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Abstract

Bayesian nonparametric methods are useful for modeling data without having to

define the complexity of the entire model a priori, but rather allowing for this com-

plexity to be determined by the data. Two problems considered in this dissertation

are the number of components in a mixture model, and the number of factors in a

latent factor model, for which the Dirichlet process and the beta process are the two

respective Bayesian nonparametric priors selected for handling these issues.

The flexibility of Bayesian nonparametric priors arises from the prior’s defini-

tion over an infinite dimensional parameter space. Therefore, there are theoretically

an infinite number of latent components and an infinite number of latent factors.

Nevertheless, draws from each respective prior will produce only a small number of

components or factors that appear in a given data set. As mentioned, the number

of these components and factors, and their corresponding parameter values, are left

for the data to decide.

This dissertation is split between novel practical applications and novel theoret-

ical results for these priors. For the Dirichlet process, we investigate stick-breaking

representations for the finite Dirichlet process and their application to novel sam-

pling techniques, as well as a novel mixture modeling framework that incorporates

multiple modalities within a data set. For the beta process, we present a new stick-

breaking construction for the infinite-dimensional prior, and consider applications to

image interpolation problems and dictionary learning for compressive sensing.
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Introduction

Bayesian nonparametric methods are useful for modeling data without having to

define the complexity of the entire model a priori, but rather allowing for this com-

plexity to be determined by the data. Two problems considered in this dissertation

are the number of components in a mixture model, and the number of factors in a

latent factor model, for which the Dirichlet process and the beta process are the two

respective Bayesian nonparametric priors selected for handling these issues.

The flexibility of Bayesian nonparametric priors arises from the prior’s defini-

tion over an infinite dimensional parameter space. Therefore, there are theoretically

an infinite number of latent components and an infinite number of latent factors.

Nevertheless, draws from each respective prior will produce only a small number of

components or factors that appear in a given data set. As mentioned, the number

of these components and factors, and their corresponding parameter values, are left

for the data to decide.

Below, we briefly give three examples of problems that motivate Bayesian non-

parametric methods and clearly illustrate their utility. These examples concern three

standard modeling problems: (i) the Gaussian mixture model [9], (ii) the hidden

Markov model [61][9] and (iii) the matrix factorization problem [55] (and references

therin). These last two examples are taken from research published by the author,

but not included in this dissertation.

1



Figure 1: (a) The original data set. (b) Clustering results for a Gaussian mixture
model using a sparsity-promoting Dirichlet prior on the mixing weights and learned
using VB-EM inference. Of the initial 20 components, only 3 are ultimately used
and shown. (c) Clustering results for a Gaussian mixture model using the maximum
likelihood EM algorithm to learn the model parameters. All 20 components are used
by the data, resulting in clear overfitting.

The Gaussian Mixture Model

The Gaussian mixture model (GMM) models vectors x ∈ Rd in a data set, {xn}Nn=1,

as being generated according to the distribution

xn
iid∼

K∑
k=1

πkN (x|µk,Σk) (1)

The vector (π1, . . . , πK) consists of probability weights and sum to one. The value

πk gives the probability that observation xn is generated from a Gaussian with mean

vector µk and covariance matrix Σk.

The classical approach to learning the parameters {πk, µk,Σk}Kk=1 is by maximum

likelihood using the EM algorithm [21]. In this algorithm, the value of K is fixed

and the algorithm iterates between updating the distribution of a latent indicator

variable, and updating the parameters to maximize the likelihood given the soft

clustering induced by this latent indicator. In Figure 1, we show how this can lead

to overfitting if K is selected poorly. Extending the GMM to the Bayesian realm,

Figure 1 shows a clear advantage. The prior on π is the Dirichlet distribution and

will be discussed in detail in this dissertation.

2



Figure 2: The empirical Kullback-Liebler divergence between the true underly-
ing HMM and the learned HMM using the ML-EM algorithm (blue) and the fully
Bayesian VB-EM algorithm (red). This figure is taken from [52].

The Hidden Markov Model

Hidden markov models (HMM) are useful for modeling sequential data. They model

a sequence, (X1, X2, . . . ), as being generated from a distribution whose parameters

are selected by a hidden sequence of indicators, (S1, S2, . . . ). This hidden sequence

is a Markov chain and the number of states in this chain, K, is typically set a priori.

The classical approach to learning the transition probabilities and state-dependent

parameter values is by maximum likelihood using the EM algorithm [61]. As with

the GMM, this iterates between learning distributions on the latent state indicators,

followed by an updating of all parameters to maximize the likelihood. In Figure

2, we show a comparison of the maximum likelihood approach with the Bayesian

approach as a function of the initialization of the number of states. We generated se-

quences from a 4-state discrete HMM and used both methods to learn the underlying

HMM given these sequences. The plot contains an empirical approximation of the

Kullback-Liebler divergence [33] between the true model and the inferred model. As

is evident, the ML approach is sensitive to the number of states, while the Bayesian

approach sets the probabilities of all superfluous states to zero.
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Figure 3: The RMSE of the interpolated matrix values to the true values for a
matrix completion problem where the symmetric matrix is modeled as X = ΦTΦ+E.
The x-axis is a function of increasing number of measurements. This figure is taken
from [55].

Matrix Factorization Models

As a final example, we consider learning factorizations of incomplete matrices with

the goal of completing them. Consider the positive semidefinite matrix, X, and a

low rank factorization X = ΦTΦ + E, where E accounts for errors due to smaller

eigenvalues. When many values of X are missing, this factorization cannot be learned

via an eigendecomposition, and so Φ must be learned using an algorithm. Two least

squares methods for solving this problem consist of gradually increasing the rank of

the factorization, and then minimizing the squared error to the measured values. For

each increase, all values in Φ can change (iMMSE), or only the values in the added

dimension (greedy) [51]. A Bayesian method is to model the columns of Φ with

a sparsity-promoting normal-gamma prior, where the gamma-distributed precision

values are shared among the columns of Φ. This learns the proper rank by squeezing

out all unnecessary dimensions. Theoretically, the dimensionality of Φ is infinite,

but in practice the number of nonzero dimensions will be only that required by the

data. In Figure 3, we show results where the matrix X is a 2250 × 2250 Gaussian

kernel that measures similarity between pieces of music.
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This dissertation is organized as follows:

• Chapter 1: In Chapter 1, we review the Dirichlet process in detail. This in-

cludes derivations of the two common representations of this infinite-dimensional

prior. We end the chapter by calculating the expectation and variance of the

entropy of Dirichlet processes. To our knowledge, this is a new calculation and

is an addition to the theoretical properties of measures drawn from Dirichlet

process priors.

• Chapter 2: In Chapter 2, we continue the discussion of Chapter 1 by look-

ing more in-depth at Sethuraman’s stick-breaking construction of a finite-

dimensional Dirichlet prior [68]. This includes a novel comparison of the finite-

symmetric Dirichlet distribution and the truncated Dirichlet process as mix-

ture modeling priors, and two new applications of this construction for (i)

performing conjugate inference for the concentration parameter of a Dirichlet

distribution and (ii) conjugate inference for the hierarchical Dirichlet process

[70].

• Chapter 3: In Chapter 3, we extend the framework of Dirichlet process priors

to include data that has multiple modalities. This simple modification allows

for mixture modeling to be performed jointly on multiple aspects of a data set.

A novel application of this framework is discussed later in Chapter 6.

• Chapter 4: In Chapter 4, we shift attention to the beta process for Bayesian

nonparametric learning of latent factor models. This can also be cast as a

nonparametric matrix factorization model, or a method for nonparametric dic-

tionary learning. We give a general review of the problem, followed by a new

variational inference algorithm for model learning. We apply the model to sev-

eral data sets, and also consider a compressive sensing application, where the
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beta process is used to nonparametrically learn an overcomplete dictionary to

be used as a nonorthogonal basis for CS inversion.

• Chapter 5: In Chapter 5, we present a new stick-breaking construction of the

beta process. We believe this is a major theoretical contribution to the theory

of beta processes, as the stick-breaking construction of the Dirichlet process

was to Dirichlet processes. We give a proof of the construction, as well as a

method for performing inference for this prior. We apply the prior to several

data sets, including a time-evolving gene data set.

• Chapter 6: In Chapter 6, we incorporate the model of Chapter 4 into the

framework presented in Chapter 3 by presenting new models for image inter-

polation. The central model uses two modalities, the second of which acts as a

spatial prior. Images considered include natural (rgb) images, and hyperspec-

tral images.
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1

The Dirichlet Process for Mixture Models

1.1 Abstract

In this chapter, we review the Dirichlet process beginning with a review of the finite-

dimensional Dirichlet distribution and its representations as a Pólya Urn process

and an inifinte stick-breaking process. We then briefly extend these ideas to infinite-

dimensional spaces. In Section 1.7, we calculate the expectation and variance of

the entropy of probability measures drawn from the Dirichlet process prior. To our

knowledge, this calculation is a new contribution to the theory of Dirichlet processes.

1.2 The Dirichlet Distribution

Consider the finite, K-dimensional vector, π = (π1, . . . , πK), where 0 ≤ πk ≤ 1 and∑K
k=1 πk = 1. Vectors of this form are said to reside in the (K − 1)-dimensional

simplex of RK , denoted π ∈ ∆K . We view this vector as the parameter for the

multinomial distribution, where samples X ∼ Mult({1, . . . , K},π) take values X ∈

{1, . . . , K} with the probability that X = k equal to πk. When the vector π is

unknown, it can be inferred in the Bayesian setting by using its conjugate prior, the
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Dirichlet distribution.

The Dirichlet distribution of dimension K is a continuous probability distribution

on ∆K and has the density function

p(π|β1, . . . , βK) =
Γ(
∑

k βk)∏
k Γ(βk)

K∏
k=1

πβk−1
k (1.1)

where the parameters βk ≥ 0, ∀k. It is useful to reparameterize this distribution by

defining α :=
∑

k βk and the vector g0 ∈ ∆K , with g0k := βk/
∑

k βk.

p(π|αg01, . . . , αg0K) =
Γ(α)∏
i Γ(αg0i)

K∏
i=1

παg0i−1
i (1.2)

A vector with this distribution is denoted π ∼ Dir(αg0). The mean and variance of

an element in π is

E[πk|αg0] = g0k, V[πk|αg0] =
g0k(1− g0k)

α(α + 1)
(1.3)

Therefore, g0 functions as a prior guess of π and α as a strength parameter, control-

ling how tight the distribution is around g0. When g0k = 0, πi = 0 with probability

one, and when g0i = 1 and g0k = 0, ∀k 6= i, π = ei with probability one, where ei is

a vector of zeros, except for a one in the ith position.

Figure 1.1 shows plots, each containing 10,000 samples drawn from a 3-dimensional

Dirichlet distribution with g0 uniform and α = 1, 3, 10. This gives insight into the

function of α. When α = K, or the dimensionality of the Dirichlet distribution, we

see that the density is uniform on the simplex; when α > K, the density begins

to cluster around g0. Perhaps more interesting, and more relevant to the Dirichlet

process, is when α < K. We see that as α becomes less than the dimensionality

of the distribution, most of the density lies on the corners and faces of the simplex.

In general, as the ratio of α to K shrinks, draws of π will be sparse, meaning that
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(a) (b) (c)
Figure 1.1: 10,000 samples from a 3-dimensional Dirichlet distribution with g0

uniform and (a) α = 1 (b) α = 3 (c) α = 10 As can be seen, (a) when α < 3, the
samples concentrate near vertices and edges of ∆3; (b) when α = 3, the density is
uniform; and (c) when α > 3, the density shrinks toward g0.

most of the probability mass will be contained in a subset of the elements of π.

This phenomenon will be discussed in greater detail in Section 1.4, and is a crucial

element of the Dirichlet process. Values of π can be drawn from Dir(αg0) in a finite

number of steps using the following two methods (two infinite-step methods will be

discussed shortly).

A Function of Gamma-Distributed Random Variables [78] Gamma-distributed ran-

dom variables can be used to sample π ∼ Dir(αg0) as follows: Let Zi ∼ Gamma(αg0i, λ)

for i = 1, . . . , K, where αg0i is the shape parameter and λ the scale parameter of the

gamma distribution. Then the vector π :=
(

Z1∑
i Zi
, . . . , ZK∑

i Zi

)
has a Dir(αg0) distri-

bution. The parameter λ can be set to any positive, real value, but must remain

constant.

A Function of Beta-Distributed Random Variables [19] Beta-distributed random vari-

ables can also be used to draw from the Dirichlet distribution. For k = 1, . . . , K− 1,
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let

Vk ∼ Beta
(
αg0k, α

∑K

`=k+1
g0`

)

πk = Vk

k−1∏
`=1

(1− V`)

πK = 1−
∑K−1

k=1
πk (1.4)

The resulting vector, (π1, . . . , πK) ∼ Dir(αg0). A second method that uses an infinite

number of beta-distributed random variables will be discussed in Section 1.4.

1.2.1 Calculating the Posterior of π

As indicated above, the Dirichlet distribution is conjugate to the multinomial distri-

bution, meaning that the posterior distribution of π can be calculated analytically,

and is also a Dirichlet distribution. Using Bayes theorem,

p(π|X = i, αg0) =
p(X = i|π)p(π|αg0)∫

π∈∆K
p(X = i|π)p(π|, αg0)dπ

∝ p(X = i|π)p(π|αg0)

we can calculate the posterior distribution of π given the observation X. First, the

likelihood of an observation is p(X = i|π) = πi. Multiplying this by the prior,

p(π|αg0), given in (1.2), the posterior is proportional to

p(π|X = i) ∝ π
(αg0i+1)−1
i

∏
j 6=i

π
αg0j−1
j (1.5)

The normalizing constant is simply a number that makes this function integrate to

one. However, looking at (1.5), it can be seen that this function is proportional to the

Dir(αg0 + ei) distribution. Therefore, the ith parameter of the Dirichlet distribution

has simply been incremented by one. This extends naturally to N observations,

p(π|X1 = x1, . . . , XN = xN) ∝
N∏
n=1

p(Xn = xn|π)p(π|αg0) =
K∏
i=1

παg0i+ni−1
i (1.6)
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where nk =
∑N

n=1 eXn(k), or the number of observations taking value k, and
∑K

k=1 nk =

N . When normalized, the posterior is Dir(αg01 + n1, . . . , αg0K + nK). Therefore,

when used as a conjugate prior to the multinomial distribution, the posterior of π is

a Dirichlet distribution, where the parameters have been updated with the “counts”

from the observed data.

The interaction between the prior and the data can be seen in the posterior

expectation of an element, πk,

E[πk|X1 = x1, . . . , XN = xN ] =
nk + αg0k

α +N
=

nk
α +N

+
αg0k

α +N
(1.7)

The last expression clearly shows the tradeoff between the prior and the data.

A good example of a simple application of these ideas is found at the website

IMDB.com.1 This website allows users to evaluate movies using a star rating system

by assigning an integer value between one and ten to a movie, with ten being the best

rating. Using these ratings, they provide a ranking of the top 250 movies according

to the IMDB community.2 Clearly they do not want to sort by the empirical average

star rating, since this will result in many movies with only a few ratings being highly

ranked, and because the average rating of a movie that has many votes can be trusted

more than one with only a few votes. They resolve this issue in the following way.

Assume that movie m has an underlying probability vector, π(m) ∈ ∆10, with the

probability that a person gives k stars to movie m equal to π
(m)
k . If this vector were

known, then the average star rating converges to the expected star rating, which can

be calculated analytically and equals Rm =
∑10

k=1 kπ
(m)
k . However, the vector π(m) is

not known, and so IMDB places a Dirichlet prior on this vector. They set α = 3000

and define g0 to be the empirical distribution of the star values using ratings for all

1 The Internet Movie Database, which at the time of this writing is ranked the 23rd most popular
site on the internet in the USA according to Alexa.com.

2 http://www.imdb.com/chart/top. The definition of their Bayes estimator is given at the bottom
of the page and is equivalent to our more detailed description.
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movies. They then integrate out π(m) and approximate the rating of movie m as

R̂m =
10∑
k=1

k
nk

α +N
+

10∑
k=1

k
αg0

α +N

that is, they use the posterior expectation of π(m) given in (1.7) to approximate the

rating. The interpretation of α and g0 is clear in this example: α functions as a prior

number of observations, in this case ratings, and αg0k as a prior count of the number

of observations in group k. These ratings are “made up” by the person compiling the

list. Therefore, the number of ratings actually observed, N , is overwhelmed by this

prior at first, but gradually comes to dominate it. As N → ∞, the average rating

converges to the average using only the user ratings. This is an example of a Bayes

estimate of the value Rm using a Dirichlet prior distribution, and the benefit of its

use in this situation is clear.

Returning to the general discussion, two methods requiring an infinite number of

random variables, the Pólya urn process and Sethuraman’s constructive definition,

also exist for sampling π ∼ Dir(αg0). These methods are more complicated in

nature, but become essential for sampling from the infinite-dimensional Dirichlet

process. Because they are arguably easier to understand in the finite setting (i.e.,

finite K), they are given here, which will allow for a more intuitive extension to the

infinite-dimensional case.

1.3 The Pólya Urn Process

The Pólya urn process [41] is a sequential method for obtaining samples, X1, . . . , XN ,

from a random, discrete probability distribution that has a Dirichlet prior distribu-

tion. This process has the following illustrative story: Imagine an urn that initially

contains α balls, each of which can take one of K colors; there are αg01 balls of the

first color, αg02 of the second, etc., where g0 ∈ ∆K . A person randomly selects a ball,
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X1, from this urn, with the probability that X1 = x1 equal to g0,x1 . This person then

replaces the ball and adds a second ball of the same color; therefore, the number

of balls in the urn increases by one with each draw. This process repeats N times,

using the current state of the urn for each sample. After the first draw, the second

ball is therefore drawn from the distribution

p(X2|X1 = x1) =
1

α + 1
δx1 +

α

α + 1

K∑
k=1

g0kδk

where δk is a delta function at the color having index k. Inductively, the distribution

on the N + 1st ball is,

p(XN+1|X1 = x1, . . . , XN = xN) =
K∑
k=1

nk
α +N

δk +
α

α +N

K∑
k=1

g0kδk (1.8)

Comparing with (1.7), these probabilities equal the expectation of π under its pos-

terior Dirichlet distribution given X1, . . . , XN . Using the rule for integrating out

random variables,
∫

ΩB
p(A|B)p(B|C)dB = p(A|C), we show this by writing

p(XN+1|X1 = x1, . . . , XN = xN) =

∫
π∈∆K

p(XN+1|π)p(π|X1 = x1, . . . , XN = xN)dπ

(1.9)

We leave the conditioning on αg0 as being implied. Since p(XN+1 = i|π) = πi, it

follows that for a single value, k, (1.9) is another expression for

p(XN+1 = k|X1 = x1, . . . , XN = xN) = E[πk|X1 = x1, . . . , XN = xN ] (1.10)

With respect to the Dirichlet distribution and equation (1.9), we are integrating out,

or marginalizing, the random vector, π, and are therefore said to be drawing from a

marginalized Dirichlet distribution.

Returning to the urn, by the law of large numbers [78], the empirical distribution

of the urn converges to some random discrete distribution as the number of samples
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N →∞. The theory of exchangeability [3] shows that the distribution of this random

probability mass function is the Dir(αg0) distribution.

To review, a sequence of random variables is said to be exchangeable if, for

any permutation of the integers 1, . . . , N , σ(·), it follows that p(X1, . . . , XN) =

p(Xσ(1), . . . , Xσ(N)). By sequentially selecting the appropriate values from (1.8) using

the chain rule, p(X1, . . . , XN) =
∏N

i=1 p(Xi|Xj<i), it can be seen that

p(X1 = x1, . . . , XN = xN) =

∏K
k=1

∏nk

i=1(αg0k + i− 1)∏N
n=1(α + n− 1)

(1.11)

where nk =
∑N

n=1 I(xn = k). This probability does not change for all permutations of

the sequence (X1, . . . , XN), and therefore this sequence is exchangeable. As a result

of this exchangeability, de Finetti’s theorem [28] states that there exists a discrete

pmf, π, having the (yet-to-be-determined) distribution, p(π), conditioned on which

the observations, (X1, . . . , XN), are independent. This is expressed in the following

sequence of equalities.

p(X1 = x1, . . . , XN = xN) =

∫
π∈∆K

p(X1 = x1, . . . , XN = xN |π)p(π)dπ

=

∫
π∈∆K

N∏
n=1

p(Xn = xn|π)p(π)dπ

=

∫
π∈∆K

K∏
k=1

πnk
k p(π)dπ

= Ep

[
K∏
k=1

πnk
k

]
(1.12)

A distribution is uniquely defined by its moments, and the only distribution having

the moments

Ep

[
K∏
k=1

πnk
k

]
=

∏K
k=1

∏nk

i=1(αg0k + i− 1)∏N
n=1(α + n− 1)

(1.13)
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is the Dir(αg0) distribution. The conclusion is that, in the limit as N → ∞, the

sequence (X1, X2, . . . ) drawn according to the urn process defined above can be

viewed as independent and identically distributed samples from the pmf π, where

π ∼ Dir(αg0) and is equal to the empirical distribution of the observations.

1.4 Constructing the Finite-Dimensional Dirichlet Distribution

In this section, we review the constructive definition of a finite-dimensional Dirichlet

distribution [68]. Like the Pólya urn process, this method also requires an infinite

number of random variables to obtain the vector π ∼ Dir(αg0). Unlike this process,

the values of the observations X1, . . . , XN are not required to do this, but rather

random variables are drawn iid from their respective distributions, and π is con-

structed according to a function of these random variables. The details of the proof

is given in this section because this will be the central process from which the novel

stick-breaking construction of the beta process is derived in Chapter 5.

The constructive definition of a Dirichlet prior states that, if π
¯

is constructed

according to the following function of random variables, then π
¯
∼ Dir(αg0).

π
¯

=
∞∑
i=1

Vi

i−1∏
j=1

(1− Vj)e
¯Yi

Vi
iid∼ Beta(1, α)

Yi
iid∼ Mult({1, . . . , K}, g0) (1.14)

Using this multinomial parametrization, Y ∈ {1, . . . , K} with P(Y = k|g0) = g0k.

The vector e
¯Y

is a K-dimensional vector of zeros, except for a one in position Y .

The values Vi
∏i−1

j=1(1−Vj) are often called “stick-breaking” weights, because at step

i, the proportion Vi is “broken” from the remainder,
∏i−1

j=1(1− Vj), of a unit-length

stick. Since V ∈ [0, 1], the product Vi
∏i−1

j=1(1 − Vj) ∈ [0, 1] for all i, and it can be
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shown that
∑∞

i=1 Vi
∏i−1

j=1(1− Vj) = 1.

In Figure 1.2, we illustrate this process for i = 1, . . . , 4. The weights are broken

as mentioned, and the random variables {Yi}4
i=1 indicate the elements of the vector

π
¯

to which each weight is added. In the limit, the value of the kth element is

πk =
∞∑
i=1

Vi

i−1∏
j=1

(1− Vj)I(Yi = k)

where I(·) is the indicator function and equals one when the argument is true, and

zero otherwise.

Figure 1.2: An illustration of the infinite stick-breaking construction of a K-
dimensional Dirichlet distribution. Weights are drawn according to a Beta(1,α)
stick-breaking process, with corresponding locations taking value k with probability
g0k.

1.4.1 Proof of the Construction

We begin with the random vector

π
¯
∼ Dir(αg0) (1.15)

The proof that this random vector has the same distribution as the random vector

in (1.14) requires two lemmas concerning general properties of the Dirichlet distri-

bution, the first of which follows.
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Lemma 1: Let Z ∼
∑K

k=1 g0kDir(αg0 + e
¯k

). Values of Z can be sampled from

this distribution by first sampling Y ∼ Mult({1, . . . , K}, g0), and then sampling

Z ∼ Dir(αg0 + e
¯Y

). It then follows that Z ∼ Dir(αg0).

The proof of this lemma is in the appendix at the end of this chapter. Therefore,

the process

π
¯
∼ Dir(αg0 + e

¯Y
)

Y ∼ Mult({1, . . . , K}, g0) (1.16)

produces a random vector π
¯
∼ Dir(αg0). The second lemma, which will be applied

to the result in (1.16), is

Lemma 2: Let the random vectors W1 ∼ Dir(w1, . . . , wK), W2 ∼ Dir(v1, . . . , vK)

and V ∼ Beta(
∑K

k=1 wk,
∑K

k=1 vk). Define the linear combination,

Z := VW1 + (1− V )W2 (1.17)

then Z ∼ Dir(w1 + v1, . . . , wK + vK).

The proof of this lemma is in the appendix at the end of this chapter. In words,

this lemma states that, if one wished to construct the vector Z ∈ ∆K according to

the function of random variables (W1,W2, V ) given in (1.17), one could equivalently

bypass this construction and directly sample Z ∼ Dir(w1 + v1, . . . , wK + vK).

This lemma is applied to the random vector π
¯
∼ Dir(αg0 + e

¯Y
) in (1.16), with
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the result that this vector can be represented by the following process,

π
¯

= VW + (1− V )π
¯
′

W ∼ Dir(e
¯Y

)

π
¯
′ ∼ Dir(αg0)

V ∼ Beta

(
K∑
k=1

e
¯Y

(k),
K∑
k=1

αg0k

)

Y ∼ Mult({1, . . . , K}, g0) (1.18)

where we’ve also included the random variable Y . The result is still a random vector

π
¯
∼ Dir(αg0). Note that

∑K
k=1 e

¯Y
(k) = 1 and

∑K
k=1 αg0k = α. Also, we observe

that the distribution of W is degenerate, with only one of the K parameters in the

Dirichlet distribution being nonzero. Therefore, since P(πk = 0|g0k = 0) = 1, we can

say that P(W = e
¯Y
|g0 = e

¯Y
) = 1. Modifying (1.18), the following generative process

for π
¯

produces a random vector π
¯
∼ Dir(αg0).

π
¯

= V e
¯Y

+ (1− V )π
¯
′

π
¯
′ ∼ Dir(αg0)

V ∼ Beta (1, α)

Y ∼ Mult({1, . . . , K}, g0) (1.19)

We observe that the random vectors π
¯

and π
¯
′ have the same distribution, which is a

desired result. That is, returning to (1.14), we expand the right hand term as follows

π
¯

= V1e
¯Y1

+ (1− V1)
∞∑
i=2

Vi

i−1∏
j=2

(1− Vj)e
¯Yi

= V1e
¯Y1

+ (1− V1)π
¯
′ (1.20)

Due to the iid nature of the random variables {Vi}∞i=1 and {Yi}∞i=1, the vector π
¯

has
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the same distribution as the vector π
¯
′ in (1.20), which we have shown is the Dir(αg0)

distribution.

Since π
¯
′ ∼ Dir(αg0) in (1.19), this vector can be decomposed according to the

same process by which π
¯

is decomposed in (1.19). Thus, for i = 1, 2 we have

π
¯

= V1e
¯Y1

+ V2(1− V1)e
¯Y2

+ (1− V1)(1− V2)π
¯
′′

Vi
iid∼ Beta(1, α)

Yi
iid∼ Mult({1, . . . , K}, g0)

π
¯
′′ ∼ Dir(αg0) (1.21)

which can proceed for i → ∞, with each decomposition leaving the vector π
¯
∼

Dir(αg0). In the limit as i → ∞, (1.21)→(1.14), since limi→∞
∏i

j=1(1 − Vj) = 0,

concluding the proof. Therefore, (1.14) arises as an infinite number of decompositions

of the Dirichlet distribution, each taking the form of (1.19).

1.5 The Extension to Infinite-Dimensional Spaces

In this section we briefly make the connection between the stick-breaking represen-

tation of the finite Dirichlet distribution and the infinite Dirichlet process. The

extension of the Pólya urn process to infinite-dimensional spaces [11], also called the

Chinese restaurant process [3], follows a similar argument. For finite-dimensional

vectors, π
¯
∈ ∆K , the constructive definition of (1.14) may seem unnecessary, since

the infinite sum cannot be carried out in practice, and π
¯

can be constructed ex-

actly using only K gamma-distributed random variables. The primary use of the

stick-breaking representation of the Dirichlet distribution is the case where K →∞.

For example, consider a K-component mixture model [37], where observations in
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a data set, {Xn}Nn=1, are generated according to Xn ∼ p(θ∗n) and θ∗n
iid∼ GK , where

GK =
K∑
k=1

πkδθk

π
¯
∼ Dir(αg0)

θk
iid∼ G0, k = 1, . . . , K (1.22)

The atom θ∗n associated with observation Xn contains parameters for some distri-

bution, p(·), with P(θ∗n = θk|π
¯
) = πk. The Dir(αg0) prior is often placed on π

¯
as

shown, and G0 is a (typically non-atomic) base distribution. For the Gaussian mix-

ture model [26], θk = {µk,Σk} and G0 is often a conjugate Normal-Wishart prior

distribution on mean vector µ and covariance matrix Σ.

Following the proof of Section 1.4.1, we can let (1.14) construct π
¯

in (1.22),

producing

GK =
∞∑
i=1

Vi

i−1∏
j=1

(1− Vj)δθYi

Vi
iid∼ Beta(1, α)

Yi
iid∼ Mult ({1, . . . , K}, g0)

θk
iid∼ G0, k = 1, . . . , K (1.23)

Sampling Yi from the integers {1, . . . , K} according to g0 provides an index of the

atom with which to associate mass Vi
∏i−1

j=1(1−Vj). Ishwaran and Zarepour [37] have

shown that, when g0 = ( 1
K
, . . . , 1

K
) and K → ∞, GK → G, where G is a Dirichlet

process with continuous base measure G0 on the infinite space (S,A), as defined in

[27]; this definition is given at the end of this section. Since in the limit as K →∞,

P(Yi = Yj|i 6= j) = 0 and P(θYi = θYj |i 6= j) = 0, there is a one-to-one correspondence

between {Yi}∞i=1 and {θi}∞i=1. Let the function σ(Yi) = i reindex the subscripts on
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θYi . Then

G =
∞∑
i=1

Vi

i−1∏
j=1

(1− Vj)δθi

Vi
iid∼ Beta(1, α)

θi
iid∼ G0 (1.24)

Finally, we note that this representation is not as different from (1.14) as first appears.

For example, let G0 be a discrete measure on the first K positive integers. In this

case θ ∈ {1, . . . , K} and (1.24) and (1.14) are essentially the same (the difference

being that one is presented as a measure on the first K integers, while the other is

a vector in ∆K).

As mentioned, we provide a more formal definition of a Dirichlet process first

given in [27] here. Let S be an abstract space and let µ(·) be a measure on that

space with the measure of the entire space µ(S) = α. For any subset A of S,

let G0(A) = µ(A)/µ(S). Then G is a Dirichlet procees if for all partitions of S,

A1, . . . , Ak,

(G(A1), . . . , G(Ak)) ∼ Dir(αG0(A1), . . . , αG0(Ak))

In the machine learning community, G0 is almost always non-atomic and can be

thought of as corresponding to a continuous probability distribution. The value

of G0(A) is simply the integration of the corresponding density over the region A.

Therefore, a Dirichlet process, G, produces a probability measure on the subsets

A1, . . . , Ak of the space S by drawing from a Dirichlet distribution with concentration

parameter α and g0 := (G0(A1), . . . , G0(Ak)).

21



1.6 Inference for the Dirichlet Process Mixture Model

The discussion thus far has led to methods for generating G ∼ DP(αG0). In this

section, we discuss the use of G, as well as Markov chain Monte Carlo (MCMC)

inference [29] for mixture models using the stick-breaking representation of G.

1.6.1 Dirichlet Process Mixture Models

The primary use of the Dirichlet process in the machine learning community is in

nonparametric mixture modeling [5][26], where values θ ∼ G are not the observed

data, as X was in the previous sections, but rather a parameter or set of parameters

for some density function, fX(θ), from whichX is drawn. As discussed in the previous

section, the generative process is,

Xn ∼ fX(θ∗n)

θ∗n
iid∼ G

G ∼ DP(αG0) (1.25)

and the parameter θ∗n is a specific value selected from G =
∑∞

i=1 piδθi and is associated

with observation Xn. While samples drawn from G will contain duplicate values,

samples from fX(θ) are again from a continuous density. Therefore, values that

share parameters are clustered together in that, though not exactly the same, they

exhibit similar statistical characteristics according to the density function, fX(θ).

1.6.2 Gibbs Sampling for Dirichlet Process Mixture Models

We next outline a general method for performing MCMC [29] inference for Dirichlet

process mixture models. The MCMC engine presented here is the Gibbs sampler [4],

which to review, samples values for each parameter in a sequential fashion using the

posterior distribution of a parameter of interest conditioned on the current values of
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all other parameters. We focus on inference using the stick-breaking construction of

the DP, which is fully conjugate and therefore amenable to Gibbs sampling inference.

Let fX(x|θ) be the likelihood function of an observation, x, given parameters, θ,

and let p(θ) be the prior density of θ. Inference for Dirichlet process mixture models

also includes an additional latent variable [26], c ∈ {1, . . . , K}, which indicates the

parameter value associated with observation Xn. We also define a K-truncated

Dirichlet process (to be discussed in greater detail in the next chapter) to be the

process in (1.24) where i = 1, . . . , K and the remaining probability mass is added to

the last atom. We define the K-dimensional vector p = φK(V ) to be the resulting

probability weights. Incorporating c and using the truncated DP, the generative

process is,

Xn ∼ fX(θcn)

cn
iid∼ Mult({1, . . . , K}, φK(V ))

Vk
iid∼ Beta(1, α)

θk
iid∼ G0 (1.26)

The MCMC sampling procedure is given below.

Initialization: Select a truncation level, K, and initialize the model, G, by sampling

θk ∼ G0 for k = 1, . . . , K and Vk ∼ Beta(1, α) for k = 1, . . . , K − 1 and construct

p = φK(V ). We discuss a method for learning α at the end of the section, but it is

assumed to be initialized here.

Step 1: Sample the indicators, c1, . . . , cN , independently from their respective con-

23



ditional posteriors, p(cn|xn, G) ∝ fX(xn|θcn)p(θcn|G),

cn ∼
K∑
k=1

pkfX(xn|θk)∑
l plfX(xn|θl)

δk (1.27)

Relabel the index values to remove any unused integers between one and max cn.

Let the total number of unique values be denoted by K ′. Set K to be some integer

value larger than K ′. These additional components act as proposals that allow for

the data to use more components if required.

Step 2: Sample θ1, . . . , θK′ from their respective posteriors conditioned on c1, . . . , cN

and x1, . . . , xN ,

θk ∼ p
(
θk|{cn}Nn=1, {xn}Nn=1

)
p
(
θk|{cn}Nn=1, {xn}Nn=1

)
∝

N∏
n=1

fX(xn|θ)I(cn=k)p(θ) (1.28)

the function I(cn = k) is used to pick out which xn belong to component k. Sample

θK′+1, . . . , θK
iid∼ G0.

Step 3: For the stick-breaking process, construct the K-dimensional weight vector,

p = φK(V ), using V1, . . . , VK−1 sampled from their beta-distributed posteriors con-

ditioned on c1, . . . , cN ,

Vk ∼ Beta

(
1 +

N∑
n=1

I(cn = k), α +
∑
`>k

N∑
n=1

I(cn = `)

)
(1.29)

Set pK =
∏K−1

k=1 (1− Vk). For the Chinese restaurant process, K := K ′ + 1 and each

pk is replaced by pk = nk

α+N
for k = 1, . . . , K − 1, and pK = α

α+N
.
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Repeat Steps 1 – 3 for a desired number of iterations. The convergence of this

Markov chain can be assessed [29], after which point samples from these steps ad-

equately spaced out in the chain are considered iid samples from the full poste-

rior, p
(
{θk}Kk=1, {Vk}Kk=1, {cn}Nn=1, K|{xn}Nn=1

)
. Additional inference for α can be

performed for the CRP using a method detailed in [26], and for the stick-breaking

construction using a conjugate gamma prior.

Step 4: Sample α from its posterior gamma distribution conditioned on V1, . . . , VK′

α ∼ Gamma

(
a+K ′, b−

K′∑
k=1

ln(1− Vk)

)
(1.30)

where a, b are the parameters for the gamma prior distribution.

As can be seen, inference for the Dirichlet process is fairly straightforward and,

when p(θ) is conjugate to fX(x|θ), it is fully analytical. Other MCMC methods

exist for performing this inference [49] as does a fast, variational inference method

[13][8] that converges deterministically to a local optimal approximation to the full

posterior distribution following initialization. The objective function that this varia-

tional method attempts to minimize is the Kullback-Liebler divergence between the

approximation of the full posterior and true joint posterior of all parameters.
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1.7 The Expectation and Variance of the Entropy of Dirichlet Pro-
cesses

In this section, we derive the expectation and variance of the entropy of discrete

measures sampled from Dirichlet distributions and, by extension to the infinite limit,

the Dirichlet process with non-atomic base measure G0. To our knowledge, this

calculation is a new contribution to the theory of Dirichlet processes.

The entropy of π
¯
∼ Dir(αg0), denoted H(π

¯
), is

H(π
¯
) = −

K∑
k=1

πk ln πk (1.31)

The expectation to be calculated is,

E[H(π
¯
)|αg0] =

∫
∆K

(
−

K∑
k=1

πk ln πk

)
p(π

¯
|αg0) dπ

¯
(1.32)

The variance, V[H(π
¯
)|αg0] = E[H(π

¯
)2|αg0]− E[H(π

¯
)|αg0]2, is

V[H(π
¯
)|αg0] =

∫
∆K

(
K∑
i=1

K∑
j=1

πiπj ln πi lnπj

)
p(π

¯
|αg0) dπ

¯
− E[H(π

¯
)|αg0]2 (1.33)

We give these two values below for a finite Dirichlet distribution, and the infinite

Dirichlet process (where g0 = (1/K, . . . , 1/K), K → ∞), denoted G ∼ DP(αG0),

followed by their derivations.
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E[H(π
¯
)|αg0] = ψ(α + 1)−

K∑
k=1

g0kψ(αg0k + 1) (1.34)

V[H(π
¯
)|αg0] =

K∑
k=1

(αg0k + 1)g0k

α + 1

[
(ψ(αg0k + 2)− ψ(α + 2))2 + ψ′(αg0k + 2)− ψ′(α + 2)

]
+

∑
i 6=j

αg0ig0j

α + 1
[(ψ(αg0i + 1)− ψ(α + 2)) (ψ(αg0j + 1)− ψ(α + 2))− ψ′(α + 2)]

−

(
ψ(α + 1)−

K∑
k=1

g0kψ(αg0k + 1)

)2

(1.35)

E[H(G)|αG0] = ψ(α + 1)− ψ(1) (1.36)

V[H(G)|αG0] =
1

α + 1
(ψ(2)− ψ(α + 2))2 +

α

α + 1
(ψ(1)− ψ(α + 2))2

+
ψ′(2)

α + 1
− ψ′(α + 2)− (ψ(α + 1)− ψ(1))2 (1.37)

The function ψ(·) is the digamma function and ψ′(·) is the first derivative of the

digamma function. In Figure 1.3, we plot E[H(G)|αG0] vs V[H(G)|αG0] for the values

α = 0.1, 0.2, 0.3, . . . , 1000. We see that, for the Dirichlet process, as α increases, the

variance around the expected entropy decreases.
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Figure 1.3: The expectation and variance of the entropy of G ∼ DP(αG0) for
α between 0.1 and 1000 with steps of 0.1. As can be seen, the expected entropy
increases as α increases, while the variance of this entropy decreases for α > 1.

1.7.1 Derivation of the Expectation

The sequence of equalities is presented first, after which a discussion shows how one

follows another. Let ek be a K-dimensional vector of zeros, except for a one in the

kth dimension.

E[H(π
¯
)|αg0] =

∫
∆K

(
−

K∑
k=1

πk ln πk

)
p(π

¯
|αg0) dπ

¯
(1.38)

= −
K∑
k=1

∫
∆K

(πk lnπk)p(π
¯
|αg0) dπ

¯
(1.39)

= −
K∑
k=1

Γ(α)Γ(αg0k + 1)

Γ(αg0k)Γ(α + 1)

∫
∆K

(ln πk)p(π
¯
|αg0 + ek) dπ

¯
(1.40)

= −
K∑
k=1

g0kE[ln πk|αg0 + ek] (1.41)

= −
K∑
k=1

g0k(ψ(αg0k + 1)− ψ(α + 1)) (1.42)

= ψ(α + 1)−
K∑
k=1

g0kψ(αg0k + 1) (1.43)
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Note that Γ(n+ 1) = nΓ(n). Also, when g0 = (1/K, . . . , 1/K),3

E[H(G)|αG0] = lim
K→∞

E[H(π
¯
)|αg0] (1.44)

by monotone convergence. It therefore follows from the above derivation that

E[H(G)|αG0] = ψ(α + 1)− ψ(1) (1.45)

To go from (1.39) to (1.40) the πk is absorbed in the Dirichlet distribution and

the trick of multiplying and dividing by the same thing is used to turn this into a

Dir(αg0 + ek) distribution, which is where the coefficients come from. These coeffi-

cients simplify as shown in (1.41), and the expectation of ln πk is a familiar calculation

from variational inference. Things then simplify further as shown until (1.43). For

the infinite DP, all g0k = 1/K, which allows the last term of (1.43) to come outside

the sum, which then sums to one. Letting K →∞ produces (1.45).

1.7.2 Derivation of the Variance

We want to calculate

V[H(π
¯
)|αg0] =

∫
∆K

(
K∑
i=1

K∑
j=1

πiπj lnπi ln πj

)
p(π

¯
|αg0) dπ

¯
− E[H(π

¯
)|αg0]2

=
K∑
i=1

K∑
j=1

∫
∆K

(πiπj lnπi lnπj)p(π
¯
|αg0) dπ

¯
− E[H(π

¯
)|αg0]2 (1.46)

3 As previously discussed, Ishwaran and Zarepour [37] have shown that, for a uniform g0, when
the elements of π

¯
∼ Dir(αg0) are used as probability masses on atoms drawn iid from a non-atomic

base probability measure, G0, then as K →∞, this process converges to G ∼ DP(αG0).
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The two important terms are E[πiπj lnπi lnπj|αg0] for i 6= j and E[(πi ln πi)
2|αg0],

which we derive below. First using the same reasoning as in Section 1.7.1,

E[(πi lnπi)
2|αg0] =

Γ(α)Γ(αg0i + 2)

Γ(α + 2)Γ(αg0i)
E[(ln πi)

2|αg0 + 2ei]

=
(αg0i + 1)g0i

α + 1
E[(ln πi)

2|αg0 + 2ei] (1.47)

E[πiπj lnπi ln πj|αg0] =
Γ(α)Γ(αg0i + 1)Γ(αg0j + 1)

Γ(α + 2)Γ(αg0i)Γ(αg0j)
E[lnπi ln πj|αg0 + ei + ej]

=
αg0ig0j

α + 1
E[ln πi lnπj|αg0 + ei + ej] (1.48)

Calculate E[(lnπi)
2|αg0 + 2ei]: We know from variational inference that

E[lnπi|αg0 + 2ei] = ψ(αg0i + 2)− ψ(α + 2) (1.49)

Taking the partial derivative of each side with respect to αg0i produces

∫
∆K

(ln πi)(ψ(α+ 2)−ψ(αg0i+ 2) + ln πi)p(π
¯
|αg0 + 2ei) dπ

¯
= ψ′(αg0i+2)−ψ′(α+ 2)

(1.50)

and therefore

E[(lnπi)
2|αg0 + 2ei] = (ψ(αg0i + 2)− ψ(α + 2))2 + ψ′(αg0i + 2)− ψ′(α + 2) (1.51)

Calculate E[lnπi lnπj|αg0 + ei + ej]: Start with the equality

E[lnπi|αg0 + ei + ej] = ψ(αg0i + 1)− ψ(α + 2) (1.52)

and take the partial derivative of each side with respect to αg0j,∫
∆K

(ln πi)(ψ(α+ 2)−ψ(αg0j + 1) + lnπj)p(π
¯
|αg0 + ei + ej) dπ

¯
= −ψ′(α+ 2) (1.53)
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This simplifies to

E[lnπi ln πj|αg0 +ei+ej] = (ψ(αg0i+1)−ψ(α+2))(ψ(αg0j+1)−ψ(α+2))−ψ′(α+2)

(1.54)

Inserting these two values into (1.46) and using the result for E[H(π
¯
)|αg0] in Section

1.7.1 produces

V[H(π
¯
)|αg0] =

K∑
k=1

(αg0k + 1)g0k

α + 1

[
(ψ(αg0k + 2)− ψ(α + 2))2 + ψ′(αg0k + 2)− ψ′(α + 2)

]
+

∑
i 6=j

αg0ig0j

α + 1
[(ψ(αg0i + 1)− ψ(α + 2)) (ψ(αg0j + 1)− ψ(α + 2))− ψ′(α + 2)]

−

(
ψ(α + 1)−

K∑
k=1

g0kψ(αg0k + 1)

)2

(1.55)

which is the value given in (1.35).

As with the expected entropy, we insert g0 = (1/K, . . . , 1/K) and let K →

∞ to obtain the corresponding result for the Dirichlet process using the monotone

convergence theorem,

V[H(G)|αG0] =
1

α + 1
(ψ(2)− ψ(α + 2))2 +

α

α + 1
(ψ(1)− ψ(α + 2))2

+
ψ′(2)

α + 1
− ψ′(α + 2)− (ψ(α + 1)− ψ(1))2 (1.56)
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1.8 Appendix

Proof of Lemma 1: Let Y ∼ Mult({1, . . . , K}, π
¯
) and π

¯
∼ Dir(αg0). Basic proba-

bility theory allows us to write that

p(π
¯
|αg0) =

K∑
k=1

P(Y = k|αg0)p(π
¯
|Y = k, αg0) (1.57)

P(Y = k|αg0) =

∫
π
¯
∈∆K

P(Y = k|π
¯
)p(π

¯
|αg0) dπ

¯
(1.58)

The second equation can be written as P(Y = k|αg0) = E[πk|αg0] = g0k. The first

equation uses the posterior of a Dirichlet distribution given observation Y = k, which

is p(π
¯
|Y = k, αg0) = Dir(αg0 + ek). Replacing these two equalities in the first equa-

tion, we obtain p(π
¯
|αg0) =

∑K
k=1 g0kDir(αg0 + ek).

Proof of Lemma 2: We use the representation of π
¯

as a function of gamma-

distributed random variables. That is, if γk ∼ Gamma(αg0k, λ) for k = 1, . . . , K,

and we define π
¯

:=
(

γ1∑
k γk

, . . . , γK∑
k γk

)
, then π

¯
∼ Dir(αg0). Using this definition, let

W1 :=

(
γ1∑
k γk

, . . . ,
γK∑
k γk

)
, W2 :=

(
γ′1∑
k γ
′
k

, . . . ,
γ′K∑
k γ
′
k

)
, V :=

∑
k γk∑

k γk +
∑

k γ
′
k

(1.59)

where γk ∼ Gamma(wk, λ) and γ′k ∼ Gamma(vk, λ). Then it follows that

W1 ∼ Dir(w1, . . . , wK), W2 ∼ Dir(v1, . . . , vK), V ∼ Beta(
∑

k
wk,
∑

k
vk) (1.60)

where the distribution of V arises because
∑

k γk ∼ Gamma(
∑

k wk, λ). Furthermore,

Basu’s theorem [7] indicates that V is independent of W1 and W2, or p(V |W1,W2) =

p(V ). Performing the multiplication Z = VW1 + (1 − V )W2 produces the gamma-

distributed representation of Z ∼ Dir(w1 + v1, . . . , wK + vK).
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2

Sethuraman’s Constructive Definition for Finite
Mixture Models

2.1 Abstract

In this chapter, we investigate Sethuraman’s construction of the finite-dimensional

Dirichlet distribution [68], specifically when used as a prior for mixture modeling. In

Section 2.2, we consider two error properties of the finite-dimensional Dirichlet dis-

tribution with reference to the infinite Dirichlet process. In Section 2.3, we consider

two applications of the infinite stick-breaking representation of the finite Dirichlet

prior, (i) as a means for performing additional inference for α using a conjugate

gamma prior, and (ii) as a means for performing fully conjugate inference for the

hierarchical Dirichlet process.

2.2 Comparing Dir(αg0) and DP(αG0) Priors Using Constructive Def-
initions

The stick-breaking representation of the finite-dimensional Dirichlet distribution pro-

vides additional insight into the similar performance of this prior to the infinite-

dimensional prior for mixture modeling. That is, using finite-symmetric Dirichlet
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priors to perform mixture modeling, (1.22) tends in practice to be as “nonparamet-

ric” as the infinite-dimensional representation in (1.23) when K is large. In this

section, we use the representation in (1.14) to investigate how π
¯
∼ Dir(αg0) relates

to G ∼ DP(αG0) as priors for mixture models; see [36][37][38] for further analysis.

Since GK → G when g0 = ( 1
K
, . . . , 1

K
) as discussed in Section 1.5, we assume g0 is

uniform in what follows.

Consider the remaining length of a unit-length stick after the ith break from a

Beta(1, α) stick-breaking process,

ε :=
i∏

j=1

(1− Vj)

In terms of a truncated approximation to the DP, where the stick-breaking pro-

cess in (1.24) is terminated after the Kth break and ε is arbitrarily assigned to

a set of (possibly one) atoms, this value can also be viewed as the error of the

approximation [36][48]. As K increases, this value decreases in expectation, with

E[ε|α,K] =
(

α
1+α

)K
.

2.2.1 Statistical Properties of ε

More precise statistical properties of this error can also be derived. For example,

define the random variable Sj := − ln(1 − Vj). It then can be shown that Sj ∼

Exponential(α), and therefore − ln ε =
∑i

j=1 Sj ∼ Gamma(i, α). This gives the

generative process for ε,

ε = e−T

T ∼ Gamma(i, α) (2.1)

which, using a change of variable, T = f(ε) = − ln ε, produces the density

p(ε|α, i) =
αi

(i− 1)!
εα−1(ln 1/ε)i−1 (2.2)
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Likewise, consider when the value of ε is fixed and let the positive integer-valued

random variable L = arg minL
∏L

j=1(1−Vj) < ε [48]. Using the definitions of Sj and

T above, this can equivalently be written as L = arg minL
∑L

j=1 Sj > T . Since each

Sj has an exponential distribution, the value of L − 1 is a Poisson process on R+

with stopping time T and exponential waiting times having rate α [43]. Therefore,

L− := L− 1 ∼ Poisson(αT ), and thus a generative process for L is

L = L− + 1

L− ∼ Poisson(−α ln ε) (2.3)

which, for a Beta(1, α) stick-breaking process, is the distribution on the number of

breaks of the unit-length stick before the remaining length is smaller than ε.

These two representations of ε and L can be used to characterize how many

breaks will be made before the error to the DP is small. For example, when α = 2

and ε = 0.01, Poisson(9.21) breaks will be made prior to truncation, with E[L|α =

2, ε = 0.01] = 10.21.

2.2.2 Connecting Dir(αg0) and DP(αG0) Priors Via ε

These same statistical properties of the error apply to the finite-dimensional Dirichlet

distribution, as is evident in (1.14), with the exception being that the error is now

with respect to the construction of the vector π
¯
∈ ∆K . Therefore, when L � K,

the resulting vector, π
¯
, will be sparse, since at most only L of the K components

will contain mass defined as meaningful (i.e., prior to truncation). If we sample
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π
¯
∼ Dir(αg0) exactly, then the decomposition in (1.21) allows us to write this as

π
¯

=
L∑
i=1

Vi

i−1∏
j=1

(1− Vj)e
¯Yi

+ επ
¯
′

Vi
iid∼ Beta(1, α)

Yi
iid∼ Mult({1, . . . , K}, g0)

π
¯
′ ∼ Dir(αg0) (2.4)

Therefore, splitting the error, ε, according to the fractions π
¯
′ ∼ Dir(αg0) produces a

vector π
¯
∼ Dir(αg0) with at most L components containing mass defined as mean-

ingful.

The number of components containing the first L masses can clearly be smaller

than L, since P(Yi = Yj|i 6= j, i ≤ L, j ≤ L) > 0. However, when this number is equal

to L an equivalence occurs between the finite-dimensional Dirichlet distribution and

the L-truncated Dirichlet process in the mixture modeling framework. For example,

inserting (2.4) into (1.22) yields

GK =
L∑
i=1

Vi

i−1∏
j=1

(1− Vj)δθYi +
K∑
k=1

επ′kδθk

Vi
iid∼ Beta(1, α)

Yi
iid∼ Mult ({1, . . . , K}, g0)

π
¯
′ ∼ Dir(αg0)

θk
iid∼ G0, k = 1, . . . , K (2.5)

In what follows, we will refer to
∑L

i=1 Vi
∏i−1

j=1(1 − Vj)δθYi the “significant measure”

and
∑K

k=1 επ
′
kδθk as the “residual measure.” The sum of these measures produces the
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finite Dirichlet-distributed measure on the atoms {θ1, . . . , θK} given in (1.22); GK is

still a K-dimensional mixture with a Dir(αg0) prior on the mixing weights.

Similarly, the L-truncation of the infinite Dirichlet process, GL
tr, can be written

as

GL
tr =

L∑
i=1

Vi

i−1∏
j=1

(1− Vj)δθi +
∞∑
`=1

ε`δθ`

Vi
iid∼ Beta(1, α)

θi
iid∼ G0 (2.6)

where
∑∞

`=1 ε` = ε =
∏L

i=1(1 − Vj), with each ε` defined arbitrarily. For example,

assigning ε to the last component before truncation means that εL = ε and ε` = 0 for

` 6= L [36]. Again, the significant and residual measures are
∑L

i=1 Vi
∏i−1

j=1(1− Vj)δθi
and

∑∞
`=1 ε`δθ` , respectively; the significant measure in the first line of (2.6) is what

defines GL
tr as an L-truncated Dirichlet process.

The representation of GK in (2.5), and GL
tr in (2.6) are only distinguishable by

their significant measures when ε` := 0 for ` > K and (ε1/ε, . . . , εK/ε) ∼ Dir(αg0) (a

modification of [36]), and ignoring indexing of the exchangeable atoms. Specifically,

using the representation in (2.5), a GK measure can be distinguished from a GL
tr

measure by observing that two weights, e.g., Vi
∏i−1

j=1(1−Vj) and V ′i
∏i′−1

j=1 (1−Vj), are

assigned to the same atom, θYi and θYi′ , in cases where Yi = Yi′ . When
∑

i 6=j I(Yi =

Yj) = 0 for i ≤ L, j ≤ L, GK is indistinguishable from GL
tr, i.e., GK is an L-truncated

Dirichlet process. The probability of this event is equal to P(
∑

i 6=j I(Yi = Yj) =

0|g0, i ≤ L, j ≤ L). When g0 is uniform,

P

(∑
i 6=j

I(Yi = Yj) = 0|g0 = (1/K, . . . , 1/K), i ≤ L, j ≤ L

)
=

L−1∏
m=0

K −m
K

(2.7)

Viewed as an urn process, this is the probability that L draws can be made uniformly
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with replacement from an urn containing K balls without drawing the same ball

twice.

As can be seen from (2.7), this probability equals zero when L > K, which

is expected, since L weights are being placed on K atoms. As K increases, this

probability increases. As K → ∞, this probability converges to one for all values

of L; an infinite Dirichlet process always contains an L-truncated Dirichlet process

within its stick-breaking representation. Therefore, Sethuraman’s construction of

the finite-dimensional Dirichlet prior not only can be used to show why Dir(αg0)

priors are sparse when g0 =
(

1
K
, . . . , 1

K

)
and α � K, but it also shows that, using

a Dir(αg0) prior on the weights of a K-dimensional mixture model, GK , there is a

probability (2.7) that GK will be equivalent to an L-truncated draw from DP(αG0).

Furthermore, using the definition of error given in [36] as being the assignment

of probability mass to atoms that have previously been drawn (specifically, the last

atom), we can define this same error, εDD, for the K-dimensional Dirichlet distribu-

tion with uniform g0. In Figure 2.1, we show an illustration of this definition of error.

For the Dirichlet process, the K-truncated Dirichlet process and the K-dimensional

Dirichlet distribution, the stick-breaking constructions are identical. However, the

K-truncated Dirichlet process selects the first K masses and locations from the

Dirichlet process, but violates the definition of the Dirichlet process by assigning the

sum of masses indexed by K+1, K+2, . . . to a previously observed atom; according

to the Dirichlet process, these masses should be assigned to new atoms drawn iid

from G0. For sake of argument, we can take the K locations of the finite Dirichlet

distribution to correspond to those of the Dirichlet process. However, the policy of

assigning the stick-breaking weights of the finite Dirichlet distribution can violate

that of the Dirichlet process before the first K weights have been assigned. Any time

a mass is added to a previously observed atom, this contradicts the Dirichlet process.

We call this mass an error to the DP and sum these masses to obtain εDD.
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Figure 2.1: An illustration of error to the Dirichlet process of the truncated Dirich-
let process and finite-dimensional Dirichlet distribution mixture model for 9 mixture
components. All priors are defined over the two-dimensional space (S,A, G0). The
verticle lines indicate probability weights at a given location. All three priors share
the first 9 locations and a single stick-breaking process. Shown are (a) The Dirichlet
process, where gray indicates that all locations are included in the construction. (b)
The K = 9 truncation of the Dirichlet process. The remaining mass, ε, is added in
error to the 9th atom, indicated by red. (c) The finite Dirichlet distribution. Because
the index of the location of each mass is drawn iid from g0, sticks can be placed on
top of other sticks at any point following the first break. All sticks for which this
occurs are colored red, and these sticks are distributed in violation (i.e., in error) of
the policy for Dirichlet processes.

Below, we give the expectation of εDD,

E[εDD|α,K] =
α

α +K
(2.8)

The derivation is given in the appendix of this chapter. Using this definition of εDD,

the expected error to the Dirichlet process using a Dir(αg0) prior with g0 uniform

decreases like the inverse of the dimensionality, K, of the Dirichlet distribution. Not

surprisingly, the expected probability mass that is assigned to previously-observed

locations is larger for the finite-dimensional Dirichlet distribution than it is for the

K-truncation of the infinite DP, where we recall that E[ε|α,K] =
(

α
1+α

)K
. This is

because the first K draws constituting a K-truncated DP – the K largest masses

in expectation – have unique locations with probability one, which, as mentioned

above, is not the case in (1.23).
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2.3 Applications of the Construction of Dir(αg0)

We consider two applications of the constructive representation of the Dirichlet dis-

tribution given in (1.14): (i) As a means for performing inference for α in mixture

models with Dir(αg0) priors, and (ii) as a means for performing inference for the

hierarchical Dirichlet process [70]. The first application is specifically for finite-

dimensional mixture models using finite Dirichlet priors. The second application

is for infinite-dimensional mixture models where the base measure is discrete, but

countably infinite. However, a truncation of the top-level DP renders all second-

level DP’s finite as well. An advantage of conjugate inference is that Gibbs sampling

can be used [29]. Contrary to other sampling methods, such as Metropolis-Hastings

[29], where proposed samples can be rejected and a proposal distribution can be

difficult to design, Gibbs sampling provides a new sample from the true conditional

posterior distribution with each iteration [4]. This can lead to faster mixing of the

Markov chain to the stationary distribution. We consider synthetic examples for

each proposed sampling method.

2.3.1 Inference for α Using the Constructive Definition of Dir(αg0)

Consider the fully data-generative process for a finite-dimensional mixture model

with a Dirichlet prior. For data {Xn}Nn=1, this is

Xn ∼ fX(θcn)

cn
iid∼ Mult({1, . . . , K}, π

¯
)

π
¯
∼ Dir(αg0)

θk
iid∼ G0, k = 1, . . . , K (2.9)

The set of latent indicator variables {cn}Nn=1, where c ∈ {1, . . . , K}, select parameters

θcn for the density function fX(·) from which observation Xn is generated [26]. In this
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section, we show how the stick-breaking representation of the Dirichlet distribution

can be used to perform additional inference on α. Though this representation is

not required to infer this parameter, it has the advantage of allowing the use of a

conjugate gamma prior on α [13], which results in an analytically tractable inference

procedure.

First, let the probability vector ωi ∼ Dir(εg0) and let ε → 0. Then from the

stick-breaking construction of this Dirichlet distribution (1.14), it is clear that ωi

is a vector of zeros except for a single one, and has the same distribution as e
¯Yi

,

where Yi ∼ Mult({1, . . . , K}, g0). Therefore, using this random variable and the

stick-breaking construction of π
¯
∼ Dir(αg0), the generative process of (2.9) can be

rewritten as

Xn ∼ fX(θcn)

cn ∼
K∑
k=1

ωdn,kδk

dn
iid∼

∞∑
i=1

Vi

i−1∏
j=1

(1− Vj)δi

Vi
iid∼ Beta(1, α)

ωi
iid∼ Dir(εg0), ε→ 0

θk
iid∼ G0, k = 1, . . . , K (2.10)

A second collection of latent indicator variables, {dn}Nn=1, has been introduced in this

representation. We also observe that cn is deterministic given dn, since ωdn is a delta

measure on the integers {1, . . . , K}.

We propose the following procedure for learning α: (i) Given α, perform inference

for {cn}Nn=1 using a finite representation of Dir(αg0) – the stick-breaking represen-

tation is unnecessary; (ii) Conditioned on {cn}Nn=1, sample {dn}Nn=1 using collapsed
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inference, where the random variables {Vi}∞i=1 and {ωi}∞i=1 are integrated out; (iii)

Given {dn}Nn=1, sample {Vi}max dn
i=1 independently from their posterior beta distribu-

tions; (iv) Sample α from its posterior gamma distribution conditioned on {Vi}max dn
i=1 .

We detail these steps below.

Step (i), the sampling of {cn}Nn=1, is a standard procedure for mixture modeling

with finite Dirichlet priors (e.g., see [9]), and so we do not review this step here. We

have also reviewed this idea in step 1 of Section 1.6.2, though for a stick-breaking

prior. For step (ii), the sampling of {dn}Nn=1 takes the form

p(dm = h|cm, {Vi}hi=1, ωh) ∝ p(cm|ωh)p(dm = h|{Vi}hi=1)

∝ ωh,cmVh

h−1∏
j=1

(1− Vj) (2.11)

However, as mentioned, we do not know the parameters ωh and {Vi}hi=1 that render

the {dn}Nn=1 conditionally independent. We therefore integrate them out as follows

p
(
dm = h|cm, {cn}m−1

n=1 , {dn}m−1
n=1 , αg0

)

∝ p
(
cm|dm = h, {dn}m−1

n=1 , {cn}m−1
n=1 , g0

)
p
(
dm = h|{dn}m−1

n=1 , α
)

∝
∫

∆K

p (cm|ωh) p
(
ωh|{dn}m−1

n=1 , {cn}m−1
n=1

)
dωh . . .

· · · ×
∫

[0,1]h
p
(
dm = h|{Vi}hi=1

)
p
(
{Vi}hi=1|{dn}m−1

n=1 , α
)
dV1 . . . dVh (2.12)

There are two terms of interest to compute, plus a normalizing constant, each of

which is discussed below.

The Likelihood term p (cm|·) =
∫

∆K
p (cm|·) p (ωh|·) dωh: In this term, draws are

being made from a marginal Dirichlet distribution where the weights, ωh, have been
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integrated out. The result is a Pólya urn process [11][3] for the hth urn having K

initial balls distributed as g0, and where the total mass of these balls, ε, is vanishing.

Therefore, for the first draw from a given urn, h, the integer-value of the resulting

indicator, c, is distributed as g0. Any remaining draws from this urn are from a delta

function located at this same integer.

More specifically, for this urn process, the indicator cm is drawn from the proba-

bility measure

cm|dm = h ∼
K∑
k=1

∑m−1
n=1 I(cn = k)I(dn = h) + εg0k∑m−1

n=1 I(dn = h) + ε
δk (2.13)

Two cases arise when ε → 0: (i) If cm is the first observation to come from compo-

nent h (where h indexes components for the stick-breaking construction of the finite

Dirichlet distribution, not for the mixing components), then it is equal to k with

probability g0k; (ii) If cm is not the first draw from component h, as indicated by∑m−1
n=1 I(dn = h) > 0, then the prior vanishes and all subsequent samples are equal

to the first value from component h with probability one.

The Prior term p (dm = h|·) =
∫

[0,1]h
p (dm = h|·) p

(
{Vi}hi=1|·

)
dV1 . . . dVh: For this

prior, there are h beta-distributed random variables to be integrated out, with

Vj ∼ Beta

(
1 +

m−1∑
n=1

I(dn = j), α +
m−1∑
n=1

∑
`>j

I(dn = `)

)

Given that p
(
dm = h|{Vi}hi=1

)
= Vh

∏h−1
j=1 (1− Vj), the marginalized probability is

p
(
dm = h|{dn}m−1

n=1 , α
)

= (2.14)

1 +
∑m−1

n=1 I(dn = h)

1 + α +
∑m−1

n=1

∑
`≥h I(dn = `)

h−1∏
j=1

α +
∑m−1

n=1

∑
`>j I(dn = `)

1 + α +
∑m−1

n=1

∑
`≥j I(dn = `)
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This prior has a corresponding illustrative restaurant story, which we call the

Chinese restaurant district. A customer walks down a street containing an infinite

number of Chinese restaurants. Upon reaching each restaurant entrance, he chooses

to either enter the restaurant, or continue walking down the street. He enters restau-

rant h with a probability nearly proportional to the number of customers in the

restaurant, and continues walking down the street with a probability nearly propor-

tional to the number of customers in restaurants still to be encountered. A second

way to view this process is as a marginalization of a coin flipping process, where

coins having different biases are sequentially flipped until a head is observed. The

probability of observing a head from the jth coin is equal to Vj. The value in (2.14) is

the marginal probability of observing the first head from coin h given all previous dn.

The Normalizing constant: The final step is to calculate the normalizing constant

for the distribution on the latent indicator dm,

Zm =
∞∑
h=1

p
(
cm|dm = h, {dn}m−1

n=1 , {cn}m−1
n=1 , g0

)
p
(
dm = h|{dn}m−1

n=1 , α
)

Let d
(m)
max = maxn<m dn and define ηm :=

∏d
(m)
max

j=1

α+
∑m−1

n=1

∑
`>j I(dn=`)

1+α+
∑m−1

n=1

∑
`≥j I(dn=`)

. Then it follows

that

Zm =

d
(m)
max∑
h=1

p
(
cm|dm = h, {dn}m−1

n=1 , {cn}m−1
n=1 , g0

)
p
(
dm = h|{dn}m−1

n=1 , α
)

+ ηmg0,cm

(2.15)

where p
(
cm|dm = h, {dn}m−1

n=1 , {cn}m−1
n=1 , g0

)
and p

(
dm = h|{dn}m−1

n=1 , α
)

are from (2.13)

and (2.14), respectively.

Given {dn}Nn=1, the random variables V1, . . . , Vd(N)
max

can be sampled independently
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from their respective posterior distributions,

Vj ∼ Beta

(
1 +

N∑
n=1

I(dn = j), α +
N∑
n=1

∑
`>j

I(dn = `)

)
(2.16)

following which, α can be sampled from its posterior gamma distribution using a

conjugate Gamma(a, b) prior,

α ∼ Gamma

a+ d(N)
max, b−

d
(N)
max∑
j=1

ln(1− Vj)

 (2.17)

Given this new α, inference can again proceed for {cn}Nn=1 using the finite represen-

tation of the Dirichlet distribution. Furthermore, if MAP or variational inference

are performed [9], in which case we do not have an integer value for cn, but rather a

distribution on values for cn, these values can be sampled according to their current

distributions prior to executing the procedure outlined in this section.

In Figure 2.2, we show results for a synthetic example. Values of α were sampled

from a Uniform(1, 25) distribution, followed by the sampling of π
¯
∼ Dir(αg0), where

g0 ∈ ∆50 and uniform. This was followed by sampling cn ∼ Mult({1, . . . , 50}, π
¯
) for

n = 1, . . . , 1000. The above inference method was run for 20 iterations with an initial

value of α = 1. The sample of the 20th iteration was then taken to be the inferred

value for α, shown on the y-axis.

As is evident from the figure, there is an estimation bias above the true value,

as marked by the red line. While the slope of this line is equal to one, the slope of

the line fitted to the data using least squares equals 1.3537. Observing the inference

method in practice, this appears to be due to the following reason: The number of

Vj sampled according to (2.16) which are then used to sample α according to (2.17)

is equal to the maximum value of {dn}Nn=1. It is often the case that some of these dn

will be “outliers” in the sense that they are very large and there are many values,
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j < d
(N)
max, for which no dn = j. However, since there is data in the corresponding

posterior of Vj, these sampled Vj (of which there are a large number) are still used

to infer α. The small values of these Vj encourage the posterior of α to inflate

by increasing the posterior mean. This causes a larger value of α to be sampled

for the next iteration, which encourages more outliers. We’ve observed that these

outliers tend to come for lower indexed values of dn. In an attempts to mitigate this

phenomenon, we considered only including those Vj for which dn = j for some n.

This, however, resulted in significant underestimation of α; the data tended to fall

below the red line. Other ad hoc heuristics also did not resolve this issue.

Figure 2.2: Using Sethuraman’s construction to infer the value of α in the Dir(αg0)
distribution. A total of 5000 trials are shown using synthetic data. In each trial,
a true value for α was randomly generated, followed by a vector π

¯
∼ Dir(αg0) and

N = 1000 samples from π
¯
. Each point in the plot indicates the inferred value of α

compared with the actual value.
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2.3.2 Inference for the Hierarchical Dirichlet Process

The procedure for sampling α given in the previous section can be modified and ex-

panded to perform inference for the hierarchical Dirichlet process (HDP). To review,

the HDP [70] constitutes draws from a Dirichlet process for which the base measure

is itself drawn from a Dirichlet process. We focus on two levels in this section,

G ∼ DP(αG0)

G′m
iid∼ DP(βG) (2.18)

The base distribution for the second-level Dirichlet process, G, is discrete with prob-

ability one [68], which means that each draw, G′m for m = 1, . . . ,M , represents a

mixture for which the atoms are shared, but the weights on these atoms differ for

each m. This is seen clearly in the following equivalent representation.

G =
∞∑
i=1

wiδθi , wi := Vi

i−1∏
j=1

(1− Vj)

Vi
iid∼ Beta(1, α)

θi
iid∼ G0

(G′m(θ1), G′m(θ2), . . . )
iid∼ Dir(βw1, βw2, . . . ) (2.19)

The top-level DP is constructed according to the stick-breaking construction given

in (1.24), from which it follows that each G′m is a draw from an infinite-dimensional

Dirichlet distribution with g0 := (w1, w2, . . . ) no longer being uniform. The hierar-

chical Dirichlet process is useful for document modeling [70] and multitask learning

[18] where multiple documents or tasks are expected to share a collection of distri-

butions (i.e., components), but with each group using these components differently

according to their own probabilities.
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We can use Sethuraman’s stick-breaking construction to represent G′m as well,

G′m =
∞∑
i=1

V ′m,i

i−1∏
j=1

(1− V ′m,j)δθYm,i

V ′m,i
iid∼ Beta(1, β)

Ym,i
iid∼

∞∑
k=1

wkδk (2.20)

We note that this representation is not the stick-breaking representation given in [70]

for the second-level DP, which is instead equivalent to the representation in (1.4).

Using this representation and the ideas in Section 2.3.1, inference can be performed

for α, β and V1, . . . , VK of the top-level DP, where K will be the maximum value of

a set of latent indicators similar to that in the previous section; all priors will again

be conjugate, allowing for analytical posterior calculations, and all other parameters

will be integrated out to facilitate the calculation of these posteriors.

Let {X(m)
n }Nm

n=1 be the set of observations from the mth task to be modeled by the

second-level DP, G′m. For the first step, we assume that values for α, β and V1, . . . , VK

have been drawn from their conditional posteriors of the previous iteration. This

allows for the construction of w1, . . . , wK , using V1, . . . , VK , as well as further values

of wK+1, wK+2, . . . , to be constructed via draws from the prior, VK+h ∼ Beta(1, α).

In this chapter, we assume that the top-level DP is truncated at some level, Kt ≥ K,

which yields a finite, Kt-dimensional Dirichlet distribution prior for each second-level

task. Let g0 := (w1, . . . , wKt). Therefore, g0 is changing in both its values and its

size with each iteration, but for any given iteration it is the same across each of the

M tasks.

The fully generative process for tasks m = 1, . . . ,M is then of the form given in

(2.10), with the exception being that the unknowns Xn, cn and dn have a superscript

of m, indicating the task to which they belong, and Vi is replaced with V ′m,i. Thus,
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we again introduce a second set of latent indicators, {d(m)
n }Nm

n=1, which serve the same

purpose as in Section 2.3.1 and can be obtained using the same method. The only

difference is that α in the previous section is now β, since α here is the scaling

parameter of the top-level DP. The posterior of β therefore follows from the previous

section and is

β ∼ Gamma

a+
M∑
m=1

d(Nm)
max , b−

M∑
m=1

d
(Nm)
max∑
j=1

ln(1− V ′m,j)

 (2.21)

where d
(Nm)
max = maxn d

(m)
n .

It remains to calculate the posteriors of α and V1, . . . , VK . We observe in the

last line of (2.20) that, if these values of Ym,i were available, posteriors for V1, V2, . . .

could be calculated. In fact, several of these values are implicitly available in the sets

{c(m)
n }Nm

n=1 and {d(m)
n }Nm

n=1, and we propose to find and use these values. The value Ym,i

indicates that component i of the stick-breaking representation of the second-level

DP for the mth task is a delta function on component Ym,i of this DP (we again

note the distinction between components of the second-level DP, and components of

the stick-breaking representation of this DP). Therefore, if d
(m)
n = i, it follows that

Ym,i = c
(m)
n . It’s clear from the discussion of the previous section that not all values

of i will be represented in the set {d(m)
n }Nm

n=1. Let the index set

Im = {n : d(m)
n 6= d

(m)
n′ ∀n

′ < n} (2.22)

The set Im contains indices of latent indicators corresponding to unique Ym,i, and

represent the index values of all components of the stick-breaking construction of

G′m that are used by observations in task m. The known values of Ym,i are therefore

{c(m)
n }n∈Im . Let K := maxm maxn∈Im c

(m)
n . Then the posteriors of V1, . . . , VK are

Vj ∼ Beta

(
1 +

M∑
m=1

∑
n∈Im

I(c(m)
n = j), α +

M∑
m=1

∑
n∈Im

I(c(m)
n > j)

)
(2.23)

49



To calculate the posterior of α, values of V1, . . . , VK can be drawn and

α ∼ Gamma

(
a0 +K, b0 −

K∑
j=1

ln(1− Vj)

)
(2.24)

Though the above sampling procedure and that of the previous section may appear

complicated, inference using this method is fast, requiring in general less than one

second of inference time per iteration.

To test this inference procedure, we ran 5000 experiments using synthesized

data. For each trial, we independently sampled the true underlying values α ∼

Uniform(1, 10) and β ∼ Uniform(1, 10). We then generated values for g0 = (w1, . . . , wK)

according to (2.20), where K is random and is equal to the smallest value such

that ε < 10−6. We then generated M = 10 group-level probability vectors, π(m) iid∼

Dir(βg0), and sampledNm = 500 integer-valued samples, c
(m)
n

iid∼ Mult({1, . . . , K},π(m)).

For inference, we initialized α = β = 1 and g0 to be uniform. We then ran 25 it-

erations and used the last sample as the inferred value. In actual Gibbs sampling

applications, these samples are drawn once, and the “burn-in” phase is concurrent

with learning the rest of the model parameters.

In Figure 2.3 we show results for learning α and β using the proposed method.

Figure 2.3a shows a scatter plot of the true α versus the learned α. In Figure 2.3b,

these values are shown for β. For α, or the top-level scaling parameter, the issue

encountered in the previous section does not occur, since the underlying structure

of the latent variables is fundamentally different, and there cannot be the large gaps

between used components. The underlying structure of the second-level DPs does

share this property, however, which accounts for the inflation of the inferred value.

The averaging over multiple groups appears to mitigate this problem somewhat, since

the inflation is not as large as in the previous section.
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Figure 2.3: Learning the concentration parameters of the hierarchical Dirichlet pro-
cess using Sethuraman’s construction. Values for α and β were randomly generated
and the probability vector g0 = (w1, . . . , wK) was generated from a stick-breaking
construction using the generated value of α and truncated at ε < 10−6. A total
of 5000 trials are shown for (left) the inferred values of the top-level concentration
parameter, and (right) the second-level concentration parameter.

In Figure 2.4 we show a histogram for the 5000 trials of the L1 distance between

the true underlying g0 and the inferred g0. The maximum value of this distance is

equal to two, and the histogram of these values shows the inferred distances to be

relatively small.

Figure 2.4: A histogram of the L1 distance between the true g0 = (w1, . . . , wK)
and the sampled values of this vector for 5000 trials. The maximum value of this
distance is two.
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2.4 Appendix

Proof that E [ε
DD
|α,K] = α

α+K
: Define the set

E
DD

= {i : Yi = Yj for some j < i} (2.25)

Then

E [ε
DD
|α,K] = E

[
∞∑
i=1

Vi

i−1∏
j=1

(1− Vj)I(i ∈ EDD
)

]
(2.26)

=
∞∑
i=1

E

[
Vi

i−1∏
j=1

(1− Vj)

]
P(i ∈ E

DD
) (2.27)

=
∞∑
i=1

αi−1

(1 + α)i

(
1−

(
K − 1

K

)i−1
)

(2.28)

= 1− 1

1 + α

∞∑
i=0

(
α(K − 1)

(1 + α)K

)i
(2.29)

=
α

α +K
(2.30)

The expectation can be brought within the sum by monotone convergence. In (2.28),

we use the identity P(i ∈ E
DD

) = 1−P(i 6∈ E
DD

). We use the geometric series identity

to go from (2.29) to (2.30).
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3

Dirichlet Processes with Product Base Measures

3.1 Abstract

We have shown how the Dirichlet process can be used as a nonparametric prior

for an infinite-dimensional probability mass function on the parameter space of a

mixture model. As discussed thus far, the set of parameters over which it is defined

is used for a single, parametric distribution. In this chapter, we extend this idea

to parameter spaces that characterize multiple distributions, or modalities. In this

framework, mixture modeling is performed using observations that contain multiple,

incompatible pieces of information, which allows for all information to inform the

final clustering result. We provide a general MCMC sampling scheme similar to that

in Section 1.6, and demonstrate this framework on a Gaussian-HMM mixture model

applied to synthetic and Major League Baseball data. A second application of this

framework is also presented in this dissertation, but since it uses the beta process,

discussion of this model is deferred to Chapter 6.
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3.2 Introduction

The Dirichlet process [27] has proven useful in the machine learning and signal pro-

cessing communities [80][63][70] as a Bayesian nonparametric prior for mixture mod-

els [5]. The infinite support of the Dirichlet process allows for a robust prior defini-

tion on a continuous parameter space, and can accommodate an unlimited number

of components. Many developments of this framework have been proposed in the

literature, e.g. [65][70][80], that vary or add to elements of the generative process.

Each addresses a potential aspect of mixture modeling not accounted for in the

standard DP, but easily handled via slight modifications. We present here our own

modification that accounts for the desire to model data sets where each observation

is itself a data set of multiple modalities, i.e., multiple statistically irreducible dis-

tribution functions, F (m)(θ). In this case, each observations, Xi, is actually a set

of observations, with each part contributing to the characterization of the object of

interest. In such cases where multiple pieces of information are available with which

objects can be clustered, it is useful to modify the Dirichlet process to account for

all information when partitioning data into groups. We call this general framework

a Dirichlet process with product base measure (DP-PBM) as it requires multiple base

measures combined in product form to parameterize the Dirichlet process.

This chapter is organized as follows: In Section 2 we present the DP-PBM frame-

work and discuss some of its theoretical properties. In Section 3, we outline a general

MCMC inference algorithm for DP-PBM mixture models. Experimental results are

given in Section 4, where we focus on a Gaussian-HMM mixture model – one in-

stantiation of the DP-PBM framework. Results are shown for both synthesized and

Major League Baseball data for the 2007 season. In Chapter 6, we will show an

application of this framework to image interpolation, where the second modality will

introduce spatial dependence to the prior.
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3.3 The Dirichlet Process with Product Base Measure

In this section, we discuss a variant of the Dirichlet process that incorporates a prod-

uct base measure, called a DP-PBM, where rather than drawing parameters for one

parametric distribution, θ ∼ G0, parameters are drawn for multiple distributions,

θm ∼ G0,m for m = 1, . . . ,M . In other words, rather than having a connection

between data, {Xi}Ni=1, and their respective parameters, {θci}Ni=1, through a density

function, {f(θci)}Ni=1, sets of data, {X1,i, . . . , XM,i}Ni=1 have respective sets of param-

eters, {θ1,ci , . . . , θM,ci}Ni=1, used in inherently different and generally incompatible

distribution functions, {f (1)(θ1,ci), . . . , f
(M)(θM,ci)}Ni=1.

The DP-PBM is so-called because it utilizes a product base measure to achieve

this end, G0 = G0,1×G0,2×· · ·×G0,M , where in this case, M modalities are considered.

The space over which this process is defined is now
(∏M

m=1 Θm,
⊗M

m=1 Bm,
∏M

m=1 G0,m

)
.

Though this construction implicitly takes place in all mixture models that attempt to

estimate multiple parameters, for example the multivariate Gaussian mixture model,

we believe this general framework of using these parameters in multiple, incompati-

ble distributions (or modalities) is novel. The full generative process can be written

as follows:

Xm,i ∼ f (m)(θm,ci) (3.1)

ci
iid∼ Mult({1, . . . , K},π) (3.2)

πj = Vj

j−1∏
`=1

(1− V`) (3.3)

Vj
iid∼ Beta(1, α) (3.4)

θm,j ∼ G0,m (3.5)

form = 1, . . . ,M , where θm,j are drawn iid fromG0,m for a fixedm and independently

under varying m. Note that if each G0,m is a univariate normal-gamma prior, this
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model reduces to a multivariate GMM with a forced diagonal covariance matrix.

As previously stated, we are more interested in cases where each Xm is inherently

incompatible, but is still linked by the structure of the data set.

For example, consider a set of observations, {Oi}Ni=1, where each Oi = {X1,i, X2,i}

with X1 ∈ Rd and X2 a sequence of time-series data. In this case, a single den-

sity function, f(X1, X2|θ1, θ2) cannot analytically accommodate Oi, making infer-

ence difficult. However, if these densities can be considered as independent, that

is f(X1, X2|θ1, θ2) = f(X1|θ1) · f(X2|θ2), then this problem becomes analytically

tractable and, furthermore, no more difficult to solve than for the standard Dirichlet

process. One might choose to model X1 with a Gaussian distribution, with G0,1 the

appropriate prior and X2 by an HMM [61], with G0,2 its respective prior. In this

case, this model becomes a hybrid Gaussian-HMM mixture, where each component

is both a Gaussian and a hidden Markov model.

3.3.1 Predicting Values for Missing Modalities

As alluded to in the previous section, the analytical nature of the DP-PBM framework

depends upon a factorization of the likelihood function. That is, for the likelihood

function of our M -modality data, we assume that we can write

f(X1, . . . , XM |θ1, . . . , θM) =
M∏
m=1

f (m)(Xm|θm)

where f (m)(Xm|θm) is the likelihood function and θm the parameter (or set of pa-

rameters) for the mth modality. As will be seen in the next section, inference then

becomes analytical, provided the appropriate priors, p(θm), are selected. This is

because the difference modalities are all independent conditioned upon the latent

indicator, c, which selects the set of parameters for all M distribution functions.

Because of this independence assumption, it might seem that the model will not

capture any correlations within the data across modalities. While it is true that this
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ability is not given to the prior, the posterior will capture correlations. For example,

given the posterior for N observations, consider an N + 1st observation where the

first M − 1 modalities are present, but the M th is missing. If we wish to infer its

associated latent indicator, cN+1 (or which component it came from), we can simply

calculate for the first M − 1 modalities

P (cN+1 = j|X,θ) ∝ πj

M−1∏
m=1

f (m)(xm,N+1|θm,j) (3.6)

effectively integrating out the M th modality. Here, θmj
can be a sample from its

posterior, or this parameter can be integrated out, in which case the conditioning

is on the posterior parameters of θmj
. If integration is intractable, Monte Carlo

integration methods can also be used [29]. We see that, given the distribution on

cN+1, we can then interpolate or make predictions as to the missing modality, xM,N+1,

by forming a mixture using the probabilities in (3.6) for the mixing weights and

samples from the respective posteriors of the parameters of the missing modality.

These parameters can also be integrated out, if tractable, allowing for sampling of

xM,N+1 from the posterior marginal distribution.

3.4 MCMC Inference for DP-PBM Mixture Models

In this section, we outline a general method for performing Markov chain Monte

Carlo (MCMC) [29] inference for DP-PBM models. We let f (m)(xm|θm) be the

likelihood function for the mth modality of an observation given the parameters,

θm, and let p(θm) the prior density of θm. We refer to the DP-PBM as G, where

G =
∑K+1

j=1 πjδ{θm,j}Mm=1
. We also observe that this sampling method is unbounded in

the potential number of components, but only requires the K occupied components

plus a K + 1st proposal component for any given iteration, as in Section 1.6.

Initialization: Select a truncation level, K + 1, and initialize the model, G, by
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sampling θm,k ∼ Gm,0 for k = 1, . . . , K + 1, m = 1, . . . ,M and Vk ∼ Beta(1, α) for

k = 1, . . . , K and construct π = φK(V ).

Step 1: Sample the indicators, c1, . . . , cN , independently from their respective con-

ditional posteriors, p(cj|{xm,1}Mm=1) ∝
∏M

m=1 f
(m)(xm,j|θm,cj)p(θm,cj |G),

cj ∼
K+1∑
k=1

πk
∏M

m=1 f
(m)(xm,j|θm,k)∑

` π`
∏M

m=1 f
(m)(xm,j|θm,`)

δk (3.7)

Set K to be the number of unique values among c1, . . . , cN and relabel from 1 to K.

Step 2: Sample {θm,1}Mm=1, . . . , {θm,K}Mm=1 from their respective posteriors condi-

tioned on c1, . . . , cN and x1, . . . , xN ,

θm,k ∼ p
(
θm,k|{cj}Nj=1, xm,1, . . . , xm,N

)
(3.8)

p
(
θm,k|{cj}Nj=1, xm,1, . . . , xm,N

)
∝

N∏
j=1

f (m)(xm,j|θm)I(cj=k)p(θm) (3.9)

where I(cj = k) equals one if cj = k and zero otherwise; this simply picks out which

{xm,j}Mm=1 belong to component k. Sample θm,K+1 ∼ G0,m for m = 1, . . .M . These

M posteriors are calculated independently of one another given the relevant data

for that modality extracted from the observations assigned to that component. We

stress that when an “observation” is assigned to a component (via the indicator, c)

it is actually all of the data that comprise that observation that is being assigned to

the component.

Step 3: Construct the (K + 1)-dimensional weight vector, π = φK(V ), using

V1, . . . , VK sampled from their beta-distributed posteriors conditioned on c1, . . . , cN ,

Vk ∼ Beta

(
1 +

N∑
j=1

I(cj = k), α +
K∑

`=k+1

N∑
j=1

I(cj = `)

)
(3.10)
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Set πK+1 =
∏K

k=1(1− Vk).

Repeat Steps 1 – 3 for a desired number of iterations. The convergence of this

Markov chain can be assessed [29], after which point uncorrelated samples (properly

spaced out in the chain) of the values in Steps 1 – 3 are iid samples from the full

posterior of the model parameters. As can be seen, inference for DP-PBM models is

straightforward and, when each p(θm) is conjugate to f (m)(xm|θm), fully analytical.

3.5 Applications: The Gaussian-HMM Mixture Model

We look at a concrete example of a DP-PBM model, a Gaussian-HMM mixture

model, where modality one is data X1 ∈ Rd and modality two is a sequence drawn

from a hidden Markov model [61], X2 ∼ HMM(A,B, π′). Our experiments are

performed on synthesized and Major League Baseball (MLB) data sets.

3.5.1 Experiment with Synthesized Data

We define three, two-dimensional Gaussian distributions with respective means µ1 =

(−3, 0), µ2 = (3, 0) and µ3 = (0, 5) and each having the identity as the covariance

matrix. Two hidden Markov models are defined as below,

A1 =

 0.05 0.9 0.05
0.05 0.05 0.9
0.9 0.05 0.05

 A2 =

 0.9 0.05 0.05
0.05 0.9 0.05
0.05 0.05 0.9



B1,B2 =

 0.9 0.05 0.05
0.05 0.9 0.05
0.05 0.05 0.9


with the initial state vector π′

1,π
′
2 = [1/3, 1/3, 1/3]. Data was generated as follows:

We sampled 300 observations, 100 from each Gaussian, constituting X1,i for i =

1, . . . , 300. For each sample, if the observation was on the right half of its respective

Gaussian, a sequence of length 50 was drawn from HMM 1, if on the left, from HMM

2. For display purposes, we select a typical sample from MCMC inference.
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This precisely defined data set allows the model to clearly display the benefits

of its design. If one were to build a Gaussian mixture model on the X1 data alone,

three components would be uncovered, as shown in Figure 1(a). If an HMM mixture

were built alone on the X2 data, only two components would be uncovered. Using all

of the data, that is, mixing on {Oi}300
i=1 rather than just {X1,i}300

i=1 or {X2,i}300
i=1 alone,

the correct number of six components was uncovered, as shown in Figure 1(b).

(a) (b)
Figure 3.1: An example of a mixed Gaussian-HMM data set. (a) Gaussian mixture
model results. (b) Gaussian-HMM mixture results. Each ellipse corresponds to a
cluster.

The results show that, as was required by the data, the DP-PBM prior uncovered

six distinct clusters of data. The DP-PBM framework allowed for the incorporation of

all information of the data set to be included, thus providing more precise clustering

results.

3.5.2 Major League Baseball Data Set

Using the complete bat-by-bat statistics for the 2007 season1, we processed our data

set as follows. We created a 3-dimensional vector, X1, of the batting average, on-base

percentage and slugging percentage. We then quantized the plate appearances for

a given player into the following codes: 1. Strikeout, 2. Fielded out, 3. Hit, where

1 Data was obtained from www.retrosheet.org
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walks and other results were ignored. We limited our set to the 252 players with

a sequence length greater than 300. For MCMC, we used 1000 burn-in and 3000

burn-out iterations and selected an iteration of median likelihood for presentation

below. We also show results for an HMM mixture model [60] without using the

spatial data. The component membership results, or the number of observations

that were assigned to a given indexed component, are shown in Figure 2 for both

models. We see that using additional information produces a more refined clustering

result, as was the case in the synthetic result.

(a) (b)
Figure 3.2: Component membership results for MLB data when (a) X1 data is
ignored – the HMM mixture model. (b) both X1 and X2 data is used – the Gaussian-
HMM mixture model.

We next ask whether the increase in the number of clusters results in a more

precise and informative clustering result. To do this we consider two measures, first

the average differential entropy of the Gaussian component, where we empirically

calculated the covariance from the HMM mixture results.

havg(X1) =
K∑
i=1

πi
1

2
ln
(
(2πe)3|Σi|

)
(3.11)

We recall that differential entropy can be negative and that havg(X1)→ −∞ as the

uncertainty tends to zero. Using this measure for the HMM mixture, havg(X1) =

−6.31, while for the Gaussian-HMM mixture, havg(X1) = −7.11, indicating that the
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Gaussian-HMM more precisely represented the spatial information, thus improving

clustering.

As a second measure, we consider the average entropy of each HMM, which is

estimated using the original data

Havg(X2) = −
K∑
i=1

πi

Ni∑
n=1

1

Ni

lnP (X2,ρi(n)|Ai, Bi, π
′
i) (3.12)

where Ni is the number of data in component i, with ρi(n) selecting the appropriate

X2. Using this measure, for the HMM mixture we found that, Havg(X2) = 477.4,

and for the Gaussian-HMM mixture, Havg(X2) = 476.7. Therefore, performance for

the HMM is comparable. This is reasonable when viewed in light of the synthetic

example. We’ve therefore seen that clustering with all data tends to improve the

overall result as it refines the clustering in a meaningful way.

3.6 Conclusions

In this chapter, we have derived an extension of the Dirichlet process that mixes

on all data in an observation by using a product base distribution that allows for

multiple modalities in a data set. As an example, we developed the Gaussian-HMM

mixture model, where each component generated data from both a multivariate

Gaussian distribution and a hidden Markov model. Experimental results showed

the functioning of this model on both synthesized and MLB data for clustering.

In Chapter 6, we will show an application of this framework to image interpolation,

which uses a beta process factor analysis model as one modality. The second modality

allows for spatial information to be exploited within the image.
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4

The Beta Process for Latent Factor Models

4.1 Abstract

In this chapter, we propose a nonparametric extension to the factor analysis problem

using a beta process prior. This beta process factor analysis (BPFA) model allows

for a dataset to be decomposed into a linear combination of a sparse set of factors,

providing information on the underlying structure of the observations. As with

the Dirichlet process, the beta process is a fully Bayesian conjugate prior, which

allows for analytical posterior calculation and straightforward inference. We derive

a variational Bayes inference algorithm and demonstrate the model on the MNIST

digits and HGDP-CEPH cell line panel datasets. We also present results for an

application to basis design for compressive sensing.

4.2 Introduction

Latent membership models provide a useful means for discovering underlying struc-

ture in a dataset by elucidating the relationships between observed data. For ex-

ample, in latent class models, observations are assumed to be generated from one
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of K classes, with mixture models constituting a classic example. When a single

class indicator is considered too restrictive, latent feature models can be employed,

allowing for an observation to possess combinations of up to K latent features.

As K is typically unknown, Bayesian nonparametric models seek to remove the

need to set this value by defining robust, but sparse priors on infinite spaces. For

example, the Dirichlet process [27] allows for nonparametric mixture modeling in the

latent class scenario. In the latent feature paradigm, the beta process [34] has been

defined and can be used toward the same objective, which, when marginalized, is

closely related to the Indian buffet process [31, 73].

An example of a latent feature model is the factor analysis model [76], where a

data matrix is decomposed into the product of two matrices plus noise,

X = ΦZ + E (4.1)

In this model, the columns of the D×K matrix of factor loadings, Φ, can be modeled

as latent features and the elements in each of N columns of Z can be modeled as

indicators of the possession of a feature for the corresponding column of X (which can

be given an associated weight). It therefore seems natural to seek a nonparametric

model for this problem.

To this end, several models have been proposed that use the Indian buffet process

(IBP) [44, 62, 47]. However, these models require MCMC inference, which can be

slow to converge. In this chapter, we propose a beta process factor analysis (BPFA)

model that is fully conjugate and therefore has a fast variational solution; this is an

intended contribution of this chapter. Starting from first principles, we show how the

beta process can be formulated to solve the nonparametric factor analysis problem, as

the Dirichlet process has been previously shown to solve the nonparametric mixture

modeling problem; we intend for this to be a second contribution of this chapter.

The remainder of this chapter is organized as follows. In Section 4.3 we review the
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beta process in detail. We introduce the BPFA model in Section 4.4, and discuss some

of its theoretical properties. In Section 4.5 we derive a variational Bayes inference

algorithm for fast inference, exploiting full conjugacy within the model. Experimental

results are presented in Section 4.6 on synthetic data, and on the MNIST digits and

HGDP-CEPH cell line panel [67] datasets. We also present results for dictionary

learning, to be used in compressive sensing applications. We conclude and discuss

future work in Section 4.7.

4.3 The Beta Process

The beta process, first introduced by Hjort for survival analysis [34], is an indepen-

dent increments, or Lévy process and can be defined as follows:

Definition: Let Ω be a measurable space and B its σ-algebra. LetH0 be a continuous

measure on (Ω,B) with H0(Ω) = γ, and let α be a positive scalar. Then for all

disjoint, infinitesimal partitions, {B1, . . . , BK}, of Ω the beta process is generated as

follows,

H(Bk) ∼ Beta(αH0(Bk), α(1−H0(Bk))) (4.2)

with K → ∞ and H0(Bk) → 0 for k = 1, . . . , K. This process is denoted H ∼

BP(αH0).

Because of the convolution properties of beta random variables, the beta process

does not satisfy the Kolmogorov consistency condition, and is therefore defined in the

infinite limit [34]. Hjort extends this definition to include functions, α(Bk), which

for simplicity is here set to a constant.

Like the Dirichlet process, the beta process can be written in set function form,

H(ω) =
∞∑
k=1

πkδωk
(ω) (4.3)

with H(ωi) = πi. Also like the Dirichlet process, means for drawing H are not
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obvious. We briefly discuss this issue in Section 4.3.1. In the case of the beta

process, π does not serve as a probability mass function on Ω, but rather as part of

a new measure on Ω that parameterizes a Bernoulli process defined as follows:

Definition: Let the column vector, zi, be infinite and binary with the kth value, zik,

generated by

zik ∼ Bernoulli(πk) (4.4)

The new measure, Xi(ω) =
∑

k zikδωk
(ω), is then drawn from a Bernoulli process, or

Xi ∼ BeP(H).

By arranging samples of the infinite-dimensional vector, zi, in matrix form, Z =

[z1, . . . , zN ], the beta process is seen to be a prior over infinite binary matrices, with

each row in the matrix Z corresponding to a location, δω.

4.3.1 The Marginalized Beta Process and the Indian Buffet Process

As previously mentioned, sampling H directly from the infinite beta process is diffi-

cult, but a marginalized approach can be derived in the same manner as the corre-

sponding Chinese restaurant process [3], used for sampling from the Dirichlet process.

We briefly review this marginalization, discussing the link to the Indian buffet pro-

cess [31] as well as other theoretical properties of the beta process that arise as a

result.

We first extend the beta process to take two scalar parameters, a, b, and partition

Ω into K regions of equal measure, or H0(Bk) = 1/K for k = 1, . . . , K. We can then

write the generative process in the form of (4.3) as

H(B) =
K∑
k=1

πkδBk
(B)

πk ∼ Beta (a/K, b(K − 1)/K) (4.5)

where B ∈ {B1, . . . , BK}. Marginalizing the vector π and letting K → ∞, the
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matrix, Z, can be generated directly from the beta process prior as follows:

1. For an infinite matrix, Z, initialized to all zeros, set the first c1 ∼ Poisson(a/b)

rows of z1 to 1. Sample the associated locations, ωi, i = 1, . . . , c1, independently

from H0.

2. For observation N , sample cN ∼ Poisson
(

a
b+N−1

)
and define CN :=

∑N
i=1 ci.

For rows k = 1, . . . , CN−1 of zN , sample

zNk ∼ Bernoulli

(
nNk

b+N − 1

)
(4.6)

where nNk :=
∑N−1

i=1 zik, the number of previous observations with a 1 at

location k. Set indices CN−1 + 1 to CN equal to 1 and sample associated

locations independently from H0.

If we define

H(ω) :=
∞∑
k=1

nNk
b+N − 1

δωk
(ω) (4.7)

then H ∼ BP(a, b,H0) in the limit as N → ∞, and the exchangeable columns of

Z are drawn iid from a beta process. As can be seen, in the case where b = 1, the

marginalized beta process is equivalent to the Indian buffet process [73].

This representation can be used to derive some interesting properties of the beta

process. We observe that the random variable, CN , has a Poisson distribution,

CN ∼ Poisson
(∑N

i=1
a

b+i−1

)
, which provides a sense of how the matrix Z grows with

sample size. Furthermore, since
∑N

i=1
a

b+i−1
→ ∞ as N → ∞, we can deduce that

the entire space of Ω will be explored as the number of samples grows to infinity.

We show in Figure 4.1 the expectation of π calculated empirically by drawing from

the marginalized beta process. As can be seen, the a, b parameters offer flexibility in

both the magnitude and shape of π and can be tuned.
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Figure 4.1: Estimation of π from 5000 marginal beta process runs of 500 samples
each, with various a, b initializations.

4.3.2 Finite Approximation to the Beta Process

As hinted in (4.5), a finite approximation to the beta process can be made by simply

setting K to a large, but finite number. This approximation can be viewed as serving

a function similar to the finite Dirichlet distribution in its approximation of the

infinite Dirichlet process for mixture modeling. The finite representation is written

as

H(ω) =
K∑
k=1

πkδωk
(ω)

πk ∼ Beta(a/K, b(K − 1)/K)

ωk
iid∼ H0 (4.8)
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with the K-dimensional vector, zi, drawn from a finite Bernoulli process parameter-

ized by H. The full conjugacy of this representation means posterior computation is

analytical, which will allow for variational inference to be performed on the BPFA

model.

We briefly mention that a stick-breaking construction of the beta process has

recently been derived by the author and will be presented in the next chapter; this

allows for exact Bayesian inference. A construction for the Indian buffet process has

also been presented [71], though this method does not extend to the more general

beta process. We will use the finite approximation presented here in the following

sections.

4.4 Beta Process Factor Analysis

Factor analysis can be viewed as the process of modeling a data matrix, X ∈ RD×N ,

as the multiplication of two matrices, Φ ∈ RD×K and Z ∈ RK×N , plus an error

matrix, E.

X = ΦZ + E (4.9)

Often, prior knowledge about the structure of the data is used, for example, the

desired sparseness properties of the Φ or Z matrices [76, 62, 44]. The beta process

is another such prior that achieves this sparseness, allowing for K to tend to infinity

while only focusing on a small subset of the columns of Φ via the sparse matrix Z.

In beta process factor analysis (BPFA), we model the matrices Φ and Z as N

draws from a Bernoulli process parameterized by a beta process, H. First, we recall

that draws from the BeP-BP approximation can be generated as

zik ∼ Bernoulli(πk)

πk ∼ Beta(a/K, b(K − 1)/K)

φk
iid∼ H0 (4.10)
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for observation i = 1, . . . , N and latent feature (or factor) k = 1, . . . , K. In the

general definition, H0 was unspecified, as was the use of the latent membership vector,

zi. For BPFA, we let H0 be multivariate normal and the latent factors be indicators

of linear combinations of these locations, which can be written in matrix notation

as Φzi, where Φ = [φ1, . . . , φK ]. Adding the noise vector, εi, we obtain observation

xi. The beta process can thus be seen as a prior on the parameters, {π,Φ}, with

iid Bernoulli process samples composing the expectation matrix, E[X] = ΦZ for the

factor analysis problem.

As an unweighted linear combination might be too restrictive, we include a weight

vector, wi, which results in the following generative process for observation i =

1, . . . , N ,

xi = Φ(zi ◦ wi) + εi

wi ∼ N (0, σ2
wI)

zik ∼ Bernoulli(πk)

πk ∼ Beta(a/K, b(K − 1)/K)

φk ∼ N (0,Σ)

εi ∼ N (0, σ2
nI) (4.11)

for k = 1, . . . , K and all values drawn independently. The symbol ◦ represents

the Hadamard, or elementwise multiplication of two vectors. We show a graphical

representation of the BPFA model in Figure 4.2.

Written in matrix notation, the weighted BP-F model of (4.11) is thus a prior on

X = Φ(Z ◦W ) + E (4.12)
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Figure 4.2: A graphical representation of the BPFA model.

Under this prior, the mean and covariance of a given vector, x, can be calculated,

E[x] = 0

E[xxT ] =
aK

a+ b(K − 1)
σ2
wΣ + σ2

nI (4.13)

Letting K → ∞, we see that E[xxT ] → a
b
σ2
wΣ + σ2

nI. Therefore, the BPFA model

remains well-defined in the infinite limit. To emphasize, compare this value with

z removed, where E[xxT ] = Kσ2
wΣ + σ2

nI. The coefficient a
b

is significant in that

it represents the expected number of factors present in an observation as K → ∞.

That is, if we define mi :=
∑∞

k=1 zik, where zi ∼ BeP(H) and H ∼ BP(a, b,H0), then

by marginalizing H we find that E[mi] = a
b
.

Another important aspect of the BPFA model is that the π vector enforces sparse-

71



ness on the same subset of factors. In comparison, consider the model where zi is

removed and sparseness is enforced by sampling the elements of wi iid from a sparse-

ness inducing normal-gamma prior. This is equivalent to learning multiple relevance

vector machines [75] with a jointly learned and shared Φ matrix. A theoretical issue

with this model is that the prior does not induce sparseness on the same subset of

latent factors. As K → ∞, all factors will be used sparsely with equal probability

and, therefore, no factors will be shared. This is conceptually similar to the problem

of drawing multiple times from a Dirichlet process prior, where individual draws are

sparse, but no two draws are sparse on the same subset of atoms. We note that

the hierarchical Dirichlet process has been introduced to resolve this particular issue

[70].

4.5 Variational Bayesian Inference

In this section, we derive a variational Bayesian algorithm [8, 77] to perform fast

inference for the weighted BPFA model of (4.11). This is aided by the conjugacy of

the beta to the Bernoulli process, where the posterior for the single parameter beta

process is

H|X1, . . . , XN ∼ BP

(
αH0 +

N∑
i=1

Xi

)
(4.14)

with Xi ∼ BeP(H) being the ith sample from a Bernoulli process parameterized

by H. The two-parameter extension has a similar posterior update, though not as

compact a written form.

In the following, we define x−ki := xi − Φ−k(z
−k
i ◦ w−ki ), where Φ−k, z

−k and

w−k are the matrix/vectors with the kth column/element removed; this is simply the

portion of xi remaining considering all but the kth factor. Also, for clarity, we have

suppressed certain equation numbers and conditional variables.
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4.5.1 The VB-E Step

Update for Z: p(zik|xi,Φ, wi, z−ki ) ∝ p(xi|zik,Φ, wi, z−ki )p(zik|π)

The probability that zik = 1 is proportional to

exp[〈ln(πk)〉] ×

exp

[
− 1

2σ2
n

(
〈w2

ik〉〈φTk φk〉 − 2〈wik〉〈φk〉T 〈x−ki 〉
)]

where 〈·〉 indicates the expectation. The probability that zik = 0 is proportional

to exp[〈ln(1− πk)〉]. The expectations can be calculated as

〈ln(πk)〉 = ψ
( a
K

+ 〈nk〉
)
− ψ

(
a+ b(K − 1)

K
+N

)

〈ln(1− πk)〉 =

ψ

(
b(K − 1)

K
+N − 〈nk〉

)
− ψ

(
a+ b(K − 1)

K
+N

)

where ψ(·) represents the digamma function and

〈w2
ik〉 = 〈wik〉2 + ∆

′(k)
i (4.15)

〈φTk φk〉 = 〈φk〉T 〈φk〉+ trace(Σ′k) (4.16)

where 〈nk〉 is defined in the update for π, Σ′k in the update for Φ, and ∆
′(k)
i is the

kth diagonal element of ∆′i defined in the update for W .

4.5.2 The VB-M Step

Update for π: p(πk|Z) ∝ p(Z|πk)p(πk|a, b,K)

The posterior of πk can be shown to be

πk ∼ Beta

(
a

K
+ 〈nk〉,

b(K − 1)

K
+N − 〈nk〉

)
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where 〈nk〉 =
∑N

i=1〈zik〉 can be calculated from the VB-E step. The priors a, b can

be tuned according to the discussion in Section 4.3.1. We recall that
∑N

i=1
a

b+i−1
is

the expected total number of factors, while a/b is the expected number of factors

used by a single observation in the limiting case.

Update for Φ: p(φk|X,Φ−k, Z,W ) ∝ p(X|φk,Φ−k, Z,W )p(φk|Σ)

The posterior of φk can be shown to be normal with mean, µ′k, and covariance,

Σ′k, equal to

Σ′k =

(
1

σ2
n

N∑
i=1

〈zik〉〈w2
ik〉I + Σ−1

)−1

(4.17)

µ′k = Σ′k

(
1

σ2
n

N∑
i=1

〈zik〉〈wik〉〈x−ki 〉

)
(4.18)

with 〈w2
ik〉 given in (4.15). The prior Σ can be set to the empirical covariance of the

data, X.

Update for W: p(wi|xi,Φ, zi) ∝ p(xi|wi,Φ, zi)p(wi|σ2
w)

The posterior of wi can be shown to be multivariate normal with mean, υ′i, and

covariance, ∆′i, equal to

∆′i =

(
1

σ2
n

〈Φ̃T
i Φ̃i〉+

1

σ2
w

I

)−1

(4.19)

υ′i = ∆′i

(
1

σ2
n

〈Φ̃i〉Txi
)

(4.20)

where we define Φ̃i := Φ ◦ Z̃i and Z̃i := [zi, . . . , zi]
T , with the K-dimensional vector,

zi, repeated D times. Given that 〈Φ̃i〉 = 〈Φ〉 ◦ 〈Z̃i〉, we can then calculate

〈Φ̃T
i Φ̃i〉 =

(
〈Φ〉T 〈Φ〉+ A

)
◦
(
〈zi〉〈zi〉T +Bi

)
(4.21)
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where A and Bi are calculated as follows

A := diag [trace(Σ′1), . . . , trace(Σ′K)]

Bi := diag [〈zi1〉(1− 〈zi1〉), . . . , 〈ziK〉(1− 〈ziK〉)]

A prior, discussed below, can be placed on σ2
w, removing the need to set this value.

Update for σ2
n: p(σ2

n|X,Φ, Z,W ) ∝ p(X|Φ, Z,W, σ2
n)p(σ2

n)

We can also infer the noise parameter, σ2
n, by using an inverse-gamma, In-

vGa(c, d), prior. The posterior can be shown to be inverse-gamma with

c′ = c+
ND

2
(4.22)

d′ = d+
1

2

N∑
i=1

(
‖xi − 〈Φ〉(〈zi〉 ◦ 〈wi〉)‖2 + ξi

)
where

ξi :=
K∑
k=1

(
〈zik〉〈w2

ik〉〈φTk φk〉 − 〈zik〉2〈wik〉2〈φk〉T 〈φk〉
)

+
∑
k 6=l

〈zik〉〈zil〉∆′i,kl〈φk〉T 〈φl〉

In the previous equations, σ−2
n can then be replaced by 〈σ−2

n 〉 = c′/d′.

Update for σ2
w: p(σ2

w|W ) ∝ p(W |σ2
w)p(σ2

w)

Given a conjugate, InvGa(e, f) prior, the posterior of σ2
w is also inverse-gamma

with

e′ = e+
NK

2
(4.23)

f ′ = f +
1

2

N∑
i=1

(
〈wi〉T 〈wi〉+ trace(∆′i)

)
(4.24)
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4.5.3 Accelerated VB Inference

As with the Dirichlet process, there is a tradeoff in variational inference for the

BPFA; the larger K is set, the more accurate the model should be, but the slower

the model inference. We here briefly mention a simple remedy for this problem.

Following every iteration, the total factor membership expectations, {〈nk〉}Kk=1,

can be used to assess the relevancy of a particular factor. When this number falls

below a small threshold (e.g., 10−16), this factor index can be skipped in following

iterations with minimal impact on the convergence of the algorithm. In this way, the

algorithm should converge more quickly as the number of iterations increases.

4.5.4 Prediction for New Observations

Given the outputs, {π,Φ}, the vectors z∗ and w∗ can be inferred for a new observa-

tion, x∗, using a MAP-EM inference algorithm that iterates between z∗ and w∗. The

equations are similar to those detailed above, with inference for π and Φ removed.

4.6 Experiments

Factor analysis models are useful in many applications, for example, for dimension-

ality reduction in gene expression analysis [76]. In this section, we demonstrate the

performance of the BPFA model on synthetic data, and apply it to the MNIST digits

and HGDP-CEPH cell line panel [67] datasets.

4.6.1 A Synthetic Example

For our synthetic example, we generated H from the previously discussed approxi-

mation to the Beta process with a, b = 1, K = 100 and φk ∼ N (0, I) in a D = 25

dimensional space. We generated N = 250 samples from a Bernoulli process param-

eterized by H and synthesized X with W = 1 and σ2
n = 0.0675. Below, we show

results for the model having the highest likelihood selected from five runs, though

the results in general were consistent.

In Figure 4.3, we display the ground truth (top) of Z, rearranged for display
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purposes. We note that only seven factors were actually used, while several obser-

vations contain no factors at all, and thus are pure noise. We initialized our model

to K = 100 factors, though as the results show (bottom), only a small subset were

ultimately used. The inferred 〈σ2
n〉 = 0.0625 and the elementwise MSE of 0.0186 to

the true ΦZ further indicates good performance. For this example, the BPFA model

was able to accurately uncover the underlying latent structure of the dataset.

Figure 4.3: Synthetic Data: Latent factor indicators, Z, for the true (top) and
inferred (bottom) models.
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4.6.2 MNIST Handwritten Digits Dataset

We trained our BPFA model on N = 2500 odd digits (500 each) from the MNIST dig-

its dataset. Using PCA, we reduced the dimensionality to D = 350, which preserved

over 99.5% of the total variance within the data. We truncated the BPFA model to

K = 100 factors initialized using the K-means algorithm and ran five times, selecting

the run with the highest likelihood, though again the results were consistent.

In Figure 4.5 below, we show the factor sharing across the digits (left) by calculat-

ing the expected number of factors shared between two observations and normalizing

by the largest value (0.58); larger boxes indicate more sharing. At right, we show for

each of the odd digits the most commonly used factor, followed by the second most

used factor given the factor to the left. Of particular interest are the digits 3 and 5,

where they heavily share the same factor, followed by a factor that differentiates the

two numbers.

In Figure 4.4 (top), we plot the sorted values of 〈π〉 inferred by the algorithm. As

can be seen, the algorithm inferred a sparse set of factors, fewer than the 100 initially

provided. Also in Figure 4.4 (bottom), we show an example of a reconstruction of

the number 3 that uses four factors. As can be seen, no single factor can individually

approximate the truth as well as their weighted linear combination. We note that the

BPFA model was fast, requiring 35 iterations on average to converge and requiring

approximately 30 minutes for each run on a 2.66 GHz processor.

Figure 4.4: (top) Inferred π indicating sparse factor usage. (bottom) An example
reconstruction.
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Figure 4.5: Left: Expected factor sharing between digits. Right: (left) Most
frequently used factors for each digit (right) Most used second factor per digit given
left factor.

4.6.3 HGDP-CEPH Cell Line Panel

The HGDP-CEPH Human Genome Diversity Cell Line Panel [67] is a dataset com-

prising genotypes at D = 377 autosomal microsatellite loci sampled from N = 1056

individuals in 52 populations across the major geographic regions of the world. It is

useful for inferring human evolutionary history and migration.

We ran our model on this dataset initializing K = 100 factors, though again,

only a subset were significantly used. Figure 4.6 contains the sharing map, as pre-

viously calculated for the MNIST dataset, normalized on 0.55. We note the slight

differentiation between the Middle East and European regions, a previous issue for

this dataset [67].

We also highlight the use of BPFA in denoising. Figure 4.8 shows the original

HGDP-CEPH data, as well as the Φ(Z ◦W ) reconstruction projected onto the first

20 principal components of the raw data. The figure shows how the BPFA model

was able to substantially reduce the noise level within the data, while still retaining
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the essential structure.

Figure 4.6: Factor sharing across geographic regions.

Figure 4.7: Variance of HGDP-CEPH data along the first 150 principal components
of the raw features for original and reconstructed data.

This is also evident in Figure 4.7, where we plot the variance along these same

principal components for the first 150 dimensions. For an apparently noisy dataset

such as this, BPFA can potentially be useful as a preprocessing step in conjunc-

tion with other algorithms, in this case, for example, the Structure [67] or recently

proposed mStruct [69] algorithms.
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Figure 4.8: HGDP-CEPH features projected onto the first 20 principal components
of the raw features for the (top) original and (bottom) reconstructed data. The broad
geographic breakdown is given between the images.

4.6.4 Learning Dictionaries for Compressive Sensing Applications

We next consider an application of the proposed model to nonparametric dictionary

learning. A dictionary, in this case, is simply another name for the factor loading

matrix, and is meant to evoke an interpretation of the columns of Φ as a breaking

down of the data matrix, X, into a set of fundamental elements (or words) from

which all observations are composed. This dictionary also provides a nonorthogonal

basis that can be used in compressive sensing [22][16] inversion algorithms. The idea

is that, if a good dictionary can be learned on a set of images that are representative

of those for which compressive sensing is to be performed, then this dictionary should

allow for better signal reconstructions given a fixed number of compressive samples.

Before presenting results, we review these ideas in more detail below.

Compressive Sensing and the Relevance Vector Machine

Consider the sparse vector θ ∈ RN , where ‖θ‖0 = S with S � N ; the vector

θ has only S nonzero values and is said to be S-sparse. The motivation behind

compressive sensing is that, if the vector y = Ψθ is measured instead of θ, where the

sensing matrix Ψ ∈ RM×N with M � N , then θ can be recovered exactly with high
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probability using an `1-minimizing inversion algorithm of the form

minimize ‖θ‖1 subject to y = Ψθ (4.25)

For signals with noise, this is relaxed to [74]

minimize ‖θ‖1 subject to ‖y −Ψθ‖2 < ε (4.26)

In practice, the signal is not S-sparse, or even sparse, but is sparse in some basis

B. That is, a non-sparse signal, x ∈ RN , has a sparse representation, θ, via the

transform x = Bθ. In this case, the sensed signal is y = Ψx, while sparse inversion is

performed for y = (ΨB)θ. The original signal is then reconstructed by the transform

x = Bθ using the learned θ.

Compressive sensing requires that the matrices Ψ and B be incoherent, or that

µ(Ψ, B) = max
i,j

√
2 ψTi bj

is small, where ψi and bj are basis functions from Ψ and B, respectively. This

incoherence – a worst-case measure of how correlated Ψ is with B – is closely linked

with the number of measurements, M , that are required to ensure a high probability

of perfect reconstruction, and small values are desired [16].

A second important property of the matrix Ψ is that it satisfies the restricted

isometry property [6], or that

(1− δS)‖θ‖2 ≤ ‖Ψθ‖2 ≤ (1 + δS)‖θ‖2 (4.27)

for 0 < δS < 1 and all S-sparse vectors θ. This property states that no vector

θ is in the null space of Ψ, and smaller values of δS indicate that any S columns

selected from Ψ at random act nearly as an orthonormal basis for an S-dimensional

subspace in RM . Matrices that satisfy this property with δ2S <
√

2 − 1 guarantee

perfect reconstruction of all S-sparse signals, and recovery of the S largest values of

all other vectors [16]. Typically, the value of M to be aimed for is M = 2S. In this

section, we use random matrices, Ψ, where each column is sampled uniformly from

the unit sphere in RM , which satisfies the RIP with high probability [6].
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For inversion, we use the relevance vector machine (RVM) [75], also known as

Bayesian compressive sensing [39], which has the following hierarchical structure.

y ∼ N ((ΨB)θ, σ2I)

θ ∼ N
(
0, diag(α−1

1 , . . . , α−1
N )
)

αn
iid∼ Gamma(a, b) (4.28)

where a and b are small numbers, (e.g., 10−6). We use variational Bayes to find a

local optimal solution to the model [8][77]. In this case, the RVM can be viewed as

an iteratively updated ridge regression solution [35], where each element θn has a

unique penalty term, αn. The gamma prior encourages each αn →∞, which thereby

encourages θn → 0. Therefore, the RVM produces sparse solutions for θ by shrinking

all unnecessary coefficients out of the model, though this does not necessarily produce

the minimum `1 solution. Nevertheless, the RVM performs competitively with other

inversion algorithms, including `1 minimization [82].

Basis Design and Compressive Sensing with BPFA

The purpose of the BPFA model in this scenario is to learn a specific basis, B, for a

set of signals of interest. To do this, we assume access to a set of images, I = {Ir}Rr=1,

from which are extracted a large set of square patches, P = {Pt}Tt=1. Specifically,

we consider R = 192 grayscale images from the Yale Faces database,1 where each

Ir ∈ R128×96. We extracted 100 patches from each image of size Pt ∈ R8×8 selected

randomly from within the image. These patches were then stretched into vectors,

x ∈ R64, producing the data matrix X ∈ R64×13200. The BPFA model was then run

with K = 200 initialized factors and a dictionary matrix (i.e., factor loading matrix),

Φ, was learned that ultimately required 81 of the original 200 factors. Therefore,

each patch in an image is a sparse linear combination of 81 possible 8×8 elementary

patches.

1 http://cvc.yale.edu/projects/yalefaces/yalefaces.html
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Figure 4.9: An illustration of the constructed basis using the learned dictionary
Φ. Each block diagonal matrix, Φ ∈ R64×81, is responsible for reconstructing a
patch in the original image and each column is normalized prior to inversion. For
our application, we broke each image into non-overlapping 8 × 8 patches for recon-
struction. The number of sparse coefficients, θ, to be learned therefore increases to
N+ = 1.265625N .

Once Φ is learned, all other parameters are thrown away, and Φ is used to con-

struct a basis as shown in Figure 4.9. For reconstruction, a test image is broken into

8× 8 contiguous blocks and the inversion proceeds as pictured. Each block-diagonal

dictionary matrix is responsible for reconstructing one patch in an images using the

corresponding coefficients in the sparse vector θ. We observe that, due to the over-

complete nature of the dictionary, the number of sparse coefficients in θ to be learned

actually increases. However, since the model attempts to shrink each coefficient to

zero, this does not lead to performance degradation, or an increase in the number of

nonzero coefficients, as will be seen.

As a comparison, we consider three other basis options. These include two com-

monly used bases, the 2-dimensional DCT and wavelet bases [2][46], as well as the

principal component (PCA) basis [42] learned from the matrix X. This PCA ba-

sis replaces the dictionary Φ during inversion. We note that the learned dictionary,

though normalized beforehand, does not form an orthonormal basis within each block

84



Figure 4.10: The reconstructed MSE for different basis representations and differ-
ent compressive measurement numbers.

of B.

In Figure 4.11, we show reconstruction results using a test image for several differ-

ent numbers of compressive measurements. The reconstruction error of these images,

measured as the MSE of the reconstruction to the original image, is shown in Figure

4.10, where we see that the learned basis outperforms all other bases. We show two

of these basis, the BPFA-learned dictionary and the PCA dictionary in Figure 4.12.

The dictionary elements of the PCA dictionary explain the checkerboard pattern in

many reconstructions. The relaxing of the orthogonality constraint in the BPFA

algorithm results in dictionary elements that are more natural for characterizing the

images under consideration, which is a result of learning the dictionary elements on

a subset of these images of interest. In Figure 4.13, we show the sparsely learned

coefficients sorted by absolute value. We see that, despite the increase in the num-

ber of coefficients to be learned using the overcomplete BPFA dictionary, the sparse

usage of this dictionary is comparable with other sparse basis representations.
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Figure 4.11: Compressive sensing reconstruction results using the RVM for the
dictionary basis learned with BPFA, the PCA basis and the 2D DCT and wavelet
bases for different numbers of compressive measurements.
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Figure 4.12: The PCA dictionary (left) and BPFA dictionary (right) used for
inversion. The relaxation of the orthogonality constraint for BPFA can be seen to
produce dictionaries that are more natural for reconstructing the images of interest.

4.7 Conclusion

We have presented a beta process factor analysis (BPFA) model for performing non-

parametric factor analysis with a potentially infinite number of factors. As with the

Dirichlet process prior used for mixture modeling, the beta process is a fully Bayesian

prior that assures the sharing of a sparse subset of factors among all observations.

Taking advantage of conjugacy within the model, a variational Bayes algorithm was

developed for fast model inference requiring an approximation comparable to the

finite Dirichlet distribution’s approximation to the infinite Dirichlet process. Results

were shown on synthetic data, as well as the MNIST handwritten digits and HGDP-

CEPH cell line panel datasets. We have also shown an application of the BPFA model

to dictionary learning for designing a basis that can be used in compressive sensing

inversion algorithms. This learned basis produced better reconstruction results than

other “off-the-shelf” bases.

While several nonparametric factor analysis models have been proposed for ap-

87



Figure 4.13: The learned, sparse coefficients sorted by absolute value. The over-
complete dictionary required inference for 15,744 coefficients, compared with 12,288
coefficients for the other bases. However, the inferred sparseness is comparable.

plications such as independent components analysis [44] and gene expression analysis

[62, 47], these models rely on the Indian buffet process and therefore do not have

fast variational solutions - an intended contribution of this chapter. Furthermore,

while the formal link has been made between the IBF and the beta process [73], we

believe our further development and application to factor analysis to be novel.
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5

A Stick-Breaking Construction of the Beta Process

5.1 Abstract

In this chapter, we present and derive a new stick-breaking construction of the beta

process [57]. The construction is closely related to a special case of the stick-breaking

construction of the Dirichlet process [68] applied to the beta distribution. We derive

an inference procedure that relies on Monte Carlo integration to reduce the number

of parameters to be inferred, and present results on synthetic data, the MNIST

handwritten digits data set and a time-evolving gene expression data set.

5.2 Introduction

The Dirichlet process [27] is a powerful Bayesian nonparametric prior for mixture

models. There are two principle methods for drawing from this infinite-dimensional

prior: (i) the Chinese restaurant process [11], in which samples are drawn from a

marginalized Dirichlet process and implicitly construct the prior; and (ii) the stick-

breaking process [68], which is a fully Bayesian construction of the Dirichlet process.

Similarly, the beta process [34] is receiving significant use recently as a nonpara-
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metric prior for latent factor models [30, 73]. This infinite-dimensional prior can

be drawn via marginalization using the Indian buffet process [31], where samples

again construct the prior. However, unlike the Dirichlet process, the fully Bayesian

stick-breaking construction of the beta process has yet to be derived (though related

methods exist [73, 72], reviewed in Section 2).

To review, a Dirichlet process, G, can be constructed according to the following

stick-breaking process [68, 36],

G =
∞∑
i=1

Vi

i−1∏
j=1

(1− Vj)δθi

Vi
iid∼ Beta(1, α)

θi
iid∼ G0 (5.1)

This stick-breaking process is so-called because proportions, Vi, are sequentially bro-

ken from the remaining length,
∏i−1

j=1(1 − Vj), of a unit-length stick. This produces

a probability (or weight), Vi
∏i−1

j=1(1 − Vj), that can be visually represented as one

of an infinite number of contiguous sections cut out of a unit-length stick. As i

increases, these weights stochastically decrease, since smaller and smaller fractions

of the stick remain, and so only a small number of the infinite number of weights

have appreciable value. By construction, these weights occur first, which allows for

practical implementation of this prior.

The contribution of this chapter is the derivation of a stick-breaking construction

of the beta process. We use a little-known property of the constructive definition in

[68], which is equally applicable to the beta distribution – a two-dimensional Dirichlet

distribution. The construction presented here will be seen to result from an infinite

collection of these stick-breaking constructions of the beta distribution.

This chapter is organized as follows. In Section 5.3, we review the beta process,
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the stick-breaking construction of the beta distribution, as well as related work in this

area. In Section 5.5, we present the stick-breaking construction of the beta process

and its derivation. We derive an inference procedure for the construction in Section

5.4 and present experimental results on synthetic data, the MNIST handwritten

digits and gene expression data in Section 5.6.

5.3 The Beta Process

Let H0 be a continuous measure on the space (Θ,B) and let H0(Θ) = γ. Also, let α

be a positive scalar and define the process HK as follows,

HK =
K∑
k=1

πkδθk

πk
iid∼ Beta

(αγ
K
, α(1− γ

K
)
)

θk
iid∼ 1

γ
H0 (5.2)

then as K →∞, HK → H and H is a beta process, which we denote H ∼ BP(αH0).

We avoid a complete measure-theoretic definition, since the stick-breaking con-

struction to be presented is derived in reference to the limit of (5.2). That H is a beta

process can be shown in the following way: Integrating out π
¯

(K) = (π1, . . . , πK)T ∈

(0, 1)K , letting K → ∞ and sampling from this marginal distribution produces the

two-parameter extension of the Indian buffet process discussed in [73], which is shown

to have the beta process as its underlying de Finetti mixing distribution. We also

observe that a different parametrization of the beta process is used in this chapter.

This has the advantage of a cleaner derivation, but we also note that this different

parametrization arises from a slightly different definition, where the measure H0 is

not necessarily a probability measure. The second parameter in this case comes from

the setting of H0(Θ), i.e., from a scaling of the H0 defined in the previous chapter.
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These two parameterizations can be made equivalent via the setting of a, b, α and γ.

Before deriving the stick-breaking construction of the beta process, we review a

property of the beta distribution that will be central to the construction. We also re-

view related work to distinguish the presented construction from other constructions

in the literature.

5.3.1 A Construction of the Beta Distribution

The constructive definition of a Dirichlet prior derived in [68] applies to more than

the infinite-dimensional Dirichlet process. In fact, it is applicable to Dirichlet priors

of any dimension, of which the beta distribution can be viewed as a special, two-

dimensional case. 1 Focusing on this special case, Sethuraman showed that one can

sample

π ∼ Beta(a, b) (5.3)

according to the following stick-breaking construction,

π =
∞∑
i=1

Vi

i−1∏
j=1

(1− Vj)I(Yi = 1)

Vi
iid∼ Beta(1, a+ b)

Yi
iid∼ Bernoulli

(
a

a+ b

)
(5.4)

where I(·) denotes the indicator function.

In this construction, weights are drawn according to the standard stick-breaking

construction of the DP [36], as well as their respective locations, which are indepen-

dent of the weights and iid among themselves. The major difference is that the set

of locations is finite, 0 or 1, which results in more than one term being active in the

summation.

1 We thank Jayaram Sethuraman for his valuable correspondence regarding his constructive defi-
nition.
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The proof of this construction is in Chapter 1.4, with g0 := [γ/K(1 − γ/K)].

Sethuraman also proves this implicitly in the following way: Using notation from

[68], let the space, X = {0, 1}, and the prior measure, α, be α(1) = a, α(0) = b, and

therefore α(X ) = a+ b. Carrying out the proof in [68] for this particular space and

measure yields (5.4). We note that this α is different from that in (5.2).

5.3.2 Related Work

To our knowledge, there are currently three related constructions, each of which

differs significantly from that presented here. The first construction, proposed by

[71], is presented specifically for the Indian buffet process (IBP) prior. The fully

Bayesian generative process from which the IBP and this construction are derived

replaces the beta distribution in (5.2) with Beta( α
K
, 1). This small change greatly

facilitates this construction, since the parameter 1 in Beta( α
K
, 1) allows for a necessary

simplification of the beta distribution. This construction does not extend to the two-

parameter generalization of the IBP [30], which is equivalent in the infinite limit to

the marginalized representation in (5.2).

A second method for drawing directly from the beta process prior has been pre-

sented in [73], and more recently in [72] as a special case of a more general power-law

representation of the IBP. In this representation, no stick-breaking takes place of the

form in (5.1), but rather the weight for each location is simply beta-distributed,

as opposed to the usual function of multiple beta-distributed random variables.

The derivation relies heavily upon connecting the marginalized process to the fully

Bayesian representation, which does not factor into the similar derivation for the DP

[68]. This of course does not detract from the result, which appears to have a simpler

inference procedure than that presented here.

A third representation presented in [72] is based on the inverse Lévy method [79]

and exists in theory only. The derivation of this representation requires significant
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prior knowledge regarding Lévy processes and does not simplify to an analytic stick-

breaking form.

5.4 A Stick-Breaking Construction of the Beta Process

We now define and briefly discuss the stick-breaking construction of the beta process,

followed by its derivation. Let α and H0 be defined as in (5.2). If H is constructed

according to the following process,

H =
∞∑
i=1

Ci∑
j=1

V
(i)
ij

i−1∏
`=1

(1− V (`)
ij )δθij

Ci
iid∼ Poisson(γ)

V
(`)
ij

iid∼ Beta(1, α)

θij
iid∼ 1

γ
H0 (5.5)

then H ∼ BP(αH0).

Since the first row of (5.5) may be unclear at first sight, we expand it for the first

few values of i below,

H =

C1∑
j=1

V
(1)

1,j δθ1,j +

C2∑
j=1

V
(2)

2,j (1− V (1)
2,j )δθ2,j +

C3∑
j=1

V
(3)

3,j (1− V (2)
3,j )(1− V (1)

3,j )δθ3,j + · · · (5.6)

For each value of i, which we refer to as a “round,” there are Ci atoms, where Ci

is itself random and drawn from Poisson(γ). Therefore, every atom is defined by
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two subscripts, (i, j). The mass associated with each atom in round i is equal to

the ith break from an atom-specific stick, where the stick-breaking weights follow a

Beta(1, α) stick-breaking process (as in (5.1)). Superscripts are used to index the i

random variables that construct the weight on atom θij. Since the number of breaks

from the unit-length stick prior to obtaining a weight increases with each level in

(5.6), the weights stochastically decrease as i increases, in a similar manner as in the

stick-breaking construction of the Dirichlet process (5.1).

Since the expectation of the mass on the kth atom drawn overall does not simplify

to a compact and transparent form, we omit its presentation here. However, we note

the following relationship between α and γ in the construction. As α decreases,

weights decay more rapidly as i increases, since smaller fractions of each unit-length

stick remains prior to obtaining a weight. As α increases, the weights decay more

gradually over several rounds. The expected weight on an atom in round i is equal

to α(i−1)/(1 + α)i. The number of atoms in each round is controlled by γ.

5.4.1 Derivation of the Construction

Starting with (5.2), we now show how Sethuraman’s constructive definition of the

beta distribution can be used to derive that the infinite limit of (5.2) has (5.5) as an

alternate representation that is equal in distribution. We begin by observing that,

according to (5.4), each πk value can be drawn as follows,

πk =
∞∑
l=1

V̂kl

l−1∏
m=1

(1− V̂km)I(Ŷkl = 1)

V̂kl
iid∼ Beta(1, α)

Ŷkl
iid∼ Bernoulli

( γ
K

)
(5.7)

where the marker ˆ is introduced because V will later be re-indexed values of V̂ . We

also make the observation that, if the sum is instead taken to K ′, and we then let
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K ′ →∞, then this truncated representation converges to (5.7).

This suggests the following procedure for constructing the limit of the vector π
¯

(K)

in (5.2). We define the matrices V̂
¯
∈ (0, 1)K×K and Ŷ

¯
∈ {0, 1}K×K , where

V̂kl
iid∼ Beta(1, α)

Ŷkl
iid∼ Bernoulli

( γ
K

)
(5.8)

for k = 1, . . . , K and l = 1, . . . , K. The K-truncated weight, πk, is then constructed

“horizontally” by looking at the kth row of V̂
¯

and Ŷ
¯

, and where we define that the

error of the truncation is assigned to 1−πk (i.e., Yk,l′ := 0 for the extension l′ > K.)

It can be seen from the matrix definitions in (5.8) and the underlying function of

these two matrices, defined for each row as a K-truncated version of (5.7), that in

the limit as K →∞, this representation converges to the infinite beta process when

viewed vertically, and to a construction of the individual beta-distributed random

variables when viewed horizontally, each of which occur simultaneously.

Before using these two matrices to derive (5.5), we derive a probability that will be

used in the infinite limit. For a given column, i, of (5.8), we calculate the probability

that, for a particular row, k, there is at least one Ŷ = 1 in the set {Ŷk,1, . . . , Ŷk,i−1},

in other words, the probability that
∑i−1

i′=1
Ŷki′ > 0. This value is

P

(
i−1∑
i′=1

Ŷki′ > 0|γ,K

)
= 1− (1− γ

K
)i−1 (5.9)

In the limit as K →∞, this can be shown to converge to zero for all fixed values of

i.

As with the Dirichlet process, the problem with drawing each πk explicitly in

the limit of (5.2) is that there are an infinite number of them, and any given πk is

equal to zero with probability one. With the representation in (5.8), this problem

appears to have doubled, since there are now an infinite number of random variables
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to sample in two dimensions, rather than one. However, this is only true when

viewed horizontally. When viewed vertically, drawing the values of interest becomes

manageable.

First, we observe that, in (5.8), we only care about the set of indices {(k, l) :

Ŷkl = 1}, since these are the locations which indicate that mass is to be added to

their respective πk values. Therefore, we seek to bypass the drawing of all indices for

which Ŷ = 0, and directly draw those indices for which Ŷ = 1.

To do this, we use a property of the binomial distribution. For any column, i, of

Ŷ
¯

, the number of nonzero locations,
∑K

k=1 Ŷki, has the Binomial(K, γ
K

) distribution.

Also, it is well-known that

Poisson(γ) = lim
K→∞

Binomial
(
K,

γ

K

)
(5.10)

Therefore, in the limit as K → ∞, the sum of each column (as well as row) of

Ŷ
¯

produces a random variable with a Poisson(γ) distribution. This suggests the

procedure of first drawing the number of nonzero locations for each column, followed

by their corresponding indices.

Returning to (5.8), given the number of nonzero locations in column i,
∑K

k=1 Ŷki ∼

Binomial(K, γ
K

), finding the indices of these locations then becomes a process of

sampling uniformly from {1, . . . , K} without replacement. Moreover, since there is a

one-to-one correspondence between these indices and the atoms, θ1, . . . , θK
iid∼ 1

γ
H0,

which they index, this is equivalent to selecting from the set of atoms, {θ1, . . . , θK},

uniformly without replacement.

A third more conceptual process, which will aid the derivation, is as follows:

Sample the
∑K

k=1 Ŷki nonzero indices for column i one at a time. After an index,

k′, is obtained, check {Ŷk′,1, . . . , Ŷk′,i−1} to see whether this index has already been

drawn. If it has, add the corresponding mass, Vk′i
∏i−1

l=1(1−Vk′l), to the tally for πk′ .

If it has not, draw a new atom, θk′ ∼ 1
γ
H0, and associate the mass with this atom.
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The derivation concludes by observing the behavior of this last process as K →

∞. We first reiterate that, in the limit as K → ∞, the count of nonzero locations

for each column is independent and identically distributed as Poisson(γ). Therefore,

for i = 1, 2, . . . , we can draw these numbers, Ci :=
∑∞

k=1 Ŷki, as

Ci
iid∼ Poisson(γ) (5.11)

We next need to sample index values uniformly from the positive integers, N. How-

ever, we recall from (5.9) that for all fixed values of i, the probability that the drawn

index will have previously seen a one is equal to zero. Therefore, using the conceptual

process defined above, we can bypass sampling the index value and directly sample

the atom which it indexes. Also, we note that the “without replacement” constraint

no longer factors.

The final step is simply a matter of re-indexing. Let the function σi(j) map

the input j ∈ {1, . . . , Ci} to the index of the jth nonzero element drawn in column

i, as discussed above. Then the re-indexed random variables V
(i)
ij := V̂σi(j),i and

V
(`)
ij := V̂σi(j),`, where ` < i. We similarly re-index θσi(j) as θij := θσi(j), letting

the double and single subscripts remove ambiguity, and hence no ˆ marker is used.

The addition of a subscript/superscript in the two cases above arises from ordering

the nonzero locations for each column of (5.8), i.e., the original index values for the

selected rows of each column are being mapped to 1, 2, . . . separately for each column

in a many-to-one manner. The result of this re-indexing is the process given in (5.5).

5.5 Inference for the Stick-Breaking Construction

For inference, we integrate out all stick-breaking random variables, V , using Monte

Carlo integration [29], which significantly reduces the number of random variables

to be learned. As a second aid for inference, we introduce the latent round-indicator
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variable,

dk := 1 +
∞∑
i=1

I

(
i∑

j=1

Cj < k

)
(5.12)

The equality dk = i indicates that the kth atom drawn overall occurred in round i.

Note that, given {dk}∞k=1, we can reconstruct {Ci}∞i=1. Given these latent indicators,

the generative process is rewritten as,

H | {dk}∞k=1 =
∞∑
k=1

Vk,dk

dk−1∏
j=1

(1− Vkj)δθk

Vkj
iid∼ Beta(1, α)

θk
iid∼ 1

γ
H0 (5.13)

where, for clarity in what follows, we’ve avoided introducing a third marker (e.g., Ṽ )

after this re-indexing.

Data is generated iid from H via a Bernoulli process and take the form of infinite-

dimensional binary vectors, zn ∈ {0, 1}∞, where

znk ∼ Bernoulli

(
Vk,dk

dk−1∏
j=1

(1− Vkj)

)
(5.14)

The sufficient statistics calculated from {zn}Nn=1 are the counts along each dimension,

k,

m1k =
N∑
n=1

I(znk = 1), m0k =
N∑
n=1

I(znk = 0) (5.15)

5.5.1 Inference for dk

With each iteration, we sample the sequence {dk}Kk=1 without using future values from

the previous iteration; the value of K is random and equals the number of nonzero
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m1k. The probability that the kth atom was observed in round i is proportional to

p
(
dk = i|{dl}k−1

l=1 , {znk}
N
n=1, α, γ

)
∝ p({znk}Nn=1|dk = i, α)p(dk = i|{dl}k−1

l=1 , γ) (5.16)

Below, we discuss the likelihood and prior terms, followed by an approximation to

the posterior.

Likelihood Term

The integral to be solved for integrating out the random variables {Vkj}ij=1 is

p({znk}Nn=1|dk = i, α) =

∫
(0,1)i

f({Vkj}i1)m1k{1−f({Vkj}i1)}m0kp({Vkj}i1|α) d~V (5.17)

where f(·) is the stick-breaking function used in (5.14). Though this integral can

be analytically solved for integer values of m0k via the binomial expansion, we have

found that the resulting sum of terms leads to computational precision issues for

even small sample sizes. Therefore, we use Monte Carlo methods to approximate

this integral.

For s = 1, . . . , S samples, {V (s)
kj }ij=1, drawn iid from Beta(1, α), we calculate

p({znk}Nn=1|dk = i, α) ≈ 1

S

S∑
s=1

f({V (s)
kj }

i
j=1)m1k{1− f({V (s)

kj }
i
j=1)}m0k (5.18)

This approximation allows for the use of natural logarithms in calculating the poste-

rior, which was not possible with the analytic solution. Also, to reduce computations,

we note that at most two random variables need to be drawn to perform the above

stick-breaking, one random variable for the proportion and one for the error; this is

detailed in the appendix.

Prior Term

The prior for the sequence of indicators d1, d2, . . . is the equivalent sequential process

for sampling C1, C2, . . . , where Ci =
∑∞

k=1 I(dk = i) ∼ Poisson(γ). Let #dk−1
=
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∑k−1
j=1 I(dj = dk−1) and let Pγ(·) denote the Poisson distribution with parameter γ.

Then it can be shown that

p(dk = dk−1|γ,#dk−1
) =

Pγ(C > #dk−1
)

Pγ(C ≥ #dk−1
)

(5.19)

Also, for h = 1, 2, . . . , the probability

p(dk = dk−1 + h|γ,#dk−1
) = (5.20)

(
1−

Pγ(C > #dk−1
)

Pγ(C ≥ #dk−1
)

)
Pγ(C > 0)Pγ(C = 0)h−1

Since dk 6< dk−1, these two terms complete the prior.

Posterior of dk

For the posterior, the normalizing constant requires integration over h = 0, 1, 2, . . . ,

which is not possible given the proposed sampling method. We therefore propose

incrementing h until the resulting truncated probability of the largest value of h falls

below a threshold (e.g., 10−6). We have found that the probabilities tend to decrease

rapidly for h > 1.

5.5.2 Inference for γ

Given d1, d2, . . . , the values C1, C2, . . . can be reconstructed and a posterior for γ

can be obtained using a conjugate gamma prior. Since the value of dK may not be

the last in the sequence composing CdK , this value can be “completed” by sampling

from the prior, which can additionally serve as proposal factors.
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5.5.3 Inference for α

Using (5.18), we again integrate out all stick-breaking random variables to calculate

the posterior of α,

p(α|{zn}N1 , {dk}K1 ) ∝
K∏
k=1

p({znk}N1 |α, {dk}K1 )p(α)

Since this is not possible for the positive, real-valued α, we approximate this poste-

rior by discretizing the space. Specifically, using the value of α from the previous

iteration, αprev, we perform Monte Carlo integration at the points {αprev +t∆α}Tt=−T ,

ensuring that αprev − T∆α > 0. We use an improper, uniform prior for α, with the

resulting probability therefore being the normalized likelihood over the discrete set of

selected points. As with sampling dk, we again extend the limits beyond αprev±T∆α,

checking that the tails of the resulting probability fall below a threshold.

5.5.4 Inference for p(znk = 1|α, dk, Zprev)

In latent factor models, [31], the vectors {zn}Nn=1 are to be learned with the rest of the

model parameters. To calculate the posterior of a given binary indicator therefore

requires a prior, which we calculate as follows

p(znk = 1|α, dk, Zprev) =

∫
(0,1)dk

p(znk = 1|~V )p(~V |α, dk, Zprev) d~V (5.21)

=

∫
(0,1)dk

p(znk = 1|~V )p(Zprev|~V )p(~V |α, dk) d~V∫
(0,1)dk

p(Zprev|~V )p(~V |α, dk) d~V

We again perform Monte Carlo integration (5.18), where the numerator increments

the count m1k of the denominator by one. For computational speed, we treat the

previous latent indicators, Zprev, as a block [36], allowing this probability to remain

fixed when sampling the new matrix, Z.
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5.6 Experiments

We present experimental results on three data sets: (i) A synthetic data set; (ii)

the MNIST handwritten digits data set (digits 3, 5 and 8); and (iii) a time-evolving

gene expression data set.

5.6.1 Synthetic Data

For the synthetic problem, we investigate the ability of the inference procedure in

Section 5.5 to learn the underlying α and γ used in generating H. We use the

representation in (5.2) to generate π
¯

(K) for K = 100,000. This provides a sample

of π
¯

(K) that approximates the infinite beta process well for smaller values of α and

γ. We then sample {zn}1000
n=1 from a Bernoulli process and remove all dimensions,

k, for which m1k = 0. Since the weights in (5.13) are stochastically decreasing as

k increases, while the representation in (5.2) is exchangeable in k, we reorder the

dimensions of {zn}1000
n=1 so that m1,1 ≥ m1,2 ≥ . . . . The binary vectors are treated as

observed for this problem.

We present results in Figure 5.1 for 5,500 trials, where αtrue ∼ Uniform(1, 10)

and γtrue ∼ Uniform(1, 10). We see that the inferred αout and γout values center on

the true αtrue and γtrue, but increase in variance as these values increase. We believe

that this is due in part to the reordering of the dimensions, which are not strictly

decreasing in (5.5), though some reordering is necessary because of the nature of

the two priors. We choose to generate data from (5.2) rather than (5.5) because it

provides some added empirical evidence as to the correctness of the stick-breaking

construction.

5.6.2 MNIST Handwritten Digits

We consider the digits 3, 5 and 8 using 1000 observations for each digit and projecting

into 50 dimensions using PCA. We model the resulting digits matrix, X ∈ R50×3000,
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Figure 5.1: Synthetic results for learning α and γ. For each trial of 150 iterations,
10 samples were collected and averaged over the last 50 iterations. The step size
∆α = 0.1. (a) Inferred γ vs true γ (b) Inferred α vs true α (c) A plane, shown as an
image, fit using least squares that shows the `1 distance of the inferred (αout, γout) to
the true (αtrue, γtrue).

with a latent factor model [31, 52],

X = Φ(W ◦ Z) + E (5.22)

where the columns of Z are samples from a Bernoulli process, and the elements of

Φ and W are iid Gaussian. The symbol ◦ indicates element-wise multiplication.

We infer all variance parameters using inverse-gamma priors, and integrate out the

weights, wn, when sampling zn. Gibbs sampling is performed for all parameters,

except for the variance parameters, where we perform variational inference [9]. We

have found that the “inflation” of the variance parameters that results from the

variational expectation leads to faster mixing for the latent factor model.

Figure 5.2 displays the inference results for an initialization of K = 200. The top-

left figure shows the number of factors as a function of 10,000 Gibbs iterations, and

the top-right figure shows the histogram of these values after 1000 burn-in iterations.

For Monte Carlo integration, we use S = 100,000 samples from the stick-breaking
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prior for sampling dk and p(znk = 1|α, dk, Zprev), and S = 10,000 samples for sampling

α, since learning the parameter α requires significantly more overall samples. The

average time per iteration was approximately 18 seconds, though this value increases

when K increases and vice-versa. In the bottom two rows of Figure 5.2, we show

four example factor loadings (columns of Φ), as well as the probability of its being

used by a 3, 5 and 8.

Figure 5.2: Results for MNIST digits 3, 5 and 8. Top left: The number of factors
as a function of iteration number. Top right: A histogram of the number of factors
after 1000 burn-in iterations. Middle row: Several example learned factors. Bottom
row: The probability of a digit possessing the factor directly above.

5.6.3 Time-Evolving Gene Expression Data

We next apply the model discussed in Section 5.6.2 on data from a viral challenge

study [81]. In this study, a cohort of 17 healthy volunteers were experimentally

infected with the influenza A virus at varying dosages. Blood was taken at intervals

between -4 and 120 hours from infection and gene expression values were extracted.
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Of the 17 patients, 9 ultimately became symptomatic (i.e., became ill), and the goal

of the study was to detect this in the gene expression values prior to the initial

showing of symptoms. There were a total of 16 time points and 267 gene expression

extractions, each including expression values for 12,023 genes. Therefore, the data

matrix X ∈ R267×12023.

In Figure 5.3, we show results for 4000 iterations; each iteration took an average

of 2.18 minutes. The top row shows the number of factors as a function of iteration,

with 100 initial factors, and histograms of the overall number factors, and the number

of factors per observation. In the remaining rows, we show four discriminative factor

loading vectors, with the statistics from the 267 values displayed as a function of

time. We note that the expression values begin to increase for the symptomatic

patients prior to the onset of symptoms around the 45th hour. We list the top genes

for each factor, as determined by the magnitude of values in W for that factor.

In addition, the top three genes in terms of the magnitude of the four-dimensional

vector comprising these factors are RSAD2, IFI27 and IFI44L; the genes listed here

have a significant overlap with those in the literature [81].

As motivated in [31], the values in Z are an alternative to hard clustering, and

in this case are useful for group selection. For example, sparse linear classifiers for

the model y = Xβ + ε, such as the RVM [9], are prone to select single correlated

genes from X for prediction, setting the others to zero. In [76], latent factor models

were motivated as a dimensionality reduction step prior to learning the classifier

y = Φβ̂ + ε2, where the loading matrix replaces X and unlabeled data are inferred

transductively. In this case, discriminative factors selected by the model represent

groups of genes associated with that factor, as indicated by Z.
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Figure 5.3: Results for time-evolving gene expression data. Top row: (left) Num-
ber of factors per iteration (middle) Histogram of the total number of factors after
1000 burn-in iterations (right) Histogram of the number of factors used per observa-
tion. Rows 2-5: Discriminative factors and the names of the most important genes
associated with each factor (as determined by weight).
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5.7 Conclusion

In this chapter, we have presented a stick-breaking construction of the beta process.

The derivation of the construction relies heavily upon the constructive definition of

the beta distribution, a lesser-known special case of [68], which has been exclusively

used for the infinite Dirichlet process in the machine learning community. We pre-

sented an inference method that uses Monte Carlo integration, which aids inference

by eliminating several random variables, and where the parameters α and γ are in-

ferred. Results were presented on three data sets: (i) Synthetic data for learning α

and γ; (ii) the MNIST handwritten digits 3, 5 and 8 using a latent-factor model;

and (iii) time-evolving gene expression data for nonparametric learning of latent

gene groupings, and for discovering discriminative factor loadings for classification.

As a final comment, we note that the limit of the representation in (5.2) reduces

to the original IBP when α = 1. Therefore, the stick-breaking process in (5.5) should

be equal in distribution to the process in [71] for this parametrization. The proof of

this equality is an interesting question for future work.

5.8 Appendix

Following i−1 breaks from a Beta(1, α) stick-breaking process, the remaining length

of the unit-length stick is εi =
∏i−1

j=1(1− Vj). Let Sj := − ln(1− Vj). Then, since it

can be shown that Sj ∼ Exponential(α), and therefore
∑i−1

j=1 Sj ∼ Gamma(i− 1, α),

the value of εi can be calculated using only one random variable,

εi = e−Ti

Ti ∼ Gamma(i− 1, α)

Therefore, to draw Vi
∏i−1

j=1(1− Vj) = εiVi, one can sample Vi ∼ Beta(1, α) and εi as

above.
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6

Image Interpolation Using Dirichlet and Beta
Process Priors

6.1 Abstract

In this chapter, we present a Bayesian model for image interpolation and dictionary

learning that uses two nonparametric priors for sparse signal representations: the

beta process and the Dirichlet process. Additionally, the model uses spatial informa-

tion within the image to encourage sharing of information within image subregions.

We derive a hybrid MAP/collapsed Gibbs sampler, which performs collapsed Gibbs

sampling for the latent indicator variables by integrating out several parameters and

MAP estimation for all other parameters. We present experimental results, where we

show an improvement over other state-of-the-art algorithms in the low-measurement

regime.

6.2 Introduction

As we have discussed, Bayesian nonparametric analysis provides a powerful set of

tools for modeling data, and has found extensive use in recent research (e.g., [73][82]
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and references therein). A key advantage of these methods is the sparsity-promotion

of the various nonparametric priors, which allows for many truncation issues to

essentially be avoided. For example, the Dirichlet process [27] is useful for uncovering,

or inferring the number of components in a mixture model, while the beta process

[34] has recently found significant use for inferring the number of factors in latent

factor models (see [54]).

In this chapter we present a Bayesian nonparametric algorithm for interpolating

missing voxel values in incomplete images, including both natural and hyperspectral

images [58]. The model uses the Dirichlet process and the beta process, as well

as spatial information of pixel location within the image. Though we present the

hierarchical structure for one model, we are actually presenting three models for the

application considered in this chapter, the other two models being special cases of

the presented model. We show results on complex, canonical images employed in the

image processing community [45], and show an improvement in performance for high

percentages of missing voxels, as well as the advantage provided by all three aspects

of the proposed prior.

We present and discuss the model in Section 2 and inference equations in Section

3. We show experimental results in Section 4 and conclude in Section 5.

6.3 The Model

Let {yn}Nn=1 be a collection of N patches of size m×m× p extracted from an image

and reshaped into P = pm2 dimensional vectors. Also, let {xn}Nn=1 be the two-

dimensional coordinates for the corresponding patches, for example, the coordinates

within the image of the upper-left pixel of the patch.

We model both yn and xn as being drawn from a mixture model having two

modalities [53]. More precisely, we model each patch, yn, as a sparse, weighted

combination of a dictionary matrix, Φ ∈ RP×K , with additive noise, i.e., the BPFA
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model of Chapter 4. Each patch location, xn, is modeled as being generated from a

mixture of Gaussians, Gd. The mixture model is therefore a joint mixture of BPFA

models, and Gaussian mixture models. We observe that, removing the BPFA portion

results in the nested Dirichlet process [65]. Using the notation H to represent the

mixture model, we can write that H =
∑∞

k=1 ωkδ{πd,Gd}, where ωk represent the

mixing weights and the set {πd, Gd} represents the corresponding parameters.

The generative process of the complete (no missing) data set described above is,

yn ∼ N
(
Φ(wn ◦ zn), σ2

ε I
)

xn ∼ GMM (Gcn)

wn(k) ∼ zn(k)N
(
0, σ2

w

)
+ (1− zn(k))δ0

zn(k) ∼ Bernoulli (πcn(k))

cn ∼ Multinomial ({1, . . . , D}, η)

πd(k) ∼ Beta
(αγ
K
, α(1− γ

K
)
)

φk ∼ N (0, σ2
φI)

Gd ∼ DP(cG0)

η ∼ Dirichlet

(
β

D
, . . . ,

β

D

)
(6.1)

for d = 1, . . . , D and k = 1, . . . , K. In the first line, the symbol ◦ indicates element-

wise multiplication. Also, though the Dirichlet process and beta process are infinite-

dimensional priors (i.e., K and D are infinite), we use finite-dimensional approxima-

tions, which work well in practice at finding sparse representations when K and D

are large.

With reference to this model (6.1), the Dirichlet process is the prior on the D

mixing weights, η ∈ ∆D, which are probabilities of using a particular component,

(i.e., {πd, Gd} pair). Though each vector, πd, is unique, they each correspond to the
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same dictionary. The theoretical motivation that justifies a shared dictionary in the

infinite limit is the hierarchical beta process [73], which has the same intuition as

the hierarchical Dirichlet process. We do not build this into our prior, since simply

imposing that the dictionary be shared and that the πd be updated independently

works as well as the HBP in practice.

The latent indicator, cn, drawn from η determines the component from which

patch yn and pixel xn come (i.e., determines that {πcn , Gcn} are used). The K-

dimensional binary vector, zn, generated using πcn then turns on or off dictionary

elements for the nth patch, and the weight vector, wn, provides added flexibility.

Drawing pixel locations from a Gaussian mixture model (written GMM(·) for short)

imposes that patches that share a component must not only look alike via their usage

of the dictionary, but also must be located in the same subregion of the image.

We finally note the “spike-slab” prior on wn(k). This is selected over wn ∼

N (0, σ2
wI) since it slightly increases the penalty for adding a dictionary element

in the inference procedure, and allows for σ2
w to be updated using only the active

elements of zn, something we’ve found important in practice.

The two models that result as special cases are the BPFA model of chapter 4,

which results from setting D = 1, and a mixture of BPFA models (with a shared

dictionary), which results from eliminating the second modality. We consider these

two models as well below.

6.3.1 Handling Missing Data

For interpolation and one step of inference, we integrate out the weight vector. We

then use two properties of multivariate Gaussian distributions to handle the missing

data. To review, if y ∼ N (Φ(w ◦ z), σ2
ε I) and w ∼ N (0, σ2

wI), then integrating out

w results in y ∼ N (0, σ2
ε I + σ2

wΦdiag(z)ΦT ), where diag(z) forms a diagonal matrix

using the vector z; results for the spike-slab prior employed above are the same.
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Partitioning the vector y and the covariance matrix into their missing and observed

parts, generically written as

[
ym

yo

]
∼ N

(
0,

[
Σm Σm,o

Σo,m Σo

])
(6.2)

then integrating out the missing data produces yo ∼ N (0,Σo), which is the distribu-

tion used in likelihood calculations. For interpolation, the distribution of ym given

yo is,

ym|yo ∼ N (Σm,oΣ−1
o yo,Σm − Σm,oΣ−1

o Σo,m)

These two properties are applied to the relevant partitions of yn and Σn := σ2
ε I +

σ2
wΦdiag(zn)ΦT .

To fix notation in what follows, let Y be the P ×N matrix formed by combining

all yn vectors. We define the set Icn containing the indices of measured values for

the nth column of Y and similarly define Irp for the pth row of Y . For vectors, v(Ic)

selects dimensions of v, while for matrices, AIc,Ir selects rows and columns of A.

6.4 Model Inference

For model inference, we use both MAP estimation and Gibbs sampling;1 we sample

the latent component indicators, cn, and latent binary indicators, zn, and perform

MAP updates for all other parameters. When sampling cn and zn, we integrate out,

or collapse the values of the mixing weights, η, and the latent factor probabilities, πd.

The collapsing of the mixing weights follows the discussion in Section 1.3, and the

latent factor probabilities follow the two-dimensional analogue of this discussion. A

key difference in the sampling method below is that we do not update the collapsed

probabilities with each sample to save computation time. Our approach is therefore

1 Code is available at www.ee.duke.edu/∼jwp4/ICIP2010
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equivalent to taking the mean of the posterior distributions of η and πd as the values

for these parameters for each iteration.

Full conjugacy within the hierarchical structure allows for Gibbs sampling to be

performed throughout, as well as variational inference [9], as two alternative inference

approaches. We also place conjugate inverse-gamma priors on all variance parameters

and perform MAP inference for these values as well. These variance parameters

are the Bayesian equivalent of regularization terms in optimization algorithms, and

learning them significantly improves the performance of the model.

6.4.1 Maximum A Posteriori Updates and Collapsed Probabilities

MAP update for wn:

wn =

(
σ2
ε

σ2
w

I + ΦT
Icn,:

ΦIcn,: ◦ znz
T
n

)−1

diag(zn)ΦT
Icn,:
yn(Icn) (6.3)

These updates are `2-regularized least squares solutions [9] calculated using only the

activated dictionary elements for the current observation, as indicated by zn.

MAP update for Φ: We define the matrix W in a similar manner as Y in Section

6.3.1. The pth dimension of the updated dictionary is,

Φp,: = Yp,IrpW
T
:,Irp

(
σ2
ε

σ2
φ

I +W:,IrpW
T
:,Irp

)−1

(6.4)

We note that W will have zeros in the same locations as Z, and hence we do not

have to write W ◦ Z. The diagonal prior covariance in the dictionary allows for this

analytical result.

MAP update for Gd: The mixing weights, means and covariances of Gd are cal-

culated using all xn for which the indicator cn = d. We use a finite-dimensional
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approximation to the DP; update equations can be found in [9].

Collapsing πd: We integrate out the values of πd to obtain the value denoted π̂d,

π̂d(k) =
αγ
K

+
∑N

n=1 zn(k)I(cn = d)

α +
∑N

n=1 I(cn = d)
(6.5)

for k = 1, . . . , K.

Collapsing η: We collapse, or integrate out the mixing weights to obtain η̂(d),

η̂(d) =
β
D

+
∑N

n=1 I(cn = d)

β +N
(6.6)

for d = 1, . . . , D.

6.4.2 Gibbs Sampling of Latent Indicators

Sample cn: The latent component indicator is sampled from a D-dimensional multi-

nomial distribution, with

p(cn = d|Θ) ∝ p(zn|π̂d)p(xn|Gd)p(cn = d|η̂) (6.7)

where p(zn|π̂d) =
∏K

k=1 π̂d(k)zn(k)(1− π̂d(k))1−zn(k), p(cn = d|η) = η̂(d) and p(xn|Gd)

is the likelihood calculated using the GMM Gd. The symbol Θ represents the set of

all parameters and latent indicators.

Sample zn: For the sampling of the latent binary indicators, we integrate out the

corresponding weights, wn, in the way discussed in Section 6.3.1. Let z̃n be the

binary indicator vector of the previous iteration. Using the definitions

Mn := σ2
ε I + σ2

wΦIcn,: diag(z̃n)ΦT
Icn,:

(6.8)
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ξkn := σ2
wφk(I

c
n)TM−1

n φk(I
c
n) (6.9)

then,

ln p(zn(k) = 1|Θ) ∝ ln π̂cn(k) − I (z̃n(k) = 0)×

1

2

(
ln(1 + ξkn)− σ2

w(φk(I
c
n)TM−1

n yn(Icn))2

1 + ξkn
+ ln 2πσ2

w

)
(6.10)

ln p(zn(k) = 0|Θ) ∝ ln (1− π̂cn(k))− I (z̃n(k) = 1)×

1

2

(
ln(1− ξkn) +

σ2
w(φk(I

c
n)TM−1

n yn(Icn))2

1− ξkn
− ln 2πσ2

w

)
(6.11)

One of the two indicators will be active, which accounts for the effect of either the

addition or subtraction of both a dictionary element and a wn(k) term (π = 3.141...

in ln 2πσ2
w). We note that the matrix inversion lemma and a property of matrix

determinants were used in this derivation.

We use an approximation in inference by not updating the vector z̃n element by

element, but rather sampling all K dimensions at once using the binary vector of

the previous iteration. This saves significant computation time, since the matrix

Mn does not need to be updated for each element in zn that switches a value. To

avoid this approximation while still seeking to maximize computation speed, rank one

updates of the inverse of Mn can be performed, which we give below for completeness.

Consider the matrix Mn in (6.8). If a value in z̃n, say z̃n(j) is switched from 1 to 0,

then this matrix is updated to

M−
n = Mn − σ2

wφ
(n)
j φ

(n)T
j

where φ
(n)
j is the jth column of ΦIcn,:. If z̃n(j) is switched from 0 to 1, this matrix is

updated to

M+
n = Mn + σ2

wφ
(n)
j φ

(n)T
j
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The inverses of these respective matrices are

(M−
n )−1 = M−1

n +
M−1

n φ
(n)
j φ

(n)T
j M−1

n

σ−2
w − φ

(n)T
j M−1

n φ
(n)
j

(6.12)

(M+
n )−1 = M−1

n −
M−1

n φ
(n)
j φ

(n)T
j M−1

n

σ−2
w + φ

(n)T
j M−1

n φ
(n)
j

(6.13)

6.5 Related Algorithms

In this section, we review three algorithms with which we compare, the K-SVD

[1], MOD [25] and iMMSE [51] algorithms, and discuss their relationships with the

proposed model. Because the first two algorithms use the OMP algorithm [59], we

review this algorithm as well.

6.5.1 Orthogonal Matching Pursuits

The OMP algorithm is a method for learning the coefficient vector, w, of a linear

model y = Φw+ ε. This is done by sequentially selecting elements to “turn on” in w,

allowing them to be non-zero, followed by a least squares update of all active values

[33]. Let ŵ(t) be the t-dimensional sub-vector of w after step t. Also, let Φ̂ be the set

of column vectors in Φ, Φ̂ = {φi}. Let Ψ(t) be the matrix containing the t vectors

selected from Φ̂ after step t. Then the two steps of the OMP algorithm are,

ψt+1 = arg max
φi∈Φ̂

|φTi (y −Ψ(t)ŵ(t))|
‖φi‖2

(6.14)

ŵ(t+1) =
(
Ψ(t+1)TΨ(t+1)

)−1
Ψ(t+1)Ty (6.15)

The first line selects the vector from Φ̂ that is most correlated with the error of

the current approximation. The second line then updates the coefficient vector by

finding the least squares approximation using the updated matrix, Ψ(t+1). Because

the error is at all times orthogonal to the subspace spanned by this matrix, unique
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vectors are guaranteed to be selected from Φ̂ at each step. Upon termination at step

T , the values of ŵ(T ) are placed in their respective locations in the vector w.

6.5.2 Method of Optimal Directions

The MOD algorithm is a method for factorizing matrices Y ∈ RM×N into a matrix

product plus noise, Y = ΦW + E, where Φ ∈ RM×K . The value of K is to be set

an can be larger than M , in which case an overcomplete dictionary is learned. This

overcomplete dictionary is possible because the matrix W is defined to be sparse,

with many values exactly equal to zero. The OMP algorithm is used to achieve this.

The MOD algorithm requires a sparsity setting, T , which is the number of nonzero

values for any column of W learned by the OMP algorithm. It then iterates between

learning W with OMP for a fixed Φ, and finding the least squares solution to Φ

for a fixed W . Let the function wn ← OMP(yn,Φ, T ) indicate that wn is learned

using OMP with a preset sparsity level of T (i.e., the OMP algorithm of the previous

section terminates when t = T ). Then the MOD algorithm iterates between the

following two steps, with each iteration indexed by i.

w(i+1)
n ← OMP(yn,Φ

(i), T ), n = 1, . . . , N (6.16)

Φ(i+1) = YW (i+1)T
(
W (i+1)W (i+1)T

)−1
(6.17)

The value of T should be set to T < M , and preferably T �M to find a sparse rep-

resentation. The precise value of this parameter can be found using cross-validation

[33], which can be time consuming. To handle missing data, only the dimensions con-

taining data are used for the OMP algorithm, and the update of Φ follows equation

(6.4), with the exception that the regularization term in the inverse is removed.

6.5.3 K-SVD

The K-SVD algorithm is a simple modification of the MOD algorithm, the difference

being that OMP is used to find the sparsity pattern, but once this is found, least
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squares values for Φ and W are found simultaneously, with the elements in W being

allowed to take nonzero values determined by the OMP algorithm. This algorithm

can be broken into two section, the first being the OMP algorithm.

w(i+1)
n ← OMP(yn,Φ

(i), T ), n = 1, . . . , N (6.18)

zn(k)(i+1) = I(wn(k) 6= 0), k = 1, . . . , K (6.19)

The binary matrix Z is the same size as W and an element in Z indicates whether the

corresponding element in W is nonzero. Given Z, the second step iterates between

updating Φ and W with the objective of minimizing the function

Φ(i+1),W (i+1) = arg min
Φ,W

‖Y − Φ(W ◦ Z)‖F (6.20)

where F indicates the Frobenious, or matrix `2 norm. For this second step, we

suppress the iteration index, i, for clarity, and index the following iterations by j.

Note that these sub-iterations take place within the ith overall iteration.

w(j+1)
n =

(
Φ(j)TΦ(j) ◦ znzTn + diag(1− zn)

)−1
diag(zn)Φ(j)Tyn (6.21)

Φ(j+1) = YW (j+1)T
(
W (j+1)W (j+1)T

)−1
(6.22)

As with the MOD algorithm, to handle missing data, only the measured dimensions

can be used for the OMP algorithm and equation (6.21) and equation (6.22) follows

the un-regularized version of equation (6.4). The resulting Φ and W are not unique;

for example, multiplying the first column of Φ and dividing the first row of W by

the same number does not change the objective function in (6.20). However, this

scaling does not change the direction of the first column of Φ, which is the only

information used by OMP for learning a sparsity pattern, and therefore does not

effect the algorithm. We note that the addition of diag(1 − zn) to equation (6.21)

allows for the inverse to be defined, while not changing the desired result. We also
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observe that equation (6.21) is an un-regularized version of equation (6.3) in the

proposed algorithm.

Therefore, the proposed algorithm and K-SVD are very similar. The updates for

Φ and W follow essentially the same steps, with the proposed algorithm including

an `2 regularization term. Both algorithms also include a step where the sparsity

pattern is learned and fixed. However, while K-SVD achieves this using the OMP

algorithm, the proposed method uses a Bayesian interpretation of the problem and

samples binary values from an appropriate Bernoulli distribution. This is an advan-

tage of the proposed method, since the columns of Y can be constructed using sparse

combinations of the columns of Φ with varying levels of sparsity. Also, the Bayesian

framework allows for additional priors on all variance (i.e., regularization) parame-

ters, which allows for an adaptive learning of the `2 penalty terms. This Bayesian

framework also allows for more complicated model structures, such as the mixture

model employed here with a second modality accounting for spatial information.

6.5.4 Iterative Minimum Mean Squared Error

The iMMSE algorithm is the final method considered and does not use the OMP

algorithm. The iMMSE algorithm works by iteratively increasing the rank of the

factorization of Y , followed by a minimizing of the squared error to all measured

values. For a rank r factorization, this is written as

Y = Φ(r)W (r) + E

where W here is not constrained to be sparse. Given a fixed rank, r, the updates for

Φ(r) and W (r) iterate between

W (r) =
(
Φ(r)TΦ(r)

)−1
Φ(r)TY (6.23)

Φ(r) = YW (r)T
(
W (r)W (r)T

)−1
(6.24)
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For missing data scenarios, as we have here, only the observed dimensions for any

yn, and the corresponding dimensions of Φ(r) are used. The final rank is found by

terminating the algorithm when the squared error falls below a preset threshold.

6.6 Experiments

RGB Image Interpolation

We first show experimental results for the image in Figure 6.3, also used in [45]. We

extracted 5 × 5 × 3 overlapping patches from the image centered on each pixel for

which the patch does not fall outside the image. No prior training is performed on

separate images to aid inference, as is done in [45], but rather all learning is done

in situ. We also considered other patch sizes, for example 7× 7× 3 (reconstruction

PSNR = 29.25, compared with PSNR = 29.65 in [45], where prior training was

done), and 8 × 8 × 3 (PSNR = 29.47, compared with PSNR = 29.31 in [82], where

Gibbs sampling was performed throughout), these PSNR values being for 80% of

the voxels missing at random. As our intention is to compare performance between

algorithms, we present results for 5×5×3, noting that similar results were observed

for other patch sizes.

We compare with five other algorithms in Figures 6.1 and 6.2: 1) The proposed

model without spatial information, 2) The model in [82], which is the proposed

model without the Dirichlet process or spatial information, 3) the K-SVD algorithm

[1] without using a prior database, 4) the MOD algorithm [25] and 5) an iterative

minimum MSE (iMMSE) algorithm [51] in which the dictionary size increases one

element at a time, followed by a minimization of the squared error to all measured

values.

As discussed, the K-SVD and MOD algorithms make extensive use of the OMP

algorithm [59], which requires a sparsity setting, T , determining the number of dic-

tionary elements to be used for each patch. Defining p to be the probability of a
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missing pixel, we set this value to T ≈ .75 ∗ (1− p)3m2, which is 3/4 of the expected

number of measured voxels in a patch. For 80% missing, this value is T = 11. We ran

200 iterations of each algorithm (except iMMSE), which was sufficient to converge

to a stable PSNR. For iMMSE, the stopping point (rank of the factorized matrix)

can be determined by setting a threshold on the approximation error, or by viewing

the image; we simply increase the dictionary and use the best PSNR result, which is

not practical, but does give an empirical upper bound on performance.

In Figures 6.3 and 6.4, we present example reconstruction results, where the clus-

tering clearly shows the spatial aspect of the prior; see [45] for original images. This

helps explain the advantage of the model in the low-measurement regime, shown

in Figure 6.1 for the castle image; patches with few measurements may have diffi-

culty clustering based only upon their dictionary usage, and spatial information can

improve this clustering by encouraging patches to cluster by region as well as appear-

ance. Separating patches by region makes the usage of the dictionary less ambiguous

by allowing patches to more effectively share statistical strength, which in turn aids

in constructing a better dictionary. In Table 6.1, we show the cost of this added

complexity in runtime. Similar performance was observed for other images, which

we omit for space. We also show in Figure 6.5 the reconstructions for all algorithms

considered for the 80% missing problem and similar results for the mushroom image

in Figure 6.6. As can be seen, many algorithms perform well, with the benefit of

the proposed model coming from the smoothness of the interpolation. Also, we note

that in Figures 6.1 and 6.2, the PSNR is calculated using only the missing voxels.

In Figure 6.4, we show example reconstructions for 75% missing for the mush-

room image. These images show the tendency of the proposed algorithm to produce

smoother images. This explains why the reconstructions for the castle image was

significantly better for the proposed algorithm (where the sky and water is smooth),

while for the mushroom image, the results are more competitive. Several reconstruc-
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tions for the castle image are shown in Figure 6.5. We reiterate that, for the iMMSE

algorith, the performance is very dependent upon the rank, and we choose the best

result for this algorithm, which requires information that a user would likely not

have. On the other hand, all other algorithms considered converge to a result that

does not change significantly between iterations. In Figure 6.8 we show the clustering

results using no spatial information for the castle and mushroom images with 80%

missing.

Hyperspectral Image Interpolation

We also show results for the proposed algorithm on a hyperspectral data cube of size

150×150×210. We ran tests for 80%, 85%, 90% and 95% missing and both 3×3×210

and 4×4×210 patch sizes. In general results for K-SVD and MOD were better except

for the 95% missing case. Looking at the per-iteration run times for both patch sizes

in Table 6.2 and Table 6.3, however, we see that the computation time for these

two algorithms is likely to be prohibitively high for real-world applications. In the

95% missing scenario, the proposed algorithms outperformed K-SVD and MOD as

we show in the following way.

In Figure 6.9 and Figure 6.10, we show the MSE over a stretch of 20 spectral bands

that correspond to wavelengths with high return intensities. We see that the K-SVD

and MOD algorithms perform poorly in this range (they are comparable in other

ranges). We show examples of their corresponding reconstructed images in Figure

6.11 and Figure 6.12. As these figures show, the K-SVD and MOD tend to produce

much noisier reconstructions. To reiterate, though this issue is not present for higher

measurement scenarios, the computational time required for the K-SVD and MOD

algorithms are prohibitively slow. Full disclosure: No algorithm outperformed the

iMMSE algorithm for the hyperspectral data, for which the MSE was significantly

smaller.
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6.7 Conclusion

We have presented a Bayesian nonparametric model for image interpolation. The

model uses the beta process for dictionary learning, the Dirichlet process for flexibil-

ity in dictionary usage and spatial information within the image, which encourages

similar dictionary usage within subregions of the image. Experiments on two rgb

images showed an advantage of our model compared with other algorithms in the

low-measurement regime. We also showed an advantage of the proposed method

over the K-SVD and MOD algorithms for hyperspectral images when the number of

measurements is very small.
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Time per iteration (minutes)
60% 70% 80% 90%

BP & DP & Spatial 3.52 3.04 2.67 2.30
BP & DP, No Spatial 2.23 1.81 1.38 0.96

BP Only 2.02 1.63 1.26 1.15
K-SVD 2.50 1.64 1.11 0.69

MOD 2.58 1.73 1.17 0.67

Table 6.1: Average per-iteration run time for algorithms as function of percent miss-
ing data (castle image). Comparison is not meaningful for the iMMSE algorithm
(which is significantly faster).

Time per iteration (minutes)
80% 85% 90% 95%

BP & DP & Spatial 16.1 10.6 5.9 2.1
BP & DP, No Spatial 18.6 10.4 5.5 1.8

BP Only 14.0 11.2 5.7 1.7
K-SVD 143.8 68.9 23.3 7.4

MOD 131.6 51.3 14.8 3.4

Table 6.2: Average per-iteration run time for algorithms as function of percent miss-
ing data for the hyperspectral image problem using 3× 3× 210 patches.

Time per iteration (minutes)
80% 85% 90% 95%

BP & DP & Spatial 49.7 29.9 13.6 4.4
BP & DP, No Spatial 48.5 28.3 14.6 4.5

BP Only 48.3 27.5 13.3 4.8
K-SVD 683.8 311.0 108.0 24.9

MOD 622.4 301.4 86.1 11.6

Table 6.3: Average per-iteration run time for algorithms as function of percent miss-
ing data for the hyperspectral image problem using 4× 4× 210 patches.
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Figure 6.1: Castle image: PSNR of interpolated missing data using 5×5×3 patches
averaged over five trials. The proposed algorithm performs well for low-measurement
percentages. We set K = 100 and D = 50.

Figure 6.2: Mushroom image: PSNR of interpolated missing data using 5× 5× 3
patches averaged over five trials. The proposed algorithm performs well for low-
measurement percentages, but never better than iMMSE for this image. We set
K = 100 and D = 50.
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Figure 6.3: Example result (5×5×3 patch): (a) Original image, (b) 80% random
missing, (c) Reconstructed image: PSNR = 28.76 (d) Clustering results: Cluster
index as a function of pixel location.
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Figure 6.4: Example result (5×5×3 patch): (a) Original image, (b) 80% random
missing, (c) Reconstructed image: PSNR = 28.76 (d) Clustering results: Cluster
index as a function of pixel location.

128



Figure 6.5: Reconstructions for 80% missing and 5×5×3 patches for (top-left and
clockwise) the proposed algorithm, the proposed algorithm without spatial informa-
tion, the proposed algorithm without the DP, K-SVD, MOD and iMMSE.
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Figure 6.6: Reconstructions for (from top to bottom) 80%, 85%, 90% and 95%
missing and 5× 5× 3 patches for all algorithms considered.
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Figure 6.7: Reconstruction results for 75% missing for (upper-right) iMMSE,
(lower-left) Proposed algorithm, (lower-right) K-SVD.
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Figure 6.8: Clustering results (5×5×3 patch) using no spatial information for 80%
missing: (left) Castle image, (right) Mushroom image. Because no spatial continuity
is enforced in the DP prior, no spatially meaningful clustering takes place, which
results in a slightly worse reconstruction.
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Figure 6.9: Hyperspectral Data: The MSE of the reconstruction using 3× 3× 210
patches and 95% missing data. The plot shows the MSE over spectral band number
60 to 100.

Figure 6.10: Hyperspectral Data: The MSE of the reconstruction using 4×4×210
patches and 95% missing data. The plot shows the MSE over spectral band number
60 to 100.
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Figure 6.11: Reconstruction results for the indicated spectral bands using 3×3×210
patches. The plots according to row staring with the top are, 1. original data, 2.
BP, DP & Spatial, 3. BP & DP, No Spatial, 4. BP Only, 5. K-SVD, 6. MOD.
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Figure 6.12: Reconstruction results for the indicated spectral bands using 4×4×210
patches. The plots according to row staring with the top are, 1. original data, 2.
BP, DP & Spatial, 3. BP & DP, No Spatial, 4. BP Only, 5. K-SVD, 6. MOD.
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7

Conclusion

This dissertation has focused on two Bayesian nonparametric priors, the Dirichlet and

beta processes, for machine learning. The thesis was split evenly between theoretical

results regarding these priors, and applications of these priors to problems such as

compressive sensing, gene analysis and image interpolation. The focus was split

evenly between the Dirichlet process and the beta process as follows:

In Chapter 1, we reviewed the Dirichlet process in detail and presented ana-

lytically derived values for the expectation and variance of the entropy of Dirichlet

processes. In Chapter 2, we continued the discussion of Chapter 1 by looking more in-

depth at Sethuraman’s stick-breaking construction of a finite-dimensional Dirichlet

prior [68]. In this chapter, we presented a novel comparison of the finite-symmetric

Dirichlet distribution and the truncated Dirichlet process as mixture modeling pri-

ors, as well as two new applications of this construction for performing conjugate

inference for the concentration parameter of a Dirichlet distribution, as well as the

hierarchical Dirichlet process [70]. In Chapter 3, we extended the framework of

Dirichlet process priors to include data that has multiple modalities.
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In Chapter 4, we moved to the beta process for Bayesian nonparametric learning

of latent factor models. We presented a new variational inference algorithm for learn-

ing these models and applied the model to several data sets, including an application

to compressive sensing. For this application, we showed the advantage of dictionary

learning methods for CS inversion as opposed to using an off-the-shelf basis. In

Chapter 5, we presented a new stick-breaking construction of the beta process. We

believe this is a major theoretical contribution to the theory of beta processes, as

the stick-breaking construction of the Dirichlet process was to Dirichlet processes.

We give a proof of the construction, as well as a method for performing inference

for this prior. In Chapter 6, we presented new models for image interpolation using

both Dirichlet and beta process priors. The central model uses two modalities, the

framework for this being presented in Chapter 4.
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