
First Study of Three-body Photodisintegration of

3He with Double Polarizations at HIγS

by

Xing Zong

Department of Physics
Duke University

Date:

Approved:

Haiyan Gao, Advisor

Tom Mehen

John Thomas

Henry Weller

Ying Wu

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Physics

in the Graduate School of Duke University
2010



Abstract

First Study of Three-body Photodisintegration of 3He with

Double Polarizations at HIγS

by

Xing Zong

Department of Physics
Duke University

Date:

Approved:

Haiyan Gao, Advisor

Tom Mehen

John Thomas

Henry Weller

Ying Wu

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Physics

in the Graduate School of Duke University
2010



Copyright c© 2010 by Xing Zong
All rights reserved



Abstract

This dissertation describes the first measurement of three-body photodisintegration

of polarized 3He (γ3He→ npp) with a circularly polarized photon beam.

This measurement was carried out at the High Intensity γ-Ray Source(HIγS)

facility located at Duke University Free Electron Laser Laboratory and the inci-

dent photon energy was 11.4 MeV. A high-pressure polarized 3He target based

on spin exchange optical pumping (SEOP) of hybrid alkali was employed. Two

methods—Nuclear Magnetic Resonance (NMR) and Electron Paramagnetic Reso-

nance (EPR)—were used to measure the polarization, which was determined to be

∼ 42%.

The data from the experiment were analyzed and a GEANT4 simulation was

carried out to determine the corrections for finite geometry, neutron multiple scat-

tering and detector efficiencies used in this experiment. The results are compared

to the state-of-the-art three-body calculations and agreements are observed within

rather large statistical uncertainties of the measurement. This experiment represents

the first measurement of the asymmetry using spin-dependent 3He photodisintegra-

tion. The unpolarized differential cross section and helicity-dependent differential

cross-section difference results are also presented and compared to the same theoret-

ical calculations followed by a discussion of the results. Total cross section is also

extracted using two different methods and agrees well with the theoretical prediction.

New developments including a Sol-Gel coated pyrex 3He cell since the experiment

iv



are then presented. The in-beam test results of the aforementioned target cell from

May 2009 test run are included and the prospect of future three-body photodisinte-

gration is discussed in the end.
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1

Introduction

1.1 Background

Understanding nuclear interactions is one of the most fundamental goals of nuclear

physics. The Japanese physicist Hideki Yukawa first predicted that the exchange of

a pion—the lightest meson—accounted for the force between two nucleons and this

groundbreaking theory earned him a Nobel Prize in 1949. In 1964, two physicists,

Murray Gell-Mann and George Zweig, independently proposed the existence of more

elementary particles, i.e. quarks. Upon experimental verification, Gell-Mann was

awarded the Nobel Prize for this theory five years later. In the 1970s, quantum

chromodynamics (QCD), a fundamental theory that describes the strong interaction

in terms of quark and gluon degrees of freedom, was proposed. The 2004 Nobel

Prize in physics went to three physicists David J. Gross, H.David Politzer and Frank

Wilczek for their pioneering work in this area.

Few-nucleon systems are excellent testing grounds to study the nuclear interac-

tion. Among them, the three-nucleon system has long been of fundamental impor-

tance [1, 2] because it is the simplest system with more than two nucleons. Calcula-
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tions (mainly in the form of Faddeev equations 1) can be solved numerically for three-

body systems using a variety of modern nucleon-nucleon (NN) potentials [3, 4, 5].

NN potentials are based on the traditional one-pion exchange potential and are not

very accurate when applied to three-nucleon systems. Most noticeably, they fail to

reproduce the binding energies of 3H and 3He. As a result, modern three-nucleon

forces (3NFs) including the Tucson-Melbourne [6], Urbana [7] and Hanover models [8]

have been adopted. Meanwhile, chiral Effective Field Theory (EFT), introduced by

Weinberg [9] almost two decades ago, has become a powerful framework to analyze

few-nucleon systems at low energy. There has been a proliferation of work in EFT

and a good review can be found in [10]. For three-nucleon systems, calculations

are now available at next-to-next-to-leading order (N2LO) and have achieved good

agreement with the experimental Nd scattering and Nd break-up data [10].

The advance of theories points to the necessity of rigorous tests by high preci-

sion experimental data and by new experimental observables which have not been

measured previously. Electro- and photo-induced reactions are attractive probes be-

cause photons (real or virtual) interact with nucleons or nuclei through electromag-

netic interactions, which are well understood, thus providing powerful probes into

the structure of the nucleon and nuclei. Recent developments of polarized beams

and polarized targets have made the investigation of the additional spin-dependent

quantities possible.

Polarized 3He targets are particularly important as effective polarized neutron

targets [11, 12] due to the fact that the ground-state wave function is dominated by

the S state in which the two proton spins cancel and the nuclear spin is carried by

the unpaired neutron. There have been extensive studies employing polarized 3He

targets to extract the neutron electromagnetic form factors [13, 14, 15, 16, 17, 18], and

to extract neutron spin structure functions [19, 20, 21]. To extract the information

1 The details of the theory will be discussed in Chapter 2.
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on the neutron using a polarized 3He target, nuclear corrections need to be applied

which rely on state-of-the-art calculations. A first precision measurement of the

spin-dependent asymmetry in the threshold region of ~3He(~e, e′) at Q2-values of 0.1

and 0.2 (GeV/c)2 was reported in Ref. [22]. The agreement between the data and

non-relativistic Faddeev calculations [23] which include both final-state interactions

(FSI) and meson-exchange current (MEC) effects is very good at Q2 = 0.1(GeV/c)2,

while a small discrepancy is observed at Q2 = 0.2(GeV/c)2. Compared with the

considerable effort on electrodisintegration of 3He, data from photodisintegration of

3He, especially from the three-body channel are very scarce. Recently a simultaneous

measurement of cross sections from two-body and three-body channels of 3He was

reported [24]. A severe discrepancy between the new data and theoretical calculations

based on AV18+Urbana IX [25] nuclear forces including π- and ρ-like meson exchange

current was observed at an incident photon energy of 10.2 MeV.

More recently, the three-nucleon breakup reaction calculation including the Coulomb

interaction between two protons has been carried out in momentum space [26]. The

calculation is based on the Alt-Grassberger-Sandhas (AGS) equation [27], and em-

ploys charge-dependence (CD) Bonn plus Coulomb as a pure nucleonic reference and

two-baryon coupled-channel CD Bonn +∆ with Coulomb. The ∆-isobar excitation

yields an effective three-nucleon force and effective two- and three-nucleon currents

in addition to ∆-isobar effects. This calculation predicts a spin-dependent asym-

metry for three-body photodisintegration of polarized 3He breakup with polarized

photons. It is important to test 3He calculations at a level not tested before and in

observables which have not been studied before. A precision measurement of this

spin-dependent asymmetry will provide such a new test of the theory and it will also

help future experiments using polarized 3He to probe the structure of the neutron to

reduce model uncertainties.

Three-body photodisintegration of 3He is of further importance for future Gerasimov-
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Figure 1.1: Three-body GDH integrand from A. Deltuva [28, 29]. Three curves
are explained as follows: the green line uses CD Bonn + ∆ potential, plus Siegert
including relativistic charge operator (RCO), and explicit MEC (h.o.); the blue line
(underneath the green line) uses CD Bonn plus Siegert including RCO and MEC
(h.o.); and the yellow line is from CD Bonn, the Siegert theorem and MEC (h.o.).
Here MEC (h.o.) means explicit MECs are used for magnetic multipoles and higher
order terms of electric multipoles not accounted for by Siegert.

Drell-Hearn (GDH) sum rule [30] experiments. The GDH sum rule is constructed

using the total helicity dependent nucleon (or nuclei) real photo-absorption cross

sections σp
N (nucleon (or nuclei) spin parallel to the helicity of the photon) and σA

N

(nucleon (or nuclei) spin anti-parallel to the helicity of the photon):

∫ ∞

νthr

(σP
N − σA

N )
dν

ν
=

4π2α

M2
κ2

NI, (1.1)

where κN is the anomalous magnetic moment, M the mass and I is the spin of

the nucleon or nuclei, α = e2

4π
. This sum rule is based on rather general principles

such as Lorentz and Gauge invariance, crossing symmetry and unitarity, as well as

an unsubtracted dispersion relation applied to the forward Compton amplitude [30].

A simple derivation will be given in Chapter 2. It relates the anomalous magnetic

moment—a static ground state property—of the nucleus to the excitation spectrum
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of the polarized target. Recently, there have been worldwide efforts [31, 32] in testing

GDH sum rules on the nucleon and testing GDH sum rule on 3He is just as interesting

and important. The energy range that interests us is from the two-body break-up

threshold (∼5.5 MeV) to the pion production threshold (∼140 MeV). There are two

reasons for this. First, there is an enormous strength expected to be present in this

range, which we will discuss in details in Section 2.6. Second, this is the energy range

that we can do measurements using the HIγS facility. The calculations [28] mentioned

above demonstrate that the three-body breakup channel below 40 MeV dominates

the integrand, as shown in Fig 1.1. There are three curves in this plot: The green

line uses CD Bonn + ∆ potential, plus Siegert including relativistic charge operator

(RCO) 2, and explicit MEC (h.o.) 3; the blue line (underneath the green line) uses

CD Bonn plus Siegert including RCO and MEC (h.o.); and the yellow line is from CD

Bonn, the Siegert theorem and MEC (h.o.). The large difference between the top two

curves and the bottom curve shows that the considered observable is very sensitive

to the relativistic corrections. Therefore, a spin-dependent asymmetry measurement

from ~3He(~γ, n)pp will not only provide a stringent test of the modern three-body

calculations, but will also serve as an important step towards an experimental test

of the GDH sum rule on 3He nucleus in the future when one combines measurements

from 3He using photon energies above the pion production threshold from other

laboratories.

1.2 Review of Three-body Photodisintegration Measurements

In this section, I will briefly review the previous three-body photodisintegration

experiments which were carried out for Eγ < 140 MeV .

2 In Deltuva’s calculation, nonrelativistic charge is of zeroth order, and the leading relativistic
charge corrections are of the second order. RCO is sum of the zeroth and the second order terms.

3 Here MEC (h.o.) means explicit MECs are used for magnetic multipoles and higher order terms
of electric multipoles not accounted for by Siegert.
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different dynamical inputs: CD Bonn + ∆ isobar (solid line, from Deltuva [33]),
AV18 + UrbanaIX + MEC (dotted line, from Skibinski [34]). Three sets of data
include Nagai 05’ [24] (only at 10.2 and 16 MeV) are plotted.

Figure 1.2 shows a comparison between two state-of-the-art theoretical calcula-

tions and three sets of experimental data. In 1974, Berman et al. reported the first

low-energy measurement [35] for three-body photodisintegration of 3He and 3H from

breakup threshold to 30 MeV using a photon beam from positron annihilation at

Livermore. At ∼15 MeV, the cross section reached the peak value, then sharply

decreased as the photon energy increased. As observed from the plot, at the higher

Eγ side, there was a disagreement with the theoretical calculation from Golak and

Skibinski et al. [23]. In 1981, an experiment carried out again at Livermore was

reported [36]. This experiment also used a photon beam from positron annihilation
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up to 25 MeV, to measure the cross sections of two- and three-body photodisintegra-

tion of 3H and 3He. There was some discrepancy between the data from these two

measurements, as seen from Figure 1.2.

The third and most recent set of data was from a simultaneous measurement

of the cross sections of 3He(γ, p)d and 3He(γ, pp)n in 2005 [24]. This experiment

used a pulsed laser-Compton backscattered γ-ray beam at 10.2 and 16.0 MeV. As

described before, a severe discrepancy was observed at 10.2 MeV when comparing

the data to Golak’s calculation [23] which is based on the AV18+Urbana IX nuclear

force including π- and ρ-like meson exchange currents. The theory missed the data

by a factor of 3. One possible explanation was the lack of the Coulomb force in the

continuum. However, the Coulomb force alone cannot fully explain the discrepancy

since Deltuva predicts that the three-body cross section would only decrease by

∼ 25% compared with Golak’s result at 10 MeV [29], as indicated by the solid line.

With the recent development of polarized beam and polarized targets, new exper-

iments will provide valuable tests of the theory. The Duke University HIγS facility

takes one step further by employing a free electron laser (FEL) backscattered γ-ray

beam and is able to probe new polarization observables. This thesis describes a first

study of three-body photodisintegration of polarized 3He (γ3He → npp) with an

incident circularly polarized photon beam.

The following chapters will present the details of this study. Chapter 2 reviews

the theoretical foundation of the three-body calculations as well as the GDH sum

rule. Chapter 3 discusses the experiment including the HIγS facility. Chapter 4

describes the polarized 3He target used in the experiment. Chapter 5 explains the

detailed data analysis procedure and Chapter 6 summarizes the results from this

experiment. Chapter 7 discusses the further development after the experiment and

Chapter 8 presents the summary and future outlook.
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2

Theory

2.1 Introduction

This chapter is devoted to the discussion of the three-body calculations and the GDH

sum rule. I will start with the modern nucleon-nucleon (NN) potentials including

CD Bonn and AV18, the two used in the calculations, followed by an introduction

of the three-nucleon forces (3NF), such as Urbana IX and coupled-channel potential

with the ∆-isobar excitation. After that, the theoretical framework based on the

non-relativistic Faddeev equation and AGS equation is presented. At the end of the

chapter, a simple derivation of the GDH sum rule is given, followed by the GDH sum

rule on 3He.

2.2 Nucleon-Nucleon Potential

The three-nucleon wave function |ψ〉 is obtained by solving the Schrodinger equation,

H|ψ〉 = E|ψ〉. (2.1)

For a three-body system, as shown in Figure 2.1, the conventional wisdom is that

the interaction between the nucleons is described by a two-body potential Vij. The
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Figure 2.1: A picture demonstrates a simple three-nucleon system based on NN
potentials.

Hamiltonian is generally written as,

H =
N

∑

i=1

p2
i

2mi

+
∑

i<j

Vij . (2.2)

where pi is the momentum and mi is the mass of the nucleon.

Five modern NN potentials, based on traditional one-pion exchange (OPE) po-

tential are developed successfully through the constraints of a significant number

of NN scattering data. They are: Nijm I, Nijm II, Reid 93 [3], AV18 [4] and CD

Bonn [5]. These potentials are qualitatively similar in treating NN interactions, i.e.,

long range one-pion exchange (r≥ 2 fm), an intermediate-range attraction (1 fm≤

r≤ 2 fm), and a short-range repulsion (r≤ 1 fm).

In the context of the NN interaction, the pion—the lightest meson—accounts for

the long-range component. The OPE potential is written as,

V OPEP =
f 2

πNN

3
mπc

2(τ i · τ j){σi · σj + Sij(1 +
3

x
+

3

x2
)}e

−x

x
, (2.3)

where mπ is the pion mass, fπNN is the coupling constant, Sij is the tensor operator
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and x is a dimensionless length defined as x = mπcr/~, with r the distance between

the nucleons. The operator σ = σxi + σyj + σzk is a spin operator, and τ is the

isospin operator. The tensor operator Sij is defined as,

Sij = 3(σi · r̂)(σj · r̂) − σi · σj (2.4)

Compared with the relatively simple picture of one-pion exchange in the long

range, the more complex multi-pion exchanges and the exchange of heavier mesons

dominate the intermediate- and short-range. CD Bonn and AV18 are most different

in treating short and intermediate range interactions.

2.2.1 Argonne V18

The AV18 potential is the newest version of the Argonne NN potential in which an

electromagnetic interaction and a phenomenological short- and intermediate- range

component coexist with the long range OPE potential. The short- and intermediate-

range components are parameterized as,

V R
ST (NN) = vc

ST (r) + vl2
ST (r)L2 + vt

ST (r)Sij + vls
ST (r)L · S + vls2

ST (r)(L · S)2. (2.5)

Each spin and isospin state has a separate potential. The radial functions can be

written as,

V i
ST = I i

STT
2(r) + [P i

ST + µrQi
ST + (µr)2Ri

ST ]W (r), (2.6)

where the average pion mass is given by µ = 1/3(mπ0 + 2mπ±)c/~. The parameters

I i
ST , P i

ST , Qi
ST and Ri

ST are obtained from a fit to the Nijmegen database [37, 38].

The tensor Yukawa function with the cutoff parameter α is

T (r) = (1 +
3

µr
+

3

(µr)2
)
e−µr

µr
(1 − e−αr2

)2, (2.7)

and W (r) is the Woods-Saxon function, which provides a short-range core and is

defined as,

W (r) = [1 + e
r−r0

a ]−1, (2.8)
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where the shape parameters r0, a and α are obtained from the fit.

AV18 is a nonrelativistic potential that is fit to np, pp and nn scattering data

with good accuracy.

2.2.2 CD Bonn Potential

The full Bonn model was first proposed by Machleidt et al. in 1987 [39]. It is based on

field theoretical meson-exchange and has enjoyed wide popularity since its inception.

In 2001, Machleidt published a new version [40] discussing charge-dependent Bonn

potential, i.e. CD-Bonn potential.

The CD-Bonn potential is a relativistic treatment of the OPE potential. It is

nonlocal, an important feature that will be discussed later. The short range part of

the potential is parameterized by the exchanges of heavier mesons, including ρ and

ω. In principle, there are four mesons with masses below the nucleon mass: π, η, ρ,

ω. But the coupling constant of the η is very small, and its contribution is negligible.

In addition, two scalar-isoscalar σ1 and σ2 bosons are introduced to approximate the

higher order two-meson exchanges: 2π and πρ 1. Table 2.1 shows the parameters of

mesons. Figure 2.2 shows the one-boson exchange in NN interaction.

Particle Mass(MeV)
π± 139.6
π0 134.9

ρ±, ρ0 769.9
ω 781.9

Table 2.1: The mesons used in the CD Bonn NN potential model.

1 In the one-boson exchange model, the intermediate range attraction is due to the 2π exchange
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Figure 2.2: The lowest order contribution to the NN interaction through one-boson
exchange.

Nonlocality

Nonlocality is an important concept in CD Bonn potential. The nonlocal potential

generally refers to the potential acting at one point of space may depend on the

value of the wave function at a different point [41]. Local representations of the OPE

potential are approximations of the full relativistic treatments. The AV18 potential

mentioned before employs Woods-Saxon function, which is a local version of the

short-range part of the nuclear interaction. In the coordination-space calculation,

these local formulations are quite successful. However, they underbind the 3H. The

experimental data for 3H binding energy is 8.48 MeV. While AV18 and other local

potentials predicted around 7.62 MeV [4], CD Bonn did a better job in predicting

8.0 MeV [5], closer to the experimental value. We can see that about half of the

discrepancy comes from this nonlocality and the other half is due to some other

sources [42].

2.3 Three Nucleon Force and Relativistic Effects

Although NN potentials reproduce the NN scattering database with high precision

(χ2/datum close to 1), they are not successful in predicting the trinucleon binding

energies. Therefore it leads to the conclusion that there exist more complicated forces

when more than two nucleons are present. Fujita and Miyazawa first introduced the
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3NF [43] in 1957, which corresponds to the excitation of a ∆-isobar, the lowest

excitation of the nucleon. This is due to the virtual excitation of the nucleons into

isobar states and this effect is very important in the region of the ∆ resonance. In

Deltuva’s calculation, CD Bonn is used together with the ∆ isobar configuration

explicitly in the nuclear wave function. Figure 2.3 shows that three nucleons interact

through the two-meson exchange potentials.

Figure 2.3: Three nucleons interact through the two-meson exchange potential.

The Fujita-Miyazawa term is written as a function of commutator and anticom-

mutator,

V 2π
ijk = A2π

∑

cyclic

({Xπ
ik, X

π
jk}{τi · τk, τj · τk} +

1

4
[Xπ

ik, X
π
jk][τi · τk, τj · τk]), (2.9)

where {} and [ ] are anticommutator and commutator of two operators A and B, and

the one-pion exchange operator is

Xπ
ij = Y (rij)σi · σj + T (rij)Sij . (2.10)

The Urbana IX (UIX) is one of the most widely used three-nucleon forces. One
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term is V 2π
ijk and the other is a phenomenological short-range repulsive term V R

ijk,

Vijk = V 2π
ijk + V R

ijk, (2.11)

V R
ijk = U0

∑

cyclic

T 2
π (rij) · T 2

π (rik). (2.12)

This term is to give multiple-pion exchange and repulsive contributions. U0 is a

parameter adjusted to reproduce the correct experimental triton binding energy.

The approach of UIX is different from other models such as the Tuscon-Melbourne

(TM) potential [6] and the Brazil model [44]. The TM model is based on the scat-

tering of two pions among three nucleons. It uses the ρ-nucleon scattering amplitude

from a complex interplay of a phenomenological input, current algebra and partially

conserved axial-vector current. The Brazil model uses an effective Lagrangian which

is invariant under chiral and gauge transformations. These two models give similar

trinucleon bound state results.

The second extension to the NN potential is the relativistic correction. For ex-

ample, a fully relativistic calculation using CD-Bonn potential predicts the triton

binding energy to be 8.19 MeV [5], which is closer to the experimental value (8.48

MeV) compared with the result of the non-relativistic calculation (8.00 MeV).

To carry out the relativistic calculation, One has to start with the fully relativistic

expression for one-nucleon electromagnetic current and make an expansion. Nonrel-

ativistic charge is of zeroth order, nonrelativistic spatial current is of first order,

whereas the leading relativistic corrections are of second (charge) and third (spatial)

order. In Deltuva’s calculation, RCO calculation charge operator is a sum of the

zeroth and second order terms. The explicit expressions can be found in [28]. A

recent paper [45] studied the sensitivity of various observables including asymmetry

and differential cross section to the relativistic correction, and significant effects of

the relativistic spin-orbit charge are found.
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2.4 Meson Exchange Current

Nuclear current operator plays an important role in the model calculation. In plane

wave impulse approximation, all nuclear current operators are treated as one-body,

which is incomplete. The meson exchange currents are included explicitly as effective

operators. They are simply effective two- and many-body current operators.

We can expand the charge and current operator in the following way:

ρ(q) =
∑

i

ρ
(1)
i (q) +

∑

i<j

ρ
(2)
ij (q) + ...

j(q) =
∑

i

j
(1)
i (q) +

∑

i<j

j
(2)
ij (q) + ... (2.13)

where the one-body operators ρ
(1)
i (q) and j

(1)
i (q) are obtained from the covariant

single-nucleon current [46].

Two-body currents are constructed from the nucleon-nucleon interaction and con-

strained by the continuity equation, which is written as,

q · j(q) = [H, ρ(q)]. (2.14)

Take CD-Bonn for example, the nuclear interaction is mediated by π-meson and ρ-

meson exchanges, as shown in Fig. 2.4. At short distances the nucleon-nucleon inter-

action leads to σ-like and ω-like meson-exchange currents for the isospin-independent

terms and ρ-like meson-exchange currents for the isospin-dependent terms.

2.5 Theoretical Framework for Three-body Calculations

The final experimental results are compared to two sets of theoretical predictions

from two groups [33, 34]. One is based on the Faddeev decomposition framework and

the other uses AGS equation framework. Both techniques will be briefly introduced

in this section.
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Figure 2.4: The diagram of the isovector currents associated with φ and ρ ex-
changes. Three components in the plot: Nucleons (solid line), φ and ρ mesons
(dashed line), and photons (wavy line).

2.5.1 Faddeev Decomposition

The Faddeev decomposition of the three-body problem is a powerful tool to study

three-nucleon system. The coordinate-space Schrodinger equation for three nucleons

can be written as three separate Faddeev equations [2] with each equation involving

only the interaction between one pair of the nucleons, which significantly reduces the

amount of calculational requirements. In momentum space three Faddeev equations

can be written as three integral equations.

ψ1 = G0T1(ψ2 + ψ3),

ψ2 = G0T2(ψ3 + ψ1),

ψ3 = G0T3(ψ1 + ψ2), (2.15)

where the terms ψ on the left hand side are the Faddeev amplitudes, G0 is the

propagator for three noninteracting particles,

G0 =
1

E −H0
, (2.16)
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where E is the kinetic energy and H0 is the kinetic energy operator. The Ti can be

expressed through the equation

Ti = vjk + vjkG0Ti. (2.17)

The traditional procedure then is to express ψ in terms of the momenta, and

relate to the standard two-body scattering operator t. But the equations are difficult

to solve in the presence of three-nucleon interactions. A good way is to use the

symmetry of the equation. The three-nucleon interaction can be decomposed as,

Vijk = Vi;jk + Vj;ki + Vk;ij, (2.18)

Therefore the Faddeev equation can be written as

ψ = G0TEψ +G0(1 + TG0)Vi;jk(1 + E)ψ, (2.19)

where the first term describes the two nucleon interaction and the second term de-

scribes the three-nucleon interaction. The operator E is the sum of the two cyclic

permutations.

Skibinski’s calculation

Observables in the 3N scattering at energies below 140 MeV have been calculated by

Skibinski et al. [47, 25, 48]. The key steps are briefly summarized here. The nuclear

matrix element for 3N breakup of 3He is written as,

N3N
τ =

1

2
〈Φ0|(tG0 + 1)P |Ũ〉, (2.20)

where 〈Φ0| is the properly antisymmetrized free 3N state (in the two-body subsys-

tem), t is the NN matrix, G0 is the free 3N propagator, P is the sum of a cyclical and

anticyclical permutation of three particles. The state |Ũ〉 follows the Faddeev-type

equation:

|Ũ〉 = (1 + P )jτ ( ~Q)|Ψ〉 + [tG0P +
1

2
(1 + P )V 1

4 G0(tG0 + 1)P ]|Ũ〉, (2.21)

17



where jτ is a spherical τ component of the 3He electromagnetic current operator.

|Ψ〉 is the 3He bound state with spin projection; V 1
4 is the part of 3NF, which is

symmetrical under the exchange of nucleons 2 and 3.

Once the N3N
τ amplitude is given, we can easily calculate any polarization ob-

servables through the different nuclear matrix components with spin projections.

Figure 2.5 shows the 3He photodisintegration differential cross section at 90◦

calculated using AV18 and meson exchange current by Skibinski [34]. It is calculated

for different incoming photon energies ranging from 10.6 MeV to 15.5 MeV.

Figure 2.5: The inclusive differential cross section for 3He photodisintegration at
90◦. Six curves correspond to different incoming photon energies. The x-axis is the
neutron kinetic energy and the y-axis is the differential cross section. The calculation
is done by Skibinski.

2.5.2 Alt-Grassberger-Sandhas (AGS) Equation

Based on Faddeev’s equations, Alt, Grassberger and Sandhas [27] derived the exact

one-dimensional integral equations for the 3-body scattering problem. This more
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practical approach has a structure of multi-channel two particle Lippmann-Schwinger

equations [41].

The original decomposed Faddeev equations are written in a way so that the

components of the wave function can be solved. Their sum is the full wave function.

In the differential form, one needs to impose desired boundary conditions on the trial

solutions [33]. The scattering amplitude can be extracted from the wave function.

The AGS equations are formulated not for observables, but for the transition op-

erators, and they incorporate standard boundary conditions. So AGS are Faddeev

equations in the integral form in some sense. The certain (so called on-shell) ma-

trix elements of the transition operators are scattering amplitudes from which the

observables can be calculated [49]. Meanwhile, the full wave function can also be

constructed from the matrix elements.

For a three nucleon system with kinetic energy and NN potential only, we have

the following relation:

G(Z) = δαβGα(Z) +Gβ(Z)Uβα(Z)Gα(Z), (2.22)

where G(Z) is the full resolvent expressed as

G(Z) = (Z −H0 −
∑

σ

vσ)−1, (2.23)

and Gα(Z) is the channel resolvent expressed as

Gα(Z) = (Z −H0 − vα)−1, (2.24)

and Uβα(Z) is the AGS transition operator:

Uβα(Z) = δ̄βαG
−1
0 (Z) +

∑

σ

δ̄βσTσ(Z)G0(Z)Uσα(Z), (2.25)

where the summation on τ is from 1 to 3. δ̄βα = 1− δβα, G0(Z) = (Z −H0)
−1 is the
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free resolvent. Tα(Z) is the two-body transition matrix that obeys the Lippmann-

Schwinger equation for pair α,

Tα(Z) = vα + vαG0(Z)Tα(Z), (2.26)

The AGS equations can be solved exactly for numerical solution. They are con-

sistent with the corresponding Schrodinger equation and therefore provide an exact

description of the quantum three-body problem. AGS are for short range potentials

only.

Deltuva’s calculation and Coulomb Interaction, Screening

Deltuva et al. published a series of papers [8, 28, 29, 26, 50] discussing their ap-

proach of calculating three-nucleon systems. The calculation used the AGS equation

in momentum space and employed CD Bonn + ∆ as the potential, together with

Coulomb force. Figure 2.6 shows three possible reactions.

Figure 2.6: Schematic description of all considered three-nucleon photoreactions.
Figure is from [28]. kB (three-baryon), kd (two-baryon), kN (one-baryon), ki (one-
baryon), kγ (photon) are on-mass-shell four momenta.

It is very challenging to include the Coulomb interaction between the two pro-

tons for three-body photodisintegration. This is because of the 1/r behavior, which

doesn’t qualify for the mathematical requirement of the standard scattering theory.
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In a recent paper [51], Deltuva described his treatment of the Coulomb interac-

tion, which is based on two ingredients. The first is the momentum-space integral

equations and the second is the method of screening and renormalization. The new

technique is employed so that the use of realistic force models and the full treatment

of Coulomb interaction is possible. In the configuration space, the Coulomb potential

can be written as,

wR(r) =
α

r
e−( r

R
)n

, (2.27)

where α is the fine-structure constant, R is the screening radius, and for finite R,

the term satisfies the integral equations and after renormalization have well-defined

R → ∞ limits. n represents the smoothness of the screening. Deltuva used a sharper

screening than the Yukawa screening, where n = 1. The optimal choice is that n = 4,

which includes the exact Coulomb potential at short distances.

The inclusion of Coulomb screening follows the standard scattering theory. Coulomb

interaction is screened at large distances. Figure 2.7 compares the three-body differ-

ential cross section with and without Coulomb interaction in the final state at Eγ=15

MeV and neutron scattering angle of 90◦. To show the three-body force effect, the

purely nucleonic results including Coulomb are also included.

2.6 GDH Sum Rule

2.6.1 A simple derivation of GDH Sum Rule

In 1966, Drell and Hearn [30] and Gerasimov [52] independently proposed a sum rule

on very general physics principles.

∫ ∞

νthr

(σP
N − σA

N )
dν

ν
=

4π2α

M2
κ2

NI, (2.28)

where the notations have been introduced in Chapter 1. The fundamental interpre-

tation of this sum is that any particle with a nonzero anomalous magnetic moment
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Figure 2.7: At an incoming photon energy of 15 MeV and neutron scattering angle
90◦, the threefold differential cross section for ~3He(~γ, n)pp as a function of neutron
energy En. Solid curve: CD Bonn + ∆ isobar + Coulomb interaction. Dashed curve:
CD Bonn + ∆ isobar. Dotted curve: CD Bonn + Coulomb interaction. Figure is
from [26].

has internal structure. This relation can be derived using the dispersion relation for

forward Compton scattering and the low-energy theorem for Compton scattering.

Before proceeding to the derivation, it is necessary to specify two points. First of

all, in some literature, σ1/2 and σ3/2 are often used, which leads to some confusion.

Weller addressed this issue in [53]. The helicity has a definition of S · P/|p| and

is only meaningful in the center of momentum (CM) frame. In the CM frame, the

photon and target have opposite momenta. Therefore, their helicities are opposite

when their spins are parallel. So in our case, σP is equivalent to σ1/2 and σA is

equivalent to σ3/2. Secondly, some literatures don’t have spin term in the sum rule.

Since proton, neutron and 3He all have spin 1/2, the coefficient on the right hand

side should be 2 instead of 4.
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Dispersion Relations

In the forward Compton scattering off the nucleon, the scattering angle θ equals 0.

The corresponding scattering amplitude can be expressed as follows,

f(ν) = f1(ν)~e′
∗
~e+ νf2(ν)i~σ · ~e′∗ × ~e (2.29)

where ν is the photon energy and ~e′
∗

and ~e are the transverse polarization vectors of

the incident and scattered photons, respectively. ~σ denotes the nucleon spin vector.

Both f1 and f2 are photon energy functions and the difference is that, f1 is the no-flip

amplitude and f2 is the spin-flip amplitude.

Under crossing symmetry transformation(ν → −ν), f1 is an even function and f2

is an odd function. They can be expanded into a power series,

f1(ν) = −e
2

m
+ (α + β)ν2 + [ν4]

f2(ν) = −e
2κ2

2m2
ν + γν3 + [ν5] (2.30)

In the expansion of f1, the first term is a consequence of gauge invariance, and

is the Thomson limit for low-energy scattering. The second term comes from the

contribution of electric and magnetic polarizabilities. In the expansion of f2, the

first term is proportional to the square of the anomalous magnetic moment, γ in the

second term is the spin polarizability.

Using the circularly polarized photons and nucleons polarized with spin parallel

or antiparallel to the photon momentum can separate these two terms f1 and f2.

Then the optical theorem is used to relate the imaginary parts of these amplitudes

to the corresponding total absorption cross sections. One can write a dispersion

relation for f2,

Ref2(ν) =
2ν

π2

∫ ∞

νthr

σA(ν ′) − σP (ν ′)

ν ′2 − ν2
ν ′dν ′. (2.31)
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Low Energy Theorem

Low [54], Gell-Mann and Goldberger [55] related the zero energy limit of the spin-flip

amplitude to the square of the anomalous magnetic moment of the nucleon:

f2(0) = −1

2
(α/M2)κ2. (2.32)

Therefore, we obtain the GDH sum rule:

I(Q2 = 0) = −κ
2

4
=

M2

8π2α

∫ ∞

νthr

σA(ν ′) − σP (ν ′)

2ν ′
dν ′ (2.33)

where Q2 = −q2, in real photon case, Q2 = 0; in electron scattering, Q2 > 0.

α = e2/4π = 1
137

. While the upper limit for the integral is infinity, the lower limit is

the nuclei breakup threshold.

2.6.2 GDH Sum Rule on 3He

Table 2.2 lists the anomalous magnetic moments and GDH integral values for proton,

neutron and 3He.

Target κ (µN) I (µb)
Proton 1.79 204
Neutron -1.91 233

3He -8.37 [56] 498

Table 2.2: For proton, neutron and 3He, the anomalous magnetic moments and GDH
integral values. µN is the nuclear magneton and µN = e/2Mp.

For example, the GDH integral value on 3He is calculated as follows,

∫ ∞

kth

GDH3He = 4π2 · 1

137
· 1

2
· (−8.37)2/(2808.4/197.3)2, (2.34)

where the conversion 197.3 MeV·fm =1 is used.
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The GDH integral for 3He can be written into three parts.

∫ ∞

kth

GDH3He =

∫ kπ

kth

GDH3He +

∫ 2−3GeV

kπ

GDH3He +

∫ ∞

2−3GeV

GDH3He. (2.35)

The first part can be measured at the HIγS facility. Though the second part has

not been measured directly, it is approximately 247 ± 38 µb as extrapolated from

recent experimental data [31]. This experiment was an inclusive electron scattering

experiment, and extracted the GDH value to Q2 = 0.1(GeV 2). This number will

become more precise as newer results become available in the near future from a

recent experiment completed at JLab [57]. When the energy is beyond the nucleon

resonance region, the 3He GDH integral can be written into neutron and proton

integrals in the plane wave impulse approximation as:

∫ ∞

2−3GeV

GDH3He = Pn ×
∫ ∞

2−3GeV

GDHn + Pp ×
∫ ∞

2−3GeV

GDHp, (2.36)

where GDH3He, GDHn and GDHp refer to the GDH sum rule values of 3He, neutron

and proton, respectively. Pn and Pp are effective polarizations of neutron and proton

in 3He. Their values are 87% [58] and -2.7%, respectively.

For the proton κ2
p= 1.792 = 3.21 and for the neutron κ2

n= (−1.91)2 = 3.66. The

GDH sum rule predictions for 3He, proton and neutron are 496 µb, 204 µb and 233.5

µb, respectively. The high energy part of the GDH integral for the proton and the

neutron is -26 ± 7µb and 35 ± 11 µb [59], respectively. Therefore, the high energy

part of the 3He GDH integral is:

∫ ∞

2−3GeV

GDH3He = 87% × 35 + 2 × (−2.7%) × (−26) = 32. (2.37)

The first term of equation (2.35) is estimated to be around 217 ± 39 µb [60].

There is an enormous strength in the first part of the integral (can be as large as

217 µb) and measurements from the two-body photodisintegration threshold to the
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Figure 2.8: Theoretical predictions of the 3He GDH integral from 20 MeV up to
the pion production threshold (left), and the corresponding contribution due to the
three-body break-up channel only (right). The curves with different colors are (from
bottom to top) (left): magenta line: AV18 + implicit MEC via Siegert theorem;
yellow line: CD Bonn + Siegert + MEC (h.o.); black line: AV18 + explicit MEC;
blue line: CD Bonn + Siegert including RCO + MEC (h.o.); green line: CD Bonn+∆
(potential) + Siegert including RCO + MEC (h.o.). The same color designation
applies to the right panel.

pion threshold can be used to provide stringent tests of the state-of-the-art three-

body calculations including effective field theory calculations in the future and to

help test the GDH sum rule on 3He itself.

As shown in Figure 2.8, the blue, green and yellow curves are provided by Del-

tuva [33] and the other two are from Golak et al. [23]. In Ref. [28], in addition

to Siegert [61], which assumes current conservation and replaces dominant parts of

electric multipoles by the Coulomb multipoles, explicit MECs are used for magnetic

multipoles and higher order (h.o.) terms of electric multipoles not accounted for

by Siegert. In the RCO calculations the Coulomb multipoles additionally include

contribution from the relativistic corrections of the charge operator.

The green line uses the CD Bonn + ∆ potential, plus Siegert including relativistic

charge operator (RCO), and explicit MEC (h.o.); the blue line uses CD Bonn plus

the Siegert including RCO and MEC (h.o.); and the yellow line is from CD Bonn, the
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Siegert theorem and MEC (h.o.). Here MEC (h.o.) means explicit MECs are used

for magnetic multipoles and higher order terms of electric multipoles not accounted

for by Siegert. Some details of these calculations can be found in [29]. More details

about the calculations shown as magenta and black curves can be found in [23].

Compared with our simple estimation of the GDH integral below the pion thresh-

old, state-of-the-art few-body calculations predict very different values with a wide

range. In light of this large difference, it is crucial to test the theory by carrying out

the GDH measurement below the pion production threshold.
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3

The Experiment

3.1 Overview of the Experiment

A spin-dependent asymmetry measurement was carried out on the three-body pho-

todisintegration of polarized 3He with a circularly polarized photon beam at an

incident energy of 11.4 MeV. In this experiment, the polarized 3He target apparatus

was set up for longitudinal polarization configuration. A neutron detection system

including seven detectors was employed. The 3He nuclear spin was aligned parallel

and antiparallel to the incident photon momentum direction. The three-body photo-

disintegration process was identified by detecting the neutrons from the three-body

breakup channel. This chapter is organized to address every aspect of the experi-

ment except for the polarized 3He target, which is described in Chapter 4. Section

3.2 discusses the HIγS beam. Section 3.3 briefly reviews the experimental setup.

Detectors are going to be covered in Section 3.4. Electronics and Data acquisition

are described in Section 3.5 and 3.6. Finally, the production runs are summarized.

28



3.2 High Intensity ~γ-ray Source (HIγS)

3.2.1 Overview

The High-Intensity γ-ray Source (HIγS) program is the result of a collaboration

between Duke Free-Electron Laser Laboratory (DFELL) and Triangle Universities

Nuclear Laboratory (TUNL)1. This facility is an ideal place to carry out a wide range

of nuclear physics experiments which need γ-rays of high flux, 100% beam polariza-

tion (circular or linear) and excellent energy resolutions. Currently, the upgrade is

completed and γ-rays with energies up to ∼90 MeV and up to 108/s total intensity

are available [62].

3.2.2 Basic Principles of a Free Electron Laser

Four major components of the Duke free-electron facility are a linear accelerator

(Linac), a Duke storage ring (DSR), an optical klystron (OK-4), and an optical

cavity, as shown in Figure 3.1.

The linear accelerator has 11 sections, three klystrons and a photoinjector. The

storage ring at DFELL contains 40 dipole magnets for steering the beam and 64

quadrupole magnets for focusing the beam. The ring also has a radio frequency

(RF) cavity. The optical cavity has two mirrors and they are 53.73 m apart. So the

photons and electrons enter the undulator at the same time, although fine tuning of

the timing is required.

The process of how FEL photons are produced is described as follows: in the linac,

an electron beam is first boosted to an energy up to 280 MeV, then it is injected into

the DSR. When it goes through the wiggler, which is a region of alternating magnetic

fields, it is accelerated back and forth emitting radiation. The electrons also interact

with the magnetic field of OK-4, the resulting photons are linearly polarized in the

horizontal plane. The photons are then captured in an optical cavity. Consequent

1 Since Sept 2008, TUNL manages DFELL.
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Figure 3.1: Schematics of the storage ring and FEL used to produce the gamma-ray
beams. Plot is from [62].

electron bunches amplify the radiation. If the electron bunch and photon bunch

are properly synchronized so that they enter the FEL region at the same time, the

resulting radiation is coherent. The wavelength of FEL photons generated depends

on the electron beam energy.

Compton Backscattering and γ-ray Production

Compared to most other facilities where conventional lasers are used, DFELL uses

intra-cavity backscattering of the FEL photons in order to produce a γ-flux enhance-

ment. The linac injects a second electron bunch which needs to reach the center at

the same time as the FEL photons which are reflected from the downstream mirror

with opposite direction. Then a high flux of monochromatic, 100% polarized γ-rays

are produced.

According to conservation of momentum and energy, the energy of a Compton

scattered photon after a head-on collision between the second bunch electron and
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FEL photons is,

Eγ =
Eλ(1 + β)

1 + Eλ/Ee − (β −Eλ/Ee)cosθ
, (3.1)

where Eγ refers to γ-ray energy, Eλ is the energy of the incident photon, Ee the

initial electron energy. β = v/c is the ratio of the electron speed to that of the light,

and θ is the scattering angle.

At the Duke FEL, γ = Ee

mec2
>> 1, therefore a simplified version of the above

equation is obtained:

Eγ =
4γ2Eλ

1 + (γθ)2 + 4γEλ/mec2
. (3.2)

From this equation, we know that γ-ray energy depends on the angle θ.

Figure 3.2: Layout of Duke Free-Electron Laser Laboratory after the major up-
grade. Plot is from [62].

3.2.3 The Recent Upgrade of OK-5

The OK-4 system has a few limitations, one is that it only delivers γ beam with

linear polarizations, but many nuclear physics experiments would require circular
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polarizations, so the update of OK-5 is crucial. This update also greatly improves

the γ-flux intensity as well as its energy range. The upgrade consists of three parts:

a 1.2 GeV booster-injector which provides efficient injection at a certain energy, a

RF Cavity and a helical undulator system OK-5.

The OK-5 system is a first distributed optical klystron. DFELL has two FEL

light sources and a FEL based γ source. The two FEL light sources are capable

of generating intense infrared and ultraviolet tunable radiation. Intense γ-rays are

produced by internal backscattering of FEL light by electrons from the Duke storage

ring.

The storage ring operates at 2.79 MHz frequency. In one-bunch mode, the elec-

tron enters wiggler every 359 ns (=1/2.79 MHz). For two-bunch mode, the require-

ment of γ-ray is that the second electron beam is half of the circumference from the

first one, so electron enters every 179 ns (= 359 ns/2).

In summary, the HIγS beam has the following advantages. First of all, photon

flux is high, which means less running time is needed. Second, it has a wide range

of precisely tunable energies. Last but not least, the OK-5 results in ∼100% circular

polarization.

Mirror and Collimator

We used the 450 nm LZH304-306 mirror during the 11.4 MeV runs [63]. A Pb colli-

mator used during the experiment played a major role in determining the beam size

and the energy spread. This collimator locates inside the collimator hut which is

60 meters away from the collision point. The beam is collimated to 22mm when it

passes through the Pb collimator. We need to consider several factors in the colli-

mator size selection: first of all, the larger the collimator, the higher the photon flux.

Second, it can not exceed the diameter of the target cell, which is 30 mm, otherwise

the beam would hit the glass wall and generate background neutrons. Third, a very
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important factor to consider is the beam energy spread which is determined by the

collimator size as well. By choosing 22 mm, a good balance is reached.

3.2.4 Beam Monitoring

Two methods were used in the experiment to monitor the photon beam flux. The

first one was a 3-paddle (paddle consists of plastic scintillators.) system in the beam,

as shown in Figure 3.3. The first paddle—a veto paddle—had two photomultipler

tubes (PMT), a thin converter foil. The second paddle also had two PMTs, and

the third only had one. The third paddle is very thick compared with the previous

two. It is designed so that a constant fraction discriminator (CFD) threshold can

be applied to reject single electron events. The last two function simultaneously to

generate a signal proportional to the flux intensity, so it is a relative measurement.

The paddle is located downstream of the Pb collimator. It is energy-dependent so

the paddle efficiency varies with the energy. This paddle system provides a relative

flux measurement, as such, a rough estimate of the absolute flux intensity.

The second method employed a 4.7 cm thick liquid D2O target placed downstream

of the 3He target and two BC-501A neutron detectors placed at 90◦ on both sides.

This method was based on the fact that the total cross section for 2H(~γ, n)p was well

determined [64]. Given that the electric dipole transitions dominate this reaction,

the angular distribution of the neutrons is assumed to be of a sin2(θCM) form in the

center of mass frame. The differential cross section at 90◦ is therefore the largest.

The neutron rates from the two detectors provide a reasonable absolute measurement

of the photon flux intensity. A more detailed description of this method can be found

in [65]. Figure 3.4 shows the monitor setup. The detectors were placed 36 inch (91.4

cm) away from the center of the target. We will discuss in Section 5.6 the results of

this method.

There is an additional method to roughly estimate relative photon flux from the
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Figure 3.3: A schematic drawing of the 3-paddle system. Paddle 1 is on the far
left. A converter locates between paddle 1 and 2. Paddle 3 is much thicker than the
other two. This system is for relative flux monitoring.

EPICS (Experimental Physics and Industrial Control System) data record. Basically,

the total number of gammas produced in the head-on collision is proportional to the

number of electrons and the number of photons. The electron current, a bunch

current of electrons, is proportional to the number of electrons. The intra-cavity

power is proportional to the number of photons. Therefore, the product of the

current and the power provides a very rough relative measurement of the total flux.

3.3 Experimental Setup and Targets

Fig. 3.5 shows the experimental layout in the target room. In total four target

cells including a 7.6 amagats2 3He cell were used in the experiment, and their basic

information is listed in Table 2.2. I will discuss the details of the 3He target in the

next Chapter.

2 1 Amagat = 2.6894× 1019 atoms/cm3. It is a practical unit of number density at a pressure of
1 atmosphere and a temperature of 0◦ C.
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Figure 3.4: A picture of the liquid D2O target taken during the HIγS run. The
target has a known target thickness. Two BC-501A detectors were placed at 90◦

and 91.4 cm away (Only the left one was shown in the picture). Detectors were well
shielded from γ-rays.

Gas Length(cm) Inner Diameter(cm) Pressure
D2 40 3.0 3808 torr
3He 40 3.0 7.6 Amagats
N2 40 3.0 100 torr

D2O 4.7 3.8 Liquid

Table 3.1: Four targets were used in the experiment. A D2 gas target was used at
the beginning of the experiment to cross calibrate detectors. The 3He target was
the primary target for measurement, The N2 reference cell was used for background
subtraction and the D2O target was placed downstream of the 3He target to monitor
the photon flux.
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Figure 3.5: The schematics of the ~3He(~γ, n)pp setup. The 3He target is polarized
through spin exchange optical pumping, and the pumping light came from two 60
W lasers. The target was surrounded by 7 detectors with angles marked. A liquid
D2O target and two detectors were placed downstream to monitor the photon flux.

3.4 Detectors

The scattered neutrons were detected by seven liquid scintillating detectors which

contained BC-501A [42] placed between 75-90 cm away and at 50◦, 75◦, 90◦, 105◦,

130◦, 145◦, 160◦ on both sides of the beam line3. Two other angles 20◦, 35◦ were

originally planned but later dropped due to too high rates.

3 As seen in Figure 3.5, 50◦, 90◦, 130◦ and 160◦ were on the right hand side facing the downstream
target room wall and the other three were on the left hand side. This two-side placement was mainly
due to geometrical constraints.
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Figure 3.6: A picture taken during the experiment shows the experimental setup.

3.4.1 Working Principle

Liquid organic scintillator detectors were used in detecting the neutrons. Typically,

hydrogen and carbon are contained inside the scintillators. The most common or-

ganic scintillation materials are aromatic hydrocarbon compounds. Neutrons interact

with the hydrogen through the strong force predominantly because neutrons are neu-

tral particles4. The process is as follows: neutrons strike the protons and recoiling

protons then interact with the materials. The atoms and molecules are excited from

their interaction with protons, then de-excite and emit light which would be collected

4 Neutron has magnetic moment, so in principle, it can have magnetic dipole-dipole interaction
with proton. However, the electromagnetic interaction has a typical cross section of 10 µb, much
smaller than 10 mb, the typical cross section of strong interaction. Therefore we mainly consider
strong interactions here.
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by the photomultiplier tube (PMT).

Figure 3.7: Liquid organic scintillator detectors contain BC-501A materials. In
total nine detectors were used in the experiment, including two placed downstream
for flux monitoring. The inner diameter of the fluid cell is 12.68 cm. Note that the
detector is not drawn to scale.

In our experiment, detectors from the Bicron Corporation were used and they

were filled with BC-501A (NE-213) fluid. The specifications of the scintillators are

listed in Table 3.2. The fluid cells are aluminum cylinders equipped with a glass

window on one end and an aluminum plate on the other. BC-622 reflector paint is

employed to coat the interior surfaces. The cell is directly coupled to the flat-face

PMT with optical grease.

Scintillator Density (g/cm3) Hydrogen/Carbon ratio
BC-505 0.877 1.331
BC-501 0.901 1.287

BC-501A 0.874 1.212

Table 3.2: Properties of different liquid scintillating fluids: density of the material
and hydrogen-to-carbon ratio.

A PMT is an amplifying device, optically coupled to the scintillating material

to convert the emitted light into a usable signal. Through the photoelectric effect,
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light strikes a metal cathode and causes electrons to be ejected. Secondary electrons

are emitted and are accelerated to the next dynode. For a typical PMT, there are

between 10 to 14 dynodes. At the final stage, an anode collects the charge and

produces a current pulse (i.e. pulse height) which is then sent into MPD-4 pulse

shape discrimination modules. A detailed description of MPD-4 module is given in

Section 3.5.

A signal from the scintillator provides rich information. First of all, it provides

information about the neutron energy, since light output is directly proportional to

the energy deposit in region above certain thresholds. Second, it makes accurate

timing measurement possible since its response and recovery time are usually on the

order of nanoseconds. Third, it has particle identification characteristics. In our

case, neutrons can be separated from photons due to different pulse shapes.

3.4.2 Light Output Response

Light output response plays a crucial role in determining the efficiency of the scin-

tillator to convert ionization energy to photons. I will discuss it in details in Section

5.9.

3.4.3 Detector Placement and Shielding

The inter-play between target and detectors is an important factor which has to be

taken into consideration.

On the detector side: since detectors were placed inside of a magnetic field,

concerns were raised about the function of the detectors in the presence of this field.

We have performed a few tests and decided to use mu metal shields.

On the target side: equipped with mu-metal shields, we did studies to determine

the detector locations. While we would like to place detectors as close as possible to

the target in order to improve acceptance, we had to be mindful about their effect on
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the polarized 3He target since magnetic materials would affect the 3He polarization.

Finally, we decided to place the detectors 75 cm away from the center of the target.

The exceptions were the 50◦ and 130◦ detectors where they were placed at 90 cm.

Detector positions and distances to the center of the target are listed in Table 3.3.

Detector Angle Distance (cm)
1 50◦ 90
2 75◦ 75
3 90◦ 75
4 105◦ 75
5 130◦ 90
6 145◦ 75
7 160◦ 75

Table 3.3: This table lists the geometrical location information of the detectors. The
angle and distance information are with respect to the center of the 3He target.

3.5 Electronics

The main functions of the electronics are three-fold: amplify the signal, discriminate

the particles of interest, and convert them from the detectors to a digital format,

which can be read into the data acquisition system.

Signals from the photomultiplier were sent into the MPD-4 pulse shape discrim-

ination modules, which is a key component of the electronics. It has four channels

and is used for particle identification. It includes fast variable gain PMT input am-

plifiers; internal Constant Fraction Discriminators (CFD), the goal of which is for

rising edge start signals and zero crossing for tail length detection.

MPD-4 modules have three outputs: Amplify-out, TAC-out, Gate-out, as seen

from Figure 3.8. Their functions are explained as follows: Amplify-out is the inte-

grated PMT charge output, and will go to the ADC gates; TAC-out channel cor-

responds to the ratio of fast to slow components of detector light output signals;
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Figure 3.8: The block circuit diagram which shows the process of signal generation.

Gate-out means that the output signal goes through the discriminator, then a level

adaptor is used to change the signal into a Nuclear Instrument Module (NIM) pulse

when the signal is above the CFD threshold. It finally goes to the TDC as a stop

signal. In our experiment, we used CAEN V775 32 channel multievent TDCs.

The signal from the γ beam is picked up by the Beam Pickoff Monitor (BPM)

and goes to a Timing Filter Amplifier (TFA) which amplifies the pulse and gives

it a shape with a short rise and decay time. A CFD is then used for a rising edge

start and a zero crossing detector for the tail length. These signals then are sent

to Time-to-digital converters as stop signals. In the data analysis, the stop signal

from the BPM is treated as a benchmark (TDC1), all other stop signals from the

detectors will need to subtract this TDC value.
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Figure 3.9: MPD module schematics. Figure is from [66].

Each MPD-4 module has four channels and they share one Common Trigger

output. Since in total 7 detectors are used, we need to use 2 MPD-4 modules to cover

them. These two common Triggers MPD1 and MPD2 are fanned together to form a

common OR for all the detectors to be used to form the trigger for neutron detectors.

In this case, any of the 7 channels responds, a NIM trigger is created. When system

is reading, any new trigger will get a “veto”. This OR is used to prevent system

from crashing. They will then go through the Gate and Delay Generators (GDG) to

create an ADC gate and a start signal for TDC. Dead time refers to the period of

time that a data acquisition system (DAQ) is unable to take data. Thus, new signals

arriving during a “dead period” are lost.

A TAC is a module that generates a pulse whose height is proportional to some

length of time. We call it the PSD signal because a TAC pulse measures the time

from the initial pulse to the zero crossing. TAC has a full range of 4V-8V.

CAEN V792 32 channel multievent ADC modules are used. They take Event
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Trigger as the gate, one channel is for Amplify and the other channel is for TAC.

Finally, signals will go to the Trig Supervisor, which serves as the function of a

writer and record all the data into a Single Board Computer (SBC).

In summary, TAC, ADC and TDC are three parameters that are read out from

the raw data. In our case, TAC provides PSD information, ADC provides pulse

height information and TDC provides neutron timing information.

3.6 Data Acquisition System

The digitization and counting are mainly done through CAMAC, which is an acronym

for Computer Automated Measurement And Control. This open concept embraces a

modular, real-time data acquisition and control system. Its main advantage includes

high-speed data acquisition, wide variety of I/O interface modules and large I/O

point capacity.

The connection between control terminal and experiment is called the VME crate.

Various VME modules such as ADC, TDC and Scalers have been integrated. The

commands are interpreted here and forwarded to other electronic devices. A single-

board computer (SBC) in a VME crate controls the event readout and data flow

through a VME-CAMAC interface module.

CODA, the acronym of CEBAF Online Data Acquisition (DAQ) system, was

first developed at Jefferson National Laboratory, where continuous electron beam

accelerator facility (CEBAF) locates. It was modified for local HIGS use. A complete

DAQ system includes two parts: acquisition and analysis. Fig. 3.10 show the front

panel and coda master. The main merit of CODA system is that data could be easily

analyzed and replayed at a later time.
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Figure 3.10: Left plot shows the CODA front panel, which includes start/end run
buttons, and run status information. Right plot shows the CDDA master.

3.7 Run Summary

The long-awaited experiment was carried out at the HIγS facility in May 2008. We

started with 14.7 MeV photon beam and observed higher-than-expected neutron

events. Data were taken continuously at this energy for a total running time of 36

hours and then another 36 hours at a photon energy of 11.4 MeV. The target per-

formance was stable throughout both running periods with an average polarization

around 38% at 14.7 MeV and 42% at 11.4 MeV. There was a downtime of about

a week between these energies for the replacement of a broken RF amplifier in the

storage ring.

At both energies, we carried out a measurement of 2H(~γ, n)p using a D2 gas target.

This measurement serves as the calibration purpose since the expected number of
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neutrons can be calculated given the fact that the total cross section of 2H(~γ, n)p is

well determined [64] and the angular distribution of the neutrons is assumed to be

in the form of sin2(θCM), as mentioned in Section 3.2.

At HIγS, it takes several hours5 to flip the γ-ray beam helicity. This means each

beam flip would be at the expense of the precious beam time. So we decided to flip

target spin to accumulate data for both spin states. Every three hours, we made an

entry to the gamma vault and physically rotated the quarter-wave plate6.

Before we analyze the data from 11.4 MeV runs, let’s discuss the polarized 3He

target first.

5 This flipping time will be significantly reduced in the future.

6 Improvements have been made since and no vault access is needed in the future running of the
target at HIγS for target spin flip.
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4

The Polarized 3He Target System

This chapter is devoted to the discussion of the polarized 3He target1.

4.1 Overview

We first address why a polarized 3He target is an effective polarized neutron target.

Ideally, one would use a polarized neutron target directly for experiments to probe

the structure of the neutron. However, the lifetime of free neutrons is less than 15

mins (885.7 ± 0.8 s [68]), so there is no stable free neutron target in the nature.

Effective neutron targets such as the deuteron and 3He are commonly used for the

study of the neutron.

Polarized 3He has been used extensively to study the structure of the neutron

because of its unique ground state spin structure. The ground state is dominated

by the S wave, in which the two proton spins cancel, and the unpaired neutron

carries most of the 3He nuclear spin. In order to polarize the 3He nuclei, the spin-

exchange optical pumping technique is routinely employed, during which the angular

1 Most of this chapter was published in [67].
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momentum is transferred from polarized photons to rubidium outshell, which is

subsequently transferred to the 3He nuclei through spin-exchange collisions.

4.2 Spin Exchange Optical Pumping

4.2.1 Polarizing Rubidium

In the presence of an external magnetic field, circularly polarized laser light can excite

valence electrons of alkali atoms to a specific spin state because of the principle of

angular momentum conservation. There are two possibilities in the case of rubidium,

left-handed circularly polarized 795 nm photons can be used to excite electrons of

the m = 1
2

(5S) state to the m = −1
2

(5P) state, while right-handed circularly

polarized light of the same wavelength can be used to excite electrons in the m = −1
2

(5S) state to the m = 1
2

(5P) state. This process is commonly known as “optical

pumping” and results in polarized rubidium atoms. A diagrammatic explanation of

optical pumping is shown in Figure 4.1. After being excited, the Rb atom will emit

a photon, and decay into either the m = 1
2

(5S) with 2/3 probability or the m = −1
2

(5S) state with 1/3 probability. The probabilities are determined by Clebsch-Gordon

coefficients [69].

However, one fact prevents rubidium from reaching high polarization—the emit-

ted photons from the Rb decays are unpolarized and can be re-absorbed by other

rubidium atoms. Fortunately, by introducing nitrogen—“buffer gas”—into the sys-

tem, this effect could be reduced. The nitrogen allows for photon-less de-excitation

by absorbing the emitted photon energy into its rotational and vibrational motion

during a collision [70]. The amount of N2 is chosen to be orders of magnitude less

than the 3He density and orders of magnitude more than the Rb density. Only about

5% of excited electrons decay by emitting a photon after introducing N2.

The polarization of the rubidium vapor can be calculated via the following equa-
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Figure 4.1: A diagram that explains the optical pumping process. Rb atoms in a
magnetic field are exposed to right-handed circularly polarized laser light. Then the
valence electron is excited from the 5S−1/2 state to the 5P1/2 state. Subsequently, the
Rb atom decays by emitting a photon into either the 5S−1/2 or into the 5S1/2 state
with different probabilities. By repeating this process, electrons would eventually
occupy the 5S1/2 state.

tion [71]:

< PRb >=
R

R + ΓSD

, (4.1)

where R is defined through

R =

∫

Φ(ν)σ(ν) dν, (4.2)

where Φ(ν) is the photon flux per unit frequency emitted from the laser and σ(ν) is

the light absorption cross section. ΓSD is the spin-destruction rate of the rubidium

vapor.

It is obvious to conclude that a high value of R and a small value of ΓSD will

lead to high rubidium polarization, according to the equation above. While it is

relatively straightforward to calculate the laser flux as a function of laser power at

the absorption frequency, it is more complicated to determine the spin-destruction

rate because several factors contribute to it.

The primary reason is due to rubidium transferring angular momentum to the
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rotational angular momentum of other atoms during collisions. The three major

rubidium collisions are: Rb-Rb, Rb-3He and Rb-N2, therefore it can be expressed as:

ΓSD = kRb−He[
3He] + kRb−N2

[N2] + kRb−Rb[Rb], (4.3)

where for each collision Rb-i, kRb−i denotes the spin destruction rate constant ac-

cordingly. The gas density for a typical 3He target cell is:

[3He] = 8.0 amg = 2.15 × 1020 cm−3. (4.4)

The N2 pressure at room temperature is about 100 torr.

[N2] = 100 torr = 0.123 amg = 3.31 × 1018 cm−3. (4.5)

Rb density is given by the following empirical formula [72],

[Rb] = (1026.178−4040/T /T ), (4.6)

where T is in the unit of K, and Rb density is in the unit of cm−3.

In our experiment, the oven temperature is at T=510◦K (237◦C). Plug this num-

ber into the expression of Rb density, we get

[Rb] ≈ 3.54 × 1015cm−3. (4.7)

Spin destruction constants can be found in Ref. [73]:

kRb−He ∼ 2 × 10−18 cm3/s (4.8)

kRb−Rb ∼ 8 × 10−13 cm3/s (4.9)

kRb−N2
∼ 8 × 10−18 cm3/s (4.10)

Therefore we obtain the spin destruction rate

ΓSD = 430Rb−He + 25Rb−N2
+ 2800Rb−Rb ∼ 3255 s−1. (4.11)
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4.2.2 Spin exchange between 3He and Rubidium

Rubidium can transfer its electron polarization to the nucleus of a 3He atom through

a hyperfine-like interaction. This spin-exchange process between Rb and 3He has a

small contribution compared to the total number of Rb-He collisions; consequently,

only approximately 3% of polarized rubidium atoms lose their polarization through

a spin-exchange process with 3He. This makes the polarization of 3He through ru-

bidium spin-exchange an inherently inefficient process.

The time evolved expression of 3He polarization is

P3He(t) =< PRb >
γSE

γSE + Γ
(1 − e−(γSE+Γ)t), (4.12)

where γSE is the Rb-3He spin exchange rate per 3He nucleus, Γ is the 3He polarization

destruction rate.

Γ is the quantity which best determines the 3He polarization. The smaller the

Γ is, the higher the 3He polarization would be as shown in Eqn. 3.13. It can be

decomposed into the following four terms:

Γ = ΓDipole + ΓWall + Γ▽B + ΓBeamDepol, (4.13)

where ΓDipole means depolarization from 3He-3He dipole collisions, ΓWall is depolar-

ization due to interactions with the glass wall, Γ▽B is depolarization from magnetic

field gradients and ΓBeamDepol is depolarization by the photon beam.

ΓDipole is the dominant factor in a high-density 3He system. It is the result of spin-

destructive 3He-3He collisions. Another important process in polarization relaxation

is the 3He interactions with the glass cell wall. There are multiple reasons that the

cell wall causes depolarization. First is the out-gassing of paramagnetic gases like

O2 from the wall when the cell is heated; second is the paramagnetic material like

Rb2O on the surface of the cell walls; the third is the increasing sticking time of 3He
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to the surface of the wall due to microscopic fissures in the glass. For different cells,

ΓWall varies significantly. A good cell can have a ΓWall < 1/200 hrs−1, a bad cell

can have a ΓWall > 1 hrs−1.

Magnetic field gradients can contribute to depolarization. The formula is from

Ref. [74],

Γ▽B = D
| ▽ Bx|2 + | ▽ By|2

B2
z

, (4.14)

where Bz is the magnitude of the holding field, ▽Bx and ▽By are the gradients

of the two transverse field components, and D is the self-diffusion coefficient: D ≈

0.28 cm2/s.

Using the magnetic field gradient values we measured in our target system, we

have

| ▽ Bx|2 = (
∂Bx

∂x
)2 + (

∂Bx

∂y
)2 + (

∂Bx

∂z
)2 (4.15)

= (4 mG/cm)2 + (1 mG/cm)2 + (20 mG/cm)2 = 417 (mG/cm)2 (4.16)

| ▽ By|2 = (
∂By

∂x
)2 + (

∂By

∂y
)2 + (

∂By

∂z
)2 (4.17)

= (5 mG/cm)2 + (3 mG/cm)2 + (30 mG/cm)2 = 934 (mG/cm)2 (4.18)

For a holding field value of Bz = 25 G, we then obtain Γ▽B = 459 hr−1, so it is

negligible.

The last factor that can contribute to the 3He depolarization is the photon beam.

This effect was studied by comparing the maximum polarization of the 3He target

“Linda” with and without photon beam. As shown in Figure 4.2, photon beam has

a negligible effect on target polarization.
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Figure 4.2: Comparison of the maximum polarization of the 3He target “Linda”.
The first three tests were taken in French Science Lab without any photon beam,
and the rest were conducted at FEL when photon beam was present. The conclusion
is that photon beam has a negligible effect on target depolarization.

However, a more efficient hybrid approach to polarize 3He atoms, by adding va-

porized potassium to the pumping chamber, was first proposed by Happer et al. [75].

The advantage of this method is as follows: Rb atom is polarized through the stan-

dard optical pumping, then it transfers the angular momentum to the potassium

atom. The spin-exchange collision between 3He and K atoms will subsequently po-

larize 3He atoms. The likelihood of spin-exchange between K-3He is significantly

higher than that of rubidium to 3He. Princeton Group [76] was able to extract γSE

to be around 2% at about 175◦C, which is the typical optical pumping temperature

for Rb. In contrast, the typical value of γK−3He is around 25%. Therefore one would

expect the SEOP process for hybrid cells to be more efficient than for a Rb-only-cell.

Such improvement has been demonstrated by an extensive study carried out by W.C.

Chen et al. [77]. The direct spin exchange between potassium and 3He has also been

realized by the Caltech Group [78].
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Figure 4.3: The 3He cell used in the experiment. It is a double-cell system: the
upper pumping chamber and lower target chamber. The pumping chamber has a
diameter of 9 cm and the target chamber has a diameter of 3 cm, a length of 40 cm.
A transfer tube connects the two chambers.

4.3 Experimental Setup

At the center of the target system is a double-chambered GE180 glass cell which

contains the 3He gas. The cell’s upper chamber, referred to as the pumping chamber,

is where optical pumping and the spin exchange between alkali atoms (Rb or Rb and

K) and 3He take place. Light from the diode lasers is focused onto this part of the

cell. The pumping chamber sits in an oven which is heated up to 170-175◦C for

Rb-only cells or 230-240◦C for Rb-K cells, so that the vapor pressures of Rb and K

are optimized for spin-exchange. The target chamber is typically 40 cm long with

an inner diameter of 3.0 cm to accommodate a 2.2 cm diameter photon beam. The

volume of the pumping chamber is similar to the volume of the 40 cm target chamber,

around 250 ml. The entrance and exit windows of the cell are 0.2-0.3 mm thick at

the central point with some thickening near the side walls. The cell side walls are

1-2 mm thick.

The oven is heated by a flow of compressed air through two 3/4” diameter 750 W

air process heaters. The oven is made of alumino-silicate machinable ceramic and is
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Figure 4.4: The equipment set up for AFP and for NMR polarimetry.

Figure 4.5: A schematic drawing of the laser beam path. Detailed schematics of
the optics is shown in Figure 4.6.

54



held together by bronze screws. Since the target is to be polarized longitudinally in

this work, there is a 4” window on the side of the oven coated with an anti-reflection

coating acceptable for the 794.7 nm light. There is also a small window on another

side of the oven for the Electron Paramagnetic Resonance (EPR) photo-diode.

The target cell sits in a holding field with a magnetic field gradient of < 10

mG/cm at 25 G. This holding field is generated by a pair of 58” diameter Helmholtz

coils that are oriented so the field is parallel to the ground. These Helmholtz coils

are powered by a single water-cooled 1.25 kW DC power supply. The output current

of the power supply is controlled by a programmable Tektronix AFG 310 function

generator.

The laser light is provided by two Coherent FAP system diode lasers. Each

laser has a 2-diode package that feeds into a single output optical fiber. Each diode

package has a nominal maximum power of 30 W; therefore, the two lasers combined

provide 120 W total laser power. The laser spectrum has a FWHM of around 2 nm.

About 70-90% of laser light is incident onto the pumping cell of our target.

Each laser has its own set of focusing and polarizing optics, as shown in Figure 4.6.

The emitted laser light has a 13◦ divergence from the optical fiber and is focused by a

spherical plano-convex lens. The light is then sent through a polarizing beam splitter.

The light going straight through the beam splitter is reflected 90◦ by a mirror and

then through a quarter-wave plate. The light reflected 90◦ through the beam splitter

travels through a quarter-wave plate then onto a mirror and then through the same

quarter-wave plate. This rotates the polarization direction of the light by 90◦ where

it is then going straight through the beam splitter into a quarter-wave plate. Both

beams are focused on a 4” polarization-preserving mirror that is at a 45◦ angle at

the downstream of the oven. The diameter of the beam spot incident on the target

is around 3.7”, about 10% larger than the diameter of the pumping chamber, but

slightly smaller than the size of the window.
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Figure 4.6: The layout of the optics. Beam first passes through the lens, and is split
into S and P waves by the beamsplitter. S-wave goes through a quarter-wave (QW)
plate and is reflected by the 2” mirror, then goes through the same QW plate and
the beamsplitter and another QW plate before reaching the polarization preserving
mirror. P-wave passes through a QW plate and then is incident on the polarization
preserving mirror.

4.4 Measuring the Target Polarization

4.4.1 Polarimetry

The polarization of the target is determined by two independent polarimetry systems.

The first is NMR-AFP (Adiabatic Fast Passage), in which the magnetic holding field

is increased adiabatically to go through the Larmour resonance then swept back

to reverse the polarization back to the original direction. The rate at which the
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holding field is ramped has to be slow enough to meet the adiabatic condition, but

fast enough so that the sweep rate is significantly faster than the relaxation rate

(1/T1 and 1/T2), where T1 and T2 are the longitudinal and transverse relaxation

times, respectively. T1 is also called spin-lattice relaxation time, a time constant

to describe the rate at which spin’s longitudinal part recovers when exposed to an

external magnetic field. The time it takes to recover 1 − 1/e ∼ 63% of the initial

polarization is defined as T1. Similarly, T2 is also called spin-spin relaxation time,

a quantity measuring the average time that spin’s perpendicular component decays.

The time it takes to drop to 1/e ∼ 37% of the initial polarization is defined as T2.

A detailed description of T1 and T2 is in [79].

A brief review of the NMR-AFP principle is stated here. The magnetic moment

of a free particle of spin ~I is,

~M = γ~I, (4.19)

where γ is the gyromagnetic ratio. For proton, γ = 4.26×2π kHz/G, for 3He, γh=

3.24×2π kHz/G. When placed in an external magnetic field, the magnetic moment

is described by the equation of motion,

d ~M

dt
= γ ~M × ~B. (4.20)

Now assume an RF field ~B1 = 2B1cos(ωt)x̂ is applied. We can decompose it into

two rotating fields,

~B1 = (B1cos(ωt)x̂+B1sin(ωt)ŷ) + (B1cos(ωt)x̂− B1sin(ωt)ŷ). (4.21)

These are two magnetic fields rotating at the frequencies ~ω = ωẑ and ~ω = −ωẑ.

In the rotating frame, one is static and the other is at a frequency of 2ω. Since the

frequency 2ω is off-resonance, it can be neglected. The effective field therefore can
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be written as,

Beff = (B0 −
ω

γ
)ẑ +B1x̂. (4.22)

If we ramp the holding field B0ẑ from below the resonance ~ω/r to above it,

there is a time when the z component of magnetic field becomes zero and only x

component exists. At this resonance, the magnetic moment of 3He atoms induces a

signal in the pickup coil, which is proportional to the 3He polarization. This signal

is also perpendicular to the holding field and the RF field. Then holding field goes

from above the resonance to below it. In this process, spin is flipped twice. A more

detailed description of the AFP-measurement can be found in [80].

The 3He polarization is calibrated by the known NMR water signal. The EPR

technique extracts the polarization of 3He by measuring the frequency shift in the

electron paramagnetic resonance (EPR) of rubidium when the spin direction of the

3He is flipped. The systematic uncertainty in the determination of the target polar-

ization is reduced when both techniques are employed. More details on NMR and

EPR are presented in Section 3.5.

4.4.2 NMR and AFP set-up

In our system, the AFP technique is applied by sweeping the magnetic holding field

from 25 G to 32 G and then back to 25 G, while a perpendicular 91 kHz RF field is

applied. The holding field is swept by triggering a programmable signal shape in the

holding field function generator. The RF field is created by a pair of 31” diameter

coils driven by a HP3325A function generator whose signal is amplified by a 150 W

AG Series RF amplifier made by T & C Power Conversion. Additionally, there is a

custom-built impedance matching transformer between the amplifier and the coils.

The RF field generated at the target cell has an amplitude of around 90 mG.

The NMR signal is detected by a pair of pick-up coils, which are made of 100-

58



Counter

P&I Feedback
(Vin) (Vout) (Vmod)

(Ch. A)

(Ref. in)

(X out)
Lock−in Amplifier

Attenuators

(Sync)(Vout)

Photodiode

Excitation 
Coils

Bandpass
Filter

Excitation
Coil FG

(VCO)

(Ref. In)

Modulation
FG

(Vout)

(Sync)

Figure 4.7: The EPR polarimetry set-up.

turn coils using copper wire wrapped around a 3 cm by 15 cm acrylic frame. The

coils are connected to a Stanford Research Systems Model SR560 pre-amplifier. The

pre-amplifier is only used to add the two signals from the two coils during the 3He

NMR measurement; however, the pre-amplifier can be set to have a gain of 100-

500 for NMR water measurement. The output of the pre-amplifier is sent into a

Signal Recovery 7225 DSP lock-in amplifier. The reference frequency comes from

the function generator producing the 91 kHz RF field. All electronic equipments can

communicate with the target control PC to record the data.

4.4.3 EPR Measurement Technique

Measurement of the shift of the electron paramagnetic resonance frequency of the

rubidium valence electron before and after AFP is a demonstrated way of measuring

the polarization of a 3He sample [81, 82, 83, 84]. Measurement of EPR shift, ∆ν,

was performed by observing the D2 fluorescent light emitted by decaying rubidium

atoms. A small EPR coil is placed on the side of the pumping chamber to induce the

transition of rubidium atoms from a non excitable state to an excitable state. The

frequency of the resonance is affected by the 3He polarization.

The system for EPR starts with a small 2” diameter RF excitation coil that is
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attached to the cell with high-temperature RTV. The excitation coil is driven by

a HP3314A function generator. The 780 nm light from the EPR is detected by a

photodiode with a bandpass filter to attenuate the 794.7 nm light from the laser.

The photodiode is fed into the Signal Recovery 7225 lock-in amplifier. The function

generator connected to the excitation coil is modulated at 200 Hz by a HP 3312

A function generated through the HP 3314A voltage-controlled oscillator (VCO)

input. The modulation signal from the HP 3312 A is fed through a feedback box

which adds a DC offset to the VCO based on the size of the signal in the photodiode.

This feedback box, which was developed in previous experiments [85, 86], allows the

output frequency of the excitation coil to be continuously locked to the resonance.

The output frequency is measured by an Agilent 53132A frequency counter. The

equipment used for EPR polarimetry is shown in Figure 4.7.

4.5 Polarization Results

4.5.1 Measurements of Pump-up and Relaxation Time

For each target cell, a complete set of tests consist of the following steps: first, use

SEOP technique to pump up the cell, after the 3He NMR signal saturates, an EPR

measurement is conducted so that two independent measurements can provide better

insight to determine the accuracy of the polarization. A relaxation measurement will

then be performed.

The pump-up measurement is the core of the complete test. Our systematic

study shows the laser power, laser spectrum and oven temperature are the three

major factors that determine the 3He NMR signal height. The laser tuning, optics

alignment and maintaining a stable oven temperature are essential. The relaxation

measurement is carried out by turning off the laser and heater and monitoring the

NMR signal as a function of time at room temperature. The data are taken every

3 hours. To calculate the lifetime of the cell, the AFP loss rate needs to be taken
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into account. By performing NMR measurements consecutively over a short period

of time, the AFP loss rate is determined by averaging over 10 measurements. The

lifetime is then determined by fitting the data to an exponential decay function with

loss rate as the correction factor.

In total ten 3He cells have been tested during the course of this study. Two are

the Rb-only-cells, and the rest are the hybrid cells (Rb+K), all filled at College of

William and Mary. The names “Kosmo” and “Kelly” are given to the Rb-only-cells

while “Katrine”, “Kramer”, “Jagger”, “Richards”, “Elvis”, “Princeton”, “Linda”

and “Tatoo” are given to hybrid cells.

Figure 4.8: Pump up curves of “Kosmo”and “Katrine”.

A measurement of polarization versus time is called a spin-up (or pumpup) mea-

surement. The spin-up curve is fitted using the following equation

NMR(t) = A · (1 − 0.01)(x+3.0)/3.0 · (1 − e−x/t), (4.23)

where A is the amplitude and t is the time, 0.01 is the NMR measurement loss
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rate (i.e. each NMR measurement causes 1% polarization loss.) and 3.0 is the time

interval between two NMR measurements. The steady increase of NMR signal can

be seen from Fig. 4.8, which shows the pumpup curve for two cells “Kosmo” and

“Katrine”. The results for Rb-only-cells are obtained under the following condition:

the magnetic holding field is 25 G, the oven operating temperature is 170-175◦C,

which is optimal for laser absorption. The experimental condition for hybrid cells is

slightly different, and the optimal oven temperature is around 235◦C. For all these

measurement, two 60-watts lasers are used.

Table 4.1 summarizes the test results for seven cells.

4.5.2 Water Calibration of 3He NMR Measurement

The 3He NMR signal does not indicate the absolute value of polarization of 3He. In

order to determine the absolute polarization of 3He, it is necessary to do a calibration

with a sample—such as water—whose polarization is well known. Given a magnetic

holding field, the thermal polarization of protons in water is given by

Pp = tanh(
µB

kT
) = tanh(

hν

2kT
) ≈ hν

2kT
, (4.24)

where h = 6.626 × 10−34 Js is the Planck constant, µ the magnetic moment, B

the holding field, k the Boltzmann constant, T the water temperature in K, and

ν = 91 kHz is the Lamor frequency for a magnetic field of 21.36 Gauss. At 295 K,

Pp = 7.4 × 10−9. The ratio R of 3He signal height S3He to that of the water Sp can

be written as:

R =
S3He

Sp
=

[QνnV µP (npcΦpc + nttΦtt + ntcΦtc)/G
Pre]3He

[QνnV µPΦ/GPre]p
, (4.25)

where Q is the quality factor of pickup coils, n is the number density in m−3, V is the

volume in m3, µ is magnetic moment in JT−1, Gpre is the gain of the pre-amplifier, P
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Cell Kosmo Kelly Katrine Richards Elvis Linda Bolt
Polarization 34.1% 34.3% 38.5% 33.2% 46.1% 45% 69%

NMR Signal(mV) 20.9 23 22.5 28 44 40 40
EPR Freq. Shift(kHz) 37.7 36 37.4 34 N/A 40 41

Lifetime(hrs) 63.5±0.3 68±0.4 33.2±0.1 34±0.1 36.4±0.15 34 42
Pumpup time(hrs) 23.5±0.7 16.3±0.3 13.2±0.4 7.3±0.2 10.8±0.1 11 12

EPR Calibration constant 0.905 0.951 1.029 1.001 1.03 1.01 1.05

Table 4.1: Test results for seven target cells. “Kosmo” and “Kelly” are Rb-only cells. All other five are Rb-K hybrid cells.
Cell “Linda” is used in the 2008 HIγS experiment, and cell “Bolt” was made afterwards.
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is the polarization. Φ is the magnetic flux through the pickup coils. The subscripts

3He and p in the equation represent 3He and water (protons), respectively. pc, tt

and tc denote the pumping chamber, the transfer tube and the target chamber,

respectively. In light of this equation, the polarization of 3He can be expressed as

P3He =
[QνnV µΦ]p

[QνV µ(npcΦpc + nttΦtt + ntcΦtc)]3He

S3He

SP

GPre
p

GPre
3He

Pp = cS3He, (4.26)

where c is the water calibration constant. In our experiment, Q, ν cancel out because

we run at the same RF resonance frequency for 3He and water NMR measurement,

corresponding to two different magnetic holding field values.

To do a water calibration, a cell with a geometry same as that of the 3He cell

is used. A single AFP sweep typically lasts 12 seconds, which are equally divided

into three stages corresponding to the magnetic field conditions: ramping up, no-

change and ramping down. The field changes from 18 G to 25 G at a rate of 1.75

G/s. We then average over the up sweep and down sweep signals for each water

NMR measurement. To improve the overall signal-to-noise ratio for the NMR water

measurement, over 500 sweeps are averaged. The typical water NMR signal is shown

in Fig. 4.9.

The main uncertainties in determining the water calibration constant arise from

the uncertainties of n, S and Pp. The uncertainty of the number density n comes

from the uncertainty in the temperature and volume measurement. The density npc,

ntt and ntc can be expressed respectively by

npc =
n0Vtot

Vpc + Tpc

Ttt
Vtt + Tpc

Ttc
Vtc

, (4.27)

ntt =
n0Vtot

Ttt

Tpc
Vpc + Vtt + Ttt

Ttc
Vtc

, (4.28)
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Figure 4.9: A typical water signal averaged over 500 sweeps.

ntc =
n0Vtot

Ttc

Tpc
Vpc + Ttc

Ttt
Vtt + Vtc

, (4.29)

where n0 is the density of 3He cell at the room temperature,

Vtot = Vpc + Vtt + Vtc. (4.30)

In our target system, δTpc = δTtt = 10K, δTtc = 5K. The uncertainties in the

density npc, ntt and ntc are less than 1%. The uncertainty due to the volume mea-

surement is less than 0.5%. The total uncertainty in the density is smaller than

1.1%.

A major systematic error in our NMR measurement is from the determination

of the cell position which affects the magnetic flux through the pickup coils, i.e, the

NMR signal height. This effect is studied by running the flux calculation code 100

times while varying a set of parameters randomly within the uncertainty of the cell

position measurement. The overall uncertainty in the flux due to the cell position

measurement is 2.6%. Table 4.2 lists the systematic uncertainties associated with
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NMR measurement. The overall uncertainty in the NMR-AFP polarimetry is 3.5%.

Description Parameter Uncertainty

Water NMR Signal Height Sp 1.1%
Flux(all chambers) Φ 2.6%

Density n 1.1%
Polarization Pp 1.0%

Water calibration constant cNMR 3.2%
3He NMR Signal Height SNMR 1.5%
Total NMR uncertainty PNMR 3.5%

Table 4.2: NMR polarimetry uncertainty.

4.5.3 EPR Measurements

When applying the external magnetic field, Rb atom (F = 3) state splits into seven

sublevels. The frequency of the mF = −3 → mF = −2 transition is proportional to

the magnetic field plus the field created by the polarized 3He:

νEPR = ν0 + ∆ν. (4.31)

Description Parameter Uncertainty

Frequency shift ∆ν 3%
Derivative dνEPR/dB 0.16%
Constant κ 1.5%
Density npc 1.1%

Total EPR uncertainty PEPR 3.5%

Table 4.3: EPR polarimetry uncertainty.

As mentioned above, the EPR frequency shift during the measurement is given by

the difference in the νEPR before and after the spin flip. The following equation [87]
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gives a quantitative description of the relationship between this quantity and 3He

polarization inside the pumping chamber:

2∆νEPR = 2 × 2µ0

3

dνEPR

dB
κµ3HenpcPpc. (4.32)

In order to extract the EPR frequency shift, a constant function is used to fit the

EPR spectrum. The discussion of the terms on the right hand side is as follows: µ0

is the permeability of vacuum, µ3He the magnetic moment of 3He, the cell density

npc has been given before. The derivative dν/dB has a unit in MHz/G and can

be calculated from the absolute EPR resonance frequency. It is fitted by the linear

function [88],

dυ

dB
= 0.4670779 + 7.37904 × 10−4B, (4.33)

where B is the holding field magnitude.

The constant κ is related to the spin-exchange cross section and is independent

of 3He polarization. It is determined in [84]:

κ = 4.52 + 0.00934Tpc, (4.34)

where Tpc is the pumping chamber temperature, typically 175◦C for Rb-only cell and

235◦C for hybrid cell.

The polarization of the EPR measurement is as follows:

Ppc = 2∆νEPR × (2 × 2µ0

3

dνEPR

dB
κµ3Henpc)

−1. (4.35)

Since δTpc = 10◦C, the systematic error of the EPR measurement due to κ is

determined as δκ
κ

= 1.5%. Another major uncertainty in the determination of polar-

ization from EPR measurement comes from the frequency shift, which is typically

δ∆νEPR=1 kHz, corresponding to an uncertainty of less than 3%. The uncertainty
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of dν/dB comes solely from the uncertainty in the field magnitude δB/B which is

determined to be 1.6 × 10−3. Table 4.3 lists all sources of systematic uncertainties.

The overall uncertainty in the EPR polarimetry is 3.5%.

Fig. 4.10 shows an example of EPR measurement taken from the cell “Kelly”.

Figure 4.10: EPR measurement of cell “Kelly”. The frequency shift is proportional
to the 3He polarization.

The polarization of 3He target is measured by two methods: NMR-AFP and

EPR. The NMR measurement gives

P3He = cNMRSNMR, (4.36)

where the value of water calibration constant cNMR depends on different cells as well

as the physical position of the water cell. The EPR and NMR polarimetry agree to

within 3% based on extensive measurements on cell “Richards”. Polarization values

based on EPR measurements for different cells are listed in Table 4.1.
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5

Data Analysis

The goal of this experiment is fourfold: first, to measure a double spin asymmetry

from three-body photodisintegration of longitudinally polarized 3He using a circularly

polarized photon beam; second, to extract the unpolarized differential cross section

for the aforementioned process; third, to obtain the helicity-dependent differential

cross section difference, and finally, to extract the total cross section of ~3He(~γ, n)pp.

A double spin-dependent asymmetry is defined as,

A =
dσ++

dΩ
− dσ+−

dΩ
dσ++

dΩ
+ dσ+−

dΩ

, (5.1)

where σ++ and σ+− refer to the cross sections of the two different target spin states,

respectively. In the above definition, the photon beam helicity is positive, i.e., right

circularly polarized photons. Similarly, one can form the asymmetry by flipping the

photon beam helicity and keeping the target spin direction unchanged. In an ideal

experiment, one needs to take data for all four beam-target spin configurations with

about the same amount of beam time for each configuration in order to suppress false

asymmetries. The beauty of measuring an asymmetry is that many experimental
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factors which need precise determinations in cross section measurement would cancel

out to the first order.

Using the experimental quantities, the asymmetry expression is written as,

A =
NP −N ′

A

NP +N ′
A − 2N ′

N

· 1

Pt · Pb
, (5.2)

where NP (N ′
A) refers to the number of neutron events within the chosen acceptance

and after the cuts applied (will discuss in details later) when the target spin and the

photon spin are parallel (antiparallel), normalized to the integrated photon numbers

of the parallel spin case. N ′
N refers to the corresponding neutron events from the

nitrogen reference cell also scaled to the integrated photon numbers of the parallel

spin case. Pt and Pb are the target and beam polarization, respectively.

The unpolarized differential cross section is defined as,

dσ

dΩ
=

(NP +N ′
A)/2 −N ′

N

NP
γ ·Nt · ε

, (5.3)

where NP , N ′
A and N ′

N are defined before. NP
γ is the integrated number of photons

extracted using the downstream detectors in spin parallel runs. Nt is the target

thickness. ε is the detector acceptance which includes both the extended target

effect and the detector efficiency extracted from the simulation.

Similarly, the helicity-dependent differential cross section difference is obtained

via the following formula,

(
dσ

dΩ
)P − (

dσ

dΩ
)A =

NP −N ′
A

NP
γ ·Nt · ε

. (5.4)

It is noted that N2 is not relevant to the above equation. The reason is that N2

is unpolarized, so it doesn’t affect the helicity-dependent cross section difference. In

a photodisintegration measurement, such as the ~3He(~γ, n)pp process at low energies,
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the process of interest only produces a small number of neutrons compared with the

total number of events collected. Therefore, the core of the analysis is to subtract

the large background and extract neutron events reliably. This includes two major

steps: the detector calibration and particle identification (PID) by applying cuts to

separate neutrons from photons.

A detailed description of how data are analyzed is presented in this chapter.

5.1 Analysis Procedure

Our approach is to extract all the raw counts in spin Parallel (P), spin Anti-parallel

(A) and N2 (N) cases using the same cuts, and scale them according to the integrated

photon numbers. In calculating the asymmetry, the beam and target polarizations

also need to be taken into account.

For the extraction of the differential cross section, we use the same raw counts

in three cases as well as the absolute integrated photon flux information. A Monte

Carlo simulation is also used to correct for the detector acceptance which includes

both detector efficiency and the extended target effect.

The data analyzed in this thesis were obtained during a 36-hr data taking period

from May 15th-17th, 2008. Table 5.1 summarizes all the 11.4 MeV runs we have

analyzed.

To determine spin P and A, we resort to the EPR frequency signal. Since 3He

g-factor 1 is negative, when 3He spin is parallel to the magnetic field, the EPR

frequency is lower. Therefore, if we do an EPR measurement in parallel case, we

observe the signal as low→ high → low (like a hat). If the initial spin is antiparallel,

then we observe high → low → high (like a well). In this way, we determine the spin

directions.

1 Nucleons and nuclei have spin and magnetic moments and therefore associated g-factors.
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Target Total runs Run number
D2 2 368-369

3He Spin P 18 370-376, 388-393, 407-411
3He Spin A 21 379-385, 396-402, 413-419

Aluminum plate 1 421
N2 8 423-430

Table 5.1: 11.4 MeV run summary: D2 runs were taken at the beginning, then we
had 3 sets of spin P and A data in turns. Aluminum plate and N2 data were taken
towards the end. The time for each individual run was about half an hour, and the
total beam time on 3He target was around 20 hrs.

5.2 Raw Data Conversion and Skim of the Data

The software we use to convert raw data to ROOT ntuples is called TRAP, which

refers to TUNL Real-time Analysis Package. The purpose of this software is to

simplify the processes involved in creating acquisition and analysis software for the

physics experiments at HIγS. These tools allow us to vary analysis parameters, gen-

erate histograms, and define data cuts. I will describe details of the off-line analysis

procedure used to determine the asymmetry from the raw data.

After converting raw data into the Ntuples, the skim of the data is conducted.

This skim process serves as a first pass of the data quality check. In the scaler of

each Ntuple file, the following information is read out: paddle counts, counts of the 2

downstream detectors, time, veto time, clock, and event number. In the Ntuple file,

the three important output parameters are time-to-analog converter (TAC), analog-

to-digital converter (ADC) and time-to-digital converter (TDC) channel numbers,

which correspond to pulse shape discrimination (PSD), pulse height (PH) and time-

of-flight (TOF) information. During the skim process, events with paddle rates

smaller than 20000 Hz are dropped. This is to get rid of the periods when the beam

was unstable, for example, when the beam tripped. Figure 5.1 shows the paddle rate

over the entire running period. This results in roughly 1% loss of data.
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Figure 5.1: The paddle rate over the 11.4 MeV running period. Events with paddle
rates lower than 20000 Hz are dropped.

5.3 ADC Calibration

After the data were skimmed, calibrations were conducted to relate detector infor-

mation to the physical variables of detected particles including the energy and timing

information.

First, the goal of ADC calibration is to relate ADC channel numbers to the pulse

height of the neutron detector signal. The expression of the calibration is

PH(MeVee) = (ADC − pedestal) · gain. (5.5)

Please note: eV and eVee are not the same thing. The former is to measure

the energy and the latter is to measure the response of a detector. The reason

the subscript ee (which means electron-equivalent units) is adopted is because light

output for heavier particles such as a proton is smaller than that of an electron of
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an equal kinetic energy.

From the expression above, it is obvious to conclude that we need to determine

two quantities: the pedestal and the gain.

5.3.1 Pedestal Determination

At the beginning of the experiment, a few runs were performed to measure the ADC

pedestal, which refers to the offset resulting from the DC bias of the electronics,

mostly due to photo-multipliers (PMTs). In other words, when no events were

received by the detector, triggers were used to readout the ADC channels. Figure 5.2

exhibits a typical pedestal spectrum from ADC channels.
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Figure 5.2: A pedestal spectrum from ADC channels.

The centroid values of the pedestals are determined by fitting the spectrum to a

Gaussian curve. Table 5.2 lists the pedestal values of the 7 detectors.

74



Detector Pedestal(ADC channel)
50◦ 110
75◦ 102
90◦ 65
105◦ 113
130◦ 97
145◦ 102
160◦ 97

Table 5.2: ADC pedestal channel numbers for detectors used in the experiment.

5.3.2 Gain Determination

The detector gain is defined as energy per channel. It is obtained through a two

point calibration,

gain =
CsEdge(MeVee) − Ped(MeVee)

CsEdge(ADC) − Ped(ADC)
, (5.6)

where CsEdge refers to Cs edge and Ped refers to pedestal. From the last subsection,

we know the Pedestal positions and Ped(MeVee)=0. So we need to extract the Cs

edge positions from the 137Cs source calibration runs.

The 137Cs runs were conducted by placing a 137Cs source near the detectors. It

usually took 5 minutes to accumulate enough statistics to determine the Compton

edge. The Cs source generates a well known γ-ray of 662 keV, which enters the liquid

scintillating detector and subsequently causes scintillation by Compton scattering

with the electrons inside. The highest kinetic energy that the recoil electron can

have after Compton scattering with the incoming γ-ray is the backscattering, when

θ=180◦.

In determining where the Cs edge is located, a GEANT4 simulation was per-

formed in which 662 keV gammas were incident at one 90◦ detector and the resulting

light output spectrum was viewed. A smearing was applied to the simulated light
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Figure 5.3: Comparison between Cs source run data and GEANT4 simulation. The
Cs edge is determined to be at 0.52 MeVee.

output data so that it is consistent with the experimental Cs source data. Figure 5.3

shows the comparison between the simulation and the experimental data. The lo-

cation of the Cs edge can be extracted from the simulated histogram. A conclusion

was made that 1 Cs = 0.52 MeVee. The gain numbers are shown in Table 5.3.

5.4 TDC Calibration

There are 4096 TDC channels and their full-scale range is around 208 ns. Similar

to the ADC calibration where an ADC channel is converted to a pulse height, TDC

channels need to be converted to TOF.

TOF = (TDC − TDCγ) · C + TOFγ. (5.7)
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Detector Gain (MeVee/chan)
50◦ 0.00045
75◦ 0.00051
90◦ 0.00047
105◦ 0.00050
130◦ 0.00049
145◦ 0.00046
160◦ 0.00049

Table 5.3: The detectors’ gains were determined by the Cs edge and pedestal posi-
tions.

We need to determine two quantities as well: the γ peak position and the TDC

calibration constant C.

5.4.1 γ-flash Alignment

Due to many factors such as the difference in cable length, raw TDC spectra have

varied one by one. It is crucial as a first step to identify the γ peak and adjust it to

zero. During our experiment, a run using a thin aluminum plate (Run 421) was taken

to achieve this goal. The γ-flash spectrum corresponds to photons scattering from

the target and traveling at the speed of light. These events are typically Compton

scattered photons. Once the γ-flash position is found, then the TOF zero point can

be determined. The width of γ peak provides a good measure of the timing resolution

of the system. A reasonable FWHM value is less than 3 ns [89].

5.4.2 TDC Calibration Constant

TDC calibration constant is defined by the following equation,

TDCCal =
TDCn − TDCγ

TOFn − TOFγ
. (5.8)

In order to extract the constants, we need to know the exact locations of both

the gamma peak and the neutron peak. D2 gas target runs can provide neutron peak
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Figure 5.4: A fit was made to TDC spectrum (before any cuts) to determine γ-flash
TDC channel number. The γ-flash is not an exact Gaussian distribution.

Detector Gamma Peak(TDC channel)
50◦ -1230
75◦ -1265
90◦ -1431
105◦ -1300
130◦ -1466
145◦ -1488
160◦ -1268

Table 5.4: Gamma peak positions expressed in TDC channel numbers.

information because neutrons from 2H(~γ, n)p reaction have a Gaussian distribution

at a fixed neutron angle in the lab. The centroid value of this peak is used as

neutron peak position. The time when the gammas and the neutrons arrive can also

be calculated. In this way, TDC calibration constants are determined. Figure 5.5

shows the γ-peak and neutron peak in the D2 gas run. Since γ-rays travel at the

speed of light before entering the neutron detectors, they arrive at a time before the

slower-moving massive neutrons.
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Figure 5.5: D2 gas target run 369: the left peak is photon peak, and red line indi-
cates the centroid value. The smaller right neutron peak is fitted using a Gaussian.
Purple line indicates the centroid value.

However, the extended target effect could result in a slight inaccuracy of the

constant determination. A GEANT4 simulation is used to fine tune the constants

and the method is to adjust the TDC calibration constants until the D2 data match

the simulation. As can be seen from Figure 5.6, neutron peaks spread more at the

backward and forward angles.

Detector TDC calibration const. (ns/chan)
50◦ 0.048
75◦ 0.050
90◦ 0.049
105◦ 0.049
130◦ 0.049
145◦ 0.049
160◦ 0.050

Table 5.5: TDC calibration constants for BC-501A detectors used in the experiment.
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Figure 5.6: The comparison between the D2 simulation and the D2 experimental
data. TDC calibration constants are fine tuned to match the two. We can see that
the neutron peaks spread more at the backward and the forward angles due to the
extended target effect.

5.4.3 Conversion from TOF to Energy

TOF information can be converted to neutron kinetic energy. We use the relation

that the total energy is the sum of kinetic energy and rest energy to write the

following expression,

Ek =
Mn

√

1 − β2
−Mn, (5.9)

where Ek is the detected neutron energy, Mn = 939.565 MeV/c2 is the neutron mass,

β = v/c, where v is the velocity of the particle and c is the speed of light. The first

term on the right hand side is the total energy of a neutron with velocity v.
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5.5 Cuts study

We now present the cuts placed on the data. Overall, 4 sets of cuts were applied.

They are multiplicity cut, pulse shape discrimination (PSD) cut, pulse height (PH)

cut and TOF cut.

5.5.1 Multiplicity Cut

runnumber
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m
ul

tic
ut

0.965

0.970

0.975

0.980
multicut:runnumber

Figure 5.7: The ratio of events that passed the multiplicity cut.

The first cut applied to the data set is the multiplicity cut. The definition of mul-

tiplicity is: number of detectors which produce non-zero signals for a single event.

The criteria is rather simple: any event with multiplicity larger than 1 will be elim-

inated.

Applying this multiplicity cut would result in roughly a 3% loss of the total events.

Figure 5.7 shows the ratio of the total number of events that passed the multiplicity

cut to the total number of events versus run number.
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5.5.2 PSD Cut

For organic scintillators, the most common way to examine the event type is to study

the decay time constants through pulse shape analysis. The technique of using charge

integration to distinguish between the two types of events is described as follows:

Most of the observed scintillation light is prompt fluorescence. The composite yield

curve consists of two exponential decays: one is a fast component which has a decay

time of a few nanoseconds and the other is a slow component which takes several

hundred nanoseconds.

The process of pulse-shape discrimination can be used to separate neutron in-

duced events from γ-ray induced events with the same pulse height. In the detector,

γ-rays interact primarily with the electrons and neutrons interact primarily with

protons. Protons and electrons will produce different amounts of light because of

the delayed emissions. Protons, with higher dE/dx, will have longer decay times,

therefore exhibiting longer “tails” to their pulses than electrons.

The definition of PSD parameter is the difference between the integrated charge

over the long and short gates. The short gate has a time range of 20-40 ns and the

long gate is around 150-200 ns. PSD measures the amount of charge in the tail of

the pulse, as seen in Figure 5.8. In Section 2.4, a description of the mesytec MPD-4

4 channel particle discriminator module is given and this module uses a ratio of fast

to slow component of scintillator light output.

A self-consistent and reproducible method to apply a PSD cut is described as

follows. ADC channels are divided into equally spaced small segments, then the

centroid values of each segment as well as the variance are extracted. Figure 5.9

shows a PSD spectrum with applied cut. We chose to apply the cut along the 6σ

line and get rid of all the events on the left side. The systematic effect of varying

the cut from 5σ to 7σ was studied and is presented in the later part of this chapter.
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Figure 5.9: A PSD spectrum with the applied cut indicated by the right red curve.
The left red curve indicates the centroid of the photon band, and neutrons locate to
the right of the band. The vertical axis is calibrated PH in the units of MeVee.
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5.5.3 PH Cut

The hardware threshold in the ADC channel is due to a pulse-height threshold of

roughly 1
4
×137 Cs (∼ 0.6 MeV) applied in the experiment. This threshold is not

a straight line, instead it is smeared over a few keVee, which poses extra difficulty

in comparing the data with the simulation. So we choose to apply a slightly higher

software cut—0.2 MeVee to make the edge uniform. In Figure 5.9, this cut means

adding a straight horizontal line along the 0.2 MeVee and getting rid of all the events

underneath. Figure 5.10 shows the effects of PSD and PH cuts.
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Figure 5.10: The effect of different cuts for all parallel spin runs at 90◦. (From
top to bottom) The top line is after 6σ PSD cut; the second line is after PH cut; the
third line (green) is N2 run after PSD and PH cuts, and the fourth line (red) is 3He
after N2 subtraction.

However, a PH cut of 0.2 MeVee would produce an efficiency curve with the

rapidly changing section from 0 to 2.3 MeV neutron energy. Since the maximum

energy of neutrons decreases with the increment of the angles, we take 50 degree to

do a study. The neutrons have a maximum energy of 2.6 MeV, which is larger than

the maximum neutron energy at six other angles. In this case, 88% [90] of the neutron
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counts are in the rapidly changing region. At angles 130, 145 and 160 degrees, since

the maximum neutron energies are smaller than 2.3 MeV, all the neutrons are in the

rapidly changing region. This is a very big concern in the data analysis.

There are two other important points about the hardware threshold. First, the

detection efficiency depends on Cesium threshold. Alex Crowell did an extensive

study in his thesis [42] and showed that the higher the Cs Bias threshold, the lower

the detection efficiency. Second, the relationship between the Cs threshold and cor-

responding neutron energies is not linear. For example, 1 Cs corresponds to about

2 MeV neutrons. However, the light output is not linear in that region [91]. Due to

that, 1/4 Cs is about 0.6 MeV instead of 0.5 MeV.

5.5.4 TOF Cut

After the first three filters, a significant portion of photon events are rejected. The

last round is TOF cut. While the leading edge of the TOF window was straight-

forward to determine according to the spectrum, the trailing edge was not. In fact,

the trailing edge corresponds to the slow moving neutrons, i.e. low energy neutrons.

Therefore by choosing a low energy cutoff–1.1 MeV in our case, the TOF window can

be determined. There was a discussion about whether the low energy cutoff should

be increased to 1.5 MeV in order to avoid the sharply increasing region on detection

efficiency curve. Table 5.6 summarizes the ratios between the number of neutron

events in the selected energy region and the total number of events. We decided not

to use 1.5 MeV because it cuts away a large portion of neutron events. The cuts

are varied from 1.0 MeV to 1.2 MeV (approximately ± 3 ns on TOF) to observe the

systematic effects.

Table 5.7 shows the TOF window range. By summing over the raw counts within

the TOF window and subtracting the events within an equal length of sideband

to eliminate the background events, the number of neutrons were finally obtained.
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Detector CDB En >1.1 MeV CDB En >1.5 AV18 En >1.1 AV18 En >1.5
50◦ 0.65 0.50 0.73 0.61
75◦ 0.66 0.49 0.75 0.62
90◦ 0.66 0.48 0.74 0.61
105◦ 0.64 0.46 0.73 0.59
130◦ 0.59 0.39 0.68 0.53
145◦ 0.53 0.34 0.62 0.47
160◦ 0.40 0.23 0.49 0.34

Table 5.6: The ratio between the number of neutron events in the selected energy
region and the total number of neutrons according to different theories. CDB refers
to CD Bonn.

Detector TOF start (ns) TOF stop (ns)
50 37 62
75 33 52
90 34 52
105 35 52
130 37 62
145 33 52
160 30 52

Table 5.7: TOF window range. The stop line corresponds to a neutron energy of 1.1
MeV. The side bands start from 90 ns, and have equal lengths as the neutron range.
The regions are based on the simulation results.

For the sideband selection, the conventional method is to subtract events using two

sidebands with lengths of one half that of the data region, one on each side. Since

the left side is contaminated by photons, we simply place the side bands on the far

right side, starting from 90 ns.

5.6 Photon flux determination

5.6.1 Back Detector Normalization

The determination of the accurate integrated γ flux information is crucial. As men-

tioned in Section 3.2, two methods were used during the experiment to monitor the
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Figure 5.11: Two detectors were placed around the downstream D2O target. This
plot compares the asymmetry between the counts. The average of the two is used to
extract the neutron yield.

flux. One was a 3-paddle system and the other was the downstream D2O target

with two neutron detectors. The efficiency of the paddle is energy dependent and

must be well calibrated, so it can only be used as a rough check. In the downstream

D2O monitoring system, the two detectors were running in the fast mode (in MPD4

module) which means they were deadtime-free. Figure 5.11 shows a study of the

asymmetry of the neutron counts on both detectors. We take the average of these

two detectors as a measurement of the integrated photon flux.

Integrated photon number determination

To determine the integrated photon numbers, we used the following equation,

Nγ =
Nn ·Dt

Nt · dσ
dΩ

· ε
, (5.10)

where Nn refers to the number of neutrons the back detectors received. Dt is the

correction factor for deadtime. Since the back detectors were running in a deadtime
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free mode, and the DAQ system (seven main detectors) had deadtime, this needs

to be corrected (We can also correct the raw counts, same effect). Nt is the D2O

target thickness, dσ
dΩ

is the differential cross section determined from the total cross

section [64] and the angular distribution sin2(θCM). ε is the detector acceptance

which includes both extended target effect and the detection efficiency from the

GEANT4 simulation. In this way, the integrated photon numbers were determined.

The following table lists the values of all the parameters used in the extraction.

Parameter Value
Dt 0.85

length 4.7 cm
D2O density 1.1056 g/cm3

Avogadro 6.02 × 1023 mol−1

D2O 20.04 g/mol
r 6.35 cm
d 91.44 cm

90◦ lab angle conversion 93.524◦

dΩCM/dΩlab 1.0019
ǫ(efficiency) 0.213

Table 5.8: The parameters used in calculating the integrated gamma flux. r refers
to the radius of the detector surface and d is the distance between the target center
and detector surface center.

The total photon numbers for spin P, spin A and N2 runs are:

NP
γ = 1.126 × 1012;

NA
γ = 1.239 × 1012;

NN
γ = 5.488 × 1011. (5.11)

Problems with the back detectors

Figure 5.12 shows the run-to-run neutron yields using the average back detector

normalization. In the 11.4 MeV running period, we took 3 sets of data for each
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Figure 5.12: Neutron yields versus run number: Spin P (black) and Spin A (red).
The yields are obtained from the number of accepted neutrons after PSD, PH and
TDC cuts, corrected by the deadtime, then normalized by the average back detector
counts.

spin state. A systematic downward trend versus run is observed, which gives rise

to a false asymmetry. A considerable amount of work was devoted to studying

this drift. The Experimental Physics and Industrial Control System (EPICS) online

archive record during our running time was examined. This indicated that the beam

intensity was increased by 30% between Run 395 and 400, which was during the

second spin antiparallel period, as can be seen from Figure 5.13. Ring current was

shifted from 105 mA to 108 mA, and intra-cavity power also shifted from 0.6 W to

0.7 W. The beam profile was relatively stable throughout the running time, because
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the collision angles change very little, seen from Figure 5.14. Figure 3.2 shows that

the distance between the collision point and the primary collimator is 60 m. Then

in the X axis, if the angle changes by 0.01 mrad, the beam center will change by 60

m× 0.01 mrad ∼ 0.6 mm, which is negligible compared with the 22 mm diameter

collimator. Therefore the beam profile was very stable during the runs.

The systematic drift of the normalized yields poses a challenge to the asymmetry

measurement which is expected to be only of a few percent. Therefore, the result is

very sensitive to relative normalization. After a lot of discussion, we decided to use

a new method which is presented in the next subsection for relative normalization

between spin P and A runs.

5.6.2 Gamma Peak Normalization

Fig 5.15 describes a new approach to estimate the relative photon flux: for each

neutron detector, the majority of the events seen are photons, which means each

neutron detector is essentially a gamma detector. For each run, we would select a

gamma peak region on each detector’s TDC spectrum and add the events together

as the relative photon number measure for this run.

Figure 5.16 shows the comparison between back detector normalization and gamma

peak normalization. We choose the 90◦ detector, and fit using a straight line to test

the stability of the yields. Using the gamma peak, the yield is more stable, thus

suppressing the false asymmetry.

However, there are two drawbacks of this gamma-peak method: first, this method

can only provide relative integrated photon measurements. As a result, it is not appli-

cable to cross section measurements which need absolute integrated photon informa-

tion. Second, this method is cell- and position-dependent, which means the change

of the target cell itself or its position would invalidate this method. Fortunately,

the spin flip (P→A or A→P) didn’t require the movement of the 3He target, so this
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Figure 5.13: The top three plots show the Paddle rate, electron beam current
and FEL power as a function of time. These three parameters indicate the stability
of HIγS flux. The last one plots the correlation between the paddle rate and the
product of beam current and FEL power. In principle, the product of ring current
and FEL power should be proportional to flux.
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Figure 5.14: This plot shows the collision angles X and Y as a function of time.
These two parameters indicate the stability of HIγS beam position. We consider
beam profile stable during the running period.

gamma-peak normalization method is used to obtain the relative flux comparison

between spin P and A runs.

Two other quantities are needed to obtain the physics asymmetry. They are 3He

target polarization and γ-beam polarization. It is claimed that the HIγS beam is

100% polarized, as presented in Section 3.2. We will discuss the target polarization

in the next section.

5.7 Target Polarization

The 3He target used in this experiment was named “Linda”. Using the fact that

Rb’s resonance lines can be broadened by collisions with the 3He atoms and the

width of the laser absorption line is proportional to the density of the 3He atoms
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Figure 5.15: A self-explanatory figure: the straight horizontal line indicates a
constant beam-related and random background. Total number of events within the
γ-flash serves as a relative measure of the integrated photon numbers.
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Figure 5.16: Comparison of the two normalization methods at 90◦. The data
points are normalized yields by back detector (left) and by photon (right). Both sets
of data have “pol0” fit (fit with a straight line). The reduced χ2 values are used to
measure the yield stability. The photon normalization has a smaller value than the
downstream detector normalization, which indicates that the γ-peak normalization
method is more stable.
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in the cell [92], its target density was determined to be 7.197 ± 0.070 amagats. At

the beginning of the experiment, the oven temperature was not very stable, ranging

from 228◦C to 235◦C. As a result, target polarization did not reach its peak (∼39%).

Then a temperature controller was installed to maintain the oven temperature at

238◦C. The NMR water calibration constant was determined to be 0.026 ± 0.001

/mV . During the production run period, we took advantage of the spin flip time

interval (the time when we could access gamma vault) to do NMR measurements.

The 3He polarization were extracted as,

P3He = cNMR · SNMR, (5.12)

where cNMR is the water calibration constant and SNMR is the 3He NMR signal.

Figure 5.17 shows the 3He polarization throughout the 11.4 MeV production runs.

The average 3He polarization was ∼42%.
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Figure 5.17: 3He polarization during the 11.4 MeV running period. The polariza-
tion is based on 3He NMR signal calibrated by water NMR signal.
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5.8 Statistical uncertainty

After obtaining the neutron counts and polarizations, we are ready to extract the

asymmetry.

5.8.1 Asymmetry Extraction

Rewrite the asymmetry from eqn. 4.2,

A =
NP −NA · NP

γ

NA
γ

NP +NA · NP
γ

NA
γ
− 2NN

NP
γ

NN
γ

· 1

Pt · Pb

, (5.13)

where NP and NA refer to the number of neutron events within the chosen acceptance

and after the detector cuts. They include the contribution from the background,

such as neutrons from the N2, air and glass. The ratio
NP

γ

NA
γ

is from the gamma peak

normalization and
NP

γ

NN
γ

is from the downstream detectors.

Another way to express the asymmetry is by using a dilution factor. They are

two equivalent ways. Using the former expression makes the handling of statistical

uncertainty easier; therefore, that’s the one we chose to use.

5.8.2 Statistical Error Calculation

To properly handle the statistical uncertainty, we wrote the full expression for the

asymmetry,

A =
NP −NA · a

NP +NA · a−NN · b
1

P
, (5.14)

where a =
NP

γ

NA
γ

, b =
NP

γ

NN
γ

, and P = Pt · Pb.

95



The statistical uncertainty is,

δA =
δ(NP −NA · a)(NP +NA · a−NN · b) − (NP −NA · a)δ(NP +NA · a−NN · b)

(NP +NA · a−NN · b)2

=
δNP (2aNA − bNN ) + δNA(−2aNP + abNN ) + δNN(bNP − abNA)

(NP + aNA − bNN )2
.(5.15)

For further simplication, let

NP +NA · a−NN · b = dn, (5.16)

then

δA = δNP (
2aNA − bNN

(dn)2
) + δNA(

−2aNP + abNN

(dn)2
) + δNN(

bNP − abNA

(dn)2
). (5.17)

Therefore we obtained the statistical uncertainty of the asymmetry:

δA =

√

δN2
P (

2aNA − bNN

(dn)2
)2 + δN2

A(
−2aNP + abNN

(dn)2
)2 + δN2

N(
bNP − abNA

(dn)2
)2.(5.18)

For the statistical uncertainty of the unpolarized differential cross section, we

have

dσ

dΩ
=

(NP +N ′
A)/2 −N ′

N

NP
γ ·Nt · ε

, (5.19)

and the statistical uncertainty is,

δ(
dσ

dΩ
) =

√

(NP +NA · a2)/4 +NN · b2
NP

γ ·Nt · ε
. (5.20)

For the helicity-dependent differential cross section difference, the statistical un-

certainty is,

δ((
dσ

dΩ
)P − (

dσ

dΩ
)A) =

√
NP +NA · a2

NP
γ ·Nt · ε

. (5.21)
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5.9 GEANT4 Simulation

5.9.1 The Goal of the Simulation

To address the goal of the simulation, let’s first write down the expression for the

number of neutron events,

Nn = Nγ · ρ · ∆Z · dσ
dΩ

· ε, (5.22)

where Nγ is the integrated photon flux, ρ is the target density, ∆Z is the target length

seen by the detector, dσ
dΩ

is the differential cross section and ε is the acceptance.

There are two complications in the real experiment. One is that the 3He target is

40 cm long, so the extended target effect needs to be taken into consideration. The

other one is the detector efficiency, which depends on the PH cut. In order to correct

for these effects, a GEANT4 simulation is needed.

The general methodology for the simulation is as follows. We ran the GEANT4

simulation twice under the same conditions. The first run is to use a point like target

(Run 1) and the second is to use a 40 cm long target (Run 2). Then we divide the

number of detected neutrons from Run 2, by the number of neutrons going into the

detectors from Run 1 to obtain seven ratios, which describe the detector acceptance

including both the detector efficiency and the extended target effect. The GEANT4

simulation needs to simulate as closely to the real experiment as possible so that all

these convoluted effects could be taken into account.

5.9.2 GEANT4 overview

GEANT means GEometry ANd Tracking. It is a toolkit for simulating the passage of

particles through various materials. The GEANT4 class has several categories: track,

processes, tracking, event, run, readout. It is written in C++ and designed to

accommodate the requirements of space and cosmic ray applications. The simulation
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includes [93] many features, to name a few: 1. The geometry of the system. This

means assigning a geometrical volume to all the experimental apparatus, and their

relative positions. 2. The materials involved. We need to define all the materials

in the objects. 3. The generation of primary events. In our case, the events are

neutrons. 4. The tracking of particles through materials and electromagnetic fields.

The beauty of GEANT4 system is that a lot of built-in physics models describe the

interactions of particles with matter very well.

5.9.3 A Description of the Simulation

The GEANT4 simulation used in the data analysis was first constructed by Brent

Perdue [94]. It contained all the materials for BC-501A liquid scintillating detectors,

and the detector response function table. All the physics processes are defined in

the LHEP PRECO HP physics list. The simulation was later modified by Wei Chen and

myself to describe this 3-body photodisintegration experiment. A description of the

simulation is as follows.

Geometry and Materials

The scintillator volume was built within GEANT4 based on the actual experimental

dimensions. Most materials are defined in the standard GEANT library. A picture

of the defined geometry can be found in Figure 5.18.

Neutron Generation

Generally speaking, two methods could be employed to generate particles [95]. The

first one is the indirect method, by simulating the γ source and using the cross section

for the photodisintegration reaction. The second is to directly generate neutron

events whose distribution is based on the differential cross section of the three-body

photodisintegration reaction. The computational time for the second approach is

much less.
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Figure 5.18: An overview of the graphic display of the simulation. Target and
detectors locations are the same as in the actual experiment.

Neutrons were generated uniformly within the 40 cm long target weighted by the

3He cross section. The differential cross section is provided by Deltuva [33] and it is

calculated for every 5 degrees. At each angle, the neutron energies range from 0 to

the cutoff2.

Final Bookkeeping

Once an event is seen by a certain detector, it is registered. The output data file

includes the following information of this event: Event ID, incoming neutron energy,

neutron TOF, which detector sees this neutron, energy deposit and light output.

2 In the 11.4 MeV case, the highest possible neutron energy is around 2.6 MeV. But it varies at
different angles.
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Then the light output is smeared in order to simulate the resolution of the de-

tector. The new light output needs to be above a certain threshold, for example,

0.2 MeVee to be recorded. Neutrons with light output lower than PH threshold

are rejected. The TOF of the event is also smeared to simulate the detector tim-

ing resolution. More details about smearing parameters are presented in the next

section.

5.9.4 Simulation Calibration

In addition to the basic input of the simulation, additional user routines are used

to take care of two important items: light output response function and detector

resolutions.

Light output response

The nature of neutral particle detection is a double-edge sword. On the one hand,

it makes the PSD technique possible and particle identification much easier; on the

other hand, the detector-dependent factors must be taken into account and the light

output response (LOR) function is a crucial one. This is because neutrons don’t

directly deposit energy in the scintillator, instead, it is proton in the hydrogen and

carbon which interact with neutrons, producing scintillating photons.

The LOR functions of neutron detectors describe the amount of light obtained

from a given amount of energy deposited in the scintillator. Birks [96] uses a pa-

rameterization that relates the differential light output dL/dx to the energy loss

dE/dx,

dL

dx
= S

dE

dx
[1 + kB(

dE

dx
)]−1, (5.23)

where S is the absolute scintillation efficiency and kB refers to the quenching 3 of

3 Light quenching is a phenomenon in which fluorescence emission can be quenched by laser light
pulses from modern high repetition rate lasers.

100



the light output.

Then for a particle of energy E, the total light output can be calculated as,

L(E) =

∫ R

0

dL

dx
dx. (5.24)

A commonly used conversion relation from proton energy (Tp in MeV) to electron

equivalent energy (Te in MeVee) is from Cecil [97].

Te = a1Tp − a2(1 − e−a3T
a4
p ), (5.25)

where ai are variables to be determined for each individual case.

Pywell et al. measured and used the light output for a BC-505 detector in the

Blowfish detectors [98], a segmented neutron detector consisting of 88 BC-505 liq-

uid scintillator cells. Considerable amount of work was also done at TUNL [99]

to determine the detection efficiency. The pulse height is proportional to the to-

tal light output from the scintillator and is measured by ADC. For α-particles, the

light-output function is described as follows,

Lα(E) = 0.017E1.6511 : E < 6.76MeV

= −0.5319 + 0.0974E : E > 6.76MeV (5.26)

Tables of light output response functions were generated for all the likely particles

with BC-501A [90]. They are: α, 8Be, 9Be, 10Be, 12C, 13C, H , 2H , 3He, muon, 16O,

pion, triton.

5.9.5 Timing and Energy Resolution

Since the electronics have background noise, timing and energy resolutions are two

terms we need to fine tune in the simulation.

First, the light output was smeared according to the following equation(L is before

the smearing and L′ is after the smearing),

L′ = L+R(σ1) + R(σ2) ·
√
L, (5.27)
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where R(σ) is a random number sampled from a normal distribution, and σ1 =

0.005 MeV ; and σ2 = 0.077 (MeV )1/2 [98].

Energy resolution is determined by the FWHM. The neutron TOF is smeared by

a normal distribution with standard deviation to match the experimental readout.

One can determine the overall timing resolution by looking at the gamma flash

peak. Since the photons from the target should all arrive at the same time, any

broading of the peak would be due to electronics effects [90]. We fit the gamma-flash

with a Gaussian to determine an appropriate FWHM.

Similar to the gamma peak, the energy resolution is also obtained from the alu-

minum plate run which is described in Section 4.4. The variance was varied until

the shape of simulation matched the width of the γ-peak.

5.9.6 Detector Efficiency

The detector efficiency as a function of incoming neutron energy depends on the

PH threshold applied. Since the neutron is charge neutral, it collides and transfers

a fraction of energy to the proton. Depending on the value of PH cut, there is a

probability that low energy protons are not detected. This leads to the conclusion

that the lower the pulse height, the higher the detection efficiency, and vice versa.

Figure 5.19 shows the efficiency as a function of neutron energy with the varying

pulse height cut. The simulated data were produced by placing a detector in the

path of a pencil-size neutron beam with energies from 0 to 15 MeV.

5.9.7 Comparison with Experimental Data

The simulation is obviously a very complicated one and needs to be checked before

being applied to data correction. The method is to compare simulation results with

some other existing data.

In order to test whether the light output table can match the experimental data,
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Figure 5.19: Neutron detection efficiency as a function of neutron energy. This
plot compares the the detector efficiency with four different PH thresholds: 1 Cs
(blue), 1/2 Cs (green), 1/3 Cs (red) and 1/4 Cs (black). The lower the threshold is,
the higher the detection efficiency is.

we have simulated a 8 MeV neutron pencil beam to compare with the data. Shown in

Figure 5.20, the agreement is quite remarkable. The comparison gives us confidence

of the light output table we used.

During the experiment, Cs source runs were taken every 3 hours, during the spin

flip time interval. The simulation was carried out to match the Cs run data, as

shown in Figure 5.3. The agreement is also good, which further lends credibility to

the simulation.

5.9.8 Apply Simulation to Data Correction

Here is a summary of the use of GEANT4 simulation.

• Simulate the Cs source run for ADC calibration

• Simulate 2H(~γ, n)p for TDC calibration
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• Simulate the downstream neutron detector efficiency

• Compare the simulation with 3He data to determine the TOF range

• Determine the main detectors convoluted coefficients.

The precise determination of detector efficiency and extended target effect re-

quires GEANT4 simulation. The simulation was performed first with a point target,

i.e., neutrons were generated at one fixed point. Then the simulation was performed

again with a 40 cm long target, i.e. neutrons were generated within the target cell.

By comparing the simulation results and the simulation input file, we can extract

the convoluted coefficients, i.e. ratio between the true solid angle and point target

solid angle, multiplied by the detector efficiency. The coefficients for 3He spin P and

A runs are of the same value, so the correction plays a negligible role in the asym-

metry determination. Nevertheless, they are crucial in determining the unpolarized
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differential cross section values.

Besides data correction, GEANT4 simulation is also used to study the systematic

uncertainties, which are presented in the next section.

5.10 Summary of the Systematic Uncertainty

For any nuclear physics experiment, determining systematic uncertainty is a daunting

challenge. The major systematic uncertainties are identified from the three sources:

analysis cuts, the HIγS beam and the target.

Uncertainties due to the Analysis Cuts

• PSD cut The PSD cut was the most critical among all the cuts. The main

goal of this cut is to eliminate background photons and retain as many neutrons

from the process of interest as possible. The PSD cut was shifted by ±σ to 5σ

and 7σ to compare the impact on the extracted asymmetries and differential

cross section.

• PH cut As discussed before, the PH cut determines the neutron detector

efficiency. The same PH values were applied in the data analysis and in the

simulation. The uncertainty in the gain and pedestal determination could result

in a mismatch. In this case, the PH threshold was varied by ±5% (from 0.19

MeVee to 0.21 MeVee) to observe the change.

• TOF cut The leading edge of the TOF window is fixed and the systematic

effects of TOF cut comes from the trailing edge. This was studied by varying

the low energy cut from 1.0 MeV to 1.2 MeV (approximately ± 3 ns on TOF)

to observe the changes.
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Uncertainties due to the Beam

• Integrated Photon Flux The estimation of systematics in the integrated

photon flux, i.e. the total number of photons on the target during the data

taking for each configuration, is a challenge. The systematics of the asymme-

try and the differential cross section should be treated differently. As discussed

in Section 4.6, in the asymmetry extraction, the integrated flux information is

obtained by counting events within the gamma peak as a relative flux measure-

ment. Since the gamma flash stability is around 1%, the systematic uncertainty

in obtained by the change of the absolute asymmetry value if the relative nor-

malization changes by 1%.

For the differential cross section, the integrated photon flux is determined from

the back detector monitor counts. We assume the gamma flash is quite stable,

and study the standard deviation of the ratios between the back detector counts

and the gamma flash counts. This gives us an estimation of how much the back

detector counts fluctuate. It is determined to be 7.7%. Another factor which

contributes to the integrated photon flux is the uncertainty of the total cross

section of 2H(~γ, n)p, which is determined to be 2.9%.

• Beam Polarization We never had a chance to measure the beam polarization.

According to FEL staff members, the circular polarization was close to 100%.

In this case, we take 5% relative uncertainty in the asymmetry measurement

and it has no effect on differential cross sections.

Uncertainties due to the Target

• Target Polarization We have already discussed about the target polariza-

tion in Section 3.5. Systematics due to NMR measurement is ∼3.5%, EPR

measurement is ∼3.5%, and two methods agree to 4%.
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• Target Thickness The systematic uncertainty of 3He target thickness is esti-

mated to be around 2%. Two factors contribute to this uncertainty: the first

one is due to the density measurement, and the second one is due to the tem-

perature change. We have varied the target chamber temperature by ±10◦ C

to determine the change.

5.10.1 Table of Systematic Uncertainties

We present four tables of systematic uncertainties here: 2H(~γ, n)p differential cross

section, ~3He(~γ, n)pp asymmetry, unpolarized differential cross sections, and the helicity-

dependent differential cross section difference. The asymmetry table contains abso-

lute values. This is due to the small asymmetry which makes relative comparsion

not meaningful. For other tables, all values are relative values.
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Sources Values at different angles (deg)
50.0◦ 75.0◦ 90.0◦ 105.0◦ 130.0◦ 145.0◦ 160.0◦

(1a) PSD cut 0.99% 0.15% 0.29% 0.28% 1.97% 1.04% 2.33%
(1b) PH cut 0.93% 0.50% 0.43% 0.78% 1.58% 2.33% 2.26%
(1c) TOF cut 1.52% 0.44% 0.48% 0.69% 2.69% 2.79% 2.1%

1, From analysis cuts 2.04% 0.68% 0.70% 1.08% 3.69% 3.78% 3.86%

(2a) TXS uncertainty 2.9% 2.9% 2.9% 2.9% 2.9% 2.9% 2.9%

2, From HIγS beam 2.9% 2.9% 2.9% 2.9% 2.9% 2.9% 2.9%

(3a) Target thickness 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%

3, From target and detector 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%

Total Systematics 4.07% 3.59% 3.59% 3.69% 5.1% 5.17% 5.22%

Table 5.9: Systematic uncertainties in the 2H(~γ, n)p differential cross section measurement. All are relative values.
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Sources Values at different angles (deg)
50.0◦ 75.0◦ 90.0◦ 105.0◦ 130.0◦ 145.0◦ 160.0◦

(1a) PSD cut 0.0264 0.0019 0.0062 0.0045 0.0464 0.0315 0.0037
(1b) PH cut 0.0448 0.0089 0.0188 0.0311 0.0597 0.0504 0.1096
(1c) TOF cut 0.0257 0.0146 0.0123 0.0085 0.0161 0.0084 0.108

1, From analysis cuts 0.0581 0.0172 0.0233 0.0326 0.0774 0.06 0.1539

(2a) Beam Polarization (relative) 5.0% 5.0% 5.0% 5.0% 5.0% 5.0% 5.0%
(2b) Normalization 0.041 0.025 0.024 0.027 0.020 0.033 0.03

2, From HIγS beam 0.041 0.025 0.024 0.027 0.021 0.033 0.030

(3a) Target Polarization (relative) 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0%

3, From target and detector 0.0037 0.0021 0.0018 0.0047 0.0049 0.0036 0.0019

Total Systematics 0.071 0.030 0.034 0.043 0.080 0.069 0.157

Table 5.10: Systematic uncertainties associated with ~3He(~γ, n)pp asymmetry measurement. All are absolute values except
when indicated explicitly.
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Sources Values at different angles (deg)
50.0◦ 75.0◦ 90.0◦ 105.0◦ 130.0◦ 145.0◦ 160.0◦

(1a) PSD cut 1.96% 0.29% 1.49% 0.44% 3.17% 4.94% 2.89%
(1b) PH cut 1.82% 2.31% 2.08% 3.41% 6.59% 6.13% 4.4%
(1c) TOF cut 2.01% 2.62% 1.03% 1.24% 7.97% 5.51% 8.85%

1, From analysis cuts 3.34% 3.5% 2.76% 3.65% 10.81% 9.61% 10.29%

(2a) Flux 7.7% 7.7% 7.7% 7.7% 7.7% 7.7% 7.7%
(2b) TXS error 2.9% 2.9% 2.9% 2.9% 2.9% 2.9% 2.9%

2, From HIγS beam 8.2% 8.2% 8.2% 8.2% 8.2% 8.2% 8.2%

(3a) Target thickness 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%

3, From target and detector 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%

Total Systematics 9.1% 9.1% 8.9% 9.2% 13.7% 12.8% 13.3%

Table 5.11: Systematic uncertainties of ~3He(~γ, n)pp differential cross section. All are relative values.
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Sources Values at different angles (deg)
50.0◦ 75.0◦ 90.0◦ 105.0◦ 130.0◦ 145.0◦ 160.0◦

(1a) PSD cut 0.287 0.0387 0.1218 0.0384 0.3189 0.4060 0.0953
(1b) PH cut 0.4622 0.1481 0.4053 0.2333 0.3811 0.5825 2.1965
(1c) TOF cut 0.2763 0.2538 0.2924 0.0844 0.0401 0.0934 2.3903

1, From analysis cuts 0.6104 0.2964 0.5144 0.2510 0.4985 0.7162 3.2476

(2a) Flux 7.7% 7.7% 7.7% 7.7% 7.7% 7.7% 7.7%
(2b) TXS error 2.9% 2.9% 2.9% 2.9% 2.9% 2.9% 2.9%

2, From HIγS beam 8.2% 8.2% 8.2% 8.2% 8.2% 8.2% 8.2%

(3a) Target thickness 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%

3, From target and detector 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%

Total Systematics 61.6% 30.8% 52.1% 26.5% 50.6% 72.1% 324.9%

Table 5.12: Systematic uncertainties of ~3He(~γ, n)pp difference in differential cross sections. All are relative values.
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6

Results and Discussions

In this chapter, we first present the differential cross section of the 2H(~γ, n)p reaction

using the D2 gas target, and then present the asymmetry and unpolarized differential

cross section results from 3He(~γ, n)pp reaction, followed by the results of the helicity-

dependent differential cross section difference and the total cross section.

6.1 2H(~γ, n)p Differential Cross Section at Eγ=11.4 MeV

A differential cross section measurement of the 2H(~γ, n)p reaction using a 40 cm long

D2 gas target cell was taken prior to the main experiment. This half an hour run was

for calibration purpose. The differential cross sections were extracted using the back

D2O detector for the determination of the integrated photon flux. As mentioned

before, the total cross section of 2H(~γ, n)p was previously well determined [64]. At

11.4 MeV, the total cross section of this reaction is 1257 ± 36 µb [100]. This reaction is

predominantly an electric dipole interaction. In the center of mass frame, the angular

distribution of the neutrons is sin2(θCM), therefore the differential cross section at any

angle could be determined. The D2 cross section measurement served as a calibration

to make sure that detectors function properly and the analysis procedure is reliable,
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etc.

The total number of events would follow the expression,

Nn = Nγ ·Nt ·
dσ

dΩ
· ∆Ω · ǫ. (6.1)

The notations were introduced before. The solid angle ∆Ω is first assumed the

same as that of a point target,

∆Ω =
πr2

d2
, (6.2)

where r is the detector radius, and d is the distance between the center of the detector

and the center of the target cell. We need to correct for the solid angle since the

D2 target cell is 40-cm long. In the simulation, the accepted neutrons were obtained

through the same cuts described before and corrected for detection efficiency and

acceptance.

Detector Diff. cross section (µb/sr) Stat.(µb/sr) Sys.(µb/sr)
50◦ 98.9 5.3 4.0
75◦ 140.2 5.5 5.0
90◦ 150.0 5.8 5.4
105◦ 123.8 5.2 4.6
130◦ 84.2 5.1 4.3
145◦ 47.3 3.1 2.4
160◦ 23.7 2.1 1.2

Table 6.1: Differential cross section results of ~2H(~γ, n)p as a function of the neutron
angles in the CM frame, together with statistical and systematic uncertainties.

The integrated flux information is based on the average value of the two down-

stream detectors. The differential cross section we calculate is in the lab frame and

has to be converted to the center of mass (CM) frame. This conversion is based on

the fact that the same number of particles are scattered into the solid angle dΩCM
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Figure 6.1: The differential cross section of 2H(~γ, n)p. There are two fitted curves:
the red solid one is assuming the angular distribution in the format of Asin2(θCM), and
the blue dotted one is assuming the angular distribution in the format of Bsin2(θCM)+
C, both using the total cross section value 1257 µb. The solid circles are the data
points from this measurement with statistical uncertainties only.

at θCM , and solid angle dΩL at θL in two different frames. Let’s write down the

equation,

(
dσ

dΩ
)CMsinθCMdθCMdφCM = (

dσ

dΩ
)LsinθLdθLdφL. (6.3)

Since there is rotational symmetry, φ terms is cancelled out. We rewrite the

equation,

(
dσ

dΩ
)CM = (

dσ

dΩ
)L|

dcosθL

dcosθC

|. (6.4)

The ratio on the right hand side is the Jacobian of the transformation. Therefore,
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the relationship between the two differential cross sections is,

(
dσ

dΩ
)CM = (

dσ

dΩ
)L

1 + γcosθCM

(1 + 2γcosθCM + γ2)3/2
, (6.5)

where

γ = (
m1m3

m2m4

E

E +Q
)1/2, (6.6)

where m1 is the incoming particle mass, m2 is the mass of the initial rest particle, m3

and m4 are masses after scattering. E is the total initial energy of the two particles

in the CM frame and Q-value refers to the amount of mass converts to kinetic energy

of the final states.

Figure 6.1 shows the unpolarized deuteron differential cross section as a function

of θc.m. together with the expected angular distribution. As seen from the plot, the

overall agreement is very good. Using Asin2θ fit, we obtained A = 148.9± 2.8. The

total cross section is therefore σ = 1248 ± 23µb. The aforementioned fit only takes

electric dipole (E1) transition into account. In order to take the magnetic dipole

(M1) transition into account, we used the formula B + Csin2θ to fit again. The

fitted parameters are: B = 9.5 ± 2.2, C = 134.6 ± 4.3, and the total cross section is

σ = 1247 ± 45µb. Compared with the world data 1257 ± 36µb, the good agreement

demonstrates that the detectors were functioning well and the analysis procedure

were solid, thus we have more confidence to proceed to the 3He data analysis.

6.2 ~3He(~γ, n)pp Physics Asymmetry Result at Eγ=11.4 MeV

Figure 6.2 shows the extracted physics asymmetry as a function of the neutron

scattering angles from 50◦ to 160◦ in the lab frame, integrated over neutron kinetic

energy range above 1.1 MeV. The rather large statistical uncertainties are due to

two reasons. One is the relatively short data taking time and the other is very high

background rates observed in our experiment, as explained in the previous chapter.
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Figure 6.2: The physics asymmetry A as a function of neutron lab angles. The
solid circles are the data points from this measurement with statistical uncertain-
ties only. Two sets of calculations include four dynamic inputs: AV18 (Blue) and
AV18+Urbana IX (Purple) from Golak [23]; CD Bonn (Green) and CD Bonn +
∆-isobar (Black) are from Deltuva [28].

Our asymmetry results are compared with two sets of calculations performed by

two groups. Skibinski and Golak [47, 48] did their calculations by solving three-body

Faddeev equations with the AV18 potential alone or supplemented with the 3NF-

Urbana IX (UIX) [7], including explicit π- and ρ-meson exchange currents. Deltuva’s

calculations were based on the Alt-Grassberger-Sandhas (AGS) equation [27], and

employed CD Bonn potential with Coulomb interaction between the two protons

as a pure nucleonic reference and two-baryon coupled-channel CD Bonn +∆ with

Coulomb. It is observed from Fig. 6.2 that the calculated asymmetry remains almost

unchanged by the inclusion of the ∆-isobar, and this means there is no significant

∆-isobar effect at this energy. In contrast, a larger UIX 3NF effect is shown. There
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are two reasons for this. First, UIX has a larger 3NF effect on trinucleon binding

and subsequent scaling. Second, the calculations have different computational ap-

proaches. Overall, the effect due to the three-body force is still small in the calculated

asymmetry.

The seven data points were fit by a straight line, i.e.“pol0” fit. The fitted

value was -0.0066 ± 0.0253. The χ2/ndf=9.539/6, so the statistical uncertainty

is 0.0253 ×
√

9.539/6 = 3.2%. This is the first asymmetry result and agrees with

theory to within 2σ. However, given the experimental uncertainty, our data can not

differentiate one set of calculation from another. Therefore, it is important to have

smaller uncertainties in future measurements.

Detector NP NA Asymmetry Statistical Systematic
50◦ 4937 5385 -0.094 0.083 0.071
75◦ 5461 5708 0.052 0.046 0.030
90◦ 4573 4787 0.044 0.049 0.034
105◦ 3439 3787 -0.117 0.065 0.043
130◦ 1190 1336 -0.124 0.083 0.080
145◦ 1901 1968 0.089 0.103 0.069
160◦ 896 975 -0.049 0.139 0.157

Table 6.2: Asymmetry results of ~3He(~γ, n)pp from this experiment as a function of
the neutron angle in the lab, together with the statistical and systematic uncertain-
ties. NP and NA refer to the numbers of neutron events after all the cuts.

6.3 3He(~γ, n)ppUnpolarized Differential Cross Section Result at Eγ=11.4
MeV

The unpolarized differential cross section is extracted by averaging the parallel-spin

and antiparallel-spin differential cross sections. It is defined as,

dσ

dΩ
=

(NP +N ′
A)/2 −N ′

N

NP
γ ·Nt · ε

, (6.7)

117



where NP , N ′
A and N ′

N are defined before. NP
γ is the integrated photon numbers

extracted using the downstream detectors in spin parallel runs. Nt is the target

thickness. ε is the detector acceptance which includes both the extended target

effect and the detector efficiency extracted from the simulation.

Figure 6.3 shows the extracted unpolarized differential cross section as a func-

tion of the neutron lab angle. The four different theory curves are from the same

calculations in the asymmetry analysis. The top two curves are from AV18 with and

without the Urbana IX force. They predict larger differential cross section values

than CD Bonn with and without ∆-isobar.
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Figure 6.3: The extracted unpolarized differential cross section as a function of
neutron lab angles. The solid circles are the data points from this measurement with
statistical uncertainties only. Two sets of calculations include four dynamic inputs:
AV18 (Blue) and AV18+Urbana IX (Purple) are from Golak [23]; CD Bonn (Green)
and CD Bonn + ∆-isobar (Black) are from Deltuva [28].

It is important to point out that the differential cross section data are model-

dependent. Recall that the TOF cut starts from 1.1 MeV, which means all neutrons

with energy below this threshold are cut away. Therefore, one needs to address the

model dependent uncertainty in addition to other systematic studies. The way that
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Det. Deltuva Golak DXS diff(µb/sr) Method I Method II
50◦ 0.65 0.73 7.4 6.2% 3.7%
75◦ 0.66 0.75 11.5 6.8% 3.9%
90◦ 0.66 0.74 12.8 6.1% 5.0%
105◦ 0.64 0.73 11.4 7.0% 6.7%
130◦ 0.59 0.68 6.6 7.6% 6.2%
145◦ 0.53 0.62 3.3 8.5% 4.6%
160◦ 0.4 0.49 0.74 11.3% 1.8%

Table 6.3: Model dependent study of the unpolarized differential cross section of
3He(~γ, n)pp. The second and third columns list the ratios of the number of neutrons
with energy higher than 1.1 MeV to the total number of events in different calcula-
tions (see text). The fourth column is the DXS difference between these two. The
fifth and sixth columns give out the uncertainty using two different methods which
are described in the main context.

Det. NN DXS(µb/sr) Stat.(µb/sr) Sys.(µb/sr) Mod.(µb/sr)
50◦ 1758 69.4 4.9 6.3 3.4
75◦ 1361 99.1 3.4 9.1 5.3
90◦ 1117 86.7 3.3 7.7 4.8
105◦ 973 61.0 3.1 5.6 4.2
130◦ 286 43.7 2.7 6.0 3.0
145◦ 579 33.9 2.8 4.4 2.2
160◦ 252 24.4 2.7 3.2 1.6

Table 6.4: Differential cross section results of 3He(~γ, n)pp as a function of the neutron
angle in the lab, together with statistical and systematic uncertainties. NN refers to
number of neutrons from the background including N2. NP and NA are shown in the
asymmetry table.

the detector acceptance ε corrects for the unmeasured part is described as follows: in

the GEANT4 simulation, the input neutrons are generated with energies ranging from

0 to the maximum possible En values, and the output neutron events are analyzed

with the same PH and TOF cuts as those applied to the data. The ε is then extracted

using the entire input neutron energy spectrum to account for the unmeasured region.

The theoretical curves presented are also from En = 0 and up.
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Since we actually measure neutrons with energies above 1.1 MeV, we depend on

two different calculations from Deltuva (CD Bonn) and Golak (AV18) to extract the

unmeasured part. Two different methods are used to extract this model-dependent

uncertainty. The first one is to directly compare the ratios of the number of events

with energy above 1.1 MeV to the total number of events from these two calculations,

then take half of the difference between the two as the model-dependent uncertainty

of the unpolarized differential cross sections. The second method is to compare the

unpolarized differential cross sections in two theories, then multiple by the fraction of

the unmeasured neutrons. The uncertainties from these two methods are presented in

Table 6.3. The final uncertainty is based on the average of the two. The unpolarized

differential cross section results, together with statistical, systematical and model

dependent uncertainties are listed in Table 6.4.

As we can see, the overall agreement between the theoretical predictions and

the experimental results is reasonable. At the forward and backward angles, the

data agree more with Golak and at 105◦ and 130◦ more with Deltuva. The largest

discrepancy is at 160◦, the most backward angle. We have investigated the discrep-

ancy at certain angles. First of all, they could be due to the contamination from

the leak-in photons. We have revisited the particle identification procedure (PID)

process and double checked the systematic study, and we are confident about the

cuts applied. Secondly, an important factor that could result in the discrepancy has

been addressed in Chapter 4: a PH cut of 0.2 MeVee makes most neutrons fall in the

region where efficiency curve changes rapidly. Improved measurement in the near

future with better absolute integrated photon flux measurement at higher photon

energies is essential to provide a more stringent test of the theory.
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6.4 Helicity-dependent differential Cross Section Difference Result at
Eγ=11.4 MeV

The helicity-dependent differential cross section difference is calculated via the fol-

lowing formula,

(
dσ

dΩ
)P − (

dσ

dΩ
)A =

NP −N ′
A

NP
γ ·Nt · ε

. (6.8)

Helicity-dependent differential cross section difference is proportional to the prod-

uct of the asymmetry and the unpolarized differential cross section. Figure 6.4 plots

the helicity-dependent differential cross section difference and Table 6.5 lists all the

values as well as the associated uncertainties. The statistical uncertainties are domi-

nated by the statistical uncertainties in the asymmetry measurement. In the future,

we need to have better measurements at 11.4 MeV and other higher energies in order

to extract the GDH integral value.

Detector DXS diff.(µb/sr) Statistical (µb/sr) Systematic(µb/sr)
50◦ -12.9 11.5 8.0
75◦ 10.3 9.1 3.2
90◦ 7.7 8.6 4.0
105◦ -14.3 7.9 3.8
130◦ -10.9 7.2 5.5
145◦ 6.0 6.9 4.3
160◦ -2.4 6.8 7.7

Table 6.5: The differential cross section difference as a function of the neutron lab
angle, together with statistical and systematic uncertainties.

6.5 3He(~γ, n)pp Total cross section result at Eγ=11.4 MeV

Although we only have seven unpolarized differential cross section data points, we

are still very interested in extracting the total cross section. In order to do so, we
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Figure 6.4: The helicity-dependent differential cross section difference at various
neutron lab angle together with the four theoretical results presented previously in
Figs. 6.2 and 6.3. The solid circles are the data points from this measurement with
statistical uncertainties only.

took two different approaches. The first one is to assume the differential cross section

distribution has the same shape as that of the theoretical prediction [23], and fit the

experimental data using the theory curve. The fit constant is about 1.054, which

then multiply by the theoretical total cross section (AV18+Urbana IX, 725.2 µb) to

get the experimental total cross section. The second is to assume that the differential

cross section can be written as an expansion in terms of Legendre Polynomials up to

third order.

dσ

dΩ
(cosθ) = a0P0(cosθ) + a1P1(cosθ) + a2P2(cosθ) + a3P3(cosθ), (6.9)
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where

P0(cosθ) = 1

P1(cosθ) = cosθ

P2(cosθ) = (3cosθ2 − 1)/2

P3(cosθ) = (5cosθ3 − 3cosθ)/2 (6.10)

When we integrate the differential cross section to extract the total value, the

higher order terms become zero when they are integrated over the solid angle. There-

fore, the only term that matters is a0, which is about 61.7. We multiply a0 by 4π to

get the total cross section. Table 6.6 lists the fit coefficients. A detailed discussion

of the angular distribution coefficients was published by Weller.et al [101].

Parameters Fit values (µb)
a0 61.7 ± 2.9
a1 14.2 ± 4.7
a2 -44.6 ± 5.0
a3 -21.9 ± 6.1

Table 6.6: The fit parameters of the total cross section.

The extracted values from these two methods agree with each other to within

11 µb. The final result based on the Legendre Polynomial expansion method on the

extracted total cross section is 776±18 (stat.)±32 (sys.)±19 (mod. A)±11 (mod. B)

µb. Model uncertainty type A refers to the uncertainties in correcting for the unmea-

sured neutrons with energy below 1.1 MeV (see section 6.3), and Model uncertainty

type B refers to the two different approaches used to extract the total cross section.

Fig. 6.5 shows the world data on the total cross section of the three-body pho-

todisintegration of 3He for an incident photon energy range of about 10 - 24 MeV

together with two sets of theoretical predictions. While the agreement between our
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result and the theory at 11.4 MeV is good, the recent measurement [24] at 10.2 MeV

is only about one third of the theoretical value. Future data in this energy region is

crucial to clarify the situation.
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Figure 6.5: The total cross section of three-body photodisintegration. The square
red point is from this measurement with the Legendre polynomial fit. Two green
solid circles are from Nagai 2005 measurement. Other data points include all previous
measurements. Data are compared to two theoretical curves: CD Bonn+∆ isobar
(solid line), AV18+UIX+MEC (dot-dashed line).
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7

May 2009 Test Run

7.1 New Developments since May 2008 Asymmetry Measurement at
HIγS

Following the experiment in May, 2008, a new high pressure 3He cell made of pyrex

glass coated with a thin layer of pure aluminosilicate glass has been fabricated and

tested [102]. The coating technique was first invented by Cates et al. at University

of Virginia (UVA) by doping the aluminum nitrate nonahydrate (Al(NO3)3·9H2O)

to the solution produced by the Sol-gel process [103]. Several smaller single pyrex

cells produced using the Sol-gel technique yielded longer relaxation times than those

from uncoated cells. This is the first time that this technique has been applied to

a high pressure 3He target, a double cell system with a much larger volume. The

smooth, relatively paramagnetic-free aluminosilicate glass coated surface reduces the

3He relaxation from magnetic impurities in the glass wall. Its low 3He permeability

helps prevent loss of 3He atoms for long term operation at typical temperatures

of spin exchange optical pumping (180◦ C for Rb-only-cells and 230◦ C for Rb-K

hybrid cells). The high background rates from GE180 glass is expected to be highly

suppressed since the coating thickness is on the order of microns. The cell was made
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by Mike Souza from Princeton University, coated by Cates et al. and filled with 3He

by Averett et al. at the College of William and Mary. This new Rb-K hybrid 3He

gas target cell has the same dimensions as the GE180 cell previously used at HIγS,

and contains 5.16 ± 0.29 amagats 3He gas.

Figure 7.1: The design of a movable 3He target. A large octagon support serves as
the base. Two Helmholtz coils stand on both sides to generate a uniform magnetic
field in the target cell region. The movable stand sits in the center of two RF coils
which are placed parallel to the ground.

As mentioned in the Chapter 4, a N2 reference cell with the same dimension as

that of the target cell was used for background subtraction. The 3He cell and the

N2 cell were interchanged frequently during the data taking at HIγS. This was done

manually in the spring of 2008, which was inconvenient and inefficient. A computer

controlled target motion system has been designed and assembled. Fig. 7.1 shows
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the design of the target motion system. The 3He and the N2 cells are placed on the

system and can move up and down together, in and out of the gamma beam by a

motor-controlled support. When the N2 cell is in the gamma beam line, the 3He

target is ∼ 11.5 cm above it while being polarized by the laser system at the same

time, significantly reducing the overhead of the data taking.

7.2 Test Run: Setup and Findings

In May 2009, a test run of the unpolarized pyrex 3He target “Bolt” was carried out at

HIγS. This test run used a circularly polarized γ beam at an incoming energy of 11.4

MeV. Figure 7.2 shows the experimental setup including a motor controlled six-layer

support and three detectors placed at 50◦, 90◦, 130◦ and 90 cm, 75 cm, 90cm away

with respect to the center of the target. Two experimental issues were found during

the measurement. One was that the photon flux was only 1.5×107/s, much lower

than what we requested for the test, resulting in poorer statistics. The second was

due to another experimental apparatus in the upper stream beamline, the 3He target

set up for the test was not ideal: the target was about 2 m downstream compared to

the position in May 2008’s experiment. This gave rise to problems including long air

paths and the rather short distance to the downstream D2O target which generated

considerable background neutrons.

Table 7.1 lists six different targets on different layers and their allocated beam

time in one cycle. Each cycle took 30 mins. The purpose of these targets are as

follows: the aluminum plate was used to locate the γ-peak position in the TDC

spectrum. The liquid D2O target was to test the detector settings. The empty/air

run was important because it would directly measure neutrons from scattering in

the open air path. The D2 gas cell had the same purpose as liquid D2O except that

the target thickness was much smaller. The N2 gas cell was used for background

subtraction. The 3He cell “Bolt” was given half of the running time because the
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Figure 7.2: (Left) The six layer support is attached to the automated motor control.
A web camera was set up to monitor the movement of the support to make sure the
right target cell was in place. (Right) A close look at the six layer support. From
top to bottom: aluminum plate, liquid D2O target, completely empty/air, D2 gas
target, N2 gas target and 3He target. The three lower targets have end caps attached
to both ends for initial alignment.

main goal of the run was to test this new pyrex cell.

Targets Allocated running time (min)
Al plate 1

D2O 2
Empty/Air 2

D2 Gas 5
N2 Gas 5

3He 15

Table 7.1: Six different targets and their allocated beam time. One complete cycle
of data taking took 30 minutes.
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As expected, the pyrex glass generated fewer background events, the neutron

yield was 20% lower than that from the GE180 cell. Figure 7.3 shows the comparison

between two different N2 cells. There are two major differences between these two

cells. First, the glass materials are different: one is pyrex (but not Sol-gel coated.

Only “Bolt” was Sol-gel coated.) and the other is GE180. Second, one is a double

cell system, and the other only has a target chamber. Since the pumping chamber is

not placed in the photon beam anyway, a direct comparison between the two yields

would shed light on the difference between the two glass materials. As seen from

Figure 7.3, in most energy bins, the pyrex cell has ∼20% fewer events.
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Figure 7.3: Comparison between N2 GE180 (top, black) and N2 pyrex (bottom,
red) targets. In most energy bins, the number of events is reduced by ∼20% in the
pyrex N2 cell.

A comparison between 3He GE180 (“Linda”) and Sol-Gel coated pyrex (“Bolt”)

targets was also made. Since “Linda” had a larger 3He number density than “Bolt”,

we used the following expression to extract the yield of the pressure scaled “Bolt”:

(YBolt − YN2
) × 7.27/5.24 + YN2

, (7.1)

where YBolt, YN2
refer to the normalized yields of “Bolt” and N2 pyrex targets. It is
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observed that the pyrex cell yields fewer background neutrons, which is in agreement

with the N2 cell case.
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Figure 7.4: Comparison between GE180 (“Linda”, top, black) and Sol-Gel coated
pyrex 3He (“Bolt”, red, bottom) targets. The yield is scaled by the back detector
counts.

What we have also learned from this test run includes the following: first of all,

stable and high flux (at least 5×107/s) is important for obtaining good statistics.

Second, the knowledge of relative flux measurement needs to be understood better

than 1% which is crucial for helicity-dependent cross section difference measurements.

Third, the downstream D2O target needs better shielding from neutrons. Finally, a

vacuum pipe between the beam source and the target is absolutely necessary because

it helps reduce scattering from the air.
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8

Summary and Future Outlook

8.1 Summary

In summary, this thesis presents a first study of three-body photodisintegration of

3He with Double Polarizations at an incident energy of 11.4 MeV. The results are

compared to the three-body calculations using both CD Bonn and AV18 potentials

and are in agreement within limited statistics.

This measurement was carried out at the HIγS facility located at Duke University.

The γ-rays were produced using the intra-cavity backscattering of a free electron

laser. The γ-rays were 100% circularly polarized and the incident flux intensity was

∼5×107/s, with an energy spread of ∼3% at 11.4 MeV.

This measurement used a high-pressure polarized 3He target and this target was

based on spin-exchange optical pumping of hybrid alkali. Two methods NMR and

EPR were used to measure the 3He polarization, which was determined to be ∼

42.0% ± 1.6%. The 3He nuclear spin was aligned parallel and antiparallel to the

incident γ-ray momentum direction to form the spin asymmetry measurement.

The neutrons from ~3He(~γ, n)pp reaction were detected using seven liquid scintil-
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lating detectors with excellent pulse-shape discrimination properties between γ-rays

and neutrons. The detectors were placed between 75 and 90 cm from the center of

the target and at laboratory scattering angle of 50, 75, 90, 105, 130, 145 and 160

degrees. The PSD, PH and TOF information was recorded for each detector.

To select neutrons from the reaction, four cuts were applied. They were mul-

tiplicity, PSD, PH and TOF cuts. Normalization is a challenging part in the data

analysis. In the asymmetry extraction, we took a new approach based upon the fact

that each neutron detector was also a photon detector. For each run, events within

the photon peak of each detector were counted. Then, by subtracting the sideband

events, a relative measure of the integrated photon flux was obtained. Back detec-

tor counts were mainly used for the extraction of the unpolarized differential cross

sections.

Results are compared with two sets of calculations performed by two groups. One

calculation solves three-body Faddeev equations with the AV18 potential alone or

with the 3NF-Urbana IX (UIX), including explicit π- and ρ-meson exchange currents.

The other calculation was based on the AGS equation, and employed CD Bonn with

and without ∆, including the Coulomb interaction between the two protons. Our

measured asymmetry results are in agreement within limited statistics. However,

our data can not differentiate one set of calculations from another.

The unpolarized differential cross section and the helicity-dependent differential

cross section differences are also presented and compared to the same theoretical

calculations. Some discrepancy was observed. An improved measurement in the

near future with better absolute integrated flux measurement is essential to test the

theory.

The total cross section is finally extracted from the seven unpolarized differential

cross section data points. Two approaches are employed: one is to assume the

differential cross section distribution has the same shape as that of the theoretical
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prediction, and fit the experimental data using the theory curve. The other is to

expand the differential cross section in terms of the Legendre Polynomials up to

third order. The extracted result is much closer to Golak’s calculation, compared

with the 2005 Nagai measurement at 10.2 MeV, which was 1/3 of the theoretical

prediction.

8.2 Future Prospects

This measurement at 11.4 MeV is just the beginning of the study of 3He photodisin-

tegration at HIγS. A new proposal was submitted and defended in June 2009 [104]

and has been approved by the HIγS program advisory committee (PAC) in July

2009.

We requested a total of 240 hours of 100% polarized photon beam. The most

important part in making projections is to calculate the statistical uncertainty. A

detailed description of the statistical uncertainty is given in Section 5.8. In making

the projections, we assumed a simplified expression:

Error =
1

Pb · Pt ·
√

2Nn

, (8.1)

where Nn is the total number of neutron events in one spin-state. Table 8.1 lists all

the parameters for the beam and target that we use in making the projection. For

simplicity, we assume it is a point-like target. The statistical uncertainties of seven

angles at 11.4 MeV are estimated to be between 1.01% and 2.70%, where neutron

counts at the backward angles have the largest uncertainties, as shown on the left

side of Figure 8.1. On the right side of Figure 8.1, we calculate the asymmetry values

based on the total cross section values from Deltuva [33]. Besides the point target

assumption, the detector efficiency is taken to be 20%. The statistical uncertainties

for these four points are between 0.5% and 0.7%.
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Eγ (MeV) Flux (/sec) ∆E
E

(%) Pbeam (%) Ptarget (%) Beam time (hrs)
11.4 8 × 107 3.0 100.0 60.0 60
20.0 8 × 107 3.0 100.0 60.0 60
30.0 5 × 107 3.0 100.0 60.0 60
40.0 5 × 107 3.0 100.0 60.0 60

Table 8.1: Parameters for the projection of the proposed measurements.

Besides the asymmetry measurement, a direct measurement of the GDH inte-

grand is of great interest. Right now a 5-Paddle system is under development [105]

at HIγS, which will make the absolute flux measurement more reliable. The ultimate

goal is to measure the GDH integrand up to pion production threshold, so that it

provides more stringent tests of the theory.

HIγS PAC rated our proposal “very good” and granted us a total of 180 hrs to

run three measurements below 30 MeV. They suggested that since the peak of the

GDH integrand is ∼ 16 MeV, as shown in Figure 8.2, we should pick one energy

point on each side of the maximum, and another energy point around 30 MeV to

“capture the fall-off”. Beam time for the future experiment could be as early as in

2010.

Neutron lab angle [deg]
0 50 100 150

A
sy

m
m

et
ry

-0.1

0.0

0.1

0.2

Photon energy (MeV)
10 20 30 40

A
sy

m
m

et
ry

-0.05

0.00

0.05

0.10

Figure 8.1: (Left) Projection for asymmetry measurements at Eγ = 11.4 MeV.
(Right) Projection for total asymmetry measurement as a function of incident photon
beam energy. The theory curves are labeled in the same way as in Figure 1.1.

134



Photon energy (MeV)
50 100

3
)/

v 
fm

Aσ-
Pσ(

0.0

0.1

0.2

0.3

Photon energy (MeV)
10 20 30 40

3
)/

v 
fm

Aσ-
Pσ(

0.0

0.1

0.2

0.3
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(Right) The integrand up to 40 MeV dominates the total integrand, with interesting
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Appendix A

EPR Measurement Procedure

The EPR measurement is a challenging task. The following precedure is based on a

few good technical notes [106, 87] and modified for our own measurement.

A. Photodiode and lock-in Amplifier

• Adjust the position of the PIN diode so that it looks directly at the light beam

coming from the cell.

• Measure the PIN diode output, it should be a DC signal with an amplitude

between 100 mV ∼250 mV. If the signal is less than 100 mV, then check the

light and PIN diode again, also check the windows and the RF coil.

• Set-up the lock-in amplifier parameter: AC-Gain: 10 dB; Sensitivity: 200 uV

∼2mV; Time constant: 100 ms.

• Connect PIN diode to the lock-in amplifier input.

B. Modulation Source (HP 3312A)

• Function: sine wave
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• Sweep/modulate: No sweep or modulation

• Frequency: 200 Hz (this frequency is arbitrary. 200 Hz is a good choice since

it is far away from most noise sources)

• Amplitude: ≥0.4 Vpp for polarization 30%, 1.0 Vpp for ≥ 40% (Vpp=Volts

peak-to-peak), amplitude depends on the attenuation.

• HP 3312A Vp-p goes to PI circuit “V mod”, HP 3312A “sync” to Lock-in

Amplifier “ref in”.

• Make sure PI box is unplugged because we need to first find EPR resonance

without PI box.

C. Sweep Generator (HP 3314A Function Generator)

• Frequency: we need to find frequency, it changes with temperature and holding

field, usually at 11.65 MHz (the EPR RF field is swept at a frequency of 200

Hz). The RF function generator needs to be set 10 kHz higher than resonance.

• Amplitude: the voltage is chosen to be between 5-10 V.

• Modulation Mode: VCO. VCO changes the frequency of the function generator

based on the input.

• Connect PI circuit output to HP 3312A VCO.

• Connect HP 3314A sync out to Agilent 53132A Counter. Connect HP 3314A

output to the cable leading to EPR coils.

After EPR lineshape measurement, it is time for EPR polarization measurement

1. Connect Lock-in amplifier channel 1 output (from rear panel) to PI circuit in.
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2. To find the EPR resonance frequency, it is a two-step process:

a. Manually adjust the HP 3312A frequency with the smallest step 0.01MHz,

while observe the lock-in. We need to do this before plugging in PI Box.

b. We should be able to observe the lock-in signal changing when adjusting

the frequency. It should show a maximum (≥0, peak) followed by a minimum

(≤0, dip), or vice versa. The resonance is in between them when the lock-in

signal is small. Keep in mind that lock-in will read zero when it is far from

resonance as well, so look for the characteristic resonance behavior

3. PI feedback box is always on.

4. Observe the Vout of PI circuit on an oscilloscope. If it is “jumping around”

erratically, the gains must be adjusted. We need to start with the sensitivity

on the lock-in, also if it is not locking need to adjust phase (+180◦).

5. If the variation on the lock-in is big, then one possible solution is to increase

the sensitivity.

6. Once this is done, the circuit should track the resonance frequency and the

counter reading should change towards it. The lock-in signal should be stabi-

lized to a minimum.

7. Wait until the counter reading is stabilized, change HP 3312A frequency man-

ually by 0.01 MHz. You can observe a jump of 0.01 MHz in counter reading,

but then it should change back to the resonance frequency, which means the

circuit is following the resonance.

8. Start the VI program, the program cant stop the sweeping once it is trigged.

Otherwise it will cause the 3He to stay at the wrong state and hence a big loss

in target polarization.
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After EPR measurement, use a program to fit the upper and lower limit of the

signal to extract the frequency shift.
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Appendix B

A Calculation of the Background Rates

One major issue we discovered during the experiment was the background neutrons

from the GE180 glass. A calculation from Perdue [90] has demonstrated the differ-

ence. Cross section values were taken from [107, 108].

A Element Abundance Fraction En(MeV) nTOF(ns) counts/hr
10 B 0.1980 0.0079 2.96 31.59 2
11 B 0.8020 0.0321 0.00 5422.39 9
16 O 0.9976 0.5383 0.00 5422.39 0
17 O 0.0004 0.0002 7.26 20.24 0
18 O 0.0020 0.0011 3.36 29.66 1
23 Na 1.0000 0.0282 0.00 5422.39 0
27 Al 1.0000 0.0116 0.00 5422.39 4
28 Si 0.9223 0.3479 0.00 5422.39 0
29 Si 0.0467 0.0176 2.93 31.75 15
30 Si 0.0310 0.0117 0.79 61.05 0
39 K 0.9326 0.0031 0.00 5422.39 4
41 K 0.0.0674 0.0002 1.31 47.43 0

Table B.1: Background Count Rate estimates of Pyrex cell @ 11.4 MeV. The total
counts are calculated to be 132 counts/hr. A similar calculation was carried out for
GE180 glass, whose background is listed in the following table.
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A Element Abundance Fraction En(MeV) nTOF(ns) counts/hr
16 O 0.1980 0.0079 2.96 31.59 2
17 O 0.8020 0.0321 0.00 5422.39 9
18 O 0.9976 0.5383 0.00 5422.39 0
27 Al 0.0004 0.0002 7.26 20.24 0
28 Si 0.0020 0.0011 3.36 29.66 1
29 Si 1.0000 0.0282 0.00 5422.39 0
30 Si 1.0000 0.0116 0.00 5422.39 4
40 Ca 0.9223 0.3479 0.00 5422.39 0
42 Ca 0.0467 0.0176 2.93 31.75 15
43 Ca 0.0310 0.0117 0.79 61.05 0
44 Ca 0.9326 0.0031 0.00 5422.39 4
46 Ca 0.0.0674 0.0002 1.31 47.43 0
48 Ca 0.0004 0.0002 7.26 20.24 0
84 Sr 0.0020 0.0011 3.36 29.66 1
86 Sr 1.0000 0.0282 0.00 5422.39 0
87 Sr 1.0000 0.0116 0.00 5422.39 4
88 Sr 0.9223 0.3479 0.00 5422.39 0
130 Ba 0.0467 0.0176 2.93 31.75 15
132 Ba 0.0310 0.0117 0.79 61.05 0
134 Ba 0.9326 0.0031 0.00 5422.39 4
135 Ba 0.0.0674 0.0002 1.31 47.43 0
136 Ba 0.0467 0.0176 2.93 31.75 15
137 Ba 0.0310 0.0117 0.79 61.05 0
138 Ba 0.9326 0.0031 0.00 5422.39 4

Table B.2: Background Count Rate estimates for GE 180 @ 11.4 MeV
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