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Abstract

This dissertation examines the use of artificial structured materials – known as meta-

materials – in two antenna applications in which conventional dielectric materials

are otherwise used. In the first application, the use of metamaterials to improve the

impedance matching of planar phased array antennas over a broad range of scan an-

gles is explored. A phased array antenna is composed of an array of antenna elements

and enables long-distance signal propagation by directional radiation. The direction

of signal propagation is defined as the scan angle. The power transmission ratio of a

phased array is the ratio of the radiated power to the input power, and depends on

the scan angle. The variation in the power transmission ratio is due to the different

mutual coupling contributions between antenna elements at different scan angles.

An optimized stack of dielectric layers, known as a wide-angle impedance matching

layer (WAIM), is used to optimize the power transmission ratio profile over a broad

range of scan angles. In this work, the use of metamaterials to design anisotropic

WAIMs with access to a larger range of constitutive parameters – including magnetic

permeability – to offer an improved power transmission ratio at a broad range of scan

angles is investigated.

In the second antenna application, a strategy to create maximally transmissive

and minimally reflective electromagnetic radome materials using embedded metama-

terial inclusions is introduced. A radome is a covering used to protect an antenna

from weather elements or provide structural function such as the prevention of aero-
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dynamic drag. A radome should be made from a fully transparent and non-refractive

material so that radiated fields from and to the enclosed antenna are not disrupted.

The aim of this research was to demonstrate that embedded metamaterial inclusions

can be used to isotropically adjust the dielectric properties of a composite material

to a desired value. This strategy may lead to the creation of a structural material

with electromagnetic properties close to air, thus reducing the detrimental scattering

effects often associated with conventional radome materials.

Chapter 1 introduces the concept of metamaterials and discusses the use of sub-

wavelength metallic structures to artificially engineer constitutive parameters such

as permeability of permittivity. In Chapter 2, the analytical formulations that enable

the characterization of the transmission performance of a planar phased array cov-

ered with anisotropic impedance matching layers are developed. Chapter 3 discusses

the design rules that must govern the design parameters of anisotropic WAIMs re-

alizable using metamaterials, and also presents examples of anisotropic impedance

matching layers that provide a maximum power transmission ratio for most scan

angles. In addition, numerical and experimental results on a metamaterial placed

over a phased array are presented. In Chapter 4, the feasibility of using metama-

terials to realize a minimally transparent and fully transmissive radome material is

numerically investigated. In Chapter 5, experimental results that corroborate earlier

numerical simulation results are analyzed.
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dipole moment in x̂, ŷ, and/or ẑ directions. (b) Outer 4-legged inclu-
sion; excites strong electric dipole moment in ẑ direction. (c) Planar
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Introduction to Metamaterials and its Applications

1.1 Electromagnetic Metamaterials

Electromagnetic metamaterials are artificially structured materials composed of peri-

odic arrays of – typically resonant – subwavelength metallic structures whose electric

or magnetic response provides the freedom to design dielectric or magnetic proper-

ties that might not exist in conventional materials. By changing the geometrical

parameters of the constituent structure of a metamaterial, the realized dielectric or

magnetic properties can be engineered. As a result, metamaterials enable the design

of materials with choice electromagnetic properties.

1.1.1 What is a Material?

In the strict chemistry sense, a material is a piece of matter that is made up of a sea

of periodically-arranged atoms and molecules. All materials can be classified into

two categories: conductors or insulators (dielectrics). Conductors are materials that

contain free charges (electrons) which move with applied current, whereas dielectrics

consist of bound positive and negative charges that respond to electromagnetic fields

by aligning charge pairs along the direction of the applied field. The molecular or
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atomic structure of a dielectric material dictates how freely its charges will respond to

an introduced electromagnetic wave. The geometrical orientation of the constituent

hydrogen (positively-charged) and oxygen (negatively-charged) atoms in water, H2O,

for instance, sets up a peculiar dipolar response to any impinging electric field. The

measure of the polarizability of a material to an applied electric field is known as the

electric susceptibility, χe, while the averaged response of a sea of molecules or atoms

to applied electric fields is quantified in a term known as the electric polarization

vector, P, which can be related to the permittivity of free space, ε0, the applied

electric field, Ea, and the electric flux density D, as shown in (1.1) [12]

D = ε0Ea + P

D = ε0Ea + ε0χeEa =⇒ ε0(1 + χe)Ea

(1.1)

We also proceed to define a relative permittivity term, εr, for any material, by

rewriting P in terms of its relationship with the applied electric field, Ea, and the

electric susceptibility, χe. The permittivity of a material can be said to be a measure

of how much the material ‘permits’ a wave to perturb its charges. In electromagnetics,

εr (also known as the dielectric constant) is used to designate the averaged response

of a material to applied electric fields.

εr = 1 + χe (1.2)

In a similar vein, the magnetic permeability of a material is obtained from the

averaged response of its sea of magnetic dipoles (very small current loops). Magnetic

permeability, µr, is expressed in terms of magnetic susceptibility, χe, by

µr = 1 + χm (1.3)
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Electric permittivity and magnetic permeability are sufficient descriptors and pre-

dictors of the electromagnetic characteristics of any material, and these parameters

are admissible into Maxwell’s equations, the set of vector equations that govern the

propagation of electromagnetic waves in space. The source-free Maxwell’s equations

are:

∇×H = ε
∂E

∂t

∇× E = −µ∂H
∂t

∇ · εE = ρ

∇ · µH = 0

(1.4)

1.1.2 Metamaterials: Mimicking conventional materials

Metamaterials are designer materials that are made up of arrays of “model atoms”

that can be used to generate a magnetic and/or dielectric response [13]. The elec-

tromagnetic response of atoms or molecules in conventional materials are replicated

in metamaterials by using periodic arrays of small subwavelength metallic loop or

wire-like structures with resistive-inductive-capacitive (RLC) properties to artificially

generate a bulk electric or magnetic response. Depicted in Figure 1.1a, a simple ex-

ample of one such “model atom” structure is the SRR (split ring resonator) particle

initially proposed by Pendry [14]. By virtue of its geometry, the SRR possesses RLC

properties: its loop possesses an intrinsic inductance and resistance, and its capaci-

tive gap possesses a static capacitance. We know from circuit theory that an RLC

circuit resonates at a frequency at which its current flow is maximum and in-phase

with the applied signal. The working of an SRR is similar: the loop current induced

by a piercing magnetic field is in phase with the oscillation of an applied electromag-

netic field until the resonant frequency is reached, immediately beyond which the
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induced loop current becomes out of phase with the increasing EM wave oscillation.

The response of a large array of SRRs to an applied electromagnetic wave can be

quantified and related to effective permeability by

µeff (ω) = 1− Fω2

ω2 − ω2
0 − iωγ

(1.5)

The resonance frequency, ω0, filling factor, F, and damping factor γ of an SRR-

based metamaterial can be modified by changing the RLC and unit cell properties of

the SRR, thus enabling one to engineer at will the relative permittivity, µeff , of the

metamaterial at a given frequency. We must note that the engineered µeff for the

discussed planar SRR particle is strictly in the direction perpendicular to the plane

of the loop (i.e. µz = µeff , µx = 1, µy = 1).

We have discussed how designer materials with adjustable magnetic permeability

can be created; to implement materials with adjustable dielectric properties, Pendry

et al [15] introduced the idea of using arrays of thin conducting wires to create

materials with a frequency dependent permittivity at microwave frequencies. As

can be seen in (1.6), the frequency-dependent permittivity is chiefly dependent on

the plasma frequency, ωp, a parameter which refers to the frequency at which the

permittivity changes from negative to positive. In a metal or plasma, this frequency

marks the transition from opacity (below ωp) to transparency (above ωp). This

explains why metals are opaque to light at frequencies below the ultraviolet and

are transparent to light at frequencies beyond the ultraviolet (e.g. x-rays). The

wire structure shown in Figure 1.1c is also considered a plasma medium (if the

electric field vector is strictly along the length of the wires), with a plasma frequency

that is depressed down to microwave frequencies. The plasma frequency of a wire

medium can be changed by adjusting the interwire spacing and wire thickness of the

constituent wire structure.
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(a) (b) (c)

Figure 1.1: (a) Split ring resonator (SRR) particle (b) Electric inductive-capacitive
(ELC) resonator particle (c) One-dimensional wire structure array.

εeff (ω) = 1− ωp
2

ω2 + iωγ
(1.6)

Another structure that can be used to create a metamaterial that generates an

electric response is the electric inductive-capacitive resonator [8], also referred to

as ELC resonator for short. Depicted in Figure 1.1b, this “model atom” generates

an artificially adjustable permittivity by mimicking the dipolar electric response of

charge pairs. The ELC is composed of a capacitive region flanked by a pair of sym-

metric inductive loops. An electric field coupled to the capacitive gap region induces

opposite sense currents in the loops thereby making the net magnetic response zero.

Along the gap region, the electric field induces the aggregation of positive charges on

one end of the gap and negative charges on the other end of the gap, thereby creating

an electric dipole. The RLC characteristics of the ELC structure determines how

well the charge pair around the capacitive gap oscillates in tune with an introduced

electric field, the magnitude of which dictates the effective permittivity of the ELC

metamaterial medium.
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1.1.3 Some Recent Applications

There has probably been hundreds of proposed metamaterial applications since

Pendry’s SRR and wire structures were first used to create a negative index ma-

terial in an experiment performed at UC-San Diego in 2000 [16]. To acquaint the

reader with a representative snippet of the range of constitutive properties obtain-

able using metamaterials, the following will be discussed in this subsection: negative-

index materials, near-zero refractive index materials, gradient-index materials, and

transformation optics materials.

Negative Index Materials

In recent years, the field of metamaterials has generated a lot of interest. The

prospect of obtaining a negative index of refraction, a fascinating never-before-seen

property that physicists believed would enable the observation of unique phenom-

ena not possible using conventional materials, initially fueled interest in the area of

metamaterials. Veselago [17] predicted that in a negative index material (NIM), re-

fraction would occur at negative angles [1], energy would flow in a direction opposite

to the direction of wavefront propagation (phase velocity), and the doppler effect

would be reversed. A negative index material can be created by combining a neg-

ative ε material with a negative µ material. Such a medium has been implemented

with a combination magnetically resonant SRR and electrically excitable wire (or

ELC) media [16] [18]. The exotic properties predicted by Veselago have indeed been

experimentally observed [19–21]. Figure 1.2, for example, shows the experimentally

measured fields of plane waves propagating through a positive and negative index

prism respectively. It can be seen that the beam through the negative index material

is bent in the a direction opposite to the beam refracted through the positive index

prism.
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Positive Index Prism Negative Index Prism

Figure 1.2: (left) Refraction through a positive index material (right) Refraction
through a negative index material. From [1].

Near-Zero Refractive Index

One of the unusual properties achievable with the use of metamaterials is the possibil-

ity of obtaining an epsilon-near-zero (ENZ) permittivity material. The consequence

of this feature is that an ENZ material would impose very little phase variation on

electromagnetic waves traversing it. Silveirinha et al. [22] and Liu et al. [2] both

demonstrated that ENZ materials can be used to enable wave tunneling through

waveguide bends with electrically small cross-sections. Based on full wave simu-

lations and experimental data obtained, these authors showed that electromagnetic

waves introduced into an electrically small cross-section filled with ENZ material was

able to fully propagate to the other side of the cross-section. Without an ENZ ma-

terial filling the electrically small waveguide bend, incident fields would be perfectly

reflected back to the feed.

Figure 1.4 shows a full cross-section of the experimental setup. Liu et al. designed

their ENZ material by patterning complementary SRR (CSRR) structures (CSRRs

are electrically resonant according to Babinet’s principle [11]), which couple to out-
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(c) (d)

Figure 1.3: (a) Cross-section of parallel plate waveguide showing poynting vec-
tor squeezing through electrically small cross-section (b) Transmission line model of
setup (c) Top view of spatially mapped fields tunneling fields in the presence of ENZ
material (b) Top view of spatially mapped fields in the absence of ENZ material.
From [2].

of-plane electric fields, onto the bottom plate of the channel. The introduction of an

ENZ material sufficiently raises the characteristic impedance of the thin intervening

channel, thus enabling wavefronts to squeeze through and appear on the other side

of the channel.

Gradient Index Materials and Transformation Optics

One of the most celebrated applications of metamaterials has come out of the area of

gradient index metamaterials and transformation optics. Gradient index metamate-

rials are created by designing metamaterial composites whose averaged constitutive

responses vary as a function of position. This feature enables the design of metamate-

rials with inhomogenous permittivity and/or permeability, a feature that has proved

useful in the design of quasi-optical beam deflectors, focussing lens, and transforma-

tion optics devices such as concentrators, invisibility cloaks, and so forth [4,5,23–29].

To obtain a varying index, Smith et al. [30] proposed incrementally introducing mod-

ifications to the geometrical parameters of the constituent SRR unit cells, such that

the permeability of the medium, and thus its refractive index, varies linearly as a
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(b)

(c)

(d)

(a)

Figure 1.4: Beam steering lens (a) gradient-index distribution (b) measured spatial
field distribution. Beam focussing lens (c) gradient-index distribution (b) measured
spatial field distribution. Retrieved from [3]

function of spatial coordinates. A beam focussing lens, for example, is realized by cre-

ating a rectangular metamaterial slab with a symmetric refractive index distribution

along its longitudinal axis, such that the refractive index is maximum at the center

of the slab but changes (with a changing gradient) to a minimum at the longitudinal

ends [3]. Similarly, a metamaterial-based beam deflector is a planar slab that, upon

receiving a plane wave on one side, transmits out of its other side a deflected plane

wave, so long as the index distribution of the slab varies monotonically along the

longitudinal direction of the slab. Figure 1.4 shows the index distribution of both a

focusing lens and beam deflector and presents the measured field distribution inside

and outside each gradient index slab.

The possibility of creating materials with inhomogeneous permittivity or perme-

ability gradients has generated interest in a new area called transformation optics.
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Transformation optics is a metamaterials-inspired mathematical technique that in-

corporates Maxwell’s equations to manipulate the flow of electromagnetic fields by

transforming the grid of a region of space (and its accompanying uniform constitu-

tive properties) into a new grid with another coordinate system (with a new set of

inhomogeneous constitutive properties). For instance, a solid cylindrical region of

space (occupied by air) can be transformed to a cylindrical shell, thereby creating

a cylindrical “void” in its center. In Figure 1.5a), the “void” region is the inner

cylinder R1, and the shell occupies the region between R1 and R2. By performing

the aforementioned transformation, Schurig et al. [23] experimentally demonstrated

cloaking using the transformation optics technique initially proposed by Pendry et

al. [31]. The shell region requires inhomogeneous material properties (spatial gradi-

ents in permittivity and permeability tensors) and was experimentally implemented

using metamaterials.

As shown in Figure 1.5a, by rerouting the path of incident rays through the

transformation optics media but around the inner cylindrical “void”, any object

placed in the “void” region is not visible to incident rays of light, thus creating an

illusion of invisibility. Much like the human eye is only able to see objects based on

the scattering of light rays, radars or electromagnetic detectors are only able to see

objects based on the scattering profile of an object. Rerouting the trajectory of light

around objects eliminates or significantly reduces scattering thereby making these

objects unnoticeable to radars or electromagnetic detectors. Transformation optics

materials used for this purpose are termed cloaks.

A second illustration of metamaterial-inspired cloaking is the use of a transforma-

tion optics material to hide the presence of a bump on a conducting surface. Figure

1.5b shows the scattering due to a presence of a small bump on a conducting sheet,

without a cloak covering. It can be seen that the curvature of the small bump causes

incident light rays to scatter off to different directions, whereas without the bump
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(a)

(b)

(c)

Figure 1.5: (a) Ray-traced fields propagating through cloak material around con-
cealed cylinder. (b) Ray-traced fields reflected off a conducting sheet with bump.
(c)Ray-traced fields reflected off a conducting sheet with cloak covering bump.
Adapted from [4,5]

the incident rays would scatter symmetrically. The shaded region of free space delim-

ited by dashed lines in Figure 1.5c is transformed to have new spatial and material

properties such that light rays introduced to the region would exhibit the scattering

properties of a flat conducting sheet, as a result concealing the bump. Experimen-

tal results demonstrating the use of a metamaterial cloak to conceal a bump on a

conducting sheet have been reported [5].

Transformation optics and graded-index techniques have given rise to the devel-

opment of a new class of structures which have been used to design devices such as

beam splitters/shifters [32], concentrators [33], and so forth [34] [35] [36].

The range of metamaterial applications thus far discussed exemplifies some of

the ways in which metamaterial designs can be used to achieve structured materials

with loosened ε and µ constitutive properties.

In this dissertation, two engineering applications, in which metamaterials may

provide the opportunity for an improved performance, are explored. The unifying
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theme of the research work in this dissertation is to examine the utility of incorporat-

ing the use of metamaterials into devices for which a conventional dielectric would

otherwise be used. The first application is the phased array antenna, in which a

stack of dielectric layers is used for impedance matching purposes; the second is the

electromagnetic radome, which are structures – made from electromagnetically trans-

parent materials, often dielectrics – used to cover antennas for protection against the

adverse effects of weather or other environmental elements.

1.2 Dissertation Work: Engineering Applications of Metamaterials

1.2.1 Phased Array Antennas

Phased array antennas provide the advantage of enabling long-distance signal prop-

agation by directionally radiating power. Composed of a periodic arrangement of

closely-spaced identical antenna elements, a phased array antenna (henceforth re-

ferred to as “phased array” or “array”) produces a highly directional radiation that

is electronically steered by changing the phase gradient across the array of elements.

Phased arrays are very useful in several communication systems applications be-

cause, given their capability to bundle and rapidly steer electromagnetic radiation,

they can be used to transmit information over longer distances than other antenna

configurations.

Ideally, an electronically-steered phased array antenna would radiate the same

amount of power irrespective of the steer angle. In reality however, due to different

mutual coupling contributions between phased array antenna elements at different

scan (steer) angles [37], the power radiated as a function of scan varies, sometimes

to extreme values [38]. Mutual coupling occurs because individual antenna elements

are closely spaced, which is a necessity in order to generate one highly directional

beam. One approach to mitigate this effect is to place layers of dielectric materials on

the array surface in order to match the impedance of the array to free space over as
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Figure 1.6: Planar phased array consisting of circular waveguide antenna elements
(left) before placement of WAIMs. (right) with stack of dielectric WAIM layers flush
with array surface.

large a range of scan angles as possible [39]. The optimized stack of dielectric layers

is referred to as a wide-angle impedance match (WAIM) layer. Figure 1.6 shows

a rendering of the placement of dielectric WAIM layers over a planar phased array

antenna composed of circular waveguide elements openings cut out of a conducting

material.

WAIM structures formed from layers of dielectric materials have proved benefi-

cial in addressing the impedance mismatch associated with phased array antennas.

However, given that available materials exhibit a fairly restricted range of dielec-

tric constants, it might be expected that access to a larger range of constitutive

properties—including magnetic permeability values—would offer further advantages

for the design of WAIM layers.

Metamaterials, or structured materials, have the advantage that they can be de-

signed with permittivity and permeability values over a continuum of values [14,15],

and provides access to material properties such as anisotropy that are typically not

readily available in most usable WAIM dielectric materials. This greater freedom po-

13



tentially presents opportunities to obtain more comprehensive impedance matching

for phased array antennas; heuristically, anisotropic materials, implementable using

metamaterials, should improve the ease of matching array antennas over a broader

range of scan angles.

In this dissertation, the concept of using anisotropic materials – by which meta-

materials can be described – as wide angle impedance matching layers is introduced.

First, analytical formulations to describe the performance of a phased array in the

presence of an anisotropic layer are developed, then an optimization is performed

to prescribe anisotropic material properties to match the power transmission perfor-

mance of the array over a broad range of scan angles. Thereafter, a numerical and

experimental investigation is performed to confirm that metamaterials can be mod-

eled as an equivalent anisotropic continuous material when placed over the surface

of a phased array antenna.

1.2.2 Antenna Enclosures: Electromagnetic Radomes

An electromagnetic radome is a covering to protect an antenna from potentially

detrimental elements such as wind perturbations, aerodynamic drag, and so forth.

Radome are typically made from dielectric materials. In order to not disrupt radiated

fields from and to the enclosed antenna, a radome, ideally, should be made from a

fully transparent and non-refractive material. Since radomes and other structures

that enclose radiating systems are designed for their mechanical integrity, they are

usually made from ceramics or composites that have inherently high dielectric values

[40]. Due to differences in curvature between the inner and outer surfaces of radomes,

refraction in radome materials introduces deflections to exiting local plane waves.

Boresight error [40] [41] is a quantitative measure of such deflections.

A radome is non-refractive when its index is matched to air (nradome=nair) and

is fully transparent when impedance-matched to air (Zradome=Zair). To exhibit both
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characteristics, the radome material would need to be impedance-matched and index-

matched to free space for all angles of TE and TM-polarized local plane wave inci-

dence. From an electromagnetic standpoint, the solution to this problem is trivial:

make the radome out of air. Since such a solution precludes the presence of an actual

radome, a more practical solution is necessary.

Radomes are made from a limited range of dielectric materials because mechanical

viability is a chief desired feature. Typically, the thickness of the radome dielectric

is adjusted so that it is perfectly impedance-matched (Fabry-Perot resonance) at a

certain angle of incidence and acceptably matched at other angles. Index matching

is thus traded off for impedance matching thereby resulting in a highly transmissive

radome with boresight error features.

In this dissertation, a technique to obtain strongly transmissive and minimally

refractive radome materials is numerically and experimentally investigated. This

concept is actualized by embedding electrically resonant metamaterial particles in-

side a host dielectric, so that the permittivity of the composite material can be

depressed to close to unity (nair=1) in several directions of TE and TM-polarized lo-

cal plane wave incidence. The aim of this strategy is to create a structural material

with electromagnetic properties close to air, thus reducing the detrimental scatter-

ing effects associated with radome materials. A numerical and experimental study

on the proposed metamaterial composite, composed of embedded inclusions termed

three-dimensionalized electric-inductive-capacitive resonators, was performed to an-

alyze its overall properties over a range of plane wave incidence angles and TE and

TM polarizations.

1.3 Contributions of this Dissertation

By developing analytical formulations to describe the performance of phased array

antennas in the presence of anisotropic impedance matching layers, and perform-
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ing quasi-analytical, numerical and experimental studies on the feasibility of using

metamaterials to implement homogenous anisotropic impedance matching materi-

als, this dissertation has contributed to the foundational work in the area of phased

array antenna impedance matching using anisotropic materials and/or metamateri-

als. Further, through the use of a three-dimensionally-resonant electric particle, this

dissertation proposes a strategy in which embedded inclusions may be used to en-

able the creation of strongly transparent and minimally refractive antenna coverings,

thus preventing refractive errors and reflections by depressing the refractive index of

a material composite to close to the parameters of free space.

The phased array antenna work was a product of collaboration with Manus Ross

and Dr. Steven A. Cummer, formerly and currently of Duke University respectively,

and Tai Lam of Boeing Research & Technology in Seattle, WA. The electromagnetic

metamaterial radome work was the product of collaboration with Bryan Justice (for-

merly of Duke University) and Dr. Anthony F. Starr, both of SensorMetrix Inc. in

San Diego, CA.

Some of the excerpts of this dissertation have either been published or are await-

ing review for publication. These are:

Introduction of the concept of phased array impedance matching using anisotropic

materials, implementable using metamaterials:

Sajuyigbe, S.; Cummer, S.A.; Smith, D.R.; , “Utilization of metamaterials for wide

angle impedance matching (WAIM) in phased array antennas,” Antennas and Prop-

agation Society International Symposium, 2009. APSURSI ’09. IEEE , vol., no.,

pp.1-4, 1-5 June 2009

Integration of anisotropic parameters into array performance characterization, op-
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timization study on use of anisotropic materials to realize wide-angle impedance

matching, and numerical study on use of homogeneous anisotropic model to repre-

sent planar metamaterial sheet:

Sajuyigbe, S.; Ross, M.; Geren, P.; Cummer, S.A.; Tanielian, M. H.;Smith, D.R.,

“Wide Angle Impedance Matching of Phased Array Antennas, using Metamaterials,”

Submitted to IET Microwaves, Antennas and Propagation, 2009

Experimental study investigating modeling of a metamaterial as an anisotropic impedance

matching layer:

Sajuyigbe, S.; Lam, T. A.; Tanielian, M. H.; Smith, D.R.; “Experimental Character-

ization of Phased Array Antenna with a Metamaterial Matching Layer,” Submitted

to Antennas and Wireless Propagation Letters, IEEE, 2010

Numerical study on metamaterial composite for antenna enclosures:

Sajuyigbe, S.; Justice, B.J.; Starr, A.F.; Smith, D.R.; , “Design and Analysis of

Three-Dimensionalized ELC Metamaterial Unit Cell,” Antennas and Wireless Prop-

agation Letters, IEEE , vol.8, no., pp.1268-1271, 2009

Experimental study on metamaterial composite for antenna enclosures:

Sajuyigbe, S.; Justice, B.J.; Starr, A.F.; Overfelt, P. L.; Smith, D.R.; , “Experimental

Characterization of Metamaterial Composite with Embedded Three-Dimensionalized

ELC Inclusions,” Submitted to Antennas and Wireless Propagation Letters, IEEE,

2010

17



2

Phased Array Antenna Wide Angle Impedance
Matching

The initial foray into phased array antenna research arose from the need for highly

directional antennas with rapidly steerable beams. Before the advent of phased array

antennas, mechanically rotated dish antennas were used to provide directional beams

that were only as steerable as the speed of the antenna rotation. Phased arrays, how-

ever, provide agility, precision, speed, and automation to radar and communication

systems. A phased array antenna consists of an array of identical antenna elements

such as microstrip patches, dipoles, waveguide apertures, and so forth. The concep-

tion of the theory behind phased array antennas is fairly old, but its implementation

only began in the late 1950s, primarily at MIT Lincoln Laboratory [42,43], after the

initial development of phase shifters and computers – one of the two technologies on

which the performance of phased array antennas would hinge.

Input power may be coupled into a phased array in a number of ways: all the

elements in the array can be fed by the same power feed, or altenatively, each element

with a different power feed. When all fed with the same feed, the input power line
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is connected to a power divider network that splits the power evenly among all the

elements. Between each power split and its connecting antenna element is a phase

shifter to impose a phasing on the element’s signal. The phase gradient across the

surface of an array determines the angle of steer. The relative phase difference

provided by phase shifters correct the path difference caused by the inter-element

spacing. This results in constructive interference at the intended scan angle but

destructive interference at all other angles. Today, phase shifters are connected to

computers, which rapidly determine and adjust the phase gradient across the array

in order to precisely steer the radiating beam in the desired direction.

One of the metrics by which the performance of a phased array antenna is judged

is the array’s ability to radiate its input power to every possible scan angle. As

discussed in the previous chapter, the fractional amount of power transmitted out

of a phased array antenna varies with scan due to mutual coupling between the

elements. For planar arrays (i.e. conformal to a flat planar surface), one remediation

strategy is to place layers of dielectric materials on the surface of the antenna in

order to optimize the transmitted power ratio at all angles of scan. These materials

are termed wide-angle impedance matching layers (WAIMs).

Dielectric WAIMs have proved highly useful in addressing the impedance mis-

match problems in phased array antennas but are limited in their use because only

a limited set of dielectric materials are available in nature for this purpose. As a

result it becomes difficult (or impossible) to completely match a phased array at all

the desired scan angles if the necessary dielectric properties are not available.

For this dissertation work, the use of metamaterials to mitigate the impedance

variation and mismatch problem in planar phased arrays was explored. The numer-

ically analyzed array consists an arrangement of circular waveguides that open out

of a conducting sheet, as shown in Figure 2.1. An experimental implementation of a

similar phased array antenna with WAIMs layers is shown in Figure 2.2.
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Figure 2.1: Sample rendering of a planar phased array of circular waveguide aper-
tures opened out of a conducting sheet.

2.1 Phased Array Impedance Variation

The ability of a phased array to radiate its input power is quantified in its reflection

coefficient, Γ(θ, φ), which is dependent on the disparity between the mode impedance

of the propagating waveguide mode and the radiation impedance at the outlet (aper-

ture) of each waveguide element of the array. Signals that are not radiated to the

desired scan angles (θ and φ) are typically reflected back into the waveguide ele-

ments and down into the feed system, or are transmitted out as surface waves that

propagate along the surface of the array but not to the angle of interest [38]. The

appearance of surface waves may result in a phenomenon known as scan blindness,

an occurrence in which no power is radiated to the desired angle of scan. Although

no power is actually reflected, because power is hoarded away from the direction of

scan, the reflection coefficient at the intended scan angle appears to be large. For

an array of infinite extent1, all elements, which we can assume to radiate identically,

radiate the input power into free space [42,45] as

1 An array with over one thousand elements can be estimated to behave as an infinite array [44]
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(a) (b)

Figure 2.2: (a) Picture of phased array antenna composed of radiating circular
waveguide elements, some of which are yet to be loaded with dielectric plugs. (b)
Same antenna, with dielectric WAIM covering. [Pictures courtesy Boeing Research
& Technology, Seattle, WA]

Pr(θ, φ)

Pi

= (1− |Γ(θ, φ)|2)f(θ) (2.1)

where,

Γ(θ, φ) =
Yfeed − Yin(θ, φ)

Yfeed + Yin(θ, φ)
(2.2)

f(θ) is a physical limitation that represents the reduction in effective aperture

cross section as the beam is steered to angles away from the normal, which varies

based on geometric considerations as cos θ, (cos θ)
3
2 , or (cos θ)2, depending on the

azimuthal plane of scan and the mode distribution of the antenna element [46]. To
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maximize the radiated power, we must minimize Γ(θ, φ), preferably forcing it to

zero at all scan angles θ and azimuthal planes φ. Aided by computational tools,

phased array system engineers minimize or force Γ(θ, φ) to zero at select scan an-

gles by placing dielectric layers over the array surface [39]. Well-chosen dielectric

layers modify Yin(θ, φ), the radiation admittance2 of the antenna system, to a value

close to Yfeed in order to minimize the disparity between both admittances3. This

is typically done by performing an optimization to vary the dielectric values and

thicknesses of one or more dielectric layers until an acceptable Yin is achieved4 over

all scan angles. In the next sections, we shall visit some of the analytical approaches

for computing the active element admittance of phased arrays, so that we can per-

form impedance matching optimizations with anisotropic WAIMs and compare the

performance achievable with conventional dielectric WAIMs. Metamaterials are used

primarily to implement anisotropic materials.

2.2 Active Element Admittance

The active element admittance of an infinite array is defined as the admittance at

the aperture-air interface of a single element at the center of the array when all of

the elements in the array are radiating [42]. The active element admittance includes

all of the interactions due to other elements in the array and is a function of inter-

element spacing, aperture geometry, lattice topology, frequency of operation, and the

scan angle. The disparity between the active element admittance and the waveguide

propagating mode admittance indicates the level of impedance mismatch of the array,

which varies as a function of scan angle.

2 Yin(θ, φ) is referred to as active element admittance in the literature.
3 For an array of circular waveguide apertures, Yfeed is the admittance looking into the waveguide

and feed system. Since the feed system is generally matched to the admittance of the dominant
propagating mode, Yfeed is the mode admittance of the propagating TE11 mode.

4 For the sake of notational brevity, I represent the active element admittance as Yin instead of
Yin(θ, φ).
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Various approaches for analytically computing the active element admittance of

phased arrays have been explored in the literature [6,37,42,43,45,47–49]. Because it

is considerably less difficult to find the active element admittance of an infinite array,

most approaches make the infinite array assumption due to its simplicity in describing

very large – but finite – arrays. In an infinite array, all elements possess identical

radiation and active admittance characteristics because each element receives the

same amount of mutual coupling as all other elements. The infinite array assumption

is a valid for very large arrays since most elements would be at the central region of

such an array. In the central region of a very large array, each element can be assumed

to be in a nearly infinite array environment. Edge elements, however, possess different

admittance and radiation characteristics than central elements because they are not

completely surrounded by other elements hence have different mutual coupling. The

active element admittance of one unit element of a phased array can thus be used

to estimate the active element admittance of the whole array, provided the array is

large enough. Figure 2.1 shows the typical geometry of an planar array of circular

waveguides radiating out of a conducting sheet, and Figure 2.3 depicts the unit

element lattice of our sample planar array.

The approaches used to calculate active element admittance can be grouped into

two categories: the “one-mode model” approach [6, 43, 47], and the “multi-mode

model” approach [37,42,49]. For a planar waveguide-aperture phased array, the one-

mode model approach derives Yin(θ, φ) based on the assumption that the transmitted

power ratio depends solely on the dominant waveguide mode, while the multi-mode

model solves the complete elemectromagnetic problem thereby determining that the

transmitted power ratio is dependent on the dominant waveguide mode as well as

the reactive contributions from non-propagating waveguide modes that are in the

cutoff regime.

The multi-mode model is developed by enforcing the tangential boundary con-
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Figure 2.3: (a) Top view of phased array unit cell, with lattice position vectors s1

and s2 (b) 3D rendering of phased array unit cell showing feed waveguide

ditions on the array aperture junction (the array surface), thereby culminating in

an expression for Yin(θ, φ) that captures all power transmission ratio curve features

that the one-mode model could not predict. More rigorous and thorough, the multi-

modal approach incorporates the influence of a cascade of waveguide modes (the

propagating and an infinity of nonpropagating modes), each mode influencing the

excited spatial harmonics (free-space modes) at the array surface. The one-mode

model is considered to be a first-order approximation of the more rigorous multi-

mode model and is referred to as the grating lobe series. Though it may be surprising

that nonpropagating modes contribute to the active element admittance, each cut-

off waveguide mode reactively cross-interacts with the propagating mode as well as

with all other nonpropagating waveguide modes. The cross-interaction parameters

encapsulate the relationship between waveguide modes in the waveguide side of the

array surface, and the free space harmonics excited above the array surface. In other
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words, this technique takes into account the influence of all waveguide modes on the

excitation of spatial harmonics just beyond the aperture. Though different from the

one-mode model, the multi-modal model takes the form of a combination of several

grating lobe series.

In this work the multi-modal formulation derived by Borgiotti [49] is utilized to

solve for the active element admittance of a planar phased array fed with circular

waveguide elements. By enforcing the electric and magnetic boundary conditions

at the z = 0 plane (see Figure 2.3), Borgiotti’s approach clearly incorporates both

the contribution of higher order waveguide modes in the waveguide and higher order

evanescent free space modes just above the aperture discontinuity. The canonical

form of the resulting expression for Yin(θ, φ) is straightforwardly implementable for

planar arrays regardless of waveguide antenna element design.

2.2.1 Grating Lobe Series

Before adapting the multi-modal model to the calculation of Yin(θ, φ) for anisotropic

WAIMs, we shall first use the one-mode model to derive Yin(θ, φ) because, this

approach, though incomplete, provides fundamental physical insight into the in-

teractions and spatial harmonic excitations at the array surface. For the sake of

illustration and simplicity, we derive Yin(θ, φ) for a planar one-dimensional array of

radiating parallel plate waveguide apertures, as performed by Parad [6]. Figure 2.4

depicts a (2|p|max + 1)-element array of parallel-plate waveguides, each of which is

infinitely long in the ŷ-direction.

Because a uniform TEM mode is the fundamental propagating mode in an in-

finitely long parallel-plate waveguide, the electric field distribution across each aper-

ture is strictly x-polarized and uniform within each aperture. Across the planar

phased array, a phase gradient, e−jpkxd, is imposed upon each aperture in order

to ensure that the resulting plane wave in the far field propagates with transverse
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Figure 2.4: Cross-sectional profile of unidimensional (2|p|max +1)-element parallel-
plate array with infinitely long apertures in the ŷ direction, radiating into the two-
dimensional x− z plane. Adapted from [6]

wavenumber kx. Note that kx = k0 sin θ cosφ, but since we are restricted to the x−z

plane on which φ = 0◦, then kx = k0 sin θ,

In this method, we approximate the fields on the surface of the array shown in

Figure 2.4, which we shall henceforth refer to as the z = 0 plane, which can be

expressed as

Ex(x, 0) =

{
E0e

−jpdkxx for −a
2

+ pd < x < a
2

+ pd

0 elsewhere

Ez = 0

(2.3)

As the field profile along the z = 0 plane is periodic, we can rewrite it in a form

that resembles a complex Fourier series summation. The tangential electric field can

be rewritten as
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Ex(x, 0) =
aE0

d

+∞∑
p=−∞

sin a
2
(kx + p2π

d
)

a
2
(kx + p2π

d
)
· e−j(kx+p

2π
d

)x (2.4)

The equation in (2.4) expresses the fields across the z = 0 plane as the summation

of a spatial harmonics expansion (e−j(kx+p
2π
d

)x), each term weighted by the Fourier

transform of the uniform field distribution over the parallel plate waveguide aperture.

The array is assumed to be infinitely long, with |p|max = ∞. Spatial harmonics

are modes that exist in free space, some of these propagate (homogeneous plane

waves), and some do not (inhomogenous or evanescent plane wave modes). The first

spatial harmonic, i.e. p=0, is a propagating plane wave while the other terms in

(2.4) are nonpropagating. The term grating lobe refers to the evanescent plane wave

modes that occur at the surface of a planar phased array antenna. In other words,

according to the grating lobe series we can consider (2.4) to be a profile of the grating

lobes excitable by an array of apertures with uniform field distribution and phasing

e−j(kx+p
2π
d

)x.

To obtain a grating lobe series derivation of the active element admittance from

(2.4), the contribution of all the grating lobes to Yin must be quantified. The input

admittance of a TM-polarized plane wave mode of index p can be easily derived from

Maxwell’s equations, and we shall present it in canonical form as

Yp =
1

η cos θ
=

η
√

1− (
kx + p2π

d

k0

)2

−1

(2.5)

We shall also express the power within each waveguide below the aperture in

terms of the active element admittance as,

Pwaveguide =
1

2
(E0a)(E0a)∗Y ∗in (2.6)
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and the power radiated out of the aperture (from the lattice region of length d in

the x-direction and arbitrary length l in the y-direction) as

Pcell =
1

2

∫ l

0

∫ d/2

−d/2
ExH

∗
ydxdy =

1

2

∫ l

0

∫ d/2

−d/2
Ex(ExYp)

∗dxdy (2.7)

Equating (2.6) with the result of (2.7) and rearranging for Yin, yields

Yin =
2P ∗l

a2|E0|2
=
l

d

+∞∑
n=−∞

Yp ·

[
sin a

2

(
kx + p2π

d

)
a
2

(
kx + p2π

d

) ]2

(2.8)

The expression in (2.8) is known as the grating lobe series or one-mode model be-

cause it utilizes a weighted summation of the admittance contribution of the excited

spectrum of free space modes, weighted by the Fourier transform of the aperture field

distribution of a waveguide aperture at the array surface. As an aside, there should

only be one visible free space mode – the propagating plane wave – in a phased

array. The visibility or non-visibility of a free space mode in the setup of Figure

2.4 is dependent upon the spacing, d, and the spatial harmonic index, p. In (2.9),

when d < λ
2
, there is a visible lobe at p = 0, but other values of n will cause a value

of kx + p2π
d

larger than ω
c

at some angles, thereby creating an imaginary kz (i.e. a

grating lobe or evanescent plane wave mode).

kz =

√
ω2

c2
−
[
kx + p

2π

d

]2

(2.9)

We have now calculated Yin using the incomplete but physically insightful ap-

proach known as the grating lobe series. This one-mode model is not an accurate

approximation. In the next section, we present the multi-modal approach, which we

will ultimately use to calculate Yin for a 2D array of circular waveguide apertures

with anisotropic WAIM-layer coverings.
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2.2.2 Multi-Modal Model

Now that we have derived the active element admittance using the one-mode model,

we shall take a look at the multi-modal model for a practical bidimensional planar

phased array radiating into three-dimensional space. A detailed derivation of Yin for

the multi-modal model is done in Appendix A.

Analytical Meaning of Multi-Modal Model

An important component of the multi-modal model, known as the self- or cross-

grating lobe series, is presented in (2.16), but first, the following terms are defined:

u◦ is the scan vector representing the direction of steer:

u◦ = x̂
2π

λ0

sin θ cosφ+ ŷ
2π

λ0

sin θ sinφ (2.10)

u◦pq is the scan vector plus the collection of grating lobes, and is represented as:

u◦pq = u◦pq = u◦ + pt1 + qt2 (2.11)

where t1 and t2 are reciprocal lattice vectors and are directly related to the array

unit cell lattice vectors by:

t1 = 2π
s2 × s3

s1 · s2 × s3

t2 = 2π
s3 × s1

s1 · s2 × s3

(2.12)

(2.13)

ξi is the Fourier transform of the antenna element mode(s) across the surface

area, A, of the antenna element, and is related to the mode field distribution as:

ξi(u) =
1

2π

∫∫
A

ei(x)eu·xdx (2.14)

where ei represents the field distribution of the ith mode of the antenna element.

(For instance, i=0 mode for an array of circular antenna elements is the TE11 mode,
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and the i=1 mode is the next higher order mode, etc.). Since the mode field dis-

tribution is a two-dimensional vector along the x-y surface of the antenna element

aperture, ei can either be expressed as a sum of the x̂ and ŷ field components or

ρ̂ and ψ̂ field components, the former representing rectangular coordinates and the

latter representing cylindrical coordinates. It turns out that, using cylindrical coordi-

nates, it is mathematically convenient to relate the Fourier transform of the antenna

element mode(s) to the admittance of the spatial harmonics. The mode Fourier

transform term ξi can therefore be expressed as:

ξi(u) =
1

2π

∫∫
A

ei(x)eu·x = ρ̂ξiρ + ψ̂ξiψ (2.15)

YTE and YTM relate the transverse admittance of the spatial harmonics excited

at z = 0+ to the electric field from the antenna elements.

See Appendix A, and in Appendix B for more detail on the above expressions.

Yki(u◦) =
4π2

C

∑
u◦pq

[ξiρ(u◦pq)ξ
∗
kρ(u◦pq)YTM(|u◦pq|) +

ξiψ(u◦pq)ξ
∗
kψ(u◦pq)YTE(|u◦pq|)] (2.16)

When i = k = 0, (2.16) is exactly equivalent to the grating lobe series discussed

in Section 2.2.1. For other i = k values, the equation represents the self-grating lobe

series due to that ith mode. For i 6= k, (2.16) is the cross grating lobe series.

Yki is the mutual admittance between mode k and mode i. For instance, Y05 is

the mutual admittance between the fundamental progapating antenna element mode

and the fifth excited higher order mode. This term quantifies the reactive (or real)

exchange of power between modes excited at the aperture. (Real power is typically

not exchanged between the excited modes if the antenna element is designed to
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support only one propagating mode.) Though real power may not be exchanged, the

reactive relationship between modes affects the input impedance seen by the power-

carrying fundamental propagating mode. In essence, each mode can be thought of

as a port. The scalar input admittance Yin is the equivalent admittance seen by the

input port (the fundamental mode) when looking out into the interactive relationship

between all of the other ports (an infinity of higher order modes).

The multi-modal model utilizes Yki for several values of i and k (i and k are

waveguide mode indices, for instance, i = 0 refers to the fundamental mode, while

i = 1 refers to the first cutoff mode and so forth) to calculate the overall active

element admittance of an array. The various values of Yki can be related to Yin as

presented in (A.29). The interrelationship is illustrated in the set of equations below:

YinV0 −
N−1∑
i=0

ViY0i(u◦) = 0

YkVk +
N−1∑
i=0

ViYki(u◦) = 0 (2.17)

Note that Vi is a weighting term that represents the voltage across a mode ei. It

does not directly come into play in the calculation of the active element admittance.

In order to accurately calculate Yin, it is imperative to take into account as many

as possible waveguide modes (from i = 0 to i = N − 1) and free space harmonics

modes (from p = q = −|p|max to p = q = |p|max). If we for instance, only want to

take into account the fundamental propagating waveguide mode, then we set N = 1,

which means that our set of simultaneous equations in (2.17) would reduce to (2.18),

which is simply the grating lobe series.

N = 1 results in Yin = Y00 (2.18)
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When more waveguide modes are taken into account, say the fundamental and

two higher order modes, we set N = 3, and 2.17 becomes:

N = 3 results in YinV0 − Y00V0 − Y01V1 − Y02V2 = 0

Y1V1 + Y10V0 + Y11V1 + Y12V2 = 0

Y2V2 + Y20V0 + Y21V1 + Y22V2 = 0 (2.19)

which can be rewritten as:

(Yin − Y00)V0 − Y01V1 − Y02V2 = 0

Y10V0 + (Y11 + Y1)V1 + Y12V2 = 0

Y20V0 + Y21V1 + (Y22 + Y2)V2 = 0 (2.20)

We know from linear algebra that the determinant of the preceding equation must

equal zero. A manipulation of the determinant results in the expression for Yin in

(2.22).

∣∣∣∣∣∣
Yin − Y00 −Y01 −Y02

Y10 Y11 + Y1 Y12

Y20 Y21 Y22 + Y2

∣∣∣∣∣∣ = 0 (2.21)

Rearranging 2.21,

Yin =

∣∣∣∣∣∣
−Y00 −Y01 −Y02

Y10 Y11 + Y1 Y12

Y20 Y21 Y22 + Y2

∣∣∣∣∣∣∣∣∣∣ Y11 + Y1 Y12

Y21 Y22 + Y2

∣∣∣∣ (2.22)

Equation (2.22) expresses that the active element admittance derives from the

grating lobe series Y00, the cross grating lobe series (Y01, Y11, Y20, Y21, Y21), and the
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mode admittance Y1 for the first higher-order mode and Y2 for the second higher-

order mode. Once these higher-order modes have been identified, the mode admit-

tances are straightfoward to find. For a circular waveguide, the mode admittance of

each mode is a well known quantity.

Multi-Modal Model using Multi-Port Analogy

In this subsection, we shall attempt to provide a circuit model analogy for the multi-

modal model represented in (2.17). Because an infinity of higher-order waveguide

modes are excited at the aperture-discontinuity of each phased array antenna ele-

ment, we shall assign an electrical port to account for each of these modes.

An arbitrary electrical network of admittance matrix Y ′, currents I ′ and voltages

V ′ may be represented by the multi-port Y-matrix:

[I ′] = [Y ′][V ′] (2.23)

which can be fully written as:



I ′1
I ′2
.
.
.

I ′N−1

I ′N


=



Y ′11 Y ′12 . . . Y ′1,N−1 Y ′1,N
Y ′21 . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .

Y ′N−1,1 . . . . . Y ′N−1,N

Y ′N,1 . . . . . Y ′N,N





V ′1
V ′2
.
.
.

V ′N−1

V ′N


(2.24)

The graphical network of excited higher-order waveguide modes – according to

(2.17) – in a phased array waveguide element can be represented with a Y-matrix of

the form shown in (2.25).
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0
0
.
.
.
0
0


=



Yin − Y00 −Y01 . . . −Y0,N−2 −Y0,N−1

Y10 Y11 + Y1 Y12 . . Y1,N−2 Y1,N−1

Y20 Y21 Y22 + Y2 Y23 . Y2,N−2 Y2,N−1

. . . . . . .

. . . . . . .

. . . . . . .
YN−1,0 YN−1,1 . . . . YN−1,N−1 + YN−1





V0

V1

.

.

.
VN−2

VN−1


(2.25)

2.3 Step-by-Step Methodology for calculating Yin using Multi-Modal
Model

A brief summary of the steps to find Yin for a central element in a very large array

is delineated below.

Step 1. Define the lattice vectors s1 and s2.

Step 2. Find the reciprocal lattice vectors t1 and t2 from s1 and s2.

Step 3. Utilize t1 and t2 to construct a general expression for u◦pq.

Step 4. Determine the number of waveguide modes, N, and spatial harmonics modes

(|p|max=|q|max) that will be included in the computation (the higher the better).

Step 5. Obtain/derive general expressions for the transverse admittance of TE and

TM spatial harmonics modes.

Step 6. Obtain expressions for the Fourier transform of all the waveguide modes

taken into consideration, including the fundamental, and incorporate u◦pq expres-

sion. See Section A.4 of Apendix A

Step 7. Calculate the matrix of self and cross-grating lobe series terms Yki for all

the waveguide modes considered, and calculate the mode admittance Yk for all the

cutoff modes considered.

Step 8. Determine system of equations using (2.17), inserting the results of Step 7
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as the coefficients of the voltage terms.

Step 9. Solve for Yin by setting the determinant of the system of equations to zero.

2.4 Calculation of Yin for Two-dimensional Planar Phased Array of
Circular Waveguides

Let us use the previous derivations of active element admittance to compute Yin for

the typical but arbitrary planar phased array configuration represented by the unit

element lattice depicted in Figure 2.5. We utilize the grating lobe series, multi-model

approach and the numerical solver HFSS to calculate the active element admittance

as a function of scan. (The reader may ask: Why go through the hassle of an

analytical derivation when numerical solvers like Ansoft HFSS or CST Microwave

Studio can be used? Well, it is true that these numerical software are precise and

can handle arbitrary geometry, however, full-wave simulations are time-consuming

and are not appropriate for the kind of rapid optimization that we will later use

to prescribe optimized anisotropic WAIM layers for a planar phased array antenna

system.)

The lattice vectors of the planar array whose unit lattice is shown in Figure 2.5

can be written in terms of lattice parameter d = 2× 0.21” = 0.42” = 1.0668× 10−2

m to be:

s1 = dx̂

s2 = d(x̂ sin 30◦ + ŷ cos 30◦) = d

(
1

2
x̂+

√
3

2
ŷ

)
(2.26)

We then obtain t1 and t2 (from (A.4) of Appendix A), yielding:
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Figure 2.5: Unit element lattice and dimensions of waveguide-aperture planar
phased array of interest. (a) Top view (b) 3D View. (The circular waveguide el-
ements of the planar phased array are assumed fed with a ŷ-polarized feed which
excites a propagating TE11 mode that is primarily polarized along the ŷ-direction.)

t1 =
2π

d

(
x̂− 1√

3
ŷ

)

t2 =
2π

d

(
2√
3
ŷ

)
(2.27)

(2.27) leads to

u◦pq = kt = x̂

(
2π

λ
sin θ cosφ+ p

2π

d

)
+ ŷ

(
2π

λ
sin θ sinφ+

2π

d

[
q

2√
3
− p 1√

3

])
(2.28)

u◦pq is the effective transverse wavenumber of the planar phased array system

and we may thus also refer to it as5. We introduce the representation kt because

it notationally signifies the effective transverse wavevector of the lattice of grating

5 Later in this document, I interchangeably refer to the lattice of grating lobes as u◦pq or kt

ktdepending on if my aim is to emphasize that the parameter represents the lattice of grating lobes
or the effective transverse wavenumber of the array antenna
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lobes. The expression for u◦pq implies that the spatial harmonics modes that exist

across the two-dimensional z = 0+ array surface take the form:

e−ju◦pq ·x = e
−j

h
(k0 sin θ cosφ+p 2π

d
)x+(k0 sin θ sinφ+ 2π

d

h
q 2√

3
−p 1√

3

i
)y

i
(2.29)

u◦pq can also be rewritten as:

u◦pq = kt = x̂u+ ŷv (2.30)

Where,

|kt| =
√
u2 + v2

u = kx + p
2π

d

v = ky +
2π

d

[
q

2√
3
− p 1√

3

]
kx = k0 sin θ cosφ

ky = k0 sin θ sinφ (2.31)

2.4.1 Calculation of Yin without Dielectric Sheet, using the Grating Lobe Series

We shall first use the grating lobe series to calculate Yin by only taking the funda-

mental propagating waveguide mode into account, i.e. N = 1. To implement the

grating lobe series, we follow the steps outlined in Section 2.3

In order to converge at a grating lobe series sum that takes most of the contribu-

tive spatial harmonics modes into account, we found that taking forty-nine modes

into account enables a convergence of thte
∑∑

u◦pq
sum, i.e. p = −3,−2,−1, 0, 1, 2, 3

and q = −3,−2,−1, 0, 1, 2, 3.

Next, we utilize the admittance of free space modes as derived in Appendix B.

For TM and TE polarized free space modes, respectively, the generalized transverse
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admittance for free space plane waves with transverse wavenumber kx expressed as:

YTE(kx) =

√
ε0εr
µ0µr

− k2
x

ω2ε20ε
2
r

(2.32)

YTM(kx) =

[√
µ0µr
ε0εr

− k2
x

ω2ε20ε
2
r

]−1

(2.33)

given that εr = 1, µr = 1, ω = 2πf = 2π(15.25× 109) radians/s.

Since the admittances will be acting on the lattice of grating lobes, kt, we shall

rewrite them in the form:

YTE(|kt|) =

√
ε0εr
µ0µr

− |kt|
2

ω2ε20ε
2
r

(2.34)

YTM(|kt|) =

[√
µ0µr
ε0εr

− |kt|
2

ω2ε20ε
2
r

]−1

(2.35)

We then utilize the generalized form of the Fourier transforms of the radial and

circumferential components of the circular waveguide antenna element modes as de-

veloped by Borgiotti [49], and presented in Section A.4 of Appendix A, for the circular

waveguide modes in consideration. If we consider a to be the waveguide radius, for

TEmn waveguide modes the Fourier transforms are:

ξρ(kt) = mj(m−1)

√
2/π√

(x′mn)2 −m2
· sinmγ

|kt|
Jm(r|kt|) (2.36)

ξψ(kt) = j(m−1)

√
2/π√

(x′mn)2 −m2
· a cosmγ

1− (a|kt|
xmn

)2
· J ′m(a|kt|) (2.37)
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and for TMnp, the Fourier transforms are:

ξρ(kt) = −j(m−1) sinmγ
|kt|
√

2/π

(xmn
a

)2 − |kt|2
Jm(r|kt|) (2.38)

ξψ(kt) = 0 (2.39)

Where,

cosmγ = Re

[(
x̂ · kt + ŷ · jkt

|kt|

)m]
(2.40)

sinmγ = Im

[(
x̂ · kt + ŷ · jkt

|kt|

)m]
(2.41)

ξiψ in (2.16) represents the Fourier transform of the TE polarized component

(with respect to the z-direction) of the ith TEmn or TMmn mode away from the

fundamental propagating circular waveguide mode, while ξiρ is the same for the TM

polarized component of the same mode. Accordingly, ξ0ψ or ξ0ρ would each represent

the TE and TM polarized components of the fundamental TE11 mode. Note that the

expression for ξψ in (A.30) is printed incorrectly in [49] but is displayed here in its

corrected form. xmn and x
′
mn represent the nth root of Jm and J

′
m Bessel functions.

To find Yin using the one-mode model (i.e. N = 1), the system of equations in

(2.17) reduce to (2.18). Given that the i = 0 mode is the TE11 mode, therefore

m = 1 and n = 1, and we are able to obtain ξ0ρ and ξ0ψ from (2.36) and (??), by

setting m = 1 and n = 1 in both equations.

The active element admittance derived from a grating lobe series analysis – trun-

cating the sum at forty-nine spatial harmonics terms – yields:

Yin = Y00 =
4π2

C

+3∑
p=−3

+3∑
q=−3

[ξ0ρ(kt)ξ
∗
0ρ(kt)YTM(kt) + ξ0ψ(kt)ξ

∗
0ψ(kt)YTE(kt)] (2.42)
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2.4.2 Calculation of Yin without Dielectric Sheet, using Multimodal model

The number of waveguide modes taken into account in the calculation of Yin deter-

mines the number of equations (see (2.17)) needed to be solved. In addition, the

incorporation of, say, N waveguide modes will require the computation of N2 self-

and cross-grating lobe series terms (in addition to N−1 higher order waveguide mode

admittances) in order to adequately formulate the necessary set of equations. For

instance, the incorporation of three waveguide modes would require the computation

of Y00, Y01, Y02, Y10, Y11, Y12,Y20, Y21, Y22 – nine in total– and the calculation of

higher order mode admittances Y1 and Y2.

The first three unique waveguide modes – in order of increasing cutoff frequency –

of the array waveguide element (depicted in Figure 2.5) are the TE11, TM01, and TE21

modes, but, due to the symmetry of circular waveguide modes, the cross-polarized

replicas of certain modes are excited as higher order modes at the array surface.

For instance, a 90◦ orthogonal counterpart of the TE11 mode is excited at the array

surface if the array is not cross-fed (even if cross-fed, this implies that there will

be cross-interaction between both modes at the array surface). As a result, cross-

polarized modes are higher order modes that should be taken into account when a

multimodal model is used. For the circular waveguide in consideration, the first ten

modes in order of excitation are: TE11, TE11 (90◦ cross-polarized), TM01, TE21, TE21

(45◦ cross-polarized), TM11, TM11 (90◦ cross-polarized), TE01, TE31, TE31 (30◦ cross-

polarized). In general, TEmn or TMmn modes are cross-polarizable (when m 6= 0)

by 180◦

2m
. An inspection of the several waveguide mode field configuration patterns

shown in page 480 of Balanis [12] may help to shed light on mode symmetry and

cross-polarized modes. For instance, the cross-polarized counterpart of an x̂ polarized

TE11 mode is a ŷ-polarized TE11 mode. The cross-polarized counterpart of the TE21

mode is rotated by 45◦.
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The mode admittance of a given mode and its cross-polarized counterpart are the

same, however, the modifications in (2.44) should be made to the field distribution

Fourier transform.

Cross-polarized modes: cosmγ = Re

[(
x̂ · kt + ŷ · jkt

|kt|

)m
ej

180◦
2m

]
(2.43)

sinmγ = Im

[(
x̂ · kt + ŷ · jkt

|kt|

)m
ej

180◦
2m

]
(2.44)

A MATLAB script was written compute the active element admittance based on

the formulation of (2.17). Figure 2.6 depicts results obtained when the one-mode

and multi-mode approximations are used; these results are also compared to results

obtained using the the full-wave solver HFSS. We presume the HFSS results to be

the exact solution. Note that the HFSS solution was done by performing a 3D

simulation of a single element lattice of the planar array, and then setting master-

slave periodic boundary conditions on all the walls of the region above the aperture

plane (as depicted in Figure 2.5).

An inspection of the viewgraphs in Figure 2.6 would seem to suggest that the one-

mode model is acceptably accurate for modeling Yin. In particular, the results of the

one-model and the exact simulated solution seem to agree very closely particularly

at the φ = 0◦ and φ = 90◦ planes; a qualitative disagreement only occurs at the

φ = 45◦ plane, when the scan angle θ exceeds 60◦. The general agreement between

the one-mode model and the exact solution, however, typically disappears when a

dielectric layer is placed directly on the array surface. This is because the grating

lobe admittances (YTE or YTM) change in the presence of one or more dielectric

layers, thereby causing higher order waveguide modes to play a stronger role in the

interaction that occurs on the array surface. In the next section, we discuss the

incorporation of dielectric layers into YTE and YTM.
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Figure 2.6: (1 − |Γ|2) results obtained using one-mode and multi-mode active
element admittance models for planar array without WAIM layer(s). (top) φ = 0◦

(mid) φ = 45◦ (bottom) φ = 90◦ plane
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2.4.3 Calculation of Yin with arbitrary dielectric WAIM layer
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Figure 2.7: Transmission line equivalent of transverse admittance looking into (a)
one dielectric sheet and free space half-space (b) two dielectric sheets and free space

In the presence of one or more dielectric layers, the spatial harmonic mode ad-

mittance YTE (or YTM) can be formulated using the well-known transmission line

impedance transformation equations. These equations are used by engineers to trans-

form the impedance of one end of a transmission line system to another region of

the circuit so that the effective impedance of the system can be quantified and

impedance-matched. For a transmission line system with load admittance Yair,TE

connected to a transmission line of length d and characteristic admittance Ydiel,TE

(as shown in Figure 2.7a), the effective admittance YTE is:
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YTE(|kt|) = Ydiel,TE
Yair,TE + jYdiel,TE tan |kt|d1

Ydiel,TE + jYair,TE tan |kt|d1

(2.45)

Yair,TE and Ydiel,TE in Figure 2.7a are the transverse admittances that can be

obtained by plugging in the constitutive parameters of air (εr = 1, µr = 1) and

the dielectric material (εr =?, µr = 1, d1 =?) each into (B.14) of Appendix B.

To calculate YTE (or YTM) in the presence of a two-layer (or multi-layer) dielectric

WAIM topology (as shown in Figure 2.7b), (2.45) is applied recursively. Note that

|kt| represents the lattice of grating lobes |u◦pq|, thus, as many transverse admittance

values as there are grating lobes must be calculated for each scan angle; e.g. if we

are taking forty-nine grating lobe terms into account (|p|max = |q|max = 3), then we

must also compute forty-nine YTE (or YTM) terms per scan angle.

In Figure 2.8 are viewgraphs for (1− |Γ|2) obtained for the planar phased array

in the presence of a dielectric WAIM sheet with relative permittivity εr = 3, and

thickness d1 = 4.3mm placed directly on the array surface. A cursory inspection of

the results show that the one-mode model, vis-a-vis the multi-modal models, poorly

agrees with full-wave simulations. In particular, a stark disagreement occurs between

the one-model or two-model model and the exact solution at all azimuthal planes,

especially beyond θ = 30◦ on the φ = 0◦ plane. This suggests that several waveguide

modes must be taken into consideration in order to obtain accurate results. We

can see from Figure 2.8 that the inclusion of the first seven waveguide modes (TE11,

TE11 cross-polarized, TM01, TE21, TE21 cross-polarized, TM11, TM11 cross polarizes)

clearly delivers accurate results.

In a similar vein, Figure 2.9 depicts viewgraphs of (1− |Γ|2) performance of the

planar phased array in the presence of two dielectric WAIM sheets. The results

obtained using the one-mode model and the multimode models are consistent with

Figure 2.8.
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Figure 2.8: (1 − |Γ|2) results obtained using one-mode and multi-mode active
element admittance models for planar array with dielectric WAIM sheet with pa-
rameters εr = 3, d1 = 4.3mm placed on the array surface. (top) φ = 0◦ (H-Plane)
(mid) φ = 45◦ (D-Plane) (bottom) φ = 90◦ (E-Plane)
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Figure 2.9: (1 − |Γ|2) results obtained using one-mode and multi-mode active
element admittance models for planar array with two dielectric WAIM sheets with
the layer directly placed on the array surface having parameters εr = 1.6, d1 = 3mm,
and the top layer having parameters εr = 3, d2 = 3mm. (top) φ = 0◦ (H-Plane)
(mid) φ = 45◦ (D-Plane) (bottom) φ = 90◦ (E-Plane)
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2.5 Calculating Yin in the presence of anisotropic WAIM layers

2.5.1 Obtaining anisotropic media using transparent crystals

Before we delve into the calculation of the active element admittance, let us first

discuss the different ways to obtain anisotropic materials. Anisotropic materials are

available in nature especially in the form of uniaxial (e.g. calcite) or biaxial crystals,

which, in the words of Born and Wolf [50], have less than three crystallographically-

equivalent, mutually-orthogonal directions. Isotropic crystals have a cubic system

such that εx = εy = εz = εr; uniaxial crystals have two crystallographically-equivalent

mutually-orthogonal directions such that εx = εy 6= εz, while biaxial crystals have no

mutually-orthogonal directions that are crystallographically equivalent (εx 6= εy 6=

εz). The dispersion surface (not shown) of an isotropic material is spherical while it

is ellipsoidal for a biaxial material and spheroidal for a uniaxial material. A sphere

has an infinite number of optical axes (an optical axis is a line along which there

is rotational symmetry), a spheroid has one optical axis, and an ellipsoid has two

optical axes. An inspection of the dispersion relation of uniaxial materials derived

in (B.5) and (B.11) of Appendix B show equations that are structurally spheroidal.

The dispersion relation of isotropic materials, which has spherical form, can be ob-

tained from (B.5) and (B.11) by setting all the permittivity values to εr and all the

permeability values to µr.

2.5.2 Implementing artificial anisotropic electromagnetic media using metamateri-
als

Apart from the anisotropic crystals available in nature, the field of metamaterials en-

ables the capability to design artificial electromagnetic materials that are anisotropic

to magnetic or electric fields. As we have discussed in the first chapter, a metama-

terial is made up of arrays of subwavelength resonant structures that, by coupling

to an applied electric or magnetic field, can excite in itself an average electric or
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Figure 2.10: SRR and ELC denoting axis of excitation in red.

magnetic constitutive response. In principle, the complete electromagnetic behav-

ior of a metamaterial can be described by a bulk permittivity and/or permeability

that can be calculated using standard parameter retrieval techniques [7,51]. Because

most metamaterial structures are made to couple to electric or magnetic fields in

just one or two directions, they are by nature anisotropic. For example, a simple

SRR possesses a magnetic response only in the direction perpendicular to its plane,

while a simple ELC has a strong electric response in the direction along its capacitive

gap. Figure 2.10 depicts an SRR and ELC and indicates the direction of artificial

magnetic and electric constitutive parameters. The effective performance of an SRR

media would engender an anisotropic permeability; this is because the magnetic re-

sponse occurs only in the ẑ direction. Such media would have an permittivity of the

form εx = εy = εz = εr, and a permeability of the form µx = µy = 1 6= µz. For the

ELC media represented in Figure 2.10, the constitutive description is of the form

εx = εy = εr 6= εz and µx = µy = µz = 1.

Anisotropic media implemented using metamaterials provide flexibility because

they may be designed to have engineerable constitutive parameters in every direction.

It is remarkable that, in comparison to uniaxial crystals, metamterials can be used to
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obtain artificial materials that are simulataneously uniaxial to magnetic and electric

fields, i.e. εx = εy 6= εz and µx = µy 6= µz. A material with an engineerable

permittivity and permeability can be obtained by using a metamaterial unit cell

that simultaneously engenders a magnetic and electric response, or by integrating

a magnetic particle and electric particle in the same unit cell. The possibility of

designing materials with sophisticated anisotropic properties motivates the effort to

explore the use of anisotropic WAIM layers for impedance-matching planar phased

array antennas.

2.5.3 Incorporating Anisotropy into One-Mode or Multi-Modal model

To implement the one-mode or multimodal model for a planar array with one or more

anisotropic layers, the effective spatial harmonic transverse admittances, YTE and

YTM, are the only parameters that are modified. To incorporate anisotropic layers,

the characteristic transverse admittance of the anisotropic material is calculated,

and thereafter the transmission line impedance transformation equation is used to

exactly transform the impedance from the load (air) through the anisotropic layer to

the array surface. The procedure visually illustrated in Figure 2.7 is repeated, with

the exception that the admittance of the anisotropic material(s) have a different

form.

The characteristic transverse admittance of spatial harmonics propagating in

an infinitely thick uniaxial anisotropic material is derived in Appendix B. These

admittances can be expressed as:

YTE(|kt|) =

√
ε0εy
µ0µx

− |kt|2
ω2µ2

0µxµz
(2.46)

and,
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YTM(|kt|) =

[√
µ0µy
ε0εx

− |kt|2
ω2ε20εxεz

]−1

(2.47)

The analysis of uniaxial anisotropic materials (instead of fully anisotropic mate-

rials where µx 6= µy 6= µz and/or εx 6= εy 6= εz) is doubly convenient because these

materials are not impossible to implement using metamaterials, and because they

are also less complex to integrate with the grating lobe or cross-grating lobe series

that make up the one-mode and multimodal admittance models. Apart from the

extreme difficulty inherent in making fully anisotropic metamaterials, using uniaxial

materials makes it straightforward to derive spatial harmonic admittance terms YTE

and YTM from Maxwell’s equations. (We set the constitutive parameters in the plane

of the array surface are equal, i.e. εx = εy and µx = µy.)

2.5.4 Accuracy of Multi-Modal model

As can be seen from comparing the accuracy of the one-mode model in Figure 2.6

with the one-model in Figure 2.8, the number of modes needed in order to obtain an

accurate approximation of Yin depends on the material placed on the array surface.

We find that more modes may need to be taken into account when anisotropic layers

with certain properties are used. For instance, for a material with εx = εy = 1.95,

εz = 1, µx = µy = 1, µz = 3.78 and d1 = 4.1mm, the results (shown in Figure 2.11)

do not converge rapidly as the number of modes is increased, unlike the results shown

in Figure 2.12 which are essentially of the same material except that µz has been

changed from µz = 3.78 to µz = 1. This expectedly suggests that the constitutive

nature of an anisotropic WAIM layer determines the influence of higher order modes

on the active element admittance of the planar phased array. Our analyses of the

use of the multi-modal model to analyze anisotropic materials show that a higher

number of waveguide modes may need to be taken into account to obtain accurate
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Figure 2.11: (1 − |Γ|2) results obtained using one-mode and multi-mode active
element admittance models for planar array with one anisotropic WAIM layer with
parameters εx = εy = 1.95, εz = 1, µx = µy = 1, µz = 3.78 and d1 = 4.1mm placed
on the array surface. (top) φ = 0◦ (H-Plane) (mid) φ = 45◦ (D-Plane) (bottom)
φ = 90◦ (E-Plane)
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results.

We especially observed that anisotropic materials made up of a mix of positive

and negative values for constitutive parameters (e.g. indefinite media [52,53]) when

used as WAIMs pose a convergence problem to the grating and cross-grating lobe

series. This is because these materials natively support evanescent plane wave modes,

and this implies that one would need to include an unrealistically large number of

grating lobes (i.e. really large values for |p|max and |q|max). Comparisons of results

from HFSS simulations and the multimodal MATLAB model do not show consistent

agreement even when a large number of grating lobes and waveguide modes are

included. In addition, the HFSS simulations do not seem to converge gracefully, and

whenever HFSS results seem to converge, we found that the use of indefinite media

as anisotropic WAIM layers predisposes the phased array to total scan blindness

at multiple angles, a phenomenon which can occur when the transmitted energy is

trapped either as a surface wave on the surface of the planar array or inside a WAIM

placed on the surface of the array. In order to obtain highly accurate results, it is

important to use a high number of waveguide modes. Based on the findings discussed

in this section, we generally decided to use between ten and fourteen waveguide modes

to characterize the performance of the planar phased array of waveguide apertures.

2.6 Conclusion

In this chapter we discussed the characterization of a planar array of circular waveg-

uide arrays through a decomposition of the free space modes into homogenous and in-

homogenous (grating lobe series), quantifying their role in the mutual cross-interaction

between higher-order waveguide modes excited on the array surface. The matrix of

mutual admittances calculated was subsequently used to calculate the radiation ad-

mittance at the aperture junction of a waveguide element at the center of a very large

array. This analysis was performed with the assumption that the circular waveguide
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Figure 2.12: (1 − |Γ|2) results obtained using one-mode and multi-mode active
element admittance models for planar array with one anisotropic WAIM layer with
parameters εx = εy = 1.95, εz = 1, µx = µy = 1, µz = 1 and d1 = 4.1mm placed on
the array surface. (top) φ = 0◦ (H-Plane) (mid) φ = 45◦ (D-Plane) (bottom) φ = 90◦

(E-Plane)
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elements of the planar phased array are fed with a ŷ-polarized feed which excites a

propagating TE11 mode that is primarily polarized along the ŷ-direction. For an ar-

ray consisting of cross-fed waveguides (i.e. fed with orthogonal feeds, thus resulting

in both x̂ and ŷ-polarized TE11 modes carrying power), the active element admit-

tance for each mode must be calculated separately, however, these admittances may

not be the same if the array does not have a square lattice geometry. To calculate

the active element admittance for the x̂-polarized TE11 mode, the Fourier transform

of that mode field distribution (ξρ and ξψ) and its accompanying higher order modes

should be rotated by -90◦.

The primary aim of carefully developing the formulation for the active element

admittance was to characterize planar phased array in the presence of metamaterials,

which may be modeled as anisotropic materials. To implement the mathematically

formulated model, a MATLAB code was written to compute the transmission and re-

flection performance of a planar array of circular waveguide apertures in the presence

of one or more dielectric or anisotropic material layers.

By creating a MATLAB model we are able to calculate Yin expeditiously. As an

example, a full-wave solution (using Ansoft HFSSTM) of the planar array topology of

Figure 2.5 to obtain the results in Figure 2.12 expends fifty minutes of computation

time, while the MATLAB code expends only five seconds when forty-nine free space

modes and ten waveguide modes are included.

In the next chapter we examine the use of numerical optimization to determine

anisotropic WAIM constitutive parameters that match the impedance of the phased

array over a broad range of scan angles. The fast run time of the MATLAB model

enables us to be able to perform such an optimization in a feasible amount of time,

since we expect that the numerical optimization algorithm may need to run thousands

of iterations of the MATLAB model before arriving at an optimal set of constitutive

parameters values.

54



3

Using Anisotropic Materials to obtain Wide Angle
Impedance Matching in Planar Phased Array

Antennas

In the previous chapter, we discussed the methodology used to accurately compute

the active element admittance of a waveguide-fed planar phased array antenna. We

also discussed the use of this approach to characterize the transmission performance

of a planar phased array antenna in the presence of a stack of dielectric or anisotropic

impedance matching material. The use of dielectric layers on planar arrays to address

reflections at the array surface was first introduced by Magill [39] and is a common

approach used to optimize the power transmission ratio as a function of scan.

Ideally, the desired power transmission ratio for a planar phased array antenna is

obtained when all the power fed into the phased array antenna is radiated out into

free space, leading to a zero reflection coefficient (|Γ(θ, φ)|) for all scan conditions.

However, due to mutual coupling between antenna elements, it is difficult, if not

impossible, to achieve |Γ(θ, φ)| of zero at all combinations of elevation and azimuthal

scan angles. To improve the impedance match over a broad range of scan angles, an

intervening set of thin dielectric layers can be introduced on the surface of the array.
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The number of layers, their thicknesses and placement are all optimized to provide

the best possible match over as broad an angular scan range as possible.

Wide-angle impedance matching (WAIM) structures constructed from layers of

dielectric materials are beneficial in addressing the impedance mismatch associated

with phased array antennas. However, currently available materials exhibit a fairly

restricted range of dielectric constants and it is expected that access to a larger range

of constitutive properties—including magnetic permeability values—would offer fur-

ther advantages in the design of WAIM layers.

Metamaterials, or structured materials, have the advantage that they can be

designed with permittivity and permeability values over a continuum of values [14,

15], and provide access to material properties such as anisotropy that are not readily

available in most usable WAIM dielectric materials. This wider range of material

properties presents opportunities to obtain more comprehensive impedance matching

for phased array antennas. Heuristically, anisotropic materials, implementable using

metamaterials, should improve the ease of matching array antennas over a broader

range of scan angles.

The goal of this chapter is present a systematic technique to design anisotropic

wide angle impedance matching layers that may be implementable using metamate-

rials. The multimodal model developed in Chapter 2 is used to generate anisotropic

material parameters that provide wide angle impedance matching for a given phased

array configuration. The existing method of dielectric WAIM layer optimization is

extended to allow for (i) a wider range of values for ε, (ii) non-unity permeability µ,

and, (iii) to accommodate anisotropic values of ε and µ. These configurations can

be accomplished using metamaterials.

In the next sections, the methodology used to prescribe optimal anisotropic

WAIMs and the proper design rules that must be followed are discussed. Several

examples of the use of a uniaxial anisotropic layer(s) to optimize the array power
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transmission ratio are also presented. At the end of this chapter, the results of a

numerical and experimental analysis are used to examine the feasibility of using a

metamaterial as an anisotropic WAIM over a phased array surface. Finally, some

of the challenges associated with using metamaterials in the phased array WAIM

context, are also discussed.

3.1 Optimization of Anisotropic Impedance Matching Layers

The purpose of using anisotropic WAIMs is to minimize |Γ(θ, φ)| over a very broad

range of scan angles. From the multi-modal technique discussed in Chapter 2 (re-

fer to Appendix A for complete derivation), we implemented a MATLAB code to

compute the active element admittance and reflection coefficient. By optimizing the

design variables of the anisotropic WAIM layer(s), the reflection coefficient can be

minimized. We can therefore express the desired goal of the optimization to be:

minimize

∫ 90◦

φ=0◦

∫ 90◦

θ=0◦

∣∣∣∣YTE11 − Yin(φ, θ)

YTE11 + Yin(φ, θ)

∣∣∣∣2 dθdφ (3.1)

Note that the integrand of (3.1) is |Γ(θ, φ)|2, which is the parameter that we

aim to minimize over all scan angles. To minimize this function, the active element

admittance at the array surface (at the aperture discontinuity) must equal the admit-

tance of the waveguide fundamental propagating mode (TE11 mode). This condition

can be expressed as:

Yin(θ, φ) = YTE11 (3.2)

for all θ and φ between zero degrees and ninety degrees.
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3.1.1 Implementation of Optimization in MATLAB

Because the function |Γ(θ, φ)|2 is not expressed in closed form, we choose to numer-

ically optimize this objective function using a built-in computational optimization

algorithm (fmincon). MATLAB’s fmincon function is a constrained optimization

routine that can be used to minimize the objective function of (3.1). fmincon accepts

a variety of inputs: it accepts the parameterized function that needs to be optimized,

the domain of design variables (for a uniaxial anisotropic layer these parameters are:

µx, µz, εx, εz, and the thickness d1 of the layer). A constrained optimization routine

is used because we limit the search domain for µ, ε and thickness. fmincon uses

line-search, quasi-newton, and sequential programming algorithms to numerically

find the minimum from a given starting point seed which must be provided for each

design variable.

To prescribe optimal anisotropic layers, the multi-modal model was interfaced

with fmincon and optimized in MATLAB over several iterations. For each iteration

the optimization function increments or decrements the values of the design variables

such that the objective function is further reduced in value. A set of starting values

for the design variables from which the optimization can begin its search are defined,

but different starting values may yield different optimization results. We use a Monte-

Carlo optimization scheme to stochastically generate sets of starting values for the

design variables to alleviate such dependence. The Monte-Carlo scheme generates

several sets of starting values and results in as many sets of optimized design variables

as there are sets of starting values. Because many of the optimized design values will

only be local minima, the smallest minimum of all the resulting minima is assumed

to be the absolute minimum of the objective function. Specifically, 500 sets of design

variables starting points (i.e. 500 sets of µx, µz, εx, εz, and the thickness) are

randomly generated using a multivariate uniform probability density function. A
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flow chart of the optimization with and without the Monte-Carlo scheme is shown

in Figures 3.1 and 3.2.

One important detail that should not be overlooked in Figure 3.1 is the defini-

tion of the initial variables and terms at the beginning of the flowchart sequence.

The placement of the definition of these terms is very important. For instance, the

dependence of circular waveguide Fourier transform terms ( ξψ(u◦pq) and ξρ(u◦pq))

on Bessel functions implies that, since the evaluation of Bessel functions is compu-

tationally expensive, placing them within the optimization loop would significantly

slow down the execution of each iteration of the multi-modal code runtime. We have

found that the evaluation of the Fourier transform terms is responsible for 85% to

95% of the multi-modal model code runtime. Therefore, predefining these terms be-

fore executing the optimization routine can dramatically reduce the runtime of each

iteration invoked by fmincon. In addition, because the multi-modal model uses a

large number of spatial harmonic and waveguide mode terms we found it necessary

to eliminate the use of loops to expedite run time. For example, to calculate Yin for,

say, fourteen waveguide modes, forty-nine spatial harmonic terms, eighty elevation

scan angles, and three azimuthal planes, one would otherwise have to deal with over

2.3 × 106 loops! (i.e. 7 × 7 × 14 × 14 × 81 × 3). Writing a program that leverages

the multi-processor platform of contemporary computers entails replacing loops with

large multidimensional matrices that enable the use of parallel processing to perform

the computations.

Using the optimization methodology previously discussed, we choose to optimize

the phased array antenna of Figure 2.5 over all azimuthal planes. Since the H, D,

and E-planes (φ = 0◦, φ = 45◦ and φ = 90◦, respectively) provide an estimation of

the performance of phased array systems [54] over most azimuthal planes (due to

symmetry), we attempt to simultaneously optimize at these three azimuthal planes

for a given number of dielectric and anisotropic layers over the array surface. We

59



Start

Specify number of 
waveguide and 
floquet modes

Define initial
variables and 
terms

Calculate plane wave mode
admittance for all floquet modes,  
compute Y

ki
, then determine 

active element admittance, Y
in

 

Evaluate Σ |Γ(θ,φ)|2

θ,φ

Σ |Γ(θ,φ)|2

Minimized?
θ,φ

Store values of optimized 
design parameters 
and Σ|Γ(θ,φ)| 

End

Is

adjust value of 
anisotropic layer 
parameters

Set starting point and domain of
optimization search for anisotropic
layers(s) parameters

YES

NO

2

Figure 3.1: Flowchart illustrating operations in the MATLAB optimization model
for anisotropic WAIM optimization.
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Figure 3.2: Flowchart illustrating operations in the MATLAB Monte-Carlo opti-
mization model for anisotropic WAIM optimization.

61



modify the objective function of (3.1) to the discretized version as follows:

minimize

b=2∑
b=0

80◦∑
θ=0◦

∣∣∣∣YTE11 − Yin(45b◦, θ)

YTE11 + Yin(45b◦, θ)

∣∣∣∣2 (3.3)

In addition, we reduce the scan range from θ = 0◦ − 90◦ to θ = 0◦ − 80◦ to

represent the range of angles over which transmission is feasible. As discussed in

Chapter 2, it is extremely to transmit or receive with the planar antenna at angles

close to ninety degrees given the effective aperture reduction term f(θ) displayed in

(2.1) of Chapter 2.

3.1.2 Design Rules for the Optimization of Planar Phased Arrays using Anisotropic
Materials

The use of a numerical optimization approach to prescribe design variables for

anisotropic impedance matching layers requires us to specify the domain of values

from which the optimization algorithm can search for optimal design parameter val-

ues. Since we herein use homogenous anisotropic layers to describe metamaterials,

the constitutive characteristics of these anisotropic layers must be in agreement with

what is practically achievable using metamaterials.

We eliminate design variable values that would can only be implemented using

extremely lossy metamaterials. The domain of permittivity and permeability val-

ues within 0.2 and 5 have been implemented successfully using metamaterials. We

restrict the optimization scheme to only consider anisotropic materials with consti-

tutive parameters within this range (i.e. ε or µ in the x, y or z directions may not

be outside this range).

More detailed justifications for restricting the range of allowed ε and µ are:

(i). It is very difficult to obtain extremely high values of ε or µ with metamaterials
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without operating within an extremely dispersive or lossy regime.

(ii). It is important to stay away from negative values of ε or µ because obtaining

these values through metamaterials will result in highly lossy anisotropic materials.

(iii). We do not consider from constitutive parameter values that are too close to

zero because these values can be difficult to fabricate because a small margin of error

in fabrication may result in a large percentage difference in the effective constitutive

parameter value for the metamaterial.

The above three design rules dictate the optimization search domain, while the

following set of design rules are used to simplify the optimization of planar phased

array antennas using anisotropic material layers. These are:

(i). It is not advisable to use indefinite anisotropic media [52] as anisotropic WAIMs

because at angles in which these materials are cutoff, the excitation of a large number

of evanescent modes is likely, thus potentially leading to the propagation of surface

waves. The self- and cross-grating lobe series of the multimodal model converges

very slowly when an unusually large number of spatial harmonic modes have to be

considered.

(ii). The use of all-negative anisotropic materials is avoided because although these

materials may in simulation appear to provide superior impedance matching, this

result is unreliable because of very high losses. Large losses imply a large imaginary

part of ε or µ, which leads to an inaccurate estimate of the impedance matching

given that losses are assumed to be small in the implemented model and optimiza-

tion scheme.

(iii). We find it computationally convenient to assume the use of uniaxial anisotropic

layers of the form εx = εy 6= εz and µx = µy 6= µz for impedance matching, espe-

cially given that this anisotropic configuration is particularly compatible with the

formulation of the multi-modal model discussed in Chapter 2.

Another variable that must be considered when performing an anisotropic WAIM
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optimization is the thickness of each anisotropic layer. Unlike conventional materials

that can have arbitrary thicknesses, metamaterials have thicknesses which increase

discretely for a pre-determined unit cell size. For instance, the thickness of a meta-

material consisting of just one layer of a two-dimensional array of structures would

be the height of the constituent metamaterial cell. Thus, the thickness of anisotropic

layers that model metamaterials will have thicknesses that are an integer multiple of

the height of one unit cell, and since one unit cell is typically between λ
10

and λ
6

in

each direction (in order to be truly electrically small), we can assume that any value

within this range or an integer multiple of any value within this range is acceptable

as the thickness, d1, of the anisotropic metamaterial layer.

For instance, for the 15.25GHz planar array in Figure 2.5, the only possible

anisotropic layer thickness(es) must be within 1.96mm and 3.3mm, or an integer

multiple thereof. We thus constrain the thickness d1 variable in the optimization

program accordingly. Figure 3.3 illustrates the discretized nature of metamaterial

layers.

3.1.3 Example: Optimization of Phased Array Performance on φ = 0◦ Plane using
a Single Anisotropic Layer

Before delving into the optimization of the planar phased array over multiple az-

imuthal planes, we shall first attempt to optimize the performance of the planar

array at a single plane (φ = 0◦), i.e., minimizing:

80◦∑
θ=0◦

∣∣∣∣YTE11 − Yin(0◦, θ)

YTE11 + Yin(0◦, θ)

∣∣∣∣2 (3.4)

Since the goal of this optimization is not as ambitious as (3.3), we examine the

feasibility of using just one anisotropic material layer with optimized design variables

to achieve the desired wide angle impedance-matched performance on the φ = 0◦
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Figure 3.3: Single layer of metamaterial consisting of SRR particles of thickness
d1 = d◦ in the z-direction. Increments in d1 take the form of an integer multiple of
d◦.

azimuthal plane. By varying the parameters fed into the multi-modal model and

calculating (3.4) at the end of each iteration (see Figure 3.1), fmincon arrives at a set

of design variables that result in the minimum possible value for (3.4). Subsequently,

the Monte-Carlo scheme illustrated in Figure 3.2 repeats the optimization process

and we end up with more than one set of optimum design variables. In Figures 3.4

and 3.5, we show the transmission results obtained when an anisotropic material

layer with parameters εx = εy = 4.8, εz = 0.5, µx = µy = 2.5, µz = 1.3, d = 1.7mm

(Figure 3.4) or with parameters εx = εy = 1.95, εz = 1, µx = µy = 1, µz = 3.78,

d = 4.1mm (Figure 3.5) is placed on the surface of the array surface. The reader

will observe that the anisotropic parameters of the anisotropic layer used to obtain

Figure 3.5 accomplishes the optimization goal by varying only εx = εy, µz and d1
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Figure 3.4: Optimization of phased array at φ = 0◦ plane using anisotropic layer
of parameters: εx = εy = 4.8, εz = 0.5, µx = µy = 2.5, µz = 1.3, d = 1.7mm.

(while keeping εz, µx, and µy fixed at 1), resulting in a design that is conceivably

easier to actualize than that described by the design parameters required for the

anisotropic material of Figure 3.4.

In Figure 3.6 is a plot of active element admittance Yin of the array antenna

in the presence of the anisotropic layer of Figure 3.4 in comparison with the TE11

mode admittance. We have attempted to match the active element admittance Yin

to YTE. In accordance with (3.2) we note that there is good agreement between Yin

and YTE11 within the angular range of θ = 0◦ and θ = 70◦.

Thus we have shown that only one anisotropic material layer is sufficient to obtain

a wide angle impedance matching on one azimuthal plane. In the next sections we

explore the use of a single anisotropic layer configuration to match the array antenna

at all azimuthal planes and elevation scan angles. We subsequently explore the use

of a bi-layer of anisotropic materials to match the array antenna at all azimuthal

planes and elevation scan angles.
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Figure 3.5: Optimization of phased array at φ = 0◦ plane using anisotropic layer
of parameters: εx = εy = 1.95, εz = 1, µx = µy = 1, µz = 3.78, d = 4.1mm.
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Figure 3.6: Comparison of YTE11 with phased array active element admittance Yin

after wide angle impedance matching at φ = 0◦ plane using the anisotropic material
of Figure 3.5.
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3.2 Optimization of Phased Array Performance using Single Anisotropic
Layer

The goal of this section is to examine the extent to which a single anisotropic layer

can be used to match the performance of the phased array. The expression of (3.3),

whose discrete summation is generally as effective but not as time-intensive as its

continuous integral version in (3.1), is the objective function to be minimized. We

perform the same optimization of (3.3) with a single dielectric layer we perform

the same with an anisotropic layer. For the anisotropic layer, fmincon is allowed

to vary the values of the design variables εx, εz, µx, µz between 0.2 and 5, and d1

between 1mm and 5mm (optimum design variables with d1 values within λ
10

and λ
6

or a multiple thereof are considered, all other sets of optimum design variables are

discarded), whereas for the isotropic dielectric εr is allowed to vary from 1 to 10

and d1 from 1mm to 10mm. The range allowed for the isotropic dielectric spans the

range of values of typical WAIM materials. In reality, nature does not provide the

opportunity to design εr from a continuous range.

The results of the optimization for the anisotropic layer and that of the isotropic

dielectric layer are shown in Figure 3.7. We find that a single anisotropic layer with

design variables µx = µy = 1.48, µz = 1.97, εx = εy = 2.34, εz = 0.74, d1 = 3.1mm,

satisfactorily optimizes the performance of the array while for the single dielectric

layer, εr = 2 and d1 = 2mm are the optimum design variables. From an inspection of

the results, we observe that the dielectric layer and the anisotropic layer both provide

high transmission but the performance of the array with the isotropic WAIM drops off

rapidly at θ = 30◦ for the φ = 45◦ and φ = 90◦ planes while the dropoff occurs for the

anisotropic layer at approximately θ = 80◦ for all the azimuthal planes shown. The

array transmission performance in the presence of the anisotropic and isotropic layer

show significant differences: the anisotropic layer provides superior transmission.
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Figure 3.7: (1−|Γ|2) numerical results obtained using anisotropic WAIM material
with optimized parameters εx = εy = 1.95, εz = 1, µx = µy = 1, µz = 1 and
d1 = 4.1mm, compared with results obtained using optimized isotropic material
with parameters εr = 2 and d1 = 2mm. (top) φ = 0◦ (H-Plane) (mid) φ = 45◦

(D-Plane) (bottom) φ = 90◦ (E-Plane)
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3.3 Optimization of Phased Array Performance using two Anisotropic
Layers

Though the array performance in the presence of an optimized anisotropic mate-

rial layer, as discussed in the previous section, provides better impedance match-

ing, we explore the use of a stack of two anisotropic material layers to further im-

prove impedance matching for the phased array. Using the previously discussed

optimization scheme, the optimum design variables are µx = µy = 1.43, µz = 1,

εx = εy = 2.94, εz = 1.19, d = 2mm for the layer directly on the array surface, and

µx = µy = 1.36, µz = 5, εx = εy = 1.4, εz = 0.53, d = 2mm for the top layer. Given

the use of multiple anisotropic layers, the performance of the array, as depicted in

Figure 3.8, results in (1 − |Γ|2) values that are over 98% up to θ = 77◦ for all the

displayed azimuthal planes. It has been previously reported1 that the best results

obtainable using a multilayer stack of dielectric layers encounters a rapid dropoff

in transmission at approximately θ = 60◦. We can conclude that the use multiple

anisotropic layers provides maximal performance at scan angles up to θ = 80◦ at all

azimuthal planes, compared with conventional dielectric layers.

3.4 Utilization of Metamaterials to Implement Anisotropic WAIMs
over Phased Array Antenna

In Chapter 1, we presented applications of metamaterials in which a generated elec-

tric or magnetic response is used to create an artificial permittivity or permeability

to implement functionalities such as negative refraction, cloaking, wave tunneling,

beam steering, and beam focussing. These applications were implemented in an en-

vironment in which the polarization of the introduced electric (or magnetic) field

is controlled. In addition, these experiments were set up such that the impinging

1 For non-disclosure and intellectual property reasons, our commercial collaborator, Boeing Re-
search and Technology, was not able to provide us with quantitative data to back up this claim of
theirs.

70



0 10 20 30 40 50 60 70 80 90
50

60

70

80

90

100

1 
− 

| Γ
 | 2

 (%
)

Scan Angle, θ (degrees)

Optimized 1 − | Γ | 2 for φ=0o, φ=45o and φ=90o planes.

 

 

φ=0ο

φ=45ο

φ=90ο

Figure 3.8: (1 − |Γ|2) numerical results obtained using two anisotropic WAIM
material with optimized parameters εx = εy = 2.94, εz = 1.19, d = 2mm, µx = µy =
1.43, µz = 1 for the layer directly on the array surface, and µx = µy = 1.36, µz = 5,
εx = εy = 1.4, εz = 0.53, d2 = 2mm for the top layer.

wave consisted primarily of homogeneous plane waves (i.e. the source is sufficiently

far away from the metamaterial) thereby consistent with the parameter retrieval

process2.

The environment of the surface of a planar phased array is different from that

used in the retrieval process, as the array surface harbors inhomogeneous plane wave

modes (higher order spatial harmonics) that may interact differently with metama-

terial structures than predicted by the retrieved anisotropic properties. Since we

aim to demonstrate that a metamaterial layer can nonetheless be used as a valid

anisotropic layer in the WAIM context, we perform fullwave simulations of an ELC

metamaterial placed on a phased array and compare the resulting performance with

the performance predicted using an effective anisotropic model.

2 By introducing a normally incident TEM wave onto a unit metamaterial particle embedded in a
PEC-PMC (or periodic boundary condition, depending on the periodic symmetry of the particles in
the metamaterial) waveguide, the constitutive parameters are retrieved by performing an inversion
on its reflection and transmission coefficients [7].

71



3.4.1 Implementation of Anisotropic WAIM using ELC Metamaterial Layer

Example 1

To further verify the practicality of using an effective medium description to describe

the behavior of resonant structure-based metamaterials over a phased array surface,

we simulate an Electric L-C (ELC resonator) metamaterial layer designed (a detailed

description of ELC resonators can be found in [8]) to have effective medium param-

eters of µr = 1, εx = εy = 2.58, εz = 1, and d = 2.1mm at the array operating

frequency of 15.25 GHz. (Superficially ELC structures may bear resemblance to the

4-legged FSS element [55], but conceptually they work in a different regime: the

4-legged FSS element is used in a manner that puts it more in the bandgap of the

dispersion diagram as opposed to the ELC, which is used at much longer wavelengths

relative to the unit cell size, such that homogenization applies.)

We compare these results with those from a simulation of an equivalently defined

(in HFSS) homogeneous anisotropic material whose permeability and permittivity

parameters are the same as that of the ELC metamaterial layer at 15.25 GHz.

Figure 3.9 shows the topology of the metamaterial WAIM setup simulated in

HFSS (a square unit lattice of 10.5mm inter-element spacing is used here to compu-

tationally accommodate the square-shaped ELCs; all other operating characteristics

are the same as 2.5), and also shows the constitutive parameter retrieval results for

the εx and εy direction of the metamaterial. The retrieved results were derived from

the scattering parameter matrix values using the method outlined in [7]. Though

shaded differently in Figure 3.9, the ELC sheet is immersed in air (no substrate)

and was placed at a distance d1
2

above the aperture; the shaded region in which the

metamaterial layer is immersed has a total thickness, d1, and is used in the parameter

retrieval shown in Figure 3.10. Note that ELCs are not placed directly on the array

surface in order to prevent inhomogeneous plane waves and higher order waveguide
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Figure 3.9: Topology of Phased Array Unit Lattice with ELC-based metamaterial
layer. (a) Unit cell of ELC (b) Phased array unit lattice with ELC metamaterial
WAIM covering; ELC sheet is placed d1

2
away from the array surface and the effective

medium homogenization is performed over d1.

modes from strongly coupling with the ELC structures. We find that at least a 1mm

gap region between the ELC and the array surface creates enough spacing for the

higher order waveguide modes die out.

A comparison of the full-wave simulation of the array topology in Figure 3.9 and

that of an equivalently assigned homogeneous anisotropic material is shown in Fig-

ure 3.11. There is reasonable agreement between the ELC metamaterial simulation

results and the predicted results using the anisotropic model.

Example 2

In this second ELC example, an ELC-based metamaterial layer with parameters

µr = 1, εx = εy = 1.9, εz = 1, and d1 = 2.1mm placed 2.1mm above the array is
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Figure 3.10: Parameter retrieval for ELC metamaterial shown in Figure 3.9
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Figure 3.11: Comparisons of 1−|Γ|2 for metamaterial layer vs equivalent homoge-
neous anisotropic medium material (µr = 1, εx = εy = 2.58, εz = 1, and d1 = 2.1mm)
over array with square lattice.
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Figure 3.12: Phased Array Unit Lattice with ELC-based metamaterial layer (with
air gap over array).

simulated and its results are compared to that of an equivalently assigned homoge-

neous anisotropic material. Figure 3.12 shows the setup and unit cell characteristics

of the ELC layer used herein.

A comparison of the HFSS simulation results for the ELC metamaterial layer

and the equivalently assigned bulk anisotropic material is shown in Figure 3.14.

Note that the ELC array in this example is also made out of PEC and immersed an

air substrate.

Figures 3.11 and 3.14 show agreement between the results obtained from the ELC

WAIM simulations and the equivalent homogeneous anisotropic simulations. These

results suggest that an effective medium model (homogenization of the metamaterial

array) sufficiently describes the behavior of a metamaterial layer over the phased

array.
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Figure 3.13: Parameter retrieval for ELC metamaterial shown in Figure 3.12
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3.5 Bandwidth

Since bandwidth is a critical figure of merit in microwave systems, it is important

to consider the implications of metamaterial WAIMs over the entire bandwidth of

phased array antennas. Depending on the frequency regime the permittivity or

permeabilty of a metamaterial may change rapidly, especially at frequencies close

to the metamaterial particle resonance. For the resonant ELC particles shown in

Figures 3.9 and 3.12, the resonance frequency is located at 34 GHz and 36 GHz

respectively. Due to the large separation of the resonance frequency from the 15.25

GHz antenna operation frequency, we can operate in a less frequency dispersive and

less lossy regime of the metamaterial. For instance, in the narrowband application

explored (15.25 GHz ±500 MHz), the permittivity εx = εy varies only from 1.88 to

1.89 for the ELC in Example 1 and from 2.56 to 2.59 for the ELC in Example 2,

thus exhibiting minimal dispersion within the bandwidth of the antenna.

When very large or very small constitutive parameter values are needed in a

metamaterial, it might be necessary to operate closer to the resonance frequency of

the metamaterial, where high losses and strong frequency dispersion will be incurred.

Based on these considerations, it is important to optimize the WAIM parameters such

that the anisotropic constitutive parameters needed are not very high, not near zero,

and not negative.

3.6 Experimental Characterization of Phased Array Antenna with
Metamaterial WAIM Layer

Although we have demonstrated the use of simple metamaterial layer(s) to implement

anisotropic WAIMs in simulation, we have yet to demonstrate this functionality in

experiment. The motivation behind this section is to examine whether the radiation

characteristics of a metamaterial-covered phased array antenna can be adequately
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described if the metamaterial layer is replaced with its effective medium model. To

this end, we present experimental results that show the radiation characteristics

of a phased array antenna in the presence of a simple array of Electric-Inductive-

Capacitive (ELC) resonators; we then compare the obtained experimental results

with results obtained from numerical simulations wherein the ELC resonator meta-

material layer has been replaced with its anisotropic effective medium model. Being

able to treat a metamaterial WAIM as an effective medium material would enable

the engineer to systematize the design of the matched PA thus making it practical

to design desired anisotropic WAIMs using metamaterials.

3.6.1 Full-Wave Simulation of 64-element Array

The use of the multi-modal model method described in detail in Chapter 2 is straight-

forward for infinite or very large arrays [44], for arrays smaller than 1000 elements

however, more complicated analyses need to be done. It would have been consid-

erably easier to perform our experiments on a very large array but due to the high

cost of manufacturing these commercial devices (Very large phased array antennas

of the kind in Figure 2.2 are known to cost in the hundreds of thousands of dollars),

our research group was not able to gain access to one. As an alternative, we were

provided access to a 64-element array with the general element topology of Figure

3.15. We adapt this antenna to our objective by using a full-wave simulator to simu-

late the setup depicted in Figures 3.15a & 3.15b. We utilize CST Microwave Studio

for the simulation because finite-difference-time-domain (FDTD) solvers are more

amenable to electrically large computational domains than finite-element-method

(FEM) solvers. (In the previous sections, we used FEM-based HFSS to solve the

infinite array problem by solving one unit lattice with periodic boundaries; here we

shall use CST to simulate a sixty-four element planar phased array so that we can

appropriately capture the edge effects that come with finite arrays).
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Figure 3.15: CST Microwave Studio simulation setup of (a) 64-element phased
array (b) 64-element phased array covered with effective medium model of meta-
material WAIM. (c) Top view of unit lattice; center circular waveguide element is
loaded with a εr = 2.54 dielectric plug and is fed with an x̂-polarized TE11 mode.
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The CST model in Figure 3.15 was created by subtracting sixty-four cylindrical

regions out of a rectangular conducting block of thickness at least λg of the prop-

agating TE11 mode. The appropriate steering phasing conditions are ensured by

incrementally setting the phase difference to be 2π
λ
dx sin θ cosφ and 2π

λ
dy sin θ cosφ

between the respective waveguide antenna elements along the x̂ and ŷ directions re-

spectively; dx and dy are the lattice constants in the x̂ and ŷ directions. Depicted in

the unit lattice diagram of Figure 3.15c, dx = 2× 0.208” and dy = 2× 0.24”.

The impact of the metamaterial WAIM was investigated by performing two sets

of numerical simulations. The first set of simulations determined the power trans-

mission profile of the array over a range of scan angles, in the absence of a WAIM

covering (Figure 3.15a). The configuration for the second set of simulations was

identical to the first, but included a layer of continuous material with constitutive

parameters µx = µy = 0.9, µz = 1, εx = εy = 2.3, εz = 1, d = 2.1mm (Figure 3.15b).

This anisotropic material layer represents the homogenized parameters at 14.25 GHz

of the metamaterial WAIM of the unit cell structure shown in Figure 3.16.

Depicted in Figure 3.17 is the radiation profile for seventeen scan conditions –

from 0◦ to 85◦ in five-degree increments – along the φ = 90◦ azimuthal plane (the

plane that slices down the middle of the array along the ŷ-direction). Note that due

to the relatively low number of waveguide antenna elements, at large scan angles

there is a noticeable disparity between the location of the peak of the main lobe

and the intended scan angle. For instance, when the scan angle is 10◦, the main

lobe points at 10◦, but when the scan angle is 70◦ the main lobe is centered at 63◦.

We also note that data for the power radiated in the presence of the anisotropic

WAIM model has been normalized to the power radiated at broadside without any

WAIM covering. The same amount of power is fed into the antenna array for all

scan angles and configurations, and the received power is plotted as a function of

scan angle. Figure 3.17 shows that the introduction of the homogeneous anisotropic
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Figure 3.16: Metamaterial WAIM unit cell with effective medium properties µx =
µy = 0.9, µz = 1, εx = εy = 2.3, εz = 1, d = 2.1mm at the 14.25 GHz array operating
frequency (a parameter retrieval was performed using the method outlined in [7]).
The effective medium homogenization is performed assuming the above metamaterial
particle is centered within a 2.1mm cubic region of air.

layer enables a higher power transmission the beam is steered away from θ = 0◦.

3.6.2 Experimental Measurements

To validate simulation results, we conducted two sets of experiments on a phased

array of a similar topology as the simulated model. The first set of measurements

were without a WAIM covering, and in the second set of measurements was with

metamaterial layer of the particle displayed in Figure 3.16. Figure 3.18 shows a

photograph of the fabricated metamaterial WAIM layer (approximately equivalent

to the simulated, homogenous, anisotropic material), and the experimental phased

array with and without the metamaterial WAIM covering. We note that the 64-

element phased array used in the experiment is placed within an electrically large

aluminum casing that we do not simulate due to computational limitations owing to

its large dimension.

The measurements were done in a compact antenna range, with the array antenna
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Figure 3.17: Numerical simulation results of power transmitted into the far field
of 64-element array.

rotated around a stationary x̂-polarized horn antenna to receive the radiated power.

(All the power radiated in the far-field is contained in the x-polarization of the E-

field, because of the strictly x̂-polarized feed.) We note that the input power is fixed

for all scan conditions and configurations. (The antenna is scanned in increments of

5◦, from 0◦ to 85◦) Depicted in Figure 3.19, we observe that the received power is

enhanced by the presence of the metamaterial layer over the phased array.

3.6.3 Discussion and Comparison of Full-Wave and Experimental Results

In both Figures 3.17 and 3.19, we observe that the radiation performance is superior

when the metamaterial WAIM or its effective medium model is placed over the sur-

face of the phased array. Notwithstanding the differences between the experimental

environment and simulation model, these figures show that the metamaterial sheet

(of Figure 3.18) is qualitatively consistent with its approximate homogenized model

(used in the CST setup of Figure 3.15b) in facilitating improved impedance matching
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Figure 3.18: (a) Fabricated metamaterial WAIM sheet (b) 64-element array an-
tenna without covering. (c) Same antenna, with metamaterial sheet placed over a
1mm-thick foam (foam has approximately the same properties as air).
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Figure 3.19: Experimental measurement results of power received in the far field
for seventeen scanning conditions, with and without an ELC metamaterial layer of
homogenized parameters: µx = µy = 0.9, µz = 1, εx = εy = 2.3, εz = 1, d = 2.1mm.
(Each distinct concave-down graph represents a unique scanning condition.) The
experimental setup is depicted in Figure 3.18.

for the phased array antenna over a broad range of angles.

Figure 3.20 depicts the increase in beam peak power for each scanning condi-

tion due to the placement – over the array surface – of the ELC metamaterial sheet

(experiment) or its anisotropic model (simulation). The results show that the meta-

material WAIM (experiment) improves the magnitude of the radiated power as a

function of scan. The effect was also seen in the full-wave simulation of the effective

medium model. This suggests that the effective medium model of the metamaterial,

obtained using standard retrieval procedures, provides a qualitative description of

the metamaterial WAIM placed over a planar phased array antenna. We attribute

the differences between the simulation and experimental results to the larger alu-

minum casing, and to the possibly reduced accuracy of the homogenized anisotropic

model as the scan angle is steered away from broadside; this is not of primary concern
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Figure 3.20: Increase in beam peak power due to placement of metamate-
rial WAIM sheet (experiment) or its anisotropic homogenized effective medium
model(simulation) over planar phased array surface; horizontal axis represents the
intended scan angle of phasing condition.

here however as experimental data corroborates the improved impedance matching

simulated.

A further issue to consider is the influence of the metamaterial WAIM on array

power measures such as directivity, bandwidth, sidelobe level, and far-field radiation

pattern. To ascertain some of these power measures, we provide, in Figure 3.23, a full

plot of the far field pattern at θ = 45◦ with and without the metamaterial WAIM.

A visual inspection of the far-field profile at this scan angle with and without the

metamaterial layer reveals a similar directivity, sidelobe level, and overall radiation

pattern, thereby suggesting that WAIMs made up of metamaterials may be employed

as impedance matching materials without degrading these antenna power measures.

The power profile for other scanning conditions are consistent with Figure 3.23.

Finally, we note that the use of metamaterial WAIMs is particularly suitable

for inherently narrowband phased array applications because metamaterials are in-
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Figure 3.21: Experimentally measured far-field beam profile at 0◦ scan angle, with
and without metamaterial Layer

trinsically narrowband when operated near resonance, but can be broadband when

operated away from resonance or with broadband structures [?].

3.7 Challenges associated with Implementing Single or Bi-Layer Anisotropic
WAIM Layer(s) using Metamaterials

With any new technology, there are a set of challenges that need to be completely

understood and overcome. For metamaterials, one of these is the use of the effective

medium model to constitutively describe metamaterial WAIMs: because homoge-

nized effective medium parameters are obtained by inverting the scattering response

of a metamaterial to a normally incident TEM wave, the effective medium parameters

may not be accurate anymore when the metamaterial is illuminated obliquely with

arbitrarily polarized waves. The reduced accuracy of the effective medium model

for off-normal incidence and mixed-polarization waves may result in an inaccurate

prediction of power transmission ratio as the scan angle θ is steered from broadside
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Figure 3.22: Experimentally measured far-field beam profile at 45◦ scan angle,
with and without metamaterial Layer
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Figure 3.23: Experimentally measured far-field beam profile at 80◦ scan angle,
with and without metamaterial Layer
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to larger angles. This problem may be remedied by coming up with a paradigm – in

place of the effective medium model – that describes metamaterials by accounting

for all possible wave interactions. An approach of this nature would also enable the

metamaterial to be placed directly over the array surface without having to use an

intervening air gap (foam) layer.

When two layers of metamaterial WAIM layers are used to implement a bi-layer

of anisotropic materials, each layer needs to be carefully designed because coupling

between the metamaterial particles in the top and bottom layers could change such

that the product of the transfer matrix of the separate layers would be different

from the realized transfer matrix of the layers when stacked together. An approach

to effectively describe the combination of both layers is to push the effect of the

coupling into one of the layers. This can be implemented by dividing the realized

transfer matrix of both layers by the separate transfer matrix of one of the layers;

the resulting quotient contains the interlayer coupling and becomes the new transfer

matrix of the second layer. From this new transfer matrix, the effective medium

parameters of the second layer can be recalculated.

Cross-coupling between adjoining metamaterial layers can be remediated by us-

ing intervening dielectric layers to separate the metamaterial layers, or by utilizing

metamaterial particles that are less prone to coupling outside of their unit cell. An-

other approach might be to use a paradigm that accounts for all possible interactions

to describe the interaction between metamaterial layers. From a systematic design

standpoint, this approach is difficult to implement because it will involve performing

electromagnetic field interaction analysis on metamaterial layer combinations for all

possible field configurations, thus slowing down the design process.
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3.8 Future Work

We have suggested the use of anisotropic layers, implementable using metamaterials,

to achieve wide angle impedance matching for phased array antennas. In order to

successfully achieve wide angle impedance matching via this method, it is essential

to be able to reliably design metamaterial layers with at least four degrees of freedom

(uniaxial µ, uniaxial ε, variable thickness). For a reliable and predictable design to be

achieved, further work will need to be done so as to develop metamaterial structures

with minimized loss, cross-coupling and bi-anisotropic effects [56]. Additionally, it

is important to utilize metamaterial structures that can be feasibly and realizably

fabricated.

3.9 Conclusion

In this chapter, we have shown both computationally and experimentally that anisotropic

materials, implementable using metamaterials, can be used as wide angle impedance

matching layers for phased array antennas. In order to demonstrate this capability,

we developed a MATLAB code to characterize the array performance in the pres-

ence of anisotropic layers, and then utilized a Monte-Carlo optimization scheme to

prescribe optimal anisotropic material parameters that enable strong transmission

from elevation angles from θ = 0◦ to 80◦ for all azimuthal planes.

To implement anisotropic WAIMs from metamaterials, we performed simulations

and experiments using a metamaterial layer made up of electric-inductive-capacitive

particles which are primarily electrically resonant. Simulation results of both the

ELC metamaterial WAIM and its homogenous anisotropic equivalent lead to similar

results. Similarly, we were also able to show, using experimental measurements on a

64-element phased array, that the anisotropic description approximately describes the

transmission performance of a phased array in the presence of an ELC metamaterial
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WAIM. In our experiment, the ELC metamaterial WAIM layer engenders a phased

array transmission behavior that is qualitatively similar to the prediction based on

an anisotropic description of the metamaterial.

We also discussed some of the future work that would need to be done in order

to be able to systematically design, fully understand, and ensure the performance

of metamaterial WAIMs over phased arrays. In particular, we examined the role

of coupling between higher order waveguide modes and metamaterial particles, and

we also discussed cross-coupling between adjoining metamaterial layers in a multi-

layer metamaterial stack. We highlighted that these issues can be circumvented by

placing a foam layer (or an intervening dielectric layer) between the array surface and

metamaterial, and also doing the same to separate adjoining metamaterial layers. A

direct way to take cross-coupling and bianisotropic effects into account would be

through a paradigm that takes into account all possible wave interactions with the

metamaterial layer. The effective medium method, which has been shown in the

literature to be accurate for homogeneous plane wave configurations, estimates the

constitutive parameters of a metamaterial by inverting its scattering response to

normally incident plane waves; the accuracy of this method reduces when off-normal

waves with different polarizations are introduced onto the metamaterial.

Although the aforementioned factors need to be taken into account during the

metamaterial WAIM implementation process, this work contributes to the founda-

tional work needed to characterize arrays matched with anisotropic materials, and

presents numerical data that validates the prospects of using metamaterials to achieve

anisotropic WAIMs. We showed that it is possible to use a single anisotropic layer

to implement a WAIM that is comprehensively matched (see Figure 3.7).

In summary, we have shown, using a simple metamaterial layer, that it is feasible

to use metamaterials as anisotropic WAIMs in phased array applications without

jeopardizing other array performance metrics. Since metamaterials provide the flex-
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ibility to engineer constitutive parameters in several directions, their use in phased

array applications may prove useful in obtaining impedance matched array antennas.
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4

Design and Numerical Analysis of Metamaterial
Composite for Radome Applications

In the previous chapters we discussed the use of metamaterials as wide-angle impedance

matching layers on planar phased array antennas. In this chapter, we shall analyze

the use of metamaterial inclusions to create materials that may be used as radome

materials. An electromagnetic radome is a covering to protect an antenna from po-

tentially detrimental elements such as wind perturbations, aerodynamic drag, and so

forth. Radome are typically made from dielectric materials. In order to not disrupt

radiated fields from and to the enclosed antenna, a radome, ideally, should be made

from a fully transparent and non-refractive material. Radomes and other structures

that enclose radiating systems are designed for their mechanical integrity, and they

are typically made from ceramics or composites that have inherently high dielec-

tric values. Due to differences in curvature between the inner and outer surfaces of

radomes, refraction in radome materials introduces deflections to exiting local plane

waves. Boresight error [40] [41] is a quantitative measure of such deflections. As

illustrated in Figure 4.1, boresight error can be expressed as,
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Figure 4.1: Illustration of bore sight error. (a) Refraction in rectangular slab,
exiting angle equals incident angle because entry and exit surfaces are parallel (b)
Refraction in prism, exit angle not equal incident angle because entry surface is not
parallel to exit surface

θBSE = θout − θinc (4.1)

A radome is non-refractive when its index is matched to air (nradome=nair) and

is fully transparent when impedance-matched to air (Zradome=Zair). To exhibit both

characteristics, the radome material would need to be impedance-matched and index-

matched to free space for all angles of TE and TM-polarized local plane wave inci-

dence. From an electromagnetic standpoint, the solution to this problem is trivial:

make the radome out of air. Since such a solution precludes the presence of an actual

radome, a more practical solution is necessary.

Previously, we discussed the use of a planar electric inductive-capacitive (ELC)

resonator to artificially engineer permittivity. The ELC creates an anisotropic electric

excitation as a strong electric response is only excited in the direction perpendicular

the capacitive gap. The goal of is this chapter is to discuss the creation of a radome

material that exhibits the electromagnetic properties of air in all directions. Our

strategy is to create such a composite material by embedding an isotropic electric

resonator particle into a host dielectric such that the presence of the isotropic electric

resonator depresses the refractive index of the composite to unity at a frequency
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of interest. A metamaterial with the electromagnetic properties of air would be

maximally transmissive and minimally refractive. For this purpose we design a three-

dimensionally resonant ELC particle which we refer to as the 3D-ELC. This chapter

examines with the design and numerical analysis of the 3D-ELC resonator composite,

and Chapter 5 presents an experimental analysis of the fabricated metamaterial

composite.

The 3D-ELC repeated unit cell consists of two ELC elements that when put to-

gether may be used to generate responding electric dipole moments in the x̂, ŷ, and ẑ

directions. When embedded inside a host material whose permittivity is significantly

greater than unity, the repeated 3D-ELC metamaterial can be used to depress the

effective dielectric constant of the resulting composite material to a near-unity value

in all Cartesian directions. The concept of designing a unity-index metamaterial –

with the properties of free space – may prove useful in creating mechanically durable

materials for use as radomes or other enclosures for radiating structures.

4.1 Introduction

Electromagnetic metamaterials have attracted significant research interest because

they can be used to form structures with electromagnetic or optical properties not

readily available in conventional materials. Metamaterials are composed of a collec-

tion of sub-wavelength inclusions, whose composite electromagnetic properties may

be accurately described by continuous, bulk constitutive parameters, such as the

electric permittivity or magnetic permeability [15] [14].

Over the past several years many applications of metamaterials have been pro-

posed [24] [57]. What these applications have in common is the need to engineer

independent constitutive responses of the metamaterial in multiple Cartesian direc-

tions. A metamaterial whose constitutive response can be easily adjusted in all three

Cartesian directions would provide additional control as well as further expand the
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range of applications in which the metamaterials can be useful. Both isotropic meta-

materials, as well as metamaterials with controlled anisotropy are of interest, since

both can usefully manage the polarization and other properties of electromagnetic

waves. Likewise, metamaterials in which the constitutive properties are controlled

spatially [30] have found enormous potential application when coupled with the emer-

gent design technique of transformation optics [31].

The concept of creating a metamaterial element excitable in multiple directions

has been explored for certain structures [58] [59]. The ideal goal here is the design

of an isotropic electric metamaterial composite, whose constitutive parameters are

equivalent to those of free space over some range of frequencies. The particular design

herein is based on the combination of multiple electric-LC resonators, or ELCs, which

provide an adjustable electric response in all directions. The ELC, introduced by

Schurig et al. [8], is a metamaterial element that exhibits a resonant electric dipolar

response to applied electromagnetic fields. Although the resonant nature of the

ELC implies bandwidth limitations ultimately on the constitutive properties of the

composite, there should be nevertheless a small range of frequencies where the overall

index and impedance (normalized to Zair) of the dielectric host plus ELC inclusions

can be made equal to unity. This design has practical implications, since radomes

and other structures that enclose radiating systems are designed for their mechanical

integrity, and typically make use of ceramics or composites that have inherently high

dielectric values [40]. For such radome applications, a tradeoff usually has to be

made between the mechanical properties and the electromagnetic properties. By

contrast, the use of 3D-ELC inclusions to modify the electromagnetic properties of an

enclosure can reduce the aberrations or other detrimental scattering associated with

the radome, and may even be useful for adding specified electromagnetic functionality

to the overall system.

To illustrate the utility of the 3D-ELC, we consider a composite metamaterial
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formed by embedding the 3D-ELCs into a dielectric host material whose dielectric

constant is significantly greater than unity. By engineering the parameters of the

3D-ELC, we seek to find a frequency range over which the composite is strongly

transmissive and weakly refractive over a wide range of incident angles and polariza-

tions. Conceptually, the 3D-ELC inclusions depress the effective permittivity from

that of the host material to close to εr=1 in the x̂, ŷ and ẑ directions. Compari-

son materials that possess similar electromagnetic properties are foams or aerogels,

which are not useful as structural components. While in some cases it is possible to

design the thickness of a radome to make use of constructive interference to achieve

good transmission, the large dielectric value still causes refraction at the interfaces

and can still introduce aberrations and distortion into the communications channel.

Nevertheless, we provide comparisons of the simulated performance of the 3D-ELC

composite with the simulated performance of a dielectric optimized for Fabry-Perot

resonance to show that similar transmission performance can be achieved in the two

structures for both polarizations and a broad range of incident angles.

4.2 3D Implementation of ELC

4.2.1 ELC Overview

The ELC is an electrically coupled resonator composed of a capacitive region flanked

by a pair of symmetric inductive loops. The constitutive response of the ELC is

purely electric, since the currents flowing in the inductive loops have opposite sense

and the induced magnetic fields in each section are opposed. Figure 4.2a depicts the

described ELC structure, while Figure 4.2b shows a variant that has two gaps on the

exterior of the ELC. The dual gap ELC design typically couples more strongly to the

applied electric field. Though a magnetic resonance is allowed in this structure (there

is a capacitive/inductive path around the circumference of the ELC), the magnetic

resonance occurs at a higher frequency and contributes little response near the lower

96



(a) (b)

Figure 4.2: (a) ELC proposed by Schurig [8] and (b) Electrically similar configu-
ration. The outer loops of both structures carry currents in opposite directions thus
harboring no net magnetic moment.

electric resonance. The 3D-ELC, discussed in the next subsection, is inspired by the

ELC structure of Figure 4.2b .

4.2.2 3D-ELC

Although there is wide flexibility in designing a 3D version of the ELC, we have

in mind the production of a relatively thin sheet of composite material that is ulti-

mately compatible with commercial fabrication. A particular convenient fabrication

approach based on multilayer circuit board techniques was introduced by Starr et

al. [60], who demonstrated a negative index composite based on in-plane lithograph-

ically patterned wires with out-of-plane split ring resonators (SRRs) utilizing vias.

Though we present only simulation results here, the design of our ELC is strongly

motivated by the potential for realization by these commercially available circuit

board methods.

The three-dimensional implementation of the 3D-ELC in Figure 4.3a is made

up of two structures: a planar isotropic ELC structure and a larger four-legged 3D

structure whose center wire is connected to four symmetrical loops, each with a

capacitive gap breaking the loop.

The vertical four-legged structure in Figure 4.3b is a superposition of two or-

thogonal ELCs that both have four-fold rotational symmetry in the x-y plane. This

97



+
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=

Figure 4.3: Three-dimensional ELC and its constituent particles. (a) Three dimen-
sionalized ELC, excitable by an electric field polarized in any and all directions (b)
Vertical 4-legged inclusion, primarily excitable by Ez. (c) Planar inclusion (similar
to structure in [9]), excitable by Ex, Ey, or a combination of both.

symmetry implies the response of the element will be the same when illuminated

by waves traveling from x̂ or ŷ. The fundamental mode of this structure couples

strongly to an E-field along ẑ, but negligibly to a magnetic field piercing the loops.

The planar ELC structure in Figure 4.3c is a two-dimensionalized version of the

planar ELC in Figure 4.2b such that an electric excitation is possible in two direc-

tions, as opposed to just one. Also possessing 90◦ symmetry, the fundamental mode

of the two-dimensionalized planar ELC particle couples strongly to electric fields

with in-plane components (x̂ or ŷ directions). Qualitatively, a wave polarized with

E-field components strictly in the x̂ or ŷ direction would equally primarily excite

only two capacitive gaps, thus inducing current directions shown in Figure 4.4a. An-

other illustrative scenario is if the particle were excited with a wave whose E-field is

polarized equally in the x̂ and ŷ directions (i.e. ~E = x̂ 1√
2
E◦ + ŷ 1√

2
E◦). An E-field

orientation of this nature would excite all four gaps on opposite sides of the structure

(see Figure 4.4b). These two scenarios demonstrate that the structure may be excited

by an electric field polarized with x̂ or ŷ components or a combination. For the most

part, the strength of the electric dipole moment generated in the direction of E-field

polarization for both Figures 4.4a and 4.4b would be similar. For E-field configura-

tions where φ is between 0◦ and 45◦ (or equivalently between 45◦ and 90◦), the total
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Eφ

Figure 4.4: Depiction of first-order approximation of current flow within planar
inclusion given (a) ~E = ŷE◦ (b) ~E = x̂ 1√

2
E◦ + ŷ 1√

2
E◦. Direction of current flow is

an indication of direction of electric dipole moment.

electric dipole moment generated in the direction of E-polarization due to all four

capacitive gaps may vary slightly, thus we may term the planar two-dimensionalized

ELC structure of Figure 4.4 to be approximately isotropic. The particle may be

made anisotropic, making the dimensions of any two diagonal capacitive gap pairs

in the ELC dissimilar from those of the remaining two capacitive gaps.

In order to utilize a combination of the out-of-plane and in-plane ELCs to ob-

tain a desired isotropic response, we first adjust the geometrical parameters of each

inclusion individually (in the absence of the other) to achieve the desired permit-

tivity, and subsequently perform additional refinements in the presence of the other

inclusion. The incorporation of both inclusions into the same unit cell slightly alters

the response curve of either inclusion, due to their mutual coupling. By performing

this analysis and optimizing, we thereafter arrive at an optimized metamaterial de-

sign that we refer to as the 3D-ELC. A combination of the planar and four-legged

structures (which together make up the 3D-ELC) ensures an electric response in the

x̂, ŷ, and ẑ directions, thereby enabling a consistent electric response at several po-

larizations and angles of incidence. In Figure 4.5 is shown a depiction of a 3D-ELC
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Figure 4.5: Constituent unit cell of simulated 3D-ELC. The particle is embedded
into a host material of εr = 3.48.

particle embedded into a material stack that consists two εr = 3.48 dielectric layers

and one middle εr = 3.3 dielectric layer. The dielectric values and thicknesses are

selected to match commercially available circuit board materials. The dimensions of

the embedded 3D-ELC are also consistent with commercial fabrication capabilities,

and result in an effective dielectric permittivity of close to unity along the three

Cartesian directions.

As a means of numerically characterizing the 3D-ELC metamaterial, a metamate-

rial layer composed of an array of the Figure 4.5 unit cells was numerically simulated

for its transmission and reflection properties over a range of incident angles and

TEz/TMz polarizations. We first present the results obtained for normal incidence;

Figure 4.6 shows the reflection and transmission plots and the parameter retrieval

plots over the 9-12 GHz frequency range of interest. At normal incidence, the wave

that propagates along the ẑ direction is polarized TEz. Around 10.6 GHz, εr and µr

are both close to unity (n and Z matched to air), and a pass band is observed in the

S21 of Figure 4.6 at the same frequency.

It should be noted that a TMz-polarized wave propagating along the plane of

incidence would predominantly excite an electric response in the planar inclusion

while a wave of oblique incidence will excite both the planar and four-legged vertical
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Figure 4.6: Parameter retrieval characteristics of the designed 3D-ELC metama-
terial at normal Incidence.

inclusion due to the presence of x̂ and ẑ components in the oblique plane wave. A

TEz polarized wave propagating along the same plane of incidence would primarily

excite an effective electric response in the ẑ direction within the planar inclusion. The

geometrical parameters of the 3D-ELC inclusion shown in Figure 4.5 were adjusted so

that the response of the 3D-ELC metamaterial is uniform in all directions regardless

of angle of incidence when impinged on by a wave propagating along the x̂-ẑ plane.

4.3 Numerical Simulations

4.3.1 Oblique Incidence Simulations of embedded 3D-ELC

Using a technique similar to the waveguide simulator approach, the 3D-ELC meta-

material sheet is analyzed by placing a number of its unit cells into a PEC-PMC
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waveguide wherein multiple TEm0 or TMm0 waveguide modes are simultaneously

excited [61]. Because the field distribution of these waveguide modes is similar in

form to a superposition of two plane waves propagating in the −x̂ and +x̂ direction

(see Figure 4.7), the reflection and transmission properties for a set of angles and

frequencies can be obtained by performing simulations on several PEC-PMC waveg-

uide widths, where each variation of the waveguide width is an integer multiple of

the 3D-ELC metamaterial unit cells. For each excited TEm0 mode, the field at the

ports of the PEC-PMC waveguide takes the form:

~E = 2ŷ cos(kxx)e−jkzz (4.2)

~H =
2

ωµ
[−x̂kz cos(kxx) + ẑjkxx sin(kxx)]e−jkzz (4.3)

The cos(kxx) term decomposed to e−jkxx + ejkxx represents two superimposed

propagating plane waves, where kx for a width a of the PEC-PMC waveguide corre-

sponds to Equation 4.4 which shows the relationship between the waveguide width,

mode order, and angle of incidence of the superimposed plane waves.

kx =
mπ

a
=
ω sin θ

c
(4.4)

More details on the oblique incidence simulation method used can be found in [61].

Because the 3D-ELCs are resonant, the metamaterial sheet is inherently nar-

rowband. The geometrical parameters of the 3D-ELC metamaterial are engineered

such that the effective permittivity of the metamaterial medium is depressed from

around εr = 3.4 (the host dielectric) to εr = 1 at the 10.7 GHz frequency of interest.

For the parameters chosen, the 3D-ELCs have a resonance frequency at 10.3 GHz,

so that we expect the region where the composite is matched to occur at slightly
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PEC (top and bottom boundaries, +y, -y)
PMC (left and right boundaries, +x, -x)
Ports (front and back, +z, -z)

y

x

z

Figure 4.7: Representative PEC-PMC waveguide configuration for oblique inci-
dence plane wave simulation. Setup shows ten 3D ELC unit cells, similar simula-
tions are performed for 11, 14, 17, 18, 19, 20, 21 and 22 3D ELC cells, and six higher
order TEm0 modes are excited for TE plane wave simulation. For TM simulations,
the PEC and PMC boundary assignments are interchanged, and TMm0 modes are
excited instead.

higher frequencies. Indeed, observation of the transmission and reflection properties

between 9-12 GHz reveals a pass band at 10.7 GHz where we expect the structure

to be matched.

To obtain a sufficient amount of angular data from 9-12 GHz for TE polarization,

we perform simulations (using Ansoft HFSSTM) of several PEC-PMC waveguides

with widths corresponding to 10, 11, 14, 17, 18, 19, 20, 21 and 22 3D-ELC cells.

Six higher order TEm0 waveguide modes are excited for each waveguide simulation.

Figure 4.7 shows a configuration of the unit cells within a simulated PEC-PMC

waveguide, the depicted configuration containing ten unit cells. A similar set of sim-

ulations are performed in order to obtain numerical data for TM-polarized incidence,

in which case the assignment of the PEC and PMC boundaries would interchanged

so that TMm0 modes are excited instead. The obtained S11 and S21 of the discussed

higher order waveguide mode simulations were organized and interpolated to produce

the transmission and reflection plots shown in Figure 4.8.
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Figure 4.8: Simulated S11 and S21 for TEz and TMz incidence on material made
up of the 3D-ELC unit cell configuration shown in Figure 4.5.

4.3.2 Comparison of 3D-ELC Metamaterial with Dielectric Optimized for Fabry-
Perot Resonance at 10.7 GHz

The reflection and transmission performance of the 3D-ELC metamaterial whose unit

element is shown in Figure 4.5 was compared with the performance of an optimized

εr = 3.4, d = 7.6mm dielectric designed to be strongly transmissive at its 10.7 GHz

Fabry-Perot resonance. A εr = 3.4 material is selected because of its dielectric simi-

larity to the 3D-ELC metamaterial host dielectrics. Radome materials are typically

designed to have a thickness that enable a Fabry-Perot resonance at a frequency of
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Figure 4.9: Oblique incidence S11 and S21 performance of a εr = 3.4 (tan δ = 0.02)
material designed to be strongly transmissive at its 10.7 GHz Fabry-Perot resonance.

interest and incident angle (transmission performance may degrade at other angles of

incidence). The performance of the aforementioned Fabry-Perot dielectric material

– our idealized (non-metamaterial) radome material – is shown in Figure 4.9.

The design of the 3D-ELC metamaterial enables strong transmissive and index-

matching features that are for the most part retained as a function of angle of illumi-

nation, irrespective of the polarization. This provides the advantage of reducing bore-

sight error, a refractive error that occurs due to the conformal and index-mismatched

nature of radomes. Boresight error is a measure of the beam deflection that occurs
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when the interface at which an electromagnetic beam enters a material is not parallel

to the plane of the interface at which the same beam exits the material. The simplest

illustration of boresight error is the deflection introduced to local plane waves exiting

a triangular prism after having been illuminated with normally incident plane waves

at an opposite boundary interface not parallel to the interface of the exiting plane

waves.

Table 4.1: S11 and S21 at 10.7 GHz, TE Polarization

FABRY-PEROT 3D-ELC

Angle S11 (dB) S21 (dB) S11 (dB) S21 (dB)

0◦ -34.1 -0.32 -24.0 -0.57
10◦ -33.2 -0.32 -19.9 -0.56
20◦ -27.5 -0.34 -20.0 -0.59
30◦ -20.9 -0.38 -18.5 -0.64
40◦ -15.4 -0.49 -17.3 -0.73
50◦ -10.9 -0.78 -15.2 -0.89
60◦ -7.0 -1.48 -13.9 -1.15
70◦ -3.6 -3.10 -10.8 -1.73

Table 4.2: S11 and S21 at 10.7 GHz, TM Polarization

FABRY-PEROT 3D-ELC

Angle S11 (dB) S21 (dB) S11 (dB) S21 (dB)

0◦ -34.1 -0.32 -24.0 -0.57
10◦ -35.6 -0.32 -22.9 -0.54
20◦ -28.9 -0.32 -25.6 -0.52
30◦ -24.2 -0.33 -22.8 -0.53
40◦ -21.9 -0.34 -17.6 -0.56
50◦ -22.8 -0.33 -12.8 -0.68
60◦ -36.3 -0.31 -8.2 -1.18
70◦ -17.9 -0.41 -4.6 -2.39

Tables 4.1 and 4.2 show at 10.7 GHz a tabulation of the transmission and re-

flection off of the 3D-ELC metamaterial (Figure 4.8) and the Fabry-Perot dielectric

(Figure 4.9). At 10.7 GHz, the table shows similarities between the transmission and

reflection performance of the metamaterial and the Fabry-Perot dielectric. For both
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polarizations, the S11 for the 3D-ELC metamaterial is less than -10 dB at the angles

shown except at 60◦ TM and 70◦ TM. The Fabry-Perot dielectric shows less than

-10 dB for all TE angles as well except for 60◦ TE and 70◦ TE. The case is similar

for S21 as both materials have similar transmissive properties overall.

These results suggest that embedded inclusions inside a host dielectric may be

used to create strong transmission over a range of angles and polarizations by en-

gineering its permittivity and index to be near-unity along the main cartesian di-

rections. As shown for the 3D-ELC metamaterial in Tables I and II, this approach

provides transmissive properties comparable to counterpart radome materials, and

introduces the added advantage of reducing refraction-induced boresight errors.

4.4 Conclusion

In this chapter we have explored the general concept of utilizing embedded three-

dimensionalized ELC metamaterial inclusions to obtain materials with strongly trans-

missive but weakly refractive properties. In the design of, for instance, radome mate-

rials where mechanical viability is often emphasized at the expense of electromagnetic

viability, the use of embedded inclusions to modify electromagnetic imperfections

may prove useful in improving performance without jeopardizing mechanical viabil-

ity. The content of this chapter has been primarily based on numerical simulations

and analysis. The next chapter investigates experimentally the transmission, reflec-

tion, and refractive index characteristics of the metamaterial composite discussed in

this chapter.
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5

Experimental Characterization of Metamaterial
Composite for Radome Applications

In Chapter 4, we analyzed the design of a three-dimensionalized electric resonator

particle termed a three-dimensionalized electric inductive-capacitive (3D-ELC) res-

onator. In this chapter we present angle-resolved transmission and reflection exper-

imental measurements of a composite material composed of 3D-ELC metamaterial

particles embedded inside a host dielectric.

By embedding electrically resonant metamaterial particles inside a host dielec-

tric, the permittivity of the composite material (inclusions + host dielectric) can

be adjusted to desired values of interest. As discussed in the previous chapter, the

isotropic electric resonance of the three-dimensionalized electric inductive-capacitive

(3D-ELC) metamaterial particle is used to depress the permittivity of the meta-

material composite to a value less than the host dielectric, but close to air. The

modification of the permittivity of the composite material may enable the realiza-

tion of a material that is – at a certain frequency or small range of frequencies – both

index-matched and impedance-matched to free space in all directions.
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Radomes are made from a limited range of dielectric materials because mechanical

viability is the chief desired feature. Typically, the thickness of the radome dielectric

is adjusted so that it is perfectly impedance-matched (Fabry-Perot resonance) at a

certain angle of incidence and acceptably matched at other angles. Index matching

is thus traded off for impedance matching thereby resulting in a highly transmissive

radome with boresight error features.

Later in this chapter, it will be shown that transmission and reflection measure-

ments on the fabricated 3D-ELC metamaterial composite of Chapter 4 show that at

a certain frequency the composite responds identically to TM and TE-polarized as

well as to obliquely incident waves. These results, coupled with a parameter retrieval

on normal incidence measurements, suggests that the refractive index of the meta-

material composite is depressed in all directions thereby enabling reduced refractive

errors and strong transmission.

5.1 Introduction

Research in the field of metamaterials has led to several proposed applications in

which electromagnetic properties not achievable with conventional materials are ob-

tained. Metamaterials provide the ability to artificially control permittivity and

permeability in ways previously impossible, thereby loosening the restrictions on

the electromagnetic properties that can be realized. For example, structured ma-

terials have been designed with a wide range of permittivity and permeability val-

ues [19] [13], with anisotropic properties [62] [52] [58], and compelling devices such

as the invisibility cloak have been designed and implemented [24] [5].

We proposed [10] that by embedding metamaterial inclusions into conventional

materials, it is possible to depress the index of the composite to lower values while

maintaining a low reflection coefficient. In this work, we present experimental results

on a metamaterial composite composed of embedded three-dimensionalized electric-
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Figure 5.1: (a) Unit cell of three-dimensionalized ELC; can excite strong electric
dipole moment in x̂, ŷ, and/or ẑ directions. (b) Outer 4-legged inclusion; excites
strong electric dipole moment in ẑ direction. (c) Planar inclusion; excites strong
electric dipole moment in x̂ and/or ŷ direction(s). From [10]

inductive capacitive (3D-ELC) structures designed to excite an electric resonance in

the x̂, ŷ, and ẑ directions for both TM and TE polarizations. The excitation of an

electric response in all directions may enable the use of this particle to depress or

adjust the refractive index of the composite to a more desirable value.

5.2 Embedded 3D-ELC Metamaterial Composite

Previously, the concept of reducing bore sight error by utilizing embedded three-

dimensionalized ELC [8] inclusions to depress the permittivity of a composite mate-

rial was introduced. Using this approach, the strong electric response of the 3D-ELC

structure of Figure 5.1a was used to adjust the permittivity of the composite in all

three directions, thereby reducing refraction and maintaining a strong transmission

coefficient at a certain frequency for TE or TM-polarized waves incident at a wide

range of angles.

Side by side in Figure 5.2 is the simulated unit cell and close-up view of the

fabricated sheet of the metamaterial composite. The sample was fabricated using

the multilayer approach proposed by Starr et al. [60]. The metamaterial composite

was designed to be resonant within the X-band, and was made by embedding 3D-ELC

inclusions into a dielectric composite consisting of Rogers RO4450-dx and RO4350TM
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Figure 5.2: (a) Simulative model of 3D-ELC unit cell embedded into a dielectric
composite. (b) Fabricated 3D-ELC metamaterial composite sheet

material; this multilayer stackup simplifies the manufacturing of the metamaterial

composite. The fabricated board was 1.4mm thick and measured 6×9 in2 in external

dimensions. Each embedded metamaterial unit cell occupies a 4.5×4.5×1.4 mm3

volume.

5.3 Experiment

We performed transmission (S21) and specular reflection (S11) measurements on the

sample using the experimental setup of Figure 5.3. Transmission measurements were

taken for TE and TM-polarized incidence from 0◦ to 60◦ and reflection measurements

were taken from 25◦ to 60◦. The effective permittivity and permeability (in the di-

rection of polarization) of the metamaterial composite can be directly calculated

from normal incidence measurements [7]. It is much more complicated to perform

meaningful parameter retrievals for transmission and reflection measurements at off-

angles, therefore, to estimate the isotropic characteristic of the 3D-ELC, we com-

pare the off-angle transmission and reflection measurements to the normal-incidence

transmission and reflection measurements. Since the aim of using the 3D-ELC is

to excite an electric resonance in all directions, we expect the transmission and re-
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Figure 5.3: Experimental setup of oblique incidence transmission and specular
reflection measurements. For TE-polarized incidence, the electric field is strictly ŷ-
polarized for all angles of incidence, while for TM-polarized incidence, the magnetic
field is strictly ŷ-polarized. (From [11])

flection measurements at off-angles to possess an equally strong resonance at the

same frequency. An equally strong resonance at the same frequency implies that the

electric response may be employed to depress the permittivity to local plane waves

incident from oblique angles as well as from the normal. The off-angle transmission

and reflection results are discussed in detail in Section 5.4.

As shown in the experimental setup depicted in Figure 5.3, two dielectric lens

horn antennas each positioned a focal length from the sample were used to take

transmission and reflection measurements. For transmission measurements, the an-

tennas were placed within the same line of sight, and the sample was placed halfway

between the beam path. For reflection measurements, the both horns were placed at

specular angles away from the board. The lens horn antennas, each with a 2.5-inch

wide FWHM focal spot one foot away from the horn aperture, were connected to

an Agilent N5230A network analyzer, and were mounted on rotatable rails which
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phase (bottom) Constitutive parameter retrieval.
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allowed for a rotation of the antennas around the fixed sample. For every rotation of

the horns, the network analyzer was calibrated to remove any decalibration that may

have been introduced to the system. The frequency range of interest was between

8-12GHz.

In order to be able to perform parameter retrievals we found it important to ac-

quire very accurate phase information from measurements. We found that reflection

measurements are more prone to phase errors. Reflection measurements were taken

after calibrating the reflection setup with an aluminum sheet of roughly the same di-

mensions as the metamaterial composite sheet. The aluminum sheet is then replaced

with the sample. In order to obtain accurate phase information, it was important for

the location of the surface of the calibrating aluminum sheet be the same as the loca-

tion of the surface of the introduced metamaterial sample. At 10GHz, for instance,

a 2mm shift in the location of the metamaterial sample surface introduces a 48◦

phase error into the reflection measurements. (A 2mm shift in the surface location

introduces a 4mm roundtrip path length to the measured results, which impresses

an errorneous ± 2mm
λ10GHz

·360◦ phase onto S11.) Such a large error significantly reduces

the accuracy of the parameter retrieval. In addition, to correct for the 180◦ phase

introduced by the aluminum calibration sheet, we multiply the obtained reflection

results by ej180◦ . A sturdy frame was designed to hold the sample such that the

plane of the surface of metamaterial composite would be at the appropriate location

during each reflection and transmission measurement.

For transmission measurements at each incidence angle, the transmission setup

was first calibrated without the sample in the path of the horn antennas. This

calibration scheme normalizes out the path loss and path length between the horn

antennas from the transmission data. Furthermore, because the transmission mea-

surement ought to be referenced to the front and back surface of the sample, we

multiply the transmission results by ejk◦d to remove the phase due to the region
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of free space occupied by the sample. The sample thickness is d. For both reflec-

tion and transmission measurements, we were able to reduce the VSWR between the

measurement horns by covering the surface of the both horn lens with foam dampers.

5.4 Results and Discussion

In Figure 5.4 we present transmission and reflection measurements taken at normal

incidence, and compare these with simulation results. (Due to limitations in our

apparatus we can only take reflection measurements from 25◦ to 60◦, but not at

normal incidence; the normal incidence reflection simulation results in Figure 5.4 are

directly compared with 25◦ incidence angle measurements.) The displayed simulation

results, as discussed in the previous paper [10], were simulated using Ansoft HFSSTM

by simulating the 3D-ELC of Figure 5.2 in a PEC-PMC waveguide in which only

normally incident plane waves can propagate.

A comparison of measured and simulated transmission and reflection data shows

very close agreement. We observe that there is a frequency shift in the measured

results, and we owe this to the tolerance of the fabrication process. We also notice

that the fabricated sample has a weaker resonance in the S11 and S21 plots, and in

the retrieved ε and µ plots; this indicates that there more losses in the fabricated

sample than was accounted for in simulation. The frequency at which both ε and µ

intersect is the frequency (outside of resonance) at which there is an index match. If

at the intersection frequency both ε and µ are unity, then the material is simultane-

ously index-matched and impedance matched. For simulation data, the index match

occurs at 10.61GHz, at which ε = µ = 1.35. From experimental data an index match

of ε = µ = 1.43 occurs at 10.45GHz. We must note that the experimental values

are probably lower since we substituted reflection measurements at 25◦ in place of

normal incidence reflection measurements. In the absence of 3D-ELC metamaterial

inclusions, the refractive index of the material of Figure 5.1a is
√

3.48 = 1.87 whereas
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with metamaterial inclusions it is between 1.35 and 1.43. The lower index results

in a material with reduced refraction. Though the original motivation behind the

metamaterial composite was to design a ε = µ = 1 composite, our results at normal

incidence demonstrates that the refractive index and permittivity can be depressed

with the use of inclusions. The measured reflection coefficient of the metamaterial

composite at the index-match frequency (from Figure 5.4) is a low reflection coeffi-

cient of -12.4 dB. This experimentally demonstrates that low reflection and refraction

can be attained with the use of metamaterial inclusions.

The off-angle measurements shown in Figure 5.5 were taken in order to demon-

strate that the 3D-ELC particle excites a similar electric resonance at oblique angles

of incidence. The consistence of these measurements with normal incidence mea-

surements indicates how much the performance of the material changes at off-angles.

The measured data shows a consistently strong electric resonance for both TE and

TM polarized incident waves and at all angles of incidence. At resonance, the re-

flection coefficient is consistently below -10dB for TE and TM polarizations and at

all angles of incidence, except at θ = 60◦ for TE polarization. A low reflection coef-

ficient at the resonance frequency indicates a very strong electric resonance. These

results suggests that the electric field vector continues to excite a strong electric re-

sponse in the metamaterial composite even at other polarizations and at off-angles.

(Regular ELCs do not excite a response for TM-polarized waves [11]). A strong

electric resonance at off-angles suggests that the metamaterial composite has an ef-

fective constitutive response that varies similar to the normal incidence constitutive

response. As exemplified in the normal incidence experimental data, this implies that

the metamaterial composite may be used to depress the effective index of refraction

for TE and TM-polarized waves at oblique angles of local plane wave incidence.
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Figure 5.5: Experimental data of specular reflection and transmission of composite
metamaterial sheet for various angles and TE and TM polarizations.

5.5 Conclusion

In this chapter we have demonstrated the use of metamaterial inclusions to adjust

the refractive index of a host composite in all cartesian directions. We posit that this

capability will prove useful in applications such as the electromagnetic radome. We

have shown that metamaterial inclusions may be used to depress the permittivity

of the composite (inclusions + host material) to a lower magnitude, and we have

presented that this response can be sustained over a range of angles and polarizations.

With additional optimization and refinements, this capability can be used to obtain

materials which are simultaneously index-matched and impedance-matched to free

space at all angles, or to obtain materials that meet a desired set of requirements
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over a range of angles and polarizations.
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6

Summary and Future Work

6.1 Metamaterials Wide-Angle Impedance Matching Layers

6.1.1 Summary

In this dissertation, we showed that anisotropic materials enable maximum impedance

matching for planar phased array antennas over a broad range of scan angles. We

also presented data showing that the performance of a planar phased array with a

simple metamaterial covering may be modeled using an anisotropic description.

6.1.2 Future Work

We have suggested the use of anisotropic layers, implementable using metamateri-

als, to achieve wide angle impedance matching for phased array antennas. In order

to successfully achieve wide angle impedance matching via this method, it would be

essential to be able to reliably design metamaterial particles with four degrees of con-

stitutive freedom (µx = µy, εx = εy, µz and εz). For a reliable and predictable design

to be achieved, further work will need to be done to develop metamaterial structures

with minimized loss, cross-coupling and bi-anisotropic effects. Additionally, it would

be important to utilize metamaterial structures that can be fabricated.
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6.2 Metamaterial Radome

6.2.1 Summary

In this work, we introduced a strategy through which the permittivity and refrac-

tive index of a mechanically viable dielectric radome material may be adjusted. We

presented data showing that by embedding three-dimensionalized electric inductive-

capacitive resonators – electrically excitable in all directions – into a host dielectric,

the permittivity (or refractive) of the composite material (dielectric + inclusions)

may be depressed to TE and TM-polarized waves of various incident angles, thus

reducing refraction-induced beam deflection and maintaining high transmissive prop-

erties.

6.2.2 Future Work

For the proposed strategy to be implemented in actual radomes, future work will

need to be done to characterize the boresight characteristics of a conical shell or

spherical shell prototype composed of embedded metamaterial inclusions. The role

of bandwidth in maintaining the desirable properties of the metamaterial radome

will also need to be quantified, depending on the operating characteristics of the

enclosed antenna.
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Appendix A

Multimodal Derivation of Active Element
Admittance

In this appendix, the active element admittance of a waveguide aperture planar

phased array is derived using the multi-modal approach discussed in the literature.

Presented by Borgiotti [49], this derivation enforces the electric and magnetic bound-

ary conditions at the surface of the array plane, and thus incorporates both the

contribution of higher order waveguide modes in the waveguide and higher order

evanescent free space modes just above the array surface. It is assumed from the

waveguide geometry and operating frequency that all modes but the fundamental

mode are cutoff.

A.1 Analytical formulation of the Problem

We begin by assuming that the surface of the array (see Fig. A.1 for depiction of

unit cell) resides on the z = 0 plane. The lattice is represented by the lattice vectors

s1 and s2, and the reciprocal lattice as t1 and t2. Further, the scan direction θ and

φ of the array is represented in the reciprocal space by the vector u◦, the position
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Figure A.1: (a) Top view of phased array unit cell, with lattice position vectors s1

and s2 (b) 3D rendering of phased array unit cell; plane of waveguide opening is the
z = 0 plane.

vector along the x,y plane as x, and the index of waveguide elements by the scalars

p and q such that the reference voltage across the center element of the array is V00.

Additionally, we shall define the surface area of the hexagonal lattice surface as A,

and the circular aperture surface area as C.

The aforementioned can be comprehensively expressed as

t1 = 2π
s2 × s3

s1 · s2 × s3

t2 = 2π
s3 × s1

s1 · s2 × s3

(A.1)

Vpq = V0e
u◦·(ps1+qs2) (A.2)

x = x̂x+ ŷy (A.3)

u◦ = x̂
2π

λ0

sin θ cosφ+ ŷ
2π

λ0

sin θ sinφ (A.4)

We also define a new term to represent the lattice of grating lobes formed on the
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array surface, just above the aperture. This term is related to the phasing vector

and will be referred to as the lattice of grating lobes, u◦pq.

u◦pq = u◦ + pt1 + qt2 (A.5)

We can express the tangential fields at the array surface in two ways: (i) as

consisting of a summation of the field distribution of an infinitum of waveguide

modes, and (ii) as consisting of a summation of the field distribution of free space

modes excited at the aperture. We will express these summation symbolically and

equate them in order to enforce the tangential electric and magnetic field boundary

conditions at the array surface (i.e. the z = 0 plane).

Using a bidimensional Floquet expansion (2D counterpart of Bloch’s theorem),

the tangential waveguide electric fields at z = 0+ can be represented as an excited

spectrum of spatial harmonics weighted by vector coefficients A(u◦pq):

Et(x) =
+∞∑
p=−∞

+∞∑
q=−∞

A(u◦pq)e
−ju◦pq ·x (A.6)

Representing the field distribution of waveguide mode i as ei, the tangential

electric fields excited at z = 0− can be written as a sum of an infinitum of waveguide

field distributions weighted by mode amplitudes Vi:

Et(x) =
∞∑
i=0

Viei(x) (A.7)

The indices of waveguide modes start from i = 0 (the fundamental lone propagating

waveguide mode), through i = 1 (the first higher order mode), to i =∞ (the higher

order mode at infinity). To enforce the boundary condition on the tangential electric

fields at the array surface, the expression (A.6) for z = 0+ must equal (A.7) for

z = 0−. For a unit waveguide element, this takes the form:
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Et(x) =
∞∑
i=0

Viei(x) =
+∞∑
p=−∞

+∞∑
q=−∞

A(u◦pq)e
−ju◦pq ·x (A.8)

As shown in (A.9), the same can be done for the tangential magnetic fields. For the

sake of notational brevity, we refer to the active element admittance as Yin instead

of Yin(θ, φ).

ẑ ×

[
YinV0e◦(x)−

∞∑
i=1

YiViei

]
=

+∞∑
p=−∞

+∞∑
q=−∞

B(u◦pq)e
−ju◦pq ·x (A.9)

The right hand side of (A.9) is an analog to (A.6) but with the E-field spatial har-

monic vector coefficients A(u◦pq) replaced with magnetic field spatial harmonic vector

coefficients B(u◦pq), and the left hand side is written as such because it expresses

the magnetic field based on an admittance paradigm (e.g. for a wave with E = x̂Ex

propagating normally in the ẑ direction, Hy=ẑ×Ex). The purpose of the expression

of (A.9) is to find Yin since clearly Yin 6= Y0. The reader may ask, why isn’t the

tangential magnetic field expressed as ẑ × [
∑∞

i=0 YiViei(x)]? The magnetic field due

to the fundamental mode is YinV0e◦(x) and not Y◦V0e◦(x) because the fundamental

mode faces the radiation admittance Yin.

We would like to solve for (A.10) but we cannot because of the infinite nature of

the sums therefore we truncate the i at N and p and q as well.

∞∑
i=0

Viei(x)−
+∞∑
p=−∞

+∞∑
q=−∞

A(u◦pq)e
−ju◦pq ·x = 0 (A.10)

Using reaction theorem we relate in (A.11) and (A.13) the truncated sum of

waveguide basis functions with the truncated sum of spatial harmonics basis func-

tions.
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That is,

∫∫
C

N−1∑
i=0

Viei(x)−
∑
u◦pq

A(u◦pq)e
−ju◦pq ·x

× ẑ · q̂eu◦mn·xdx = 0 (A.11)

where

∑
u◦pq

is written to represent

+pmax∑
p=−pmax

+qmax∑
q=−qmax

(A.12)

Note that the integral is taken over the unit lattice surface area A but since the

tangential electric field over the conducting part of the unit cell lattice is zero, the

relevant area of integration is the aperture area, C. In addition, q̂ is a unit vector

with arbitrary direction on the x− y plane.

The expression of (A.11) can be understood using reaction theorem. From reac-

tion theorem,
∫∫

S
(E1 · J2 −H1 ·M2)dx =

∫∫
S
(E2 · J1 −H2 ·M1)dx describes the

coupling between the fields E1 and H1 (produced by surface sources M1 and J1) on

the surface sources J2 and M2 which produce E2 and H2.

Applying this to the expression of (A.11), we assign the magnetic current error

induced by the truncation of the waveguide mode sum and spatial harmonics sum

(i.e. Ez=0+−Ez=0− 6= 0) to M1 and the electric current error (Hz=0+−Hz=0−) to J2.

For an electric field discontinuity, a magnetic current is induced at the aperture

surface, and can be written as −(Ez=0+−Ez=0−)× ẑ. We surmise that this magnetic

current may excite a magnetic field spatial harmonic, which takes the form eu◦mn·x

with a direction on the x− y plane; since we require this magnetic current to excite

an orthogonal magnetic field spatial harmonic (in the mathematical sense), we force

−
∫∫

C
M1 ·H2dxdy equal zero, thus the expression in (A.11).
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Similarly, for the magnetic field discontinuity, we require that −
∫∫

C
J2 · E1dxdy

equal zero (E1 takes the form of excited waveguide modes ek), thus

∫∫
A

ẑ ×
[
YinV0e◦(x)−

N−1∑
i=1

YiViei

]
−
∑
u◦pq

B(u◦pq)e
−ju◦pq ·x

× ẑ · ek(x)dx = 0

(A.13)

Enforcing the truncated the boundary conditions in (A.11) and (A.13) with a

finite number, N, of waveguide modes, ensures that the difference between the right

hand side and left hand side to be very small by, according to Borgiotti [49], requiring

them to be orthogonal to the subspaces spanned by the selected waveguide modes and

spatial harmonics. The effect of is that all the modes taken into account should

each be fully taken into account such that the modes not included are the ones

not incorporated into our active element admittance calculation. In other words, a

selection of N = 2 would take include only two waveguide modes. The errors of the

truncation would then all be pushed into the waveguide modes that are not taken

into account. Picking |p|max = |q|max = 2 for the spatial harmonics, for instance,

would push all the errors associated with the truncation into the spatial harmonic

modes that are not taken into account. In essence, we have made our basis functions

have physical meaning.

We must keep in mind that (A.11) and (A.13) each represent a set of equations.

We shall now proceed to derive the active element admittance, Yin, by solving

(A.11) and (A.13).

A.2 Solving for A(u◦pq) and B(u◦pq)

We pick the direction of q̂ in (A.11) to coincide with the direction of −(Ez=0+ −

Ez=0−)× ẑ, thereby yielding,

126



∫∫
A

N−1∑
i=0

Viei(x)eju◦mn·x −
∑
u◦pq

A(u◦pq)e
j(u◦mn−u◦pq)·x

 dx = 0 (A.14)

Due to the orthogonality of the spatial harmonic basis functions, the second

term of the integrand in (A.14) equals zero if eu◦mn 6= eu◦pq , and equal unity when

eu◦mn = eu◦pq . Thus we further simplify (A.14) to:

N−1∑
i=0

Vi

∫∫
A

[
ei(x)eju◦pq ·x

]
dx = A(u◦pq)C (A.15)

Letting the Fourier transform of a waveguide mode field distribution ei be repre-

sented by ξi(u), where by definition ξi(u)= 1
2π

∫∫
A
ei(x)eu·xdx, then (A.15) becomes

2π
N−1∑
i=0

Viξi(u◦pq) = A(u◦pq)C (A.16)

which can be re-arranged as:

A(u◦pq) =
2π

C

N−1∑
i=0

Viξi(u◦pq) (A.17)

For a circular (or rectangular) waveguide, ξi(u◦pq) can be decomposed to radial and

circumferential components and thus written as:

ξi(u◦pq) = ξiρ(u◦pq)ρ̂+ ξiψ(u◦pq)ψ̂ (A.18)

thereby enabling us to re-express (A.17) in the convenient form:

A(u◦pq) =
2π

C

N−1∑
i=0

Vi[ξiρ(u◦pq)ρ̂+ ξiψ(u◦pq)ψ̂] (A.19)
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Since A(u◦pq) represents electric field coefficients, we can relate it to the magnetic

field coefficients in (A.11) and (A.9) by introducing the relevant spatial harmonics

admittance parameters, yielding

B(u◦pq) =
2π

C

N−1∑
i=0

Vi[−ξiψ(u◦pq)YTE(|u◦pq|)ρ̂+ ξiρ(u◦pq)YTM(|u◦pq|)ψ̂] (A.20)

Note that the first term of the addition is obtained from the inter-relationship

between magnetic fields, transverse admittance, and perpendicular electric fields. In

particular, the radial and circumferential components of the magnetic field are de-

rived from that of the electric field, as in: Hρ = −YTEEψ, and Hψ =YTMEρ. A

derivation of the transverse admittances YTE and YTM in the presence of dielec-

tric or anisotropic layers can be obtained from Maxwell’s equations as presented in

Appendix B.

We have now expressed A(u◦pq) and B(u◦pq) in terms of the waveguide mode

field distribution and spatial harmonic admittances.

A.3 Solving for Yin

Rewriting (A.13), we obtain

∫∫
A

[
YinV0e◦(x)−

N−1∑
i=1

YiViei

]
· ek(x)dx =

∑
u◦pq

B(u◦pq)× ẑ
∫∫

A

e−ju◦pq ·x · ek(x)dx

(A.21)

Solving for the right hand side of (A.21), we can write
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RHS =
∑
u◦pq

B(u◦pq)× ẑξk(−u◦pq)

= 2π
∑
u◦pq

B(u◦pq)× ẑ[ξ∗kρ(u◦pq)ρ̂+ ξ∗kψ(u◦pq)ψ̂] (A.22)

Substituting (A.20) into (A.22) and evaluating the cross-product yields

RHS =
4π2

C

∑
u◦pq

N−1∑
i=0

Vi[ξiρ(u◦pq)ξ
∗
kρ(u◦pq)YTM(|u◦pq|) +

ξiψ(u◦pq)ξ
∗
kψ(u◦pq)YTE(|u◦pq|)] (A.23)

If we define

Yki(u◦) =
4π2

C

∑
u◦pq

[ξiρ(u◦pq)ξ
∗
kρ(u◦pq)YTM(|u◦pq|) +

ξiψ(u◦pq)ξ
∗
kψ(u◦pq)YTE(|u◦pq|)] (A.24)

then we may rewrite (A.23) as

RHS =
N−1∑
i=0

ViYki(u◦) (A.25)

We shall now solve for the left hand side of (A.21)

LHS = YinV0

∫∫
A

e◦(x) · ek(x)dx−
N−1∑
i=1

YiVi

∫∫
A

ei(x) · ek(x)dx (A.26)

The results of (A.26) differ depending on the value of k. There are two cases: (i)

k = 0, and (ii) k = i.
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Case 1: When k = 0, the integrand of the first integral goes to one, while the second

integral goes to zero (k = 0 requires i = 0 for a nonzero result, but i begins from 1),

yielding:

Case 1: LHS = YinV0 (A.27)

Case 2: For k 6= 0, the first integral in (A.26) is zero, but since i must equal k

for (A.26) to be nonzero, we evaluate for i = k, yielding:

Case 2: LHS = −YkVk (A.28)

Equating the right hand side [see (A.25)] to the left hand side [see (A.27) and

(A.28)], we obtain the set of simultaneous equations:

YinV0 −
N−1∑
i=0

ViY0i(u◦) = 0

YkVk +
N−1∑
i=0

ViYki(u◦) = 0 (A.29)

From these equations the active element admittance, Yin may be estimated. An

application of this formulation is done in Section 2.2.2 of Chapter 2.

A.4 General Expressions for the Fourier Transform of Circular Waveg-
uide Modes

From [49], the Fourier transform of the field distribution of a TEmn circular waveguide

mode, in cylindrical coordinates is:

ξρ(kt) = mj(m−1)

√
2/π√

(x′mn)2 −m2
· sinmγ

|kt|
Jm(r|kt|) (A.30)
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ξψ(kt) = j(m−1)

√
2/π√

(x′mn)2 −m2
· a cosmγ

1− (a|kt|
xmn

)2
· J ′m(a|kt|) (A.31)

and for TMmn circular waveguide modes, the Fourier transforms in cylindrical coor-

dinates are:

ξρ(kt) = −j(m−1) sinmγ
|kt|
√

2/π

(xmn
a

)2 − |kt|2
Jm(r|kt|) (A.32)

ξψ(kt) = 0 (A.33)

Where,

cosmγ = Re

[(
x̂ · kt + ŷ · jkt

|kt|

)m]
(A.34)

sinmγ = Im

[(
x̂ · kt + ŷ · jkt

|kt|

)m]
(A.35)

For cross-polarized TEmn modes or TMmn, sinmγ and cosmγ are instead:

Cross-polarized modes: cosmγ = Re

[(
x̂ · kt + ŷ · jkt

|kt|

)m
ej

180◦
2m

]
(A.36)

sinmγ = Im

[(
x̂ · kt + ŷ · jkt

|kt|

)m
ej

180◦
2m

]
(A.37)

Note that xmn and x
′
mn represent the nth root of Bessel functions Jm and J

′
m. kt

is the effective transverse wavenumber at the surface of the waveguide array.

131



Appendix B

Derivation of the Admittance of Plane Wave Modes
in Anisotropic Media

From Maxwell’s equations,

∂Ez
∂y
− ∂Ey

∂z
= −µ◦µx

∂Hx

∂t

∂Hz

∂y
− ∂Hy

∂z
= ε◦εx

∂Ex
∂t

∂Ex
∂z
− ∂Ez

∂x
= −µ◦µy

∂Hy

∂t

∂Hx

∂z
− ∂Hz

∂x
= ε◦εy

∂Ey
∂t

∂Ey
∂x
− ∂Ex

∂y
= −µ◦µz

∂Hz

∂t

∂Hy

∂x
− ∂Hx

∂y
= ε◦εz

∂Ez
∂t

(B.1)

B.1 TM-polarized wave

For a TM-polarized wave propagating on the x − z plane of incidence, only Ex, Ez

and Hy exist, while ∂
∂y

= 0; thus (B.1) reduces to the following:
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∂Ex
∂z
− ∂Ez

∂x
= µ◦µy

∂Hy

∂t

−∂Hy

∂z
= ε◦εx

∂Ex
∂t

∂Hy

∂x
= ε◦εz

∂Ez
∂t

(B.2)

all of which can be rewritten as:

− jkzEx + jkxEz = −jωµ◦µyHy

jkzHy = jωε◦εxEx

−jkxHy = jωε◦εzEz (B.3)

Plugging in the third equation of (B.3) into the second, yields:

kzEx +
k2
xHy

ωε◦εz
= ωµµyHy (B.4)

By combining (B.4) and the second equation of (B.3), the dispersion relation below

is obtained,

k2
z

ωε◦εx
+

k2
x

ωε◦εz
− ωµ◦µy = 0 (B.5)

and solving for kz from (B.5) yields:

kz =

√
ω2ε◦µ◦εxµy −

εxk2
x

εz
(B.6)

From (B.3), the transverse admittance of a plane propagating within a half space

of an anisotropic media is realized.
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YTM =
Hy

Ex
=
ωε◦εx
kz

=

[√
µ◦µy
ε◦εx

− k2
x

ω2ε2◦εxεz

]−1

(B.7)

Similarly, the transverse admittance for a TM-polarized plane wave mode in an

isotropic dielectric medium is:

YTM =
Hy

Ex
=
ωε◦εr
kz

=

[√
µ◦
ε◦εr
− k2

x

ω2ε2◦ε
2
r

]−1

(B.8)

B.2 TE-polarized wave

For a TE-polarized wave propagating on the x − z plane of incidence, only Hx, Hz

and Ey exist, while ∂
∂y

= 0; thus (B.1) reduces to the following:

− ∂Ey
∂z

= −µ◦µx
∂Hx

∂t

∂Hx

∂z
− ∂Hz

∂x
= ε◦εy

∂Ey
∂t

∂Ey
∂x

= −µ◦µz
∂Hz

∂t
(B.9)

all of which can be rewritten as:

kxEy = −ωµ◦µxHx

−kzHx + kxHz = ωε◦εyEy

kxEy = ωµ◦µzHz (B.10)

We then obtain the dispersion relation for TE-polarized plane waves as:

k2
z

ωµ◦µx
+

k2
x

ωµ◦µz
− ωε◦εy = 0 (B.11)
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From (B.10), kz is obtained to be:

kz =

√
ω2µ◦ε◦µxεy −

µxk2
x

µz
(B.12)

and YTE as,

YTE =
−Hx

Ey
=

kz
ωµ◦µx

=

√
ε◦εy
µ◦µx

− k2
x

ω2µ2
◦µxµz

(B.13)

Similarly, the transverse admittance for a TE-polarized plane wave mode in an

isotropic dielectric medium is:

YTE =
−Hx

Ey
=

kz
ωµ◦

=

√
ε◦εr
µ◦
− k2

x

ω2µ2
◦

(B.14)
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[7] D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis. Determination of effec-
tive permittivity and permeability of metamaterials from reflection and trans-
mission coefficients. Phys. Rev. B, 65(19):195104, Apr 2002.

[8] D. Schurig, J. J. Mock, and D. R. Smith. Electric-field-coupled resonators
for negative permittivity metamaterials. Applied Physics Letters, 88(4):041109,
2006.

[9] J. F. O’Hara, E. Smirnova, H. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete,
M. Lee, and W. J. Padilla. Properties of planar electric metamaterials for novel

136



terahertz applications. Journal of Nanoelectronics and Optoelectronics, 2(1):90–
95, Apr 2007.

[10] S. Sajuyigbe, B. J. Justice, A. F. Starr, and D. R. Smith. Design and analy-
sis of three-dimensionalized elc metamaterial unit cell. Antennas and Wireless
Propagation Letters, IEEE, 8:1268–1271, 2009.

[11] Thomas H. Hand, Jonah Gollub, Soji Sajuyigbe, David R. Smith, and Steven A.
Cummer. Characterization of complementary electric field coupled resonant
surfaces. Applied Physics Letters, 93(21):212504, 2008.

[12] Constantine A. Balanis. Advanced Engineering Electromagnetics. John Wiley
& Sons, 1989.

[13] Willie J. Padilla, Dimitry N. Basov, and David R. Smith. Negative index meta-
materials. Materials Today, 9(7-8), July-August 2006.

[14] J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart. Magnetism from
conductors and enhanced nonlinear phenomena. Microwave Theory and Tech-
niques, IEEE Transactions on, 47(11):2075–2084, Nov. 1999.

[15] J. B. Pendry, A. J. Holden, W.J. Stewart, and I. Youngs. Extremely low fre-
quency plasmons in metallic microstructures. Phys. Rev. Lett., 76:4773–6, 1996.

[16] R. A. Shelby, D. R. Smith, and S. Schultz. Experimental Verification of a
Negative Index of Refraction. Science, 292(5514):77–79, 2001.

[17] V. G. Veselago. The electrodynamics of substances with simultaneously negative
values of ε and µ. (also in Russian, Usp. Fiz. Nauk., vol. 92, pp. 517- 526, 1967),
Soviet Phys. Uspekhi, 10(4):509–514, 1968.

[18] Ruopeng Liu, Aloyse Degiron, Jack J. Mock, and David R. Smith. Negative
index material composed of electric and magnetic resonators. Applied Physics
Letters, 90(26):263504, 2007.

[19] D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz.
Composite medium with simultaneously negative permeability and permittivity.
Phys. Rev. Lett., 84(18), 2000.

[20] David R. Smith and Normal Kroll. Negative refractive index in left-handed
metamaterials. Phys. Rev. Lett., 85(14), 2000.

137



[21] Steven A. Cummer and Bogdan-Ioan Popa. Wave fields measured inside a neg-
ative refratrive index metamaterial. Appl. Phys. Lett., 85(20), 2004.

[22] Mário Silveirinha and Nader Engheta. Tunneling of electromagnetic energy
through subwavelength channels and bends using ε-near-zero materials. Phys.
Rev. Lett., 97(15):157403, Oct 2006.

[23] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F.
Starr, and D. R. Smith. Metamaterial Electromagnetic Cloak at Microwave
Frequencies. Science, 314(5801):977–980, 2006.

[24] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F.
Starr, and D. R. Smith. Metamaterial Electromagnetic Cloak at Microwave
Frequencies. Science, 314(5801):977–980, 2006.

[25] Bogdan-Ioan Popa, Jeffery Allen, and Steven A. Cummer. Conformal ar-
ray design with transformation electromagnetics. Applied Physics Letters,
94(24):244102, 2009.

[26] Marco Rahm, David Schurig, Daniel A. Roberts, Steven A. Cummer, David R.
Smith, and John B. Pendry. Design of electromagnetic cloaks and concentrators
using form-invariant coordinate transformations of maxwell’s equations. FUN-
DAM.APPLIC., 6:87, 2008.

[27] Jeffery Allen, Nathan Kundtz, Daniel A. Roberts, Steven A. Cummer, and
David R. Smith. Electromagnetic source transformations using superellipse
equations. Applied Physics Letters, 94(19):194101, 2009.

[28] N. Kundtz, D. A. Roberts, J. Allen, S. Cummer, and D. R. Smith. Optical
source transformations. Opt. Express, 16(26):21215–21222, 2008.

[29] D. A. Roberts, N. Kundtz, and D. R. Smith. Optical lens compression via
transformation optics. Opt. Express, 17(19):16535–16542, 2009.

[30] D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig. Gradient index meta-
materials. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics),
71(3):036609, 2005.

[31] J. B. Pendry, D. Schurig, and D. R. Smith. Controlling Electromagnetic Fields.
Science, 312(5781):1780–1782, 2006.

138



[32] Marco Rahm, Steven A. Cummer, David Schurig, John B. Pendry, and David R.
Smith. Optical design of reflectionless complex media by finite embedded coor-
dinate transformations. Phys. Rev. Lett., 100(6):063903, Feb 2008.

[33] Marco Rahm, David Schurig, Daniel A. Roberts, Steven A. Cummer, David R.
Smith, and John B. Pendry. Design of electromagnetic cloaks and concentrators
using form-invariant coordinate transformations of maxwell’s equations. Pho-
tonics and Nanostructures - Fundamentals and Applications, 6(1):87 – 95, 2008.
The Seventh International Symposium on Photonic and Electromagnetic Crys-
tal Structures - PECS-VII.
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