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Abstract

This dissertation describes two computational sensors that were used to demonstrate

applications of generalized sampling of the optical field. The first sensor was an inco-

herent imaging system designed for compressive measurement of the power spectral

density in the scene (spectral imaging). The other sensor was an interferometer used

to compressively measure the mutual intensity of the optical field (coherence imag-

ing) for imaging through turbulence. Each sensor made anisomorphic measurements

of the optical signal of interest and digital post-processing of these measurements was

required to recover the signal. The optical hardware and post-processing software

were co-designed to permit acquisition of the signal of interest with sub-Nyquist rate

sampling, given the prior information that the signal was sparse or compressible in

some basis.

Compressive spectral imaging was achieved by a coded aperture snapshot spectral

imager (CASSI), which used a coded aperture and a dispersive element to modulate

the optical field and capture a 2D projection of the 3D spectral image of the scene in

a snapshot. Prior information, such as piecewise smoothness of objects in the scene,

could be enforced by numerical estimation algorithms to recover an estimate of the

spectral image from the snapshot measurement.

Hypothesizing that turbulence between the scene and CASSI would introduce

spectral diversity of the point spread function, CASSI’s snapshot spectral imaging

capability could be used to image objects in the scene through the turbulence. How-
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ever, no turbulence-induced spectral diversity of the point spread function was ob-

served experimentally. Thus, coherence functions, which are multi-dimensional func-

tions that completely determine optical fields observed by intensity detectors, were

considered. These functions have previously been used to image through turbulence

after extensive and time-consuming sampling of such functions. Thus, compressive

coherence imaging was attempted as an alternative means of imaging through tur-

bulence.

Compressive coherence imaging was demonstrated by using a rotational shear

interferometer to measure just a 2D subset of the 4D mutual intensity, a coherence

function that captures the optical field correlation between all the pairs of points

in the aperture. By imposing a sparsity constraint on the possible distribution of

objects in the scene, both the object distribution and the isoplanatic phase distortion

induced by the turbulence could be estimated with the small number of measurements

made by the interferometer.
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1

Introduction

1.1 Computational optical imaging

Electronic imaging has revolutionized optical sensors. It has mostly replaced pho-

tochemical imaging because of the ease with which digital data can be stored and

recalled. Optical sensors using electronic imaging devices as detectors, i.e. digital

optical sensors generate a mapping between discrete samples of the particular signal

of interest in an optical field (such as images or spectra) and discrete measurements

on a detector array. This mapping may be written as

gi =
∫

φi(x)f(x)dx, (1.1)

where f(x) represents the signal, φi(x) represents the impulse response of the op-

tical system that maps points in the signal to the detector measurement gi. If the

continuous signal can be represented with discrete samples fn on a basis ψn(x) such

that

f(x) =
∑
n

fnψn(x), (1.2)
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then equation (1.1) may be written in matrix-vector form as

g = Φf, (1.3)

where g represents a vector of detector measurements, φij =
∫

φi(x)ψj(x)dx, and f

is a vector of discrete samples of the signal of interest.

Conventional optical sensors using electronic imaging include digital cameras and

spectrometers. Such instruments have revolutionized several fields including machine

vision, medical diagnostics, chemometric analysis and astronomy. They create an

isomorphic mapping between the particular signal of interest in an optical field and

the detector array by relying on optical elements such as lenses and gratings. The

optical elements are a means of implementing analog processing on the optical field

prior to the digitization of the image on the detector. Once recorded, the detector

measurements can be easily displayed and analyzed.

While conventional optical sensors may directly acquire signals of interest such

as the spectrum of a light source or an eye-pleasing image, improvements to their ar-

chitectures and performance rely solely on advances in hardware and may be limited

by the physical laws of nature such as diffraction. For example, consider a con-

ventional dispersive spectrometer consisting of a slit aperture, a grating and a line

detector array that directly records the spectrum of light incident on the aperture.

While one may want to increase the width of the slit to increase the throughput of

light onto the detector for increased signal-to-noise ratio (SNR), maintaining high

spectral resolution necessitates that the width of the slit is as narrow as possible.

Increasing the light throughput while maintaining spectral resolution would thus re-

quire much longer exposure times. A more ideal spectrometer would be one that

would use a large entrance aperture while maintaining the spectral resolution of a

slit spectrometer.

In some cases, hardware advances add only marginal value to conventional optical
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sensors. For example, current digital cameras capture images with high resolution

(more megapixels), only to have most of the information discarded due to storage

requirements and because compression algorithms can maintain an accurate repre-

sentation of an image with significantly fewer bits. If it’s possible to compress an

image, it’s easy to argue that capturing a many megapixel image is rather redun-

dant. A more ideal camera would only require enough pixels to capture the salient

information in an image, i.e. the information determined by compression algorithms

as necessary for generating a compressed image that appears is free of artifacts when

viewed on a computer display.

In contrast to conventional optical sensors, computational optical sensors, or

simply computational sensors, make anisomorphic mappings between the signal of

interest and the detector measurements [1]. The design of such sensors involves

jointly optimizing optical hardware with digital post-processing of the detector mea-

surements [2]. The measurements are coded by the optical elements in front of the

detector and thus cannot be as easily deciphered as the isomorphic measurements

made by conventional optical sensors. By design, computational sensors rely on dig-

ital processing of these measurements to extract the desired signal of interest. By

leveraging the power of software, a variety of hardware limitations experienced by

conventional optical sensors can be overcome. For example, a coded aperture spec-

trometer replaces the entrance slit of a conventional dispersive spectrometer with a

much wider (hence greater throughput) coded aperture and measures a convolution

of the incident source spectrum and the coded aperture pattern on a two dimensional

(2D) detector array. Post-processing of the detector measurements can produce an

estimate of the source spectrum with equivalent spectral resolution to a slit spec-

trometer, but with considerably higher SNR due to the greater throughput of the

instrument.

Just as software can be used for overcoming hardware limitations, the optical
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hardware in a computational sensor may employ diverse optical coding elements to

implement a sensing strategy that is suited towards a particular digital processing

inversion algorithm used to recover the signal of interest from the detector measure-

ments.

1.2 Generalized sampling

The sampling process used to obtain discrete, isomorphic samples of a continuous

signal in conventional optical sensors relies on the Nyquist-Shannon sampling theo-

rem. This theorem assumes that the signal of interest is bandlimited and specifies

that to avoid losing information in the signal through aliasing, one must sample at a

rate that is at least two times faster than the signal bandwidth. As described earlier,

in cases such as focal imaging using a digital camera, the Nyquist rate may be so

high that far too many samples result for transmission and storage.

In contrast, the co-design of hardware and software processing algorithms for

computational sensors can enable more general sampling strategies. For instance, the

implementation of a strategy known as compressive sampling allows the acquisition

of a signal at sub-Nyquist rate given the prior information that the signal is sparse

or compressible in some basis other than the sampling basis. This suggests that

the signal is dependent on a smaller number of degrees of freedom than the number

dictated by its bandwidth. Application of compressive sampling in optical imaging

may exploit the fact that images have structure and tend to be sparse in some basis

other than the Dirac sampling basis.

This dissertation provides examples of computational sensors which sample the

signal of interest through an integrated approach to optical and algorithm design.

This enables the powerful ability to potentially eliminate dimensional tradeoffs such

as the need to temporally scan an instrument to capture a multi-dimensional (more

than two) signal of interest. In essence, such sensors measure a compressed and
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efficient representation of the signal that can be decoded digitally through post-

processing.

1.3 Motivation

This dissertation focuses on two computational sensors that demonstrate applications

of generalized sampling of the optical field. The first sensor, described in chapters

2, 3 and 4, is a spectral imaging system that is used to compressively measure the

power spectral density of a scene. While there are several approaches to spectral

imaging, most require some temporal scanning to capture the desired information.

In contrast, the sensor described here demonstrates how the introduction of coding

into optical hardware and the use of non-linear numerical estimation methods for

processing the detector measurements can potentially permit a snapshot approach

to capturing a spectral image.

The second sensor, described in chapter 5, is used to image sparse objects through

turbulence by sampling a small subset of the mutual intensity of the optical field in

its aperture. While there are several approaches to imaging through turbulence,

most require expensive equipment or post-processing of several captured images in

batch mode. In contrast, the proposed sensor only consists of a beam splitter, two

fold mirrors and a detector array, and it uses a numerical estimation method that

exploits the sparsity of objects in the scene. It has the potential to image sparse

objects in space through the turbulence of Earth’s atmosphere in real time.

1.4 Organization

This section outlines the structure of this dissertation and summarizes the work

completed towards this dissertation, which began in March 2007. It also identifies

people, besides myself and my advisor Dr. David Brady, who have contributed

significantly to the work described in each chapter.
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Chapter 2 begins with a review of spectral imaging techniques. The focus of

this chapter is the implementation of a coded aperture snapshot spectral imager,

or CASSI for short. I was first introduced to CASSI as a general class of spectral

imaging systems by Dr. Brady in January 2007. After inventing a snapshot spectral

imaging system with a dual disperser architecture [3], Dr. Brady talked to me about

the possibility of achieving snapshot spectral imaging with a system containing a

coded aperture and only a single disperser. Such a system would be an extension

of the coded aperture spectrometer, a system I studied while completing my MS

thesis work, to spectral imaging. Following through on his ideas and suggestions, I

worked on building a proof-of-concept CASSI with a single disperser architecture.

Experimental results obtained by using this prototype are described in this chapter.

The results were first presented to the scientific community at SPIE’s Optics and

Photonics conference in San Diego, CA in August 2007 [4], and later published in

Applied Optics ’ special issue on Computational Optical Sensing and Imaging (COSI)

in May 2008 [5]. A figure from the paper also appeared on the cover of that issue.

Dr. Renu John helped me with building CASSI in the lab, while Dr. Rebecca Wil-

lett contributed by proposing the GPSR algorithm and assisting me with datacube

recovery from CASSI measurements.

The experience of building, characterizing, and processing measurements made

by the first CASSI prototype was valuable. It led to the conception of a second gen-

eration CASSI prototype after recognizing the need for a custom-design system with

good image quality. After construction, this prototype was used to capture snapshot

spectral images with better image quality than the previous prototype, in part due

to more rigorous system calibration. The system design, calibration process and ex-

perimental results are described in chapter 3. The system was used to capture data

for a comparative analysis of reconstruction algorithms to process CASSI measure-

ments. This work was presented as an invited talk at SPIE’s Optics and Photonics
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conference in San Diego, CA in August 2008 [6]. The snapshot ability of this CASSI

was then used to capture spectral images of a dynamically changing scene at video

rate. This work was published in the journal Optics Express in May 2009 [7]. Dr.

Nathan Hagen helped me to significantly improve the CASSI calibration process.

Dr. Jose Bioucas Dias, Dr. Mario Figueiredo and Joao Oliveira helped me to adapt

the TwIST algorithm for spectral imaging with CASSI. The NeAREst algorithm for

datacube recovery from CASSI measurements was conceived and implemented by

Dr. Xiaobai Sun and Dr. Nikos Pitsianis.

While CASSI was conceived from recent ideas on compressive sampling, its per-

formance and limitations had not been analyzed based on ideas in the compressive

sampling literature. Chapter 4 begins with a background on compressive sampling

and noiseless Matlab simulations are used to analyze the performance of CASSI as an

example of a compressive sampling instrument. The simulations also provide insight

for an alternative design for CASSI, that was first proposed by Ryoichi Horisaki, a

visiting student to the group. Finally, the performance of CASSI and the alternative

design is studied in the presence of noise. The work described in this chapter was

conducted under the guidance of Dr. Kerkil Choi and was submitted for publication

to the journal IEEE Transactions on Image Processing in July 2009.

To demonstrate an application of CASSI, the system was briefly considered as a

means to image remote objects through atmospheric turbulence. Hypothesizing that

turbulence between remote objects and CASSI would introduce spectral diversity of

the point spread function of the imaging system, CASSI’s snapshot spectral imag-

ing capability could be used to image objects in the scene through the turbulence.

However, no turbulence-induced spectral diversity of the point spread function was

observed experimentally. Thus, a new approach to imaging through turbulence was

investigated that relied on compressive measurement of the mutual intensity of the

optical field, rather than the power spectral density. In this approach, prior knowl-
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edge about the sparsity of the scene is assumed that parallels the assumption made

for CASSI. Chapter 5 describes the use of a rotational shear interferometer (RSI) to

image objects through turbulence by measuring just a 2D subset of the 4D mutual

intensity function. A alternating minimization algorithm is used to digitally process

these measurements to jointly estimate the image of sparse point sources in the scene

along with the turbulence induced phase screen in the aperture. This work was pre-

sented at the Optical Society of America’s topical meeting on Computational Optical

Sensing and Imaging (COSI) in San Jose, CA in October 2009 [8]. It was later ac-

cepted for publication in Optics Letters in February 2010 [9]. Dr. Daniel Marks was

a key resource as he first introduced me to the intricacies of the RSI, which is not

an easy instrument to use. Dr. Joonku Hahn helped me greatly with aligning the

RSI in the lab. Dr. Kerkil Choi proposed the alternating minimization algorithm

used to image objects through turbulence from RSI measurements. Ryoichi Horisaki

assisted me with implementing the algorithm.

Finally, Chapter 6 summarizes the work described in this dissertation and iden-

tifies some open questions for some future avenues of research.
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2

Spectral imaging using a coded aperture snapshot
spectral imager

The focus of this chapter is a new instrument for spectral imaging called a Coded

Aperture Snapshot Spectral Imager (CASSI). The chapter begins with an introduc-

tion to the problem of spectral imaging in section 2.1 and a review of diverse spectral

imaging techniques in section 2.2. Section 2.3 provides an overview of CASSI sys-

tems. Section 2.4 introduces the new CASSI design and briefly compare it to a

previously developed CASSI design. Section 2.5 details a mathematical model for

the new design. Section 2.6 describes the design of the first experimental prototype

of the new CASSI design. Section 2.7 describes how the Gradient Projection for

Sparse Reconstruction method can be used to reconstruct a datacube from a CASSI

measurement and section 2.8 demonstrates its use in recovering a spectral image of

a static scene.
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2.1 Introduction to spectral imaging

In many imaging applications, color increases the information content of the objects

in the scene being imaged. In biomedicine, color signals the biochemical makeup

of different regions of tissue. When coupled to more targeted indicators such as

antibodies, this can allow the detection of multiple, specific analytes [10].

However, the native ability of our eyes to perceive and evaluate color information

is limited to the visible range, roughly 380 to 750 nm, of the electromagnetic spec-

trum. This limitation extends to conventional digital cameras that typically consist

of a color filter array of red, green and blue filters on top of a monochromatic imaging

sensor array [11]. Thus, all spectral information within the visible spectral range is

binned into three broad spectral ranges roughly corresponding to the three primary

colors, red, green and blue. While such information assists in perceiving shape, sur-

face texture and mutual spatial relation in the depth of 3D space, it is insufficient in

applications where it is necessary to observe and study the accurate spectral signa-

ture of objects in the scene. Such signatures allow discrimination of specific object

properties. In addition, the spectral information of interest often extends to the

invisible range of the electromagnetic spectrum.

Spectral imaging combines 2D imaging and spectroscopy. In contrast to the

conventional three-color imagers (i.e. digital cameras), a spectral imager attempts to

precisely measure an optical spectrum at every pixel in an image. The spectral range

of the instrument can be designed to span a particular region of the electromagnetic

spectrum with some desired spectral resolution. The output of the instrument is

a 3D dataset, known as the datacube, containing the two spatial dimensions and

one spectral dimension. It can be visualized as a data set consisting of a number

of images representing the brightness at each pixel as a function of wavelength [10].

Figure 2.1 (reproduced from [12]) demonstrates the spectral imaging concept by
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showing different spectra at different locations in an image.

Figure 2.1: The concept of spectral imaging is illustrated with spectra gathered at
four different spatial locations in an image.

2.2 Approaches to spectral imaging

There are many different types of spectral imagers. They may roughly be divided up

into three types including (i) dispersive imagers, (ii) interferometric imagers and (iii)

tunable filtered imagers. Figure 2.2 (reproduced from [13]) demonstrates the different

subsets of the datacube that conventional imagers are able to measure without any

scanning. Due to the inherent dimensionality difference between a 3D datacube and

a 2D detector array, these imagers rely on temporal scanning to measure all the

voxels, small unit volume elements in the datacube.
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Figure 2.2: Lower dimensional volumes that simple spectral imagers are able to
capture without any scanning. (a) represents a whiskbroom instrument, (b) rep-
resents a filtered camera or a Fourier transform instrument, and (c) represents a
pushbroom instrument.

2.2.1 Dispersive spectral imaging

Whiskbroom spectral imager

The simplest method to collect a datacube is to use a spectrometer that uses a

grating and a linear array of detectors and samples a very small spatial area, thus

measuring voxels in the column a as shown in figure 2.2. Such a system is known as

a whiskbroom spectral imager. The datacube is built up over time by scanning the

instrument over a desired spatial area. The best known instrument of this kind is

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), developed in 1983 at the

Jet Propulsion Lab (JPL), Pasadena, California, USA. It was the first hyperspectral

imager to measure the solar reflectance spectrum from 400− 2500 nm. The scanner

had 224 channels at 10 nm intervals across the spectrum [12]. The main problem

with such an instrument is the amount of time it takes to temporally scan the entire

datacube and the poor light collection efficiency of the instrument.
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Spatially filtered pushbroom spectral imager

Another type of spectral imager uses pushbroom scanning, capturing spectral data

along one spatial dimension in each time step. Fore-optics are used to image the

scene on to a field-limiting entrance slit. The entrance slit and a dispersive element

allow the 2D detector to sample the spectral dimension and one spatial dimension of

the datacube simultaneously. The second spatial dimension is captured by scanning

the slit in the direction of motion. The output of each dataset collected from a

pushbroom device is a one-dimensional (1D) spectral image and produces information

which is described by a plate in a spatial dimension, c as shown in figure 2.2. The

disadvantage of such a technique is that relative motion in the scene during the

process of sampling the second spatial dimension can result in a distorted or warped

image. In addition, the use of a slit means that out-of-slit photons are discarded,

thus limiting the light throughput of the instrument.

Coded aperture pushbroom spectral imager

It is also possible to use a coded aperture spectrometer [14, 15] as a pushbroom

spectral imager. In this instrument the entrance slit of a dispersive spectrometer

is replaced with a coded aperture. The instrument measures a convolution of the

source spectrum with the aperture code in a snapshot and post-processing of the

recorded detector data is required to generate an estimate of the source spectrum.

The light throughput and the corresponding signal strength measured by the modi-

fied instrument is significantly larger, while the spectral resolution is identical to that

of a slit spectrometer. If the horizontal distribution of light incident on the aperture

code is non-uniform, then the spectrometer behaves as a 1D spectral imager. This

characteristic can be used to extend the utility of a coded aperture spectrometer to

pushbroom 2D spectral imaging by scanning the instrument perpendicular to the

direction of dispersion [16]. Note that this is in contrast to a slit-based pushbroom
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spectral imager, which scans parallel to the direction of dispersion.

Tomographic spectral imager

More computationally intensive solutions to the light collection problem have also

been developed. Mooney et al. [17] developed a direct-view design that maximizes

the light gathering efficiency by not requiring any field stop (no SLM or slit etc.).

With this design, the source is viewed through a rotating dispersive element. Mea-

surements are taken at different rotation angles. These measurements are projec-

tive measurements through the datacube that can be tomographically reconstructed.

While the light gathering efficiency of such an instrument is high, the geometry of

the system limits the range of angles over which projections are made. Based on the

Fourier slice theorem, this results in an unsampled conical region in Fourier space

(the missing cone problem) [18].

2.2.2 Interferometric spectral imaging

A Fourier transform spectral imager uses a Michelson interferometer in the pupil

plane of a conventional imaging system. In a Michelson interferometer, input light

from an aperture is collimated using a lens and split into two paths. Both paths

are retro-reflected on to a detector using flat mirrors. Scanning one of the two

mirrors in the interferometer varies the path difference between the two arms of the

interferometer and produces an interferogram at each pixel on the detector array as a

function of the temporally scanned path difference. Performing a Fourier transform

of interferograms produces a datacube from the recorded interferogram cube [19].

Such an instrument is useful in low light applications, as it provides higher signal to

noise ratios than the spectrally filtered imagers [19]. The main disadvantage of such

an instrument is that it requires moving parts.
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2.2.3 Tunable filter spectral imaging

Examples of spectrally filtered imagers include cameras filtered by acousto-optic

tunable filters (AOTFs) and liquid crystal tunable filters (LCTFs). AOTFs are bire-

fringent crystals that provide an electronically tunable spectral notch passband in

response to an applied acoustic field. In addition, AOTFs allow the simultaneous

tuning of multiple spectral passbands, allowing multiplex measurements of the dat-

acube if desired. LCTFs also provide a notch passband that can be controlled by

incorporating liquid crystal waveplate retarders within the birefringent filter. Both

types of filters provide wavelength selection and tunability. AOTFs provide higher

transmittance and higher free spectral range than LCTFs at comparable spectral

bandpass, but do not provide the imaging quality that LCTFs do [20]. Spectral

imagers using either type of filter have the advantage of requiring no moving parts.

However, they have the drawback that the spectra for a given pixel are not taken si-

multaneously. This can result in pixel-to-pixel spectral mixing if the scene is moving

while the spectra are being scanned. The output of one image of a filtered camera

is a plate, b, as shown in figure 2.2, whose thickness is determined by the spectral

bandpass of each filter in the filtered camera.

2.2.4 Snapshot spectral imaging

While all of the spectral imager designs discussed so far involve temporal scanning

to measure all the voxels in the datacube, examples of snapshot instruments have

also been developed. The elimination of any sort of scanning to capture a datacube

is motivated by two major factors. First, the absence of moving parts ensures that

the system layout of the spectral imager becomes fixed, which results in a rugged

design. Second, instantaneous collection of both spectral and spatial information of

the object space means that dynamic events within the field of view can be captured

and is limited only by the exposure time of each frame [13]. Applications of a snap-
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shot spectral imager include observation of fluorescent probes that track fast (0.01-1

s) cellular metabolic processes under a microscope [21], surveillance of fast moving

space objects [22], and snapshot spectral imaging of the retina that is unaffected by

patient motion [23].

One trend in snapshot spectral imaging is to rely solely on optical hardware to

redirect voxels of the datacube to different pixels on a detector array and requires

negligible post-processing for datacube recovery. An example of a system applying

this approach is the 4D imaging spectrometer [24] that uses reformatting fiber optics

to map a 2D image of the scene to a linear array that serves as an input slit to an

imaging spectrometer. As another example, Harvey et al. [19] use a Lyot filter that

simultaneously achieves spectral filtering and image replication using a sequence of

polarizing beam splitters. Filtering is performed without any light rejection. The

detector placed behind the Lyot filter captures multiple narrow-band non-overlapping

images of the scene on a single detector array. This design is limited by the number

of spectral channels that can be measured while preserving the property of non-

overlapping images on a single detector array. As another example, an image slicing

spectrometer [25] is a system that uses a custom-made mirror consisting of long strips

with different tilts to slice and redirect the image of the scene onto non-overlapping

zones on the detector array. A prism disperses the sliced image zones into their

neighboring void regions. Since this approach establishes an isomorphic mapping

between voxels in the datacube and the pixels on the detector array, simple image

remapping is sufficient to recover a datacube. Potential limitations include the need

for an expensive large format charge-coupled device (CCD), an array of reimaging

lenses and custom fabrication of the image slicing mirror assembly.

Another trend is to rely on optical hardware to record a 2D coded projection of

the 3D datacube on the detector and using post-processing of the measurements to

recover the 3D datacube. A computed tomography imaging spectrometer (CTIS) [26]
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is a static, snapshot instrument that captures multiple projections of the datacube

at once. Nearly all the collected light is measured on the detector [23]. However, the

instrument requires a large focal plane area and also suffers from the missing cone

problem [27]. The missing cone problem for the CTIS implies that it is difficult to

reconstruct datacubes that contain little spatial structure and sharp spectral features

[28].

Another strategy that leverages both hardware and software while reducing the

size of a snapshot spectral imager involves using pixelated spectral filters placed

immediately in front of the detector array. Different linear combinations of the

spectral channels are captured at each pixel. The simplest example of a pixel filtering

system is a 3-channel red-green-blue (RGB) imager with RGB filters distributed in

a Bayer pattern. Simple algorithms can be used to interpolate the RGB datacube

from the Bayer sampled measurements. This strategy of integrating pixel-level filters

with detectors may also be extended to more than three colors along with more

sophisticated algorithms for datacube recovery [1].

2.3 Coded aperture snapshot spectral imaging

Coded apertures can provide an alternative, programmable means of pixel-level fil-

tering. Coded aperture snapshot spectral imagers (CASSI) utilize combinations of

coded apertures and one or more dispersive elements to modulate the optical field

from a scene [1]. A 2D detector array captures a single multiplexed projection of

the full 3D datacube. The nature of the multiplexing performed depends on the

relative position of the coded aperture(s) and the dispersive element(s) within the

instruments. The number of measurements made is significantly smaller than the

number of voxels in the datacube that are eventually reconstructed. Diverse signal

processing techniques, which will be discussed in this chapter and in chapter 3, may

be used to reconstruct the datacube. Due to the modulation of the datacube using
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a coded aperture, CASSI systems do not measure certain voxels. Thus, unlike the

localized missing cone of information in the Fourier domain of a CTIS datacube, the

missing information in the Fourier domain representation of the CASSI datacubes is

distributed throughout the volume.

The dual disperser CASSI design [3] consists of two sequentially dispersive arms

arranged in opposition so that the dispersion in the second arm cancels the dis-

persion introduced by the first arm. A coded aperture is placed between the two

arms. Such a design applies spatially-varying, spectral filter functions with narrow

features similar to Bayer pattern RGB sampling [1]. Through these filters, the detec-

tor measures a projective measurement of the datacube in the spectral domain. In

essence, this design sacrifices spatial information to gain spectral information about

the datacube. Spectral information from each spatial location in the scene is mul-

tiplexed over a localized region on the detector. A useful property of the design is

that the measurement resembles the scene, making it easy to focus the camera on

objects in the scene. This also makes it possible to perform local block processing

of the detector data to generate smaller datacubes of subsets of the entire scene.

Recovery of the datacube from the detector measurement may be performed using

an expectation-maximization method combined with a wavelet denoising technique

designed for spectral images.

In his thesis, Portnoy [29] describes a long-wave IR (LWIR) CASSI design using

two coded aperture and two prisms that could selectively measure narrow spectral

bands at periodic spatial locations. The features on each coded aperture and the

dispersion introduced by each prism are designed so that each detector pixel measures

exactly one spectral channel at each location in the scene. The spectral channels are

not multiplexed on the detector array. Since the spectral channels from a given

location in the scene are split across multiple pixels and measured individually, not

every spatial location can be measured. Reconstruction of the full datacube requires
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interpolation of the measured data in a process that parallels the reconstruction of

RGB images from a sensor with a Bayer filter.

The examples of the dual disperser and LWIR CASSI demonstrate the flexibility

provided by the use of coded apertures and other inexpensive optical components

for designing novel snapshot spectral imaging architectures. The remainder of this

chapter and chapters 3 and 4 focus on the design, characterization and analysis of

another CASSI design.

2.4 CASSI - a single disperser design

The coded aperture spectrometer described earlier can be modified with the intro-

duction of a front objective lens and by replacing the grating with a prism to produce

a CASSI using just a single dispersive element. A basic schematic of the instrument

is shown in figure 2.3. A standard imaging lens is used to form an image of a remote

scene in the plane of the coded aperture. The coded aperture modulates the spatial

information over all wavelengths in the datacube with the coded pattern. Imaging

the datacube from this plane through the dispersive element results in multiple im-

ages of the code-modulated scene at wavelength-dependent locations on the detector

array. The intensity pattern measured on the detector contains a coded mixture of

spatial and spectral information about the scene. Figure 2.4 demonstrates the three

step sensing process on the datacube.

Like the dual disperser, the single disperser does not directly measure each voxel

in the desired 3D datacube. The instrument disperses spectral information from each

spatial location in the scene over a certain area across the detector. Thus, spatial

and spectral information from the scene is multiplexed on the detector pixels. Also,

raw measurement of a scene on the detector rarely reveals spatial structure of the

scene and makes block processing more challenging. The single disperser requires

fewer optical elements than the dual disperser, which makes optical alignment of
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Figure 2.3: Schematic of a Coded Aperture Snapshot Spectral Imager (CASSI)
using a single dispersive element. The imaging optics image the scene on to a 2D
coded aperture. The relay optics relay the image from the plane of the coded aperture
to a 2D detector through the dispersive element.
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Figure 2.4: The CASSI three step sensing process on the datacube representing
the spatio-spectral information in the scene. First, the coded aperture spatially
modulates each spectral slice of the datacube. Then the dispersive element shears this
spatially modulated datacube along one spatial axis. Finally, the spatially modulated
and sheared datacube is integrated along the wavelength axis by a 2D detector array.

this design simpler.

The single disperser design also avoids the CTIS constraint of measuring multiple

projections of the datacube and using a large focal plane array. Essentially, measuring

just one spectrally-dispersed projection of the datacube that is spatially modulated

by the aperture code over all wavelengths can be used to estimate the entire datacube.

The remainder of this chapter and chapter 3 will describe the design, charac-
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terization and experimental results from single disperser CASSI prototypes. These

instruments shall henceforth be referred to simply as CASSI.

2.5 CASSI system model

This section mathematically describes the CASSI sensing process. The reader may

refer back to figures 2.3 and 2.4 to observe how the model describes the propagation

of light through the instrument. The power spectral density of the image of the

scene formed by the objective lens at the plane of the aperture code is denoted as

f0(x
′′, y′′, λ). The power spectral density immediately after the coded aperture is

f1(x
′, y′, λ) = T (x′, y′) f0(x

′, y′, λ), (2.1)

where T (x, y) is the transmission pattern printed on the coded aperture. The pattern

is designed as an array of square features, with each feature being composed of 2× 2

elements. Each element has the same size as that of a detector pixel, ∆. Let ti,j

represent the binary value at the (i, j)th element, with a 1 representing a transmissive

code element and a 0 representing an opaque code element. Then, T (x, y) can be

described as

T (x, y) =
∑

i,j

ti,j τ(i, j; x, y), (2.2)

with

τ(i, j; x, y) = rect
(

x

∆
− i,

y

∆
− j

)
.

After further propagation through relay optics and the dispersive element, the power

spectral density at the detector plane is

f2(x, y, λ) =
∫∫

f1(x
′, y′, λ) h(x′ − γ(λ)− x, y′ − y, λ) dx′ dy′

=
∫∫

T (x′, y′) f0(x
′, y′, λ) h(x′ − γ(λ)− x, y′ − y, λ) dx′ dy′, (2.3)
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where h(x′−x, y′−y, λ) assumes a shift-invariant optical impulse response of the relay

optics and dispersive element. γ(λ) describes the dispersion induced by the dispersive

element. The detector array measures the intensity of incident light rather than the

spectral density, which implies that the image on the detector array is the result of

integrating the datacube along the wavelength axis over the spectral range Λ. In

addition, the detector array is spatially pixelated by the pixel function

p(m,n; x, y) = rect
(

x

∆
−m,

y

∆
− n

)
,

with ∆ denoting the side length of the pixel in each spatial dimension. As a result,

the measurement at the (m,n)th pixel is

gn,m =
∫

Λ

∫∫
f2(x, y, λ) p(m,n; x, y) dx dy dλ

=
∫

Λ

∫∫∫∫
T (x′, y′) f0(x

′, y′, λ) h(x′ − γ(λ)− x, y′ − y, λ)

× p(m,n; x, y) dx′ dy′ dx dy dλ

=
∫

Λ

∫∫∫∫ ∑

i,j

ti,j rect

(
x′

∆
− i,

y′

∆
− j

)
f0(x

′, y′, λ) h(x′ − γ(λ)− x, y′ − y, λ)

× rect
(

x

∆
−m,

y

∆
− n

)
dx′ dy′ dx dy dλ

=
∑

i,j

ti,j Ωi,j,m,n. (2.4)

Since CASSI images the aperture code onto the CCD along the y axis, Ωi,j,m,n =

Ωi,n,m,nδj,n, so that

gn,m =
∑

i,j

ti,j Ωi,j,m,n

=
∑

i

ti,n Ωi,n,m. (2.5)
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Here

Ωi,n,m =
∫

Λ

∫∫∫∫
rect

(
x′

∆
− i,

y′

∆
− n

)
rect

(
x

∆
−m,

y

∆
− n

)

× f0(x
′, y′, λ) h(x′ − γ(λ)− x, y′ − y, λ) dx′ dy′ dx dy dλ. (2.6)

Letting x′′ = x′ − i∆ and y′′ = y′ − n∆,

Ωi,n,m =
∫

Λ

∫∫∫∫
rect

(
x′′

∆
,
y′′

∆

)
rect

(
x

∆
−m,

y

∆
− n

)

× f0(x
′′ + i∆, y′′ + n∆, λ) h(x′′ + i∆− γ(λ)− x, y′′ + n∆− y, λ)

× dx′′ dy′′ dx dy dλ. (2.7)

Letting x′′′ = x−m∆ and y′′′ = y − n∆,

Ωi,n,m =
∫

Λ

∫∫∫∫
rect

(
x′′

∆
,
y′′

∆

)
rect

(
x′′′

∆
,
y′′′

∆

)

× f0(x
′′ + i∆, y′′ + n∆, λ) h(x′′ + i∆− γ(λ)− x′′′ −m∆, y′′ − y′′′, λ)

× dx′′ dy′′ dx′′′ dy′′′ dλ. (2.8)

Assuming that the dispersion by the dispersive element is linear over the spectral

range of the system so that γ(λ) = αλ, and letting λ′ = λ +
(

m∆−i∆
α

)
,

Ωi,n,m =
∫

Λ

∫∫∫∫
dx′′dy′′ dx′′′dy′′′ dλ′ rect

(
x′′

∆
,
y′′

∆

)
rect

(
x′′′

∆
,
y′′′

∆

)

× f0

(
x′′ + i∆, y′′ + n∆, λ′ −

(
m∆− i∆

α

))

×h
(
x′′ − x′′′ − αλ′, y′′ − y′′′, λ′ −

(
m∆− i∆

α

))
. (2.9)
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Defining a discrete version of the datacube as

fi,n,m =
∫

Λ

∫∫∫∫
rect

(
x′′

∆
,
y′′

∆

)
rect

(
x′′′

∆
,
y′′′

∆

)

× f0

(
x′′ + i∆, y′′ + n∆, λ′ − m∆

α

)

×h
(
x′′ − x′′′ − αλ′, y′′ − y′′′, λ′ − m∆

α

)

× dx′′ dy′′ dx′′′ dy′′′ dλ′, (2.10)

so that fi,n,m−i = Ωi,n,m. As a result, the measurement at the (m,n)th pixel is

gn,m =
∑

i

ti,n fi,n,m−i

=
∑

k

tm−k,n fm−k,n,k. (2.11)

This equation provides a simple interpretation of the CASSI measurement of

the discrete datacube. First, each spectral channel of the discrete 3D datacube

is spatially modulated by an element-wise multiplication with the aperture code.

This spatially modulated datacube is then sheared by passing through the dispersive

element, which results in a shift in the first index. Finally, this spatially modulated

and sheared datacube is integrated over the wavelength dimension to produce the 2D

array of measurements on the detector. This measurement can also be interpreted

as an operation on a sheared datacube f ′m,n,k = fm−k,n,k so that

gn,m =
∑

k

tm−k,n f ′m,n,k.

If the 2D array of detector measurements is represented as a vector g, this expression

can also be written as the matrix-vector product

g = Φf. (2.12)
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The matrix Φ in equation (2.12) is the sensing matrix that represents CASSI’s op-

eration on the discretized datacube. It is a non-negative matrix that maps voxels of

the 3D sampled and sheared datacube to pixels of the detector array. As the num-

ber of pixels on the detector used for the measurement is smaller than the number

of voxels in the discrete datacube, this measurement equation is under-determined.

Numerical estimation methods must use the detector measurements, g, and a model

of the sensing matrix, Φ, to recover an estimate of the discrete datacube, f .

Equation (2.10) can be interpreted as the object datacube imaged on to the aper-

ture code, f0(x, y, λ), being filtered by the CASSI system transfer function, which

ultimately determines the spatial and spectral resolution of the datacube estimate.

The spatial resolution of the reconstructed datacube depends on (i) the point spread

function (PSF), h(x′, x, y′, y, λ), of the relay optics and dispersive element, (ii) the

pixel size, ∆, (iii) the size of a feature on the coded aperture, and (iv) numerical esti-

mation effects. However, ignoring numerical estimation effects, the spatial resolution

is approximately given by the width and height of the smallest feature on the coded

aperture. Using larger features on the coded aperture will produce larger transmis-

sive areas, but will also rely more heavily on numerical estimation to estimate the

spatial content of objects in the datacube that are being imaged on to opaque areas

of the coded aperture.

The spectral resolution of the reconstructed datacube is the separation between

spectral channels in the reconstructed datacube (in nm). The spectral resolution

of the reconstructed datacube depends on (i) the amount of dispersion induced by

the dispersive element, (ii) the PSF, (iii) the pixel size, (iv) the size of the smallest

feature on the coded aperture, and (v) numerical estimation effects. The spectral

resolution will be limited by the smallest feature size on the coded aperture. If the

smallest code feature is assumed to be 2 detector pixels wide and the dispersion is in

the horizontal direction, then imaging two adjacent monochromatic point sources of
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close but distinct wavelengths on to the smallest code feature can potentially result

in the spatio-spectral mapping of both point sources to the same pixel on the CCD.

Thus, the spectral resolution of the system is determined by the amount of dispersion

(in nm) across the 2 detector pixels. Furthermore, if the dispersion is non-linear, the

spectral resolution of CASSI varies as a function of wavelength.

2.6 CASSI prototype 1 system description

To experimentally verify the CASSI spectral imaging concept, a proof-of-concept

prototype as shown in figure 2.5 was constructed. The prototype consisted of (i) a

coded aperture that is lithographically patterned as a chrome coating on a quartz

mask, (ii) three lenses from Schneider Optics Inc. with an F/# of 1.4 and a focal

length of 22.5 mm, (iii) an equilateral prism from Edmund Optics Inc. as a dispersive

element, (iv) a CCD detector array from Photometrics with 1040× 1392 pixels that

are 4.65 µm square each, and (v) a 500 − 620 nm bandpass filter that was placed

in front of the imaging lens to remove the impact of stray light on the experimental

measurements. Matlab routines were written to control and capture data on the

CCD.

The aperture code used in all the experiments was based on an order 192 S-matrix

code [30], with features that were four CCD pixels wide and four CCD pixels tall,

and two completely closed rows of CCD pixels added between the code rows. The

columns of the original S-matrix code were shuffled in a random but repeatable way.

The code was originally designed for use with a coded aperture spectrometer [14, 15]

and was not optimized for CASSI.

An equilateral prism was used instead of a grating because the grating produces

overlapping diffractive orders while the prism only refracts the wavelengths into

one order. Prisms also have large transmission efficiencies [31]. Given the system

geometry and the low dispersion of the equilateral prism, the number of CCD columns
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Figure 2.5: Experimental CASSI prototype. The prototype consists of (i) a coded
aperture, lithographically patterned as a chrome coating on a quartz mask, (ii) three
lenses from Schneider Optics Inc. with an F/# of 1.4 and a focal length of 22.5 mm,
(iii) an equilateral prism from Edmund Optics Inc. as a dispersive element, (iv) a
CCD detector array from Photometrics with 1040× 1392 pixels that are 4.65× 4.65
(µm)2 each, and (v) a 500 − 620 nm bandpass filter that is placed in front of the
imaging lens to remove the impact of stray light on the experimental measurements.

illuminated when white light was allowed to pass through the system was less than

half the width of the CCD array.

2.7 GPSR numerical estimation method for CASSI

As mentioned previously, CASSI measures a 2D, spatio-spectral multiplexed projec-

tion of the 3D datacube representing the scene. Equation (2.12) is used to mathemat-

ically describe this compressed measurement process and it must be solved (inverted)

to produce an estimate of the datacube, f . Since the number of detector pixels in the

measurement g is significantly smaller than the number of voxels in the datacube,

the measurement equation is under-determined. Thus, any numerical estimation

method used to solve this equation to reconstruct the datacube must exploit proper-

ties or structures in the datacube known a priori that help to constrain the estimated
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datacube to a certain solution space.

This section describes the first of three numerical estimation methods used to

reconstruct a datacube from a snapshot CASSI measurement. It relies on the as-

sumption that objects in the scene have piecewise smooth spatial structure, making

the datacube compressible in the wavelet basis. Thus, it is very difficult to recon-

struct a datacube of a scene that does not have any spatial structure, for example,

a scene consisting of a random, dense, spatial distribution of point sources.

The datacube and its wavelet decomposition are related through the mathemat-

ical expression

f = Ψb, (2.13)

where b is a vector composed of the 2D wavelet transform coefficients for each spec-

tral band concatenated to form one vector, and Ψ denotes the inverse 2D redundant

wavelet transform applied to each spectral band to form the datacube f . Conse-

quently, the CASSI detector measurement as described by equation (2.12) can be

represented as

g = ΦΨb + n, (2.14)

where n is additive noise on the detector array.

If the datacube, f , consists of {N ×N} spatial channels with Nλ spectral chan-

nels, it can be represented as a discrete cube with {N × N × Nλ} elements. The

corresponding detector measurements, g, can be represented as a matrix of size

{N × (N + Nλ − 1)}. The number of columns in this matrix reflects the fact that

the detector measurement is a sum of coded images of the scene at each spectral

channel, with each spectral image displaced by a column of pixels from the adjacent

image. If f and g are represented as column vectors, the sensing matrix, Φ, can be

represented as a matrix of size {[N (N + Nλ− 1)]× (N2 Nλ)}. The vector of wavelet

coefficients of the datacube, b, is of size {[N2Nλ (3 log2(N)+1)]×1}. The size of this
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vector reflects the fact that the wavelet decomposition of the datacube is performed

as a 2D undecimated (redundant) transform on each of the q spectral channels. The

undecimated transform is used to ensure that the resulting method is translation

invariant.

An estimate, f̂ , for the datacube can be found by minimizing this objective

function

f̂(τ) = Ψ
[
argmin

b

{
1

2
||g − ΦΨb||22 + τ ||b||1

}]
. (2.15)

The solution to this convex unconstrained optimization problem is found by using a

Matlab implementation of the iterative Gradient Projection for Sparse Reconstruc-

tion (GPSR) method developed by Figueiredo et al. [32], with Matlab code available

online at http://www.lx.it.pt/∼mtf/GPSR/. Inputs to the method are the vector of

CASSI detector measurements, g, and a model of the sensing matrix, Φ, either as a

matrix or as a Matlab function. A functional form is required when the number of

detector measurements and the number of voxels in the datacube to be estimated are

large enough to make it impossible to store the matrix Φ in memory. The quality of

the model of the sensing matrix depends on how well it is experimentally calibrated

and determines the quality of the estimated datacube.

The GPSR method searches for a datacube with a sparse representation in the

wavelet basis; i.e. a b which contains mostly zeros and a relatively small number of

large coefficients. The first term in equation (2.15) minimizes the `2 error between

the measurements modeled from the estimate and the true measurement. The second

term is a penalty term that encourages sparsity of the reconstruction in the wavelet

domain and controls the extent to which spatially piecewise smooth estimates are

favored. In this formulation, τ is a tuning parameter for the penalty term and higher

values of τ yield sparser estimates of b. The objective function in equation (2.15) is

known to be convex, thus having a unique minimum for a given choice of τ .
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Empirically, while the use of redundant wavelet transform operations result in

better datacube estimates than non-redundant wavelet transform operations, GPSR

iterations with these operations involve large matrices and are significantly slower.

Furthermore, the use of wavelet transforms means that the algorithm must estimate

spatially square datacubes with dimensions that are powers of 2. This means that

the GPSR algorithm does not take advantage of the separable nature of the CASSI

system model along the vertical dimension, which can potentially allow the datacube

estimation problem to be broken down into sub-problems and parallelized.

2.7.1 Simulation results

To test the CASSI sensing concept and the GPSR numerical estimation method, a

Matlab simulation was conducted using a phantom datacube. For the purpose of

the simulation, an approach that would result in easy visualization of the results of

the reconstruction algorithm was desired. A datacube was generated by converting

a 256× 256 RGB color image of peppers, as shown in figure 2.6(a), to a synthesized

datacube with a 15 channel spectrum defined for each pixel in the image.

The spectrum at each pixel corresponded to a weighted sum of RGB filter func-

tions. Using the synthesized datacube, the detector measurement was simulated by

passing the datacube through a simulated system forward model. Optical blurring,

alignment and assembly issues that are typically encountered in the experimental

measurement process were ignored. Figure 2.6(b) shows the random aperture code

used in the measurement process. The feature sizes on the aperture code were as-

sumed to be the same as the size of the detector pixels.

Using the aperture pattern and the simulated detector measurement shown in

figure 2.6(c), the GPSR method was used to produce an estimate of the datacube.

The resulting estimate was converted to a 2D image of RGB vectors using the RGB

filter functions. The RGB image generated from the estimated datacube is shown in
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Figure 2.6: Testing the CASSI concept using through simulation using the GPSR
method. (a) 256 × 256 RGB image used to generate the datacube. (b) 256 × 256
code pattern used for reconstruction of the simulated spectral datacube. The feature
size was the same as the size of the detector pixels. (c) 256× 270 simulated detector
measurement of the spectral datacube. (d) 256 × 256 RGB image generated from
the estimated spectral datacube.

figure 2.6(d). Although there are some spatial artifacts present, this simulation pro-

vided the first demonstration that the new CASSI design could potentially generate

datacube estimates of natural scenes from snapshot CASSI detector measurements.
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2.8 Spectral imaging of a static scene using GPSR

The first CASSI prototype described above was put together with off-the-shelf parts

and not optimized in optical ray tracing software. Consequently, the results presented

in this section are limited to capturing a snapshot spectral image of a relatively simple

scene.

To generate an estimate of the datacube representing the spectral image of the

scene, the GPSR method was provided with two inputs - (i) a snapshot CASSI

detector measurement of the scene and, (ii) an image of the aperture code for its

use in constructing a Matlab functional form of the sensing matrix, Φ. Instead of

using an image of the ideal code pattern that was lithographically printed on the

aperture code substrate, an image of the aperture code was captured on the detector

after uniformly illuminating it with a 543 nm laser. Figure 2.7 shows the detector

measurement of the aperture code pattern after propagation through the optics.

It is important to note that while this approach attempts to capture some of the

optical distortions in the system, it is only a first order, coarse approach to building

a calibrated sensing matrix. A more detailed discussion of CASSI calibration is

presented in chapter 3.

A scene consisting of two ping pong balls was constructed, as shown in figure 2.8.

One ping pong ball was illuminated with a 543 nm laser and a white light source

filtered by a green 560 nm narrow band filter. The other ball was painted red and

illuminated with a white light source.

Figure 2.9 shows the CASSI detector measurement of the scene. Given the low

linear dispersion of the equilateral prism, there is spatio-spectral overlap of the aper-

ture code-modulated images of each ball. The 500−620 nm bandpass filter placed in

front of the imaging lens ensures that only the subset of the datacube corresponding

to this band of wavelengths is measured by the instrument. The spatial features in
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Figure 2.7: Image of the aperture code recorded on the CCD upon illumination
of the entrance aperture with 543 nm light. The recorded pattern is used to build a
functional form of the sensing matrix for the GPSR method to generate an estimate
of the datacube.

Figure 2.8: A scene consisting of a ping pong ball illuminated with a 543 nm green
laser and a white light source filtered by a 560 nm narrow band filter (left), and a
red ping pong ball illuminated with a white light source (right).

the scene include the spatially uniform bodies of each ball and the piecewise smooth

features (eyes and smile) on each ball. The objects are also spectrally sparse, as

illustrated by the fact that the spatial modulation of the aperture code on each ball

in figure 2.9 is mostly visible.

Detector measurements of both the code pattern and the scene were digitally
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Figure 2.9: Detector measurement of the scene consisting of the two ping pong
balls. Given the low linear dispersion of the prism, there is spatio-spectral overlap
of the aperture code-modulated images of each ball.

downsampled by a factor of two in the row and column dimensions prior to perform-

ing a reconstruction of the datacube. This downsampling helped reduce the time

needed by the reconstruction algorithm to generate an estimate of the datacube.

The resulting {128× 128× 28} datacube spanned a spectral range of 540 nm to 640

nm. 100 GPSR iterations required about 14 minutes of runtime on a desktop ma-

chine. The GPSR method was initialized with τ = 0.05, a value that was determined

via trial and error.

Figure 2.10 shows the spatial content of each of 28 wavelength channels between

540 nm to 640 nm. Note that the aperture code modulation on the spatial structure

visible in figure 2.9 has been removed in all the wavelength channels and that the two

balls are spatially separated. To validate the CASSI datacube estimate, point-wise

spectra obtained using a non-imaging spectrometer (Ocean Optics USB2000) were

used as a quantitative reference. Figure 2.11(a) shows the CASSI spectrum at a

point on the green ping pong ball, while figure 2.11(b) shows the CASSI spectrum

at a point on the red ping pong ball. The wavelength axis in the plots had to be

calibrated due to the non-linear dispersion of the prism across the detector. This
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calibration was performed by tracking the position of a point source while varying

its wavelength. Figures 2.11(a) and (b) also show the reference spectra of each ball

for comparison. The two reconstructed CASSI spectra closely match those generated

by the reference spectrometer.

Figure 2.10: Spatial content of the scene in each of 28 spectral channels between
540 nm and 640 nm. The green ball can be seen in channels 3, 4, 5, 6, 7 and 8, while
the red ball can be seen in channels 23, 24 and 25.

As mentioned earlier, the functional form of the sensing matrix used an image

of the aperture code when the system was illuminated by a laser at 543 nm. The

detector response of the imaging system at all other spectral channels was assumed

to be identical and as such did not account for a wavelength dependent, anamorphic

horizontal stretch of the image. The quality of the reconstructed datacube could cer-

tainly be improved if the sensing matrix captured some of the wavelength dependent

optical distortions of the system. Such an approach is discussed further in chapter

3.

An important characteristic of any spectrometer or spectral imager is its spectral
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Figure 2.11: (a) Spectral intensity through a point on the ping pong ball illu-
minated with a 543 nm green laser and a white light source filtered by a 560 nm
narrow band filter. (b) Spectral intensity through a point on the red ping pong ball
illuminated with a white light source. Spectra from an Ocean Optics non-imaging
reference spectrometer are shown for comparison.

resolution. Ignoring optical distortions such as the blurring and the smile distortion,

the spectral resolution of CASSI is limited by the width of the smallest code feature,

which was 4 detector pixels. The spectral resolution of the CASSI experimental pro-

totype was determined by removing the bandpass filter in front of the imaging lens

and illuminating the instrument with a 543 nm and 632 nm laser. The separation

between images of the aperture code resulting from these wavelengths was approxi-

mately 100 pixels, corresponding to an average dispersion of 0.9 nm per pixel. Since

the width of the smallest code feature was 4 detector pixels, the spectral resolution

of the instrument was limited to 3.6 nm/spectral channel. This number represents

the average spectral resolution since the dispersion of a prism is non-linear, which

means that the spectral resolution varies with wavelength.

2.9 Conclusions

This chapter introduced spectral imaging and reviewed diverse spectral imager de-

signs. A new CASSI design was introduced that uses a coded aperture, a single
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dispersive element and a CCD array to measure a 2D spatio-spectral projection of a

3D discrete datacube representing the scene. The GPSR method was used to numer-

ically estimate the datacube by assuming spatial sparsity of the scene in a wavelet

basis.

A first generation prototype was used to provide experimental validation of the

compressive spectral imaging concept. While the spatial resolution was only modest,

it was enough to allow the identification of two distinct objects in the reconstructed

scene. The spectral signatures of the scene as measured by the experimental proto-

type compared well with a reference non-imaging spectrometer. The next chapter

will focus on the design of a custom-designed CASSI prototype with better image

quality, more rigorous system calibration and testing alternative methods for numer-

ically estimating datacubes from snapshot CASSI measurements.

37



3

Spectral imaging of a dynamic scene using CASSI

The first generation CASSI prototype discussed in the previous chapter had limi-

tations, both in terms of its hardware as well as the software processing used to

numerically estimate a datacube from a snapshot detector measurement. Optically,

the instrument had a limited field of view because of severe vignetting at the edges

of the field. Only a small region of the full aperture code could be imaged onto the

detector without severe aberrations. There was also a severe wavelength dependent

anamorphic distortion of the system response. Algorithmically, the GPSR numerical

estimation method was computationally intensive.

With these limitations in mind, a second generation CASSI prototype was con-

ceived and developed. The focus of this chapter is the design of this new custom-

designed prototype and the use of its snapshot capability for spectral imaging of a

dynamically changing scene at video rate. Section 3.1 describes the optical design,

including the initial Zemax modeling of the prototype. Zemax is an optical ray

tracing software that allows optimization of the shape and locations of optical sur-

faces based on the desired characteristics of the optical design. Section 3.2 describes

the process of calibrating CASSI to provide a datacube estimation algorithm with
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a system-specific model that accounts for additional factors that were absent in the

mathematical model discussed in section 2.5 and were ignored in the previous chap-

ter. Section 3.3 describes how the Two-step Iterative Shrinkage and Thresholding

algorithm can be used to reconstruct a datacube from a CASSI measurement and

demonstrates its use in recovering a spectral image of a static scene. Section 3.4

describes the Nested Adaptive Refinement Estimation method, which effectively uti-

lizes the data gathered during the CASSI calibration process to build system-specific

sensing matrices at multiple, nested scales and solves all of them to estimate the

datacube. Section 3.5 describes the use of this algorithm to reconstruct a spectral

image of the static scene, as well as a spectral image video of a dynamically changing

scene.

3.1 CASSI prototype 2

The first subsection in this section describes all of the components used to construct

the second generation CASSI prototype. The second subsection describes the optical

design work conducted in Zemax to test the feasibility of the design.

3.1.1 System description

The second generation CASSI prototype was designed to operate over the visible

spectrum between 450 and 650 nm. The final design, as shown in figure 3.1(a),

consisted of (i) an objective lens (Computar F/1.4, 16 mm lens), (ii) a coded aperture,

(iii) a bandpass filter (Omega Optical), (iv) an F/8 relay lens (Edmund Optics stock

part C45762), (v) a double Amici prism as a dispersive element, and (vi) a 2D CCD

detector array. The CCD detector (AVT Marlin, Allied Vision Technologies) was an

8-bit camera with 9.9 × 9.9 (µm)2 pixels and had its strongest response at 500 nm,

with a relative response greater than 0.7 between 450− 650 nm.

Spectral dispersion was introduced using a custom designed double Amici prism
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Figure 3.1: (a) Schematic of the direct view CASSI prototype. The prototype con-
sists of (i) an objective lens (Computar F/1.4, 16 mm lens), (ii) a coded aperture,
(iii) a bandpass filter, (iv) an F/8 relay lens (Edmund Optics part C45762), (v) a
double Amici prism as a dispersive element, and (vi) a 2D CCD detector array (AVT
Marlin with 9.9× 9.9 (µm)2 pixels). (b) Ray bundles at different wavelengths, illus-
trated by the red, green and blue lines, are coincident when they first hit the double
Amici prism but dispersed to different points on the CCD after passing through the
prism.

that was made up of three prisms cemented together. Repeated use of Snell’s law

at each prism interface was used to design the double Amici prism to ensure that

rays corresponding to the center wavelength would pass through the prism undevi-

ated and this process is briefly reviewed here. Referring to figure 3.2, consider a

monochromatic ray of light that is parallel to the optical axis and incident on the

front face of the double Amici prism at an angle θ1 = φ1. The index of refraction

of air n1 = 1. The indices of refraction of each glass, n2 and n3, are well known

functions of wavelength. After entering the first prism, the ray gets refracted at an
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Figure 3.2: Diagram showing relevant variables when designing the double Am-
ici prism. Upon picking the desired glass types with indices of refraction n1 and
n2 to provide sufficient dispersion, angles φ1 and φ2 must be selected so that rays
corresponding to the center wavelength pass through the prism undeviated.

angle θ2, which is determined by Snell’s Law

θ2 = sin−1
(

n1

n2

sin(θ1)
)

.

After traveling through the first prism, the ray is incident on the second prism at an

angle

θ3 = 90o − (180o − (φ1 + φ2)− (90− θ2)).

At the interface between the first and second prism, the ray is refracted at an angle

θ4. This angle of refraction is determined by Snell’s Law and is given by

θ4 = sin−1
(

n2

n3

sin(θ3)
)

.

After traveling through the second prism, the ray is incident on the third prism at

an angle

θ5 = 90o − (180o − (180o − (90o − φ2)− (90o − φ2))− (90o − θ4)).

At the interface between the second and third prism, the ray is refracted at an angle

θ6. This angle of refraction is determined by Snell’s Law and is given by

θ6 = sin−1
(

n3

n2

sin(θ5)
)

.
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After traveling through the third prism, the ray is incident on the last surface of the

prism at an angle

θ7 = 90o − (180o − (φ1 + φ2)− (90o − θ6)).

At the interface between the third prism and the air, the ray is refracted at an angle

θ8 determined by Snell’s Law and is given by

θ8 = sin−1
(

n2

n1

sin(θ7)
)

.

Upon picking the desired glass types, φ1 and φ2 must be selected so that rays cor-

responding to the center wavelength pass through the prism undeviated. The two

angles are adjusted until the following conditions are satisfied

θ4 = φ2 (3.1a)

θ8 = θ1. (3.1b)

At the end of this analysis, SK2, a medium dispersion crown glass (low-medium

index of refraction (nd) and Abbe number (vd) on the glass map as shown in figure

3.3), was selected as the glass type of the the first and third prisms of the double

Amici prism. The second prism was made of SF4, a higher dispersion flint glass

(high nd and vd on the glass map). Based on the indices of refraction of each prism

and the conditions specified in equation (3.1), the interior angles of these prisms (see

figure 3.1(b)) were chosen to ensure that rays corresponding to the center wavelength

of 550 nm would pass through the prism undeviated. These angles were refined

after optimization of the overall CASSI design in Zemax. Figure 3.1(b) shows a

polychromatic, on-axis ray bundle passing through the custom-designed double Amici

prism. Rays corresponding to adjacent wavelengths dispersed to either side of the

optical axis, resulting in a direct view prism. This configuration was useful because

all the components of the system could be placed in a line, which made system
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Figure 3.3: Schott glass map obtained from www.us.schott.com. The first and
third prisms in the double Amici prism are made of a medium dispersion crown glass
while the second prism is made of a high dispersion flint glass.

alignment much easier than that of the previous prototype discussed in chapter

2. Wavelength dependent anamorphic distortion was minimized because the path

lengths of all wavelengths from the prism to the CCD were similar. Finally, the

total amount of dispersion created by the double Amici prism could be adjusted by

translating the prism between the relay lens and the detector array along the optical

axis. This translation induced negligible change in the wavelength dependent PSF

at the detector array. The prism assembly was fabricated by Shanghai Optics.

A relay lens (Edmund Optics stock part C45762) relayed the image from the plane

of the coded aperture to the CCD. The bandpass filter (Omega Optical) limited the

spectral range of the system to 450 − 650 nm. The coded aperture was lithograph-

ically patterned as a chrome coating on a quartz substrate, with an anti-reflective

coating on both sides designed for the 400 − 700 nm range. The code used in all

the experiments described in this chapter was a random 256 × 248 element binary

pattern as shown in figure 3.4, with the smallest code feature being 2×2 CCD pixels

(19.8 µm on each side). This limited the spatial size of the reconstructed datacube

to a maximum of 256× 248 spatial elements. The objective lens (Computar 16 mm
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Figure 3.4: The aperture code used in the second CASSI prototype was a random
256× 248 binary element pattern, with the smallest feature being 2× 2 CCD pixels
(19.8 µm on each side). The cross on the top of the code is used for system alignment
and system calibration.

lens with an F/# of 1.4) imaged the scene on to the plane of the coded aperture.

All of these system components were mounted on a metal rod/cage system, which

served as the backbone of the system in front of the CCD. The coded aperture and

the double Amici prism were placed inside rotation mounts that could be adjusted to

ensure proper horizontal alignment of the image of the coded aperture and to ensure

horizontal dispersion across the CCD.

3.1.2 Zemax modeling

Zemax was used to model and optimize the design and layout of the imaging optics

and prism. These components included the coded aperture, the F/8 relay lens, the

double Amici prism and the CCD, in that order. As part of the optimization of

the design, spot diagrams, modulation transfer function plots and geometric image

analysis were used to determine if the design was satisfactory. The relay lens was
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not designed for use with any other optical elements. However, the prescription of

the lens was modified with the introduction of the double Amici prism between the

relay lens and the CCD, as shown in figure 3.1(a). After optimization of the design,

the relay lens was positioned 39.3 mm from the coded aperture plane and 43.8 mm

from the CCD. The overall design had a paraxial magnification of −1 and a working

F/# of 8.04.

Spot diagrams

Figures 3.5, 3.6 and 3.7 show the spot diagrams of rays corresponding to wavelengths

of 450, 550 and 650 nm respectively from 9 different field points on the coded aper-

ture plane mapping to 9 different points on the detector array. In this particular

configuration, the front of the prism was located 8.6 mm from the relay lens and the

back of the prism was located 23.2 mm from the CCD. The RMS radii of the spots

ranged between 7− 9 µm at 450 nm, 3− 8 µm at 550 nm, and 3− 8 µm at 650 nm.

The Airy disk is the black circle at each field point. The radius of this disk is given

by 1.22λF/#, where λ is the wavelength and F/# is the F-number of the system.

The radius of the Airy disk ranged between 4.4 − 6.4 µm over 450 − 650 nm. The

system was not diffraction limited, as the spot sizes are larger than the size of the

Airy disk, a result of the double Amici prism perturbing the imaging properties of

the relay lens.

The system performance would have been ideal if all the spots were inside the

Airy disk, which would mean that the system is diffraction limited. Being diffraction

limited implies that the PSF of the imaging system is limited by the physical effects

of diffraction rather than imperfections in the design. The performance of this con-

figuration was clearly not ideal. This can be explained by the fact that rays from

the relay lens passed through the direct view double Amici prism before hitting the

detector, even though the relay lens was designed to relay the image from one image
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Figure 3.5: Zemax spot diagrams of 450 nm rays at 9 different field points at the
detector. The RMS radii of the spots range between 7− 9 µm.

Figure 3.6: Zemax spot diagrams of 550 nm rays at 9 different field points at the
detector. The RMS radii of the spots range between 3− 8 µm.
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Figure 3.7: Zemax spot diagrams of 650 nm rays at 9 different field points at the
detector. The RMS radii of the spots range between 3− 8 µm.

plane (in this case, the aperture code plane) to another image plane (in this case,

the detector plane). The introduction of the extra glass surfaces between the relay

lens and the detector led to the introduction of the aberrations in the form of the

larger spot sizes.

Modulation transfer function (MTF) plots

Figure 3.8 shows the diffraction modulation transfer function data for all the field

positions being simulated. This tells us how well spatial modulation on the object

(in this case, the aperture code) is transferred to an image by the optics.

It was important to verify that even with relatively large spot sizes, there would

be sufficient contrast between images of the open and closed mask features. Since the

smallest mask feature was 2 detector pixels wide (19.6 µm = 0.0196 mm), the highest

spatial frequency that needed to be resolved properly is given by 1
2×0.0196

= 25.5 cycles
mm

.

The lowest value of the MTF at this spatial frequency is approximately 0.45, which
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Figure 3.8: Zemax modulation transfer function (MTF) plots at each of the 9 field
points. The information provided by these plots can be used to determine whether
the contrast ratio between the open and closed features of the aperture code once
they are imaged on to the detector array is sufficient.

indicates the contrast ratio between open and closed features on the aperture code

once they are imaged on the detector. This ratio was large enough to distinguish the

code features and as will be shown later, it was sufficient to recover a datacube in a

simulation.

Geometric image analysis

Figure 3.9 demonstrates the imaging of three squares emitting at three different

wavelengths (486 (blue), 587 (green) and 656 nm (red)) through the instrument.

Figure 3.9(a) shows an image of the three squares after they were modulated by the

aperture code. Figure 3.9(b) shows simulated detector plane images of the three

squares after they are dispersed by the double Amici prism.

The effect of the non-diffraction limited PSF is noticeable as blurring around all
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(a) (b)

Figure 3.9: (a) Aperture code modulated image of the scene consisting of three
squares radiating at 486 nm, 587 nm and 656 nm. (b) Zemax simulated images of
the three squares after they are imaged through the double Amici prism on to the
detector.

the mask features superimposed on the three squares. The effect of the dispersion by

the prism is also noticeable, with the square emitting at 587 nm (close to the center

wavelength of 550 nm) being only slightly displaced from its original location, while

the two other squares are dispersed to either side of the 587 nm square.

Simulation after Zemax modeling

Figure 3.10(a) shows a 256 × 256 pixel random aperture code that was designed in

Matlab, with each aperture code feature being 2 pixels wide. Reconstruction of the

peppers image from a reconstructed datacube using this aperture code is shown in

figure 3.10(b). The reconstruction was performed using 200 iterations of the GPSR

algorithm. The system’s response to a fully illuminated aperture code at 587 nm was

modeled in Zemax and is shown in figure 3.10(c). The responses of the instrument at

the other wavelengths in terms of blurring appeared to be virtually identical to that

at 587 nm. There also did not appear to be any noticeable wavelength dependent
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anamorphic distortion. Thus, the response at 587 nm was assumed to be invariant

with wavelength. Reconstruction of the peppers image using this Zemax-modeled

aperture code after 200 iterations is shown in figure 3.10(d).

(a) (b)

(c) (d)

Figure 3.10: Simulation used to investigate the impact of optical blurring induced
by the CASSI system PSF on the quality of the reconstructed datacube. (a) 256×256
binary aperture code, with features 2 pixels wide. (b) RGB image of peppers gener-
ated after reconstruction of the datacube using the aperture code in (a). (c) 256×256
aperture code after modeling in Zemax. (d) RGB image of peppers generated after
reconstruction of the datacube using the aperture code in (c).
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There was no noticeable difference between the reconstruction using this aperture

code and the original aperture code. This suggested that there would not be any

significant impact of the optical distortions present in the experimental prototype on

the reconstruction of the datacube using GPSR.

3.2 CASSI calibration

After constructing the second generation CASSI prototype, a more rigorous calibra-

tion procedure was developed to improve the process of modeling the CASSI sensing

matrix, Φ. The section begins with an examination of the structure of Φ and how

it is affected by experimental non-idealities of the system. The following subsections

detail the process of calibrating the experimental CASSI prototype.

3.2.1 Structure of the CASSI sensing matrix, Φ

It is useful to consider what the CASSI sensing matrix looks like. In the absence

of any optical distortions, CASSI implements three operations on the voxelized dat-

acube that is incident on the coded aperture plane. If this datacube has 8×8 spatial

elements and 4 spectral channels (a total of 256 voxels), the detector makes a total of

8× (8 + 4− 1) = 8× 11 = 88 multiplexed measurements. The voxelized datacube is

first spatially modulated (‘punch’ operation) by the coded aperture, then sheared by

the dispersive element (‘shear’ operation) and then integrated along the wavelength

dimension on the detector (‘smash’ operation). These three matrix operations are

demonstrated in figure 3.11. The product of these three matrices represents the sens-

ing matrix, Φ, that is shown in figure 3.12(a) and is a very coarse approximation to

the true experimental sensing matrix.

As figures 3.5, 3.6 and 3.7 illustrate, the PSF of the second generation CASSI

varies across the field and with wavelength, making it a shift variant blur. Figure

3.12(b) demonstrates the impact of capturing some of the blur as a modification of
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Figure 3.11: Matrices representing each step of the three step CASSI sensing
process on a 256 voxel datacube. The square matrix in (a) represents the ‘punch’
operation by the coded aperture. The tall matrix in (b) represents the ‘shear’ oper-
ation by the dispersive element. The matrix in (c) represents the ‘smash’ operation
involving the integration of the datacube along the wavelength axis by the detector.

the aperture code from a binary code as shown in figure 3.12(a) to a grayscale code.

Note that the sensing matrix used by the GPSR algorithm to reconstruct a datacube

of the ping pong balls in chapter 2 had this form. However, this was still quite far

from the true experimental sensing matrix, as it did not incorporate the effect of a

wavelength dependent, horizontal anamorphic distortion.

Figure 3.12(c) demonstrates the impact on Φ of approximating CASSI’s shift

variant blur as a combination of a shift invariant blur and a grayscale aperture code
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that captures the spatial variation of the blur across the field.
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Figure 3.12: Effect of incorporating different amounts of optical blur into the
CASSI sensing matrix, Φ. (a) Φ mapping a 256 voxel datacube to 88 detector pixels.
All optical distortions are ignored. (b) Effect of modeling the spatially varying blur
as a modification of the aperture code from a binary code to a grayscale code. (c)
Effect of modeling the spatially varying blur as a a binary aperture code convolved
with a shift invariant blur.
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In deriving the matrix-vector expression shown in equation (2.12) for the CASSI

system operator, three major assumptions were made: (i) the PSF h(x, x′, y, y′, λ) is

shift invariant, (ii) the dispersion by the double Amici prism is linear, and (iii) that

there is one-to-one mapping between elements of the aperture code to the detector

pixels. These assumptions made it easy to interpret the CASSI measurement as a lin-

ear process. Experimentally, however, the PSF varies across the field, the dispersion

is non-linear over CASSI’s spectral range, and there are subpixel misalignments be-

tween the aperture code features and detector pixels. These factors are non-idealities

that deviate Φ from the ideal form in figure 3.12(a) and the coarsely calibrated form

in figure 3.12(b). The form of Φ in figure 3.12(c) is a significantly closer approxi-

mation to the experimental Φ, although it ignores sub-pixel misalignments and the

non-linear dispersion by the double Amici prism.

3.2.2 Calibration process

As mentioned in section 2.8, the quality of the datacube estimate generated by any

numerical estimation algorithm is strongly correlated with how well Φ is character-

ized. Element-wise calibration of Φ for the second generation CASSI would require

the capture of the detector response to a spatio-spectral scan of a point source.

As this process would require considerably more equipment, a slightly simplified

calibration process was performed that did not fully capture the spatio-spectral,

shift-variant PSF that is suggested by the spot diagrams in section 3.1.2. Sub-pixel

misalignments of the aperture code with the detector and the non-linear dispersion

of the double Amici prism could be accounted for.

To experimentally characterize Φ, detector images of the aperture code were taken

at 231 equally spaced wavelengths from 440 to 670 nm after uniformly illuminating

the coded aperture with each monochromatic wavelength of light within and around

the bandpass (450 − 650 nm) of the system. The images of the aperture code were
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grayscale (i.e. not binary) and could be used to construct a Φ of the form shown in

figure 3.12(b). The image of the cross on the top of the aperture code could be used

to estimate the spectrally-varying, shift-invariant part of the PSF. This additional

information could be used to construct a Φ that would closely resemble the form

shown in figure 3.12(c), and would be a significantly closer approximation to the

true, experimental CASSI sensing matrix.

The calibration process was conducted with careful efforts to reduce the impact

of dark noise on the CCD and the non-uniform spectral intensity of the calibrating

light source. A summary of key processes performed during calibration of CASSI

includes:

1. Illumination control: Every effort was made to illuminate the aperture code

with the light from a monochromator as uniformly as possible.

2. Shot-noise reduction: At each wavelength, 10 CCD frames were captured

and averaged to reduce the impact of shot and readout noise.

3. Background subtraction: At each wavelength, 10 dark frames were captured

at the same exposure time as the bright frames and averaged. The averaged

dark frame at each wavelength was then subtracted from its corresponding

bright calibration frame.

4. Exposure time adjustment: To improve the signal-to-noise ratio (SNR)

of the aperture code image at each wavelength, the exposure time at each

wavelength was scaled so that the mean counts over the coded aperture in the

CCD measurements at all wavelengths were similar.

5. Light source spectral intensity distribution: Light from the source at

each wavelength was measured with a photodiode having a known responsivity
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curve to obtain a calibration curve for the non-uniform spectral intensity of the

light source.

The wavelength dependent images of the aperture code obtained after background

subtraction were normalized by the non-uniform exposure time curve and the non-

uniform spectral intensity distribution of the light source.

3.2.3 Calibration results

The procedure described above was performed to capture 231 monochromatic images

of the aperture code in 1 nm increments between 440 − 670 nm. The calibration

process yielded two important results to help characterize CASSI. Figure 3.13 shows

33 monochromatic images of the coded aperture, each displaced by one column of

CCD pixels. As the wavelength increases, the image of the aperture code on the

detector shifts from right to left due to the dispersion by the double Amici prism.

As described above, these calibration images could be used to construct the CASSI

sensing matrix, Φ. For the results described in this chapter, these 33 wavelengths

were defined as the centers of 33 spectral channels that any numerical estimation

algorithm would attempt to estimate the content of.

Although the center wavelengths of the chosen spectral channels were separated

by one column of CCD pixels, each channel had a different bandwidth due to the

non-linear dispersion of the double Amici prism. The purple dots in figure 3.14 track

the position of the cross on top of the monochromatic image of the coded aperture

as a function of wavelength. In essence, this non-linear curve discretely captures the

double Amici prism’s dispersion coefficient γ(λ), first introduced in equation (2.3).

The dispersion at the blue end of the spectrum is much greater than in the red. The

black crosshairs in figure 3.14 identify the 33 wavelengths that define the centers of

the 33 spectral channels.
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455 nm 459 nm 462 nm 465 nm 469 nm 472 nm

476 nm 480 nm 484 nm 488 nm 492 nm 496 nm

501 nm 505 nm 510 nm 515 nm 520 nm 526 nm

532 nm 537 nm 543 nm 550 nm 557 nm 564 nm

571 nm 579 nm 588 nm 596 nm 606 nm 616 nm

626 nm 638 nm 650 nm

Figure 3.13: Demonstrating CASSI’s response to uniform illumination at 33 dif-
ferent wavelengths. These wavelengths define the centers of CASSI’s 33 spectral
channels.

3.3 TwIST numerical estimation method for CASSI

Like the GPSR method introduced in section 2.7, the Two-step Iterative Shrink-

age/Thresholding (TwIST) algorithm, introduced by Bioucas-Dias et al. [33], may

be used to solve CASSI’s under-determined linear system of equations in (2.12) by

minimizing a convex objective function. The Matlab code for TwIST is available on-
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Figure 3.14: The purple dots track the location of the cross on the top of the
aperture code as a function of wavelength and demonstrate the non-linear dispersion
by the double Amici prism. The black crosshairs identify the 33 wavelengths that
define the centers of CASSI’s 33 spectral channels.

line at http://www.lx.it.pt/∼bioucas/TwIST/TwIST.htm. In the context of image

reconstruction for a CASSI system, TwIST may be adapted to estimate a datacube

as a solution to the non-linear, unconstrained minimization problem

f̂TwIST (τ, Γ) =
[
argmin

f

{
1

2
‖g − Φ f ||22 + τΓ(f)

}]
, (3.2)

where the choices for the regularization function Γ(f) include, but are not limited

to, the `1 norm. As an alternative to `1 regularization of wavelet coefficients that

was previously used with GPSR, the total variation (TV) regularizer defined as

‖f‖TV =
∑

k

∑

i,j

√
[f(i + 1, j, k)− f(i, j, k)]2 + [f(i, j + 1, k)− f(i, j, k)]2, (3.3)

may be used. The TV terms penalizes potential solutions with higher discrete hori-

zontal and vertical gradients in the spatial dimension. When the datacube is spatially

piecewise smooth, the gradient of a spectral channel in the datacube is sparse.
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With this choice of regularizer, the TwIST method searches for a datacube es-

timate, f̂TwIST , with a sparse representation in the spatial gradients of each of its

spectral slices. The first term in equation (3.2) minimizes the `2 error between the

measurements modeled from the estimate and the true measurement. The second

term is a penalty term that encourages sparsity on the TV basis of each spectral

slice and controls the extent to which piecewise smooth estimates are favored. Just

as with the GPSR formulation, τ is a tuning parameter for the penalty term and

higher values of τ yield spatially smoother estimates of f .

Empirically, the estimation of the datacube using TV instead of wavelet basis

operations has at least two important advantages. First, computing the TV of each

spectral slice of the datacube is much faster than computing the redundant wavelet

transform, making TwIST iterations much faster than GPSR iterations. Second,

TV has no restriction on the spatial dimensions of the datacube. As a result, the

separability of the CASSI system model in the vertical dimension can be exploited.

For example, estimating an Nx × Ny × Nλ datacube from an Nx × (Ny + Nλ − 1)

detector measurement can be performed by stitching two Nx

2
× Ny × Nλ datacubes

estimated by dividing the detector measurements into two Nx

2
× (Ny +Nλ−1) arrays

and processing these arrays on separate computers in parallel.

3.3.1 Spectral imaging of a static scene using TwIST

To test the use of TwIST for spectral image recovery, a snapshot CASSI measurement

was captured of a static scene that was constructed under fluorescent room lights.

The scene consisted of four plastic objects of different colors and shapes. The objects

included a red apple, yellow banana, green pineapple and a blue stapler, which were

all set against a black backdrop as shown in figure 3.15(a), which was captured using

a Canon RGB digital camera.

As mentioned in section 3.1.1, the aperture code used by CASSI was an array
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Figure 3.15: (a) A scene consisting of colorful objects illuminated by fluorescent
room lights (b) the corresponding CASSI detector measurement of the scene.

of 256 × 248 elements with each element the same size as the detector pixel. The

feature size on the aperture code was twice as large as the detector pixel on each

side. The CASSI detector measurement consisted of 256 × 280 pixels, as shown in

figure 3.15(b). It is easy to observe the spatio-spectral overlap of the aperture code

modulated images of the four objects due to the dispersion. The 82 ms exposure

was taken under fluorescent lights in the ceiling of the lab where the experiment was

performed.

To generate an estimate of the datacube representing the spectral image of the

scene, the TwIST method was provided with two inputs including (i) the snapshot

CASSI detector measurement of the scene and, (ii) a Matlab functional form of the

sensing matrix, Φ, constructed using the 33 grayscale images of the aperture code at

distinct wavelengths captured during the calibration process. The resulting sensing

matrix had a form that closely resembled that shown in figure 3.12(b) and was used

to model the mapping from a 256× 248× 33 voxel 3D datacube to a 256× 280 pixel
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2D detector measurement.

Figure 3.16 shows the spectral image estimate with 33 spectral channels gener-

ated over 50 iterations of the TwIST algorithm using the TV regularizer described by

equation (3.3). The spatial content of each of 33 spectral channels between 454 nm

to 650 nm is shown. Note that the modulation by the aperture code on the spatial

structure visible in figure 3.15(b) has been removed from all the spectral channels.

The GPSR algorithm with `1 regularization of the redundant wavelet transform co-

efficients of each spectral slice was unable to handle this spectral image estimation

problem involving more than 2 million unknown voxels. The value of the regulariza-

tion parameter τ was chosen to be 0.1 based on visual inspection of the reconstructed

datacube at the end of 50 TwIST iterations. There was no noticeable change be-

yond this point. The initial estimate of the datacube was defined as finitial = ΦTg.

The algorithm would take many more iterations to converge to a solution if it were

initialized with a random initial estimate of the datacube.

To validate the datacube estimate generated using the CASSI measurement, the

spectral information obtained by a non-imaging spectrometer was used as a quanti-

tative reference. Specifically, the spectral signature of each object in the scene was

measured using a non-imaging, point-wise spectrometer (Ocean Optics USB2000).

The tip of the fiber connected to the spectrometer was brought close to each object

to obtain a point-wise spectral signature. Figure 3.17 shows the spectra obtained

from the reference spectrometer. The spectra suggest that the color of each object

in the scene simply modulates the spectrum of the fluorescent room lights. Note

that the spectra are fairly peaky, making the spectral content of the scene relatively

sparse. These spectral signatures were then integrated into the 33 spectral channels

used to recover a datacube from the CASSI measurement using TwIST. The plots

in figure 3.18 demonstrate the agreement between the reference spectral signatures

(in blue dots) and the spectral signature of the selected spatial points on each object

61



455 nm 459 nm 462 nm 465 nm 469 nm 472 nm

476 nm 480 nm 484 nm 488 nm 492 nm 496 nm
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571 nm 579 nm 588 nm 596 nm 606 nm 616 nm

626 nm 638 nm 650 nm

Figure 3.16: Datacube estimate of the scene in figure 3.15(a) recovered from the
CASSI measurements in figure 3.15(b) using the TwIST algorithm.

in the computed estimates (in magenta dots), with TwIST. The spectra are normal-

ized by the total intensity per object. The relative intensity between the objects is

not shown, as the intensity of the blue stapler is much smaller in comparison to the

intensity of the red apple in the datacube estimates. Note that differences in the

system responses of CASSI and the reference spectrometer were not accounted for

in this comparison.
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Figure 3.17: Spectra of the four objects shown in figure 3.15(a) at equally spaced
1 nm wavelengths, as measured by a non-imaging, reference spectrometer.

3.4 NeAREst numerical estimation method for CASSI

Datacube reconstruction using the GPSR and TwIST algorithms, as discussed in sec-

tions 2.8 and 3.3.1, is based on solving a single system of linear equations described

by equation 2.12). As the number of voxels in the datacube to be reconstructed ex-

ceeds the number of pixels in the CCD measurement, the system in equation (2.12)

is under-determined, having infinitely many solutions. To overcome the algebraic

limitation on the number of voxels that can be reconstructed and the corresponding

detail they reveal, both algorithms assume additional information to favor a particu-

lar solution over the others. The best solution is found by reformulating the system

of linear equations into a convex, unconstrained optimization problem with an ad-

ditive regularization term. However, the effective use of these methods is limited to

situations that allow some human interaction in the reconstruction process to deter-

mine a data-dependent regularization parameter, such as one specifying the degree
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Figure 3.18: Spectra of the bodies of the four objects binned into 33 channels.
The purple dots are the CASSI spectral signatures at points on the objects after
datacube recovery using the TwIST method. The dashed blue curves are the spectral
signatures measured by the reference spectrometer after being integrated into 33
spectral channels with equivalent bandwidths to the CASSI spectral channels.

of sparsity of the datacube.

An alternative method to reconstruct a datacube from a CASSI measurement is

called Nested Adaptive Refinement Estimation, or NeAREst for short [34], developed

by Dr. Xiaobai Sun and Dr. Nikos Pitsianis in the Computer Science department

at Duke University. As of February 2010, the Matlab code for NeAREst is yet to

be released to the public. Unlike the GPSR and TwIST algorithms, this algorithm

does not require the specification of the value of a manually tuned regularization

parameter. This property makes it convenient for spectral imaging of a dynamically

changing scene, a situation where a sequence of datacubes must be reconstructed

from a corresponding sequence of CASSI video frames. The use of NeAREst for

recovery of spectral images of both static and dynamic scenes will be demonstrated

later in section 3.5.
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3.4.1 A nested set of discretized systems

The NeAREst method utilizes the fact that propagating rays of light can be bun-

dled into different granularity levels, both spatially and spectrally. Spectrally, the

bandwidths of the spectral channels may be coarser or finer. Spatially, features on

the aperture code may be represented in terms of their true size of 2 CCD pixels

each or at a finer level where the aperture code can be considered as consisting of

virtual features that are the same size as the detector pixels. NeAREst builds and

solves a nested set of systems of equations at multiple spatio-spectral scales. Each

system is a discretization of the continuous light propagation model in equation (2.4)

at a particular scale. As shown in figure 3.19, the vector of detector measurements,

g, can then be represented as a matrix vector product between Φs and fs at a par-

ticular scale s. Across all scales, the system of equations has the same form, but

varies in the number of degrees of freedom, i.e. the number of voxels in fs to be

estimated. Pictorially, this amounts to varying the size of the sensing matrix and

thus controlling the size of the datacube that is estimated, while retaining the size

of the measurement vector, g. In principle, the propagation model in equation (2.4)

embeds all the NeAREst multi-scale systems and the systems are coupled by a cas-

cading discretization framework. In practice however, one must also incorporate

system-specific parameters, which are captured through the calibration process, into

the nested systems. As mentioned in section 3.2, the calibration process is necessary

to account for the non-linear dispersion by the double Amici prism and the optical

blur in the system.

First consider the discretization scheme used to construct the sensing matrix at a

given scale, without accommodating for CASSI system specifics. The power spectral

65



= =

g g

f
s
 = f

fine

f
s
 = f

coarseΦ
s
 =       

fineΦ Φ
s
 =       

coarseΦ

Figure 3.19: NeAREst solves a nested set of systems of equations at multiple
spatio-spectral scales. Here two systems at a fine and a coarse scale are represented
pictorially. Across different scales, the system varies in the number of degrees of
freedom. The matrix Φs at a coarse scale has fewer columns than that at a finer
scale, but the former is not necessarily a sub-matrix of the latter. The datacube
estimate must satisfy the systems at all scales. Thus, a solution to the system at a
fine scale is disqualified if it does not yield a solution at a coarse scale.

density at the plane of the CASSI detector is

g(x, y, λ) =
∑

i,j

∫∫

Ai,j

Gi,j(x, y; x′, y′, λ) dx′ dy′, (3.4)

with

Gi,j(x, y; x′, y′, λ) = Ti,j(x
′, y′) f(x′, y′, λ) h(x, x′ − γ(λ), y, y′, λ),

where γ(λ) is the dispersion at wavelength λ and Ai,j is the (i, j)th virtual sub-

aperture at a particular scale. For example, at the finest scale, the size of the

sub-aperture is the same size as the detector pixels, while at a coarser scale, the size

of this sub-aperture may be the same size as the smallest aperture code element,

i.e. 2 × 2 detector pixels. In equation (3.4), Ti,j(x
′, y′) ≥ 0 describes the effective

aperture code at the (i, j)th sub-aperture. Note that even when the sub-aperture
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is of the same size as the original code features, it is not necessarily equal to the

binary-valued function in equation (2.2), which explains why equation (3.4) has a

different form to equation (2.3). The intensity measured at the (m,n)th detector

pixel can be described as

gn,m =
∑

k

∫

Λk

∫∫

Pn,m

g(x, y, λ) dx dy dλ, (3.5)

where Pn,m denotes the spatial support of pixel (m,n) and Λk denotes the kth spectral

channel, which is determined by the calibration process and the scale at which the

system of equations is being constructed.

Thus, at a scale characterized by {Aij} as the sub-apertures and {Λk} as the

spectral channels, there is a system of equations relating a discrete 3D spatio-spectral

datacube f(xi, yj, λk), for some (xi, yj, λk) ∈ Ai,j × Λk, to the complete 2D array of

CASSI measurements,

gn,m =
∑

i,j,k

Q(m,n; i, j, k)f(xi, yj, λk), (3.6)

where

Q(m,n; i, j, k) =
∫∫

Pn,m

∫

Λk

∫∫

Ai,j

Ti,j(x
′, y′) h(x, x′ − γ(λ), y, y′, λ) dx′ dy′ dλ dx dy.

Q(m,n; i, j, k) may be approximated by applying numerical quadrature for integra-

tion, so that

Q(m,n; i, j, k) ≈ wm,nwi,jwkTi,j(x
′
i, y

′
j)h(x′i − γ(λk), xm, y′j, yn, λk), (3.7)

where wm,n and wi,j are the quadrature weights associated with the spatial discretiza-

tion and wk is the quadrature weight associated with the spectral discretization.

Equation (3.6) and the approximation to Q in equation (3.7) together describe the

discretized system of equations at a given scale characterized by the spatio-spectral
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discretization {Aij} and {Λk}. In a CASSI system, pixelization at the detector is

uniform on a 2D cartesian grid. The discretization of the aperture at a given scale

is also assumed to be uniform on a cartesian grid. Under such conditions, wm,nwi,j

is constant over all (m, n; i, j).

3.4.2 Accommodation of CASSI system specifics

The discretization scheme presented in the previous subsection must be refined to

produce a sensing matrix at each scale that accounts for the non-linear dispersion by

the double Amici prism and the optical blur in CASSI. These system specifics are

characterized through the calibration process described in section 3.2. The spectral

channels are determined so that the centers of each channel, at the finest scale,

are separated by one column of detector pixels. Thus, the position of a channel

corresponds to a fixed dispersion in terms of detector pixels relative to a fixed spectral

channel. At a coarser scale, the position of a spectral channel on the detector is

linearly related to the channel index k as

γ(λk) = αλk, (3.8)

where αλ represents the number of pixels of dispersion per spectral channel. For

example, if the centers of two neighboring spectral channels are two pixels apart

in dispersion, αλ = 2. Note that although equation (3.8) is similar to the linear

assumption in equation (2.9), it holds even though the dispersion introduced by the

double Amici prism is non-linear. This is under the assumption that the spectral

channels are not equally partitioned in bandwidth. The non-linearity of dispersion

is captured by the non-uniform spectral quadrature weights wk across the spectral

channels.

Upon substituting equation (3.8) into equation (3.7),

Q(m + αλk, n; i, j, k) ≈ ck Ti,j(x
′
i, y

′
j) h(x′i, xm, y′j, yn, λk), (3.9)
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where ck = wm,nwi,jwk varies only with the channel index, k, under the assumption

of uniform spatial partitions on the detector and the aperture, as indicated in the

previous subsection.

The calibration process is also required to account for the PSF, h, of the imaging

system from the coded aperture to the detector array, which consists of the relay lens

and the double Amici prism. As previously mentioned in section 3.2.2, h is known

to vary both spatially and spectrally, but complete characterization of this function

would require considerably more equipment. Thus, h is approximated by two factors,

one that is spatially shift invariant, and another that captures the spatial variation

at each spectral channel. Specifically, the operator Q is expressed in terms of the

calibrated factors,

Q(m + αλk, n; i, j, k) ≈ ck T
[k]
i,j (x′i, y

′
j) h[k](x′i − xm, y′j − yn). (3.10)

Here, h[k] is assumed to be the spatially shift invariant part of the PSF that depends

on the imaging optics and the kth spectral channel. T
[k]
i,j is the effective grayscale code

calibrated at the corresponding channel and compensates for the difference between

h(x, y, λk) and h[k](x, y).

In contrast to equations (3.6) and (3.7), equation (3.6) and the approximation

to Q in equation (3.10) together describe the discretized system of equations at a

given scale characterized by the spatio-spectral discretization {Aij} and {Λk} after

accounting for the calibration process. Simulations by Dr. Pitsianis and Dr. Sun

revealed to them that the reconstruction quality of a datacube using the calibrated

sensing matrices at each scale was much superior to that of a datacube reconstructed

without accounting for the calibration process.
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3.4.3 Solving the nested systems

Equation (3.6) and the approximation to Q in equation (3.10) describe the mapping

of the 3D discrete datacube f(xi, yj, λk) at a given scale to a measurement on each

detector pixel gn,m for a calibrated CASSI. If the 2D array of detector measurements

is represented as a vector g, then at a given scale, s, the expression in equation (3.6)

can be represented as the matrix vector product

g = Φsfs =
∑

k

Φsk
fsk

, (3.11)

where fsk
is a 2D slice of the 3D datacube at scale s associated with the kth spectral

channel and Φsk
is a sub-matrix of Φs relating fsk

to its contribution to the detector

measurements. Across the different discretization scales, the system varies in the

number of degrees of freedom. The matrix Φs at a coarse scale has fewer columns

than that at a finer scale, but the former is not necessarily a sub-matrix of the latter.

NeAREst solves the linear system at each scale by transforming it into Csiszar’s

version of the Kullback-Leibler (KL) divergence as the objective function

arg min
fs≥0

∑
m,n

{g · log

(
g

Φsfs

)
− g + Φsfs}n,m, (3.12)

with a slight modification to permit zero elements in g. In equation (3.12), the

second term is the algebraic difference between g and Φsfs, while the first term is

the weighted difference in the bitwise representation, with gn,m as the weights. The

KL objective function is solved using the Richardson-Lucy (RL) iterative method

[35].

Unlike the objective functions that are minimized using the GPSR and TwIST

algorithms, the objective function for NeAREst in equation (3.12) does not require

the specification of a regularization parameter. Nonetheless, there are two regular-

ization means in effect. By design, the RL method excludes solutions with negative
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values, thus imposing a non-negativity constraint. In contrast, when processing

CASSI measurements with the GPSR and TwIST algorithms, this non-negativity

condition would have to be enforced by brute force truncation. While this constraint

substantially narrows the space of possible solutions, it does not necessarily make

the solution unique [34]. The second means of regularization is the use of the nested

structure across different scales, governed by the physical model in the continuous

form. A solution to the system at a fine scale is disqualified if it does not yield a

solution at a coarse scale. Thus, in contrast to GPSR and TwIST which minimize

a scalar valued objective function, NeAREst minimizes a vector valued objective

function because the resulting estimate for the datacube has to satisfy the objective

function at all the scales.

3.4.4 Exploiting the nested structure of NeAREst

NeAREst reduces the total number of iterations needed to reconstruct a datacube

through two algorithmic schemes. The first is a relaying scheme that passes the

datacube solution at a coarse scale to the next finer scale as the initial guess. The

second scheme is an acceleration scheme that utilizes an efficient approximation to

the gradient of the KL divergence within a few iterations being performed at a given

scale.

The computational cost of each iteration of NeAREst is smaller than that of the

GPSR and TwIST methods discussed earlier. With any method being used to process

CASSI measurements, the computational cost per iteration is at least as much as

that for the matrix-vector multiplication with the sensing matrix. NeAREst has the

advantage that the size of the sensing matrix, Φs in equation (3.11), is smaller at a

coarser scale, lowering the computational cost per iteration at coarser levels.

In comparison, the GPSR and TwIST methods access the full sensing matrix for

the matrix-vector multiplication step at every iteration. The GPSR method also
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requires the intermediate representation of the datacube in an alternate basis. The

computational cost of an iteration increases depending on the number of levels of

wavelet decomposition used, as well as the choice of wavelet basis used (e.g. redun-

dant versus non-redundant decomposition).

3.5 CASSI spectral imaging using NeAREst

3.5.1 Spectral imaging of a static scene

The NeAREst method was used to reconstruct a datacube of the static scene first

presented in section 3.3.1. Like figure 3.18, figure 3.20 demonstrates the agreement

of the spectral signatures of each of the four objects in the scene obtained using

NeAREst (magenta dots) and a non-imaging reference spectrometer (blue dots).

Once again, the differences in the system responses of CASSI and the reference

spectrometer were not accounted for in this comparison.

Compared to TwIST, the spectral image estimation process with NeAREst re-

quires substantially fewer iterations, with each iteration requiring substantially fewer

arithmetic operations. No regularization parameter is required. Figure 3.21(a) shows

a color restoration of the TwIST estimate of the scene. Figure 3.21(b) shows a color

restoration of the scene estimate by NeAREst. In general, the NeAREst restoration

is better at revealing the boundaries, shadows and variations in the reflectivity of

the objects in the scene. The spectral speckles, among other artifacts, are mostly

due to the distribution of the features on the aperture code. The aperture code has

relatively long rows or columns of white (open) or black (closed) areas, as shown in

figure 3.4. In these areas, an object consisting of multiple spectral components is not

well modulated. The red apple looks sharp because its spectral support is relatively

narrow.

Thus, comparing the performance of TwIST and NeAREst has provided some

insight into aperture code design for future improvement. In general, the distribution
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Figure 3.20: Spectra of the bodies of the four objects binned into 33 channels.
The purple dots are the CASSI spectral signatures at points on the objects after
datacube recovery using the NeAREst method. The dashed blue curves are the
spectral signatures measured by the reference spectrometer after being integrated
into 33 spectral channels with equivalent bandwidths to the CASSI spectral channels.

(a) (b)

Figure 3.21: (a) Color restoration of the scene estimate with TwIST, (b) Color
restoration of the scene estimate with NeAREst.

of the open and closed features on the aperture code should be as uniformly random

as possible. Thus, multiple element rows, columns or blocks of these features should
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be avoided.

It should be noted that an estimate of the datacube generated by NeAREst was

provided as an initial estimate of the datacube to the TwIST algorithm for denoising.

However, the details became blurred and disappeared within 3 iterations, mostly due

to the penalty applied by TwIST on the regional gradient variation.

3.5.2 Spectral imaging of a dynamically changing scene

A spectral imager with a snapshot capability has a distinct advantage in spectral

imaging of fast-changing phenomena. In such situations, temporal scanning to cap-

ture a datacube may include artifacts in the datacube due to the motion or spectral

variation over time of objects in the scene.

CASSI was used to capture a spectral video of birthday candles at video rate

(30 frames per second). Five candles with colored flames were arranged on a table,

against a black backdrop, as shown in figure 3.22(a). The experiment was performed

under fluorescent lights in the lab. 300 raw CASSI frames were captured over 10

seconds at 30 frames per second. Note that CASSI could also use a CCD with a faster

frame rate as long as there was enough light collected in each frame. The CASSI

detector array measurement included 256× 280 pixels, as shown in figure 3.22(b). It

is easy to observe the spatio-spectral overlap of the aperture code modulated images

of the four objects due to the dispersion.

‘Media1.mov’ is a video of the birthday candles with their live flames as viewed by

a Canon SD300 digital camera and CASSI. Note that the flame on the blue candle

was often bright enough to saturate the 8-bit CASSI CCD. This would result in

errors in the spectral reconstruction of that flame as the various spectral channels

are multiplexed on top of each other. Also note that between frames 128− 141, the

blue and purple flames briefly combine, during which time the left edge of the purple

flame also saturates the CCD.
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Figure 3.22: Single frame excerpts of birthday candles with colored flames as
viewed by (a) a Canon SD300 digital camera, and (b) from the CASSI CCD detector
array. See ‘Media1.mov’ for a video of all the frames.

The use of the NeAREst method described in section 3.4 enabled frame-by-frame

reconstruction of a spectral video of this scene (see ‘Media2.mov’). A datacube for

each of the 300 video frames was reconstructed with the same set of sensing matrices

at two different scales, without the need to specify a frame-dependent regularization

parameter. At the finest scale, CASSI could measure 33 spectral channels, each

separated by a column of detector pixels. Two other discrete systems were built at

a coarser scale, each with 17 spectral channels. A combination of the solutions at

the coarse level, based on a quadrature rule, was used as the initial guess at the

fine scale. The reconstruction was carried out in single-threaded MATLAB on a

SunFire X4100 M2 workstation with a Dual-Core AMD Opteron 2220 running at 2.8

GHz. The processing of each frame started fresh, and took approximately 45 seconds

per frame. It should be noted that the temporal continuity of the live candles may

also have been exploited for faster reconstructions of the video frames by using the

datacube solution to the previous frame as the initial guess of the current one.

Figure 3.23 shows an example of a datacube estimate for frame 107. It shows
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the spatial content of 33 spectral channels between 455 nm and 650 nm. Note that

the spatial modulation by the aperture code on each object visible in figure 3.22(b)

has been effectively removed from all the spectral channels. As expected, frames

127−141 in ‘Media2.mov’ show the blue flame and the left edge of the purple candle

flame appearing in virtually all the spectral channels. as these flames were burning

brightly enough to saturate pixels on the CASSI detector array. Figure 3.24 shows

enlarged versions of spectral channels 11, 22, 27, and 30 to demonstrate the spatial

detail that the NeAREst algorithm is able to recover.

To validate the datacube estimate generated with CASSI data, spectra obtained

with a non-imaging spectrometer (Ocean Optics USB2000) was used as a quantitative

reference. The tip of the fiber connected to the spectrometer was brought very close

to the body of each candle to obtain a point-wise spectral signature. Figure 3.25

shows the spectra obtained from the reference spectrometer.

These spectral signatures were then integrated into the 33 spectral channels used

for our numerical estimation of spectral images from CASSI. The plots in figure 3.26

demonstrate the agreement between the reference spectral signatures (in blue dots)

and the spectral signature of the candle bodies in the computed estimates using

NeAREst (in magenta dots). The spectra are normalized by the total intensity per

object. Note that differences in the system responses of CASSI and the reference

spectrometer have not been accounted for in this comparison. The agreement be-

tween the spectra of the candle bodies obtained from the CASSI and the reference

spectrometer suggests that CASSI may have also measured the spectra of the candle

flames correctly. However, it was not possible to measure reference spectra for the

candle flames as they were changing dynamically.
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Reconstructed frame 107

Figure 3.23: Spectral image estimate of CASSI frame 107 generated using the
NeAREst algorithm. The spatial content in each of 33 spectral channels between
455 and 650 nm is shown. See ‘Media2.mov’ for a video of all the frames.

3.6 Conclusions

In this chapter, a second generation CASSI prototype was presented that was a signif-

icant improvement over the first prototype discussed in chapter 2. The new prototype

uses a double Amici prism to introduce spectral dispersion while maintaining a direct
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Figure 3.24: Enlarged images of the birthday candles at spectral channels with
center wavelengths of 492 nm, 550 nm, 588 nm and 616 nm.

view configuration of the overall system. The angles and glass types of the double

Amici prism were chosen through optimization of the design of the prototype from

the coded aperture plane to the CCD using Zemax ray tracing software.

The TwIST and NeAREst methods were introduced as alternatives to the GPSR
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Figure 3.25: Spectra of the bodies of the five candles at equally spaced 1 nm
wavelengths, as measured by a non-imaging, reference spectrometer.

method to reconstruct a datacube from a snapshot CASSI measurement. In con-

trast to the GPSR and TwIST methods, the NeAREst method did not require the

specification of a regularization parameter for reconstruction. This made NeAREst

the algorithm of choice to process raw frames from CASSI to generate a spectral

image video of a dynamically changing scene captured at video rate (30 frames per

second). A rigorous calibration process was described that facilitated the construc-

tion of CASSI system-specific sensing matrices, which improved the quality of a

reconstructed datacube.
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Figure 3.26: Spectra of the bodies of the five candles binned into 33 channels.
The purple dots are the CASSI spectral signatures at points on the candles after
datacube recovery using the NeAREst method. The dashed blue curves are the
spectral signatures measured by the reference spectrometer after being integrated
into 33 spectral channels with equivalent bandwidths to the CASSI spectral channels.
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4

Compressive sampling with CASSI

Although the results presented in the previous chapters support CASSI’s potential

for its use for snapshot spectral imaging, it is natural to wonder about the con-

straints imposed on CASSI by its snapshot measurement process. Recall that the

scenes imaged by CASSI in the previous two chapters were sparse or compressible

on some basis, both spatially as well as spectrally. The theorems of compressive

sampling place bounds on the number of sparse basis coefficients in the 3D datacube

that can be accurately estimated from the considerably lower dimensional CASSI

measurements. The objective of this chapter is to study CASSI from the perspective

of compressive sampling theory and to provide insights into potential improvements

to the design.

The chapter begins with a background on compressive sampling in section 4.1.

In section 4.2, CASSI is presented as an instrument to physically implement a com-

pressively sampled measurement of the datacube. The performance of CASSI as a

compressive sampling instrument is then investigated through Matlab simulations in

section 4.3. With insights gained from the previous sections, an alternative CASSI

design with better performance in noiseless simulations is proposed in section 4.4.
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The noise sensitivity of CASSI and its alternative is compared in section 4.5. Finally,

the implications of the results for a CASSI using a dual disperser architecture are

discussed in section 4.6.

4.1 Background on compressive sampling

Upon arriving at equation (2.12), CASSI was noted to be an example of a system that

forms an under-determined system of equations where the total number of detector

measurements, m, is significantly lower than the number of unknown voxels, N , in

the datacube to be estimated (i.e. g = Φf , Φ ∈ RM×N with M << N), and as such

is an ill-posed problem. If direct, linear inversion is attempted, this problem has an

infinite number of solutions since the associated null space is non-trivial.

However, the theory of compressive sampling (CS) [36] suggests that an under-

determined problem of the form in (2.12) is well posed for inversion if two practically

feasible assumptions are satisfied. These include, (1) the signal of interest (the

datacube) is sparse or compressible in some orthonormal basis, Ψ and, (2) the mea-

surement system (CASSI) is designed so that the linear projection implemented by

the sensing matrix, Φ, does not significantly damage the salient information in any

sparse or compressible signal through the dimensionality reduction.

In general, for S-sparse signals, a stable sensing matrix is one that allows the

system matrix H = ΦΨ to satisfy the Restricted Isometry Property (RIP). Math-

ematically, a matrix H is said to satisfy the RIP of order S if there is a restricted

isometry constant δS ∈ (0, 1) such that for any S-sparse vector b

(1− δS)‖bΩ‖2
2 ≤ ‖HΩbΩ‖2

2 ≤ (1 + δS)‖bΩ‖2
2. (4.1)

This amounts to the matrix HΩ preserving the lengths/structure of S-sparse vectors

as tightly as possible, where Ω represents the set of indices on which the S-sparse

signal is supported and HΩ is a sub-matrix of H obtained by selecting the columns
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of H corresponding to the indices in Ω [36]. This is equivalent to stating that all

subsets of S columns taken from H are nearly orthogonal (they cannot be exactly

orthogonal, since there are more rows than columns).

From the perspective of CS, a “good” system matrix should satisfy equation (4.1)

for the largest possible S that is as close to M as possible. Certain classes of sensing

matrices including those whose entries are independent and identically distributed

realizations of a Gaussian or Bernoulli random variable are known to produce system

matrices that satisfy the RIP, provided that the number of measurements made,

M , is large enough relative to the sparsity S [37]. In fact, a Gaussian sensing

matrix is universal in the sense that the resulting system matrix H = ΦΨ will satisfy

the RIP with high probability regardless of the choice of orthonormal basis Ψ [38].

Unfortunately, it is not possible to physically realize a sensing matrix with random,

negative values while maintaining a snapshot measurement process.

When implementing a snapshot CASSI measurement, the CASSI sensing matrix,

Φ, is an example of a matrix that is constructed by choosing uniformly at random

M rows of an orthonormal basis, and produces incoherent measurements. With such

a sensing matrix, it has been conjectured that the resulting system matrix H = ΦΨ

satisfies the RIP in equation (4.1) with overwhelming probability if the number of

measurements, M , satisfies the sufficient condition that

M ≥ C · µ2(Φ, Ψ) · S · logN, (4.2)

for some constant C and where µ(Φ, Ψ) is the mutual coherence defined as

µ(Φ, Ψ) =
√

N max
1≤i≤M
1≤j≤N

|〈φi, ψj〉| . (4.3)

Here φi and ψj represent the ith row of Φ whose rows are orthonormal, and the jth

column of Ψ, respectively [39]. This quantifies the maximum correlation between Φ
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and Ψ. An alternative definition of mutual coherence is given by

µ(H) = max
i 6=j,1≤i,j≤N

{
hT

i hj

‖hi‖2‖hj‖2

}
, (4.4)

where hi is the ith column of H = ΦΨ [40]. This can be interpreted as the maximum

off-diagonal element of the Gram matrix of H whose columns are normalized. This

definition quantifies the correlations (coherences) between the columns of H based

on the angles between the columns.

Given that the number of detector measurements is large enough relative to the

sparsity S and satisfies equation (4.2), the system matrix H satisfies equation (4.1)

with overwhelming probability and a highly accurate estimate of the datacube as a

solution to the measurement equation g = Hb may be found by searching for

b̂ = arg min
b

||b||0 such that g = Φf = ΦΨb = Hb, (4.5)

which amounts to finding a solution with the lowest total number of non-zero sparse

coefficients. Unfortunately, searching for such a solution is numerically unstable

and NP-complete, requiring an exhaustive search of all
(

N
s

)
possible locations of

the nonzero entries in b [38]. The computational intractability of this combinatorial

search is bypassed [41] with a search for

b̂ = arg min
b

||b||1 such that g = Φf = ΦΨb = Hb, (4.6)

where ||b||1 =
S∑

i=1

|bi|. When no detector noise is present, b̂ matches b exactly. In the

presence of detector noise n, the measurement equation is modified to g = Hb + n.

Given ||n||2 ≤ ε, the problem becomes a search for [39]

b̂ = arg min
b

||b||1 such that ||g −Hb||2 ≤ ε. (4.7)
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This problem and equation (4.6) are both convex and may be solved using non-

linear, iterative convex optimization techniques [42]. The solution to equation (4.7)

is optimal because exactly sparse signals are recovered exactly. In addition, the

theory shows that strong stability exists for compressible signals in the presence of

noise [43]. This is of great practical value in processing natural signals measured in

the real world where, more often than not, signals tend to be compressible rather

than sparse and are measured in the presence of noise.

The GPSR method discussed in chapter 2 to process CASSI measurements es-

sentially rephrases the problem in equation (4.7) as an unconstrained optimization

problem. The TwIST method discussed in chapter 3 can also be used to solve a simi-

lar unconstrained optimization problem, except with a TV regularizer. A theoretical

proof of exact reconstruction for TV regularization currently only holds in the case

of Fourier measurements of signals with exactly sparse gradients in the absence of

noise [44]. No such proof of stability exists in the presence of noise and non-exact

sparsity of the gradients.

4.2 CASSI as a compressive sampling instrument

While the previous chapters provided empirical evidence for CASSI’s ability to re-

cover a datacube from a snapshot measurement, they left open questions about the

optimality of the system design and the limits of its performance. In this section,

CASSI is shown to be a means of physically implementing a compressively sampled

measurement. A discretization framework is outlined for Matlab simulations to be

discussed in the next section, the mathematical structure of the CASSI sensing ma-

trix Φ is presented, the choices of sparsity bases for CASSI are analyzed and the

RIP is established for a system matrix that is generated using Φ and the choice of

the sparsifying basis, Ψ. Although the previous chapters established the relevance of

incorporating optical distortions in numerical processing of experimental data, much
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can be learned by studying a hypothetical CASSI without optical distortions and its

associated sensing matrix, Φ.

4.2.1 Discretization framework

Let the discrete datacube, f , to be recovered from CASSI measurements be composed

of Nλ spectral slices where each spectral slice has Nx × Ny pixels so that the total

number of voxels in the datacube is Nf = Nx×Ny×Nλ. Assuming that a dispersive

element introduces a 1 pixel shift for each spectral channel, the 2D detector array

makes M = Nx × (Ny + Nλ − 1) measurements. Assume that the size of each pixel

in a spectral slice and the size of each feature on the coded aperture are identical to

the detector pixel size.

Now, let f be rearranged such that f = [f1; f2; f3; · · · ; fNλ
], where the semicolon

denotes vertical concatenation of column vectors such that f is a column vector of

length Nf = Nx×Ny ×Nλ. The Nx×Ny pixels in each fi ∈ RNx×Ny are ordered by

vectorizing the ith spectral slice column-wise. Given this discretization and ordering

scheme, the CASSI sensing matrix has the form Φ = [Φ1Φ2 · · ·ΦNλ
] ∈ RM×Nf . In

Φ1 ∈ RM×(Nx×Ny) the bottom (Nx ×Ny) rows form a diagonal sub-matrix obtained

by putting along the diagonal a vector that is constructed by vectorizing elements

of the coded aperture column-wise. Φi ∈ RM×(Nx×Ny) are obtained by shifting up

the diagonal sub-matrix in Φ1 by (i − 1) × Ny rows. Figure 3.12(a) showed an

example of Φ with Nx = Ny = 8 and Nλ = 4. If the total number of 1’s in Φi is

defined as Mi, then the transmission rate for the ith spectral channel is defined as

Ti = Mi/(Nx × Ny) × 100. In addition, since the same aperture code modulates

all the spectral channels, Ti = T , which can be modified by changing the overall

transmissivity of the coded aperture.

The size and structure of the CASSI system matrix, H, depends on the choice of

the sparsifying basis Ψ. Datacube reconstruction using the GPSR method in section
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2.7 and the TwIST method in section 3.3 is performed by treating each spectral

channel independently and representing each spectral channel in a 2D sparse basis

separately. This is based on the reasonable assumption that the correlations between

spectral channels is not significantly large since the dispersion introduced by the

prism is not large. The sparsity of the whole datacube is then defined as the sum of

the sparsities in all the spectral channels. Given this 2D reconstruction scheme, the

CASSI system matrix is defined as

H = ΦΨ

= [Φ1Φ2 · · ·ΦNλ
] bldiag(Ψ2D, Ψ2D, · · · , Ψ2D)

= [Φ1Ψ2D Φ2Ψ2D · · · ΦNλ
Ψ2D]

= [H1H2 · · ·HNλ
], (4.8)

where Ψ2D denotes the basis of choice for sparsifying a spectral channel.

4.2.2 Choice of basis

Examples of choices of Ψ2D include the discrete cosine transform (DCT) and the

wavelet transform, in which case bi ∈ RNx×Ny has the same dimensions as fi ∈
RNx×Ny and the system matrix H ∈ RM×Nf . Alternatively, Ψ2D may be a redundant

dictionary like the redundant wavelet transform, in which case bi ∈ RN where N >

Nx × Ny and H ∈ RM×N . Although the TV basis used during reconstruction with

TwIST also treats each spectral channel independently, it is an implicitly sparse basis

because the inverse TV operator is not explicitly used for reconstruction.

For simplicity of analysis, assume that a 2D non-redundant wavelet basis is used

for the 2D sparse basis Ψ2D. The diagonal sub-matrix of each Φi has diagonal

elements that take on 0 or 1 randomly. Hence, Φi samples a uniformly random set

of pixels in fi and equivalently selects a random set of rows from the orthonormal

wavelet basis Ψ2D. The selected random set of basis vectors are the measurement
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basis vectors for the 2D sparse representation bi of the ith spectral slice fi. Let Si

be the sparsity of the ith spectral slice such that S =
Nλ∑

i=1

Si. Based on the discussion

presented in section 4.1, a sufficient condition for accurate reconstruction of the ith

spectral slice is Mi ≥ Ci · µ2(Φi, Ψ2D) · Si · (log(NxNy)), where Mi is the number of

1’s in Φi.

It is possible to have a large µ(Φi, Ψ2D) if an image contains high frequency

features because the wavelet representation of the image would involve a wavelet

function that has a high correlation with the Kronecker delta basis. Thus, such a

situation would require a large Mi as a sufficient condition. Based on experience

gained through numerical simulations, however, such incoherence is overly sufficient,

and much smaller Mi can produce reconstructions with high accuracy.

It is also possible to achieve the best possible incoherence µ(Φi, Ψ2D) = 1 if the

2D DCT basis is used for Ψ2D. Thus, using the the 2D DCT basis instead of the

2D non-redundant wavelet basis implies that a smaller number of measurements Mi

are required for accurate reconstruction of the ith spectral slice. However, choosing

the 2D DCT basis may increase the number of nonzero coefficients Si. This im-

plies that the sparsity is degraded, which consequently requires a larger number of

measurements. Based on experience, it is difficult to exactly predict which choice of

basis generally produces better reconstructions using the upper bounds because the

bounds are sufficient conditions but not necessary. Although the Mi predicted by

the upper bounds is smaller using DCT basis than if the wavelet basis is used, the

wavelet basis generally produces better results with approximately equal number of

measurements.

These examples demonstrate that the choice of basis for CASSI sensing matrices

is less general than the choice of basis for Gaussian or Bernoulli random sensing

matrices that are known to be universal in the sense that they do not change the
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incoherence significantly when combined with various bases.

4.2.3 Restricted Isometry Property for the CASSI system matrix

To maximize the reconstruction fidelity of datacubes for a variety of scenes with

varying amounts of sparsity, the CASSI system matrix, H, should satisfy the RIP in

equation (4.1) for the largest possible S. Given that datacube reconstruction using

GPSR and TwIST has previously been performed by treating each spectral channel

independently and representing each channel in a 2D sparse basis separately, it is

important to study how the CASSI multiplexing process influences the restricted

isometry property of the CASSI system matrix, H.

The CASSI measurement system equation without noise can be written as

g = Φf = H b

=
Nλ∑

i=1

Hibi =
Nλ∑

i=1

Φifi (4.9)

using equation (4.8). Then, assuming that Mi is large enough, which may be ob-

tained by controlling the transmission rate of the aperture code T , the RIP can be

established for the sub-matrix of H corresponding to the ith spectral channel. In

particular, there exists a restricted isometry constant δSi
such that

(1− δSi
)‖bΩi

‖2
2 ≤ ‖HΩi

bΩi
‖2

2

= ‖(ΦiΨ2D)Ωi
bΩi
‖2

2 ≤ (1 + δSi
)‖bΩi

‖2
2 (4.10)

for any Si-sparse signals in the the ith spectral channel and Ωi denotes the set of

indices on which the Si-sparse signal is supported.

Assuming that CASSI is designed such that each Hi satisfies the Si-RIP, the
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multiplexing of all the spectral channels influences the RIP for H. In particular,

‖HΩbΩ‖2
2 = bT

ΩHT
ΩHΩbΩ = fT

Ω ΦT
ΩΦΩfΩ

=
Nλ∑

i=1

Nλ∑

j=1

fT
Ωi

ΦT
Ωi

ΦΩj
fΩj

=
Nλ∑

i=1

fT
Ωi

ΦT
Ωi

ΦΩi
fΩi

+
∑ ∑

i 6=j

fT
Ωi

ΦT
Ωi

ΦΩj
fΩj

=
Nλ∑

i=1

bT
Ωi

HT
Ωi

HΩi
bΩi

+
∑ ∑

i6=j

fT
Ωi

ΦT
Ωi

ΦΩj
fΩj

=
Nλ∑

i=1

‖HΩi
bΩi
‖2

2 +
∑ ∑

i6=j

fT
Ωi

ΦT
Ωi

ΦΩj
fΩj

, (4.11)

where Ω denotes the set of indices on which the S-sparse signal b is supported. Using

equation (4.10),

Nλ∑

i=1

‖HΩi
bΩi
‖2

2 ≥
Nλ∑

i=1

(1− δSi
) ‖bΩi

‖2
2

≥ (1−max
i

δSi
)

Nλ∑

i=1

‖bΩi
‖2

2 ≥ (1− δ) ‖bΩ‖2
2 , (4.12)

where the restricted isometry constant δ = max
i

δSi
. Similarly, using equation (4.10)

produces

Nλ∑

i=1

‖HΩi
bΩi
‖2

2 ≤
Nλ∑

i=1

(1 + δSi
) ‖bΩi

‖2
2

≤ (1 + max
i

δSi
)

Nλ∑

i=1

‖bΩi
‖2

2 ≤ (1 + δ) ‖bΩ‖2
2 . (4.13)

Combining equations (4.12) and (4.13) with (4.11) results in

(1− δ) ‖bΩ‖2
2 ≤ ‖HΩbΩ‖2

2 ≤ (1 + δ) ‖bΩ‖2
2 +

∑ ∑

i6=j

fT
Ωi

ΦT
Ωi

ΦΩj
fΩj

, (4.14)
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where the inequality on the left hand side holds because all the elements of Φi and

fi for all i are non-negative. Now assuming that there exists a constant c ¿ 1 and if

∑ ∑

i6=j

fT
Ωi

ΦT
Ωi

ΦΩj
fΩj

=
∑ ∑

i 6=j

bT
Ωi

HT
Ωi

HΩj
bΩj

≤ c ‖bΩ‖2
2 , (4.15)

then equation (4.14) becomes

(1− δ) ‖bΩ‖2
2 ≤ ‖HΩbΩ‖2

2 ≤ (1 + δ) ‖bΩ‖2
2 + c ‖bΩ‖2

2 ≤ (1 + δc) ‖bΩ‖2
2 . (4.16)

By choosing δCASSI = max(δ, δc), the inequalities can be made symmetric so that

(1− δCASSI) ‖bΩ‖2
2 ≤ ‖HΩbΩ‖2

2 ≤ (1 + δCASSI) ‖bΩ‖2
2 . (4.17)

From equations (4.14), (4.16), and (4.17), it is easy to see that the constant δCASSI

depends on the magnitude of the non-negative cross-term
∑ ∑

i6=j

fT
Ωi

ΦT
Ωi

ΦΩj
fΩj

. This

suggests that the cross-term may lead to degradation in the reconstruction quality of

the datacube because δCASSI ≥ δ, which implies that the dimensionality reduction

implemented by the CASSI system matrix, H, is not able to preserve the isometry

with S-sparse signals b.

4.2.4 Reconstruction with a 3D sparsifying basis

The analysis above reveals that the existence of the cross-term in equation (4.12)

is caused by the use of the 2D sparse representation basis. Now consider the case

where a 3D sparse basis is used as Ψ. Recall that the rows of Φ do not overlap

because there is at most only one nonzero, which is 1, per column. Thus the rows

are orthogonal by construction. A by-product of the orthogonality of the rows of Φ

is the orthogonality of the rows of H = ΦΨ3D

hT
i hj =


 ∑

k∈Ki

ψk




T 
 ∑

l∈Kj

ψl


 = 0, (4.18)
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where Ki denotes the set of the indices of the columns of Ψ3D that correspond to 1s in

the ith row of Φ, and ψi denotes the ith column of Ψ3D. Note that since Ki ∩Kj = ∅
by construction of Φ, the inner products between any two different rows are 0 as

shown in equation (4.18) and this implies that the cross-term in equation (4.14) is 0.

While the concerns associated with the cross-term vanish with the use of a 3D

sparsifying basis like a 3D wavelet transform, the number of nonzero coefficients S

may increase and the incoherence, which is defined as µ(ΦCASSI , Ψ3D) instead of

µ(Φi, Ψ2D) may change as well. Experience suggests that it is generally very difficult

to strictly separate, quantify and compare the effects of the change of basis from

2D to 3D on the reconstruction fidelity because of the simultaneous changes in the

incoherence, sparsity, and the value of the cross-term.

4.3 Matlab simulations investigating CASSI performance

With the discretization framework outlined in the previous section, Matlab simula-

tions were conducted to study the performance of CASSI as a compressive sampling

system. In all the simulations, each spectral channel was treated independently and

represented in a 2D non-redundant Haar wavelet basis. Given simulated CASSI

measurements, the TwIST method was used to recover a datacube, f̂ by solving

f̂(τ) = Ψ
[
argmin

b

{
1

2
‖g −H b||22 + τ ||b||1

}]
. (4.19)

The regularization parameter τ , in every case, was empirically determined so that

the peak signal-to-noise ratio (PSNR) would be maximized. The PSNR was defined

as

PSNR = 10 · log10

(
MAX2

f

MSE

)
, (4.20)

where MAXf is the maximum value in the true datacube, f ∈ RNx×Ny×Nλ , used for

simulation and MSE is the mean squared error between the true datacube and the
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reconstructed datacube defined as

MSE =
1

NxNyNλ

Nx−1∑

i=0

Ny−1∑

j=0

Nλ−1∑

k=0

[
f(i, j, k)− f̂(i, j, k)

]2
. (4.21)

3 different datacubes along with aperture codes at 7 different overall transmissions

were used throughout this simulation study. Each datacube consisted of 128×128×8

voxels. All three datacubes, as shown in figure 4.1, included a weak background and

had roughly 1670 Haar wavelet coefficients each.

6 of the aperture codes codes were random patterns with overall transmissions of

12.5%, 30%, 50%, 70%, 90% and 100%. In addition, a code pattern called the sparse

code was designed with 12.5% overall transmission. Unlike its random transmission

counterparts, the open features on the sparse code, represented by the 1’s in Φ, were

positioned so that there would be no multiplexing of the spectral channels as they

are imaged onto the detector array. As a result, the cross-term in equation (4.14)

becomes 0. Figure 4.2 plots the number of non-zero detector measurements M as a

function of T for any of the three datacubes considered.

Through Matlab simulations to be presented in the following subsections, features

of CASSI’s system design and its performance were investigated. In particular, the

simulations provided insight and conclusions about three questions:

1. What is the importance of coding by the optical hardware?

2. Is there an optimal aperture code pattern for CASSI?

3. Is the performance of CASSI scene dependent?

4.3.1 Importance of coding

Coding introduced by the coded aperture and the dispersive element is essential for

any hope of recovery of a sparse datacube from the small number of linear multi-

plexed projections implemented by the CASSI measurement process. The pattern
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(a)

(b)

(c)

Figure 4.1: Three 128×128×8 datacubes used to study the performance of CASSI
through Matlab simulations. (a), (b) and (c) show the ‘DU’ datacube, ‘peppers’
datacube, and ‘phantom’ datacube, respectively. The scenes are assumed to contain
a weak background that is generated by adding a small constant value to all the
spectral slices. For comparison purposes, the datacubes are synthesized such that
they produce roughly equal number of 2D Haar wavelet coefficients (S = 1666 for
(a), S = 1674 for (b), and S = 1676 for (c)).

and overall transmission of the aperture code determine the amount of multiplex-

ing on the detector pixels and also help to determine the spatial resolution of the

94



12.5 30 50 70 90 100 Sparse
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

4

Transmission rate

M

Figure 4.2: Number of nonzero CASSI detector measurements as a function of
transmission rate T . The sparse code has an overall transmission of 12.5%.

reconstructed datacube. Both the spatial modulation introduced by the aperture

code and the spectral coding introduced by the dispersive element are necessary for

CASSI to have a chance to reconstruct an accurate estimate of a datacube. Without

this dispersion, all the spectral channels are modulated by the same aperture code

pattern and imaged onto the same detector pixels (see figure 4.3(b)), making it im-

possible to distinguish them, as shown in figure 4.3(a). The reconstructed datacube

has a PSNR of just 13.30. On the other hand, the importance of the aperture code

is demonstrated in figures 4.4(a), (c) and (e) by the fact that using an aperture code

with 100% transmission rate, i.e. a fully open aperture, results in the worst PSNR

for all of the datacubes considered even when dispersion exists.
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(a) (b)

Figure 4.3: Reconstructions of the ‘peppers’ datacube with 70% transmission
rate without spectral dispersion (spectral coding): (a) shows the reconstruction
(PSNR=13.30), and (b) shows its associated detector measurements whose size is
128× (128 + 8− 1).

4.3.2 Optimality of the aperture code

Given that the aperture code is an essential component for datacube recovery from

CASSI measurements, it is natural to wonder if there is an optimal transmission rate

and code pattern in general. To answer this question, CASSI measurements were

simulated for each of the 3 datacubes shown in figure 4.1 at each transmission rate

considered. Figure 4.5 plots the PSNR of each reconstructed datacube as a function

of the transmission of the aperture code.

The figure illustrates that even though the sparse code does not produce any cross-

term, it produces reconstructions with very poor spatial quality because the number

of non-zero detector measurements for each spectral channel Mi is low. The spatial

quality of reconstructions can be improved by increasing the transmission T of the

random aperture code, which effectively increases Mi for each i. Although this also

results in an increase in the size of the cross-term, the increased transmission results

in more detector measurements and consequently a more spatially accurate estimate

of the datacube. However, as illustrated in figure 4.5, increasing the transmission of

the aperture code beyond a certain point does not produce any further increase in
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(a)

(c)

(e) (f )

(d)

(b)

Figure 4.4: Reconstructions of the three datacubes in figure 4.1 with 100%
transmission rate (no spatial coding by coded aperture): (a) PSNR=22.71, (c)
PSNR=24.10 and (e) PSNR=30.91 show the reconstructions of the scenes in fig-
ures 4.1(a), (b) and (c) respectively. (b), (d) and (f) show the associated detector
measurements.

the PSNR. In fact, the PSNR begins to fall until it deteriorates to its lowest possible

value, namely that achieved when a fully open aperture is used. The transmission
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Figure 4.5: PSNR of the reconstructed datacubes as a function of the transmission
rate of the aperture code.

rate at which the PSNR begins to fall is also scene dependent. Figure 4.5 shows

that, at least for the datacubes considered, this is observed to happen between a

transmission rate of 50% and 70%.

Reconstructions were also performed using 10 different random aperture patterns

for the ‘DU’, ‘phantom’ and ‘peppers’ datacubes with transmission rates of 70%, 50%

and 70% respectively. These transmission rates were chosen because they produced

the reconstructions with the highest PSNR as shown in figure 4.5. As figure 4.6

shows, there is only marginal variation in the PSNR as a function of the pattern of

the aperture code. This implies that as long as the open and closed features of the

coded aperture are distributed uniformly in a random manner over the full aperture

area, the pattern itself does not significantly matter. This conclusion was also made

back in section 3.5.
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Figure 4.6: Variation of the PSNR of the reconstructed datacubes as a function of
random aperture code pattern.

4.3.3 Scene dependence of CASSI performance

An important property of a system designed to recover a sparse signal from a com-

pressed measurement is the ratio of the number of measurements made, M , to the

sparsity of the signal, S, needed to accurately recover any signal with given sparsity

S regardless of the locations of the S non-zero coefficients in the signal. Simply put,

the ratio, M/S, should be as small as possible without dependence on the locations

of the non-zero basis coefficients in S sparse signals. The smaller the ratio, the more

efficient the measurement system. Thus, an ideal CASSI design is one that can be

used to recover datacubes of any scene with equal PSNR for the smallest possible

ratio M/S.

Before investigating the value of this ratio for CASSI, it is worth noting that the
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number of non-zero CASSI detector measurements is typically scene dependent. As

an extreme example, if the spatial distribution of a scene maps to the closed features

on the coded aperture, represented by 0’s in Φ, then the detector will not make any

measurements whatsoever. Thus, for the purpose of comparison, all the 3 datacubes

that were simulated produce an approximately equal number of non-zero detector

measurements that is limited only by the transmission rate T of the aperture code.

This was due to the presence of the (weak) background in all the spectral channels.

As another example, even though the total number of non-zero detector mea-

surements produced by the ‘DU’ datacube matches that produced by the other two

datacubes, the number of pixels that the ‘D’ and ‘U’ map to limits the “effective”

number of non-zero measurements. As a result, removing the background produces

a reconstruction with virtually the same PSNR (PSNR=28.37) and visual quality as

that of a scene with the background (compare figure 4.7(a) producing PSNR=28.37

with figure 4.7(c) producing PSNR=28.77).

As figure 4.5 demonstrates, the performance of CASSI is scene dependent even

when the number of non-zero detector measurements M is up to 10.3 times the

number of non-zero coefficients S, which is approximately 1670. Figure 4.8 il-

lustrates the best estimates of the ‘phantom’ and ‘peppers’ datacubes recovered

from simulated CASSI measurements. This scene dependence can be related to the

coherence of the CASSI sensing matrix Φ. Unlike a sensing matrix constructed

through independent and identically distributed draws from a Gaussian or Bernoulli

distribution that allows for accurate recovery with high probability provided that

Mi ≥ Ci · Si · log(NxNy/Si), the CASSI sensing matrix Φ requires Mi ≥ Ci ·
µ2(Φi, Ψ2D) · Si · log(NxNy) for all i spectral channels for accurate recovery of the

datacube that is completely independent of the scene.

Simulations were attempted to determine the approximate ratio of the number of

non-zero CASSI detector measurements and the number of nonzero transform coeffi-
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(a) (b)

(c) (d)

Figure 4.7: Comparison of reconstructions with and without the weak background.
(a) PSNR=28.37 and (c) PSNR=28.77 show the reconstructions of the datacubes
without and with the background, respectively. (b) and (d) show the associated
detector measurements.

cients (i.e., M/S) required to accurately reconstruct datacubes that are independent

of the scene. Table 4.1 shows the PSNR for 6 different datacubes designed such

that their content distributions were constrained to produce roughly 100 2D wavelet

coefficients. For these datacubes, the number of detector measurements required to

produce a scene-independent reconstruction quality (PSNR ' 58) was found to be

at least around 5900, a factor of about 59 over S in each datacube. Note that there

is a large variation in the PSNR below an aperture code transmission rate of 20%.
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(a) (b)

(c) (d)

Figure 4.8: Best reconstructions of the ‘phantom’ and ‘peppers’ datacubes with
50% and 70% transmission rates, respectively. (a) PSNR=42.84 and (c) PSNR=38.61
show the best reconstructions of the datacubes, respectively. (b) and (d) show their
corresponding detector measurements.

S
M PSNR M PSNR M PSNR M PSNR

(T=5) (T=5) (T=10) (T=10) (T=20) (T=20) (T=30) (T=30)

Scene 1 96 1603 32.06 3139 50.79 5911 57.31 8423 61.32

Scene 2 104 1603 30.25 3139 37.20 5911 58.07 8423 62.18

Scene 3 96 1603 33.28 3139 38.48 5911 58.80 8423 61.98

Scene 4 102 1603 28.72 3139 52.64 5911 60.14 8423 63.94

Scene 5 100 1603 26.74 3139 33.85 5911 57.37 8423 61.59

Scene 6 102 1603 39.03 3139 48.58 5911 55.59 8423 59.53

Table 4.1: Determination of the minimal ratio of M and S (M/S) required for
scene-independent accurate reconstructions. T denotes the transmission rate.

4.4 An alternative design for reducing the coherence of Φ

In the previous section, the scene dependence of CASSI’s performance was attributed

to the insufficiency of measurements, Mi, in each spectral channel, i. However, the
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bound on the number of measurements required is not an accurate predictor of

CASSI’s performance for a given specific scene. For example, although the best

PSNR achieved for the ‘DU’ datacube as 28.77, the best PSNRs achieved for the

‘peppers’ and ‘phantom’ datacube were well above 35. Thus, a global property like

the mutual coherence (see equations (4.3) and (4.4)) between Φ and Ψ, which is used

to set bounds on the number of measurements needed for accurate recovery is not

useful to predict the reconstruction quality of specific scenes when the number of

measurements is insufficient. Clearly the bound on the number of measurements is

only a sufficient condition, but not a necessary one for accurate datacube recovery.

An alternative explanation must exist for why some scenes can be reconstructed

well, while others like the ‘DU’ datacube are reconstructed poorly. A likely answer

lies in the lack of the mutual orthogonality of the columns of the CASSI sensing

matrix Φ or, as a consequence, the columns of the CASSI system matrix H. For

H to preserve the lengths of S-sparse vectors b through dimensionality reduction

tightly, as required by the RIP, the subset of columns of H that the S components

of b map to should be as mutually orthogonal as possible.

The CASSI design is such that the structure of the sensing matrix, Φ (e.g., see

figure 4.10(a)), may contain several identical columns. There may also be some

entirely zero columns. It is not desirable to have such columns because there can be

sparse vectors that are in the null space of Φ. This is in contrast to the well-known

good CS sensing matrices (random Gaussian and Bernoulli) that have columns that

are (statistically maximally) independent of each other and hence satisfy the RIP

with a small restricted isometry constant. This suggests that the sensing matrix

for an alternative, potentially improved CASSI design that has less scene dependent

performance should have columns that are as mutually orthogonal as possible.

One solution is to relax the snapshot requirement of the CASSI measurement

process. Then capturing multiple images of the scene while pushbrooming CASSI
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by small amounts leads to a greater number of measurements, which makes recovery

of the datacube using the effective sensing matrix less ill-posed. This approach is

currently under investigation. Relaxing the snapshot requirement may also allow the

implementation of positive and negative values in the effective sensing matrix, which

may lead to a system matrix with a smaller restricted isometry constant.

At this point, it is important to note once again that it is not possible to physi-

cally realize a sensing matrix with random, negative values while maintaining a snap-

shot measurement process. The non-negative nature of a physically implementable

matrix, along with the non-negative nature of the scene significantly restrict the pos-

sibility of creating an ideal CS sensing matrix. Since the space in which the columns

of any physically implementable Φ reside is limited to the non-negative orthant, the

angles between the columns are more likely to become highly coherent as the degree

of dimensionality reduction becomes larger.

One potential snapshot design alternative to the conventional CASSI design dis-

cussed so far is to implement a coding scheme that simultaneously generates multiple

shifted images of the scene at the coded aperture plane. The optical layout for the

conventional CASSI described so far in this chapter and in chapters 2 and 3 is shown

in figure 4.9(a). In this design, the objective lens forms a single image of the scene at

the coded aperture plane. In the alternative design, the conventional CASSI is modi-

fied by replacing the objective lens with an array of smaller lenslets, as demonstrated

in figure 4.9(b).

The lenslet array effectively generates multiple images of the scene, each of which

is laterally shifted at the coded aperture plane depending on the position of the

lenslet in the array. The coded aperture and the prism then encode each datacube,

associated with each image at the coded aperture plane. Note that since the coded

aperture position is physically fixed, each datacube is encoded in a different man-

ner corresponding to the shifts of the image. These encoded datacubes are then

104



Objective    
Lens

Coded 
Aperture Lens Prism

Detector 
array

Lenslet 
Array Lens Prism

Image of  object

(a) Conventional CASSI

(b) CASSI with lenslet array

Images of  object

Detector 
array

Coded 
Aperture

Figure 4.9: Improving CASSI performance by replacing the objective lens with a
lenslet array of equal focal length. The lenslet array leads to multiple overlapping
images of the scene on the coded aperture prior to dispersion by the prism.

multiplexed at the detector array (e.g., see figure 4.11(d)). For a system using a

lenslet array with NL lenslets, the detector measurements g may be mathematically

modeled as

g = Φ
NL∑

k=1

Skf

= Φnewf, (4.22)

where Sk ∈ RNf×Nf represents a matrix that laterally (along the x- and y-axis) shifts

the datacube f ∈ RNf corresponding to the kth lenslet, Φ is the sensing matrix for

the conventional CASSI as defined in section 4.2.1, and Φnew is the new effective

sensing matrix for the modified design.

With this new coding scheme, the number of 1’s in each column of Φnew is pro-
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Figure 4.10: (a) Sensing matrix used to map an 8 × 8 × 4 datacube on to the
detector array of a conventional CASSI as shown in figure 4.9(a). (b) Sensing matrix
used to map an 8×8×4 datacube on to the detector array of a CASSI with a lenslet
array consisting of 9 lenslets as shown in figure 4.9(b).

portional to the number of lenslets as shown in figure 4.10(b). As a consequence, the

angles between the columns of the matrix also increase and the probability of any

overlap between the columns decreases. The probability of having any zero columns

in the matrix also decreases. Thus, the restricted isometry constant of a system ma-

trix generated using Φnew is likely to be smaller than the restricted isometry constant

of a system matrix generated using the sensing matrix of the conventional CASSI,

Φ, making the performance of the alternative design less scene dependent.

The performance of a lenslet array CASSI system consisting of a 7×7 lenslet array

and a 50% transmission aperture code was studied with each of the three datacubes

described in section 4.3. In a snapshot, the detector array would measure a superpo-
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sition of 49 shifted and coded datacubes corresponding to the images produced by the

lenslet array. Figures 4.11(b), (d) and (f) show the corresponding detector measure-

ments. In all three cases, the number of detector measurements is the same as that

generated by the conventional CASSI. Since the detector measurements multiplex

the shifted copies of the datacube, the measurement does not bear any resemblance

to the spatial distribution of the scene. In addition, while each lenslet has a lower

light collection efficiency than the objective lens in the conventional CASSI, the over-

all amount of light collected by the instrument remains the same. As demonstrated

by figure 4.11(d), the 49 shifted images produced by the lenslets have the largest

amount of overlap around the center of the detector measurement and progressively

lesser overlap towards the boundaries of the detector. As will be discussed in greater

detail in the next section, this may cause the degradation of the conditioning of Φnew

and make the reconstructions from such a system less robust to noise.

Figure 4.11(a), (c) and (e) shows best reconstructions of the ‘DU’, ‘phantom’

and ‘peppers’ datacubes using the same aperture codes that produce the best re-

constructions with the conventional CASSI. The high PSNRs of the reconstructions

indicate highly accurate reconstructions of all 3 datacubes when no noise is present.

The insensitivity of the PSNR to the nature of the sparse scenes can be attributed

to the greater mutual orthogonality of the columns of Φnew compared to that of Φ,

the sensing matrix for the conventional CASSI.

The improvement can be roughly quantified by evaluating the mutual coherence

µ(Φ, Ψ) given in equation (4.3). For CASSI using a conventional objective lens and

an aperture code with 50% transmission, µ(Φ, Ψ) evaluates to 1
2

√
N ∼ 180. In addi-

tion, the mutual coherence using its alternative definition as given by equation (4.4),

evaluates to its maximum possible value of 1. This indicates the presence of two or

more identical columns in the CASSI sensing matrix. In contrast, the mutual coher-

ence as given by equation (4.3) of the lenslet array based CASSI evaluates to 57.24,
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(a)

(c)

(e) (f )

(d)

(b)

Figure 4.11: “Best” reconstructions of the ‘DU’, ‘peppers’ and ‘phantom’ dat-
acubes. (a) PSNR=67.12, (c) PSNR=57.65 and (e) PSNR=56.72 show the best
reconstructions of the three datacubes by a lenslet array CASSI, respectively. (b),
(d) and (f) show their corresponding detector measurements.

while the alternative definition evaluates to 0.78. As the reconstruction examples

show, the decrease in the mutual coherences leads to a significant improvement in

the reconstruction fidelity.
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4.5 Noise sensitivity of CASSI measurements

In this section, the performance of a conventional CASSI system and a lenslet array

based CASSI is investigated in the presence of noise. Figure 4.12 and 4.13 show

the changes in reconstruction PSNRs versus the changes in noise level for each sys-

tem. Figures 4.12(a) and (b) show the results produced with conventional CASSI

measurements corrupted by additive white Gaussian noise (AWGN) and Poisson

noise, respectively. Similarly, figures 4.13(a) and (b) show the results produced with

lenslet array based CASSI measurements. The AWGN is generated with the ‘awgn’

command in Matlab. The Poisson noise is generated with SNR defined by

SNR = 10 log10

[ ∑
k g2

k∑
k(g

p
k − gk)2

]
, (4.23)

where

gp
k ∼

1

α
Poisson {αgk} . (4.24)

The constant factor α is chosen such that the measurement SNR equals the specified

SNR in the plot. Poisson noise is added because real CASSI measurements are the

intensities of optical fields which are subject to photon noise modeled by Poisson

random processes. Both AWGN and Poisson noise are generated in 20 different

levels to show the reconstruction PSNR changes. For each noise level, 20 different

realizations of both noises are generated to produce the error bars.

The noise sensitivity curves for the conventional CASSI in figure 4.12 show two

interesting features. First, the CASSI reconstructions are relatively robust to both

Poisson and Gaussian noise. Although the reconstruction PSNR is scene dependent,

it converges at a relatively low measurement SNR (around 40 dB). Examining the

singular values of Φ reveals why this is the case. The singular values of Φ are simply

the square roots of the number of 1’s in each row, which means that the CASSI
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Figure 4.12: Plot of reconstruction PSNR from noisy CASSI measurements: (a)
and (b) show reconstruction PSNRs produced with conventional CASSI measure-
ments corrupted by additive white Gaussian noise and Poisson noise, respectively.
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Figure 4.13: Plot of reconstruction PSNR from noisy lenslet array CASSI mea-
surements: (a) and (b) show reconstruction PSNRs produced with measurements
from a lenslet array CASSI corrupted by additive white Gaussian noise and Poisson
noise, respectively.

sensing matrix is well-conditioned. For example, when there are 32 spectral slices,

the largest possible singular value is
√

32 and the smallest possible singular value is
√

0, although the 0 singular values would rarely occur when Nλ is large enough. The

rows corresponding to the 0 singular values can be easily ignored or removed without
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losing information. Upon removing these rows, the effective minimum singular value

is
√

1 = 1, which produces a condition number
√

Nλ. Thus the stability of the

performance of the conventional CASSI in the presence of noise can be attributed to

the low condition number of Φ.

Second, the error bars are small in both the AWGN and Poisson noise cases.

Interestingly, the Poisson noise error bars are smaller than the Gaussian noise error

bars. Also, it is interesting that in low SNR levels, the CASSI measurements are

more robust to the Poisson noise than the AWGN.

Note that the ‘DU’ datacube is less affected by noise because only a small set of

pixels are significantly large such that they are affected by noise (especially by Pois-

son noise). Hence, for low SNR, the ‘DU’ datacube produces better reconstruction

PSNRs compared to the other two datacubes.

The reconstruction results for the lenslet array based CASSI in figure 4.13 suggest

that this system is not as robust to AWGN and Poisson noise as the conventional

CASSI according to the slow convergence of the reconstruction PSNR. This can be

attributed to the fact that the power distribution at the border of the detector mea-

surement is much lower than at the center. This is because there is lower multiplexing

of the different projections of the scene at the borders than at the center. A lower

power distribution means a lower number of counts at each detector pixel and a cor-

responding increase in sensitivity to noise. Such non-uniform power distribution can

be interpreted as leading to a condition number of Φnew that is higher than that of

Φ. The degradation in the condition number results in the alternative system being

less robust to noise.

4.6 Implications for CASSI using a dual disperser architecture

It is important to note that many of the conclusions that were made in the previous

sections for a CASSI using a single disperser are also valid for a CASSI system using
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a dual disperser architecture [3]. The sensing matrix, ΦDD for a dual disperser maps

an Nf = Nx ×Ny ×Nλ voxel datacube onto M = Nx ×Ny detector pixels. Just like

the single disperser CASSI, the sensing matrix for the dual disperser CASSI has the

form, ΦDD = [Φ1Φ2 · · ·ΦNλ
] ∈ RM×Nf as shown in figure 4.14(a). Φ1 ∈ RM×(Nx×Ny)

is a diagonal matrix that is constructed by vectorizing elements of the coded aperture

column-wise. Φi ∈ RM×(Nx×Ny) is obtained by cycling the elements of the diagonal

in Φ1 a total of (i− 1)×Ny rows. Compared to the single disperser CASSI sensing

matrix shown in 4.14(b), ΦDD is wider, which implies that the dual disperser maps

a certain sized datacube to fewer pixels than the single disperser CASSI. Each pixel

on the dual disperser detector is essentially programmed to apply a certain spectral

filter on its corresponding pixel in the scene.

All of the algorithms described to process CASSI measurements in chapters 2 and

3 may be used for datacube recovery from dual disperser CASSI measurements. The

algorithm described in [3] takes advantage of the fact that the detector measurement

resembles the scene and utilizes spatio-spectral correlations in the scene to improve

reconstruction quality.

Without coding introduced by the coded aperture and the dispersive elements,

the detector on the dual disperser simply integrates the datacube along the wave-

length axis and makes it impossible to recover the spatial content in different spectral

channels. Given that the structure of the columns of ΦDD is similar to that of Φ, the

dual disperser is also expected to produce scene dependent datacube reconstructions.

Just like the single disperser CASSI, the performance may become less scene depen-

dent with the replacement of the front objective lens with a lenslet array, as discussed

in section 4.4. Finally, since the rows of ΦDD after removing all 0 rows are all or-

thogonal, ΦDD will have a low condition number and will have stable performance

in the presence of noise.
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Figure 4.14: Comparison of CASSI sensing matrices for systems with a dual dis-
perser and a single disperser architecture. (a) sensing matrix for a dual disperser
CASSI, ΦDD, that maps an 8×8×4 = 256 voxel datacube to 64 detector pixels. (b)
sensing matrix for a single disperser CASSI, Φ, that maps an 8× 8× 4 = 256 voxel
datacube to 88 detector pixels - identical to figure 3.12(a).

4.7 Conclusions

In this chapter, Matlab simulations were used to study the performance of the CASSI

design presented in chapters 2 and 3 from the perspective of compressive sampling

theory. Although optical distortions were ignored, the study provided key insights

into properties of the CASSI sensing matrix, Φ and the system as a whole.

In particular, coding introduced by the coded aperture and the dispersive ele-

ment was noted to be absolutely essential for any hope of datacube recovery from

the significantly under-determined CASSI measurements. Furthermore, no optimal
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aperture code was found; the open and closed features on the aperture code should

simply be distributed as uniformly as possible in a random manner. Reconstructing

3 datacubes representing different scenes but having approximately the same number

of sparse basis coefficients revealed the scene-dependent performance of CASSI. This

was attributed to the presence of several identical columns, columns of zeros, and

the lack of mutual orthogonality of the columns of Φ, making it the most significant

insight provided by the Matlab simulations.

The sensing matrix, Φnew for an alternative design that involved replacing the

front objective lens of CASSI with a lenslet array was noted to have multiple 1’s

in each column, allowing the angles between the columns to be larger than those of

Φ and allowing scene-independent reconstructions of datacubes. However, this also

meant that, unlike the rows of Φ, the rows of Φnew were not orthogonal and the

condition number of Φnew would likely be larger than that of Φ. Thus, while the

alternative design did not exhibit scene-dependent performance in noiseless Matlab

simulations, the performance was more sensitive in the presence of noise.

The results of this chapter have revealed that snapshot spectral imaging is a

strong constraint for datacube reconstruction from a small number of conventional

CASSI measurements. Nevertheless, it is important to note that there may be appli-

cations where the conventional CASSI might be useful due to the simplicity of the

optical setup, particularly if the scene is sparse. A dual disperser CASSI system,

which has a very similar sensing matrix to Φ, has been used for snapshot spectral

imaging and identification of spatially uniform, but spectrally broadband, fluorescent

microspheres that are often used in fluorescence microscopy [45, 46].
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5

Imaging through turbulence using compressive
coherence sensing

The Earth’s atmosphere degrades the resolution of ground-based imaging systems

attempting to image objects in space. The major contribution described in this

chapter is an approach to image objects through turbulence by compressively sam-

pling the mutual intensity, a coherence function of the optical field. The chapter

begins with an introduction to the problem of imaging through turbulence in section

5.1. Section 5.2 reviews diverse methods for imaging through turbulence. The use

of spectral imaging with CASSI is analyzed as a potential method to image through

turbulence in section 5.3. Measurement of the mutual intensity, a 4D function, as

a means of imaging and imaging through turbulence is introduced in section 5.4.

A previous application of compressive sampling of the mutual intensity for imaging

sparse astronomical objects is described in section 5.5. As the main focus of this

chapter, an approach to image through turbulence using compressive sampling of

the mutual intensity is presented in sections 5.6 and 5.7. The mutual intensity is

sampled using a Rotational Shear Interferometer (RSI). Unlike a CASSI-based ap-
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proach that would rely on the measurement of the power spectral density of the

optical field, the RSI may be used to image through turbulence by measuring a sub-

set of the mutual intensity of the field, assuming that the scene is spatially sparse.

An experiment to test the ability of the RSI and the numerical estimation method

to image remote point sources through isoplanatic turbulence is presented in section

5.8. Finally, a simulation testing the approach to image extended objects through

turbulence is presented in section 5.9.

5.1 Introduction to imaging through turbulence

In the absence of atmospheric turbulence, an incoherent telescopic image of a space

object can be modeled as a linear, shift-invariant process and represented as

g(x′, y′) =
∫∫

φ(x− x′, y − y′)f(x, y) dx dy, (5.1)

where f(x, y) is the object intensity distribution, φ(x, y) is the PSF of the imaging

system and g(x′, y′) is the image intensity distribution to be sampled by a detector

array. For an incoherent imaging system, the PSF is given by

φ(x, y) =
∣∣∣∣
∫∫

P (u, v)e−i 2π
λz

(ux+vy) du dv

∣∣∣∣
2

, (5.2)

where P (u, v) is a binary function defining the pupil of the imaging system, λ is the

wavelength of light, z is the distance from the pupil to the image plane, and a scale

factor is neglected. The resolution of an imaging system is limited by the finite size

of the aperture, i.e. a P (u, v) with a finite extent, which causes diffraction.

In part (a) of figure 5.1 (adapted from [47]), a diffraction limited image of a

star obtained from a ground based imaging system in the absence of turbulence is

simulated and displayed on a log scale to show the diffraction-induced Airy rings

caused by the finite size of the telescope aperture. The figure is the convolution of

the perfect image of the star with the PSF in equation (5.2).
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(a) (b) (c)

Figure 5.1: Simulated images of a star: (a) diffraction-limited image in the ab-
sence of turbulence; (b) short exposure image in turbulence; (c) long exposure image
in turbulence. To produce these results, the authors simulated a telescope with a
diameter of 1 m, average atmospheric turbulence conditions, and a mean wavelength
of λ = 550 nm.

The resolution of a ground-based imaging system is further limited by phase aber-

rations induced by atmospheric turbulence. Turbulence arises due to temperature

variations of the atmosphere over the course of the day, which leads to variations

in the refractive index. The net effect is that the atmosphere acts as a collection

of lenses of different refractive indices so that wavefronts from incoherent sources

of light radiating in space undergo phase distortions [48]. These phase distortions

are distributed across the pupil of the imaging system. Discussion of this problem

throughout this chapter is limited to isoplanatic imaging, where the aberrations in-

troduced by the turbulence are assumed to be uniform across the field of view of the

imaging system.

Given an instantaneous turbulence-induced, non-zero optical path delay (OPD),

d(u, v), across the pupil, the expression for the PSF of an incoherent imaging system

is equation (5.2) is modified to

φ(x, y) =
∣∣∣∣
∫∫

P (u, v)ej d(u,v)e−i 2π
λz

(ux+vy) du dv

∣∣∣∣
2

. (5.3)

Figure 5.1(b) above illustrates a short exposure image of the star in the presence of
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turbulence. Here, short exposure means that the image exposure time is sufficiently

short to freeze the atmosphere during the exposure. A short exposure typically has

an integration time of less than 10 ms [49]. This image is a convolution of the perfect

image of the star with a short-exposure PSF of the form shown in equation (5.3). As

the figure shows, the effect of the turbulence is to broaden the system PSF compared

to the diffraction limited PSF and to be highly speckled in its appearance.

Figure 5.1(c) above illustrates a long exposure image of the star in the presence

of turbulence. In such an image, the exposure time is long enough to integrate

over multiple realizations of the turbulence-induced aberrations. Thus, the long

exposure PSF is broader than the diffraction limited PSF and smoother than the

short exposure PSF shown in figure 5.1(b). A long exposure typically has an exposure

time of greater than 0.1 s [49].

The effect of turbulence can be quantified in terms of the loss of angular resolution

of the telescope. The angular resolution of a diffraction limited telescope of diameter

D operating at a wavelength λ is

θ ∝ λ

D
. (5.4)

In the presence of turbulence,

θ ∝ λ

r0

, (5.5)

where r0 is the Fried parameter. This parameter is given by

r0 =

[
0.42

(
2π

λ

)2

sec(ζ)
∫

C2
N(h)dh

]− 3
5

, (5.6)

where ζ is the zenith angle and C2
N(h) is the refractive index structure constant

as a function of height which provides a measure of the vertical turbulence profile

[48]. The smaller r0 is, the more severe the turbulence and the poorer the angular
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resolution. Thus, r0 may be thought of as the effective telescope diameter imposed

by the atmosphere.

Removing the effect of atmospheric turbulence requires a method for characteri-

zation of the wavefront distortions as well as a method for the subsequent correction

to recover an undistorted image of the scene. In the next section, some techniques

designed to eventually recover undistorted images of objects through atmospheric

turbulence are reviewed.

5.2 Approaches to imaging through turbulence

Speckle imaging

Speckle imaging is regarded as one of the earliest approaches to partially overcome

atmospheric turbulence in astronomical imaging [50]. It relies on the fact that each

speckle in a short exposure image is the size of the diffraction limited PSF and there-

fore contains high frequency information of the object [51]. Several short exposure

images of the objects and a nearby reference star are captured and postprocessed

to estimate the Fourier transform of the object, which is later inverted to recover

an undistorted image of the object [50]. This technique has previously been used to

image binary stars, where the speckle patterns are simple.

A time sequence of short exposures images of a common scene can also be post-

processed by using multiframe blind deconvolution, a technique where the undis-

torted image of the scene is estimated from turbulence degraded images and the

time-varying PSFs are unknown [52]. This approach has the benefit of not requiring

additional imaging of a reference star.

Lucky imaging

A significantly simpler technique for processing the short exposure images to recover

a high resolution image of the object through turbulence is called lucky imaging [53].

119



Several thousand short exposure images of the object of interest are captured, but

only 1 − 5% of these images with the highest Strehl ratio of a reference star in the

field are selected to be registered and added. This subset of images corresponds

to exposures that are least affected by the time-varying effects of turbulence. The

technique is limited by the large number of images that must be collected and the

need for expensive, low noise, electron multiplying CCD detectors for faint object

detection.

Adaptive optics

Possibly the most well known turbulence correction systems that are capable of real

time turbulence correction are those based on adaptive optics technologies routinely

in use on large telescopes like the Keck II telescope in Hawaii [54]. In these sys-

tems a deformable mirror placed in the optical path is controlled so that the path

length errors in the light reflected from the mirror cancel out the errors induced

by the turbulence. The actuators of the deformable mirror are controlled based on

inputs received from wavefront sensing systems used to characterize the wavefront

distortions.

Wavefront sensing

A commonly used wavefront sensor (WFS) is the Hartmann-Shack sensor [55]. This

sensor consists of a 2D lenslet array located in a plane conjugate to the pupil plane of

the telescope which produces a 2D array of spots on a detector array at the back focal

plane of the lenslets. The positions of these spots are compared with the positions of

reference spots and the displacements between the two are proportional to the local

slope of the wavefront [56]. Since the light from science targets under observation

is typically faint, a natural or laser-generated artificial guide star [57] is used for

measuring the wavefront distortions.
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The wavefront estimated from a Hartmann-Shack WFS may also be used to

calculate the instantaneous PSF which can be used to post-process the instantaneous

short exposure image of the object. Over time, different spatial frequencies of the

object can be recovered from different short exposure images because of the random

time variation of the turbulence [50]. This technique offers a compromise between an

adaptive optics system, which relies on the mechanical correction of the wavefront,

and speckle interferometry, which requires a larger number of short exposure images

for correcting turbulence effects [56].

Another approach to wavefront sensing that can provide feedback to an adaptive

optics system relies on phase diversity [58]. Two images of the object are simulta-

neously captured with different (known) phase aberrations optically added to each

image. The known aberration is typically defocus [59]. Recovery of the wavefront

from the recorded images is achieved through nonlinear optimization of some metric

that measures the difference between the recorded data and a model of the data ob-

tained with a given estimate of the wavefront [60]. The phase diversity sensor does

not require a reference guide star, making it independent of the scene content.

Imaging through turbulence at non-optical wavelengths using radio interferometry

The universe is full of sources of electromagnetic radiation that are not observable

by telescopes operating at optical frequencies. Imaging incoherent sources of radio

waves like stars, galaxies and pulsars that may not be visible in optical frequencies

requires a radio interferometric telescope. This section briefly introduces the van

Cittert-Zernike (VCZ) theorem, which is used to image such sources using radio

telescopes. The use of the VCZ theorem for imaging will be revisited in greater

detail in sections 5.5 and 5.6.

From equation (5.4), it is easy to see that as the emission wavelength of the source

increases from optical to radio wavelengths, the diameter of a telescope needed to

121



image the source with high angular resolution has to be considerably larger - too

large to build as a continuous aperture. A radio telescope, like the Very Large Array

in New Mexico, USA, consists of widely separated small radio telescopes that are

connected using interferometry.

In the absence of turbulence, these small telescopes can be combined to synthesize

a telescope whose effective aperture diameter is the size of the two telescopes furthest

apart in the array - a technique known as aperture synthesis. The signal from each

pair of telescopes is interfered to allow estimation of the amplitude and phase of the

complex mutual intensity, a coherence function of the optical field. To recover an

image of the object with an angular resolution dependent on the effective aperture

diameter, the van Cittert-Zernike (VCZ) theorem [61] is employed, which states that

the measured samples of the mutual intensity are in fact samples of the 2D Fourier

transform of the spatial distribution of the incoherent radio wave source in space. By

changing the locations and separations (baselines) of the small telescopes, different

Fourier components can be measured [62]. To overcome the limitation of atmospheric

turbulence on the effective telescope aperture, a technique known as phase closure

may be used to eliminate the errors in the phases of the measured Fourier components

[63, 64].

5.3 Spectral imaging to image through turbulence

In contrast to multiframe blind deconvolution, where an undistorted image of an

object is estimated from a time sequence of frames degraded by turbulence, multi-

channel blind deconvolution (MCBD) is a technique where images of an object are

collected through two or more imaging channels with known inter-channel differences.

The technique does not require the collection of a time sequence of frames.

Defocus-based phase diversity has previously been used as a MCBD scheme for

simultaneous estimation of the object as well as the wavefront aberrations [60, 65].

122



Noting the requirement for multiple detector arrays, which can be a considerable

expense for a phase diversity based MCBD system, it is interesting to consider al-

ternative schemes to introduce inter-channel diversity.

Wavelength diversity has previously been considered as a MCBD scheme [66],

although not specifically for the astronomical imaging case. To this end, spectral

imaging with CASSI, as described in the previous 3 chapters, was investigated as

a means of imaging through turbulence in a snapshot by exploiting any chromatic

dispersion of the atmosphere for wavelength diversity of the PSF.

Expected wavelength diversity introduced by the atmosphere

Given that light incident on a spectral imager is divided into multiple spectral chan-

nels, the integration time would have to be considerably longer than 10 − 100 ms,

i.e. the typical integration time for a short exposure image. As mentioned earlier,

a longer integration time results in a smoother and less structured PSF than for a

short exposure. The full width half maximum (FWHM) of a long exposure image in

the presence of atmospheric turbulence is called seeing [67], which is quantified as

seeing = 0.98
λ

r0

. (5.7)

Referring to equation (5.6), r0 ∝ λ
6
5 , so that

seeing ≈ λ

r0

∝ λ
−1
5 . (5.8)

Thus, seeing has a very weak dependence on wavelength. Considering that the spec-

tral range of CASSI is only between 450 and 650 nm, the FWHM of the atmosphere-

induced long exposure PSF at 650 nm only shrinks to 93% of its value at 450 nm -

certainly not a very big change.
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Experimental examination of turbulence-induced wavelength diversity

The analysis above suggested that the atmosphere alone would not provide significant

wavelength diversity. To experimentally examine the change in the structure and

size of the turbulence-induced PSF as a function of wavelength in the lab, 3 points

generated using lasers at 473, 532 and 632.8 nm were observed one at a time by an

imaging system. Adjustable neutral density filters were placed in front of each laser

to ensure that the intensity of the three laser spots were the same.

The imaging system consisted of a grayscale CCD array with a camera lens in

front of it, along with a phase screen placed immediately in front of the lens aperture

to simulate the effect of the atmosphere. Different static phase screens were tested

including the end of a petri dish, the end of a glass bottle, and a warped acrylic

plate. A dynamically changing phase screen using the vapors from a propane flame

was also tested.

None of the phase screens tested in the lab produced any significant variation in

the PSFs as a function of wavelength. As equation (5.8) suggests, relying on the

atmosphere to provide wavelength diversity requires a drastic change in wavelength.

As it turns out, researchers in the wavefront sensing community have previously

noted that a Hartmann-Shack WFS works well with polychromatic radiation [56],

so that sensing the wavefront and aligning an adaptive optics system at an optical

wavelength between 400− 700 nm is enough to adequately align the system even at

IR wavelengths.

The quantitative analysis and experimental evidence described above suggested

that the atmosphere does not introduce significant chromatic aberrations over the

optical wavelengths. Without sufficient inter-channel diversity in the spectral image

of the object degraded by turbulence, it would not be possible to use a MCBD scheme

to recover an undistorted image of the object. For this reason, CASSI was not given
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any further consideration as a means to image through turbulence.

5.4 Coherence imaging to image through turbulence

Besides radio interferometry, all of the approaches to image through turbulence de-

scribed in section 5.2 and 5.3 treat the formed image as incoherent and do not

attempt to infer coherence properties of the source from the image. Partial coher-

ence is a seldom exploited, yet rich source of information that could be used not only

for imaging, but also for imaging through turbulence.

As light radiates from incoherent sources in the far field, it propagates through

free space or through a turbulent atmosphere and as it does so, it gains coherence.

The mutual intensity is a measure of optical coherence. In addition to its use in

imaging of incoherent sources by radio interferometry, the mutual intensity may also

be used to image the turbulence-induced wavefront aberrations.

In a 2D aperture, the mutual intensity is a 4D function, J(r1, r2), capturing

the correlations between every pair of points r1 = (x1, y1) and r2 = (x2, y2) in the

aperture. The most direct way to measure J is to measure the interference of the light

incident on two pinholes that are spatially scanned across all pairs of coordinates in

the aperture. This approach is tedious and time consuming.

An alternative approach is to use an astigmatic coherence sensor shown in figure

5.2 (adapted from [68]), that essentially captures 2D planes of correlations at once.

The ACS consists of a CCD array that is scanned axially and three cylindrical lenses

which are rotated to adjust the horizontal and vertical focal lengths of this imaging

system. Over time, a 4D array of intensity measurements can be captured which

have a 4D Fourier transform relationship with J . Thus the ACS may be viewed as

a generalized phase diversity sensor. The ACS has previously been used to image

remote incoherent sources through an isoplanatic, refractive distortion in its pupil by

using a technique known as the coherent mode decomposition [69]. This technique
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Figure 5.2: The astigmatic coherence sensor can sample the 4D mutual intensity
function, J , in its aperture. It consists of a CCD array that is scanned axially and
three cylindrical lenses which are rotated to adjust the horizontal and vertical focal
lengths of this imaging system. Over time, a 4D array of intensity measurements
can be captured which have a 4D Fourier transform relationship with J .

utilizes the idea that a common distortion occurs to the coherent modes from each

source of light in the scene and this idea is used to separate the distortion from

the intensity distribution of sources behind it. Unfortunately, the use of the ACS for

imaging through turbulence is impractical and slow for undistorted image formation,

as it requires the complete sampling of the 4D J , which can take several hours.

5.5 Imaging by compressively sampling the mutual intensity

Compressive sampling can be used to remove the need for exhaustive sampling of

J given the prior information that the object being imaged is sparse. In radio

interferometry, imaging of sparse objects can be cast into an inverse problem based

on the VCZ theorem. According to the theorem, in a 2D aperture located in the far

field of an incoherent source (a space object), the mutual intensity of the optical field

is J(r1, r2) = J(r1 − r2) = J(∆r) and is related by a 2D Fourier transform to the

source intensity distribution of the object [50]. Image reconstruction of the sparse

objects must be performed using noisy Fourier measurements (samples of the mutual
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intensity, J) that are captured by interfering signals from pairs of radio telescopes.

These measurements represent an incomplete sampling of the effective aperture of

the radio telescope because they are captured at a finite number of locations and

separations within the aperture.

Incomplete Fourier measurements of scenes that are spatially sparse (e.g. star

fields) are particularly attractive in the CS sense because the incoherence between the

Fourier basis as the measurement basis, and real space as the basis where the scene

is sparse, is maximum. Upon discretization of the inverse problem, this is equivalent

to stating that the mutual coherence, as defined in equation (4.3), between Φ, the

discrete Fourier transform matrix, and Ψ, the identity matrix that discretizes real

space, is µ = 1. Assuming that the ratio of the number of incomplete (random)

Fourier measurements to the number of sparse objects in the discretized scene is

between 3 − 5 [70], the system matrix H = ΦΨ satisfies the RIP in equation (4.1)

and thus assures the accuracy of the signal recovered by solving the problem in

equation (4.7).

Simulations have shown the feasibility of this idea for radio interferometric imag-

ing of sparse astrophysical objects, as well as cosmic strings in the temperature field

of the cosmic microwave background radiation [71], which may be considered sparse

in the TV sense. The focus of the remainder of this chapter is the extension of

compressively sampling of J to not only image sparse objects, but to image them

through isoplanatic turbulence.

5.6 Imaging through turbulence by compressively sampling the mu-
tual intensity

In this section, a rotational shear interferometer (RSI) is described as a means for

imaging through turbulence by measuring a limited subset of samples of J . As

mentioned earlier, the mutual intensity is a 4D function describing the coherence of
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the optical field and can be represented as

J
(
r̄− ∆r

2
, r̄ +

∆r

2

)
=

〈
E

(
r̄− ∆r

2

)∗
E

(
r̄ +

∆r

2

)〉
, (5.9)

where E(r) is a quasimonochromatic, stochastic electromagnetic field of wavenumber

k = ω
c

and r̄ is the mean position of a pair of coordinates separated by ∆r. Thus,

r̄ = r1+r2
2

and ∆r = r2 − r1. Here the quasimonochromatic assumption ensures

that the bandwidth of the optical field is finite, but small enough that the temporal

coherence effects can be ignored.

The van Cittert-Zernike (VCZ) theorem states that J in a 2D aperture in the far

field of a spatially incoherent source with planar irradiance S(r) depends only on ∆r

as

J(∆r) =
∫ S(r)

z2 e
−2πi

λz
(∆r·r)d2r. (5.10)

Thus, J is the 2D Fourier transform of the far field source distribution. As mentioned

in the previous section, this relationship forms the basis for radio interferometric

imaging. To image a remote incoherent object using the same relationship at optical

frequencies, J may be sampled as a function of ∆r about a central point using an

interferometer with a 2D detector array and then inverse Fourier transformed.

If isoplanatic turbulence with an optical path delay, d(r′), is present between the

scene and the aperture,

J
(
r̄− ∆r

2
, r̄ + ∆r

2

)
=

[∫ S(r)
z2 e

−2πi
λz

[(∆r)·r]d2r
]
· e

2πi
λ [d(r̄−∆r

2 )−d(r̄+∆r
2 )]. (5.11)

Note that J is now a function of both r̄ and ∆r. Thus, when turbulence is present,

directly applying the VCZ theorem described in equation (5.10) for inversion pro-

duces a distorted image of S(r). Accurate recovery of S(r) would normally require

knowledge of the complete 4D distribution of J , which may be measured using an

instrument like the ACS. However, an RSI is uniquely suited to measure J as a
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product of the Fourier transform of the source distribution and a phase screen that

depends on the OPD. The use of an RSI to estimate both the source distribution and

the phase screen from just a 2D subset of the 4D J is experimentally demonstrated

in section 5.8.

An RSI [61], as shown in figure 5.3, consists of two right-angle fold mirrors, a

beam splitter and a CCD array. The field incident on the input aperture is first

split into two copies by the beam splitter and directed towards the two fold mirrors.

Light reflected from each fold mirror is recombined by the beam splitter to form an

interferogram on the CCD array. One of the two fold mirrors is placed on a piezo

translation stage that must be translated to allow isolation of the complex J from

the intensity measurements made on the CCD.

CCD array

Input aperture

Fold mirror
Beam splitter

Piezo
translation

stage

Fold mirror

Figure 5.3: The rotational shear interferometer can sample the mutual intensity
in its aperture. The field incident on the aperture is split into two copies by the
beam splitter and directed towards the two fold mirrors. Light reflected from each
fold mirror is recombined by the beam splitter to form an interferogram on the CCD
array. One of the two fold mirrors is placed on a piezo translation stage. By capturing
intensity measurements on the CCD at multiple translations, a 2D subset of samples
of the complex 4D J can be isolated.

Each fold mirror consists of two mirrored surfaces joined at right angles. Unlike

an ordinary mirror, a fold mirror with its fold axis positioned vertically flips the

image horizontally. Thus, any text visible in the reflection from a fold mirror will
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still be readable from left to right. Another interesting property is that a reflection

from a fold mirror when its fold axis is oriented at an angle θ (the shear angle) will

undergo a rotation of 2θ. Figure 5.4(b) (reproduced from [72]) displays the image of

the scene in figure 5.4(a) as recorded by the RSI detector. The effect of rotation on

the reflections from each mirror is easily observed.

(a) (b)

Figure 5.4: (a) An example of a scene to be imaged through the RSI. (b) Image
of the scene recorded on the RSI detector array. One of the copies of the image is
rotated due to the rotation of one of the two fold mirrors.

The continuous intensity distribution sampled at the RSI detector plane is a

function of the mutual intensity between points in the two rotated copies of the

input aperture that are being superimposed by the beam splitter after reflection

from each fold mirror. Denoting the points in each copy as r1 and r2 respectively,

the intensity measured at the detector is

I =
〈∣∣∣E(r1) + e−2πi l

λ E(r2)
∣∣∣
2
〉

=
〈(

E(r1) + e−2πi l
λ E(r2)

) (
E(r1) + e−2πi l

λ E(r2)
)∗〉

=
〈(

E(r1) + e−2πi l
λ E(r2)

) (
E(r1)

∗ + e2πi l
λ E(r2)

∗)〉

= I(r1) + I(r2) + 2R
{
J(r1, r2) e−2πi l

λ

}
, (5.12)
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where l is the path length difference between the two optical paths in the RSI.

Isolation of the complex J from the intensity measurements on the CCD requires

the capture of four interferograms captured while translating one of the fold mirrors

using the piezo stage to modify the path length difference between the two arms, a

technique known as phase shifting. By capturing interferograms I1, I2, I3 and I4 at

instances where 2π l
λ

= 0, 2π l
λ

= π
2
, 2π l

λ
= π and 2π l

λ
= 3π

2
respectively, the complex

J can be isolated by computing

J(r1, r2) =
1

4

(
I1e

0i + I2e
π
2
i + I3e

πi + I4e
3π
2

i
)

=
1

4
[(I1 − I3) + i (I2 − I4)] . (5.13)

Now consider the specific case where the fold axes of the two fold mirrors are

rotated by −θ and θ respectively and let the transverse coordinates at the detector

plane of the RSI be (x, y). The fields being superimposed at (x, y) are

1. the field that would appear at r1 = (−x cos 2θ + y sin 2θ , x sin 2θ + y cos 2θ)

if the fold mirror rotated by −θ is replaced by a plane mirror, and

2. the field that would appear at r2 = (−x cos 2θ − y sin 2θ , −x sin 2θ + y cos 2θ)

if the fold mirror rotated by θ is replaced by a plane mirror [72].

Thus r̄ = r2+r1
2

= (−x cos 2θ, y cos 2θ) and ∆r = r2 − r1 = (−2y sin 2θ,−2x sin 2θ).

Substituting these expressions into equation (5.11) and defining the coordinates in

the plane of the far field, incoherent source as r = (x′, y′), the continuous distribution

of the complex mutual intensity sampled by the detector array is given by

JRSI(x, y) =

[∫∫ S(x′, y′)
z2

e
4πi
λz

(yx′+xy′) sin(2θ)dx′dy′
]
· eiγ(x,y), (5.14)

where γ(x, y) = 2π
λ

[
d

(
r̄− ∆r

2

)
− d

(
r̄ + ∆r

2

)]
. This measurement represents a ro-

tated and scaled version of the 2D J in equation (5.10) that is modulated by a 2D
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turbulence-induced phase screen, γ(x, y), in the RSI aperture. In the absence of

turbulence, the measured samples have Hermitian symmetry, that is JRSI(x, y) =

JRSI(−x,−y)∗, since they represent a Fourier transformation of a real function, the

irradiance of the scene, S(x′, y′). Unless the shear angle θ = π
4
, the samples do not

have Hermitian symmetry in the presence of turbulence. Because of this disparity,

the turbulence phase can be distinguished from the phase due to the scene itself.

5.7 Numerical estimation method to image through turbulence

Let g represent a vector that lists discrete samples of JRSI(x, y) in equation (5.14),

the 2D subset of the 4D mutual intensity measured by the RSI. This measurement

can be represented as a matrix-vector product

g = PFx + n

= Φx + n, (5.15)

where n is noise in the measurement, x is a vector whose elements are a discrete

representation of the scaled and rotated unaberrated image of the scene consisting of

incoherent sources radiating in the far field, F is the 2D discrete Fourier transform

(DFT) matrix, P is a discrete representation of the turbulence-induced phase screen

that is denoted by eiγ(x,y) in equation (5.14), and Φ is the sensing matrix for a given

instance of the phase screen.

At this point, it is important to distinguish the RSI measurement from a con-

ventional CS measurement like the one implemented by CASSI. A 2D CASSI mea-

surement is digitally processed to recover a 3D datacube given the under-determined

sensing matrix that models the mapping from the 3D datacube to the 2D measure-

ment. In contrast, the problem of recovering an undistorted image of the scene from

just a 2D subset of the 4D J measured using the RSI is complicated by the fact that

the phase screen P is unknown, which implies that the sensing matrix, Φ in equation
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(5.15) is unknown. If there is no turbulence present, then an RSI measurement of

the scene is not compressive because the 2D measurement is related to the image

of the scene by a 2D Fourier transform according to the VCZ theorem in equation

(5.10). However, in the presence of turbulence, an RSI measurement is compressive

in the sense that both the 2D scene and the 2D phase screen must be estimated from

a single 2D subset of J .

Recovering an undistorted image of the scene involves digitally processing the

vector of measurements from the RSI to jointly estimate x and P . Mathematically,

solving this problem can be posed as

[xe, Pe] = arg min
x,P

||g − PFx||22, (5.16)

where xe is a discrete estimate of the 2D scene S(x′, y′), Pe is a discrete estimate

of the turbulence-induced phase screen eiγ(x,y), g is the vector of the 2D subset of

samples of J measured on the RSI, and F is the discrete Fourier transform (DFT)

matrix. Since P and x are both unknown, this is a non-convex problem, which

implies that a globally optimal solution cannot be found efficiently.

Part of a potential solution to this joint recovery problem involves borrowing the

CS assumption of sparsity. Just as the datacube representing a scene was assumed

to be sparse when imaging with CASSI, a sparsity assumption may be placed on the

scene being imaged through turbulence using the RSI. Consider the case where the

scene to be imaged through turbulence is sparse and consists of point sources, the

astronomical equivalent of a star field. Since the sensing matrix in equation (5.15)

is not known, an approach to solving the problem posed in equation (5.16) is an

iterative two-step alternating minimization (AM) technique [42]. In the first step,

the TwIST algorithm described in section 3.3, is used to estimate an undistorted

and sparse distribution of sources in the scene that fits the measurements of J as

closely as possible, given an estimate of the phase screen. In the other step, the
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phase screen estimate is refined using the measurements of J from the RSI and a

progressively undistorted version of J that is modeled using the current estimate of

the sparse scene. These two steps are repeated until there is minimal change in the

estimate of the sparse scene. Mathematically, the ith iteration of the AM technique

is represented as

xi
e = arg min

x

1

2
||g − Φx||22 + λ||x||1

= arg min
x

1

2
||g − P i−1

e Fx||22 + λ||x||1 (5.17a)

P i
e = sgn

[(
Fxi

e

)∗ · g
]
, (5.17b)

where xi
e and P i

e are the estimates of the scene and the phase screen at the ith

iteration to be recovered from g, a vector of samples of the measured J . Equation

(5.17b) is the least squares solution to g = Xp, where the matrix X is a diagonal

matrix listing the DFT coefficients of xi
e on the diagonal and p is a vector of the

elements of P i
e with the constraint that |P i

e | = 1.

5.8 Experimental demonstration of imaging a sparse scene through
turbulence by compressively sampling the mutual intensity

To experimentally verify the utility of this approach, a scene consisting of light

emitting diodes (LEDs) was arranged and was observed through an aberrating phase

distortion using the RSI, as detailed in figure 5.5.

The LEDs emitted light over 590± 30 nm (coherence length = 5.8 µm) and had

their plastic lenses sanded off to produce mutually incoherent radiation over 2π sr.

Note that the spectral bandwidth of the LEDs was wide enough to ensure that the

radiation was spectrally incoherent, but narrow enough so that interference fringes

could still be observed on the interferometer. These LEDs were collimated by a lens

to place their image at infinity as would occur for stellar imaging. An iris was used
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LEDs

CCD

RSI
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Iris

(spatial filter)
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14”
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Figure 5.5: Experimental setup to measure the mutual intensity at the RSI aper-
ture from LEDs radiating through a phase distortion. Light from the LEDs is colli-
mated and passes through a phase distortion plate placed behind the iris to produce
an instance of the phase distortion caused by turbulence. The distorted wavefronts
then propagate to the RSI aperture. One of the two fold mirrors in the RSI is trans-
lated using a piezo stage to adjust the path length difference between the two arms
of the RSI. 4 intensity measurements are captured on the CCD at set path length
differences. A 2D subset of the complex, 4D mutual intensity can be isolated from
these intensity measurements.

to eliminate vignetting effects from the collimation lens. A phase distortion plate

was placed behind the iris to produce an instance of the phase distortion caused by

turbulence. This plate was constructed by dripping polydimethylsiloxane (Sylgard

184) silicone onto a microscope slide and then heating it with a heat gun to cure

it before the surface became uniformly flat. A second lens relayed the partially

coherent aberrated field to the entrance of the RSI. The RSI was used to measure

interferograms as the delay between the two arms of the interferometer was varied.

The interferograms at four delays with phases separated by π/2 were used to find a
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2D subset of J according to equation (5.13).

The measurements were then processed using a slightly modified version of the

AM algorithm described in equation (5.17) to accommodate an experimental non-

ideality. Since the LEDs are not perfect point sources, the interference fringes are

filtered by a Gaussian-shaped window, as shown in figure 5.6(a), that essentially

places more weight on the lower spatial frequencies. This non-ideality can be ac-

counted for by modifying the problem to be solved in equation (5.16) to

[xe, Pe] = arg min
x,P

||g − APFx||22, (5.18)

where A is a diagonal matrix whose elements vectorize a 2D Gaussian. The iterative,

two-step AM algorithm is modified from equation (5.17) to

xi
e = arg min

x

1

2
||g − Φx||22 + λ||x||1

= arg min
x

1

2
||g − AP i−1

e Fx||22 + λ||x||1 (5.19a)

P i
e = sgn

[(
AFxi

e

)∗ · g
]
. (5.19b)

Figure 5.6(a) shows the absolute value of the 2D subset of samples of J measured us-

ing the RSI. Figure 5.6(b) shows a distorted image of the scene recovered through an

inverse Fourier transformation based on the VCZ theorem in equation (5.10), which

does not account for turbulence. Figures 5.6(c) and (d) show discrete estimates of

the undistorted scene, xe, and the phase screen, arg{Pe}, recovered using the algo-

rithm in equation (5.19). The recovered image of the 3 LEDs is a clear improvement

over the aberrated image in figure 5.6(b).

Figure 5.7 shows the results of a control experiment where the phase distortion

between the LEDs and the RSI was removed. Figure 5.7(a) shows the absolute value

of the 2D subset of samples of J measured using the RSI. Figure 5.7(b) shows an

image of the scene recovered using the VCZ theorem. Figures 5.7(c) and (d) show
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(d) Estimate of phase screen

due to turbulence, arg{P
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Figure 5.6: Results of using the two step AM algorithm described in equation
(5.19) to image three LEDs aberrated by turbulence. (a) shows the absolute value of
the 2D subset of samples of J measured using the RSI. (b) shows a distorted image
of the scene recovered through direct application of the VCZ theorem, which does
not account for turbulence. (c) and (d) show discrete estimates of the undistorted
scene, xe, and the phase screen, arg{Pe}, recovered using the AM algorithm.

discrete estimates of the scene, xe, and the phase screen, arg{Pe}, recovered using

the algorithm in equation (5.19). With the sparsity constraint on the scene, the

algorithm sharpens the images of the 3 LEDs in the scene. As expected, the phase

screen distribution is uniform due to the lack of turbulence. The control experiment

suggests that the algorithm in equation (5.19) does not merely deconvolve the image,
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but actually estimates the phase screen and applies it to the sampled J to produce

an improved image.
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(a) Measured 2D subset of

samples of the mutual intensity

(b) Image of the scene

using the VCZ theorem

(c) Estimate of the image

of the scene, x
e

(d) Estimate of phase screen

due to turbulence, arg{P
e
}

Figure 5.7: Results of a control experiment for RSI imaging of three LEDs not
aberrated by turbulence. (a) shows the absolute value of the 2D subset of samples
of J measured using the RSI. (b) shown an image of the scene recovered using the
VCZ theorem. (c) and (d) show discrete estimates of the undistorted scene, xe, and
the phase screen arg{Pe} recovered using the AM algorithm.

Comparing figures 5.6(c) and 5.7(c) illustrates that the absolute positions of the

LEDs is not recovered. This is because the algorithm is unable to recover the tilt

component of the phase screen that leads to a relative shift in the position of the

objects with respect to their true positions.
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5.9 Imaging extended objects through turbulence by compressively
sampling the mutual intensity

In the previous section, experimental verification was provided for the RSI’s ability

to image point sources through turbulence with the assumption of spatial sparsity of

the scene. Subsequently, a noiseless Matlab simulation was performed to investigate

the potential to image an extended object through turbulence with an assumption

of sparsity in the spatial gradient of the scene. For this case, the iterative, two-step

AM algorithm is modified from equation (5.17) to

xi
e = arg min

x

1

2
||g − Φx||22 + λ||x||TV

= arg min
x

1

2
||g − AP i−1

e Fx||22 + λ||x||TV (5.20a)

P i
e = sgn

[(
AFxi

e

)∗ · g
]
. (5.20b)

In the simulation, the object shown in figure 5.8(a) was imaged by the RSI

through the phase screen shown in 5.8(b). The object consists of a face with a

small box located in the top right corner with a different intensity. The phase screen

was generated based on McGlamery’s algorithm [73], which defines the phase screen

statistically by means of the Kolmogorov spectrum [50].

Figure 5.9(a) shows the absolute value of the 2D subset of samples of J mea-

sured using the RSI (scaled for contrast). Figure 5.9(b) shows a distorted image of

the scene recovered through an inverse Fourier transformation based on the VCZ

theorem in equation (5.10), which does not account for turbulence. While the smile

and eyes on the object are somewhat visible, the small box in the top right corner

of the object is completely buried in the turbulence. Figures 5.9(c) and (d) show

discrete estimates of the scene, xe, and the phase screen, arg{Pe}, recovered using

the algorithm in equation (5.20). The recovered image of the face and the small box
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(a) (b)

Figure 5.8: (a) An extended object to be imaged by the RSI in simulation. (b)
Distribution of the simulated phase screen across the RSI aperture. The phase screen
was generated based on McGlamery’s algorithm, which defines the phase screen
statistically by means of the Kolmogorov spectrum.

is a clear improvement over the aberrated image in figure 5.9(b).

Figure 5.10(a) shows the true phase screen, while figure 5.10(b) shows the phase

screen estimated using the algorithm described in equation (5.20). Figure 5.10(c)

shows the difference between the true and estimated phase screens. The difference

map demonstrates that the algorithm is able to recover the true phase screen up to

a tilt component from the bottom left to the top right. The lack of tilt correction is

compensated by a shift in the position of the reconstructed extended object up and

to the right from its true position shown in figure 5.8(a). The estimated object in

figure 5.9(c) and the estimated phase screen in figure 5.10(b) are a valid solution, as

they combine to produce almost the same measurements as the combination of the

true object and phase screen shown in figures 5.8(a) and 5.8(b).

This simulation suggests that the RSI may be able to image extended objects

through turbulence. However, the SNR of the RSI is known to degrade as a function

of the number of independent sources in the scene. This is because, unlike in a focal

imaging design, every source contributes light to every pixel on the detector and
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Figure 5.9: Noiseless simulation to demonstrate the imaging of an extended object
through turbulence using the RSI and the AM algorithm described by equation
(5.20). (a) shows the absolute value of the 2D subset of samples of J measured using
the RSI. (b) shown an image of the scene recovered using the VCZ theorem. The
face is barely recognizable and the small box in the top right corner can no longer
be discerned. (c) and (d) show discrete estimates of the undistorted scene, xe, and
the phase screen arg{Pe} recovered using the AM algorithm.

the actual signal is a weak modulation of the intensity on a high background [74].

This may make imaging of extended sources by measuring samples of J on the RSI

practically challenging.

However, the proposed approach can be a practical means of imaging remote

astronomical objects that are close together through turbulence if the complex 2D

subset of 4D J can be sampled in a snapshot. This can potentially be achieved
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Figure 5.10: Comparison of the estimated phase screen with the true phase screen.
The difference map demonstrates that the algorithm is able to recover the true phase
screen up to a tilt component. The lack of tilt correction is compensated by a shift
in the absolute position of the reconstructed extended object.

using the quadrature phase interferometer [75], which measures four phase-shifted

interferograms in quadrature across the entire pupil in a single exposure, rather than

over four separate exposures.

5.10 Conclusions

In this chapter, CASSI was briefly considered as a means of imaging through turbu-

lence by exploiting the chromatic dispersion of the turbulent atmosphere to produce

wavelength diversity of the PSF. Unfortunately, the atmosphere induces negligible

wavelength diversity of the PSF.
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Thus, an approach to image objects through turbulence by measurement of the

power spectral density of the optical field was no longer considered. Instead, a

rotational shear interferometer was used to image a sparse scene through turbulence

by measuring a 2D subset of the complex, 4D mutual intensity of the optical field.

This measurement was processed using an alternating minimization algorithm to

jointly estimate the sparse scene as well the turbulence-induced phase screen. The

sparsity of the scene was enforced with sparsity constraints similar to those discussed

in the previous chapters.

Experimental results demonstrated the feasibility of the algorithm for imaging a

sparse set of point sources through an isoplanatic phase distortion. Noiseless simu-

lations also demonstrated the feasibility of the algorithm to image extended objects

sparse on some basis through turbulence.
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6

Summary and open questions

In this dissertation, the coded aperture snapshot spectral imager (CASSI) and the

rotational shear interferometer (RSI) were demonstrated as physical examples of

systems that perform generalized sampling of the optical field. Both sensors were

used to recover particular signals of interest through an integrated approach to optical

and algorithm design.

In a snapshot, CASSI measured a linear, 2D coded projection of the power spec-

tral density of the optical field, a 3D datacube. The coding was physically imple-

mented in optical hardware. In particular, a coded aperture was used to introduce

spatial coding and a prism was used to introduce spectral coding. The measure-

ments were digitally processed to recover the datacube. In general, inversion of the

snapshot projection for recovery of the datacube is an ill-posed problem because the

number of measurements made is significantly smaller than the number of voxels in

the datacube. Thus, any numerical estimation algorithm used for datacube recovery

had to exploit properties or structures in the datacube known a priori that helped

to constrain the estimated datacube to a certain solution space.
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CASSI’s potential for datacube recovery in a snapshot was experimentally demon-

strated in chapters 2 and 3. The first CASSI prototype, presented in chapter 2, was

built using off-the-shelf components. The second prototype was custom-designed in

Zemax ray tracing software to achieve significantly better imaging quality. Three

different iterative numerical estimation algorithms were investigated for datacube

recovery. The GPSR and TwIST methods solved the linear inversion problem by

reformulating it into a non-linear convex unconstrained optimization problem with

a regularizing penalty term in the objective function that encouraged sparsity of the

datacube in a sparsifying basis. In contrast to these methods, the NeAREst did not

require the specification of a regularization parameter and used the Richardson-Lucy

algorithm to ensure that the estimated solution would be non-negative. NeAREst

iterations were also computationally cheaper than GPSR and TwIST iterations.

In chapter 4, CASSI was examined from the perspective of compressive sampling

theory. Noiseless Matlab simulations illustrated that even with a constraint on the

number of sparse basis coefficients in the scene to be imaged, the performance of

CASSI was scene dependent, an undesirable property for CASSI’s application for

mainstream spectral imaging. The scene dependence was attributed to lack of or-

thogonality of the columns of the CASSI sensing matrix. An alternative design was

proposed with better column properties that was less scene dependent but was more

sensitive to noise in the measurements.

As expected from any new body of research, there are some open questions and

immediate extensions to the work on CASSI. CASSI was an example of a system that

attempted to physically implement a compressively sampled measurement of a signal

in a snapshot. In terms of sensing hardware, the discussion about properties of the

columns of the CASSI sensing matrix presented in chapter 4 may stimulate various

new designs of physical compressive measurement systems. In terms of numerical

estimation methods used to process CASSI data, it would be interesting to study
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the scene dependence of CASSI when the NeAREst algorithm is used. Alternative

methods should consider the non-negativity of the datacube to be reconstructed as

well as the fact that incoherent imaging is often impacted by Poisson noise. Recent

work on sparse Poisson intensity reconstruction algorithms [76] may find application

here.

CASSI was briefly considered as a means of imaging through turbulence by ex-

ploiting the chromatic dispersion of the aberrating medium to produce wavelength

diversity of the PSF. However, a medium like the Earth’s atmosphere produces neg-

ligible wavelength diversity in the PSF. Furthermore, a datacube of an object to

be imaged through turbulence and illuminated with broadband light would not be

sparse. Thus, CASSI was no longer considered as a means of imaging through tur-

bulence. However, a related idea that is worthy of further investigation involves

imaging through turbulence by using an RGB camera (a 3-channel spectral imager)

with a chromatic lens to increase the wavelength diversity of the PSF.

As an alternative means of imaging through turbulence, compressive measure-

ment of the 4D mutual intensity, a coherence function, was performed using an RSI,

as described in chapter 5. This was not a conventional compressive measurement in

the sense that it could not be analyzed from the perspective of compressive sampling

theory. The effective sensing matrix was unknown in the presence of turbulence,

making recovery of an undistorted image of the scene along with the distribution of

the phase screen a non-convex problem.

Prior to its use in the work described in this dissertation, the RSI had been used

for extended depth of field microscopic imaging [77] as well as tomographic imaging

[78] of incoherent sources by using the van Cittert Zernike theorem on samples of the

mutual intensity as measured by the RSI. In the presence of a turbulence-induced

phase screen between the incoherent sources and the RSI, direct application of the

van Cittert Zernike theorem to the RSI measurements would produce a distorted
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image of the sources. However, with the constraint that the incoherent sources in the

scene are sparse in some basis, an alternating minimization method was presented in

chapter 5 to successfully recover an undistorted image of a sparse scene as well as the

distribution of the turbulence-induced phase screen. In principle, this approach does

not require capture of several images and post-processing of the measured data in

batch mode. Thus, this approach may find utility in real-time astronomical imaging

of distant stars through the turbulence of Earth’s atmosphere.

Just like CASSI, there are several open questions that may be asked as exten-

sions to the RSI approach for imaging through turbulence. An immediate extension

of the experimental results described in chapter 5 would be an attempt to image

astronomical point sources through turbulence. A non-negativity constraint should

be placed on the scene. The potential of the alternating minimization approach for

imaging extended sources from RSI measurements in the presence of noise should be

investigated.
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