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Abstract

Pathogens and host immune systems use strikingly similar methods of diversification.

Mechanisms such as point mutations and recombination help pathogens escape the

host immune system and similar mechanisms help the host immune system attack

rapidly evolving pathogens. Understanding the interplay between pathogen and

immune system evolution is crucial to effective drug and vaccine development. In

this thesis we employ various computational methods to study diversification in a

pathogen, an invertebrate and a vertebrate immune system.

First, we develop a technique for phylogenetic inference in the presence of re-

combination based on the principle of minimum description length, which assigns

a cost-the description length-to each network topology given the observed sequence

data. We show that the method performs well on simulated data and demonstrate

its application on HIV env gene sequence data from 8 human subjects.

Next, we demonstrate via phylogenetic analysis that the evolution of repeats

in an immune-related gene family in Strongylocentrotus purpuratus is the result of

recombination and duplication and/or deletion. These results support the evidence

suggesting that invertebrate immune systems are highly complex and may employ

similar mechanisms for diversification as higher vertebrates.

Third, we develop a probabilistic model of the immunoglobulin (Ig) rearrange-

ment process and a Bayesian method for estimating posterior probabilities for the

comparison of multiple plausible rearrangements. We validate the software using
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various datasets and in all tests, SoDA2 performed better than other available soft-

ware.

Finally, we characterize the somatic population genetics of the nucleotide se-

quences of > 1000 recombinant Ig pairs derived from the blood of 5 acute HIV-1

infected (AHI) subjects. We found that the Ig genes from the 20 day AHI PC

showed extraordinary clonal relatedness among themselves; a single clone comprised

of 52 members, with observed and inferred precursor antibodies specific for HIV-1

Env gp41. Antibodies from AHI patients show a decreased CDR3H length and an

increased mutation frequency when compared to influenza vaccinated individuals.

The high mutation frequency is coupled with a comparatively low synonymous to

non-synonymous mutation ratio in the heavy chain. Our results may suggest pres-

ence of positive antigenic selection in previously triggered non-HIV-1 memory B cells

in AHI.

Taken together, the studies presented in this thesis provide methods to study

diversification in pathogens, and invertebrate and vertebrate immune systems.
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1

Introduction

1 Pathogens persist in the environment by employing various survival strategies.

Two such strategies include causing infection in naive individuals and evading the

immune system in already exposed individuals by constantly altering their genetic

content. While the first strategy is limited to the availability of naive hosts, the sec-

ond gives the pathogen an ability to generate extraordinary diversity in its antigenic

epitopes. Some pathogens, especially RNA viruses such as Human Immunodeficiency

Virus - 1 (HIV-1) and influenza, have highly error prone replication and packaging

machinery leading to point mutations and recombination, generating tremendous di-

versity. Others, such as bacteria undergo exchange of genetic material to produce

new strains. This provides an ongoing challenge to the host that the pathogen infects.

In response, the host immune system has evolved similar molecular mechanisms to

recognize the large number of such rapidly evolving pathogens. Some of these mech-

anisms include site-specific rearrangement, homologous recombination and somatic

hypermutation. Understanding the evolutionary interplay between the host immune

system and pathogens is crucial to better drug and vaccine development. In this

1 Parts of this introductory chapter have been peer-reviewed and published [1] [2] [3]
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thesis we develop computational methods and explore diversification in a pathogen

(HIV-1), an invertebrate immune system (Strongylocentrotus purpuratus) and a ver-

tebrate immune system (human).

1.1 Diversification in HIV-1

Retroviruses like HIV, known for their high mutation rates, are present in the host

organism as mixtures of genetically diverse populations known as quasispecies. In

addition to point mutations, the HIV-1 genome also undergoes genetic recombina-

tion as an intrinsic part of its normal replication cycle [4]. Recombination can occur

under the forced copy choice model when reverse transcriptase encounters a break in

the RNA during the formation of the negative strand DNA molecule. In this case, it

makes a switch to the co-packaged strand to avoid loss of genetic information [5]. It

can also occur via the DNA strand displacement and assimilation model [6]. Here,

the two copackaged RNA molecules are both copied and two molecules of minus-

strand DNA are synthesized. Plus-strand DNA synthesis occurs in a discontinuous

manner. One short stretch of plus-strand DNA molecule is displaced by the growing

point of the 5‘ DNA. The displaced DNA fragment anneals to the minus-strand DNA

of the other DNA molecule. After repair by the host machinery a recombinant is

formed.

It has been shown that HIV-1 undergoes approximately two to three recombina-

tion events per genome per replication cycle [7]. In cases of superinfection (where

the cell is infected by more than one virion), recombinants are generated using the

genetic material of multiple virions. Splenic cells in three patients have been re-

ported to contain 6% to 18% recombinants, which is significantly higher than the

0.5% expected with a PCR-mediated error [8]. Another study involving splenic cells

of two patients reported an average of 3.2 proviruses per cell [9], which would in-

evitably lead to the production of recombinants. Hence, recombination is useful for

2



the repair of defective retroviral genomes, for generating viral diversity and assisting

in the spread of beneficial mutations among viral quasispecies.

Constant changes in the HIV-1 genome make it essential to study patterns of

its evolution. Generation of genetic diversity aids the virus escape the host immune

system, develop drug resistance as well as makes it an extremely difficult target for

vaccine development. The study of virus evolution may give us a clearer under-

standing of drug administration, disease progression and vaccine design. Although

phylogenetic tree estimation is a prevalent method of such sequence analysis, the

presence of recombination in the evolutionary history of HIV-1 has made it diffi-

cult to construct accurate phylogenetic relationships between its genes using current

methods. An important assumption of most phylogeny reconstruction methods is

that sequences are capable of being described by a single phylogeny. This assump-

tion is violated by sequences that undergo recombination or are a result of plural

ancestry. A mosaic sequence is a result of cross-over between two or more distinct an-

cestors and can thus be best explained not by a single tree but by a set of correlated

trees over the sequence [10]. Analyzing mosaic sequences with methods that do not

take recombination into account can lead to incorrect conclusions like overestimation

of branch lengths [11]. Inclusion of recombination in evolutionary analysis is thus

essential for getting a better understanding of evolutionary changes in HIV-1. So,

we have developed a technique for phylogenetic inference in the presence of plural

ancestry based on the principle of minimum description length, which assigns a cost-

the description length-to each network topology given the observed sequence data.

The description length combines the cost of poor data fit and model complexity in

terms of information. This device allows us to search through network topologies

to minimize the total description length. By comparing the best models obtained

with and without plural ancestry, one can determine whether or not recombination

has played an active role in the evolution of the genes under investigation, identify
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those genes that appear to be mosaic, and infer the phylogenetic network that best

represents the history of the alignment. In Chapter 2, we show that the method

performs well on simulated data and demonstrate its application on HIV env gene

sequence data from 8 human subjects.

1.2 Diversification in an Invertebrate immune system

Complex diversified immune responses have been traditionally believed to be lim-

ited to higher vertebrates. However, recent evidence has demonstrated that inverte-

brate immune responses may also be highly diversified and are often encoded within

large gene families [12] [13]. The genome of the purple sea urchin Strongylocentro-

tus purpuratus contains a number of large immune-related gene families, many with

considerably more members than their vertebrate homologues [14]. The 185/333

gene family is an example of a large diverse gene family that is putatively involved

in the sea urchin immune response [15]. The genes are closely linked, are flanked

by dinucleotide and trinucleotide repeats, and are highly expressed in response to

immunological challenge with whole bacteria, lipopolysaccharide, β-1-3-glucan and

double-stranded RNA [16] [17]. Sea urchins seem to be able to discriminate among

these pathogen signatures through as yet unknown mechanisms and express unique

suites of 185/333 genes in response to challenge [17]. The 185/333 transcripts consti-

tute 6.45% of a cDNA library constructed from bacterially activated coelomocytes,

as opposed to 0.086% in a nonactivated library, a 75-fold increase [16].

Although the function of the 185/333 proteins remains unknown, they localize to

the cell surface of a subset of the coelomocytes (immune cells) of the sea urchin and

may be involved in the formation of syncytia to immobilize invading pathogens [18].

Analysis of 185/333 protein expression by two-dimensional Western blot analysis

suggests that distinct suites of proteins are expressed in response to lipopolysaccha-

ride compared to peptidoglycan, and that individual sea urchins can express > 200
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unique proteins [19]. These protein data therefore support the previous observations

of transcript and gene diversity[14], [15] and [18] and emphasize the putative role of

the 185/333 gene family in the S. purpuratus immune response.

In addition to the striking increase in expression following immune challenge, the

185/333 sequences are intriguing. Alignment of the 185/333 mRNAs requires the

insertion of large gaps, creating blocks of similar sequences or repeats. These repeats

are variably present or absent in different mRNAs, which have been used to define

specific element patterns. Analysis of 185/333 genes indicates that the variation in

transcript repeat patterns is likely the result of variations in patterns encoded by

many genes, rather than the result of extensive alternative splicing among a few

genes. The genes have two exons. The first encodes a hydrophobic leader, and

the second encodes the remainder of the open reading frame, including the variable

element patterns. A variety of imperfect repeats within the coding regions have been

used to align the 185/333 sequences and to define elements based on the locations of

gaps within the alignment, as well as the edges of the repeats.

The 185/333 sequence diversity is extremely high. From 16 S. purpuratus in-

dividuals, 872 185/333 sequences (183 genes and 689 transcripts) have been ana-

lyzed, of which 475 are unique, encoding 323 proteins with 37 different element

patterns [15] [17]. Sequence diversity is the result of variation in element patterns,

as well as point mutations and small indels. No identical gene sequences are shared

among different animals, indicating that the nucleotide diversity occurs not only

within the 185/333 gene family of individual sea urchins but also within the S. pur-

puratus population.

The results presented in Chapter 3 suggest that the highly diversified 185/333

gene family is subject to frequent recombination, gene duplication, and gene deletion.

Because gaps introduced into sequence alignments to define the element patterns

complicate phylogenetic analysis of full-length gene sequences, the evolution of this
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gene family was analyzed from the perspective of the repeats within the genes. Phy-

logenetic analysis suggests that the repeats have arisen as a result of intragenic repeat

duplication and/or deletion, recombination, and point mutations. Incongruent phy-

logenetic histories of a variety of elements and analysis of the distribution of element

sequences across the genes suggest that the genes undergo frequent recombination,

which is likely to be a mechanism for generating diversity within the gene family.

Within this framework of gene diversity, however, there is a paradox of remarkably

conserved element sequences, suggesting that the divergence from the last common

ancestral gene for the extant 185/333 sequences occurred relatively recently. The

185/333 gene family therefore provides an intriguing addition to the growing body

of evidence suggesting that invertebrate immune systems are far more complex than

previously believed.

1.3 Diversification in a Vertebrate immune system

Vertebrate immune response to HIV-1 and most other pathogens consists of a cell

mediated and a humoral response. For the purposes of this project, we focused on

the humoral arm of the immune response. B cells are the major players of the hu-

moral response. B cells express immunoglobulin (Ig) molecules on their outer surface

and secrete them into the extracellular space. Secreted Ig is known as antibody. An-

tibodies serve as effector molecules that neutralize microbes by binding to exposed

antigens and targeting them to other components of the immune system, such as

phagocytic cells and complement, that effect clearance. In order to account for the

presence of a large number of possible pathogens, some of them constantly mutat-

ing, Ig genes generate diversity in two stages, an antigen-independent stage and an

antigen-dependent stage.
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1.3.1 Antigent Independent Diversity

Antigen-independent diversity is generated in the bone marrow, where B cells origi-

nate, by combinatorial rearrangement of gene segments and junctional diversity.

Combinatorial rearrangement

Each antibody molecule comprises one heavy chain protein and one light chain pro-

tein. Both the light and heavy chain genes are encoded by gene segments that are

genetically rearranged during a process known as V(D)J recombination [20] [21].

Heavy chains are made up of of three gene segments Variable (V), Diversity (D)

and Joining (J) where as light chains only have a V and J segment. Recombination

of these gene segments into a transcribable gene is mediated by the recombination

activating genes, RAG1 and RAG2. For heavy chains, the D and J gene segments

recombine first followed by the recombination of the V segment to the DJ gene. For

light chains, the V segment directly recombines with the J segment. In humans,

there are approximately 50 known functional V segments, 27 known functional D

segments, and six known functional J segments [22] all located near the long-arm

telomeric end of chromosome 14 available for assembly into heavy chain genes. This

allows for approximately 8100 combinations in the heavy chain alone. Humans also

have two light chain loci, κ [23] and λ [24]. Only one of these loci is expressed per

cell so that each antibody either has a κ light chain or a λ light chain. Humans have

44 functional Vκ, 5 Jκ, 33 Vλ and 5 Jλ genes [22] resulting in 220 possible κ chains

and 165 possible λ chains. Thus this combinatorial rearrangement alone allows for

greater than 3 million antibodies.

Junctional Diversity

Additional diversity at the junctions of recombination is created during the rear-

rangement process. First the recombination site choice may be different for the same
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gene in different recombination events. Second, non-templated (n) nucleotides are

sometimes added at the junction by terminal deoxynucleotidyl transferase (TdT)

between adjoining gene segments [25]. TdT is is the only known polymerase capable

of adding nucleotides to a DNA strand without a template [26]. The presence of

n nucleotides had previously not been seen in light chains as TdT is shown to be

expressed only in pro-B cells, which is where the heavy chain rearrangement takes

place [27] [28] [29]. But some later studies such as one by Bridges (1998) has con-

firmed the presence of n nucleotides in light chains [30]. The nucleotides added by

TdT become part of complementarity determining region 3 (CDR3), which is the

section of the gene that encodes one of the three antigen binding loops in the result-

ing protein. Additionally, presence of palindromic (p) nucleotides has also been seen

in these junctions [31]. Both heavy and light chain genes encode a total of three loops

through their three CDRs. Together, the six loop structures in the proteins from the

expressed light and heavy chain genes form the antigen binding interface for the Ig

molecule. Both CDR1 and CDR2 are within the rearrangeable germline V segments

for the given locus. CDR3 begins at the 3‘ end of the V segment through to the 5‘

end of the J segment, encompassing the rearranged D segment and all n-nucleotides

which makes it the most diverse region in the antibody sequence.

1.3.2 Antigen Dependent Diversity or Affinity Maturation

After the Ig gene has been rearranged the B cell leaves the bone marrow, it enters the

periphery where it may or may not encounter antigen. Once it comes into contact

with antigen and its affinity threshold is exceeded by binding to the antigen, the

B cell becomes activated. An activated B cell does two things. Firstly, it secretes

antibodies, which bind to pathogens and help neutralize them, or identify them to

phagocytes and other innate system defenses, allowing to eliminate them. Secondly,

they proliferate and express a B-cell specific factor called activation-induced cytidine
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deaminase (AID), which causes mutations in the Ig genes at a rate of up to 106 times

the normal background rate [32]. These point mutations are usually within the CDR

and may help increase affinity for antigen since the CDRs form the antigen binding

interface. The cells are subsequently selected for enhanced affinity for the eliciting

antigen.

It is estimated that these processes of diversification can generate approximately

1012 different antibodies making it challenging to correctly identify the underlying

germline gene segments and sub-sequently the sequences of the complementarity

determining regions (CDRs). There are various tools that have been developed to

solve this problem. An in-house tool called Somatic Diversification Analysis (SoDA)

was developed using a novel three dimensional alignment algorithm [33]. We have

developed SoDA2, which is based on a Hidden Markov Model and used to compute

the posterior probabilities of candidate rearrangements and to find those with the

highest values among them. Chapter 4 explains the algorithm in more detail.

1.4 Characterizing the diverse B cell repertoire during an acute HIV-1
infection

As of 2007, an estimated 33 million people are living with HIV. In the United States

alone, the total number of persons with HIV was estimated to be between 1 million

and 1.1 million (MMWR, 2008). Through its amazing ability to evolve rapidly,

HIV has become one of the most successful pathogens in the history of the human

race. The rapidly evolving nature of HIV-1 makes it difficult for the host immune

system to develop a sustainable response. The humoral response of the host needs

to elicit a broadly neutralizing response, one that is able to counteract irrespective

of the changes in HIV-1. However, broadly neutralizing antibodies to HIV-1 are

rare. Four such antibodies have been discovered; 4e12, 2G12, 2F5 and 1b12 [34] [35];

but never found at detectable levels in any patients since then. Two more potent
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antibodies have also been recently discovered from an African donor [36] but the

question of why these are only seen in a select few patients still remains unanswered.

Although available therapies and vaccines have managed to prolong the time to

Acquired Immunodeficiency Syndrome (AIDS), none of the treatments so far have

been successful in eliminating the virus. The unexpected success of the Thai vaccine

trial [37] and failures of other vaccine trials suggest that it may be advisable to step

back and acquire a greater understanding of the fundamentals of the humoral immune

response to HIV, and to examine the genetic interplay between the host immune

system and virus in more detail than has been done before now. The work presented

in this final chapter is a large-scale effort to understand and characterize the effect

of transmitted HIV-I on the humoral arm of the immune response during an acute

infection. The goal of the project is to gain a better understanding of the humoral

response during an acute HIV-1 infection by profiling the plasma cell response in

acutely infected individuals. We have developed statistical and computational tools

to aid the study, which are explained in detail in Chapters 4 and 5.
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2

An Information Theoretic Method for the
Treatment of Plural Ancestry in Phylogenetics

1 Several distinct classes of methods for the treatment of mosaic sequences have been

developed. Each of these infers different types of information relevant to genetic mo-

saicism. One includes methods that identify recombination without phylogenetic

inference. For instance, Hudson and Kaplan (1985) [38] developed a method that

provides a lower bound on the number of recombination events that occurred in the

history of a collection of sequences that does not require inference of a phylogeny.

Sawyer (1989) developed methods for the detection of genetic mosaicism by looking

at the distribution of segments of synonymous polymorphisms, again, without the

use or inference of phylogenies. Methods that generate inferred phylogenies include

that of Grassly and Holmes (1997) [39] which compares the likelihood of an evolu-

tionary model constrained to use a single phylogenetic tree for all sites in the gene

to those of models in which the tree topology is allowed to vary along the length of

the gene. Although this method does not produce a single phylogenetic network, the

1 Parts of this chapter have been peer-reviewed and published [1]
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multiple inferred trees can in principle be superimposed to produce such a network.

Hein (1990) [40] poses the problem within the context of dynamic program-

ming and describes an algorithm to identify the phylogenies, varying across sites,

that minimize the sum of mutation and recombination costs, allowing these costs

to be arbitrarily fixed. Though this algorithm is computationally infeasible, Hein

(1993) [41] also published a much simpler, fast algorithm based on a reasonable

heuristic regarding the topologies that are likely to be important. These methods

represent generalizations of the method of parsimony and are thus subject to the

same criticisms [42]. Strimmer and Moulton (2000) [43] addressed these perceived

shortcomings by applying maximum likelihood on directed acyclic graphs (DAGs)

as an extension to Felsenstein‘s method for trees. Felsenstein‘s method is based on

the conditional probability P (y|x, t) of observing nucleotide y given parent x and

intervening time t. Strimmer and Moulton adjust this definition to allow for plu-

ral ancestry by introducing priors p1, p2 for the probabilities that there are two

parents, 1 or 2, respectively. The graph is then constructed using the conditionals

P (y|x1, x2, t) = p1P (y|x1, t) + p2P (y|x2, t).

In a more recent method, Jin et al (2006) [44] applied maximum likelihood meth-

ods to reticulate networks, which are obtained from trees by the addition of additional

edges between edges in the original tree. Their extension is based on the decompo-

sition of the phylogenetic network into overlapping sub-trees and uses a maximum

likelihood criterion with a branch-and-bound heuristic to reconstruct the phyloge-

netic history of putative recombinants. The use of maximum likelihood methods in

this context represents a significant step forward, but faces the challenge posed by

the need to choose from among several models of differing sizes. As pointed out by

the authors, adding a reticulation edge always increases the likelihood. Hypothesis

testing can be applied, but the hierarchy of models thus formed is not necessarily

transitive. For three models A, B, and C it is possible that A is rejected in favor of
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B, B is rejected in favor of C, yet A is not rejected in favor of C. Indeed, the authors

do not actually test for the presence of recombination but use a visual heuristic to

choose the size of the final model.

We have developed an information-theoretic method for phylogenetic inference

in the presence of plural ancestry. The method is an outgrowth of an approach we

developed for the analysis of mosaicism in host defense genes [45] and is based on

model selection by minimization of the description length, as we now explain.

The minimum description length (MDL) principle casts the model selection prob-

lem as that of finding the most efficient encoding of the data [46]. This approach

arose from the theoretical work of Kolmogorov (1965) [47], Solomonoff (1964) [48]

and Chaitin (1966) [49] on data complexity, a concept developed to provide a def-

inition of randomness applicable to individual datastreams rather than exclusively

to ensembles. The idea is to define the complexity of a datastream D as the length,

in bits, of the shortest computer program that produces D as output. A random

datastream is one that cannot be compressed at all-the shortest program essentially

is PRINT D. The underlying intuition is that regularities allow data compression;

randomness is the complete absence of regularity. Rissanen (1989) [50] extended

these abstract ideas to the practical problem of statistical data analysis by placing

restrictions on the kinds of computers and programs that can be considered.

The analogy Rissanen uses is that of communication: the datastream is a message

to be sent after appropriate encoding. An efficient encoding takes advantage of the

data‘s regularities, as Morse code encodes the frequently used letter ”e” as ”dot”, and

the rarer letter ”q” as ”dash dash dot dash”. This strategy requires the transmission

of the message in two parts. The first part contains the code key and the second

contains the message itself, encoded using the key. In more familiar terms, the code

key is analogous to the statistical model and the associated parameter estimates,

and the ”message itself” is analogous to the data residuals. The complexity of the
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model and the lack of fit are thus both evaluated using information as the common

currency.

Viewed from this perspective, a tree is primarily a very efficient means of encod-

ing data, such as DNA sequences, that contain patterns of shared features. Data

compression is achieved by encoding common characteristics at the root and adding

more and more specific characteristics (shared by fewer individuals) as accumulating

differences as the leaves are approached. It is worth pointing out in this regard a

passage from Darwin (1859) [51] in which he describes classification by the ”Natural

System” as an artificial means for enunciating, as briefly as possible, general propo-

sitions, that is, by one sentence to give the characters common, for instance, to all

mammals, by another those common to all carnivora, by another those common to

the dog-genus, and then by adding a single sentence, a full description is given of

each kind of dog. The ingenuity and utility of this system are indisputable. It is

precisely the ”data compression” properties of trees that he is referring to, and it is

their extraordinary utility in this context that drove him to posit the propinquity

of descent as the cause. There is an intimate relationship between code-length and

probability captured by the Kraft inequalities [46], which provides a 1-1 map between

coding schemes and likelihood functions. In particular, the asymptotic expansion in

N, the size of the dataset, of the minimum description length has minus the log of

the maximum likelihood as the leading coefficient (order N).

The method we have developed is realized in a stochastic minimization of the

description length over the space of phylogenetic networks; each elementary trans-

action involves random modification of the network topology. We have implemented

the method in software, validated its performance on simulated datasets, and demon-

strated its application on a collection of genomic sequences of the HIV-1 envelope

protein isolated longitudinally from each of eight subjects infected with HIV [52].
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2.1 Method

2.1.1 Inference Procedure

The number of phylogenetic tree networks grows superexponentially with the size of

the data [53], and the number of phylogenetic networks grows more rapidly still, mak-

ing exhaustive consideration of all topologies infeasible. We have therefore designed

our procedure as a stochastic optimization on the space of phylogenetic networks.

The procedure uses simulated annealing [54] to perform the minimization of the

minimum description length of the data plus the network as the objective function.

The process is carried out in two stages. During stage 1, the tree-like topology is

preserved by restricting the elementary operations that are allowed. This stage is

intended to find a suitable starting point for the second stage, in which an enlarged

set of elementary operations is applied, including some that do not preserve the

tree topology. After each operation, the description length is evaluated and used to

determine whether the result of the operation will be preserved or discarded. The

procedure is explained below in greater detail.

The Scoring function - Minimum Description Length (MDL)

We have cast the determination of the phylogenetic history of a set of sequences

explicitly as a problem of model selection in which we seek the model that minimizes

the total information required to encode the data or in other words, the description

length of the data given a model. A phylogenetic tree can be viewed as a hier-

archical data structure that enables an efficient encoding of a set of similar DNA

sequences through elimination of redundancies. Consider the encoding of two simi-

lar genes, each of length L. One could use a naive model and encode the two genes

independently, at an information cost of 4L bits (1 nucleotide requires 2 bits to

encode). Or one could encode the consensus sequence (costing 2L bits) and then
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encode the changes required to recover each of the two genes from the consensus.

Roughly speaking, each mutation requires log2 3 bits to specify the class of mutation

and log2 L bits to specify the nucleotide position at which it occurs. As long as

the number of mutations, m, required for this encoding is small enough to satisfy

m(log2 3 + log2 L) < 2L, the tree model is more efficient than the naive model. For

larger gene sets, the process is similar, though the models are more complex. Each

gene must specify its parent and those changes to the parent that produce the gene.

The set of pointers from genes to their parents is equivalent to the topology of the

tree and the encoding of the changes from parent to child is accomplished through the

use of a model for mutations. We extend this basic coding scheme by allowing any

node in the network to have two ancestors and thus be treated as a mosaic sequence.

In this case, we need to specify both ancestors, the breakpoint where the mosaic

switches from one to the other, and the mutations between this parental hybrid and

the gene of interest. The point is to account accurately for the cost of allowing

plural ancestry. For each sequence alignment we consider, we will use and compare

two different models. One, designated M1, prohibits plural ancestry, and the other,

M2, allows it. Although the method can be used with any mutation model, we use a

relatively simple model in what follows here. This model allows for different muta-

tion rates for each of the four classes of pairwise relationships between nucleotides:

identity, transition, transversion 1 (G,A 7→ C,T), and transversion 2 (G,A 7→ T,C).

We further assume that these rates are uniform across positions in the gene and over

all branches. Finally, we assume equal branch-lengths throughout the tree. Under

these conditions, the mutations are distributed according to a multinomial model.

The probability density function is defined as

P (x|~p) = px1
1 p

x2
2 p

x3
3 p

x4
4 (2.1)
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where x is the unknown parameter vector of length four representing the rela-

tionships between nucleotides mentioned above (the sum of the components of this

vector equals the total number of nucleotides in the network) and p contains the pro-

portions of each relationship. Taking a uniform prior on the parameter vector, we

integrate it out, and obtain the total information required to encode the mutations

given this model:

Iµ = log2

∫
dpP (x|~p)P (~p) = log2

(
[(N − 1)L+ 3]

3

)
+ log2

(
(N − 1)L

~x

)
(2.2)

where N is the total number of nodes in a given network (including the root)

and L is the common length of the sequences. The arguments of the logarithms are

the binomial and multinomial coefficients, respectively. Eq.(2) has a useful direct

interpretation in terms of coding: The first term is the information required to

specify the counts of the components of vector x given the total number, (N − 1)L,

of nucleotides in a network (the root is excluded since there are no mutations in

the root). The second term accounts for the number of ways these mutations can

be assigned to the NL nucleotides of the dataset given the counts in vector x. We

ignore a term 2L that represents the amount of information required to encode the

root. Since all networks in question will have a root with the same length, this

term will not make any difference in the final description length. In addition to the

information required to encode the mutations, we need to encode the ancestry as

well. Under a singular ancestry model, each node must specify a parent. If NI is

the number of internal nodes and NO is the number of observed or leaf nodes, the

ancestor information is given by equation 2.3.

IA = log2 (NO − 1) +NO log2NI + (NI − 1) log2 (NI − 1) (2.3)
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where the first term represents the amount of information required to specify the

number of internal nodes and hence all possible parents. The second term represents

the amount of information required to specify a parent for an observed or leaf node

and since an internal node cannot be its own parent, the third term represents the

information to encode an ancestor for an internal node. Under the plural ancestry

model, we must first specify the number of recombinants in a given network and the

number of ways of distributing these recombinants. Each recombinant will then have

a secondary parent from one of the NI internal nodes (a recombinant cannot have the

same parent twice, so we have NI−1 choices) and the location of the cross-over point,

where the gene switches from similarity to parent 1 to similarity to parent 2. Since

this switch cannot happen at the last nucleotide, specifying the recombination point

takes log2 (L− 1) bits. If there are NR nodes with dual ancestry, the corresponding

information cost is

IR = log2 (N − 1) + log2

(
N − 1

NR

)
+NR log2 (NI − 1) +NR log2 (L− 1) (2.4)

Equation 2.4 might be a slight overestimation (of order 1) in that internal nodes

are allowed to be recombinants but they cannot be their own parents. Here we do

not distinguish between observed node recombinants and internal node recombinants.

The total information cost or the description length of the encoding under model M2

is simply the sum of the three terms, IT = Iµ + IA + IR. The third term in the

equation IR is omitted when encoding under M1. The optimal model is the one

that minimizes the total information. The tradeoff of recombination is achieved by

reducing the number of mutations, and thus decreasing Iµ by more than IR.
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Figure 2.1: A) An example of a starting tree with 9 species. B) Branch swapping
is applied and species 6 has moved. C) An example of node absorption where the
parent of species 1 and 2 is combined with the root. D) An example of node splitting
or fission where the parent of species 6, 7, 8 and 9 has been split. 8 and 9 have been
assigned to the new node. E) An example of a phylogenetic network where species 6
is represented as a recombinant between the parent of species 3, 4, 5 and the parent
of species 7, 8, and 9.

Simulated Annealing

As mentioned above, we start with a random initial topology. Figure 2.1A demon-

strates an example of a topology with 9 species. The elementary operations we use

allow any finite topology to be converted to any other finite topology in a finite

number of steps. We then randomly assign our data to this topology and calculate

the resulting description length. Note that each node in our network represents a

DNA sequence. The leaf nodes represent the input sequences while the sequences at

the interior nodes, i.e. nodes with children, are determined by the demand for min-

imizing the description length and hence contain the appropriate consensuses. We

then allow the repeated application of the following elementary operations and their

inverses: change parent, split a node, combine two nodes or add a second parent.

There are two main steps in the program, each of which is described in detail below.
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Stage 1

The operation to be applied is chosen from among the three possibilities with uniform

probability: branch swapping, node absorption, and node fission.

• Branch swapping - We choose two nodes at random: an interior node (which

will become the new parent) and a child node. We break the link between

the chosen child and its current parent and link the child to the new parent.

An example of branch swapping is shown in 2.1B, where the branch between

species 6 and its parent in Figure 2.1A has been swapped giving species 6 a

new parent.

• N ode absorption - We randomly choose an interior node and merge it with its

parent. In other words, the chosen node is deleted from the tree and all its

children are made direct progeny of its parent. An example of node absorption

is shown in Figure 2.1C, where the parent of species 1 and 2 in Figure 2.1A

has been merged with the root.

• N ode fission - We randomly choose an interior node and create a new node

that is assigned as a child of the chosen node. The children of the chosen

node are then distributed between the new child and itself minimizing the

local contribution to the description length using a simple 2-means algorithm

(MacQueen, 1967). An example of node fission is shown in Figure 2.1D, where

the parent of species 6, 7, 8 and 9 is split such that 8 and 9 have a separate

parent.

The description length of the resulting tree is calculated at the end of each iter-

ation within stage 1. The move is accepted if the description length of the resulting

network is less than the existing one. If it is not, we use simulated annealing to
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choose whether to accept or reject the move. This is necessary in order to avoid local

minima. Step 1 runs till the completion of simulated annealing.

Stage 2

Stage 2 differs from stage 1 by replacing branch-swapping with adoption. Adoption

proceeds by choosing a node at random from all non-root nodes, designating that

the child and choosing new parent node from among all interior nodes.

• I f the chosen child node has one parent, add a branch to the new parent while

maintaining the branch to the old parent. Determine the recombination point

between the two parents that minimizes the local description length by mini-

mizing the number of mutations between the parent hybrid and the sequence

at the child node. An example of a move of this kind is shown in Figure 2.1E,

where 6 now has two parents.

• I f the chosen child already has two parents, we consider five operations and

choose the one that produces the smallest description length.

– Represent the child as a recombinant between the current primary parent

and the new parent.

– Represent the child as a recombinant between the current secondary par-

ent and the new parent.

– Break the link with both existing parents and represent the child with

having only the new parent as a parent.

– Break the link with the secondary parent and represent the child by the

current primary parent only. This move is a check and is done to allow

reversibility.

– Break the link with the primary parent and represent the child by the

current secondary parent only.
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As in step 1, the description length of the tree resulting from the move is calcu-

lated and stage 2 is also iterated till the completion of simulated annealing. At the

end of both steps we have a network that minimizes the description length of the

data.

2.1.2 Validation of Procedure

We generated simulated datasets using a Markov Process model to grow a phyloge-

netic network with point mutations, recombinations and duplications and obtain a

set of sequences related as if through this network. At any given time in the pro-

cess, each node is considered independently and can acquire a single mutation, split

into two sibling nodes, become recombination receptive, or do nothing. The rates of

these processes are given by kµ, ks, and kr, respectively. Mutations are random and

incorporated at random locations along the gene. When a node becomes recombi-

nation receptive, a partner node is chosen from among all extant internal nodes and

a recombination cross-over point is chosen at random along the common lengths of

the parents. A new node with the resulting mosaic sequence is added as a shared

child to the two parent node. For each of the combinations of ks
kr

and kµ
kr

displayed in

Table 2.1.2, we generated 12 replicate datasets and analyzed them using the methods

described above (Table 2.1.2).

In order to determine whether the procedure not only detects the presence of

recombination, but also accurately infers their evolutionary histories, we compared

the simulated phylogenetic networks for each dataset to networks generated by our

program. Figure 2.2 provides one such visual comparison of the simulated network

and the network constructed using our procedure, showing that the two are very sim-

ilar. Nine out of 12 mosaic sequences were identified as such with the appropriate

ancestors and cross-over points. The mosaic sequence shown in the red dashed line

could not be identified because the cross-over point was at position 297 of 300 and
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Table 2.1: Parameter values for rates of mutation (kµ), duplication (ks) and recom-
bination (kr) for simulations. The values in the tables are mutations per split in the
simulations.

ks
kr

4 8 16
16 4 2 1
32 8 4 2
64 16 8 4
128 32 16 8

kµ
kr

256 64 32 16

512 128 64 32
1024 256 128 64
2048 512 256 126
4096 1024 512 256

there was too little information transferred from the secondary parent for reliable

identification. The mosaic sequence shown in the blue dashed line was not identified

because one of its ancestors lost all its non-recombinant descendants from the simu-

lation. Hence, its mosaic descendants could not be identified as such. Note that the

inferred network is not expected to be identical to the true network since the method

generates multifurcating networks when there is insufficient information to resolve

the pattern of bifurcations within any multifurcating node, a condition that is the

norm for datasets of this size and complexity. For example, given 3 sequences AGA,

AAC and TAC, any combination of these sequences would make an equally feasible

bifurcating tree. In this case, our program simply chooses a multifurcating tree since

there is no one best resolution. To estimate the alignment-wise type I error rate (for

a whole alignment), we generated 15 simulated datasets with no recombination for

each of the following mutation to duplication rate ratios: 1, 2, 4, 8, 16, 32, 64, 128,

256, 512 and 1024, resulting in a total of 165 total datasets. There was an aver-

age of 46.9 genes per dataset. Alignment-wise false positives as defined above were

counted in 11 of the 165 datasets, 9 of which had identified a single gene as mosaic
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Table 2.2: Analysis of the simulated datasets with parameter values, description
lengths (IT ) of the networks with (IT2) and without (IT1) plural ancestry (PA).
1The Gene-wise type I error rate is defined as the number of genes falsely identified
as mosaic divided by the total number of non-mosaic genes. 2The Gene-wise type II
error rate is defined as the number of genes falsely identified as non-mosaic divided
by the total number of mosaic genes. 3The Alignment-wise type II error is the
proportion of datasets judged to have no recombination (IT1 > IT2) but do.

IT 1 IT 2 Gene-Wise Gene-Wise Alignment-Wise
ks
kr

kµ
kr

mutations
split

Type I Type II Type II

(without PA) (with PA) error rate1 error rate2 error rate3

16 16 1 1480 1488 0.0 1 0.92
8 16 2 2258 2223 0.0 0.76 0.58
16 32 2 1964 1955 0.0 0.79 0.56
4 16 4 3933 3412 0.003 0.36 0.0
8 32 4 3306 3073 0.002 0.36 0.33
16 64 4 3312 3105 0 0.30 0
4 32 8 5823 5685 0.0 0.28 0.16
8 64 8 5173 5085 0.005 0.20 0.0
16 128 8 4546 4506 0.004 0.18 0.0
4 64 16 9330 9122 0.009 0.18 0.0
8 128 16 9154 8754 0.009 0.49 0.25
16 256 16 7363 7324 0 0.2 0.2
4 128 32 13276 12933 0.002 0.33 0.0
8 256 32 13340 13105 0.003 0.14 0.0
16 512 32 12225 12139 0 0.14 0.0
4 256 64 21061 20903 0.006 0.40 0.0
8 512 64 19952 19602 0.009 0.31 0.08
16 1024 64 19673 19628 0.002 0.32 0.2
4 512 128 25946 25873 0.002 0.60 0.17
8 1024 128 26664 26644 0 0.72 0.50
16 2048 128 26067 26064 0.0 0.67 0.57
4 1024 256 29786 29791 0.0 1 1
8 2048 256 29830 29836 0.0 1 1
16 4096 256 29755 29760 0.0 1 1
4 2048 512 29992 29997 0.0 1 1
8 4096 512 30168 30173 0.0 1 1
4 4096 1024 30232 30238 0.0 1 1

while the other 2 had 2 and 3 mosaic genes respectively. These mosaic genes were

generated in datasets with mutation to duplication rate ratio of 4 to 64. The higher

mutation rates led to extremely diverse datasets resulting in poor resolution. The

overall alignment-wise type I error rate is thus 6.67%. The average gene-wise error

rate within each of the family of datasets where alignment-wise false positives were

found is less than 0.4%. Note that where IT2 is smaller than IT1 and there are no

putatively mosaic genes, we can say with certainty that the annealing in stage 1 was

incomplete. This shortcoming can be reduced by improving the cooling schedule.
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Figure 2.2: A) Network generated by simulation B) Network generated by our
method

Observations

We made the following observations: 1) The gene-wise type I error rate, which is

defined as the number of genes falsely identified as mosaic divided by the total num-

ber of non-mosaic genes, is fairly low at all mutation rates. This number remains

less than or equal to 10% for all parameter values used in testing. 2) The gene-wise

type II error rate, defined as the number of genes falsely identified as non-mosaic

25



divided by the total number of mosaic genes, is reasonable for a range of intermedi-

ate relative mutation rates (4-64 mutations per split) but becomes intolerably large

for more extreme values at very low and very high rates. Failure of this type is in-

evitable: mutations both provide and destroy the information necessary to identify

recombination. Recombination between identical or nearly identical genes cannot be

detected by analysis of the resulting sequence, yet very high rates corrupt the signal.

3) Similarly, the alignment-wise type II error, the proportion of datasets judged to

have no recombination (IT1 > IT2) when they in fact do, is high when the mutations

per branch are extreme. 4) Finally, the overall alignment-wise type I error rate, the

proportion of datasets that are falsely identified to have recombination is 0.007.

2.2 Results

2.2.1 HIV-1

Shankarappa et al (1999) [52] studied the divergence and diversity of the C2-V5

region of the HIV-1 env gene in nine homosexual men with moderate or slow dis-

ease progression. They obtained gene sequences at an average of 12 time points

per person, covering 6 to 12 years of infection. These datasets were used because

they provided the opportunity to study the patterns of HIV-1 evolution within sin-

gle individuals and 8 of these datasets were available on NCBI (accession numbers

AF137629 to AF137765 (patient 1), AF137767 to AF137897 (patient 2), AF137898 to

AF138003 (patient 3), AF138004 to AF138163 (patient 5), AF138166 to AF138263

(patient 6), AF138305 to AF138411 (patient 7), AF138531 to AF138643 (patient

9) and AF138652 to AF138703 (patient 11)). We aligned the sequences using the

CLUSTALW application in BioEdit. Because our program is not yet meant to han-

dle extensive insertions and deletions within alignments, we discarded the ends of

alignments where such indels were present. Sequences from one patient had indels

throughout the length of the gene, and was therefore excluded from the study. The
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sequence lengths given in the results represent only the part of the alignment used

for the analysis. We ran each dataset 5 times with different random initial conditions

and accepted as mosaic genes those that were identified as mosaic at least 3 out of

5 times. Table 2.2.1 shows the total number of sequences and mosaic genes found

in each of the datasets as well as the average description lengths for each of the

datasets. Comparison of the description lengths at stages 1 and 2 (with and with-

out plural ancestry) suggests the presence of recombination in all cases but patient

11. Patient 11 had no putative recombinants at all. Each of the other patients had

multiple mosaic genes and substantially smaller description length in stage 2. The

mutations per split for the datasets ranged from 3.9-14.3. This range was covered in

our simulations; the results of the simulation can be taken as relevant to the analysis

of the HIV datasets. 2.3 shows the phylogenetic network of the sequences extracted

from patient 2. This particular set of sequences was shown to have approximately

5.6 mutations per split and 9 putative mosaic genes. According to our simulations,

the type II error for 5.6 mutations per split could be between 0.18 and 0.36 (between

4 and 8 mutations per split). Hence, we can be confident that we have identified

approximately at least 64% of the recombinants. The type I error rate in this case

is between 0.0 and 0.005, which is fairly low. Figure 2.4 shows an example of a

mosaic sequence and its inferred parents. This sequence (AF137871) was isolated

126 months after seroconversion from patient 2. Table 2.2.1 shows that putative

recombinants in patient 2 were amplified starting 30 months after seroconversion.

Further evidence that these genes really are mosaic comes from an analysis of the

times at which they were sampled. Shankarappa and colleagues sequenced virus

samples at each of several times from each individual-typically from 3 month post-

seroconveresion to seven or more years (the latest sampling time was more than 11

years). We expect to find genes arising from viral recombination to appear later in

the infection, since detectable recombination requires superinfection of target cells
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Table 2.3: Phlyogenetic Analysis of the C2-V5 region of the env gene in HIV-1 in 8
patients with description lengths (IT ) of the networks with (IT2) and without (IT1)
PA

Patient Total Length Mutations/ Putative p IT 1 IT 2
Sequences split recombinants (without PA) (with PA)

1 133 405 5.2 8 0.12 13701 6523
2 129 381 5.6 9 0.046 7383 6448
3 106 585 12.8 0 NA 8006 8756
5 159 578 6.6 6 1 8458 7990
6 98 627 3.9 8 0.06 15229 8282
7 107 609 14.3 24 0.07 19366 10177
9 113 296 5.2 13 0.019 11918 7055
11 52 387 5.5 0 NA 3269 3274

with genetically distinguishable viruses, the chances of which clearly increase over

time. We therefore analyzed the sampling times for the sets of genes identified as

mosaic by determining, for each patient, the earliest time giving rise to a sample

containing a mosaic gene. For the ith patient, denote that sampling time ti. Take

the null hypothesis to be that the genes identified as mosaic are chosen at random

from among all genes sampled. Under this null, the probability π that the earliest

sampling time in the ith patient sample is ti or later is

pi =
(Ni − ki)!ni(ti)!
Ni!(ni(ti)− ki)!

(2.5)

where Ni is the total number of genes sampled, ki is the size of the subsample of

putatively mosaic genes, and ni(ti) is the number of genes in the complete sample

with sampling time ti or later. The probabilities computed for the data sets are

shown in Table 2.2.1. Mosaic genes are first detected in patients at an average of

37 months after seroconversion. On analyzing the sampling times, we found that

the mosaic sequences for patients 2, 3, 7 and 9 appeared significantly late. We also

found that patient 11, the slowest progressor in the study, showed no presence of

recombination.
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Table 2.4: Details of putative recombinants identified in patient 2. The breakpoint
for each gene is the putative position of recombination. 1Months after seroconversion

Recombinant Sampling time1 Breakpoint Mutations saved by PA
AF137802 30 265 3
AF137820 51 271 5
AF137823 51 271 3
AF137824 61 213 5
AF137836 73 124 3
AF137864 103 259 3
AF137871 126 202 6
AF137892 68 158 4
AF137897 68 180 5

2.3 Extension to Published Model

MDL methods, like likelihood-based methods, provide flexibility, allowing the use of

more complex evolutionary models. We have here used a simple model for evolution,

because doing so gives us access to a simple closed form for the description length for

any network and any data and thus greatly facilitates numerical minimization, but

this simplification does not come without costs of its own. For example, Crandall et

al (1999) examined sequence data from eight patients, and found several positions

at which parallel mutations related to drug resistance became prevalent. Had they

been isolated from a single individual, such homoplasies would erroneously be taken

as contributing evidence to the hypothesis of plural ancestry. A model that accounts

for mutation rate heterogeneity among positions and/or selection would be required

to distinguish these cases. Similarly, a model that allows for varying branch lengths

will also be useful. We started constructing such a model only to find that for the

case of HIV-1, varying branch lengths is not as important as site heterogeneity. The

model is explained below.

Let the length of the ith branch in given topology be denoted τi, the mutation

rate at the jth site of a given sequence be ρj and the overall mutation rate for the
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tree is µ. Then the probability of a mutation at the jth site along the ith branch

under a simple Jukes-Cantor model is

pij =
3

4
(1− exp(−4

3
τiρjµ)) (2.6)

Since µ is independent of branch and position, lets assume that ρj = ρjµ. The

likelihood of a mutation at the ith branch and jth position is given by the expression

below:

logL =
∑
ij

[Xij log pij + (1−Xij) log 1− pij] (2.7)

where Xij equals 0 if there is no mutation at the ith branch and jth position and

1 if there is a mutation. In order to solve for τi, the partial derivative of the log

likelihood gives us

∂

∂τi
logL =

∑
j

[
Xij

pij
− 1−Xij

1− pij
](1− 4

3
pij)ρj =

∑
j

[
Xij − pij
pij(1− pij)

](1− 4

3
pij) (2.8)

A series expansion yields

Xi. − τi(p. −
1

3

∑
j

ρjXij)−
1

3
τ 2
i

∑
j

ρ2
j(1 +

5

9
Xij) = 0 (2.9)

This quadratic equation can be solved and the unique positive root taken. A

similar expression can be derived for ρj, and the two can be solved iteratively to find

the overall solution.

In order to test that our model results in accurate branch lengths and site-varying

mutation rates, we created various simulations. For each of the simulations, we first

generated a topology with values for branch lengths and mutation rates for each site.

This topology remained constant within the simulation. The branch lengths and

mutation rates were either constant or generated from an exponential and gamma

30



Table 2.5: Simulation results of estimating the site-varying mutation rate ρ and the
branch length τ

Simulation µ, ρ τ % of expected % of expected Average
number of ρ lies in 95% τ lies in 95% percentile

sequences (n) percentile percentile rank
of observed of observed (ρ, τ)

1 0.1, n=100 ρ1...L = 1 τ1...N = 1 100 100 0.55, 0.49
2 0.1, n=100 ρ

1... L
2

=0.5, ρL
2
...L

= 1 τ1...N = 1 100 100 0.51, 0.5

3 0.1, n=100 ρ
1... L

3
= 0.25 , τ1...N = 1 100 100 0.54, 0.51

ρL
3
... L∗2

3
= 0.5,

ρL∗2
3
...L

= 1

4 0.1, n=100 ρ
1... L

2
=0.5, ρL

2
...L

= 1 τ1...N = 1 100 100 0.51, 0.5

(ρj = 0.05, ρj+1 = 0.1)
5 0.1, n=100 ρ1...L ≈ Uniform(0,1) τ1...N = 1 99 100 0.53, 0.48
6 0.1, n=100 ρ1...L ≈ Uniform(0,1) τ

1... N
2

= 0.5, 99 92 0.59,0.52

τN
2
...N

= 1.5

7 0.1, n=100 ρ1...L ≈ Γ(1,1) τ1...N ≈ Exp(1) 98 72 0.52, 0.44
8 0.05, n=100 ρ1...L ≈ Γ(1,1) τ1...N = 1 100 100 0.57, 0.51
9 0.05, n=100 ρ1...L ≈ Γ(1,1) τ

1... N
2

= 0.5, 98 92 0.6, 0.53

τN
2
...N

= 1.5

10 0.05, n=100 ρ1...L ≈ Γ(1,1) τ1...N ≈ Exp(1) 99 92 0.68, 0.47
11 0.05, n=10,000 ρ1...L ≈ Γ(1,1) τ1...N ≈ Exp(1) 97 34 0.62, 0.5
13 0.1, n=100 ρ1...L ≈ Γ(1,1) τ1...N ≈ Exp(1) 99 46 0.68, 0.55
14 0.05, n=10,000 ρ1...L ≈ Γ(1,1) τ1...N ≈ Exp(1) 99 29 0.66,0.55
15 0.1, n=10000 ρ1...L ≈ Γ(1,1) τ1...N ≈ Exp(1) 92 32 0.54,0.49

distribution respectively. For a given topology, we generated n datasets or different

sets of sequences. In our case, n is either 100 or 10000. We then used the external

sequences in these datasets and the topology as an input to the iterative estimator.

The results are shown in table 2.5. The average percentile rank represents the average

number of times the observed values were smaller than the expected values.

Our procedure estimates the site-varying mutation rates 98.6% of the time i.e.

the estimated ρj falls in the 95 percentile of the observed values 98.6% of the time.

However, branch length estimation only gives good results when branch lengths are

assumed equal. This is due to the following reason. Given two siblings, one with a

longer branch length and another with a short branch length, it becomes impossible

to determine the exact branch length without knowledge of the ancestor. In deter-

mining phylogenies, ancestral sequences are not seen and can only be estimated by

making consensus. In order to best estimate the ancestor of two sequences, the con-

sensus will randomly choose the ancestor at each position without any information

about the branch length. We found that in our large sample sizes, we have 3 equal

subsets in our estimated values of τi - one where τi is overestimated, another where
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it is underestimated and a third where the expected value lies within 95 percentile

of the observed. The τi in each one of these subsets was not significantly consistent

i.e. our procedure did not under or over-estimate a particular branch length every

time.

For the purposes of our research of studying recombination in HIV-1, it is more

important to include site-varying mutation rates than estimating branch lengths.

The assumption of equal branch length will not worsen our results because we assume

that the entire pool of viruses at the beginning of the infection has had the same

amount of time to mutate. This assumption is violated when you have a subsequent

infection event for the same patient. The next step is to simplify this model, assume

equal branch lengths and continue to use our estimator ρ for site-varying mutation

rates.

2.4 Conclusions & Future Directions

Our method depends entirely on the use of a single well-behaved cost function on

phylogenetic networks given the observed sequence data so that the power of nu-

merical minimization can be utilized. Methods based on pairwise hypothesis testing

Frequentist methods such as the likelihood ratio test do not provide a cost function

of this kind. Our choice of cost function, the MDL, is intended to balance the cost of

lack of model fit to the data against the cost of model complexity in a principled and

natural way, by supplying a common currency-information-for both. Consistency

is essential in this context since the complexity of the underlying network changes

with the number of putatively mosaic genes. Other methods, including those of Hein

(1990), allow the cost of recombinations relative to mutations to be fixed arbitrarily

but do not determine the appropriate value for this ratio. MDL naturally sets this

ratio adaptively: the total cost of mutations is not simply proportional to the number

of mutations; the information cost of a single mutation decreases as the total number
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of mutations increases. Similarly, the cost of a recombination event decreases as the

total number of such events increases and the cost of either one depends on the total

number of nucleotides in the dataset.

We ran several of our simulated datasets using Hein’s web-based recombination

tool Recpars (http://www.daimi.au.dk/˜compbio/recpars/recpars.html). Under its

default values, we ran 10 of our simulated datasets and observed a gene-wise type

I error of 2% and type II error of 43%. The same datasets with our program had

a 0.2% gene-wise type I error and 28% type II error. Out of 75 negative controls

(datasets with no recombinants), we found that Recpars erroneously identified 32

datasets (42%) as having recombination events, compared to the 9% observed using

our method. Moreover, the web version of Recpars failed to give us any results for

datasets with mutation to duplication ratios of 32 and higher.

Furthermore, the stochastic search methods we use are not particularly sophis-

ticated. Substantially improved performance could likely be achieved with greater

attention paid to the numerical optimization process. The computation time de-

pends almost entirely on the stochastic search method. Using our current search

parameters, we calculated the computation time for 8 datasets ranging from 20 se-

quences to 100 sequences of length 300 with an average of 8 mutations/split (the

mean mutations per branch for the HIV dataset). The largest dataset of 100 se-

quences ran for 115 minutes (real user time on a 64 bit machine, 2.19GHz processor,

4GB RAM) while the smallest dataset ran for 8 minutes. The average time was 48

minutes. A better optimization scheme with the use of Markov Chain Monte Carlo

methods could lower the computation time significantly. Models allowing differing

branch lengths and heterogeneous mutation rates across alignment positions will re-

quire substantially greater computation; good approximation schemes will certainly

prove helpful in this regard.

In spite of the oversimplifications and relatively large computational effort re-

33



quired, we have shown that the method as described works well, with tolerable error

rates on simulated data and biologically plausible results on clinical data from HIV

infected patients.

In the next few chapters, we move on to studying recombination as a diversifica-

tion mechanism in the host immune response. We begin by looking at an invertebrate,

Strongylocentrotus purpuratus, an organism that lacks an adaptive immune system.
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Figure 2.3: Network generated by applying our method to the C2-V5 region of the
env gene of HIV-1 from patient 2. 9 putative recombinants were found.
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Figure 2.4: Mosaic sequence AF137871 from patient 2 shown with its parents
1010 and 1346. The vertical line at position 202 shows denotes the putative point of
recombination such that parent the first half of the gene is believed to have descended
from 1010 and the second half from 1346.
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3

A rapidly diversifying host-defense gene cluster in
the purple sea urchin Strongylocentrotus

purpuratus

1In the past few years, many researchers have found that despite lacking an adaptive

immune system, immune related genes in invertebrates tend to undergo recombina-

tion [45] [12] [2]. The genome of the purple sea urchin contains large diverse gene

families, one of which, 185/333, was found to be highly expressed in response to

whole bacteria, lipopolysaccharide, β-1-3-glucan and double-stranded RNA [16] [17].

These genes show a 75 fold increase in activated coelomocytes, immune cells of the

sea urchin [16]. Although the function of the 185/333 proteins remains unknown,

they localize to the cell surface of a subset of the coelomocytes (immune cells) of the

sea urchin and may be involved in the formation of syncytia to immobilize invading

pathogens [18]. Analysis of 185/333 protein expression by two dimensional Western

blot analysis suggests that distinct suites of proteins are expressed in response to

lipopolysaccharide compared to peptidoglycan, and that individual sea urchins can

1 Parts of this chapter are peer reviewed and published. Only the analysis done by S. Munshaw
have been included. [2]
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express > 200 unique proteins [19]. These protein data therefore support the previous

observations of transcript and gene diversity [15] [55] [17] and emphasize the putative

role of the 185/333 gene family in the S. purpuratus immune response. The DNA

sequences of these genes show extraordinary diversity. Only 475 unique sequences

were found from the 875 analyzed sequences obtained from 16 urchins. This diversity

is the result of point mutations and various insertions and deletions [15] [55]. The

alignments of the genes showed the presence or absence of 27 large blocks which were

defined as elements [15]. In addition to this, we showed that the 185/333 genes are

also subject to frequent recombination, gene duplication and gene deletion.

3.1 Repeat Structure of the genes

The 185/333 gene set showed an extraordinary pattern of repeats. The elements in

the genes were defined by the presence and absence of these repeat elements. Figure

3.1 shows a dot plot of one of the sequences from the gene set against itself. The

sequences to be compared are arranged along the margins of the matrix in the dot

plot. The dot plot in Figure 3.1 is constructed using a window of 10 nucleotides

with up to 2 mismatches. At every point in the matrix where the two sequences are

identical for a stretch of 10 nucleotides a dot is placed (i.e. at the intersection of every

row and column that have the same 10 letters in both sequences). A diagonal stretch

of dots will indicate regions where the two sequences are similar. The solid line on

the main diagonal is a reflection of the trivial fact that every base of the sequence

is identical to itself. This solid line means that there is a stretch of nucleotides that

is identical at two different positions in the genes. The repeats in the 5‘ end of the

gene are about 75 nucleotides long. The 3‘ end of this gene has a large repeat along

with some shorter repeats embedded in the large one. All unique genes have this

repetitive structure and hence, they were aligned based on these repeats. We found 5

main families of repeats and these are present approximately 3-4 times in the genes.

38



Figure 3.1: Dot plot showing of one of the 185/333 genes, S185-14 against itself.
The gene has multiple repeat elements.

The 5‘ end had a long 75 nucleotide repeat whereas the 3‘ end of most genes contains

shorter repeats that were embedded in this long repeat. Next, we looked more closely

at the long 75 nucleotide repeat named Family A.

3.1.1 Family A

Family A of repeats had 4 members, each 75 nucleotides in length as seen in te 5‘

end of the gene in Figure 3.1. Each of the 185/333 genes either contained or lacked

one of these members. The designation A1-A4 was given by sequence similarity. All

but 3 genes in the set contained repeat A1 and repeat A4. Fewer contain repeat A2

and only 2 genes contain repeat A3. Between genes, each of these repeats differed

by point mutations. Figure 3.2, constructed using dnaml in Phylip [56], shows the

relationship between all members of repeat family A. The tree shows that there is

a clear divergence between repeat A1 (pink) and repeat A4 (red). The tree also
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shows that although repeat A1 (pink) and A2 (blue) are distinct on the tree, the

distance between them is less than that between repeat A1 and repeat A4. This

would suggest that if this were a duplication event, the A1-A2 divergence happened

more recently than A1-A4. Knowing this, we also constructed evolutionary history

for family A by point mutations. Figure 3.3 shows the potential evolutionary history

of repeat family A. Since repeat A4 is present in all the genes, we assume that A4

is the ancestral sequence. We then suggest a duplication event followed by point

mutations leading to distinct sequences for repeat A1 and repeat A4. The numbers

in the orange circles are the number of mutations along each branch. Red circles

represent recombination events. Several duplication, recombination and mutation

events are used to best explain the presence and absence of repeats in these genes.

Next, we wanted to validate the presence of recombination in these genes.

3.2 Validation of presence of recombination

Our aim for this analysis was to determine whether or not the elements, as defined,

appear to have been recombined. The approach is to estimate evolutionary histories

for the two elements and determine whether they appear to share a common geneal-

ogy. Here, we compare the two-tree vs. one-tree model. The two-tree model implies

that given a pair of elements from a gene, they have evolved independently from each

other, resulting in two different trees showing a possibility of recombination between

the elements. On the other hand, the one-tree model is one where the elements have

the same evolutionary histories and hence, can be represented with the same tree.

This idea comes from the concept that a sequence that is a result of cross-over be-

tween two or more distinct ancestors can be best explained not by a single tree but

by a set of correlated trees over the sequence [10]. We used dnaml from the PHYLIP

3.66 package [56]to estimate maximum likelihood (ML) trees from elements 1, 6 and

27 since they were present in all genes. We also estimated ML trees for all pairs
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Figure 3.2: Phylogenetic relationship between the 4 members, A1(pink), A2(blue),
A3(orange) and A4(red) of repeat family A. S185-# is the identification number for
a gene.

of elements. A measure of comparing two nested models such as the one-tree and

two-tree models is the log of the likelihood ratio: ∆ = logLA + logLB − logLA+B.

The value of ∆ will be larger as the true difference between the trees on elements

A and B increases. It is important to determine whether the apparent difference

in the element trees might have arisen by chance alone acting in the context of the
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Figure 3.3: Potential evolutionary history of repeat family A. The numbers in the
orange circles are the number of mutations along each branch. Red circles represent
recombination events. Several duplication, recombination and mutation events are
used to best explain the presence and absence of repeats in these genes.

single-tree process. Ideally, we would know what the expected distribution of ∆

values is under the null hypothesis that there is just one tree shared by the two

elements so we could judge just how rare the observed value of ∆ is. Unfortunately,

the models are too complicated for this distribution to be derived. We therefore turn

to resampling methods. To estimate the distribution of ∆ under the null hypothesis,

we generate 100 permuted alignments. That is, we preserve individual columns in

the alignment and reorder them randomly in such a way that each column is used

exactly once. Here, we use the example of elements 1 and 27. For each of these

permuted alignments we take the first 92 nucleotides, which is the length of element

1, to be our resampled element 1 and the remaining 135 nucleotides, the length of

element 27, to be our resampled element 27. We estimate ML trees on them. As a

check, we estimated the ML tree on the resampled complete alignment which should
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be similar to the original complete alignment since all columns are used. For each

of the 100 resampled alignments we have a value for ∆. Under the null hypothesis

i.e. the elements co-evolved and there is no evidence of recombination, the observed

value should be drawn from the same distribution as the resampled values. We used

the human T cell receptor (TCR) genes as a positive control. It is widely known

that antigen receptors in humans use recombination to generate a large repertoire

of specificities against pathogens [57]. 25 unique sea urchin early histone H3 genes

served as negative controls [58]. We also used element 6 as a negative control. We

divided element 6 into a 5‘ half and 3‘ half. Since this is a small element, we would

not expect any recombination to occur within element 6. Hence we would expect

that both halves can be represented by the same tree.

3.3 Results of Validation

We ran the likelihood ratio analysis on all pairs of elements 1, 6 and 27 as well as on

TCR sequences and histone gene sequences. We could reject the null hypothesis (p <

0.01) for the 185/333 genes as well as the TCR sequences. The histone genes (p =

0.1) and 5ànd 3h̀alves of element 6 (p = 0.08) show no evidence for recombination.

Figure 3.4 shows the histograms for the log likelihood values for elements 1 and 27,

histone genes and TCR sequences. From this analysis, we can conclude that there is

evidence for scrambling or recombination in the 185/333 genes.

3.4 Discussion

The size and diversity of the 185/333 gene family provide an interesting system for

studying the complexity of the innate immune system in S. purpuratus. The data

presented in this chapter suggest that the diversity of the 185/333 gene family may,

in part, be the explained by recombination events, in addition to point mutations.

In particular the repeat families, located at the 5‘ end of the genes, appear to have
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Figure 3.4: Histograms of Log Likelihood Ratio values for a) Elements 1 and 27
b) TCR V and J genes c) Segments H3a and H3b from histone genes

originated as a result of recombination, duplication, and deletion. Incongruent phylo-

genetic histories and analysis of the distribution of specific element sequences across

genes also suggest that the genes undergo frequent recombination. Presence of dif-

ferent copies of repeats suggests that duplication may be an important mechanism

for the diversification of this gene family.

Over the last few years, gene recombination has become increasingly evident in

immune systems of invertebrates. In addition to the multistep assembly process

of diversity in antigen receptors of jawless fish [12] and FREP genes expressed in

freshwater snails in response to trematode parasites [59] are also believed to diversify

through point mutation and somatic recombination using a limited set of source

genes [13]. Different sets of FREP genes are present in parent snails compared to

offspring, yet both parents and offspring have been shown to have identical source

genes, implying somatic recombination of germline DNA in all tissues. The FREP

genes therefore represent examples of germline-encoded immune diversity in medium

to large families that function in organisms surviving on innate immunity.

This study provides evidence for yet another set of immune-related genes from

a different invertebrate system. The 185/333 is a large gene family that employs

recombination as a mechanism for diversification. Recombination is evident both

between and within repeats, suggesting that these events are not limited to the
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repeat borders, but instead may occur throughout the entire gene sequence. We

did not identify any specific recombination hot spots, which is likely due to the

presence of multiple repeats throughout the sequence. Frequent gene recombination

is strongly implied from the sequences of the repeats of family A, as well as from the

intact genes. In addition to the repeats within the coding regions, there are repeats

that surround each gene in the intergenic region. We have not investigated these

repeats in detail, but speculate that they may promote duplication and/or deletion

of intact genes or blocks of tandem genes. The intergenic repeats plus the 185/333

genes themselves, which may act as large repeats, may facilitate meiotic mispairing,

resulting in variations in the numbers of 185/333 genes in individuals. Based on the

multiple types of repeats that we have identified in this gene cluster, the level of

genomic instability and the rate of recombination may be more extreme than that

observed for the FREP families. This would predict that the 185/333 gene family

is the product of numerous ongoing and recent recombination events and that the

extant members of the gene family are relatively young. This is in agreement with

molecular clock analysis indicating that the 185/333 elements are not > 10.8 million

years old, about the same age as the S. purpuratus species.

The 185/333 gene family presents an intriguing addition to what is currently

known about the complexity of invertebrate immune systems. The diversity is based

on both variations in nucleotide sequence and mosaic combinations of repeats into

distinct patterns, generating a diverse repertoire of transcripts and proteins [19] in

response to immune challenge. This diversity may reflect diversification pressure

placed on S. purpuratus by the microbes present within their marine environment.

Marine microbial rRNA sequences isolated from Eastern Pacific seawater suggest

that there are 2 ∗ 106 bacteria/ml and 5 ∗ 105 archaea/ml [60]. Given this level of

constant pathogen exposure, it is only reasonable to expect that any organism living

in this environment would survive based on a complex immune system that incor-
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porates mechanisms to keep pace with the swift evolutionary variations in microbial

pathogens.

In the next chapter we continue to study host diversification mechanisms by

moving on to developing a method to study recombination in the vertebrate immune

system, specifically in B cells.
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4

SoDA2: A Hidden Markov Model Approach for
Identification of Immunoglobulin Rearrangements

1As described in Chapter 1, antibody genes are a result of rearrangement of 2 or more

independent gene segments, n nucleotide addition by TDT and somatic mutation.

The inference of the recombination and mutation events that produced a given Ig

gene is of great importance in the study of humoral immunity and has been tackled

in many different ways. The goal of such inference is to identify each of the compo-

nent gene segments used as well as the recombination sites, point mutations and n

nucleotides. The aligned gene segments usually overlap, which is why alignments of

the target gene to the individual gene segments cannot be treated as independent.

Somatic mutations, n nucleotide addition and recombination site choice make this

task more challenging. The short length of the DH gene segment makes it especially

difficult to identify the CDR3 region of the heavy chain, which is the most diverse

region in the antibody sequence. This leads to many possible gene segment combi-

nations that can result in a given antibody gene. Hence, it is necessary to report all

1 This chapter is currently under peer review [3]
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such rearrangements and assign a probability to each of the combinations, making it

easy to compare all possible rearrangements.

Several algorithms have been developed for inferring Ig gene segment composi-

tion. IMGT/V-QUEST is one of the first and most complete of these tools and has

the ability to analyze both Ig and TCR sequences for a variety of organisms includ-

ing human and mouse [61]. V-QUEST, however, is based on the BLAST algorithm;

it does not guarantee finding the best alignment of two sequences [62]. Addition-

ally, the implementation of the algorithm only allows for running a maximum of 50

sequences at a time. Another tool, JOINSOLVER, is based on the identification of

conserved motifs in the target gene [63]. Both JOINSOLVER and V-QUEST provide

multiple gene segment possibilities but the implementation only provides junction

analysis for the topmost choice. Somatic Diversification Analysis (SoDA) [33] uses a

3D alignment algorithm that allows for insertions and deletions. The algorithm uses

dynamic programming and is an extension of the Smith-Waterman local alignment

Algorithm [64]. The 3D alignment allows for a continuous alignment through all the

states of the recombination. SoDA infers only a single highest-scoring alignment, and

ignores other solutions that may have equal or nearly equal scores. SoDA’s guarantee

of optimality in the inferred rearrangement is obtained at the cost of computational

effort; SoDA takes more CPU time than either JOINSOLVER or V-QUEST. A ma-

jor shortcoming for all the programs above is that they do not provide a meaningful

comparison of the different possible rearrangements. iHMMune-align [65] partially

solves the problem and provides a probabilistic model using an HMM to infer the

rearrangement. iHMMune-align uses the Viterbi algorithm [66], to find the most

probable path through the alignment matrix, but does not sum over paths or pro-

vide results on sub-optimal alignments. This choice becomes an issue when selecting

an appropriate DH gene segment for Ig heavy chains. The DH gene is the shortest

of all gene segments, and is typically the most difficult to align. We have found Ig
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genes that present an equally good alignment with different DH genes (see Results

and Figure 4.5). iHMMune-align or SoDA gives only the solution with the highest

score even if the highest score is not significantly better than the second highest score

and so on (iHMMune-align does provide the option of viewing the top 10 VH gene

alignments, but not D).

Among these four methods, only SoDA allows for gaps when performing align-

ments, although insertions and deletions are known to occur at non-negligible fre-

quencies during somatic hypermutation [67],and alignment without gaps when gaps

are present leads to dramatically erroneous inferences.

The method we are introducing here is an update of SoDA-we call it SoDA2.

It employs a probability mass function-based alignment for determining gene seg-

ments and a probabilistic HMM for the inference of CDR3. The system calculates

the posterior probability over all paths using a particular set of gene segments by

the forward and backward algorithms. It then provides the alignment path with the

highest posterior probability. If the sequence does not hold enough information to

unambiguously select a gene segment, SoDA2 reports all alignments that do not differ

significantly. We tested this method using a simulated dataset constructed from the

statistics of observed rearrangements and compared these results with those obtained

using existing methods. We also used two natural datasets, a set of clonally related

Ig genes and a random set of sequences from NCBI. Each test indicates that SoDA2

provides the most thorough and accurate results among all programs in addition to

providing the most statistically complete results.

4.1 Methods

4.1.1 Determining the Type of Ig

The first step consists of aligning the target sequence with a consensus-like sequence

of the VH, Vκ and Vλ families to determine if the input sequence is a heavy, kappa or
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lambda chain. These consensus sequences are pre-created by separate alignments of

the VH, Vκ and Vλ segments. We use the AHO numbering scheme [68]which is based

on the spatial alignment of known three-dimensional structures of immunoglobulin

domains. The gaps are placed to minimize the average deviation from the averaged

structure of the aligned domain so that the position of the CDRs remains consistent.

The consensus is represented by a probability mass function (pmf), a L ∗ 5 matrix

where L is the length of the V genes in this case [69]. For each nucleotide position

in the gene, we determine the frequency of use for each nucleotide state (including

”gap”) at that position in the family. For the target antibody, we create a similar

pmf using the quality scores of the input sequence. The quality score is proportional

to the log probability of the estimated sequencing error and is provided by the user’s

base-calling software [70]. If quality scores are not provided, we treat the input

sequence as well-determined and all mismatches as due to somatic mutation. The

pmf at each position of the target sequence depends on the quality score, which

varies at each position, and a mutation frequency µ which is assumed to be constant

over positions. For each position, we then have the probability of observing the 5

bases (including a gap) at that position given the quality score and the mutation

frequency. We use the pmf of the target antibody gene and the pmf of the VH, Vκ

and Vλ sequences as scores to create a local alignment [64] [69].

4.1.2 V and J gene pre-alignment

Assume, for example, that our target sequence has been determined to be a heavy

chain. We use the traceback path generated by aligning the pmf matrix of VH to

our target and obtain the pmf for each member of the VH family. The mutation fre-

quency µ is recalculated after observing mismatches in the highest scoring alignment.

All VH segments with sufficiently high likelihood alignments are then submitted to

the HMM. Sufficiency thresholds for the likelihood were established using a simu-
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Figure 4.1: The basic topology of the HMM for (a) heavy chains and (b) kappa and
lambda chains. The HMM starts at the last base of the invariant cysteine of all high-
likelihood V segments, runs through all DH segments and through all high-likelihood
JH segments till the first base of the invariant tryptophan or phenylalanine.

lated dataset (see Results and Discussion). The position of the invariant cysteine is

determined. The target sequence is then aligned past the invariant cysteine with all

the appropriate JH segments, using the pmf based alignment mentioned above. The

Js with the highest likelihood are selected for submission to the HMM. The target

sequence is further trimmed at the invariant tryptophan/phenylalanine, and only the

remaining region, CDR3, is used as our target sequence for the HMM. The 3‘ ends

(post-invariant cysteine) of all significant VH gene segments and the 5‘ ends (be-

fore invariant tryptophan/phenylalanine) of all JH segments from the pre-alignment

are also chosen for the HMM. Since DH segments are most difficult to identify, we

submit all DH segments to the HMM. The mutation frequency of the final trimmed

target sequence to be considered for the HMM is set at 1.5x since the CDR3 region is

subject to higher mutation than the VH region [65] [71]. Figure 4.1 shows the basic

set-up of the HMM for heavy chains (4.1a) and light chains (4.1b) with an overview

of the states and allowed transitions.
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4.1.3 HMM

We implemented a pair HMM with 10 non-silent states - Match/Mistmatch state

in V gene (Mv), Insertion in V gene (Iv), Deletion in V gene (Dv), V-D junction n

nucleotides (N1), Match/Mismatch in DH gene (Md), Insertion in the DH gene (Id),

Deletion in the DH gene (Dd), D-J junction n nucleotides (N2), Match/Mismatch in

the J gene (Mj), Insertion in the J gene (Ij) and Deletion in the J gene (Dj). Our

HMM must begin in the Match/Mismatch state of the V gene since the invariant

cysteine is encoded by the V. The end state must be Match/Mismatch in the J gene

at the beginning of the invariant tryptophan/phenylalanine.

The emission probabilities in every state are determined by the likelihood vector

calculated using the quality scores and the mutation rate µ. For target sequences

with unknown quality scores, high quality scores are assumed, making the probability

of the observed base depend only on µ. Emission probabilities for the N nucleotide

states are determined based on empirical data [72]. Transition probabilities between

states are determined by fitting a negative binomial distribution (see Figure 4.2) to

the recombination site choice for VH, DH and JH and number of n nucleotides in the

junctions as determined in a set of 293 unmutated rearranged sequences [73]. Figure

4.3 shows a detailed implementation of the HMM with transition probabilities.

4.1.4 Algorithm

Once we have the appropriately trimmed target and germline sequences, we calculate

the log of the total probability of a proposed rearrangement using the forward and

backward algorithms [74] [75]. We select the gene segments that lead to the highest

posterior probabilities, and perform a Posterior Viterbi algorithm with traceback [76]

to select the path with the highest posterior probability for each possible rearrange-

ment. We report the probability of the most probable path for each of the equally

probable gene segment sets. For a heavy chain, a DH gene alignment of less than 3
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Figure 4.2: Distribution of the empirical data for (a) VH gene recombination site
choice (b) n nucleotides in the VD junction (c) 5‘ DH recombination site choice
(d) 3‘ DH recombination site choice (e) n nucleotides in the DJ junction (f) 5‘ JH
recombination site choice. All the data is fit to negative binomial distributions with
varying parameters.

nucleotides is flagged as ”Unreliable D Alignment”. The functionality of an antibody

gene is determined as follows and reported with the results. A functional Ig chain

must have no stop codons and the invariant cysteine at the start of CDR3 must be

in-frame and intact. For heavy chains, the invariant tryptophan at the end of CDR3

must be in-frame and intact; for light chains, CDR3 must end with an in-frame and

intact phenylalanine. We provide color coded output in HTML, text and excel for-

mats to allow the user to use the information in ways most convenient to his or her

needs. (See Appendix A for algorithm details)
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4.2 Validation, Results & Discussion

4.2.1 Simulated Datasets

We created simulated datasets of 100 sequences each with mutation frequencies of

2.5%, 5%, 10% and 20%. Recombination site choice and number of n nucleotides

for these simulations were drawn from a negative binomial distribution. To avoid

any bias towards our HMM, the parameters for these simulations were estimated

using a set of 662 sequences obtained from Genbank. Furthermore, rearrangements

for these sequences were determined using IMGT/VQuest [61] rather than SoDA or

SoDA2. IMGT Junction Analysis was used to determine empirical data for deriving

the distributions [77]. Mutations were introduced such that the average mutation

frequency across the gene was 2.5%, 5%, 10% and 20%, and the mutation frequency

in the CDRs was 2x than that in the framework. Each of these datasets was used

to test SoDA2, SoDAv1.0, IMGT/VQuest, JOINSOLVER and iHMMune-align. In-

verted DH segments were omitted from the simulations because IMGT/VQuest and

iHMMune-align do not allow for alignments against them. Table 4.2.1 shows the

results of running our simulated datasets using the various available software. The

table shows the number of rearrangements (all VH, DH and JH with alleles) identi-

fied correctly at each mutation rate by each program out of the 100 sequences tested

in each group. For all our tests, we only compare the highest scoring rearrangement

provided by SoDA2 with the highest scoring ones provided by other programs. For

our simulated data, we see that SoDA2 performs better in identifying the complete

rearrangement (including correct alleles) than other programs under all mutation

rates (Table 4.2.1). In particular, SoDA2 outperforms all other programs in DH seg-

ment identification (Table 4.2.1). SoDA2 falls slightly behind JOINSOLVER in VH

and JH gene identification due to the trade-off between accuracy and efficiency. We

employ a computationally efficient alignment algorithm that aligns the target gene
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Table 4.1: Number of correct rearrangements identified by each software out of 100
sequences tested at each mutation rate

0.025 0.05 0.10 0.2
SoDAv2.0 73 65 47 28

IMGT/V-QUEST 52 47 42 16
JOINSOLVER 59 47 34 11
iHmmune-align 41 31 22 12

SoDA 46 30 31 6

to consensus sequences of alleles, which can lead to the identification of the incorrect

allele in a very few cases. Aligning the target gene to every allele would decrease

this error but increase computation time significantly. Such errors are seen rarely

and do not change the overall superior performance of SoDA2 shown in Table 4.2.1.

If the score for multiple rearrangements is equal for any of the programs, all rear-

rangements are considered. Although SoDA2s performance falls at the 20% mutation

rate, it still performs better than other software. We only report all alignments that

are equally probable and leave it up to the user to select and view any number of

V, J or complete alignments he or she wants. For sequences where SoDA2 failed

to identify the correct rearrangement as the most probable one, we found a median

difference of 0.67 in the natural log of the probability between the highest scoring

rearrangement and the correct one at the 5% mutation rate. Thus, if allowed to in-

clude rearrangements with low differences (<1) in the natural log of the probability

from the top scoring alignment, SoDA2 would have identified correct rearrangements

for 22 additional sequences at the 5% mutation rate, yielding a possible 87% success

rate.

4.2.2 Clonally Related Datasets

In order to test real biological data, we used two clonally related datasets that

were used to test iHMMune-align (Gaeta et. al, 2007) derived from tonsilar IgD
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Table 4.2: Number of VH, DH and JH genes (with alleles) identified at each mutation
rate for the simulated sequences

0.025 0.05 0.10 0.2
V D J V D J V D J V D J

SoDA2 97 76 98 94 73 94 87 58 88 85 42 78
IMGT/V-QUEST 90 65 98 83 61 92 81 42 85 72 20 76

JOINSOLVER 99 52 94 97 49 93 93 45 89 88 23 82
iHmmune-align 79 65 92 77 68 87 76 42 69 69 20 45

SoDA 87 48 90 86 42 87 78 32 86 69 21 61

class-switched B cells (Zheng et al., 2004). Because they are clonally related, se-

quences within a given set should have identical rearrangements and differ only by

somatic mutation. We analyzed this dataset using VQuest, JOINSOLVER, SoDA

and iHMMune-align to determine the number of times each of the programs resulted

in the same rearrangement as was done by Gaeta et al. (2007). We ran the sequences

through all the programs and found that iHMMune-align selected 47/57 identical

rear-rangements for the first group of sequences, while SoDA2 selected 34/57 iden-

tical rearrangements. IMGT/VQuest, JOINSOLVER and SoDA identified 37, 25

and 18 identical rearrangements re-spectively. SoDA2 returned a minority DH gene

segment in 17 ca-ses, a minority JH allele in 5 cases, and a minority VH allele in 4

cases. In cases where SoDA2 failed to select the majority VH or JH gene segment,

all the other programs, including iHMMune-align also failed to select the majority

gene segment. It can be seen in these cases that mutation had obliterated the in-

formation necessary to make the correct inference. For the 17 cases where SoDA2

did not return the majority DH segment, the DH segment that was returned was

typically judged more probable than the majority segment due to the balancing of

n-nucleotide use and mutations. An example of this phenomenon is the inference for

AF262199 (Figure 4). In this case, In this case, the mutation frequency in the VH

gene segment is approximately 7%. SoDA2 selects IGHD1-26*01 requiring 3 muta-
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tions (8.5% mutation frequency in CDR3) and 7 n-nucleotides, while IGHD7-27*01

requires 2 mutations (5.5% mutation frequency) and 10 n-nucleotides. For the sec-

ond dataset of 99 sequences, both iHMMune-align and SoDA2 identified 68 out of 99

identical rearrange-ments while IMGT/VQuest, JOINSOLVER and SoDA identified

56, 41 and 37 identical rearrangements, respectively.

4.2.3 Sequences from Genbank

We tested a set of 662 sequences collected from Genbank and previously used for

testing iHMMune-align and SoDA (Genbank accession nos Z68345-487 and Z80363-

770). 113 out of 662 sequences produced inferences on which all five programs agreed.

There was no agreement from any of the programs on 140 sequences. This means

that they either could not infer a rearrangement at all or they all differed in their

inference. From the rest, SoDA2 agreed with the majority of the programs on 300

rearrangements (see Table 4.2.3). These did not include those where SoDA and

SoDA2 were the only two in agreement and the chosen rearrangement was the ma-

jority. SoDA2 performs considerably better than other programs in this test. We

closely examined sequences for which SoDA2 failed to agree with 2 or more pro-

grams. We found a median difference of 1.05 between the top scoring rearrangement

and the majority rearrangement. We also found that in all cases, SoDA2 selected an

alternative rearrangement equally likely as the majority one. Figure 4.5 shows an

example of one such sequence where SoDA2 selected IGHD2-21*01 to be the best

fitting DH alignment with a score of -785.07 (4.5a). On allowing alignments with

a slightly higher probability, we found both the rearrangement chosen by the ma-

jority of the programs (VQuest, JOINSOLVER and iHMMune-align, Figure 4.5(b)

and also the rearrangement selected by SoDA (4.5c). The difference in the natural

log of the probability is 0.63 in the first case and 0.93 in the second. This shows

that allowing rearrangements within a reasonable range of probabilities in SoDA2
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Table 4.3: Results from 662 sequences from Genbank, showing the performance of
the 5 programs. If 2 or more programs displayed the same rearrangement (including
the alleles), it was believed to be the majority rearrangement.

Number of Rearrangements
All Programs Agree 113

All Programs disagree 140
SoDA2 agrees with 2 or more programs 300
VQuest agrees with 2 or more programs 255

iHMMune-align agrees with 2 or more programs 137
JOINSOLVER agrees with 2 or more programs 272

SoDA agrees with 2 or more programs 244
SoDA2 agrees only with SoDA

(no other programs agree) 11

would give an accurate and thorough picture of the various rearrangements possible

for a given immunoglobulin sequence. It is important to note that SoDA2 considers

factors such as recombination site choices for each gene segment and numbers of

n nucleotides at both junctions derived from empirical data in inferring rearrange-

ments while alignment algorithms used by SoDA, VQuest and JOINSOLVER base

their results on sequence similarity matrices which may not accurately represent the

process of V(D)J recombination.

4.3 Conclusion

The problem of inferring the correct rearrangement for antigen receptors is difficult

due to the stochastic nature of the process, but the task is important for an increased

understanding of the population somatic genetics of the immune response. In this

paper we present a method based on an HMM that provides a statistical basis for

identifying rearrangements of Ig genes. In addition to providing the posterior prob-

ability of the top rearrangement candidate, SoDA2 also provides all rearrangements

with sufficiently high posterior probabilities, thus giving the user a statistically com-

plete picture of the observed sequence’s origins.
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We tested SoDA2 against simulated datasets that were created using empirically

observed recombination site choices for each of the gene segments and numbers of n

nucleotides in the junctions. We also tested it on two clonally-related datasets as well

as a set of Ig heavy chains chosen randomly from Genbank. Our software performed

as well as or better than available software on two out of three validation tests. The

one test where SoDA2 did not outperform all of the others involved a single rear-

rangement. On the identical test with a different rearrangement, SoDA2 did as well

as its nearest competitor. It is important to realize that the key feature of this paper

is to provide a tool based entirely on a probability model, and that therefore returns

results interpretable as posterior probabilities rather than arbitrary scores. As with

other inferential procedures, it is important to not only identify the optimal solution,

but to identify near-optimal solutions and have a method for the absolute compari-

son among these alternatives. This performance and thorough result reporting leads

to a substantially longer computation time. SoDA2 takes approximately 15s of real

user time per set of VH and JH segment for a given heavy chain target sequence on

a 64 bit machine with a 2.19GHz processor and 4GB RAM, but the investment of

computational effort seems worthwhile.
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Figure 4.3: Shows a detailed topology of the HMM with all possible transitions.
Each nucleotide in the observed sequence is treated as a separate state. The transi-
tion probabilities are derived from empirical data. The star denotes the start (3rd
position of invariant cysteine) of the HMM and the + denotes the end (first position
of invariant tryptophan/phenylalanine)

Figure 4.4: (a) Top rearrangement as chosen by SoDA2 with a higher mutation
frequency than the alternative (b). This is calibrated with the mutation frequency
in the VH region.
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Figure 4.5: The alignment of CDR3H of sequence by 1154693 using IGHD1-21*01
by (a) SoDA2 (b) IMGT/V-QUEST, JOINSOLVER and iHHMune (c) SoDA. Rear-
rangements (b) and (c) were also provided by SoDA2 at a slightly lower probability.
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5

Antibody Response to HIV-1

5.1 Background

The primary goal of this project was twofold: the first is to characterize the plasma

cell response in an acute HIV-1 infection and second, to compare this response to an

influenza vaccination and influenza infection. We chose to study plasma cells in each

of the cases because it is well known that the first B cells that respond to infection or

vaccination are present in blood as plasma cells [28]. While HIV-1 infection is difficult

to diagonize, chronic HIV-1 infection is well studied. Various studies have shown that

hypergammaglobulinemia and increased B cell activation are characteristic of the

chronic infection [78]. Their work suggested that both virus-specific IgG and poly-

clonal IgM and IgA responses are present in HIV-infected individuals. A decrease in

B cell memory response has also been shown [79] where influenza-specific memory B

cell responses were significantly lower in HIV-infected than in HIV-negative individ-

uals. Very few studies have looked at early HIV-1 infection. One such study showed

a decrease in peripheral B cell counts but no changes in memory B cell numbers in

individuals with a primary infection of less than 60 days [80]. This study focuses
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Table 5.1: Clinical Characteristics of Individuals in Antibodyome Project

Patient ID Days post Viral Load CD4 count Treatment Details
infection (copies/ml) (cells/mm3)

001-4 17 4,750,000 164 No treatment given
065-0 17 1,860,000 269 No treatment given
684-6 20 1,500,000 225 No treatment given
681-7 20 9,000,000 230 No treatment given
068-9 30 1280 611 On ART for 1 week

DFLU07001 7 NA NA Vaccinated with Fluzone 2007
DFLU07021 7 NA NA Vaccinated with Fluzone 2008
DFLU07004 7 NA NA Vaccinated with Fluzone 2007
DFLU07024 7 NA NA Vaccinated with Fluzone 2008
KFLU08002 7 NA NA Influenza Infected, Asymptomatic
KFLU08003 7 NA NA Influenza Infected, Asymptomatic
KFLU08005 7 NA NA Influenza Infected, Symptomatic
KFLU08007 7 NA NA Influenza Infected, Symptomatic
KFLU08012 7 NA NA Influenza Infected, Symptomatic
KFLU08013 7 NA NA Influenza Infected, Asymptomatic

0223 AHI Uninfected NA NA NA
0239 AHI Uninfected NA NA NA

on the immediate effect of the virus on the B cell arm of the immune system. The

work presented in this thesis is a part of this project and focuses specifically on the

somatic population genetics of the antibody repertoire in an acute HIV-1 infection.

5.2 Patients

We have antibody pairs from single plasma cells from the blood leukapheresis and

plasma from five acutely infected (AHI) homosexual men. All infections are be-

lieved to be sexually transmitted. The exact day of transmission in all these patients

was recorded because of excellent patient-doctor relationships. Our disease controls

are peripheral blood from four influenza vaccinated individual (FV), samples drawn

7 days post vaccination with trivalent inactivated seasonal vaccine, three individ-

uals with an asymptomatic influenza infection (FIA) and three individuals with a

symptomatic influenza infection (FIS), blood samples 7 days post infection. The

volunteers were infected with H3N2 A/Wisconsin/67/2005. FIA patients were those

that had contracted the disease as measured by seroconversion, but never developed

any symptoms. Influenza infection and vaccination were selected to serve as controls

where a viral infection is successfully cleared and a successful memory response is
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developed. Although our patients have never seen the particular vaccine or strain

they have been vaccinated with or infected with influenza in our study, the possibility

of previous exposure remains a concern. The presence of cross-reactive antibodies

should be kept in mind while making comparisons. Our negative control is two AHI

uninfected individuals. Table 5.1 shows the clinical information of the individuals.

5.3 Analysis pipeline

In order to facilitate analysis of the large scale antibody sequencing of the antibody-

ome project, we have developed an efficient computational pipeline that ensures

quality control.

• Single plasmablasts and plasma cells were sorted were sorted from the patients

[81] and the antibody genes were sequenced from each cell in the forward and

reverse direction using multiple primers, one for each VH, VK and VL family.

• Chromatograms generated by the sequencing facility were used as input to an

industrial strength base calling software called Phred [82] [70]. This software

reads the chromatograms in ab1 files, calls bases and assigns a quality score

to each base. The quality score of a given position is defined by equation 5.1

where Pe is the probability of error of the base call at a position. It is the

log transformed probability of observing an error at that position. To study

the somatic genetics of antibodies, it is necessary to distinguish between a bad

quality base and one that has changed due to somatic mutation. Hence, quality

scores are extremely important for this project.

Q = −10 log10 Pe (5.1)

For each chromatogram there are two output files - a FASTA file that contains

the base calls and another FASTA file with the quality score at each position.
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• We assembled the forward and reverse strand to consolidate the information

from both. For this we used a likelihood based alignment algorithm that aligns

the sequences on the basis of its quality scores. This was done via a standard

Smith-Waterman local alignment [64] algorithm with a difference in scoring

scheme. Instead of using a scoring matrix or the actual base at each position, we

use the quality score at each position. The quality score Qi at i is transformed

into a probability mass function (pmf) vector Li of size 5 where positions

0,1,2,3,4 correspond to the likelihood of bases A,C,G,T,-respectively at position

i. Values for Li were calculated in the following way.

Lij = 1− 10
−Qi
10 (5.2)

if j = base call at i. The second term in this case refers to the probability of

an error at i

Lij = (1− δ) ∗ 10
−Qi
10

3
(5.3)

if j 6= base call at i and j 6= -. δ in this case is the probability of a deletion

and the probability of error is equally divided by the other 3 bases.

Li4 =
φ

4 ∗ 10
−Qi
10

(5.4)

in case of a gap. φ is the probability of an insertion. We set φ = 4δ so that the

scoring matrix is reversible.

The match/mismatch score in an alignment of sequence x at position i and

sequence y at position j is then calculated as the dot product of the likelihood

vectors of x and y at positions i and j, so that the score would be higher if

it were a match and lower if otherwise. The gap score is calculated by first

calculating the average quality score of the two positions between which the
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gap is to be inserted. Lets call that laqs. The likelihood vector of the position

i with the gap is then calculated by

Li0...3 = δ ∗ 10
−laqs

10 (5.5)

for all bases.

Li4 = (1− φ ∗ 10
−laqs

10 ) (5.6)

for the gap. For each position in the sequence, we now have the the probability

of observing each base at that position given the quality score. Finally, after the

sequences have been aligned, we make a consensus sequence from the forward

and reverse strand that can be used for further analysis. This was done by

selecting the base at each position which has the maximum (max) likelihood

calculated by multiplying the likelihoods at each position for the two vectors.

The quality score for that position is calculated by

Qi = −10 log10 (1−max) (5.7)

This gives us a consensus sequence and its quality. This method has been

adapted from a recently published study of assembling interferon genes from

the bat [69]

• Next, we trimmed the sequence based on the forward and reverse primers to

ensure that we don’t have any primer dependent sequence. For this, we ran a

Smith-Waterman local alignment [64] once again and trimmed at the end of

the alignment.

• Next, we trimmed the sequence based on the quality score to ensure that only

good quality sequence is used for further analysis. Base calls at the beginning

and end of sequences are usually of a lower quality. Our aim was to use the

best quality sequence. Figure 5.1 shows an example of the quality score for a
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sequence and a plot of position vs. score. The arrows show positions to trim

when using the default value as 10. The algorithm is as follows:

– Set a default value for quality score (in the example figure 5.1, it is set to

10).

– Initialize an n x 3 matrix M where n is the length of the sequence. Set

M0j = Q0. Initialize every other position to 0.

– Fill out the matrix by using the following conditions:

For i = 1..n

Mi0 = M(i−1)0 + default (5.8)

Mi1 = M(i−1)1 +Qi (5.9)

Mi2 = max(M(i−1)2 + default,M(i−1)2 +Qi) (5.10)

In tracing back, we find the two points that correspond to the two arrows

in figure 5.1 by looking for the maximum value for each column. The first

point is when the maximum value switches from being in row 1 to row 2

and the second point is when the maximum value switches from row 2 to

row 3. These two points are used to trim the sequence. Figure 5.1 also

shows an example of the matrix with arrows for trimming positions.

• Now we have a good quality antibody sequence that we can analyze. We ran the

sequence through Somatic Diversification Analysis (SoDA, [33]) and determine

the germline rearrangement. The information from SoDA is then stored into

a SQL database. The database has 21 columns, names and decriptions of

which are shown in Table 5.3. This database made it easier to access specific

information about the antibody sequences.
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• Next, we determined which of these sequences resulted into valid antibody

pairs. We searched the database for sequences from the same patient, plate

and well that had a functional heavy and a functional light chain. Wells with

more than 1 heavy chain and with more that 2 light chains were discarded.

Sequences from wells with a pair were then given ID numbers (H000# for

heavy chains and K000# or L000# for kappa or lambda respectively). The

pair information was stored in a separate database with the IDs of each pair.

Reactivity for the functional antibodies were tested using ELISA and Luminex

assays.

• We performed statistical analysis of the antibody pairs by patient and by speci-

ficity. For specificity, our categories were gp41 specific, other HIV-1 specific,

autoreactive, Hemagglutinin (HA)-specific, Non-HA Flu specific, gut flora spe-

cific, other specificities and unknown specificities. gp41 specific antibodies are

those that bind to consensus few autologous envelope proteins gp41, gp140 or

gp160. HIV-1 specific antibodies are ones that bind to other HIV-1 proteins

such as the consensus sequences of p31, reverse transcriptase, Tat, p55, Gag

or AT-inactivated virions. Cardiolipin and Anti-nuclear antibody (Hep-2 cells)

were used to test for autoreactivity. Fluzone 2007 killed influenza vaccine and

HA from various strains were used for influenza specificity, gut flora and lipid

A are in the gut flora category while tetanus toxoid, killed cryptococcus and

killed candida fall in the category of other specificities.

5.4 Results

5.4.1 Clonal Expansion

As mentioned in Chapter 1, B cells undergo a process known as affinity maturation

when they encounter antigen. This process allows the B cell to undergo somatic
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Figure 5.1: An example that shows the quality score of a sequence, a plot of
position vs quality score and the alignment matrix used to trim by quality score.
The default value used is 10.

mutation which in turn increases its affinity to the antigen that activated it. It was

recently shown that the antibody response to the influenza vaccine upto 7 days post

vaccination was dominated by only a few B cell clones that had the same germline

rearrangement but extensive intraclonal diversity from somatic mutations [83]. 10

out of 12 multiple sclerosis patients showed expansion of one single B cell clone in

their cerebrospinal fluid [84]. Clonally related B cells were also seen in the germinal

centers of two Epstein Barr Virus infected tonisllar sections approximately 7 and 14

days after infection [85]. A study done for HIV-1 observed that only patients with

hypergammaglobulinemia showed B cell clonal expansion [86]. However, all of the

HIV-1 patients enrolled in this study had been infected for over a year. Another study

showed 134 clones in a study that isolated 502 B cells in chronically infected elite
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Table 5.2: Name and description of columns in SQL database.

Name of Column Description
SeqID Identification number of the sample

TypeOfIg Heavy or Kappa or Lambda
TotalScore Score of Alignment

Length Length of Alignment
Functionality Whether the antibody has a functional rearrangement

V V segment used
Vmuts Number of mutations in the V segment
V-Dns Number of n nucleotides in the V-D junction.

Would be NA in light chains
D D segment used

Dmuts Number of mutations in the D segment
D-Jns Number of n nucleotides in the D-J junction.

Would be NA in light chains
V-Jns Number of n nucleotides in the V-D junction.

Would be NA in heavy chains
J J segment used

Jmuts Number of mutations in the J segment
CDR3aaseq Amino acid sequence of CDR3

CDR3dnaseq DNA sequence of CDR3
Inputseq The input DNA sequence

PutativeGermline The germline DNA rearrangement as determined by SoDA
AAseq The translated input sequence
Quality Quality Score of the input sequence

IgIsotype For heavy chains, the constant region is identified
ID This identifier is unique and can be null.

It only given to a sequence if it is a part of a functional pair

controllers [87]. No studies have been done with acute patients due to the difficulty of

diagnosing early stage HIV-1 infection. To determine the extent of clonal relatedness

in each of the patients, we calculated a variation of the Simpson’s index, a measure

of diversity for antibodies from our patients [88]. This index was calculated for each

patient i as

Si =

ki∑
j=1

[
nij
Ni

]2 (5.11)

where ki is the total number of clones in patient i, nij is the number of antibody

pairs in clone j of patient i and Ni is the total number of pairs from patient i. The

higher the Simpson’s index, the less diverse the antibody repertoire. We observed

extraordinary clonal relatedness in the FV individual and 684-6, one of the AHI

patients. The blood sample from this patient was drawn approximately 20 days

post infection. Table 5.4.1 shows the extent of diversity in each of the patients. The
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Simpson’s index is artificially high whenN is very small. Thus, an additional measure

of diversity would be to look at the proportion of non-clonally related sequences in

the patient. The higher this proportion, the more diverse the repertoire. For both

tests, we see that the FV individuals and one of the day 20 acute HIV infection

patients, 684-6 exhibited extraordinary clonal relatedness. Such clones are expected

to expand in presence of an antigen. So, we wanted to look at what proportion of

these clones were antigen specific. Table 5.4.1 shows the clones from our 20 day

AHI patient. A similar table for DFLU07001 is available in Appendix B, Table B.4.

We found that at least 1 antibody in all of the clones from the FV individual was

antigen-specific with 8 out of 17 clones being 100% antigen specific. For the AHI

patient, only 1 out of 6 clones was 100% gp41 specific. An additional 2 clones had

a few gp41 specific antibodies. An interesting observation in the FV individual was

that approximately 16% of the clones used VH4-59. VH4-59 usage has been seen

in a previous study showing that usage increases as a function of age [89]. Another

striking feature was that half of these 16% VH4-59 clones used VK1-39 for their light

chain. About 50% of the clones in our 684-6 patient also utilize VK1-39. This may

suggest a larger role of the light chain in antibody binding than previously thought.

Next, we looked more closely at the 52 member clone from 684-6.

684-6 Clone

This set of clonally related sequences used VH3-7, JH5 and were all IgG3s. The light

chains were VK1-39 and JK4. Figure 5.2 shows the phylogenetic relationship between

these clonally related antibodies. The lengths of the branches represent number of

nucleotide changes while the number on the branch represents the number of amino

acid changes. The antibodies in this clone, especially the kappa chain is heavily

mutated. There are two pieces of evidence that may suggest that this large clone is

a pre-existing one and due to a cross reactive antigen in the setting of acute HIV
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Table 5.3: Simpson’s Index for all patients

Patient ID Simpson’s Index N Unique Antibodies Proportion of unique pairs
0014 0.004 263 250 0.95
0223 0.005 195 192 0.98
0239 0.013 83 79 0.95
0650 0.01 96 89 0.92
0689 0.001 467 458 0.98
6817 0.008 126 124 0.98
684-6 0.06 215 141 0.66

DFLU07001 0.02 272 152 0.56
DFLU07021 0.07 41 27 0.66
DFLU07004 0.1 23 16 0.69
DFLU07024 0.016 116 98 0.84
KFLU08002 0.03 34 34 1.00
KFLU08003 0.006 139 138 0.99
KFLU08005 0.007 154 143 0.92
KFLU08007 0.03 40 40 1
KFLU08012 0.016 62 61 0.98
KFLU08013 0.013 92 86 0.93

Table 5.4: Clones in 684-6, an AHI patient 20 days post transmission

Patient Number of pairs VH JH Light Chain VL JL % antigen specific
in Clone

684-6 52 3-7 5 kappa 1-39 4 7.7
684-6 2 1-8 5 kappa 1-39 1 0
684-6 8 3-74 5 kappa 1-39 4 100
684-6 3 3-48 6 kappa 3-20 4 0
684-6 2 3-23 1 lambda 6-57 2 0
684-6 5 3-23 5 kappa 1-39 4 60
684-6 3 1-3 6 kappa 1-39 4 0
684-6 2 3-30 4 lambda 6-57 2 100
684-6 2 3-30 4 kappa 1-39 4 100
684-6 3 4-39 6 kappa 1-33 4 0
684-6 2 3-30-3 4 lambda 3-19 2 0

infection is being driven to affinity mature to react with gp41. First, if this was a HIV

specific clone, we would expect to find unmutated antibodies or antibodies with very

low mutations. We compared the distribution of mutations in the heavy chains of

antibodies in this clone to 2 clones isolated from EBV infected cases [85]. Figure 5.3

shows that the for both EBV clones, we see a proportion of antibodies without any

mutations as well as at low mutation rates. In the case of 684-6, the lowest mutated

antibody gene was 2.5%, which is approximately 15 nucleotide mutations in the entire

antibody gene compared to the inferred germline. The heavy chain had 5 (˜2%)

mutations while the kappa had 15 mutations (˜3%). Second, all of the antibodies in

this clone are class-switched to IgG3. One would expect presence of class-switched
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antibodies in the FV individuals due to the presence of cross-reactive antibodies

to previously encountered influenza strains. In an acute HIV-1 infection we would

expect some non class-switched antigen specific antibodies from HIV-1. However, we

do not see any such IgM or IgD clones suggesting a possible activation of memory cells

specific for a different antigen. To test this hypothesis, we estimated the precursor

sequences at the internal nodes of the tree using a maximum likelihood estimation

using Phylip3.83 [56]. Antibodies were made from these intermediate sequences and

their specificity was tested. We also observed that the germline antibody did not

bind to gp41 and binding affinity for gp41 increased as more mutations developed.

We saw a loss of binding in certain antibody pairs. If the clone was developed in

response to gp41, we would expect that the germline antibody would bind weakly to

the molecule. Figure 5.2 shows the phylogenetic relationship between the observed

clonally related sequences. Intermediate sequences are marked and colored in red if

they bind to gp41. Similarly observed sequences marked in red also displayed gp41

binding in an ELISA or Luminex assay. In a different analysis, the affinity of these

antibodies was measured to gut flora and we found that some of the intermediate

and observed sequences displayed cross-reactivity with gut flora (unpublished).

5.4.2 Polyclonal Activation

On studying the various specificities of the isolated antibodies, we found that an

average of about 62% of the antibodies from the four FV individuals were influenza

specific while only approximately 12% of those from the AHI patient antibodies were

specific for any HIV antigens (Table 5.4.2). The rest were specific for a wide range of

other antigens such as Gut Flora, autoantigens and untested antigens. Of all acute

HIV-1 patients, 684-6 displayed most antigen specific antibodies at 15%. Although

never been shown early (17 - 30 days) in infection, this polyclonal activation was

supportive evidence to a different study that showed polyclonal B cell activation in
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Figure 5.2: A phylogenetic relationship between a set of 52 clonally related an-
tibodies from patient 684-6. The lengths of the branches represent number of nu-
cleotide changes while the number on the branch represents the number of amino
acid changes. The numbers in parenthesis indicate the number of identical pairs
observed. The sequences at internal nodes are numbered in square boxes. Sequences
marked in red showed binding to gp41.
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Figure 5.3: Comparison of distribution of mutations in 2 clones derived from EBV
infected individuals and the 52 member clone from 684-6

subjects with an acute infection of less than 40 days [78]. A majority of the HIV

response in AHI patients was directed towards gp41; none of the antibodies neu-

tralized. This was expected as it has been shown that the first anti-HIV-1 antibody

response was to gp41 and appeared 13 days after the appearance of plasma virus [90].

In contrast, envelope gp120-specific antibodies were delayed an additional 14 days.

3.7% of the antibodies in uninfected individuals were also HIV specific. We also see

a higher percentage of antibodies specific for Gut (1.5%) and autoantigens (3.7%) in

AHI than in other infections. This further suggests that a larger proportion of the

initial antibody response in an influenza vaccination is targeted to the antigen while

that in the acute HIV-1 infection, we see a polyclonal activation as early as day 20.

In contrast to an influenza vaccination, we observe that only ˜14% of the antibody

response in FIA individuals was influenza specific and 2.4% in FIS individuals. Thus

we see an evidence of polyclonal activation not only in an HIV-1 infection but also

in an influenza infection.
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Table 5.5: Percentage of HIV-1, Influenza and other specific antibodies in the various
groups of patients.

Patient Type gp41 Other HIV HA Fluzone Gut Auto
(Non-HA)

AHI 11.45% 0.45% 0% 1.53% 1.53% 3.70%
FIS 0% 0% 1.99% 0.40% 0% 0%
FIA 0% 0% 10% 3.46% 0% 0%
FV 0.45% 0% 50.33% 11.14% 0% 1.34%

Uninfected 3.70% 0% 0.37% 0.74% 0.37% 1.48%

5.4.3 Polyreactivity

A polyreactive antibody is one which binds to a wide variety of antigens usually at a

low affinity. We studied the reactivities of each of our antibodies to see how many of

these antibodies were polyreactive. We found the highest polyreactivity in our AHI

patients where 2.34% of all antibodies were reactive for more than 1 antigen. This

was significantly (p < 0.05) higher than the 0.4% we see in uninfected individuals

and 0% in FIS and FIA. FV had also had a lower proportion of 1.1% but this was not

statistically significant from AHI. Polyreactive IgG antibodies may be important in

the early phase of infection since previous studies have shown that patients lacking

these are more susceptible to bacterial infection [91].

We also looked at the reactivity of the HIV specific antibodies and found that

over 7% of the gp41 specific antibodies from our AHI patients were polyreactive, over

20% of those specific for another HIV antigen were also polyreactive, usually with

a part of the fluzone vaccine excluding HA. This polyreactivity in gp41 antibodies

is significantly higher than what is seen for influenza specific (HA and Non-HA)

antibodies in the FV, FIA and FIS patients. Table 5.4.3 summarizes these results.
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Table 5.6: Percentage of antigens specific for the listed antigen in the listed patient
group that also react with other antigens

Patient Group HIV-gp41 HIV-other HA Fluzone (Non-HA)
AHI 7.90% 20% NA 47%
FV 50% NA 2.20% 10%
FIA NA 0% 0% 0%
FIS NA 0% 0% 0%

Uninfected 0% NA 0% 0%

5.4.4 Ig Isotypes and Gene Segment Usage

Naive mature B cells produce both IgM and IgD, which are the first two isotype seg-

ments in the immunoglobulin locus. Hence, IgMs or IgDs are the first antibodies to

appear in response to initial exposure to antigen. After activation by antigen, they

undergo antibody class switching to produce IgG, IgA or IgE antibodies. During

class switching, the constant region of the immunoglobulin heavy chain changes but

the variable regions, and therefore antigen specificity, stay the same. The antibody

thus retains affinity for the same antigens, but can interact with different effector

molecules. IgG antibodies are predominately involved in the secondary immune re-

sponse. Presence of specific IgG generally corresponds to maturation of the antibody

response. IgA plays an important role in mucosal immunity while IgE primarily par-

ticipates in responses to allergens. Our AHI and influenza infected individuals (FIA

and FIS) both had a significantly higher proportion of IgM than the other two groups

showing characteristics of a primary infection (p < 0.01, Table B.1). IgGs were the

primary isotype observed in our FV and uninfected individuals at 70% and 48%

respectively (Table B.1). Although only statistically significant when compared to

FV and FIS individuals, we found a higher proportion of IgAs in our AHI than any

other group (46%, Table B.1). gp41 specific antibodies from AHI are primarily IgA

and IgG. The proportion of IgAs in HIV specific antibodies, both gp41 and other is

significantly higher than seen in influenza specific antibodies seen in FV, FIA and
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Table 5.7: Ig Isotype in antibodies of various specificities

IgIsotype FIS FV FIA AHI
HA Non-HA HA Non-HA HA Non-HA gp41 HIV-Other

IgA 0% 0% 14.60% 12% 23.08% 22.22% 41.73% 40%
IgG 60% 100% 84.07% 74% 61.54% 66.67% 42.52% 60%
IgM 40% 0% 0.88% 14% 15.38% 11.11% 14.96% 0%

FIS (see Table 5.4.4). Polyclonal activation in the gut as a result of HIV-1 has been

previously observed in HIV-1 infected individuals and this study only reconfirms the

finding [92].

VH gene segments are classified into seven families based on sequence homology.

Each of these families consists of sub-families, which increases the genomic complex-

ity of the locus. The germline usage for each of the VH families is calculated by the

number of members in each family. Figure 5.4 shows the germline or expected usage

of the gene segments compared to the usage in our AHI patients, FV patients, FIS

and FIA patients and uninfected individuals. A majority of the VH usage agrees with

germline usage. We see no difference between the groups for usage of VH1 and VH2.

All groups show an over-usage of VH3 over germline. There was however a significant

over-usage of VH4 in the FV patient (31%), specifically VH4-59 (p < 0.01). This is

also true of the influenza specific antibodies from FV. A previous study has shown

an over-usage of VH4 in nonproductive rearrangements [93]. Conversely, we found a

significant under-usage of VH-4 in our AHI patients (16%) compared to uninfected

individuals (23%). The expected germline usage of VH4 is ˜19%. We also found an

over-usage of VH6 in the acute HIV-1 patients. The germline usage of VH6 is under

2% while that in acute HIV-1 patients (cumulative) is 4%. More specifically, patient

065-0 and 068-9 had a significant excess of VH6 with 6.4% and 9.7% respectively

(p < 0.01). VH6 was also significantly overused in the AHI gp41 specific antibodies

and autoreactive antibodies from all patients when compared to HA and Non-HA

specific antibodies in FV. FIS and FIA have very few influenza specific antibodies
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Figure 5.4: VH gene segment usage in all five groups compared to germline gene
segment usage. (*) indicate statistical significance (p < 0.01).

and hence a valid comparison cannot be made. However, both groups have 0% VH6

usage. Additionally, all 5 of the non-gp41 HIV specific antibodies utilize VH3. Inter-

estingly, VH1 and especially VH1-69 are significantly overused by Non-HA specific

antibodies from FIA (Table B.1). VH1-69 is also overused in gp41 specific antibod-

ies from AHI patients. A majority of the recently discovered broadly neutralizing

antibodies to HA in influenza [94], well known HIV-1 antibody 4e10 [35] as well as

antibodies to E2 on Hepatitis C [95]have been shown to use VH1-69. VH1-69 is the

only VH gene that consistently encodes two hydrophobic residues at the tip of its

CDR-H2 loop. It is the only germline gene to encode a phenylalanine at this position,

which may play an important role in interacting with the HIV-1 envelope [96].

DH gene segments, like VH are classified into 8 families, DH0 - DH7. These gene

segments are short and high somatic mutation and presence of n nucleotides makes

it difficult to identify them with certainty. We compared the DH segment usage in

the heavy chains of our patients. We found a significant over-usage of DH2 in all of
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our infection groups and a particular over-usage of DH2-2 in one our FV individual,

DLFU07001. (p < 0.01). Once again, this gene segment was found in excess in

non-productive rearrangements in a previous study [93]. We also found that AHI

patients used an excess of DH1 when compared to FIA individuals. There were no

interesting biases in DH gene segment us by specificity (Figure B.1).

The JH locus is the simplest of all three gene segments in that it contains only

6 genes. JH gene segments are 16 - 20 amino acids long and encode the invariant

tryptophan essential for the folding of the protein. Preferential usage of JH5 and

JH6 in non-productive immunoglobulin rearrangements while that of JH4 in pro-

ductive immunoglobulin rearrangements (Figure B.1) [93]. Once again, we found a

significant under-usage of JH4 and over-usage of JH6 in FV patients (30% and 40%

respectively) (p < 0.01) as well as in HA specific antibodies in FV patients. Due

to this extensive over-usage of JH6, usage of all other JH segments in FV individu-

als was significantly lower than other groups We also found that AHI patients used

significantly lower JH2 gene segments than FV and uninfected individuals (2% vs

5.3% and 4.5% respectively). HIV specific antibodies significantly overused JH5 gene

segments (Table B.1).

5.4.5 Complementarity Determining Region 3

The complementarity determining region (CDR) is the part of the antibody that

determines their specificity to a particular antigen. CDRs are subject to high somatic

mutation and help antibodies recognize a vast repertoire of antigens. There are three

CDRs - CDR1, CDR2 and CDR3 in the variable region of the heavy chain and an

additional three in the light chain. Of these six, the CDR3s of both chains show

the greatest variability by junctional diversity and somatic mutation. In most cases,

the CDR3 loop is believed to be the one that makes antigenic contact. Therefore,

it is important to look at differences in CDR3 length in our patients. We found
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a mean CDR3H length of 14.84 amino acids (aa) in our AHI. This mean was not

statistically different from the FIS individuals (mean of 14.78aa) and uninfected

individuals (mean of 14.88aa). The gp41 specific and other HIV-1 specific antibodies

in AHI had longer CDR3s than average at 14.9 and 16 amino acids respectively. FV

individuals and FIA individuals had significantly higher means of 16.98aa and 15.6aa

respectively (see Figure 5.5(a)). Antibodies specific for HA in influenza primarily

from FV individuals but also from FIS and FIA had a significantly long CDR3 region

(17.7aa) in the heavy chain. Kappa and lambda chains of HA specific antibodies from

FIV are also significantly longer that all HIV specific antibodies from AHI (see Table

B.2). There was also a significant difference in the distributions of the CDR3 lengths

between these groups as measured by a Kolmogorov Smirnov Test (see Figure 5.5(b)).

Hydrophobic CDR3s are believed to be deleted in B cell tolerance mechanisms

[97]. For example, broadly neutralizing mAbs 2F5 and 4E10 both have long hy-

drophobic CDR3 regions and have been observed of to bind to lipid autoantigens [98].

We first looked at the hydrophobicity of the full length CDR3H using the Kyte and

DooLittle Hydropathy Index [99]. According to this scale, the CDR3H of 2F5 and

4e10 have a hydropathy index of -0.004 and -0.27 respectively. If we assume CDR3H

is a loop where only the middle portion interacts with the antigen and calculate the

hydrophobicity in the middle 3rd of the CDR3 loop, 2F5 and 4e10 have hydropathy

indices of 1.3 and 0.014 respectively. From our patients, we found that CDR3H of

the antibodies from FV individuals had the highest average hydropathy index at -

0.34. This average was significantly higher than all other groups in a 2-paired T-test

(p < 10−7). Uninfected, FIA and FIS patients had the second highest and relatively

equal hydropathy index at -0.57, -0.59 and -0.59 respectively. Even though we did

not find any evidence of highly hyrdophobic CDR3H when compared with 2F5 and

4e10 in any of our patient groups, hydrophobicity in the middle 3rd of the CDR3

loop in FV and AHI was significantly higher than other groups at -0.02 and -0.13
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respectively. HA specific antibodies had the most hydrophobic CDR3 regions, but

this is expected since over 65% of antibodies in FV are HA specific. There were no

other significant differences in CDR3 hydrophobicity based on specificity.

5.4.6 Somatic Mutations

Somatic mutations are accumulated in immunoglobulins during affinity maturation.

It is an important process for increasing the diversity of the antibody repertoire. As

described in Chapter 1 when B cells are activated by an antigen, they form germinal

centers and proliferate. At this time AID is activated, which induces point mutations

in the antibody genes at a rate of about one nucleotide substitution per division. This

enhances the affinity of the antibody to the antigen. We found that our uninfected

individuals had the highest mutation frequency of 6.6% in the heavy chains, 4.75% in

lambda, and 4.52% in kappa chains (Table B.3). A high mutation rate in plasma cells

of an individual with no disease symptoms or an acute infection would be expected

since these would be from pre-existing activated memory cells and these are typical

of the values observed [100]. We also observed a higher mutation rate in the heavy

chains in our AHI and FIS individuals than in the FV and FIA individuals. Figure

5.6(a) shows the cumulative distribution of the mutations in the VH regions of the

groups while Figure 5.6(b) shows the p values for the difference in average mutation

frequency in the heavy chains.

Table 5.4.6 shows the average mutation frequencies and the standard errors for

antibodies specific for the various antigens. Heavy chains for gp41 specific antibodies

were heavily mutated at 5%. Kappa and lambda chains involved in gp41 binding

were also substantially mutated at 4.9% and 4.6% respectively (see Table B.3). All

influenza specific antibodies also showed substantially high mutation in their heavy

and light chains. The significantly high mutation frequency in antigen specific an-

tibodies supports the previously mentioned hypothesis of activation of previously
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Table 5.8: Average mutation frequency and standard error in heavy chains of anti-
bodies of various specificities

Patient Group Specificity Mean Mutation Frequency Standard Error
AHI HIV-other 7.3% 0.7%
AHI gp41 5% 0.3%
FIA HA 6.7% 0.4%
FIA Non-HA 5.6% 1.2%
FIS HA 5.7% 1.3%
FIS Non-HA 7.6% NA
FV HA 5.2% 0.2%
FV Non-HA 5.4% 0.4%

existing B cells in both HIV and influenza infections.

Mutations can be either synonymous or non-synonymous. Synonymous muta-

tions are those that do not change the amino acid while non synonymous mutations

cause an amino acid change. Usually, most non-synonymous changes would be ex-

pected to be eliminated by purifying selection, but under certain conditions positive

selection may lead to their retention. Investigating the number of synonymous and

non-synonymous substitutions may therefore provide information about the degree

of selection operating on these antibodies. Therefore, we look at the frequency of

these mutations in the heavy chains in our patients. We further classify the heavy

chains into CDR and framework regions. Table 5.4.6 shows the synonymous to non-

synonymous mutation frequency ratio. The FIS patients has a significantly smaller

ratio than all other groups suggesting that antibodies from these patients are un-

der higher positive selection. Alternatively, uninfected and FV patients show the

highest ratio indicating a lower selection force than FIS. This could be explained by

activation of memory B cells with cross-reactivity. Lastly, the AHI patients shows a

dS/dN ratio significantly higher than FIS but lower than the other three groups in the

heavy, kappa and lambda chains. A previously reported high mutation rate (5.6%)

with this dS/dN ratio could suggest an activation of previously triggered non-HIV-1
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Table 5.9: Ratio of Synonymous to Non-Synonymous (dS/dN) mutations in the entire
sequence, CDRs and the Framework regions of heavy, kappa and lambda chains

Heavy Kappa Lambda
Patient Total CDR FR Total CDR FR Total CDR FR

AHI 0.43 0.28 0.53 0.47 0.26 0.61 0.44 0.25 0.58
FIA 0.46 0.27 0.59 0.51 0.27 0.69 0.45 0.27 0.59
FIS 0.40 0.25 0.50 0.45 0.24 0.61 0.36 0.18 0.52
FV 0.45 0.25 0.59 0.46 0.19 0.67 0.43 0.30 0.56

Uninfected 0.49 0.29 0.61 0.58 0.29 0.79 0.54 0.26 0.76

memory B cells, mildly cross-reactive with HIV-1 and undergoing positive selection

in the presence of the antigen. AHI and FIS have a significantly (p < 0.01) lower

dS/dN ratio in their framework regions of heavy, kappa and lambda chains suggest-

ing stronger positive selection in those regions (see 5.4.6). Framework regions play

an important role in the folding and structure of the antibodies. Larger proportions

of non synonymous mutations in these regions is usually unexpected. However, se-

lective forces acting on the B cells in the presence of an active replicating antigen

are seen in both regions in the case of AHI and FIS. No such difference was seen in

the CDR regions. Tables B.3 and B.3 in Appendix B show the absolute number of

mutations in each category.

5.5 Conclusions

In this chapter, we characterize the initial plasma cell response during an acute HIV

infection and make a comparison of this response to one in an influenza vaccination

and influenza infection. In doing so, we made the following three observations.

• First, acute HIV-1 infection and acute influenza infection show evidence of

polyclonal activation and the production of non-pathogen directed antibodies.

This conclusion is supported by the fact that only 12%, 14% and 2.4% of the

response in AHI, FIA and FIS patients was antigen specific. In contrast over

60% of the response in FV patients was antigen specific. We not only see a very

small proportion of antigen specific antibodies in the infected patients but also
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observe antibodies to gut flora, autoantigens and other antigens, especially in

AHI. We also observed that the number of unmutated heavy chains in AHI, FIS

and FIA were 4.63%, 2.64% and 0.78% respectively. While only 4% of the heavy

chains in an EBV infected patient at day 3 were unmutated, the proportion rose

to 15% in the day 14 patient [85]. This supports evidence of an antigen-directed

response in an EBV infection at day 14 versus a polyclonal response in the AHI,

FIA and FIS. Additionally we observe significantly shorter CDR3s in the heavy

chains from AHI and FIS compared to FIA and FV. Both FV individuals and

FIA individuals are able to control the viral infection effectively. Previously

and recently discovered broadly neutralizing antibodies to HIV-1 have been

shown to have long CDR3s in the heavy chain [35] [36]. 4 out of 6 broadly

neutralizing antibodies to influenza also have a CDR3H length of greater than

15aa [94]. This may suggest that long CDR3s may be essential for effective

clearance of the virus. The short CDR3 in the AHI and FIS individuals may

suggest that prolonged exposure of the virus may be necessary to see a plasma

cell repertoire with long CDR3s in heavy chains.

• Second, we see evidence that an acute HIV-1 infection may hamper B cell

tolerance mechanisms. We observe that the center of the CDR3 loop in the

heavy chains of the AHI patients is significantly more hydrophobic than those

in FIA, FIS or uninfected individuals. A biased usage of VH6 seen in AHI pa-

tients, HIV specific antibodies and autoreactive antibodies has been previously

observed in B cell acute lymphoblastic leukemia samples [101], Autoimmune

Idiopathic Thrombocytopenic Purpura and in human insulin-dependent dia-

betes mellitus [102]. Lastly, 3.7% of the antibodies from AHI patients are

autoreactive, higher than any other group.

• Finally, the possibility exists that a component of the intial antibody response
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to gp41 is a cross-reactive response involving pre-existing memory B cells to

an unrelated antigen. Antibodies from AHI patients have significantly higher

mutation frequency than FIA and FV individuals and although not signifi-

cant higher than FIS individuals. In particular, antibodies to gp41 from AHI

patients had an average mutation frequency of 5% and those to other HIV-

1 antigens had a 7.3% mutation frequency in the heavy chain. We also did

not find any unmutated antibodies in our clonally related sequences unlike the

clones found from the EBV patients. Additionally, some members of the 684-6

clone displayed cross-reactivity to gut flora (unpublished).

Taken together, these data suggest that HIV induces massive polyclonal activation,

a possible breakdown of tolerance mechanisms, an activation of pre-existing humoral

responses and demonstrates the profound perturbation of the B cell arm of the

immune system soon after HIV-1 transmission.
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Figure 5.5: (a) p values for a 2-paired T-test to see a difference in mean CDR3H
length between the different groups. Values significant at p < 0.05 are marked in red
(b) Cumulative distribution functions for the number of CDR3H length of the five
groups. star indicates that the two distributions have a p value of p < 0.05 when
compared to AHI in a Kolmogorov Smirnov Test
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Figure 5.6: (a) Cumulative distribution functions for the number of mutations in
the VH region of the five groups. (b) p values for a 2-paired T-test to see a difference
in mean number of mutations between the different groups. Values significant at
p < 0.01 are marked in red.
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6

Conclusions & Future Directions

This thesis presents three distinct yet closely related topics: diversification in HIV-1,

Strongylocentrotus purpuratus and in human B cells. All three employ various strate-

gies including recombination and point mutation to be successful in their function.

In Chapter 2 we found the presence of HIV-1 recombinants in chronically infected

homosexual men who were classified as long term non-progressors [52]. The emer-

gence of recombination was correlated with the time of the infection such that we

found more recombinants towards the later stage of infection than in the beginning.

Intra-patient recombination has been associated with the emergence of co-receptor

switched viruses [103] and development of anti-viral drug resistance [104]. One study

found recombinants in a patient with rapid progression to AIDS [105]. However, this

study was done on a single patient, hence a cause and effect conclusions cannot be

made. Another follow-up study suggested an association between dual HIV-1 infec-

tion and rapid disease progression [106]. Whether this progression is due to emer-

gence of recombinants or higher pressure on the immune system to develop responses

to two rapidly evolving viruses is unknown. Using our method for a large scale lon-

gitudinal study would be helpful in determining the association of recombinants to
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various clinical and behavioral factors. Since a root is necessary for phylogenetic

analysis with recombination, one would need patients where the transmitted virus is

known. For example, one can assume that the sample of viruses found in our AHI

patients in Chapter 5 have a known transmitted virus. If unavailable, we can also

use the virus/es at the time of first sampling as the root. Periodic sequencing of

the virus in addition to tracking clinical factors such as evidence of drug resistance,

CD4 counts and viral load and behavioral factors such as drug use and sexual history

would enable us to design association studies between these factors.

In the next chapter, we presented a study on an interesting gene set from an

invertebrate system. We found evidence of recombination and point mutations in S.

purpuratus, an organism that lacks an adaptive immune response. A follow up for

this study would be to identify proteins coded by the genes as well as to identify the

genomic origin for the mRNA segments in the now sequenced S. purpuratus genome.

To identify the function of the protein, one could start by implementing compu-

tational prediction methods [107]. A putative function can be assigned this way.

Designing knock-out sea-urchin models or expressing the protein in a simpler system

such as bacteria is another possibility. For genomic origin of the transcripts, there

are two possible hypothesis. The first is that each of the ESTs found in the study

is accounted for in the genome and that over time the genes have arisen through

duplication and recombination. The second, more revolutionary idea would be the

presence of repeats as germline gene segments in the genome. This would suggest a

rearrangement mechanism as seen in vertebrates [21]. In order to determine which

one of these is correct, we could use tools such as BLAST and other sequence align-

ment and phylogenetic methods from the already sequenced genome. An alternative

mechanism would be to sequence these genes from the genome by designing primers

from the various repeat elements.

Finally in Chapters 4 and 5, we developed methods and analyzed the plasma cell

90



repertoire in patients with an acute HIV-1 infection. Although a very important

study in itself, the use of these methods could be applied to answer many different

questions. One area of interest is to study the the interplay between the evolution

of the virus with the evolution of the antibody repertoire. One could use methods

developed in Chapter 2 combined with the ideas and methods of the Antibodyome

project for such a study. This would enable us to study the changing plasma cell

repertoire to the changing epitopes in HIV-1. Although it may take several years,

a study of this kind would allow us to tackle issues such as the differences between

elite controllers and rapid progressors. Sorting memory B cells from AHI over time

would allow us to determine which of the gp41 specific plasma cells are pre-existing

or are saved as memory cells at a later time point. Since early samples are already

collected for the study in Chapter 5, the study proposed above would require sam-

pling virus and sorting memory and plasma cells at different time points throughout

the infection. Such a study would provide valuable information to fill gaps in our

basic understanding of HIV-1 infection. It will also aid in better drug and vaccine

design. In addition to designing new studies, one cannot forget the mediocre yet

positive results from the recently conducted vaccine trial of ALVAC and AIDSVAX

in Thailand. Despite the success of this phase IIB trial, the immune response to this

combination vaccine is unknown. With the methods and analysis pipeline developed

in Chapter 4 and 5, a high throughput study of the antibody response to this vaccine

would be in order. In addition, the ongoing search for broadly neutralizing antibodies

can also be facilitated with such methods by a study on elite controllers.
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Appendix A

SoDA2

A.1 Calculating the total probability of the alignment

The main aim of modeling this system as an HMM is to obtain the full probability

of observing a sequence of recombination events i.e. P (x, y) where x is the antibody

sequence and y is the putative germline. The full probability is simply the sum of

all possible alignment paths so that P (x, y) =
∑

π P (x, y, π). This is calculated by

summing over all possible paths in the forward and backward direction. Instead of

maximizing at each step, we calculate the total probability of the alignment. The

forward and backward algorithms are explained in this section. The abbreviations

used in the explanation are given below:

• m - length of the antibody gene

• vn - length of the V segment we’re aligning against

• dn - length of the D segment. In case of a light chain dn = 0.

• jn - length of the J segment

• Pe(xi, yj|k) - emission probability at xi and yj given state k.
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• Pt(l|k, j − 1) - transition probability of moving into state l at position j when

position j - 1 is in state k.

Our states are as follows:

• Match/Mistmatch state in V gene (Mv)

• Insertion in V gene (Iv)

• Deletion in V gene (Dv)

• V-D junction n nucleotides (N1)

• Match/Mismatch in D gene (Md)

• Insertion in the D gene (Id)

• Deletion in the D gene (Dd)

• D-J junction n nucleotides (N2)

• Match/Mismatch in the J gene (Mj)

• Insertion in the J gene (Ij) and Deletion in the J gene (Dj).

A.1.1 The forward algorithm

We define forward matrices F for each of the states. We set FMv[1, 1] = 1 and the

rest are set to 0. The alignment must begin in the V match/mismatch state.

FOR i in x1..m

FOR j in y1..vn (except x1y1) #We first start in the V region

FOR k = Mv, Iv & Dv, do the following:

FMv[i, j]∗ = Pe(xi−1, yj−1|Mv)Fk[i− 1, j − 1]Pt(Mv|k, j − 1)
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FIv[i, j]∗ = Pe(xi−1,−|Iv)Fk[i, j − 1]Pt(Iv|k, j − 1)

FDv[i, j]∗ = Pe(−, yj−1|Dv)Fk[i− 1, j]Pt(Dv|k, j)

END FOR

Move into N1 from Mv

FN1[i]∗ = Pe(xi−1|N1)[FMv[i− 1, j − 1]Pt(N1|Mv, j − 1)

END FOR

Move into the Md (heavy) or Mj (light) from the Mv

FOR z in y0..dn or y0..jn

FMd[i, z]∗ = Pe(xi−1, yz−1|Md)FMv[i− 1, j − 1]Pt(Md|Mv, j − 1)

FMj[i, z]∗ = Pe(xi−1, yz−1|Mj)FMv[i− 1, j − 1]Pt(Mj|Mv, j − 1)

END FOR

Next, we account for moving within the N1 state where you can only make a

linear movement from N1i−1 to N1i.

FOR j in x1..i

FN1[i]∗ = Pe(xi−1, n|N1)FN1[i− 1]Pt(N1|N1, j − 1)

END FOR

Next, we account for moving from N1 to Md.

Move into the Md (heavy) or Mj (light) from N1

FOR z in y0..dn

FMd[i, z]∗ = Pe(xi−1, yz−1|Md)FN1[i− 1]Pt(Md|N1, i− 1)

END FOR

#We move on to the D region

FOR j in y1..dn (except x1y1)
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FOR k = Md, Id & Dd, do the following:

FMd[i, j]∗ = Pe(xi−1, yj−1|Md)Fk[i− 1, j − 1]Pt(Md|k, j − 1)

FId[i, j]∗ = Pe(xi−1,−|Id)Fk[i, j − 1]Pt(Id|k, j − 1)

FDd[i, j]∗ = Pe(−, yj−1|Dd)Fk[i− 1, j]Pt(Dd|k, j)

END FOR

Move into N2 from Md

FN2[i]∗ = Pe(xi−1|N2)[FMd[i− 1, j − 1]Pt(N2|Md, j − 1)

Move into the Mj from Md

FOR z in y0..jn

FMd[i, z]∗ = Pe(xi−1, yz−1|Mj)FMd[i− 1, j − 1]Pt(Mj|Md, j − 1)

END FOR

END FOR

Next, we account for moving within the N2 state where you can only make a

linear movement from N2i−1 to N2i.

FOR j in x1..i

FN2∗ = Pe(xi−1, n|N2)FN2[i− 1]Pt(N2|N2, j − 1)

END FOR

Next, we account for moving from N2 to Mj.

Move into Mj from the N2

FOR z in y0..jn

FMj[i, z]∗ = Pe(xi−1, yz−1|Mj)FN2[i− 1]Pt(Mj|N2, i− 1)

END FOR

We move on to the J region. Once here, we stay here

FOR j in y1..jn (except x1y1)
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FOR k = Mj, Ij & Dj, do the following:

FMj[i, j]∗ = Pe(xi−1, yj−1|Mj)Fk[i− 1, j − 1]Pt(Mj|k, j − 1)

FIj[i, j]∗ = Pe(xi−1,−|Ij)Fk[i, j − 1]Pt(Ij|k, j − 1)

FDj[i, j]∗ = Pe(−, yj−1|Dj)Fk[i− 1, j]Pt(Dj|k, j)

END FOR

END FOR

END FOR

The total probability in the forward direction (P (x, y)) is stored in FMj[m, jn], the

only position the HMM is allowed to end.

A.1.2 The backward algorithm

We define backward matrices B for each of the states. We set BMv[m, jn] = 1 and

the rest are set to 0.

FOR i in xm−1..0

#Starting in the J region

FOR j in yjn−1..0

#To be in Mj at i, j, you can come from Mj, Ij or Dj

BMj[i, j]∗ = Pe(xi+1, yj+1|Mj)BMj[i+ 1, j + 1]Pt(Mj|Mj, j + 1)

BMj[i, j]∗ = Pe(xi+1,−|Ij)BIj[i, j + 1]Pt(Mj|Ij, j + 1)

BMj[i, j]∗ = Pe(−, yj+1|Dj)BDj[i+ 1, j]Pt(Mj|Dj, j)

#To be in Ij at i, j, you can come from Mj or Ij

BIj[i, j]∗ = Pe(xi+1, yj+1|Mj)BMj[i+ 1, j + 1]Pt(Ij|Mj, j + 1)

BIj[i, j]∗ = Pe(xi+1,−|Ij)BIj[i, j + 1]Pt(Ij|Ij, j + 1)

#To be in Dj at i, j, you can come from Mj or Dj
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BDj[i, j]∗ = Pe(xi+1, yj+1|Mj)BMj[i+ 1, j + 1]Pt(Dj|Mj, j)

BDj[i, j]∗ = Pe(−, yj+1|Dj)BDj[i+ 1, j]Pt(Mj|Dj, j)

Moving to Mj from N2 is also allowed

BN2[i]∗ = Pe(xi+1, n|N2)BMj[i+ 1, j]Pt(Mj|N2, j + 1)

END FOR

You can also move from the N2 region to the N2 region

FOR j in xm−1..0

BN2[i]∗ = Pe(xi+1, n|N2)BN2[i+ 1]Pt(N2|N2, j + 1)

END FOR

#Moving on to the D region

FOR j in ydn−1..0

#To be in Md at i, j, you can come from Md, Id, Dd or any position in

Mj

BMd[i, j]∗ = Pe(xi+1, yj+1|Md)BMd[i+ 1, j + 1]Pt(Md|Md, j + 1)

BMd[i, j]∗ = Pe(xi+1,−|Id)BId[i, j + 1]Pt(Md|Id, j + 1)

BMd[i, j]∗ = Pe(−, yj+1|Dd)BDd[i+ 1, j]Pt(Md|Dd, j)

FOR z in yjn−1...0

BMd[i, j]∗ = Pe(xi+1, yj+1|Md)BMj[i+ 1, j + 1]Pt(Md|Mj, j + 1)

END FOR

#To be in Id at i, j, you can come from Md or Id

BId[i, j]∗ = Pe(xi+1, yj+1|Mj)BMj[i+ 1, j + 1]Pt(Ij|Mj, j + 1)

BId[i, j]∗ = Pe(xi+1,−|Ij)BIj[i, j + 1]Pt(Ij|Ij, j + 1)

#To be in Dj at i, j, you can come from Mj or Dj

BDd[i, j]∗ = Pe(xi+1, yj+1|Md)BMd[i+ 1, j + 1]Pt(Dd|Md, j)
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BDd[i, j]∗ = Pe(−, yj+1|Dd)BDd[i+ 1, j]Pt(Md|Dd, j)

Moving to Md from N1 is also allowed

BN1[i]∗ = Pe(xi+1, n|N1)BMd[i+ 1, j]Pt(Md|N1, j + 1)

END FOR

You can also move from the N1 region to the N1 region

FOR j in xm−1..0

BN1[i]∗ = Pe(xi+1, n|N1)BN1[i+ 1]Pt(N1|N1, j + 1)

END FOR

FOR j in ydn−1..0 #Moving on to the V region

#To be in Md at i, j, you can come from Mv, Iv, Dv or any position in

Md

BMv[i, j]∗ = Pe(xi+1, yj+1|Mv)BMd[i+ 1, j + 1]Pt(Mv|Mv, j + 1)

BMv[i, j]∗ = Pe(xi+1,−|Iv)BIv[i, j + 1]Pt(Mv|Iv, j + 1)

BMv[i, j]∗ = Pe(−, yj+1|Dv)BDv[i+ 1, j]Pt(Mv|Dv, j)

FOR z in ydn−1...0

BMv[i, j]∗ = Pe(xi+1, yj+1|Mv)BMv[i+ 1, j + 1]Pt(Mv|Md, j + 1)

END FOR

#If it is a light chain, you can go from Mj to Mv

FOR z in yjn−1...0

BMv[i, j]∗ = Pe(xi+1, yj+1|Mv)BMv[i+ 1, j + 1]Pt(Mv|Mj, j + 1)

END FOR

#To be in Id at i, j, you can come from Md or Id

BIv[i, j]∗ = Pe(xi+1, yj+1|Mj)BMj[i+ 1, j + 1]Pt(Ij|Mj, j + 1)

BIv[i, j]∗ = Pe(xi+1,−|Ij)BIj[i, j + 1]Pt(Ij|Ij, j + 1)
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#To be in Dj at i, j, you can come from Mj or Dj

BDv[i, j]∗ = Pe(xi+1, yj+1|Mv)BMv[i+ 1, j + 1]Pt(Dv|Mv, j)

BDv[i, j]∗ = Pe(−, yj+1|Dv)BDv[i+ 1, j]Pt(Mv|Dv, j)

END FOR

END FOR

The total probability in the backward direction ((P (x, y))) is stored in BMv[0, 0], the

only position the HMM is allowed to start. The total probability in the forward and

backward directions should be equal.

A.1.3 Alignment with Highest Posterior Probability

The forward and backward algorithms gave us the total probability of the alignment.

The posterior probability of a given alignment path is given by: P (πij = k|x, y) =

fkibk(i)
P (x,y)

. We define posterior probability matrices for each state using the above

equation. In order to find the path with the highest posterior probability, we use the

Posterior Viterbi Algorithm [76]. Starting at the first position of the target and a

match/mismatch in v, the algorithm goes forward, selecting the step with the highest

posterior probability. The path π selected at the end is the one that has the overall

highest score.
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Appendix B

Antibodyome

B.1 Ig Isotype & Gene Segment Usage

Table B.1: Ig Isotype in antibodies from various groups

AHI FIA FV FIS Uninfected
IgA 46.22% 39.56% 19.35% 33.33% 43.18%
IgD 0.71% 0.45% 0.44% 0.36% 0.38%
IgG 36.63% 35.11% 70.25% 48.44% 48.11%
IgM 16.43% 24.89% 9.68% 18.22% 8.33%

Table B.2: VH gene segment usage by specificity

FIS FIS FIA FIA FV FV AHI AHI
HA Non-HA HA Non-HA HA Non-HA HIV-other gp41

VH1 80% 0% 22.22% 11.11% 3.98% 2% 0% 10.24%
VH1-69 0% 0% 11.11% 0% 1.33% 0% 0% 6.30%

VH2 20% 0% 44.44% 0% 3.54% 0% 0% 4.72%
VH3 0% 0% 22.22% 55.56% 42.04% 54% 100% 56.69%
VH4 0% 100% 0% 11.11% 49.12% 44% 0% 17.32%
VH5 0% 0% 0% 22.22% 0% 0% 0% 0%
VH6 0% 0% 0% 0% 0% 0% 0% 4.72%
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Figure B.1: DH gene segment usage in all five groups compared to germline gene
segment usage.

Table B.3: DH gene segment usage by specificity

FIS FIA FV AHI
HA Non-HA HA Non-HA HA Non-HA gp41 HIV-other

DH0 0% 0% 3.85% 0% 0% 0% 0% 0.79%
DH1 20% 100% 3.85% 0% 11.06% 6% 0% 11.81%
DH2 20% 0% 23.08% 11.11% 34.96% 42% 60% 24.41%
DH3 20% 0% 46.15% 33.33% 33.19% 38% 40% 41.73%
DH4 40% 0% 7.69% 11.11% 10.62% 6% 0% 5.51%
DH5 0% 0% 7.69% 44.44% 6.19% 0% 0% 3.94%
DH6 0% 0% 7.69% 0% 3.98% 8% 0% 4.72%
DH7 0% 0% 0% 0% 0% 0% 0% 7.09%
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Figure B.2: JH gene segment usage in all five groups. There are only six JH
segments, making germline usage equal.

Table B.4: JH gene segment usage by specificity

FIS FIA FV AHI
HA Non-HA HA Non-HA HA Non-HA gp41 HIV-other

JH1 0% 0% 3.85% 22.22% 3.98% 0% 20% 9.45%
JH2 0% 0% 0% 0% 2.65% 2% 0% 0.79%
JH3 20% 0% 23.08% 22.22% 10.62% 14% 20% 11.81%
JH4 60% 100% 34.62% 22.22% 18.58% 30% 20% 32.28%
JH5 20% 0% 11.54% 0% 5.75% 2% 40% 25.20%
JH6 0% 0% 26.92% 33.33% 58.41% 52% 0% 20.47%
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B.2 CDR3 length

Table B.5: Length of CDR3 in heavy, kappa and lambda chains of antibodies of
various specificities

Patient Group Antigen Specificity Heavy Kappa Lambda
AHI gp41 14.9± 0.4 9 10.4± 0.3

HIV-other 16± 0.8 9.1± 0.1 10.5± 0.6
FV HA 17.7± 0.2 9.4± 0.1 11.1± 0.1

Non-HA 16.9± 0.5 9.6± 0.5 11.2± 0.1
FIA HA 15.4± 0.7 9.1± 0.1 10.9± 0.1

Non-HA 15.6± 1.5 9.1± 0.1 10
FIS HA 14.8± 0.4 8.8± 0.5 NA

Non-HA 13 NA 12

B.3 Somatic Mutations

Table B.6: Mutation Frequencies in Heavy, Kappa and Lambda chains for all patients

Heavy Kappa Lambda
FIS 5.29%± 0.17% 3.32%± 0.2% 3.27%± 0.37%
FIA 4.98%± 0.18% 2.82%± 0.18% 2.8%± 0.22%
AHI 5.59%± 0.1% 4.22%± 0.12% 3.68%± 0.13%
FV 4.92%± 0.12% 3.59%± 0.11% 3.21%± 0.11%

Uninfected 6.6%± 0.2% 4.75%± 0.21% 4.52%± 0.27%

Table B.7: Mutation Frequencies in Kappa and Lambda chains by specificity

Patient Group Antigen Specificity Mean Mutation Std. Err. Mean Mutation Std. Err.
Frequency (kappa) (kappa) Frequency (lambda) (lambda)

AHI gp41 3.1% 0.3% 3.1% 0.4%
HIV-other 4.7% NA% 5.1% 1.3%

FV HA 3.7% 0.1% 3.5% 0.1%
Non-HA 4.3% 0.4% 3.1% 0.3%

FIA HA 3.7% 0.5% 4.9% 0.7%
Non-HA 2.8% 0.8% 5.4% 0.6%

FIS HA 2.9% 1.6% NA NA
Non-HA NA NA 3.5% NA
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Table B.8: Number of nucleotides in the CDRs and Frameworks in the heavy and
light chains of different patient groups

Patient CDR3H FRH CDR3K FRK CDR3L FRL
AHI 109989 288356 44038 185071 26362 98825
FIA 25389 65351 10890 45087 5259 19504
FIS 23898 63713 10463 43871 4974 18443
FV 44847 111846 15819 67374 11418 42857

Uninfected 26004 68651 11998 49706 4830 18212

Table B.9: Number of synonymous and non synonymous mutations in the CDRs and
Frameworks of heavy and light chains

HCDR HFR KCDR KFR KCDR KFR
Patient S N S N S N S N S N S N

AHI 1585 5661 4701 8916 646 2523 2298 3789 336 1349 1084 1870
FIA 329 1223 1002 1692 130 474 422 608 62 230 164 276
FIS 324 1275 917 1841 132 553 461 753 48 264 157 303
FV 526 2082 1750 2986 167 897 789 1173 186 624 354 631

Uninfected 442 1504 1472 2416 219 745 830 1052 74 290 287 376
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B.4 Clones

Table B.10: Clones in DFLU07001, a patient vaccinated with a Trivalent Inactivated
Seasonal Vaccine

Patient Number of pairs VH JH Light Chain VL JL % antigen specific
in Clone

DFLU07001 2 4-59 6 kappa 1-39 4 100
DFLU07001 5 4-59 6 kappa 1-39 1 100
DFLU07001 11 4-4 6 lambda 3-19 2 100
DFLU07001 18 4-59 6 kappa 1-39 3 94.4
DFLU07001 5 4-59 6 kappa 1-17 1 100
DFLU07001 21 4-59 6 kappa 1-39 2 100
DFLU07001 5 4-59 6 kappa 3-11 4 100
DFLU07001 8 3-30-3 6 lambda 1-44 3 100
DFLU07001 15 3-49 4 lambda 1-51 2 100
DFLU07001 3 3-30 6 kappa 1-33 4 100
DFLU07001 2 4-59 6 kappa 1-39 4 100
DFLU07001 4 3-30 6 kappa 3-20 2 100
DFLU07001 2 4-31 2 lambda 3-9 2 0
DFLU07001 2 4-39 6 lambda 6-57 2 100
DFLU07001 3 1-2 6 lambda 3-21 2 100
DFLU07001 4 3-9 6 kappa 1-33 4 100
DFLU07001 2 4-59 5 lambda 2-14 1 100
DFLU07001 2 3-15 3 lambda 1-40 2 100
DFLU07001 2 4-59 6 lambda 1-44 3 100
DFLU07001 3 4-31 6 kappa 3-20 3 66.67
DFLU07001 2 4-59 6 kappa 1-39 2 100
DFLU07001 4 4-b 6 lambda 7-43 3 75
DFLU07001 4 4-59 6 kappa 3-20 1 100
DFLU07001 2 4-59 6 lambda 1-44 2 100
DFLU07001 2 4-59 6 kappa 1-39 2 100
DFLU07001 2 3-49 4 kappa 1-33 4 0
DFLU07001 3 4-59 6 kappa 1-39 4 100
DFLU07001 3 4-30-4 6 kappa 3-20 2 66.67
DFLU07001 2 4-30-4 6 kappa 3-20 2 50
DFLU07001 2 3-48 5 lambda 3-21 1 100
DFLU07001 2 4-59 6 kappa 3-20 4 100
DFLU07001 2 3-23 3 kappa 3-15 4 100
DFLU07001 2 3-30-3 3 lambda 1-40 3 0
DFLU07001 2 4-59 6 lambda 3-21 2 100
DFLU07001 2 3-7 5 lambda 3-1 2 100
DFLU07021 2 1-2 4 lambda 3-21 2 100
DFLU07021 8 2-5 3 kappa 1-17 2 100
DFLU07021 2 1-2 5 kappa 1-39 5 100
DFLU07021 3 4-39 1 kappa 2-28 5 100
DFLU07021 3 4-39 3 kappa 1-5 1 100
DFLU07021 2 3-30-3 2 kappa 1-39 1 100
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