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Abstract

Modelling and inference with higher-dimensional variables, including studies in mul-

tivariate time series analysis, raise challenges to our ability to “scale-up” statisti-

cal approaches that involve both modelling and computational issues. Modelling

issues relate to the interest in parsimony of parametrisation and control over pro-

liferation of parameters; computational issues relate to the basic challenges to the

efficiency of statistical computation (simulation and optimisation) with increasingly

high-dimensional and structured models. This thesis addresses these questions and

explores Bayesian approaches inducing relevant sparsity and structure into parameter

spaces, with a particular focus on time series and dynamic modelling.

Chapter 1 introduces the challenge of estimating covariance matrices in multi-

variate time series problems, and reviews Bayesian treatments of Gaussian graphical

models that are useful for estimating covariance matrices. Chapter 2 and 3 introduce

the development and application of matrix-variate graphical models and time series

models. Chapter 4 develops dynamic graphical models for multivariate financial time

series. Chapter 5 and 6 propose an integrated approach for dynamic multivariate

regression modelling with simultaneous selection of variables and graphical model

structured covariance matrices. Finally, Chapter 7 summarises the dissertation and

discusses a number of new and open research directions.
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1

Introduction

1.1 Bayesian multivariate time series and graphical models

The importance of Bayesian methods in time series analysis has increased rapidly

over the last decade. Many application areas are generating time series data of

increasing dimension and complexity. Examples include stock returns, changes in

labour market employment statistics, or numbers of consumer clicks on displayed

web content. Interests often centre on not only forecasting future values but also

understanding the relationships between different variables.

One of the most challenging issues in multivariate time series analysis involves the

estimation of large-scale covariance matrices. For example, consider the covariance

matrix of stock returns. If the returns of Dow Jones 30 companies are of interest, the

covariance matrix of these returns at any particular time point t has 30×31/2 = 465

parameters to be estimated. Even if we can comfortably assume that the N observed

returns are i.i.d. with p× p covariance Σ, the eigenstructure of the simple estimator

based on the sample covariance matrix tends to be distorted unless p/N is very

small. In the case where the temporal dynamics of these covariance matrices are also
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of interest, the task of modelling and estimating time-varying covariance matrices

becomes more challenging yet very important.

In order to produce stable and robust covariance estimates, modellers must im-

pose structures on the large covariance parameter space. A particularly useful ap-

proach to induce structures is based on Gaussian graphical models. This thesis

discusses the incorporation of Gaussian graphical model structuring in the general

multivariate dynamic environment to improve parameter estimation, structure in-

terpretation and computational efficacy in a variety of important multivariate time

series models.

Gaussian graphical modeling offers a powerful set of tools for exploration of mul-

tivariate dependence patterns and regularisation of covariance matrices in higher-

dimensional problems. I now introduce the basic concepts of the Gaussian graphical

models that are the central elements in the approaches developed in the thesis.

1.2 A review of Gaussian graphical models

Gaussian graphical models provide natural tools for modelling conditional indepen-

dence relationships (Lauritzen, 1996; Whittaker, 1990). They are very useful in many

high-dimensional problems: They facilitate computation by decomposing large ma-

trices into many small matrices; they offer stable and robust estimation of covariance

by imposing structure; they offer easy understanding of relationship among variables

by breaking down a joint probability into a compact representation. This section

introduces the essential concepts of graphical models. It starts with the basic rep-

resentations of graphical models with a focus on undirected graphs. It then reviews

the Bayesian framework of Gaussian graphical model analysis; this includes prior

specification, posterior and marginal likelihood computation for given graphs, and

graphical model uncertainty and search.

2



1.2.1 Basic graph structure

A graph G is an ordered pair (V, E) where V is a non-empty set of vertices (variables)

and E is a set of edges. An edge (a, b) is a directed edge from a to b if the ordered

pair (a, b) ∈ E but (b, a) /∈ E. If an edge (a, b) ∈ E and also (b, a) ∈ E, then (a, b)

is called undirected edge. A graph G = (E, V ) in which every edge is undirected is

called undirected graph whereas if every edge is directed the graph is directed graph.

Consider an undirected graph G = (E, V ) defined by a set of vertices V and a set

of edges E. Two vertices a and b are neighbours if, and only if the edge (a, b) ∈ E.

Consider any subset of nodes VA ⊆ V and write EA for the corresponding edge set

in G. Then GA = (VA, EA) defines a subgraph – an undirected graph on nodes in

VA. Any graph or subgraph is complete if all of its vertices are connected by edges

in E. A complete graph on p vertices has all
(

p
2

)
edges; otherwise the graph is

incomplete. A clique is a complete subgraph that is not contained within another

complete subgraph. The incomplete graph G can be decomposed into a disjoint triple

(GA, GB, GC), if VA∪VB ∪VC = V , and GC is complete and separates GA and GB in

G (any path from a vertex in VA to a vertex in VB goes through VC). The subgraph

GC is a separator. The decomposition is proper if VA 6= ∅ and VB 6= ∅. A sequence of

subgraphs that cannot be further properly decomposed are the prime components of

a graph. A graph is said to be decomposable if every prime component is complete

so the prime components of a decomposable graph are all cliques. Decomposable

graphs have distributional properties that make them particularly tractable, as we

shall see in Section 1.2.3.

Any connected graph can be represented as a tree of its prime components – a

junction tree. In the junction tree, each prime component denoted by Pi is a vertex

and if, for any two prime components Pi and Pj and every prime component Pk on

the path between them, Pi ∩ Pj ⊆ Pk. The sets of vertices shared by connected

3



vertices in the junction tree are called separators of the junction tree, denoted by

Si. In a junction tree, an ordering of the prime components Pi ∈ P and separators

Si ∈ S as P1; S2, P2; S3P3; , · · · is said to be perfect if, for every i = 2, 3, · · · , k, there

exists a j < i such that

Si = Pi ∩Hi−1 ⊂ Pj

where Hi−1 =
⋃i−1

j=1 Pj. Figure 1.1 displays a decomposable graph (top panel) and

its junction tree decomposition (bottom panel). For this graph, one perfect or-

dering for the prime components is: {P1; S2, P2; S3, P3; S4, P4; S5, P5}, where P1 =

{1, 2, 5}, S2 = {2, 5}, P2 = {2, 4, 5, 6}, S3 = {2, 4}, P3 = {2, 3, 4}, S4 = {4, 6}, P4 =

{4, 6, 7}, S5 = {6, 7} and P5 = {6, 7, 8, 9}.

1.2.2 Graphical models

Probabilistic graphical models rely on graphs that represent independencies among

random variables. Each node is a random variable, and a missing edge between

two nodes represents conditional independency. Formally, let {Xν : ν ∈ V } be a

collection of random variables indexed by the nodes of an undirected graph G =

(V, E). For each A ⊆ V , let XA = {Xν : ν ∈ A} indicate the subset of random

variables associated with nodes A. A distribution P over V is Markov with respect

to G if, for any decomposition (A, B) of G, XA ⊥⊥ XB | XA∩B. A graphical model

is a family of probability distribution which is Markov with respect to a graph.

Decomposition of distributions over graphs

The key to the development of graphical model analysis is the factorisation of a joint

distribution that is Markov with respect to a graph G. In general, a p-vector random

variable x = (x1, · · · , xp)
′ has a multivariate distribution p(x), on a specific graph G

that factorises corresponding to the prime components and separators of the junction

4



tree representation of G, i.e.

p(x | G) =

∏
P∈P p(xP )∏
S∈S p(xS)

(1.1)

where xP and xS represents the variable subsets on the prime components and sep-

arators. The above decomposition is a general and powerful result related to Ham-

mersley and Clifford Theorem (Hammersley & Clifford, 1971). It can be seen that

the joint density factors as a product of joint densities of variables within each prime

component divided by the product of the joint densities of variables within each sep-

arator. By exploring the graph-theoretic representation, the factorisation provides

general algorithms for computing marginal and conditional probabilities of interests,

and it also controls the computational complexity associated with these problems.

1.2.3 Gaussian graphical modelling

Covariance selection model

A Gaussian graphical model, also known as covariance selection model (Dempster,

1972), is defined by a Gaussian distributed random vector x = (x1, · · · , xp)
′ with

expectation µ and non-singular covariance matrix Σ (i.e. precision matrix Ω = Σ−1).

In special cases of a multivariate Gaussian distribution on a graph, the conditional

dependency property (Markov property ) implied by G via its edges is represented by

zeros in the precision matrix; that is, for any pair of variables i, j , Ωij = 0 if and only

if (i, j) /∈ E, which is, by the Markov property, equivalent to xi ⊥⊥ xj | x(1:p)\(i,j).

Thus G constrains Σ by imposing a pattern of zeros on Ω. In other words, the

precision matrix Ω belongs to M(G), the set of all positive symmetric matrices with

elements equal to zeros for any (i, j) /∈ E. Formal inference identifies graphical

structures via patterns of zeros in precision matrix.

Conditional on a graph G and without loss of generality, assume µ = 0. Then

5



from equation (1.1), the joint distribution of x is

p(x | Σ, G) =

∏
P∈P p(xP | ΣP )∏
S∈S p(xS | ΣS)

(1.2)

where, for each P ∈ P ,

p(xP | ΣP ) = (2π)−|P |/2|ΣP |−1/2etr{−1

2
xPx′PΣ−1

P }

and similarly for p(xS | ΣS), with |P | denoting the dimension of prime component

P . That is, the full joint distribution is completely determined by the component

covariance matrices ΣP .

Prior and posteriors for covariance matrices

From a Bayesian perspective, inference on the above covariance selection model in-

volves posterior distribution p(G,Σ | x) = p(G | x)p(Σ | x, G) under certain priors

p(G,Σ) = p(Σ | G)p(G). Hence, two types of uncertainties are associated with the

model: uncertainty about the covariance matrix Σ and uncertainty about the graph-

ical structure G. I begin with the prior specification for Σ given a decomposable

graph G.

For the parameter Σ, the class of hyper-inverse Wishart distributions (Dawid &

Lauritzen, 1993) for Σ extends the standard multivariate Gaussian/inverse-Wishart

framework to graphs. The prior for Σ, p(Σ | G), is hyper-inverse Wishart, HIWG(δ,Φ)

with degree-of-freedom parameter δ and location matrix Φ > 0. The prior density

factors in a form related to the likelihood (1.2), namely

p(Σ | G) =

∏
P∈P p(ΣP | δ,ΦP )∏
S∈S p(ΣS | δ,ΦS)

(1.3)

where, for each complete prime component P ∈ P, the corresponding sub-matrix
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ΣP has an inverse Wishart IW (δ,ΦP ) prior with density

p(ΣP | G) =
|ΦP

2
|(

δ+|P |−1
2

)

Γ|P |(
δ+|P |−1

2
)
|ΣP |−

δ+2|P |
2 etr{−1

2
ΦPΣ−1

P } (1.4)

where Γk(a) is the multivariate gamma function Γk(a) = π
k(k−1)

4

∏k−1
i=0 Γ(a − i/2).

Since decomposable graphs consist entirely of complete prime components, equations

(1.3) and (1.4) indicate that the submatrices of Φ corresponding to the variables

P ∈ P determine the prior. Any graph G determines which collection of submatrices

of Φ are to be taken to form a hyper-inverse Wishart prior on Σ.

This family of hyper-inverse Wishart priors HIWG(δ,Φ) over different decom-

posable graphs is a general class of priors that have the desired properties as a prior

for quantities parameterising a graphical model:

• It is compatible in the sense that, for two graphs G1 and G2 and for any clique A

common to both G1 and G2, the marginal priors on A induced by HIWG1(δ,Φ)

and HIWG2(δ,Φ) are the same.

• It is consistent in the sense that, for any decomposition (A, B) of G, p(ΣA | G)

and p(ΣB | G) induce the same prior distribution over ΣA∩B.

The hyper-inverse Wishart prior is conjugate for any decomposable graph G

(Dawid & Lauritzen, 1993). That is, for a multivariate Gaussian random sample

X = (x(1), · · · ,x(n)) of size n, if p(Σ | G) = HIWG(δ,Φ), the posterior is hyper-

inverse Wishart Σ | X ∼ HIWG(δ +n,Φ+SX) with SX the sum of products matrix∑n
i=1 x(i)x(i)′ . The marginal distribution for X has a hyper-t distribution denoted by

HTG(0, δ,Φ), extending the standard matrix t distribution.
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Marginal likelihood for given graphs

The marginal likelihood function for any graph G is computed by integrating out

the covariance matrix with respect to the prior,

p(X | G) =

∫
Σ−1=Ω∈M(G)

p(X | Σ, G)p(Σ | G)dΣ

where M(G), as before, indicates the set of all positive-definite symmetric matrices

spaces constrained by G.

Under a hyper-inverse Wishart prior for Σ and observed data X of sample size

n, the above integration for the decomposable graph becomes a simple function of

the prior and posterior normalising constants, H(δ,Φ, G) and H(δ + n,Φ + SX, G):

p(X | G) = (2π)−np/2 H(δ,Φ, G)

H(δ + n,Φ + SX, G)

where the normalising constant H(δ,Φ, G) is given by

H(δ,Φ, G) =

∏
P∈P |

ΦP

2
|(

δ+|P |−1
2

)Γ|P |(
δ+|P |−1

2
)−1∏

S∈S |
ΦS

2
|(

δ+|S|−1
2

)Γ|S|(
δ+|S|−1

2
)−1

.

Priors over graphs

In Section 5.2.3, we model the uncertainty about the covariance matrix Σ by in-

troducing a conjugate prior over Σ for any fixed graph structure. I now define the

priors over graph space to model the uncertainty over graph structures G.

I first define edge inclusion indicators eij of a graph G as follows:

eij =

{
1, if (i, j) ∈ E
0, otherwise.

An independent Bernoulli prior with parameter β on each edge inclusion probability

is used as an initial sparse inducing prior. That is, a p node graph G = (E, V ) with

8



|E| edges and T = p(p− 1)/2 possible edges has prior probability

p(G) ∝
∏
i,j

βeij(1− β)1−eij

= β|E|(1− β)T−|E|.

This prior distribution has its mode at T×β edges for an unrestricted (decomposable

and nondecomposable) p node graph. Therefore, if β = 1/2, i.e. a uniform prior over

all graphs, the prior favors models in which the number of edges is quite large, that is,

a set of modal graphs with T/2 = p(p−1)/4 nodes per graph. To induce sparsity and

hence obtain parsimonious representation of the conditional independence structure

implied by a graph, we prefer a much smaller β, for example β = 2/(p−1), which, in

unrestricted cases, would provide a prior mode at p edges. For decomposable graph

space, Carvalho (2006) explores how an appropriate β could offer sparse graph priors

in comparison with uniform priors.

Central to this analysis is the edge inclusion probability parameter β – a criti-

cal sparsity inducing parameter. Learning about β from the data can be addressed

with a view to embedding β into the MCMC sampling analysis. For example, using

the conjugate beta priors for β, we can draw the posterior samples of β given other

parameters from a beta distributions. Another approach to dealing with the uncer-

tainty about β is that we can also fully integrate out β with respect to its beta prior;

we discuss such approach in Section 5.3.3.

The above approach to prior specification penalises the number of edges. One

could also penalise other measure of model complexity such as the maximum or

average prime component size, number of cliques, etc (see for example Wong et al.

2003).
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1.2.4 Local updates for decomposable graphs

In addition to the analytical expressions for marginal likelihoods, decomposable

graphs have attractive properties that are related to local updates. In particular,

for any two decomposable graphs G and G′ that differ by one edge only, calculating

their marginal likelihood ratio p(X | G)/p(X | G′) is facilitated by the similarity be-

tween G and G′ in a sense that the computation requires far less than the complete

calculation of two likelihoods. Giudici & Green (1999) first exploited this property.

Wong et al. (2003) further simplified that computation by examining the Cholesky

decomposition of the component subgraph that contains the differing edge. In con-

trast, non-decomposable graphs do not share this attractive property because a single

edge change may thoroughly change the junction tree representation of components.

In the dynamic financial index models in Chapter 4, we exploit this property

in our sequential stochastic search methods for exploring decomposable graphical

model uncertainty. In the other two models proposed in this thesis, although we

focus on the decomposable graphs, we still cannot take advantage of the property.

The marginal likelihoods for these two models do not have the analytical form and

cannot factor over prime components.

1.2.5 Graphical model search algorithms

The previous sections have described how to analytically evaluate the unnormalised

posterior probability p(G) ∝ p(X | G)p(G) for any decomposable graph G. The

remaining substantial problem is how to effectively explore this posterior graphical

model space. These model spaces are usually enormous; p nodes in a graph mean

T = p(p − 1)/2 possible edges, and hence 2T possible graphs corresponding to all

combinations of individual edges being in or out of the graph. Even for decomposable

graphs and moderate p, it is impossible to enumerate all possible graphs in the space.

This motivates the development of effective search algorithm for exploring graphical
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model uncertainty. In order to be accurate and scalable, it is desirable for these

search algorithms to be able to quickly move towards high posterior probability

region, and also to take advantage of local computation. Two classes of stochastic

search algorithms have been developed in the literature as we now describe below.

Markov chain Monte Carlo algorithms

MCMC is widely used to assist Bayesian treatments of model selection, and account

for model uncertainty for discrete graphical models (Madigan & York, 1995; Della-

portas & Forster, 1999; Giudici & Castelo, 2003). For Gaussian graphical models,

Wong et al. (2003) use their results to construct a fixed scan Gibbs sampler for de-

composable graphs and Giudici & Green (1999) implement a reversible jump Markov

chain Monte Carlo sampler to carry out the graphical model determination. With

decomposable graphical models and conjugate priors, explicit marginal likelihood

are available, allowing the use Metropolis-Hastings sampler to stochastically explore

the model space. In general, starting from a current graph G = (V, E), a candidate

graph G′ = (V, E ′) is proposed from a proposal distribution q(G′; G) and accepted

with probability

α = min

{
p(G′ | X)q(G; G′)

p(G | X)q(G′; G)
, 1

}
.

There are several ways to construct the proposal: fixed scan Gibbs, Metropolis-

Hastings in which the edge to be updated is picked up at random, and Metropolis-

Hastings in which the choice to add or delete an edge is made, and then an edge was

selected at random from those appropriate for that type of move. As is noted by

Jones et al. (2005), there is no noticeable difference in performance between these

closely related MCMC algorithms.
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Shotgun stochastic search

Shotgun stochastic search (SSS) (Jones et al., 2005; Hans, 2005) is a stochastic

search algorithm that is inspired by MCMC methods but differs with MCMC in

its key innovation: SSS takes advantage of distributed computing environment to

parallelism computations and to more rapidly identify promising models. The SSS

algorithm can be summarised as:

i. Start with a graph G.

ii. Define a neighbourhood of proposal graphs by randomly choosing F1 neighbours

of G.

iii. Evaluate the posterior probability of graphs (up to a normalising constant) in

the neighbourhood in parallel, and retain the top F2 graphs.

iv. Choose a new current model from the top F2 graphs with each Gi having

probability proportional to p(Gi | X)α. Here α > 0 is an annealing parameter.

v. Go to step (ii) and iterate.

In Step (ii), the neighbourhood of the current graph must be sufficiently comprehen-

sive to allow the search to move easily throughout the graphical model space. This is

usually accomplished by considering each possible edge change in one of the proposal

models at each iteration. Step (iii) has the most computational burden – a problem

that can be solved by parallelised computation.

1.3 Thesis outline

Chapter 2 and 3 introduce the development and application of matrix-variate graph-

ical models and time series models. This develops a complete Bayesian analysis

of matrix normal graphical models, i.e., matrix normal distributions in which each
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of the characterising variance matrices is constrained by a set of conditional inde-

pendence restrictions consistent with an underlying graphical model. Part of the

motivation lies in the interest in scaling matrix-variate models to deal with increas-

ingly higher-dimensional problems, such as multiple economic indicators or assets

measured across multiple funds, companies, sectors or countries.

Chapter 4 develops dynamic graphical models for multivariate financial time se-

ries. The method described in this chapter is aimed to flexibly yet tractably forecast

large-scale covariance matrices. One theoretical advantage of our methods is that

the assumption of uncorrelated residuals in popular financial index models has been

relaxed. Moreover, it will be shown empirically that the synthesis of dynamic graph-

ical models with financial index models generally improves the covariance matrix

forecasting relative to standard financial index models.

Chapters 5 and 6 propose an integrated approach for seemingly unrelated regres-

sion (SUR) modelling with simultaneous selection of variables and graphical-model

structured covariance matrices. Current developments of SUR are almost all based

on non-sparse modelling ideas. These methods are useful when the number of regres-

sions and predictors is small. To scale up the SUR analysis to higher-dimensional

problems, Chapter 5 combines variable selections, graphical models and SUR to pro-

duce an effective method for sparse SUR (SSUR) inferences. The new SSUR is then

compared with SUR in carefully designed experiments in Chapter 5. In these exper-

iments, SSUR is shown to both generate relevant structures, and outperform SUR

in terms of risks of parameter estimations. Based on the development of SSUR in

Chapter 5, Chapter 6 then describes a detailed application of SSUR to mutual fund

performance evaluations, followed by an extension SSUR to more general dynamic

models.

Finally, Chapter 7 summarises the dissertation and discusses a number of new

and open research directions.
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Figure 1.1: A decomposable graph and its junction tree decomposition (Carvalho, 2006).
Here one perfect ordering of the prime components is {P1;S2, P2;S3, P3;S4, P4;S5, P5},
where P1 = {1, 2, 5}, S2 = {2, 5}, P2 = {2, 4, 5, 6}, S3 = {2, 4}, P3 = {2, 3, 4}, S4 =
{4, 6}, P4 = {4, 6, 7}, S5 = {6, 7} and P5 = {6, 7, 8, 9}.
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2

Matrix normal graphical models

2.1 Introduction

Matrix-variate normal distributions (Dawid, 1981; Gupta & Nagar, 2000) have been

studied in analysis of two-factor linear models for cross-classified multivariate data

(Finn, 1974; Galecki, 1994; Naik & Rao, 2001), in spatio-temporal models (Mardia &

Goodall, 1993; Huizenga et al., 2002) and other areas. Some computational and in-

ferential techniques, including iterative calculation of maximum likelihood estimates

have been developed (Dutilleul, 1999; Mitchell et al., 2005, 2006), and some empiri-

cal Bayesian methodology has recently been introduced for Procrustes analysis with

matrix models (Theobald & Wuttke, 2006).

This chapter together with Chapter 3 develops a complete Bayesian analysis of

matrix normal graphical models, i.e., matrix normal distributions in which each of

the characterising variance matrices is constrained by a set of conditional indepen-

dence restrictions consistent with an underlying graphical model (Whittaker, 1990;

Lauritzen, 1996; Giudici, 1996; Giudici & Green, 1999; Jones et al., 2005). The frame-

work includes fully Bayesian analysis of the matrix normal (full graphs) as a special
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case, and effective computational methods for marginal likelihood computation on

a specified graphical model that underlies inference about conditional independence

structures. The developments include novel Markov random field models, with po-

tential utility in spatial and image analysis, that emerge naturally as a sub-class of

matrix normal graphical models. The framework then extends the random sampling

framework to matrix-variate time series models that inherit the graphical model

structure to represent conditional independencies in matrix series over time.

This chapter focuses on matrix normal graphical models for given graphs. It

begins with preliminaries and notation for matrix normal models in Section 2.2,

followed by elements of Bayesian analysis of this class of models for fixed graphs.

Section 2.5 provides a simple example of analysis of a simulated data set, illustrating

aspects of the computation. Section 2.6 shows how the matrix graphical structure can

be naturally embedded in a broad class of matrix time series models, and develops

a detailed analysis of a macro-economic data set for additional illustration of the

effectiveness and utility of the new matrix-variate models.

2.2 Matrix variate normals, graphs and notation

The q × p random matrix Y is matrix normal, Y ∼ N(M,U,V), with mean M

(q× p), column and row covariance matrices U = (uij) (q× q) and V = (vij) (p× p)

respectively, when

p(Y) ≡ p(Y | U,V) = k(U,V) exp[−tr{(Y −M)′U−1(Y −M)V−1/2}] (2.1)

where k(U,V) = (2π)−qp/2|U|−p/2|V|−q/2. The rows yi?, (i = 1, . . . , p), and columns

y?j, (j = 1, . . . , q), have margins yi? ∼ N(mi?, uiiV) and y?j ∼ N(m?j, vjjU) with

precisions Ω = U−1 = (ωij) and Λ = V−1 = (λij). The normal conditional distribu-
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tions have mean vectors and covariance matrices given by

E(yi? | y−i?) = mi? − ω−1
ii

∑
s∈(1,...,q\i) ωis(ys? −ms?), cov(yi? | y−i?) = ω−1

ii V,

E(y?j | y−?j) = m?j − λ−1
jj

∑
t∈(1,...,p\j) λtj(y?t −m?t), cov(y?j | y−?j) = λ−1

jj U,

for rows i = 1, . . . , q and columns j = 1, . . . , p. Zeros in Ω and/or Λ define conditional

independencies. If (i, j) 6= (s, t) then yij and yst may, conditional upon y−(ij,st) be

dependent through either rows or columns; conditional independence is equivalent

to: (a) at least one zero among λtj and ωis when s 6= i, j 6= t; (b) ωis = 0 when

s 6= i, j = t; (c) λjt = 0 when s = i, j 6= t . With no loss of generality in this section

I set M = 0.

Undirected graphical models can be applied to each of Λ and Ω to represent strict

conditional independencies. A graph GV on nodes {1, . . . , p} has edges between pairs

of column indices (j, t) for which λjt 6= 0; Λ has off-diagonal zeros corresponding to

within-row conditional independencies. Similarly, a graph GU on nodes {1, . . . , q}

lacks edges between row indices (i, s) for which ωis = 0. I focus here on decomposable

graphs GU and GV. The theory of graphical models can be now overlaid to define

conditional factorisations of the matrix normal density over graphs. Over GV, for

example, I have

p(Y | U,V, GV, GU) =

∏
PV∈PV

p(Y?PV
| U,VPV

)∏
SV∈SV

p(Y?SV
| U,VSV

)
(2.2)

where PV is the set of complete prime components, or cliques, of GV and SV is

the set of separators. For each subgraph g ∈ {PV,SV}, Y?g is the q × |g| matrix

with variables from the |g| columns of Y defined by the subgraph, and Vg the

corresponding sub-matrix of V. Each term in equation (5.3) is matrix normal, Y?g ∼

N(0,U,Vg) with Λg = V−1
g having no off-diagonal zeros. I can similarly factorise

the joint density over GU.
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Now, U and V are not uniquely identified since, for any c 6= 0, p(Y | U,V) =

p(Y | cU,V/c). There are a number of potential approaches to imposing identi-

fication constraints such as tr(V) = p (Theobald & Wuttke, 2006), and possible

strategies that use unconstrained parameters; I discuss the latter in Section 3.5. Our

use of hyper-Markov priors over each of U and V with underlying graphical mod-

els, discussed below, makes it desirable to adopt an explicit constraint and I enforce

v11 = 1 from here on.

2.3 Matrix graphical modelling

In Section 1.2.3, I have introduced the hyper-inverse Wishart priors of equation (1.3)

that are conjugate for covariance matrices in multivariate normal graphical models

(Dawid & Lauritzen, 1993). Hyper-inverse Wishart distributions are compatible and

consistent across graphs, which is critical when admitting uncertainty about graph

structures (Giudici & Green, 1999; Jones et al., 2005). On decomposable graphs,

the implied priors on sub-covariance matrices of all components and separators are

inverse Wishart. Use of independent hyper-inverse Wishart priors for U,V in the cur-

rent context is a natural choice, and maintains compatibility and consistency across

graphs GU, GV. To incorporate the identification constraint v11 = 1, I use a param-

eter expansion approach. Parameter expansion involves expanding the parameter

space by adding new nuisance parameters, and has been used simply algorithmically

to accelerate Markov chain Monte Carlo samplers (Liu et al., 1998; Liu & Wu, 1999),

but can also be used to induce new priors (Gelman, 2004, 2006) as is germane here.

I assume the prior p(U,V) = p(U)p(V) where the margins are defined by

U ∼ HIWGU
(b,B) and V = V∗/v∗11 where V∗ ∼ HIWGV

(d,D). (2.3)

The parameter expansion concept relates to v∗11 as an added parameter that

converts column scales in V to those relative to the scale of the first column. As
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I move across graphs GV, the priors p(V | GV) have the same induced priors over

subgraph correlation structures although are no longer in complete agreement for

V = V∗/v∗11 due to the different parameterisations and interpretations. This is

natural and appropriate. Suppose GV and G′
V are two graphs with a common clique

C. Each element in diag(VC) represents the relative scale of variance of that column

to the variance of the first column so that, if GV and G′
V imply different conditional

dependencies between the first column and columns linked to C, then the induced

priors over VC should indeed be different.

The prior p(V) is obtained by transformation from V∗. On any graph GV, V is

determined only by those free elements appearing in the sub-matrices corresponding

to the cliques of the graph, and the non-free elements of V are deterministic functions

of the free elements (Carvalho et al., 2007). Let ν be the number of free elements;

then the transformation from V∗ to (V, v∗11) has Jacobian (v∗11)
ν−1 leading to

p(V, v∗11) = HIWGV
(v∗11V | d,D)(v∗11)

ν−1. (2.4)

Coupled with the prior p(U) on GU, this defines a class of conditionally conjugate

priors in the expanded parameter space.

2.4 Gibbs sampling on given graphs

Assume an initial random sampling context with q × p data matrices Yi, (i =

1, . . . , n), drawn independently from equation (2.1), and write Y for the full set

of data. It is easy to see that, on specified graphs (GU, GV), the posterior simulation

of p(U,V, v∗11 | Y) can be implemented in a Gibbs sampler format, a complete sweep

of which consists of the following three steps:

i. Sampling p(U | −):

The posterior distribution of U takes the form

p(U | Y1:n,V, v∗11) ∝ p(Y1:n | V, v∗11,U)p(U | GU)
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which shows that the update of U can be carried out with the standard conju-

gacy of normal and hyper-inverse Wishart for any graph GU giving the following

posterior conditional distribution of U:

(U | Y1:n,V, v∗11) ∼ HIWGU
(b + np,B +

n∑
i=1

YiV
−1Yi). (2.5)

ii. Sampling p(v∗11 | −):

Notice that the joint prior distribution of (V, v∗11) has the form as in equation

(2.4). So, the conditional posterior for v∗11 is given by

p(v∗11 | Y1:n,V,U) ∝ p(v∗11 | V)

∝
∏

PV∈PV
p((v∗11V)PV

| d,DPV
)∏

SV∈SV
p((v∗11V)SV

| d,DSV
)
(v∗11)

ν−1,

where the distribution for each prime component (and separator ) is an inverse

Wishart. Hence the density for each PV ∈ PV can be written as

p((v∗11V)PV
| d,DPV

) ∝ |(v∗11V)PV
|−(d+2|PV|)/2etr{−1

2
(v∗11V)−1

PV
DPV

}

∝ (v∗11)
−|PV|(2|PV|+d)/2etr{−1

2
(v∗11)

−1(V−1
PV

DPV
)}

yielding

p(v∗11 | Y1:n,V,U) ∝ (v∗11)
−(a/2−ν)−1etr{−1

2
(v∗11)

−1
( ∑

PV∈PV

V−1
PV

DPV
−

−
∑

SV∈SV

V−1
SV

DSV

)
}

where a =
∑

PV
|PV|(2|PV|+ d)−

∑
SV
|SV|(2|SV|+ d).

Now, note that V−1 can be expressed as (Lauritzen, 1996)

V−1 =
∑

PV∈PV

[V−1
PV

]0 −
∑

SV∈SV

[V−1
SV

]0
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where K0 denotes an extension of the matrix K with zeros so as to give it

the appropriate dimensions; then the density function of v∗11 can be further

simplified as

p(v∗11 | Y1:n,V,U) ∝ (v∗11)
−(a/2−ν)−1etr{−1

2
(v∗11)

−1DV−1}

which implies

(v∗11 | Y1:n,V,U) ∼ IG(a/2− ν, tr(DV−1)/2). (2.6)

iii. Sampling p(V | −):

The complete conditional posterior distribution for V satisfying v11 = 1 can

be expressed as

p(V | Y1:n,U, v∗11) ∝ p(Y1:n | V, v∗11,U)p(V | GV, v∗11)

where the prior p(V | GV, v∗11), from equation (2.4), is

HIWGV
(V | d,Dv∗−1

11 )I(V11 = 1).

Therefore, by the same argument as in i., I obtain the conditional posterior

distribution for V as

(V | −) ∼ HIWGV
(d + nq,Dv∗−1

11 +
∑n

i=1 Y′
iU

−1Yi)I(V11 = 1). (2.7)

This component, HIW (d + nq,Dv∗−1
11 +

∑n
i=1 Y′

iU
−1Yi)I(V11 = 1), is the

HIW distribution conditioned on the 1− 1 element of the variance matrix set

at unity.

These distributions form the basis of Gibbs sampling for p(U,V, v∗11 | Y). This

involves iterative resampling from the hyper-inverse Wishart, inverse gamma and

new conditional hyper-inverse Wishart distributions. Simulation of the former is
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based on Carvalho et al. (2007), while sampling the latter can be done as follows.

From Lemma 2.18 of Lauritzen (1996), I can always find a perfect ordering of the

nodes in GV so that node 1 is in the first clique, say C, and then initialise the hyper-

inverse Wishart sampler of Carvalho et al. (2007) to begin with a simulation of the

implied conditional inverse Wishart distribution for the covariance matrix on that

first clique. Sampling VC from an inverse Wishart distribution conditional on the

first diagonal element set to unity is straightforward.

2.5 Example: A simulated random sample

A sample of size n = 48 was drawn from the (q = 8)×(p = 7) dimensional N(0,U,V)

distribution where, using · to denote zeros to highlight structure, the precision ma-

trices are

Λ =


1·85 -0·09 -0·65 · -0·24 0·45 ·

-0·09 0·21 0·08 · · 0·14 -0·13
-0·65 0·08 0·58 0·10 · -0·30 ·
· · 0·10 0·48 · -0·10 ·

-0·24 · · · 0·70 -0·17 ·
0·45 0·14 -0·30 -0·10 -0·17 0·61 -0·36
· -0·13 · · · -0·36 3·72


and

Ω =



0·99 · · -0·33 · 0·05 · ·
· 3·65 0·33 · -0·39 -0·41 · -0·03
· 0·33 2·23 · · -0·38 · ·

-0·33 · · 1·65 · · · ·
· -0·39 · · 2·91 -0·30 · ·

0·05 -0·41 -0·38 · -0·30 4·71 -0·13 -0·40
· · · · · -0·13 1·07 -0·26
· -0·03 · · · -0·40 -0·26 1·45


.

First consider analysis on the true graphs under priors with b = d = 3 and

B = 5I8,D = 5I7 and simulation sample size 8000 after an initial, discarded burn-in

of 2000 iterations. Figure 4.5 presents some trace plots of Monte Carlo samples.

Convergence is rapid and apparently fast-mixing in this simulated examples. The

22



corresponding posterior means of the precision matrices are

Λ̂ =


1·86 -0·11 -0·68 · -0·28 0·44 ·

-0·11 0·28 0·14 · · 0·16 -0·21
-0·68 0·14 0·68 0·16 · -0·33 ·
· · 0·16 0·59 · -0·15 ·

-0·28 · · · 0·75 -0·14 ·
0·44 0·16 -0·33 -0·15 -0·14 0·71 -0·45
· -0·21 · · · -0·45 4·14


and

Ω̂ =



0·90 · · -0·27 · -0·02 · ·
· 3·23 0·50 · -0·35 -0·22 · -0·12
· 0·50 2·14 · · -0·37 · ·

-0·27 · · 1·46 · · · ·
· -0·35 · · 2·88 -0·41 · ·

-0·02 -0·22 -0·37 · -0·41 4·20 -0·29 -0·08
· · · · · -0·29 0·91 -0·26
· -0·12 · · · -0·08 -0·26 1·58


.

2.6 Dynamic matrix-variate graphical models for time series

One motivating interest is models for matrix time series data. Carvalho & West

(2007a,b) used graphical structuring for a single covariance matrix in a class of

multivariate, exchangeable time series models (Quintana & West, 1987; Quintana,

1992; West & Harrison, 1997) that has been widely used in financial time series

(Quintana et al., 2003; Carvalho & West, 2007a,b). Using the theory and methods

for matrix normal models developed above, I am now able to extend to matrix time

series involving two covariance matrices and associated graphical models. In the

notation below, the work of Carvalho & West (2007a,b) is the special case of vector

data with q = 1, U fixed, and inference on (V, GV) only.

A q × p matrix-variate times series Yt follows the dynamic linear model

Yt = (Iq ⊗ F′
t)Θt + νt, νt ∼ N(0,U,V)

Θt = (Iq ⊗Gt)Θt−1 + Υt, Υt ∼ N(0,U⊗Wt,V)

for t = 1, 2, . . . , where

23



Figure 2.1: MCMC traceplots of diagonal elements in V in the anal-
ysis of the simulated random sample of Section 2.5. This illustrates the
stability and fast-mixing of the MCMC that is consistent across all pa-
rameters in U and V.

(a) Yt = (Yt,ij), the q × p matrix observation at time t;

(b) Θt = (Θt,ij), the qs×p state matrix comprised of q×p state vectors Θt,ij each

of dimension s× 1;

(c) Υt = (ωt,ij), the qs×p matrix of state evolution innovations comprised of q×p

innovation vectors ωt,ij each of dimension s× 1;

(d) νt = (nut,ij), the q × p matrix of observational errors;
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(e) Wt is the s× s innovation covariance matrix at time t;

(f) for all t, the s−vector Ft and s× s state evolution matrix Gt are known.

Also, Υt follows a matrix-variate normal distribution with mean 0, left covariance

matrix U ⊗Wt and right covariance matrix V. In terms of scalar elements, I have

q × p univariate models with individual s−vector state parameters, namely

Observation: Yt,ij = F′
tΘt,ij + νt,ij, νt,ij ∼ N(0, uiivjj) (2.8)

Evolution: Θt,ij = GtΘt−1,ij + ωt,ij, ωt,ij ∼ N(0, uiivjjWt)

for each i, j and t. Each of the scalar series shares the same Ft and Gt elements,

and the reference to the model as one of exchangeable time series reflects these

symmetries. In the example below Ft = F and Gt = G as in many practical

models, but the model class includes dynamic regressions when Ft involves predictor

variables. This form of model is a standard specification (West & Harrison, 1997)

in which the correlation structures induced by U and V affect both the observation

and evolution errors; for example, if uij is large and positive, vector series Yt,?i

and Yt,?j will show concordant behavior in movement of their state vectors and in

observational variation about their levels. Specification of the entire sequence of

Wt in terms of discount factors (West & Harrison, 1997) is also standard practice,

typically using multiple discount factors related to components of the state vector

and their expected degrees of random change in time, as illustrated in the example

below. The innovations here concern graphical modelling and inference on (U,V).

Key theory, conditional on U,V, concerns the conjugate sequential learning and

forecasting as data is processed, as follows.

Theorem 1. Define Dt = {Dt−1,Yt} for t = 1, 2, . . . , with D0 representing prior

information. With initial prior (Θ0 | U,V, D0) ∼ N(m0,U⊗C0,V) I have, for all

t :
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(a) Posterior at t− 1 : (Θt−1 | Dt−1,U,V) ∼ N(mt−1,U⊗Ct−1,V)

(b) Prior at t : (Θt | Dt−1,U,V) ∼ N(at,U ⊗Rt,V) where at = (In ⊗Gt)mt−1

and Rt = GtCt−1G
′
t + Wt.

(c) One-step forecast at t − 1 : (Yt | Dt−1,U,V) ∼ N(ft,Uqt,V) with forecast

mean matrix ft = (In ⊗ F′
tGt)mt−1 and scalar qt = F′

tRtFt + 1.

(d) Posterior at t : (Θt | Dt,U,V) ∼ N(mt,U⊗Ct,V) with mt = at +(Iq⊗At)et

and Ct = Rt −AtA
′
tqt where At = RtFt/qt and et = Yt − ft.

Proof. This results from the theory of multivariate models applied to vec(Yt) (West

& Harrison, 1997). The main novelty here concerns the separability of covariance

structures. That is: (a) for all t, the distributions for state matrices have separa-

ble covariance structures; for example, (Θt | Dt,U,V) is such that cov{vec(Θt) |

Dt,U,V} = V⊗U⊗Ct; (b) the sequential updating equations for the set of qs× p

state matrices are implemented in parallel based on computations for the univariate

component models, each of them involving the same scalar qt, s−vector At and s×s

matrices Rt,Ct at time t.

Suppose now that U and V are constrained by graphs GU and GV, with priors as

in equation (2.3) and sparsity priors over the graphs. Given data over t = 1, . . . , n,

the sequential updating analysis on (GU, GV) leads to the full joint density

p(Y1, . . . ,Yn | U,V) =
n∏

t=1

p(Yt | U,V, Dt−1) =
n∏

t=1

N(et | 0, qtU,V),

marginalised with respect to all state vectors. The one-step forecast error matrices et

are conditionally independent matrix normal variates. Apart from the scalars qt, this

is essentially the framework of Section 2.2. Thus, with a small change to insert the

qt, I am able to directly fit and explore dynamic graphical models using the analysis

for random samples with embedded sequential updating computations.
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2.7 A macro-economic example

An example concerns exploration of conditional dependence structures in macroeco-

nomic time series related to US labour market employment. The data are Current

Employment Statistics for the 8 US states New Jersey, New York, Massachusetts,

Georgia, North Carolina, Virginia, Illinois and Ohio. I explore these data across

9 industrial sectors: construction, manufacturing,transportation and utilities, infor-

mation, financial activities, professional and business services, education and health

services, leisure and hospitality, and government. In our model framework, I have

q = 8, p = 9 and monthly data over several years. Then U characterises the residual

conditional dependencies among states while V does the same for industrial sectors,

in the context of an overall model that incorporates time-varying state parameters

for underlying trend and annual seasonal structure in the series. Trend and sea-

sonal elements are represented in standard form, the former as random walks and

the latter as randomly varying seasonal effects. Specifically, in month t, the monthly

employment change in state i and sector j is Yt,ij, modelled as a first-order polyno-

mial/seasonal effect model (West & Harrison, 1997) with the state vector comprising

a local level parameter and 12 seasonal factors, so that the state dimension is s = 13.

The univariate models of equation (2.8) have state vectors Θt,ij = (µt,ij, φt,ij)
′

where µt,ij is the local level and φt,ij = (φt,ij,k, φt,ij,k+1, · · · , φt,ij,11, φt,ij,0, · · · , φt,ij,k−1)

contains current monthly seasonal factors, subject to 1′φt,ij = 0 for all i, j and t.

Further, Ft = F (13× 1) and Gt = G (13× 13) for all t, where F′ = (1, 1, 0, · · · , 0).

The state matrix G and the sequence of state evolution covariance matrices Wt

(13× 13) are

G =

(
1 0′

0 P

)
with P =

(
0 I11

1 0′

)
, and Wt =

(
Wt,µ 0′

0 Wt,φ

)
,

with the latter having entries as follows. The univariate Wt,µ and 12 × 12 matrix
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Wt,φ are defined via discount factors δl and δs and the corresponding block compo-

nents of Ct as Wt,µ = Ct−1,µ(1− δl)/δl and Wt,φ = PCt−1,φP
′(1− δs)/δs for each t.

The discount factor δl reflects the rate at which the levels µt,ij are expected to vary

between months, with 100(δ−1
l − 1)% of information on these parameters decaying

each month. The factor δs plays the same role for seasonal parameters. I use δl =

0·9, δs = 0·95 to allow more adaptation to level changes than seasonal factors (West

& Harrison, 1997); results, in terms of graphical model search and structure, are

substantially similar using other values in appropriate ranges. In application, I can

estimate discount factors and also extend the model to allow changes in discount

factors to model change-points and other events impacting the series, based on mon-

itoring and intervention methods (Pole et al., 1994; West & Harrison, 1997). Such

considerations are secondary to our purposes in using this model for illustration of

computational model search analysis for (U,V, GU, GV), but practically very ger-

mane. Model completion uses initial, vague priors with m0 = 0, the 104× 9 matrix,

and C0 = 100I13. The constraint that 1′φt,ij = 0 is imposed by transforming m0

and C0 as discussed in West & Harrison (1997).

Applying this model, I aim to detect and estimate sustained movement and

changes in trend and seasonality, generating on-line detrended and deseasonalised

estimates matrix series et whose row and column covariance patterns are defined by

the parameters U,V. Figure 2.2 through Figure 2.5 display the observed time series

and one-step ahead forecasts for all of the eight sections and nine states.

The standardised residuals et/
√

qt can now be used as independent and identically-

distributed random matrices to draw inference about (U,V). Priors for (U,V) use

B = 5I8, D = 5I9 and b = d = 3, reflecting the range of residual variation. Assume

given full graphs for both GU and GV. Table 2.1 and 2.2 respectively display the

Monte Carlo posterior estimates of two precision matrices and two correlation matri-

ces using the sample mean of the 5000 simulated precision and correlation matrices.
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Table 2.1: Posterior means of precision matrices in analysis of the matrix econometric
time series data under full graphs. The 8 US states are: NJ, New Jersey; NY,
New York; MA, Massachusetts; GA, Georgia; NC, North Carolina; VA, Virginia;
IL, Illinois; OH, Ohio. The 9 industrial sectors are: C, industrial construction;
M, manufacturing; T&U, transportation & utilities; I, information; FA, financial
activities; P&BS, professional & business; E&H, services, education & health; L&H,
services, leisure & hospitality; G, government.

NJ NY MA GA NC VA IL OH
NJ 0.86 −0.02 −0.16 −0.04 −0.01 −0.14 −0.06 −0.09
NY 0.25 −0.20 −0.02 0.01 −0.10 −0.01 −0.02
MA 1.76 −0.05 −0.11 −0.20 −0.08 −0.06
GA 0.75 −0.07 −0.04 −0.04 −0.06
NC 1.09 −0.18 −0.03 −0.11
VA 1.32 −0.03 −0.07
IL 0.43 −0.08

OH 0.64

C M T&U I FA P&BS E&H L&H G
C 1.17 0.00 −0.09 −0.06 −0.10 −0.09 −0.08 −0.19 −0.02
M 0.43 −0.06 −0.05 −0.00 −0.04 −0.04 −0.01 −0.00

T&U 0.41 0.03 −0.10 −0.04 −0.04 −0.08 0.00
I 1.81 −0.04 −0.04 0.03 0.01 −0.04

FA 1.74 −0.08 −0.02 0.01 −0.01
P&BS 0.38 −0.01 −0.11 0.00
E&H 0.75 −0.05 −0.01
L&H 0.77 −0.00

G 0.22

These tables suggest that there might be many elements that are close to zero in pre-

cision matrices. Assuming full graphs for (U,V) might cause the ignorance of these

sparse structures. I discuss how to conduct the fully Bayesian analysis to address

the graphical model uncertainty and model determination in Chapter 3.
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Table 2.2: Posterior means of correlation matrices in analysis of the matrix econo-
metric time series data under full graphs. The 8 US states are: NJ, New Jersey; NY,
New York; MA, Massachusetts; GA, Georgia; NC, North Carolina; VA, Virginia; IL,
Illinois; OH, Ohio. The 9 industrial sectors are: C, industrial construction; M, man-
ufacturing; T&U, transportation & utilities; I, information; FA, financial activities;
P&BS, professional & business; E&H, services, education & health; L&H, services,
leisure & hospitality; G, government.

NJ NY MA GA NC VA IL OH
NJ 1 0.17 0.24 0.12 0.11 0.23 0.19 0.21
NY 1 0.38 0.13 0.10 0.28 0.12 0.17
MA 1 0.14 0.17 0.28 0.19 0.20
GA 1 0.14 0.14 0.14 0.16
NC 1 0.22 0.13 0.21
VA 1 0.15 0.20
IL 1 0.23
OH 1

C M T&U I FA P&BS E&H L&H G
C 1 0.07 0.22 0.05 0.12 0.24 0.14 0.28 0.04
M 1 0.18 0.06 0.05 0.14 0.09 0.09 0.02

T&U 1 −0.00 0.16 0.21 0.13 0.24 0.01
I 1 0.03 0.06 −0.02 0.01 0.07

FA 1 0.15 0.05 0.07 0.02
P&BS 1 0.09 0.28 0.02
E&H 1 0.13 0.03
L&H 1 0.02

G 1
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Figure 2.2: Time series in the econometric example, plotted over
1990-2007. Monthly changes in employment across nine sectors for
NJ and NY together with the one-step ahead forecasts.
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Figure 2.3: Time series in the econometric example, plotted over
1990-2007. Monthly changes in employment across nine sectors for
MA and GA together with the one-step ahead forecasts.
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Figure 2.4: Time series in the econometric example, plotted over
1990-2007. Monthly changes in employment across nine sectors for
NC and VA together with the one-step ahead forecasts.
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Figure 2.5: Time series in the econometric example, plotted over
1990-2007. Monthly changes in employment across nine sectors for
IL and OH together with the one-step ahead forecasts.
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3

Matrix normal graphical model determination

3.1 Marginal likelihood

Exploration of uncertainty about graphical model structures involves consideration

of the marginal likelihood function over graphs. For any pair (GU, GV), this is

p(Y) ≡ p(Y | GU, GV) =

∫
p(Y | U,V)p(U)p(V)dU dV.

The priors in the integrand depend on the graphs although I drop that in the notation

for clarity. In multivariate models, marginal likelihoods can be evaluated in closed

form on decomposable graphs (Giudici, 1996; Giudici & Green, 1999; Jones et al.,

2005; Carvalho & West, 2007a,b). In our matrix models, the integral cannot be

evaluated but I can generate useful approximations via use of Candidate’s formula

(Besag, 1989; Chib, 1995). Write Θ = {U,V, v∗11} for all parameters, and suppose

that I can evaluate p(θ | Y) for some subset of parameters θ ∈ Θ; Candidate’s

formula gives the marginal likelihood via the identity p(Y) = p(Y | θ)/p(θ | Y).

Applying this requires that I estimate components of the numerator or denominator.

Choosing θ to maximally exploit analytic integration is key, and different choices
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that integrate over different subsets of parameters will lead to different, parallel

approximations of p(Y) that can be compared. I use two approximations based on

marginalisation over desirably disjoint parameter subsets, namely

(A) p(Y) = p(Y, v∗11,U)/p(v∗11,U | Y) at any chosen value of θ = {v∗11,U}, and

(B) p(Y) = p(Y,V)/p(V | Y) at any value of θ = V.

I estimate the components of these equations that have no closed form, then

plug-in chosen values U,V, v∗11, such as approximate posterior means, to provide

two estimates of p(Y).

For (A), first rewrite as

p(Y) =
p(Y, v∗11,U)p(V | v∗11,U,Y)

p(v∗11,U | Y)p(V | v∗11,U,Y)
=

p(Y | V, v∗11,U)p(U)p(V | v∗11)p(v∗11)

p(v∗11,U | Y)p(V | v∗11,U,Y)
.

The numerator terms are each easily computed at any {V, v∗11,U}. The second de-

nominator term p(V | v∗11,U,Y) has an easily evaluated closed form, as in the Gibbs

sampling step. The first denominator term may be approximated by

p(v∗11,U | Y) =

∫
p(v∗11 | Y,V)p(U | Y,V, v∗11)p(V | Y)dV

≈ 1

M

M∑
j=1

p(v∗11 | Y,Vj)p(U | Y,Vj, v
∗
11)

where the sum is over posterior draws Vj; this is easy to compute as it is a sum of

the product of inverse gamma and hyper-inverse Wishart densities.

For (B), the numerator can be analytically evaluated as
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p(V,Y) =

∫
p(Y,U,V, v∗11)dU dv∗11

=

∫
N(Y1:n | 0,U,V)HIWGU

(U | b,B)HIW (v∗11V|d,D)(v∗11)
ν−1dU dv∗11

=

∫
N(Y1:n | 0,U,V)HIWGU

(U | b,B)dU×

×
∫

HIW (v∗11V|d,D)(v∗11)
ν−1dv∗11

=
(2π)−

nqp
2 |V|−nq

2 H(b,B, GU)

H(b + np,B +
∑n

i YiV−1Y′
i, GU)

×

×
∏

PV∈PV
|VPV

|−
d+2|PV|

2 H(d,D, GV)∏
SV∈SV

|VSV
|−

d+2|SV|
2 H(c, tr(DV−1), 1)

=
qV(2π)−nqp/2H(b,B, GU)H(d,D, GV)

H(b + nq,B +
∑n

i YiV−1Yi, GU)H(a, tr(DV−1), 1)

where

qV =
∏

PV∈PV

|VPV
|−(nq+d+2|PV|)/2

/ ∏
SV∈SV

|VSV
|−(nq+d+2|SV|)/2,

the H(·, ·, G·) terms are normalising constants of the corresponding hyper-inverse

Wishart distributions (Giudici & Green, 1999; Jones et al., 2005) and

c =
∑

PV∈PV

|PV|(2|PV|+ d)−
∑

SV∈SV

|SV|(2|SV|+ d)− 2ν.

The density function in the denominator is approximated as

p(V | Y) =

∫
p(V | v∗11,U,Y)p(v∗11,U | Y)dv∗11 dU ≈ 1

M

M∑
j=1

P (V | Y,Uj, v
∗
11,j)

where the sum over posterior draws (Uj, v
∗
11,j) can be easily performed, with terms

given by conditional hyper-inverse Wishart density evaluations.
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3.2 Example: Markov random fields from matrix graphical models

A rather interesting class of matrix graphical structures arises under autoregressive

(AR) correlation specifications for the two precision matrices. This generates a novel

class of Markov random field models that is of potential interest in application areas

such as texture image modelling. I use this construction here for a second, much

higher-dimensional synthetic example.

Take U and V as covariances matrices of stationary AR process. For example

here, I choose q = p = 60 taking U as the 60 × 60 variance matrix of an AR(5)

model with AR parameters (0.91,−0.44, 0.38,−0.31, 0.22) and marginal variance

0.55, and V as the 60× 60 variance matrix of an AR(4) model with AR parameters

(0.47, 0.23, 0.14,−0.19) and marginal variance 0.41. This model is used to repeatedly

simulate 50 observations and each draw from the model is a sampled Markov ran-

dom field; the columns of each sample are correlated realisations from the underlying

AR(5) model, and the rows correlated realisations of the AR(4) model. Figure 3.1

images the two underlying precision matrices along with two representative samples.

To illustrate model fitting and evaluation, I use a prior specified with d = b =

3,D = (d + 2)I60 and B = 0.01(b + 2)I60. MCMC analysis uses burn-in of 1000

and then saved 2000 samples starting with initial value V = I60. The MCMC was

run repeatedly across a range of models differing in the order of the underlying

AR models for rows and columns, exploring all combinations of AR(1) to AR(9)

structures for each of the precision matrices. Applying the model marginal likelihood

approximation to each model allows us to evaluate model orders. Table 3.1 shows the

top 5 models selected by the largest log-marginal likelihood. As can be seen, the true

model orders lead to the largest marginal likelihood and, more importantly in terms

of assessing the effectiveness of the methodology, the two parallel marginal likelihood

assessments are in concordance and differ negligibly on the scale of interest.
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Figure 3.1: Images displaying the band structure of the two precision
matrices (upper row) used in the MRF 60 × 60 matrix graphical model
example of Section 3.2, together with images of two simulated draws
(lower row) from the model.

3.3 Graphical model uncertainty and search

Now admit uncertainty about graphs (GU, GV) using sparsity-encouraging priors in

which edge inclusion indicators are independent Bernoulli variates (Dobra et al.,

2004; Jones et al., 2005). Section 1.2.3 has discussed the choice of the edge inclusion

probability. I use the default choice of 2/(p − 1) for a graph with p nodes in all

examples in this chapter. I now extend Markov chain Monte Carlo simulation for

multivariate graphical models (Giudici & Green, 1999; Jones et al., 2005) to learning

on (GU, GV) in the above matrix model analysis. Our analysis generates multiple

graphs with values of approximate posterior probabilities, using the Markov chain
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Table 3.1: Relative log-marginal likelihood of the top five models in the MRF graphical
model. Each entry is the estimated log-marginal likelihood relative to that of the most
likely model on Candidate’s method (A).

Graph Structure log likelihood (A) log likelihood (B)

V U
AR(4) AR(5) 0 0.004
AR(5) AR(5) −127.8 −127.9
AR(6) AR(5) −234.3 −234.2
AR(4) AR(6) −355.8 −355.8

simulation for model search. This relies on the computation of the unnormalised

posterior over graphs, p(GU, GV | Y) ∝ p(Y | GU, GV)p(GU, GV) involving the

marginal likelihood value for any specified model (GU, GV) at each search step. For

the latter, I average the approximate marginal likelihood values from methods (A)

and (B). Jones et al. (2005) discuss performance of various stochastic search methods

in single multivariate graphical models; for modest dimensions, they recommend

simple local-move Metropolis-Hastings steps. Here, given a current pair (GU, GV), I

can apply local moves in GU space based on the conditional posterior p(GU | Y, GV),

and vice-versa. A candidate G′
U is sampled from a proposal distribution q(G′

U; GU)

and accepted with probability

α = min{ 1, p(G′
U | Y, GV)q(GU; G′

U)/p(GU | Y, GV)q(G′
U; GU) };

our examples use the simple random add/delete edge move proposal of Jones et al.

(2005). I then couple this with a similar step using p(GV | Y, GU) at each iteration.

This requires a Markov chain analysis on each graph pair visited in order to evaluate

marginal likelihood, so implying a substantial computational burden.
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3.4 Examples

3.4.1 Example: A simulated random sample (continued)

I illustrate the marginal likelihood approximation, model uncertainty and search with

the simulated random sample example introduced in Section 2.5.

Using the same priors for U and V as in Section 2.5, I evaluated the two marginal

likelihood estimates under the true graphs at differing simulated sample size ranging

from 2000 to 8000. Figure 5.1 gives an implementation check on the concordance of

the two marginal likelihood estimates. These are very close and differ negligibly on

the log probability scale even at small Monte Carlo sample sizes.

Consider graphical model uncertainty with prior edge inclusion probabilities 2/(q−

1) for GU and 2/(p−1) for GV. Repeat explorations suggest stability of the marginal

likelihood estimation using smaller Monte Carlo sample sizes, and I use 2000 draws

within each step of the model search. The add-delete Metropolis-within-Gibbs was

run for 20000 iterates starting from empty graphs. Results are essentially repli-

cated starting at the full graphs. The most probable graphs visited, (ĜU, ĜV), are

pictured in Figure 3.3; these are local modes and also have greater posterior prob-

ability than the true graphs also displayed, and this model was first visited after

2614 Markov chain steps. The edges in (ĜU, ĜV) generally have higher posterior

edge inclusion probability than those not included; the lowest probability included

edge has probability 0·52, while the highest probability excluded edge has probability

0·59. Thus, graphs discovered by highest posterior probability and by aggregating

high probability edges are not dramatically different. The modal ĜU is sparser than

the true GU, reflecting the difficulties in identifying very weak signals; for example,

the modal graph lacks an edge corresponding to the true Ω1,6 = 0.05, and the pos-

terior probability of that edge is naturally low. One measure of inferred sparsity is

the posterior mean of the proportion of edges in each graph; these are about 28%,

41



59·6% for GU, GV, respectively. Additional posterior summaries and exploration of

the posterior samples suggest clean convergence of the simulation analysis and the

Metropolis-Hastings steps over graphs had good empirical acceptance rates of about

26%, 9% for GU, GV, respectively.

Figure 3.2: Log-marginal likelihood values in the simulation example of Section
3.4.1. The two estimates of Section 3.1 were successively re-evaluated and plotted
here at differing simulation sample sizes.

3.4.2 Example: A macro-economic example (continued)

I emphasise the practical importance of structured graphical modelling with another

example in which the macro-economic data of Section 2.7 are studied.

For the covariance matrices of the residuals, I used the same priors as in Section

2.7. For the priors over graphical model spaces, I used the sparsity-encouraging

priors with prior edge inclusion probabilities 2/(q − 1) for GU and 2/(p − 1) for

GV. To conduct a fully Bayesian model determination procedure of Section 3.1 and
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True GU True GV

Modal GU Modal GV

Figure 3.3: True graphs in the simulated data example together with graphs of
highest posterior probability identified from the analysis.

3.3, I ran the add-delete Metropolis-within-Gibbs sampler for 20000 steps. Two

chains were run: one starting at empty graphs and one at full graphs. In Table

3.2, I see that the most probable graph combination, those identified with highest

posterior probability and pictured in Figure 3.4, and the acceptance rate in graph

spaces (GU, GV) were insensitive to the starting points. Posterior edge inclusion

probabilities are also generally consistent between the two runs; see Table 3.3. In

terms of posterior probability and sparsity as measured by the proportion of edges
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Table 3.2: Summary of two Metropolis-Hastings chains in graphical model analysis
of the econometric time series data. First row: analysis initialised at empty graphs.
Second row: analysis initialised at full graphs. The second column reports the number
of Markov chain steps to reach the highest posterior graphs (GU, GV) found, and the
third column gives posterior means of proportions of edges in each graph.

Max log Graphs to first Sparsity Acceptance rate
posterior top graphs visited (GU, GV) (αGU

, αGV
)

−27695·40 401 (72·4%,42·1%) (7·3%,11·9%)
−27695·43 2194 (73·7%,41·9%) (7·7%,12·2%)

in a graph, the most probable graphs sit in a region of graph space population by

graphs of similar sparsity and posterior probability; see Figure 3.5. The posterior is

dense around this mode.

Graphs with high probability in the region of the mode seem to reflect relevant

dependencies in the econometric context. There are strongly evident conditional

independencies particularly among subsets of the industrial sectors; see Table 3.3.

Further, the posterior indicates overall sparsity levels via posterior means of about

73% for the proportion of included edges in the GU graphs and 42% in the GV graph.

Figure 3.5 further illustrates aspects of the posterior over sparsity for GV.

3.5 Further comments

In Chapter 2 and 3, I have introduced Bayesian analysis of matrix-variate graph-

ical models in random sampling and time series contexts. The main innovations

include new priors for matrix normal graphical models, use of the parameter ex-

pansion approach, inference via Markov chain Monte Carlo for a specific graphical

model, evaluation of marginal likelihoods over graphs using coupled Candidate’s for-

mula approximations, and the extension of graphical modelling to matrix time series

analysis.

On the use of parameter expansion, Roy & Hobert (2007) and Hobert & Marchev
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Table 3.3: Posterior edge inclusion probabilities in graphical model analysis of the
matrix econometric time series data. The 8 US states are: NJ, New Jersey; NY,
New York; MA, Massachusetts; GA, Georgia; NC, North Carolina; VA, Virginia;
IL, Illinois; OH, Ohio. The 9 industrial sectors are: C, industrial construction;
M, manufacturing; T&U, transportation & utilities; I, information; FA, financial
activities; P&BS, professional & business; E&H, services, education & health; L&H,
services, leisure & hospitality; G, government.

NJ NY MA GA NC VA IL OH
NJ 1 0·05 1·00 0·55 0·01 1·00 1·00 1·00
NY 1 1·00 0·19 0·00 1·00 0·00 0·59
MA 1 0·98 0·96 1·00 1·00 1·00
GA 1 0·93 0·89 0·75 1·00
NC 1 1·00 0·06 1·00
VA 1 0·31 1·00
IL 1 1·00
OH 1

C M T&U I FA P&BS E&H L&H G
C 1 0·02 1·00 0·16 0·75 1·00 0·99 1·00 0·06
M 1 1·00 0·28 0·02 0·98 0·01 0·03 0·01

T&U 1 0·02 1·00 1·00 0·93 1·00 0·02
I 1 0·06 0·34 0·02 0·01 0·55

FA 1 1·00 0·00 0·04 0·02
P&BS 1 0·02 1·00 0·00
E&H 1 0·75 0·02
L&H 1 0·01

G 1

(2008) provide theoretical support for the method in Gibbs samplers; in our models,

this approach induces tractable and computationally accessible posteriors, leads to

good mixing of Markov chain simulations, and is theoretically fundamental to the

new model/prior framework in addressing identification issues directly and naturally.

On model identification, an alternative approach might use unconstrained hyper-

inverse Wishart priors for each of (U,V) and run the Markov chain Monte Carlo

simulation on the unconstrained parameters, similar to a strategy sometimes used

in multinomial probit models (McCulloch et al., 2000). It can be argued that this
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Figure 3.4: Highest posterior probability graphs that illustrate aspects of inferred
conditional dependencies among industrial sectors and among states in analysis of
the econometric time series data.

is computationally less demanding than using our explicitly constrained prior and

that inferences can be constructed from the simulation output by transforming to

constraint-compatible parameters (Uv11,V/v11). I had considered this, and note that

posterior simulation analysis is marginally faster than under the explicitly identified

model; in empirical studies, however, I find the computational benefit to be of neg-

ligible practical significance. Importantly, this approach relies on a proper prior

for the effectively free, unidentified parameter v11, and is sensitive to that choice.

More importantly, the implied prior on (Uv11,V/v11) is non-standard and difficult

to interpret, and raises questions in prior elicitation and specification; for example,

the implied margins for variances are those of ratios of inverse gamma variates and

difficult to assess compared to the traditional inverse gamma, and there are now

dependencies in priors on left and right covariance matrices. Perhaps most impor-

tant are resulting effects on approximate marginal likelihoods; in examples I have

studied, the approach yields very different marginal likelihoods and the impact of

the marginal prior on the unidentified v11 plays a key role in that. In contrast,

and though very slightly more computationally demanding, the direct and explic-
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Figure 3.5: Summary of posterior on sparsity of GV in the econometric example.
Circle areas are proportional to the fraction of posterior sampled graphs at several
levels of posterior probability plotted against levels of sparsity SGV

measured as the
proportion of edges included.

itly constrained hyper-inverse Wishart prior is easy to interpret, specify and, with

results from Carvalho et al. (2007), implement; synthetic examples have verified the

resulting efficacy of the simulation and model search computations.

Our use of Candidate’s formula to provide different approximations to marginal

likelihoods over graphs can be extended to multiple such approximations. I have

explored other constructions, and find no obvious practical differences in resulting

estimates in simulated examples. This is an area open for theoretical investigation

and in other model contexts. This also offers a route to extending the analysis here

to non-decomposable graphical models.
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Examples in Section 3.4.1 and 3.4.2 are in modest dimensional problems where

local move Metropolis-Hastings methods for the graphical model components of the

analysis can be expected to be effective, building on experiences in multivariate mod-

els (Jones et al., 2005). To scale to higher dimensions, alternatives computational

strategies such as shotgun stochastic search over graphs (Dobra et al., 2004; Jones

et al., 2005; Hans et al., 2007) become relevant. A critical perspective is to de-

fine analysis that will rapidly find regions of graphical model space supported by

the data. It is far better to work with a small selection of high-probability models

than a grossly incorrect model on full graphs, and as dimensions scale the latter

quickly becomes infeasible. Shotgun stochastic search and related methods reflect

this and offer a path towards faster, parallelisable model search. There is also po-

tential for computationally faster approximations using expectation-maximisation

style and variational methods (Jordan et al., 1999). The example in Section 3.2 is

illustrative of the statistical and computational methodology in a higher-dimensional

problem, while introducing a novel class of Markov random field models that emerge

quite naturally from the matrix graphical model context. With the matrix data rep-

resenting a spatial process on a rectangular grid, taking covariance matrices U and

V as those of two stationary autoregressive processes provides flexibility in modelling

patterns separately in horizontal and vertical directions.
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4

Dynamic financial index models: Modeling
conditional dependencies via graphs

4.1 Introduction

Since the seminal work of Sharpe (1964), Financial Index Models have been in the

core of asset pricing and portfolio allocation problems. These models assume that

all systematic variation in the returns of financial securities can be explained by

one or a set of market indices (factors). The central empirical implication of this

assumption is a highly structured covariance matrix for the distribution of returns

as, after conditioning on the chosen set of market indices, the residual covariance

matrix is diagonal. The attractiveness of this approach is immediate as it offers

a very simple, economically justifiable and stable way to estimate potentially very

large covariance matrices.

The covariance matrix of returns is a key input in building optimal portfolios

and its estimation is often challenging as the number of parameters grows expo-

nentially with the number of assets considered. It is necessary, therefore, to work

with structured models that reduce the dimensionality of the problem and deliver
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more effective estimates and, in turn, better investment decisions. In this chapter,

I explore a generalisation of Financial Index Models with more complex patterns

of covariation between returns by allowing conditional dependencies via the intro-

duction of graphical constraints. I work with the matrix-variate dynamic graphical

model (DGM) framework of Carvalho & West (2007a,b) but, unlike their original

work, graphs are used to increase complexity and not to reduce it.

I take the view that, given its popularity in empirical finance, Index Models

such as the Capital Asset Pricing Model (CAPM) and the Fama-French (FF) are

appropriate for the purpose of asset allocation. The central idea of my work it to

show that it is possible to improve upon traditional estimates from Index Models

and provide more flexible, efficient and still parsimonious strategies for estimating

covariances. In addition, I provide two extensions to DGMs: (i) I consider the

problem of sequential inference about the graphical structure and, (ii) define the

sequential updating process in the presence of stochastic regressors.

The proposed forecasting model is tested on stock returns data in a portfolio

selection exercise. Using 100 NYSE monthly stock returns from 1989 through 2008,

I find that our strategy yields better out-of-sample forecast of realised covariance

matrix and lower portfolio variance than the two traditional implementations of

index models, the capital asset pricing model (CAPM) and the Fama-French (FF)

model.

I start by describing Index Models in Section 4.2 along with their use in the

dynamic linear model context. Section 4.3 presents the necessary background of

dynamic matrix-variate graphical models. In Section 4.4, I discuss issues of dealing

with graph (model) uncertainty through time and a simulation study in presented

in Section 4.5. Section 4.6 expands the DGM context to allow for random regres-

sors. Finally, in Section 4.7 I explore the use of DGMs as a tool to improve the

implementation of Financial Index Models.
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4.2 Financial Index Models

A k-dim Index Model assumes that stock returns are generated by

Yit = αi +
k∑

j=1

θijfjt + νit

where fjt is the jth common factor at time t, and residuals νit are uncorrelated to

index fjt and to one another. This implies that the covariance matrix of returns can

be written as:

Vt = Θ′ΨtΘ + Σt

where Θ is the matrix of factor loadings of stocks, Ψt is the covariance matrix of the

factors, and Σt is a diagonal matrix containing the residual return variances.

Some interesting Index Models include the single index model and three index

model. The single index uses the excess return of the market as the single index.

This model corresponds to the standard Capital Asset Pricing Model of Sharpe

(1964). More recently, and perhaps the most commonly used approach is the three

index model proposed by Fama & French (1993) where two new factors (besides

the market) are added: value-weighted market index with size and book-to-market

factors.

These models are usually estimated by running a set of independent regressions

where the excess return of each stock is regressed against the indices for a certain

window of time. Call θ̂i the estimates of the regression coefficients for stock i and σ̂ii

the residual variance estimate. This yields the following estimator for the covariance

matrix of stock returns:

V̂ = Θ̂Ψ̂Θ̂′ + Σ̂,

where Ψ̂ is the sample covariance matrix of indices, Θ̂ = [θ̂1, . . . , θ̂p] is the matrix

of regression coefficients for all p assets and Σ̂ is the diagonal matrix of residual
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variances. This strategy usually defines the one-step forecast of the covariance matrix

to be the current estimate of the covariance matrix V̂.

In our work, I recast the above strategy in a natural model based on a state-

space or dynamic linear model (DLM) (West & Harrison, 1997) representation. This

follows the work of Zellner & Chetty (1965); Quintana & West (1987); Carvalho &

West (2007a), to cite a few. I use a dynamic regression framework where, in its full

generality, a p× 1 vector time series of returns Yt follows the dynamic linear model

Y′
t = F′

tΘt + ν ′
t, νt ∼ N(0,Σt), (4.1)

Θt = Θt−1 + Ωt, Ωt ∼ N(0,Wt,Σt), (4.2)

for t = 1, 2, . . . , where

(a) Yt = (Yti), the p× 1 observation vector;

(b) Θt = (θti), the n× p matrix of states;

(c) Ωt = (ωti), the n× p matrix of evolution innovations;

(d) νt = (νti), the p× 1 vector of observational innovations;

(e) for all t, the n× 1 regressor vector Ft, is known.

Also, Ωt follows a matrix-variate normal with mean 0, left and right covariance

matrices Wt and Σt, respectively. In terms of scalar elements, I have p univariate

models with individual n-vector state parameters, namely

Observation: Yti = F′
tθti + νti, νti ∼ N(0, σ2

ii,t), (4.3)

Evolution: θti = θt−1,i + ωti, ωti ∼ N(0,Wtσ
2
ii,t), (4.4)

for each i, t. Each of the scalar series shares the same Ft elements, and the reference

to the model as one of exchangeable time series reflects these symmetries. This is a
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standard specification in which the correlation structures induced by Σt affect both

the observation and evolution errors; for example, if σij,t is large and positive, vector

series i and j will show concordant behavior in movement of their state vectors and

in observational variation about their levels. Specification of the entire sequence of

Wt in terms of discount factors (West & Harrison, 1997) is also standard practice,

typically using discount factors related to the state vector and their expected degrees

of random change in time.

The above representation provides sequential, closed-form analytical updates of

the one-step ahead forecast distributions of future returns and posterior distributions

for states and parameters defining the model. This allows for proper accounting of the

uncertainty associated with all necessary inputs in sequential investment decisions.

According to traditional Index Models, Σt is a diagonal matrix as all common

variation between returns should be captured by the elements in Θt. I will depart

from this standard assumption and allow for a more flexible representation of the

residual covariance matrix leading to potentially more complex forms of V. This

is done via the introduction of conditional independencies determined by graphical

constraints in Σt. The use of these models in sequential portfolio problems is origi-

nally proposed by Carvalho & West (2007a) and further analyzed by Quintana et al.

(2009). In both references however, graphs were used to reduce the dimensionality

of an otherwise fully unstructured covariance matrix of returns. Here, I come from

a different direction and show that graphs can be successfully used to increase the

complexity of an otherwise highly structured covariance matrix. Before continuing,

I need to define the necessary notation for the introduction of graphical models in

DLMs.
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4.3 Dynamic matrix-variate graphical model

The matrix-variate graphical model framework combines hyper-inverse Wishart prior

distributions of equation (1.3) together with matrix and multivariate normal dis-

tributions, in a direct and simple extension of the usual normal, inverse Wishart

distribution theory to the general framework of graphical models. The n × p ran-

dom matrix X and p × p random variance matrix Σ have a joint matrix-normal,

hyper-inverse Wishart (NHIW) distribution if Σ ∼ HIWG(b,D) on G and (X|Σ) ∼

N(m,W,Σ) for some b,D,m,W. I denote this by (X,Σ) ∼ NHIWG(m,W, b,D)

with X marginally following a matrix hyper-T (as defined in Dawid & Lauritzen,

1993) denoted by HTG(m,W,D, b).

In the dynamic linear model context and given Σt constrained by any decompos-

able graph G, Carvalho & West (2007a,b) define the details of the full sequential and

conjugate updating, filtering and forecasting for the dynamic regressions and time-

varying Σt. This approach incorporates graphical structuring into the traditional

matrix-variate DLM context and provides a parsimonious yet tractable model for

Σt. Consider the matrix normal DLM described in equation (4.1) and (4.2). With

the usual notation that Dt = {Dt−1,Yt} is the data and information set upon any

time t, assume the NHIW initial prior of the form

(Θ0,Σ0 | D0) ∼ NHIWG(m0,C0, b0,S0). (4.5)

In components, (Θ0 | Σ0, D0) ∼ N(m0,C0,Σ0) and (Σ0 | D0) ∼ HIWG(b0,S0),

which incorporates the conditional independence relationships from G into the prior.

For now assume full knowledge of G defining the conditional independence relation-

ships in Y. Full sequential updating can be summarised as follows:

Theorem 1. (Carvalho & West, 2007a,b) Under the initial prior of equation (4.5)

and with data observed sequentially to update information sets Dt the sequential
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updating for the matrix normal dynamic graphical models (DGM) on G is given as

follows:

(i) Posterior at t− 1: (Θt−1,Σt−1 | Dt−1) ∼ NHIWG(mt−1,Ct−1, bt−1,St−1)

(ii) Prior at t: (Θt,Σt | Dt−1) ∼ NHIWG(at,Rt, δbt−1, δSt−1) where at = mt−1 and

Rt = Ct−1 + Wt

(iii) One-step forecast: (Yt | Dt−1) ∼ HTG(ft, qtδSt−1, δbt−1) where f ′t = F′
tat and

qt = F′
tRtFt + 1

(iv) Posterior at t: (Θt,Σt | Dt) ∼ NHIWG(mt,Ct, bt,St) with mt = at + Ate
′
t,

Ct = Rt −AtA
′qt, bt = δbt−1 + 1, St = δSt−1 + ete

′
t/qt where At = RtFt/qt

and et = Yt − ft.

The above derivation uses a “locally smooth” discount factor-based model to

allow Σt to vary stochastically. This is a common approach in dynamic linear

models (Quintana et al., 2003) where information is discounted through time by

a pre-specified discount factor δ. This provides sequential estimates of Σt that keep

adapting to new data while further discounting past observations. This is easily

seen in the representation of the posterior harmonic mean that has the form of a

exponentially weighted moving average estimate define as

Σ̂t ≈ (1− δ)
t−1∑
l=0

δlet−le
′
t−l.

In practical terms the choice of δ represents a similar problem as the choice of the

data window in the usual estimation of index models. Extensive discussion of choice

of δ in dynamic variance models appears in Chapter 16 of West & Harrison (1997).

So far, G was assumed known and held fixed for all t. This is clearly a limita-

tion of the framework of Carvalho & West (2007a) as it is not necessarily the case
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that the same set of conditional independence constraints remain fixed across time.

Moreover, it is rarely the case that knowledge about G is available and data driven

approaches to determine G are required which represents a non-trivial question in

empirical applications. Carvalho & West (2007a) present one example where graphs

were selected via the computationally intensive stochastic search ideas of Jones et al.

(2005). Quintana et al. (2009) consider similar strategies and briefly explore the

issue of time variation in G when modeling currencies. It is clear that the use of

dynamic matrix-variate graphical models requires proper accounting of the uncer-

tainty associated with G. Before continuing in our exploration of the use of graphs

in index models, I add to this discussion and consider alternatives to learn about the

conditional independence relationships defining the models.

4.4 Graphical model uncertainty and search

4.4.1 Marginal likelihood over graphs

In the standard static context, model selection involves the posterior distribution of

graphs, given by:

p(G | x) ∝ p(x | G)p(G)

where p(x | G) is the marginal likelihood of G. The marginal likelihood function for

any graph G is computed by integrating out the covariance matrix with respect to

the prior

p(x | G) =

∫
Σ−1∈M(G)

p(x | Σ, G)p(Σ | G)dΣ

where M(G), as before,indicates the set of all positive-definite symmetric matrices

constrained by G.

Under a hyper-inverse Wishart prior for Σ and observed data x of sample size

n, the above integration for decomposable graph becomes a simple function of the
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prior and posterior normalising constants, H(b,D, G) and H(b + n,D + Sx, G):

p(x | G) = (2π)−np/2 H(b,D, G)

H(b + n,D + Sx, G)

where the normalising constant H(b,D, G) is given by

H(b,D, G) =

∏
P∈P |

DP

2
|(

b+|P |−1
2

)Γ|P |(
b+|P |−1

2
)−1∏

S∈S |
DS

2
|(

b+|S|−1
2

)Γ|S|(
b+|S|−1

2
)−1

, (4.6)

with Γk(a) the multivariate gamma function.

In the dynamic set-up, a fully Bayesian analysis will consider the graph predictive

probability of π(G | Dt−1) over G, the set of all decomposable graphs, and specify

the unconditional predictive distribution p(Yt | Dt−1) as EG{p(Yt | Dt−1, G)} with

the expectation taken with respect to p(G | Dt−1), namely,

(Yt | Dt−1) ∼
∑
G∈G

π(G | Dt−1)p(Yt | Dt−1, G). (4.7)

Equation (4.7) indicates that the predictive probability π(G | Dt−1) is central to

evaluating the predictive distribution p(Yt | Dt−1). The two possibilities for consid-

eration of predicting G are as follows:

(i) fixed graph for all t, that is for some G ∈ G, DLM(G) holds for all t;

(ii) time varying graphs where for some possible sequence of graphs Gt ∈ G,(t =

1, 2, · · · ), DLM(Gt) holds at time t.

For (i), the predictive probability of graphs for time t is defined as

π(G | Dt−1) = p(G | Dt−1) ∝ p(G)p(Y1:t−1 | G) (4.8)

where the marginal likelihood of a DLM on any graph G is

p(Y1:t−1|G) = p(Yt−1|Dt−2, G)p(Yt−2|Dt−3, G) . . . p(Y1|D0, G),
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with each element in the product, (Yt|Dt−1, G) ∼ HTG(ft,St−1, bt−1) as defined in

Theorem 1.

For (ii), the time dependence is made explicit with time subscripts, so that a

graph Gi at time t is Gt,i. Denote π(Gt,i | Dt−1) as the predictive probability at

time t− 1 for graph Gi. It is natural to dynamic modeling that, as time progresses,

what occurred in the past becomes less and less relevant to inference made for the

future. Applying this notion to graphs, past data loses relevance to current graphs as

t increases. Once again, one practical possibility is to use a discount factor to reduce

the impact of past information to current inferences, similarly to the discounting

ideas used in modeling Σt. I propose the following predicted probability of Gt,i for

time t at time t− 1

π(Gt,i | Dt−1) ∝
H(b0,S0, Gt,i)

H(δbt−1, qtδSt−1, Gt,i)
π0(Gt,i), (4.9)

where δ is the same discount factor as in Theorem 1.

To provide insights into the nature of the predicted probability (4.9), suppose the

graph has the prior (4.9) at time t− 1. Proceeding to observe Yt, this prior updates

to posterior via the usual updating equations:

π(Gt,i | Dt) ∝ p(Yt | Dt−1, Gt,i)π(Gt,i | Dt−1)

∝ H(δbt−1, qtδSt−1, Gt,i)

H(bt, qt+1St, Gt,i)

H(b0,S0, Gt,i)

H(δbt−1, qtδSt−1, Gt,i)
π0(Gt,i)

=
H(b0,S0, Gt,i)

H(bt, qt+1St, Gt,i)
π0(Gt,i), (4.10)

which has the same representation as equation (4.9), i.e. a ratio of two normalising

constants of hyper-inverse Wishart distributions, but updated location parameter

and degrees of freedom, i.e. St = δSt−1 + YtY
′
t and bt = δbt−1 + 1. On the other

hand, by substituting t + 1 for t in prior (4.9), I obtain the prior probability for
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π(Gt+1,i | Dt) at t as follows

π(Gt+1,i | Dt) ∝
H(b0,S0, Gt+1,i)

H(δbt, qt+1δSt, Gt+1,i)
π0(Gt+1,i), (4.11)

which, in comparison with equation (4.10), has introduced a discount factor δ to

model a decay of information between time t and t + 1 in a way analogues to the

standard use of discount factors in DLMs. The maintenance of the normalising

constant ratio prior and posterior probability at each time enables continued, easy

sequential updating, with the minor modification that the degrees of freedom bt is

discounted successively.

This predicted model of equation (4.9) also implies that, the most recent expo-

nentially weighted residual covariance matrix St−1 could predict both the one-step

ahead residual graphical structure and the residual covariance matrix.

Given any particular graph predicting model MG and discount factor δ, predicting

Yt in α = (MG, δ) is based on the predictive density

p(Yt | Dt−1, α) =
∑

Gt,i∈G

p(Yt | Dt−1, α,Gt,i)p(Gt,i | Dt−1, α). (4.12)

4.4.2 Sequential stochastic search

Regardless of the choice of model for G, the model selection problem is further compli-

cated by the explosive combinatorial nature of the space of possible graphs. Without

the restriction of decomposability there are 2(p
2) elements in graph space, where p rep-

resents the number of vertices. Decomposability accounts for approximately 10% of

this number which is still impossible to enumerate for moderate size p. Any attempt

to deal with these models requires the development of efficient computational tools

to explore the model space. Here, I propose an extension to the shotgun stochastic

search (SSS) of Jones et al. (2005) to sequentially learn (Gt,i | Dt−1). In a nutshell,
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our analysis generates multiple graphs at each time t from the predictive probability

π(Gt,i | Dt−1), using SSS.

Suppose that, at time t−1, I have saved a sample of the top N graphs Gt−1,i, i =

1, · · · , N with highest predictive probabilities π(Gt,i | Dt−1). Proceeding to time t, I

adopt the following search algorithm:

(i) Evaluate new predictive probabilities π(Gt+1,i | Dt) of these N graphs from

time t− 1;

(ii) From among the N graphs, propose the ith graph as a new starting graph with

probability proportional to π(Gt+1,i | Dt)
c, where c is an annealing parameter;

(iii) Start with Gt+1,i and apply SSS. After each stage of SSS, compute the Bayesian

model average (BMA) estimator of a predicted quantity of interest, e.g. pre-

dictive covariance matrix, using current top N graphs;

(iv) Stop search when certain distance between the last two BMA estimates is below

a small number, set t = t + 1 and return to (i).

The evaluation and resample steps of (i) and (ii) are important because “top graphs”

from the previous step still represent the majority of our knowledge and should be

good starting points for a new SSS once a new data sample becomes available.

4.5 An example

To focus the idea of sequential learning in dynamic graphical model, I first consider

a local trend DLM, namely

Yt = θt + νt, νt ∼ N(0,Σt),

θt = θt−1 + ωt, ωt ∼ N(0, WtΣt).
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This is a special case of the general DLMs presented in previous sections. I extend the

example in Carvalho & West (2007a) where data from p = 11 international currency

exchange rates relative to the US dollar is analyzed. Figure 4.1 shows the time series

plots of these 11 exchange rate returns. In all models, I use fairly diffuse priors, and

annealing parameter c = 1.

Figure 4.1: Time series plots of daily exchange rate returns.
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For illustration, I ran a set of parallel analyses for eight different combinations

of the discount factor and the graph predicting model. In particular, let MG be the

graph predicting model that takes its value in the set {MF , MC} where MF represents

the fixed graph predicting model as is described by equation (4.8) and MC represents

the time-varying graph predicting model as is described by equation (4.9). Let δ take

its value in the set {0.93, 0.95, 0.97, 0.99}. Then at each of the eight pairs of (MG, δ),

and time t, the marginal likelihood of equation (4.12) is approximated by summing

over top 1000 graphs at each time t, resulting in a full marginal likelihood function

of (MG, δ).

Figure 4.2 displays the plots over time of log Bayes factors for each of the eight

models against the model (MF , 0.95). When comparing Bayes factors within each

δs, Figure 4.2 shows that all four time-varying graphs generate smaller marginal

likelihood values as their fixed graph peers. Figure 4.3 highlights the change of the

log Bayes factors of the top two models. Overall, the chosen MLE from such analysis

is (MF , 0.97) over the period up to the end of 08/1992 and (MF , 0.95) over the period

from then until the end of data at 06/1996. The change from δ = 0.97 to δ = 0.95 at

the end of 08/1992 reflects a more adaptive model favoured later. The occurrence of

one or two rather marked changes may be due to major economic changes and events.

A key such event was Britain’s withdrawal from the EU exchange rate agreement

(ERM) in the September 1992 and into 1993 that led to the deviation from the steady

behaviour anticipated under a model with relative high discount factor 0.97 to the

more adaptive 0.95. A second period of change of structure occurred in early 1995

with major changes in Japanese interest rate policies as a response to a weakening

Yen and a move toward financial restructuring in Japan.

Figure 4.4 displays four snapshots of predicted adjacency matrices at four different

time points. These adjacency matrices are from the median probability graph (Scott

& Carvalho, 2008), which is defined as the graph consisting of those edges whose
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overall edge inclusion probability exceeds 0.5. At each time t, the edge inclusion

probabilities are predicted from the outputs of the graphical model search under top

identified models: (MF , 0.97) before 09/1992 and (MF , 0.95) after 09/1992. As can

be seen, these best predicted graphs have several persistent signals as well as the

similar overall patterns over time.

Figure 4.2: Log Bayes factors for each of the eight models against
the model (MF , 0.95). The eight models represent the eight different
combinations of δ from four distinct values {0.93, 0.95, 0.97, 0.99} and
MG from two distinct graph predicting models: MF , the fixed graph
predicting model as is described by equation (4.8); MC , the time-varying
graph predicting model as is described by equation (4.9). The figure
illustrates that the marginal likelihoods of time-varying graphs (dashed
lines) are generally smaller than those of fixed graphs (solid lines)

This example serves to illustrate some features of inference with dynamic graph-

ical models. In each of the DGMs (MG, δ), and for any specified sequence of graphs

{Gt}, the prior, posterior, and forecast distributions are all standard distributions

of well-understood forms, whether they be hyper-inverse Wishart or hyper T. Fore-
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Figure 4.3: Log Bayes factors for the model (MF , 0.97) against the
model (MF , 0.95)

casts that take into account uncertainty about graphs are easily calculated from the

finite mixture of hyper T distributions of equation (4.12). If one is concerned about

which are the best graph predicting models or which discount factors to use, their

corresponding Bayes factors may be used to choose these specifications.

The two proposed graph predicting models together with the covariance matrix

discount factors allows us to separately infer the dynamics of graphs and the dy-

namics of covariance matrices. In this particular example the marginal likelihoods

favor static models MF for all values of δ’s. This suggests that time-varying graphs

inferred by a moving window may not produce consistently better predicting results

than fixed graphs with signals detected sequentially using all historical data. On

the other hand, covariance matrices Σt seem to be time-varying, since the marginal

likelihoods of δ favor values of 0.95 or 0.97. Further exploration of these issues
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Figure 4.4: Four snapshots of adjacency matrices of median proba-
bility graphs predicted by using the output the stochastic search under
corresponding top models: (MF , 0.97) (upper two panels), and model
(MF , 0.95) (lower two panels).

are necessary and should be regarded as applied questions to be dealt with in any

a particular application. My aim here has been to demonstrate that the methods

presented in Section 4.4 provide a computationally attractive way to address these

modeling questions.

4.6 Random regression DLM

Applied interests are motivated by models where I attempt to predict Yt with a

regression vector Ft that is random and unknown before time t. Now, let It =
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{Y1, · · · ,Yt,Ft, · · · ,Ft} denote the data and information set. Assume Ft has a

prior p(Ft | It−1) at time t. Then under the assumption that the priors of (Θt,Σt)

and Ft are conditionally independent given It−1, namely, (Θt,Σt) ⊥⊥ Ft | It−1, the

following results apply.

Theorem 2. Under the initial prior of equation (4.5) and with data observed se-

quentially to update information sets It the sequential updating for the matrix normal

DLM on G is given as follows:

(i) Posterior at t− 1: (Θt−1,Σt−1 | It−1) ∼ NHIWG(mt−1,Ct−1, bt−1,St−1);

(ii) Prior at t: (Θt,Σt | It−1) ∼ NHIWG(at,Rt, δbt−1, δSt−1) where at = mt−1 and

Rt = Ct−1 + Wt;

(iii) One-step forecast: p(Yt | It−1) =
∫

HTG(ft, qtδSt−1, δbt−1)p(Ft | It−1)dFt with

first two moments:

rt ≡ E(Yt | It−1) = a′tµFt ,

Qt ≡ cov(Yt | It−1) = a′tΣFtat + {Vt + µ′
Ft

RtµFt + tr(RtΣFt)}E(Σt | It−1),

where f ′t = F′
tat and qt = F′

tRtFt + Vt, the first and second moments of the

predictive regression vector, µFt = E(Ft | It−1) and ΣFt = cov(Ft | It−1).

(iv) Posterior at t: (Θt,Σt | It) ∼ NHIWG(mt,Ct, bt,St) with mt = at + Ate
′
t,

Ct = Rt −AtA
′qt, bt = δbt−1 + 1, St = δSt−1 + ete

′
t/qt where At = RtFt/qt

and et = Yt − ft.

Proof. (i)(ii)(iv) follow directly from Theorem 1. I show the proof of (iii). Using

mixture of p(Yt | It−1,Ft) implies that

p(Yt | It−1) =

∫
p(Yt | It−1,Ft)p(Ft | It−1)dFt,
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where the first term in the integrand, by assumption, is computed as

p(Yt | It−1,Ft) =

∫
p(Yt | It−1,Ft,Θt,Σt)p(Θt,Σt | It−1,Ft)dΘtdΣt

=

∫
p(Yt | It−1,Ft,Θt,Σt)p(Θt,Σt | It−1)dΘtdΣt

= HTG(ft, qtδSt−1, δbt−1).

The unconditional predictive first moment is calculated as:

E(Yt | It−1) = EFt|It−1{E(Yt | It−1,Ft)} = EFt|It−1(a
′
tFt | It−1) = a′tµFt ,

and the predictive covariance matrix is derived as:

cov(Yt | It−1) = covFt|It−1{E(Yt | It−1,Ft)}+ EFt|It−1{cov(Yt | It−1,Ft)}

= a′tcov(Ft | It−1)at + {Vt + E(F′
tRtFt | It−1)}E(Σt | It−1)

= a′tΣFtat + {Vt + µ′
Ft

RtµFt + tr(RtΣFt)}E(Σt | It−1).

The above theorem suggests a two-stage model analysis: first, a model is fitted

on low dimensional regression vectors {Ft}; second, the fitted model provides the

necessary quantities for the dynamic graphical DLMs. Some specific contexts of

{Ft} include:

• Pre-fixed regression vector in which the Ft values are specified in advance by

design. This is the assumption made by the standard dynamic linear model,

which yields a degenerated prior distribution p(Ft | It−1) with µFt = Ft and

ΣFt = 0 . In such cases, Theorem 1 applies as a special case of Theorem 2.

• Independent and identically distributed regression vector in which the n−vector

Ft are commonly assumed to be independent and identically distributed from

a multivariate normal distribution with mean vector µF and covariance matrix

ΣF.
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• Dynamic regression vector in which another dynamic model structure could be

imposed on the vector process {Ft}. For example, in asset pricing models, if Ft

is the market excessive return, a AR-GARCH type of model could be applied.

4.7 Example: Portfolio allocation in stocks

To demonstrate the use of DGMs in the Index Model context I work with 100 stocks

randomly selected from the population of domestic commonly traded stocks in the

New York Stock Exchange. By selecting a random sample of 100 I hope to reduce

potential selection biases. The sample period is from January 1989 to December

2008 in a total of 240 monthly returns. Monthly returns of a one-month Treasury

bill is used as the risk-free rate in the computation of the excess returns. Excess

returns from the a market weighted basket of all stocks in the AMEX, NYSE and

NASDAQ were used as the market returns. This index along with the Fama-French

three factor return data were obtained from the data library of Professor Kenneth

R. French1. Summary statistics for the excess returns series are given in the first row

in Table 4.1. The median pairwise correlation is 0.159, indicating that there were

potentially large payoffs to portfolio diversification.

In an initial exploration of the data I fitted OLS regressions to the returns using

capital asset pricing model (CAPM) and Fama-French (FF) models. The second and

third row in Table 4.1 shows summary statistics of cross-sectional residual correla-

tions. The generally lower correlations compared with sample correlation suggest

that the indexes capture most of the common variation among the securities under

consideration. However, there are remaining signals in the residuals as indicated by

the maximum and minimum correlations, and these are in precisely the quantities

we are aiming to explore relaxing the independence assumption with the inclusion

of graphs.

1 see, http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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Table 4.1: Summary statistics of correlations among sampled stocks. First row,
summary of sample correlations; second and third row report summary of residual
correlations after fitting CAPM and FF models respectively. For each case, at the
end of April of each year from 1994 to 2008, pairwise correlations are calculated
based on the monthly excess returns over the prior 60 months. Summary statistics
are based on the estimated values pooled over all years.

Model Mean Std Min 25th Median 75th Max
Sample 0.158 0.166 −0.530 0.046 0.159 0.269 0.836
CAPM 0.040 0.170 −0.594 −0.075 0.036 0.150 0.825
FF 0.014 0.154 −0.557 −0.092 0.011 0.114 0.816

To appreciate the importance and contribution of the use of graphical models,

I consider the following alternatives: (1) sample covariance model; (2) Standard

dynamic CAPM; (3) Dynamic CAPM with graphs; (4) Standard dynamic FF; (5)

Dynamic FF with graphs, and (6) mixtures of (3) and (5).

In model (1), at each month t, the one-step ahead covariance matrix is based on

the data from the preceding 60 months as the in-sample period. For model (2)-(6),

I use weak priors, m0 = 0, C0 = 10000I, b0 = 3, S0 = 0.0003I100, and δ = 0.983

corresponding to a rolling window of about 60 months.

For the random regression vector Ft, I use sample mean and covariance matrix

of the past 60 months as forecasts of the first and second predictive moments, µFt

and ΣFt . Furthermore, based on simulation experiments in Section 4.5, I chose

model graph uncertainty with the predictive model of equation (4.8) for alternatives

(3) and (5). In (6), CAPM and FF models are compared with each other and

then averaged based upon their conditional marginal likelihood p(Y1:t | F1:t). The

resulting posterior probabilities of FF model reaches 1 after a short period time.

This should not be surprising as most of the current literature points to the use of

a multi-factor model as oppose to the traditional single factor CAPM. Due to this

fact, the overall performances of model (5) and (6) are close so I only report results

from model (5) hereafter.
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Figure 4.5 displays the estimated expected number of edges over time starting

from January 1994 under model (3) and (5). Three results are worth noting here.

First, all graphs are sparse relative to the total 4950 possible edges. The inclusion

of graphs provides the necessary flexibility to capture the remaining signals from

the residual covariance matrix and the data is responsible to inform which of these

non-zero entries are relevant. Second, when comparing with each other, the CAPM

model has more edges than FF – once again no surprises here: FF imposes a richer

structure for Σ so I should expect more non-zero elements in the residual covariation

of assets when the market returns are the only covariate. Third, as more information

becomes available, more signals in the residuals are detected.

I now evaluate these forecasting models in two ways: forecasting ability of future

correlation matrices and in the construction of optimal portfolios. This is a predictive

test, in the sense that our investment strategy does not require any hindsight.

4.7.1 Out-of-sample covariance forecasts

At the end of every month, the correlations forecasts from each model are compared

to the sample correlations realised over a subsequent 12 months period, in the first

experiment, and 36 months in the second experiment. Forecast performance is eval-

uated in terms of the absolute difference between the realised and forecasted values.

Table 4.2 provide summary statistics on the absolute differences from these two ex-

periments. When the performances evaluated using subsequent 12 months data are

compared with those from subsequent 36 months, the average absolute forecast er-

rors are reduced. The drop in forecast errors suggests that there is a lot of noise

in covariance matrices measured over a period as short as 12 months. Nevertheless,

as in both the 12 and the 36 month experiments, the relative performance of each

model are generally the same.

The full sample covariance model, which is the most complex model in terms of
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Figure 4.5: Estimated expectation of numbers of edge across each
month.

number of free parameters, has the highest median absolute error and root mean

square error. All other models dominated the full covariance model. More complex

models do not necessarily offer smaller forecast errors. This message is consistent

with many empirical studies on correlation matrix forecasts of stock returns.

Comparing the empty and the graphical models within either CAPM or FF fam-

ily, I see that models with graphs dominate their empty graph peers. This is more

evident in the CAPM family. Model (3) has reduced the median of the absolute dif-

ferences and the root mean square errors relative to model (2), while model (5) has

almost the same absolute differences as model (4). The clearer advantage in CAPM

family is because there is more structure left unexplained in the residuals using only

the market index than when using the FF three indexes. In general, the improvement

of out-of-sample covariance forecasts is minor. This is actually as expected, since
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Table 4.2: Performance of covariance forecasting models. Forecasts of monthly re-
turn correlation matrices are generated from different models, based on the prior
60 months of data for model (1) and based on discount factor δ = 0.983 for model
(2)-(5). Forecasts are then compared against the realised sample covariance esti-
mated over the subsequent 12 months (first four) columns and 36 months (last four
columns). The last estimation period ends in December 2005. Summary statistics
are provided for both the distribution of the absolute difference between realised and
forecasted value of pairwise correlations: Std, standard deviation of absolute differ-
ences; 95th, 95th quantile of absolute difference, and

√
MSE, the root mean square

errors of forecasts.

12 month 36 month
Model Median Std 95th

√
MSE Median Std 95th

√
MSE

(1) Full covariance 0.238 0.200 0.654 0.340 0.160 0.141 0.460 0.235
(2) CAPM Empty 0.234 0.186 0.612 0.323 0.146 0.127 0.413 0.212
(3) CAPM Graph 0.230 0.184 0.605 0.319 0.143 0.123 0.402 0.207
(4) FF Empty 0.230 0.185 0.609 0.321 0.143 0.124 0.405 0.208
(5) FF Graph 0.230 0.185 0.607 0.320 0.143 0.123 0.404 0.208

the signals are very sparse. However, as the experiments in the following section

will show, these signals, though sparse, are influential when the forecast covariance

matrices are used to build optimal portfolios.

4.7.2 Portfolio optimisation

From a practical point of view, optimisation experiments provide perhaps more im-

portant metrics for evaluating forecasting models. The set-up of our portfolio op-

timisation experiments is as follows. To highlight the role of the second predictive

moment, I first form the global minimum variance portfolio. At the end of April of

each year starting from 1994, I use the different models to predict the one-step ahead

covariance matrix for the 100 stocks. These predictions are the input to a quadratic

programming routine that defines the minimum variance portfolio (Markowitz, 1959).

Short sales are allowed so that the weights are only required to be summed up to 1.

These weights are then applied to buy-and-hold portfolio returns until the next April,
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when the forecasting and optimisation procedures are repeated. The resulting time

series of monthly returns of portfolios allow us to characterise the performance of

optimised portfolio based on each model. I also form a mean-variance portfolio using

the first two moments {rt,Qt} from Theorem 2 with a target annualised excessive

mean return of 15%.

Table 4.3 summarises these optimisation results on an annualised basis. In com-

parison within each group, it is clear that the introduction of the graphical structure

helps. The annualised standard deviation of the optimised portfolio based on the

graphical CAPM model is 10.7%, yielding a Sharpe ratio of 0.688, compared to a

Sharpe ratio of 0.533 for the standard CAPM portfolio. The same advantage of

using graphs can be found in two models within FF class. The conclusion from this

example is simple: it pays to allow for a more flexible residual covariance structure

in the implementation of Index Models.

4.8 Further comments

By allowing more flexible models for the residual covariance matrix, Financial Index

Models can be improved in their abilities to build more effective optimal portfolios.

In this paper I take advantage of the DGMs framework of Carvalho & West (2007a)

and show that graphical models can also be used to identify sparse signals in the

residual covariance matrices and thereby obtain a more complex representation of the

distribution of asset returns. Unlike Carvalho & West (2007a) and Quintana et al.

(2009), in the Index Model framework, graphs are used as a parsimonious way to

increase the complexity of an otherwise very restrictive model. In that sense, this our

work complements and extends the widely used tool box of dynamic linear models

for the analysis asset returns. The first example helps illustrate the model imple-

mentation and highlight the issue of specifying discount factors and graph predicting

models. The second example discusses and explores aspects of random regression
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Table 4.3: Performance of portfolios based on forecasting models. At the end of April
of each year from 1994 through 2007, forecasts of covariance matrices of monthly ex-
cessive returns are generated from different models. Since T = 60 < p = 100, the
sample covariance is close to singular, I omit its results. Based upon each model’s
forecasts of covariance matrices, a quadratic programming procedure is used to find
the global minimum variance portfolio (first three column), and mean variance port-
folio with target excess annual return 15% (last three column). Short sales are allowed
so that the weights are only constrained to sum up to 1. These weights are then ap-
plied to form portfolio returns for the next 12 months until next April, at the end of
which forecasting and optimisation steps are repeated and the portfolios are formed.
Summary statistics are presented: Rate, the annualised excessive returns r − rT ,
where the annualised portfolio return r is determined by (1 + r)14 =

∏168
i=1(1 + ri),

and annualised risk-free return rT is determined by (1+rT )14 =
∏168

i=1(1+rT,i) with ri

and rT,i denoting the monthly return of portfolio and risk-free asset; Std, the annu-
alised standard deviation of excess returns ri− rT,i; and Sharpe ratio, the annualised
excessive return divided by the annualised standard deviation.

Minimum variance portfolio Mean variance portfolio
Model Rate Std Sharpe Rate Std Sharpe
(1) Full covariance - - - - - -
(2) CAPM Empty 0.064 0.120 0.533 0.064 0.119 0.535
(3) CAPM Graph 0.074 0.107 0.688 0.075 0.107 0.700
(4) FF Empty 0.062 0.109 0.569 0.069 0.109 0.627
(5) FF Graph 0.070 0.105 0.661 0.072 0.106 0.678

vectors and variable selection. This analysis confirmed that the CAPM and FF

model generally do well in explaining the variation of stock returns, but identifying

relevant non-zero entries in the unexplained covariation are of real practical value:

the resulting covariance matrix forecast has lower out-of-sample forecast errors, and

the corresponding portfolios achieve lower level of realised risk in terms of variance

and higher realised returns.

In addition to case studies, I have also provided a fully Bayesian framework of

two-stage forecast of covariance matrices, a mechanism of graph evolution, and the

use of sequential stochastic search for high-dimensional graphical model space.

In regards to the modeling of graphical structure through time, alternative ap-

proaches include the use of first-order Markov probabilities in which the graph ob-
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tained at time t depends on which of the graphs obtained at time t− 1, but not on

what happened prior to t−1, and higher-order Markov probabilities that extend the

dependence to graphs at time t − 2, t − 2, · · · , etc. These alternatives require the

learning of a higher-dimensional transition matrix between graphs. Even a sparse

representation of the transition matrix, such as each graph only moves to its neigh-

bours between two time points is limited in a sense that the sparse pattern would

restrict the evolution of graphs between time.

The sequential stochastic search algorithm combines the sequential Monte Carlo

idea and shotgun stochastic search algorithm. Exploration of a static model space

to find high posterior probability graphs can be successfully carried out using direct

search such as shotgun stochastic search method, certainly up to 100 vertices or

so while traditional MCMC is competitive only for relatively small graphs (Jones

et al., 2005). However, fast searching over a sequence of large model spaces is more

challenging. This problem can be eased by noticing that from one step to the next

I do not expect large changes in the mass of the distribution. Therefore, I could use

the high probability graphs from the previous step as starting points to initiate a

new search and rapidly traverse the graphical model space around these promising

models.
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5

Sparse seemingly unrelated regression modelling

5.1 Introduction

This chapter develops a sparse seemingly unrelated regression (SSUR) model with

Gaussian errors; that is, a set of regressions in which both regression coefficients and

error precision matrix have many zeros. Zeros in regression coefficients arise when

each response possibly only depends on a subset of different predictors; zeros in a

precision matrix arise when the error terms satisfy a set of conditional independence

restrictions consistent with an underlying graphical model (Whittaker, 1990; Lau-

ritzen, 1996). I study and propose a fully Bayesian analysis of the SSUR model, and

provide effective methods for marginal likelihood computation using a specified sub-

set of variables and a specified graphical model to structure the covariance matrix.

This enables the simultaneous selections of variables and the covariance matrix as

well as comparison of posterior inferences with respect to subsets and conditional

independence structures.

Seemingly unrelated regression models (SUR) are frequently used in econometric,

financial and sociological modelling (Zellner, 1962, 1971; Box & Tiao, 1973; Srivas-
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tava & Giles, 1987). Computational issues of SUR relate to the basic challenges to

the efficiency of statistical computation (simulation and optimisation) for SUR model

parameters. Frequentist methods respond to the challenges by proposing efficient nu-

merical and computational methods to optimise cost functions (Kontoghiorghes &

Clarke, 1995; Foschi & Kontoghiorghes, 2002; Foschi et al., 2003). For more complex

econometric applications, Markov chain Monte Carlo methods are used for Bayesian

analyses of many variations of the SUR model (Chib & Greenberg, 1995; Smith &

Kohn, 2000; Griffiths, 2001; Holmes et al., 2002). Other computational techniques for

SUR inference include direct Monte Carlo style methods (Ando & Zellner, 2010). I

build on prior work in non-sparse Bayesian SUR model analysis and develop MCMC

methods for model fitting and computation for the sparse SUR model. I note that

the synthesis of sparse regression models and sparse covariance matrix models has

been considered by Cripps et al. (2005) and George et al. (2008), though with a

different practical focus than the SUR model. These analysis indirectly model par-

simonious covariance matrices on their re-parameterised forms; they address model

uncertainty by computing posterior model probabilities without attempting to calcu-

late the marginal likelihood by introducing a model indicator into a list of unknown

parameters. To use these methods, one must specify all competing models, and care-

fully choose some tuning parameters to ensure that the chain mixes well in model

space. I directly model the sparse inverse covariance matrix through use of con-

jugate priors; this leads to an efficient posterior sampling (Carvalho et al., 2007)

with marginal likelihood calculated using Monte Carlo methods. Our examples show

that these marginal likelihood approximations are adequate and useful in assessing

alternative models.

In the context of dynamic SUR models, the graphical modelling of the covariance

matrix of multivariate data appears in Carvalho & West (2007a,b); Wang & West

(2009) and Wang et al. (2009). Our extension of the dynamic SSUR models gener-
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alises this earlier work on the dynamic matrix-variate graphical model; I provide a

fully Bayesian inference and model comparison related to both regression coefficient

linear equality constraints and error intra-dependencies in the cross-sectional struc-

ture of the time series. This framework of dynamic SSUR models opens challenging

methodology questions in core econometric modelling and computation.

5.2 Sparse seemingly unrelated regression modelling

5.2.1 Basic SUR models

To introduce the SSUR model, I begin with the usual SUR model. Consider p

univariate dependent variables yi,t following individual regressions:

yi,t = X′
i,tβi + ei,t t = 1, 2, · · · , T, (5.1)

where Xi,t is the ni−vector of observations on ni explanatory variables with possibly

a constant term for individual i at time t, βi = (βi1, · · · , βini
) is a ni−vector of

unknown coefficients, and ei,t is a random error. Combine the model as follows:

(a) yt = (y1,t, · · · , yp,t)
′, the p× 1 observation vector;

(b)

Xt = diag(X1,t,X2,t, · · · ,Xp,t) =


X1,t 0 · · · 0
0 X2,t · · · 0
...

...
. . .

...
0 0 · · · Xp,t

 ,

the n × p matrix of observations on explanatory variables at time t with n =∑p
i=1 ni;

(c) β = (β′
1, · · · , β′

p)
′, the n−vector of coefficients; and

(d) et = (e1,t, · · · , ep,t)
′, the p−vector of errors distributed as N(0,V).
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Then the model is

yt = X′
tβ + et, t = 1, 2, · · · , T. (5.2)

The SUR model assumes the errors are contemporaneously correlated but not auto-

correlated. In other words, if e = (e′1, · · · , e′T )′, the SUR model assumes cov(e) =

IT ⊗V.

5.2.2 Variable selection in SUR

To introduce sparsity in SUR model parameters, I first extend the development of

Bayesian variable selection for multiple regression models to the SUR models. Such

an extension has been considered by Brown et al. (1998) in multivariate regression

contexts. However, their model assumes all responses have the same predictors, and

thus must generate a subset of predictors appropriate for all responses. The SUR

model is broader and employs multivariate regression as a special case. The variable

selection problem for SUR models arises when there is an unknown subset of Xi with

regression coefficients so small in predicting yi that it becomes preferable to ignore

them. I let γ = (γ11, · · · , γpnp) index each of these 2n possible subset choices, where

γij = 0 or 1 according to whether βij is small or large, respectively.

Prior distributions for parameters β given γ are taken as β = N(m0,Hγ) where

m0 and Hγ must be specified. One convenient choice of m0 is a zero vector. The

class of Hγ may take the form Hγ = DγRγDγ , following the univariate regression

form of George & McCulloch (1993). Here Dγ is a n×n diagonal matrix and Rγ is a

correlation matrix. The element of Dγ corresponding to βij is τij0 when γij = 0 and

τij1 when γij = 1. Particular considerations about τij0, τij1 and Rγ are discussed by

George & McCulloch (1993, 1997). One convenient choice for R is I, under which the

elements of β are a priori independent. Another choice is a block diagonal matrix

in which each block corresponds to the covariance matrix of the ni-vector of βi.
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5.2.3 Structured covariance matrix

The role of the covariance matrix V is one of the most important features of SUR

models. The non-diagonality of the error covariance matrix usually entails that

individual regression estimates using univariate linear model are sub-optimal; joint

estimations of SUR that exploits the correlation between errors across equations

may improve parameter estimation by the implied “data sharing”. Motivation for

our work relates to the increased dimension and complexity of the error covariance

matrix. In this context, the covariance matrix must be understood in terms of

structure and parsimony.

Substantial progress has been made on Bayesian covariance modelling by impos-

ing structures. Structures are typically obtained by restricting the elements of a

re-parameterisation for V (Daniels & Pourahmadi, 2002; Smith & Kohn, 2002; Chen

& Dunson, 2003). The main issue in these approaches is that the induced prior on

V depends on the ordering of elements. Instead, I now directly and parsimoniously

model V by considering its restrictions induced by graphical model structuring.

I apply the theory and methodology of Gaussian graphical models of Section 1.2

to the error vector et where et ∼ N(0,V) with precision Λ = V−1. Suppose Λ is

constrained by a decomposable graph G. G then defines factorisations of SUR model

densities. For notational clarity, I suppress subscript t. Now for any graph G, I have

p(y | X, β,V, G) =
∏
P∈P

p(yP | XP , βP ,VP )

/ ∏
S∈S

p(yS | XS, βS,VS), (5.3)

where P is the set of complete prime components, or cliques, of G and S is the set

of separators. For each subgraph g ∈ {P ,S}, yg is |g|−vector defined as yg = {yi :

i ∈ g}′, Xg is the corresponding design matrix defined as Xg = diag{Xi : i ∈ g}

, βg = {β′
i : i ∈ g}′, and Vg the corresponding sub-matrix of V. Each term in

equation (5.3) is multivariate normal, yg ∼ N(X′
gβg,Vg) with Λg = V−1

g having no
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off-diagonal zeros.

For V and graph G, assume the prior is HIWG(b,D) with the following density

function

p(V) =
∏
P∈P

p(VP | b,DP )

/ ∏
S∈S

p(VS | b,DS),

where each component is an inverse Wishart density.

5.3 Posterior and marginal likelihood computation

5.3.1 Gibbs sampling on a given graph and variable index

Assume a SSUR model of Section 5.2.1 and priors of Section 5.2.2 and 5.2.3, and

write Y = (y1, · · · ,yT ) for the full set of data. It is easy to see that, on any specified

graph G and index vector γ, the posterior p(β,V | Y) has conditionals:

(V | β,Y) ∼ HIWG{b + T,D +
T∑

t=1

(yt −X′
tβ)(yt −X′

tβ)′}, (5.4)

(β | V,Y) ∼ N{C(
T∑

t=1

XtV
−1yt + H−1

γ m0),C}, (5.5)

where C = {
∑T

t=1 XtV
−1X′

t + H−1
γ }−1. These form the basis of an efficient Gibbs

sampler to generate from the full posterior p(β,V | Y). The Gibbs iterates involve

sampling from the hyper-inverse Wishart and multivariate normal distribution. Sim-

ulation of the former is based on Carvalho et al. (2007).

5.3.2 Marginal likelihood approximation

Exploration of uncertainty about regression and graphical structures involves con-

sideration of the marginal likelihood function over structures; namely

p(Y) ≡ p(Y | γ, G) =

∫
p(Y | β,V)p(β)p(V)dβ dV, (5.6)
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over (γ, G); the priors in the integrand depend on the index vectors and graphs al-

though I drop that in the notation for clarity. The integral cannot be evaluated but

I can generate useful approximations via use of Candidate’s formula (Besag, 1989;

Chib, 1995); there are other possible approximation methods that I will discuss in

Section 6.3. Write Θ = {β,V} for all parameters, and suppose that I can evalu-

ate p(θ | Y) for some subset of parameters θ ∈ Θ; Candidate’s formula gives the

marginal likelihood via the identity p(Y) = p(Y, θ)/p(θ | Y). Applying this requires

that I estimate components of the numerator or denominator. Choosing θ to max-

imally exploit analytic integration is key, and different choices that integrate over

different subsets of parameters will lead to different, parallel approximations of p(Y)

that can be compared. I use (A): θ = V, and (B): θ = β, giving two approximations

based on marginalisation over desirably disjoint parameter subsets. Other choices

might be considered though with less analytic tractability.

The marginal likelihood is theoretically given by each of

(A): p(Y) = p(Y,V)/p(V | Y) at any chosen value of θ = V, (5.7)

and

(B): p(Y) = p(Y, β)/p(β | Y) at any chosen value of θ = β. (5.8)

I estimate the components of these equations that have no closed form, then plug-

in chosen values β,V such as approximate posterior means, to provide two estimates

of p(Y). For (A), the numerator terms, p(Y,V) = p(Y | V)p(V), are each easily

computed at any V. The denominator term may be approximated by

p(V | Y) =

∫
p(V | Y, β)p(β | Y)dβ ≈ 1

M

M∑
j=1

p(V | Y, β(j)),

where the sum is over posterior draws β(j); this is easy to compute as it is a sum

of the product of hyper-inverse Wishart densities. For (B), the numerator can be
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analytically evaluated as p(Y | β). The density function in the denominator is ap-

proximated as

p(β | Y) =

∫
p(β | V,Y)p(V | Y)dV ≈ 1

M

M∑
j=1

p(β | Y,V(j)),

where the sum over posterior draws V(j) can be easily performed, with terms given

by normal density evaluations.

5.3.3 Model space priors for variable selection and graphs

For the model space priors, I use beta-binomial priors for both variable space and

graphical model space. The prior probability for a subset of variables is given by

p(γ | wγ) =
∏p

i=1 w
kγ,i

γ,i (1 − wγ,i)
(ni−kγ,i) and each variable inclusion probability for

regression i has a beta prior wγ,i ∼ Be(a, b). This structure yields p(γ) =
∏p

i=1 B(a+

kγ,i, b + ni − kγ,i)/B(a, b) where B(a, b) is the beta function. The prior on graphical

model space is p(G | wG) = wkG
G (1 − wG)(m−kG) and wG ∼ Be(c, d), for a graph G

having kG edges out of m = 2p(p−1)/2 possible ones. The default uniform priors on

the wγ,is and wG imply a marginal prior

p(γ) =

p∏
i=1

kγ,i!(ni − kγ,i)!

(ni + 1)ni!
=

p∏
i=1

1

(ni + 1)

(
ni

kγ,i

)−1

and

p(G) =
kG!(m− kG)!

(m + 1)m!
=

1

(m + 1)

(
m

kG

)−1

.

This choice of the model space prior is based on the consideration that the fully

Bayesian priors have automatic adjustment for multiple testing as the numbers of

possible variables and edges grow (Scott & Carvalho, 2008; Carvalho & Scott, 2009).
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5.3.4 Direct Metropolis-Hastings-within-Gibbs algorithms

I now extend Markov chain Monte Carlo for variable selection (George & McCul-

loch, 1993; Geweke, 1996b; George & McCulloch, 1997; Madigan & York, 1995;

Raftery et al., 1997; Brown et al., 1998) and multivariate graphical models (Giu-

dici & Green, 1999; Jones et al., 2005) to learning on (γ, G) in the above SSUR

analysis. This relies on the computation of the unnormalised posterior over graphs,

p(γ, G | Y) ∝ p(Y | γ, G)p(γ, G), for any specified model (γ, G). Jones et al.

(2005) discuss performance of various stochastic search methods in single multivari-

ate graphical models; for modest dimensions, they recommend simple local-move

Metropolis-Hastings. Here, given a current pair (γ, G), I can apply local moves in

G space based on the conditional posterior p(G | Y, γ), and vice-versa. A candidate

G′ is sampled from a proposal distribution q(G′; G) and accepted with probability

α = min{ 1, p(G′ | Y, γ)q(G; G′)/p(G | Y, γ)q(G′; G) };

our examples use the simple random add/delete edge move proposal of (Jones et al.,

2005). I then couple this with a similar step using p(γ | Y, G) at each iteration. This

requires a Markov chain analysis on each variable and graph pair visited in order to

evaluate marginal likelihood, so implying a substantial computational burden.

5.3.5 Indirect Metropolis-Hastings-within-Gibbs sampling algorithms

I can also simulate G,V, β and γ without eliminating the values of parameters β

and V using the following Metropolis-Hastings-within-Gibbs sampler:

(a) (G | Y, β, γ) ∝ H(b,D, G)/H{b + T,D +
∑T

t=1(yt − X′
tβ)(yt − X′

tβ)′, G} is

sampled through local move Metropolis-Hastings algorithm;

(b) (V | Y, β, γ, G) is the same as in equation (5.4);

(c) (β | Y,V, γ, G) is the same as in equation (5.5);
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(d) (γij | Y, γ−ij, β,V, G) ∼ Bern{uij1/(uij0 + uij1)}, where

uij1 = p(β | γ−ij, γij = 1)p(γ−ij, γij = 1) and

uij0 = p(β | γ−ij, γij = 0)p(γ−ij, γij = 0).

This indirect model search algorithm does not require Markov chain analysis for

marginal likelihood approximations at each step, and hence it is much faster than

the direct search. However, it is hard to assess whether such a stochastic search can

avoid becoming stuck in a posterior mode in which case the use of the empirical fre-

quency to represent posterior probability of a model is less informative than marginal

likelihoods. Nevertheless, an initial run of this faster indirect sampling method can

provide some useful γ and G values in order to start the direct model search based

on the marginal likelihood.

5.4 Empirical exploration and comparison

5.4.1 A first simulated random sample

A sample of size T = 60 was drawn from a p = 6 SUR model given by

y1 = 1.3x1 − 0.5x3 + e1,

y2 = 0.9x1 − 0.3x2 + 0.5x3 + e2,

y3 = x1 + 0.5x2 + 0.7x3 + e3,

y4 = 0.8x4 − 0.6x5 + e4,

y5 = x4 + 0.7x5 + e5,

y6 = 1.1x4 − 0.6x5 + e6,

where the xi are draws from i.i.d. N(0, 1), and the error covariance matrix is the

autocovariance matrix of a stationary AR(1) process with AR parameter 0.6 and

innovation variance 1. To perform variable selection, I added six noisy variables to

each regression equation, and so n = 51.
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First consider an analysis on the true subset of variables and the graph under

relatively vague priors with m0 = 0, τ0 = 0.01, τ1 = 10,b = 3 and D = 0.0001I6. I

have also tried other vague but proper hyper-parameter choices that lead to similar

results. My current code is in Matlab. It takes about 20 seconds on a dual-cpu

2.4GHz desktop computer running CentOS 5.0 unix to generate 2000 MCMC iterates.

Convergence is rapid and apparently fast-mixing in this simulation as well as in

other simulated examples. Parallel checking for assessing the dual approximation of

marginal likelihood, in Figure 5.1, shows an implementation check and illustrates the

concordance of the two, parallel marginal likelihood estimates; these are very close

and differ negligibly on the log probability scale. When compared with each other,

method (A) of equation (5.7) generates more stable estimates across differing Monte

Carlo sample sizes than method (B) of equation (5.8). This is probably because the

posterior standard error of V is greater than that of β.

Consider model uncertainty with model space priors in Section 5.3.3. I first ran

an indirect stochastic search sampler with 10000 full iterations starting with the full

model and β = 0. The median probability model of γ is the true subset of variables

excluding x2 and x3 in the regression of y2, and the median probability model of G

is the true underlying band diagonal graph. Repeat explorations suggest stability

in the marginal likelihood estimation when smaller Monte Carlo sample sizes are

used, and I use 2000 draws within each step of the model search. The direct add-

delete Metropolis-within-Gibbs was run for 5000 iterations starting with the median

probability model found in the initial indirect search. The most probable model

visited, (γ̂, Ĝ), is the true subset of variables and true underlying graph; these are

local modes and also have the largest marginal likelihood. This model was first

visited after 203 direct Markov chain steps.

I also estimated the variable and edge inclusion probability using the top 30 mod-

els identified. The variables and edges in the modes (γ̂, Ĝ) generally have higher pos-
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Figure 5.1: Log-marginal likelihood values on the true model in the simulation example
of Section 5.4.1. The two estimates (solid line: method (A); dashed line: method (B)) of
Section 5.3.2, were successively re-evaluated at differing simulation sample sizes. The plot
confirms the concordance even at low samples sizes, and suggests very high accuracy in
terms of differences on the log-likelihood scale.

terior inclusion probability than those not included; the lowest probability included

variable and edge have probability 0.56 and 0.62 respectively, while the highest prob-

ability excluded variable and edge have probability 0.07 and 0.02 respectively. Thus,

models discovered by highest posterior probability and by aggregating high probabil-

ity models are not dramatically different. Further, the approximate posterior mean

of the proportion of variables and edges, a measure of sparsity, are about 26%, 29%

for γ, G respectively.
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5.4.2 A second simulated example

The first simulated example demonstrated very good performance of SSUR mod-

elling in identifying the underlying sparse structures. This second simulation study

demonstrates that SSUR modelling can substantially improve parameter estima-

tion. To compare the utility of SSUR with SUR, I compute the risk for β us-

ing the L2 loss, L(β̂, β) =
∑

i,j(β̂i,j − βi,j)
2, and the risk for V using Stein’s loss,

L(V̂,V) = tr(V̂V−1)− log|V̂V−1| − p.

I conduct the second simulation in a scenario more suitable for econometric data.

This model has p = 15 correlated explanatory variables. For each of T samples,

I first generated ni = 10 standard Gaussian features Xi with pairwise correlation

0.3 for each dependent variable yi. I then randomly set the elements of the variable

index γ to be 1 with probability 0.2, and 0 otherwise. The outcome yt was generated

according to a SUR model yt = X′
tβ+et where et was generated from a multivariate

Gaussian distribution with zero mean and covariance matrix V. Each βi,j of the

coefficient β was generated from a standard Gaussian distribution if γi,j = 1, and

was set to be 0 if γi,j = 0. To specify V, I fixed its correlation matrix R with inverse:



1.20 -0.26 · · · · · -0.40 · · · · · · ·
-0.26 7.46 · -0.23 0.46 · -6.02 · -1.37 · · · · · ·
· · 1.25 · 0.56 · · · · · · · · · ·
· -0.23 · 6.99 0.76 · -3.58 · -0.98 -0.64 -2.40 · · · ·
· 0.46 0.56 0.76 42.80 · -37.71 · · · -5.67 · · · ·
· · · · · 1.90 -0.69 · · · -0.63 · · · ·
· -6.02 · -3.58 -37.71 -0.69 51.31 · · · -3.98 · · · ·

-0.40 · · · · · · 1.14 · · · · · · ·
· -1.37 · -0.98 · · · · 2.82 · · · · · ·
· · · -0.64 · · · · · 1.31 · · · · ·
· · · -2.40 -5.67 -0.63 -3.98 · · · 13.59 -1.20 · · ·
· · · · · · · · · · -1.20 1.80 · · ·
· · · · · · · · · · · · 9.34 -8.82 ·
· · · · · · · · · · · · -8.82 9.34 ·
· · · · · · · · · · · · · · 1.00


,

where · denotes zeros to highlight structure. I then chose the standard deviations

(v1, · · · , v15) so that the signal-to-noise ratio V ar{E(yi | Xi)}/V ar(ei) equalled 2.

For each simulated data set, I fit a SSUR model with the same hyper-parameters
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Risks for β Risks for V

Figure 5.2: Estimation risk results for the second simulation study of Section 5.4.2.
Shown are box plots of the risks over 100 simulations, for two estimators: SSUR and SUR,
three different sample size: T = 60, 100, 200, and two sets of parameters: β(left panel) and
V (right panel).

as in the first simulation study and estimated the risks based on 10000 draws us-

ing the indirect algorithm of Section 5.3.5. For the SUR model, I used the same

hyper-parameters of m0, τ1, b and D, and MC sample size 10000 based on the Gibbs

algorithm in Section 5.3.1. I chose the sample size of T = 60, 100, 200 to see how

well SSUR and SUR perform. Figure 5.2 shows boxplots of the risks achieved by the

different estimators from SSUR and SUR models based on a total of 100 analysis

of simulated data sets. It is clear that SSUR offers large gains over SUR in esti-

mating both regression coefficients β and error covariance matrix V. The gains are

particularly significant when the sample size is small.

5.5 Example: Relations among stock returns, interest rates, real ac-
tivity, and inflation

A p-dimensional vector autoregressive (VAR) process {yt} with q lags can be for-

mulated as SUR with dependent variables yt and identical explanatory variables

Xi,t = (1,y′
t−1 · · · ,y′

t−q)
′ for i = 1, · · · , p. In this example, I use VAR models to in-

vestigate the relations and dynamic interactions among stock returns, interest rates,
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real activity, and inflation in the postwar United States. The data are monthly real

stock returns (SRE), real interest rates (IRE), industrial production growth (IPG)

and inflation rates (INF). Real returns (SRE and IRE) are computed as nominal re-

turns less the expected inflation rate. For comparison with the results in Lee (1992),

the sample period for this study is from January 1947 to December 1987; the data

appear in Figure 5.3.

Figure 5.3: Monthly data on real stock returns (SRE), real interest rates (IRE), indus-
trial production growth rates (IPG) and inflation rates (INF). The data set consists of 492
monthly rates for each of these four time series, over the period of 41 years: 01/1947 to
12/1987.

I choose a lag length of 6 months for the VAR model. Then, in month t, the depen-

dent variables yt and the explanatory variables Xt are given by yt = (y1,t, · · · , y4,t)
′ =

(SREt, IREt, IPGt, INFt)
′, and Xt = diag(X1,t, · · · ,X4,t) with

Xi,t = (1,y′
t−1 · · · ,y′

t−6)
′

= (1, SREt−1, IREt−1, IPGt−1, INFt−1, · · · , SREt−6, IREt−6, IPGt−6, INFt−6)
′,
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for i = 1, · · · , 4. For variable selection, I use the default semiautomatic priors

τij0 = 1/10σ̂ij and τij1 = 10σ̂ij, where σ̂ij is the standard error associated with

the unconstrained generalised least squares estimate of βij. For covariance selection,

I use the flat prior b = 3 and D = 0.0001I4. The initial indirect stochastic search

was run for 10000 steps, followed by a 10000 step run of direct stochastic search

using marginal likelihood approximation based on 2000 Monte Carlo draws within

each step. The marginal likelihood allows us to compute the exact relative probabil-

ities using p(γ, G | Y). The relative probabilities of the 200 most probable models

are displayed in order in Figure 5.4. This relative probability distribution is rather

peaked, suggesting that a small subset of models are far more promising than others.

Figure 5.4: Relative posterior probabilities of the 200 most probable models. This
peaked relative probability distribution implies that a small selection of high-probability
models are far more better to be worked with than a grossly incorrect model on full graph
and all of the predictors.

The following most probable models were reported with fitted VAR; the posterior
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standard errors appear in parentheses:

y1,t = 0.248(0.044)y1,t−1 + e1,

y2,t = 0.890(0.020)y2,t−1 − 0.076(0.011)y4,t−1 + e2,

y3,t = 0.002(0.001) + 0.360(0.041)y3,t−1 + 0.047(0.014)y1,t−2 + 0.058(0.014)y3,t−3 + e3,

y4,t = 0.001(0.0002) + 0.430(0.045)y4,t−1 + 0.184(0.045)y4,t−2 + 0.157(0.040)y4,t−5 + e4.

The estimated error adjacency matrix and covariance matrix are as follows:


1 1 0 0
1 1 0 1
0 0 1 0
0 1 0 1

 ,


0.00113 −4.86× 10−6 0 −1.78× 10−6

−4.86× 10−6 7.75× 10−7 0 2.84× 10−7

0 0 0.000105 0
−1.78× 10−6 2.84× 10−7 0 8.35× 10−6

 .

Real stock returns strongly signal positive first lag autocorrelation. Real interest

rates appear to be highly positively autocorrelated, and are lead by inflation rates

with a negative sign. Industrial product growth is positively autocorrelated, and is

lead by real stock returns. Finally, inflation is also positively autocorrelated. The

estimated error graph suggests that real stock returns are conditionally independent

of inflation rates given real interest rates.

Table 5.1: Percentage of 24-month forecast error variance explained by innovations
in each variable

Variable Explained
By Innovations in SRE IRE IPG INF

(%) (%) (%) (%)
SRE 97.3 0 8.54 0
IRE 2.66 68.2 0.234 0
IPG 0 0 91.2 0
INF 0.0334 31.8 0.00293 100

I further address the relations and interactions among these four variables by

examining the percentage of 24-month orthogonal forecast error variance explained
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Figure 5.5: Estimated impulse response of each variable to shocks in real stock returns
(left) and real interest rates (right).

Figure 5.6: Estimated impulse response of each variable to shocks in real industrial
production growth (left) and inflation rate (right).
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by innovations in each variable as shown in Table 5.1 as well as the impulse response

functions displayed in Figure 5.5 and 5.6.

(a) Real stock returns and real activity: Real stock returns appear to explain a

substantial fraction (8.54%) of the variance in real activity, which responds

positively to shocks in stock returns. Figure 5.5 shows that the response of

industrial growth to shocks in real stock returns is significantly positive, peaks

after five month and becomes negligible after ten months. This observation

confirms the view that the stock market signals changes in real activity, and

this correlation between stock returns and real activity is positive (Fama, 1981;

Geske & Roll, 1983; Lee, 1992).

(b) Real stock returns and inflation: Real stock returns fail to Granger-cause in-

flation rates, since all of the coefficients on the lagged values of stock returns

are zeros in the equation for inflation rates. Furthermore, the fourth column

of Table 5.1 suggests that innovation in real stock returns explains none of the

forecast error variance of inflation. This finding is generally compatible with

the view that the negative observed relations between stock returns and infla-

tion rates might be a proxy for other possible macroeconomic relations (Fama,

1981; Geske & Roll, 1983). In addition, Figure 5.5 suggests there is no signal

of a consistent negative response of inflation to shocks in stock returns.

(c) Real interest rates and inflation: Contrary to the findings presented in Lee

(1992), there is no indication that real interest rates Granger-cause inflation

in this data set. Moreover, as is shown by column 4 in Table 5.1, innovations

in real interest rates do not explain any of the forecast variance of inflation.

However, inflation appears to explain a substantial fraction (31.8%) of forecast

error variance of real interest rates.
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(d) Inflation and real activity: Table 5.1 indicates that inflation only has negligible

explanatory power (0.00003%) for real activity in the presence of real stock

returns. Figure 5.6 shows that this weak relation between inflation and real

activity is negative.
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6

Extensions of sparse seemingly unrelated regression
modelling

6.1 Mutual fund performance

6.1.1 Alpha and the SUR model

The historical performance of a mutual fund can be summarised by estimating its

alpha. This term is defined as the intercept in a regression of the excess return of

the fund on the excess return of one or more passive benchmarks. This is usually

estimated by applying an ordinary least square analysis to the regression

y0,t = α0 + x′0,tβ0 + e0,t, t = 1, 2, · · · , T

where y0,t is the fund return at time t, xt is a k × 1 vector of benchmark returns

at time t, and α0 is the fund alpha. The choice of benchmarks is often guided by

a pricing model, such as the capital asset pricing model (CAPM) (Sharpe, 1964;

Lintner, 1965; Mossin, 1966) and the Fama-French three factor model (Fama &

French, 1993). The recent work of Pástor & Stambaugh (2002) has explored the

role of nonbenchmark passive assets in estimating a fund’s alpha using a seemingly

unrelated regression model. Suppose there are p nonbenchmark passive returns yi,t
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besides the k benchmark returns xi,t. Then the SUR model used to estimate the

mutual fund α0 is written as

y0,t = α0 + x′tβ0 + e0,t, (6.1)

yi,t = αi + x′tβi + ei,t, i = 1, · · · , p,

where et = (e0,t, e1,t, · · · , ep,t) is correlated contemporaneously and not autocorre-

lated. The basic idea is that a more precise estimate of α0 is provided through a

more precise estimate of αi when e0,t is correlated with the ei,t for all i = 1, · · · , p.

Note that many mutual funds have relatively short histories as compared with pas-

sive assets. Given the more accurate estimate of αi (i = 1, · · · , p) computed from a

longer sample period, the α0 estimated from a SUR model is more precise than the

α0 estimated solely based on a single regression model.

6.1.2 Alpha and the SSUR model

Some interesting questions arise in evaluating mutual fund performance using SUR

models. First, as is observed by Pástor & Stambaugh (2002), the assumption of

pricing power of benchmark assets on nonbenchmark assets is critical in estimating

a fund’s α in a SUR model. In particular, if in each case the benchmark assets

are assumed to have no pricing ability on the nonbenchmark assets, i.e. αi 6= 0

(i = 1, · · · , p), then the estimate of αi from a longer sample period is more precise

than the estimate of αis from the same period of available history. Given the cor-

relation between ei,t and e0,t, the same can be said of the estimate of α0 based on

the SUR model relative to the estimate of α0 from a single regression. Otherwise,

if benchmark assets price other nonbenchmark assets, i.e. αi = 0 (i = 1, · · · , p),

then the better performance of an estimate of α0 based on the SUR model as com-

pared to that based on a single regression is attributed to additional information

about sampling error provided by the seemingly unrelated regressions of nonbench-
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mark assets. Pástor & Stambaugh (2002) address the assumption of pricing power

by separately applying SUR models to such situations. However, as is shown below,

within the SSUR framework the uncertainty about the pricing power of benchmark

assets on nonbenchmark assets can be incorporated naturally. The second interesting

question concerns the strictness of the SUR model assumption, that is, returns are

assumed to be contemporaneously correlated with all nonbenchmark returns given

the benchmark returns. For certain types of managed funds, perhaps only the errors

from a subset of nonbenchmark assets are relevant in explaining returns of the fund.

Including too many correlated nonbenchmark assets to estimate alpha will mean

a potentially high misspecification risk. Hence the possibility that a SUR model

can account for the subset of nonbenchmark assets correlated with a fund is very

compelling.

I also note that the history of a fund is very likely to be shorter than that of the

passive assets. In order to extend the basic SSUR model to allow one equation to have

fewer observations than the others, I re-parameterise the models in equation (6.1).

Suppose returns on passive assets including benchmark or nonbenchmark assets are

constructed for the period from 1 to T and a mutual fund only has a history from t0

to T where t0 ≥ 1. Notice that e0,t =
∑p

i=1 ei,tθi + ẽ0,t =
∑p

i=1(yi,t−αi−x′tβi)θi + ẽ0,t

if the errors are correlated contemporaneously. Equation (6.1) can then be rewritten

as

y0,t = α̃0 + x′tβ̃0 +

p∑
i=1

yi,tθi + ẽ0,t, t = t1, · · · , T, (6.2)

yi,t = αi + x′tβi + ei,t, i = 1, · · · , p, t = 1, · · · , T, (6.3)

where α̃0 = α0 −
∑p

i=1 αiθi, β̃0 = β0 −
∑p

i=1 βiθi and ẽ0,t ∼ N(0, σ̃2) is uncorrelated

with the error vector (e1,t, · · · , ep,t), which is distributed as N(0,Σ). I further assume

throughout this section that the benchmark assets xt are included in every possible
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model. For equation (6.2), the models for different subsets of nonbenchmark assets

may be represented by a vector of binary variables, γ0 = (γ00, γ01, · · · , γ0p)
′, where

γ0j is an indicator of the inclusion of intercept α̃0, when j = 0, or nonbenchmark

asset yj, when j ≥ 1. For the p equations in equation (6.3), I index each of the

possible benchmark assets’ pricing abilities by γ = (γ1, · · · , γp)
′ where γi = 0 or 1

according to whether αi is small or large, respectively. I use G to denote the graph

underlying Σ, which is the error covariance matrix of nonbenchmark passive assets.

Two interesting questions can now be addressed by incorporating model uncer-

tainty regarding the choice of the triple M = (γ0, γ, G). Define

Θ0 = (α̃0, β̃0, θ1, · · · θp, σ̃
2),Θ1 = (α1, · · · , αp, β1, · · · , βp,Σ),Y0 = (y0,t1 , · · · , y0,T ),

and

Y1 = (y1,1, · · · , y1,T , · · · , yp,1, · · · , yp,T ).

The likelihood function for (Θ0,Θ1) can be factorised as

l(Θ0,Θ1) = p(Y0,Y1 | Θ0,Θ1) = p(Y0 | Y1,Θ0)p(Y1,Θ1).

Let M = {Mk}k be the set of all possible triples M . For each model M = Mk ∈M,

I assume the prior p(Θ0,Θ1 | Mk) = p(Θ0 | γ0)p(Θ1 | γ, G) where p(Θ0 | γ0) is the

fully conjugate variable selection priors, and p(Θ1 | γ, G) is the prior discussed in

Sections 5.2.2 and 5.2.3. Coupling the likelihood and separable prior yields the full

marginal likelihood of the data under model Mk:

p(Y | Mk) =

∫
p(Y | Θ0,Θ1)p(Θ0 | Mk)p(Θ1 | Mk)dΘ0dΘ1

=

∫
p(Y0 | Y1,Θ0)p(Θ0 | γ0)dΘ0

∫
p(Y1 | Θ1)p(Θ1 | γ, G)dΘ1,

where the first integrand is available in closed form if using fully conjugate priors,

and the second term is approximated by the Monte Carlo method as discussed in
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the previous section. The posterior distribution over models M is given, at M = Mk

for each k, by

p(Mk | Y) =
p(Mk)p(Y | Mk)∑
k p(Mk)p(Y | Mk)

.

If the fund’s alpha, α0, is of interest, I first transform back to α0 using

α0 = α̃0γ00 +

p∑
i=1

αiγiθiγ0i.

Under model Mk, the posterior distribution for α0 is a mixture over all models,

p(α0 | Y) =
∑

k

p(α0 | Y, Mk)p(Mk | Y)

where p(α0 | Y, Mk) is the posterior distribution of α0 under model Mk.

6.1.3 Vanguard managed funds

To evaluate the efficacy of the model, I applied it to a collection of 15 actively man-

aged Vanguard mutual funds, using monthly returns through December 2008 avail-

able from the Center for Research in Security Prices (CRSP) mutual fund database.

The names of the fund, the associated NASDAQ tickers and relevant inception dates

are available in Table 6.1.

The set of benchmark and nonbenchmark assets consists of nine portfolios con-

structed passively. Monthly returns on these passive assets are available from January

1927 through December 2008. The sample period for any given mutual fund is a much

shorter subset of this overall period. I specify the benchmark series as the excess

market returns (MKT), and so the alpha is exclusively defined with respect to just

MKT. The first two of nonbenchmark passive portfolios are the Fama-French factors,

namely, SMB and HML, which are the payoffs on long-short spreads constructed by

sorting stocks according to the market capitalisation and the book-to-market ratio.
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The third nonbenchmark series, MOM, is the momentum factor. The remaining five

nonbenchmark assets, denoted by IP1,IP2,IP3,IP4 and IP5, are the value-weighted

returns for five industrial portfolios. All data and detailed descriptions of these nine

series are publicly available at the data library of Professor Kenneth R. French 1.

For priors on Θ0, I assume θi ∼ N(0, σ̃2σ̂2
i /100) if γ0i = 0, and θi ∼ N(0, 100σ̃2σ̂2

i )

if γ0i = 1, where σ̂i is the standard error of unconstrained OLS estimator θ̂i, coupled

with inverse gamma prior on σ̃2, σ̃2 ∼ IG(3/2, 9/2). For priors on Θ1, I choose

αi | γi = 0 ∼ N(0, 0.032), and αi | γi = 1 ∼ N(0, 1) for monthly αi’s and i ≥ 1

in equation (6.3). This choice of hyperparameters is in line with the view that a

yearly return of 0.36% in excess of the compensation for the risk borne may possibly

be ignored; moreover,these excess yearly returns would be within 12%, The prior

on the error covariance matrix was specified to provide weak prior knowledge, with

b = 3 and D = 0.0001I8. Finally, I assume a uniform prior for γ0, and a model

space prior as in Section 5.3.3 for (γ, G). In each of the 15 funds, the model space

of γ0 has size 210 = 1024, which is small enough to be enumerated in a row. The

model space of (γ, G) is of size 28 × 228. To explore this model space, the add-

delete Metropolis-Hastings-within-Gibbs sampler was run for 20000 steps based on

the marginal likelihood approximation from the 2000 Monte Carlo sample.

For models indexed by (γ, G), the most probable model is that γi = 1 for all

i = 1, · · · , p, with the residual graph pictured in Figure 6.1. This is also the median

probability model. This modal model seems to suggest that the eight nonbenchmark

assets are not all perfectly priced by the benchmark asset. The residual graph also

indicates a great deal of conditional independencies among error terms.

For models indexed by γ0, Table 6.2 shows the inclusion probabilities for eight

nonbenchmark assets for each of the 15 aggressive Vanguard funds. As can be seen,

the errors between each one of the Vanguard managed funds and eight nonbench-

1 see, http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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mark assets are contemporaneously correlated in different ways. The number of

nonbenchmark asset regression equations that is related to a fund’s regression equa-

tions varies from 0 (for US growth) and 8 (for Equity-Income). I note that a fund’s

contemporaneously dependencies on nonbenchmark assets seem to reflect a fund’s

portfolio composition. For example, the Capital Opportunity Fund seeks companies

with long-term growth and has a 44.6% holding on the information technology sector

as of May, 2008. The error of this fund is related to the error of nonbenchmark assets

representing market capitalisation (SML) and high technology (IP3).

Table 6.3 reports the estimates of monthly α0’s within each fund based on the

OLS, SUR and SSUR models for a five-year period, a ten-year period and the period

since a fund’s inception. The SSUR estimates are nontrivially different from their

OLS and SUR counterparts. In particular, the α0’s tend towards zeros under the

SSUR model. This is not surprising since the SSUR model assumes a positive prob-

ability for α0 = 0. One important issue in fund performance evaluation is whether

the managed fund adds value beyond the standard passive benchmarks. I address

this issue by computing the standard error of the three estimators of a fund’s alpha.

In Table 6.4 I examine the three standard errors. These standard errors reflect the

precision of inferences about α0. Two results are worth noting. First, the SUR stan-

dard errors are generally smaller than their OLS counterparts. This observation is

compatible with that in Pástor & Stambaugh (2002). Second, with few exceptions,

the SSUR model seems to reduce the standard error even more than the SUR model.

Recall that the standard error of the SSUR estimates takes into account of structure

uncertainty. The reduced standard errors seem to suggest that there is a great deal

of sparsity within the SUR models and that identifying this sparsity can help provide

more precise estimates of α0’s. Examining the results in Table 6.3 and 6.4 together,

I find only a few funds have estimated α0 that are two standard errors away from

0. This suggest that most of the 15 mutual funds do not generate excess returns
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beyond the passive benchmark assets.

Table 6.5 reports the estimates of β0’s within each fund based on the OLS, SUR

and SSUR models for a five-year period, a ten-year period and the period since a

fund’s inception. First, I note that quite different β0’s are generated when using

OLS versus the two SUR-type models. Second, the difference in β0’s between the

SUR and SSUR models is substantially less than that for the OLS model and SUR

or SSUR models. This means that nonbenchmark assets play an important role

in estimating the β0’s, and that imposing structures seems to affect β0’s less than

adding nonbenchmark assets. The manner in which nonbenchmark assets provide

information is illustrated most dramatically in the cases of higher-beta and lower-

beta funds. For example, the Capital Opportunity Fund and Growth Equity funds

have β0’s of 1.20 based on OLS model, while these figures decrease to 1 according to

the two SUR models. The Dividend Growth and Equity-Income funds have β0’s of

about 0.53 and 0.67 if estimated using OLS, while these figures are around 0.75 and

0.86 if estimated using the two SUR models. In Table 6.6 I examine the standard

deviations of the three estimators. As evident in the table, these standard deviations

are very similar.

6.2 Linear equality restrictions and dynamic SUR models

In this section, I consider two important extensions of the SSUR model given in

Section 5.2. First, many economic applications of SUR models involve linear restric-

tions on the coefficients. For example, the same coefficients may appear in more

than one equation, and so one may want to hypothesise that all equations have the

same coefficient vector (Min & Zellner, 1993). In general, the main problem involves

assessing the evidence in favour of a reduced model of the kind Aβ = b, where A is

a r × n matrix and b is a r-vector. Second, I allow the regression parameters to be

time varying. In particular, the parameter vector β at time t is denoted by βt, and

103



Figure 6.1: Highest log posterior graph of errors of nonbenchmark assets from the
analysis of Vanguard funds

so the model is re-specified as

yt = X′
tβt + et, et ∼ N(0,V), (6.4)

βt = βt−1 + wt, wt ∼ N(0,Wt),

with the initial prior β0 ∼ N(m0,C0). Carvalho & West (2007a,b); Wang & West

(2009) used graphical model structuring for a covariance matrix in a class of dynamic

SUR models that has been widely used to study financial time series (Quintana &

West, 1987; Quintana, 1992; West & Harrison, 1997; Quintana et al., 2003). Their

dynamic graphical model which leads to conjugate analysis requires that each uni-

variate series yi,t must have the same predictors. In addition, Wt must be separable

by a Kronecker product. Here I consider the general dynamic SUR model in equa-

tion (6.4) with two additional restrictions (a): Aβt = b for all t, and (b): V is

constrained by one decomposable graph G.

Under the existence of the linear equality restriction (a), I reorder the elements
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in βt so that the restrictions can be written as

Aβt = (A1,A2)

(
β1,t

β2,t

)
= b,

implying β1,t = A−1
1 (b−A2β2,t). Here A1 is r×r and nonsingular; A2 is r×(n−r);

and β1,t and β2,t are r and n − r sub-vectors of βt respectively. Correspondingly,

the observation equation in a dynamic SUR model can be written as

yt = X′
tβt + et = X′

1,tβ1,t + X′
2,tβ2,t + et, et ∼ N(0,V),

or

ỹt = X̃′
tβ2,t + et, et ∼ N(0,V), (6.5)

where ỹt = yt − X′
1,tA

−1
1 b and X̃′

t = X′
2,t − X′

1,tA
−1
1 A2. Equation (6.5) is a SUR

model without restrictions. Thus, any linear equality restricted dynamic SUR models

can be transformed to unrestricted models. I only have to consider approaches to

inference on the unrestricted dynamic SUR models of equation (6.4) as follows.

Suppose Wt is specified a priori. The inputs for the Gibbs sampler are as follows.

Given V, sampling the joint distribution of (β0:T | Y,V) is conducted using the

forward filtering backward sampling algorithm detailed in West & Harrison (1997).

The simulation of V for a specified graph is based on its full conditional distribution

(V | β0:T ,Y) ∼ HIWG{b+T,D+
∑T

t=1(yt−X′
tβt)(yt−X′

tβt)
′}. Furthermore, if Bayes

factors to discriminate between models are of interests, these draws of (β0:T ,V) allow

us to approximate the marginal likelihood in a similar manner to that in Section 3.1.

6.2.1 Example: Annual output growth rate data

An example concerns the choice of the pooled and the unpooled models for predicting

annual output growth rates for industrialised countries. The data are taken from the

IMF International Financial Statistics database for five countries, namely, Australia,
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Canada, Japan,the UK and the USA. I fit the dynamic SUR model considered by

Min & Zellner (1993) and Chib & Greenberg (1995). Here yi,t is et as the annual

output growth rate for the ith country in the tth year, while

Xi,t = (1, yi,t−1, yi,t−2, yi,t−3, SRi,t−1, SRi,t−2, GMi,t−1, MSRt−1)
′

where SRi,t is the rate of growth of real stock prices, GMi,t is the rate of growth of real

money, and MSRt is the median of SRi,t in year t. Therefore, for each country i in

year t, βi,t is a vector of eight regression coefficients. The pooled model corresponds

to the choice of βt = β1,t = · · · = β5,t, while the unpooled model corresponds to the

choice of βt = (β′
1,t, · · · , β′

5,t)
′. Figure 6.2 displays the time series plots of yt, SRt

and GMt for each of the five countries.

It is worth noting that the Gibbs sampler for the dynamic SUR applies only when

the sequence of state evolution variance matrices Wt is specified. This is different

from the dynamic matrix-variate linear models in which Wt depends on V through

a discount factor. In the general dynamic SUR model, if Wt depends on V through

a discount factor, then such dependencies prevent the conditional distribution (V |

Y, β0:T ) from maintaining a tractable form. To identify a reasonable sequence of Wt,

the following strategy is used. First fit a static SUR model and estimate V using the

Gibbs sampler from Section 5.3.1. Then specify Wt as Wt = (1 − δ)/δCt−1, where

Ct−1 is the sequentially updated covariance matrix of (βt−1 | Dt−1) using an off-line

estimated value for V from the static SUR model. In the analysis below, δ = 0.98,

and the four models represent different combinations of linear constraints and graphs

G, where the linear constraint means either a pooled or an unpooled model and G

is either a full graph or an empty graph. For each case, the Gibbs sampler was run

20 times each of which generated 50000 draws from the posterior distribution after

discarding the first 5000 draws. The iterations began with the specification of values

of m0 = 0, C0 = 10I40, b = 3 and D = 0.0001I5. The results are summarised in
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Figure 6.2: Time series plots of yt as the annual output growth rate (upper left),
SRt as the rate of growth of real stock prices (upper right), and GMt as the rate of
growth of real money (bottom).

Table 6.7, where for each of four models, the log of the marginal likelihoods from

two approximations are reported along with their numerical standard errors. Based

on this table, it appears that the marginal likelihood is precisely estimated in all the

fitted models. As expected, the more complex model has a larger numerical standard

error associated with the estimation; for example, the numerical standard error of

the unpooled model with a full graph is 147 times greater than that of the pooled

model with an empty graph. These marginal likelihoods support the conclusion of

Min & Zellner (1993); Chib & Greenberg (1995), who argue that a pooled model is
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better than an unpooled model. Moreover, these marginal likelihoods indicate that

the error covariance matrix may be diagonal.

6.3 Closing comments

SUR models are common in econometric studies. It is recognised that the con-

ventional unconstrained SUR models may be over-parametrised. To remedy this

problem, I have introduced a Bayesian analysis of the sparse seemingly unrelated re-

gression (SSUR) model. The main innovations include inferences via Markov chain

Monte Carlo simulations for specific constraints of regression coefficients and errors,

evaluations of the marginal likelihoods of restrictions using coupled Candidate’s for-

mula approximations, and the extension of sparse modelling to dynamic SUR models.

Regarding the use of the conjugate hyper-inverse Wishart prior for the covariance

matrix, Rajaratnam et al. (2008) provide theoretical support for the method used to

estimate higher-dimensional covariance and precision matrices in Gaussian graphical

models; in our models, this prior induces tractable and computationally accessible

posteriors, leads to an adequate mixing of Markov chain simulations, and produces

different approximations to marginal likelihoods of restrictions using the Candidate’s

formula.

Our use of Candidate’s formula based on different approximations to marginal

likelihoods is effective and efficient, as tested in a range of synthetic and real stud-

ies (Wang & West, 2009). There are other methods for approximately computing

marginal likelihood, such as those proposed by Gelfand & Dey (1994) and Meng &

Wong (1996). These methods often require the choice of some tuning functions. In

contrast, the Candidate’s formula is straightforward and easy to be implemented.

These are also closely related non-Bayesian model selection criteria, including the

well-known AIC, BIC, and extensions of them using information-theoretic ideas;

these methods deserve further study. Here, I prefer the fully Bayesian approach that
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enables the incorporation of prior information into the analysis.

The two real-world examples illustrate the important practical potential of the

structured model. The first example investigates the causal relations and dynamic

interactions among stock returns, interest rates, real activity, and inflation. Com-

pared to previous studies, the SSUR model analysis identifies the important signals

of dynamic relations among the variables without imposing a priori restrictions.

The second example highlights the possibility of marginal likelihood estimation in a

dynamic setting with general linear equality constraints.

A number of methodological issues remain. First, our examples are in modest

dimensional problems where local move Metropolis-Hastings methods for the variable

selection and graphical model components of the analysis can be expected to be

effective. To scale to higher dimensions, alternatives computational strategies such

as shotgun stochastic search over graphs (Dobra et al., 2004; Jones et al., 2005;

Hans et al., 2007) become relevant. There is also potential for computationally

faster approximations using expectation-maximisation style and variational methods

(Jordan et al., 1999). Another issue involves the consideration of the structures

in more complicated models with dynamic error covariance matrices such as those

models examined in West & Harrison (1997) and Carvalho & West (2007a,b).
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Table 6.1: Summary statistics of 15 Vanguard funds

Annual Excessive Returns
Since Inception

Name Ticker 5 Year 10 Year Inception Date
Cap Opp VHCOX −2.34 5.71 5.48 08/1995

Dividend Growth VDIGX −1.09 −3.07 2.19 05/1992
Equity-Income VEIPX −2.35 −1.30 4.55 03/1988

Explorer VEXPX −6.16 0.20 1.90 12/1967
Growth & Income VQNPX −6.09 −4.41 4.21 12/1986
Growth Equity VGEQX −8.13 −7.71 0.92 03/1992

Mid Cap Growth VMGRX −4.08 0.89 2.59 12/1997
Morgan Growth VMRGX −5.75 −4.23 3.35 12/1968

PRIMECAP VPMCX −1.38 0.52 8.01 11/1984
Selected Value VASVX −2.62 1.83 1.41 02/1996

Strategic Equity VSEQX −6.72 −10.95 6.32 08/1995
US Growth VWUSX −6.72 −10.95 6.32 01/1959
US Value VUVLX −5.28 −1.07 −1.07 06/2000
Windsor VWNDX −7.19 −1.57 4.70 10/1958

Windsor II VWNFX −3.68 −2.14 5.22 06/1985
Market - −4.43 −3.51 - -

Table 6.2: Exact (to 2 decimal places) inclusion probabilities for 8 nonbenchmark
assets for each of 15 aggressive Vanguard funds

Name SML HML MOM IP1 IP2 IP3 IP4 IP5
Cap Opp 1.00 0.04 0.03 0.05 0.26 0.94 0.05 0.04
Dividend Growth 0.10 1.00 0.04 0.06 0.74 0.09 0.34 0.05
Equity-Income 1.00 1.00 0.99 0.97 1.00 0.92 1.00 1.00
Explorer 1.00 1.00 0.25 0.06 0.36 0.15 0.18 0.21
Growth & Income 1.00 0.29 0.12 1.00 0.18 0.61 0.35 0.63
Growth Equity 0.07 1.00 1.00 0.82 0.06 1.00 0.07 0.13
Mid Cap Growth 1.00 0.60 1.00 0.35 0.04 0.14 0.03 0.04
Morgan Growth 1.00 1.00 0.49 1.00 0.87 1.00 0.22 0.81
PRIMECAP 1.00 0.15 0.04 0.60 0.58 1.00 0.31 0.32
Selected Value 0.99 0.94 1.00 0.93 1.00 0.06 0.22 0.48
Strategic Equity 1.00 0.85 0.06 0.28 1.00 0.08 0.08 0.98
US Growth 0.02 0.14 0.02 0.02 0.03 0.02 0.12 0.05
US Value 0.07 1.00 0.17 0.45 0.08 0.05 0.21 0.15
Windsor 0.19 1.00 1.00 0.89 1.00 0.99 0.07 1.00
Windsor II 1.00 1.00 1.00 0.98 1.00 0.10 1.00 1.00
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Table 6.3: Estimated monthly α’s from each of the three models: The least square
estimates from the OLS, and the posterior mean estimates from the SUR and SSUR
models. An asterisk symbol (*) flags an estimated α0 that is two standard errors
away from 0

5 year 10 year Since Inception
Name OLS SUR SSUR OLS SUR SSUR OLS SUR SSUR
Cap Opp 0.27 0.22 0.07 ∗0.88 ∗0.81 ∗0.56 0.34 0.33 0.18
Dividend Growth 0.16 ∗0.31 0.08 −0.08 −0.20 −0.02 0.05 −0.11 0.13
Equity-Income 0.06 ∗0.31 0.20 0.07 0.09 0.15 0.14 −0.01 −0.01
Explorer −0.03 −0.03 0.06 0.43 0.08 0.16 −0.05 −0.16 0.03
Growth & Income −0.16 −0.11 −0.04 −0.10 −0.01 0.05 0.02 −0.01 0.02
Growth Equity −0.25 −0.09 −0.04 −0.20 −0.12 0.00 −0.20 −0.13 −0.02
Mid Cap Growth 0.11 0.14 0.02 0.61 0.38 0.23 0.55 0.43 0.25
Morgan Growth −0.07 −0.09 −0.01 −0.01 0.00 0.05 0.04 −0.03 0.03
PRIMECAP 0.24 0.22 0.06 ∗0.36 ∗0.34 0.15 0.23 0.18 ∗0.21
Selected Value 0.14 −0.01 −0.11 0.39 0.17 0.17 0.09 −0.11 0.15
Strategic Equity −0.01 −0.23 0.00 0.34 0.10 ∗0.23 0.14 0.00 0.10
US Growth −0.20 0.03 0.02 ∗ − 0.53 −0.32 −0.17 0.31 0.29 0.01
US Value −0.10 −0.11 0.00 0.31 0.20 ∗0.17 0.31 0.20 ∗0.17
Windsor −0.23 −0.25 −0.19 0.15 0.06 0.14 0.14 −0.12 −0.11
Windsor II 0.02 0.07 0.00 0.04 −0.02 0.02 0.13 −0.03 −0.03

Table 6.4: Standard errors of each of the three estimates of monthly α’s.

5 year 10 year Since Inception
Name OLS SUR SSUR OLS SUR SSUR OLS SUR SSUR
Cap Opp 0.23 0.21 0.18 0.27 0.21 0.27 0.26 0.22 0.11
Dividend Growth 0.12 0.12 0.08 0.25 0.19 0.28 0.18 0.15 0.14
Equity-Income 0.14 0.12 0.11 0.22 0.10 0.12 0.12 0.08 0.08
Explorer 0.19 0.11 0.10 0.28 0.15 0.10 0.14 0.12 0.10
Growth & Income 0.09 0.09 0.10 0.10 0.07 0.05 0.06 0.04 0.04
Growth Equity 0.22 0.15 0.16 0.24 0.15 0.12 0.16 0.11 0.12
Mid Cap Growth 0.21 0.18 0.15 0.41 0.27 0.14 0.38 0.25 0.14
Morgan Growth 0.12 0.10 0.07 0.10 0.09 0.05 0.07 0.07 0.08
PRIMECAP 0.14 0.15 0.12 0.18 0.16 0.12 0.12 0.11 0.09
Selected Value 0.20 0.20 0.14 0.32 0.20 0.13 0.28 0.19 0.23
Strategic Equity 0.18 0.15 0.09 0.20 0.14 0.09 0.17 0.12 0.17
US Growth 0.19 0.15 0.11 0.21 0.18 0.13 0.26 0.28 0.09
US Value 0.11 0.12 0.08 0.17 0.12 0.07 0.17 0.12 0.07
Windsor 0.14 0.14 0.10 0.24 0.14 0.09 0.09 0.09 0.09
Windsor II 0.15 0.12 0.10 0.25 0.11 0.15 0.12 0.08 0.08
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Table 6.5: Estimated β’s from each of the three models: The least square estimates
from the OLS, and the posterior mean estimates from the SUR and SSUR models.

5 year 10 year Since Inception
Name OLS SUR SSUR OLS SUR SSUR OLS SUR SSUR
Cap Opp 1.17 1.03 1.09 1.23 1.04 1.02 1.20 1.05 1.07
Dividend Growth 0.72 0.80 0.75 0.56 0.83 0.80 0.53 0.74 0.75
Equity-Income 0.72 0.83 0.80 0.60 0.85 0.86 0.67 0.86 0.86
Explorer 1.23 1.20 1.19 1.20 1.24 1.23 1.11 1.02 1.04
Growth & Income 0.96 1.00 0.99 0.93 0.93 0.95 0.98 0.97 0.97
Growth Equity 1.11 1.00 1.02 1.29 1.00 1.00 1.25 0.98 0.96
Mid Cap Growth 1.15 1.05 1.07 1.37 1.20 1.25 1.36 1.16 1.23
Morgan Growth 1.07 0.99 1.02 1.10 0.98 0.99 1.06 0.96 0.95
PRIMECAP 0.96 0.93 0.95 1.04 0.94 0.93 1.07 0.97 1.00
Selected Value 0.96 1.00 0.98 0.71 1.02 1.01 0.77 1.10 1.12
Strategic Equity 1.23 1.21 1.24 0.95 1.17 1.17 0.98 1.18 1.19
US Growth 0.98 0.90 0.90 1.19 0.97 0.98 1.09 0.96 1.08
US Value 0.93 0.97 0.95 0.82 1.03 1.01 0.82 1.03 1.01
Windsor 0.99 1.00 1.01 0.87 1.07 1.08 0.93 1.05 1.05
Windsor II 0.89 0.98 0.96 0.69 1.00 0.99 0.81 1.02 1.02

Table 6.6: Standard errors of each of the three estimates of β’s.

5 year 10 year Since Inception
Name OLS SUR SSUR OLS SUR SSUR OLS SUR SSUR
Cap Opp 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07
Dividend Growth 0.03 0.03 0.03 0.05 0.05 0.06 0.04 0.05 0.04
Equity-Income 0.03 0.03 0.04 0.05 0.03 0.03 0.03 0.02 0.02
Explorer 0.05 0.03 0.03 0.06 0.04 0.04 0.03 0.03 0.03
Growth & Income 0.02 0.03 0.02 0.02 0.02 0.02 0.01 0.01 0.01
Growth Equity 0.06 0.04 0.04 0.05 0.04 0.04 0.04 0.03 0.03
Mid Cap Growth 0.05 0.05 0.05 0.09 0.08 0.08 0.08 0.07 0.07
Morgan Growth 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
PRIMECAP 0.03 0.04 0.04 0.04 0.05 0.05 0.03 0.03 0.03
Selected Value 0.05 0.06 0.05 0.07 0.05 0.06 0.06 0.05 0.06
Strategic Equity 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03
US Growth 0.05 0.04 0.04 0.05 0.05 0.05 0.06 0.08 0.07
US Value 0.03 0.04 0.03 0.04 0.03 0.03 0.04 0.03 0.03
Windsor 0.04 0.04 0.03 0.05 0.04 0.04 0.02 0.02 0.02
Windsor II 0.04 0.03 0.03 0.05 0.03 0.03 0.03 0.02 0.02
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Table 6.7: Summary of results for output growth rate data. Each of the two approx-
imations were run for 20 times. The mean and the numeric standard error of log
marginal likelihoods from these 20 runs are reported for each of the approximations.

Model fitted Log(marginal) Numerical SE
(A) (B) (A) (B)

Unpooled, Full graph 81.31 81.27 0.28 0.23
Unpooled, Empty graph 89.89 89.88 0.0047 0.083

Pooled, Full graph 171.25 171.25 0.0069 0.0078
Pooled, Empty graph 193.80 193.80 0.0019 0.0033
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7

Concluding remarks and future research

My thesis has considered a number of developments of Bayesian multivariate analysis

in dynamic models and graphical models. The main contributions are the develop-

ment of novel sparse modelling and efficient computational techniques for several

different types of important models: Matrix-variate time series, dynamic covariance

models, and multivariate regressions. I applied these methods to real and simulated

finance and econometrics data sets. These methods are also applicable to other

areas such as biomedical sciences, spatial sciences and social sciences, where large

data sets are routinely generated and often require sparse modelling. In addition to

methodology produced by this thesis, the work has opened up abundant research op-

portunities in Bayesian graphical models and time series analysis. I will now briefly

describe some future directions that are related to these two areas.

7.1 Future work on matrix normal graphical models

The application of matrix normal graphical models of Section 2 and 3 relies on the

assumption of separability of the covariance matrix of the vector vec(Y) formed by

stacking the columns of Y into a single column vector. However, these separable
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models are not always appropriate, and formal tests are needed for the hypothesis

of separability of covariance matrices. In a frequentist framework, likelihood ratio

tests based on asymptotic theory have been considered (Lu & Zimmerman, 2005;

Mitchell et al., 2005) in the context of iid samples. In a Bayesian framework, no

formal methodology has been developed for the problem of testing separability of

covariance matrices. Moreover, there has been no work on examining the separability

of covariance matrices that are structured by graphs.

The formal definition of testing for separability can be described as follows. I

define M+
r to be the space of all positive definite matrices of order r. Let M+

p ⊗M+
q ⊂

M+
pq. To test the hypothesis H0 : W = V ⊗U ∈ M+

p ⊗M+
q versus H1 : W ∈ M+

pq,

I put priors π0 on M+
p ⊗ M+

q and π on M+
pq. If I observe data Y = Y1, · · · ,Yn,

the impact of data on model uncertainty can be isolated in the corresponding Bayes

factor:

B01 =

∫
M+

p ⊗M+
q

f(Y | W)π0(W)dW∫
M+

pq
f(Y | W)π(W)dW

. (7.1)

An important consideration for constructing a prior on the restricted parameter space

is whether or not the priors π and π0 are “compatible” (Dawid & Lauritzen, 2000).

I want Bayes factor to truly respond to the data, rather than merely reflecting prior

prejudices.

Suppose I adopt the projection approach of McCulloch & Rossi (1992). Specifi-

cally, I have associate each distribution π on M+
pq with a corresponding distribution

π0 on M+
p ⊗M+

q . Such a specification can be achieved by an appropriate mapping

h : M+
pq → M+

p ⊗M+
q such that π0 = h(π). Thus, the numerator of the Bayes factor

(7.1) can then be expressed as an unrestricted integral using projection function h:

∫
M+

p ⊗M+
q

f(Y | W)π0(W)dW =

∫
M+

pq

f(Y | h(W))π(W)dW.
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One way to define a projection h is based on minimising the discrepancy of

projection. I could define a discrepancy function D(W,V⊗U) and choose h(W) so

as to minimise the discrepancy:

h(W) = arg min DV∈M+
p ,U∈M+

q
(W,V ⊗U).

A popular discrepancy function is the Kullback-Leibler divergence:

DKL = Ef(Y|W)[log{f(Y | W)/f(Y | U,V)}].

In the multivariate Gaussian case, the Kullback-Leibler divergence between N(0,W)

and N(0,Σ) is DKL(W,Σ) = 1/2{tr(WΣ−1 − I)− log det(WΣ−1)}, and for Σ re-

stricted to being the Kronecker product of U and V, we therefore have

DKL(W,V ⊗U) = 1/2[tr{W(V−1 ⊗U−1)− I} − log det{W(V−1 ⊗U−1)}]. (7.2)

This can be minimised in terms of U,V to obtain the map from each unrestricted

variance matrix W to separated matrices (U,V).

The next theorem provides a map h : M+
pq → M+

p ⊗M+
q .

Theorem 3. The minimiser of Kullback-Leibler divergence in equation (7.2) exists.

If V satisfies the constraint that v11 = 1, such minimiser is uniquely defined by the

solution (U,V) of the following equations:

U =
1

p

∑
1≤i,j≤p

λijWi,j, (7.3)

V =
1

q

∑
1≤i,j≤q

ωijW̃i,j, (7.4)

where W = (Wij), the pq × pq unrestricted covariance matrix comprised of p × p

blocks Wij of dimension q×q, and W̃ = KqpWKpq = (W̃ij), the pq×pq permutated
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unrestricted covariance matrix comprised of q × q blocks W̃ij of dimension p × p.

Here Kpq is a vec-permutation matrix (Harville, 2008), namely

Kpq =

p∑
i=1

q∑
j=1

Tij ⊗T′
ij

where Tij is a p× q matrix whose (i, j) element is 1 and whose remaining elements

are 0.

Proof of Theorem 3. First note that minimising equation (7.2) is equivalent to min-

imising the following function l(U,V) in terms of U and V:

l(U,V) = tr{W(V−1 ⊗U−1)} − log det(V−1 ⊗U−1). (7.5)

This is, in fact, the log likelihood function of (U,V) given the sufficient statistics

W, up to a negative multiplicative constant. Thus the existence and the uniqueness

of minimiser of l is equivalent to the existence and uniqueness of the maximum

likelihood estimator of (U,V). Since a full rank matrix W can be regarded as a

sample covariance matrix of data of size at least n = pq, the existence and the

uniqueness up to a multiplicative constant follow directly from the necessary and

sufficient condition given by Dutilleul (1999).

Write Λ⊗U as (λijU), W as (Wij), and apply matrix derivates. I then have

0 =
∂l

∂Ω
=

∑
i,j

λijWij − pU

which imples equation (7.3). Equation (7.4) can be obtained in a similar manner. If

v11 = 1. the uniqueness of solution of equation (7.3) and (7.4) is implied by theorem

3.1 in Srivastava et al. (2008).

Equations (7.3) and (7.4) have no analytic solutions but can be solved iteratively

by using the following “flip-flop” algorithm where ε denotes an infinitesimal positive
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quantitiy, ||·||2 is the Euclidean norm and V̂0 is an initial solution for V. At each step,

the current V̂c is used to compute the current Ûc, which in turn is used to compute

the next iterate of V̂n and then Ûn until ||V̂n⊗ Ûn− V̂c⊗ Ûc||2 < ε. The Kullback-

Leibler divergence in equation (7.2) decreases at each iteration, and the uniqueness

of the solution of equations (7.3) and (7.4) guarantee that the numerical solution

converge to a globe minimiser. Another question related to the algorithm is whether

Û and V̂ are always positive definite in each iteration. The following theorem ensures

the “flip-flop” algorithm will generate valid Û and V̂ at each iteration as long as the

initial V̂0 is positive definite.

Theorem 4. If W and V are both positive definite matrices, then U obtained from

equation (7.3) is also positive definite. The same is true for V in equation (7.4).

Proof of Theorem 2. I only have to show that for any q-vector x,

x′(
1

p

∑
1≤i,j≤p

λijWi,j)x > 0.

Notice that x′(
∑

1≤i,j≤p λijWi,j)x = tr(ΛQ) > 0 if Λ and Q are both positive definite

where Q = (qij) with qij = x′Wijx is a symmetric matrix of dimension p × p. Q is

positive definite since for any p-vector y, y′Qy = y′(1q ⊗ x′)W(1q ⊗ x)y > 0. This

accomplishs the proof.

Now, any sample W ∼ π on M+
pq can be projected to V⊗U ∼ π0 on M+

p ⊗M+
q

using the iteration algorithm.

Under the above compatible priors constructed by projection, B01 does not have

an analytical expression, so requires numerical evaluation. One possible approach to

compute B01 is to sample from the prior. In particular, if W1, · · · ,WN is a sample

from the prior π, then N−1
∑N

i=1 f{Y | h(Wi)}/N−1
∑N

i=1 f(Y | Wi) estimates B01

consistently. But this estimate is usually quite poor, because the prior will not sample
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intensively from the region where f is nonnegligible. This can be potentially improved

by importance sampling. I can sample from a distribution of W with density q(W),

and then estimate the integral, for example, the numerator by: N−1
∑N

i=1 f{Y |

h(Wi)}π(Wi)/q(Wi).

When a conjugate prior for unrestricted W, such as an inverse Wishart prior, is

used as π(W), the denominator can be calculated in closed form; only the numera-

tor requires approximation. One possible choice of importance distribution for the

numerator would be the unrestricted posterior distribution π(W | Y), under which

the Bayes factor can be simplified further as

B01 =

∫
M+

pq

f{Y | h(W)}
f(Y | W)

π(W | Y)dW.

The above Bayes factor for separability can be evaluated using Monte Carlo

integration. I have experimented with examples that suggest potential usage of this

Bayes factor and Monte Carlo approximations to test separability.

Extensions to graphical models are now trivial. For example, if W is constrained

by a graph GW, the prior π1(W) can be adapted to the hyper-inverse Wishart prior

corresponding to the graphical model restrictions. Moreover, if U and/or V are

assumed to be constrained by graphs GU and/or GV, the projection in Theorem 3

can be modified by using the theory of MLE of covariance matrices constrained by

given graphs; then the corresponding prior distributions on U and V are compatible

for Bayesian hypothesis testings against a non-separable W.

7.2 Future work on dynamic seemingly unrelated regression models

The sparse seemly unrelated regression modelling approach described in Chapters 5

and 6 provides methodology for jointly modelling many regression coefficients and

large-scale residual covariance matrices. The general goal of this approach is to help
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build robust models and improve model interpretation in higher-dimensional regres-

sions for multivariate responses. Sparsity - in terms of lower dimensional relationships

underlying higher-dimensional patterns of associations - is key to achieving this goal.

SSUR induces sparsity by selecting a subset of variables. I have demonstrated some

of the utility of SSUR in applications of finance and econometrics, where identifying

a subset of variables is practically useful.

Beyond variable selection, there are often situations that predicting future val-

ues of response variables, or understanding associations among predictors and/or

response variables is of importance. It is then appealing to consider other types of

lower dimensional structures that can help generate reliable inferences and predic-

tions.

One potentially useful technique for imposing structures on seemingly unrelated

regressions is the reduced rank model (Anderson, 1951; Reinsel & Velu, 1998). This

model was originally developed for the multivariate regression models - a special type

of seemingly unrelated regression models that assumes all response variables have the

same predictors. Consider the multivariate linear regression models:

Y′
t = F′

tΘ + ν ′
t, νt ∼ N(0,Σ), (7.6)

for t = 1, 2, . . . , where

(i) Yt = (Yti) is the p× 1 vector of response variables,

(ii) Ft is the known n× 1 regressor vector,

(iii) Θ = (θi) is the n× p matrix of regression coefficient matrix,

(iv) νt = (νti) is the p × 1 vector of random errors following multivariate normal

distribution with mean vector 0, and covariance matrix Σ.
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In terms of scalar elements, I have p univariate models with the identical individual

n-vector predictors, namely

Observation: Yti = F′
tθi + νti, νti ∼ N(0, σ2

ii) (7.7)

for each i, t.

The reduced rank models approach the question of dimension reduction and struc-

tural modelling through the assumption of lower rank of matrix Θ in model equation

(7.6). More formally, assume that

rank(Θ) = r ≤ min(p, n).

This is equivalent to the parameter specification that Θ can be expressed as

Θ = ΨΦ

where Ψ is of dimension n× r and Φ is of dimension r × p. The model of equation

(7.6) can then be written as

Y′
t = F′

tΨΦ + ν ′
t, νt ∼ N(0,Σ), (7.8)

where F′
tΨ is of reduced dimension with r components. Reduced rank regression

models aim to use the r linear combinations of the predictor variables Ft to explain

the variation in the response variables Yt. The practical implication is that there

may not be a need for all n linear combinations or equivalently for all n predictors.

There is a rich literature on the inference in the reduced rank regression models.

Some of the frequentist studies (Reinsel & Velu, 1998; Camba-Mendez et al., 2003)

involve development of asymptotic sampling theory. MCMC based Bayesian anal-

ysis, and aspects of identification, prior specification, and model uncertainty with

respect to the choice of rank r, appear in Geweke (1996a). Despite these advances,

and the pressing need to develop methodology for higher-dimensional problems, these
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works have generally focused on small problems - treating only a small number of

response variables. One notable exception is Carriero et al. (2010), where a large set

of response and predictive variables is considered. This paper provided a number of

references to a large literature of frequentist and Bayesian analysis of multivariate

regression models in the context of forecasting large datasets. It also compared a

number of these methods for forecasting large datasets, and found that using shrink-

age and rank reduction in combination rather than separately improve substantially

the forecast accuracy. In the current methodology, latent association and param-

eter shrinkage are introduced through a two-stage technique for model fitting, no

methodology exists that can formally reduce the rank and shrink parameters in a si-

multaneous manner. It is then appealing to consider a sparse reduced rank regression

model that can potentially improve forecasting performance based on the synthesis

of reduced rank and shrinkage techniques.

Another motivation for sparse reduced rank analysis comes from the desirable and

inherent structure interpretation available in macroeconomic time series analysis. In

such context, the predictors and the responses are both a large set of macroeconomic

variables. I can image that combinations of predictors reflect individual aspects

of economy: Financial market, real economy, and prices, etc. A given response

macroeconomic variable may be only predicted by a few aspects of economy rather

than predicted by all aspects of economy; so Φ will have many zeros. Similarly, each

economic aspect may involve a few economic variables but not all variables; so Ψ

will have many zeros. This also motivates the integration of reduced rank modelling

and sparse shrinkage modelling.

To improve both forecasting and interpretation, I want to propose the sparse

reduced rank modeling that encourages sparse Φ and Ψ. A Bayesian approach to

defining sparse reduced rank regression models can be developed in the spirit of

sparse latent factor analysis (West, 2003; Carvalho et al., 2008). The general idea
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is that I can use priors on the elements of Φ and Ψ that induce zeros with high

probability. Specifically, scalar elements Φs,i and Ψj,t of Φs,i and Ψj,t, respectively,

may be zero or take some non-zero value, for example, having the variable selection

priors

Φs,i ∼ πiδ0(Φs,i) + (1− πi)N(Φs,i | 0, σ2
s,i)

where δ0(·) is the unit point mass at zero. Computationally, I expect that this gen-

eral idea of sparse reduced rank regression models can be efficiently implemented by

computational techniques such as MCMC algorithms. The resulting fully Bayesian

analysis on large data sets can potentially offer a better prediction and easier struc-

ture interpretation than non-sparse reduced rank regression models.

Follow-on research to formally identify, or estimate, the rank r is of key interest.

One possible approach for Bayesian model assessment of reduced rank regression

involves the computation of posterior probability on the rank based on using MCMC

methods for separate models differing only in the rank. Such a method requires

the computation of marginal data densities as illustrated in Section 3.1 and 5.3.2.

Various of methods are available for marginal data density computation. Lopes

& West (2004) provided a wide ranging review of some methods in the context of

latent factor analysis. Lopes & West (2004) also proposed a reversible jump Markov

chain Monte Carlo algorithm to allow for uncertainty in the number of factors. These

methods can be potentially used for rapid estimation of the number of the ranks, but

may be sensitive to subjectively chosen priors. Another general strategy that seems

very promising is to utilise a nonparametric Bayesian tool to automatically choose

the rank and sparse pattern. This is related to the nonparametric infinite factor

models of Bhattacharya & Dunson (2009), and approaches that put nonparametric

process priors on latent factor model parameters.
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Appendix A

Software manual for model implementation

In this appendix, I describe the user manual of computer codes that implement

models and algorithms proposed throughout this thesis. Particularly, it contains the

MCMC algorithms of Chapter 2 and 3 to fit matrix normal graphical model for given

graphs and to explore graphical model uncertainty, the sequential graphical model

search algorithm of Chapter 4, and the MCMC algorithms described in Chapter 5

and 6 to conduct sparse seemingly unrelated regression modelling. This software is

freely available at my webpage http://stat.duke.edu/~hw27.

A.1 MCMC for matrix-variate graphical models

The directory “MatrixNormG” contains Matlab code and routines for the MCMC

computations and model search in matrix-variate graphical models. Some of the

data sets used in this thesis and the codes used to generate the results are described

here.

Data File

The simulated example data in Chapter 2 and 3 is provided by the file “Eg1Simu.mat”.
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Using Code

Start with “DEMO.m” that illustrates the implementation of models using the sim-

ulated examples. Some of the key Matlab functions are given as follows:

Hyper-inverse Wishers sampler:

function [Omega , Sigma ] = HIWsim(G,bG,DG,M)
%HIWSIM
% Samples the HIW_G(bG,DG) distribution on a graph G on p nodes
%Reference: Carvalho,Massam and West (2007), Biometrika

5 p=s ize (DG, 1 ) ;
Sigma = zeros (p , p ,M) ; Omega=Sigma ; % arrays to save sampvar matrices
c l i q u e s = G{1} ; s epa ra to r s = G{2} ;
numbero fc l iques = length ( c l i q u e s ) ;

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Creat some working arrays that are computed only once
C1=inv (DG( c l i q u e s ( 1 ) . ID , c l i q u e s ( 1 ) . ID)/bG) ;
c1=c l i q u e s ( 1 ) . ID ; UN = c1 ’ ;
for i =2: numbero fc l iques

15 s i d = sepa ra t o r s ( i ) . ID ; DSi{ i}=inv (DG( s id , s i d ) ) ;
c id = c l i q u e s ( i ) . ID ; d i f = s e t d i f f ( c id ,UN) ;
UN = union ( cid ’ ,UN) ;
s i z e d i f = s ize ( d i f , 2 ) ;
DRS{ i } = DG( d i f , d i f )−DG( d i f , s i d )∗DSi{ i }∗DG( sid , d i f ) ;

20 DRS{ i }=(DRS{ i}+DRS{ i } ’ ) / 2 ;
mU{ i } = DG( d i f , s i d )∗DSi{ i } ;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
25 % Now, MC Sampling

for j = 1 :M
UN = c1 ’ ;
Sigmaj=zeros (p , p ) ;

30 Sigmaj ( c1 , c1)=inv ( wishart InvA rnd (bG+c l i q u e s ( 1 ) . dim− 1 , . . .
DG( c l i q u e s ( 1 ) . ID , c l i q u e s ( 1 ) . ID ) , 1 ) ) ;

% sample variance mx on first component
for i =2: numbero fc l iques

% visit components and separators in turn
d i f = s e t d i f f ( c l i q u e s ( i ) . ID ,UN) ; UN = union ( c l i q u e s ( i ) . ID ’ ,UN) ;

35 s i z e d i f = s ize ( d i f , 2 ) ; s i d = sepa ra t o r s ( i ) . ID ;
SigRS = inv ( wishart InvA rnd (bG+c l i q u e s ( i ) . dim−1,DRS{ i } , 1 ) ) ;
Ui = rMNorm( reshape (mU{ i } ’ , 1 , [ ] ) , kron ( SigRS , DSi{ i } ) , 1 ) ;
Sigmaj ( d i f , s i d ) = reshape (Ui , [ ] , s i z e d i f ) ’∗ Sigmaj ( s id , s i d ) ;
Sigmaj ( s id , d i f ) = Sigmaj ( d i f , s i d ) ’ ;

40 Sigmaj ( d i f , d i f ) = SigRS + . . .
Sigmaj ( d i f , s i d )∗ inv ( Sigmaj ( s id , s i d ) )∗ Sigmaj ( s id , d i f ) ;

end
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% Next, completion operation for sampled variance matrix
H = c1 ;

45 for i = 2 : numbero fc l iques
d i f = s e t d i f f ( c l i q u e s ( i ) . ID ,H) ; s i d = sepa ra t o r s ( i ) . ID ;
h = s e t d i f f (H, s i d ) ;
Sigmaj ( d i f , h ) = Sigmaj ( d i f , s i d )∗ inv ( Sigmaj ( s id , s i d ) ) . . .

∗Sigmaj ( s id , h ) ;
50 Sigmaj (h , d i f ) = Sigmaj ( d i f , h ) ’ ;

H=union (H, c l i q u e s ( i ) . ID ) ;
end
Sigma ( : , : , j )=Sigmaj ;
% Next, computing the corresponding sampled precision matrix

55 Caux = zeros (p , p , numbero fc l iques ) ; Saux = Caux ;
c id = c l i q u e s ( 1 ) . ID ; Caux( cid , c id , 1 ) = inv ( Sigmaj ( cid , c id ) ) ;
for i = 2 : numbero fc l iques

c id = c l i q u e s ( i ) . ID ; Caux( cid , c id , i ) = inv ( Sigmaj ( cid , c id ) ) ;
s i d = sepa ra t o r s ( i ) . ID ; Saux ( s id , s id , i ) = inv ( Sigmaj ( s id , s i d ) ) ;

60 end
Saux ( : , : , 1 ) = [ ] ; % since we have separators indexed 2 up ...
Omega ( : , : , j ) = sum(Caux , 3 ) − sum( Saux , 3 ) ;

end
% End of sampling

65 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Function for sampling inverse Wishart distribution conditional on the first ele-

ment to be 1:

function f=iw i shar t InvA rnd 1 ( df ,D)
%%Draw a sample f from conditional inv−wishart
%distribution IWishart(df) given f_11 =1

5

[ p p]= s ize (D) ;
f=zeros (p ) ;

10 D 21=D(2 :end , 1 ) ;
D 11=D( 1 , 1 ) ;
D 22=D( 2 :end , 2 : end ) ;
D 2dot1=D 22−D 21∗ inv (D 11 )∗D 21 ’ ;
f 1 1 =1;

15

f 2do t1=inv ( wishart InvA rnd ( df+p−1,D 2dot1 , 1 ) ) ;

U=rMNorm(D 21∗ inv (D 11 ) , inv (D 11 )∗ f 2dot1 , 1 ) ;
20

f (1 ,1)=1;
f ( 2 :end ,1)=U∗ f ( 1 , 1 ) ;
f ( 1 , 2 :end)= f ( 2 :end , 1 ) ’ ;

25 f ( 2 :end , 2 : end)= f 2do t1+f ( 2 :end , 1 )∗ inv ( f ( 1 , 1 ) )∗ f ( 1 , 2 :end ) ;
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Function for sampling hyper-inverse Wishart distribution conditional on the first

element to be 1:

function [Omega , Sigma ] = HIWsim con (G,bG,DG,M)

p=s ize (DG, 1 ) ;
Sigma = zeros (p , p ,M) ; Omega=Sigma ; % arrays to save sampvar matrices

5 c l i q u e s = G{1} ; s epa ra to r s = G{2} ;
numbero fc l iques = length ( c l i q u e s ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Creat some working arrays that are computed only once

10 C1=inv (DG( c l i q u e s ( 1 ) . ID , c l i q u e s ( 1 ) . ID)/bG) ;
c1=c l i q u e s ( 1 ) . ID ; UN = c1 ’ ;
for i =2: numbero fc l iques

s i d = sepa ra t o r s ( i ) . ID ; DSi{ i}=inv (DG( s id , s i d ) ) ;
c id = c l i q u e s ( i ) . ID ; d i f = s e t d i f f ( c id ,UN) ;

15 UN = union ( cid ’ ,UN) ;
s i z e d i f = s ize ( d i f , 2 ) ;
DRS{ i } = DG( d i f , d i f )−DG( d i f , s i d )∗DSi{ i }∗DG( sid , d i f ) ;
DRS{ i }=(DRS{ i}+DRS{ i } ’ ) / 2 ;
mU{ i } = DG( d i f , s i d )∗DSi{ i } ;

20 end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Now, MC Sampling
for j = 1 :M

25 UN = c1 ’ ;
Sigmaj=zeros (p , p ) ;
Sigmaj ( c1 , c1)= iw i shar t InvA rnd 1 (bG,DG( c l i q u e s ( 1 ) . ID , c l i q u e s ( 1 ) . ID ) ) ;

% visit components and separators in turn
30 for i =2: numbero fc l iques

d i f = s e t d i f f ( c l i q u e s ( i ) . ID ,UN) ; UN = union ( c l i q u e s ( i ) . ID ’ ,UN) ;
s i z e d i f = s ize ( d i f , 2 ) ; s i d = sepa ra t o r s ( i ) . ID ;
SigRS = inv ( wishart InvA rnd (bG+c l i q u e s ( i ) . dim−1,DRS{ i } , 1 ) ) ;

35 Ui = rMNorm( reshape (mU{ i } ’ , 1 , [ ] ) , kron ( SigRS , DSi{ i } ) , 1 ) ;
Sigmaj ( d i f , s i d ) = reshape (Ui , [ ] , s i z e d i f ) ’∗ Sigmaj ( s id , s i d ) ;
Sigmaj ( s id , d i f ) = Sigmaj ( d i f , s i d ) ’ ;
Sigmaj ( d i f , d i f ) = SigRS + Sigmaj ( d i f , s i d )∗ inv ( Sigmaj ( s id , s i d ) ) . . .

∗Sigmaj ( s id , d i f ) ;
40 end

% Next, completion operation for sampled variance matrix
H = c1 ;
for i = 2 : numbero fc l iques

d i f = s e t d i f f ( c l i q u e s ( i ) . ID ,H) ; s i d = sepa ra t o r s ( i ) . ID ;
45 h = s e t d i f f (H, s i d ) ;

Sigmaj ( d i f , h ) = Sigmaj ( d i f , s i d )∗ inv ( Sigmaj ( s id , s i d ) ) . . .
∗Sigmaj ( s id , h ) ;

Sigmaj (h , d i f ) = Sigmaj ( d i f , h ) ’ ;
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H=union (H, c l i q u e s ( i ) . ID ) ;
50 end

Sigma ( : , : , j )=Sigmaj ;
% Next, computing the corresponding sampled precision matrix
Caux = zeros (p , p , numbero fc l iques ) ; Saux = Caux ;
c id = c l i q u e s ( 1 ) . ID ; Caux( cid , c id , 1 ) = inv ( Sigmaj ( cid , c id ) ) ;

55 for i = 2 : numbero fc l iques
c id = c l i q u e s ( i ) . ID ; Caux( cid , c id , i ) = inv ( Sigmaj ( cid , c id ) ) ;
s i d = sepa ra t o r s ( i ) . ID ; Saux ( s id , s id , i ) = inv ( Sigmaj ( s id , s i d ) ) ;

end
Saux ( : , : , 1 ) = [ ] ; % since we have separators indexed 2 up ...

60 Omega ( : , : , j ) = sum(Caux , 3 ) − sum( Saux , 3 ) ;
end
% End of sampling
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Gibbs sampler for matrix-variate graphical models

function [ W afterburn , V afterburn , K w afterburn , . . .
K v afterburn , l o c w a f t e rburn , l o c v a f t e rbu rn , v11 , d f v11 ] . . .
=cov w v g ibbs h iwboth s ta r1 (Y, b ,B, d ,D,GV,GW, adj , burnin , nmc)

5

[ n , p ,m]= s ize (Y) ;

%%% posterior
df w=b+p∗m; d f v=d+n∗m; %D.F. of covariance W and V

10 df kw=df w+n−1; d f kv=df v+p−1;

W gibbs=zeros (n , n , nmc+burnin ) ; % Set up variables to store samples
V gibbs=zeros (p , p , nmc+burnin ) ;

15

V afterburn=zeros (p , p , nmc ) ;
W afterburn=zeros (n , n , nmc ) ;

20 K w gibbs=zeros (n , n , nmc+burnin ) ; % Set up variables to store samples
K v gibbs=zeros (p , p , nmc+burnin ) ;

l o c w g ibb s=zeros (n , n , burnin+nmc ) ;
l o c v g i bb s=zeros (p , p , burnin+nmc ) ;

25

l o c kw g ibbs=zeros (n , n , burnin+nmc ) ;
l o c kv g i bb s=zeros (p , p , burnin+nmc ) ;

v11=ones (1 ,nmc+burnin ) ;
30

c l i q u e s = GV{1} ; s epa ra to r s = GV{2} ;
numbero fc l iques = length ( c l i q u e s ) ;

jacob=(sum(sum( adj ))+p ) /2 ;
35

a v11=c l i q u e s ( 1 ) . dim∗(d+2∗ c l i q u e s ( 1 ) . dim)/2 ;
for i =2: numbero fc l iques

a v11=a v11+c l i q u e s ( i ) . dim∗(d+2∗ c l i q u e s ( i ) . dim)/2− s epa ra t o r s ( i ) . dim ∗ . . .
(d+2∗ s epa ra t o r s ( i ) . dim )/2 ;

40 end

a v11 = a v11−jacob ;
d f v11=2∗a v11 ;

45 V gibbs ( : , : , 1 )= eye (p ) ; % Initializing V
for i =2: burnin+nmc

lo c w g ibb s ( : , : , i )=sum prod (Y, inv ( V gibbs ( : , : , i −1)))+B;
l o c kw g ibbs ( : , : , i )=inv ( l o c w g ibb s ( : , : , i ) ) ;

50
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% Draw a sample W from the conditional posterior
[ K w gibbs ( : , : , i ) , W gibbs ( : , : , i ) ] = . . .

HIWsim(GW, df w , l o c w g ibb s ( : , : , i ) , 1 ) ;

55

v11 ( i )=1/gamrnd ( a v11 ,2/ trace (D∗ inv ( V gibbs ( : , : , i −1 ) ) ) ) ;

% Location Matrix of V given W
60 l o c v g i b b s ( : , : , i )=sum prod t (Y, K w gibbs ( : , : , i ))+D/v11 ( i ) ;

l o c kv g i bb s ( : , : , i )=inv ( l o c v g i bb s ( : , : , i ) ) ;
%Draw a sample V from conditional posterior given V_11 =1

[ K v gibbs ( : , : , i ) , V gibbs ( : , : , i ) ] = . . .
HIWsim con (GV, df v , l o c v g i bb s ( : , : , i ) , 1 ) ;

65 end

V afterburn=V gibbs ( : , : , burnin+1:end ) ;
W afterburn=W gibbs ( : , : , burnin+1:end ) ;

70 K v afterburn=K v gibbs ( : , : , burnin+1:end ) ;
K w afterburn=K w gibbs ( : , : , burnin+1:end ) ;

l o c w a f t e rbu rn=loc w g ibb s ( : , : , burnin+1:end ) ;
l o c v a f t e r bu r n=l o c v g i bb s ( : , : , burnin+1:end ) ;

75 %
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A.2 Sequential stochastic search for dynamic graphical models

Fixed graphs

The directory “SSS type1” contains a C++ program that uses the sequential stochas-

tic search of Section 4.4.2 to sequentially sample decomposable graphs according to

their predicted probability described by equation. 4.8. This manual describes the

compilation of the program, the input parameters to be set by the user in several

input files, the output parameters that are saved in files specified by users, and other

parameters interested users can modify by changing and recompiling the source codes.

COMPILATION: Type “make”.

INPUT: The following parameters are specified by the user and read in via the

standard input (eg ./main < infile ). See the “infile” given for an example.

(i) Residual file: Character string. The residual file stores the sequence of stan-

dardised residuals, et/
√

q
t
, from the output of DLM models.

(ii) qt file: Character string. The qt file stores the sequence of qt’s from the output

of inferences on DLM models.

(iii) Initial adjacency matrix file: Character string. The p× p adjacency matrix is

specified by a sequence of 0’s and 1’s of length p2 × 1. These are the elements

of the adjacency matrix, listed row by row.

(iv) Prior hyper-parameter S0 file: Character string. The p × p matrix, S0, is

specified by a column of length p2 × 1. These are the elements of the S0

matrix, listed row by row.

(v) Number of stocks, i.e. the value of p.

(vi) Number of time series observations.

(vii) Value of the prior hyper parameter b0.
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(viii) Number of top graphs used to conduct Bayesian model averaging.

(ix) Number of maximum shotgun stochastic search iterations at each time point.

(x) Value of the threshold used to stop shotgun stochastic search at each time

point.

(xi) Value of the starting time point to begin the sequential learning of graphical

models.

(xii) Value of the discount factor δ.

(xiii) Value of the annealing parameter c.

OUTPUT: The following output files will be created to record the results from

the sequential analysis:

(i) Log predictive density file: Character string. The log predictive density is

sequentially computed based on equation 4.12

(ii) Predicted residual covariance matrix file: Character string. The predicted

residual covariance matrix is the quantity of E(Σt | It) in Theorem 2.

(iii) Predicted edge inclusion probability file: Character string. The edge inclusion

probability at each time point t is computed according to equation 4.9.

(iv) File for recording the number of shotgun stochastic search iterations for each

time point: Character string.

(v) File for recording the maximum absolute difference between correlation matri-

ces from the last two shotgun iterations.

The paths and names of these files are specified by user in the “infile” and read in

via the standard input.
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OTHER PARAMETERS: Users can change the hyper-parameters of the sparse

encouraging prior over graphs by modifying values at line 76 of the “main.C” file.

Discounted graphs

The directory “SSS type2” contains a C++ program that uses the sequential stochas-

tic search of Section 4.4.2 to sequentially sample decomposable graphs according to

their predicted probability described by equation 4.9. The manual is the same as

those for the program in “SSS type1”.
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A.3 Matlab codes for sparse seemingly unrelated regression models

The directory “SSURDemo” contains Matlab code and routines for the MCMC com-

putations and model search in SSUR models. Some of the data sets used in this thesis

and the codes used to generate the results are described as follows.

Data File

The example data is provided under the directory Data:

• “F-F Research Data Factors.txt”: This file contains data for extracting month

information useful for VAR example;

• “Macro MHsearch.mat”: This file contains results of the analysis of the VAR

example in the paper;

• “Macro MHsearch.mat”: This file contains results of the analysis of the VAR

example in the paper;

• “Simu p6”: This file contains simulated data in the simulated example;

• “varex”: this file contains macroeconomic data for the VAR example.

Using Code

Start with “main macro.m” or “main simu.m” that illustrate the implementation of

models using the first simulated example and the first real-world example:

• “MultiLinearSamplerMarglik.m”: This function performs the Gibbs sampling

and marginal likelihood approximation for fixed adjacency matrix specified by

variable adj and subset of variables specified by variable z1 ;

• “SUR SSVS.m”: This function indirectly sample the model space without com-

puting marginal likelihood;
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• “SSUR MH”: This function searches for SSUR model using the two approxi-

mations for marginal data densities.
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