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Abstract

Biochemical reaction networks with a sufficiently large number of molecules may

be represented as systems of differential equations. Many networks receive inputs

that fluctuate continuously in time. These networks may never settle down to a

static equilibrium and are of great interest both mathematically and biologically.

Biological systems receive inputs that vary on multiple time scales. Hormonal and

neural inputs vary on a scale of seconds or minutes; inputs from meals and circadian

rhythms vary on a scale of hours or days; and long term environmental changes (such

as diet, disease, and pollution) vary on a scale of years. In this thesis, we consider the

limiting behavior of networks in which the input is on a different time scale compared

to the reaction kinetics within the network.

We prove analytic results of how the variance of reaction rates within a system

compares to the variance of the input when the input is on a different time scale than

the reaction kinetics within the network. We consider the behavior of simple chains,

single species complex networks, and reversible chains with time-scaled stochastic

input as the input speeds up and slows down. In all cases, as the input fluctuates

more and more quickly, the variance of species within the system approaches zero.

As the input fluctuates more and more slowly, the variance of the species approaches

the variance of the input, up to a normalization factor.
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1

Introduction

Biochemical reaction networks with a sufficiently large number of molecules may be

represented as systems of differential equations. Many networks receive large inputs

that fluctuate continuously in time. When a deterministic system receives stochastic

input, the reactions and species within the system will also have stochastic behavior.

These networks may never settle down to a static equilibrium and are of great interest

both mathematically and biologically. One important question is how the variance

of reaction rates within a system compares to the variance of the input. The answer

depends on the reaction kinetics, the topology of the network, long-range interactions,

and the properties of the input.

As Reed and Nijhout ([13], [12], [16]) have shown, models of cell metabolism can

provide insight into biological mechanisms with important medical implications. In

these models, the number of molecules is high enough so the biological systems can

be approximated by differential equations with stochastic input.

Biological systems receive inputs that vary on multiple time scales. Hormonal

and neural inputs vary on a scale of seconds or minutes; inputs from meals and

circadian rhythms vary on a scale of hours or days; and long term environmental
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changes (such as diet, disease, and pollution) vary on a scale of years. In this thesis,

we consider the limiting behavior of networks in which the input is on a different

time scale compared to the reaction kinetics within the network.

The biochemical inputs to many biological systems, such as cell metabolism,

fluctuate widely in time with the content and frequency of meals, varying activity

levels, and environmental factors (refer to [6]). These systems may not have a chance

to relax to a steady-state equilibrium. However, cells are able to maintain fairly stable

levels of many reaction velocities despite these huge fluctuations in input. A problem

of interest is to explore the mathematical mechanisms that enable this stability and

how stochastic fluctuations propagate through a system.

For linear, reversible, and non-linear chains, David Anderson ([3],[2]) has proved

that the variance of fluxes decreases down the chain. So there is a stabilizing effect

in biochemical systems with longer reaction chains. He proved that side reaction

systems and feedback loops also lower variance. In weakly reversible single species

complex (SSC) systems with mass action kinetics, the variance of species within the

system is lower than the variance of the input, after scaling to account for mean

values.

Here we are interested in analytic results of how the variance of reaction rates

within a system compares to the variance of the input when the input is on a dif-

ferent time scale than the reaction kinetics within the network. I prove limiting

results regarding the behavior of simple chains, single species complex networks, and

reversible chains with time-scaled stochastic input ξt/L as the input speeds up and

slows down.

Time is scaled by the parameter L and the input is denoted ξt/L. In one limit

(L→ 0), as the input fluctuates more and more quickly, the variance of species within

the system goes to zero. The intuitive idea behind this is that the concentrations of

species within a system are found by integrating the input. With quickly fluctuating
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Figure 1.1: A numerical simulation of time-scaled Ornstein-Uhlenbeck input to a
single species.

input, the fluctuations cancel each other out as they are averaged over. The other

limit (L→∞) is the adiabatic case. As the input fluctuates more and more slowly,

the variance of the species approaches the variance of the input. The intuitive reason

for this is that although the system is not able to relax completely to equilibrium,

the input is changing so slowly that the system is always very near to equilibrium.

See Figure 1.1 for the graph of a numerical simulation illustrating these results.

It is assumed that the covariance function of ξ is a measurable, decreasing function

E[ξtξs] = f(|t − s|) and that limx→∞ f(x) = 0. This means that the process is

becoming decorrelated in time, which is a reasonable assumption. The Ornstein-

Uhlenbeck process, which has covariance 1
2
e−|t−s|, meets this assumption, whereas

Brownian motion, with covariance min(s, t), does not.

In chapter 2, I give an overview of other methods for studying chemical reaction
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networks or time-scaled systems and introduce notation. Previous results in the field

are discussed, and this work is placed within its larger context.

In chapter 3, I consider the case of a species Xi in a simple chain of linear

reactions:

X1
. . . Xi

//
1+ξt/L

//
k1

//
ki−1

//
ki

I prove that the variance of Xi approaches zero as L → 0 and the variance of Xi

approaches the variance of the input as L→∞. The first order correction terms are

calculated. The effect of rate constant magnitude on the variance in a linear chain

is also explored. In the case of Ornstein-Uhlenbeck input, I prove that a larger rate

constant results in a smaller variance of the flux, but a larger variance of the species

concentration.

A commonly studied class of reaction networks is the set of weakly reversible

single species complex (SSC) systems with mass action kinetics. These systems can

be represented d
dt
~x(t) = A~x(t) + ~I + ~ξt/L where A is a matrix of rate constants,

~I = (I, 0, . . . , 0), and ~ξ = (ξ, 0, . . . , 0). SSC networks are considered in chapter 4,

and I prove that

lim
L→∞

Var XL
i,t =

(mi

I

)2

Var ξ

lim
L→0

Var XL
i,t = 0

where mi is the mean of the ith species. That is, as L → 0 the variance of Xi

approaches zero, and as L → ∞, the variance of Xi approaches the variance of the

input, up to a normalization factor.

Reversible chains are a specific type of SSC system:

X1 X2
. . . Xn

//
I+ξ

/
k1

/
k2

o

b1

o

b2

/
kn−1

//
kn

o

bn−1

4



The result for SSC systems holds for species in the reversible chain. By consid-

ering the net flux

yk−1 = kk−1xk−1 − bk−1xk

at each step in the chain, in Chapter 5, I prove the stronger results that

lim
L→∞

Var yt,L = Var ξ

lim
L→0

Var yt,L = 0

In Chapter 6, I summarize the results and discuss related open questions of

interest. In all of the cases considered in this thesis, as the input speeds up, the

variance of the fluxes approaches zero in the limit. Since the input is integrated to

calculate concentrations within the system, rapid fluctuations in input cancel one

another out as they are averaged over in the integral. As the input slows down, the

variance of the species approaches the variance of the input, up to a normalization

factor. Although the system never reaches equlibrium, it is able to get very close

when the input is incredibly slow. In the slow limit, the system is approximately at

equilibrium at all times.

5



2

Background

This chapter will introduce the mathematical model used to describe chemical reac-

tion networks and review previous results in this field. There is an intrinsic stochas-

ticity to biochemical reactions in the collisions of molecules and the making and

breaking of molecular bonds. Systems with a relatively small number of molecules

may be modeled as continuous time Markov chains. The state at a given time is a

vector x = (x1, . . . , xn) ∈ Zn
≥0 giving the number of molecules of each species. The

possible transitions are the possible reactions which may occur. Each reaction is

characterized by a rate function λ(x), a vector ν ∈ Zn
≥0 specifying the number of

molecules of each species consumed in the reaction, and a vector ν ′ ∈ Zn
≥0 specifying

the number of molecules of each species created by the reaction. The updated state

of the system after the reaction is x+ ν ′ − ν. As shown in [9], as the volume of dis-

crete reaction models is appropriately scaled up, the limit is a deterministic system

of ordinary differential equations. In this work, we consider reaction systems with a

large enough number of molecules that they can be modeled continuously.

The biochemistry of reaction systems can be incredibly complex as many of them

have long range inhibitions or excitations, the effects of which are difficult to under-
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stand. Studying the differential equations poses many challenging questions, such as

showing global stability for equilibrium points. Furthermore, there are still stochas-

tic elements in these systems. Since the rate at which enzymes are synthesized can

depend on the substrates they are affecting, the parameters may be changing in

time. The inputs to biochemical systems may fluctuate widely in time with the

content and frequency of meals, changing activity levels, and environmental factors.

Such systems may never relax to a static equilibrium, but may still have stationary

solutions.

We are interested in understanding the behavior of biochemical systems in cells.

One approach is through in silico experimentation with models of actual specific

networks. Examples of this can be found in [12], [13], [16], and [17]. All of these

papers involve the development of a model of 1-carbon cell metabolism, which in-

cludes the folate and methionine cycles and glutathione synthesis. Malfunction of

cell metabolism (for instance, through substrate deficits) has been correlated with

a host of health problems, including spina bifida, cardiovascular disease, cancer,

Alzheimer’s disease, Down syndrome, and autism.

The model in [17] (by Reed, Thomas, Pavisic, James, Ulrich, and Nijhout) in-

cludes 34 differential equations, one for each substrate represented. Each equation

has several Michaelis-Menten terms, and many have inhibition and activation terms.

The system is quite complex and highly nonlinear. Since there are several long-range

inhibitions and activations, a particular part of the cycle can not be accurately mod-

eled in isolation. See Figure 2.1.

In such computer models, we are interested in qualitative rather than quantitative

results. We can decompose the model piece by piece to explore the role that specific

reactions, inhibitions, or activations play. Thus, the model can provide new insight

into the biological mechanisms at work. We can also experiment with the model by

changing inputs or parameters. This allows us to perform tests that it would not be
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Figure 2.1: A model of one-carbon metabolism. Enzymes are denoted by ellipses
and substrates are denoted by rectangles.

feasible to perform on people.

Another approach, and the one taken in this thesis, is to study how fluctuations

propagate through relatively simple systems. Theorems about how simple systems

magnify or suppress fluctuations may provide insight into why more complicated

networks are structured as they are.

This type of analysis differs from classical metabolic control analysis (Heinrich

and Rapoport, [5], Kacser and Burns, [8]) in that the system here is never at equi-

8



librium. In metabolic control analysis, a system is at a fixed steady state and a

small change is made to one parameter. The system is allowed to relax to a new

equilibrium and the partial derivative is then calculated to determine the influence

of the changed parameter. The control coefficient is defined

J ′

J

/
v′

v

where J is the flux through the system and v is the perturbed parameter, often an

enzyme velocity. This gives information about the local behavior near a given steady

state, whereas here we are interested in how biochemical systems adapt to continuous

large fluctuations in inputs.

Another relevant area of interest is that of linear control theory (refer to [11] and

[19]). In control theory, a system receives inputs u1(t), . . . , ur(t), has a set of internal

states x1(t), . . . , xn(t), and produces outputs y1(t), . . . , ym(t). The system can be

modeled: {
ẋ(t) = A(t)x(t) +B(t)u(t)
y(t) = C(t)x(t)

(2.1)

where A, B, and C are matrices of the appropriate dimensions.

There are several interesting questions. One set of questions is that of controllabil-

ity. Can the system be guided from initial state x0 to a desired state xd by modifying

the inputs u(t)? If so, a cost function for the internal states can be introduced, and

it is of interest whether there exists is an optimal control strategy for guiding the

system so as to minimize costs. Another set of questions relates to observability.

Given the values of the outputs y, can the values of the internal states x be inferred?

A final set of questions includes those related to stability. The system is considered

stable if a small perturbation in input results in only a small perturbation of the

output.

In stochastic control theory (see [10]), there is a random process xut and a control
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function u(xut , t), which determines the probability transition function for xut . The

objective of control theory is to specify the control u such that xut possesses some

desired property. For instance, this desired property may be that xut will approach

some set S with probability one, or that xut will follow as closely as possible some

pre-assigned path. Alternately, there may be the goal of choosing u so as to minimize

some cost function associated with xut ,

Cu(x) = Eb(xτu) + E
∫ τu

0

k(xus , us)ds,

where τu is a random arrival time to some set S. Similar questions may be asked

as in stochastic control theory as in deterministic control theory, such as questions

of the existence or uniqueness of a control, the existence of uniquenss of an optimal

control given a cost function, and whether the system is stable.

Although control theory is most commonly used in engineering and operations

research, it could also have applications to biochemical reaction networks. Many

biochemical systems, such as cell metabolism (see [13], [16], and [17]), have a range

of medical implications, and irregular metabolic profiles are correlated with a variety

of diseases. Thus, it would be of interest to determine how to raise or lower the

concentration of a particular substrate, without adversely affecting the concentra-

tions of other substrates, by modifying the inputs. In the case of cell metabolism,

the inputs are amino acids, which are received through food and possibly vitamin

supplements. Potential applications of control theory to biochemical modeling are

discussed further in the conclusion.

In this work, we are primarily interested in exogenous stochastic forcing of sys-

tems of differential equations. This stochastic forcing may occur on varying time

scales, since many biological systems operate on multiple time scales. For instance,

hormonal and neural inputs vary on a scale of seconds or minutes; inputs from meals

and circadian rhythms vary on a scale of hours or days; and long term environmental

10



changes (such as diet, disease, and pollution) vary on a scale of years. We consider

the limiting behavior of networks in which the input is on a different time scale

compared to the reaction kinetics within the network.

In [14], Pavliotis and Stuart consider systems with multiple time scales. A pro-

totypical example is the system:
dx

dt
= f(x, y)

dy

dt
=

1

ε
g(x, y) +

1√
ε
β(x, y)

dW

dt

(2.2)

where ε� 1. Here, x is the slow variable and y is the fast variable. By averaging over

the invariant distribution for y, the variable y can be eliminated and the x variable

can be approximated by an equation dX
dt

= F (X). The effective equation does not

contain the parameter ε and is thus more tractable to numerical solution or analysis.

In general, multiscale systems have generators of the form

Lε =
1

ε
L0 + L1 or Lε =

1

ε2
L0 +

1

ε
L1 + L2

depending on whether there are two or three time scales present. The evolution of

∂uε

∂t
= Lεuε is of interest. Using formal perturbation expansions, effective equations

can be derived that approximate the behavior of the system. These methods are

applied to ODEs (via the method of characteristics), Markov chains (via the forward

equation), SDEs (via the Kolmogorov equation), transport PDEs, and parabolic

PDEs.

A chemical reaction network is a chemical system with multiple chemical species

and multiple reactions. Chemical reaction networks may be modeled a systems of

ODEs, SDEs, or PDEs or as Markov chains, depending on the volume, kinetics, and

inputs of the systems.

As mentioned earlier, when the number of molecules is relatively low, the reaction

network can be modeled as a continuous time Markov Chain. The states are vectors

11



indicating the number of molecules of each species, and the reactions are modeled

as the possible transitions for the chain. The kth reaction is determined by a vector

of inputs νk specifying the number of molecules consumed in the reaction, a vector

ν ′k specifying the number of molecules created by the reaction, and a function λk(x)

of the state x that gives the rate at which the reaction occurs. In many cases, some

species in the network are present in much higher concentrations than others, and

reaction rate constants may vary over several orders of magnitude.

The question of simulating systems with multiple scales is of mathematical and

practical interest. In [4], E, Liu, and Vanden-Eijnden present a simulation algorithm

for discrete chemical kinetic systems with multiple time scales. Simulating the entire

system with a uniform time step would result in most of the computational cost

being spent on the fast reactions, which are often of less interest. The slow processes

are generally the rate limiting steps and of greater interest.

The main idea of the nested algorithm is to use an outer stochastic simulation

algorithm (SSA) to simulate the slow processes with rates computed from an inner

SSA which simulates the fast reactions. An inner SSA first runs independent replicas

of the process using only the fast reactions. The results are used to compute modified

slow reaction rates which are the rates for the outer SSA. These steps are then

iterated. The fast processes have effectively been averaged out.

The nested SSA is an approximate realization of the system. In order to calculate

the error tolerance, slow variables are defined as linear functions of species that are

invariant under the fast reactions. Since each species may be involved in both fast

and slow reactions, there are not necessarily any “slow species”. In practice, the slow

variables may not be explicitly known. However, their existence is used in proving

the theoretical error bound. The algorithm can be generalized to multilevel SSA for

systems with more than two time scales and to an adaptive SSA for systems in which

the set of fast reactions changes as the process progresses. Note that this algorithm

12



is specific to discrete systems and would not work for ODEs or SDEs.

In this work, we are interested in chemical systems with large enough volume

to be modeled by systems of differential equations. We will now make our notation

more formal and introduce some of the types of reaction networks that we consider

here.

Definition 2.0.1. A chemical reaction network may be represented as a directed

graph along with a triple {S, C,R} of the species, complexes, and reactions. Each

node of the graph corresponds to a chemical species, and a directed edge corresponds

to a reaction.

Letting m be the number of species, the vectors of concentrations are elements of

Rm
≥0. Each vertex of the graph is a linear combination of species with non-negative

integer coefficients, that is, a chemical complex. The reactions are directed edges

between complexes. For instance, C1 → C2 is a reaction transforming reactant C1

into product C2. The zero complex is used to denote inputs and outputs to the

network. For r = C1 → C2 ∈ R, the associated reaction vector is C2 − C1 ∈ Rm.

The stoichiometric subspace S of a chemical reaction network is the span of the

reaction vectors in the network. If x− y ∈ S for two species vectors x, y ∈ Rm
≥0, then

we say that x and y are stoichiometrically compatible and in the same stoichiometric

compatibility class. Stoichiometric compatibility classes form an equivalence relation

on S. For deterministic systems, the question of interest is not whether a given

system has a unique fixed point, but whether within each stoichiometric compatibility

class there is a unique fixed point. Similarly, for stochastically modeled systems, it

is of interest to compute stationary distributions for each closed, irreducible subset

of the state space (each of which is contained within a stoichiometric compatibility

class).

Definition 2.0.2. A chemical reaction system is represented {S, C,RK} where

13



K denotes the kinetics of the system. So K consists of functions {Fr(x)} for each

reaction r ∈ R.

We can represent ẋ(t) = Σr∈RFr(x(t))vr where for reaction r, vr is the associated

reaction vector and Fr the associated rate function.

In this thesis, we are primarily interested in reactions with mass action kinet-

ics. These are reactions α1x1 + . . . + αmxm → β1x1 + . . . + βmxm with kinetics

F (x1, . . . , xm) = kxα1
1 . . . xαmm where k > 0. In chapter 5, we will consider some

nonlinear systems, including Michaelis-Menten kinetics. In all cases, the reaction

function depends only on substrates in the reactant complex and not on substrates

in the product complex. For simplicity, if a system has mass action kinetics, we will

label the edges in the diagram with the rate constants rather than the rate funtions.

Below is a simple example to illustrate the notation:

x1 x3

x2

//
I+ξ

//
k3

�
� �
� �
� �
� �

� �
� �
� �
� �

k1

//
k4

O� � � � � � � �

� � � � � � � �
k2

Here there are three chemical species, S = {x1, x2, x3}. Each complex consists of

a single species in this case so C = {x1, x2, x3}. Species x1 receieves a constant input I

and a stochastic input ξt. Species x1 is transformed into x2 at rate k1 proportional to

itself. Species x2 is transformed back into x1 at rate k2 proportional to itself. There

are four reactions in total, R = {x1 → x2, x1 → x3, x2 → x1, x3 → 0}. The chemical

species can be represented as the vector x(t) = (x1(t), x2(t), x3(t)). The input vector

has a non-zero constant in the first place and zeros elsewhere, ~I = (I, 0, 0). The

stochastic forcing is applied only to species x1. For simplicity of notation, we let ~ξ(t)

denote (ξ(t), 0, 0). Then the system can be represented by differential equation 2.3.

14



{
ẋ(t) = Ax(t) + ~I + ~ξ(t)
x(0) = x0

(2.3)

where A is the matrix of rate constants:

A =

 −(k1 + k3) k2 0
k1 −k2 0
k3 0 −k4


Deficiency zero networks are a class of chemical reaction systems studied in [1].

Although deficiency zero systems are defined by network properties, results can be

proved concerning their dynamical properties.

Definition 2.0.3. The deficiency of a chemical reaction network is δ = |C|− l− s,

where |C| is the number of complexes, l is the number of linkage classes (connected

components), and s is the dimension of the stoichiometric subspace of the network.

The correct question is not if there is a unique fixed point for a given deterministic

system, but rather, if within each stoichiometric compatibility class there is a unique

fixed point. For stochastically modeled systems, it is of interest to compute stationary

distributions for each closed irreducible subset of the state space (each of which is

contained within a stoichiometric compatibility class).

Theorem 2.0.1. Deficiency Zero Theorem Given a weakly reversible deficiency

zero network

x(t) = x(0) + Σk

( ∫ t

o

fk(x(s))ds
)
(ν ′k − νk)

=: x(0) +

∫ t

0

f(x(s))ds

fk(x) = κkx
ν1k
1 xν2k2 . . . xνmkm

15



Then for any choice of rate constants κk, within each positive stoichiometric com-

patibility class there is precisely one equilibrium value and that equilibrium value is

locally asymptotically stable relative to its compatibility class.

One class of chemical reaction networks studied by David Anderson, [3], is the

class of single species complex (SSC) systems. One condition on these networks is

that each chemical reaction converts one substrate into one product. That is, multiple

species do not combine to form a product, and one reaction can not produce multiple

products.

Definition 2.0.4. A graph is weakly reversible if whenever there is a directed

path form Xi to Xj, then there is also a directed path from Xj to Xi. A system with

non-zero input is called weakly reversible if it is weakly reversible in the above

sense and there is at least one non-zero output.

Assume that the graph is connected, and that the reaction rate is proportional

to the reactant species (mass action kinetics) with non-negative rate constants.

Definition 2.0.5. A single species complex network is a network that:

1. is weakly reversible

2. has mass action kinetics

3. consists of a single linkage class

4. each complex is a single substrate

It is from the last property that the name is derived.

Such systems can be represented as in equation 2.3 and have a stationary solution.

Below, we will let ~I = (I, 0, . . . , 0) and ~ξ(t) = (ξ(t), 0, . . . , 0).
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Theorem 2.0.2. (Anderson [3]) Consider a weakly reversible SSC system with mass

action kinetics, nonzero input vector ~I and a mean zero, finite variance, stationary

stochastic input ξ(t) ≥ −I represented as

{
d
dx
~x(t) = A~x(t) + ~I + ~ξ(t)
~x(0) = ~x0

(2.4)

Then the process ~x∗(t) = ~x∗(t, ξ) defined by

~x∗(t, ξ) =

∫ t

−∞
eA(t−s)~Ids+

∫ t

−∞
eA(t−s)~ξ(s)ds (2.5)

is the unique stationary solution.

Intuitively, a unique stationary measure means that at large times, the joint

distribution of concentration values becomes independent of time and independent

of the initial conditions. That is, the concentration values converge to an equilibrium

distribution.

Using this stationary solution, Anderson proves that the variance of any species

within an SSC system is strictly less than the variance of the input, up to a normal-

ization factor.

Theorem 2.0.3. (Anderson, [3]) Let x∗(t) be the solution of an SSC system with

one input ~I + ~ξ(t), where ξ(t) is a stationary stochastic process with finite variance,

mean zero, and ξ(t) ≥ −I. Let mi be the mean of species xi. Then

var(x∗i ) <
(mi

I

)2

V ar(ξ)

17



Proof.

V ar(x∗i (t)) = E

(∫ t

−∞
ξ(s)eA(t−s)e1 · eids

)2

= E

(∫ t

−∞
ξ(s)(eA(t−s)e1 · ei)1/2(eA(t−s)e1 · ei)1/2ds

)2

< E

(∫ t

−∞
ξ(s)2eA(t−s)e1 · eids

)(∫ t

−∞
eA(t−s)e1 · eids

)

= V ar(ξ)

(∫ t

−∞
eA(t−s)e1 · eids

)2

=
(mi

I

)2

V ar(ξ)

Applying this theorem to the particular case of a nonreversible chain with mass

action kinetics yields the result that variance decreases down a chain.

X1
. . . Xm

//
I+ξ(t)

//
k1

//
km−1

//
km

Theorem 2.0.4. (Anderson, [3]) For a non-reversible chain and stationary stochas-

tic process ξ(t) with finite variance, mean zero, and ξ(t) ≥ −I,

V ar(kix
∗
i ) < V ar(ξ)

V ar(ki+1x
∗
i+1) < V ar(kix

∗
i )

Proof. Consider the input to ki+1x
∗
i+1 to be I + (kix

∗
i − I). Then ψ = (kix

∗
i −

I) is a finite variance, mean zero, stationary stochastic process By theorem 2.0.3,

V ar(ki+1x
∗
i+1) < V ar(kix

∗
i ).
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Figure 2.2: In a simulation of a chain given Ornstein-Uhlenbeck stochastic input,
the variance of the fluxes decreases as one proceeds down the chain.

The results of a computational simulation of a chain with stochastic input are

shown in Figure 2.2. Notice that the amplitude of the fluctuations decreases for each

subsequent species down the chain. There is also a phase shift, as it takes time for

the fluctuations to propagate down the chain. Once the input changes, it takes a

little bit of time for X1 to adjust. It then takes time for X2 to respond to the change

in X1, before X3 can adjust to the change in X2, and so on. Having many intervening

biochemical steps between an input and an output has a stabilizing effect on the flux

of the output.

Anderson showed that side reaction systems and positive feedback loops are also
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mechanisms for lowering variance. A side reaction system of a chain is any SSC

system that both receives its input from and has its output flow back to the same

species on the chain.

X1

Side System

//
I+ξ(t)

//
k1

�
k2

O

k3 (2.6)

A chain with a side reaction has a lower variance than the comparable chain

without the side system.

X̃1
//

I+ξ(t)
//

k1
(2.7)

Theorem 2.0.5. (Anderson, [3]) Assume that ξ is a stochastic process such that for

s < t, Eξ(t)ξ(s) > 0 and Eξ(t)ξ(s) is increasing in s. Assume also that ξ has mean

zero and finite variance and that ξt ≥ −I. Let x∗1 be the stationary solution for node

X1 in 2.6 and let x̃∗1 be the stationary solution for node X̃1 in 2.7 Then the chain

with the side reaction system has lower variance:

V ar(k1x
∗
1) < V ar(k1x̃

∗
1)

A feedback loop is an SSC system that recieves input from one species of a chain

and sends its output to an earlier species of that chain.

X1
. . . Xn

Subsystem

//
I+ξ(t)

//
k1

//
kn−1

//
kn

zztttttt
c

ddJJJJJJ
f1(t) (2.8)

Compared to a chain with the same rate constants but without the feedback loop,

the variance of the flux out of the chain with the feedback loop is lower.

X̃1
. . . X̃n

//
I+ξ(t)

//
k1

//
kn−1

//
kn

(2.9)
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Theorem 2.0.6. (Anderson, [3]) Assume that ξ is a stochastic process such that for

s < t, Eξ(t)ξ(s) > 0 and Eξ(t)ξ(s) is increasing in s. Assume also that ξ has mean

zero and finite variance and that ξt ≥ −I. Let x∗1 be the stationary solution for node

X1 in 2.8 and let x̃∗1 be the stationary solution for node X̃1 in 2.9 Then the flux out

of the chain with the feedback loop has lower variance:

V ar(knx
∗
n) < V ar(knx̃

∗
n)

Proof. The chain with feedback loop in 2.8 can be converted into a chain with a side

system as follows:

Z1
. . . Zn

Subsystem Y1
. . . Yn−1

//
I+ξ(t)

//
k1

//
kn−1

//
kn

uullllllll
c

//

f1(t)
//

k1

iiRRRRRRRRRRR
kn−1

where

Xi = Yi + Zi for 1 ≤ i ≤ n− 1

Xn = Zn

Theorem 2.0.5 can now be applied to prove the desired result.

In [2], Anderson and Mattingly prove that the result of decreased variance down

a chain still holds when the assumptions of mass action kinetics and single species

complexes are dropped.

X1 X2
. . . Xn

//
I+ξ(t)

//
F1

//
F2

//
Fn−1

//
Fn

Theorem 2.0.7. (Anderson and Mattingly, [2]) Consider a chain with non-linear

kinetics Fi such that

1. Fi(0) = 0
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2. F ′i (x) > 0, for all x ∈ R>0

3. lim
x→∞

Fi(x) > I

where the stochastic input is either a white noise term that turns off if x1 approaches

zero, or a mean zero, finite variance, stationary process. Let x∗(t) be the stationary

solution. Then for all 1 ≤ i ≤ n and all t

Var Fi(x
∗
i (t)) > Var Fi+1(x

∗
i+1(t))

They also generalize this result to the case where each complex may consist of

multiple species, as long as no species is contained in more than one complex. For

instance, the following chain fits this criteria, assuming that the partial derivatives

of the Fi are positive.

X1
1 + 2X2

1 3X1
2

//
I+ξ(t)

//
F1(X1

1 ,X
2
1 )

//
F2(X1

2 )
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3

Simple Chains

In this chapter we consider the limiting behavior of simple chains with linear kinetics

and time-scaled stochastic input.

X1
. . . Xm

//
I+ξt/L

//
k1

//
km−1

//
km

Specifically, we’re interested in the limit of Var(kiXi) as the stochastic input ξt/L

speeds up (L→ 0) or slows down (L→∞). We will consider only stochastic input

that is becoming decorrelated in time, which is a reasonable assumption for biological

processes. Furthermore we will require that the input remain non-negative.

In section 3.1 we will prove the result for the first step of the chain. In section

3.2, we inductively prove the result for all species in a chain. In section 3.3, we find

the first order correction terms.

Assumption 3.0.1. Let ξ be a stochastic process such that:

1. ξt ≥ −I and Eξ = 0

2. E(ξtξs) = f(|t−s|) where f ≥ 0 is measurable and bounded with lim
x→∞

f(x) = 0.
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To simplify our calculations, we will define the covariance function f on the neg-

atives by letting it be an even function, that is f(−x) = f(x). Assume f(x) ≤ M

for all x.

3.1 First Step of the Chain

We consider the equations for a one step chain:

{
dXL

t = Idt+ ξt/Ldt− kXL
t dt

X0 = I
(3.1)

X//
I+ξt/L

//
k

The solution to equation 3.1 is

XL
t =

I

k
+

∫ t

−∞
e−k(t−s)ξs/Lds (3.2)

Since
∫ t
−∞ e

−t+sds = 1, the variance of the stochastic input can be rewritten as:

Var ξ = E(ξtξt) = f(0) =

∫ t

−∞

∫ t

−∞
e−2t+s+rf(0)dsdr (3.3)

Theorem 3.1.1. For equation 3.1 where the stochastic process meets assumption

3.0.1, the limiting behavior as the input slows down is

lim
L→∞

Var kXL
t = f(0) = Var ξ

Proof. We are interested in the variance of the first node Xt. We simplify its expres-
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sion by using a change of variable:

Var Xt,L = E
[ ∫ t

−∞
e−k(t−s)ξs/Lds

]2

= E
[ ∫ t

−∞
e−k(t−s)ξs/Lds

∫ t

−∞
e−k(t−r)ξr/Ldr

]

=

∫ t

−∞

∫ t

−∞
ek(−2t+s+r)E[ξs/Lξr/L]dsdr

=

∫ t

−∞

∫ t

−∞
ek(−2t+s+r)f

( 1

L
|s− r|

)
dsdr

=

∫ t

−∞

∫ t−r

−∞
ek(−2t+v+2r)f

( v
L

)
dvdr

Switching the order of integration,

=

∫ 0

−∞

∫ t

−∞
ek(−2t+v+2r)f

( v
L

)
drdv +

∫ ∞
0

∫ t−v

−∞
ek(−2t+v+2r)f

( v
L

)
drdv

=
1

2k

∫ 0

−∞
ekvf

( v
L

)
dv +

1

2k

∫ ∞
0

e−kvf
( v
L

)
dv

=
1

k

∫ ∞
0

e−kvf
( v
L

)
dv (3.4)

In order to evaluate the limit of the variance, we will need to use the Dominated

Convergence Theorem (for instance, see [20]).

Theorem 3.1.2. (Lebesgue Dominated Convergence Theorem) Let g be integrable

over E, and suppose that < fn > is a sequence of measurable functions such that on

E

|fn(x)| ≤ g(x)

and such that almost everywhere on E

fn(x)→ f(x).
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Then ∫
E

f(x)dx = lim
n→∞

∫
E

fn(x)dx.

We first define:

gL(v) = e−kvf(
v

L
)

g(v) = Me−kv

Since f is measurable, gL is measurable on [0,∞). Also, g is integrable:

∫ ∞
0

e−kvMdv =
M

k

Thus, because gL ≤ g and g is integrable, we can use the Dominated Convergence

Theorem to take the limits as L goes to zero and as L goes to infinity.

Applying the Dominated Convergence Theorem to 3.4, we obtain:

lim
L→∞

Var XL
t = lim

L→∞

1

k

∫ ∞
0

e−kvf
( v
L

)
dv

=

∫ ∞
0

lim
L→∞

1

k
e−kvf

( v
L

)
dv

=
1

k

∫ ∞
0

e−kvf(0)dv

=
f(0)

k2

Thus, lim
L→∞

Var kXL
t = f(0).

Now consider the case where the input is speeding up, that is L→ 0.

Theorem 3.1.3. For equations 3.1 where the stochastic process follows 3.0.1, the

limiting behavior as the input slows down is:

lim
L→0

Var kXL
t = 0

26



Proof. The calculation of the limit as L approaches 0 is slightly more complicated

than the L to ∞ case because we need to break the integral up into two regions.

Beginning with equation 3.4, we fix ε > 0 and use the Dominated Convergence

Theorem:

lim
L→0

Var XL
t = lim

L→0

1

k

∫ ∞
0

e−kvf
( v
L

)
dv

= lim
L→0

1

k

[ ∫ ε

0

e−kvf
( v
L

)
dv +

∫ ∞
ε

e−kvf
( v
L

)
dv

]

= lim
L→0

1

k

∫ ε

0

e−kvf
( v
L

)
dv +

1

k

∫ ∞
ε

lim
L→0

e−kvf
( v
L

)
dv

By assumption 3.0.1, lim
x→∞

f(x) = 0 and f(x) is bounded by M .

lim
L→0

Var XL
t = lim

L→0

1

k

∫ ε

0

e−kvf
( v
L

)
dv + 0

≤ lim
L→0

1

k

∫ ε

0

e−kvMdv

=
M

k2
(1− e−kε)

Since ε > 0 was arbitrary and variance is non-negative, lim
L→0

Var XL
t = 0.

3.2 Down the Chain

The previous limiting results also hold for node Xi in a longer chain.

X1
. . . Xi

//
1+ξt/L

//
k1

//
ki−1

//
ki

Theorem 3.2.1. Given assumption 3.0.1 and a linear chain,

lim
L→∞

Var kiX
L
i,t = Var ξ

lim
L→0

Var kiX
L
i,t = 0
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Proof. We can inductively apply Theorems 3.1.1 and 3.1.3. First, however, we must

prove that the input k1X1 has the same form as the original input 1 + ξt/L.

In the stationary solution, flow in must equal flow out and so

E[k1X1] = E[I + ξt/L] = I

Recall equation 3.1,

X1,t =
1

k1

+

∫ t

−∞
e−k1(t−s)ξsds

We calculate the covariance by using a change of variable and switching the order of

integration.

Cov(XtXr) = E
[ ∫ t

−∞
e−k(t−s)ξsds

∫ r

−∞
e−k(r−u)ξudu

]

=

∫ r

−∞

∫ t

−∞
e−k(t+r−s−u)f(|s− u|)dsdu

=

∫ r

−∞

∫ t−u

−∞
e−k(t+r−v−2u)f(v)dvdu

=

∫ t−r

−∞

∫ r

−∞
e−k(t+r−v−2u)f(v)dudv +

∫ ∞
t−r

∫ −v+t
−∞

e−k(t+r−v−2u)f(v)dudv

Evaluating the integrals, we simplify:

Cov(XtXr) =
1

2k

∫ t−r

−∞
e−k(t−r−v)f(v)dv +

1

2k

∫ ∞
t−r

e−k(−t+r+v)f(v)dv

=
1

2k

∫ ∞
r−t

e−k(t−r+v)f(v)dv +
1

2k

∫ ∞
t−r

e−k(−t+r+v)f(v)dv

=
1

2k
ek(r−t)

∫ ∞
r−t

e−kvf(v)dv +
1

2k
ek(t−r)

∫ ∞
t−r

e−kvf(v)dv
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The covariance equation of X1 can be defined

f̃(|t− r|) =
1

2k
ek|t−r|

∫ ∞
|t−r|

e−kvf(v)dv +
1

2k
e−k|t−r|

∫ ∞
−|t−r|

e−kvf(v)dv

f̃(x) =
1

2k
ekx
∫ ∞
x

e−kvf(v)dv +
1

2k
e−kx

∫ ∞
−x

e−kvf(v)dv

We can evaluate the limit of f̃(x) as x tends to infinity to confirm that X1

meets the conditions of our reasonable stochastic processes as defined in the previous

section.

First, fix a value y such that 0 < y < x. We will use the fact that f is an even

function and montone decreasing as |x| increases, with limx→∞ f(x) = 0.

lim
x→∞

f̃(x) = lim
x→∞

1

2k
ekx
∫ ∞
x

e−kvf(v)dv +
1

2k
e−kx

∫ ∞
−x

e−kvf(v)dv

≤ lim
x→∞

[
f(x)

2k
ekx
∫ ∞
x

e−kvdv +
f(y)

2k
e−kx

∫ −y
−x

e−kvdv +

f(0)

2k
e−kx

∫ 0

−y
e−kvdv +

f(0)

2k
e−kx

∫ ∞
0

e−kvdv

]

≤ lim
x→∞

[
f(x)

2k2
ekx(e−kx − 0) +

f(y)

2k2
e−kx(ekx − eky) +

f(0)

2k2
e−kx(eky − 1) +

f(0)

2k2
e−kx(1− 0)

]

≤ lim
x→∞

[
f(x)

2k2
+
f(y)

2k2
(1− ek(−x+y)) +

f(0)

2k2
(ek(−x+y) − e−kx) +

f(0)

2k2
e−kx

]

=
f(y)

2k2

However, since y can be arbitrarily large and limx→∞ f(x) = 0, we have that

lim
x→∞

f̃(x) ≤ f(y)

2k2
→ 0. The covariance of X1 fulfills assumption 3.0.1 and we can
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inductively apply Theorems 3.1.1 and 3.1.3.

3.3 First Order Correction Terms

For the case where L approaches infinity, we can use the Taylor expansion of f around

0 to find the correction terms.

Var XL
t =

∫ ∞
0

e−vf
( v
L

)
dv

=

∫ ∞
0

e−v
[
f(0) +

v

L
f ′(0) +

v2

2L2
f ′′(0) + . . .

]
dv

= f(0)

∫ ∞
0

e−vdv +
1

L
f ′(0)

∫ ∞
0

ve−vdv +
1

2L2
f ′′(0)

∫ ∞
0

v2e−v + . . .

= f(0) +
1

L
f ′(0) +

1

L2
f ′′(0) + . . .

For the case where L approaches zero, we will need the additional assumption that

f has k ≥ 2 finite moments. Then we can use the Taylor expansion with remainder:

e−Lw = 1− Lw +
(Lw)2

2!
− (Lw)3

3!
+ . . .+

(−ξ)ke−ξ

k!
(−Lw)k

where ξ is between 0 and Lw (so ξ depends on w).

The remainder term can be bounded by kke−k

k!
(Lw)k, since the maximum of ξke−ξ

k!

occurs at ξ = k. Note that the sign of the remainder is always positive since

(−ξ)k(−Lw)k = (−1)2k(ξLw)k = (ξLw)k.

Since f has k finite moments, we know that

∫ ∞
0

∣∣∣∣(−ξ)ke−ξk!
(−Lw)kf(w)

∣∣∣∣dw ≤ Lk
kke−k

k!

∫ ∞
0

wkf(w)dw <∞.
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Therefore,

Var XL
t =

∫ ∞
0

e−vf
( v
L

)
dv

=

∫ ∞
0

Le−wLf(w)dw

= L

∫ ∞
0

f(w)dw − L2

∫ ∞
0

wf(w)dw + L3

∫ ∞
0

w2

2!
f(w)dw

− . . .+ Lk+1

∫ ∞
0

ξke−ξ

k!
wkf(w)dw.

These are our correction terms.

3.4 Magnitude of Rate Constants

In this section, we consider how the magnitude of the rate constant affects the vari-

ance of a linear chain. Although these results do not involve time scaling of the

input, they could possibly be used in proving the time-scaling results for the non-

linear case. The below theorem gives insight into how the steepness of the slope

affects variance. This could be used in making linear approximations of non-linear

functions and proving time-limiting results for the non-linear case.

We begin by considering the linear case and we let 0 < α1 < α2.

X1
//

ξt/L
//

α1

X2
//

ξt/L
//

α2

Interestingly, in the system with the smaller rate constant (compared to the

system with the larger rate constant), the variance of the species concentration is

less, but the variance of the flux is greater.
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Theorem 3.4.1. Assume 0 < α1 < α2. Let Eξ = I and let

X ′1(t) = −α1X1(t) + ξ(t)

X ′2(t) = −α2X2(t) + ξ(t)

If ξ is an Ornstein-Uhlenbeck process, then

1. Var α1X1 < Var α2X2

2. Var X1 > Var X2

Proof. We will first prove item (1). Consider

d

dt
(α1X1 − I)2 = 2(α1X1 − I) · α1X

′
1(t) = 2α1(α1X1 − I)(−α1X1 + ξ).

Integrating both sides, taking the expectation, and then differentiating, we have

d

dt
E(α1X1 − I)2 = 2α1E[(α1X1 − I)(−α1X1 + ξ)].

Let X∗1 be the stationary solution. We know that Eα1X
∗
1 = I. By stationarity,

2α1E[(α1X
∗
1 − I)(−α1X

∗
1 + ξ)] = 0.

Next, we expand the binomial and rearrange the terms:

− α2
1E(X∗1 )2 + α1EX∗1ξ + α1IEX∗1 − IEξ = 0

−α2
1E(X∗1 )2 + α1EX∗1ξ + I2 − I2 = 0

E(α1X
∗
1 )2 = α1EX∗1ξ (3.5)

Similarly,

E(α2X
∗
2 )2 = α2EX∗2ξ (3.6)
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Since Eα1X
∗
1 = Eα2X

∗
2 = I, it will suffice to show that α1EX∗1ξ < α2EX∗2ξ in

order to complete our proof that Var α1X1 < Var α2X2. Well,

E[α1X
∗
1ξ − α2X

∗
2ξ] = E

[ ∫ t

−∞

(
α1e

−α1(t−s) − α2e
−α2(t−s))ξ(s)ξ(t)ds]

=

∫ t

−∞

(
α1e

−α1(t−s) − α2e
−α2(t−s))Eξ(s)ξ(t)ds

We now make use of our assumption that ξ is an Ornstein-Uhlenbeck process

with covariance Eξ(s)ξ(t) = σ2

2θ
e−θ(t−s) where θ is the drift and σ is the diffusion.

Returning to our equation above, we have

E[α1X
∗
1ξ − α2X

∗
2ξ] =

∫ t

−∞

(
α1e

−α1(t−s) − α2e
−α2(t−s))σ2

2θ
e−θ(t−s)ds

=
σ2

2θ

∫ t

−∞

(
α1e

−(α1+θ)(t−s) − α2e
−(α2+θ)(t−s))ds

=
σ2

2θ

(
α1

α1 + θ
− α2

α2 + θ

)

=
σ2

2

(
α1 − α2

(α1 + θ)(α2 + θ)

)
< 0

since α1 < α2. Thus, Var α1X1 < Var α2X2.

We next prove item (2). Returning to equations 3.5 and 3.6 from above, we see

that they can be rewritten

E(X∗1 )2 =
1

α1

EX∗1ξ

E(X∗2 )2 =
1

α2

EX∗2ξ
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by dividing through by α2
1 and α2

2, respectively. Using similar steps as in the proof

of the first part, we calculate

E
[

1

α1

X∗1ξ −
1

α2

X∗2ξ

]
=

∫ t

−∞

(
1

α1

e−α1(t−s) − 1

α2

e−α2(t−s)
)

Eξ(s)ξ(t)ds

=
σ2

2θ

∫ t

−∞

(
1

α1

e−(α1+θ)(t−s) − 1

α2

e−(α2+θ)(t−s)
)
ds

=
σ2

2θ

(
1

α1(α1 + θ)
− 1

α2(α2 + θ)

)
> 0

since α1 < α2. Thus, Var X1 > Var X2.
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4

Single Species Complex (SSC) Systems

One class of chemical reaction networks studied by David Anderson, [3], are linear

single species complex (SSC) systems. These are defined as follows. Consider a

network where each chemical reaction converts one substrate into one product. There

is a corresponding directed graph for such a given chemical network. Each node

corresponds to a chemical species, and a directed edge corresponds to a reaction.

For instance, Xi → Xj is the reaction converting species Xi into species Xj.

Definition 4.0.1. A graph is weakly reversible if whenever there is a directed

path form Xi to Xj, then there is also a directed path from Xj to Xi. A system with

non-zero input is called weakly reversible if it is weakly reversible in the above

sense and there is at least one non-zero output.

Assume that the graph is connected, and that the reaction rate is proportional

to the reactant species (mass action kinetics) with rate constant bi,j ≥ 0. The

concentrations of the substrates are governed by linear differential equations.

35



Definition 4.0.2. A single species complex network is a network that:

1. is weakly reversible

2. has mass action kinetics

3. consists of single linkage class

4. each complex is a single substrate

It is from the last property that the name is derived. An example is pictured in

Figure 4.1.

4.1 Background

Consider a weakly reversible SSC system with mass action kinetics. Throughout

this chapter, we let ~I = (I, 0, . . . , 0) and ~ξt/L = (ξt/l, 0, . . . , 0).. This system can be

represented

d

dt
~X(t) = A ~X(t) + ~I + ~ξ

( t
L

)
where A is the matrix of rate constants for the system.

Dave Anderson proved in [3] that

~X(t) =

∫ t

−∞
eA(t−s)~Ids+

∫ t

−∞
eA(t−s)~ξ

( s
L

)
ds

is a stationary solution to the system. Assuming ξ has mean zero, the concentration

mi of the ith species Xi can be represented:

XL
i =

∫ t

−∞
IeA(t−s)e1 · eids+

∫ t

−∞
ξ
( s
L

)
eA(t−s)e1 · eids

E(xLi ) =

∫ t

−∞
IeA(t−s)e1 · eids

mi =

∫ t

−∞
IeA(t−s)e1 · eids
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Figure 4.1: In this example of an SSC system, the species are color-coded in a
gradient by their variance, with red being the most variance and blue being the least
variance.
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Furthermore, by a lemma to Feinberg’s Deficiency Zero Theorem, we know that the

eigenvalues of A have strictly negative real parts. We will use this in our proof of

Theorem 4.2.1.

Lemma 4.1.1. (Anderson [3]) If a linear SSC system with m substrates and at least

one nonzero input is weakly reversible, then

1. The differential equations have a unique equlibrium which is globally asymptot-

ically stable and in Rm
>0.

2. The eigenvalues of A have strictly negative real parts.

3. For all vectors v ∈ Rm
≥0, e

Atv · ej ≥ 0 for all j.

This lemma is surprising in that the hypotheses are related to the network of the

system while the conclusion is related to its dynamical properties.

4.2 Results for SSC Systems

We are now ready to consider the limiting behavior of the variance in time-scaled

SSC systems. As in chapter 3, we make the following assumption on ξ.

Assumption 4.2.1. let ξ be a stochastic process such that

1. ξt ≥ −1 and Eξ = 0

2. E(ξtξs) = f(|t−s|) where f ≥ 0 is measurable and bounded with lim
x→∞

f(x) = 0.

Then our previous time-limiting results for chains are also true for any species

within the network, up to a normalization factor.
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Theorem 4.2.1. For any species XL
i,t in an SSC system with input ξ meeting as-

sumption 4.2.1,

lim
L→∞

Var XL
i,t =

(mi

I

)2

f(0) =
(mi

I

)2

Var ξ

lim
L→0

Var XL
i,t = 0

Proof. The variance of species Xi is:

Var XL
i = E

[ ∫ t

−∞
ξs/Le

A(t−s)ds

]2

= E
[ ∫ t

−∞
eA(t−s)ξs/Lds

∫ t

−∞
eA(t−r)ξr/Ldr

]

=

∫ t

−∞

∫ t

−∞
E[ξs/Lξr/L](eA(t−s)e1 · ei)(eA(t−r)e1 · ei)dsdr

=

∫ t

−∞

∫ t

−∞
f
( 1

L
|s− r|

)
(eA(t−s)e1 · ei)(eA(t−r)e1 · ei)dsdr

In order to apply the Dominated Convergence Theorem, we first define the following

functions:

gi,L(s, r) = f(
1

L
|s− r|)(eA(t−s)e1 · ei)(eA(t−r)e1 · ei)

g(s, r) = M(eA(t−s)e1 · ei)(eA(t−r)e1 · ei)

By lemma 4.1.1, the eigenvalues of the matrix of rate constants A, have strictly

negative real parts. Since f is measurable, gi,L is measurable on (−∞, t]× (−∞, t].
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Also, g is integrable:

∫ t

−∞

∫ t

−∞
g(s, r)dsdr = M

∫ t

−∞

∫ t

−∞
(eA(t−s)e1 · ei)(eA(t−r)e1 · ei)dsdr

= M

(∫ t

−∞
(eA(t−s)e1 · ei)ds

)2

= M

(
mi

I

)2

Thus, because gL ≤ g and g is integrable, we can use the Lebesgue Dominated

Convergence Theorem to take the limits as L goes to zero and as L goes to infinity.

Recall that

Var XL
i =

∫ t

−∞

∫ t

−∞
f
( 1

L
|s− r|

)
(eA(t−s)e1 · ei)(eA(t−r)e1 · ei)dsdr

By the Dominated Convergence Theorem, we obtain:

lim
L→∞

Var XL
i = lim

L→∞

∫ t

−∞

∫ t

−∞
f
( 1

L
|s− r|

)
(eA(t−s)e1 · ei)(eA(t−r)e1 · ei)dsdr

=

∫ t

−∞

∫ t

−∞
lim
L→∞

(
f
( 1

L
|s− r|

)
(eA(t−s)e1 · ei)(eA(t−r)e1 · ei)

)
dsdr

=

∫ t

−∞

∫ t

−∞
f(0)(eA(t−s)e1 · ei)(eA(t−r)e1 · ei)dsdr

= f(0)
(∫ t

−∞
(eA(t−s)e1 · ei)ds

)2

= f(0)
(mi

I

)2

Note that the last line follows from the calculation above that

mi = E(Xi) =

∫ t

−∞
IeA(t−s)e1 · eids
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As in our proof of the L→ 0 case for simple chains, we will need to break the region

of integration into three separate pieces:

(−∞, r − ε] ∪ [r − ε, r + ε] ∪ [r + ε, t]

We calculate the limit of the variance:

lim
L→0

Var XL
i = lim

L→0

∫ t

−∞

∫ t

−∞
f
( 1

L
|s− r|

)
(eA(t−s)e1 · ei)(eA(t−r)e1 · ei)dsdr

= lim
L→0

∫ t

−∞

[ ∫ r−ε

−∞
f
( 1

L
|s− r|

)
(eA(t−s)e1 · ei)(eA(t−r)e1 · ei)ds

+

∫ r+ε

r−ε
f
( 1

L
|s− r|

)
(eA(t−s)e1 · ei)(eA(t−r)e1 · ei)

)
ds

+

∫ t

r+ε

f
( 1

L
|s− r|

)
(eA(t−s)e1 · ei)(eA(t−r)e1 · ei)

)
ds

]
dr

= 0 +

∫ t

−∞

∫ r+ε

r−ε
lim
L→0

f
( 1

L
|s− r|

)
(eA(t−s)e1 · ei)(eA(t−r)e1 · ei)dsdr + 0

Define λ = min |Real(λi)|, where λi are the eigenvalues of A.

lim
L→0

Var XL
i ≤

∫ t

−∞

∫ r+ε

r−ε
M(eA(t−s)e1 · ei)(eA(t−r)e1 · ei)dsdr

≤
∫ t

−∞

∫ r+ε

r−ε
Me−λ(t−s)e−λ(t−r)dsdr

≤ M

λ

∫ t

−∞
e−λ(t−r)(e−λ(t−r−ε) − e−λ(t−r+ε))dr

≤ M

λ

∫ t

−∞
e−2λ(t−r)(eλε − e−λε)dr

≤ M

2λ2

(
eλε − e−λε

)
Since ε ≥ 0 can be arbitrarily small, limL→0 Var XL

i ≤ 0.
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As the input speeds up, the variance of the flux through any species in the

system approaches zero in the limit. As the input slows down, the variance of the

flux through any species approaches the variance of the input, up to a normalization

factor. This concludes our treatment of the general single species complex system

case.
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5

Reversible chains

We will next consider reversible chains, which are very useful in modeling chemical

reactions:

X1 X2
. . . Xn

//
I+ξ

/
k1

/
k2

o

b1

o

b2

/
kn−1

//
kn

o

bn−1

Reversible chains are a type of SSC network, so our result from the previous section

holds. However, we can prove a more specific result involving the net flux at each

step in the chain. We will first define a set of variables yi, i = 1, . . . , n representing

the flow through each node. That is, we define

y1 = k1X1 − b1X2

...

yn−1 = kn−1Xn−1 − bn−1Xn

yn = knXn
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Differentiating each side and substituting in the equations we have for ẋi, we get

ẏ1 = k1(I + ξ − y1)− b1(y1 − y2)

ẏi = kiyi−1 − (ki + bi)yi + biyi+1 for 1 < i < n (5.1)

ẏn = kn(yn−1 − yn)

We will show that our limiting results also hold for the yi.

Theorem 5.0.2. Given the system in 5.1 with stochastic input following assumption

4.2.1,

lim
L→∞

Var yt,L = f(0) = Var ξ

lim
L→0

Var yt,L = 0

Let A be the matrix of rate coefficients:

A =


−(k1 + b1) b1

k2 −(k2 + b2) b2
. . .

kn−1 −(kn−1 + bn−1) bn−1

kn −kn


If eA(t−s) is integrable, we can write

~y(t) = k1

∫ t

−∞
eA(t−s)~Ids+ k1

∫ t

−∞
eA(t−s)~ξ(s)ds

This is the case if all eigenvalues of A have negative real parts.

5.1 Matrix Properties

Define the j × j matrix for j = 2, . . . , n:

Aj =


−(kn−j+1 + bn−j+1) bn−j+1

kn−j+2 −(kn−j+2 + bn−j+2) bn−j+2

. . .

kn−1 −(kn−1 + bn−1) bn−1

kn −kn
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We will first prove two lemmas necessary for the proof of Theorem 5.0.2.

Lemma 5.1.1.

Det(Aj) = (−1)j
j∏
i=1

kn−i+1

for j = 2, . . . , n.

Proof. This formula can be written iteratively as Det(Aj) = −kn−j+1Det(Aj−1) We

will use induction. First consider that

A2 =

(
−(kn−1 + bn−1) bn−1

kn −kn

)

So DetA2 = (kn−1 + bn−1)kn − bn−1kn = kn−1kn.

A3 =

 −(kn−2 + bn−2) bn−2 0
kn−1 −(kn−1 + bn−1) bn−1

0 kn −kn


We use expansion by minors along the first column to obtain:

Det A3 = −(kn−2 + bn−2)Det(A2)− kn−1Det

(
bn−2 0
kn −kn

)
= −(kn−2 + bn−2)Det(A2) + kn−1bn−2kn

= −(kn−2 + bn−2)kn−1kn + kn−1bn−2kn

= −kn−2kn−1kn

Assume the inductive hypothesis holds for values less than j. Then

Det Aj−1 = −kn−j+2Det Aj−2
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Using expansion by minors along the first column of Aj,

Det Aj = −(kn−j+1 + bn−j+1)Det(Aj−1)

− kn−j+2Det


bn−j+1 0 0 . . . 0
kn−j+3 −(kn−j+3 + bn−j+3) bn−j+3

. . .

kn −kn


= −(kn−j+1 + bn−j+1)Det(Aj−1)− kn−j+2bn−j+1Det(Aj−2)

This follows from the fact that bn−j+1 is the only non-zero entry in the first row of

the minor matrix. By our inductive hypothesis,

Det Aj = −(kn−j+1 + bn−j+1)Det(Aj−1)− kn−j+2bn−j+1Det(Aj−2)

= −(kn−j+1 + bn−j+1)Det(Aj−1) + bn−j+1Det(Aj−1)

= −kn−j+1Det(Aj−1)

This determinant calculation completes our proof.

Note that An = A so the above lemma gives an explicit formula for the deter-

minant of A. Using this formula, we show that the eigenvalues of A have strictly

negative real parts. This will also require the use of Geršgorin’s Theorem, as stated

in [7].

Theorem 5.1.2. (Geršgorin). Let A = [ai,j] be an n by n matrix. Let

Ri(A) =
n∑
j=1
j 6=i

|aij|, 1 ≤ i ≤ n

denote the deleted absolute row sums of A. Then all the eigenvalues of A are located

in the union of n discs

n⋃
i=1

{z ∈ C : |z − aii| ≤ Ri(A)} ≡ G(A)
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Proof. Let λ be an eigenvalue of A and suppose Ax = λx, x = [xi] 6= 0. There is

an element of the vector x that has largest absolute value, say |xp| ≥ |xi| for all

i = 1, 2, . . . n, and xp 6= 0. Then the assumption that Ax = λx means that

λxp = [λx]p = [Ax]p =
n∑
j=1

apjxj

which is equivalent to

xp(λ− app) =
n∑
j=1
j 6=p

apjxj

We then apply the triangle inequality to conclude that

|xp||λ− app| =
∣∣ n∑
j=1
j 6=p

apjxj
∣∣

≤
n∑
j=1
j 6=p

|apjxj|

=
n∑
j=1
j 6=p

|apj||xj|

≤ |xp|
n∑
j=1
j 6=p

|apj|

= |xp|Rp

Therefore, |λ − app| ≤ Rp for some p. That is, λ is in a closed disc around app of

radius Rp.

We use this theorem in the lemma below.

Lemma 5.1.3. All eigenvalues of A have negative real parts.

47



Proof. We apply Geršgorin’s Theorem. All the eigenvalues of A are contained in the

union of n discs:

{z : |z + (k1 + b1)| ≤ b1} ∪
( n−1⋃

i=2

{z : |z + (ki + bi)| ≤ ki + bi}
)
∪ {z : |z + kn| ≤ kn}

Thus, the eigenvalues must either have negative real part or be zero. As defined

above, An = A our matrix of rate coefficients. Thus, by the previous lemma,

Det(A) = (−1)n
n∏
i=1

ki

and for non-zero ki, zero is not an eigenvalue of A.

5.2 Results for Reversible Chains

We are now ready to prove theorem 5.0.2.

Proof. We can express the solution to equation 5.1 as:

~y(t) = k1

∫ t

−∞
eA(t−s)~Ids+ k1

∫ t

−∞
eA(t−s)~ξ(s)ds

The variance of yi is:

Var yi,L = k2
1E
[ ∫ t

−∞
ξ s
L
eA(t−s)ds

]2

= k2
1E
[ ∫ t

−∞
eA(t−s)ξ s

L
ds

∫ t

−∞
eA(t−r)ξ r

L
dr

]

= k2
1

∫ t

−∞

∫ t

−∞
E[ξ s

L
ξ r
L

](eA(t−s)e1 · ei)(eA(t−r)e1 · ei)dsdr

= k2
1

∫ t

−∞

∫ t

−∞
f
( 1

L
|s− r|

)
(eA(t−s)e1 · ei)(eA(t−r)e1 · ei)dsdr
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As in the proof for SSC systems, let

gi,L(s, r) = k2
1f(

1

L
|s− r|)(eA(t−s)e1 · ei)(eA(t−r)e1 · ei)

g(s, r) = k2
1M(eA(t−s)e1 · ei)(eA(t−r)e1 · ei)

Since f is measurable, gi,L is measurable on (−∞, t]×(−∞, t]. It is necessary that the

eigenvalues of A have negative real parts for g to be integrable on (−∞, t]× (−∞, t]:

∫ t

−∞

∫ t

−∞
g(s, r)dsdr = k2

1M

∫ t

−∞

∫ t

−∞
(eA(t−s)e1 · ei)(eA(t−r)e1 · ei)dsdr

= k2
1M

(∫ t

−∞
(eA(t−s)e1 · ei)ds

)2

By our earlier calculation that I = E(yi) = k1I

∫ t

−∞
eA(t−s)e1 · eids, we are able to

simplify:

∫ t

−∞

∫ t

−∞
g(s, r)dsdr = k2

1M

(
1

k1

)2

= M

Because gL ≤ g and g is integrable on (−∞, t]×(−∞, t], we can use the Lebesgue

Dominated Convergence Theorem to take the limits as L goes to zero and as L goes

to infinity.

Recall

Var yi,L = k2
1

∫ t

−∞

∫ t

−∞
f
( 1

L
|s− r|

)
(eA(t−s)e1 · ei)(eA(t−r)e1 · ei)dsdr
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By the Dominated Convergence Theorem, we obtain:

lim
L→∞

Var yi,L = k2
1 lim
L→∞

∫ t

−∞

∫ t

−∞
f
( 1

L
|s− r|

)
(eA(t−s)e1 · ei)(eA(t−r)e1 · ei)dsdr

= k2
1

∫ t

−∞

∫ t

−∞
lim
L→∞

(
f
( 1

L
|s− r|

)
(eA(t−s)e1 · ei)(eA(t−r)e1 · ei)

)
dsdr

= k2
1

∫ t

−∞

∫ t

−∞
f(0)(eA(t−s)e1 · ei)(eA(t−r)e1 · ei)dsdr

= k2
1f(0)

(∫ t

−∞
(eA(t−s)e1 · ei)ds

)2

= f(0)

Similarly, we can again use the Dominated Convergence Theorem to calculate the

limit as L approaches 0, also making use of the requirement that limx→∞ f(x) = 0.

In conclusion, the two limits are:

lim
L→∞

Var yt,L = f(0) = Var ξ

lim
L→0

Var yt,L = 0
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6

Conclusion

In this thesis, I have proved analytic results of how the variance of reaction rates

within a system compares to the variance of the input when the input is on a different

time scale than the reaction kinetics within the network.

Hormonal and neural inputs vary on a scale of seconds or minutes; inputs from

meals and circadian rhythms vary on a scale of hours or days; and long term en-

vironmental changes (such as diet, disease, and pollution) vary on a scale of years.

Here, we have considered the limiting behavior of networks in which the input is

on a different time scale compared to the reaction kinetics within the network. The

volume of these systems is large enough that they may be represented as systems

of differential equations. The input is constantly fluctuating, so the systems do not

reach a static equilibrium.

I have proved results regarding the limiting behavior of the variance of the flux

in simple chains, single species complex networks, and reversible chains with time-

scaled stochastic input as the input speeds up and slows down. In all cases, as the

input fluctuates more and more quickly, the variance of species within the system

approaches zero. The intuitive idea behind this is that the concentrations of species
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within a system are found by integrating the input. With quickly fluctuating input,

the fluctuations cancel each other out as they are averaged over. As the input

fluctuates more and more slowly, the variance of the species approaches the variance

of the input, up to a normalization factor. The intuitive reason for this is that

although the system is not able to relax completely to equilibrium, the input is

changing so slowly that the system is always approximately at equilibrium.

There are several directions which would be interesting to pursue for future ex-

ploration of this topic. One set of questions relates to the pathwise distribution of

the fluxes in the limit. In the fast case, the flux is approaching a constant, but what

is its distribution around that constant? Similarly, in the slow case, the pathwise

behavior of the flux is approaching the path of the input, but what is its distribution

around that path? In the linear cases discussed in Chapters 4 and 5, determining the

eigenvalues and eigenvectors of the matrices of rate constants may give more insight

into the behavior of the system, and of its distribution and speed as it approaches

the limit.

Another area of interest would be to extend these results to non-linear systems. A

simple case to begin with would be that of Michaelis-Menten kinetics. The Michaelis-

Menten equation is frequently used in biology to describe irreversible enzymatic

reactions. As substrate concentrations increase, the reaction velocity increases. For

very large concentrations of the substrate, the enzyme approaches saturation and

the reaction asymptotically approaches a maximum velocity. See Figure 6.1.

We could consider the following system:

X//
ξt/L

//
F (X)

dXL
t = ξt/Ldt− F (XL

t )dt (6.1)

where F (X) = VmaxX
Km+X

for some positive constants Vmax, Km.
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Figure 6.1: Michaelis-Menten Kinetics.

In the fast case, it may be possible to use a comparison argument to prove the

limiting result, after first bounding the Michaelis-Menten curve by a linear function.

The steepness argument from Section 3.4 could be relevant here. For the slow case,

an asymptotic expansion of the function F could possibly be used. Since F , along

with its inverse and derivatives, has a reasonably nice form, it is expected that an

asymptotic expansion could be obtained to describe the limiting behavior of the

system in 6.1.

Another area of interest is the application of control theory to biochemical re-

action networks. Complex biochemical systems, such as one-carbon cell metabolism

(see [13] and [16]), receive amino acids from food as inputs and have a range of

health implications. For instance, deficits in glutathione have been implicated in a

variety of diseases including Alzheimer’s disease, Parkinson’s disease, cardiovascular

disease, cancer, Down syndrome and autism (see [17]). Control theory may be useful

in discovering ways to correct deficiencies or other irregular metabolic profiles. It

could give us valuable insight into how the concentrations of various substrates can

be controlled by modifying inputs. Stochastic control theory may provide insight
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into how to reduce the fluctuations in concentration of different substrates as the

input varies.
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