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Abstract

In this thesis, temporal and spatial dependence are considered within nonparametric

priors to help infer patterns, clusters or segments in data. In traditional nonpara-

metric mixture models, observations are usually assumed exchangeable, even though

dependence often exists associated with the space or time at which data are gener-

ated. Focused on model-based clustering and segmentation, this thesis addresses the

issue in different ways, for temporal and spatial dependence.

For sequential data analysis, the dynamic hierarchical Dirichlet process is pro-

posed to capture the temporal dependence across different groups. The data collected

at any time point are represented via a mixture associated with an appropriate un-

derlying model; the statistical properties of data collected at consecutive time points

are linked via a random parameter that controls their probabilistic similarity. The

new model favors a smooth evolutionary clustering while allowing innovative pat-

terns to be inferred. Experimental analysis is performed on music, and may also be

employed on text data for learning topics.

Spatially dependent data is more challenging to model due to its spatially-grid

structure and often large computational cost of analysis. As a non-parametric cluster-

ing prior, the logistic stick-breaking process introduced here imposes the belief that

proximate data are more likely to be clustered together. Multiple logistic regression

functions generate a set of sticks with each dominating a spatially localized segment.

The proposed model is employed on image segmentation and speaker diarization,
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yielding generally homogeneous segments with sharp boundaries.

In addition, we also consider a multi-task learning with each task associated with

spatial dependence. For the specific application of co-segmentation with multiple

images, a hierarchical Bayesian model called H-LSBP is proposed. By sharing the

same mixture atoms for different images, the model infers the inter-similarity between

each pair of images, and hence can be employed for image sorting.
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1

Introduction

Machine learning is a process of exploring the collected observations from perceptions

and generating a learning rule for prediction of the incoming data. The “rule” may

be represented in terms of a mapping function, translating the encoded information

from predictors to a classifier; or it may be a generative model, approximating the

underlying distribution of the observed data. For supervised learning, labels are

provided for collected samples and treated as inputs during the “training ” process.

However, sometimes it is surprisingly costly to label observations. For example,

recording a video is virtually free, but it is very expensive and time-consuming to

annotate the scene and topic for each frame.

The most popular solution to the “unlabeled” problem is to cluster observations

into groups via a mixture of density functions. This unsupervised model learns

unknown world depending on the data itself, and can also be treated as a “data

preprocessing” step to help acquire the labels easily. For example, unsupervised

learning is employed for speaker diarization. Provided a spoken document consisting

of multiple speakers, speaker diarization is segmenting the audio signal into contigu-

ous temporal regions, and within a given region a particular individual is speaking.
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For speaker diarization, three problems need to be solved: (i) How many speakers

participated in the talk? (ii) When did a speaker begin his/her talk? (iii) How long

did each speaking continue?

This is a typical multimodal-learning task. We can cluster the data with a Gaus-

sian mixture model, with each Gaussian parameter representing one speaker’s pat-

tern. To consider the first problem, we might fix the number of Gaussian components

as a constant or do model selection with cross-validation. We alternatively infer the

number of model parameters in a nonparametric manner, and the model complex-

ity is allowed to adaptively change as the data need. For the second problem, the

model performance depends on the identifiability of each inferred Gaussian parame-

ter. These parameters inferred from the data generally represent various utterances,

and need to be robust to the vocal instability. The third problem of learning du-

ration is equivalent to finding the hidden state underlying each observation. For a

temporally smooth constraint, a Markovian dependence is included within the model

assumption.

Motivated by the three challenging problems, we are interested in a category

of nonparametric probabilistic models, allowing a temporal or spatial dependence

learned from the posterior. Although the study is employed on several unsupervised

learning applications here, it may be extended to other supervised or semi-supervised

learning problems in the future.

1.1 Nonparametric Probabilistic Models

For data density estimation, a generative model is usually assumed underlying the

observations. Each observation x is i.i.d. drawn from certain distribution F (θ), with

the unknown distribution function F (·) and associated parameter θ. For example,

we can guess that F (θ) is a multivariate Gaussian distribution. Then the parameter

2



θ represents both the mean and covariance matrix. Sometimes a unimodal model is

too rigid to describe a complicated data density, such as Figure 1.1 with five Gaussian

components included. Therefore, a mixture model is considered for such a case.

Figure 1.1: A typical Gaussian Mixture.

The density function for a finite mixture with K components is

f(x) =
K∑
k=1

πkf(x|θk), with 0 < πk < 1, and
K∑
k=1

πk = 1, (1.1)

in which πk is the prior weight for data x being drawn from the component k,

and f(x|θk) represents the likelihood function of x given the parameter θk. Given

the true value of K and sufficient data samples, it usually yields a good estimate

of the mixture weights and model parameters; however, K is unknown for most

cases in advance, and an inappropriate guess of K might degrade the validation

of the model inference, leading to over- or under-fitting issues. Some parametric

approaches based on the likelihood are usually considered for model selection, such as

hypothesis testing [TK03], cross validation [Koh95], Bayesian information criterion

(BIC) [Sch78], Akaike’s information criterion (AIC) [Aka74]; or a Poisson prior is

3



chosen for K within the model and a posterior estimate can be achieved. We here

address this challenge using nonparametric statistical models.

“Nonparametric” does not mean that no parameters exist in the model. It just

indicates that the number of parameters may change as new data are observed. A

flexible nonparametric prior is expected to model any arbitrary distribution and can

be defined as a measure for infinite distributions. The Dirichlet process (DP) [BM73],

studied in Bayesian data analysis, allows such a possibility. It can be treated as a

prior for an infinite mixture probabilistic model or directly used to model the data

density.

A Dirichlet process (DP) is parameterized with a base measure G0 and a positive

scaling parameter α. The DP mixture model generates data {xi}Ni=1 as follows:

G ∼ DP (αG0) θi
i.i.d.∼ G xi ∼ F (θi) (1.2)

G0 can be any continuous or discrete distribution for the atom locations (see Figure

1.2), and it is the expectation of G; α controls the variance of G from G0. For each

data xi, the associated parameter θi is i.i.d. drawn from G, a discrete distribution

drawn from DP (αG0). A cluster is defined as the group of data sharing the same

parameter, and the expected number of clusters given the current observations is

αlogN .

There are many ways to look at the Dirichlet process. One of them is the Chinese

restaurant process (CRP) [Ald85], a random process with N customers assigned

to infinite number of tables. One table represents one cluster and the number of

customers sitting at each table is uncertain at the beginning. As a new customer

comes in, he can either choose one of the old tables that shared by the previous

ones, or just take a new table by himself. All the customers sitting at the same

table share the same dish. Figure 1.3 illustrates one example of the random process,

in which {φ1, φ2, φ3, . . .} represents the unique set of dishes ordered by these tables.

4



Figure 1.2: Graphical model of the DP mixture.

In the Chinese restaurant process, the customers represent the data and the dishes

…

Figure 1.3: A typical example of the Chinese restaurant process.

{φ1, φ2, φ3, . . .} are the unique set of parameters underlying the distribution. Assume

there are N − 1 customers having sit in the restaurant and nk denotes the number

of customers sharing the kth table. The data-generating process is as follows:

• The first customer sits at the first table;

• The Nth customer chooses the kth table with a probability proportional to nk;

• The Nth customer chooses a new table with a probability proportional to α;

• Once a new table is taken, a dish will be drawn from G0 for it.

Given the data {x1, . . . , xN}, the joint posterior distribution is for the total number

of tables taken by the N customers, the assignment of the customers to each table

5



and also the dishes ordered by the tables. By integrating out the G of Eq.(1.2), the

conditional distribution of θN given θ1, . . . , θN−1 is

p(θN |θ1, . . . , θN−1) =
α

α +N − 1
G0 +

K−1∑
k=1

nk
α +N − 1

δφk , (1.3)

in which K − 1 tables are assumed to be taken by the first N − 1 customers and

the number of tables is potentially infinite with new customers coming in. Equation

(1.3) shows that the joint distribution p(θ1, . . . , θN) is invariant to the permutation

of (x1, . . . , xN) and the data are infinitely exchangeable.

Another representation of DP is the stick-breaking process [Set94]. A unit “stick”

is broken into infinite proportions and each proportion represents a cluster (see Figure

1.4). A sample drawn from DP (αG0) can be represented as

G =
∞∑
k=1

πkδφk ,
∞∑
k=1

πk = 1, φk
iid∼ G0

πk =
k−1∏
k′=1

(1− βk′)βk, βk
iid∼ Beta(1, α), (1.4)

where δφk represents a probability measure concentrated at φk. As mentioned pre-

viously, the Dirichlet process is proposed as a measure for distributions that are

independent with the permutation of the observations. This is also true for the

stick-breaking representation. In (1.4), both {φk}Kk=1 and {βk}K−1k=1 are i.i.d. drawn,

so that the mixture weight {πk}Kk=1 and the atom locations are not functions of any

defined covariates. Although such an exchangeable property leads to a simple pos-

terior computation for DP, it is not always true for certain applications associated

with data dependence. Therefore, there is growing interest to consider a more general

form for nonparametric Bayesian models in recent years.
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……

…
Figure 1.4: An example of stick-breaking process.

1.2 Dependent Nonparametric Probabilistic Models

In this section, we focus on a category of models motivated from two aspects: one

starts from the nonparametric way so that the model structure can be adaptively

changed with new observations; the other consideration is to define a measure for

the distributions over a domain indexed by time, space or some other covariates

appended with the data. This motivation makes one naturally think of extending

the Dirichlet process to accommodate various dependent distributions. For example,

temporal dependence exists in the stock sequential analysis, video target tracking

and evolutionary clustering of weblogs, etc; spatial dependence also plays an im-

portant role in learning a social network, image segmentation and also many other

problems. To exploit the dependence existing in the data structure, it yields a gen-

eral nonparametric probabilistic model (without the exchangeable assumption) to

fit the data with more accurate estimation and prediction; meanwhile a dependent

nonparametric clustering model generates a smooth and coherent evolution so that
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the model can be easily interpretable by researchers.

An important study in this field is the dependent Dirichlet process (DDP) [Mac99,

Mac00]. It includes dependence in a collection of distributions with dynamically

varying atom locations or stick weights as the functions of data covariates [GS06].

The distribution at a data point x ∈ D has a general form as follows:

G(x) =
∞∑
k=1

πk(x)δφk(x), (1.5)

in which varying the weights πk(x) captures appearances, disappearances, rise and

fall in popularity of the atoms in G(x), while varying the locations φk(x) captures the

“atom drift” indicating the atoms change their values in a continuous fashion [AX08].

As we fix the πk(x) = πk for each k, the dependence is introduced only on the

atoms, and the model is reduced to a “single-p DDP model” with a stick-breaking

representation for the weights πk. This model has been employed to analyze the

variance (ANOVA)-type structure in [IMRM04], and extended to spatial modeling

via drawing the atom locations from a Gaussian process [GKM05], leading to a

non-stationary and non-normal random process. To make a connection with a more

general DDP form, the weights πk(x) are also considered as a function of the covariate

x. Underlying this assumption, Duan et al. [DGG07] proposed a general spatial

Dirichlet process (GSDP), allowing different sites to choose different random surfaces;

Griffin and Steel [GS06] implemented the dependence by inducing an ordering on the

random stick variables such that similar covariate values are associated with similar

orderings, and thus close distributions; Blei and Lafferty [BL06] extended the latent

Dirichlet allocatoin (LDA) [BNJL03] model by introducing the dynamics on both the

topics and mixing weights via conditional normal distributions, yielding a evolving

topic model for time series.

Another category of dependent nonparametric mixture models are developed in
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other representation forms of DP. For example, a time-varying Dirichlet process

mixture is proposed on an intuitive generalized Polya urn scheme [CDD07], intro-

ducing a temporal dependence on both the cluster locations and their weights with

a birth/death procedure. The model is easy to understand intuitively but leads to

a considerable computation and slow convergence. Another dynamic model repre-

sentation is based on the recurrent Chinese restaurant process (RCRP) [AX08]. It

assumes the data inside each temporal epoch to be fully exchangeable, whereas the

temporal order is manifested across epochs; both the popular dishes and the seating

plan of the previous epoch will influence the clustering process of the next epoch,

explained by the rich-gets-richer phenomenon. Such a partial-exchangeability as-

sumption might reduce the computation cost but the slow convergence issue still

exists for a large scale problem.

An alternative way to build a dependent Dirichlet process is to fix the atom

locations in the stick-breaking process and generate the mixture weights from a

random process dependent on the covariate values. Although one may argue that

fixing the atom locations may reduce model flexibility for “atom-drift” phenomena,

we don’t expect to see poor performance with the model as long as the number of

atoms is assumed to be infinite or large. Instead of drawing the random variable βk

associated with each stick k from a beta distribution (see Eq. (1.4)), more flexible

forms for generating the random variables are proposed to integrate the covariate-

dependence within the model. A typical example is the kernel stick-breaking process

(KSBP) [DP07], in which the dependent probability measures are constructed by

mixing the predictor locations. Each stick weight is represented in a product form

of a beta variable and a bounded kernel function so that the sum of the mixture

weights is still equal to one. Another construction is to yield probit transformations

of infinite number of normal random variables, replacing the set of beta variables

in (1.4) [RD09]. The dependence associated with the covariates is considered as the

9



input of the normal, then transformed to a set of varying mixture weights on the fixed

set of atoms. It shows that the process is nonstationary, as one of the limitations

induced by using constant atoms. However, this succinct strategy results in simple

computation, and is extremely flexible to create different sorts of nonparametric

models, including the nonparametric random effects and regression models, etc.

Instead of constructing a covariate-dependent nonparametric random process, it

is also interesting to consider a parent-children dependence and build a hierarchical

clustering in grouped or nested settings. The hierarchical Dirichlet process (HDP),

proposed by Teh et al. [TJBB06], assumes that multiple groups of Dirichlet processes

are linked by sharing the same set of atoms and also their popularity. Hence the base

measure of each child Dirichlet process is drawn from a common parent Dirichlet

process. Under this construction, two representation forms (the Chinese restaurant

franchise and a hierarchial stick-breaking process) are discussed and lead to different

inference algorithms. Motivated by a more complicated net structure of document

topics, the nested Chinese restaurant process [BGJT04] defines a probability distri-

bution on infinitely-deep and infinitely-branching trees. With a Chinese restaurant

at the top level, customers on a table can be further decomposed into smaller clusters,

generating a hierarchial tree structure. Another nested Dirichlet process [RDG08]

is developed in a stick-breaking representation, motivated by a multicenter prob-

lem. With each atom defined as a stick-breaking process, two groups may share

exactly the same density distribution, including both the atom locations and mix-

ture weights. Although this category of nonparametric model with parent-children

dependence cannot yield a set of distributions continuously changed as a function of

covariates, it leads to a flexible framework for borrowing information across different

observations, and may be employed on a multi-task learning problem.
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1.3 Multi-task Learning

Multi-task learning aims to improve the generalization performance of the model

estimation and prediction, by sharing data from multiple related tasks. For example,

the data might be collected from the same source, or partially share certain common

features for different tasks. An easy way to deal with multiple data collections is

to pool them together and learn exactly the same model; however, pooling ignores

the distinctions and correlation diversity across different data sets. An alternative

is to learn each task separately and combine the outputs together. This single-task

learning mode leads to an inefficient computation if the number of tasks is large;

moreover, the data source is not fully exploited for the model learning. Therefore,

how to share the data appropriately according to their relatedness is of interest.

Tasks can be related in different ways [AE06]: assuming that the functions learned

should be shared across tasks [Car97,BH03,MP04,YTS05,XLC07] or a lower dimen-

sional embedding is learned in common [BDS03, AE06, RI09]. There are many dif-

ferent ways to realize the transfer learning: learning multiple related functions via a

common hyper-prior of Gaussian process [YTS05,CG05,BAW07], developing multi-

task kernels based on the feature graph [MP04,LLC07,She08], sharing a hidden layer

within neural network models [Car97,BH03], and using the nearest neighbor with a

globally weighted distance measure to transfer knowledge selectively [TO96].

Multi-task learning brings two benefits when employed appropriately. First, the

model generalization may be improved by borrowing information between tasks,

especially as an individual task has limited samples or missing values. For example,

Xue et al. [XLC07] performed the multi-task learning in a classification problem and

showed a better prediction rate for the testing data; some scholars [AZ05,GLSGFV06,

LLC07] exploited the unlabeled data for each task and transferred knowledge across

multiple data sets. Furthermore, it is also interesting to obtain certain knowledge,
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like the sharing structure, to help infer the data source distribution or the correlation

between each two tasks.

Motivated by the potential multimodal property associated with multiple data

sets, one may naturally consider using the nonparametric techniques to infer model

structure. For example, constructing multi-task learning in the Dirichlet process [XLC07],

each atom is denoted as a classifier and the sharing mechanism across different tasks

is learned in a data-driven manner. Alternatively, a hierarchical model can be built

in a group setting with hierarchical Dirichlet process (HDP) [TJBB06], in which each

task is learned via a DP mixture model and multiple tasks are linked via a parent

Dirichlet process. Under this construction, the model parameters are globally shared,

while each task may favor several of those according to the respective weights specifi-

cally. The nested Dirichlet process (NDP) [BGJT04,RDG08] can also be extended to

a multi-task learning framework, with both the atoms and respective weights being

taken by related tasks. Dependent on the specific applications, different algorithms

may be chosen accordingly.

1.4 Thesis Organization

This thesis focuses on learning temporal or spatial dependence with Bayesian non-

parametric mixture models. Several clustering problems are considered: evolution

clustering for music analysis, acoustic data diarization and image segmentation. For

each illustrative examples are provided.

The remaining Chapters are organized as follows:

Chapter 2 provides background on time series analysis, with several state-of-

art models presented. We start from the hidden Markov model (HMM) [Rab89],

focusing on the elementary model structure and its influence on the later work about

sequential data analysis. Next, two typical nonparametric hidden Markov models

are introduced: one is the infinite hidden Markov model (iHMM) based on the HDP
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framework [BGR02, TJBB06], with potentially infinite states shared by one HMM;

the other one is the hidden Markov model mixture with a DP prior [QPC07], that

assuming infinite number of HMMs underlying the observations. We also discuss the

dynamic topic model [BL06], with the hidden topics evolved over time. Similar to the

model described in Chapter 3, the dynamic topic model explicitly builds temporal

dependence on the observations, instead of the hidden states like HMM.

Chapter 3 develops a nonparametric evolving-clustering model, the dynamic hi-

erarchical Dirichlet process (dHDP). The data collected at any time point are rep-

resented via a mixture associated with an appropriate underlying model, in the

framework of HDP. The statistical properties of data collected at consecutive time

points are linked via a random parameter that controls their probabilistic similar-

ity. The sharing mechanisms of the time-evolving data are derived, and a relatively

simple Markov Chain Monte Carlo sampler is developed. As the model employed

for music analysis, each music piece is represented in terms of a sequence of discrete

observations, and the sequence is modeled using a hidden Markov model (HMM)

with time-evolving parameters. The dHDP imposes the belief that observations that

are temporally proximate are more likely to be drawn from HMMs with similar pa-

rameters, while also allowing for “innovation” associated with abrupt changes in the

music texture. Detailed examples are presented on several pieces, with comparisons

to other models and a conventional music-theoretic analysis.

Chapter 4 discusses modeling spatial dependence in a nonparametric manner.

Motivated by a time-evolving model, spatially dependent information may also be

included within the model prior, like the Markov random field [GG84, BVZ98]. In-

stead of setting the neighborhood given a graph, it is more attractive to consider

learning the partition with a data-driven method. Two nonparametric models, the

generalized spatial Dirichlet process and kernel stick-breaking process, are discussed

separatively, as a motivation for a new model proposed in the following part.
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Chapter 5 presents an innovative nonparametric clustering model, the logistic

stick-breaking process (LSBP), for general spatially- or temporally- dependent data.

The sticks in the LSBP are realized via multiple logistic regression functions, with

shrinkage priors employed to favor contiguous and spatially localized segments. Effi-

cient variational Bayesian inference is derived, and comparisons are made to related

techniques. Experimental analysis is performed for both audio waveforms and im-

ages.

Chapter 6 focuses on the multi-task learning for the simultaneous processing of

multiple data sets, yielding a hierarchical logistic stick-breaking process (H-LSBP).

The model parameters within the H-LSBP are shared across the multiple learning

tasks while different tasks are assumed to be conditionally independent. The new

framework is applied on joint image segmentation, with illustrative examples followed

in the end.

Chapter 7 concludes the thesis and its contributions. Several possible directions

are also provided for future work.
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2

Probabilistic Time Series Models

This chapter provides background on time series analysis, with several state-of-art

models being presented. Section 2.1 reviews the hidden Markov model (HMM) [Rab89]

with its model structure and applications; Section 2.2 presents two nonparametric

HMMs: Infinite HMM [BGR02,TJBB06] and HMM mixture with a DP prior [QPC07].

The first model assumes infinitely potential states within one HMM; the second one

is constituted of infinite HMMs to fit the data. Both of the models are employed on

music analysis in Chapter 3. Section 2.3 discusses the dynamic topic model [BL06]

and the study of time-evolving topics.

2.1 Hidden Markov Model

The standard tool for analysis of sequential data is the hidden Markov model (HMM) [BP66,

BPSW]. It is a doubly embedded stochastic process with an underlying hidden

stochastic process of state transition and an observed one producing the sequen-

tial observations [Rab89]. The observations can either be continuous or represented

as discrete symbols from a codebook. For the discrete sequence of interest, given

an observation sequence x = {xt}Tt=1 with xt ∈ {1, . . . ,M} (M is the discrete al-
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phabet size), the corresponding hidden state sequence is S = {st}Tt=1, from which

st ∈ {1, . . . , I} (I is the total number of states).

We consider an underlying (hidden) first order of Markov chain associated with

the states, so that the current state st depends only on the one at the previous time,

i.e., p(st|st−1, . . . , s1) = p(st|st−1). The number of unique states I is unknown and

may be fixed at the beginning. Under the assumption, an HMM is represented by

parameters θ = {A,B,π}, defined as

• A = {aρξ}, aρξ = Pr(st+1 = ξ|st = ρ): state transition probability;

• B = {bρm}, bρm = Pr(xt = m|st = ρ): emission probability;

• π = {πρ}, πρ = Pr(s1 = ρ): initial state distribution.

Given the model parameters, the data generation can be summarized in Figure 2.1:

…
Figure 2.1: Graphical model of HMM.

1. at the beginning with t = 1, s1 is generated from the initial state distribution

Mult(π);

2. according to the state s1, x1 is chosen from the distribution of observation

emission, Mult(bs1·) (bs1· represents the row of B matrix with the index of s1);

3. from the state transition, st is generated from the corresponding distribution

Mult(ast·) (axt· represents the row of A matrix with the index of st);

4. xt is chosen from the distribution Mult(bst·);

5. repeat step 3 ∼ 4 for time t+ 1 until the end
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Based on the model parameters, the data likelihood is obtained by summing the joint

probability over all possible state sequences:

p(x|θ) =
∑
S

πs1

T−1∏
t=1

ast,st+1

T∏
t=1

bst,xt (2.1)

However, it leads to the an unfeasible computation, being ergodic for the whole state

space at every time.

A more efficient computation method is the forward-backward procedure [BE67].

For each time, the sufficient statistics αt(ρ) = P (x1, . . . , xt, st = ρ|A,B,π) and

βt(ρ) = P (xt+1, . . . , xT |st = ρ,A,B,π) with ρ = 1, . . . , I are calculated.

In the forward way:

• from t = 1, α1(ρ) is initialized as πρbρx1 ;

• for the following time, αt+1(ξ) =
[∑I

ρ=1 αt(ρ)aρξ
]
bξxt+1 in an inductive calculation;

• until the end P (x|A,B,π) =
∑I

ρ=1 αT (ρ).

In the backward way:

• from the end T , βT (ρ) = 1 for ρ = 1, . . . , I;

• for each t− 1, βt−1(ξ) =
∑I

ρ=1 aξρbρxtβt(ρ);

• similar to the forward calculation, P (x|A,B,π) =
∑I

ξ=1 β1(ξ).

Based on both {αt,βt}Tt=1, we can calculate the the best state sequence and optimize

the HMM parameters with a reestimation procedure [Rab89].

Hidden Markov models have been widely used for time-series analysis, such as

speech recognition, gesture recognition, music classification and motion detection.

However, the model definition suffers from an important limitation: the model

structure has to be specified in advance, making it difficult to avoid over or un-

derfitting [BGR02]. Under a new framework of nonparametric techniques, scholars

proposed a more flexible model structure: allowing to automatically control the

model complexity of HMM according to the data.
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2.2 Nonparametric Hidden Markov Model

There are two ways to define an HMM with “infinite” parameters. The first one is

assuming that there are infinite number of hidden states within the HMM and the

model parameters {π,A,B} is not specified with a fixed dimension; the second one

is to fit the data with an HMM mixture associated with infinite components while

each HMM has a fixed model structure.

2.2.1 Infinite HMM

An infinite hidden Markov model (iHMM) [BGR02,TJBB06] denotes an HMM with

an infinite number of hidden states. Each row of the state transition matrix is mod-

eled with a DP prior and the multiple rows are linked with another DP. The whole

model structure proposed fits the hierarchical Dirichlet process (HDP) [TJBB06].

HDP was first proposed for model-based clustering of grouped data. The hierar-

chical specification is summarized as follows:

G0|γ,H ∼ DP (γH),

Gj|α,G0 ∼ DP (αG0).
(2.2)

Two key properties that HDP displays are attractive: the global DP introduces a

discrete base G0 shared by each child-DP, yielding the desired sharing of atoms across

groups; the nonparametric priors adopted allows infinite number of components con-

stituted to serve for each group Gj. An alternative representing form of HDP is

based on stick-breaking construction:

β|γ ∼ GEM(γ),

πj|α,β ∼ DP (αβ),

φk|H ∼ H for k = 1, . . . ,∞.

(2.3)

Combining the representation within (2.2), G0 =
∑∞

k=1 βkδφk and Gj =
∑∞

k=1 πjkδφk .
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Considering the HMM again, if we regard the rows of the state transition matrix

as multiple groups and each state as the index of components, an infinite HMM can

be constructed based on HDP as in Figure 2.2. The observed variables x1, . . . , xT

represent one sequence and the embedding hidden states are s1, . . . , sT . Here an

initial state s0 is assumed to be known in advance. There are countably infinite

unique state values, with index k = 1, . . . ,∞, that can be taken by st for each time;

corresponding to each state index k, there is a state transition distribution πk drawn

from DP (αβ). Given the previous state st−1, st is generated from Mult(πst−1), then

xt will be generated from the distribution F (φst). The observation parametric form

F (·) can either be a multinomial or Gaussian distribution, depending on whether xt

is discrete or continuous.

……

Figure 2.2: Graphical model for iHMM.

Several MCMC sampling schemes have been introduced for the iHMM in [TJBB06],

including the Chinese restaurant franchise representation, the augmented, and direct

assignment representations; alternatively we can use a variational Bayesian infer-

ence based on the stick-breaking representation [NCD07]. For all of the inference

algorithms, the parameters {πk}∞k=1 in Figure 2.2 record the information of state

transition for each time and {φk}∞k=1 concludes the emission probability. Hence, they

represent the state transition matrix A and observation emission distribution B. The

number of times state k is chosen first is also calculated for all of the sequences to

update the initial state distribution π accordingly.
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2.2.2 HMM Mixture with a DP Prior

Another representative nonparametric hidden Markov model is the HMM mixture

with a DP prior [QPC07], motivated by clustering multiple sequences with various

temporal statistics. Similar to the infinite Gaussian mixture model (iGMM) [Ras00],

N random variables {θn}Nn=1 are drawn from G, and G itself is a random measure

drawn from DP (αG0). The clustering property of DP encourages sharing parame-

ters, and this naturally reveals the proper number of mixture components [QPC07].

For an HMM mixture, the observation xn represents the nth sequence and there

are N sequences in total; each θn represents the finite-state HMM generating the

sequence xn. With these assumptions, the model is summarized as follows:

xn|cn, {θ∗k}∞k=1 ∼ F (θ∗cn)

cn|p
i.i.d∼ Mult(p)

p|α ∼ GEM(α)

θ∗k|G0 ∼ G0

(2.4)

Here cn is an indicator variable to denote which HMM from {θ∗k}∞k=1 the data xn is

drawn from.

For this model, even though each component has a parametric form with a fixed

number of states, the model still has infinite number of states in total, as a result of

infinite HMMs constituted. Both the infinite HMM model and the HMM mixture

with a DP prior have been applied on music analysis [NCD07, QPC07], with each

music piece trained by one iHMM or an HMM mixture; the similarity between two

music pieces can be measured by a kernel distance [AP02, QPC07] between the re-

spective models for different pieces. Compared with the iHMM, one distinct utility of

the HMM mixture is that it allows one to analyze different segments of a given piece

by studying the membership of each subsequence associated with different atoms;
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however, the exchangeable assumption underlying the indicator variables cn does

not match with the coherence property of music and makes it difficult to explain the

music’s structure with such a model.

Another limitation of the HMM is that the model does not explicitly assume a

time-evolving permutation of parameters underlying the observations. The temporal

dependence is built on a probabilistic state transition via a Markov chain, which

is still not strong enough to reach a smooth evolutionary-clustering result. This

motivates scholars to extend classical state space model to a dynamic topic model

with parameters dynamically evolving along the time.

2.3 Dynamic Topic Model

The dynamic topic model [BL06] is proposed to capture the evolution of topics in a

sequentially organized corpus of documents. Each document is composed of multiple

topics and each topic is defined as a multinomial distribution on a set of words. In

the traditional topic model with Latent Dirichelt Allocation (LDA) [BNJL03], the

data generation starts from picking a topic from the topic distribution (defined as a

multinomial), then draws a word from the selected topic; all the words are assumed

exchangeable and the topics inferred from each document will not be influenced by

the order of the words. For the dynamic topic model, a set of document collection

is provided and the documents are reordered according to their appended temporal

information. For example, a set of academic articles from Science are organized as

the order of their publishing year. Hence it is interesting to explicitly model the

dynamics of the underlying topics.

There are two factors that a topic model may consider for dynamic evolution:

the topics themselves and topic proportion distributions. In the dynamic topic

model [BL06], both of them are considered to evolve with Gaussian noise from the

previous time-stamp t−1 to the current time t, as shown in Figure 2.3. The parame-
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ter at the previous time t−1 is the expectation for the distribution of the parameter

at the next time t, and the correlation of the samples at adjacent times is controlled

through adjusting the variance of the conditional distribution. Instead of drawing

Figure 2.3: Graphical model for Dynamic topic model.

the topic proportions θt from a Dirichlet distribution like LDA [BNJL03], the model

draws it from a logistic normal with mean αt to express uncertainty over propor-

tions. A similar technique is also applied on the word distributions associated with

each topic. The generative process for the documents collected at t is summarized

as follows:

• Assume D documents at each time slice and N words in each document;

• Define K topics β for each time and drawn βt|βt−1 ∼ N(βt−1, σ
2I);

• Draw αt|αt−1 ∼ N(αt−1, δ
2I);

• For each document:

1. Draw η ∼ N(αt, a
2I) and θk = exp(ηk)∑

k′ exp(ηk′ )
;

2. For each word:

a. Draw the topic indicator z ∼Mult(θ);
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b. Draw word w ∼Mult(π(βt,z)), where π(βt,k)w =
exp(βt,k,w)∑
w′ exp(βt,k,w′ )

.

By chaining both the topics and topic proportion distributions, the topics smoothly

evolve over time [BL06] and the model is proved to yield a more accurate prediction.

Unfortunately, the non-conjugate form of the conditional distribution requires ap-

proximations in the model inference. Considering the above discussions, we expect

to build a dynamic model with the following characteristics: (i) the number of model

parameters is not known a priori and can be inferred from the data automatically; (ii)

the temporal information should be considered to generate a smooth time-evolving

clustering; (iii) a conjugate model form is desired for an easier posterior inference.
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3

The Dynamic Hierarchical Dirichlet Process

The Dirichlet process (DP) mixture model [EW95] has been widely used to perform

density estimation and clustering, by generalizing finite mixture models to (in princi-

ple) infinite mixtures. In order to “share statistical strength” across different groups

of data, the hierarchical Dirichlet process (HDP) [TJBB06] has been proposed to

model the dependence among groups through sharing the same set of discrete pa-

rameters (“atoms”), and the mixture weights associated with different atoms are

varied as a function of the data group. In the HDP, it is assumed that the data

groups are exchangeable. However, in many real applications, such as seasonal mar-

ket analysis and gene investigation for disease, data are measured in a sequential

manner, and there is information in this temporal character that should ideally be

exploited; this violates the aforementioned assumption of exchangeability.

Recently Dunson [Dun06] proposed a Bayesian dynamic model to learn the la-

tent trait distribution through a mixture of DPs, in which the latent variable density

changes dynamically in location and shape across levels of predictors. This dynamic

structure is considered here to extend HDP to incorporate time dependence, and
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has the following features: (i) two data samples drawn at proximate times have a

higher probability of sharing the same underlying model parameters (atoms) than

parameters drawn at disparate times; and (ii) there is a possibility that tempo-

rally distant data samples may also share model parameters, thereby accounting for

possible distant repetition in the data.

3.1 Dynamic Hierarchical Dirichlet Process

3.1.1 Nonparametric Bayesian Dynamic Structure

Similar to HDP, we again consider J data sets but now using an explicit assump-

tion that the data sets are collected sequentially, with {x1,i}i=1,...,N1 collected first,

{x2,i}i=1,...,N2 collected second, and with {xJ,i}i=1,...,NJ
collected last. Since our as-

sumption is that a time evolution exists between adjacent data groups, the distri-

bution Gj−1, from which {θj−1,i}i=1,...,Nj−1
are drawn, is likely related to Gj, from

which {θj,i}i=1,...,Nj
are drawn.

To specify explicitly the dependence between Gj−1 and Gj, Dunson [Dun06] pro-

posed a Bayesian dynamic mixture DP (DMDP), in which Gj shares features with

Gj−1 but some innovation may also occur. The DMDP has the drawback that mix-

ture components can only be added over time, so that one ends up with more com-

ponents at later times as an artifact of the model.

In the dHDP, we have

Gj = (1− w̃j−1)Gj−1 + w̃j−1Hj−1 (3.1)

where G1 ∼ DP (α01, G0), Hj−1 is called an innovation distribution drawn from

DP (α0j, G0), and w̃j−1 ∼ Be(aw(j−1), bw(j−1)). In this way, Gj is modified from Gj−1

by introducing a new innovation distribution Hj−1, and the random variable w̃j−1

controls the probability of innovation (i.e., it defines the mixture weights). As a

result, the relevant atoms adjust with time, and it is probable that proximate data
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will share the same atoms, but with the potential for transient innovation.

Additionally, we assume that G0 ∼ DP (γ,H) as in the HDP to enforce that G0

is discrete, which manifests another important aspect of the dynamic HDP: the same

atoms are used for all Gj, but with different time-evolving weights. Consequently,

the model encourages sharing between temporally proximate data, but it is also

possible to share between data sets widely separated in time.

Providing now more model details, the discrete base distribution drawn from

DP (γ,H) may be expressed as:

G0 =
∞∑
k=1

βkδθ∗k (3.2)

where {θ∗k}k=1,2,...,∞ are the global parameter components (atoms), drawn indepen-

dently from the base distribution H and {βk}k=1,2,...,∞ are drawn from a stick-

breaking process β ∼ Stick(γ), defined as:

βk = β̃k
∏
l<k

(1− β̃l) β̃k
iid∼ Be(1, γ) (3.3)

We also have J groups of data. Gj represents the prior for the mixture distribution

associated with the global components in group j, Hj−1 represents the associated

prior for the innovation mixture distribution, and this yields the explicit priors used

in (3.1):

G1 =
∞∑
k=1

π1,kδθ∗k , H1 =
∞∑
k=1

π2,kδθ∗k , . . . , HJ−1 =
∞∑
k=1

πJ,kδθ∗k (3.4)

where the different weights πj are independent given β since G1, H1, . . . , HJ−1 are

independent given G0; the relationship between πj and β is proven [TJBB06] to be

πj|α0j,β ∼ DP (α0j,β) (3.5)
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To further develop the dynamic relationship fromG1 toGJ , we extend the mixture

structure in (3.1) from group to group:

Gj = (1− w̃j−1)Gj−1 + w̃j−1Hj−1

=

j−1∏
l=1

(1− w̃l)G1 +

j−1∑
l=1

{
j−1∏

m=l+1

(1− w̃m)}w̃lHl

= wj1G1 + wj2H1 + . . .+ wjjHj−1

(3.6)

where wjl = w̃l−1
∏j−1

m=l(1 − w̃m), for l = 1, 2, . . . , j, with w̃0 = 1. It can be easily

verified that
∑j

l=1wjl = 1 for each wj, which is the prior probability that the data in

group j will be drawn from the mixture distribution: G1, H1, . . . , Hj−1. If all w̃j = 0,

all of the groups share the same mixture distribution G1 and the model reduces to a

Dirichlet mixture model, and if all w̃j = 1 the model reduces to the HDP. Therefore,

the dynamic HDP is more general than both DP and HDP, with each a special case.

A visual representation of the model is depicted in Figure 3.1.
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Figure 3.1: General graphical model for the dynamic HDP.

According to (3.6), the observation xj,i will choose a mixture distribution from

π1:j based on Mult(wj) to be drawn from the global parameter components {θ∗k}∞k=1.

We let rj,i be a variable to indicate which mixture distribution is taken from π1:j

to draw the observation xj,i; zj,i is a parameter component indicator variable. An
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alternative form of the dHDP model is represented as:

θ∗k|H ∼ H, β|γ ∼ Stick(γ)

w̃j|awj, bwj ∼ Be(w̃j|awj, bwj), rj,i|w̃ ∼ wj

πj|α0j,β ∼ DP (α0j,β), zj,i|π1:j, rj,i ∼ πrj,i

xj,i|zj,i, (θ∗k)∞k=1 ∼ F (θ∗zj,i),

(3.7)

and a graphical representation is shown in Figure 3.2, in which we add a gamma

prior for γ and for the components of the vector α0: Pr(γ) = Ga(γ; γ01, γ02) and

Pr(α0) =
∏J

j=1Ga(α0j; c0, d0). The form of the parametric model F (·) may be varied

depending on the application.

l

jiz

jix*

k

H

,,1k

0

jir w
~

wa

wb

Jj ,2,1

jNi ,,2,1

Jl ,,1

Figure 3.2: Graphical representation of the dHDP from a stick-breaking view.

3.1.2 Sharing Properties

To obtain insight into the dependence structure induced by the dHDP proposed

in 3.1.1, this section presents some basic properties. Suppose G0 is a probability

measure on (Ω,B), with Ω the sample space of θji and B(Ω) the Borel σ-algebra of

subsets of Ω. Then for any B ∈ B(Ω)

(
Gj(B)|Gj−1, w̃j

) D
= Gj−1(B) + ∆j(B), (3.8)
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where ∆j(B) = w̃j−1
{
Hj−1(B) − Gj−1(B)

}
is the random deviation from Gj−1 to

Gj.

Theorem 1. Under the dHDP (3.6), for any B ∈ B(Ω) we have:

E
{

∆j(B)|Gj−1, w̃j−1, G0, α0j

}
= w̃j−1

{
G0(B)−Gj−1(B)

}
, (3.9)

V
{

∆j(B)|Gj−1, w̃j−1, G0, α0j

}
= w̃2

j−1
G0(B)

(
1−G0(B)

)
(1 + α0j)

. (3.10)

The proof is straightforward and is omitted. According to Theorem 1, given the

previous mixture measure Gj−1 and the global mixture G0, the expectation of the

deviation from Gj−1 to Gj is controlled by w̃j−1. Meanwhile, the variance of the

deviation is related with both w̃j−1 and the precision parameters α0j given G0. In

the limiting case, we obtain the following: If w̃j−1 → 0, Gj → Gj−1; If Gj−1 → G0,

E
(
Gj(B)|Gj−1, w̃j−1, G0, α0j

)
→ Gj−1(B); If α0j →∞, V

(
∆j(B)|Gj−1, w̃j−1, G0, α0j

)
→

0.

Theorem 2. Conditional on the mixture weights w, the correlation coefficient of

the measures between two adjacent groups Gj−1(B) and Gj(B) for j = 2, . . . , J is

Corr(Gj−1, Gj) =
E
{
Gj(B)Gj−1(B)

}
− E

{
Gj(B)

}
E
{
Gj−1(B)

}[
V
{
Gj(B)

}
V
{
Gj−1(B)

}]1/2
=

∑j−1
l=1

wjlwj−1,l

1+α0l
· (α0l + γ + 1)[∑j

l=1

w2
jl

1+α0l
· (α0l + γ + 1)

]1/2[∑j−1
l=1

w2
j−1,l

1+α0l
· (α0l + γ + 1)

]1/2
(3.11)

The proof is given in the Appendix A. Due to the lack of dependence on B, Theorem

2 provides a useful expression for the correlation between the measures, which can

provide insight into the dependence structure.

To study how the correlation depends on w̃ and α0, we focus on Corr(G1, G2)

and (i) in Figure 3.3 (a) we plot the correlation coefficient Corr(G1, G2) as a function
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Figure 3.3: (a) Corr(G1, G2) as a function of w̃1 with γ and α fixed. (b)
Corr(G1, G2) as a function of α02, with γ, α01 and w fixed. (c) Corr(G1, G2) as
a function of both w̃1 and α02, with the values of γ and α01 fixed.

of w̃1, with the precision parameters γ and α0 fixed at one; (ii) in Figure 3.3 (b)

we plot Corr(G1, G2) as a function of α02, with w̃1 = 0.5, α01 = 1 and γ = 10;

(iii) in Figure 3.3 (c) we consider the plot of Corr(G1, G2) as a function of both the

variables of w̃1 and α02 given fixed values of γ = 10 and α01 = 1. It is observed

that the correlation between adjacent groups increases with smaller w̃ and larger α0.

If we assume that α0l = α for l = 1, . . . , j, then the correlation coefficient has the

simple form

Corr(Gj−1, Gj) =

∑j−1
l=1 wjlwj−1,l{∑j

l=1w
2
jl

}1/2{∑j−1
l=1 w

2
j−1,l

}1/2
. (3.12)

30



3.1.3 Comparisons with Alternative Models

It is useful to consider relationships between the proposed dHDP and other dynamic

nonparametric Bayes models. A particularly relevant connection is to dependent

Dirichlet processes (DDPs) [Mac99], which provide a class of priors for dependent

collections of random probability measures indexed by time, space, or predictors.

DDPs were applied to time series settings by Rodriguez and Ter Horst [RH08]. Dy-

namic DDPs have the property that the probability measure at a given time is

marginally assigned a Dirichlet process prior, while allowing for dependence between

the measures at different times through a stochastic process in the weights and/or

atoms. Most of the applications have relied on the assumption of fixed weights, while

allowing the atoms to vary according to a stochastic process. Varying weights is well

motivated in some applications, such as the music analysis due to repetition in the

music piece, and can be accommodated by the order-based DDP [GS06] and the

local Dirichlet process [CD09b]. However, these approaches do not naturally allow

long-range dependence and can be complicated to implement. Simpler approaches

were proposed by Caron et al. [CDD+08] using dynamic linear models with Dirichlet

process components and by Caron, Davy, and Doucet [CDD07] using a dynamic mod-

ification of the DP Polya urn scheme. Again, these approaches do not automatically

allow long range dependence.

The dHDP can alternatively be characterized as a process that first draws a latent

collection of distributions, H = {G1, H1, . . . , HJ−1}, from an HDP, with the HDP

providing a special case of the DDP framework. The parameter vectors of the jth

group, is then associated with the lth distribution in the collectionH with probability

wjl. This specification simplifies posterior computation and interpretation, while

allowing a flexible long range dependence structure. An alternative to the HDP would

be to choose a nested Dirichlet process (nDP) [RDG08] prior for the collectionH. The
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nDP would allow clustering of the component distributions within H; distributions

within a cluster are identical while distributions in different clusters have different

atoms and weights. This structure also accommodates long range dependence but

in a very different manner that may be both more difficult to interpret and more

flexible in allowing different atoms at different times.

3.1.4 Posterior Computation

There are two commonly used Gibbs sampling strategies for posterior computation

in DPMs. The first relies on marginalizing out the random measure through use of

the Polya urn scheme [BM96], while the second relies on truncations of the stick-

breaking representation [IJ01]. As it is not straightforward to obtain a generalized

urn scheme for the dHDP, we rely on the latter approach, which is commonly referred

to as the blocked Gibbs sampler. The primary conditional posterior distributions

used in implementing this approach are listed as follows:

1. The update of w̃l, for l = 1, . . . , J − 1 from its full conditional posterior

distribution, has the simple form

(w̃l| · · · ) ∼ Be(aw +
J∑

j=l+1

nj,l+1, bw +
J∑

j=l+1

l∑
h=1

njh) (3.13)

where njh =
∑Nj

i=1 δ(rji,h = 1), {rji}j=1,...,J ;i=1,...,Nj
are indicator vectors and δ(rji,h =

1) denotes that θji is drawn from the hth component distribution in (3.6). In (3.13)

and in the results that follow, for simplicity, the distributions Be(awj, bwj) are set

with fixed parameters awj = aw and bwj = bw for all time samples. The function δ(·)

equals 1 if (·) is true and 0 otherwise.

2. Assume the truncation level is K for each {πl}Jl=1 in Eq. (3.5), and πlk =

π̃lk
∏k−1

m=1(1− π̃lm). The full conditional distribution of π̃lk, for l = 1, . . . , J and k =

1, . . . , K, is updated under the conjugate prior π̃lk ∼ Be
[
α0lβk, α0l(1−

∑k
m=1 βm)

]
,
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which is specified in [TJBB06]. The likelihood function associated with each π̃l is

proportional to
∏K

k=1 π
∑J

j=l

∑Nj
i=1 δ(rji,l=1,zji,k=1)

lk , where zji is another indicator vector,

with zji,k = 1 if the observation xji is allocated to the kth atom (θji = θ∗k) and

zji,k = 0 otherwise. Then the conditional posterior of π̃lk has the form

(π̃lk| · · · ) ∼ Be

[
α0lβk +

J∑
j=l

Nj∑
i=1

δ(rji,l = 1, zji,k = 1),

α0l(1−
k∑
l=1

βl) +
J∑
j=l

Nj∑
i=1

K∑
k′=k+1

δ(rji,l = 1, zji,k′ = 1)

]
. (3.14)

3. The update of the indicator vector rji, for j = 1, . . . , J and i = 1, . . . , Nj, is

completed by generating samples from a multinomial distribution with entries

Pr(rji,l = 1| · · · ) ∝ w̃l−1

j−1∏
m=l

(1−w̃m)
K∏
k=1

{
π̃lk

k−1∏
q=1

(1−π̃lq)·Pr(xji|θ∗k)
}zji,k

, l = 1, ..., j

(3.15)

with Pr(xji|θ∗k) the likelihood of xji given allocation to the kth atom, θji = θ∗k. The

posterior probability Pr(rji,l = 1) is normalized so
∑j

l=1 Pr(rji,l = 1) = 1.

4. The sampling of the indicator vector zji, for j = 1, . . . , J and i = 1, . . . , Nj, is

also generated from a multinomial distribution with entries specified as

Pr(zji,k = 1| · · · ) ∝
j∏
l=1

{
π̃lk

k−1∏
k′=1

(1− π̃lk′) · Pr(xji|θ∗k)
}rji,l

, k = 1, ..., K. (3.16)

Other unknowns, including {θ∗k}Kk=1, {β̃k}K−1k=1 and precision parameters γ, α0, are

updated using standard Gibbs steps. The component parameters θ∗k for k = 1, . . . , K

are considered for different model forms depending on the specific applications. The

Gibbs sampling algorithm was tested carefully under different initializations and the

diagnostic method in [RL92] is used to demonstrate rapid convergence and good
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mixing (for the results considered, convergence based on this method was observed

for a burn-in of 200 samples, followed by a subsequent 4000 samples).

3.2 Music Analysis with Dynamic HDP

The analysis of music is of interest to music theorists, for aiding in music teaching,

for analysis of human perception of sounds [Tem08], and for design of music search

and organization tools [NPCD08]. An example of the use of Bayesian techniques for

analyzing music may be found in the work [Tem07]. However, this work is generally

assumed that the user has access to MIDI files (musical instrument digital interface),

which means that the analyst knows exactly what notes are sounding when. We

are interested in processing the acoustic waveform directly; while the techniques

developed here are of interest for music, they are also applicable for analysis of

general acoustic waveforms. For example, a related problem which may be addressed

using the proposed approach is the segmentation of audio waveforms for automatic

speech and speaker recognition (e.g., for labeling different speakers in a teleconference

[FSJW08b]).

As motivation we start by considering a well-known musical piece: “A Day in the

Life” from the Beatles’ album Sgt. Peppers Lonely Hearts Club Band. The piece is 5

minutes and 33 seconds long, and the entire audio waveform is plotted in Figure 3.4.

To process these data, the acoustic signal was sampled at 22.05 KHz and divided

Figure 3.4: The audio waveform of the Beatles’ music.

into 50 ms contiguous frames. Mel frequency cepstral coefficients (MFCCs) [Log00]

were extracted from each frame, these being effective for representing perceptually
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important parts of the spectral envelope of audio signals [JCMJ06]. The MFCC

features are linked to spectral characteristics of the signal over the 50 ms window,

and this mapping yields a 40-dimensional vector of real numbers for each frame.

Therefore, after the MFCC analysis the music is converted to a sequence of 40-

dimensional real vectors.

The details of the model follow below, and here we only seek to demonstrate

our objective. Specifically, Figure 3.5 shows a segmentation of the audio waveform,

where the indices on the figure correspond to data subsequences; each subsequence

is defined by a set of 75 consecutive 50 ms frames. The results in Figure 3.5 quantify
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Figure 3.5: Segmentation of the audio waveform in Figure 3.4.

how interrelated any one subsequence of the music is to all others. We observe

that the music is decomposed into clear contiguous segments of various lengths, and

segment repetitions are evident. This Beatles’ song is a relatively simple example, for

the piece has many distinct sections (vocals, along with clearly distinct instrumental

parts). A music-theoretic analysis of the results in Figure 3.5 indicates that the

segmentation correctly captures the structure of the music. In the detailed results

presented below, we consider much “harder” examples. Specifically, we consider

classical piano music for which there are no vocals, and for which distinct instruments

are not present (there is a lack of timbral variety, which makes this a more difficult
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challenge). We also provide a detailed examination of the quality of the inferred

music segmentation, based on music-theoretic analysis.

A typical goal of the music analysis is to segment a given piece, with the objective

of inferring interrelationships among motive and themes within the music. Paiement

et al. [PGBE07] proposed a generative model for rhythms based on the distributions

of distances between subsequences; to annotate the changes in mixed music, Plotz et

al. [PFH+06] used stochastic models based on the Snip-Snap approach, by evaluating

the Snip model for the Snap window at every position within the music. However,

these methods are either based on one specific factor (rhythm) of music [PGBE07]

or need prior knowledge of the music’s segmentation [PFH+06]. Recently, a hidden

Markov model (HMM) [Rab89] was used to model monophonic music by assuming

all the subsequences are drawn i.i.d. from one HMM [Rap99]; alternatively, an

HMM mixture [QPC07] was applied to model the variable time-evolving properties

of music, within a semiparametric Bayesian setting. In both of these HMM music

models the music was divided into subsequences, with an HMM employed to represent

each subsequence; such an approach does not account for the expected statistical

relationships between temporally proximate subsequences. By considering one piece

of music as a whole (avoiding subsequences), an infinite HMM (iHMM) [TJBB06,

NPCD08] was proposed to automatically learn the model structure with countably

infinite states. While the iHMM is an attractive model, it has limitations for the

music modeling and segmentation of interest here, with this discussed further below.

As indicated at the beginning, a given piece of music is mapped to a sequence of

40-dimensional real vectors via MFCC feature extraction. The MFCCs are the most

widely employed features for processing audio signals, particularly in speech process-

ing. To simplify the HMM mixture models employed here, each 40-dimensional real

vector is quantized via vector quantization (VQ) [GG92], and here the codebook is

of dimension M = 16. For example, after VQ, the continuous waveform in Figure
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3.4 is mapped to the sequence of codes depicted in Figure 3.6; it is a sequence of this

type that we wish to analyze.
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Figure 3.6: Sequence of code indices for the waveform in Figure 3.4, using a code-
book of dimension M = 16.

To model the whole music piece with one HMM [Rap99], one may divide the se-

quence into a series of subsequences {xj}Jj=1, with xj = {xjt}Tt=1 and xjt ∈ {1, ...,M}.

However, rather than employing a single HMM for a given piece, which is clearly

overly simplistic, we allow the music dynamics to vary with time by letting

xj ∼ F (θj), j = 1, . . . , J, (3.17)

which denotes that the subsequence xj is drawn from an HMM with parameters θj.

In order to accommodate dependence across the subsequences, we can potentially

let θj ∼ Gj, and Gj has been defined in Eq. (3.6) with the dHDP introduced in

Section 3.1.1.

Accordingly, the dHDP-HMM can be summarized as follows:

θj ∼ Gj, Gj =
∞∑
k=1

pjkδθ∗k , θ∗k ∼ H, (3.18)

where the subsequence-specific mixture distribution Gj has weights that vary with

j, represented as pj. Based on the dependent relation induced in Eq. (3.6), we have
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an explicit form for each {pj}Jj=1 in (3.18):

pj =

j∑
l=1

wjlπl. (3.19)

Including the same atoms for all j allows for repetition in the music structure across

subsequences, with the varying weights allowing substantial flexibility.

As in the work [QPC07], the component parameters A∗k, B∗k and π∗k are assumed

to be a priori independent, with the base measure having a product form with

Dirichlet components for each of the probability vectors. The update equations

for the components’ posterior are presented in Appendix B. For each subsequence,

there are still two indicator vectors rj and zj to denote the selection of the mixture

distribution and component respectively. Since the indicator vector zj, for j =

1, . . . , J , represents the membership of sharing across all the subsequences, we use

this information to segment the music, by assuming that the subsequences possessing

the same membership should be grouped together. In order to overcome the issue of

label switching that exists in Gibbs sampling, we use the similarity measure E(z′z)

instead of the membership z in the results. Here E(z′z) is approximated by averaging

the quantity z′z from multiple iterations, and in each iteration z′jzj′ measures the

sharing degree of θj and θj′ by integrating out the index of atoms. Related clustering

representations of nonparametric models have been considered in the work [MS02].

3.3 Experiment Results

To apply the dHDP-HMM to music data, we first complete the prior specification by

choosing hyperparameter values. In particular, the prior for w̃ is chosen to encourage

the groups to be shared; consequently, we set the prior
∏J−1

j=1 Be(w̃j; aw, bw) with

aw = 1 and bw = 5. Since the precision parameters γ and α0 control the prior

distribution on the number of clusters, the hyper-parameter values should be chosen
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carefully. Here we set Ga(1, 1) for γ and each component of α0. Meanwhile, we set

the truncation level for DP at K = 40.

3.3.1 Statistical Analysis of Music Piece

The music considered below are from particular audio recordings, and may be listened

to online1. We first consider the movement (“Largo - Allegro”) from the Beethoven’s

Sonata No. 17, Op. 31, No. 2 (the “Tempest”). The audio waveform of this piano

music is shown in Figure 3.7. The music is divided into contiguous 100 ms frames,

Figure 3.7: Audio waveform of the first movement of Op. 31, No. 2.

and for each frame the quantized MFCC features are represented by one code from

a codebook of size M = 16. Each subsequence is of length 60 (corresponding to 6

seconds in total), and for the Beethoven piece considered here there are 83 contiguous

subsequences (J = 83). The lengths of the subsequences were carefully chosen based

on consultation with a music theorist to be short enough to capture meaningful

fine-scale segmentation of the piece. To represent the time dependence inferred by

the model, the posterior of indicator r is plotted in Figure 3.8 (a) to show the

mixture-distribution sharing relationship across different subsequences. Figure 3.8

(b) shows the similarity measures E(z′z) across each pair of subsequences, in which

the higher value represents larger probability of the two corresponding subsequences

being shared; here z (see (3.16)) is a column vector containing one at the position

to be associated with the component occupied at the current iteration and zeros

otherwise.

1 http://www.last.fm/
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Figure 3.8: Results of dHDP HMM modeling for the Sonata No. 17. (a) The
posterior distribution of indicator variable r. (b) The similarity matrix E[z′z].

For comparison, we now analyze the same music using a DP-HMM [QPC07],

HDP-HMM [TJBB06] and an iHMM [BGR02, TJBB06]. In the DP-HMM, we use

the model in (2.4), with F (·) corresponding to an HMM with the same number

of states as used in the dHDP; this model yields an HMM mixture model across

the music subsequences, and the subsequence order is exchangeable. However, the

long time dependence for the music’s coherence is not considered in the components

sharing mechanism. For the DP-HMM, we used the same specification of the base

measure, H, as in the dHDP-HMM. A Gamma prior Ga(1,1) is employed as the

hyper-prior for the precision parameter α in (2.4) and the truncation level is also set

to 40. The DP-HMM inference was performed with MCMC sampling [QPC07]. We

also consider a limiting case of the dHDP-HMM, for which all innovation weights

are zero, with this referred to as an HDP-HMM, with inference performed as in

the dHDP, simply with the weights removed. As formulated, the HDP-HMM yields

a posterior estimate on the HMM parameters (atoms) for each subsequence, while

the DP-HMM yields a posterior estimate on the HMM parameters (atoms) across

all of the subsequences. Thus, the HDP-HMM yields an HMM mixture model for
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each subsequence, and the mixture atoms are shared across all subsequences; for the

DP-HMM a single HMM mixture model is learned across all subsequences.

As in Figure 3.8, we plot the similarity measures E(z′z) across each pair of

subsequences for DP-HMM in Figure 3.9 (a) and also show the same measure from

HDP-HMM in Figure 3.9 (b), in which the dynamic structure is removed from dHDP;

other variables have the same definition as inferred via the DP-HMM and HDP-

HMM. Compared with the result of dHDP in Figure 3.8 (b), we observe a clear

difference: although the DP-HMM can also tell the repetitive patterns occurring

before the 42th subsequence, the HMM components shared during the whole piece

jump from one to the other between the successive subsequences, which makes it

difficult to segment the music and understand the development of the piece (e.g.,

the slow solo part between the 53th and 69th subsequences is segmented into many

small pieces in DP-HMM); similar performance is also achieved in the results of

HDP-HMM [Figure 3.9 (b)] and the music’s coherence structure is not observed in

such modelings.
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Figure 3.9: Results of DP-HMM and HDP-HMM mixture modeling for the Sonata
No.17. (a) The similarity matrix E(z′z) from DP-HMM result. (b) The similarity
matrix E(z′z) from HDP-HMM result.

Additionally, we also compare the dHDP HMM with segmentation results pro-
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duced by the iHMM [BGR02, TJBB06]. With the iHMM, the music is treated as

one long sequence (all the subsequences are concatenated together sequentially) and

a single HMM with an “infinite” set of states is inferred; in practice, a finite set

of states is inferred as probable, as quantified in the state-number posterior. For

the piece of music under consideration, the posterior on the number of states across

the entire piece is as depicted in Figure 3.10 (a). The inference was performed using

MCMC, as in [TJBB06], with hyper-parameters consistent with the models discussed

above.
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Figure 3.10: Analysis results for the piano music based on the iHMM. (a) Posterior
distribution of state number. (b) Approximate similarity matrix by KL-divergence.

With the MCMC, we have a state estimation of each observation (codeword,

for our discrete-observation model). For each of the subsequences considered by

the other models, we employ the posterior on the state distribution to compute the

Kullback-Leibler (KL) divergence between every pair of subsequences. Since the KL

divergence is not symmetric, we define the distance between two state distribution as

D = 1
2
{E(DKL(P1||P2)) +E(DKL(P2||P1))}. Based on the collected samples, we use

the averaged KL divergence to measure the similarity between any two subsequences

and plot it in Figure 3.10(b). Although such a KL-divergence matrix is a little noisy,
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we observe a similar time-evolving sharing existing between adjacent subsequences,

as inferred by the dHDP. This is because the iHMM also characterizes the music’s

coherence since all of the sequential information is contained in one HMM. However,

the inference of this relationship requires a postprocessing step with the iHMM, while

the dHDP infers these relationships as a direct aspect of the inference, also yielding

“cleaner” results.

3.3.2 Model Quality Relative to Music Theory

The results of our computational analysis are compared with segmentations per-

formed by a composer, musician, and professor of music 2. This music analysis is

based upon reading the musical notes as well as listening to the piece being played.

The music-theoretic analysis was performed independent of the numerical analysis

(performed by the other authors), and then the relationship between the two analy-

sis was assessed by the professor of music. We did not perform a numerical analysis

and then subsequently interpret the results; the music analysis and numerical anal-

ysis were performed independently, and subsequently compared. The results of this

comparison are discussed below.

For this comparison, the temporal resolution of the numerical analysis is in-

creased; in the example presented below 15 discrete observations represent one sec-

ond of music, each subsequence is again of length T = 60 (4 second subsequences),

and for the Beethoven piece we now have J = 125 contiguous frames. All other pa-

rameters are unchanged. In Figure 3.11 it is observed that the model does a good job

of segmenting the large sectional divisions found in sonata form: exposition, expo-

sition repeat, development, and recapitulation (discussed further below). Along the

top of the figure, we note a parallel row of circles (white) and ellipses (yellow); these

2 All the music interpretation in Chapter 3 was done by Professor Scott Lindroth from Department
of Music, Duke University.
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correspond to the “Largo” sections and are extracted well. The first two components

of “Largo” (white circles) are exact repeats of the music, and this is reflected in the

segmentation. Note that the yellow ellipses are still part of “Largo”, but they are

slightly distinct from the yellow circles at left; this is due to the introduction of new

key areas extended by recitative passages. The row of white squares correspond to

the “main theme” (“Allegro”), and these are segmented properly. The parallel row

of blue rectangles corresponds to the second key area, which abruptly changes the

rhythmic and melodic texture of the music. Note that the first two of these (centered

about approximately sequences 30 and 58) are exact repeats. The third appearance

of this passage is in a different key, which is supported by the graph showing slightly

lower similarity.
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between any two segments.
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The row of three circles parallel to approximately sequence 30 corresponds to

another sudden change in texture characterized by melodic neighbor tone motion

emphasizing Neapolitan harmony (A-natural moving to Bb), followed by a harmonic

sequence. The rightmost circle, in the recapitulation, is in a different key and con-

sequently emphasizes neighbor motion on D-natural and Eb, and is still found to be

similar to the earlier two appearances.

We also note that the A-natural / Bb neighbor motion is similar to subsequences

near subsequence 20, and this may be because subsequence 20 also has strong neigh-

bor tone motion (E-natural to F-natural) in the left-hand accompaniment.

Finally, the bottom-right circle in Figure 9 identifies unique material that replaces

the recapitulation of the main theme (“Allegro”), and its similarity to the main theme

(around sequence 16) moves lower. The arrows at the bottom of Figure 19 identify

“Allegro” interjections in the Largo passages, not all of which are in the same key.

3.3.3 Analysis of Mozart Piece

The above example examined the performance of the dHDP model relative to other

competing statistical approaches, and to nonstatistical (more traditional) analysis

performed by the third author. Having established the utility of dHDP relative to

the other statistical approaches, we now only consider dHDP for the next example:

Mozart K. 333, Movement 1 (sampled with each frame 50 ms long, yielding for this

case J = 139 subsequences). This is again entirely a piano piece. We now provide

a more complete sense of how the traditional musical analysis was performed, and

provide a fuller examination of dHDP relative to such analysis, for the Mozart piece.

Above we considered the first movement of Beethoven’s Sonata No. 17, Op.

31, No. 2 (the “Tempest”), and below is considered the first movement of Mozart’s

Sonata K. 333. Classical sonata movements have a consistent approach to the presen-

tation and repetition of themes as well as a clear tonal structure. The first movement
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of K. 333 by Mozart frequently appears in music anthologies used in undergraduate

courses in music theory and history and often held up as a typical example of sonata

form [Bur03]. The first movement of Op. 31, No. 2 by Beethoven is an example of

the composer’s self-conscious effort to expand the technical and expressive vocabu-

lary of sonata form, and the music shows a remarkable interplay of convention and

innovation.

A classical sonata movement is a ternary form consisting of an Exposition (usually

repeated), a Development, and a Recapitulation. The Exposition is subdivided into

distinct subsections: a first theme in the tonic key, a second theme in the key of the

dominant (or relative major for minor key sonata movements), and a closing theme in

the dominant (or relative major). A transition between the first and second themes

modulates from the tonic key to the dominant. The closing theme may be followed

by a coda to conclude the Exposition in the key of the dominant.

The Development typically draws on fragments from the Exposition themes for

melodic material. These are recombined to construct sequential patterns which mod-

ulate freely (observing the conventions of Classical harmony). It is not unusual for

entirely new themes to be introduced. In most cases, the Development ends with a

retransition which extends dominant harmony in preparation for the return to tonic

harmony. The Recapitulation presents the first theme again in the tonic key, a mod-

ified transition, the second theme, now in the tonic key instead of the dominant,

followed by the closing theme and coda, all in the tonic key.

This patterned circulation of themes and key areas gives sonata form a pleasing

predictability-the knowledgeable listener can anticipate what is going to happen next-

as well as a built-in tension that results from a tonal structure that establishes

the tonic key, departs for the dominant key, moves through passages of harmonic

instability, and finally releases harmonic tension by a return to the tonic key.
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Traditional Analysis of K. 333 by W.A. Mozart

K. 333 closely follows the template described above. Measures 1 − 10 present the

first theme in the tonic key (Bb major). Measures 10 − 22 present the transition

based on the first theme, but modified in such a way that the music cadences on the

dominant. The second theme appears in the key of the dominant (F major) in mm.

23− 30 and is restated in mm. 31− 38. The closing theme follows in mm. 38− 50,

and mm. 50− 63 comprise a coda which brings the Exposition to a conclusion in F

major, the dominant key.

As is typical for a Mozart a sonata, the first and second themes are clearly dis-

tinguished from each other. The first theme is harmonically stable and maintains a

consistent texture of melody and accompaniment. In contrast, the second theme jux-

taposes several short thematic ideas that introduce dynamic and textural changes,

chromatic inflections, rhythmic syncopations, and virtuosic passage work. The clos-

ing theme is distinguished from both the first and second themes by an Alberti bass

accompaniment in sixteenth notes and faster melodic motion.

The Development begins in m. 64 with a variation of the first theme in the key

of F major. The theme cadences deceptively in the key of F minor in m. 71, which

begins a new section cast in an improvisatory character that ends with a chromatic

descent to the dominant of the submediant (V/vi) in m. 81. The retransition in

mm. 87− 93 abruptly introduces dominant harmony and prepares for the return to

the tonic key of Bb major.

The Recapitulation begins in m. 94 with a restatement the first theme in the tonic

key. Measures 94−103 are an exact restatement of mm. 1−10. The transition follows

in mm. 104 − 118. Like the corresponding passage in the Exposition, this passage

is based on the first theme, however, it is extended to accommodate a harmonic

excursion that cadences on the dominant. The second theme, also in the tonic key,
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follows in mm. 119−134. Aside from the transposition to the tonic key, this passage

is nearly an exact repetition of mm. 23 − 38, with the restatement of the second

theme played an octave higher in mm. 127−134. The closing theme in mm. 134−152

is now stated in the tonic key as expected, however, like the transition, it is extended

by a harmonic sequence in mm. 143 − 146 and by the insertion of entirely new

material in mm. 147 − 151. The coda in measures 152-165 is an exact repetition

of mm. 50 − 63, except now transposed to the tonic key. The thematic/harmonic

analysis is summarized in Figure 3.12.

Section Key Area Measure 

Exposition 
1-63

     First Theme Tonic (Bb major) 1-10

     Transition Tonic modulates to Dominant (F major).  
Cadences on V/V.

10-22

     Second Theme Dominant (F major) 23-30

     Second Theme    
     restated

Dominant 31-38

     Closing Theme Dominant 38-50

     Coda Dominant 50-63

Development 
64-93

     First Theme variation Dominant 64-71

     Improvisatory section Dominant minor (F minor) ending on V/vi 71-86

     Retransition Extends V 87-93

Recapitulation
94-165

     First Theme Tonic (Bb major) 94-103

     Transition (extended) Tonic 103-118

     Second Theme Tonic 119-126

     Second Theme  
     restated

Tonic 127-134

     Closing Theme Tonic 134-152

     Coda Tonic 152-165

Figure 3.12: Summary of the traditional musical analysis of Sonata for Piano, K.
333, First Movement.

Tracking themes and key areas is rather simple in K. 333 since it closely adheres

to the sonata template. Such an exercise is a typical assignment in an undergrad-

uate music theory course. A more subtle analysis focuses on contrapuntal design

as well as on the use of chromaticism at different structural levels. For example, it

is entirely characteristic of Haydn, Mozart, and Beethoven to introduce chromatic
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melodic embellishments as local events which later serve as a contrapuntal or voice

leading “scaffold” projected over many measures, or even over entire sections of a

piece. This is seldom audible, even to a sophisticated listener, however, it is a central

aspect of compositional technique in the Classical period, one that creates a sense of

continuous, organic development across sectional divisions. K. 333 offers an excellent

example of this technique3.

The closing theme and coda in the Exposition introduce a chromatic melodic

descent based the pitches F-E-Eb-D. The use of chromaticism for local color has been

a prominent feature of the second theme, and thus the appearance of the chromatic

descent in the closing theme does not seem unusual. The chromatic figure can be seen

and heard in mm. 46−47, 50−51, 54−55, and 59−62. The same chromatic descent

appears twice in the Development section, the first time projected over mm. 64−68,

and the second time projected over mm. 71 − 81, the improvisatory passage in the

key of F minor. Thus, what appeared to be entirely new music in the Development

(mm. 71 ff.) is actually derived from the chromatic melodic descent introduced in

the Exposition. This is a perfect example of unity underlying variety.

A successful dHDP analysis of K. 333 should segment the music in a way that

corresponds to sectional divisions of sonata form. Since our performance repeats

the Exposition, we would expect dHDP to show strong similarity between the two

statements of the first theme, transition, second theme, closing theme, and coda.

The Recapitulation presents an interesting challenge. While all thematic materials

from the Exposition appear in the Recapitulation, everything from the transition

to the end is stated in the tonic key instead of the dominant key. In other words,

the Recapitulation has strong melodic similarity to the Exposition, but the notes

are different. The Development offers another challenge. While this section begins

3 Analysis of contrapuntal and chromatic details at multiple structural levels was developed by
the German theorist, Heinrich Schenker (1868-1935)
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with a variation of the first theme, the improvisation that follows is (seemingly)

entirely new music. If anything, dHDP analysis might show the similarity of the

improvisation to the closing theme because both passages make use of Alberti bass

figuration in sixteenth notes. A truly remarkable analysis would catch the projection

of chromatic details over long passages in the Development section.

Segmentation by dHDP Analysis of K. 333

Before beginning the analysis of Figure 3.13, it should be emphasized that precise

linkage between music-theoretic analysis and statistical analysis is difficult, since for

the latter the music is divided into a series of contiguous 4-second blocks (these blocks

do not in general line up precisely with music-theoretic segments in the music). This

makes detailed analysis of some passages more difficult, particularly when several

small segments appear in close succession. Having said this, dHDP analysis segments

the music appropriately (based on the expert judgment).

Considering the annotations in Figure 3.13, the vertical arrow at the bottom

identify unaccompanied melodic transitions in the right hand or sudden changes

to soft dynamics, which are generally distinguished by the dHDP. The first row

of white circles (near the top) correspond to the beginning of the second theme,

characterized by the distinctive chordal gesture in the key of the dominant, and

this decomposition or relationship appears to be accurate. We note that the third

appearance of this gesture in the recapitulation is in a different key, and the similarity

is correspondingly lower. An example of an “error” is manifested in the row of

white rectangles. These correspond to the closing theme, and the left two rectangles

(high correlation between each) are correct, but the right rectangle does not have a

corresponding high correlation inside; it is therefore not recognized in the recap, when

it appears in a different key (tonic). The results in Figure 3.13 show a repeated high

degree of similarity that is characteristic of Mozart piano sonatas; the consistent
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Figure 3.13: Annotated E(z′z) for the Mozart. The description of the annotations
are provided in the text. The numbers along the vertical and horizontal axes corre-
spond to the sequence index, and the color bar quantifies the similarity between any
two segments.

musical structure is occasionally permeated by exquisite details, such as a phase

transition (these, again, identified by the arrows at the bottom).

The large sectional divisions between the Exposition, Development, and Reca-

pitulation are easily seen in Figure 3.13. This figure also marks the beginnings of

the first theme, second theme, closing theme, and coda within the Exposition. The

beginning of the transition section is not distinguished from the first theme in Figure

3.13, despite the clear cadence that separates the first theme and transition. On the

other hand, dHDP isolates a brief passage that occurs in the middle of the transi-

tion (m. 14, beat 4 - m. 16). This passage is characterized by a sudden change

in dynamics and register. Other examples of local segmentation appear at the end

of the transition and the beginning of the second theme (mm. 22 − 23), when the

51



right hand is unaccompanied by the left. Here Figure 3.13 shows a prominent orange

band denoting less similarity with the music immediately preceding and following

this passage, which is entirely consistent with the musical texture. The figure marks

the restatement of the second theme (m. 31) and isolates the final measures of the

coda when the musical texture thins out at the Exposition cadence. The sudden

change of texture and dynamics within the closing theme (mm. 46 − 48) is clearly

separated from the main part of the closing theme in the figure. Even smaller seg-

ments comprising a few notes are marked. These segments isolate moments between

phrases when the right hand plays quietly, unaccompanied by the left hand. The

dHDP analysis of the Exposition repeat precisely replicates the segmentation de-

scribed above.

The Development is represented as a single block, though the beginning of the

improvisatory section in F minor (m. 71) appears to be marked by a prominent

green band, indicating less similarity with the music immediately preceding and fol-

lowing this moment. Figure 3.13 marks the retransition with several small segments,

however, the resolution of the figure makes it difficult to correlate these segments

with particular moments in the music. Figure 3.13 clearly marks the Recapitula-

tion with its return to the first theme in the tonic key. As before, the beginning of

the transition goes unnoticed, however, dHDP again segments the transition passage

associated with a sudden change in register and dynamics (mm. 110, beat 4− 112).

The end of the transition and beginning of the second theme (mm. 118− 119) is

marked by a prominent orange/yellow band (Figure 3.13) indicating less similarity,

just as was seen at the same moment in the Exposition (mm. 22−23). The figure does

not mark the restatement of the second them as it did in the Exposition, however,

this may be a consequence of misalignment between the music playback and the

analysis, as discussed above. The closing theme is segmented appropriately, and the

sudden change of texture and dynamics in mm. 142− 146 is segmented apart from

52



the rest of the closing theme, just as we saw in mm. 46− 48 in the Exposition. Note

that Figure 3.13 clearly shows this passage has been extended to five measures in the

Recapitulation compared to three measures in the Exposition. The figure segments

the coda in the same way we saw in the Exposition, including its isolation of the

final cadence.

In sum, dHDP analysis has segmented the music remarkably well. Parallel pas-

sages which appear throughout the movement are represented the same way each

time they occur. Even the omissions are consistent, such as the lack of segmentation

of the transition from the first theme. The results are summarized in Figure 3.14.

Conventional Analysis dHDP Analysis Measure Numbers

Exposition 

     First Theme Segment 1

     Transition No segment 10

     (Texture change in Transition) Segment 14, beat 4-16

     (Dissimilarity of unaccompanied R.H.) Segment 22-23

     Second Theme Segment 23

     Second Theme restatement Segment 31

     Closing Theme Segment 38

     (Texture change in Closing Theme) 46

     Coda Segment 50

Final cadence 63

Development 

     Variation of First Theme Segment 64

     Improvisatory section in Fm Segment? 71

     Retransition Several small segments 87-93

Recapitulation

     First Theme Segment 94

     Transition No segment 103

     (Texture change in Transition) Segment 110, beat 4 -112

     (Dissimilarity of unaccompanied R.H.) Segment 118-119

     Second Theme Segment 119

     Second Theme restatement No segment 127

     Closing Theme Segment 134

     (Texture change in Closing Theme) Segment 142

     Coda Segment 152

     (Final cadence) Segment 165

Figure 3.14: Summary of the dHDP analysis of Sonata for Piano, K. 333, First
Movement.
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Quality of Similarity Defined by dHDP Analysis of K. 333

The dHDP analysis shows a high degree of similarity of most thematic materials in

the movement. For example, the first theme, transition, second theme, and coda

are all marked with the highest degree of similarity to each other across the entire

movement. The dHDP analysis does not appear to recognize the differences in note

successions in these passages.

Figure 3.13 does indicate moments of dissimilarity. For example, the closing

theme (beginning in m. 38) is marked as dissimilar from anything else in the move-

ment. Recall that the closing theme introduced a new Alberti bass accompaniment

in sixteenth notes which helps set this music apart. However, the reappearance of

the closing theme in the Recapitulation is not represented as similar to the closing

theme in the Exposition. Perhaps the transposition of the closing theme to the tonic

key in the Recapitulation obscures the similarity, but this does not explain why the

closing theme in the Recapitulation is marked as highly similar to the first and sec-

ond themes, transition, and development throughout the rest of the movement, no

matter what key they are in.

Several incidental details are marked with a high degree of similarity to each other

while being dissimilar to the rest of the movement. These are normally moments

when the music suddenly becomes quiet or features isolated groups of notes played

by the right hand without accompaniment. Examples of this can be seen along the

horizontal axis at the very top of Figure 3.13 and include the pickups to m. 1, m. 46,

the pickups to m. 64, the pickups to m. 94, mm. 118− 119, m. 130, mm. 142− 146,

and the final cadence in m. 165.

Finally, we observe that dHDP analysis is not suitable for revealing the projection

of chromatic details at a larger structural level. We note, however, that dHDP

analysis did mark the first appearance of the descending chromatic melodic figure in
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mm. 46− 48 of the closing theme.

From these results we may suppose that similarity in dHDP analysis is more

strongly associated with dynamics, texture, and register than with melody and har-

mony. This raises an important point. While dynamics can be specified in the

musical score, it is up to the musician to interpret these markings in performance. It

is possible that dHDP analysis would represent another interpretation of the same

piece differently. For brevity, we only provide the detailed music-theoretic analysis,

with comparison to dHDP, for the Mozart piece. However, the same detailed analysis

was used to yield the conclusions above with respect to the Beethoven piece. That

analysis is provided online as Supplement 2. We reiterate that the music-theoretic

analysis of the type summarized in Figure 3.12 was performed independent of the

statistical analysis, with comparisons performed subsequently.

3.4 Summary

The dynamic hierarchical Dirichlet process (dHDP) has been developed for analysis

of sequential data, with a focus on analysis of audio data from music. The framework

assumes a parametric representation F (θ) to characterize the statistics of the data

observed at a single point in time. The parameters θ associated with a given point

in time are assumed to be drawn from a mixture model, with in general an infinite

number of atoms, analogous to the Dirichlet process. The mixture models at time

t− 1 and time t are interrelated statistically. The model is linked to the hierarchical

Dirichlet process [TJBB06] in the sense that the initial mixture model and the subse-

quent time-dependent mixtures are drawn from the same discrete distribution. This

implies that the underlying atoms in the θ space associated with the aforementioned

mixtures are the same, and what is changing with time are the mixture weights. The

model has the following characteristics: (i) with inferred probabilities, the underly-

ing parameters associated with data at adjacent times are the same; and (ii) since
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the same underlying atoms are used in the mixtures at all times, it is possible that

the same atoms may be used at temporally distant time, allowing the capture of re-

peated patterns in temporal data. The underlying sharing properties (correlations)

between observations at adjacent times have also been derived. Inference has been

performed in an MCMC setting.

Examples have been presented on three musical pieces: a relatively simple piece

from the Beatles, as well as two more complicated classical pieces. The classical pieces

are more difficult to analyze because there are no vocals, and a single instrument

is generally used, and therefore the segmentation of such data is more subtle. The

results of the classical-piece segmentations have been analyzed for their connection to

music analysis. In this connection it is felt that the results are promising. While there

were mistakes in the analysis of the Beethoven and Mozart pieces considered, there is

a great deal of accuracy as well. The results clearly reveal meaningful characteristics

about Beethoven and Mozart.

The dHDP analysis effectively segments the two classical compositions by Mozart

and Beethoven at both the large-scale and local levels. Segmentation appears to be

related to musical dynamics, texture, and register. The dHDP analysis of similarity

is far more successful in the Beethoven sonata than in the work by Mozart. It may be

that the greater variety of musical textures, dynamics, and registral placement in Op.

31, No. 2 yield more gradations of similarity in the graph. The dHDP analysis makes

several plausible similarity connections, though there are inconsistencies as well. The

greatest deficiency in the dHDP analysis of similarity is the apparent inability to track

note successions (i.e., themes) and key areas as a basis for comparison.

Despite these shortcomings, dHDP analysis is instructive for musicians, perhaps

especially so for composers (these are observations of the third author, who is a

composer and musician). In K. 333, Mozart articulates form through themes and

tonal structure. Beethoven articulates form in Op. 31, No. 2 through themes that
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are linked to emphatic gestures, as well as through a detailed tonal design. This is

not to say that one is better than the other. There are works by Beethoven that may

result in findings that are similar to K. 333, and Mozart has composed works that

may result in findings that are as varied as the results of Op. 31, No. 2. Nonetheless,

dHDP analysis of K. 333 and Op. 31, No. 2 illustrates general tendencies of the two

composers that are commonly acknowledged by musicians and audiences alike.

Concerning future research, for large data sets the MCMC inference engine em-

ployed here may not be computationally tractable. The graphical form of the dHDP

is applicable to more-approximate inference engines, such as a variational Bayesian

(VB) analysis [BJ04]. We intend to examine VB inference in future studies, and

to examine its relative advantages in computational efficiency compared to its in-

ference accuracy (relative to MCMC). Additionally, our model was motivated by a

stick-breaking construction of DP; however, it is also of interest to consider a Chi-

nese restaurant/franchise representation [TJBB06], which may have advantages for

interpretation and inference.
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4

Nonparametric Modeling of Spatial Dependence

Spatial data analysis has been widely used in many scientific and engineering ap-

plications, such as geometric field exploration, social network data mining, wireless

system simulations, remote sensing and imaging systems etc. For these problems,

the data are collected at specific locations and the sampling measurements depend

on their spatial origins. For example, the global precipitation displays a dynamic dis-

tribution as a function of geographic locations; the quality of domestic water varies

across different regions; even the prevalent topics discussed within a social network

may also exhibit spatial dependence within a local neighborhood. As the new tech-

nologies invented for global positioning systems, large spatial data with accurate

geocoding of locations become available. This allows researchers to exploit the data

to provide a qualitative spatial analysis or prediction.

To solve specific problems, spatial information will be considered in different

ways. For prediction of local precipitation, the geographic coordinates may be used

as predictors in a regression; For a spatial clustering problem, like image segmenta-

tion, the position of an object usually provides a prior information for the spatial

partition; For remote sensing applications, multiple categories of targets need to be

58



discriminated by establishing a set of local “experts systems” with spatial adaptivity.

Underlying these different problems, there are at least two typical issues requires to

discuss: how do we infer the spatial dependence underlying the data as the spatial

locations are provided? And how many local regions should we consider for gener-

ating good estimation if the regional statistics are unknown in advance? To answer

these questions, we think of using Bayesian nonparametric models to deal with the

challenges in the same framework.

4.1 Extension from Temporal to Spatial Modeling

In the previous sections, probabilistic models for temporal data analysis have been

studied. It makes one naturally think to extend a time-evolving statistical model to

solve spatially dependent problems. With the data space changed from one dimen-

sion to two, we can hardly find a natural order to align the observations, so that a

linear dynamic system with a Markov chain cannot be directly applied on modeling

spatial dependence. In addition, for a 2-D space, the number of data points might be

nonlinearly increased, sometimes leading to a huge computation cost and slow com-

putation speed. Due to the potentially existed challenges, spatial modeling has been

treated as an important studying field in statistics, and some traditional Bayesian

techniques have been widely used.

One of the most popular methods is the Gaussian process [RW06], which estab-

lishes a correlation associated with data via placing a prior on the covariance struc-

tures. The spatial effect is customarily modeled as a mean-zero stationary Gaussian

process (GP) [GKM05], composed of a set of jointly Gaussian random variables. Two

proximate variables are expected to have a high correlation than those to be spa-

tially distant. Assume we have a collection of data points {xi, si}Ni=1: xi represents

the observation in the feature space and si indicates the 2-D location coordinates.
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The spatial dependence can be represented in the covariance function as follows:

Cov(xi,xj) = αexp
(
− 1

2

2∑
d=1

kd(sid − sjd)2
)
, (4.1)

in which α is an overall scaler to control the covariance value and kd is the length

scale to adjust the kernel smoothness. Given these parameters, we can calculate

the correlation of any two data points in the 2-D surface and estimate the incoming

data. One of the related work is the Kriging [Ste99], a class of geostatistical tech-

niques for interpolation of spatial data. To explore the uncertainty of estimation

at unsampled points, Gaussian processes are also extended for active data mining

as spatially localized priors [RBkT+05, JG09]. With multiple outputs at the same

region, Boyle [BF05] proposed dependent Gaussian processes to learn the spatial

translations between outputs. High computational cost of Gaussian process model-

ing has also been tackled with sparse factorization [LI09] or projection to a lower

dimensional subspace [BGFS08].

Another statistical model, Markov random field (MRF) [KS80], is also widely

used in spatial modeling, especially for Bayesian segmentation. Markov random field

is an n-dimensional random process defined on a discrete lattice. In a 2-D setting,

the full conditional distribution of one random variable depends only on its neighbor-

hood, defined as a set of its proximate sites. The objective with a Markov random

field model is to minimize the sum of the deviation cost function and a penalty

function that grows with the distance between the values of related pairs [BGFS08],

hence introducing a localized dependent structure to model a prior belief about the

contiguity of image features [LJ01,DC04,KP06]. In recent years, some scholars also

considered a combination of MRF with nonparametric techniques [OB06, SYL+09],

allowing the model with an adaptive complexity.

The main disadvantage of the Gaussian- and MRF-based methods is that the
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optimization of the parameters involves an expensive computation cost. This makes

it difficult to directly apply the algorithms on large scale problems. Another potential

issue for the Gaussian process is that the normal assumption may not always be true

if the data itself shows a nonstationary property [KMH05], while the Markov random

field needs to specify the neighborhood in advance. Due to the limitations of the both

the two methods, we seek some more flexible ways for modeling spatially dependent

data, with the following two models as starting motivations.

4.2 Generalized Spatial Dirichlet Process Model

Generalized spatial Dirichlet process [DGG07] is proposed for capturing residual

spatial association of point-referenced spatial data YD ≡ {Y (s) : s ∈ D}, where s

represents the locations that observations Y are collected. Although the model is

established in the framework of Gaussian process, it generates a nonstationary, non-

Gaussian random process, allowing different data sites to choose different random

surfaces. This property leads to a more generalized form compared with the spatial

Dirichlet process (SDP) proposed by Gelfand [GKM05]. The SDP model arises as a

probability weighted collection of random surfaces, with each random surface being

a realization from a base measure G0. Assume G0 is a Gaussian process and each

realization from G0 is represented as θl,D = {θl(s) : s ∈ D} with l = 1, . . . ,∞ being

the index of the random surfaces. Based on the stick-breaking construction, the

resulting distribution G for YD is

G =
∞∑
l=1

wlδθl,D , wl = zl

l−1∏
r=1

(1− zr), zr ∼ Be(1, ν). (4.2)

The marginal distribution at each site still comes from a Dirichlet process. Since

the SDP is essentially a Dirichlet process defined on a space of surfaces, its real-

izations are discrete probability measures with countable support with probability
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one [GKM05]. Although the model specifies multiple random surfaces, sharing the

same set of mixture weights still encourages all of the sites assigned to the same layer.

Considering a more general form, both of the mixture components and distribution

weights have the spatially dependent property, so that different sites choose the ran-

dom surfaces according to their own selecting weights while the spatial dependence

is still preserved.

Similar as the SDP, the generalized spatial Dirichlet process still draws each

random surface {θl,D}∞l=1 from a stationary Gaussian process. Its one realization G

on the space D allows the surface selection to vary with the choice of locations, and

is still a discrete probability measure with countable support with probability one.

Accordingly, for any set of locations (s1, . . . , sn) ∈ D and collection {A1, . . . , An} in

B(R),

P{Y (s1) ∈ A1, . . . , Y (sn) ∈ An} =
∞∑
i1=1

. . .
∞∑
in=1

pi1,...,inδθ∗i1 (s1)
(A1) . . . δθinA∗(sn)(An),

(4.3)

satisfying the condition that
∑∞

i1=1 . . .
∑∞

in=1 pi1,...,in = 1 with any pi1,...,in ≥ 0. In

addition, the weights defined on the infinite dimensional simplex should also satisfy

a spatial continuity property: as s → s0, the joint probability pi1,i2 = p{Y (s) =

θ∗i1(s), Y (s0) = θ∗i2(s0)} converges to the marginal probability pi2 = p
(
Y (s0) =

θ∗i2(s0)
)

when i1 = i2, and to 0 otherwise. For the joint probability of n (n ∈ N)

locations, a similar conclusion can be reached.

Based on the above assumption, the mixture distribution weights are generated
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via a set of gating variables, as represented as follows:

pi1,...,in = p
[
z1(s1) < 0, . . . , zi1−1(s1) < 0, zi1(s1) ≥ 0;

z1(s2) < 0, . . . , zi2−1(s2) < 0, zi2(s2) ≥ 0;

...

z1(sn) < 0, . . . , zin−1(sn) < 0, zin(sn) ≥ 0
]
,

(4.4)

where zl(s1), . . . , zl(sn) are a countable collection of indicator variables drawn from

a Gaussian process associated with the lth random surface; for a specific location s,

z1(s) < 0, . . . , zi−1(s) < 0, zi(s) ≥ 0 jointly indicate the site Y (s) = θ∗i (s). Within

this framework, the marginal distribution of the generalized spatial Dirichlet pro-

cess is still a Dirichlet process :G(s) =
∑∞

l=1 pl(s)δθ∗l (s), where pl(s) is defined as

p
[
z1(s) < 0, . . . , zl−1(s) < 0, zl(s) ≥ 0

]
. Although the model admits a flexible spatial

dependence, the use of GPs presents computational challenges as applied to large

scale problems.

4.3 Kernel Stick-Breaking Process

Kernel stick-breaking process (KSBP) is proposed for uncountable collections of de-

pendent random probability measures [DP07]. It still considers an infinite number

of atoms drawn from a base G0 like the traditional DP, while incorporates predictors

within the mixture weights via a bounded kernel multiplied by the beta weights. The

KSBP imposes that clustering is more probable if two feature vectors are close in a

prescribed (general) space, which may be associated explicitly with spatial position

for spatially dependent data modeling. With the KSBP, rather than assuming ex-

changeable data, one realization of the random measures G becomes a function of
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spatial location:

Gs =
∞∑
k=1

πk(s;Vk,Γk, ψ)δθ∗k

πk(s;Vk,Γk, ψ) = VkK(s,Γk;ψ)
k−1∏
k′=1

[
1− Vk′K(s,Γk′ ;ψ)

]
Vk ∼ Beta(1, α0), θ∗k ∼ G0, Γk ∼ H0

(4.5)

where K(s,Γk;ψ) represents a kernel distance between the feature-vector spatial

coordinate s and a local basis location Γk associated with the kth stick; ψ is the

kernel width to adjust the distance at an appropriate scale.

Note that the measure Gs drawn from the KSBP turns into a function of location,

with each basis probability weight πk introduced for different location Γk. As the

basis location Γk is close to the predictor location s, the bounded kernel function

associated with Γk yields a larger value than others, favoring a high probability to

select the atom with the same index k; however, this is only true for those atoms also

having smaller index due to the property of the stick-breaking process. Meanwhile,

the KSBP includes the Dirichlet process as a special case, when K(s,Γk;ψ) = 1

for all (s,Γk). An advantage of the KSBP formulation is that many of the tools

developed for exchangeable stick-breaking processes can be applied with minimum

modification [DP07] and the simple form of the model makes it straightforward to for-

mulate the inference. Although the kernel function introduced a spatial dependence

in KSBP to encourage the proximate feature vectors to be clustered together, it does

not yield a spatial contiguity for the resulting clustering, as the image segmentation

result shown in [AWS+08].

Motivated by the above discussions and considering a specific application, image

segmentation, we still use a kernel function to measure the spatial distance like

KSBP, but rebuild the spatial dependence within the generalized spatial Dirichlet
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process (GSDP) as another form. The new model, logistic stick-breaking process

(LSBP), can be applied on a large scale problem with a relatively fast variational

inference; meanwhile it also shows a good performance compared with other state-

of-art methods.
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5

Logistic Stick-Breaking Process

5.1 Introduction

One is often interested in clustering data that have associated spatial or tempo-

ral coordinates. This problem is relevant in a diverse set of applications, such as

climatology, ecology, environmental health, real estate marketing, and image anal-

ysis [BCG03]. The available spatial or temporal information may be exploited to

help infer patterns, clusters or segments in the data. To simplify the exposition, in

the following discussion we focus on exploiting spatial information, although when

presenting results we also consider temporal data [FSJW08a].

There have been numerous techniques developed to cluster data, although most

of these do not explicitly exploit appended spatial information. One class of state-

of-the-art methods employs graphical techniques, such as normalized cuts [SM00,

FH04] and extensions [ZK04]. These approaches regard the two-dimensional (2D)

data as an undirected weighted graph, and the segmentation is equivalent to finding

the minimum cut of the graph, minimizing the between-group disassociation while

maximizing the within-group association [SM00]. Such graph-theoretic methods have
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attractive computational speed, but do not provide a statistical inference (measure

of confidence), and often one must pre-define the total number of segments/clusters.

Further, such graphical techniques are not readily extended to the joint analysis of

multiple spatially dependent data sets, with this of interest for the simultaneous

analysis of multiple images.

To consider clustering in a nonparametric Bayesian manner, the Dirichlet pro-

cess (DP) [BM73] has been employed widely [Ant74, EW95, Ras00, BGR02]. The

assumption within the DP that the data are exchangeable is generally inappropri-

ate when one wishes to impose knowledge of spatial information (in which each yn

has an associated spatial location). For example, the data may be represented as

{yn, sn}Nn=1, in which yn is again the feature vector and sn represents the spatial

location of yn. Provided with such spatial information, one may wish to explicitly

impose the belief that proximate data are more likely to be clustered together.

The spatial location sn may be readily considered as an appended feature, and

the modified feature vectors (data) may then be analyzed via traditional clustering

algorithms, like those discussed above. For example, the spatial coordinate has been

considered explicitly in recent topic models [CFF07,WG07,GWP08] when applied in

image analysis. These previous studies seek to cluster visual words, with such clus-

tering encouraged if the features are spatially proximate. However, these methods

may produce spurious clusters that are introduced to better characterize the spatial

data likelihood instead of the likelihood of the features conditionally on spatial loca-

tion [PD09]. In addition, such approaches require a model for the spatial locations,

which is not statistically coherent as these locations are typically fixed by design,

and there may be additional computational burden for this extra component.

To address these challenges, and impose spatial information more explicitly, re-

searchers have recently modified the DP construction to manifest spatial-location

dependent stick weights. The work of Duan et al. [DGG07] recently introduced a

67



framework in terms of a hierarchy of Gaussian processes (see section 4.2), in which

the spatially dependent construction is obtained by thresholding K latent Gaussian

processes (GPs); while this is a powerful construction, the use of GPs presents com-

putational challenges [SJ08]. To simplify the model structure, the Dirichlet labeling

process [PGG09] has been proposed, in which one thresholds only one latent Gaus-

sian process to regulate spatial dependence. However, the model inference, performed

with Markov chain Monte Carlo (MCMC), is inefficient for many large-scale applica-

tions. Similar issues are also true for work that has combined the Dirichlet process

with a Markov random field (MRF) constraint [OB08]. As an alternative to the

above approaches, a kernel stick-breaking process (KSBP) has been proposed [DP07]

and discussed in section 4.3. As demonstrated when presenting results, the KSBP

generally does not yield smooth segments with sharp boundaries.

Instead of thresholding K latent Gaussian processes [DGG07] to assign a fea-

ture vector to a particular parameter, we introduce a novel non-parametric spatially

dependent prior, called the logistic stick-breaking process (LSBP), to impose that

it is probable that proximate feature vectors are assigned to the same parameter.

The new model is constructed based on a hierarchy of spatial logistic regressions,

with sparseness-promoting priors on the regression coefficients. With this relatively

simple model form, inference is performed efficiently with variational Bayesian anal-

ysis [Bea03], allowing consideration of large-scale problems. Further, for reasons

discussed below, this model favors contiguous segments with sharp boundaries, of

interest in many applications. The model developed in [CD09a], based on a pro-

bit stick-breaking process, is most closely related to the proposed framework; the

relationships between LSBP and the model in [CD09a] are discussed in detail below.
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5.2 Model Specifications

We first consider spatially constrained clustering for a single data set (task). As-

sume N sample points {Dn}n=1,N , where Dn = (yn, sn), with yn representing the

nth feature vector and sn its associated spatial location. We draw a set of candi-

date model parameters, and the probability that a particular space-dependent data

sample employs a particular model parameter is defined by a spatially-dependent

stick-breaking process, represented by a kernel-based logistic-regression.

Assume an infinite set of model parameters {θ∗k}∞k=1. Each observation yn is

drawn from a parametric distribution F (θn), with θn ∈ {θ∗k}∞k=1. To indicate which

parameter in {θ∗k}∞k=1 is associated with the nth sample, a set of indicator variables

Zn = {zn1, zn2, . . . , zn∞} are introduced for each Dn, and all the indicator variables

are equal to zero or one. Given Zn, data Dn is associated with parameter θ∗k if

znk = 1 and znk̂ = 0 for k̂ < k.

The Zn are drawn from a spatially dependent density function, encouraging that

proximate Dn will have similar Zn, thereby encouraging spatial contiguity. This

may be viewed in terms of a spatially dependent stick-breaking process. Specifically,

let pk(sn) define the probability that znk = 1, with 1 − pk(sn) representing the

probability that znk = 0; the spatial dependence of these density functions is made

explicit via sn. The probability that the kth parameter is selected in the above model

is πk(sn) = pk(sn)
∏k−1

k̂=1
[1 − pk̂(sn)], which is of the same form as a stick-breaking

process [IJ01] but extends to a spatially dependent mixture model, represented as

Gsn =
∞∑
k=1

πk(sn)δθ∗k , πk(sn) = pk(sn)
k−1∏
k̂=1

[1− pk̂(sn)]. (5.1)

Here each pk(sn) is defined in terms of a logistic link function (other link functions

may also be employed, such as a probit). Specifically, we consider Nc discrete spatial
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locations {ŝi}Nc
i=1 within the domain of the data (e.g., the locations of the samples in

Dn). To allow the weights of the different mixture components to vary flexibly with

spatial location, we propose a kernel logistic regression for each break of the stick,

with

log

(
pk(sn)

1− pk(sn)

)
= gk(sn) =

Nc∑
i=1

wkiK(sn, ŝi;ψk) + wk0 (5.2)

where gk(sn) is the linear predictor in the logistic regression model for the kth break

and position sn, and

K(sn, ŝi;ψk) = exp
[
− ‖sn − ŝi‖2

ψk

]
(5.3)

is a Gaussian kernel measuring closeness of locations sn and ŝi, as in a radial ba-

sis function model (alternative kernel functions may be defined). The kernel basis

coefficients are represented as Wk = [wk0, wk1, . . . , wkNc ]
′. A sparseness-promoting

prior is chosen for the components of Wk, such that only a relatively small set of

wki will have non-zero (or significant) amplitudes; those spatial regions for which

the associated amplitudes are non-zero correspond to regions for which a particular

model parameter is expected to dominate in the segmentation (this is similar to the

KSBP in (4.5), which also has spatially localized kernels). The indicator variables

controlling allocation to components are then drawn from

znk ∼ Bernoulli[σ
(
gk(sn)

)
] (5.4)

where σ(g) = 1/[1 + exp(−g)] is the inverse of the logit link in (5.2).

There are many ways that such sparseness promotion may be constituted, and

we have considered two. As one choice, one may employ a hierarchical Student-t

prior as applied in the relevance vector machine [BT00,Tip01,BS03]:

wki ∼ N(wki|0, λ−1ki )Gamma(λki|a0, b0) (5.5)
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where shrinkage is encouraged with a0 = b0 = 10−6 [Tip01]. Alternatively, one may

consider a “spike-and-slab” prior [IR05]. Specifically,

wki ∼ νkN (0, λ−1k ) + (1− νk)δ0, νk ∼ Beta(νk|c0, d0) (5.6)

The expression δ0 represents a unit point measure concentrated at zero. The parame-

ters (c0, d0) are set such that νk is encouraged to be close to zero, enforcing sparseness

in wk; the parameter λk is again drawn from a gamma prior, with hyperparameters

set to allow a possibly large range in the non-zero values of wki, and therefore these

are not set as in the Student-t representation. The advantage of the latter model is

that it explicitly imposes that many of the components of wk are exactly zero, while

the Student-t construction imposes that many of the coefficients are close to zero. In

our numerical experiments on waveform and image segmentation, we have employed

the Student-t construction.

Note that parameter θ∗k is associated with an s-dependent function gk(s), and

there are K−1 such functions. The model is constructed such that within a contigu-

ous spatial/temporal region, a particular parameter θ∗k is selected, with these model

parameters used to generate the observed data.

There are two key components of the LSBP construction: (i) sparseness pro-

motion on the wki, and (ii) the use of a logistic link function to define space-

dependent stick weights. As discussed further in section 5.3, these concepts are

motivated by the idea of making a particular space-dependent LSBP stick weight

πk(s) = σ(gk(s))
∏

k′<k[1− g′k(s)] near one within a localized region in space (moti-

vating the sparseness prior on the weights), while also yielding contiguous segments

with sharp boundaries (manifested via the logistic).

It is desirable to allow flexibility in the kernel parameter ψ, as this will influence

the size of segments that are encouraged (discussed further below). Hence, for each
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k we draw

ψk = ψ∗rk rk ∼ Mult(1/τ, . . . , 1/τ) (5.7)

with Ψ∗ = {ψ∗j}τj=1 a library of possible kernel-size parameters; rk is an index for

the one non-zero component of a single draw from Mult(1/τ, . . . , 1/τ). We employ

a discrete dictionary of kernel sizes Ψ∗ because there is not a conjugate prior for

imposition of a continuous distribution of kernel parameters (this is discussed further

in section 5.4). A draw from this hierarchical prior is denoted concisely as Gs ∼

LSBP(H, a0, b0,Ψ
∗), where it is assumed that we are using the Student-t prior for

weights {wk}k=1,K−1, with a similar representation used for a spike-and-slab prior;

note thatGs is defined simultaneously for all spatial locations. The model parameters

{θ∗k}∞k=1 are assumed drawn from the measure H.

In practice we usually truncate the LSBP to K sticks, as in a truncated stick-

breaking process [IJ01]. With a truncation level K specified, if znk = 0 for all k =

1, . . . , K − 1, then znK = 1 so that θn = θ∗K . Since we yield an approximation to the

full posterior density function via variational Bayesian (VB) inference (as discussed

in section 5.4), we may also view selection of K as a model-selection problem. The

VB analysis yields an approximation to the marginal likelihood of the observed data,

which can be used as a basis for model selection. When presenting results we consider

simply setting K to a large value, or alternatively selecting K via model selection.

Figure 5.1 shows the graphical form of the model (using a Student-t sparseness

prior), in which Ψ∗ represents the discrete set of kernel-width candidates, ψk is

the kernel width selected for the kth stick, and the prior H takes on different forms

depending upon the application. In Figure 5.1 the 1/τ emphasizes that the candidate

kernel widths are selected with uniform probability over the τ candidates in Ψ∗.
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Figure 5.1: Graphical representation of the LSBP.

5.3 Discussion of LSBP Properties and Relationship to Other Models

The proposed model is motivated by the work in [SJ08], in which multiple draws

from a Gaussian process (GP) are employed. Candidate model parameters are asso-

ciated with each GP draw, and the GP draws serve to constitute a nonparametric

gating network, associating particular model parameters with a given spatial posi-

tion. In [SJ08] the spatial correlation associated with the GP draws induces spatially

contiguous segments (a highly spatially correlated gating network), and this may be

related to a spatially-dependent stick-breaking process. However, use of the GP pro-

duces computational challenges. The proposed LSBP model also manifests multiple

space-dependent functions (here gk(s)), with associated candidate model parameters

{θ∗k}k=1,K . Further, we constitute a spatially dependent gating network that has a

stick-breaking interpretation. However, a different and relatively simple procedure

is proposed for favoring spatially contiguous segments with sharp boundaries.

At each location s we have a stick-breaking process, with the probability of se-

lecting model parameters θ∗k defined as πk(s) = σ(gk(s))
∏

k′<k[1−σ(gk′(s))]. Recall

that gk(s) =
∑Nc

i=1wkiK(s, ŝi;ψk) + wk0, with sparseness favored for coefficients

{wik}i=0,Nc . Considering first g1(s), note that since most {w1i}i=1,Nc are zero or

near-zero, the bias w10 controls the stick weight π1(s) for all s sufficiently distant
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from those locations ŝi with non-zero w1i. Further, if w1i � 0, σ(g1(s)) ≈ 1 for s in

the “neighborhood” of the associated location ŝi; the neighborhood size is defined by

ψ1. Hence, those {ŝi}i=1,Nc with associated large {w1i}i=1,Nc define localized regions

as a function of s over which parameter θ∗1 is highly probable, with locality defined

by kernel scale parameter ψ1. For those regions of s for which π1(s) is not near one,

there is appreciable probability 1− π1(s) that model parameters {θ∗k}k=2,K may be

utilized.

Continuing the generative process, model parameters θ∗2 are probable where

π2(s) = σ(g2(s))[1 − π1(s)] ≈ 1. The latter occurs in the vicinity of those s that

are distant from ŝi with large associated w1i (i.e., where 1 − π1(s) ≈ 1), while also

being near ŝi with large w2i (i.e., where σ(g2(s)) ≈ 1). We again underscore that

w20 impacts π2(s) for all s.

This process continues for increasing k, and therefore it is probable that as k

gets large all or almost all s will be associated with a large stick weight, or a large

cumulative sum of stick weights, such that parameters θ∗k become improbable for

large k and all s.

Key characteristics of this construction are the clipping property of the logistic

link function, and the associated fast rise of the logistic. The former imposes that

there are contiguous regions (segments) over which the same model parameter has

near-unity probability of being used. This encouraging of homogeneous segments is

also complemented by sharp segment boundaries, manifested by the fast rise of the

logistic. The aforementioned “clipping” property is clearly not distinct to logistic

regression. It would apply as well to other binary response link functions, which can

be any CDF for a continuous random variable. For example, probit links [CD09a]

would have the same property, though the logistic has heavier tails than the probit so

may have slightly different clipping properties. We have here selected the logistic link

function for computational simplicity (it is widely used, for example, in the relevance
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vector machine [Tip01], and we borrow related technology). It is interesting to see

how the segmentation realizations differ with the form of link function, with this to

be considered in future research.

To give a more-detailed view of the generative process, we consider a one-dimensional

example, which in section 5.5 will be related to a problem with real data. Specif-

ically, consider a one-dimensional signal with 488 discrete sample points. In this

illustrative example Nc = 98, defined by taking every fifth sample point for the un-

derlying signal. We wish to examine the generative process of the LSBP prior, in the

absence of data. For this illustration, it is therefore best to utilize the spike-and-slab

construction, since without any data the Student-t construction will with high prob-

ability make all wki ≈ 0 (when considering data, and evaluating the posterior, a small

fraction of these coefficients are pulled away from zero, via the likelihood function,

such that the model fits the data; we reconsider this in section 5.5). Further, again

for illustrative purposes, we here treat {wk0}k=1,K as drawn from a separate normal

distribution, not from the spike-and-slab prior used for all other components of wk.

This distinct handling of {wk0}k=1,K has been found unnecessary when processing

data, as the likelihood function again imposes constraints on {wk0}k=1,K . Hence

this form of the spike-and-slab prior on wk is simply employed to illuminate the

characteristics of LSBP, with model implementation simplifying when considering

data.

In Figure 5.2 we plot representative draws for wk, gk(s), σ(gk(s)) and πk(s), for

the one-dimensional signal of interest. In this illustrative example each νk is drawn

from Beta(1, 10) to encourage sparseness, and those non-zero coefficients are drawn

from N (0, λ), with λ fixed to correspond to a standard deviation of 15 (we could

also draw each λk from a gamma distribution). Each bias term wk0 is here drawn

i.i.d. from N (0, λ). We see from Figure 5.2 that the LSBP naturally favors localized

segments that have near-unity probability of using the same model parameters. This
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Figure 5.2: Example draw from a one-dimensional LSBP, using a spike-and-slab
construction for model-parameter sparseness. (a) wk , (b) gk(t) , (c) σk(t), (d) πk(t)

is a typical draw, where we note that for k ≥ 4 the probability of θ∗k being used

is near zero. While Figure 5.2 represents a typical LSBP draw, one could also

envision other less-desirable draws. For example, if w10 � 0 then π1(s) ≈ 1 for

all s, implying that the parameters θ∗1 is used for all s (essentially no segmentation).

Other “pathological” draws may be envisioned. Therefore, we underscore that the

data, via the likelihood function, clearly influences the posterior strongly, and the

pathological draws supported by the prior in the absence of data are given negligible

mass in the posterior.

As further examples, now for two-dimensional signals, Figure 5.3 considers ex-

ample draws as a function of the kernel parameter ψk. These example draws were

manifested via the same process used for the one-dimensional example in Figure 5.2,
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Figure 5.3: Samples drawn from the spatially dependent LSBP prior, for different
(fixed) choices of kernel parameters ψ, applied for each k within the LSBP. In row 1
ψ = 15; in row 2 ψ = 10; and in row 3 ψ = 5. In these examples the spike-and-slab
prior has been used to impose sparseness on the coefficients {wk}k=1,K−1.

now extending s to two dimensions. Figure 5.3 also shows the dependence of the

size of the segments on the kernel parameter ψk, which has motivated the learning

of ψk in a data-dependent manner (based on a finite dictionary of kernel parameters

Ψ∗ = {ψ∗j}τj=1). The draws in Figure 5.3 are similar to those manifested by the

GP-based construction in [SJ08], motivating the simple model developed here.

5.4 Model Inference

Markov chain Monte Carlo (MCMC) [GRS98] is widely used for performing inference

with hierarchical models like LSBP. For example, many of the previous spatially-

dependent mixtures have been analyzed using MCMC [DGG07,DP07,NG08,OB08].

The H-KSBP [AWS+08] model is developed based on a Monte Carlo Variational

Bayesian (MCVB) inference algorithm; however, nearly half of the model parame-

ters still need to be estimated via a sampling technique. Although MCMC is an

attractive method for such inference, the computational requirements may lead to

implementation challenges for large-scale problems, and algorithm convergence is

often difficult to diagnose.
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The LSBP model proposed here may be readily implemented via MCMC sam-

pling. However, motivated by the goal of fast and relatively accurate inference for

large-scale problems, we consider variational Bayesian (VB) inference [Bea03].

5.4.1 Variational Bayesian analysis

Bayesian inference seeks to estimate the posterior distribution of the latent variables

Φ, given the observed data D:

p(Φ|D,Υ) =
p(D|Φ,Υ)p(Φ|Υ)∫
p(D|Φ,Υ)p(Φ|Υ)dΦ

(5.8)

where the denominator
∫
p(D|Φ,Υ)p(Φ|Υ)dΦ = p(D|Υ) is the model evidence

(marginal likelihood); the vector Υ denotes hyper-parameters within the prior for

Φ. Variational Bayesian (VB) inference [Bea03] seeks a variational distribution q(Φ)

to approximate the true posterior distribution of the latent variables p(Φ). The

expression

log p(D|Υ) = L(q(Φ)) + KL(q(Φ) ‖ p(Φ|D,Υ)), (5.9)

with

L(q(Φ)) =

∫
q(Φ)log

p(D|Φ,Υ)p(Φ|Υ)

q(Φ)
dΦ (5.10)

yielding a lower bound for log p(D|Υ) so that log p(D|Υ) ≥ L(q(Φ)), since KL(q(Φ) ‖

p(Φ|D,Υ)) ≥ 0. Accordingly, the goal of minimizing the KL divergence between the

variational distribution and the true posterior reduces to adjusting q(Φ) to maximize

(5.10).

Variational Bayesian inference [Bea03] assumes a factorized q(Φ), typically with

the same form as employed in p(Φ|D,Υ). With such an assumption, the variational

distributions can be updated iteratively to increase the lower bound. For the LSBP
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model applied to a single task, as introduced in section 5.2, we assume

q(Φ) =
K∏
k=1

q(θk)
K−1∏
k′=1

[
q(wk′)q(λk′)

N∏
n=1

q(znk′)
]
, (5.11)

where q(θk) is defined by the specific application. In the audio-segmentation ex-

ample considered below, the feature vector yn may be assumed drawn from a mul-

tivariate normal distribution, and the K model parameters are means and preci-

sion matrices {µ∗k,Ω∗k}Kk=1; accordingly q(θk) is specified as a Normal-Wishart dis-

tribution (as is H), N(µk|µ̃k, t̃−1k Ωk
−1)Wi(Ωk|Ṽk, d̃k). For the rest of the model,

q(wk′) =
∏Nc

i=0N(wk′i|m̃k′i, Γ̃k′i), q(λk′) =
∏Nc

i=0Ga(λk′i|ãk′i, b̃k′i), and q(znk′) has a

Bernoulli form ρ
znk′
nk′ (1− ρnk′)1−znk′ with ρnk′ = σ(gk′(n)). The factorized representa-

tion for q(Φ) is a function of the hyper-parameters on each of the factors, with these

hyper-parameters adjusted to minimize the aforementioned KL divergence.

By integrating over all the hidden variables and model parameters, the lower

bound for the log model evidence

log p(D|Υ) = log
∫
p
(
y, s,θ,W,λ, z

)
dΦ

≥
∫
q(θ,W,λ, z)log

p
(
y,s,θ,W,λ,z

)
q(θ,W,λ,z)

dΦ

=
∫
q(θ)q(W)q(λ)q(z)log

p
(
y,s,θ,W,λ,z

)
q(θ)q(W)q(λ)q(z)

dΦ

≡ LB(q(Φ)),

(5.12)

is a function of variational distributions q(Φ). The variational lower bound is op-

timized by iteratively taking derivatives with respect to the hyper-parameters in

each q(·), and setting the result to zero while fixing the hyper-parameters of the

other terms. Within each iteration, the lower bound is increased until the model

converges.

The difficulty of applying VB inference for this model lies with the logistic-link

function, which is not within the conjugate-exponential family. Based on bounding
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log convex functions, we use a variational bound for the logistic sigmoid function in

the form [BS03]

σ(x) ≥ σ(η)exp
(x− η

2
− f(η)(x2 − η2)

)
(5.13)

where f(η) = tanh(η/2)
4η

and η is a variational parameter. An exact bound is achieved

as η = x or η = −x.

The detailed update equations are omitted for brevity, but are of the form em-

ployed in [Bea03] and [BS03]. Like other optimization algorithms, VB inference may

converge to a local-optimal solution. However, such a problem can be alleviated by

running the algorithm multiple times from different initializations (including varying

the truncation level K, and for each case the atom parameters are initialized with

k-mean clustering method [GG92] for a fast model convergence) and then using the

solution that maximizes the variational model evidence.

5.4.2 Sampling the kernel width

As introduced in section 5.2, the kernel width ψk is inferred for each k. Due to the

non-conjugacy of the sigmoid function, we cannot acquire a variational distribution

for ψk. However, we can sample it from its posterior distribution by establishing a

discrete set of potential kernel widths Ψ∗ = {ψ∗j}τj=1, as discussed above. This result-

ing Monte Carlo Variational Bayesian (MCVB) algorithm combines both MCMC and

VB inference, motivated by the Monte Carlo Expectation Maximization (MCEM)

algorithm [WT90] and developed in [AWS+08]. The intractable nodes within the

graphical model are approximated with Monte Carlo samples from their conditional

posterior distributions, and the lower bound of the log model evidence is generally

with small fluctuations after the model converges [AWS+08]. A detailed discus-

sion on related treatments within variational Bayesian (VB) analysis may be found

in [WB05] (see Section 6.3 of that paper).
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Based on the variables zn, the cluster membership of each data Dn corresponding

to different mixture components {θ∗k}Kk=1 can be specified as

ξnk =
k−1∏
k′=1

(1− znk′) · znk. (5.14)

Based on the above assumptions, we observe that if ξnk = 1 and the other entries in

ξn = [ξn1, . . . , ξnK ] are equal to zero, then yn is assigned to be drawn from F (θ∗k).

With the variables ξ introduced and a uniform prior U assumed on the kernel

width {ψ∗j}τj=1, the posterior distribution for each ψk is represented as

p(ψk = ψ∗j | · · · ) ∝ Uj · exp
{∑

n < ξnk >
[
< logσ

(
gjk(sn)

)
>
]}
·

exp
{∑

n

∑
l>k < ξnl >

[
< log

(
1− σ

(
gjk(sn)

))
>
]}
,

(5.15)

where Uj is the jth component of U, < · > represents the expectation with the

associated random variables, gjk(sn) =
∑Nc

i=1wkiK(sn, ŝi;ψ
∗
j ) +wk0 with j = 1, . . . , τ .

With the definition xjn =
[
1, K(sn, ŝ1;ψj), . . . , K(sn, ŝNc ;ψj)

]
, it can be verified

that

log
(
1− σ(gjk(sn))

)
= −WT

k xjn + logσ(gjk(sn)). (5.16)

Inserting (5.16) into the kernel width’s posterior distribution, (5.15) can be reduced

to

p(ψk = ψ∗j | · · · ) ∝ Uj · exp
{∑

n < ξnk >
[
< logσ

(
gjk(sn)

)
>
]}

·exp
{∑

n

∑
l>k < ξnl >

[
− < Wk >

T xjn+ < logσ
(
gjk(sn)

)
>
]}
,

(5.17)

in which < logσ
(
gjk(sn)

)
> is calculated via the variational bound of the logistic

sigmoid function in (5.13).

Because of the sampling of the kernel width within the VB iterations, the lower

bound shown in (5.12) does not monotonically increase in general. Until the model
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converges, the lower bound generally has small fluctuations, as shown when present-

ing experimental results.

5.5 Experiment Results

The LSBP model proposed here may be employed in many problems for which one

has spatially-dependent data that must be clustered or segmented. Since the spatial

relationships are encoded via a kernel distance measure, the model can also be used

to segment time-series data. Below we consider three examples: (i) a simple “toy”

problem that allows us to compare with related approaches in an easily understood

setting, (ii) segmentation of multiple speakers in an audio signal, and (iii) segmen-

tation of images. When presenting (iii), we first consider processing single images,

to demonstrate the quality of the segmentations, and to provide more details on the

model. We then consider joint segmentation of multiple images, with the goal of

inferring relationships between images (of interest for image sorting and search). In

all examples the Student-t construction is used to impose the model sparseness, and

all model coefficients (including the bias terms) are drawn from the same prior.

5.5.1 Setting model parameters

To implement LSBP, one must set several parameters. As discussed above, the

hyperparameters associated with the Student-t prior on wki are set as a0 = b0 = 10−6,

this corresponding to the settings of the related RVM [BT00]. The number of kernel

centers Nc is generally set in a natural manner, depending upon the application.

For example, in the audio example considered in section 5.5.3, Nc is set to the

number of total temporal subsequences used to sample the signal. For the image-

processing application, Nc may be set to the number of superpixels used to define

space-dependent image features (discussed in more detail when presenting image-

segmentation results in section 5.5.4). The truncation level K on the LSBP may be
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set to any large value that exceeds the number of anticipated segments in the image,

or model selection may be employed to select K.

We must also define a set of possible kernel scales, {ψ∗j}τj=1. These again are set

naturally to define the relative range of scales in the data under test. For example,

in the image-segmentation application, we select τ scale levels to cover a range of

resolutions characteristic of the images of interest (e.g., defined by the size of the

expected segment sizes relative to the overall image size). In the specific audio and

image segmentation applications discussed below we explicitly define these parame-

ters, and note that no tuning of these parameters was performed. Our experience is

that any “reasonable” set of kernel scales yields very similar results.

The final thing that must be set within the model is the base measure H. For

the audio-signal example the data observed at each time point is a real vector, and

therefore it is convenient to use a multivariate Gaussian distribution to represent

F (θn). Therefore, in that example the observation-model parameters correspond to

the mean and covariance of a Gaussian, implying that the measure H should be a

Gaussian-Wishart prior (or a Gaussian-Gamma prior, if a diagonal covariance matrix

is assumed in the prior). For the image processing application the observed image

feature vectors are quantized, and consequently the observation at any point in the

image corresponds to a code index. In this case F (θn) is represented by a multi-

nomial distribution, and hence H is made to correspond to a Dirichlet distribution.

Therefore, one may naturally define H based upon the form of the model F (·), in

ways typically employed within such Bayesian models.

5.5.2 Simulation Example

In this example the feature vector yn is the intensity value of each pixel, and the

pixel location is the spatial information sn. Each observation is assumed to be

drawn from a spatially dependent Gaussian mixture (i.e., F (·) is a Gaussian). A
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comparison is made between the proposed LSBP, the Dirichlet process (DP), and

the kernel stick-breaking process (KSBP); for the KSBP, we use the same model as

considered in [AWS+08], and this simple example was also taken from that paper.

The data are shown in Figure 5.4(a), in which four distinct contiguous sub-regions

reside in a background, with a color bar encoding the pixel amplitudes. Each pixel is

drawn from a Gaussian distribution with a standard deviation of 10; the two pairs of

contiguous regions are generated respectively from the Gaussian distributions with

mean intensities equal to 40 and 60, and the background has a mean of 5 [AWS+08].

In the LSBP, DP, and KSBP analyses, we do not set the number of clusters a priori
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Figure 5.4: Segmentation results for the simulation example. (a) original image,
(b) DP, (c) KSBP, (d) LSBP

and the models infer the number of clusters automatically from the data. Therefore,

we fixed the truncation level to K = 10 for all models, and the clustering results

are shown in Figure 5.4, with different colors representing the cluster index (mixture

component to which a data sample is assigned).

Compared with DP and KSBP, the proposed LSBP shows a much cleaner seg-

mentation in Figure 5.4(d), as a consequence of the imposed favoring of contiguous

segments. We also note that the proposed model inferred that there were only three

important k (three dominant sticks) within the observed data, consistent with the

representation in Figure 5.4(a).

84



0 0.5 1 1.5 2

x 10
6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

sample index

au
di

o 
w

av
e 

fo
rm

(a)

observation index

fe
at

ur
e 

in
de

x

 

 

50 100 150 200 250 300 350 400 450

2

4

6

8

10

12
−4

−3

−2

−1

0

1

2

3

(b)

Figure 5.5: Original audio waveform, (a), and representation in terms of MFCC
features, (b).

5.5.3 Segmentation of Audio Waveforms

With the kernel in (5.3) specified in a temporal (one-dimensional) space, the proposed

LSBP is naturally extended to segmentation of sequential data, such as for speaker

diarization [BBBG04,TR06,FSJW08a]. Provided with a spoken document consisting

of multiple speakers, speaker diarization is the process of segmenting the audio signal

into contiguous temporal regions, and within a given region a particular individual is

speaking. Further, one also wishes to group all temporal regions in which a specific

individual is speaking.

We assume the acoustic observations at different times are drawn from a Gaus-

sian mixture model (each generating Gaussian ideally corresponds to a speaker ID).

Within LSBP and KSBP, the observations of adjacent temporal points are encour-

aged to be drawn from the same Gaussian, since they are with high probability as-

sumed to be generated from the same source (speaker). The total number of speakers

is unknown in advance, and is inferred from the data. An alternative approach, to

which we compare, is a sticky HMM [FSJW08a], in which the speech is represented

by an HMM with Gaussian state-dependent emissions; to associate a given speaker
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with a particular state, the states are made to be persistent, or “sticky”, with the

state-dependent degree of stickiness also inferred.

We consider identification of different speakers from a recording of broadcast

news, which may be downloaded with its ground truth1. The spoken document has

a length of 122.05 seconds, and consists of three speakers. Figure 5.5(a) presents

the audio waveform with a sampling rate of 16000 Hz. The ground truth indicates

that Speaker 1 talked within the first 13.77 seconds, followed by Speaker 2 until the

59.66 second, then Speaker 1 began to talk again until 74.15 seconds, and Speaker 3

followed and speaks until the end.

For the feature vector, we computed the first 13 Mel Frequency Cepstral Co-

efficients (MFCCs) [GFK05] over a 30 ms window every 10 ms, and defined the

observations as averages over every 250 ms block, without overlap. We used the

first 13 MFCCs because the high frequency content of these features contained little

discriminative information [FSJW08a]. The software that we used to extract the

MFCCs feature can be downloaded online2. There are 488 feature vectors in total,

shown in Figure 5.5(b); the features are normalized to zero mean and the standard

deviation is made equal to one.

To apply the DP, KSBP and LSBP Gaussian mixture models on this data, we

set the truncation level as K = 10. To calculate the temporal distance between each

pair of observations, we take the observation index from 1 to 488 as the location

coordinates in (5.3) for s. The potential kernel-width set is Ψ∗ = {50, 100, . . . , 1000}

for LSBP and KSBP; note that these are the same range of parameters used to

present the generative model in Figure 5.2. The experiment shows that all the

models converge after 20 VB iterations.

For the sticky HMM, we employed two distinct forms of posterior computation:

1 http://www.itl.nist.gov/iad/mig//tests/rt/2002/index.html

2 http://www.ee.columbia.edu/∼dpwe/resources/matlab/rastamat/
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Figure 5.6: Segmentation results for the audio recording. The colored symbols
denote the ground truth: red represents Speaker 1, green represents Speaker 2, blue
represents Speaker 3. Each MFCC feature vector is assigned to a cluster index
(K = 10), with the index shown along the vertical axis. (a) DP, (b) KSBP, (c)
sticky HMM using VB inference, (d) LSBP

(i) a VB analysis, which is consistent with the methods employed for the other

models; and (ii) a Gibbs sampler, analogous to that employed in the original sticky-

HMM paper [FSJW08a]. For both the VB and Gibbs sampler, a truncated stick-

breaking representation was used for the DP draws from the hierarchical Dirichlet

process (HDP); see [FSJW08a] for a discussion of how the HDP is employed in this

model.

To segment the audio data, we labeled each observation to the index of the cluster
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Figure 5.7: Sticky HMM results for the data in Figure 5.5(a), based on a Gibbs
sampler. The figure denotes the fraction of times within the collection samples that
a given portion of the waveform shares the same underlying state.

with the largest probability value, and the results are shown in Figure 5.6 (here the

sticky-HMM results were computed via VB analysis). To indicate the ground truth,

different symbols and colors are used to represent different speakers.

From the results in Figure 5.6, the proposed LSBP yields the best segmentation

performance, with results in close agreement with ground truth. We found the sticky-

HMM results to be very sensitive to VB initialization, and the results in Figure 5.6

were the best we could achieve.

While the sticky HMM did not yield reliable VB-computed results, it performed

well when a Gibbs sampler was employed (as in [FSJW08a]). In Figure 5.7 are

shown the fraction of times within the collection Gibbs samples that a given portion

of the signal share the same underlying state; note that the results are in very close

agreement with “truth”. We cannot plot the Gibbs results in the same form as

the VB results in Figure 5.6 due to label switching within the Gibbs sampler. The

Gibbs-sampler results were computed using 5000 burn iterations and 5000 collection
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iterations.

These results demonstrate that the proposed LSBP, based on a fast VB solution,

yields results commensurate with a state-of-the-art method (the sticky HMM based

on a Gibbs sampler). On the same PC, the VB LSBP results required approximately

45 seconds of CPU time, while the Gibbs sticky-HMM results required 3 hours; in

both cases the code was written in non-optimized Matlab, and these numbers should

be viewed as providing a relative view of computational expense. The accuracy and

speed of the VB LSBP is of interest for large-scale problems, like those considered

in the next section. Further, the LSBP is a general-purpose algorithm, applicable

to time- and spatially-dependent data (images), while the sticky HMM is explicitly

designed for time-dependent data.
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Figure 5.8: Example draw from the LSBP posterior, for the audio data under test.
(a) wk , (b) gk(t) , (c) σk(t), (d) πk(t)
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In the LSBP, DP, and KSBP analyses, we do not set the number of clusters

a priori and the models infer the number of clusters automatically from the data.

Therefore, we fixed the truncation level to K = 10 for all models, and the clustering

results are shown in Figure 5.4, with different colors representing the cluster index

(mixture component to which a data sample is assigned).

In Figure 5.2 we illustrated a draw from the LSBP prior, in the absence of any

data. The parameters of that example (number of samples, the definition of Nc, and

the library Ψ∗) were selected as to correspond to this audio example. To generate

the draws in Figure 5.2, a spike-and-slab prior was employed, since the Student-t

prior would prefer (in the absence of data) to set all coefficients to zero (or near

zero), with high probability. Further, for related reasons we treated the bias terms

wk0 distinct from the other coefficients. We now consider a draw from the LSBP

posterior, based on the audio data considered above. This gives further insight into

the machinery of the LSBP. We also emphasize that, in this example based on real

data, as in all examples shown in this section, we impose sparseness via the Student-t

prior. Therefore, when looking at the posterior, we may see which coefficients wki

have been “pulled” away from zero such that the model fits the observed data. A

representative draw from the LSBP posterior is shown in Figure 5.8, using the same

presentation format as applied to the draw from the prior in Figure 5.2. Note that

only three sticks have appreciable probability for any time t, and the segments tend

to be localized, with near-unity probability of using a corresponding model parameter

within a given segment. While the spike-slab prior was needed to manifest desirable

draws from the prior alone, the presence of data simplifies the form of the LSBP prior,

based only on a relatively standard use of the hierarchical Student-t construction.
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5.5.4 Image Segmentation with LSBP

The images considered first are from Microsoft Research Cambridge3 and each image

has 320×213 pixels. To apply the hierarchical model to image segmentation, we first

over-segment each image into 1, 000 “superpixels”, which are local, coherent and pre-

serve most of the structure necessary for segmentation at the scale of interest [RM03].

The software used for this is described in [Mor05], and can be downloaded at

http://fas.sfu.ca/∼mori/research/superpixels/. Each superpixel is represented by

both color and texture descriptors, based on the local RGB, hue feature vectors [WS06],

and also the values of Maximum Response (MR) filter banks [VZ02]. We discretize

these features using a codebook of size 32, and then calculate the distributions [AP09]

for each feature within each superpixel as visual words [CFF07,WG07].

Since each superpixel is represented by three visual words, the mixture compo-

nents θ∗k are three multinomial distributions as {Mult(p1∗
k)⊗Mult(p2∗

k)⊗Mult(p3∗
k)}

for k = 1, . . . , K. The variational distribution q(θ∗k) is Dir(p1∗
k|β̃1

k) ⊗ Dir(p2∗
k|β̃2

k) ⊗

Dir(p3∗
k|β̃3

k), and within VB inference we optimize the parameters β̃1
k, β̃

2
k, and β̃3

k.

To perform segmentation at the patch level (each superpixel corresponds to one

patch), the center of each superpixel is recorded as the location coordinate sn. The

discrete kernel-width set Ψ∗ is composed of 30, 35, . . . , 160, which are scaled empir-

ically based on the image and object average size. Typically we may choose the

Ψ∗ as a subset between the minimum and maximum Euclidean distance associated

with any two data points’ spatial locations within this image. To save computational

resources, we chose as basis locations {ŝi}Nc
i=1 the spatial centers of every tenth super-

pixel in a given image, after sequentially indexing the superpixels (we found that if

we do not perform this subsampling, very similar segmentation results are achieved,

but at greater computational expense).

3 http://research.microsoft.com/en-us/projects/objectclassrecognition/
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Figure 5.9: LSBP Segmentation for three image examples. (a)∼(c) image exam-
ples of “chimney”,“cows” and “flowers”; (d)∼(f) image examples represented with
“superpixels”; (g)∼(i) “optimal” segmentation results with model selection (K = 4
for “chimney”, K = 3 for “cows” and K = 6 for “flowers”); (j)∼(l) segmentation
results with a initialization of K = 10 for the image examples.
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Three representative example images are shown in Figures 5.9(a), (b) and (c); the

superpixels are generated by over-segmentation [Mor05] on each image, with associ-

ated over-segmentation results shown in Figures 5.9(d), (e) and (f). The segmenta-

tion task now reduces to grouping/clustering the superpixels based on the associated

image feature vector and associated spatial information. To examine the effect of the

truncation level K, and to investigate model selection, we considered K from 2 to 10

and quantified the VB approximation to the model evidence (marginal likelihood).

The segmentation performance for each of these images is shown in Figure 5.9(g), (h)

and (i), using respectively K = 4, 3 and 6, based on the model evidence (discussed

further below). These (typical) results are characterized by homogeneous segments

with sharp boundaries. In Figure 5.9(j), (k) and (l), the segmentation results are

shown with K fixed at K = 10. In this case the LSBP has ten sticks, and there is

no model selection; however, based on the segmentation there are a subset of sticks

(5, 8 and 7, respectively) inferred to have appreciable amplitude.

Based upon these representative example results, which are consistent with a large

number of tests on related images, we make the following observations. Considering

first the “chimney” results in Figure 5.9(a), (g) and (j), for example, we note that

there are portions of the brick that have textural differences. However, the prior tends

to favor contiguous segments, and one solid texture is manifested for the bricks. We

also note the sharp boundaries manifested in the segments, despite the fact that the

logistic-regression construction is only using simple Gaussian kernels (not particularly

optimized for near-linear boundaries). For the relatively simple “chimney” image, the

segmentation results are very similar based on model selection for K (Figure 5.9(g))

and simply truncating the sticks at a “large” value (Figure 5.9(j) with K = 10).

The “cow” example is more complex, pointing out further characteristics of LSBP.

We again observe homogeneous contiguous segments with sharp boundaries. In this

case the model selection yields (as expected) a simpler segmentation (Figure 5.9(h)).
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All of the relatively dark cows are segmented together. By contrast, without model

selection and with K = 10, the results in Figure 5.9(k) capture more details in the

cows. However, we also note that in Figure 5.9(k) the clouds are properly assigned

to a distinctive type of segment, while in Figure 5.9(h) the clouds are just included

in the sky cluster/segment. Similar observations are also obtained from the “flower”

example for Figure 5.9(c), with more flower texture details kept with a large trun-

cation level setting in Figure 5.9(l) than the model selection result shown in Figure

5.9(i). It is therefore generally observed that simpler segmentations are manifested

by the model-selection procedure.

Because of the sampling of the kernel width, the lower bound of the log model

evidence did not increase monotonically in general. For the “chimney” example

considered in Figure 5.9(a), the log model evidence was found to sequentially increase

approximately within the first 20 iterations and then converge to the local optimal

solution with small fluctuations, as shown in Figure 5.10(a) with a model of K = 4.

To perform model selection, we calculate the mean and standard deviation of the

lower bound after 25 iterations for each K, as plotted in Figure 5.10(b); from this

figure one clearly observes that the data favor the model with K = 4, for at this point

the VB lower bound (approximation to the evidence) has its largest value. Hence,

one may stop examining increasing K once it is evident that the model evidence is

falling with increasing K (as compared with simply setting K to a large value).

To further evaluate the performance of LSBP for image segmentation, we also

consider several other state-of-art methods, including two other non-parametric sta-

tistical models: the Dirichlet process (DP) [Set94] and the kernel stick-breaking

process (KSBP) [AWS+08]. We also consider two graph-based spectral decomposi-

tion methods: normalized cuts (Ncuts) [SM00] and multi-scale Ncut with long-range

graph connections [CBS05]. Further, we consider the Student-t distribution mixture

model (Stu.-t MM) [SNG07], and also spatially varying mixture segmentation with
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Figure 5.10: LSBP Segmentation for three image examples. (a)VB iteration lower-
bound for image “chimney” with K = 4; (b) Model selection as a function of K for
image “chimney”.

edge preservation (St.-svgm) [SNP08]. We consider the same data source as in the

previous examples, but for the next set of results segmentation “ground truth” was

provided with the data. The data are divided into eight categories: trees, houses,

cows, faces, sheep, flowers, lake and street; each category has thirty images. All

models were initialized with a segment number of K = 10.

Figure 5.11 shows typical segmentation results for the different algorithms. Given

a segment count number, both the normalized cuts and the multi-scale Ncut pro-

duced very smooth segmentations, while certain textured regions might be split into

several pieces. The Student-t distribution mixture model (Stu.-t MM) yields a rela-

tively robust segmentation, but it is sensitive to the texture appearance. Compared

with Stu.-t MM, the spatially varying mixtures (St.-svgm) favors a more contigu-

ous segmentation for the texture region, preserving edges; this may make a good

tradeoff between keeping coherence and capturing details, but the segmentation per-

formance is degraded by redundant boundaries, such as those within the goose body.

Compared with these state-of-art algorithms, the LSBP results appear to be very

competitive. Among the Bayesian methods (DP, KSBP and LSBP), LSBP tends to

yield better segmentation, characterized by homogeneous segmentation regions and
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Figure 5.11: Segmentation examples of different methods with an initialization of
K = 10. From top to down, each row shows: the original image, the image ground
truth, normalized cuts, multiscale Ncut, Student-t distributions mixture model (Stu.-
t MM), spatially varying mixtures (St.-svgm), DP mixture, KSBP mixture, and the
LSBP mixture model.

sharp segment boundaries.

To quantify segmentation results, we also calculated the Random Index (RI) [UPH07]

and the Variation of Information (VoI) [Mei03], using segmentation “truth” provided

with the data. RI measures consistency between two segmentation labels via an over-

lapping fraction, and VoI roughly calculates the amount of randomness that exists

in one segmentation that is not explained by the other. Accordingly, for the RI

measure, larger values represent better performance, and for VoI smaller values are

preferred. We calculated the average RI and VoI values of the thirty images for
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K 2 4 6 8 10

Ncuts
mean 0.5552 0.6169 0.6269 0.6180 0.6093

median 0.5259 0.6098 0.6376 0.6286 0.6235
st. dev. 0.0953 0.1145 0.1317 0.1402 0.1461

Multi-
scale
Ncuts

mean 0.6102 0.6491 0.6387 0.6306 0.6228
median 0.5903 0.6548 0.6515 0.6465 0.6396
st. dev. 0.0979 0.1361 0.1462 0.1523 0.1584

Stu.-
t

MM

mean 0.6522 0.6663 0.6409 0.6244 0.6110
median 0.6341 0.6858 0.6631 0.6429 0.6360
st. dev. 0.1253 0.1248 0.1384 0.1455 0.1509

St.-

svgm

mean 0.6881 0.6861 0.6596 0.6393 0.6280
median 0.6781 0.7026 0.6825 0.6575 0.6516
st. dev. 0.1249 0.1262 0.1427 0.1532 0.1599

DP
mean 0.6335 0.6527 0.6389 0.6270 0.6187

median 0.6067 0.6669 0.6431 0.6321 0.6232
st. dev. 0.1272 0.1283 0.1384 0.1464 0.1507

KSBP
mean 0.6306 0.6530 0.6396 0.6290 0.6229

median 0.5963 0.6693 0.6448 0.6371 0.6272
st. dev. 0.1237 0.1303 0.1397 0.1464 0.1523

LSBP
mean 0.6516 0.6791 0.6804 0.6704 0.6777

median 0.6384 0.6921 0.6900 0.6835 0.6885
st. dev. 0.1310 0.1202 0.1263 0.1294 0.1319

Table 5.1: Statistics on the averaged Rand Index (RI) over 240 images as a function
of K (Microsoft Research Cambridge images).

each category; the statistics for the two measures are depicted in Tables 5.1 and 5.2,

considering all 240 images and various K.

Compared with other state-of-the-art methods, the LSBP yields relatively larger

mean and median values for average RI, and relatively small average VoI, for most

K. For K = 2 and 4 the spatially varying mixtures (St.-svgm) shows the largest

RI values, while it does not yield similar effectiveness as K increases. In contrast,

the LSBP yields a relatively stable RI and VoI from K = 4 to 10. This property is

more easily observed in Figure 5.12, which shows the averaged RI and VoI evaluated

as a function of K, for categories “houses” and “cows”. The Stu.-t MM, St.-svgm,

DP and KSBP have similar performances for most K; LSBP generates a competitive
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K 2 4 6 8 10

Ncuts
mean 1.7911 2.2034 2.4344 2.6885 2.8828

median 1.8201 2.1990 2.4392 2.7134 2.8956
st. dev. 0.4402 0.4213 0.4003 0.3673 0.3615

Multi-
scale
Ncuts

mean 1.7017 2.0538 2.3535 2.5548 2.7397
median 1.7322 2.0238 2.3746 2.5912 2.7471
st. dev. 0.4253 0.4276 0.4030 0.4056 0.4215

Stu.-
t

MM

mean 1.4903 2.0078 2.4258 2.7421 3.0085
median 1.5312 2.0283 2.4653 2.7495 3.0341
st. dev. 0.5161 0.4544 0.4120 0.3941 0.3798

St.-

svgm

mean 1.4031 1.8957 2.2667 2.5764 2.7999
median 1.4000 1.8957 2.2673 2.5919 2.8123
st. dev. 0.5094 0.4176 0.4113 0.3956 0.4001

DP
mean 1.4810 1.9522 2.2961 2.5808 2.7740

median 1.5145 1.9522 2.3541 2.6321 2.8432
st. dev. 0.4952 0.3923 0.4186 0.4164 0.4573

KSBP
mean 1.4806 1.9383 2.3063 2.5888 2.7873

median 1.4980 1.9811 2.3403 2.6304 2.8338
st. dev. 0.4811 0.3919 0.4150 0.4128 0.4457

LSBP
mean 1.4484 1.8142 1.9811 2.1050 2.0861

median 1.4631 1.8288 1.9825 2.1528 2.1178
st. dev. 0.4835 0.4478 0.4979 0.5101 0.5254

Table 5.2: Statistics on the Variation of Information (VoI) over 240 images as a
function of K (Microsoft Research Cambridge images).

result with a smaller K, and also yields robust performance with a large K.

We also considered the Berkeley 300 data set4. These images have size 481× 321

pixels, and we also over-segmented each image into 1000 superpixels. Both the RI

and VoI measures are calculated on average, with the multiple labels (human labeled)

provided with the data. Each individual image typically has roughly ten segments

within the ground truth. We calculated the evaluation measures for K = 5, 10 and

15. Table 5.3 presents results, demonstrating that all methods produced competitive

results for both the RI and VoI measures. By a visual evaluation of the segmentation

results (see Figure 5.13), multi-scale Ncut is not as good as the other methods when

the segments are of irregular shape and unequal size.

4 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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Figure 5.12: Average Random Index (RI) and Variation of Information (VoI) as
functions of K with image categories. (a) RI for “houses” , (b) RI for “cows”, (c)
VoI for “houses”, (d) VoI for “cows”.

Normalized Multiscale Stu.-t St.- DP KSBP LSBP
cuts Ncut MM svgm mixture mixture mixture

RI 0.7220 0.7404 0.7093 0.7188 0.7228 0.7237 0.7241
VoI 2.7857 2.5541 3.7772 3.5682 2.8573 2.7027 2.6591

Table 5.3: Different segmentation methods compared on Berkeley 300 images data
set.
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Figure 5.13: Segmentation examples of different methods with K = 10, for Berke-
ley image data set. From left to right, each column shows: the original image, the
image ground truth, normalized cuts, multiscale Ncut, the Student-t distribution
mixture model (Stu.-t MM), spatially varying mixtures (St.-svgm), DP mixture,
KSBP mixture, and the LSBP mixture model.

The purpose of this section was to demonstrate that LSBP yields competitive seg-

mentation performance, compared with many state-of-the-art algorithms. It should

be emphasized that there is no perfect way of quantifying segmentation performance,

especially since the underlying “truth” is itself subjective. An important advantage

of the Bayesian methods (DP, KSBP and LSBP) is that they may be readily extended

to joint segmentation of multiple images, considered in the next Chapter.

5.6 Summary

The logistic stick-breaking process (LSBP) is proposed for clustering spatially- or

temporally-dependent data, imposing the belief that proximate data are more likely

to be clustered together. The sticks in the LSBP are realized via multiple kernel-

based logistic regression functions, with a shrinkage prior employed for favoring con-

tiguous and spatially localized partitions. Competitive segmentation performance

has been manifested in several examples. Relative to other related approaches, the

proposed LSBP yields sharp segmentations, and is able to automatically infer an
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appropriate number of segments.
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6

Hierarchical LSBP (H-LSBP)

6.1 Extend the LSBP to Multi-task Learning

In addition to exploiting spatial information when performing clustering, there has

also been recent research on the simultaneous analysis of multiple tasks. This is

motivated by the idea that multiple related tasks are likely to share the same

or similar attributes [Car97, AWS+08, PSH08]. Exploiting the information con-

tained in multiple data sets (“tasks”), model-parameter estimation may be im-

proved [TJBB06,PSH08,SJ08]. Therefore, it is desirable to employ multi-task learn-

ing when processing multiple spatially-dependent data (e.g., images).

Motivated by previous multi-task research [TJBB06, AWS+08], we consider the

problem of simultaneously processing multiple spatially-dependent data sets. A sep-

arate LSBP prior is employed for each of the tasks, and all LSBPs share the same

base measure, which is drawn from a DP. Hence, a “library” of model parameters

– atoms – is shared across all tasks. This construction is related to the hierarchical

Dirichlet process (HDP) [TJBB06], and is referred to here as a hierarchical logistic

stick-breaking process (H-LSBP).
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We employ the H-LSBP to simultaneously segment multiple images. In addition

to inferring a segmentation of each image, the framework allows sorting and searching

among the images.

6.2 Statistical Model

Multi-task learning (MTL) is an inductive transfer framework [Car97], with the goal

of improving modeling performance by exploiting related information in multiple data

sets. We here employ MTL for joint analysis of multiple spatially dependent data

sets, yielding a hierarchical logistic stick-breaking process (H-LSBP). This framework

models each individual data set (task) with its own LSBP draw, while sharing the

same set of model parameters (atoms) across all tasks, in a manner analogous to

HDP [TJBB06]. The set of shared model atoms are inferred in the analysis.

The spatially-dependent probability measure for task m, Gm, is drawn from a

LSBP with base measure G0, and G0 is shared across all M tasks. Further, G0

is drawn from a Dirichlet process [BM73], and in this manner each task-dependent

LSBP shares the same set of discrete atoms. The H-LSBP model is represented as

ymn|θmn ∼ F (θmn), θmn|Gm ∼ Gm

Gm|{G0, a0, b0,Ψ
∗} ∼ LSBP(G0, a0, b0,Ψ

∗),

G0|γ,H ∼ DP(γH),

(6.1)

Note that we are assuming a Student-t construction of the sparseness prior within

the LSBP, defined by hyperparameters a0 and b0.

Assume task m ∈ {1, . . . ,M} has Nm observations, defining the data

Dm = {Dm1, . . . ,Dm(Nm)}. We introduce a set of latent indicator variables {tm =

tm1, . . . , tm∞} for each task, with

tmk
iid∼

∞∑
l=1

βlδl, k = 1, . . . ,∞, m = 1, . . . ,M, (6.2)
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where βl corresponds to the lth stick weight of the stick-breaking construction of

the DP draw G0 =
∑∞

l=1 βlδθ∗l . The indicator variables tmk establish an association

between the observations from each task and the atoms {θ∗l }∞l=1 shared globally;

hence the atom θ∗tmk
is associated with LSBP gk for task m. Accordingly, we may

write the probability measure Gm, for position smn, in the form

Gsmn =
∞∑
k=1

πmk(smn)δθ∗tmk
. (6.3)

Note that it is possible that in such a draw we may have the same atom used for

two different LSBP gk. This doesn’t pose a problem in practice, as the same type of

segment (atom) may reside in multiple distinct spatial positions (e.g., of an image),

and the different k with the same atom may account for these different regions of

the data.

A graphical representation of the proposed hierarchical model is depicted in Fig-

ure 6.1. As in the single-task LSBP discussed in Chapter 5, a uniform prior is

placed on the discrete elements of Ψ∗, and the precision parameter γ for the Dirich-

let process is assumed drawn from a gamma distribution Ga(e0, f0). In practice we

truncate the number of sticks used to represent G0, employing L− 1 draws from the

beta distribution, and the length of the Lth stick is βL = 1 −
∑L−1

l=1 βl [IJ01]. We

also set a truncation level K for each Gm, analogous to truncation of a traditional

stick-breaking process.

We note that one may suggest drawing L atoms θ∗l ∼ H, for l = 1, . . . , L, and

then simply assigning each of these atoms in the same way to each of {gk}Kk=1 in the

M LSBPs associated with the M images under test. Although there are K functions

gk in the LSBP, as a consequence of the stick-breaking construction, those with small

index k are more probable to be used in the generative process. Therefore, the process

reflected by (6.2) serves to re-order the atoms in an task-dependent manner, such that
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the important atoms for a given task occur with small index k. In our experiments,

we make K < L, since the number of different segments/atoms anticipated for any

given task is expected to be small relative to the library of possible atoms {θ∗l }Ll=1

available across all tasks.

mk mns
H

mnkzmkw *

lmk
0

a

b

mkt
0

e

mny
0

b

mN

l

M 0
f

Figure 6.1: Graphical representation of H-LSBP.

One may view the H-LSBP model as a hierarchy of multiple layers, in terms of a

hierarchical tree structure as depicted in Figure 6.2. In this figure Gm1, . . . , Gm(K−1)

represent the K − 1 “gating nodes” within the mth task, and each gating node

controls how the data are assigned to the K layers. Thus, the H-LSBP may be

viewed as a mixture-of-experts model [BS03] with spatially dependent gating nodes.

Given the assigned layer k indicated by zmn, the appearance feature ymn is drawn

from the associated atom θ∗tmk
.

For the H-LSBP results one must also set L, which defines the total library size

of model atoms/parameters shared across the multiple data sets. Again, we have

found any relatively large setting for L to yield good results, as the nonparametric

nature of LSBP manifests a selection of which subset of the L library elements are

actually needed for the data under test.
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Figure 6.2: Hierarchical tree structure representation of the H-LSBP, with
spatially dependent gating nodes. The parameters xkmn are defined as xkmn =
{1, {K(smn, ŝmi;ψmk)}Nc

i=1}.

6.3 Model Inference

For the model introduced in section 6.2, we assume

q(Φ) = q(γ)
L∏
l=1

q(θl)
L−1∏
l′=1

q(β̃l′)
M∏
m=1

[ K∏
k′=1

q(tmk′)
K−1∏
k=1

[
q(wmk)q(λmk)

Nm∏
n=1

q(zmnk)
]]
,

(6.4)

where q(θl) is the Dirichlet distribution, the same form as its prior p(θl|α0). Then

q(θl|α̃l) is updated with a uniform prior specified for α0 as follows:

α̃li = α0i +
M∑
m=1

Nm∑
n=1

K∑
k′=1

< ξmn,k′ >q(zmn)< tmk′,l > ymni (6.5)

where α0i = 1/I for i = 1, . . . , I, and I is the feature dimension; < ξmn,k′ >q(zmn)=∏k′−1
k=1 (1−q(zmn = k))·q(zmn = k′) represents the approximated posterior probability

that data Dmn is associated with the hidden “atom” tmk′ . For k′ = K, ξmn,k′ =∏k′−1
k=1 (1− q(zmn = k)). Finally, < tmk′,l >= q(tmk′ = l) represents the approximated

posterior probability that tmk′ takes the atom θl.
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For updating q(β̃) and q(γ) given the prior p(γ) = Ga(γ|e0, f0), assume q(β̃l) =

Be(β̃l|πl1, πl2) with l = 1, . . . , L, and q(γ) = Ga(γ|ẽ, f̃). Then the update equations

are as follows:

πl1 = 1 +
∑M

m=1

∑K
k′=1 < tmk′,l >

πl2 = ẽ/f̃ +
∑M

m=1

∑K
k′=1

∑L
l′=l+1 < tmk′,l′ >

ẽ = e0 + L− 1

f̃ = f0 −
∑L−1

l=1

[
ψ(πl2)− ψ(πl1 + πl2)

]
,

(6.6)

in which ψ(·) is the Digamma function.

Given the approximate distribution of the other variables,

q(tmk′ = l) ∝ exp
[
< logp(tmk′|β) >q(β) + < logp(ym|tmk′ , zm,θl) >q(zm),q(θl)

]
,

(6.7)

where < · >q(·) represents the expectation of the associated variable’s distribution.

One may readily derive that

q(tmk′ = l) ∝ exp
[ l−1∑
l′=1

[
ψ(πl′2)− ψ(πl′1 + πl′2)

]
+
[
ψ(πl1)− ψ(πl1 + πl2)

]
+

Nm∑
n=1

< ξmn,k′ >q(zmn)< logp(y|θl) >q(θl)

]
, (6.8)

where < logp(y|θl) >q(θl) is the data likelihood, with expectation performed with

respect to the distribution of atoms θl (which may be derived readily). Then

q(tmk′) = Mult(umk′1, . . . , umk′L), in which umk′l =
q(tmk′=l)∑L

l′=1 q(tmk′=l
′)

.

Similarly, assume q(Wmk) = N(m̃mk, Γ̃mk) and q(zmnk = 1) = ρmn,k = σ(hmnk)

for k = 1, . . . , K − 1, then

hmnk =
K∑
k′=k

(−1)νkk′ < ξ−kmn,k′ >q(z−k
mn)

L∑
l′=1

q(tmk′ = l′)
[
< logp(y|θl) >q(θl)

]
+m̃T

mkx
k
mn,

(6.9)
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where < ξ−kmn,k′ >z−k
mn

=
∏K−1

j=1,j 6=k
[
ρmn,j(−1)νjk′ + νjk′

]
is the expectation associated

the gating variables {zmn1, . . . , zmn(k−1), zmn(k+1), . . . , zmn(K−1)} except zmnk, with

the following definition for νkk′ :

νkk′ =

{
0 if tmk′ is in the left subtree of Gmk (see Fig. 6.2),
1 otherwise.

(6.10)

Assuming q(λmki) = Ga(ãmki, b̃mki), with i = 0, 1, . . . , Nc, the update equations

for q(Wmk) are as follows:

Γ̃mk =
[
2
∑Nm

n=1 f(ηmnk)x
k
mnx

k
mn

T
+ diag( ãmk

b̃mk
)
]−1

m̃mk = Γ̃mk

∑Nm

n=1

[
(ρmn,k − 1/2)xkmn

]
,

(6.11)

where the variational parameter

ηmnk =

√
xkmn

T (m̃mkm̃T
mk + Γ̃mk)xkmn, (6.12)

and f(ηmnk) = tanh(ηmnk/2)
4ηmnk

[BT00,BS03]. The parameters xkmn are defined as xkmn =

{1, {K(smn, ŝmi;ψmk}Nc
i=1}.

Given q(Wmk), the update equations for q(λmk) are

ãmki = a0 + 1/2

b̃mki = 1
2
(Γ̃mk(i, i) + m̃2

mki) + b0
(6.13)

6.4 Joint Image Segmentation with H-LSBP

In this section we consider H-LSBP for joint segmentation of multiple images. Exper-

iments are performed on the Microsoft data, with another two unlabeled categories:

“cloud” and “office”. Each category is composed of 30 images, and therefore there are

300 images in total, analyzed simultaneously. The same feature and image processing

techniques are employed as above.

The H-LSBP automatically generates a set of indicator variables zmn for each su-

perpixel. The probability that the nth superpixel within image m is associated with
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the kth hidden indicator variable tmk, is represented as pk(smn) = σ(gk(smn))
∏

l<k(1−

σ(gl(smn))). By integrating out the distribution for each hidden indicator variable

tmk drawn from the global set of atoms θ∗k, we approximate the membership for each

superpixel by assigning it to the cluster with largest probability. This “hard” seg-

mentation decision is employed to provide labels for each data point (the Bayesian

analysis yields a “soft” segmentation in terms of a full posterior distribution), as

employed above when considering one image at a time.

Our goal is to segment all the images simultaneously, sharing model parameters

(atoms) across all images. The results of this analysis are used to infer the inter-

relationship between different images, of interest for image sorting and search. We

set truncation levels L = 40 and K = 10 (similar results were found for larger trun-

cations, and these parameters have not been optimized). As demonstrated below,

the model automatically infers the total number of principal atoms shared across all

images, and the number of atoms that dominate the segmentation of each individ-

ual image. The learning of these principal atoms, across the multiple images, is an

important aspect of the model, so that the associated mixture weights with these

atoms for each image can be regarded as a measurable quantity of inter-relationship

between images [BNJL03,AWS+08]. Specifically, similar images should have similar

distributions over the model atoms. With the same inter-relationship measure gen-

erated from the HDP [TJBB06], H-KSBP [AWS+08] and the proposed H-LSBP, we

may compare model utility as an image sorting or organizing engine.

To depict how the atoms are shared across multiple images with H-LSBP, we

display an atom-usage count matrix in Figure 6.3, in which the size of each square

size is proportional to the relative counts of that atom in a given image. Similar

atom usage was revealed for HDP and H-KSBP (omitted for brevity), but the H-

LSBP generally was more parsimonious in its use of atoms. This is attributed to the

fact that the spatial continuity constraint within LSBP encourages a parsimonious
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representation (a relatively small number of contiguous clusters).
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Figure 6.3: Atom usage-count matrix for H-LSBP.

Each inferred image atom is in principle associated with one class of features

within the images. To get a feel for how the model operates, we examine the types of

image segments associated with representative atoms. Specifically, in Figure 6.4 we

consider how eight representative atoms are distributed within example images. In

this figure we show the original image, and also the same image with all portions not

associated with a given atom blacked out. From Figure 6.4 we observe that atom 1 is

principally associated with trees, atom 2 is associated with grass, atom 4 principally

models offices, and atom 10 is mainly attributed to the surface of buildings. Figure

6.5 shows atom examples inferred from the H-KSBP and HDP, and the representative

“cloud”, “grass”, “tree” and “street” atoms do not do as well in maintaining spatial

contiguity. This property is especially important to locate certain objects or scenes.

For example, for an image annotation task, it is usually expensive to acquire training

data set by manually annotating image by image. Therefore, the H-LSBP might
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Figure 6.4: Demonstration of different atoms inferred by the H-LSBP model. The
original images and associated connection to model-parameter atoms are shown on
consecutive rows. All regions not associated with a respective atom are blacked out.

be used as an automatic annotation tool to save redundant manual work for the

preprocessing the images with no words given.
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Figure 6.5: Examples of different atoms inferred by the H-KSBP and HDP model:
The first row is the original images; the second row is the atoms inferred by H-KSBP;
the third row is the atoms inferred by HDP.

Based on the atoms inferred from Figure 6.3, we can jointly segment the 300

images with H-LSBP. Each atom represents a label, and the superpixels that shared

the same atom are grouped together. Some representative segmentation examples
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are shown in Figure 6.6, in which each column shows one segmentation example with

its “ground truth” (the second row), and the color bar encodes the labels/indexes of

the results in the third row (the labels are re-ordered to be different from the atom

index).
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Figure 6.6: Representative set of segmentation results of H-LSBP. The top row
gives example images, the second row defines “truth” as given by the data set, and
the third row represents the respective H-LSBP results.

Another interesting problem is to infer the inter-relationship between different

images, and this may be achieved by quantifying the degree to which they share

atoms (the sharing of the same set of atoms across all images plays an important

role in inferring inter-image relationships). Since we know which atoms {θ∗l }Ll=1 the

superpixels within each image are drawn from, we may calculate the Kullback-Leibler

(KL) divergence based on the histogram over atoms between each pair of images (a

small value is added to the probability of each atom, to avoid numerical problems

when computing the KL divergence, when the actual usage of particular atoms may

be zero). The KL divergence between different categories, computed by averaging

across all of the sub-class images, are shown in Figure 6.7. To make the figure easier

to read, the KL divergence DKL is re-scaled as exp(−DKL). In Figure 6.7(a) results

are shown based on the proposed H-LSBP, in (b) based upon an H-KSBP analysis,

and in (c) based upon an HDP analysis. The H-LSBP, H-KSBP and HDP each yield

112



good results, but Figure 6.7 indicates that the H-LSBP produces smaller cross-class

similarity (additionally, the H-KSBP results are better than those of HDP).
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Figure 6.7: Similarity matrix associated with the ten image categories. (a) H-
LSBP, (b) H-KSBP, (c) HDP

To demonstrate the utility of the proposed method in the context of an image

sorting/search engine, we show image sorting examples in Figure 6.8. The left-most

column is the original image, and columns 2-6 are the ordered five most similar

images in the database, ordered according to the value of the KL divergence between
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the original image and the remaining 299 images. The five most similar images are

shown in Figure 6.8, with generally good sorting performance manifested.

All the experiments in this paper were performed in Matlab on a Pentium PC with

1.73 GHz CPU and 4G RAM. For the audio-waveform example, 80 VB iterations

for LSBP required 40 seconds. For the multi-task image segmentation, H-LSBP

required nearly 7 hours of CPU to jointly segment 300 images, using 60 VB iterations

(this CPU time may be cut in half if we only use 30 VB iterations, with minor

degradation in performance). With both experiments, KSBP/H-KSBP typically

required comparable CPU time, while DP/HDP required less than half the CPU

time.

6.5 Summary

We propose the hierarchical logistic stick-breaking process, H-LSBP, to segment

multiple data sets simultaneously, with example results presented for images. The

model parameters (atoms) are shared across all images, using a shared draw from

a global DP prior. The total number of important atoms across all images, as well

as the particular important atoms for a specific image, are inferred with an efficient

variational Bayesian (VB) solution. Compared with the hierarchical Dirichlet process

(HDP) and the hierarchical KSBP, the proposed method yields superior segmentation

performance, based on studies with natural images. Further, we have investigated

the ability of HDP, H-KSBP and H-LSBP to infer inter-relationship between different

images, based on the underlying sharing of model atoms. The improved segmentation

quality of the H-LSBP, relative to HDP and H-KSBP, also yields an improved ability

to infer inter-image relationships.

Concerning future research, the results in Figure 6.4 indicate that the inferred

atoms have connections to physical entities in images. This suggests that the model

may be extended to the joint modeling of images and text [BDF+03], with the text as-
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Figure 6.8: Sample image sorting result, as generated by H-LSBP. The first left
column shows the images inquired, followed by the five most similar images from the
second to sixth column.
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sociated with aspects of the image. In addition, in the H-LSBP modeling of multiple

images, the employed DP prior assumes that the order of the images is exchange-

able (although LSBP imposes that spatial location within a particular image is not

exchangeable). There are many applications (e.g., video) for which the multiple im-

ages may have a prescribed time index, that should be exploited. The results on the

time-dependent audio data demonstrate how LSBP may also be employed to exploit

temporal information.
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7

Conclusions and Future Work

Temporal and spatial information are usually included within data, removing the

exchangeability assumption underlying many nonparametric Bayesian models. Such

information may be exploited to help infer patterns, clusters or segments in the data.

In recent years, nonparametric techniques have been widely employed for clustering

data, and the number of clusters is inferred automatically in a data-driven way.

Unfortunately most of these methods do not explicitly exploit the appended order

information and assume all observations are exchangeable. Although this assumption

usually leads to a tractable model form for the posterior computation, it may degrade

the clustering performance as the data is exposed to noise.

To address the challenges, this thesis considered this problem into two parts: (i)

evolutionary clustering of time-evolving data, which assumes the temporal order ex-

isted across different groups while allows the data exchangeable within each group.

This is distinct with the traditional Markov model assumption, as it considers to

capture a long temporal dependence associated with data. Additionally, (ii) segmen-

tation of spatially-dependent data has been considered, with which the order cannot

be naturally defined but the relative position encodes the “closeness” between each
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two local sites. This will be helpful to infer the cluster number underlying the data,

as the spatial dependence promotes a compact model solution.

Based on these considerations, several innovative work have been addressed in

this thesis, summarized as follows:

• The dynamic hierarchical Dirichlet process (dHDP) is proposed to model the

time-evolving statistical properties of sequential data sets. The data collected

at any time point are represented via a mixture associated with an appropriate

underlying model, in the framework of HDP. The statistical properties of data

collected at consecutive time points are linked via a random parameter that

controls their probabilistic similarity. The sharing mechanisms of the time-

evolving data are derived, and a relatively simple Markov Chain Monte Carlo

sampler is developed.

• A dynamic hidden Markov model (HMM) mixture is developed to model com-

plex sequential data, with a focus on audio signals from music. The music is

represented in terms of a sequence of discrete observations, and the sequence is

modeled using a hidden Markov model (HMM) with time-evolving parameters.

Segmentation of a given musical piece is constituted via the model inference.

Detailed examples are presented on several pieces, with comparisons to other

models. The experimental results are also compared with a conventional music-

theoretic analysis.

• A logistic stick-breaking process (LSBP) is proposed for non-parametric clus-

tering of general spatially- or temporally-dependent data, imposing the belief

that proximate data are more likely to be clustered together. The sticks in

the LSBP are realized via multiple logistic regression functions, with shrinkage

priors employed to favor contiguous and spatially localized segments. Efficient

variational Bayesian inference is derived, and comparisons are made to related
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techniques in the literature. Experimental analysis is performed for audio wave-

forms and images, and it is demonstrated that for segmentation applications

the LSBP yields generally homogeneous segments with sharp boundaries.

• The LSBP is also extended for the simultaneous processing of multiple data

sets, yielding a hierarchical logistic stick-breaking process (H-LSBP). The model

parameters (atoms) within the H-LSBP are shared across the multiple learn-

ing tasks. Exploiting the information contained in multiple data sets (tasks),

model-parameter estimation may be improved and the sharing mechanism is

also inferred as a posterior. We employ the H-LSBP to simultaneously seg-

ment multiple images. In addition to inferring a segmentation of each image,

the framework allows sorting and searching among the images.

These contributions motivate several directions for future work:

1. Exploit the temporal or spatial information for a classification problem. In the

thesis, we focused on clustering temporally or spatially dependent data. However, in

some cases, labeled data are available at each time-stamp or a local neighborhood.

It is promising to assume that proximate observations are more likely to share the

same classification boundary, hence yielding a mixture of experts dependent with

each other. Including the prior information into designing classifiers, it may improve

classification rate especially for the missing data in semisupervised learning, or be

helpful for prediction of the incoming data.

2. Learn patterns for the data with both temporally and spatially dependence.

For joint segmenting multiple images, H-LSBP is proposed to share the mixture

of atoms globally across different tasks. Although spatially dependence is modeled

for each task with an LSBP, different tasks are still assumed to be exchangeable.

This is not always true for specific applications, such as video analysis. In these

spatio-temporal data set, different data-dependent structures exist along time and
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within 2-D space respectively. Therefore, a more general framework is necessary

to considered for joint learning temporally- and spatially- dependent patterns. For

example, each spatially dependent task is modeled by a mixture model with LSBP

and the temporal dependence associated with different tasks may be constructed via

a Gaussian process.

3. A spatially-dependent mixture model has been developed for image segmenta-

tion in this thesis. However, feature extraction, as a preprocess for segmentation, is a

trivial but time-consuming work. More importantly, the feature extraction may con-

siderably influence the segmentation performance, no matter which model is used for

the clustering. Accordingly, it will be more interesting to build a spatially-dependent

model generating images directly instead of generating appearance features. Moti-

vated by this, we might extend the dependent model structures introduced here to a

non-parametric Bayesian dictionary learning problem [ZCP+09], so that proximate

image patches are generated from a similar factor-combination. As a result, smooth

segmentation and feature extraction will be finished simultaneously.
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Appendix A

Proof of Theorem 2

According to (3.6), Gj = wj1G1 +
∑j

l=2wjlHl−1, where wjl = w̃l−1
∏j−1

m=l(1 − w̃m).

Then given {wj1, . . . , wjj} and the base distribution H, the expectation of Gj is

E
{
Gj(B)

}
= wj1E

{
G1(B)

}
+

j∑
l=2

wjlE
{
Hl−1(B)

}

=

j∑
l=1

wjlH(B).

(A.1)

Since given G0, the variance of Gj(B) is V
{
Gj(B)|G0(B)

}
=
∑j

l=1(
w2

jl

α0l+1
)G0(B)

{
1−

G0(B)
}

. Then we can get the variance of Gj(B) with the expectation of G0(B) as
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follows:

V
{
Gj(B)

}
= E

[
V
(
Gj(B)|G0(B)

)]
+ V

[
E
(
Gj(B)|G0(B)

)]

= E

[ j∑
l=1

( w2
jl

α0l + 1

)
G0(B)

(
1−G0(B)

)]
+ V

[ j∑
l=1

wjlG0(B)

]

=

j∑
l=1

w2
jl

α0l + 1
E
[
G0(B)−G2

0(B)
]

+ V

[ j∑
l=1

wjlG0(B)

]

=

j∑
l=1

w2
jl

α0l + 1

[
H(B)−

(
V (G0(B)) +H2(B)

)]
+

j∑
l=1

w2
jlV
[
G0(B)

]

=

j∑
l=1

w2
jl

[(
1− 1

1 + α0l

)
V
[
G0(B)

]
+
H(B)

[
1−H(B)

]
1 + α0l

]

=

j∑
l=1

w2
jl

[ α0l

1 + α0l

· 1

1 + γ
H(B)

[
1−H(B)

]
+
H(B)

[
1−H(B)

]
1 + α0l

]

=

j∑
l=1

w2
jl

1 + α0l

(α0l + γ + 1

1 + γ

)
H(B)

[
1−H(B)

]
.

(A.2)

Additionally given G0 we can get

E{Gj(B)Gj−1(B)} − E{Gj(B)}E{Gj−1(B)}

=E
[
{wj1G1(B) + . . .+ wjjHj−1(B)}{wj−1,1G1(B) + . . .+ wj−1,j−1Hj−2(B)}

]
− E{wj1G1(B) + . . .+ wjjHj−1(B)}E{wj−1,1G1(B) + . . .+ wj−1,j−1Hj−2(B)}

=wj1wj−1,1V {G1(B)}+

j−1∑
l=2

wjlwj−1,lV {Hl−1(B)}

=

j−1∑
l=1

wjlwj−1,l
1 + α0l

· α0l + γ + 1

1 + γ
H(B)

[
1−H(B)

]
.

(A.3)
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From the above analysis, the correlation coefficient of the distributions between the

adjacent groups defined in (3.11) can be formularized as follows:

Corr(Gj−1(B), Gj(B)) =

∑j−1
l=1

wjlwj−1,l

1+α0l
· (α0l + γ + 1)[∑j

l=1

w2
jl

1+α0l
· (α0l + γ + 1)

]1/2[∑j−1
l=1

w2
j−1,l

1+α0l
· (α0l + γ + 1)

]1/2 .
(A.4)
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Appendix B

Posterior Update for the Hidden Markov Models
(HMM)

Dirichlet distributions are used as the conjugate priors for these parameters [QPC07].

Assume I, M respectively represent the number of states for each HMM and the

codebook size of the discrete sequential observations, then u, v and q in expression

(B.1) are chosen as u = 1/I1I , v = 1/M1M and q = 1/I1I , with 1a denoting an

a × 1 vector of ones. These priors are chosen motivated by the results of [IZ02],

which imply that each of the probability vectors converge to a Dirichlet process with

precision parameter one, as the number of elements increases. The Dirichlet process

is appealing in favoring a few dominant elements, with the remaining probabilities

close to zero.

Pr(A∗k|u) =
I∏
ρ=1

Dir
(
{aρ1, . . . , aρI}; u

)

Pr(B∗k|v) =
I∏
ρ=1

Dir
(
{bρ1, . . . , bρM}; v

)
(B.1)

Pr(π∗k|q) = Dir
(
{π1, . . . , πI}; q

)
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where I is the number of states for the HMM and M is the codebook size of the

observations. To update the parameters of HMMs, we also sample the hidden states.

The posterior updating equations are as follows:

• Pr(A∗k|A∗−k,B∗,π∗,w, ζ,β,α0, s, z, r,x)

=
∏I

ρ=1Dir
(
{aρ1, . . . , aρI}; {u1 + ûk,ρ1, . . . , uI + ûk,ρI}

)
where ûk,ρξ =

∑J
j=1:zjk=1

∑T−1
t=1 δ(sj,k,t = ρ, sj,k,t+1 = ξ).

• Pr(B∗k|A∗,B∗−k,π∗,w, ζ,β,α0, s, z, r,x)

=
∏I

ρ=1Dir
(
{bρ1, . . . , bρM}; {v1 + v̂k,ρ1, . . . , vM + v̂k,ρM}

)
where v̂k,ρm =

∑J
j=1:zjk=1

∑T
t=1 δ(sj,k,t = ρ, xjt = m).

• Pr(π∗k|A∗,B∗,π∗−k,w, ζ,β,α0, s, z, r,x)

= Dir
(
{π1, . . . , πI}; {q1 + q̂k,1, . . . , qI + q̂k,I}

)
where q̂k,ρ =

∑J
j=1:zjk=1 δ(sj,k,1 = ρ).

• Pr(sj,k,t|s−j, sj,k,−t,A∗,B∗,π∗,w, ζ,β,α0, z, r,x)

∝


Pr(sj,k,1)Pr(sj,k,2|sj,k,1)Pr(xj1|sj,k,1) for t = 1
Pr(sj,k,t|sj,k,t−1)Pr(sj,k,t+1|sj,k,t)Pr(xjt|sj,k,t) for 2 ≤ t ≤ T − 1
Pr(sj,k,T |sj,k,T−1)Pr(xjT |sj,k,T ) for t = T
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