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Abstract

This dissertation describes three computational sensors. The first sensor is a scanning

multi-spectral aperture-coded microscope containing a coded aperture spectrometer

that is vertically scanned through a microscope intermediate image plane. The spec-

trometer aperture-code spatially encodes the object spectral data and nonnegative

least squares inversion combined with a series of reconfigured two-dimensional (2D

spatial-spectral) scanned measurements enables three-dimensional (3D) (x, y, λ) ob-

ject estimation. The second sensor is a coded aperture snapshot spectral imager that

employs a compressive optical architecture to record a spectrally filtered projection

of a 3D object data cube onto a 2D detector array. Two nonlinear and adapted TV-

minimization schemes are presented for 3D (x, y, λ) object estimation from a 2D com-

pressed snapshot. Both sensors are interfaced to laboratory-grade microscopes and

applied to fluorescence microscopy. The third sensor is a millimeter-wave holographic

imaging system that is used to study the impact of 2D compressive measurement on

3D (x, y, z) data estimation. Holography is a natural compressive encoder since a 3D

parabolic slice of the object band volume is recorded onto a 2D planar surface. An

adapted nonlinear TV-minimization algorithm is used for 3D tomographic estima-

tion from a 2D and a sparse 2D hologram composite. This strategy aims to reduce

scan time costs associated with millimeter-wave image acquisition using a single pixel

receiver.
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Chapter 1

Introduction

Discoveries in image formation have been motivated by the need to reproduce a

scene of interest. For example, the pinhole camera (camera obscura [1]) was used

to observe solar eclipses using the human eye as a detector. Painters used the same

camera to project a scene onto a canvas for static scene reproduction. Until the 1827

Daguerrotype [2], scenes were not captured on film. This progression from analog

detection with the eye to static scene production onto a canvas eventually led to the

automation of the imaging process. The invention of the charge-coupled device in

1969 marked the beginning of the digital age in imaging and revolutionized image

capture. With the digital camera, images could be stored and manipulated after

acquisition using computer processing.

Digital imaging revolutionized image formation by replacing the chemical and

mechanical process of film with electronic recording of light. Advances in imaging

sensors and microprocessors have made static and dynamic scene capture easier. In

particular, digital imaging enabled data storage where images could be stored and

analyzed later. More importantly, images could be manipulated for image quality
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enhancement. Post-processing methods of digital images also facilitated image com-

pression for more efficient data storage.

Computational imaging extends beyond the advantages of digital imaging to op-

timize optical sensor performance. Two-dimensional (2D) detector arrays are used

at the back-end of spectrometers or imagers for digital image capture. These dig-

ital images are electronic snapshots of analog signals represented by pixels with a

fixed dynamic range. Computational imaging utilizes electronic detection to con-

vert analog signals to discrete ones, while relying on microprocessor technology and

post-processing capacity for data interpretation. One question that arises is: can one

improve digital optical sensor performance? Computational imaging aims to provide

an answer to this question.

Computational imaging sensor design involves identifying the target application,

engineering the sensor design (e.g. optics, resolution, and data sampling and encoding

strategy), and creating a tailored post-detection process. At the core of computa-

tional imaging a parallel design strategy exists between data sampling and encoding

in the sensor hardware and for algorithm design. Sampling and encoding are vital

for the development of novel computational sensors.

Data sampling and encoding can be incorporated into the spatial (e.g. image

plane or pupil plane) [3] or time domain [4]. This dissertation exploits spatial domain
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sampling and coding to maximize data extraction from 2D measurements using post-

detection inversion. Spatial domain sampling and encoding is driven by the following

questions:

• Can data be sampled and encoded in a unique way such that post-detection

measurement inversion enables perfect or near perfect signal reproduction?

• How is sampling related to perfect or near perfect signal recovery?

• Do more efficient sampling strategies other than Nyquist exist?

Conventional measurements utilize traditional Shannon sampling theory [2,5]. For

the imaging case, Shannon measurements correspond to uniformly sampled bandlim-

ited 2D signals at or above the Nyquist rate (2B). Nyquist sampling enables perfect

signal reconstruction. This sampling strategy imposes a need for a large number of

measurements and high sensor resolution to maximize optical sensor performance.

Optical systems limited by a data acquisition cost (e.g. pixel size, number of scans,

sensor size) are challenged by complete signal estimation.

One recent tour de force is a compressive sensing (CS) paradigm that employs a

sub-Nyquist sampling strategy for highly accurate signal estimation [6, 7]. Instead

of utilizing Dirac delta functions or harmonic functions as the sampling basis, an

alternate basis is used for perfect or nearly perfect signal reconstruction [8]. Recon-
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Figure 1.1: Image compressibility in the discrete cosine transform (DCT) basis. (a)
Matlab baseline phantom image. Coefficient removal by (b) 31.51%, (c) 61.72%,
and (d) 73.60%. (e) Matlab baseline cameraman image. Coefficient removal by (f)
17.82%, (g) 61.48%, and (h) 78.90%.

struction accuracy in CS depends on the sparsity or the compressibility of a signal

in an alternate basis. Sparsity is commonly imposed through transform coding tech-

niques (e.g. discrete cosine transform (DCT) or wavelet transform) [9]. A transform

coding approach is a signal decomposition expressed as

f(x) =
N∑
i

xiΨi(x), (1.1)

where xi represents the coefficients of f and Ψi represents column vectors from the

orthonormal basis (e.g. DCT). An example of image compressibility is shown in

Fig. 1.1, where up to 70% of the lowest-valued DCT domain coefficients are thresh-

olded from two Matlab baseline images (i.e. ‘Shepp-Logan phantom’ and ’camera-
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man’) in the DCT domain and signal estimation with a high peak signal-to-noise

ratio is still possible. Simulations in Fig. 1.1 show the redundance in the image data

when decomposed in the DCT basis since a high percentage of coefficients can be

removed without a huge sacrifice in image reconstruction.

Once the signal f is transformed into a compressible signal or a K-sparse signal

using Eq. (1.1), the signal is stated to be sparse in the Ψ-domain. Then, a measure-

ment matrix, φ, is used to sample a small number of projections compared to the

N -dimensional signal f since φ is an M ×N matrix. The system model is defined as

g = φf (1.2)

= φΨx,

where g is an M -dimensional vector, φΨ represents an <N → <M mapping given

the M × N matrix result, and f is transformed using Ψx and is an N -dimensional

vector. Note that M ¿ N . This measurement model creates an underdetermined

and often ill-posed problem since multiple solutions for f exist. In CS, it is known

that incoherent projections between the sensing matrix (φ) and transform matrix (Ψ)

improve image reconstruction [6,10,11]. A measure of the mutual coherence between

the measurement basis and transform basis (φ, Ψ) is used as a measure for signal
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recoverability. The mutual coherence metric is defined as

µ(φ, Ψ) =
√

N max
i,j

|< φi, Ψj >| . (1.3)

The mutual coherence is a measure of maximum correlation between the rows and

columns of φ and Ψ. Low coherence suggests that fewer samples are required for

the projective recording of the signal coefficients for perfect data recovery [10]. Af-

ter exploiting signal sparsity and incoherence, a CS inversion algorithm is used for

signal estimation. If M measurements are recorded at random in the φ-domain and

the measurement basis sparsity or transform basis are incoherent, then a convex

optimization program is used to solve for x where

min ‖ x ‖l1 such that g = φΨx. (1.4)

Perfect recovery is achieved when

M ≥ Cµ2(φ, Ψ)K log(N). (1.5)

The CS reduction in the total number of measurements required for accurate signal

estimation enables a reduction in computational sensing resources otherwise necessi-

tated in conventional sensing.
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Computational imaging sensor design couples the aforementioned sampling strate-

gies with spatial encoding mechanisms at the optical hardware level (i.e. before data

acquisition) to extract useful information in the post-processing stage. For example,

Hadamard encoding at the input to a spectrometer multiplexes object spectral in-

formation onto a detector plane [12], while well-known image compression encoding

can be translated into the optical hardware design for near perfect data estimation

from sub-Nyquist measurements [13]. The end goal for computational imaging at

the post-detection stage is data recovery. As a result, a tailored algorithm is used to

recover data from the coded measurements.

Computational imaging is particularly applicable to spectral imaging (e.g. ab-

sorption, reflectance, or emission) [14]. Spectral imaging is ubiquitous since portable

digital cameras are simple spectral analyzers – providing three spectrally broad filter

responses (e.g. red, green, and blue) per spatial location. Computational imaging

with spectral imaging devices aims to recover a 3D (x, y, λ) object spectral density

from a single or a series of intensity-valued 2D detector measurements. Since record-

ing intensity measurements with a CCD destroys all spectral information, the use

of spatial-spectral encoding strategies coupled with decoding algorithms enables the

recovery of object data otherwise lost in the detection process.

Two examples of computational spectral imagers are discussed in this disserta-
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tion. First, a pushbroom spectral imager employs a multiplex encoding strategy for

high throughput analysis. The spectral imager projects independent and spectrally

encoded measurements of the object onto a 2D detector array and uses a nonnega-

tive least squares algorithm to decode the measurements. This spectral imager uses

a coded aperture spectrometer (CAS), which replaces the slit of a conventional spec-

trometer with a shifted and scaled Hadamard matrix. The CAS is placed at an output

port to a microscope for pushbroom operation. The pushbroom imager records multi-

plexed object spectral data and provides 32× higher throughput than a conventional

slit spectrometer. Second, this dissertation describes a snapshot spectral imager that

leverages the compressibility of signals in an alternate basis for CS data inversion.

Essentially, the snapshot spectral imager incorporates compression into the optical

architecture to record a 2D spectrally filtered projection of a 3D spectral data cube.

With this system, a post-detection CS inversion algorithm is used to reconstruct the

3D (x, y, λ) object data cube.

Holography [15] is another application that benefits from computational imaging.

Using a 2D detector array for holography enables digital holography and digital object

reconstruction from intensity-valued interference measurements, thereby removing

the photographic development process. However, recording intensity measurements

also destroys object field information (e.g. phase). Linear algorithms are generally
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used to recover the object data encoded in the diffraction pattern recorded at the 2D

detector array. Within the diffraction tomography and holography literature, limita-

tions and benefits of image acquisition and data inversion are explored. Generally, 3D

tomographic object estimation is only possible when multi-angle object illumination

or object rotation is employed to capture multiple digital holograms [16, 17]. Com-

putational holography aims to deliberately subsample a 3D object band volume in a

unique way so that nonlinear methods can be used to recover the object density from

a single holographic recording. Computational holography does this by exploiting

object sparsity and by utilizing CS numerical techniques to enable improved object

reconstruction.

This dissertation provides an example of a computational holographic imager

that aims to recover 3D (x, y, z) tomographic data from a single 2D holographic

image composite recorded with a square-law detector [18]. Since a hologram is a

natural compressive spatial encoder, capturing a 3D object band volume onto a 2D

detector array, a TV-minimization algorithm is used to enable the recovery of object

data otherwise challenging to decode from a single 2D hologram recording. A con-

vex optimization method is used to reconstruct a source at a rate that violates the

conventional Nyquist limit.
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1.1 Organization

This dissertation presents three major projects. Chapter 2 describes the system

model, opto-mechanical design, and experimental results with a second generation

scanning multi-spectral aperture-coded microscope (SmacM). A series of 2D (spatial-

spectral) frames are recorded with a coded aperture spectrometer (CAS). The push-

broom scans are reconfigured and NNLS inverted to construct a 3D (x, y, λ) object

data cube. The high throughput and efficient spatial-spectral encoding mask in the

CAS makes it ideally suited for fluorescence microscopy applications. However, limits

associated with scan times make SmacM non-ideal for dynamic scene analysis.

Motivated by shorter data acquisition times and dynamic scene analysis, Chapter

3 focuses on the system model and system design of a dually-dispersive (DD) coded

aperture snapshot spectral imager (CASSI). Also, Chapter 3 describes two algo-

rithms for 3D (x, y, λ) data cube estimation from a single 2D detector measurement.

The chapter concludes with a discussion on dynamic scene analysis of fluorescent

microspheres with CASSI and describes the Zemax design for an off-the-shelf and a

more compact (DD) CASSI system.

Chapter 4 includes the system model, system design, and experimental results for

millimeter-wave compressive holography. Two methods for 3D tomographic object
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estimation are evaluated: 3D estimation from 2D holographic measurements and

3D estimation from 2D sparsely sampled holographic measurements. Each employ

TV-minimization for 3D object estimation.

Finally, Chapter 5 provides a summary and thoughts on potential directions for

the research efforts in the dissertation.

1.2 Contributions

The author was the principle investigator for the projects described in this disser-

tation. Dr. David Brady provided project direction for all research efforts in this

document. Dr. Joseph Mait and David Wikner supervised the project detailed in

Chapter 4.

Chapter 2 was the continuation of a previous generation system by M. Gehm and

D. Brady [19].

Chapter 3 extended work by M. Gehm, R. John, D. Brady, R. Willet and T.

Schultz [20] for fluorescence microscopy. Also, Dr. Kerkil Choi assisted in the al-

gorithm development. The chapter details are reproduced from an Applied Optics

article with permission from the journal.

Chapter 4 was motivated by compressive holography by D. Brady, K. Choi,

D. Marks, R. Horisaki, and S. Lim [21]. Discussions with Ryoichi Horisaki provided
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guidance for system model implementation. Michael Mattheiss automated data ac-

quisition for experiments in Chapter 4. This chapter is reproduced from an Applied

Optics article with permission from the journal. Dr. Joseph Mait and David Wikner

assisted in the experimental realization of the millimeter-wave holography platform

and Dr. Joseph Mait inspired sparse sampling.
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Chapter 2

Scanning multi-spectral aperture-coded

microscope

This chapter describes a second generation scanning multi-spectral aperture-coded

microscope (SmacM). SmacM is a pushbroom hyperspectral imager that consists of

a coded aperture spectrometer (CAS) interfaced to an exit port of a laboratory-grade

microscope. In the CAS, a binary-valued order 64 S-matrix replaces the slit input

aperture in a conventional pushbroom imaging system – providing 32 times greater

throughput. The S-matrix is a shifted and scaled Hadamard matrix. The CAS has a

spectral range of 550 - 665 nm with 1 nm spectral resolution. Pushbroom operation

involves mechanically scanning the CAS perpendicular to the spectrometer dispersion

direction. A series of scanned two-dimensional (2D) (spatial-spectral) measurements

are recorded with the CAS – with an object spectrum dispersed along the columns and

a spatial field oriented along the rows. These 2D measurements are reconfigured and

a nonnegative least squares (NNLS) algorithm is used for spectral data estimation.

The first generation system interfaced the CAS to a rapid-prototyped, custom-built

microscope with optical quality and the effective spatial resolution constrained by
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a single available objective [19]. The microscope and subsystems were individually

mounted to the optical table and during each scan vibration and misalignments were

noticed. To address these issues, SmacM was built to provide improved mechanical

stability since the CAS was directly connected to the microscope frame. This robust

structure helped to reduce mechanical vibrations and further limited the mechanical

instabilities to table vibrations. Also, interfacing the CAS to a laboratory-grade

microscope enabled an improved effected spatial resolution since the system was not

constrained to a single objective. In this chapter, transmissive mask analysis is re-

peated with SmacM. Also, extended source emissions from fluorescent microspheres

and fluorescent cells are explored. SmacM has a sample plane spatial resolution of

15.4 - 1.54 µm, depending on the user-selected objective.

2.1 Introduction

Spectral imaging (SI) spans a wide variety of applications aimed at reconstructing a

spectrum at every pixel location in an image for object or feature identification. SI

began in the 1960s with remote sensing of natural resources and agriculture monitor-

ing [22–24]. Some military applications include real-time surveillance and reconnais-

sance [25, 26], while biomedical applications include cancer detection [27, 28], DNA

microarray image analysis [29], flow cytometry [30, 31], and pathogenesis of diabetic
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retinopathy [32].

Many types of spectral imagers exist for 3D (2D spatial, 1D spectral) data cube

generation [33]. Spectral imaging can be separated into three different spectral dis-

crimination categories: filtered, dispersive, and interferometric. Filtered approaches

include rotating filter wheels, Fabry-Perot spectrometers, and electronically tunable

filters such as acousto-optic tunable filters (AOTFs) or liquid crystal tunable filters

(LCTFs). Dispersive instruments employ a prism, grating, or computer generated

hologram (CGH) for spectral data mapping across a 2D detector array. Interfero-

metric systems include Fourier-transform spectrometers (FTS) where two beams are

interfered. The inverse Fourier-transform of the FTS signal as a function of path

delay translates into points on a spectrum. Also, spectral discrimination categories

are further partitioned into spatial scanning methods employed for 3D (x,y,λ) data

cube acquisition: whiskbroom (point scan), pushbroom (line-scan), and staring (e.g.

windowing or framing). More recently snapshot systems have been used in spectral

imaging.

There exist advantages and disadvantages for each of the previously mentioned

categories – filtered, dispersive, and interferometric. The focus of this section includes

filtered and dispersive methods for both scanning and snapshot data acquisition.

Filtered scanning systems include LCTFs and AOTFs which suffer from wavelength
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switching times and light throughput issues. However, much improvement has been

made to AOTFs and LCTFs for spectral imaging applications (e.g. microscopy and

remote sensing applications). State-of-the-art AOTF switching times are less than

100 µs with spectral resolution between 1.5 - 3 nm in the spectral range of 450 -

800 nm [34]. LCTF switching times range between 50 - 150 ms with a spectral

resolution of .25 - 20 nm depending on the spectral range [35]. Light throughput

remains a fundamental issue with any filtered scanning systems, thereby reducing

the overall system signal-to-noise ratio.

To overcome the drawbacks associated with filtered scanning systems, dispersive

systems are considered. Although dispersive systems provide high-throughput, they

are limited by instrument efficiency. Dispersive scanning systems provide high spatial

and spectral resolution with a cost in scan time. Dispersive, snapshot and scanning

spectral imagers employ a spatial-spectral encoding scheme for object data cube

estimation. For example, CASSI [20, 36–38], detailed in Chapter 3, is a prism-based

dispersive system that records a 2D spectrally filtered projection of a 3D (x, y, λ)

object data cube in a snapshot. The computerized tomographic imaging system

(CTIS) [20, 36–38] is another snapshot spectral imager which maps signal from each

voxel in an object cube to distinct diffraction patterns onto a CCD detector array

using a CGH. Finally, a compact image slicing spectrometer (ISS) [39] is a snapshot
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spectral imaging system that uses a custom optic to separate an image into 2D slices

and disperses the image, thereby projecting 3D object data onto a 2D detector array.

Each of these snapshot spectral imagers contains a spatial-spectral resolution tradeoff

compared to scanning systems. Therefore, dispersive scanning systems sacrifice speed

for high spatial and spectral resolution, while snapshot spectral imagers sacrifice

spatial and spectral resolution for speed. The target application determines which

variety is preferred.

This chapter focuses on dispersive pushbroom imaging for complete 3D data cube

(x, y, λ) acquisition. Dispersive pushbroom imagers record a series of 2D images (1D

spatial, 1D spectral) during scanning. After post-processing and reconfiguring, an

object data cube is reconstructed such that a spectrum is provided at each pixel

location. More specifically, a pushbroom CAS for hyperspectral imaging is discussed

in this chapter [19, 40]. Benefits associated with CAS include photon collection effi-

ciency of diffuse sources and a multiplex advantage [2,12]. These systems have been

used for high throughput analysis of weak and incoherent signals for tissue chemomet-

rics [41], remote sensing of chemicals [42], and longwave infrared spectroscopy [43].

High throughput with the CAS makes it ideal for fluorescence scene analysis.

Previous work in CAS hyperspectral microscopy involved an interface to a rapid-

prototyped, custom-built microscope [19,40]. The first generation prototype acquired
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and reconstructed data from monochromatically-illuminated chrome patterns on a

quartz substrate with a high signal-to-noise (SNR) ratio. While extended source

measurements from a nanoparticle aggregate were successfully recorded and a data

cube estimate was generated, this chapter describes a mechanically stable second

generation system better suited for fluorescence microscopy applications. In this

chapter, a scanning multi-spectral aperture-coded microscope (SmacM) contains a

CAS robustly interfaced to a laboratory-grade microscope for transmission mask and

fluorescence microscopy studies.

This chapter is organized as follows: Section 2.2 reformulates the CAS and push-

broom imaging system model. The calibration and post-detection procedure for

SmacM are also explored in this section. Further, Section 2.3 describes the sys-

tem design for the CAS, as well as the interface to a laboratory-grade microscope.

Also, spatial resolution limitations of the SmacM system are investigated. Simu-

lated SmacM measurements and reconstruction results are evaluated in Section 2.4.

Section 2.5 presents SmacM experimental data from narrowband source illuminated

targets and broadband emission from fluorescence targets. Finally, Section 2.6 sum-

marizes the project presented in this chapter.
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Figure 2.1: (a) Optical architecture for the CAS consisting of an input aperture
(OP), grating (G), and a 2D focal plane (FP). (b) Power spectral density profile
propagated through the system architecture. The effect of the aperture-code on the
power spectral density is shown.

2.2 Mathematical system model

The mathematical system model for coded aperture systems has already been ex-

plored [2, 12]. This chapter summarizes the mathematical model for the CAS and

describes the system model for CAS pushbroom operation, data inversion, and data

cube generation. For CAS, intensity-valued measurements at the detector array are

expressed as a convolution between the input source spectrum and the input aperture-

code. In SmacM, the CAS contains an aperture-code that is a binary-valued order

64 S-matrix. The S-matrix is a shifted and scaled Hadamard matrix containing mu-

tually orthogonal rows. The aperture-code spatially maps the input source spectral

density onto the two-dimensional (2D) detector array. Each row of measurements
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Figure 2.2: Object data point mapping onto a 2D detector plane. Location of
the object data point along the y-axis remains constant, while the point along the
x-axis is dependent upon λ at x. This dependence is due to the grating linear
dispersion occurring along the x-axis. This diagram is a pictorial representation of
the shift-invariant impulse response h for the CAS.

recorded at the detector array represents independent projections of spectral chan-

nels as a function of spatial location. Intensity-valued measurements recorded with

the CAS (see Fig. 2.1) are modeled as:

g(x′, y′) =

∫∫∫
dx dy dλ t(x, y) f(x, y; λ) h(x, x′, y, y′; λ)pm,n(x′, y′), (2.1)

where h(x, x′, y, y′; λ) is a linear shift invariant impulse response representing propa-

gation through unity magnification optics, t(x, y) describes the aperture-code trans-

mittance function, f(x, y; λ) is the input source spectral density, and pm,n(x′, y′)

represents the detector sampling function. In the system model describing the CAS

shown in Fig. 2.1, the transformation along the y-axis is held constant and the map-

ping along the x-axis is defined by the propagation kernel. The propagation kernel,
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h(x, x′, y, y′; λ), for the CAS is defined as:

h(x, x′, y, y′; λ) = δ(y − y′)δ(x− (x′ − ξ(λ− λc))), (2.2)

where ξ represents the grating linear dispersion. The system response to a spectrally

distinct point object is shown in Fig.2.2. Linear dispersion (ξ) is derived from the

grating equation (see Appendix A.1 for derivation)

sin(θI) + sin(θR) =
κλ

Λ
, (2.3)

and is defined as

ξ =
δx

δλ
=

κF

Λ cos(θR)
, (2.4)

where the incident angle θI = 0, λ is the operating wavelength, κ represents the

grating diffraction order, F represents the output focal length of the imaging lens

before the detector, Λ is the grating period, and θR is the reflected angle from the

grating given the spectrometer center wavelength (λc). The transmittance function

for the aperture-code, t(x, y), is modeled as:

t(x, y) =
∑

i

∑
j

ti,jrect

(
x− i∆m

∆m

,
y − j∆m

∆m

)
, (2.5)
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where ∆m is the aperture-code pitch and ti,j represents an amplitude-value at the

(i,j)th position in the aperture-code. The transmittance aperture-code amplitude,

ti,j, is based on the (i,j)th values in the S-matrix independent column code and is

defined as:

ti,j(:, j) =
1

2
(1−HA(:, j)) , (2.6)

where HA describes a Hadamard matrix of order A and j represents the columns of the

aperture-code. The normalized Hadamard matrix is generated using the ‘hadamard’

command in Matlab. A shifted and scaled Hadamard matrix generates an S-matrix

as denoted in Eq. (2.6) (see Appendix A.2 for S-matrix implementation).

Since a detector array records an intensity-valued image onto a 2D rectangular

grid, the detector sampling function is modeled as

pm,n(x′, y′) = rect

(
x′ −m∆D

∆D

,
y′ − n∆D

∆D

)
, (2.7)

where ∆D describes the detector pixel pitch. Incorporating expressions for t(x, y),

h(x, x′, y, y′; λ), and pm,n(x′, y′) into Eq. (2.1) yields:

gm,n =
∑
i,j

ti,j

∫∫
dx′ dy′rect

(
x′ − ξ(λ− λC)

∆m

,
y′ − j∆m

∆m

)
f(x′ − ξ(λ− λC), y′)

×pm,n(x′, y′), (2.8)
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where gm,n represents a 2D discrete detector measurement. The variable k is sub-

stituted, k = ξ(λ − λC)/∆m, into Eq. (3.1). If mask to detector misalignments and

system blur are ignored, the transmittance rectangular function and the detector

sampling function in Eq. (3.1) overlap when i = m − k and ∆m = ∆D. Thus, the

detector measurements are expressed as:

gm,n =
∑
i,j

ti,jδi,m−kδj,n

∫∫
dx′dy′f(x′ − ξ(λ− λC), y′). (2.9)

To further simplify the measurement model, a discrete representation for the source

spectral density, f(x′, y′, λ), is adapted. The discrete source spectral density is rep-

resented as:

f(x′ − ξ(λ− λC), y′) =
∑
i,j

fi,jrect

(
x′ − ξ(λ− λC)−m∆

∆
,
y′ − n∆

∆

)
. (2.10)

Again, it is assumed that the rectangular sampling function of the source spectral

density overlaps with the aperture-code transmittance function (∆ = ∆m). After

substituting Eq. (2.10) into Eq. (2.9) the discrete detector measurement simplifies

to:

gm,n =
∑

i,j,k

δi,m−k δj,n ti,j fi,j (2.11)

The Kronecker deltas are used to simplify the aperture code (t) and the input source
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spectral density (f) in Eq. (2.11) so that the final discrete model is expressed as

gm,n =
∑

k

tm−k,n fm−k,n. (2.12)

The resultant algebraic model for the detector measurement is

g = Hf, (2.13)

where g represents the vectorized detector measurement, H represents the spectrally

shifted transmittance function (t) in Eq. (2.12), and f represents a vectorized source

spectrum. Note that the continuous-to-discrete model has ignored blur and mask

misalignments. In practice, system blur and misalignments impact reconstruction

efficacy.

Pushbroom operation of CAS is shown in Fig. 2.3 [19]. A pushbroom imager col-

lects a set of 2D images (1D spatial, 1D spectral) across a field-of-view (FOV) to esti-

mate spectra and construct a data cube. For pushbroom operation, the CAS is trans-

lated along the y-axis (perpendicular to the dispersion direction) in ∆-increments. A

y-axis linear scan provides measurement diversity. Each scanned 2D image represents

row modulation of the object data with a different row of the aperture-code as shown

in Fig. 2.3. A series of scanned measurements form an image composite where every
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Figure 2.3: CAS pushbroom data collection and inversion flow diagram

row of the object data is modulated by every row in the aperture-code. A set of scans

measures independent projections at each row of the aperture-code with respect to

the object data. The discrete detector measurement shown in Eq. (2.12) is modified

to account for translation along the y-axis and is denoted by

gm,n−∆ =
∑

k

tm−k,n−∆ fm−k,n−∆. (2.14)

The scanned detector measurements can not be processed directly. The next section

will discuss the method used to reconfigure the recorded images for spectral data

inversion and data cube construction.
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2.2.1 Calibration and reconstruction

This section describes the calibration procedure, the inversion scheme, and the data

cube assembly procedure. Note that the convolution integral in Eq. (2.1) shows that

the input source is convolved with the CAS input aperture-code. Therefore, sources

with spectrally narrow peaks provide aperture-code features that are well registered

to the detector plane. Spectrally broad sources, however, result in dispersed/smeared

aperture-code features across the detector plane. This smeared data presents a chal-

lenge for mask feature registration. As a result, a procedure was adopted for data

collection, calibration, spectral estimation, and data cube generation.

First, pushbroom imaging involves recording a series of 2D (spatial-spectral) de-

tector measurements. Note that the set of scanned images along the y-axis represent

a set of 2D multiplexed measurements of the mask-modulated object spectrum as

shown in Fig. 2.3. During data acquisition, the CAS was scanned along the y-axis

in ∆-increments. Snapshots collected with the CAS can not be directly inverted.

Data manipulation of the recorded set of images is detailed in the post-detection

procedure.

Second, a CAS 2D image of a spectrally narrow calibration source is used to

vertically and horizontally register aperture-code features to the detector plane. The

2D snapshot was taken when the CAS was aligned with the central position of the
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intermediate image plane at the microscope exit port. Note that the calibration

source should uniformly illuminate the CAS. Spatial uniformity along both axes (x

and y) eliminates any need for scanning. The spectrally narrow source was used

to calibrate the wavelength axis and to remove ‘smile’ curvature. Note that ‘smile’

relates to image curvature of the aperture-code at the detector plane from spatial

distortions caused by the dispersive element in the CAS or optical aberrations from

the imaging optics [44].

Third, a post-detection procedure was followed for spectral data inversion and

data cube synthesis. Post-detection steps include:

• record the indices of the aperture-code active (completely transmissive) and

dead (completely opaque) rows registered at the detector plane using the cali-

bration source image

• reorganize the set of scanned measurements such that a single 2D slice within

the 3D data cube (x,y,∆) represents a 2D (x,y) image of a single row (∆) of

object data modulated by every row in the aperture-code (other slices represent

subsequent rows of the object data modulation)

• use active and dead row indices to vertically bin the set of scanned 2D detector

images to the number of rows (e.g. 64) in the S-matrix
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• apply smile curvature correction to each slice in the data

• apply a nonnegative least squares NNLS algorithm to the binned and smile

corrected data

Recall that the new 3D data cube (2D spatial, 1D object row index) is configured so

that the 2D image at a single object row index represents a mask-modulated object

row dispersed along the horizontal axis. Data along the horizontal axis represents the

spectrum contained within the object row data as shown in Fig. 2.3. For the CAS,

2D detector images require an inversion scheme for spectral estimation. The spectral

data inversion method is a nonnegative least squares (NNLS) algorithm. NNLS is

expressed as

Minimize ‖ Hf(i,:) − g(i,:) ‖2
2, f(i,:) ≥ 0, (2.15)

where H represents the 64×64 S-matrix aperture-code, f(i,:) represents the vectorized

spectral estimate for the ith row and all columns of the dispersed object data, and g(i,:)

represents the vectorized result from the ith row and all columns of the object data

modulated by every row in the aperture-code. This algorithm is a linear least squares

optimization technique with a nonnegativity constraint. The algorithm inverts the

data column-by-column and provides spectral estimates of the source row-by-row.

The spectral estimates are aligned and a sum is taken along the rows of the final image
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to obtain the spectral estimate from the image, as shown in Section 2.5, Fig. 2.13(c-

e). After spectral inversion of all object data rows from all slices, the synthesized

3D data cube provides a spectrum at every spatial location within the scanned 2D

scene. System simulations demonstrating the post-detection procedure and data cube

reconstruction are detailed in Section 2.4.

2.3 System design

2.3.1 Coded aperture spectrometer (CAS) design

An f/7 CAS was designed for SmacM. The CAS optical design was optimized for a

spectral range of 550 - 665 nm using the optical design software, Zemax. The CAS,

shown in Fig. 2.4, has unity magnification from the input aperture (OP) to the focal

plane (FP). The aperture-code at the input (OP) to the spectrometer, as shown

in Fig. 2.4, is based on an order 64 S-matrix consisting of opaque and transmissive

openings. A shuffled version of the S-matrix is used to remove any spatial correlations

along the rows and columns of the mask structure [12]. The S-matrix is implemented

as a chrome pattern on a quartz substrate with anti-reflective coating to maximize

throughput. The smallest mask feature measures 54 µm or six pixels at the detector

plane. Dead (completely opaque) rows are included in the aperture-code to account

for vertical misalignments. Considering the mask feature size and the number of
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Figure 2.4: Optical design of the f/7 spectrometer showing the object plane (OP),
collimating optics (L1 and L2), grating (G), imaging optics (L1 and L2 ), and a focal
plane (FP).

dead rows, the spatial extent of the mask can be calculated. The mask spatial extent

is important for mask design and optical system design. The horizontal (MH) and

vertical (MV ) spatial extent of the mask for the CAS 4f-imaging system is defined

by

MV = p[AR + (A− 1)D] (2.16)

MH = ApR,

where p is the detector pixel pitch, A represents mask order, R is the number of

active pixels per mask feature, and D is the number of dead rows used in the mask
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design. The vertical (MV ) and horizontal (MH) spatial extent of the mask measures

3.438 mm and 2.304 mm. Light from the mask is directed toward lenses L1 and L2

and collimated onto a holographic transmission grating (G) in Fig. 2.4. The grating

provides 0.059 mm/nm linear dispersion which yields 1 nm spectral resolution (see

derivation in Appendix A). Note that the number of spectral channels measured by

the CAS is determined by the spectral range (∆λ) divided by the spectral resolution.

CAS measures 115 spectral channels.

The optical system for the spectrometer was optimized in Zemax. Minimizing

spot size at the focal plane is of great importance in spectrometer design. Fig. 2.5

shows spot diagrams at five different field positions for three different wavelengths.

Field positions are chosen to correspond to edge field points on the aperture-code.

Spot size is spatially and spectrally variant. At the center field position, the spot

size at 550 nm, 600 nm, and 665 nm is 38%, 7.21%, and 30.02% greater than the

diffraction limited spot size (2.44λf/#). Spatial structure (see Fig. 2.5) in each spot

diagram corresponds to optical aberrations affecting system performance. Dominant

third order (Seidel) optical aberrations include spherical and field curvature.

Another metric for resolution in optical design involves measuring the spatial

frequency response of the optical system. A measure of image contrast versus spatial

frequency is known as the modulation transfer function (MTF) and is shown in

31



(a)

(b)

(c)

Figure 2.5: Spot diagrams for various field positions at (a) λ = 550 nm, (b) λ =
600 nm, (c) and λ = 665 nm.
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Figure 2.6: Spectrometer MTF plot at all field positions and at three wavelengths
(550 nm, 600 nm, and 665 nm) within the prescribed spectral range of the system.

Fig. 2.6 for the CAS. Given a mask feature size of 54 µm, the MTF plot depicts

CAS’s ability to resolve this feature with high contrast. A CAS mask feature size of

54 µm yields a spatial frequency of 18.52 mm−1. The spatial frequency is obtained

by evaluating the reciprocal of the mask feature size. The MTF plot of tangential

and sagittal fans at various field positions shows that image contrast at lower spatial

frequencies is superior to the performance at higher spatial frequencies. A contrast of

0.8 - 1.0 is obtained at object spatial frequencies as high as 20 cycles/mm. Therefore,

the CAS input mask feature size is optimal.

Prescription data from Zemax was used to develop a 3D model of the spectrometer
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Figure 2.7: SolidWorks 3D rendered image of the spectrometer mounted to a CCD.

using a computer automated design (CAD) program, SolidWorks. The CAS housing

shown in the CAD model was physically constructed using an Eden 333 prototyping

machine. The machine prints a 3D object one layer at a time with an ultraviolet

cured photopolymer. A 3D SolidWorks rendering of the spectrometer attached to

the detector is shown in Fig. 2.7.

2.3.2 Spectrometer and microscope interface

SmacM was robustly constructed by interfacing the custom-built CAS to a laboratory-

grade, Zeiss Axioplan 2 microscope as shown in Fig. 2.8(b-c). The optical quality

and mechanical structure of a laboratory-grade microscope far exceeds that of the

custom-built microscope used in a previous iteration of this experiment [19]. While
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the first prototype hyperspectral imager [19,40] was limited to a single available mi-

croscope objective with the custom-built microscope, SmacM contains a CAS that

is directly interfaced to a laboratory-grade microscope containing multiple objectives

of various magnifications and NA(s). As a result, the optical quality and effective

spatial resolution of SmacM was not constrained by a single available objective. A

more optimized spatial resolution was realized. Also, good mechanical stability is

achieved since the CAS is mounted to a raised baseplate directly supported by the

optical table. Mechanical vibrations are thus reduced and largely limited to table

vibrations. The CAS was translated at the back-end of the microscope, perpen-

dicular to the grating dispersion direction, via computer-controlled translation. A

Newport three axis stage and ESP300 motion controller enable adequate alignment

of the CAS in both horizontal and vertical dimensions. CAS motion control with

the ESP300 was automated over the RS-232 interface using the Matlab Instrument

Control Toolbox. The maximum velocity was 25 mm/s, however, the velocity was set

to 1 mm/s. Translation by a step size equivalent to a mask feature size (e.g. 54 µm)

would take 54 ms. CAS scan times were limited by detector integration time rather

than the translation speed. Generally, the scan time for the experiments described

in this chapter took 10 - 20 minutes.

The Axioplan 2 microscope is also mounted directly to the optical table and
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(d) CAD rendered image of the sample holder for the microscope.
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modified to accommodate laser excitation at the sample plane. The condenser and

sample holder were removed from the upright microscope to accommodate a custom

sample holder shown in Fig. 2.8. The custom sample holder, fabricated with the Eden

333 rapid prototyping machine, was attached to a motion-controlled, multi-axis stage

for z-axis focus adjustment and transverse sample motion. Sample motion control

was again automated over the RS-232 interface. Also, optical field size mismatch

between the microscope output port and CAS necessitated coupling optics. A 0.35×

Nikon CCTV C-mount coupler demagnifies a 23 mm relayed image to an 8 mm image.

Since the coupling optic does not provide a 1:1 correspondence between the field size

and aperture-code spatial extent, edges of the relayed object image are not visible to

the CAS.

Two detector arrays were interfaced with SmacM. The CAS uses a Santa Bar-

bara Instruments (SBIG) cooled scientific-grade Kodak ST-7XME CCD array with a

quantum efficiency range of 70 - 75% between 550 - 665 nm. The detector array has

a resolution of 510×765 with 16-bit dynamic range and a 9 µm square pitch. Recall

that the CAS spectral range (∆λ) is 550 - 665 nm. The largest CCD pixel extent

(765 pixels) defines the dispersion axis. For the CAS, the detector pixels along the

dispersion direction are binned to 381. Since the CAS measures 115 spectral chan-

nels along the dispersion direction, every three spectral channels projected onto the

37



detector plane measures 1 nm. Automated data acquisition was realized using SBIG

drivers accessed from Matlab. Also, a baseline detector was coupled to a second

exit port on the Axioplan 2 microscope. The baseline detector is a SPOT camera

with a resolution of 1315×1033 pixels of 6.8 µm square pitch, yielding either a 12-bit

grayscale image or a 36-bit color image. The detector has a quantum efficiency range

of 20 - 40% between 500 - 600 nm. The SPOT camera uses a liquid crystal tunable

filter to generate an RGB image. RGB images with the SPOT camera were not used

to compare object data cube reconstructions in this chapter.

2.3.3 SmacM spatial resolution metrics

System spatial resolution factors into system design. Design metrics impacting CAS

spatial resolution include: aperture-code feature size (∆f), pixel size (∆p), and spot

size (∆r). Spatial resolution, Ω, is determined by the root-mean-square calculation

denoted by

Ω = [∆f 2 + ∆p2 + ∆r2]1/2. (2.17)

This calculation shows the dominant factor limiting Ω. The aperture-code feature

size is determined by the mask feature to pixel ratio - a CAS mask feature maps to six

detector pixels (54 µm). The spectrometer spot size is compared to the microscope

objective Rayleigh criterion calculation. The microscope objective spot size, ∆r,
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Figure 2.9: Optical resolution limits of different numerical aperture (NA) micro-
scope objectives as a function of wavelength.

lower limit is defined by

∆r =
0.61λ

(NA)
, (2.18)

where λ represents wavelength and NA describes the numerical aperture of the mi-

croscope objective. Figure 2.9 shows optical spatial resolution as a function of NA

for different wavelengths. We can compare the spectrometer central field spot size

(16.25 µm) to the microscope objective Rayleigh calculation with a 0.75 NA objec-

tive and a 532 nm illumination wavelength (200 nm). By doing this, we see that the

optical resolution of SmacM is limited by the aperture-code feature size (Ω = ∆f).

The spatial resolution at the microscope sample plane based on the SmacM ar-

chitecture is found using the aforementioned optical resolution limit. The microscope
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object plane spatial resolution (∆s) is calculated by

∆s =
∆f

MC
, (2.19)

where M represents microscope objective magnification and C defines the coupling

optic magnification. The available microscope objectives for the Axioplan 2 micro-

scope (10× - 100×) and the coupling optic (0.35×) provide a spatial resolution range

of 15.4 µm - 1.54 µm.

2.4 Simulation results

This section presents simulations of SmacM measurements and the post-detection

procedure detailed in Section 2.2.1. Spectrally narrow and broad object emissions

were evaluated and spectral-spatial reconstruction accuracy compared when measure-

ments are uncorrupted and corrupted by noise.

First, a snapshot detector measurement from a narrow band object spectral den-

sity was simulated. A Matlab 64×64 pixel ‘Shepp-Logan phantom’ image (see

Fig. 2.10(a)) with a spatially varying intensity was used as a test object. A CAS

detector measurement is simulated by convolving the object spectral signature shown

in Fig. 2.10(f) with the object modulated aperture-code shown in Fig. 2.10(d). The

object spectral emission, modeled by two Lorentzian functions, contained two peaks
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Figure 2.10: Simulated SmacM measurements and reconstructions. (a) A Mat-
lab ‘Shepp-Logan phantom’ test image with a spatially varying intensity, as seen in
the colorbar. (b) Shuffled, order 64 S-matrix. (c) Multi-spectral ‘Shepp-Logan phan-
tom’ reconstruction from simulated detector scanned measurements. (d) A subset
of scanned measurements across the object data, a sum is taken over the spectral
axis. Two ‘Shepp-Logan phantom’ images with varying intensity represents disper-
sion from the grating and the intensity variation represents the variation in spectrum
intensity. (e) Aperture-code modulation of a single row from the object data over a
series of 64 scanned measurements. Two copies appear due to the spectral content of
the object row along the x-axis. (f) Reconstructed spectral plot overlayed with the
baseline data at a single pixel location in the reconstructed object data cube.
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located at 560 nm and 630 nm. Both peaks have different peak intensities and mea-

sure a full-width half maximum (FWHM ) of 1 nm. The baseline spectrum at each

pixel location in the ‘Shepp-Logan phantom’ image is shown in Fig. 2.10(f). Since

the object data was not spatially uniform across the vertical axis, pushbroom mea-

surements were simulated for spectral estimation and data cube construction.

The post-detection scheme mentioned in Section 2.2.1 is simulated in this section.

For pushbroom measurement simulation, a single row from the object in Fig. 2.10(a) is

modulated by the aperture-code and then convolved with the object spectrum. A set

of pushbroom measurements is shown in Fig. 2.10(e). Recall that a set of pushbroom

measurements represents independent projections of the object spectral data mapped

to the detector plane. Several pushbroom measurements, shown in Fig. 2.10(e), were

inverted for spectral estimation. Further, the synthetic object was compared with the

spectrally summed object data cube estimate shown in Fig. 2.10(c). Reconstruction

efficacy is measured using the peak signal-to-noise ratio (PSNR) metric. PSNR is

defined as

PSNR
def
= 20 log10

{
MAXA

1
nxny

∑nx

i=1

∑ny

j=1[Ai,j −Bi,j]2

}
, (2.20)

where A represents the synthetic object, B represents the object estimate, nx and

ny represent the number of detector pixels along each spatial dimension. A PSNR

of 20.32 is calculated for the ‘Shepp-Logan phantom’ image. Much of the error in
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Figure 2.11: SmacM simulations from a spectrally extended input object. (a)
Spectral plot at a single spatial location within the estimated object data cube. The
NNLS spectral estimate and baseline spectral plot are shown. (b) Reconstructed
image estimate of the ‘Shepp-Logan phantom’ object cube. (c) CAS snapshot show-
ing the object mask-modulated and dispersed image. (e) Aperture-code modulation
of a single row from the object data over a series of 64 scanned measurements. Two
copies appear due to the spectral content of the object that is dispersed along the
x-axis.

the estimate is attributed to the vertical line across the center of the reconstructed

image. This vertical line is embedded in the measurement S-matrix and reproduced

in each of the pushbroom/vertically scanned images. For this reason, the vertical

line appears in the image estimate. The use of a different encoding matrix with

no opaque columns would help increase PSNR. Also, spectral reconstruction from

NNLS inversion was compared to the baseline spectrum. A single spatial location

in the data cube was chosen for the comparison. The similarity between the baseline

spectrum and spectral estimate is shown in Fig. 2.10(f). The spectral estimate is an

exact reproduction of the baseline spectrum.

Also, pushbroom measurements from spectrally broad object emissions were sim-
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ulated. The analysis of spectrally extended objects serves to mimic targets typically

analyzed in fluorescence microscopy. Similar to pushbroom measurements from nar-

rowband source simulations, a snapshot CAS detector measurement of a spectrally

extended ‘Shepp-Logan phantom’ test object was generated. The mask-modulated

object was convolved with a spectrum to produce the image shown in Fig. 2.11(d).

The simulated object spectrum has a Lorentzian lineshape containing two peaks lo-

cated at 560 nm and 630 nm and a FWHM of 10 nm. Figure 2.11(e) shows single

row object data dispersed and modulated by every row in the aperture-code, thereby

simulating pushbroom operation. Broad spectral emissions generated smeared and

dispersed mask-modulated object data since the number of superimposed mask-

modulated objects is defined by the spectral linewidth. NNLS inversion was used for

spectral estimation of the image in Fig. 2.11(e). In the configured data cube, every

spatial location contains a NNLS inverted spectral estimate. The baseline spectrum

was compared to the reconstructed spectral estimate in Fig. 2.11(a). Further, PSNR

was used to evaluate image reconstruction. A PSNR of 23.69 is calculated for the

image estimate. Note that an increase in PSNR was observed for the spectrally

broad object emission compared to the spectrally narrow object emission in the case

under test. This occurs since the average energy detected with a spectrally extended

object is higher than energy from a spectrally narrow linewidth source.
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Figure 2.12: SmacM image reconstructions from simulated measurements cor-
rupted by AWGN. Synthetic baseline images include (a) a 2D ‘Shepp-Logan phan-
tom’, (b) circles and slits, and (c) circles. (d-f) Reconstruction PSNR versus Mea-
surement SNR corrupted by AWGN for spectrally different input object emissions.
Note that a decrease in PSNR after a maximum is seen due to the measurement
S-matrix central column that is completely opaque.
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The impact of additive white gaussian noise (AWGN) on pushbroom CAS mea-

surements was also analyzed. AWGN was used to analyze a photon-limited case

typically found in fluorescence microscopy. Recall that the use of an aperture-code

in place of a conventional slit in the CAS enables a 32× increase in throughput,

thereby presenting an advantage for coded aperture imaging of weakly fluorescent

samples. Three different test targets were used to quantify image reconstruction

accuracy for spectrally different object emissions. AWGN is generated using the

‘awgn’ MATLAB command where measurement signal-to-noise ratio (SNR) is an

input parameter. The measurement SNR and PSNR are measured in decibels (dB).

Figure 2.12 summarizes the results from CAS measurements with AWGN for three

different test objects.

Three different test objects (e.g. ‘Shepp-Logan phantom’, circles/slits, and circle

targets) in Fig. 2.12(a-c) were detected with the CAS after pushbroom operation

and were corrupted with AWGN in simulation. The object estimates converge at

a measurement SNR of about 60 dB for a spectral linewidth of 5 nm and 10 nm.

However, all object test targets with 1 nm spectral linewidths converge at a 40 dB

measurement SNR. The reconstruction PSNR versus measurement SNR plots for

5 nm and 10 nm spectral linewidths show a decrease in measurement SNR at an

SNR range of 20 - 40 dB as shown in see Fig. 2.12(d-f). This decrease occurs after
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a maximum value has been achieved. Simulations prove that this phenomenon is

caused by the central vertical column in the measurement matrix (S-matrix) that is

completely opaque. Simulations without the central opaque vertical column showed

that the aforementioned phenomenon disappears.

Simulations in this section enabled the analysis of narrowband and wideband

source emission. The behavior of CAS pushbroom measurements to narrowband

and broad sources was quantified. Also, NNLS spectral reconstruction accuracy was

measured for the case when detector measurements were corrupted and uncorrupted

by noise. Simulations base on other sample conditions would improve the analysis of

the CAS pushbroom imager.

2.5 Experimental results

Simulations from the previous section motivate experiments for narrowband and

broadband spectral analysis. Also, the simulations helped to shed some light on

algorithm performance for data cube estimation of spatially and spectrally extended

objects. For fluorescent targets, smeared detector measurements are expected and a

baseline measurement from a spectrally narrow source is necessary. This section de-

scribes calibration data collection, sample illumination geometries, and experimental

results with SmacM.
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2.5.1 Calibration and sample illumination

CAS calibration data frames were acquired with a krypton discharge lamp. The lamp

was placed below the sample holder and directed towards the microscope objective.

At the exit port of the microscope, a one inch field uniformly illuminated the input

aperture of the CAS and a single detector measurement was recorded. Figure 2.13(a)

shows the superposition of two mask patterns recorded at the detector plane – a con-

volution between the source and input aperture. Spatial uniformity of the source

removed the need for vertical scanning. Note the smile curvature (parabolic curva-

ture) at the right side of the image. Also, grating vertical misalignments are evident

in Fig. 2.13(a) from the incomplete overlap of the superimposed and shifted mask

images.

In the post-detection scheme, the CAS krypton discharge lamp data was vertically

binned to match the number of rows in the order 64, S-matrix for spectral estima-

tion. After NNLS inversion was applied to the data, spectral estimates along each

row were calculated from each column of the image data as shown in Fig. 2.13(b). Af-

ter aligning the spectral estimates (see Fig. 2.13(c)), a sum was taken along the rows

of the estimated data as shown in Fig. 2.13(d-e). Summation along the rows provided

a spectral estimate of the calibration source. Since a calibration source was used, the

reconstructed peaks are mapped to wavelength locations using the ‘polyfit’ (a polyno-
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mial fit) command in Matlab. This command creates a polynomial fit between the

peak locations obtained from NNLS spectral estimates and krypton lamp emission

peak wavelengths as shown in Fig. 2.13(e). The peak krypton lamp wavelengths were

obtained from the NIST spectral database. The calibration spectrum polynomial fit

showed that higher spectral channels (e.g. 220) in the data corresponded to blue-

shifted wavelengths and lower spectral channels (e.g. 170) correspond to red-shifted

wavelengths. Note that two spatially overlapping monochromatic laser sources can

be used for wavelength calibration if a discharge lamp is unavailable.

Once a calibration image was obtained, a sample illumination geometry was con-

figured. For sample analysis, test targets and fluorescence microscopy slides were

placed on a custom-built sample holder (see Fig. 2.8(d)) and were illuminated in

two different ways. Chrome-on-quartz calibration targets were illuminated with a

HeNe laser or HeNe/green HeNe laser combination. The laser beam(s) were directed

towards the sample plane of the microscope for transmission illumination. Fluo-

rescence samples were excited via darkfield illumination. This method employed a

5 W frequency-doubled solid state Nd:YVO4 (neodymium yttrium vanadate) laser.

The laser obliquely illuminated a small FOV within the sample. High power laser

illumination enabled maximum excitation efficiency of the fluorescent markers.
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Figure 2.13: NNLS data inversion. (a) Cropped image of a CAS response to a
Krypton lamp source. (b) Spectral estimates calculated using NNLS. (c) Aligned
spectral estimates. (d) Summation of the spectral estimates provided a spectral pro-
file. (e) Calibrated spectral profile generated using the ‘polyfit’ function in Matlab
to interpolate known spectral peaks for the Krypton lamp with locations from the
reconstructed spectrum for the source (peak location 170 in (d) becomes 587.1 nm
and peak location 220 becomes 557 nm.
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2.5.2 Narrow-source illuminated calibration targets

Two chrome-on-quartz transmission masks were illuminated with laser light. Each

64×64 pixel mask (spatial extent of 57.6 µm) was imaged with a 20× microscope

objective. For SmacM pushbroom operation, the CAS at the exit port of the mi-

croscope was scanned a total of 223 steps (a 12 mm vertical spatial extent) along the

y-axis.

As a first test, a fractal mask pattern was illuminated by a 10× beam expanded

HeNe laser. Using the post-detection procedure detailed in Section 2.2.1 and simu-

lated in Section 2.4, a reconstructed HeNe spectrum is shown in Fig. 2.14(a). The

spectral plots correspond to single spatial locations within the estimated object data

cube. The amplitude spectral plot in Fig. 2.14(a) shows an “on” spatial location

within the fractal pattern object data cube where HeNe light is transmitted. The

peak in the figure is attributed to the HeNe wavelength (632 nm). Figure 2.14(b)

shows an amplitude spectral plot corresponding to the background signal. Note that

noise artifacts appear in both spectral plots adjacent to the maximum-valued peaks.

This noise is attributed to algorithmic noise produced by system misalignments (e.g.

grating misalignments, calibration source misalignments, or CAS scanning misalign-

ments), CAS system blur, or CAS detector noise. Also, laser illumination of the

transmission mask creates speckle, as shown in Fig. 2.14(c).
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(a)

(b)

(c)

(d)

(e)

Figure 2.14: (a) “On” and (b)“off” amplitude values from two spatial locations in
the reconstructed object data cube as a function of wavelength. (c) SPOT Baseline
image of a chrome-on-quartz fractal pattern observed with a 20× objective and 0.35×
demagnifier. (d) Downsampled baseline image created to match the resolution of the
aperture-coded spectrometer. (e) Reconstruction estimate for a single transverse
image at a single spectral channel.
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A baseline image from the SPOT detector is shown in Fig. 2.14(c). The baseline

image was downsampled to match the CAS image resolution as shown in Fig. 2.14(d).

Figure 2.14(e) represents the maximum-valued image estimate along the spectral

domain of the object data cube. A comparison was made between the SPOT baseline

detector image in Fig. 2.14(d) and the maximum object estimate in Fig. 2.14(e) to

evaluate image reconstruction quality. The reconstructed image and the baseline

measurement are similar. Laser speckle impacts image quality with the maximum-

value image estimate. The cross-hair features in the fractal pattern are distinguished

in the maximum-valued image estimate.

A second transmittance mask containing the letters ‘DISP’ was illuminated with

a 10× beam expanded diffuse HeNe and green HeNe laser combination. A CAS

snapshot of a mask-modulated and dispersed input source is shown in Fig. 2.15(f).

The dispersed ‘DISP’ mask represents the spectral content contained within the input

object source. Using the procedure detailed in Section 2.2.1, spectral estimates were

generated and a 3D data cube was created. Figure 2.15(a-d) displays 2D transverse

slices along the spectral axis of the data cube. These image estimates were rotated

to match the recorded SPOT baseline image in Fig. 2.15(e) and the image slices

were scaled by the maximum value of the 3D data cube. Note that Fig. 2.16(a) does

not display all ‘DISP’ letters since the spatial extent of the dispersed green spectral
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Figure 2.15: Object data cube for a chrome-on-quartz ’DISP’ mask illuminated by
a green HeNe and HeNe diffuse laser combination. Rotated image at spectral channel
(a) k = 248 (evidence of green HeNe source), (b) k = 150, (c) k = 97 (evidence of the
HeNe source), and (d) k = 15. (e) Baseline downsampled 2D image obtained with
the SPOT camera at a slightly different field of view compared to the CAS field of
view. (f) Spectral plot at a single voxel in the data cube where a green HeNe laser
peak and a HeNe laser peak are shown.
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channel of the CAS only partially maps to the edge of the CAS image plane. A

downsampled baseline image from the SPOT camera was used to compare transverse

slices along the spectral axis shown in Fig. 2.15(a-d). Note that the baseline SPOT

image was not ideally matched to the FOV observed by the CAS. The spectral slices,

in Fig. 2.15(a-d), spatially reveal the serifs from each letter on the mask. Residual

noise artifacts are found in adjacent spectral channels as seen in Fig. 2.15(b,d). These

artifacts are attributed to calibration misalignments with respect to scanned mea-

surements and aforementioned system misalignments.

Further, an amplitude spectral plot at a single spatial (x,y) location on the ‘DISP’

letters is shown in Fig. 2.15(g). Noise artifacts appear in the spectral plot beside each

of the maximum-valued spectral peaks. The spectral peaks shown in Fig. 2.15(g) cor-

respond to the green HeNe (543 nm) and HeNe (632 nm) wavelengths. Improved cal-

ibration and alignment would minimize the noise contributions found in the spectral

plot.

2.5.3 Fluorescence microscopy with SmacM

Fluorescence microscopy of microspheres and cells was realized with SmacM. A

frequency-doubled laser at 532 nm was used for darkfield sample illumination. Laser

fluence was monitored via a user controlled digital indicator. Laser power at the
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sample plane varied between 100 mW to 250 mW. High laser power enabled efficient

excitation of fluorescent targets with spectrally varying quantum efficiencies. Fluo-

rescence emission was collected with an LD Epiplan-Neofluar 100×, 0.75 NA or an

LD Epiplan 50×, 0.5 NA microscope objective. Objectives were chosen for infinity

color correction and long working distances. Long working distances enabled oblique

sample illumination. The microscope included a 532 nm laser line notch filter to

eliminate unwanted scattered and reflected laser light collected at the microscope

sample plane. After filtering, the light was directed toward two microscope exit ports

where the CAS and baseline camera were located.

During pushbroom operation, the CAS was scanned a total of 223 steps (a 12 mm

spatial extent). Note that translation began above the intermediate image plane of

the microscope coupling optic and ended below the intermediate image plane of the

coupling optic. CAS detector integration times for each set of scans varied between 1

and 30 s depending on fluorescence signal emission from the sample. Also, a krypton

lamp calibration image was taken before each acquired dataset.

An Invitrogen solution containing 0.2 µm carboxylate-modified fluorescent micro-

spheres (fluospheres) and a fluorescent cell were tested. The fluorescent microspheres

were prepared in a 10:1 solution with deionized water. The fluosphere solution was

UV-excited and a baseline spectrum was recorded with a conventional, Ocean Optics

56



(OO), slit spectrometer; see Fig. 2.16(g). Next, a droplet of poly-l-lysine was placed

on the microscope slide for fluosphere adhesion. A droplet of the fluosphere solu-

tion was subsequently added to the microscope slide. Finally, deionized water was

used to wash the droplet off of the microscope slide. Fluosphere samples analyzed at

the microscope sample plane contained dried microspheres. Fluorescent labeled cells

required no additional sample preparation.

A microscope slide containing 0.2 µm fluospheres was tested with SmacM. Op-

timal excitation of these fluospheres occurs at 540 nm. However, the fluospheres

were sufficiently excited by 532 nm light due to their broad excitation profile. Post-

processed 2D transverse slices along the spectral axis are shown in Fig. 2.16(a-e). A

downsampled baseline SPOT detector image (see Fig. 2.16(f)) was compared to the

reconstructed 2D images shown in Fig. 2.16(a-e). Recall that from Section 2.3.3, the

calculated spatial resolution at the microscope sample plane was 1.54 µm. Therefore,

the 0.2 µm fluospheres are diffraction limited test targets for SmacM. To evalu-

ate SmacM spatial resolution performance, the baseline image recorded with the

SPOT detector was first analyzed. The only optical element affecting the SPOT

detector measurement was the microscope objective. The theoretical spatial extent

of the fluosphere after the 100× microscope objective should measure 20 µm. The

0.2 µm fluosphere at the SPOT detector measured about 24 pixels (spatial extent
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Figure 2.16: Object data cube reconstruction of 0.2 µm fluorescent microspheres
excited by 532 nm laser light. Transverse images at spectral channels (a) k = 268,
(b) k = 222, (c) k = 205, (d) k = 128, and (e) k = 10 are shown. (f) Downsampled
baseline image from the SPOT camera. (g) Spectral plot for the spatial location row
29, column 57 on the bead overlayed with an OO baseline spectrum. (h) Spectral
plot of a background pixel located at spatial position row 29, column 80.
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of 163.2 µm). Therefore, the spatial extent of the fluosphere is 8× larger than the

theoretical estimate. This suggests that the sample FOV recorded with both the

SPOT detector and the CAS was not located at a “best focus” plane. Instead the

fluosphere was imaged in a defocused plane. Note that the “best focus” position was

empirically found. Comparatively, the theoretical spatial extent of the fluosphere at

the CAS, considering the microscope objective and coupling optic, measured 7 µm.

The fluosphere spatial extent in the reconstructed 2D image shown in Fig. 2.16(b)

measures 486 µm. Since the feature size ( 54 µm) of the aperture-code is the spatial

resolution limit, the fluosphere size is about 8× larger than the predicted value. While

sample plane defocus was primarily responsible for the resolution degradation, CAS

misalignment along the optical axis and other misalignments were also contributing

factors.

NNLS inversion was used to estimate the spectrum of the fluosphere and the

background signal. The amplitude spectral plot from a single spatial location in the

reconstructed object data was overlayed with a baseline OO spectrum, as shown in

Fig. 2.16(g). High correlation was found between the spectral estimate and baseline

spectrum. A background amplitude spectral plot is also shown in Fig. 2.16(h).

Lastly, the FluoCell microscope slide #2 from Invitrogen containing bovine pul-

monary artery endothelial cells was tested. The bovine pulmonary artery endothelial
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cells were stained with red-fluorescent Texas Red-X phalloidin for labeling F-actin,

mouse monoclonal anti-α-tubulin in conjunction with green-fluorescent BODIPY FL

goat anti-mouse IgG for labeling microtubules, and blue-fluorescent DAPI for label-

ing nuclei. The cell was an interesting spectral source since the sample contained two

minimally overlapping fluorescence emissions within the spectral band of the CAS.

The cells ranged in size between 6 µm and 20 µm. The CAS is insensitive to the

nuclei labeled with DAPI since the emission falls outside of the CAS spectral band-

width. The excitation and emission Invitrogen spectra for the red-fluorescent Texas

Red-X phalloidin and the green-fluorescent BODIPY FL goat anti-mouse IgG are

plotted in Fig. 2.17. Fluorescence emission from the bovine cell was collected with

a 50×, 0.5 NA microscope objective. The post-processed spectral slices from the

data cube of the bovine cell are shown in Fig. 2.18(a-e). Recall that higher spectral

channels correspond to blue-shifted wavelengths. The transverse image at spectral

channel k = 284, in Fig. 2.18(b), reveals a brighter image since the dominant feature

of the cell is green (see Fig. 2.18(g)). Also, Figure 2.18(d) isolates the contribution

in the cell due to the red-fluorescent labeled F-actin. While cell sizes are large com-

pared to the spatial limitations of both the SPOT detector and the CAS, the smaller

features of the cell were difficult to distinguish in the reconstructed 2D images at

various spectral channels in the object data cube.
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(b)

(a)

Figure 2.17: Excitation and emission spectra from (a) the green-fluorescent BOD-
IPY FL goat anti-mouse IgG label and (b) the red-fluorescent Texas Red-X phalloidin
label contained in the bovine pulmonary artery endothelial cell, Invitrogen FluoCell
Slide #2.
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Figure 2.18: Object data cube reconstruction of the Invitrogen FluoCell Slide #2
containing bovine pulmonary artery endothelial cells 5 - 20 µm in size. Object data
cube reconstruction of spatial slices at spectral channels (a) k = 313, (b) k = 284,
(c) k = 250, (d) k = 200, and (e) k = 10 are shown. (f) Downsampled baseline
image from the SPOT camera. (g) RGB rendered image with the SPOT camera.
(h) Spectral plot at spatial location row = 10 and column = 8 on the cell and (i) at
spatial location row = 13 and column = 80 located in the background of the object
data cube.
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NNLS spectral estimation provides amplitude spectral plots at three different

spatial locations in the object data cube. Figure 2.18(h) displays overlayed spectra

from two spatial locations on the cell. Figure 2.18(i) shows the background spectral

estimate. The axes for the plots are scaled by the maximum value of the dataset.

While the overlayed spectra in Fig. 2.18(h) are of low intensity, the general structure

of the spectra resembles the baseline spectra shown in Fig 2.17(a-b). Spatial structure

in the cell data cube reconstruction was compared to the baseline SPOT detector

image in Fig. 2.18(f-g). Image quality for each spectral slice shown in Fig. 2.18(a-e) is

sacrificed due to the pushbroom scan size (54 µm) and spatial resolution limitations of

CAS. Finer scans would enable improved spatial resolution along the scan direction.

2.6 Summary

This chapter described a robust CAS interface to an upright laboratory-grade mi-

croscope. Simulations motivated measurements for both narrowband and wideband

sources with SmacM. SmacM experiments show successful narrow-band target re-

constructions and fluorescent microspheres and cellular reconstruction.

Still, system alignment, system blur, and empirical “best focus” adjustments could

be improved to increase image spatial registration and NNLS spectral estimation.

One option for improved biological sample analysis is to employ a smaller feature size
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in the aperture-code or finer pushbroom scanning (< 54 µm). Moreover, a scan time

limit was not tested to establish a minimum data acquisition time.

Pushbroom imaging with CAS provides high throughput, high spatial resolution,

and high spectral resolution. While high throughput is achieved with the CAS hy-

perspectral imager, the inherent limitation is scan time. Therefore, dynamic imaging

is infeasible with the system described in this chapter.
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Chapter 3

Snapshot spectral imaging

Considering SmacM limitations associated with system alignment and scan time, dy-

namic imaging is infeasible. Motivated by pushbroom system limitations, this chapter

describes a coded aperture snapshot spectral imager (CASSI) applied to fluorescence

microscopy. CASSI records a two-dimensional (2D) spectrally filtered projection of

a three-dimensional (3D) spectral data cube. First, a convex quadratic function with

total variation (TV) constraints is minimized for data cube estimation from a 2D

snapshot. Second, the TV-minimization algorithm is adapted for direct fluorescent

bead identification from CASSI measurements by combining a priori knowledge of

the spectra associated with each bead type. In this chapter, the proposed methods

create 2D bead maps. Simulated fluorescence CASSI measurements are used to eval-

uate the behavior of the algorithms. Also, real CASSI measurements of a ten bead

type fluorescence scene are recorded and 2D bead maps are created. Baseline images

from a filtered-array imaging system verify CASSI’s 2D bead maps.
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3.1 Introduction

Fluorescence microscopy is a high contrast imaging tool where a light source is used to

excite various parts of a sample labeled with fluorescent markers. With the emergence

of new fluorescent markers for microscopy applications, one underlying challenge is

to identify spectrally overlapping fluorescence emitters. Another challenge involves

separating both weak and strong emitters from an autofluorescent background. Spec-

tral imaging (SI) addresses these challenges by reconstructing a spectrum at every

pixel location in an image. Most fluorescence microscopy applications associated

with spectral imaging create a 2D spectral identity map for an end-user interested

in target localization and characterization from a detector measurement. SI emerged

in the field of remote sensing [45, 46] and reconnaissance applications [47, 48] and it

has recently impacted biomedical imaging in pathology [49], gene mapping [50], and

confocal fluorescence imaging of bacteria cells [51].

Traditionally, in SI a three-dimensional (3D) data cube (2D spatial, 1D spectral)

is generated via scanning or filter-based approaches. Common scanning methods

include tomographic, pushbroom and whiskbroom imaging systems [52–54]. A ma-

jor drawback of these systems is long acquisition times. In recent advances, spatial

and spectral resolution from filter-based systems such as acousto-optic tunable fil-

ters (AOTF) and liquid crystal tunable filters (LCTF) have improved, with cost
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continuing to be a major drawback [55,56]. Current spectral imaging systems for flu-

orescence microscopy are scanning confocal systems that combine multiple excitation

sources, filters, and a spectrograph for data cube estimation. Recent developments of

snapshot spectral imagers address the challenges for both scanning and filter-based

approaches [39, 57,58].

Various coded aperture snapshot spectral imagers (CASSI) have been developed.

Initially, a static binary-valued Hadamard mask was used for high-throughput anal-

ysis of weak and incoherent sources for spectrum recovery [12]. More recently, a

static binary-valued, pseudo-random mask in CASSI was used for video rate spec-

tral imaging of burning candles. The mask then serves as both a high-throughput

light collector and as a 3D spatial-spectral data cube encoder. This chapter discusses

the use of CASSI for the spectral analysis of microspheres used in fluorescence mi-

croscopy [20,36,37]. CASSI overcomes the drawbacks associated with both scanning

and filter-based systems since a data cube is acquired in a snapshot image at a low

system cost. CASSI differs from other snapshot spectral imagers [39,57,58] with an

on-axis architecture, the use of direct encoding to balance tradeoffs in spatial and

spectral resolution, and the use of constrained optimization for image estimation.

A snapshot architecture makes CASSI well-suited for 3D data cube estimation of

dynamic fluorescent scenes.
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The CASSI spectral engine uses a pixel coding strategy to record compressive

measurements (2D) of a fluorescent scene (3D data cube). These measurements

draw upon concepts from a compressive sensing (CS) paradigm where underdeter-

mined measurements allow for highly accurate signal estimation [6,7]. Compressive

measurements captured from CASSI systems use CS inversion with total variation

(TV) minimization to reconstruct a 3D data cube from a single 2D image. In pre-

vious experiments [36, 37, 59] and for the system detailed in this chapter, a two-step

iterative shrinkage/thresholding (TwIST) algorithm is adapted for 3D data cube es-

timation. A procedure is developed to create a color coded image of the 3D data

cube estimate. Also, this chapter discusses an additional adaptation to a CS TV-

minimization algorithm for the identification of fluorescent beads. A priori spectral

data are incorporated into the inversion process to further impose sparsity along the

spectral domain. The imposed sparsity enables a more accurate reconstruction from

fewer measurements. A three-step procedure is then applied to the sparse data cube

estimate to create a 2D spectral feature map of fluorescent beads. Approaches in this

chapter are designed to address applications in fluorescence microscopy associated

with spectral data cube estimation and target identification.

This chapter is organized as follows. In Section 3.2, the dual-disperser (DD)CASSI

optical architecture is reviewed and the effect of the aperture-code on a source spec-
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tral density is described. Section 3.3 summarizes the TV-minimization algorithm

for 3D object data cube estimation and explains the adaptation to further impose

sparsity on the data cube using a priori spectral information. The generation of a

pseudo-colored object data cube and a 2D bead identification map is described. Also,

the performance of both algorithms is demonstrated via simulation in Section 3.3.

Further, the CASSI-microscope interface is presented in Section 3.4. Section 3.5

provides CASSI spatial resolution limitations. Also, Section 3.5 shows a CASSI

pseudo-colored spectral cube map and a fluorescent bead identification map. Base-

line images are recorded with two multi-spectral imaging systems. These images are

used to verify CASSI bead identification maps. Section 3.6 presents results from

dynamic scene analysis with CASSI. Section 3.7 suggests a compact and low-cost

CASSI redesign. Finally, Section 3.8 summarizes the work contained in this chapter.

3.2 System model

The system model for a DD snapshot spectral imager has already been developed [20].

This chapter describes a variant on the DD architecture previously discussed – the use

of two direct-view double Amici prisms as dispersing elements as shown in Fig. 3.1.

The double Amici prisms are of equal and opposite dispersion (±ξ). The Amici

prisms facilitate an on-axis optical architecture. This section provides a summary
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Figure 3.1: (a) Optical architecture for a DD CASSI consisting of two Amici prisms
(AP1 & AP2), an aperture code (M) and a focal plane (FP). (b) Power spectral
density profile propagated through the system optical architecture. The effect of the
aperture code on the power spectral density is illustrated.

for the dual-disperser CASSI system model. An object can be described by a three-

dimensional power spectral density, f0(x, y, λ), where x and y denote spatial location

and λ represents the wavelength. After the first group of optics in arm 1 (see Fig.

3.1), f0 is mapped to

f1(x, y, λ) =

∫∫
f0(x

′, y′, λ)h1(x, x′, y, y′, λ)dx′dy′. (3.1)

The kernel h1(x, x′, y, y′, λ) is modeled by a shift invariant impulse response that

represents propagation through unity magnification imaging optics and a dispersive

element. Diffraction effects in the CASSI architecture and optical aberrations are

neglected in the expression for h1.

h1(x, x′, y, y′, λ) = δ(x′ − [x + ξ1(λ− λC)])δ(y′ − y). (3.2)
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Thus far, the system impulse response (h1) for CASSI is the same as that used in

CAS, as previously described in Chapter 2. The main difference is in the location

of the aperture-code in the optical architecture. In Eq. (3.2), ξ1 represents the net

dispersion prescribed by the first double Amici prism and λC is the system’s center

wavelength (550 nm). Dispersion by the Amici prism is expressed as dn/dλ, where n

is the index of refraction. Linear dispersion is assumed in this system model for the

prescribed spectral range of the instrument. Dispersion in arm 1 is referred to as a

shearing operation along the x dimension of the optical system. The power spectral

density is neither magnified nor dispersed along the y direction. By substituting

Eq. (3.2) into Eq. (3.1), f1 becomes

f1(x, y, λ) =

∫∫
f0(x

′, y′, λ)δ(x′ − [x + ξ1(λ− λC)])δ(y′ − y)dx′dy′ (3.3)

= f0(x + ξ1(λ− λC), y, λ). (3.4)

After the prism, multiple images are formed at wavelength dependent locations. The

sheared power spectral density is then modulated by an aperture code. A mask-

modulated f1 is expressed as

f2(x, y, λ) = t(x, y)f0(x + ξ1(λ− λC), y, λ), (3.5)
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where t(x, y) is the transmittance function of the aperture code. CASSI has a

pseudo-random, binary-valued transmittance function defined by

t(x, y) =
N∑
ij

tijrect

(
x− i∆T

∆T

,
y − j∆T

∆T

)
, (3.6)

where tij is the binary value (0 or 1) associated with either an opaque or transmissive

opening on the mask, N refers to the total number of mask elements along each

spatial dimension, and ∆T refers to the mask element pitch. The mask modulation

process is referred to as a punching operation, where spectral channels are blocked

by opaque regions on the mask as a function of spatial location. The optics in arm 2

are meant to undo the dispersion effects from arm 1 (see Fig. 3.1). After the second

Amici prism f2 becomes

f3(x, y, λ) =

∫∫
f2(x

′′, y′′, λ)h2(x, x′′, y, y′′, λ)dx′′dy′′ (3.7)

f3(x, y, λ) =

∫∫
t(x′′, y′′)f0(x

′′ + ξ1(λ− λC), y′′, λ)h2(x, x′′, y, y′′, λ)dx′′dy′′. (3.8)

Recall that, the Amici prism in arm 2 has equal and opposite dispersion to the Amici

prism in arm 1 (ξ2 = −ξ1). In Eq. (3.8), h2 is also modeled as the shift-invariant

impulse response for the optics in arm 2:

h2(x, x′′, y, y′′) = δ(x′′ − [x + ξ2(λ− λC)])δ(y′′ − y). (3.9)
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Before the detector, f3 is further simplified to

f3(x, y, λ) = f0(x, y, λ)t(x− ξ1(λ− λC), y). (3.10)

A spectrally dependent filter function is described as H(x, y, λ) = t(x−ξ1(λ−λC), y).

The application of a 2D aperture-code in a dispersive, intermediate image plane of

CASSI creates a 3D spectrally shifted filter function that modulates a 3D power

spectral density. Since the detector is insensitive to wavelength, the power spectral

density at the detector is integrated along the wavelength dimension.

g(x, y) =

∫
f0(x, y, λ)H(x, y, λ)dλ. (3.11)

The spectral integration process at the detector is referred to as a smashing operation.

Therefore, an intensity value at every pixel location is recorded at the detector. Since

the measurements at the detector are spatially pixelated, detector measurements are

modeled as

gmn =

∫∫∫
t(x− ξ1(λ− λC), y, λ)f0(x, y, λ)pmn(x, y)dxdydλ, (3.12)
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where pmn represents the detector sampling function at the (m,n)th location as de-

scribed by

pmn(x, y) = rect

(
x−m∆

∆
,
y − n∆

∆

)
, (3.13)

and ∆ represents the detector pixel pitch. Substituting Eq. (3.13) and Eq. (3.6) into

Eq. (3.12), results in

gmn =
∑
ij

tij

∫∫∫
rect

(
x− ξ1(λ− λC)− i∆T

∆T

,
y − j∆T

∆T

)
rect

(
x−m∆

∆
,
y − n∆

∆

)

×f0(x, y, λ)dxdydλ. (3.14)

Next, the mask element pitch (∆T ) and the detector pixel pitch (∆) are assumed to

be equal (∆T = ∆). Ideally, a relationship between the mask and detector sampling

functions is established to simplify the expression in Eq. (3.14). To do this, a substi-

tution is made for k such that k = ξ1(λ−λC)/∆. After substituting k into Eq. (3.14),

the equation becomes

gmn =
∑
ij

tij

∫∫∫
rect

[
x− (k − i)∆

∆
,
y − j∆

∆

]
rect

[
x−m∆

∆
,
y − n∆

∆

]

×f0(x, y, λ)dxdydλ. (3.15)

The sampling functions for the aperture code and the detector overlap when m = k−i

and j = n. In order to create a discrete representation of f0, x′ = x−m∆, y′ = y−n∆
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and λ′ = λ− k∆ are substituted into Eq. (3.15) to yield

gmn =
∑
ij

tijδi,k−mδj,n

∫ ∫ ∫
f0(x

′ + m∆, y′ + n∆, λ′ + k∆)rect

[
x′

∆
,
y′

∆

]
dx′dy′dλ′,

(3.16)

where ∆ again represents the detector pixel pitch. A discrete representation (f) for

the 3D object distribution (f0) is modeled as

fm,n,k =

∫ ∫ ∫
f0(x

′ + m∆, y′ + n∆, λ′ + k∆)rect

[
x′

∆
,
y′

∆

]
δ(λ′ + k∆)dx′dy′dλ′.

(3.17)

The detector measurements are further simplified using the following equations:

gmn =
∑

ijk

ti,jfm,n,kδi,k−mδj,n (3.18)

gmn =
∑

k

tk−m,nfm,n,k. (3.19)

This discrete model for CASSI measurements describes the effect of the aperture-

code on an input power spectral density. Compared to the CAS discrete model

described in Chapter 2 where a spectrally shifted object is modulated by a shifted

aperture-code, CASSI measurements modulate an unshifted object spectral density

by a spectrally shifted filter function (t). Since the aperture-code function (t) is

defined as a 3D filter function (H) in Eq. (3.11), CASSI measurements may be
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algebraically written as

g = Hf. (3.20)

Note that diffraction effects located at the sample plane of the microscope are relayed

to the image plane of CASSI. These diffraction effects are not incorporated into the

CASSI system model. Diffracted objects at the sample plane appear defocused at

the CASSI image plane. A defocused object results in a larger spectrally encoded

object detected by CASSI. An enlarged object does not impact the 3D data cube

estimation algorithm or the spectral feature identification algorithm detailed in this

paper.

CASSI measures a smaller number of voxels than is required to represent the

signal f . A CS inversion scheme is used to solve this underdetermined problem using

TV-minimization. Post-processing steps to generate a spectral feature map from a

3D data cube estimate are discussed in the next section.
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3.3 Reconstruction procedure and simulation re-

sults

3.3.1 3D data cube estimation algorithm

This section describes the TwIST TV-minimization algorithm [59] adaptation for

data cube estimation from a single 2D image [37]. The data-cube estimate provides

a spatial (x, y) and spectral (λ) representation of an object. Using TwIST [59], a

convex objective function is minimized. TwIST is defined by

f ∗ = arg min
f
‖ g −Hf ‖2

2 +τΦTV (f), (3.21)

where, f ∗ is the data cube estimate, H is the projection matrix defined by a sum-

mation matrix (V ) and a calibration cube (C), g is the CASSI measurement and τ

is the regularizing parameter. In the nonlinear convex optimization algorithm, TV-

minimization is used to find a sparse gradient solution to Eq. (3.21). ΦTV is defined

by

ΦTV (f) =
∑

k

∑
i,j

√
(fi+1,j,k − fi,j,k)2 + (fi,j+1,k − fi,j,k)2. (3.22)

A pseudo-inverse (H+) adaptation to the system model, H+H, (see Appendix A.3)

can be used. However, simulations have shown that this adaptation has an extremely

high computational cost despite the additive benefit of creating a better conditioned

77



system matrix. Instead, this section solves Eq. (3.21) to estimate a 3D data cube, f ∗

by incorporating a g = Hf forward model and f = CT V T g transpose model into the

TV-minimization algorithm.

Once a data cube estimate (f ∗) is found, a procedure is followed to generate a

color-encoded representation of the object data cube for display purposes. The colors

are based on the reconstructed spectrum per pixel location. Using the spectrum

reconstructed at each spatial location in f ∗, an adapted RGB code is used to identify

each spectrally unique signature in f ∗. The adapted RGB code is generated based

on the hexadecimal HTML color chart. Note that a baseline spectral database (W )

is used to verify spectral plots at spatial locations in the reconstructed object data

cube. To generate a color encoded image, a matrix Wf is generated from the spectral

database W . The matrix Wf contains columns of spectral vectors sn ∈ <L, where n

describes the number of spectral vectors in the database and L represents the length

of spectral data points. Wf consists of L rows and contains n+1 columns (i.e. spectral

vectors) to account for a background signal and all sn in the spectral database. Also,

an RGB code matrix (GRGB) is generated. The GRGB contains n + 1 rows and three

columns. The adapted RGB matrix provides n + 1 different hexadecimal HTML

colors to RGB values. The left matrix division command was used in Matlab to

generate a matrix inverse (WDS) via a least-squares solution/ pseudo-inverse method.
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The left matrix division was applied to the spectral data base matrix (Wf ) and the

RGB code matrix (GRGB). The matrix inverse, WDS, represents a downsampling

matrix. Finally, the spectrum at each (i, j)th spatial location in f ∗(i, j, k) is element-

wise multiplied by WDS to produce an f ∗(i, j, 3) data cube. Imaging the resultant

data cube provides an n + 1 psuedo-colored image of the object data cube.

While data cube reconstructions using the above technique were reasonable, 2D

TV-minimization does not impose sparsity along the spectral domain. Imposing

sparsity on the data cube along the spectral domain was addressed by incorporating

prior knowledge into the inversion process as described in subsequent sections.

3.3.2 Direct spectral feature identification algorithm

In fluorescence microscopy, fluorochrome spectral profiles in a sample are known a

priori. The a priori knowledge is incorporated into the TV-minimization algorithm

to enable more accurate data cube estimation and 2D spectral feature identification.

This section aims to describe a three-step procedure that was used to produce a

2D spectral feature map of a fluorescence scene where a unique value at every pixel

location only corresponds to one vector in the spectral database, W (see Fig. 3.2).

First, this section describes an adaptation to the 2D TV-minimization algorithm

for data cube estimation by incorporating spectral priors into the inversion scheme.
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Figure 3.2: (a) Object data cube (f) transformation into a sparse data cube (α)
using spectral priors (W ). A spectrum recorded at a single pixel location in f cor-
responds to a single pixel value and bead identity in α. (b) Matrix representation of
the spectral data base, W . W can be thought of as a spectrum look-up table.†

To do this, an object data cube, f(i, j, k), is transformed into another data cube,

α(m1,m2, n). The location along the n-axis represents color identification for a spec-

tral vector and the value of α(m1,m2, n) represents the brightness. Figure 3.2† pro-

vides an example for a spectral database, W . W is represented as W = {sn}T
n=1,

where T corresponds to the total number of spectral vectors in W. Each spectral vec-

tor, sn, represents a column vector in <L. The goal for inversion is not to reconstruct

the f data cube but rather the hope is to reconstruct a more accurate data cube, α∗

(see Eq. (3.26)). The data cube estimate, α∗, should tend to be more accurate since

it is a sparser data cube. More accurate estimation is facilitated when fewer nonzero

values can be used to represent an object data cube. CS theory indicates that the

†C. F. Cull, K. Choi, D. Brady, and T. Oliver, “Identification of fluorescent beads using a coded
aperture snapshot spectral imager,” Appl. Opt. 49, (2010)
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object sparsity in a chosen basis is a crucial factor for reconstruction accuracy [6,7].

In other words, a sparser representation of the object can provide a more accurate

estimate when the total number of measurements is fixed. Note that the transforma-

tion of the f data cube into the α data cube generally reduces the sparsity in f on

the TV basis. The transformation of f is algebraically expressed as

f = Wα, (3.23)

where W represents a block diagonal matrix of spectral column vectors (see Fig. 3.2(b))

and α represents a sparse data cube. Note that once α is estimated, f is retrieved

via matrix multiplication.

Then, the 2D TV-minimization algorithm in Eq. (3.21) was modified by incorpo-

rating the transformation of f into forward and transpose models. In this section,

CASSI’s new forward model is described as

g = HWα, (3.24)

where the system’s transformation matrix (H) is characterized by a summation op-

erator (V ) and a calibration cube (C). V is a matrix operation representing the

smashing operation at the detector and C is a matrix describing a 2D aperture code
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shifted as a function of spectral channel (k). Actual implementation of the forward

model consisted of replicating each normalized spectral vector within the set {sn} at

locations spanning the spatial extent of the detector measurement (g) thereby creat-

ing a cube for each spectral vector, sn(i, j, k). Recall that the length of k corresponds

to the length of sn (L). An inner product was taken between each spectral vector

cube and the corresponding n channel in α. αn is equivalent to α(m1,m2, k) where

the 2D slice for the n channel estimate is replicated L times so that an inner product

between a spectral vector cube and αn cube can be computed. Results produced by

the inner products were then added. Afterwards, the result is element-wise multiplied

by C, and a sum was taken along the k dimension to provide a new estimate for the

detector image, g. The transpose model for CASSI is given by

(HW )T = W T CT V T . (3.25)

Further, the spectral database (W ), detector estimate (g), and calibration cube (C)

were used as inputs to the transpose model. A g data cube was created by replicating

the measurement matrix by the number of spectral channels (k) that CASSI mea-

sures. The g data cube was then multiplied by C. Then, the inner product between

each spectral signature cube, sn(i, j, k), and the mask-modulated g cube was com-

puted to provide a channel estimate (n). Lastly, a sum was taken along the k domain
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to generate a quasi-estimate for each channel (n) in α. This new estimate is in the

same domain as α∗(m1,m2, n). The forward and transpose models are implemented

at every iteration in the TV-minimization algorithm as described by

α∗ = arg min
α
‖ g −HWα ‖2

2 +τΦTV (α), (3.26)

where the transformation of f is adapted.

The second step involves generating a 2D spectral feature map by creating a

maximum value cube, β, from the algorithm estimate, α∗. Recall that, α∗ corresponds

to a sparse data cube representation of f via a spectral basis decomposition (W )

which is calculated via an inner product between each spectral signature, sn, with

the measured data, g. A single value is obtained from each inner product at each pixel

location. This value corresponds to the similarity between each spectral signature

with the measured data. While physically the (m1,m2) pixel location should only

correspond to a single n value, the algorithm estimate (α∗) may yield residual values

in neighboring channels. For significantly broad and overlapping spectral vectors

in W , the residual values near channel n may be large. Once an α∗ estimate is

produced, maximum values along the n axis at each (m1,m2) location are generated.
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A maximum value cube, β, was created using

β(m1,m2, n) = max
n

α∗(m1,m2, n). (3.27)

In β only one nonzero value is found along the n-axis for every (m1,m2) location.

Recall that each position along n corresponds to a color identification for a spectral

vector and each β value represents the brightness associated with each (m1,m2)

location. Two different spectral feature maps, γ∗ can be created from β.

The last step involves producing two different spectral feature maps, γ∗1 and γ∗2 ,

for data display purposes. The objective was to create a 2D color-coded map that

identifies each bead type for an end-user. Thus, a brightness and color preserving

feature map (γ∗1) and a color-only feature map (γ∗2) were created. The hue, saturation,

and value (HSV) model was used for the brightness preserving feature map (see

Fig. 3.10(b)). The maximum brightness value β is the input for value and the position

along n corresponds to the input for hue in the HSV model. The saturation input for

each (m1,m2) position was set to one. An HSV model was generated for each n slice in

β. Each HSV map was converted into an RGB equivalent where brightness and color

information was preserved. Thus, β(m1,m2, n) was mapped to γ1(m1,m2, n) using

an HSV map and an HSV to RGB mapping. Note that three values are associated

with each (m1,m2) location for the nth channel RGB map. To create a 2D spectral
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feature map, γ∗1 , a summation is taken over each RGB map created for each n channel

using

γ∗1(m1,m2) =
∑

n

γ1(m1,m2, n) (3.28)

A second spectral feature map (γ∗2) based on color was also created. Values in β,

along each n channel, were normalized and multiplied by the n value assigned to a

single spectral vector. β(m1,m2, n) was transformed into γ2(m1,m2, n), where each

nonzero value in γ2 corresponded solely to color.

γ2(m1,m2, n) = n

[
β(m1,m2, n)

maxn β(m1,m2, n)

]
(3.29)

A pseudo-color map was created by assigning n vectors in a linear gray-scale colormap

to unique RGB values ((see Fig. 3.10(c)). The 2D spectral feature map, γ∗2 , was

created by performing a summation along the n axis in γ2 using

γ∗2(m1, m2) =
∑

n

γ2(m1,m2, n). (3.30)

By doing this, the intensity across a single bead is assigned a constant value and any

intensity variation across the bead is not preserved. Lastly, a 2D image was displayed

by using the prescribed colormap.

In summary, this section described a three-step approach to create two, 2D spec-
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tral feature maps (γ∗1 and γ∗2) of a fluorescence scene. The first step involved a

modification to a 2D TV-minimization algorithm by incorporating spectral priors

into the inversion scheme. As a result, f(i, j, k) was transformed into a sparser data

cube, α(m1,m2, n). Second, a maximum value cube was created from the algorithm

estimate. The last step in the procedure involved creating two, 2D spectral feature

maps from the maximum value cube. Simulations based on the proposed algorithm

are discussed in the next section.

3.3.3 Simulation Results

Two TwIST 2D TV-minimization algorithms for 3D data cube estimation and sparse

data cube estimation using spectral priors were tested on simulated data to under-

stand the behavior of the algorithm. A simulated 3D f data cube and α data cube

were generated by creating a 64×64 pixel scene of four squares containing spectra

from the database in Fig. 3.3(b)†. The spectral signatures were downsampled spectra

corresponding to calibration standards used in fluorescence microscopy. Simulated

detector measurements were produced using the aforementioned forward models. The

calibration cube was generated by simulating a shifted 64×64 pixel aperture-code.

A spectral shift of 10 nm corresponded to a single pixel shift of the aperture-code.

†C. F. Cull, K. Choi, D. Brady, and T. Oliver, “Identification of fluorescent beads using a coded
aperture snapshot spectral imager,” Appl. Opt. 49, (2010)
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Figure 3.3: (a) Simulated 64 x 64 pixel aperture code. (b) Downsampled fluores-
cence spectra of a 0.3 intensity-valued yellow green (YG/n=1), 0.5 intensity-valued
orange (O/n=2 ), 1.0 intensity-valued red (R/n=3) and 0.7 intensity-valued crimson
(C/n=4) beads. (c) Simulated 10 × 10 pixel fluorescent squares in a 64 × 64 pixel
image with the corresponding (d) simulated detector image. (e) Input image for
15×15 pixel spectrally different fluorescent squares in a 64×64 pixel image with the
corresponding (f) simulated detector image. Note that the colors in (c,e) represent
the different intensity values of the simulated fluorescent squares.†
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A cropped 64×64 pixel replica of the CASSI aperture-code was used in simula-

tion. Also, the simulated system model measured 22 spectral channels spanning the

spectral range between 490 nm and 700 nm with 10 nm spectral resolution. The

reconstructed f ∗ estimate and α∗ estimate were evaluated using mean squared error

(MSE).

In simulation, estimation efficacy for two different square sizes was analyzed.

Noise was not added to CASSI measurements for this analysis. A comparison be-

tween 10×10 and 15×15 pixel squares was made to quantify how bead size might

impact reconstruction accuracy for both algorithms. Regularization parameters (τ)

were chosen by trial and error to yield a minimum reconstruction MSE . Number of

iterations (p) was chosen such that the relative difference in the objective function was

nominal. First, the simulated 3D f data cube was compared to the estimated f ∗ data

cube using MSE. The calculated MSE for the 10×10 pixel squares (see Fig. 3.4(a-b))

is 0.2705 and for the 15×15 pixel squares (see Fig. 3.4(c-d)) is 0.1392. Second, the

simulated 3D α data cube was compared to the estimated 3D α∗ data cube using

MSE. The calculated MSE for the 10× 10 pixel squares is 0.1167 and for the 15×15

pixel squares is 0.0415. Note that a smaller MSE was obtained for the estimation

of larger squares embedded in a 64×64 pixel scene as depicted in Fig. 3.5. Also,

it is important to note that improved reconstruction is possible with α∗ data cube
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estimation compared to f ∗ data cube estimation. The analysis of square size provides

the motivation to test large beads in the fluorescent microsphere experiment detailed

in Section 3.5.

Reconstruction accuracy measured using MSE is a function of object sparsity in

the chosen basis (i.e. TV in this study). In simulation, it is possible to analyze

estimates by measuring object sparsity in the TV basis. The number of nonzero

gradients, or level of object sparsity, in the TV basis was calculated for two different

square size objects. A nonzero gradient at the (i, j)th pixel in the kth spectral slice,

| ∇fi,j,k |, is defined as

| ∇fi,j,k |=
√

(fi+1,j,k − fi,j,k)2 + (fi,j+1,k − fi,j,k)2. (3.31)

Note that larger squares produce more nonzero detector measurements (gm,n > 0)

and more nonzero gradients. TV object sparsity is measured for both data cube

types: the f data cube and the α data cube. The f data cube containing 10×10

pixel squares shown in Fig. 3.4(a) produced 6738 nonzero gradients in the TV basis

and 396 nonzero values for the detector measurements. Further, the f data cube

containing 15×15 pixel squares (see Fig. 3.4(c)) produced 14280 nonzero gradients in

the TV basis and 896 nonzero detector measurements. Second, the α data cube object

sparsity was calculated from simulated measurements. The α data cube containing
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Figure 3.4: Simulated f and f ∗ data cubes where each sub-image represents a
transverse image as a function of spectral slice, k. (a) “true” f(i, j, k) data cube
as a function of k for 10×10 pixel squares, (b) estimated f ∗(i, j, k) data cube as a
function of k for 10×10 pixel squares, (c) “true” f(i, j, k) data cube as a function of
k for 15×15 pixel squares, and (d) estimated f ∗(i, j, k) data cube as a function of k
for 15×15 pixel squares.
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Figure 3.5: Simulated α and reconstructed α∗ data cube where each n-channel
relates to a single spectral vector in W . (YG, n=1; O; n=2; R, n=3; C,n = 4)(a)
“true” α(m1,m2) as a function of n for 10×10 pixel squares (b) estimated α∗(m1,m2)
as a function of n for 10×10 pixel squares. The dotted line in the n = 4 slice represents
a residual artifact from the n = 3 slice. (c)“true” α(m1,m2) as a function of n for
15 × 15 pixel squares (d) estimated α∗(m1,m2) as a function of n for 15 × 15 pixel
squares.†
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10×10 pixel squares, as shown in Fig. 3.3(c), produced 174 nonzero gradients in the

TV basis and 396 nonzero values for the detector measurement (g). Also, the α data

cube containing 15×15 pixel squares produced 252 nonzero gradients in the TV basis

and 896 nonzero detector measurements. A ratio of nonzero detector measurements

to object nonzero gradients in the TV basis suggests a measure for reconstruction

accuracy. In CS, the number of measurements required for adequate signal estimation

is M ≈ O[Klog(N/K)], where K represents the sparsity of the signal in some basis

and N represents the original size of the signal. Larger squares provide a larger

number of measurements and a higher measurement to object gradient ratio, which

is an indication for improved CS signal estimation. The f ∗ data cube compared to

the f data cube containing 10×10 pixel squares reveals artifacts at the edges of the

smaller pixel squares as noted by the dotted lines in Fig. 3.4(b). Based on the sparsity

ratio discussion, f ∗ data cube estimation requires a larger number of measurements

for more accurate reconstruction. Other factors besides the sparsity ratio impact f ∗

data cube estimation (e.g. mask modulation and system matrix properties). Further,

Fig. 3.5(b) shows a reconstruction estimate for 10×10 pixel squares. The dotted line

in the α∗ (n = 4) estimate represents reconstruction error. Contained within the

dotted line is a residual square from the n = 3 channel estimate. An improvement in

reconstruction accuracy for sparse data cube reconstruction occurs when the number
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of nonzero detector measurements is increased (see in Fig. 3.5(d)). The ratio of

total detector measurements to object sparsity in the TV basis directly impacts TV-

minimization reconstructions.

Also, this section compares 3D data cube estimation (f ∗) to TV-minimization

reconstruction with spectral priors (α∗). First, MSE was calculated between the

simulated f data cube (fT ) and the f ∗ data cube estimate containing 15×15 pixel

squares. Next, the TV-minimization estimate (α∗) was transformed into an f ∗α data

cube estimate using Eq.( 3.23) and the MSE was calculated between fT and f ∗α.

Without noise, the MSE for the f ∗α data cube is 0.1392. This MSE is an order of

magnitude better than the MSE obtained with the f ∗ data cube which is equal to

0.0331.

Further, the impact of noise on TV-minimization reconstruction was analyzed.

Poisson noise was added to CASSI measurements. Poisson noise is generated with

signal-to-noise ratio (SNR) defined by

SNR
def
= 10 log10

{ ∑
m

∑
n g2

m,n∑
m

∑
n(gp

m,n − gm,n)2

}
, (3.32)

where

gp
m,n ∼

1

η
Poisson {ηgm,n} . (3.33)
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Figure 3.6: Plot of reconstruction MSE from CASSI measurements corrupted by
Poisson noise. Reconstruction efficacy is compared between (a) direct f ∗ data cube
estimation and (b) f ∗α data cube estimation (see Section 3.3C for the definition of
f ∗α).†

The constant value η was chosen based on a desired measurement SNR. Poisson noise

was added to CASSI measurements because the experimental system in Section 3.5

is shot-noise limited. The impact of noise on reconstruction efficacy was compared

between two different data cube estimation methods (i.e., f ∗ and f ∗α estimation).

In Fig. 3.6†, 18 different measurement SNR noise levels were analyzed and three

different values for τ were considered. Multiple reconstruction MSEs made at each

noise level under the same algorithm parameters were found to be consistent. The

f ∗α data cube MSE values were still an order of magnitude better then MSE values

obtained with f ∗ reconstructions. Reconstruction MSE converged for both data cube

estimation methods around a measurement SNR of 40 dB. Also, the computational

†C. F. Cull, K. Choi, D. Brady, and T. Oliver, “Identification of fluorescent beads using a coded
aperture snapshot spectral imager,” Appl. Opt. 49, (2010)
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cost for estimating f ∗ was twice as expensive as the estimation of f ∗α. This factor for

computational cost varied with image size. These simulation results show that the

estimation of α∗ produces a more accurate data cube estimate of a simulated f data

cube compared to f ∗ data cube estimation.

In Section 3.3, motivations for the 3D data cube estimation algorithm and the

spectral feature identification algorithm were presented. The 3D data reconstruction

method provided a procedure for generating a pseudo-color map to present a 3D

data cube estimate. Also, an algorithm for direct spectral feature identification was

described. Two methods were used to transform the algorithm output into two 2D

spectral feature maps. Forward and transpose model implementations were described

and used to estimate α∗. Algorithm simulations were used to analyze the performance

of two proposed techniques. Simulation results revealed the importance of object

size for accurate signal estimation and presented the impact of Poisson noise on

reconstruction accuracy. This section did not explore spectral signature limitations

(e.g. spectrally narrow or broad). In Section 3.5, reconstructions from real CASSI

measurements containing beads with significantly overlapping spectra are presented.
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Figure 3.7: (a) Optical architecture for a CASSI interface to an inverted micro-
scope. (b) Realization of Fig. 3.1(a) is in this ray-traced drawing for the first-half
of CASSI where (f) is the object (L1) and (L2) are imaging and collimating lenses,
(AP) is a direct-view double Amici prism and (MP) is the mask plane where the
aperture code resides. (c) Layout of a Zeiss AxioObserver microscope with CASSI
coupled to an exit port. (d) Back-end of CASSI.†

3.4 System design

A 3.5 ft custom-designed, f/11 CASSI was coupled to the output port of a Zeiss

AxioObserver A1 inverted microscope as shown in Fig. 3.7. A Xenon (XBO) arc

lamp was used as an excitation source for fluorescence scene analysis. Light from the

lamp was directed towards a filter cube located below the objective turret. The filter

cube contains an excitation filter, dichroic filter, and an emission filter. The spectral

range for the excitation light is between 377 nm and 396 nm and the emission filter

spectral bandwidth ranges between 420 nm and 900 nm. Fluorescence signals from
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the sample were collected by a microscope objective and redirected towards three

intermediate image planes of the microscope. The three intermediate image planes

are located at two different exit ports and at the eyepiece. CASSI was coupled

to an exit port on the inverted microscope (see Fig. 3.7(c-d)). Two detectors were

interfaced with CASSI using a flip mirror. The first detector is a cooled, scientific

camera used for imaging samples that require longer exposure times. The detector

operates at a resolution of 1200×1600 pixels (16-bit dynamic range) with a pixel

pitch of 7.4 µm. A high frame rate camera was used for dynamic scene analysis. It

operates at 15 FPS at full resolution (2048×2048) with a pixel pitch of 7.4 µm. The

optical architecture and ray-traced model for CASSI is described in Fig. 3.1(a) and

Fig. 3.7(b). CASSI uses two direct-view double Amici prisms made from BK7 and

SF6 materials. Light from the object is dispersed and imaged onto the aperture-

code located at the mask plane (MP ) of the optical design. At the mask plane, the

dispersion for the spectral range between 450 nm and 750 nm is about 499 µm. A

mask element is mapped to two pixels at the detector plane (14.8 µm). With these

specifications, CASSI measures about 31 spectral channels within the spectral band

of 450 - 750 nm with a spectral resolution of about 10 nm. Recall that the second half

of the optical design is a mirror image of the first half (see Fig. 3.7(b)) consisting of

a double Amici prism with equal and opposite dispersion. The resolution spot sizes
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across the FOV of CASSI vary as a function of spatial position and wavelength.

At the edges of the spectral range and at the edges of CASSI’s FOV, the average

spot size is about 16 µm. Typically, the spatial resolution of coded aperture systems

is limited by the mask element size (14.8 µm). Along the edges of the system’s

FOV and at the two edges of the spectral range, the optical resolution of the system

becomes the limiting factor and image quality is degraded. Some of the fluorescent

beads analyzed in Section 3.5 were affected by the limitations of CASSI’s optical

resolution.

3.5 Experimental results

3.5.1 Image quality analysis with (DD)CASSI

Since the f/11 (DD)CASSI was a custom optical system and not manufactured in the

laboratory, this section discusses an image quality test to compare Zemax simulations

with experimental measurements. A method was adapted for testing system spatial

resolution [60,61].

An optical system response to a sharp discontinuity (e.g. step function or slit

edges) is one method for measuring resolution. A double slit (12 µm width) at the

microscope sample plane was imaged with a 50×, 0.5 NA microscope objective and

CASSI. Note that the CASSI aperture-code at the intermediate image plane (see
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Fig. 3.1) was removed for the resolution test. The recorded 2D CASSI measurement

without the aperture-code is shown in Fig. 3.8(a). The double slit was illuminated

with a 10 nm bandpass filtered Halogen light source. The bandpass filters were each

centered every 50 nm within a 450 - 700 nm spectral range. Edge spread functions

(ESF) were generated from a 1D cross sections (orange line in Fig. 3.8(a)) along

the rows of the double slit image (i.e. single column) as shown in Fig. 3.8(b). The

ESF shows the imaging system (objective and CASSI optics) response to a sharp

discontinuity. Note that peak edges, L1 and R1 in Fig. 3.8(b), represent microscope

sample plane reflections. These reflections contribute to noise or ringing in the line

spread function (LSF) shown in Fig. 3.8(c). Averaging of several detector frames

would provide a smoother ESF.

After partitioning the ESF into four different regions (L1, L2, R1, R2), a deriva-

tive was taken in each region to create the LSFs shown in Fig. 3.8(c). The LSF is an

integrated point spread function (PSF) profile. If the imaging system PSF is assumed

circularly symmetric, the LSF is a 1D approximation to the system PSF. Therefore,

Zemax spot sizes can be compared to FWHM gaussian fit LSFs measured at four

different spatial locations and at six different wavelengths. Table 3.1 compares Zemax

simulated spot sizes measured in units of detector pixels (7.4 µm) to experimentally

measured spot sizes also measured in units of detector pixels. Note that in Table 3.1,
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Table 3.1: Zemax and experimental spot sizes

Wavelength(nm) Zemax (pixels) Experimental FWHM (pixels) ∆

1 450 2.43 9.42 6.99
2 500 1.35 3.52 2.17
3 550 0.50 4.47 3.97
4 600 1.89 4.47 2.58
5 650 2.43 7.77 5.34
6 700 1.89 12.0 10.11

∆ represents the difference between both spot size metrics (e.g. Zemax and the mea-

sured LSFs) in detector pixel units. Several sources of error in the measured data can

be attributed to the spot size mismatch. These sources include: detector noise contri-

butions seen in the ESF, optical system misalignments in the custom optical design,

and imperfect ESF results. Further, CASSI measurements from a monochromatic

full-field source scanned between 450 nm and 750 nm in 5 nm increments suggested

that input sources at the edges of the spectral band (e.g. 450 nm, 700 nm, and

750 nm) resulted in spatially blurred mask features. Table 3.1 verifies experimental

observations since the largest difference (∆) between the simulated spot sizes and

experimental spot sizes occur at the edges of CASSI’s spectral range.

The modulation transfer function (MTF) was generated by taking the Fourier

transform of the LSF. Recall that from Chapter 2 the MTF was defined as the ability

to resolve an object size of a particular spatial frequency with high contrast. Fourier

domain sampling for the MTF plots is defined in [61]. The Fourier-transformed
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Figure 3.8: (a) Bandpass filtered halogen (500 - 510 nm) illuminated double slit
(12 µm) (DD) CASSI image without the aperture-code in the intermediate image
plane. (b) Edge spread function (ESF) recorded along (the orange line) a single
column and all rows in (a). (c) Line spread function (LSF) generated for regions
L1, L2, R1, and R2 in (b) with a gaussian curve fit applied to each LSF. (d) Ze-
max modulation transfer (MTF) plot of the custom designed (DD) CASSI system.
Experimentally estimated MTFs at (e) 450 nm, (f) 500 nm, (g) 650 nm, and (h)
700 nm.
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LSFs located in regions L2 and R2 in Fig. 3.8(b) at various wavelengths are shown in

Fig. 3.8(e-h). The Zemax MTF plot can be compared to the MTF plots in Fig. 3.8(e-

h). Note that MTC represents the modulation transfer coefficient or contrast value.

The MTF plot at 500 nm is most similar to the Zemax result. The contrast difference

between the Zemax MTF plot and the measured MTF plot is .2 at 120 mm−1.

This section provided a method for measuring CASSI’s optical performance. The

measured performance was compared to Zemax simulations. The results explain

CASSI’s poor spatial resolution at the edges of the spectral band.

3.5.2 Calibration procedure and algorithm implementation

The CASSI model described in Section 3.2 was based on a variety of assumptions.

A 1:1 correspondence between the mask element pitch and the detector pixel pitch

was assumed. In practice, not all wavelengths spanned by an input power spectral

density correspond to single pixel shifts at the detector. Also, a unity magnification

impulse response assumed for both arms (h1 and h2) in the system model does not

account for a spatially varying blur, a change in magnification, or aberrations in

the system. A calibration cube for CASSI was taken before a fluorescence scene was

analyzed. Ideally, a calibration cube would consist of translating a monochromatically

illuminated fiber across the system’s FOV at wavelengths spanning the spectral range
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of the instrument. However, this calibration process is photon-limited and time

consuming. A calibration cube was acquired via full-field monochromatic illumination

of CASSI. Full-field illumination was generated using a fiber-coupled optical setup

(see Appendix A.4) designed to match the microscope objective image space NA used

for fluorescence measurements. Each spectral slice in the calibration cube represents a

spectral impulse response recorded every 5 nm for the spectral range between 450 nm

and 750 nm. Unlike the monochromatic source analysis explored in Section 3.2, multi-

spectral objects measured by CASSI can be described as a superposition of shifted

mask patterns that span the object’s spectrum. The calibration cube considers the

influence of a spectrally shifted aperture-code on a multi-spectral object.

For fluorescent target analysis, the TwIST TV-minimization algorithm was used

with the modifications discussed in Section 3.3. Inputs to the algorithm included a

CASSI measurement, a calibration cube, a regularization constant, and a spectral

database. A region in the image was cropped in order to apply local processing. This

is possible because the detector measurements are well registered. Although full FOV

processing was possible, local processing provided a lower computational cost. For

low contrast signals, a cropped region in an α∗ estimate was renormalized to locally

increase the contrast of the weak signal. This procedure is similar to applying a

local digital gain to an image. By renormalizing the cropped region, all brightness
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information from the sparse data cube estimate was removed. These inputs and

techniques were used for more accurate data cube estimation and for 2D spectral

feature mapping of a ten bead type fluorescence scene.

There are multiple noise contributions that affect CASSI images recorded with

a cooled, scientific camera. Two most common noise contributions are photon noise

and detector noise. With a well depth of 216, a readout noise of (7.9 e−)2, and a dark

current of (3 e−)2 the detection system is shot-noise limited. The effect of dark current

noise was minimized with additional cooling of the detector to −20 ◦C. For each

data set, a background signal with mean 124 electrons was subtracted to minimize

readout noise and dark current noise contributions. Readout noise and dark current

noise have nominal effects. Also, longer exposure times were used to maximize SNR.

While concerns for the impact of readout noise and dark current are emphasized in

fluorescence microscopy of biological samples, in this study, the sample fluorescence

emission is photon abundant. Simulations in Section 3.3 describe the impact of

Poisson noise on reconstruction efficacy for a shot-noise limited measurement. If a

photon-limited case was tested, readout noise would become significant. In this case,

TV-minimization reconstructions would be more affected by the aforementioned noise

contributions.
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3.5.3 Fluorescence microscopy with CASSI

Microscope slides were prepared with Invitrogen Molecular Probes fluosphere solu-

tions. Ten spectrally different fluorescent microsphere solutions were selected. Each

fluosphere solution contained 15 µm polystyrene microspheres/beads suspended in

10 mL of 0.15 M NaCl with 0.05% Tween 20 and 0.02% thimerosal. First, the ten

different bead solutions were mixed in a separate container. Then, a mixed solution

of fluorescent beads was mounted onto a slide using a FluorSave mounting medium

from Calbiochem. Each microscope slice containing fluorescent microspheres was an-

alyzed at the “best focus” FOV in the image plane of the microscope objective. The

“best focus” FOV is defined as the plane empirically found when a majority of the

beads come to focus. Goitrogen’s absorption and emission maximum wavelengths

are described in Table 3.2. Unlike current multi-spectral systems used in microscopy,

CASSI fluorescence bead experiments employ a single, UV excitation source to ex-

cite all ten bead types mentioned in Table 3.2. One excitation source removes the

need for multiple emission filters or movable parts typically needed in confocal spec-

tral microscopy setups. Since a single excitation scheme was employed, baseline UV

excited emission spectra for each microsphere type was recorded using an Ocean

Optics (OO) slit spectrometer (see Table 3.2). The recorded OO spectral emissions

(see Fig. 3.10(e)) were used as baseline spectra for comparison with 3D data cube
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estimates at pixel locations on the microspheres. Also, the OO spectral emissions

were inserted into the spectral database (W) for sparse data cube estimation and

bead identification. Note that CASSI can be adapted for multi-source narrow-band

excitation. A single wide-band UV source merely simplified the implementation for

the ten bead type sample under test.

Table 3.2: Fluorescent Microspheres

Color ID. I Abs/Em (nm) OO Ex/Em (nm) [OO - I](Em)

1 Blue-green BG 430/465 390/485 +20
2 Green G 450/480 390/518 +38
3 Yellow-green YG 505/515 390/537 +22
4 Yellow Y 515/534 390/606 +72
5 Orange O 540/560 390/576 +16
6 Red-orange RO 565/580 390/640 +60
7 Red R 580/605 390/620 +15
8 Carmine CA 580/620 390/635 +15
9 Crimson C 625/645 390/674 +29
10 Scarlet S 645/680 390/698 +18

In the experimental setup, CASSI was interfaced to an inverted microscope for

fluorescence scene analysis of calibration standards. Two TV-minimization algo-

rithms were applied to CASSI measurements: a 3D data cube estimation algorithm

and an algorithm incorporating spectral priors into the TV-minimization scheme.

The sample fluorescence emission was relayed to a microscope intermediate image

plane using a Zeiss LD Epiplan 50×, 0.5 NA air objective. Recall that a “best focus”

FOV was chosen with the microscope objective. In Fig. 3.10(c-d), some beads ap-
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pear larger than the rest of the beads contained within a selected FOV. The Y 4 bead

size in Fig. 3.10(a) was caused by an anomaly in the manufacturing process of the

Invitrogen fluospheres. However, it is evident from Fig. 3.10(d) that the size of bead

O1 (see Fig. 3.10(a)) can be attributed to defocus. While a “best focus” FOV was

attempted, some beads contained within the selected FOV are located at different

depths. This caused beads to appear larger than their true size.

Once a “best focus” FOV was obtained, an intensity-valued spectrally encoded

2D measurement was recorded with CASSI. Figure 3.10(a) shows a CASSI baseline

measurement where spectrally coded beads reveal CASSI’s optical resolution as a

function of wavelength. CASSI measurements (g) were then inverted using the two

algorithms discussed in Section 3.3.

First, TV-minimization was used to reconstruct the f ∗ data cube from the 2D

spectrally encoded CASSI measurement. Figure 3.9(k) shows a ten pseudo-color

image of a ten bead type fluorescent scene that was generated using the hexadecimal

HTML color to RGB value method detailed in Section 3.3.1. Note that the 2D image

contained beads additionally outlined with white circles. The 2D image in Fig. 3.9(k)

enables bead discrimination, however, intensity variation across the spatial extent of

a single bead causes errors in spectral estimation at various pixels. As a result, com-

plete discrimination of red (R), carmine (CA), and red-orange beads is challenging
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Figure 3.9: f∗ data cube reconstruction using TV-minimization. Amplitude spectral
plots at a single spatial location on the (a) BG1 bead, (b) G1 bead, (c)Y G1 bead,
(d) Y 1 bead, (e) O1 bead, (f) RO1 bead, (g) R1 bead, (h) CA1 bead, (i) C1 bead,
and (j) S1 bead labeled accordingly in (k). Baseline OO spectra for each bead type
are overlayed with CASSI-based reconstructed spectra. (k) Pseudo-colored ten bead
CASSI reconstructed image. White circles are additionally added to the image to
outline the bead locations.†
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in Fig. 3.9(k). Further, amplitude spectral plots from a single spatial location on

each bead type are shown in Fig. 3.9(a-j). Recall that baseline amplitude spectral

plots were obtained with an OO slit spectrometer. Reconstructed spectral plots were

compared to rescaled OO baseline spectral plots. Figures. 3.9(a-j) show that recon-

structed spectral plots resemble the baseline spectra. However, it is important to

note that at different spatial locations on each bead (e.g. at the edges), the shape

of the spectral estimate changes. This was the main shortcoming with the 3D data

cube estimation method.

Second, the direct spectral feature identification algorithm was applied to CASSI

measurements. The reconstructed α∗ data cube was transformed into a 2D spectral

feature map of the scene. Figure 3.10(b) shows a 2D spectral feature map of a ten

bead type fluorescence scene generated from an HSV to RGB mapping, γ∗1 . Beads

in this 2D spectral feature map were additionally outlined with white circles. Closer

inspection of the reconstructed beads in the 2D bead identification map reveal arti-

facts in the bead shape. The artifacts or non-uniformity is caused by local processing

of the beads for α∗ data cube processing. Also, Fig. 3.10(c) represents a color-based

2D spectral feature map, γ∗2 . White circles were added to the 2D bead identification

map. Bead reconstruction artifacts from the α∗ data cube are clearly seen in the

color-based 2D map. Again, the TV-minimization reconstruction parameter τ was
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chosen by trial and error. The number of iterations was chosen such that the relative

difference in the objective function was nominal. Various values of τ (τ = .5−2) were

used to evaluate each bead region. Crimson and scarlet were are weakly excited by

UV excitation. Signal intensity from these beads appear dim in the baseline CASSI

measurements since well-excited beads provide a higher contrast when compared to

the background detector signal. Still, the color-based 2D spectral feature map en-

abled identification of weakly excited beads despite a loss in intensity within the bead

region from renormalization of the bead FOV in post-detection.

CASSI measurements and post-detection algorithms provided 2D spectral feature

maps where beads are identified based on intensity values and color. In the next

discussion, a filtered-array imaging system is described. A baseline image from the

filtered-array imaging system is used to verify spectral feature maps generated from

CASSI measurements.

3.5.4 Verification testbed

A baseline image was recorded with a Nikon A1 confocal microscope to verify CASSI

2D bead identification maps. The baseline image was separately recorded and was

not associated with the CASSI architecture. Results obtained from the baseline

system were not compared with CASSI reconstructions as it is not fair to do so
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Figure 3.10: (a) Baseline CASSI 2D intensity-valued measurement of a ten bead
type fluorescent scene acquired with a 50×, 0.4 NA microscope objective. White
circles are added to the images to outline the locations of the beads. (b) CASSI
reconstructed 2D spectral feature map, γ∗1 . (c) CASSI 2D spectral feature map,
γ∗2 . (d) Nikon A1 series baseline image with ten bead type discrimination where the
beads are additionally outlined in white. (e) Spectral vectors used in the database,
W , for CASSI reconstructions.†
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given different system architectures, variable incident energy at the detector, and

different excitation schemes. The baseline image is shown merely to illustrate ten

bead type discrimination with 2D color coded images produced by a filtered-array

system.

A baseline image was captured with a Nikon A1 confocal microscope in wide-field

fluorescence mode. A wide-field fluorescence mode was undertaken since CASSI mea-

surements were recorded in wide-field and the goal did not involve imaging diffraction

limited spots where out-of-focus light could hinder image analysis. The baseline im-

age was recorded using a CFI Plan-Apochromat 10x, 0.45 NA microscope objective.

A multi-wavelength illumination scheme was used for ten bead type excitation. A

402 nm diode laser at 4.8 mW was used to excite both the blue-green and green

beads. Yellow-green and yellow beads were illuminated with a 488 nm argon line at

8.6 mW. Orange, red-orange, and red beads were illuminated with a 561 nm laser

line at 5.1 mW. The carmine, crimson, and scarlet beads were excited with 640 nm

light at 4.1 mW. The Nikon A1 series is also a grating-based system where dispersed

light is focused onto a 32-channel PMT array detector so that each channel detects a

10 nm bandwidth. Since a lamdba stack could not be generated at the time of image

acquisition, spectra were estimated for various regions of interest and ten spectral

emission windows were created in order to isolate each spectrally unique bead type.

112



The baseline image was recorded with a resolution of 512× 512 pixels with approxi-

mately 24.8 µm square pitch and yielding a 12-bit dynamic range. For the baseline

image, colors were manually assigned to each spectrally unique bead type. The bead

type colors within Fig. 3.10(d) were assigned to match the color assignment of the

CASSI-based bead identification map in Fig. 3.10(c). The Nikon A1 series baseline

image provided a means for verifying the ten bead type spectral map generated from

CASSI measurements.

In Section 3.5, a CASSI-microscope interface was described for fluorescence mi-

croscopy. In particular, a ten bead type fluorescence scene was analyzed with two

TV-minimization schemes and a three-step procedure provided a direct method for

bead type identification. The Nikon A1 series provided an image that verified CASSI

reconstructed spectral maps.

3.6 Dynamic imaging with CASSI

Dynamic scene analysis was also realized with CASSI. A solution containing ten

bead types were pipetted onto a microscope slide and a coverslip was placed on top

of the solution. A high frame rate camera, previously described in Section 3.4, was

interfaced to CASSI using a flip mirror at the back-end of CASSI. The AVT Pike F-

421 camera contains the KAI-4022 Kodak sensor measuring 2048×2048 pixels with
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14-bit dynamic range and a 7.4 µm pixel pitch. CASSI images were recorded at

7.5 FPS with a 600×800 pixel image resolution. A baseline detector was placed at

a second exit port to the AxioObserver microscope. Baseline images were recorded

with an Imaging Source DFK 41BF02 firewire color camera containing a ICX205AK

Sony sensor measuring 1280×960 pixels with 8-bit dynamic range and a 4.65 µm

pixel pitch. Approximately 385 frames of data were recorded with CASSI and the

baseline camera at 7.5 FPS and compared. Both algorithms discussed in Section 3.3

were used to reconstruct two different data cubes: one to generate color-coded frames

for video production based on spectral reconstruction and the other for direct bead

identification using a priori spectral data. As in Section 3.5, local processing of the

frames facilitated quicker processing of the collected data.

3.7 Compact CASSI-II design

CASSI was successfully applied to fluorescence microscopy, but one drawback was

CASSI’s one meter optical system track length. To improve upon this, a new design

was created in Zemax.

The goal of the redesign was to construct an off-the-shelf, low-cost, and com-

pact system that could interface to any laboratory grade microscope. The redesign,

CASSI-II, utilized two low f/number relay lenses from Edmund Optics, a field lens,
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Figure 3.11: Zemax 3D optical architecture of CASSI-II where f0 represents the
source spectral density and FP represents the monochromatic detector plane..

and custom Amici prisms for the DD optical architecture. For Zemax simulations,

the relay lens prescription data was obtained from Edmund Optics. Also, the Amici

prisms were remnants from a previous custom optic order that consisted of two types

of flint glass SK2 and SF2 [36]. After several iterations of Zemax optimizations with

various relay lenses, an improved design was achieved.

The improved design for a low f/number and compact (<3.5 ft) CASSI-II system

is shown in Fig. 3.11. For the design, the system object space NA was set to the

resultant image space NA from a high NA microscope objective and a coupling optic.

Two different microscope objectives were incorporated into the system design: a

Zeiss Plan-Apochromat 40×, 1.4 NA oil objective and a Plan-Apochromat 20×,

0.8 NA air objective. A Nikon CCTV 0.35× coupling optic was also incorporated

into the image space NA metric. The aforementioned objectives and coupling optic

combination provided an image space NA of approximately 0.114. The microscope
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objective image space NA (NAI) is calculated using

NAI =
NA

M ∗ C
, (3.34)

where M represents the microscope objective magnification and C represents the

coupling optic magnification. The object space NA of CASSI-II was set to match

the resultant microscope and coupling optic image space NA. Further, two (Edmund

Optics NT45-759) f/4, 30 mm relay lenses were used in the optical architecture. Also,

the field lens in Fig. 3.11 is a double achromat lens (Edmund Optics 32853) with a

45 mm effective focal length. The field lens minimized chromatic aberration. Also,

the lens helped to redirect the cone of light coming from the edge of the field, thereby

reducing vignetting at the second Amici prism surface.

The system optimization procedure involved measuring the dispersion at the in-

termediate image plane (mask plane), minimizing spot size at the mask and image

plane, determining optimal system field positions, and determining the spectral sen-

sitivity of the instrument. The dispersion (∆d) at the intermediate image plane

(see Fig. 3.11) for the spectral range (∆λ) between 470 nm and 770 nm measured

348.8 µm. The number of spectral channels detected by the optical system was deter-

mined by dividing the dispersion spatial extent at the mask plane by the RMS spot

size at the mask plane (e.g. Typically, the feature size is the RMS limiting factor for
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Figure 3.12: Zemax CASSI-II spot diagrams at the mask plane for wavelengths
(a) 470 nm, (b) 600 nm, (c) and 770 nm. Image plane CASSI-II spot diagrams at
wavelengths (d) 470 nm, (e) 600 nm, and (f) 770 nm.
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spot size). Figure 3.12(a-c) shows spots sizes at the mask plane as a function of field

position and wavelength. Given the spot size at the mask plane, the minimum mask

feature size (∆f) for CASSI-II to prevent aliasing measured 14.8 µm. Considering

this feature size, CASSI-II measures approximately 24 spectral channels with 14 nm

spectral resolution. Spectral resolution (∆Λ) with DD snapshot spectral imagers is

calculated using

∆Λ =
∆f∆λ

∆d
. (3.35)

A smaller mask feature size or spot size at the mask plane would improve the num-

ber of spectral channels measured by the snapshot spectral imaging system. The

spectrally varying spot sizes at the CASSI-II image plane are shown at various field

positions in Fig. 3.12(d-f). This figure also shows field positions spanning about a

4 mm spatial extent. Coma aberrations are apparent in the spot diagrams at the

image plane. These spot sizes and aberrations help characterize CASSI-II image

quality. Overall, CASSI-II enabled a more compact solution for fluorescence mi-

croscopy at a lower cost due to the use of off-the-shelf optics.

This section has discussed a Zemax simulated redesign of CASSI that provided

several advantages. The CASSI-II optical system was spectrally sensitive over a

spectral range of 470 - 770 nm with 14 nm spectral resolution. Also, CASSI-II

measured a 5.3 f/number, an improvement over the previous f/11 generation. Also,
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the simulated instrument is three times smaller than the previous generation system

with a total track measuring 6.78 in. More optimization or a custom design would

improve spatial resolution at both the mask and image planes, thereby improving

CASSI-II spectral sensitivity and image quality. While simulations of a second

generation system were presented in this section, the system was not built. The next

step would be realizing the system redesign.

3.8 Summary

In this chapter, a CASSI optical architecture and interface to an upright micro-

scope for fluorescence microscopy was described. Two numerical estimation methods

were used to reconstruct a 3D data cube from 2D detector measurements. Both

methods utilized a nonlinear iterative decoding process called TwIST that exploited

compressive sensing ideas for 3D data cube estimation. In particular, sparsity in

the TV basis was exploited for accurate estimation. While the first method solely

exploited sparsity in the TV basis, the second introduced an adaptation to the TV-

minimization algorithm with the addition of spectral priors to the inversion scheme.

The adaptation naturally produced a sparse data cube estimate of a fluorescent scene

instead of reconstructing a f ∗ data cube estimate where spectra are estimated at ev-

ery spatial location. With a sparse data cube estimate, a three-step procedure was
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implemented to produce two spectral identification maps. These spectral identifica-

tion maps can assist users in localizing fluorescent beads in a 2D scene. Lastly, a

multi-spectral imaging system (a Nikon A1 confocal microscope) was used to verify

the CASSI based bead identification maps. The Nikon A1 microscope provided a ten

bead type spectral identification map which enabled the verification of CASSI spec-

tral maps. While the first TV-minimization method produced a spectrum at every

pixel location, the second method provided a direct means for identifying fluorescent

beads from CASSI measurements. Finally, this chapter discussed dynamic imaging

of fluorescent microspheres with CASSI and provided a Zemax design for a second

generation compact and robust snapshot spectral imager.

(DD) CASSI is suitable for fluorescence microscopy applications. Fluorescent

beads analyzed in this paper were photon-abundant. Longer exposure times enabled

a maximum system SNR. Effects with detector readout noise, background noise, and

dark current noise, more common in low-light fluorescence microscopy, would impact

TV-minimization reconstruction. These effects were not explored in this chapter since

the system operated in the shot-noise limit. Also, while CS inversion schemes incur a

higher computational cost, these costs can be reduced. Since (DD) CASSI spectrally

encoded measurements are well-registered at the detector plane, local processing can

be applied to the measured data. The post-detection process for bead identification
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was parallelizable, therefore computational times were reduced. Lastly, this chapter

showed that sparse synthetic data cube estimation instead of 3D spectral data cube

estimation could potentially reduce an intrinsic computational cost.
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Chapter 4

Millimeter-wave compressive holography

While previous chapters focused on spectral imaging, this chapter describes an active

millimeter-wave (MMW) holographic imaging system that uses compressive measure-

ments for 3D tomographic object estimation. The system records a 2D digitized

Gabor hologram by translating a single pixel incoherent receiver. Two approaches

for compressive measurement are undertaken: nonlinear inversion of a 2D Gabor

hologram for 3D object estimation and nonlinear inversion of a randomly subsam-

pled Gabor hologram for 3D object estimation. The object estimation algorithm

minimizes a convex quadratic problem using total variation (TV) regularization for

3D object estimation. This chapter discusses the comparison between object recon-

structions using linear backpropagation and TV-minimization. Also, simulated and

experimental reconstructions from both compressive measurement strategies are pre-

sented. In contrast with backpropagation, which estimates the 3D electromagnetic

field, TV-minimization estimates the 3D object that produces the field. Despite

undersampling, range resolution is consistent with the extent of the 3D bandwidth.

122



4.1 Introduction

Various methods exist for concealed weapons detection [62]. These methods aim

to penetrate common obstructions such as clothing or plastics. X-ray [63] and

millimeter-wave (MMW) [64] imaging systems are technologies capable of penetrat-

ing these barriers for imaging suicide bomb vests or weapons composed of metals,

non-metals, or plastics. While X-ray imaging capabilities are highly effective, ques-

tions about health risks impair the feasibility of such systems for real-time imaging.

Millimeter waves for low power (on the order of milliwatts) imaging systems do not

present a health hazard and therefore enable real-time imaging of targets with high

contrast and high resolution.

Several studies have explored both active and passive MMW imagers for concealed

weapons detection [65, 66] where the system limitation is the detector array cost.

Some systems include portal, or hand-held devices [67] operating in close range to the

target. Other systems are holographic [68,69]. These MMW focal and interferometric

systems map object information onto a two-dimensional (2D) or a linear array that is

typically scanned for image formation. These scanning systems [70–72] are plagued

by their associated data acquisition times. For these systems there is a tradeoff

between scan time and measurement SNR. Therefore, rapid scanning of concealed

weapons is challenging for current MMW systems.
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For stand-off explosive detection; rapid scanning of the target is a necessity. To

overcome the bottleneck associated with current MMW scanning systems, a com-

pressive sensing (CS) framework is considered. Recent studies in CS reveal that an

N -point image can be restored from M measurements where M << N [66, 73–75].

Mittleman et al. [74] used a focal system to randomly sample spatial frequencies in

the Fourier plane for 2D object estimation at 100 GHz. Work in 633 nm compres-

sive holography [21] further motivates the investigation of CS for MMW imaging.

Digital holography, which measures a limited set of spatial frequencies in the Fourier

domain, is a compressive encoder, since it compresses three-dimensional (3D) spatial

information into a single interferometric planar field. Since the entire extent of an

object’s 3D spatial frequency band volume can not be captured in a single exposure,

multi-angle illumination or object rotation is typically used to improve 3D object

estimation. However, the results in [21] suggest that 3D tomographic estimation can

be achieved from a 2D hologram recording.

This chapter extends compressive holography to millimeter wavelengths. Subject

matter in this chapter differs from compressive holography at visible wavelengths

since sparse holographic sampling is implemented to minimize the data acquisition

scan cost associated with imaging at millimeter wavelengths. Also, the MMW holog-

raphy system operates in a completely different wavelength region with corresponding
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differences in optics and detectors, so it requires a completely new system design com-

pared to work at visible wavelengths. In this chapter, a subset of spatial frequencies

are holographically recorded for 3D object estimation. Also, a randomly subsampled

2D hologram is used to analyze the impact of fewer measurements on 3D object esti-

mation. The holographic technique is similar to [69] since the system architecture is

not band-limited by a lens aperture and phase information is preserved. The method

in this chapter differs in the nonlinear inversion scheme used for 3D object estima-

tion. The method optimizes a convex quadratic problem using total variation (TV)

regularization. The results in this chapter demonstrate that undiffracted fields, over-

laid in the frequency domain of a Gabor hologram, can be separated by exploiting

TV object sparsity.

Although other contributions in the literature embody a mathematical framework

similar to compressive holography [16, 17, 76], there exists a fundamental difference

in philosophy. Compressive holography exploits encoding and undersampling for 3D

object estimation, whereas techniques in diffraction tomography are designed to over-

come sampling limitations imposed by the data collection process. Also, recent work

by Denis et al. [77] presents a similar twin-image suppression method; however, a

sparsity-enforcing prior in a Bayesian framework combined with l1-regularization is

used for object estimation. This chapter represents the confluence of MMW digitized
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holographic measurement and TV-minimization for 3D object estimation with mini-

mal error. The algorithm framework in [21] is further adapted for sparse holographic

sampling and data inversion.

This chapter is organized as follows. Section 4.2 describes the theoretical back-

ground for diffraction tomography and holographic measurement. Hologram record-

ing geometry and resolution metrics are also discussed in this section. Section 4.3

summarizes the TV-minimization algorithm used for 3D object estimation from a

2D digitized composite hologram. Also, simulations of 2D holographic measurements

and subsampled 2D holographic measurements help to analyze the impact of vari-

ous sampling schemes on 3D object estimation using TV-minimization. Section 4.4

describes the experimental platform. Section 4.5 presents TV-minimization and back-

propagation reconstructions. Finally, Section 4.6 provides a summary of the chapter

and concluding remarks.

4.2 Theory

The ultimate goal is to make the smallest number of measurements about a 3D

(x′, y′, z′) object fo(r
′), where r′ is a 3D spatial vector, such that it is possible to

reconstruct fo(r
′) with minimal error. Rather than attempting to form an image of

fo(r
′) point by point, the approach in this chapter is based on making measurements
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in the far-field where spatial frequencies (ux and uy) are measured. To do this, a

hologram is recorded. A hologram g(rh) is a record of the interference between two

wavefields, a reference field Er(r) and an object scattered field Eo(r). To record a

hologram, a square-law detector in the hologram plane rh = (x, y, zh) measures a

time-averaged intensity of the interference,

g(rh) =| Er(rh) + Eo(rh) |2 (4.1)

=| Er(rh) |2 + | Eo(rh) |2 +2 | Er(rh)Eo(rh) | cos [θr(rh)− θo(rh)]

where θr(rh) represents the phase associated with the propagated reference wavefield

and θo (rh) represents the phase associated with the propagated object wavefield. The

object field is generated by illuminating a 3D object fo(r
′) by an on-axis plane wave

exp(−2πiuo · r) where uo = (uxo , uyo , uzo). The 3D object fo(r
′) represents an object

scattering amplitude, where after reference plane wave illumination a fraction of the

energy is either transmitted or reflected at a point in three-dimensional space. Note

that it is assumed that the object does not induce any phase change in an incident

wavefield through polarization or bi-refringence.

If the object is transmissive and located zh distance away from the hologram
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plane, under the Born approximation the scattered field is

Eo(rh) =
−π

λ2

∫
Er(r

′)fo(r
′)h(rh − r′)dr′, (4.2)

where h(rh − r′) is the shift-invariant impulse response and Er(r
′) is the reference

plane wave. For scalar waves in homogeneous space, the impulse response is

h(rh − r′) =
exp(2πi | rh − r′ | /λ)

| rh − r′ | . (4.3)

We can reformulate the convolution integral in Eq. (4.2) using the Fourier convolution

theorem. The Fourier transform of the scattered field along the transverse axes in

the recording plane is

Ê0(ux, uy, zh) =
1

iπλ
f̂o

(
ux − uxo , uy − uyo ,

√
1

λ2
− u2

x − u2
x − uz0

)
G2D(ux, uy, z)

(4.4)

where

G2D(ux, uy, z) =
exp

(
2πiz

√
1
λ2 − u2

x − u2
y

)
√

1
λ2 − u2

x − u2
y

, (4.5)

f̂o is the 3D Fourier-transform of the object density, and the exponential term repre-

sents a propagation transfer function. Under the small angle approximation, uzo =
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1/λ and ux, uy ≤ 1/λ. The frequency domain scattered field is then approximated by

Êo(ux, uy, z) =
1

iπλ
f̂o

(
ux − uxo , uy − uyo ,−

λ

2

(
u2

x + u2
y

))
exp

(
2πiz

√
1

λ2
− u2

x − u2
y

)
.

(4.6)

As discussed in Section 4.3, digital processing of the Gabor hologram aims to

isolate the scattered field, Eo(rh), signal term from background and conjugate terms.

Assuming the recorded hologram measures Eo(rh) directly and Er(rh) = 1, Eq. (4.6)

demonstrates that a 2D hologram captures a 3D parabolic slice of the object’s band

volume. Figure 4.1† describes tomographic sampling of a 3D band volume in a Ga-

bor geometry. Typically, the illumination (or the object) must be rotated to fully

sample the 3D band volume. To increase longitudinal resolution, the system may

alternatively be scanned in frequency. Instead of scanning in the frequency domain

on the surface of a sphere, this approach allows one to scan a spherical shell with radii

corresponding to a wavelength range. In [21], CS theory was used to estimate the 3D

distribution of f(r′) from a single holographic image without scanning in frequency

or rotating the object. Instead sparsity was exploited. This chapter extends 3D to-

mographic estimation from 2D holographic measurements to millimeter wavelengths.

†(Peer review)C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-
wave compressive holography,” Appl. Opt. (2010)
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Figure 4.1: Fourier-transform domain sampling of the object band volume in a
transmission geometry. (a) 2D slice of a 3D sphere where the dotted-line represents
the measurement from single plane wave illumination. (b) Rectilinear pattern repre-
sents wave vectors sampled by the hologram due to a finite detector plane sampling.
(c) Wave normal sphere cross-section for spatial and axial resolution analysis.†
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4.2.1 Hologram recording geometry

The geometry used to record the hologram impacts the post-detection signal pro-

cessing and the ability to reconstruct the image. In an off-axis geometry [78], the

signal and its conjugate are separated from each other in frequency space and from

the on-axis undiffracted energy (see Fig. 4.2(a)†).

Note that the maximum spatial frequency umax that the detector can record is

limited by the sampling pitch (dx) of the detector,

umax =
1

2dx
. (4.7)

The detector pixel pitch is set by the WR-08 waveguide size (2.32 mm × 1.08 mm),

so the maximum spatial frequency recorded in the vertical direction is 0.463 mm-1

and in the horizontal direction is 0.216 mm-1.

Figure 4.2(a) shows that the information content of the object and the pixel pitch

of the detector impose minimum and maximum limits on the angle θcz of the off-axis

reference. For simplicity, the reference beam is assumed to have no y-component. To

separate the object from its squared magnitude without ambiguity due to detector

aliasing or from confusion with undiffracted terms, the angle of the off-axis beam

†(Peer review)C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-
wave compressive holography,” Appl. Opt. (2010)
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Figure 4.2: (a) Spectrum for an off-axis hologram recording depicting an inher-
ent increase in bandwidth for adequate object separation from undiffracted terms.
(b) Spectrum for a Gabor hologram recording depicting the overlay of undiffracted,
object, and conjugate terms. (c) Transverse slices from linear inverse propagation
results at various z-planes.†
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must satisfy

θcmin ≤ θcz ≤ θcmax, (4.8)

where

θcmax = sin−1

[(
λ

2

)(
1

dx
− uB

)]
, (4.9)

θcmin = sin−1

(
3
λuB

2

)
, (4.10)

and uB is the spatial frequency bandwidth of the object.

Use of an off-axis reference beam simplifies the reconstruction since digital signal

processing allows one to yield an estimate of the object field

g̃offaxis = Er(rh)∗Eo(rh). (4.11)

In an on-axis geometry it is more difficult to separate the object field from the un-

diffracted, zero-order fields and from its conjugate. The overlap of these three fields

degrades resolution and contrast in the object reconstruction. One can apply DC

suppression techniques to enhance object reconstructions [15, 79, 80] and measure-

ments of the energy in the reference beam alone can be made and subtracted from

the hologram,

g̃onaxis =| Eo(rh) |2 +E∗
r (rh)Eo(rh) + Er(rh)E∗

o(rh). (4.12)
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In this chapter, a hologram is recorded in an on-axis geometry since the need for an

increased bandwidth in the off-axis case outweighs the complexity for on-axis object

isolation.

4.2.2 Hologram plane sampling and resolution metrics

In the system implementation, the field g(rh) is sampled and digitized into a 2D ma-

trix by translating a point detector in x and y at the hologram plane zh. An analytical

discussion of the discrete model is detailed in [21] and addressed in Section 4.3.

Holographic measurements captured digitally, by a scanning detector, are related

to measurements made in the spatial frequency domain. The total number of detector

measurements N is

N = nxny, (4.13)

where nx and ny represent the number of measurements along each spatial dimension

in x and y. Given the detector sampling pitch (dx), the number of measurements

(nx) in the hologram plane along the horizontal dimension is given by

nx =
Wx

dx
, (4.14)

where

Wx =
λz

∆xo

, (4.15)
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z is the distance between the object and the detector, ∆xo is the one-dimensional

spatial resolution with which we wish to image the object, and Wx refers to the spatial

extent of a diffracted object (∆xo). The inverse scaling relationship arises from the

conjugate relationship between the object and the hologram [81].

Detector sampling over a finite field size affects sampling resolution in the frequency-

domain. The sampling resolution, ∆u, in the frequency domain along both the hori-

zontal and vertical dimensions (ux and uy), assuming nx = ny, is determined by the

sampling field size at the detector plane, ∆u = 1/(2nxdx). The maximum spatial

frequency sampled by the detector is equal to umax in Eq. (4.7).

Resolution metrics, lateral (∆x) and axial (∆z), for the Gabor geometry are de-

termined by the illumination wavelength and the system numerical aperture (NA).

Based on the Gabor recording geometry, the NA is defined by

n sin θu =
Wx

2z
(4.16)

=
λ

2∆xo

,

where n is the refractive index of air and θu is the half-angle subtended by the object

to half the spatial extent of the hologram plane (Wx/2). Recall that the spatial

resolution is related to the inverse scaling relationship in the frequency domain. The

half-angle, θu, is also defined as the angular bandwidth sampling on the wave normal
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sphere due to system NA. Thus, the NA can also be described in the spatial frequency

domain. The wave vector geometry for hologram recording is shown in Fig. 4.1(b-c).

Considering the geometry in Fig. 4.1(c) we write

sin (θu) =
∆ux

| u | , (4.17)

where under the small angle approximation

| u | θu = ∆ux. (4.18)

Assuming that NA≈ θu and | u |≈ 1/λ, the spatial resolution is equal to

∆x =
λ

NA
. (4.19)

Similarly, from the wave vector geometry, the spatial frequency resolution along z

(∆uz) is determined by

∆uz = ∆uz,max −∆uz,min (4.20)

=| u | (1− cos (θu))

=| u | θ2
u.
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Under the small angle approximation, the axial resolution is

∆z =
λ

NA2 . (4.21)

After substituting the expression for NA from Eq. (4.16) into Eq. (4.19) and Eq. (4.21),

we see that lateral resolution is also defined as ∆x ≈ 2∆xo and range resolution is

defined as ∆z ≈ 4∆x2
o/λ. Defining the lateral and axial resolution using NA describes

resolution in terms of system geometry (a function of object distance), whereas the

second metric is modeled as a function of feature size, ∆x0. The maximum of the

two measures for lateral and axial resolution provides a baseline metric for resolu-

tion. These metrics are used to evaluate resolution from TV-minimization object

reconstructions in Section 4.5.

This section provided motivation for implementing a Gabor geometry instead of

an off-axis approach. The impact of detector sampling at the hologram plane was

addressed and a relation between object sampling and frequency domain sampling

was discussed. Finally, theoretical resolution metrics were derived.

4.3 Reconstruction methods and Simulations

In this section, two reconstruction methods are discussed: 3D object estimation from

a Gabor hologram and 3D object estimation from randomly subsampled Gabor holo-
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graphic measurements. Subsampling is implemented to further analyze the impact

of compressive measurement on 3D object estimation.

The continuous model for Gabor holography, modeled under the first Born ap-

proximation, is shown in Eq. (4.2). The detector plane is located at the zh = 0 plane

in the r(x, y, zh) coordinate system. The object data, f , is located in the r’(x′, y′, z′)

coordinate system. The recorded hologram in Eq. (4.1) can be reformulated when

assuming that Er(rh) = 1 and if operations on fo(r
′) in the convolution integral in

Eq. (4.2) are expressed using an operator, H. After squared-reference field subtrac-

tion, we can represent the recorded hologram in algebraic notation using

g =| Hf |2 +Hf + H∗f + n, (4.22)

where g is an N × 1 vectorized detector measurement, H is a 2D discrete system

matrix, f is an M × 1 vectorized object representation (fo(r
′)), and n is the noise

associated with the measurement. If the object-squared field contribution is ignored

in Eq. (4.22), a linear relationship between the detector measurement and object field

distribution, g = Hf , can be established.

Once the digital hologram is recorded, the goal is to estimate the object distribu-
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tion, f . The digitized holographic measurement in [21] is represented as

gn1,n2 =
∑

l

F−12D

{
f̂m1,m2,l exp

(
ıl∆z

√
1

λ2
−m2

1∆
2
u −m2

2∆
2
u

)}

n1,n2

, (4.23)

where F−12D represents the 2D inverse fast Fourier transform (FFT) operation, f̂ rep-

resents the FFT of the object distribution, and the exponential term encompasses

the transfer propagation function. Indices n1 and n2 are discrete indices for each

spatial dimension (x and y), l is the discrete index for z, m1 and m2 are the Fourier-

transformed indices, ∆z is the resolution cell along the axial plane, and ∆u is the

sampling resolution in the Fourier-domain due to discretization by the detector plane.

Using Eq. (4.23), we can model H in Eq. (4.22) as

H = F−1
2DQF2D. (4.24)

The adjoint system model of Eq. (4.23) is

f = H†g (4.25)

where H† is the adjoint operator defined as

H† = F2DQ
†F−1

2D. (4.26)
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Note that † represents the Hermitian transpose operation. The forward system ma-

trix, H, models scattering/object field propagation via two FFTs and a quadratic

phase term [81]. The FFT and inverse FFT operators are diagonal matrices and the

exponential term in Eq. (4.23) is expressed as a propagation quadratic phase matrix,

Q = Ql,m1×m2 , where

Ql=1,m1,m2 = exp

(
ıl∆z

√
1

λ2
−m2

1∆
2
u −m2

2∆
2
u

)
. (4.27)

The adjoint model in Eq. (4.25) is used for linear backpropagation object estimation

(see Appendix A.5 for forward and adjoint model matrix implementation details and

sensing matrix (H) CS coherence properties).

Inverse propagation, otherwise known as backpropagation, is a linear method for

3D object field reconstruction. Figure 4.2(c)† shows digitally backpropagated object

fields at different z-planes. This result demonstrates the challenges associated with

linear inverse propagation, as the undiffracted and out-of-focus field contributions

make object range detection challenging. Linear backpropagation provides an esti-

mate for the 3D field and not the 3D object density. Minimizing the contribution

of the undiffracted field or twin-image problem has been explored [77, 82]. Conven-

tional methods to increase range resolution require either multiple wavelengths or

†(Peer review)C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-
wave compressive holography,” Appl. Opt. (2010)
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multiple projections [83, 84]. By exploiting results from compressive sensing, this

project demonstrates that it is possible to isolate objects along an axial plane where

range resolution is consistent with the object’s spatial extent using only a single 2D

recording.

Recently, the TwIST 2D TV-minimization algorithm was adapted for 3D tomo-

graphic estimation from a single digitized 2D hologram [21,85]. Forward and adjoint

operators in Eq. (4.24) and Eq. (4.25) are incorporated into the TwIST algorithm.

Analytical rigor associated with the algorithm has previously been formulated [21].

The algorithm minimizes a convex quadratic problem with the addition of a sparsity

constraint. The sparsity constraint is enforced on the gradient (see Eq. (4.30)) of

the object estimate, f . Applying the constraint enables improved 3D tomographic

estimation from a 2D measurement [86] since the twin-image problem associated with

the inverse propagation method is reduced. Even though the effect of the nonlinear

term | H [f ] |2 is neglected in the system model shown in Eq. (4.22), a new term, e,

is added to model measurement error. The final measurement model becomes

g = 2<{H [f ]}+ n + e. (4.28)

In this chapter, a convex quadratic function is minimized using TV regularization
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denoted by

f ∗ = arg min
f
‖ g −Hf ‖2

2 +τΦTV (f), (4.29)

where f ∗ is the 3D object estimate and τ is the regularization constant. The ΦTV

function is defined as

ΦTV =
∑

l

∑
i,j

√
(fi+1,j,l − fi,j,l)2 + (fi,j+1,l − fi,j,l)2, (4.30)

where l represents the discrete index in z and i and j correspond to discrete in-

dices for a 2D (x, y) spatial extent. The φTV function preserves edges while imposing

smoothness on a solution. The regularization constant, τ , determines the convergence

and image quality of the estimate. The TV-regularization algorithm in Eq. (4.29) is

considered as a special case in a Bayesian framework since TV regularization is sim-

ilar to determining a maximum a posteriori estimate with a TV-prior distribution.

TV-minimization reconstructions enable twin-image reduction and squared-field re-

duction, which are otherwise dominant in linear inverse propagation. Figure 4.3†

shows TV-minimization object reconstructions. Undiffracted energy contributions

are localized at the z = 0 plane, while twin-image contributions are weakly scat-

tered to the object field planes and primarily located at the conjugate object planes

†(Peer review)C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-
wave compressive holography,” Appl. Opt. (2010)
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z=-35z=-132 (mm) z=0 z=35 z=132

Figure 4.3: Transverse slices from TV-minimization reconstructions at different
z-planes. A dominant squared-field term is confined to the z=0 plane.†

(i.e. z ≤ 0 in Fig. 4.3). Compared to inverse propagation results in Fig. 4.2(b),

Fig. 4.3 demonstrates twin-image suppression and squared-field suppression since

TV-imposed sparsity enables estimation of the object density and not the field dis-

tribution.

In this paper, the impact of subsampled holographic measurements on object re-

construction is also analyzed. A binary-valued, pseudo-random transmittance func-

tion, t(x, y), is applied to reduce the number of measurements at the hologram plane.

The transmittance function is defined as

t(x, y) =
∑
p,q

tp,qrect

[
x− p∆T

∆T

,
y − q∆T

∆T

]
. (4.31)

The pseudo-random measurement matrix contains transmissive (1) and opaque (0)

openings. The sampling pitch, ∆T , of the matrix is equal to the receiver sampling

pitch. Similarly, indices for the discrete representation of the measurement matrix

and detector matrix are equivalent (p = n1 and q = n2). The sparse detector mea-

143



surement, ğ, is defined as

ğn1,n2 = tn1,n2gn1,n2 . (4.32)

If the discrete transmittance function, tn1,n2 , for the aperture is represented as a

diagonal matrix, W, then the new forward and adjoint models are represented as

g = WF−1
2D QF2Df (4.33)

and

f = F †
2DQ† [F−1

2D

]†
W †g. (4.34)

The TV-minimization algorithm is adapted for hologram measurement subsam-

pling using the aforementioned forward and adjoint models. Sparse detector mea-

surements are motivated by an existing need to reduce scan times in MMW imaging

applications. Simulations incorporating the above system model are explored in the

next section to study the impact of a subsampled 2D hologram image on 3D to-

mographic reconstruction. The goal is to show that a reduction in the number of

measurements can be achieved without a huge compromise in 3D object reconstruc-

tion.
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(a) (b) (c)

(d) (e)

Figure 4.4: Sampling windows for sparse measurement where (a) 3.9%, (b) 9.77%,
(c) 23.83%, (d) 44.56%, and (e) 54.68% measurements are removed.†

4.3.1 Simulation Results

In simulation, two approaches are undertaken to analyze the impact on 3D object es-

timation using TV-minimization. The first approach involves the recording of 2D dig-

itized holographic measurement. The second approach studies the impact of subsam-

pled/sparse 2D holographic measurement on 3D object estimation. In this section,

the simulated detector measurements are constructed using Eq. (4.22). The sparse

measurement model is based on Eq. (4.33) and incorporated into Eq. (4.22). Recall

that for sparse measurement, a pseudo-random transmittance function is applied to

holographic measurements. Examples of the sampling matrices under test are shown

in Fig. 4.4†. TV-minimization results were analyzed when detector measurements

†(Peer review)C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-
wave compressive holography,” Appl. Opt. (2010)

145



were uncorrupted and corrupted by additive white gaussian noise (AWGN). Noise

was added to simulated detector measurements using the Matlab ‘awgn’ command,

where the measurement signal-to-noise ratio (SNR) was specified. Also, the impact

of 0 to 54.68% 2D measurement reduction on 3D object estimation was analyzed.

For 3D object estimation, two inversion methods are compared: a linear backpropa-

gation method and nonlinear TV-minimization. To quantify reconstruction efficacy

the peak signal-to-noise ratio (PSNR) metric was used . PSNR is defined as

PSNR(dB)
def
= 20 log10

{
MAXA

1
nxnyd

∑nx

i=1

∑ny

j=1

∑d
l=1[Ai,j,l −Bi,j,l]2

}
, (4.35)

where A represents the synthetic object, B represents the object estimate, nx and ny

represent the number of detector pixels along each spatial dimension, d represents the

number of axial planes, and PSNR units are in decibels (dB). As expected, PSNR

decreases as the percentage of samples removed increases. Also, the addition of

AWGN decreases PSNR.

Simulation system parameters mimic that of the experimental platform. Each

simulated hologram measures 128 × 128 pixels with a pixel pitch of 2.32 mm. The

synthetic objects were modulated by a 94 GHz reference illumination field. Two

synthetic 3D objects, synthetic slits and a synthetic gun and dagger object, were

tested. The objects were located at different depths along the axial plane. The axial
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resolution definition in Section 4.2.2 was used as the metric for object separation

along the axial plane. The synthetic slit targets follow this convention. For example,

the smallest object feature size of the synthetic slit target measured one wavelength

(≈ 3 mm) and the object distance from the detector measured 20 mm, which resulted

in an object separation distance of approximately 10 mm. The synthetic gun and

dagger target attempts to mimic experimental measurements detailed in Section 4.5.

Further, TV-minimization reconstruction depths were based on the predetermined

object locations. Note that the synthetic targets are 2D and have a uniform ampli-

tude. Real objects explored in Section 4.5, however, are 3D and located in multiple

planes. The impact of 3D spatially extended objects along multiple axial planes was

not investigated in this chapter.

First, a digital hologram of a uniform 3D slit object was simulated using Eq. (4.22).

Row one, row two, and row three of the slit object were located in three separate

planes: 20 mm, 30 mm, and 40 mm away from the detector plane. The slits are

21 pixels long. Row one contained three sets of three-pixel-wide slits. Slit pairs

were separated by one, two, and three pixels, respectively. Row two contained three

sets of five-pixel-wide slits. Slit pairs were separated by two, four and one pixel(s),

respectively. Row three consisted of three sets of two-pixel-wide slits. Slit pairs

were separated by one, two, and four pixels, respectively. In the post-detection pro-
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cess, linear backpropagation and TV-minimization reconstructions are compared and

shown in Fig. 4.5†. Note that the reconstructions in Fig. 4.5 show simulated detector

measurements corrupted by AWGN at a 30 dB measurement SNR. Backpropaga-

tion accurately estimates the object wavefield, while TV-minimization accurately

estimates the object spatial extent along the axial plane. Improved twin-image sup-

pression was obtained with TV-minimization. Note that the slit object addressed

spatial resolution limitations as fewer holographic measurements were used for data

inversion. These limitations were object size dependent. A set of five-pixel-wide

(11.6 mm) slits separated by four pixels (9.23 mm) were resolved after nonlinear in-

version even though 44.46% of the holographic measurements were removed. Linear

backpropagation object field estimation was challenging when 54.68% of the holo-

graphic measurements were removed. A closer inspection of Fig. 4.5 demonstrates

other spatial resolution limitations based on smaller object feature sizes.

Second, a hologram of a 3D synthetic object consisting of a uniform amplitude

2D gun and a 2D dagger was simulated. The synthetic 2D objects were placed at

different distances along the axial plane. The synthetic data were modeled after

experimental data in Fig. 4.7†. The synthetic gun and dagger were located 30 mm

†(Peer review)C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-
wave compressive holography,” Appl. Opt. (2010)
†(Peer review)C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-
wave compressive holography,” Appl. Opt. (2010)
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z = 20 (mm) 30 40 100 

0.0%

Samples 

Removed

3.9%

9.77%

23.83%

44.46%

54.68%

(a) (b)

Figure 4.5: Synthetic 3D slit object results with an applied transmittance function
and corrupted by AWGN at a 30 dB measurement SNR using (a) backpropagation
and (b) TV-minimization for 3D tomographic object estimation. Various values for
τ (0.2 – 1.0) are used for sparsely sampled (0.0 – 54.68%) TV reconstructions† (see
Table 4.1)
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z = 30 (mm) 140 200 250 
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23.83%

44.46%
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(a) (b)

Figure 4.6: Synthetic 3D dagger and gun object results with an applied transmit-
tance function and corrupted by AWGN at a 30 dB measurement SNR using (a)
backpropagation and (b) TV-minimization for 3D tomographic object estimation. A
τ value of 0.2 is used for TV-minimization reconstructions from sparsely sampled
detector measurements corrupted by AWGN (see Table 4.1).†
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and 140 mm away from the hologram plane. The smallest feature on the gun, lo-

cated at the barrel, measured two pixels (4.64 mm). The smallest feature on the

dagger, located at the edge of the blade, measured four pixels (9.28 mm). Figure 4.6

presents linear and nonlinear inversion estimates of the holographically measured

data corrupted by AWGN at a 30 dB measurement SNR. While linear backpropaga-

tion fails to estimate the object field both spatially and longitudinally with 54.68% of

the measurements missing, TV-minimization succeeds in providing adequate spatial

resolution and object localization along the axial plane.

While Fig. 4.5 and Fig. 4.6† only consider reconstructions from 3D synthetic

targets corrupted by AWGN at a single measurement SNR, Fig. 4.8 quantitatively

summarizes the effect over a range of AWGN noise levels for different subsampling

strategies. Simulation results in Fig. 4.8 use various values of τ (.2 - 1) for 3D

object reconstructions. The number of iterations, however, was fixed. Values for τ

were chosen by trial and error to visually produce the best object contrast in the

reconstruction estimate. The number of iterations were chosen such that the relative

difference in the objective function was nominal. In Fig. 4.8, 13 different measurement

SNR noise levels were analyzed. Using the same algorithm parameters, multiple

reconstruction estimates at each noise level were consistent. The TV-minimization

†(Peer review)C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-
wave compressive holography,” Appl. Opt. (2010)
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Figure 4.7: Experiment with a polymer model gun and dagger placed at two dif-
ferent distances along the axial plane.(a) Photograph of the experiment. Transverse
slices in four different z-planes of the (b) backpropagated and (c) TV-minimization
reconstructions. Amplitude pixel (x,y) as a function of z, in 10 mm increments,
where TV-minimization and backpropagation for a central point on the (d) barrel of
the gun and (e) on the blade edge of the dagger are plotted.†
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reconstruction of the synthetic 3D slit target for all sampling schemes converged at a

30 dB measurement SNR with a PSNR range between 25 dB and 30 dB. The results in

Fig. 4.8(a) show that a 54.7% measurement reduction only incurs a 5 dB loss in PSNR.

In comparison, the synthetic 3D gun and dagger object converged around a 40 dB

measurement SNR which yielded approximately a 32 dB PSNR. For the synthetic

dagger and gun object case, measurement reduction between 0% and 54.68% provided

a PSNR range between 29 dB and 32 dB. Since the 3D gun and dagger gradient

sparsity is smaller, it was not surprising that TV-minimization results yielded a

higher PSNR compared to the 3D slit target. Lastly, backpropagation results for

both 3D synthetic objects in Fig. 4.8(c,d) converged at a 20 dB measurement SNR

for all measurement schemes and yielded a low reconstruction PSNR (17 - 20 dB).

In simulation, object sparsity can be measured by calculating the number of

nonzero gradients for each 3D synthetic object under test. Object sparsity was

measured for each synthetic 3D object by calculating the gradient and totaling the

nonzero values. The nonzero gradient, | ∇fi,j,l |, at the (i, j)th pixel location in the

lth axial plane was calculated using

| ∇fi,j,l |=
√

(fi+1,j,l − fi,j,l)
2 + (fi,j+1,l − fi,j,l)

2. (4.36)

Note that larger 3D objects produce more nonzero gradients. The nonzero gradients
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Figure 4.8: Plot of reconstruction PSNR (in dB) versus measurement SNR (in
dB) from millimeter-wave holography detector measurements corrupted by AWGN.
TV-minimization reconstruction results with 0.0 - 54.7% measurement reduction are
shown for the (a) synthetic slit target and (b) synthetic gun and dagger target.
Backpropagation reconstruction results with 0.0 - 54.7% measurement reduction are
shown for the (c) synthetic slit target and (d) synthetic gun and dagger target.†
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calculated for the synthetic 3D slit object and the synthetic 3D dagger and gun ob-

ject were 2580 and 1129. Recall that the simulated 2D hologram measured 128× 128

pixels. The ratio between the total number of measurements (N) recorded at the de-

tector plane to the object sparsity/nonzero gradients calculated was analyzed. This

ratio is listed in Table 4.1 as the sparsity ratio. In CS, the number of measurements

required for adequate signal estimation is N ≥ SC log (M) [21, 73], where S repre-

Table 4.1: Synthetic 3D Slit (ST) and 3D Gun and Dagger (GD) Sparsity

% Removed ST Sparsity Ratio GD Sparsity Ratio

1 0 6.35 14.51
2 3.9 6.10 13.95
3 9.77 5.73 13.09
4 23.83 4.84 11.05
5 44.46 3.53 8.06
6 54.68 2.88 6.58

sents the number of nonzero gradients/sparsity calculated in the gradient domain,

C represents an empirical constant value, and M represents the original size of the

vectorized object signal f . The reconstruction of the 3D slit object with a 54.68%

measurement reduction was evaluated by analyzing the PSNR and sparsity ratio. A

low PSNR was attributed to a low sparsity ratio shown in Table 4.1. For example,

a 3D synthetic gun and dagger object with a 54.68% measurement reduction yielded

a PSNR of 26.09 and had a sparsity ratio of 6.7. Since the sparsity ratio for the

synthetic slit object with the same measurement reduction yielded a low PSNR, one
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would need to record a larger number of holographic measurements for an improved

reconstruction PSNR. While the synthetic 3D slit object addressed spatial resolution

limitations and gradient domain object sparsity concerns in simulation, the synthetic

3D gun and dagger object was used to evaluate experimental reconstructions taken

of a semi-transparent gun and dagger placed along an axial plane in Section 4.5.

4.4 Experimental setup

Simulations in the previous section indicate that digital holography combined with

a TV post-detection process is effective. To validate the simulations, various experi-

ments were conducted to measure Gabor holograms. The 2D hologram was recorded

in a Gabor geometry as shown in Fig. 4.9†. RF energy was generated from a tunable

InP Gunn diode oscillator and coupled to a WR-10 open waveguide with dimensions

2.54 mm (W) × 1.27 mm (H). The oscillator was tuned to 94 GHz (see Appendix

A.6 for spectral linewidth distribution) and after attenuation was found to radiate

with a peak power of 100 mW. In the far-field (4D2/λ) of the waveguide aperture,

a collimated/reference beam was directed towards an object having spatial extent,

Lx in Fig. 4.9. Actual reference beam dimensions (B) were calculated using the il-

lumination wavelength (λ), waveguide aperture size (D), and waveguide to object

†(Peer review)C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-
wave compressive holography,” Appl. Opt. (2010)
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Figure 4.9: Optical schematic for millimeter-wave Gabor holography containing a
waveguide (WG), object extent (Lx), detector plane sampling with number of pixels
(N) and pixel pitch (dx), waveguide to object distance (z1), and object to receiver
distance (z3).

†

distance (z1 in Fig. 4.9) such that B = .89λz/D [87]. Energy diffracted from the

object interfered with a reference field at a receiver plane where N measurements

were recorded with sampling pitch dx.

Our detector is an incoherent, single pixel receiver circuit shown in Fig. 4.10.

Incident energy (at 94 GHz) at the receiver circuit was collected with a WR-08

open waveguide measuring 2.32 mm (W) × 1.02 mm (H). In the circuit, energy was

mixed with a local oscillator (LO in Fig. 4.10) at 85 GHz and down converted to an

intermediate frequency (IF in Fig. 4.10(b)) at 9 GHz. The IF signal was amplified

twice with a low noise amplifier (LNA) and a MITEQ (8-12 GHz) amplifier. A band

pass filter was applied to the signal before a voltage measurement was read from a

Schottky diode detector. The band pass filter passes frequencies between 7-11 GHz

thereby making the receiver spectrally sensitive over a bandwidth of 4 GHz.

The output of the diode is a DC voltage and measurements recorded with the
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Figure 4.10: Superheterodyne receiver (a) circuit diagram and (b) experimental
layout where incident energy (RF in) is mixed with a local oscillator (LO), down
converted to an intermediate frequency (IF ), amplified by both an LNA and a second
amplifier, filtered with a band pass filter (BPF ), and detected with a Schottky diode.†

receiver circuit confirmed that the system was operating in the linear region. The

sensitivity of the receiver measured 48.31 mV/µW (see Appendix A.7 for the sen-

sitivity plot). Also, there exists a DC offset in the receiver response due to the

inherent circuit noise, as well as, the data acquisition system. This DC offset or

mean noise value was calculated by recording 1000 measurements per pixel over a

region of 60× 60 pixels. The mean background/noise value is 15 mV. The standard

deviation of the noise level about the mean (0.1472 mV) provides an indication for

the circuit noise caused by the receiver. Also, while the mean signal value within

the recorded composite hologram is object dependent, the mean signal value for the

reference beam was greater than 20 times the mean background signal. Thus, the

composite holograms were not limited by inherent circuit noise or background noise

levels.
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For real-time measurement, voltages from the receiver circuit were acquired us-

ing a National Instruments (NI) USB high-speed M series data acquisition module

(USB-6251). A LabView GUI was used to automate the data collection process from

the NI-DAQ module, as well as, to automate dual-axis (x − y) translation of the

receiver circuit. For receiver translation, we used a step size sampling rate of 1000

samples per second. The sampling process involved scanning a step size of one-fifth

of a 2.32 mm pixel pitch (step size of 73 motor steps) in the horizontal direction to

more accurately acquire data using a raster-scan method. In the vertical direction,

the step size equalled a 2.32 mm pixel pitch (step size of 365 motor steps). Further,

21 samples were averaged per step in both the horizontal and vertical directions.

All holograms were recorded as a raster-scanned (x-y) 128 (H)×640 (W) images.

The data acquisition time for a raster-scanned 128× 640 pixel image took about 28

minutes.

4.5 Experiment results

Several Gabor holograms were recorded using the incoherent receiver circuit described

above. The raster-scanned image was binned by five along the horizontal direction to

generate a 128×128 pixel image. Each hologram is digitally recorded with 16 bit ac-

curacy as specified by the DAQ module. In the post-detection process, the composite
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hologram was reference beam subtracted, DC filtered in the spectrum of the holo-

gram, and zero-padded to create a 168 × 168 pixel image. Zero-padding the system

matrix helps to avoid circular convolution effects from the FFT operation used in the

forward and adjoint models in the TV-minimization algorithm. In this section, two

methods for 3D object reconstruction were compared: conventional backpropagation

and TV-minimization. Recall that Fig. 4.3 in Section 4.3 depicted a squared-field

term isolated at the z = 0 plane and twin-images located at object planes z ≤ 0

using the TV-minimization algorithm. For simplicity, both the backpropagated and

TV-minimization reconstructions were compared and evaluated at z > 0 planes.

Figure 4.11 illustrates three semi-transparent polymer objects analyzed in this

section. Specific properties associated with the object polymer material have been

addressed elsewhere [88]. These objects were made with an Eden 333 prototyping

machine that lays thin layers of photopolymer and UV-cures each layer, building a

3D object slice by slice. A 5 mm thick sheet of the polymer material under test (see

Fig. 4.11) was uniformly illuminated with 94 GHz energy. The material was found

to attenuate the incident energy by less than 20%. In the experiment, the polymer

objects were mounted to Styrofoam blocks (also semi-transparent in the MMW) or

suspended with string. Test objects, in Fig. 4.11, include a model wrench with

2 in (W) × 6 in (H) spatial extent, a model dagger with .25 - .5 in (W) × 4 in (H)
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(a) (b) (c)

Figure 4.11: Object scale of a semi-transparent polymer (a) wrench, (b) dagger,
and (c) gun.†

spatial extent, and a model gun with .16 - 1 in (W) × 5 in (H) spatial extent.

Combinations of these test objects were used in the experimental setup. Further,

MMW RF absorber (ABS in Fig. 4.7(a) and Fig. 4.12(a)) was used to minimize stray

reflected energy collected at the receiver.

Three separate experiments were conducted. In each experiment, the spatial ex-

tent of the 128×128 pixel hologram was 296.96 mm in both the horizontal and vertical

dimensions. The holograms were zero-padded to 168× 168 pixels. Zero-padding the

hologram does not have any impact on reconstruction since diffracted object data does

not exist in those regions. In the first experiment (see Fig. 4.7(a)), a hologram of a

polymer model gun and model dagger was recorded. The objects were placed 22 mm

and 107 mm away from the receiver platform as shown in Figure 4.13(a). Recall that

the optical schematic for the hologram recording geometry is shown in Fig. 4.9. Using

linear inversion, the holographic measurement was backpropagated to four different
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z-planes as shown in Fig. 4.7(b). Linear backpropagation estimates the 3D electro-

magnetic object field at each z-plane, but out-of-focus diffracted energy present in all

z-planes hinders object localization. In Fig. 4.7(c), however, TV-minimization results

provide a means for localizing objects to their corresponding z-planes. Note that the

baseline axial resolution metrics, derived in Section 4.2, suggest an axial resolution of

approximately 20 mm for an object feature size of 4 mm. Figure 4.7(d-e) shows the

pixel amplitude as a function of distance in z in 10 mm increments. These plots were

generated at a finer resolution than the theoretical limit of 20 mm. Figure 4.7(d-e)

shows the pixel amplitude at a central pixel (x,y) located at the barrel of the synthetic

gun and at the blade edge of the synthetic dagger. The axial plots in Fig. 4.7(d-e)

show that TV-minimization reconstructions fall short of the theoretical limit. While

backpropagation results provide an estimate of the object field along the axial plane,

TV-minimization enables object localization that is consistent with the spatial extent

of the object. The experimental axial resolution with the gun and dagger experiment

is approximately 30 mm. Errors are attributed to the residual diffracted energy (out-

of-focus energy) found in neighboring z-planes for the TV-minimization results. The

measurement error can be minimized by acquiring a larger number of measurements

(> 128 pixels).

In a second experiment, a semi-transparent polymer wrench, gun, and dagger were
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placed at three different distances away from the receiver (see Fig. 4.12(a)). These

distances were 48 mm, 155 mm, and 205 mm. The recorded digital hologram of the

three objects is shown in Fig. 4.13(b). A higher background signal, compared to the

previous experiment, is attributed to an increase in illumination source power. The

3D object is estimated using linear backpropagation and TV-minimization. Object

estimates were reconstructed at four separate z-planes as depicted in Fig. 4.12(b-c).

Linear backpropagation estimates reveal object field distributions in each z-plane

and limited object localization while TV-minimization estimates show a reduction in

out-of-focus contributions from twin-images. Amplitude data from a single spatial

location in each object is plotted in increments of 5 mm along the axial plane in

Fig.4.12(d-f). Object localization using TV-minimization is shown in Fig. 4.12(d-

f), while backpropagation field estimates do not provide any axial resolution. Still,

the theoretical measure for a 4 mm feature size on the polymer gun object should

enable 20 mm axial resolution. Axial plots from TV-minimization reconstruction in

Fig. 4.12(d-e) show an axial resolution of approximately 30 mm. Capturing more

measurements with the receiver circuit would further improve TV estimation of the

3D object.

Lastly, the impact of sparse holographic measurements was analyzed with real

data. Sampling matrices, shown in Fig. 4.4, were applied to experimental mea-
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Figure 4.12: Experiment with a polymer model wrench, gun, and dagger placed
at three different distances along the axial plane.(a) Photograph of the experiment.
Transverse slices in four different z-planes of the (b) backpropagated and (c) TV-min-
imization reconstructions. Amplitude pixel (x,y) as a function of z, in 5 mm incre-
ments, where TV-minimization reconstructions and backpropagation estimates for a
center point on the (d) wrench, (e) gun, and (f) dagger are plotted.†

164



x (mm)

y
 (

m
m

)

 

 

50 150 250 350

50

100

150

200

250

300

350 100

200

300

400

500

600

700

800

900

1000

(a) (b)

x (mm)

y
 (

m
m

)

 

 

50

100

150

200

250

300

350

0

50

100

150

200

50 150 250 350

Figure 4.13: Experimental holographic recording of (a) a model dagger and a model
gun and (c) a model dagger, a model gun, and a model wrench located in different
z-planes.†

surements. Since holographic measurements (128 × 128 pixels) were zero-padded

to a spatial extent of 168 × 168 pixels, each 128 × 128 transmittance function was

zero-padded to the measurement data size. Figure 4.14 shows backpropagation and

TV-minimization results for sparse holographic measurement. For backpropagation

estimates, absolute zero values in the detector measurement due to the subsampling

matrix were substituted with interpolated values calculated from measurements at

neighboring pixels. Similar to synthetic gun and dagger simulations in Section 4.2,

experimental data showed adequate spatial resolution and object localization along

the axial plane when 54.68% of the measurement data was removed. This was fea-

sible when a gradient sparsity constraint was used. Again, pixel amplitude versus

distance in z plots were generated in increments of 10 mm along the axial plane.

Measurement reduction by 3.9% and 54.68% does not seem to impact object local-
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ization using TV-minimization. However, simulation and experimental results reveal

a sacrifice in spatial resolution using backpropagation and TV-minimization with a

54.68% measurement reduction.

In summary, this section discussed three experiments where objects were placed

along the z-axis at either two or three different planes. While data acquisition times

were long (e.g. < 30 minutes), 3D object estimation and improved object local-

ization along the axial plane is made possible with TV-minimization. Linear back-

propagation accurately estimates the object field along the axial plane, however,

out-of-focus diffracted fields hinder object localization. Sparse measurement impacts

object spatial resolution using linear backpropagation since object field reconstruc-

tion is challenging. TV-minimization results improve upon a linear backpropagation

method where a twin-image term and a squared-field term affect object reconstruc-

tion. Sparse measurement reconstructions in simulation and with experimental data

demonstrated that reconstructed object quality is maintained with fewer measure-

ments. Also, sparse measurement reconstruction with experimental data further

motivated the potential for decreasing data acquisition times using fewer scans.
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Figure 4.14: Sparse measurement reconstruction of experimental data using (a) lin-
ear backpropagation and (b) TV-minimization for 3D object estimation. Amplitude
of a central pixel (x,y) on the blade edge of the dagger as a function of z, plotted in
10 nm increments, from (c) 3.9% holographic measurement removal and (d) 54.68%
holographic measurement removal.†
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4.6 Summary and Conclusion

An improved method for 3D tomographic estimation from 2D holographic measure-

ments has been presented. Linear backpropagation estimation of a 3D object is

hindered by a squared-field term and a twin-image term in reconstruction. TV-

minimization of 2D holographically recorded data shows suppression of these out-of-

focus terms. Our nonlinear inversion scheme exploits object sparsity in the gradi-

ent domain. Further, simulations and experimental data reconstructions show that

randomly sampled 2D holographic measurements enable 3D object estimation even

when 54.68% of the measurements have been removed. However, there is a degra-

dation in spatial resolution. PSNR values in simulation decrease when holographic

measurements are removed. Also, a sparse measurement scheme for adequate 3D

object estimation is object dependent. Successful 3D object estimation from 2D

holographic measurements using TV-minimization depends on the object feature size

(∆xo), which translates into the recorded hologram spatial extent.

This chapter has focused on the analysis of semi-transparent objects at millime-

ter wavelengths. In practice, objects of interest are not semi-transparent. Thus, a

reflection geometry may be better-suited in a practical implementation. Data in-

version techniques discussed in this chapter are applicable to a reflection geometry.

The reflection case is more challenging as speckle impacts holographic measurement.
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Also, since gradient-imposed sparsity is object dependent, a thorough object study

on resolution for both transmissive and reflection cases still needs to be undertaken.
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Chapter 5

Conclusions and discussion

This dissertation has explored three different devices : SmacM, (DD)CASSI, and

a MMW holography platform. These devices were related to research efforts that

included pushbroom imaging for transmissive target analysis and fluorescence mi-

croscopy, snapshot spectral imaging for fluorescence microscopy, and compressive

holography for eventual remote concealed weapons detection.

Chapter 2 discussed the system model, system design, and a coded aperture spec-

trometer interface to an upright microscope for transmissive and fluorescent target

analysis. System simulations were used to study the impact of spectrally narrow and

broad objects on NNLS spectral estimation. The CAS pushbroom imager provided

optimized spatial resolution compared to a previous generation system and 1 nm

spectral resolution. Fluorescence microscopy of microspheres and cells were analyzed

with SmacM. The main drawback, depending on the target application (i.e static

or dynamic sample analysis), was scan time. Scan times with SmacM were domi-

nated by the detector integration time. Studies evaluating scan time limitations could

be undertaken to maximize system performance for analyzing fluorescent biological
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samples.

Chapter 3 discussed a snapshot spectral imager, CASSI, that overcame the limita-

tions of a scanning system at the expense of spatial and spectral resolution. CASSI’s

spatial and spectral resolution were limited by the aperture-code feature size. The

instrument’s spectral resolution measured 10 nm. Two algorithms for 3D object es-

timation were implemented in simulation and evaluated with real data. Static and

dynamic fluorescent samples were tested with CASSI. An optical system re-design

was discussed to create a more compact and off-the-shelf system. The progression

for this work would involve realizing the CASSI re-design for increased stability and

ease of comparison to other multi-spectral testbeds. Also, realizing spectral analysis

of dynamic biological samples would be interesting and beneficial to the cell biology

community since current systems are costly. Finally, as CCDs advance and detector

pixels decrease in size a more efficient aperture-code could be realized in CASSI to

improve spatial and spectral resolution.

Chapter 4 presented a MMW holography platform, the system model, and a

TV-minimization algorithm used for 3D tomographic object estimation from a single

2D holographic composite and a 2D sparse holographic composite. Various sampling

strategies were investigated in an attempt to reduce data acquisition time versus the

traditional raster scan method of creating an image composite. Sampling strategies
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were evaluated in simulation to study the impact on reconstruction efficacy. Real

measurements were also analyzed with each sampling scheme. In the experimental

setup, semi-transparent and polymer objects placed at various positions along the ax-

ial plane and were successfully reconstructed. The progression of this work involves

a change in the sampling geometry to extend millimeter-wave object reconstruction

to metallic object analysis. Simulations with a reflection geometry could motivate

experiments in this configuration. A reflection geometry would enable the analysis

of metallic objects, while introducing a speckle phenomenon. Wideband illumina-

tion, structured illumination, or statistical analysis would be required to minimize

the speckle contribution. While this project considered an off-axis geometry as well,

a space-bandwidth product limit prevented successful object reconstruction and in-

creased the number of measurements required for successful object estimation. This

approach could also be revisited. Finally, the study of MMW holography for remote

concealed weapons detection motivates the realization of a platform for use in the

field. Therefore, measurement strategies discussed in this dissertation would need to

be successfully tested and expanded upon for actual system implementation.
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Appendix A

Appendix

A.1 Derivation of angular, linear dispersion, and

spectral resolution

Derivation of linear dispersion, ξ, begins with the grating equation:

sin (θI) + sin (θR) =
κλ

Λ
, (A.1)

where θI represents the incident angle onto the grating, θR represents the refracted

angle from the grating, κ represents the grating diffraction order, and Λ represents

the reciprocal grating period. If it is assumed that θI = 0, the angular dispersion

(δθ/δλ) is found by taking the partial derivative with respect to θR and λ as shown

below.

δθR

δλ
=

(
δ

δθR

)−1
δ

δλ
(A.2)

δ

δθR

= cos (θR)

δ

δλ
=

κ

Λ
.
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Angular dispersion is defined as

δθR

δλ
=

κ

Λ cos (θR)
. (A.3)

Linear dispersion, ξ, is calculated by multiplying angular dispersion by the optical

system back focal length (F ) as denoted by

δx

δλ
=

δθR

δλ
F

=
κF

Λ cos (θR)
. (A.4)

Also, spectral resolution is easily derived by multiplying the reciprocal linear dis-

persion in Eq. A.4 by the root-mean-squared (RMS ) spatial resolution limit of the

spectrometer. In the case of the CAS, the mask feature size typically dominates in

the RMS spatial resolution calculation. The empirical system calculation for linear

dispersion involves dividing the dispersion spatial extent along the x-axis of the de-

tector plane by the spectral range (∆λ) of the spectrometer. Experimental spectral

resolution is then derived as previously described.
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Figure A.1: (a) Hadamard (HA) and S-matrices (SA) of different orders. (b) Sin-
gular value spectrum.

A.2 Hadamard and S-matrices

The Hadamard matrix is a well-conditioned, invertible matrix. The first order

Hadamard matrix is defined as HA=1 = [1]. The partitioned matrix




H H

H −H


 , (A.5)

is used to find Hadamard matrices of higher orders. Each HA is a normalized

Hadamard matrix of order A. To generate an S-matrix from a Hadamard matrix,

the first row and first column of the Hadamard matrix are removed and values equal

to +1 are changed to 0 and values equal to -1 are changed to 1 [89]. Hadamard and

S-matrices are shown in Fig. A.1(a). Further, singular value decomposition (SVD)
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is used to characterize system matrix performance for Hadamard or S-matrix-based

coded aperture spectrometers. The SVD can be used to determine the rank of a ma-

trix by counting the number of nonzero singular values. Also, the condition number

of the matrix is found by plotting the singular vectors returned from the SVD and

taking the ratio between the maximum singular value to the minimum singular value.

The condition number found provides a measure for system sensitivity to noise in the

measured data. Singular value plots are shown in Fig. A.1(b) for different order

Hadamard and S matrices. Note that a flat singular value spectrum is indicative of

a well-conditioned matrix, or a system matrix less sensitive to noise.

A.3 Pseudo-inverse TV-minimization for 3D data

cube estimation

In Chapter 3 of this dissertation, two algorithms were discussed for 3D (x, y, λ) data

recovery from 2D detector measurements using a nonlinear iterative TV-minimization

algorithm. Another adaptation to the TV-minimization algorithm consists of in-

corporating the pseudo-inverse into the system matrix. This approach provides a

better conditioned system matrix (see Fig. A.3(c)). This method would enable ad-

equate comparison between an RGB image inverted for 3D data cube estimation

and a CASSI image inverted using a pseudo-inverse TV-minimization. Both meth-
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Figure A.2: CASSI system model where the transformation matrix (H) is repre-
sented by a summation matrix (V ) and a calibration cube matrix (C) from a CASSI
system measuring four spectral channels

ods would employ a pseudo-inverse in the data estimation process. This section

addresses, in simulation, CASSI data inversion by incorporating the pseudo-inverse

into the system matrix for TV-minimization.

Recall from Chapter 3 that the dual-disperser CASSI system model employs

a transformation matrix (H) that is modeled as a summation matrix (V ) and a

calibration cube matrix (C). The matrix structure for the system model is shown

in Fig. A.2. The summation matrix (V ) is a block diagonal matrix of ones and the

calibration cube matrix (C) is a diagonal matrix with shifted mask modulated images

that are vectorized and placed along the diagonal of the calibration matrix. For this

simulation exercise, a 40×40 detector image is generated and the baseline f data

cube measures 40×40×10. The CASSI forward model is generated using

g = V Cf, (A.6)
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Figure A.3: (a) Singular values plot for the transformation matrix, H.(b) Singular
values plot for H+.(c) Singular values plot for the H+H matrix

where g is a 1600× 1 vectorized detector measurement, V is a 1600× 16000 matrix,

and C is a calibration matrix of size 16000× 16000. To evaluate the behavior of the

linear system model, a singular value decomposition (SVD) is taken of the system

matrix, H. A plot of the singular values provides a means for generating the condition

number of the system matrix. A flat spectrum indicates a condition number equal

to one. The singular value plot for H is shown in Fig. A.3(a). The singular value

spectrum for H is not as ideally conditioned. An attempt to improve the condition

number is made by replacing the H matrix with a pseudo-inverse. The pseudo-inverse

for H is expressed as

H+ = (H†H)−1H†, (A.7)
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where H† represents the Hermitian transpose operator. The singular value spectrum

for H+ is shown in Fig. A.3(b). The H+ transformation yields a condition number

of approximately three. The pseudo-inverse is implemented by the Matlab ‘pinv’

command which uses an SVD approach to Tikhnov regularization to solve for the

inverse of an ill-conditioned matrix. To improve the condition number of the system

matrix, the pseudo-inverse matrix (H+) was multiplied by the H matrix and an SVD

singular value spectrum plot was generated. The singular value plot for H+H is

shown in Fig. A.3(c).

B = H+H (A.8)

Matrix B in Eq. A.8 provides a better conditioned system matrix (i.e. condition

number of one).

Using the new system matrix (B) the forward and transpose models in Eq. A.6 can

be reformulated. The CASSI forward model incorporating the matrix B is modeled

as

g = BT f, (A.9)

where BT represents the transpose of the matrix. Also, the new CASSI transpose

model is

f = Bg (A.10)
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Figure A.4: (a) Simulated 40×40 pixel aperture-code. (b) Simulated 15×15 pixel
fluorescent squares in a 40×40 detector image. Baseline and pseudo-inverse adapted
TV-minimization spectral estimates at a single spatial locations from each 15×15
pixel square for the (c) yellow-green and (d) orange spectral signature. (e) Baseline
f data cube of 15×15 pixel squares. (f) Pseudo-inverse TV-minimization f ∗ data
cube estimate.

Results from the pseudo-inverse adaptation to the TV-minimization algorithm are

shown in Fig. A.4. A simulated 3D f data cube was generated by creating a 40×40

pixel scene containing two 15×15 pixel squares spectrally modeled after the baseline

spectra shown in Fig. A.4(c-d). The spectral signatures were downsampled to match

the resolution of the simulation system. The calibration cube was generated by

simulating a shifted 40×40 pixel aperture-code shown in Fig. A.4(a). The simulated

system model measured 10 spectral channels spanning the spectral range between

490 nm and 580 nm with 10 nm spectral resolution. The number of spectral channels

and the image size were constrained by the computational power used to generate

the system matrix. Figure A.4(e-f) shows the baseline f data cube and the f ∗ data
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cube estimate generated from the pseudo-inverse method described in this section.

The measured PSNR is 14.773. While the PSNR needs improvement, the amplitude

spectral plots of the baseline spectra and the reconstructed spectra in Fig. A.4(c-d)

are very similar in shape. The pseudo-inverse implementation is impractical for real

data analysis where an f data cube size is typically 100 × 100 × 32 or larger since

generating the forward and transpose system matrices incur a large computational

cost. For this reason, the implementation was not used with experimental data.

A.4 Full-field CASSI illumination fiber coupled setup

In Chapter 3, Section “Calibration procedure and algorithm implementation”, a cali-

bration cube was acquired via full-field monochromatic illumination of CASSI. Full-

field illumination was achieved with a fiber interface between the monochromator and

CASSI. A high NA fiber was used to fully illuminate the CASSI input aperture with

monochromatic light. Due to the high NA of the fiber, a lens combination was cou-

pled to the fiber output. The lens combination output was modeled after the image

space NA generated from a microscope objective used in the data acquisition process

of fluorescent targets. Note that the object space NA of CASSI was modeled after

the image space NA from a 20×, 0.8 NA objective, this image space NA was used to

model the lens combination. Direct illumination of CASSI with the high NA fiber
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(a) (b)

32.9 25 570

Figure A.5: (a) Zemax system prescription data for the optical setup used for
CASSI calibration data acquisition. (b) (distance units in mm) Zemax 3D optical
layout for object space NA matching and full-field illumination of CASSI.

would cause unwanted stray light reflections to appear in each of the monochromatic

frames recorded with CASSI and used in the TV-minimization algorithm.

The experimental optical setup consisted of a high NA fiber and two lenses. The

lens combination was used to reimage the light from the high NA fiber from the

monochromator to the CASSI input aperture. The CASSI object plane NA is 0.04

and the fiber output NA is 0.55. The lens combination object space NA is 0.55

and the image space NA was optimized to a 0.04 NA to match the CASSI object

space NA. Figure A.5(b) shows the lens combination. The lenses in the optical setup

were modeled as ideal paraxial surfaces of different effective focal lengths (EFL)

found in the lab. An initial design was created on paper and then optimized in

Zemax. First, the thin lens equation was used to calculate the image distance and

the EFL was calculated. For Zemax optimization, the object and image distances
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were set as variable and the image space NA was optimized. The results are shown

in Fig. A.5(a), where the image space NA approximately matches the CASSI object

space NA (0.04). Theoretical calculations for a thin lens pair (f1 = 50 mm and f2 =

100), yield an EFL of approximately 33 mm.

fEFL =
f1f2

f1 + f2

(A.11)

The Zemax EFL is 40 mm with the optimized lens system. The distance between

the paraxial surfaces was found by manipulating

fEFL =
f1(Ld − f1)

Ld − (f1 + f2

, (A.12)

and solving for the distance between the two paraxial surfaces in the lens system, Ld.

The theoretical distance, Ld, is 20 mm and the Zemax distance was set to 25 mm.

The image distance for the thin lens pair was optimized in Zemax. Overall, the lens

system provided a method for decreasing the NA captured by the fiber to match

the object space NA of CASSI. This helped to minimize vignetting or unwanted

reflections in acquiring the calibration cube.
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A.5 Millimeter-wave compressive holography for-

ward and adjoint model matrices

Recall from Chapter 4 that the forward model for Gabor holography is

g = F−1
2D QF2Df. (A.13)

The forward model matrix implementation for two object depths and single wave-

length illumination is

g =

[
F−1

2D

] [
Qz1 Qz2

]



F2D

F2D







fz1

fz2


 . (A.14)

Also, recall that the adjoint model is

f = F †
2DQ† [F−1

2D

]†
g, (A.15)

where † represents the Hermitian transpose. Since the Fourier matrix is a unitary

matrix, the adjoint and inverse of the Fourier matrix are equivalent. The adjoint

system model matrix implementation for two object depths and single wavelength

184



illumination is represented as




fz1

fz2


 =




F2D

F2D







Qz1

Qz2




[
F−1

2D

] [
g

]
. (A.16)

Further, Chapter 4 explored a subsampling holographic measurement that incorpo-

rated a sampling window into the forward and adjoint models. The new forward and

adjoint models were denoted by

g = WF−1
2D QF2Df (A.17)

f = F †
2DQ† [F−1

2D

]†
W †. (A.18)

The matrix implementation of the corresponding forward and adjoint models is given

by:

[
g

]
=

[
W

] [
F−1

2D

] [
Qz1 Qz2

]



F2D

F2D







fz1

fz2


 (A.19)

and




fz1

fz2


 =




F2D

F2D







Qz1

Qz2




[
F−1

2D

] [
W †

] [
g

]
(A.20)
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The adaptation of the subsampled forward and adjoint models for multi-wavelength

illumination considering two object depths and three wavelengths is denoted by




gλ1

gλ2

gλ3




=




W

W

W







F−1
2D

F−1
2D

F−1
2D







Qz1λ1 Qz2λ1

Qz1λ2 Qz2λ2

Qz1λ3 Qz2λ3







F2D

F2D







fz1

fz2




(A.21)

and




fz1

fz2


 =




F2D

F2D







Qz1λ1 Qz1λ2 Qz1λ3

Qz2λ1 Qz2λ2 Qz2λ3







F−1
2D

F−1
2D

F−1
2D





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W †

W †

W †
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




gλ1

gλ2

gλ3




(A.22)

Further, the system matrix or sensing matrix defined in Eq. A.13, H = F−1QF,

can be analyzed from a compressive sensing viewpoint. In general, the efficacy of a

CS sensing matrix, H = Φ, is predicated upon incoherence. The mutual coherence

metric, µ(Φ), [8, 90] is defined as

µ(Φ) = max
i 6=j,1≥i,j≤N

{ | φT
i φj |

‖φi‖‖φj‖
}

, (A.23)

where φi represents the ith column in the sensing matrix Φ. The mutual coherence

can also be calculated from the maximum non-diagonal entry of the Gram matrix,
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G = ΦT Φ, when the columns of Φ are normalized. In general, if the Φ matrix is

orthonormal (i.e. vectors of the matrix are of unit length and dot product between

columns is zero), the mutual coherence is equal to zero. CS theory indicates that a

low mutual coherence is suggestive of a better sensing matrix. In this exercise, the

DFT matrix, Green’s function (i.e. quadratic phase matrix, Q in Eq. A.13 and in

Chapter 4), and the inverse or transpose DFT matrix were generated. The Gram

matrix (G) is represented as

G = ΦT Φ (A.24)

= (F−1
2DQF2D)†(F−1

2DQF2D),

and is shown in Fig. A.5(b). To compute the mutual coherence (µ), a new matrix D

is generated by subtracting the Gram matrix (G) from an identity (I) matrix of the
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same size so that the maximum of the non-diagonal entry can be found.

D = G− I (A.25)

µ = max(D) (A.26)

The steps in Eq. A.24 and Eq. A.26 are pictorially shown in Fig. A.5. The mutual

coherence calculated for the millimeter-wave holography system matrix H was 0.3.

A.6 Millimeter-wave holography InP Gunn source

characteristics

For the millimeter-wave holography project, a tunable (88 - 99 GHz) InP Gunn

oscillator served as a reference beam and object illumination source. The center

frequency of the Gunn oscillator operated at 94 GHz and the spectral linewidth plot

from the manufacturer is shown in Fig. A.6(a). Since the oscillator could be frequency

tuned, a micrometer reading and output power as a function of frequency plot is

shown in Fig. A.6. For all holography experiments, a spectrum analyzer was used

to monitor the spectral linewidth, detected frequency, and peak power. A sample

measurement from the spectrum analyzer is shown in Fig. A.6(c).Time had to be

allocated to frequency stabilize the source since it initially entered a multi-frequency

mode.
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(a)

(b)

(c)

Figure A.6: (a) Epsilon Lambda spectral linewidth plot of a tunable W-band InP
Gunn diode at a 94 GHz central frequency. (b) Data sheet for the InP Gunn diode
oscillator with a maximum output power at 20 dBm (100 mW). Power output as a
function of micrometer reading. (c) Spectrum analyzer reading from the superhetero-
dyne receiver circuit at a single frequency (94 GHz before heterodyne detection) of
7.55 GHz. Power reading measures .10 mW at the detector and greater than 25 mW
at the output to the waveguide after 6 dB attenuation.
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A.7 Millimeter-wave holography: superheterodyne

receiver sensitivity calculation

To calculate the sensitivity of the receiver circuit, a different single frequency 95 GHz

Gunn oscillator, attenuator, and the superheterodyne receiver circuit were connected

with minimal waveguide to reduce errors associated with the sensitivity measurement

for the receiver circuit. The Gunn source illuminated the receiver circuit at full power

and was attenuated by a range of values (40 - 45 dB). For this measurement, the

0 dB point and the 3 dB (half-power) point can be used to measure the sensitivity

of the receiver. More data points increase the accuracy of the detector sensitivity

calculation. At each data point, the illumination input power and the receiver voltage

were measured. A summary of the data points are shown in Fig. A.7. The receiver

sensitivity is measured as the slope of the line fit to the data points (48.31 mV/µW ).
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Figure A.7: Receiver output voltage versus input power at 94 GHz.
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