent structure generally ranges
from around 60 to over 100, much larger than that for the variances. This is because the
incoherent components of the turbulent series can be uncorrelated, thus contributing
only a very small amount to the covariances. However, these components still
contribute a significant portion to the variance irrespective of the lack of inter-variable

correlation (e.g. o). The percentage contribution can be over 100 because the variance-

oriented optimization of the POD procedure does not capture the covariance in a
monotonic way. Other modes could have small contributions of opposite sign. The
percentage for the three scalar fluxes generally peaks at or just above the canopy top,
indicating the region where the contribution of the coherent structure to the vertical

scalar transport is most dominant. However, p,., peaks noticeably higher (at z/h ~1.3)

than the scalar fluxes.
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Figure 6.7. Vertical profiles of the fraction of the contribution of the coherent
structure to the total flux of u'w’, w’c’, w’q” and w’@ (from left to right)

Given p,, , it is convenient to calculate turbulent Schmidt numbers associated

with the coherent structure SCS), by which we imply a situation where the bulk

momentum and scalar transport is approximated by the contribution of the coherent
structure while assuming identical mean fields of velocity and scalars. It follows that

SCS) can be expressed by,

Scl = Sc{%} (6.17)

Figure 6.8 shows the results of SCS). Scil) is similar to SC, in the sense that: (1)
chl) generally increases with height and approaches 1; (2) SCél) tends to decrease with

increasing LAL (3) chl) tends to increase with increasing LAI. The scatter plots
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contrasting Scil) and Sc, reveal that the deviation of SCS) from Sc, is generally within
the range of [-0.1, 0.1], suggesting the coherent structure has preserved the momentum-

scalar transport dissimilarity from the original fields. Note that chl) tends to
underestimate SC, at low values and to overestimate Sc, at high values with the critical

point around 0.7 for all three scalar types and three LAI cases.
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Figure 6.8. (Top row) Vertical profiles of turbulent Schmidt numbers
associated with the coherent structures for c, q and 0 (from left to right); (bottom row)
scatter plots of turbulent Schmidt numbers associated with the coherent structure and

from the original for ¢, q and 0 (from left to right)

We explore the morphological features of the 3D coherent structure ﬂi(l) (r r Z)

X1y
and its effects on scalar dissimilarity first. The central cross-sections of the coherent

structure (i.e. I, =0 and r, = 0) are projected onto the y-z plane and the x-z plane,
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respectively. The velocity vector plots are presented for LAI=5 where by the results for
the cases of B, and B, are contrasted for the projection onto the x-z plane in Figure 6.9
and the projection onto the y-z plane in Figure 6.10, respectively. In the x-z plane, the
coherent structure is characterized by a range of sweep motions centred around the

canopy top and r,/h =0, and a spanwise vortex in the subcanopy region. In the y-z

plane, the coherent structure is composed of sweeps framed by a pair of counter-rotating
streamwise vortices. These results are consistent with previous descriptions of the
coherent structures conducted in a wind-tunnel (Finnigan and Shaw 2000) and
numerical (Huang et al. 2009b) experiments. The difference of the results of the coherent
structure identified using B, and B, appears as that the coherent structure from S, is
generally more compact (spatially). In conjunction with the results shown in Figure 6.6,
this suggests that there is a strong interaction between the coherent structure and the

scalar sources/sinks.
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Figure 6.11 and Figure 6.12 show the comparison between momentum and scalar

transport contributions of the coherent structure in the x-z plane at r, =0 and in the y-z
plane at r, =0, respectively. Both similarity and dissimilarity between momentum and

scalar transport emerge from this comparison. The similarity mainly appears as the core
area of the coherent structure (represented by the two cross-sections). The most
significant portion of the momentum as well as scalar transport by the coherent

structures occurs within the vertical range Z/ hc [0.6, 1.5], which is the central area

where the primary stabilities generated by the interaction between the mean flow and
the canopy structure arise. As sweep motions hit the canopy, they carry air relatively
enriched in COz and depleted in water vapour from above the canopy to this range.
And, as ejection motions are generated from the canopy, they carry air relatively
depleted in CO:z and enriched in water vapour from inside the canopy to this range. The
transport process is different for heat and momentum transfer because heat modifies the
behavior of the flow through buoyancy and momentum is strongly influenced by the
pressure field. . Moreover, the momentum and scalar transport carried by the coherent
structures increase with increasing LAI. At LAI=1, the coherent structures do capture
the major characteristics of the source-sink profiles of the scalars shown in Figure 6.2.
The role of the soil surface is much more important in the CO:z source-sink profile for
LAI=1 than for LAI=5 and 9 and this source is captured by the large-scale coherent
structures. For momentum transport, the aerodynamic roughness length of the soil
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surface can be important only for LAI=1, which is also captured by the coherent
structures. As LAl increases, the relative importance of the soil surface in acting as the
source of carbon, water and sensible heat and the sink of momentum decreases, thereby

increasing the similarity of scalar transport, as evidenced by the approximation of Sc_,

ch and Pr at LAI=9 in Figure 6.4.

Figure 6.11. Colour plots of flux contribution of the coherent structures on the
x-z plane at r = 0. Fluxes of momentum, ¢, q, 6 from top to bottom, and LAI=1,5,9

from left to right
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Figure 6.12. Colour plots of flux contribution of the coherent structures on the
y-z plane at r, =0. Fluxes of momentum, ¢, q, 6 from top to bottom, and LAI=1,5, 9
from left to right

Another contributor to the scalar transport similarity in dense canopies is the
occurrence of the counter-gradient fluxes of carbon, water and sensible heat right below
2/h ~ 0.6 (the height of the primary peak of the canopy structure profile), which can be
explained by sweep motions carrying the air at the level with densest leaf areas which is

strongly enriched in water vapour and heat but depleted in COy, to the level below as
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they penetrate through the entire canopy. However, this counter-gradient flux does not
exist for momentum because there is negligible momentum flux below z/h ~ 0.6 for
LAI=5 and LAI=9 (see Figure 6.1) despite the presence of a mean velocity gradient.
Finally, it is interesting to note that the scale of the coherent structure in x is about twice

of that in y with the significant portion residing in T, / hc [— 1.5, 0.5] and

r,/h<[-05,05].
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Figure 6.13. (Top row) Vertical profiles of correlation coefficients of the 3D

coherent structure among three scalars: rc(;), I’C%) and rq(g) from left to right; (bottom

row) scatter plots between the correlation coefficients of the coherent structures and

the corresponding counterparts obtained from the original field: rc(ql), I’C%) and I’q(;)

from left to right
151



In addition to revealing the signature of the source-sink dissimilarity in the
coherent structure with respect to its geometric attributes, we also examine this
signature quantitatively through the study of correlation coefficients. Figure 6.13
demonstrates the correlation coefficients between the scalar components of the coherent

structures (represented by I’S(lls)2 ) in contrast to [, . Itis shown that I‘S(lls)2 retains the basic

approach -1 in the upper part of canopy and above,

pattern of I : I’C(;) and I’C%)

approach 1 close the soil surface and cross zero in between; rq%) is close to 1 in the entire

(0

CSL with slightly lower values in the sub-canopy region. However, unliker,  , f; ¢ is
relatively insensitive to LAI. This can be explained by the fact that in the three LAI
cases, the coherent structures all arises from the same Kelvin-Helmholtz instability
generated by the vertically inflected mean velocity profile (see Raupach et al. 1996),
thereby transporting all the scalars in a similar way despite the influence of vegetation
density on the source/sink strength of carbon, water and sensible heat. This explanation
is supported by the conclusion in Huang et al. (2009b) that the mixing-layer analogy
works well for canopy turbulence with LAI being around and greater than 1. The
results of the correlation coefficients for the coherent structures identify the dissimilarity

region defined in Section 4.2 roughly within the same range of Z/ hc [0.1, 0.4] for rc(;)

@)

and FC%). The sigmoidal shape of the 1, —IJ plot suggests that the coherent structure

tends to amplify the strength of correlation of the scalar quantities in the original field,
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particularly when this correlation in the original field is already strong. This reinforces
the inference in explaining Figure 6.7 that the incoherent components remaining in the
original field after the extraction of the coherent structure are generally uncorrelated or
weakly correlated, thus ‘contaminating’ the correlation in the original field and leading
rs(ls)

, for >>0.

<

to I’Slsz

s,
In Figure 6.14, the result of AS; calculated for the truncated reconstruction

ﬂi(l)(x, Y, Z,t) with only the coherent structure, denoted as ASél), are presented. A

comparison between ASél) and AS, then quantifies the skill of the coherent structure in

approximating the sweep-ejection cycle in the original field. It appears that the coherent
structure retains the boundary layer effects (i.e. an ejection dominance) rather than the

)

canopy effects (i.e. a sweep dominance) evidenced by positive ASé1 in the region of

examination. This finding may not be entirely surprising. After all, some of the key

dynamical features of the coherent structures are influenced by o, which is primarily
produced well above the canopy. Moreover, AS; is a function of triple moments (see eq.

(6.11)), which the POD identification strategy does not intend to preserve in coherent
structures. Also, deep into the canopy, velocity variances sharply decrease such that the
POD becomes insensitive to any significant flow characteristics including the relative
importance between sweeps and ejections in this region. Moreover, the dependence on

height is significantly weakened in ASél) when compared to thatin AS,, as evidenced
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by the large deviations in the AS, — AS(gl) scatter plot. We note that the addition of one
more eigenmode superposed, the truncated reconstruction ,Bi(z)(x, Y, Z,'[) can perform
much better than ﬂi(l) (X, Y, Z, t) in approximating the sweep-ejection cycle in the original
tield. As shown in Figure 6.15, ASSZ) is able to capture both the boundary layer effects

and the canopy effects and presents more dependence on height than does AS(gl) . To

furthermore reveal the effects of higher order modes on the sweep-ejection cycle, in
Figure 6.16 we present the trend of AS é”) approaching AS, withn=1,2,5and 10
respectively, using the case of LAI=5. While it is expected that the inclusion of more
higher order modes will enhance the approximation of ASé”) to AS,, it is found that

only five modes (with about 75 percent of total variances retained as indicated in Figure

6.6) are able to closely capture the values of AS, above the canopy and the sign and
trend of AS; inside the canopy. For sweeps AS(S”) approaches AS, with a generally

better performance for momentum than for the scalars due to the reason mentioned

above regarding velocity variances.
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Figure 6.14. (Left column) ASél) for u'w’, w’c’, w’q” and w’@ (from top to

bottom); (right column) scatter plots between AS; and ASél) for u'w’, w’c’, w’q’ and

w’@ (from top to bottom)
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w’c’, w'q" and w’@, respectively. Note that only resolved velocity and scalar
quantities are used to produce this result

6.6 Conclusions

The dissimilarity of turbulent transport between two scalars within the canopy
sublayer has mainly been attributed to differences in the distribution of scalar sources
and sinks throughout the canopy. Since the large-scale coherent structures carry the
information of the vertical distribution of the scalar sources and sinks, we hypothesize
that their morphological features significantly affect the resulting scalar dissimilarity.

This study tests this hypothesis by simulating the interaction between canopy, turbulent
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transport and biophysical mechanisms over a forest of horizontally homogeneous
foliage density where LAI ranged from sparse (=1) to dense (=9). The simulations were
performed under prevailing environmental conditions of a single mid-day period with
high sun angles and a prescribed saturation of soil moisture. The coherent structure is
educed through the use of the proper orthogonal decomposition and the shot-effect
expansion. Two approaches were used in the formulation of the POD: one based on
velocity variances and another based on the joint velocity and scalar variances. The two
approaches yielded similar results in terms of their geometric features of the velocity
components. Based on the LES results and POD analysis, we found the following about
the scalar-scalar dissimilarity and the role of the coherent structure:

1. A strong negative correlation between c and g from the top of the canopy
sublayer down to a certain height (z/h~0.3) within the canopy exists and this correlation
is enhanced as the canopy becomes denser since the CO: sink and the water vapour
source become both stomatally regulated. Near the ground surface, c and g exhibit a
positive correlation owing to that the ground surface emits CO: produced by litter and
soil respiration and also water vapour through soil (and litter) evaporation. In the
middle canopy, ¢ and q are rather uncorrelated or weakly correlated. The CO: source
from the ground appears to increase its turbulent Schmidt number when compared to
the other scalars. On the contrary, the water vapour source and the sensible heat source

tend to decrease their corresponding turbulent Schmidt number. In addition to the
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impact on turbulent Schmidt number, the water vapour source and the heat source at
the ground level also influence their corresponding sweep-ejection cycle by enhancing
the relative importance of ejection.

2. The coherent structure is able to approximate turbulent Schmidt numbers
obtained from the original fields. A basic agreement is also found in scalar-scalar
correlation coefficients between the coherent structure and the original field with the
coherent structure tending to magnify the magnitude of the scalar-scalar correlation
when this correlation is strong. Finally, the ability of the coherent structure to describe
the sweep-ejection cycle of the original field is also investigated. It was found that the
coherent structure poorly represents the relative importance of sweep/ejection in the
original field with the discrepancy mainly appearing as the lack of the sweep dominance
inside the canopy. However, the superposition of higher order modes on the primary
coherent structure (i.e. the leading mode) largely diminishes this discrepancy.
Moreover, the convergence here is rather rapid with 5 modes recovering much of the
ejection-sweep properties inside and above the canopy.

The broader impacts of this work are three fold: On the measurement side, there
is now interest in partitioning eddy-covariance fluxes of CO2 and water vapour into
foliage versus forest floor using precisely the scalar dissimilarity (Thomas et al. 2008;
Scanlon and Kustas 2010). We showed here that the success of such approaches

depends on the spatial coherency of the organized structure. On the modelling side, we
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showed that the similarity in Schmidt numbers among scalars, used virtually in all
footprint models, may not be valid and does depend on how coupled the coherent
structure is to the forest floor. Finally, from a theoretical perspective, this work
illustrates the potential for using lower-dimensional models to link the vegetation to the

atmosphere.
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7 Conclusions

This chapter summarizes the dissertation and offers some suggestions for future

study.

7.1 Summary

The importance of the coherent structures in turbulent flows has been well
recognized for several decades. However, to reach the level of understanding about the
coherent structures required for predictions of turbulent motions, the 3D geometrical
attributes of the coherent structures as well as their relationship to the boundary
conditions which are essential to their formation and growth have to be investigated
first. This dissertation delivers such a study in the context of land-atmosphere
interaction.

The proper orthogonal decomposition (POD) was adapted as the primary
technique to extract the coherent structures mainly because the coherent structures
identified by this technique are objective in the sense that they optimally capture the
overall variances of the quantities under investigation (the turbulent kinetic energy in
the case of turbulent velocities).

We have used large-eddy simulation (LES) as the major tool to reveal the
dynamics and the cascading processes of turbulent flows between the land and the
atmosphere. Since the LES models (rather than simulates) small-scale turbulent eddies,

which do interact with the large-scale coherent structures to some degree, it is
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reasonable to ask if and how well the LES is able to simulate the realistic large-scale
coherent structures. This issue was addressed in this dissertation by comparing the
coherent structures obtained from LES of the atmospheric boundary-layer (ABL) to
those from direct numerical simulation (DNS) of channel flow.

With the ability of the LES in producing the coherent structures validated, we
then study how the landscape features affect the coherent structures with a focus on the
shapes and their importance in describing turbulent exchange of energy, momentum
and mass between the land and the atmosphere. The landscape features studied here
include horizontally homogeneous vegetation cover with the density ranging from
extremely sparse (LAI=0.0625) to extremely dense (LAI=16), and a forest-clearing-forest
transition which is periodic in the streamwise direction with various ratios of the length
between the forest part and the clearing part.

Finally, we have quantitatively investigated the role of the coherent structures in
scalar transport in the canopy sublayer with the emphasis particularly placed on the

issue of scalar dissimilarity and momentum-scalar transport dissimilarity.

7.2 Suggestions for Future Work

A possible continuation of this work is to develop low-dimensional models of
turbulent dynamics in land-atmosphere interaction through the approach of the
coherent structures. In fact, together with the Galerkin projection technique, the POD is

able to convert the Navier-Stokes equations to a set of ordinary differential equations
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(ODEs) with the complexity of the ODEs being dependent on the eigenmodes retained.
Thus, it is interesting to study the balance between the modes being retained and the
features of some important dynamical phenomena (e.g. the sweep-ejection cycle) being
reproduced by the ODEs. Another direction for future studies is to apply the current
knowledge we possess about the relationship between the morphological features of the
coherent structures and landscape features to develop transport models in the

roughness sublayer with better performance.
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