Detecting Changes in Alternative mRNA Processing From Micro&xgyession Data
by
Timothy J. Robinson
Department of Molecular Cancer Biology

Duke University

Date:

Approved:

Mariano Garcia-Blanco, Co-Advisor

Mark Dewhirst, Co-Advisor

Michael Datto

Joseph Lucas

Joseph Nevins, Chair

Dissertation submitted in partial fulfilment of
the requirements for the degree of Doctor of Philosophy in the Department of
Molecular Cancer Biology in the Graduate School
of Duke University

2010



ABSTRACT
Detecting Changes in Alternative mRNA Processing From Micro&xgyession Data
by
Timothy J. Robinson
Department of Molecular Cancer Biology

Duke University

Date:

Approved:

Mariano Garcia-Blanco, Co-Advisor

Mark Dewhirst, Co-Advisor

Michael Datto

Joseph Lucas

Joseph Nevins, Chair

An abstract of a dissertation submitted in partial
fulfillment of the requirements for the degree
of Doctor of Philosophy in the Department of
Molecular Cancer Biology in the Graduate School
of Duke University

2010



Copyright by
Timothy J. Robinson
2010



Abstract

Alternative mRNA processing can result in the generation of multiple,
gualitatively different RNA transcripts from the same gene and is a pdveaidine of
complexity in higher organisms. Recent deep sequencing studies have indicated that
essentially all human genes containing more than a single exon genetgiteRNA
transcripts. Functional roles of alternative processing have been estabiisiréually
all areas of biological regulation, particularly in development and cancer. Ghange
alternative mRNA processing can now be detected from over a billion dearti of
conventional gene expression microarray data archived over the past20siegra
program we created called SplicerAV. Application of SplicerAV to pubbeigilable
microarray data has granted new insights into previously existing studiesogieoec
over-expression and clinical cancer prognosis.

Adaptation of SplicerAV to the new Affymetrix Human Exon arrays has resulted
in the creation of SplicerEX, the first program that can automaticakgoeze
microarray detected changes in alternative processing into biologieatigent
categories. We use SplicerEX’s automatic event categorization tdydsdranges in
global mRNA processing and demonstrate the ability of the conventional U1&8rplat
to detect five times as many 3’ terminal mMRNA isoform changes as the Human E

array during B cell transformation.
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1. Alternative mRNA processing

1.1 Alternative mRNA processing as an engine of diversity in
Eukaryotes

The key postulate that one gene encodes one polypeptide chain (one enzyme) has
been overhauled with the discovery that one gene can generate multiple RNA@tans
(and indirectly many different polypeptide chains) through a process referasd t
alternative mRNA processing (Blencowe 2006). Alternative processfitges@ range
of events, including alternative splicing (AS) and alternative polyadémylgaAPA),
which result in distinct mMRNA species. Recent deep sequencing studiesanatat
94% of all protein coding genes generate multiple mRNA transcripts (\taalg2008)
and mutations affecting mRNA splicing are responsible for an estimated 16f60%
human genetic diseases (Krawczak et al. 1992; Lopez-Bigas et al. 2005). Functional
consequences of alternative processing have been shown across a wide variety of
biological processes (reviewed by (Garcia-Blanco et al. 2004; Venables 28 r@t
al. 2009)) including drug metabolism, stem cell renewal, neurologic disease,mutem
disease, and especially cancer.

All multiple exon genes, by definition, contain tracks of intronic sequences that
are spliced, or removed, from pre-mRNA transcripts to yield mature, prataimgc
transcripts. When more than one mature mRNA transcript is created from gpsaigle
MRNA transcript, that gene is said to be alternatively processed.

There are several common mechanisms by which alternative mRNAripéssc

can be generated from the same gene (Black 2003; Wang et al F2008)().
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Alternative promoter use describes differential use of alternative 5’ RigArtranscript
initiation sites. Alternative mRNA processing can occur through alteenatRNA
splicing or polyadenylation. Alternative mRNA splicing describes remavedtention
of internal pre-mRNA transcript content, including single cassette exons, mutuall
exclusive cassette exons, introns, and alternative 5’ or 3’ definition of exon boundaries
(alternative 3’ or 5’ splice site (SS) use, respectively). Alternaplieing that results in
differential open reading frame (ORF) content can result in the productioateinsr
with altered structure and function. Polyadenylation describes the additiontifienul
adenine (A) nucleotides to mature messenger RNAs, required for mature stRily.
Alternative polyadenylation (APA) occurs when there are multipleilmtaiwithin a pre-
MRNA that can signal for polyadenylation to occur, resulting in differidetigth or

selection of 3’ terminal exons.



Skipped exon Mutually exclusive
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[ ] Aiternative exon or extension

Figure 1: Mechanisms of alternative mRNA isoform generation. Adapted from
(Wang et al. 2008).

Databases of alternative mRNA processing events have emergeernnyears.
These databases contain sets of observed, predicted, or curated \zdt@nfatiA
isoforms and associated regulatory sequence motifs (Koscielny et al. 68%t @l.
2003; de la Grange et al. 2005; Zheng et al. 2005; Bhasi et al. 2007; de la Grange et al.
2007; Foissac and Sammeth 2007; Kim et al. 2007; Castrignano et al. 2008). Fast DB,
developed by Auboeuf and colleagues, is one such resource that has become popular
among biologists (http://www.fast-db.com) by providing tools for visualizing known
alternative mRNA transcript structure and performing preliminary iocsdnalyses of

isform function, and regulation.



1.2 High throughput methods available for the study of mMRNA
processing

Despite the importance of alternative processing in cancer, currenttanderg
of its global regulation remains sparse (Takeda et al. 2006) and limits tietalfillly
harness alternative processing as a tool in cancer prognosis, diagnosisatamehtre
Attempts to obtain a genome scale understanding of alternative prodessamger have
focused on large-scale characterizations of changes between normalrissaacer.

Initial attempts to elucidate alternative mRNA transcript structuregenamic
level began shortly after the sequencing of the human genome. Using the gemome as
reference point, researchers have been able to align partially sequendéd mR
transcripts, or expressed sequence tags (ESTSs), to detect altemiahMetranscript
structures within thousands of genes(Kan et al. 2001). EST-based methods have been
used to compare EST databases of normal tissue vs. human cancer to detect enrichment
of cancer-specific splice variants(Xu and Lee 2003; He et al. 2009). ESTrhateutls
use databases pooled from numerous samples, and do not provide an indication of how
commonly any specific observed variant might be expected to appear within an
individual cancer. The inability of EST-based methods to infer changes in mRNA
structure at the individual level have largely prevented their use in profiling individua
cancer patients.

Quantification of changes in alternative processing between individual samples
became feasible with the advent of splicing sensitive microarrays\red in (Blencowe

2006)). Splicing sensitive microarrays infer changes in alternativeARdLessing by



assaying the expression of individual exons and/or exon-junctions using compfimenta
oligonucleotide probes printed as a small array on a chip. Splicing sensitiarrays

differ from gene expression arrays primarily through the location and numfeatorfes
detected (Figure 22). One of the first commercially available humaimngpéicrays, the
Affymetrix Human Exon 1.0 ST, detects roughly 1.4 million features, 30 times timame

the current most commonly used gene expression array (HG-U133 2.0 plus). Exon arrays
have been used to detect changes in alternative processing between normal Buggn tis
and in breast, brain, colon, prostate, and bladder carcinomas(Gardina et al. 2006; Cheung

et al. 2008; Thorsen et al. 2008; Xi et al. 2008; Andre et al. 2009).

Genomic locus — —_— ——————— -
W i 2N B e
mRNA transcripts ) & _/\ = .
AN N R e
. . — [ L ] |

Exon Array PSR

3'-Array PSR

Figure 2: Comparison of exon array and 3’ gene expression array probeset features.
Probesets are chosen from probeset selection regions (PSR) that tacged seRNA
transcript exon features. Exon array probesets target exons throughouiréhieegih

of known mRNA transcripts. 3’ gene expression array probesets prefereiatigéy 3’

ends of known mRNA transcripts. Each probeset is composed of 4 probes on the exon
arrays and 11 probes on the 3’ arrays.

Non array-based technologies capable of interrogating genome-wide €lrange

alternative mRNA processing have recently emerged and include high throughput RT



PCR and deep sequencing. Venables et al. have used a custom, high-throughput RT-PCR
technology to identify changes in mRNA splicing in both breast and ovarian cancer
samples compared to normal tissue and have used them to identify a role of FOX2 in a
large number of splicing events associated with these ceiv@arables et al. 2009).
High-throughput RT-PCR in its present form is not widely available to tleares

community and can only examine internal cassette type splicing eventsthrbgghput

deep sequencing has been recently been used to perform extensive analygsisabiialt

MRNA transcripts in normal human tissue, selected cell (Wesg et al. 2008), and
lymphoblastoid cell lines(Pickrell et al.). At present, current costs and errdata

analysis make deep sequencing largely unavailable within the gersexailate

community.

1.3 Computational Analysis of mMRNA Processing

Genome-wide analysis of alternative mRNA transcript generation, compared to
conventional gene expression analysis, is inherently complex. Recersesnai the
human genome place the number of known exons at 380,000, roughly an order of
magnitude greater than the number of known génms et al. 2009). Traditional gene
expression analyses typically ignore details of transcript structtiks, analyses of
MRNA processing, by definition, must describe changes in this structure.

Several algorithms have been developed to detect changes in mMRNA processing
using exon array data, recently reviewed in [(Laajala et al. 2009)]. Although thes
programs vary in their specific approach, common concepts have emerged etdthe fi

describe analyses of changes in alternative mRNA processing.
6



The statistic that is most commonly used to describe an isofornfisgbange
between two groups is the splicing index (SI) (Srinivasan et al. 2005; Li et al. Qa06;
et al. 2007). The splicing index is analogous to the gene expression concept of “fold
change”, and is defined as the gene-level normalized change in expresaiasaibrm
between two comparison groups. In most analyses, minor isoforms are oftemteprese
by a single exon or probeset. For single exon events, the splicing index iateal@d

follows:

SI = (EXORvreat/ Gen@reat ) / ( EXORontrol/ G€N@ontrol )
Where:
Exonreat = mean expression level of the AS exon in the treatment group
Generea: = Mean expression level of the overall gene in the treatment group
EXxorontrol = Mean expression level of the AS exon in the control group
Geneontrol = Mean expression level of the overall gene in the treatment group
[1]
Analyses of microarray expression data are typically conducted in log,spa
which case equation 1 becomes the following:
SI = (EXORreat - GeN@reat ) - ( EXORontrol - G€N@ontrol )
[2]
The basic statistical foundation of algorithms used to evaluate changes in
alternative mRNA processing is the null hypothesis that all featutbga gene came

from the same distribution. The MIDAS (Microarray Detection of Altexga8plicing)

7



and ANOSVA methods both employ an analysis of variance (ANOVA) test for mon-ze
interactions between treatment groups and ¢Affiymetrix 2005)(Cline et al. 2005).
For ANOVA-based methods, the estimated interaction coefficienteetwxon and
treatment group provides an error bounded estimate of the splice index. PLAba-(P
Level Alternative Transcript Analysis) (Sandberg et al. 2008), MAD&(dAirray
Analysis of Differential Splicing)(Xing et al. 2008), and PECA-SI (Prlehe|
Expression Change Averaging - Splice Index) all use individual probes tortes¢dn
probe differences or non-zero splice indicies. FIRMA (Finding IsofornmgyRobust
Multichip Analysis) frames detection of alternative events in terms agoutl
detection(Laajala et al. 2009). In practice, researchers appear tbea@abyr array data
using either their own custom software or a commercially availablgssspackage

such as EASANA (www.genosplice.cOnXRAY (www.biotique.con), or PARTEK.

1.4 Focus of this work

Existing models of alternative mRNA processing test the alternative hypothesis
that microarray features targeting the same gene do not come from the same
distribution. In this thesis, I have framed a more specific alternative hypothesis that
tests whether microarray features targeting the same gene come from two distinct
distributions. By modeling alternative mRNA processing as two distinct events, we
have created a more focused model that tests a specific hypothesis. Throughout the

remainder of this thesis, I describe the implementation of this model and how we have



tailored it to assist biologists in search of experimental models of alternative mRNA
processing regulation.

In chapter 2, I describe the implementation of a biologically motivated model of
alternative mRNA splicing, SplicerAV and demonstrate its ability to yield new
biological insights from archival conventional gene expression microarray data.

Chapter 3 describes the adaption of SplicerAV to exon microarrays, called
SplicerEX. In this chapter we extend the specific hypothesis generated by SplicerEX to
include inference on the type and direction of predicted changes in mRNA processing,
and use this to identify previously unobserved characteristic changes in mRNA
structure in a model of B cell transformation by Epstein Barr Virus.

Chapter 4 describes areas of potential future research. Appendices A-C provide
hit lists from the analysis presented in chapter 3. Appendix D provides a description of
the SplicerEX categorization algorithm. Appendix E describes my role in analyzing a

genome-wide siRNA screen in Dengue fever host factors.



2. SplicerAV: a tool for mining microarray expressi on
data for changes in RNA processing

In this chapter, | describe the creation and implementation of a novel program,
SplicerAV, that is capable of analyzing archival conventional 3’ gene expnesmsays
for evidence of changes in alternative mRNA processing. We exploit thy abili

SplicerAV to analyze changes associated with clinical cancer psignes

2.1 Introduction

Large scale clinical cancer analyses of changes in alternatisessiog remain
sparse, and there have been no high-throughput analyses of changes in mRNAngrocessi
directly associated with poor patient prognosis. Such studies require¥patgent
follow-up and have not been reported using the new splicing arrays, which have instead
only analyzed changes between normal tissue and cancer.

Public repositories such as the Gene Expression Omnibus (GEO) currently
contain conventional gene expression data from hundreds of thousands of unique
biological or clinical samples ((Barrett et al. 2009)). Data previously gtsteby the
microarray community provide an untapped source of potential insight to the regulation
of alternative mRNA processing in human cancer. It is likely thatovell a billion
dollars have been invested in these data through reagents, facility, and personnel costs
over the past two decades.

The first commercially available high-density gene expressioroariays were
invented three decades ago by Affymetrix (Fodor et al. 1993) to quantify egpress

changes in tens of thousands of genes in a single experiment, but were not intended to
10



detect isoform specific mMRNA changes resulting from alternativeepsieg. Two of the
most commonly used human expression microarrays, the Affymetrix U95 and U133
series, use individual probesets to report expression of many genes. Eachtpsobes
composed of 11 individual 25nt oligomers that interrogate a subsequence of the target
gene. Both platforms, however, contain thousands of genes whose expression is assayed
by more than one probeset. The use of multiple probesets, which often interrogate non-
overlapping regions of the target gene, was originally intended to provideist essay
of gene expression. We and others have previously observed that discrepancies between
fold-changes in probesets interrogating the same gene can represent-gagoifin
changes in mMRNA levels [20-22]. Such isoform changes can result from alternati
transcription start sites, alternative mRNA processing, or changes irAngefdrm
stability.

Methods that detect isoform-specific mMRNA changes have been developed for
splicing microarrays such as the Affymetrix Human Exon 1.0 ST (reviewedajgla et
al. 2009)), but have not been developed for or applied to conventional gene expression
microarrays. In fact, it has been suggested in such reviews that “deteafiseaxfe-
relevant splicing differences may be entirely missed in gene-lepetgsion profiling
studies” (Laajala et al. 2009). Although it may be possible in theory to apply such
methods to conventional gene expression microarrays, to our knowledge this has not been
done. To fully investigate the potential to detect isoform-specific mMRNA chamges

conventional gene expression microarray data, we elected to develop a ndwel, met
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SplicerAV, which we have applied to conventional Affymetrix gene expression
microarray data.

For the Affymetrix GeneChip Human U133 plus 2.0 arrays, 11,193 genes, which
represent 57% of uniquely annotated genes assayed by the array, argatedrby
multiple probesets and can therefore be queried for mRNA isoform changesy with a
average of 3.2 probesets interrogating these genes (Table 1). For the &8 36%
are interrogated by multiple probesets, with an average of 2.7 probesets pergene f
total of 4,609 genes. The U133 series of array platforms are among the most commonly
used platforms within GEO (over 40,000 samples) and have the potential to detect
isoform changes in thousands of genes.

Table 1: SplicerAV related probeset features of commonly used Affyetrix
microarrays.

Platform Unique Genes w/ Fraction Avg. Unannotated Total
Annotated Mult of genes Probesets Probesets Probesets
Genes Probesets w/ mult  per gene
probesets
U133 Plus 2.0 19,761 11,193 57% 3.2 9818 54,676
U133 A 12,737 4,609 36% 2.7 1917 22,283
u9s A 8,690 1,946 22% 2.4 1253 12,651
Mouse 430A 2 12,755 4,934 39% 2.6 2118 22,690

SplicerAV is a program created to systematically asseskétiadiod of changes
in alternative processing evidenced by discrepancies in probeset behawjoa usi
Gaussian mixture model of mMRNA transcript regulation. A beta version of thisaprpg
which lacked biological modifiers and the ability to generate estinohigstistical
significance, was initially used to identify differential regulationrahscript isoforms by
TCERG1 (Pearson et al. 2008). SplicerAV can be applied to any expression rajcroarr

platform with multiple probesets interrogating the same gene, without tidaree
12



detailed transcript annotation. The program provides a non-computationally intensive
algorithm capable of analyzing probeset-summary level datasetddenee of changes

in alternative mRNA processing. We provide here a description of SplicerAVi) \wag
been developed to provide a rigorous statistical model and incorporate biologically
motivated modifications with the goal of assisting biologists in identifyitegrative
processing events most amenable for in-depth study from conventional gensierpres
microarray data.

In this study SplicerAV’s unique value in detecting previously overlooked
changes in mMRNA processing is demonstrated using publicly available Aiffyrdé33
gene expression datasets. SplicerAV was used to uncover previously unczardhcte
isoform specific changes in epidermal growth factor receptor (EG&#)ed by in vitro
HRAS over-expression (Bild et al. 2006). In a separate analysis, SpliceadVised to
identify changes in alternative mRNA processing associated with peentgatognosis
in over 400 breast tumors. Here we demonstrate SplicerAV’s ability to exancimgal
data, performing the largest analysis of alternative mMRNA processing @nhtancer to
date and the only high-throughput analysis of changes in alternative mRNA prgcessi

associated with human cancer prognosis.

2.2 Results and Discussion
SplicerAV Algorithm
There are two main steps in the SplicerAV analysis. The first step suremari

individual probeset changes in expression between a user defined group of control and

13



treatment observations. The second step evaluates these probeset levelesuimma
evidence of changes in alternative processing using a Gaussian mixtutgfimpade 3).

In the first step, changes in probeset expression levels are summarized by
calculating their average lgigld changes and corresponding t-statistics. These metrics
were taken from conventional gene expression analysis. Probesetsgaigegame
gene are then grouped together and each probeset is assigned a wdigialial
probeset weights are calculated using a combination of that probeset’stiestatimber
of observations, and comparison with other probesets targeting the same gene (see

methods).

14
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Figure 3: Gaussian mixture model of changes in alternative processingbsolute
expression of a hypothetical gene is reported by four independent probegsisgar
different regions of this gene; |, 11, 11, IV (left panels) for controtldreatment

conditions (open and closed bars respectively). The idealized Gaussian mixture model
representing changes in probeset behavior are illustrated in the right Pamgls A, B,

and C represent concordant probeset behaviors corresponding to no change, an increase,
and a decrease, respectively. Panel D represents discordant behavioopeeisr (I,

II) report an increase, while the remaining probesets (I, 1V) reportiedse in

expression between conditions (control and treatment). Probesets may repepadiscr
changes in gene expression depending on which region of the mRNA transcript they
interrogate.
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Once these weights are assigned, each gene is evaluated for evidence of
alternative processing using a Gaussian mixture model. In the Gaussiarermodel
used by SplicerAV, probesets interrogating a transcriptionally aetivgene are
predicted to detect the same proportional increase in expression. For exampletprobes
targeting an mRNA that doubles in abundance would be expected to double in intensity
(Figure 3B). Conversely, probesets targeting an mRNA which is down-regulated by half
would be expected to be reduced by half Figure 3C). Multiple probesets tagygeng
that is alternatively processed or undergoes isoform specific mMRNA tieguhzould be
expected to report discordant changes in probeset intensities (Figure 3D).

Plotting the same aforementioned hypothetical data asdmchanges
emphasizes that in alternatively processed mRNAs, summarized probesebbehavi
clusters into discrete groupEigure 3, right). SplicerAV assesses this grouping
mathematically assuming a Gaussian mixture model, which compares figidgta
using one vs. two Gaussian distributions. Fitting the probeset expression data with a
single Gaussian curve equates to a biological model in which the gene isaggslane
expression unit (e.g., all transcripts are destabilized equally). Fittirtathevith a two
Gaussian model equates to a biological model in which the gene is regulated as two or
more expression units, corresponding to changes in isoform specific regulation.
Comparing the ratio of how well each model fits the summarized probeset\dsgagi
maximum likelihood ratio, or MLR, which gives an indication of how well the
summarized probeset data are described by changes in alternative pgoeeatve to

whole transcript regulation. The lowest possible log MLR for a gene is zem) whi
16



indicates that all probesets change proportionally and suggests no evidetemafiat
processing. Log MLRs greater than zero indicate discrepancy in the®aprelsanges

in the probesets, which can be caused by an alternative processing event. {Eh¢hgrea
value of the log MLR the more likely a gene is to be alternatively procésseanethods

for more details).

_ (Likelihood of probesetdata| TwoGaussianCurves
(Likelihood of probesetatal SingleGaussiarCurve)

MLR

[1]

SplicerAV uses the chip annotation file (“platform_annot.csv” for Affynxetri
arrays) to determine which probesets interrogate the same gene. Faricnoatray
platforms the gene symbol provides an appropriate annotation scheme, however any
provided annotation (Transcript cluster ID, WormBase, FlyBase, Ensempkaide
used.
Probeset Annotation & Filtering

Our analyses used the default probeset annotation provided by Affymetrix. This
annotation contains probesets that in some cases target multiple exons or gre poorl
annotated (Ferrari et al. 20QLu et al. 2007)Yu et al. 2007). Re-defining probeset
definition, for example using exon-based definitions of probesets, may improve the
ability of SplicerAV to detect changes in mMRNA processing (Feetaal. 2007)Lu et al.
2007). However, using the standard annotation provided by Affymetrix makes our

findings here directly comparable to the vast majority of expression asalgaducted
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using the U133 series of arrays, allowing reference to specific prdbssahd enabling
us to directly analyze summarized expression datasets deposited in GEO.yRaifghl
of all (not limited to Affymetrix) microarray expression datasets depdsit GEO do not
contain CEL files (Yu et al. 2007) and cannot be re-analyzed using custom annotation.

The use of standard Affymetrix annotation also allows us to make
presence/absence probeset detection calls using previously validated ri\éthods et
al. 2007). As described above, SplicerAV detects discrepancies in fold chavgesrbet
probesets targeting the same gene, using these discrepancies to infer ichanges
alternative mRNA processing. Nevertheless, such discrepancielscaafiect the
presence of negative strand matching probesets (NSMPs) or probesets that do not
produce signal above background, which can be caused by low transcript levels or non-
functional probes. NSMPs hybridize or detect RNAs transcribed in the opposttaahir
of the annotated gene; they do not reflect the expression of the target traarstape
identified and removed by SplicerAV using information available in standdyantrix
annotation files (Warren et al. 2007). Probesets that do not produce signal can also
falsely suggest isoform specific mMRNA changes. These probesetsrareed by
SplicerAV if they are not expressed above background (P<.05) in either treatment or
control groups using the Presence-Absence calls with Negative Prob&gér) (P
algorithm (Warren et al. 2007).
Biological Modifiers

The original motivation for SplicerAV was to identify statisticallyrsfggant

changes in alternative processing that would also provide ideal targets for furthe
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experimental validation and study. To this end, we incorporated additional, user-
modifiable parameters, which can preferentially rank events expected to be more
amenable to experimental investigation. There are three biological mediiplied to
the MLR to generate the final splice score: a multiple probeset dorréctadjust for
total possible paired groupings of probesets, an expression cutoff modifier ty sipecif
minimum change required between isoforms, and a centering modifier to predgrenti
rank genes whose probeset expression levels change in opposite directions. fdfsnodi
are normalized by the average number of paired control and treatment abssriatall
probesets within a gene (Avg_Obs), so that large samples with highercsigpigiver

will be as influenced by the modifiers as smaller samples, providing parartfetecan
be applied with consistent effects across varying sample sizes (s¢®eguand
methods).

SpliceScore= MLR+ Avg_ Obs
* (Multiple probeset+ Cutoff + CenteringModifiers)

[2]
These modifiers do not affect the p-value generated by SplicerAV, but allow the
program to preferentially rank predicted changes in alternative procéisatrgenerate
less complicated hypotheses, are larger in magnitude, reflect chareygsession which
are qualitatively different, and are less likely to reflect probesetstiagg non-
transcribed regions or probesets that do not linearly reflect changessicrifsan

abundance. Genes that exhibit statistically significant discordant prdiedsatior and
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are given a positive splice score represent ideal candidates fomeaptii investigation
of isoform specific regulation.

SplicerAV generates several additional outputs with each file. Thdsdéna
file containing assessment of statistically significant expoasshhanges for all probesets,
a log file containing all user set parameters and comparisons maddl, as avEASTA
file for each gene. These fasta files contain the target sequencegrobalets targeting
that gene, allowing quick and easy mapping to known and predicted mRNA sequences
using the UCSC genome browser (http://genome.ucsc.edu) (Kent et al. 2002). All
genomic analyses in this study were performed using the March 2006 release of the
human genome (hg18).
SplicerAV Index Generation

To perform analyses of isoform changes within individual samples we derived an
index of relative isoform abundance predicted by SplicerAV. High-throughput asalys
of alternative processing have previously defined “splice index” as a qtiaatiteeasure
to compare isoform abundances between individual samples. The splice index of a
probeset equals its expression relative to other probesets targeting ¢hgesem
(Srinivasan et al. 2005). Using SplicerAV we defined a modified version of the splice
index, referred to as the SplicerAV index. SplicerAV assumes a Gausggiamnem
model, whereby all probesets are classified as belonging to one of two groeg®bas
similarity of expression changes. The group of probesets exhibiting the lagesisies
in expression are referred to as the “A” (up) group and the group of probeséitrexhi

the largest decreases in expression are referred to as the “B” (dowp) grhe
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SplicerAV index of a probeset equals its expression relative to the aw@gssion of
probesets in the opposite group. For example, the SplicerAV index of a probeset in the
“A” group would be calculated by subtracting the average expression of thgrdBp
from that probeset’s log2 expression value. In our analysis, SplicerAV indexes of
probesets in the “A” group were defined as increased in aggressive caviokrs
indexes of probesets in the “B” group were defined as decreased in aggressérs.ca
Pre-specified hypotheses generated in training datasets made tinitidesignificance
tests appropriate in independent validation datasets.
SplicerAV Implementation

SplicerAV was implemented in Perl, with a typical run time of 3-5 minutes on a
standard personal computer and has not been tested using other operating systems. T
program will only assess changes in alternative mRNA processing fa&s g¢eeogated
by multiple probesets, which varies widely by microarray platform. To extilere
potential for SplicerAV to identify novel changes in mRNA isform abundance istbrea
cancer, we applied SplicerAV to several publicly available, archival AdtyimnHG-
U133 plus 2.0 datasets.

SplicerAV predicts oncogene induced changes in alternative proc@ss of splicing
factors

Studies of SRC (Neel et al. 1995), HRAS (Chandler and Bourgeois 1991; Chandler et al.
1994), and E2F family binding sites (Darville and Rousseau 1997) have demonstrated
isolated roles of these oncogenes in affecting alternative mRNA processing.

Nonetheless, prior to this study no large-scale examination of changes irtigkerna
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MRNA processing had been undertaken for any of these oncogenes. We examined an
oncogene over-expression microarray dataset published by Nevins and colleddues (B
et al. 2006) (GEO accession GSE3151) to demonstrate SplicerAV'’s ability to detec
oncogene driven changes in alternative processing. In this experiment, actiR&8d H
SRC, E2F3, activategicatenin (CTNNB1), MYC, or green fluorescent protein (GFP)
was over-expressed in human primary mammary epithelial cells. The étfixry133

plus 2.0 microarray platform was used to assay gene expression in seven to teeseplica
of each condition. Probeset level intensities were estimated using the Rathistip
Averaging (RMA) procedure (Irizarry et al. 2003).

SplicerAV compared changes in probeset expression between GFP and over-
expression of the HRAS, SRC, E2F3, CTNNB1, or MYC oncogenes. Roughly 7,000
genes were expressed above background in either GFP or oncogene overeexpressi
depending on the oncogene (“Total” column; Table 2). More than 2,000 of these genes
were interrogated by multiple probesets, and could therefore be examinedcey/Spl
for evidence of changes in alternative mRNA processing (“Multi-proligsets”
column). More than a hundred isoform specific changes were predicted for each
oncogene (Example SplicerAV output shown in FiguEg-ér! Reference source not
found.A; “Alt. Processed Genes” column Table 2). HRAS over-expression caused 645
significant isoform changes, suggesting HRAS-induced changes in altenpiaicessing
in nearly a tenth of all expressed genes. The median relative fold cheingeb
isoforms was 1.39 (log2 fold change of .48), with 61 (9%) of these genes predicted to

undergo a greater than two fold change in relative isoform abundance (Figure 4B)
22



A Gene Log2 Fold splice [SplicerAV [ANOVA
Rank |Symbol |Probeset Name |Change |P-val Group |Score |P-val P-val
1|EGFR 210984 x_at 0.662 |1.71E-08| A |923.97 i o
201983 s_at 0.541 |5.95E-09 | A
211607 x_at 0.531 |1.63E-07 | A_
224999 at 0.51 |7.90E-08| A
233044 at 0.476 | 7.00E-08 | A_
232925 at 0.296 |5.60E-02| A
232120 _at -0.039 |7.39E-01| B
232541 at -0.048 | 6.86E-01| B
201984 _s_at -0.308 |1.926-05| _B
1565484 x_at -0.881 |1.79-04| B
1565483 _at -0.961 | 2.61E-04| _B
2{1vuD1C 224933 s at 1.017 |[5.236-11| A [550.32 0 0
228793_at 0.823 |9.24E-09 | A_
221763 _at 0.731 |114604| A
241661 _at -1.164 | 1.97e-12| B
3{MmP28 |219909 at 0.454 |3.956-06| A |437.61 0 0
222937 s at 0.432 |4.826-05 | A
224207 x_at 0.19 |3s57E-0a| A
239273 s at 0152 | 737802 A
239272_at -0.691 | 1.07E-05| B

B .=
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Figure 4: HRAS over-expression results in substantial relative isofon changes.
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Figure 4: HRAS over-expression results in substantial relative isoformhanges A)
Example SplicerAV output comparing HRAS to GFP over-expression. Geneskeel r

in order of descending Splice Score (top three genes shown), with EGFR red®ving t
top score in HRAS over-expression. Log2 fold change in expression and corresponding
p-values from two tailed homoskedastic t-test of differential expressoshawn for
individual probesets targeting each gene. Probesets are placed into A and B gitmypings
SplicerAV (see text). Splice score, SplicerAV p-value, and two way AN@WAlues

are shown for each gene. (B) Distribution of the 645 isoform changes (AS Events
predicted by SplicerAV (p<.01) upon HRAS over-expression in human primary
mammary epithelial cells. For each gene, SplicerAV separates polrgedwo

similarly behaving groups based on similar fold changes in expression. The average
change in expression between probesets in these two groups (AvgChange, sea Bquati
in methods) reflects the relative fold change in isoform abundance predicted by
SplicerAV. Absolute relative fold change in isoform abundance is shown in log base 2.
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Gene isoform changes receiving both a significant p-value and a positoe spli
score indicate ideal candidates for further experimental study (“GétieSplice Score
> 0” column; Table 2). HRAS and SRC over-expression resulted in 212 and 119 such
events, while MYC over-expression resulted in only 12 (Table 2). One gene,
Programmed Cell Death Protein 5 (PDCD5), underwent the same change iriadterna
processing upon over-expression of each of the five oncogenes. PDCD5 switched from
an alternative isoform (MRNA AK293486) to the major isoform (MRNA BC015519),
which codes 37 isoform specific c-terminal amino acids required for PDCD5 nuclear
entry & activation of apoptosis (Yao et al. 2009). Gene ontology (GO) analysis of
isoform specific changes revealed a common selection for genes involved in mRNA
splicing (see methods). Over-expression of all oncogenes other than MYC eaehl result
in significant (p.05) enrichment of isoform specific changes in mRNA splicing, pre-
MRNA splicing, or mRNA processing factors (Table 2). HRAS and SRC over-
expression resulted in predicted isoform changes in 12 (p=.009) and seven (p=.0%) factor
involved in mRNA splicing, respectively. Both HRAS and E2F3 isoform specific
changes were enriched for G-protein mediated signaling (p = .04; p = .0009) and roles i
immune function (p=.02; p=.01). Sixty-seven genes were predicted to undergo isoform
changes in common between two or more oncogenes. Messenger RNA processing
factors (5 genes, p=.008; WDR33, HNRPC, SF3A1, SNRPA1, TRA2A) and mRNA
splicing factors (8 genes, p=.0003; HNRPC, HNRPD, TARDBP, HNRPH1, SF3A1,
HNRPA2B1, SNRPAL, TRA2A) were the most significant molecular function and

biological process represented by these genes.
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Table 2: SplicerAV predicts oncogene-induced changes in isoformesgfic mMRNA
levels.

Unique Expressed SplicerAV
Genes Predictions (P<.01)
Multi- Al. Genes
Total probeset Processed . Significant Gene Ontologies
Genes Genes Splice
GFP vs. Score >0

mMRNA splicing (12)
HRAS 7227 2185 645 212 Complement med immunity (3
G-protein mediated signaling (10)
Transcription Elongation (2)
SRC 7007 2015 291 119 mRNA splicing (7)
CTNNB1 7023 2019 159 54 MRNA processing factors (4)
Cell surface receptor signal (10
G-protein mediated signaling (6
Mesoderm development (6)
E2F3 7313 2139 187 45 Cell structure and motility (11)
pre-mRNA splicing (5)
Granulocyte-mediate immunity,

)

~ —

MYC 7081 2040 115 12

HRAS over-expression results in isoform specific EGFR mRNA regulain

Epidermal growth factor receptor (EGFR) was the top ranked gene pedict
HRAS over-expression (p< 10-5). EGFR expression was interrogated by seven
probesets, providing an ideal opportunity to examine the behavior of multiple probesets
targeting different regions of the same gene. Depending on the EGFR region being
interrogated, probesets reported either a significant increase eagedn expression
upon HRAS over-expressiofigure 5). Four main mRNA isoforms of EGFR are
annotated in the NCBI database, labeled A, B, C, and D. Isoform A encodes the full
length membrane bound tyrosine kinase receptor (Ullrich et al. 1984; Kashles et al.
1991). Variants of isoform A have been observed with either long (ALong) or short

(AShort) 33 UTRs (UCSC mRNA accession X00588(Ullrich et al. 1984) and AK225422
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(Suzuki et al. 1997)). Isoforms B and D encode truncated intracellular domaiSe{Ref
NM_201282; RefSeq NM_201284) and isoform C (RefSeq NM_201283) encodes an
EGFR variant that lacks a trans-membrane domain and is expected to be solitde (Re

et al. 2001).
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Figure 5: HRAS over-expression causes isoform specific regulation of lprmal

Growth Factor Receptor (EGFR) in human mammary epithelial cells (A) Probesets

on the Affymetrix U133 2.0 plus array interrogate EGFR expression at sevepitiffe
genomic locations. Up and down arrows indicate each probeset’s expressiors ¢ghange
HRAS over-expression compared to GFP controls. Probeset 5 experienced asignific
decrease in expression with HRAS over-expression, but was not expressed above
background. B) UCSC genomic alignment of probesets and EGFR isoforms. Four
previously observed EGFR isoforms (A, B, C and D) are shown with exons represented
as black boxes and introns as hashed lines. Extracellular, transmembrane, and
intracellular domain regions are shown below the alignment. C-F) Scatteioplogged
expression levels of all 55 samples (GFP, MYC, SRC, CTNNB1, E2F3, and HRAS) for
selected pairs of probesets C) Probesets 1 and 2 target a transcript region anaimon t
major isoforms and exhibit highly correlated expression (R2 = .95). D) Probesets 1 and 3
target the common region vs. isoform B specific region and demonstrate a weak inver
relationship (R2 = .36). E) Probesets 1 and 6 interrogate the common vs. AShort
isoform region, demonstrating a high degree of correlation across all s{Rples87).

F) In contrast, probesets 1 and 7 interrogate common and ALong isoform regioe and ar
not correlated (R2 = .01) due to the HRAS induced 3'UTR shortening of EGFR A
transcripts.
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Probesets 1 and 2, which target a region common to all four isoforms, reported
highly concordant (R2 = .95) expression levels across all 55 samples in the dataset
(Figure 5C). Probesets targeting different transcript regions (1 and 3) reported poor or
even inversely correlated expression levels, (R2 = .36, Fidtuge® D). Due to this
“outlier” behavior these probesets would be discarded during conventional magroarr
expression analysis (Jaksik et al. 2009), however, SplicerAV data suggeststhat thi
behavior reflects isoform-specific regulation of EGFR expression

EGFR isoform A (AShort) appeared to be the primary transcript upregulated by
HRAS over-expression, as evidenced by highly correlated expression of theepgobes
targeting the common and AShort isoforms (probesets 1 and 6; R2 = .87). HRAS over-
expression caused a robust decrease in the probeset targeting the long SEQRRof
(probeset 7; ALong) that was not correlated with expression of the common transcript
region (Figure bigure F, R2 = .01). In contrast, common and ALong expression levels
were well correlated in non-HRAS samples (R2 = .70). These data sugdgessa H
specific shortening of the isoform A 3'UTR.

We hypothesize that these HRAS-induced isoform changes promoted EGFR
activation via several mechanisms. HRAS increased overall isoform Arinecels,
as evidenced by significant increases in probesets interrogating comgmamsrof the
gene (probesets 1 & 2). At the same time, HRAS over-expression resulkbections of
a shorter 3’ UTR, which removes known miRNA binding sites present in the ALong
UTR and likely increased translation of EGFR mRNAs (Weiss et al. 2008). Widdspre

3'UTR shortening to escape miRNA regulation has been observed previously in
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proliferating cells (Sandberg et al. 2008). EGFR isoforms B & D code fanedired
intracellular domain, which if translated could dimerize with and inhibit aativatf

both EGFR and HER2 (Kashles et al. 1991). The observed down-regulation of these
isoforms is predicted to promote EGFR1 and HER2 activation (Kashles et al. 1991).
should be noted, however, that the corresponding truncated receptors have not been
observed. Soluble isoforms composed of the extracellular domain occur naturally and
suppress ligand-dependent EGFR signaling and oncogenic transformation in a dominant
negative manner (Basu et al. 1989). Our data indirectly address expressioafléwels
soluble isoforms, which appear to be unchanged.

Our data suggest that HRAS acts through several isoform-specific mechanis
promote EGFR family signaling. EGFR signaling plays known roles in celivalirvi
proliferation, adhesion, migration, and differentiation (Adamson and Wiley 1997) . Both
EGFR and HER?Z are currently therapeutic targets in breast camoami@et al. 2009).

Our analysis here suggests that modified regulation of alternative mRNéspiog
could be used as a novel means of EGFR inhibition, similar to that shown recently for
HER2 using splice site switching oligonucleotides (Wan et al. 2009).

SplicerAV predicted isoform changes exhibit low overlap with gene expssion
changes

Using the same gene expression dataset, SplicerAV was able to predidiex num
of previously unappreciated changes in isoform specific mRNA regulation. Genes
predicted to undergo isoform changes exhibited small overlap with genes prealicted t

undergo expression changes by conventional analysis, consistent with previogsfindi
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in the field (Blencowe 2006) (Li et al. 200@hang et al. 2006). HRAS and SRC over-
expression resulted in the largest changes in both gene expression and isoform changes.
Of the212 genes predicted to undergo ideal isoform changes (significant pnélue a
positive splice score) in HRAS over-expression, only 8 genes (3.8%) wereraag a
the top 212 most significant changes by conventional expression analysis (data not
shown). Of the top 119 predicted isoform changes in SRC over-expression, none were in
the top 119 most significant expression changes. This low degree of overlap suggests
that the results obtained via SplicerAV are largely orthogonal to that of iomval
gene expression analyses. This low degree of overlap provides the potential for
combining traditional gene expression signatures with SplicerAV isofosmaeba
signatures to improve signature performance.
SplicerAV predicts isoform changes in high vs. low grade breast tumors

Our analysis of oncogene regulated isoform expression demonstrated theability
generate novel insights into cancer biology. We next determined if simiigitmsould
be obtained from the analysis of alternative processing in clinical tumoresantileast
cancer has been extensively studied using high-throughput analyses of gessienat
the transcriptome level (Reviewed in (Sotiriou and Pusztai 2009)). In contgdst, hi
throughput analysis of alternative mRNA processing in breast canceedrasddressed
in only a handful of studies (Li et al. 200@)ndre et al. 2009(Dutertre et al. 2010). We
explored the ability of SplicerAV to detect changes in alternative procdssingen low

and high grade breast tumors in archival expression data.
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Sotiriou and colleagues profiled 87 Tamoxifen treated, estrogen recepjor (ER
positive tumors obtained from Guys Hospital, London (GUYT) using the Affymetrix
HG-U133 PLUS2 GenechipTM(Loi et al. 2008)( GEO accession GSE6532, RMA
normalized). Using this dataset, we examined changes in probeset expressam be
low grade (I, n=17) and high grade (lll, n=16) breast tumors. Analysis nvaedito
probesets present on either the U133A or U133B arrays in order to validate changes in
two independent data sets discussed in the next section. 11,248 unique genes were
expressed above background in either the low or high grade tumor samples. Among the
4,031 genes interrogated by multiple probesets, SplicerAV predicted that &4 gen
underwent significant isoform changes between aggressive and non-aggresste bre
tumors (p<.01). Removing genes with negative splice scores yielded al feftrod 241
genes. GO analyses of these 241 genes revealed significant (p<.G&@nentiéor
several molecular functions including guanyl-nucleotide exchange fdBRXAB3IP,
RAPGEF2, GAPVD1, CD47, TRIO, ARHGEF7, AKAP13; p=.006), metalloprotease
inhibitors(TIMP2, TIMP3; p=.007), ubiquitin-protein ligases (RNF130, TTC3 UBE3B,
PML, TRIM26, RBCK1, MIB1, ZNF294, ZUBR1, TRIAD3; p=.007), and mRNA
processing factors (SYNCRIP, WDR33, SFRS8, SFRS15,TAF15, SF1, SF3B1, SFPQ,

PRP6; p=.01; Table 3).
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Table 3: GO analysis of 241 genes predicted to undergo isoform changes between
grade | and grade Il breast tumors (GUYT).

Molecular Function # Genes  P-Value Gene Symbols
Guanyl-nucleotide 7 6.22E-03 RAB3IP, RAPGEF2, GAPVD1,
exchange factor CD47, TRIO, ARHGEF7, AKAP13
Metalloprotease inhibitor 2 6.52E-03 TIMP2, TIMP3
Ubiquitin-protein ligase 10 7.40E-03 RNF130, TTC3 UBESB, PML,

TRIM26, RBCK1, MIB1, ZNF294,
ZUBR1, TRIAD3

MRNA processing factor 9 1.27E-02 SYNCRIP, WDR33, SFRSS,
SFRS15,TAF15, SF1, SF3B1,
SFPQ, PRP6

Cytoskeletal protein 4 3.42E-02 DNAL1, NF2, KIF5C, DYNC1H1

Anion channel 2 3.63E-02 PML, CLCN3

G-protein modulator 12 4.64E-02 RABS3IP, RAPGEF2, GAPVD1,
CD47,

mRNA splicing factor 6 4.94E-02 TAF15, SFRS8, SF1, SF3B1,
SFPQ, PRP6

Tyrosine protein kinase 4 497E-02 TEK, TPR, IGF1R, PDGFRA

receptor

SplicerAV predicted isoform changes are associated with breast camervival
SplicerAV probeset groupings of genes identified in the GUYT trairehgvsre
used to create individual sample level indexes of relative isoform abundance.t&tle tes
an association of these SplicerAV indexes in two independent validation datasets to
examine whether specific isoform changes observed in high grade tumordseere a
associated with poor patient prognosis (see methods). Previous datasetedjbyera
Miller (Miller et al. 2005) (GSE3494) and Pawitan (Pawitan et al. 2005) (GSE1456)
have independently profiled breast tumor gene expression using the AffyldEBxA

and B microarrays (probeset intensities were estimated using MAS5 ([@8)se studies
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include patient outcome, providing the opportunity to test for an association of isoform
changes with survival in ER positive tumors.

We generated 687 SplicerAV Indexes from the 241 genes identified in the GUYT
training set and calculated their value for each tumor sample in the validdsiori-ee
each SplicerAV Index, tumors were sorted into the top and bottom 50th percentile of
tumors. High and low SplicerAV Index groups were then tested for a difference in
survival. The GUYT training set had previously determined whether a Splicechex
was predicted to be increased or decreased in aggressive cancer (defireatbdd Gs
Grade I). This pre-specified association with aggressive cancer wa® usealtict one-
sided logrank tests (p<.05) for an association with breast cancer survivattior ea
SplicerAV index in the validation datasets. Failure in the Miller datasetiefined as
death from any cause and failure in the Pawitan dataset was definethafsahedreast
cancer (inherent to the clinical data available). Of the 241 genes tested, 45 gene
possessed indexes that were significantly associated with survival in batbtsléfable
4). Guanyl-nucleotide exchange factors (GEFs) and mRNA processiogsfagre both
enriched among the original 241 genes tested. Interestingly, these @Qriestevere
both represented among the 15 validated genes including ARHGEF7, a guanyligeicleot

exchange factor, and SFPQ, an mRNA processing factor.
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Table 4: Isoform changes in gene expression significantly associated withtignt
outcomes in both validation datasets.

SplicerAV Predictions

Association with
Survival

S)(/Brrelggl‘r Il,srggoéggt Hypothesis Miller Pawitan
ARHGEF7 202548 s_at DOWN *0.009 *0.008
DPP7  241973_x_at DOWN *0.001 *0.007
EIF4E2 209393 s at uUP **0.002 *0.003
MAPKAP1 222426 _at DOWN *0.019 *0.003
SLC28A10 230448_at upP *0.007 0.032
PDXK 202671 _s_at uUP **0.001 0.025
POLI 238992 at uUP 0.037 0.052
SFPQ 201585 s_at uUP 0.062 0.041
SIVAl 203489 _at upP *0.005 0.075
SsuU72 223051 _at uUP *0.018 *0.007
TFDP2 203588_s_at UP 0.054 *0.008
TIMP2 231579 s at DOWN  **0.001 0.056
TncRNA 234989 _at uUP **0.001 0.034
WDFY3 212606 at upP 0.049 *0.010
WDR26 224897 _at uUP **0.001 0.049

tFor genes possessing multiple significant SplicerAV Indices, only oftensds

shown.

*Significant association with survival (p<.01), one sided log rank test
** Significant association with survival (p<.001), one sided log rank test

Few studies have performed high-throughput examination of alternative

processing in clinical tumor samples (Gardina et al. 2006; Andre et al. 2009) and to our

knowledge no prior studies have examined changes in alternative mRNA processing

directly associated with cancer patient survival. This study exansoémn specific

MRNA levels in over 400 human clinical samples, providing support for the use of

changes in alternative processing as potential prognostic markers in cance

ARHGEF7 & EIF4E2 isoform changes are associated with breast cancer survival
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A SplicerAV index for Rho guanine nucleotide exchange factor 7 (ARHGEF7)
was decreased in high vs. low grade tumors within the GUYT dataset, and was
significantly associated with survival in both the Miller (p=.008) and Pawita®Qp¥
datasets. ARHGEF7 expression was assayed by three annotated probeseisg @iovi
opportunity to compare associations of survival with either SplicerAV index or individual
probeset expression. The SplicerAV index for ARHGEF7 compared the ratio of a
decreasing (“Down”) probeset located in the 3'UTR of ARHGEF7 to thatof tw
increasing (“Upl” and “Up2”) probesets located in shorter transcripts @-@igure
A). We compared the ARHGEF7 SplicerAV index and each individual probeset for an
association with breast cancer survival and noted that the SplicerAV index ourtpestf

individual probeset in both datasets (FiguFegbire B).
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Figure 6: SplicerAV Index of ARHGEF7 is associated with breast cancer survival.
Panel A. Schematic representation of ARHGEF7 isoforms A, B and C, with regions
interrogated by probesets that increase shown as Probesets Up 1 and 2y and
the region which decreases denoted as Probeset Down (blue arrow). Panel B. The
fraction of patients surviving in each cohort (vertical axis) is shown over tiryeairs
(horizontal axis) as a function of individual probeset expression or SplicerAV index.
Survival of patients in the top (red line) and bottom (blue line) 50th percentile aezplott
by individual probeset expression (Down, UP1, and UP2) and the SplicerAV index
within the Miller (left) and Pawitan (right) cohorts. Results of twéethlogrank tests of
survival are shown, with asterisks indicating significance at the .05 (laegesksand
.10 (small asterisk) levels.

A SplicerAV index for Eukaryotic translation initiation factor 4E familgmber
2 (EIF4E2) was increased in high vs. low grade tumors within the GUYT datadet, a
was significantly associated with survival in both the Miller (p=.002) and Bawit

(p=.003) datasets. The SplicerAV index for EIF4AE2 compared the ratio of an ingreas
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“Up” probeset targeting a coding region to that of a decreasing “Down” prdbeat#d

in the 3'UTR of the longest transcript (Figure 7A). For EIF4EZ2, survival could be
predicted by an increase in the “Up” probeset alone (Miller, p=.003; Pawitan, p=.0007;
Figure 7B). Low levels of the “Down” probeset were only significantpamted with

poor survival in the Pawitan cohort (p=.04).

Whether or not individual probesets could demonstrate a consistent association with
survival differed by gene. Although individual probeset behavior may represent an
alternative processing event, only through comparison with other probesetd fmertea

can SplicerAV uncover these relevant and predictive isoforms that would go unnoticed in

conventional analyses.
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Figure 7: EIFAE2 probesets are associated with breast cancer survivaPanel A.
Schematic representation of EIF4E2 isoforms A and B, with region inteembbgt

probesets shown as Up (red arrow), and Down (blue arrow). For panels B, C, and D, the
fraction of patients surviving in each cohort (vertical axis) is shown over tiryeairs
(horizontal axis) as a function of individual probeset expression or SplicerAV index.
Survival of patients in the top (red line) and bottom (blue line) 50th percentile aezplott

by individual probeset expression (B,C) and the SplicerAV index (D) within therMill

(left) and Pawitan (right) cohorts. Results of two-tailed logrank testsrgival are

shown, with asterisks indicating significance at the .05 level.

Combining isoform changes from multiple genes improves prediain of breast
cancer survival

We chose a subset of the 15 validated isoform changes to examine the potential

for generating an isoform signature that combined information from multgiterms
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changes to improve prognostic accuracy. We initially chose the six genédg2EIF
ARHGEF7, SLC28A10, PDXK, TncRNA, and MAPKAPL, that produced the clearest
separation between good and poor survival in individual prognostic analyses (data not
shown). Stratifying patients by SplicerAV index for each gene demaoststitze

expected association with survival (Figure 8A-F). The number of poor prognosiis eve
was tallied for each patient. Survival was then plotted for individuals with low (0-1
events, blue), intermediate (2-4 events, black), or high (5-6 events, red) numbers of poor
prognostic events (Figure 8G). This stratification of patients by totalgsognostic

events demonstrated highly significant associations with survival in both tlez Mil
(p=6e-7) and Pawitan (p=4e-7) cohorts. The combined isoform signature detednstra
prognostic value beyond that of any individual isoform or probeset change.

Similar to our in vitro analyses of oncogene over-expression, we observed low
overlap between gene expression and SplicerAV changes. Of the 241 isofornschange
predicted by SplicerAV in the GUYT training set that were later defsiean association
with poor prognosis, only one gene (0.4%), BTD, was also among the top 241
differentially expressed genes. The orthogonality of candidate genedistdied by
SplicerAV and conventional methods suggests that these two methods detect different
biological processes and may provide independent value in generating molecular
classifiers. SplicerAV can generate both conventional and isoform speciéc ge
expression analyses, and therefore provides two non-redundant datasets from one

experiment.
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Figure 8: A six isoform signature provides improved prediction of breastancer
survival compared to individual isoforms. The fraction of patients surviving in each
cohort (vertical axis) is shown over time in years (horizontal axis) as achrdt
individual probeset expression or SplicerAV index. Survival of patients in the top (red
line) and bottom (blue line) 50th percentile are plotted by the SplicerAV indeifor s
genes; EIF4E2 (A), ARHGEF7 (B), SLC28A10 (C), PDXK (D), TncRNA (E),
MAPKAP1 (F) for the Miller (left) and Pawitan (right) cohorts. Patientsvival
stratified by a low(0-1), intermediate( 2-4), and high (5-6) number of poor pragnost
events is shown in panel G.
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SplicerAV takes probeset intensities generated using conventional notroaliza
methods (i.e. MAS5 or RMA output) as input. SplicerAV first summarizes the &verag
logzfold change in expression and the corresponding t-statistic for each probdset on t
array. Probeset changes are assigned an initial weight based on thairzeotia
statistic, horm. Conceptually, weighting bynbm counts probesets undergoing
significant expression changes one time. This is becawgsg€luals one for probesets

reporting expression changes significant at the .05 level (two tailed.t-test

_ |/uTreatment_:uContro| | i

Norm — * ! Critical
2 2
O-Treatment O-Control

T

[3]
Probesets targeting the same gene are next grouped together using annotation
provided by the array manufacturer. Genes targeted by probesets with @alue
greater than one scale their weights so that the maximgim Within that gene is

reduced to one. This prevents counting any probeset more than once.

) > 1thenWeight= ~ Thom

If Max(Tyom Max(T. )
Norm

[4]

ElseWeight=T,

Norm

At this step, individual probeset weights are raised to a user specified power
(Wt_scaledefault = 2), which allows preferential focus on more significant probeset
changes in expression at the cost of removing information from less rgrabkesets
and reducing the power of significance tests.
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This weighting scheme assigns a weight between 0 and 1 to each probset,
indicating the number of times a probeset’s observations will be counted in theaBaussi
mixture model. In the final Gaussian mixture model, each probeset weightiislieullt
by the average number of paired observations among treatment and control groups for
that probeset (Ng_obs= (Nireat_obst Neontrol_obg/2). The resulting model counts each
effective pair of observations for a probeset at most once, with less reliabésets
being counted less.

EffectiveWeight,
= Ethprbset

= (Vveightprbset)Wt_Scale* AVg_ObSprbset

rbset

[3]

The Effective Weight for each probeset is used as the final probeset summary
weight in the Gaussian mixture model. Average probeset log2fold changes irsexpres
are fitted using two models, which contain one and two Gaussian distributions,
respectively. Comparison of the relative fit under these two models yigldgienum
likelihood ratio (MLR), which can be assessed for statistical sigrefasing a standard

likelihood ratio (LR) test statistic, asymptotically distributed&8), for each gene.

Tou_psets| jkelihood, "™ * Likelihood, "™

MLR= ]

prbset1 Like”hOOdSingle

[6]
Where:
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1 (X )2 Ef\thrbset
Likelihood = exp ——pse A7
o 2r 20'i

Xproset= the log2fold expression change of that probeset
ua = the weighted average log2fold change in expoesiir probesets assigned to groupA
ug = the weighted average log2fold change in expoesiir probesets assigned to groupB

usingle = the weighted average log2fold change in expoesfir all probesets targeting the gene

oa, 08, andosingie for groups A,B, and all probesets are determinedkpgeation
maximization, bounded by a minimum value of 10% to preweei-fitting by the model.
The value of 10% was chosen as a conservative limit lwasechpirical observations of
summarized significant log2fold probeset changes, whichistmtly exhibited standard
deviations §) below 10% across analyzed datasets (data not shown).
Biological Modifiers

SplicerAV incorporates biologically motivated modifiers to alterréative
ranking of potential changes in alternative processing to sufirtll objectives of the
user. These modifiers can be adjusted by the usercanot @&ffect the p-values reported
by SplicerAV. The specified form and magnitude of thaiséogically motivated

modifiers were empirically derived through analysis okesaldatasets.

Multiple Probeset Modifier
The multiprobeset modifier adjusts the splice score by thieposgaible ways that
all the probesets targeting a given gene can be placedaupsgof two. This method

penalizes genes containing large numbers of probesetlsleayd generating a large
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number of alternative processing hypotheses which areudifto interpret, using a

bonferroni multiple hypothesis correction.

MultiprobesetModifier = —In(2"'- et _1)
[7]

Expression Cutoff Modifier

The expression cutoff modifier calculates the lddference in average
expression between the two groups of probesets, A ar@eBes whose expression
between groups falls below a user specified threshold mmifold change are
penalized using a smoothed function whose steepness &rsggauwser specified
sharpnesparameter.

If AvgChange< Cutoff,
Cutoff Modifier = Sharpnes$In(AvChangée Cutoff)

[8]

Centering Modifier

The centering modifier preferentially ranks genes whoskgset expression
changes in opposite directions, suggesting a qualitatively ehffewvent which cannot be
explained by poor annotation of probesets targeting intregioms, saturated probeset
signals, non-hybridizing probesets, or other probesetssgjam behavior deviating from
a linear relationship with transcript abundance. Genes in voloithgroups of probesets
change in the same direction (either both increasing oraiogy are penalized, while
genes containing groups of probesets with mean exprdes&a moving in opposite
directions are given a bonus.
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If (Meam ;,,, * MeamEXp;,5) < 0,
thenCenteringFactor = —CenteringFactor

[9]
CenteringModifier
= CenteringFactor* Min(| Meam ¢, || MeamExp;,z [)

Gene Ontology Analyses

Gene ontology (GO) analyses compared genes \pltbe AV predicted
isoform changes (p<.01, splice score > 0) to aeefe set of all genes evaluated for
isoform changes in each condition using PANTHERoffhs et al. 2003; Thomas et al.

2006). Non-overlapping GO categories with morathae gene were reported.

2.4 General Comments

Traditional analyses of gene expression data hansidered the probeset as the
basic unit of expression. Under this paradigm pitesence of multiple probesets has
been viewed largely as a nuisance. Current apbesatealing with the issue of multiple
probesets have used either probeset location anéa®, median, or largest probeset
expression change to distill multiple probesets msingle gene level expression value.
Each of these approaches would have yielded aeiliffeeadout oEGFRexpression
changes in HRAS over-expression, making conventioterpretation inadequate for
such genes. Software has even been developed wblesgurpose is the removal of
discordant probeset expression values for probémefsting the same gene (Jaksik et al.
2009).

We propose that for genes with multiple probesstdorm specific expression

changes may be a more appropriate means of intexgpsgandard microarray expression
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data than the current one gene = one probesetigaradPrevious algorithms (Fan et al.
2006)(Hu et al. 2001) have examined the possibilityneeistigating changes in
alternative processing using individual probe ledagla. These methods have relied on
custom chips, or would not have detected eventigiezl by SplicerAV in this paper
because such methods do not examine events spanualtigle probesets. SplicerAV
provides a systematic means by which to detecirartpret inconsistent probeset
behavior within the same gene, a situation wherevansimplified perspective may be
obscuring relevant and important biological changes

This study marks the firgn massanalysis of mMRNA isoform changes in
existing conventional expression microarray dd#e have shown here that re-analyzing
such data using a different paradigm can uncoveelrmological insights and potential
prognostic markers.
Conclusion

The combination of material, personnel, and clinocests of obtaining gene
expression microarray data has resulted in a massohive of these data accumulated
over the past two decades. Many previously credégaisets, particularly clinical
datasets, are unique and cannot be reproduced.efdumprivate and public repositories
of microarray expression data exist, with the latgriblic repository, Gene Expression
Omnibus, containing over 50,000 data samples flmrAffymetrix U133 and U95 series
alone. In this chapter we demonstrated the utiitgpicerAV, the first program used to
analyze this existing datn masséor isoform specific changes that can result from

alternative mRNA processing(Robinson et al. 2010).
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3. Conventional Affymetrix U133 Arrays Provide
Superior Detection of 3’ Located Differential mMRNA
Processing Compared to Human Exon Arrays

In this chapter, | describe the implementation application of SplicerAV to
exon array data (SplicerEX) to analyze and charaetehanges in mRNA processing
during Epstein Barr Virus induced transformatiomafve B cells into lymphoblastoid

cell lines (LCLs).

3.1 Introduction

Genome-wide analysis of differential mMRNA procegdaecame accessible to the
general research community with the introductiothefcommercially available splice-
sensitive microarrays. One of the first commelgialailable splice-sensitive arrays was
the Affymetrix Human Exon 1.0 ST array, alternayve=ferred to as the HUEx or
Affymetrix exon array. The novelty of the AffymettHuman Exon 1.0 ST platform has
been a source of trepidation for scientists degigvhether to replace conventional 3’

IVT (3’ in vitro transcription) gene expressionays with the new HUEXx arrays.
Commercially available 3’ IVT microarrays have é&for decades and have provided a
benchmark to test the ability of exon array artayseliably assay gene expression. The
general consensus that has emerged is that the &udkperforms reasonably well in
replicating U133 assessment of differential gen@ession (Bemmo et al. 2008)
(Abdueva et al. 2007) (Robinson and Speed 200fe ability of U133 and HUEXx arrays

to detect changes in alternative mRNA processisgiod been compared previously.
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In this chapter we use an expanded version of plieesAV algorithm,

SplicereX, to study a B cell model of EBV inducgdhpbhoma to compare isoform
changes detected using the U133 and HUEx micraarréie have automated the
characterization of predicted differential mMRNA gessing events, which has made it
feasible to characterize widespread differencevents detected with the U133 and
HuEXx platforms.

We find that the U133 array is more sensitive ttienHUEX platform at detecting
changes in both tandem 3’ UTR length and 3’ tertréxan (TE) choice. This study
suggests that the U133 2.0 plus array, originadlsighed to interrogate gene expression,
may be the Affymetrix microarray of choice for detteg differential processing of 3’
transcript regions. Using SplicerEX, we demonstgiginificant biases in differential
MRNA processing towards 3'UTR shortening and rerhof/anternal exon content in
LCLs vs. naive B cells.

To our knowledge, the SplicerAV/EX set of programsiain the only programs
currently available to analyze differential mRNApessing on U133 arrays at the level
of the probeset (Robinson et al.). SplicerEX esahly program available capable of
automatically categorizing differential mMRNA proseg) events by mechanistic and
directional characteristics using commercially &tde microarrays. SplicerEX is freely
available upon request and is designed for expetahbiologists interested in finding

models of AS for in depth study.

3.2 Results

Sample Selection
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We were able to obtain three sets of lymphoblasteltlines (LCL) created from
matching B cell donors, and one set of unmatcheld &i@ B cells. RNA from all 4
LCL samples and all 4 naive B cell samples wereessfully hybridized to both the
U133 2.0 plus and Human Exon arrays for a totdleoindependent hybridizations (4

LCL and 4 B cell on the U133 array and 4 LCL arigl ells on the exon arragjgure

9).

Proliferating
B cells

Naive B cells

99 %

1) B o
< ”~

Figure 9: EBV induced transformation of Naive B cells.B cells are infected with
EBV and surviving cells are allow to proliferateymphoblastoid cell lines emerge
following several weeks of serial passaging.

Affymetrix U133 and HUEX arrays detect non-overlapping changes in genes
undergoing changes in alternative mRNA processing

A total of 5,682 genes were detected as being sgpdeabove background on
both the U133 and HuEx array platforms in eitheiidd cells or LCLs (Figure 10).

These genes composed 72% of the 7,874 genes delbgctiee U133 arrays and 74.3% of
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the 7646 genes detected by the HUEX arrays. Téedapvof genes that were detected
above background by both platforms was highly $igemt ¢ = 6122, p < .0001).

Of the 5,682 genes detected on both arrays, thaseconsiderable overlap
between genes that were detected as differengapyessed. A total of 512 genes
increased significantly (p < .01, fold change >»8)both array platforms, corresponding
to 40% of the 1,291 genes increased on the U133 &¥dof the 678 genes increased on
the HUEXx platformy? = 1219, p < .0001) . Similar overlap was founcamdecreased
genes. A total of 118 genes decreased significgntk .01, fold change > 2) on both
array platforms, corresponding to 64% of the 18degadecreased on the U133 and 53%

of the 222 genes decreased on the HUEX platfgfm {820, p < .0001) .
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Genes Detected Above Background

Increased Decreased  Alternatively
.« Processed

Fold Change > 2 Fold Change > 2 Splice Score >0
P-Val < .01 P-Val < .01 Splicer P-Val < .01
ANOVA P-Val < .01

Figure 10: U133 and HuEXx arrays detect non-overlapping changes in alternative
MRNA processing.

In contrast, there was no significant overlap betwgenes that were detected to
be alternatively processed by both arrggs=(0, p = 1). Only 2 genes, AURKB and
TXNDCS5, were independently considered hits by laothys (splice score > 0, splicer p
<.01, ANOVA p <.01). These two genes corresgoint 2% of the total genes
detected by either the U133 (126 total) or HuEXOjldrray.

SplicerEX reveals distinct gene ontologies regulated by transcrin vs. alternative
MRNA processing in B cell transformation
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High confidence lists of differentially expressezhgs were obtained by limiting
genes to those detected as differentially increasel@creased on both the U133 and
HuEx array platforms (Appendices A and B).

Ontology analyses of genes increased in LCLs viserta cells revealed
enrichment for biological processes involved if cgtle and cell structure (both P
<.001;Table 5). Among the list of 512 genes iasezl within LCLs vs. naive B cells,
only one gene with functions in mRNA splicitgNRPLL, was found. This indicated a
significant depletion of genes involved in mRNAiIsplg among the list of 512 genes,
which was expected to contain nine such genes.(RX. Enrichment of molecular
functions were observed in cytoskeletal proteimgareductases, and reductases (all P <

.002).

Table 5: Gene ontology enrichment in genes increased in LCLs vs. naiveéls

Biological Process P value| Genes

Cell cycle 1.7E-06 | ASPM,AURKA,AURKB,BRCA1,BUB1,BUB1B,C1
40rf166,CALM3,CCNA2,CCNB1,CCNB2,CCND2,
CCNE1,CDC25A,CDCA45L,CDC6,CDCA4,CDK®,
CENPE,CENPF,CHEK1,NEDD9,NUF2,0RC1L,P

LK4,PRC1,PTTG1,RCBTB2,RFC3,RPN2,SESN2,S
LFN13,STK38L,SUMOS3, TFDP1,TOP2A, TRIMG9,
TRIP10,TTF2,TTK,TUBA8,TUBGCP5,UBE2C

MRNA splicing 9.0E-04 | HNRPLL
(depleted)
Cell structure 9.2E-04) ACTN1,CKAP5,CORO1C,CTNNAL1,DBN1,DCT

N5,FOXM1,GTSE1,KIF14,KIF20A,KIF21A,KLHL
2,LCP1,LIMAL,LMNB1,LMNB2,MX2,SCARB1,$T
K38L,TJP2,TMOD1
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Table 5, continued.

Molecular Function | P value Gene

Cytoskeletal protein | 3.1E-04 ACTN1,ASPM,CCIN,CENPE,CKAP5,CORO1C,C
SRP1,CTNNAL1,DBN1,DCTNS,KIF11,KIF14,K|F
20A KIF21A,KIF23,KIF2C,KLHL2,LCP1,LIMA1
LMNB1,LMNB2,MX2

Oxidoreductase 1.1E-03 ACADM,AHRR,ALDH18A1,BLVRA,CRYZ,CYBR
D1,DECR1,DHCR24,DHCR7,FAR2,FAS,HSD17B
12,HSDL2,IDH1,IDH2,LOXL1,MDH2,ME1

Reductase 1.4E-03 CRYZ,CYBRD1,DECR1,DHCR24,DHCR7,FAR2
HSD17B12,HSDL2,MSRB2,NDUFS3,NDUFV1|R
RM1,UQCRC2

Ontology analyses of genes decreased in LCLs Vge iacells revealed
enrichment for pathways involved in JAK/STAT signgl apoptosis, and inflammation
mediated by chemokines (all P < .007; Table 6pldgjical processes among decreased
genes were enriched for B cell and antibody medimtgnunity, cytokine signaling, and
cell surface receptor signaling (all P < .001). Idtalar functions among decreased
genes were enriched for receptors, homeobox trigtiscr factors, and signaling
molecules (all P <.005).

Table 6: Gene ontology enrichment in genes decreased in LCLs vs. naive Bsce

Pathway P value | Genes

JAK/STAT signaling pathway 5.07E- | JAK1,PTPRC,STAT4
03

Apoptosis signaling pathway 5.20E-| BCL2L11,CASP8,LTB,MALT1,REL,T
03 NFRSF10A,

Inflammation mediated by 6.11E- | CXCR4,CXCR5,INPP5D,JAK1,NFAT

chemokine and cytokine signalin@3 C1,REL,STAT4,VAV3,

pathway
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Table 6, continued.

W WJ

GA

5

WU

Biological Process P value| Genes

B-cell- and antibody-mediated | 8.1E-06 | CXCR5,FCRL2,FCRL3,IL13RAL,LT

immunity LY9,VAV3

Cell surface receptor mediated | 1.2E-05 | CXCR4,CXCR5,ECE1,FOXP1,GAB

signal transduction R1,IL13RA1,IL4AR,INPP5D,JAK1,LT
,PTPRO,RASGRP2,SLA,STAT4,TA
P,TGFBR2,TNFRSF10A, TRAF5,VA
3

Cytokine and chemokine 1.4E-05 | CXCR4,CXCR5,IL13RA1,IL4AR,INPR

mediated signaling pathway D,LTB,STAT4,TGFBR2, TRAF5

Molecular Function P value | Genes

Receptor 3.7E-04| CXCR4,CXCR5,FCRL2,FCRL3,GAH
R1,IL13RA1,IL4AR,KIAA0999,LY9,N(
TCH2,NR4A1,PTPRC,PTPRO, TGFE
R2,TNFRSF10A

Homeobox transcription factor 4.2E-OBHHEX,SATB1,ZHX?2

Signaling molecule

4.5E-03

IL16,INPP5D,LTB,LY9,NOTCHZ,RA
GRP2,SLA,STAT4,TRAF5

S

Because of the small degree of overlap betweematiege mMRNA processing

changes detected by the two arrays, ontology aesligs alternatively processed genes

were performed on the combined list of genes tleewalternatively processed according

to either platform (N = 281). This included gettest were detected on one platform but

not the other. Among the 281 genes differentiptlycessed between LCLs and naive B

cells, there was enrichment of molecular functimnwelving cysteine proteases (P =

.006), transcription factors (P =.009), and RNAdang proteins (P =.01). Alternatively

processed cysteine proteases included CASP6 an®CABranscription factors

included TCF3, TCF4, and TCFL5. RNA-binding prateincluded STAU1 and

STAUZ2.
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Table 7: Gene ontology enrichment in genes differentially processeeétween LCLs
vs. naive B cells

Molecular Function P value | Genes
Cysteine protease 5.71E-| CASP6,CASP7,CTSS,PGPEP1,USP3
03 0,USP48,USP6
Basic helix-loop-helix 8.76E- | MSC,MXD4,TCF3,TCF4,TCFL5
transcription factor 03
Other RNA-binding protein 1.18E- | Clorf107,CPSF6,CUGBP2,RBM19,R
02 BM8A,RCL1,RTCD1,STAU1,STAU
2

B cell transformation reduces 3'UTR length and internal exon content

SplicerEX assigned one of the following six mutyakclusive categories to
genes detected as alternatively processed: 1)naltiee 5’ initiation 2) Internal Event 3)
Tandem 3’ UTR 4) Alternative 3’ Terminal Exon chei) Alternative transcript length,
and 6) unclassified (Table 8). All classified caiges generated specific hypotheses that
agreed with subjective assessments and could éetlgiitested using experimental
validation methods such as RT-PCR or northern bidftthe top 20 hypotheses
automatically generated by SplicerEX for both tHEBB and HUEXx platforms, all 40
automated hypotheses agreed with the subjectieg@aration assigned by the

researchers.
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Table 8: Categories of mMRNA processing events assigned by SplicerEX

Category Description Directional Subtypes Optim
Detection
Platform
5’ Initiation Change in 5’ transcription Relative increase in | Exon
initiation site. Considered to | 5’ most initiation site | Array
result in coding changes if 5’ | (more 5’)
isoform possess three or moreRelative decrease in
exons prior to the start of the | 5 most initiation site
3’ isoform. (more 3’)
Internal Event Changes in internal exon Inclusion Exon
content. Includes primarily Exclusion Array
cassette exons, alt 5’ SS, alt 8’
SS, and intron retention.
Tandem 3’ Change in length of 3’ TE. Shorten U133
Terminal Exons| Almost universally results in | Lengthen
non-coding changes in 3 UTR
length.
3’ Terminal Change in choice of 3' TE. More 5’ U133
Exon Choice | Almost universally results in [ pMore 3’
protein coding changes.
Alternative 1) Metaprobeset 1 or 2 N/A
Transcript interrogates 3' TE
Length
Unclassified/ Unable to be categorized usindN/A
No class above

These general categories reflect basic mechaunissicriptions of each alternative

processing event, and are the same regardlessidi wtndition is considered the

reference group. SplicerEX also assigns directisualatypes, which describe a change in
processing associated with a specific phenotydeermative 5’ initiation start sites and

alternative 3’ terminal exons were subcategorizedeang more 5’ or 3’ located within

UCSC gene transcripts. Internal cassette exong madhe bulk of observed internal

events, and were succesfully characterized withrndgto inclusion vs. exclusion.
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Tandem 3’ terminal exon events were uniformly obsdrto result in 3'UTR length

changes, which were either lengthened or shortened.

B cell transformation reduces 3'UTR length and internal exon content
Alternative mRNA processing categories differechgigantly by platform ¢2 =

141, 5 df, P <.001; Figure 11). The U133 arratgcked primarily changes in 3' UTR

length (50%) and alternative 3’ terminal exon ckdi26%), while the HUEX array

detected mostly internal cassette exons (45%) kehative 5’ initiation sites (21%).

U133 Exon Array Combined
Length 8%
Alt3' TE Nl
26% .

Internal
23%

L th Null
g

Alt5'
Internal 5%

(N=144) (N=139) (N=281)

Figure 11: Distribution of events observed by array platform.

The U133 and HUEXx platforms exhibited similar parfance with regards to the
total number of events detected and hypothesetedredestable hypotheses could be
automatically generated for the majority of genedoth the U133 (125/ 144, 87%) and
HuUEx (123/139, 88%) arrays. Of the 125 hypotheseated by the U133 array, 39

(31%) were predicted to result in alternative ORBRge and subsequent isoform specific
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protein coding changes. Of the 139 hypothesesextdry the HUEX array, 69 (56%)
were predicted to result in changes in protein mgdianscript regions.

As expected, the U133 arrays displayed a stramgetecy to detect changes in
MRNA processing at the 3’ end of genes. HUEXx ardhgplayed an equally strong

tendency to detect events in the 5’ and interngtigoes of genesHigure 12).

5' Events Internal Events 3' Terminal Events
C E— |
= L
Th =+ |
2 —__ Total |
c p=— |
a | |
s 25 Exon Array - U133 |
H : :
D . . o S : i:
Alt5' Internal Alt3'TE Tandem 3'UTR

Figure 12: U133 and HuEXx arrays preferentially detect changes in mRNA
processing in 3’ vs. 5'/internal transcript regions

Relative to naive B cells, LCLs preferentially sleoed mRNA 3'UTR lengths (P

= 2e-15) and excluded internal exon content (both3e-8;Figure 13).
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Alt3' TE 3'UTR

N=82
P=2e-15

Alt 5' start Internal Event

N=65
P=3e-8

Figure 13: B cell transformation reduces 3'UTR length and internal exon caent

Of the 82 changes in tandem 3'UTR length detecte8licerEX, 76 (93%)
shortened the 3'UTR (P = 2e-15). Of the 65 intkspiicing events detected by
SplicerEX, 53 (82%) excluded internal exon con{@&t 3e-8). There was no preference
towards more 5’ or more 3’ located terminal exonict in LCLs vs. naive B cells
(P=.19). There was no significant preference todea&hoosing a more 5’ located
alternative start site, however a weak trend (88F was observed for choosing more 5’

located initiation sites in LCLs vs. Bcells.



3.3 Methods
Adaption of SplicerAV to exon array data

Previously, we created a program, SplicerAV, wheafiploys a Gaussian mixture
model to detect changes in mRNA processing fronveotional Affymetrix 3’ IVT
expression microarrays. We adapted our originaisSian mixture model to efficiently
function on a wider array of newer splicing arragpsparticular the Affymetrix Human
Exon 1.0 ST (HUEx). The updated algorithm has hested on both conventional and
exon array data, and is capable of both detectidgcategorizing changes in alternative
MRNA processing. To differentiate this algorithmnrh the previous SplicerAV
program, we refer to the new program as SplicerEX.

Creation of an algorithm capable of correctly categing alternative mRNA
processing event types in both conventional and exay data posed several
challenges. Within the U133 2.0 plus series, ganesargeted by an average of 3.2
probesets per gene, with few genes interrogateddrg than four or five probesets. In
contrast, the HUEX series uses an average of I@pets per gene, with the majority of
genes targeted by 4-40 probesets per gene. Tiseiravo concerns 1) excessive
multiple hypothesis testing and 2) difficulty idéying specific isoform ratios.

The large number of hypotheses being tested per gesented two issues. First,
each gene on the exon array was receiving a lagalty for multiple hypothesis testing,
likely resulting in a increased rate of false neget. Second, the sheer number of
hypotheses tested raised a simultaneous concenredesting and may have increased

the number of false positive results.
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As a separate issue, the large number of probpsetent on exon arrays made
identification of specific isoform ratios and sufggent categorization of splicing events
difficult. Isoform ratios within the original U13&ray were calculated by identifying the
single most significant increasing probeset (GrAyiand contrasting it the single most
significant decreasing probeset (Group B). We ébtivat with the U133 arrays, these
single probesets provided the appropriate levébais to accurately categorize mRNA
processing events, described in the next sectiogontrast, categorization using single
probesets within the exon arrays resulted in lgrgdbitrary selection of transcript
features that were too focused on single intermahg to reliably identify commonly
observed isoform changes. We attempted isoforegoaization using the entire group
A and group B probesets, but found that the inolusif all interrogated probesets
provided too large a focus and incorporated mamyaf@nging or irrelevant probesets.
Metaprobeset feature definition

We resolved these challenges by collapsing higbiyetated probesets together
into metaprobeset features. Analyzing exon aredg dt the metaprobeset feature level
both reduced multiple hypothesis testing and siamglbusly focused feature selection by
collapsing related probeset changes together anudirgy irrelevant probesets. By
adjusting the correlation threshold used to coktgm®besets, we were able to tune our
analysis to the appropriate level of focus. Wenfibthat the original SplicerAV
algorithm was able to operate well on exon arrdg daalyzed at the metaprobeset

feature level, allowing us to combine these apgreadnto a single program, SplicerEX,
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that was capable of analyzing both U133 and exayafata by simply changing the
level of feature selection.
Metaprobeset Implementation and Selection of Correlation Threshold

Metaprobeset feature selection was accomplishedvaral steps. First, pairwise
Pearson correlations were calculated between @ligsets targeting the same gene. If
this correlation exceeded a user set thresholdettveo probesets would be joined
together into a single probeset. Correlations betwthe joined probesets and remaining
probesets would then be averaged to create a nemiggcorrelation matrix. The
process was then repeated until no remaining featwere correlated above the set
threshold. The resulting features, each made wmeir multiple probesets, each
constituted a metaprobeset.

Metaprobeset collapse using an empirically derc@uelation threshold of .7
maximized our ability to effectively categorize mRIgdrocessing events and greatly
reduced the average number of features per generé 14). Within each gene, the
single largest metaprobeset was considered totéeagating the main isoform, and was

used to calculate changes in overall gene expressio
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Figure 14: Number of features targeting individual genes by array platform.

Automated categorization of mMRNA processing events

In order to fully benefit from large scale analysé€snRNA processing, we
devised an algorithm capable of automatically aatiegig SplicerEX hits into
mechanistically distinct categories: 1) Tandem FRJdhoice 2) Alternative 3’ terminal
exon choice 3) Alternative 5’ transcript initiatidh Internal exon choice 5) Alternative
transcript length and 6) Unclassified. These aateg were chosen to correspond
loosely to event categories described previoustie®p sequencing studies of alternative
MRNA processing by Burge and colleagues (Wang. &08I8): The Burge categories
were adapted to what we were able to reliably dbfigate within the framework of event
inference based on two single metaprobesets. eA¢dime time, we wanted to keep the
classification scheme reasonably simple to prorratesparency and encourage external

adoption.
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In addition to categorizing AS events by mechanisliass, SplicerEX also
assessed directional changes in treatment vs.at@ainditions for categories 1-4.
Specifically, SplicerEX differentiates 1) lengthenes. shortened 3'UTR choice, 2) 5’
prime vs. 3’ located TE choice, 3) 5’ vs. 3’ loga@dternative 5’ initiation start site, and
4) Internal event inclusion vs. exclusion. Theadetl schema used to categorize
alternative processing events into mechanisticdargttional categories is described in
detail in Appendix D.

Preprocessing and implementation Details

SplicerEX takes normalized probe or probeset intiessas input, which can be
generated using a number of existing software aptidReadily available options for
probeset level normalization of U133 and exon adatya include the Affymetrix
Expression Console, bioconductor R packages, BafiRKYS, and others. For our
exon array analysis, we used XRAY (Biotique Systems) to check for quality control,
limit analysis to the “core” probeset level, genenarobeset level normalized expression
values, and filter out probesets not detected abaekground. Background detection in
XRAY was assessed by removing individual probes Wwigh or low GC content, low
variance, or expression below background and petbdsr which three or more probes
were retained were included for analysis. Mediarved probeset expression levels for
81,828 probesets were used as input for Splicer&Xan additional background
expression filter, SplicerEX further removed anghmsets with logexpression below 6.
For the U133 analysis, we used RMA Express to geegrobeset level normalized

expression values and PANP (described in chaptier fljer out probesets not detected
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above background. The full set of 54,675 U133 psels were used as input for the
SplicerEX program.

To improve the quality of hypotheses generatedhc&EX, the program can
limit the analysis to a user-specified set of peste. We have generated default probeset
lists for both the U133 and exon array platformet thmit analysis to probesets that
overlap one or more UCSC gene transcripts. Ovevigpdetermined using Affymetrix
annotated target probeset sequence coordinatesarhring them to the March 2006
(hg18) version of the human genome and checkingverlap with known UCSC genes.
Genomic coordinates of U133 probeset target coatégwere not publicly available
from Affymetrix or from the UCSC genome browsergdawvere generated using BLAT to
align Affymetrix probeset sequences against theckl@006 genome and will be
provided as supplemental material in a later pabbo..

SplicerEX was implemented in Perl, with typical R@ times of 3-5 minutes for
U133 2.0 plus data and 10-15 minutes for exon dedg using metaprobeset features.
Perl is a freely available programming language ihavidely available for most
operating systems: SplicerEX has only been tesdedja PC.

EBV-induced B cell transformation and mRNA preparation

Human B cells were obtained from normal donor befigts through the Carolina
Red Cross and peripheral blood mononuclear ceB8A®) were isolated by Ficoll
Hystopaque gradient (Sigma #H8889). CD19+ B sedlse purified from PBMC using
the BD iMag Negative Isolation Kit (BD,cat #55800Purity was routinely greater than

90% as determined by flow cytometry. Total mMRNAsvpaepared from four normal
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donors in two conditions: 1) uninfected purified T B cells and 2) monoclonal LCL
derived by limiting B95-8 virus dilution on PBM@B95-8 virus was produced from the
B95-8 Z-HT cell line as previously described (Jatsen et al. 2004).

cDNA preparation, labeling, and fragmentation wadgrmed using the Gene
Chip wt cDNA synthesis and amplification kit (Affyetrix cat# 900673) and Exon Array
labeling kits (Affymetrix cat# 900671). Eight salep (4 of each condition) were
hybridized to HUEXx 1.0ST Exon Arrays (Affymetrixt#€©00650) and the chips were
scanned in the Duke Microarray Facility.

Gene ontology and hit lists of increased, decreased, and differentially pressed
genes

To compare the performance of U133 and HUEX platéothe set of genes
differentially detected, expressed, and processad sompared. Comparisons of
differential gene expression and processing wergdd to genes detected by both arrays
to provide a fair assessment of overlap. All genlogy analyses were performed
using PANTHER(Thomas et al. 2003). The set of geletected above background by
both platforms (N=5,682) was used as the referésictr increased and decreased gene
expression lists. The set of genes detected dimskground on either platform

(N=9,838) was used as the reference list the @iffigally processed gene list.

3.4 Discussion

In this chapter, | have described the first congmariof the ability of U133 and
Exon arrays to detect changes in alternative mRM&gssing using a novel program,

SplicerEX. We found that both the U133 and HuEatfprms were capable of detecting
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comparable numbers of overall changes in diffeeémiRNA processing, but detected
almost no events in common. We attribute the lgerlap between the platforms to
biases in the types of events detected by each. arra

We found that the U133 array was superior to thExHpiatform for detecting
changes in both 3’ UTR length (72 vs 10 events)3nkE choice (38 vs. 8 events). This
study suggests that the U133 2.0 plus array, @ilyinesigned to interrogate overall
gene expression, is currently the most sensitignAdtrix microarray for detecting
differential processing of 3’ transcript regions.

It is well known that the U133 array design preifialy targets probesets
towards the 3’ ends of genes. Among U133 probdkatdarget any known UCSC gene,
we found that 90% interrogated a 3’ terminal extii.33 arrays use cDNA prepared
using oligo dT reverse transcription, which progdiee strongest amplification of the 3’
ends of transcripts.

A somewhat surprising finding of this analysis Wl relative inability of HUEX
arrays to detect differential processing at theri of genes. There are several likely
explanations as to why this might be the case.aralysis by Bemmo et al previously
examined the ability of HUEX arrays to detect cleanig differential mMRNA processing
and found that a large number of false positivenes/evere detected at the 5" and 3’ ends
of genegBemmo et al. 2008). The authors demonstratedhleagignal strength of the
HuUEXx arrays was particularly weak at the 3’ endgesfes, and hypothesized that the lack
of signal was due as a consequence of using rapdomed cDNAs. A study by

Robinson and Speed suggested that individual Hatay @robeset signals are less
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reliable than U133 probesets as a result of smpitdre feature size and the use of fewer
probes per probes@Robinson and Speed 2007). Lastly, it is posshe HUEX array
probeset target locations within the genome daeytesent all 3' UTRs. However, we
found in preliminary analyses that HUEx probesatisriogated 90% of all U133 probeset
target sequences, suggesting that this is unlikely.

The analysis presented here suggests that reseaddoeding between the U133
and HuEXx platforms should choose which platformge based on their specific research
objectives. Changes in 3’ terminal processing b&agf particular interest in studying
gene regulation by miRNAs, known to largely tartdpet 3' UTRs of most transcripts
(Friedman et al. 2009pandberg et al. 2008). Changes in 5’ transaniiation may be
of interest to studying using of alternative proerst Internal processing events,
composed largely of cassette exons, may be oesitén those interested in identifying
splicing events that result in changes in ORFsraadltant encoded protein structure.
We found that roughly half of events detected byrearray were hypothesized to result
in protein coding changes in transcript structacenpared with only a quarter of U133
predictions.

We combined both HUEx and U133 arrays to demomshrighly significant
biases towards 3' UTR shortening and internal exariusion in LCLs vs. naive B cells.
A previous study has demonstrated widespread 3’ Bfdrtening in proliferating cell
types (Sandberg et al. 2008), which agrees with the kiglgnificant 3'UTR shortening
we observed in the rapidly proliferating LCLs reltatto naive B cells. In addition to

reproducing this observation, our study finds a garably significant preference for
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exclusion of internal exon content in LCLs vs. BieReduction of 3'UTR length in
proliferating cells has been suggested as a mesthawfi global evasion of regulatory
inhibition by miRNAs(Sandberg et al. 2008). We speculate that renudvaternal
exons may provide a similar role in avoiding miRNWibition in proliferating cell
types. Confirmation of this hypothesis would margignificant change in our current
understanding of mMiRNA message inhibition, whick hat been observed within
internally located exons on a genome wide s(@detel 2009).

There are a number of programs that have beenajmabto analyze Affymetrix
exon array data for changes in alternative mRNAg@ssing, discussed in chapter 1. Of
these programs, PLATfSandberg et al. 2008) has been previously beahtase
calculate changes in tandem 3'UTR length withinifeating cell types, but is not
capable of otherwise characterizing differenti@lqessing events. Previous algorithms
have been used to deconvolute relative abundarggecffic splice variantg.i and
Wong 2001; Wang et al. 2003). However, these algorithms have only been applied
handful of well-characterized genes and are nolicgige to commercially available
microarrays.

To our knowledge, the SplicerAV/EX set of programsain the only programs
currently available to analyze differential mRNAopessing on U133 arrays at the level
of the probesgiRobinson et al. 2010). SplicerEX is the only perg available capable
of automatically categorizing differential mRNA pessing events by mechanistic and
directional characteristics using commercially &lde microarrays. SplicerEX is freely

available upon request and is designed for expetahbiologists interested in finding
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models of AS for in depth study. RT-gPCR experitakwalidation of events predicted

in this chapter is currently underway.
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4. Future Directions

The SplicerAV and SplicerEX programs are desigegeinerate biological
hypotheses that provide potential areas of futesearch. One such thread is the story of
Oncostatin M Receptor (OSMR), which was originalgtected by SplicerAV and
confirmed by RT-PCR to be alternatively processea model of breast tumor

microenvironment.

4.1 Proposed Role for the Alternative mRNA processing of
Oncostatin M Receptor in the Tumor Microenvironment

In solid tumors, unrestricted and unorganized geivth leads to an environment
in which the supply of oxygen, nutrients, and wastaoval afforded by local
vasculature becomes limited. This so-called tum@roenvironment is characterized by
spatially and temporally fluctuating hypoxia, agdg and nutrient deprivation(Gatenby
and Gilles 2004; Bristow and Hill 2008; Dewhirstagt2008). Cancer cells within this
harsh environment are prone to apoptosis, decreasdleslirvival, and stress-related
signaling, all of which act to promote the evolatiof more aggressive tumors (Gatenby
and Gilles 2004; Bristow and Hill 2008; Dewhirstagt2008; Dewhirst 2009).

In order to identify and study potential alternatprocessing events of interest in
the tumor microenvironment, SplicerAV was usedrtalgze U133 2.0 plus microarray
data generated from primary human mammary epittadis exposed to both lactic
acidosis (25mM, pH 6.7) and hypoxia (.5%) for 24utsgChen et al. 2008). Oncostatin
M receptor was the top hit detected as undergdmagges in mMRNA processing, which

was validated by RT-PCHigure 15).
72



Splicer Prediction RT-PCR Validation

Hypoxia
@ Controls | 4+La
Long > L < 1. 2|3 4
OSMR (Membrane) [1] [HHEHS (SHOHHHAHHLS 18] O
— —
Isoform Short |1 |H H 5 Hél -
(Soluble)
— Probe set behavior: Primers:
UTR > Increased from controls — Forward
[] translated exon I>Decreased from controls < Reverse

Figure 15: Splicer AV predicted alternative processing of OSMR validied by RT-
PCR. OSMR isoform specific regulation was predicted Ipyicer AV as shown on the
left. The location and expression change of edtyn#fetrix probeset interrogating the
OSMR transcript is shown as a circle with arrondigating changes in that probeset’s
expression level upon exposure to hypoxia anddactid. The relative abundance of
each predicted transcript (left) was confirmed émisquantitative & labeled RT-PCR
(right). PCR primer locations are indicated welft land right arrows.

Overexpression of the OSM receptor has been adsedawvith poor patient
outcomes in cervical cancer (Ng et al. 2007) armtkaut mice lacking the OSM
receptor have deficiencies in maintaining spegfimgenitor cell populations (Tanaka et
al. 2003; Nakamura et al. 2004). OSMR’s princigland, oncostatin M (OSM), was
initially discovered as a soluble protein ablertbibit melanoma proliferation and
survival without affecting normal fibroblasts (Zag et al. 1986). It is an inflammatory
cytokine produced by activated human T-lymphocytesnocytes, macrophages, and
neutrophils (Miles et al. 1992; Nair et al. 1992atthas been shown to inhibit growth of a
number of human tumor cell lines (Zarling et al8@9Horn et al. 1990) and stimulate
tumor invasion (Holzer et al. 2004; Queen et a22@orcyk et al. 2006), epithelial-
mesenchymal transition (Queen et al. 2005; Pokagk. 2007), fibroblast, endothelial,

and vascular smooth muscle cell proliferation (Bnat al. 1991; Grove et al. 1993),
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angiogenesis and VEGF production (Vasse et al.;1R6povic et al. 2003; Weiss et al.
2003; Queen et al. 2005; Ehashi et al. 2007; Regh 2007), and coagulation (Mirshahi

et al. 2002).

OsSM

NI
)

OSM OSM paracrine OSM paracrine
Signaling Inhibition and direct
inhibition
Normal Neighbor of Hypoxic + Acidic

Hypoxic + Acidic

Figure 16: Schematic of hypothesized OSMR regulation of OSM signaling within

the tumor microenvironment. Normally, OSM signals through the OSMR:gp130
heterodimeric receptor to promote tumor invasioth @amgiogenesis of cancer cells (left).
As cells near hypoxic and acidic regions of a turnttoeey encounter soluble OSMR
(sOSMR), which sequesters and inactivates OSMatiaguine inhibition (middle).
Breast cancer cells directly exposed to hypoxialaaiic acidosis not only produce the
antagonistic SOSMR, but also reduce membrane esipresf membrane bound OSMR

(right).
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Regulation of OSMR and related gene pre-mRNA ssiog could be involved
in the angiogenic switch from benign to malignaslidscancers and may function as an
important mechanism of regulating angiogenesisastases, and inflammatory
responses in the breast tumor microenvironmentur&unvestigation into regulation of
OSMR at the level of alternative mRNA processing/mpieovide novel opportunities for

therapeutic interventions in the treatment of kdraad other solid tumors.

4.2 Isoform signature generation

Gene expression signatures are now being usedatlinto help assess breast
cancer patient prognosis through the applicatioests such as Oncotype DX and
Mammoprint. The creation of such signatures fo@standard process. Typically one
or two gene expression data sets are used to selécefine a set of genes that are
individually associated with patient prognosis eme other phenotype (chemoresistant,
etc). A summary statistic is created using a weiglsum of these genes’ expression
values. The equation for this summary statistiuctvis often referred to as a gene
signature, is then tested for the ability to geteeeasummary statistic that is reproducibly
associated with prognosis or another phenotyp@énas more validation cohorts.

Gene signatures are created typically by choosingessubset of genes whose
expression levels are most significantly correlat#ti the phenotype of interest in the
training sets. In our analyses of oncogene ovpression, breast cancer prognosis, and
B cell transformation, we observed minimal ovettepween the most significant gene
expression changes and the top scored isoformalasioges. The creation of an isoform

signature, analogous to a gene signature, coutddaged in the same way that a gene
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signature is created. This isoform signature cheldreated and tested on the same set
of data as the original gene signature. Becaudigedbw overlap between top isoform
ratios and top genes, this isoform signature cbaice the potential to represent an
independent biological dimension of the phenotyjpiaterest.

By providing an orthogonal indicator of prognossaform signatures could in
theory be used in the future to augment existingegggnatures to possibly provide a

more robust phenotypic indicator.

4.3 Automated sequence extraction and motif finding

Part of the novelty of the SplicerEX algorithm tekto its ability to generate
specific hypotheses associated with a mechanigtegory and directionality. Further
work on the SplicerEX algorithm may be able to auwdite extraction of relevant
regulatory sequences of top targets. With adequatebers of top hits or relaxation of
top hit criteria, the program may be used to firedacting regulatory elements involved

in the regulation of alternative mRNA processimgluding miRNA seed sequences.

4.4 Concluding Remarks

As our current understanding of biology and outitgitio generate data become
increasingly more complex, there will be an evereéasing need for biologically
motivated mathematical models. As mathematicaletsllecome increasingly more
complex in their structure and ability to generdaa, there will be an ever increasing
need for experimental biology. Also, never putatbria plate in the cell culture

incubator.
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Appendix A: Genes increased in LCLs vs. naive B cel Is
Fold TCluster Fold TCluster
Increase P-val Gene 1D Change | P-Value Gene 1D
8.4 | 4.4E-03 | LAMP3 2707876 2.5 | 1.7E-03 | ACAT2 2934131
8.2 | 6.8E-05 | CD226 3812385 2.5 | 5.6E-04 | Clorf85 2438093
6.8 | 6.4E-04 | 1132 3645626 2.5 | 2.4E-05 | ANLN 2997376
6.6 | 2.9E-03 | CHI3L2 2351687 2.5 | 1.3E-03 | NCOR2 3476457
6.5 | 3.6E-03 | TXNDC5 2940826 2.5 | 4.9E-03 | STARD13 3508898
6.2 | 3.1E-04 | CCND2 3401704 2.5 | 7.1E-03 | CCT3 2438125
6.2 | 4.1E-04 | SLC12A8 2693014 2.5 | 1.8E-04 | DUSP16 3444958
6.0 | 2.5E-03 | FCER2 3848492 2.5 | 2.7E-04 | SGMS1 3289235
5.8 | 3.7E-04 | SCARB1 3476665 2.5 | 4.5E-03 | NCALD 3147173
5.7 | 9.9E-04 | UBE2C 3887049 2.5 | 8.9E-04 | AK3 3197318
5.6 | 4.9E-03 | IFI44L 2343473 2.5 | 1.0E-04 | FLOT1 2948587
5.4 | 7.0E-03 | CD300A 3734379 2.5 | 1.4E-07 | MBOAT1 2944491
5.1 | 8.1E-04 | SLAMF7 2363202 2.4 | 4.9E-04 | ZFAT 3154700
5.0 | 1.3E-03 | EBI3 3817380 2.4 | 7.6E-03 | MX2 3922037
4.9 | 6.1E-05 | USP18 3936550 2.4 | 2.6E-04 | AACS 3436571
49 | 4.0E-05 | LTA 2902407 2.4 | 5.3E-03 | ZNF215 3318989
4.9 | 1.8E-03 | CD38 2719656 2.4 | 2.2E-04 | ACADM 2342576
49| 2.3E-03 | IFITM1 3315675 2.4 | 8.2E-04 | EBP 3976670
4.8 | 6.7E-03 | UCHL1 2725013 2.4 | 2.7E-04 | PBK 3129149
4.7 | 9.2E-03 | ZWINT 3290210 2.4 | 8.1E-05 | SEC61A1 2641032
4.7 | 2.9E-03 | C120rf75 3429857 2.4 | 2.7E-06 | AIG1 2928690
4.7 | 1.5E-04 | BLVRA 2999544 2.4 | 7.7E-04 | TMEM55A 3144235
4.6 | 5.2E-04 | BUB1 2570616 2.4 | 4.7E-04 | TNFRSF8 2320683
4.6 | 2.2E-04 | CCNA2 2784113 2.4 | 1.1E-03 | PSMD14 2512701
4.6 | 1.7E-06 | HDGFRP3 3636522 2.4 | 1.6E-03 | LMAN2 2888698
4.6 | 1.1E-03 | HIURP 2604254 2.4 | 2.3E-04 | CHEK1 3354799
4.5 | 3.8E-04 | P4HB 3774241 2.4 | 1.8E-04 | DENND1A 3224650
4.5 | 6.0E-05 | AICDA 3443206 2.4 | 4.1E-04 | PDIA6 2540317
4.5 | 2.1E-03 | HSPAS 3225398 2.4 | 1.7E-05 | TPM4 3823511
4.4 | 8.0E-05 | MKI67 3312490 2.4 | 6.2E-04 | PCBD1 3293537
4.4 | 2.8E-03 | DUSP4 3129731 2.4 | 1.7E-04 | IDH1 2597010
4.4 | 3.9E-04 | ZMAT3 2706791 2.4 | 9.0E-03 | ANXA4 2487412
4.4 | 7.1E-06 | CYBRD1 2515240 2.4 | 6.8E-04 | INSIG1 3033209
4.3 | 2.2E-05 | MSC 3140213 2.4 | 5.9E-03 | LRRC59 3762355
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4.3 | 4.7E-05 | TJP2 3173880 2.4 | 8.5E-05 | PBX3 3189311
4.3 | 1.1E-04 | DST 2958325 2.4 | 1.3E-04 | HSDL2 3185205
4.3 | 1.0E-03 | NEK6 3188697 2.4 | 5.1E-04 | ORC1L 2412799
4.3 | 1.1E-03 | AHRR 2798586 2.4 | 6.7E-03 | DUSP2 2565119
4.3 | 8.2E-05 | GTSE1 3949055 2.4 | 1.8E-05 | KIF11 3258168
4.3 | 1.2E-04 | AURKB 3744263 2.4 | 2.0E-04 | NT5DC1 2922521
4.2 | 8.0E-04 | DHCR24 2413907 2.4 | 4.2E-05 | UBE2J1 2964200
4.2 | 5.0E-03 | CCNB2 3595979 2.4 | 7.0E-03 | RAB35 3474228
4.2 | 1.5E-03 | TNFRSF17 3648391 2.4 | 6.7E-04 | GAS7 3744965
4.2 | 9.0E-04 | OAS1 3432438 2.4 | 4.5E-03 | CUTA 2950714
4.1 | 7.7E-04 | HYOU1 3394123 2.4 | 9.2E-04 | SLC16A1 2428501
4.1 | 5.1E-03 | KIAAO101 3629103 2.4 | 1.2E-05 | RAD54B 3144973
4.1 | 2.9E-03 | PSAT1 3175971 2.4 | 4.3E-04 | ALDH18A1 3301512
4.1 | 1.1E-03 | LAP3 2720145 2.4 | 8.1E-04 | NIPSNAP1 3956909
4.1 | 2.7E-04 | FAS 3257098 2.4 | 2.1E-04 | RCBTB2 3513549
4.1 | 1.4E-03 | FEZ1 3396593 2.4 | 6.1E-04 | HMMR 2838656
4.0 | 6.0E-04 | DHCR?7 3380697 2.4 | 3.4E-06 | STIL 2411228
4.0 | 2.9E-04 | KCNN3 2436826 2.4 | 9.6E-05 | RAD51AP1 3401804
4.0 | 2.4E-05 | CDC20 2333136 2.4 | 8.3E-04 | SRM 2396461
4.0 | 5.6E-04 | BST2 3854454 2.4 | 1.2E-03 | SLC31A1 3185522
4.0 | 1.0E-04 | RCN1 3325503 2.4 | 5.6E-07 | PLK1 3653072
4.0 | 2.0E-03 | IDH2 3638760 2.4 | 2.7E-04 | SLC1A4 2485636
3.9 | 6.2E-05 | MACC1 3040518 2.3 | 1.5E-05 | ABCC4 3521174
3.9 | 1.2E-04 | RHOC 2428405 2.3 | 3.5E-03 | CLPP 3818376
3.9 | 1.2E-03 | LY6E 3119339 2.3 | 6.7E-04 | PDIAS 2639225
3.9 | 3.8E-06 | ARNTL2 3409127 2.3 | 2.5E-03 | C220rf9 3963676
3.8 | 8.9E-05 | LIMA1 3454331 2.3 | 2.3E-03 | NUP62 3868183
3.8 | 1.5E-05 | LDLR 3821015 2.3 | 4.6E-04 | TRIM69 3592054
3.8 | 2.4E-04 | TNIK 2705266 2.3 | 2.8E-03 | TMEM106C 3413278
3.8 | 5.4E-04 | NUSAP1 3590388 2.3 | 5.6E-04 | TFRC 2712632
3.8 | 8.5E-05 | CCNB1 2813414 2.3 | 1.5E-04 | MRPL53 2560141
3.8 | 8.6E-03 | ENOSF1 3795866 2.3 | 5.2E-05 | PLK4 2742985
3.8 | 6.0E-05 | SMAD1 2746119 2.3 | 9.1E-05 | FNDC3A 3489212
3.8 | 3.0E-03 | TOP2A 3756193 2.3 | 1.8E-03 | HSD17B12 3328069
3.7 | 5.1E-04 | PCCB 2644014 2.3 | 8.1E-05 | LGALSS 3715274
3.7 | 4.7E-06 | TRPV2 3712062 2.3 | 2.2E-04 | YES1 3795942
3.7 | 3.0E-04 | MAP2K6 3733065 2.3 | 2.8E-05 | RRM1 3318009
3.7 | 5.0E-03 | ENTPD1 3259253 2.3 | 1.6E-03 | SCPEP1 3728037
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3.6 | 5.2E-03 | TACC1 3094778 2.3 | 3.2E-04 | CARM1 3820865
3.6 | 2.2E-03 | MTHFD1 3540007 2.3 | 1.4E-05 | HS2ST1 2345196
3.6 | 4.3E-04 | MRPL4 3820414 2.3 | 1.8E-04 | MCM10 3235789
3.6 | 4.8E-04 | WDR40A 3203855 2.3 | 1.1E-05 | BRCA1 3758317
3.6 | 1.4E-04 | GNA15 3816815 2.3 | 8.4E-06 | SYT11 2361154
3.6 | 6.3E-06 | SESN2 2327391 2.3 | 1.9E-03 | C1l40rfl66 3535674
3.6 | 1.9E-04 | CDK6 3061319 2.3 | 7.3E-04 | WHSC1 2715076
3.6 | 1.2E-03 | MTHFD2 2489172 2.3 | 2.9E-04 | PRDM1 2919669
3.5 | 5.6E-04 | DLGAPS 3565663 2.3 | 2.4E-04 | CALU 3023060
3.5 | 2.9E-03 | CD274 3161082 2.3 | 2.1E-03 | SSR4 3995975
3.5 | 1.1E-04 | SEC24D 2783316 2.3 | 6.9E-04 | SAMHD1 3904691
3.5 | 1.1E-04 | CORO1C 3470549 2.3 | 1.3E-03 | HNRPLL 2548871
3.5 | 1.0E-03 | IRF4 2891341 2.3 | 2.8E-04 | AIFM1 4021469
3.5 | 5.0E-03 | PTTG1 2838201 2.3 | 1.2E-03 | F11R 2440476
3.5 | 2.3E-03 | DUSP5 3263743 2.3 | 8.5E-04 | FH 2463425
3.4 | 3.2E-03 | PPIB 3628994 2.3 | 1.5E-04 | TYW3 2342391
3.4 | 3.5E-03 | DDB2 3329649 2.3 | 1.8E-04 | ARF3 3453370
3.4 | 8.8E-03 | SRGN 3250146 2.3 | 1.0E-03 | ATIC 2526759
3.3 | 8.4E-04 | CREB3L2 3075136 2.3 | 2.9E-04 | TTF2 2353773
3.3 | 7.6E-05 | SPATS2 3413950 2.3 | 2.7E-04 | BAIAP2L1 3062868
3.3 | 1.0E-03 | NCAPG 2720251 2.3 | 2.3E-03 | CYB5B 3666732
3.3 | 5.4E-04 | PIK3R3 2410470 2.3 | 2.3E-05 | DEPDC1 2417528
3.3 | 1.2E-03 | FOXM1 3440598 2.3 | 3.2E-04 | ACLY 3757433
3.3 | 1.6E-03 | MYL6B 3417435 2.3 | 5.2E-03 | CRELD2 3950452
3.3 | 2.6E-04 | WSB2 3473727 2.3 | 5.0E-03 | RAC2 3960061
3.3 | 1.6E-03 | GLCCI1 2989537 2.3 | 3.6E-04 | RSU1 3279575
3.3 | 2.1E-04 | HMGB2 2793951 2.3 | 7.0E-05 | TRAPPC1 3744039
3.3 | 8.4E-06 | CEP55 3258444 2.3 | 9.7E-04 | NCAPG2 3082181
3.3 | 1.3E-03 | MRPS15 2406766 2.3 | 3.8E-04 | AARS 3697015
3.3 | 1.4E-04 | DPP3 3336238 2.3 | 3.4E-03 | SLC25A1 3952543
3.3 | 1.9E-03 | OASL 3474831 2.3 | 5.8E-05 | PCK2 3529508
3.2 | 2.9E-05 | NCAPH 2494484 2.2 | 3.9E-05 | SH3RF1 2793137
3.2 | 5.0E-05 | ZNRF1 3668834 2.2 | 2.0E-04 | MTDH 3108433
3.2 | 1.1E-03 | DTL 2378937 2.2 | 7.9E-05 | WDR41 2863535
3.2 | 2.9E-04 | NCAPD2 3402571 2.2 | 5.5E-04 | SUSD1 3220846
3.2 | 4.4E-06 | HDLBP 2607110 2.2 | 9.0E-06 | GALNT10 2836518
3.2 | 1.6E-03 | GINS1 3880827 2.2 | 1.1E-03 | ALCAM 2634494
3.2 | 2.1E-03 | B4GALT6 3803120 2.2 | 5.5E-04 | ME1 2962820
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3.2 | 1.2E-03 | BATF 3544605 2.2 | 1.2E-03 | ATF3 2379132
3.2 | 2.2E-04 | BSG 3815014 2.2 | 6.6E-04 | ACSL4 4017810
3.2 | 2.1E-03 | IFI44 2343511 2.2 | 2.8E-05 | NUF2 2364438
3.2 | 7.6E-04 | B3GNT2 2484841 2.2 | 2.3E-03 | CBX5 3456630
3.1 | 6.3E-04 | PLAIA 2638077 2.2 | 4.7E-04 | MAPKAP1 3225456
3.1 | 7.0E-03 | CRYZ 2418451 2.2 | 2.8E-04 | TFDP1 3502710
3.1 | 5.2E-04 | SLC1A1 3160658 2.2 | 2.4E-03 | TRAM2 2957227
3.1 | 7.6E-04 | IGF2BP3 3041409 2.2 | 3.1E-06 | RFC3 3485074
3.1 | 1.8E-03 | RGL1 2371346 2.2 | 3.6E-03 | RRBP1 3899173
3.1 | 9.9E-05 | TUBG1 3721926 2.2 | 3.5E-04 | RDX 3390542
3.1 | 4.2E-05 40429 | 2875454 2.2 | 3.4E-03 | UCHL3 3494102
3.1 | 7.2E-04 | SEC24A 2829416 2.2 | 4.1E-03 | CHMP2A 3872983
3.1 | 4.0E-03 | SSR3 2702154 2.2 | 4.1E-03 | THOC4 3774331
3.1 | 5.5E-04 | SLAMF1 2440327 2.2 | 2.3E-05 | CENPE 2780172
3.1 | 2.5E-04 | KIF2C 2334098 2.2 | 2.9E-05 | CASC5 3590014
3.1 | 3.6E-03 | ITM2C 2531589 2.2 | 9.2E-03 | PSMC3 3372209
3.1 | 3.1E-03 | DOK3 2888879 2.2 | 3.8E-03 | CTNNAL1L 3219621
3.0 | 5.5E-06 | KIF23 3599811 2.2 | 1.7E-03 | COPG 2641532
3.0 | 9.4E-06 | TWSG1 3778372 2.2 | 2.7E-04 | TTK 2914777
3.0 | 1.3E-04 | LMNB1 2827185 2.2 | 2.4E-04 | CALM3 3836841
3.0 | 1.6E-04 | SPARC 2882098 2.2 | 5.7E-04 | POMP 3483348
3.0 | 7.8E-04 | TMEM97 3715489 2.2 | 2.1E-06 | CCDC88A 2553771
3.0 | 1.9E-04 | GFPT1 2558045 2.2 | 5.9E-05 | AP2S1 3866302
3.0 | 4.6E-04 | CDC6 3720896 2.2 | 2.3E-04 | MRPS33 3076489
3.0 | 2.8E-04 | CDC45L 3936913 2.2 | 5.2E-04 | FECH 3809621
3.0 | 9.4E-05 | SPAG5 3750785 2.2 | 7.6E-03 | ORMDL3 3755934
3.0 | 3.6E-04 40432 | 2732273 2.2 | 3.2E-03 | SCAMOL 2750594
3.0 | 1.9e-03 | CYFIP1 3583638 2.2 | 1.4E-03 | NDUFV1 3337196
3.0 | 6.1E-05 | PRC1 3639031 2.2 | 1.3E-03 | LRP8 2413203
3.0 | 1.8E-03 | MELK 3168508 2.2 | 1.2E-04 | PHF19 3223687
3.0 | 7.0E-03 | PMAIP1 3790704 2.2 | 1.1E-03 | GINS2 3703112
3.0 | 7.1E-04 | SEMA4A 2361342 2.2 | 1.7E-05 | E2F8 3365776
3.0 | 4.0E-03 | PLOD1 2320581 2.2 | 1.6E-04 | CBX3 2993639
3.0 | 2.3E-03 | IL10 2452948 2.2 | 3.5E-03 | TCEAL4 3985615
3.0 | 8.8E-04 | SORD 3592109 2.2 | 3.8E-03 | RAD54L 2334646
2.9 | 1.7E-04 | SORBS2 2796995 2.2 | 6.8E-05 | NFE2L1 3725035
2.9 | 2.9E-04 | FEN1 3333226 2.2 | 9.1E-03 | NOMO3 3682893
2.9 | 1.3E-04 | DBI 2502821 2.2 | 1.8E-04 | LRRC42 2336913
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2.9 | 2.5E-04 | OAS2 3432514 2.2 | 1.6E-04 | MCM2 2640855
2.9 | 2.8E-04 | CDCA2 3090697 2.2 | 2.7E-05 | MREG 2598496
2.9 | 7.3E-03 | ASF1B 3852565 2.2 | 2.1E-03 | KEAP1 3850363
2.9 | 1.3E-04 | TLR7 3969081 2.2 | 6.8E-03 | ETV5 2709132
2.9 | 5.5E-04 | AAK1 2558150 2.2 | 6.4E-05 | NETO2 3690154
2.9 | 7.1E-04 | ASPM 2449559 2.2 | 5.2E-04 | DDOST 2400220
2.9 | 3.3E-04 | BCL2L12 3838795 2.2 | 2.3E-04 | PML 3601387
2.9 | 4.2E-03 | SLC43A3 3373845 2.2 | 8.1E-03 | RAPGEF2 2749699
2.9 | 1.2E-03 | KIAA1797 3164601 2.2 | 4.3E-04 | CCNG1 2838598
2.9 | 9.5E-03 | TMOD1 3181240 2.2 | 6.4E-03 | FADS2 3333247
2.9 | 4.8E-03 | OPTN 3235726 2.2 | 1.1E-03 | CDC25A 2673085
2.9 | 1.0E-03 | CAMK4 2823880 2.1 | 1.4E-03 | CLTA 3168415
2.9 | 3.2E-03 | TRAF1 3223738 2.1 | 5.2E-04 | ILDR1 2691850
2.9 | 6.5E-05 | STK38L 3409081 2.1 | 7.8E-04 | THOP1 3816611
2.8 | 3.7E-04 | DSG2 3783529 2.1 | 3.4E-03 | RHOBTB3 2820925
2.8 | 1.7E-03 | PTPN6 3403092 2.1 | 1.3E-04 | NDFIP2 3495076
2.8 | 6.8E-04 | GMDS 2938636 2.1 | 2.2E-03 | MBD2 3808600
2.8 | 6.0E-04 | FNDC3B 2652410 2.1 | 2.7E-04 | PMM1 3962000
2.8 | 1.4E-03 | ST7 3020496 2.1 | 1.6E-04 | DRAP1 3335736
2.8 | 4.4E-03 | GOT1 3302990 2.1 | 5.5E-03 | ERH 3570049
2.8 | 3.6E-04 | HN1 3770606 2.1 | 3.6E-03 | NDUFAB1 3685306
2.8 | 6.2E-04 | CDR2 3684782 2.1 | 2.2E-05 | RAD51 3590086
2.8 | 1.3E-03 | HMGA1 2904000 2.1 | 4.2E-05 | DECR1 3106310
2.8 | 6.3E-03 | PAK1 3382861 2.1 | 1.9E-05 | PGRMC1 3988740
2.8 | 1.9E-04 | SHCBP1 3689880 2.1 | 1.9E-03 | ARHGAP18 2973694
2.8 | 1.7E-04 | BIRCS 3736290 2.1 | 9.4E-04 | GPHN 3540862
2.8 | 1.2E-03 | MGC29506 2877893 2.1 | 3.8E-05 | ECT2 2652675
2.8 | 6.3E-04 | NUCB2 3322251 2.1 | 2.6E-04 | WDHD1 3565571
2.8 | 2.0E-03 | ATP1B1 2366422 2.1 | 8.8E-04 | CKAP5 3371719
2.8 | 7.7E-06 | DEPDC1B 2858592 2.1 | 9.3E-03 | DPAGT1 3394192
2.8 | 1.5E-04 | UBE2T 2451200 2.1 | 8.7E-04 | TXNDC11 3680479
2.7 | 1.1E-04 | MCM4 3097152 2.1 | 5.1E-03 | CABLES1 3781531
2.7 | 8.2E-05 | CDCA4 3581386 2.1 | 6.6E-04 | CTNNA1 2830946
2.7 | 4.6E-03 | AHCY 3903361 2.1 | 7.9E-03 | PPP1R15A 3838004
2.7 | 7.8E-03 | LMNB2 3845909 2.1 | 2.8E-03 | GRN 3722917
2.7 | 8.7E-05 | RPS27L 3628469 2.1 | 5.7E-03 | FUCAl1 2401643
2.7 | 1.1E-03 | MLEC 3434525 2.1 | 6.1E-04 | SLC39A14 3089360
2.7 | 3.0E-04 | CCNE1 3828112 2.1 | 4.6E-03 | TARS 2805786
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2.7 | 7.1E-04 | TRIB3 3873160 2.1 | 1.1E-05 | XRCC4 2818454
2.7 | 7.8E-04 | KIF20A 2830638 2.1 | 4.5E-03 | LHFPL2 2863885
2.7 | 7.9E-05 | CENPF 2379863 2.1 | 1.4E-03 | SNX4 2693149
2.7 | 7.3E-03 | SCD 3260586 2.1 | 1.2E-05 | MSRB2 3238761
2.7 | 1.9E-03 | APOBEC3B 3945545 2.1 | 4.9E-03 | TCF19 2902178
2.7 | 2.5E-03 | RPN2 3884100 2.1 | 2.5E-03 | CMAS 3407926
2.7 | 7.3E-03 | DNAJB11 2656569 2.1 | 1.0E-03 | ATP5J2 3063305
2.7 | 1.9E-04 | TRIP13 2798915 2.1 | 5.1E-03 | PPIL1 2952065
2.7 | 1.4E-03 | VASH2 2379314 2.1 | 2.1E-03 | DNMT3A 2544662
2.7 | 5.3E-03 | SLC25A23 3847873 2.1 | 2.3E-03 | TIPARP 2649113
2.7 | 3.4E-03 | LGALS3 3536706 2.1 | 2.1E-03 | SELS 3642137
2.7 | 3.2E-05 | HSPA4L 2742935 2.1 | 6.5E-03 | TMEM184B 3960440
2.7 | 4.1E-04 | FAR2 3409605 2.1 | 1.8E-04 | CAMSAP1L1 2374345
2.7 | 6.8E-04 | SUMO3 3934669 2.1 | 4.8E-04 | MTMR2 3387483
2.7 | 4.1E-03 | OAS3 3432467 2.1 | 4.2E-04 | MPZL1 2365958
2.7 | 2.0E-05 | C130rf3 3504617 2.1 | 3.7E-04 | RABGAPI1L 2367963
2.7 | 9.4E-03 | PLEK 2486811 2.1 | 9.4E-04 | HRSP12 3145980
2.7 | 6.8E-04 | STAG3 3015338 2.1 | 1.5E-04 | KIF14 2450345
2.7 | 4.6E-04 | CKS1B 2360452 2.1 | 1.4E-03 | CSRP1 2450865
2.7 | 2.0E-05 | AURKA 3910785 2.1 | 2.1E-03 | PNPO 3724969
2.6 | 3.1E-04 | TBC1D4 3518086 2.1 | 3.5E-05 | HERCS 2735409
2.6 | 7.8E-04 | PFKM 3413344 2.1 | 8.6E-03 | SEC23B 3878467
2.6 | 3.1E-04 | MOXD1 2974413 2.1 | 8.3E-04 | SLFN13 3753568
2.6 | 6.4E-04 | SH3KBP1 4001850 2.1 | 2.8E-04 | CPEB4 2841699
2.6 | 3.5E-04 | ICAM1 3820443 2.1 | 5.4E-03 | GTPBP4 3231774
2.6 | 4.5E-04 | OBFC2B 3417485 2.1 | 1.0E-03 | BPNT1 2456805
2.6 | 1.2E-04 | FAM33A 3764738 2.1 | 2.0E-03 | EIF2B2 3544387
2.6 | 5.4E-03 | TUBB 2901913 2.1 | 5.0E-03 | NUS1 2923060
2.6 | 2.9E-03 | TUBAI1B 3453732 2.1 | 1.6E-03 | NEDD9 2941784
2.6 | 6.6E-04 | TM7SF3 3448481 2.1 | 5.8E-04 | DMXL2 3624145
2.6 | 9.2E-03 | CDCA7 2516023 2.1 | 1.0E-03 | XPOT 3419807
2.6 | 5.6E-04 | MCOLN2 2420642 2.1 | 7.8E-03 | GRAMD3 2827057
2.6 | 4.8E-04 | CLIC2 4027769 2.1 | 5.5E-04 | DDX49 3825446
2.6 | 6.8E-07 | TNFRSF10B | 3127703 2.1 | 1.2E-04 | MRPL37 2337003
2.6 | 5.3E-04 | STOM 3223928 2.1 | 1.1E-03 | OSTC 2738949
2.6 | 1.2E-04 | MYO6 2914070 2.1 | 5.2E-04 | OSBPL9 2336099
2.6 | 3.6E-05 | CTSC 3385769 2.0 | 1.5E-05 | SEL1L 3574207
2.6 | 3.2E-03 | FGR 2403215 2.0 | 4.0E-05 | CD99L2 4025771
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2.6 | 2.5E-04 | HELLS 3258910 2.0 | 2.3E-04 | FBXO5 2980241
2.6 | 4.7E-03 | BOLA3 2559792 2.0 | 6.4E-04 | PPIF 3253880
2.6 | 8.8E-04 | ACTN1 3569814 2.0 | 1.3E-03 | SMARCA4 3820921
2.6 | 7.6E-04 | TRIP10 3818515 2.0 | 6.8E-04 | GSK3B 2691014
2.6 | 6.6E-04 | MAPK6 3594129 2.0 | 9.9E-03 | BUD31 3014742
2.6 | 2.9E-03 | LSS 3935243 2.0 | 2.9E-04 | C120rf4 3441215
2.6 | 1.6E-03 | PRDX3 3309383 2.0 | 4.3E-04 | UQCRC2 3652218
2.6 | 4.7E-04 | FBN1 3623031 2.0 | 7.0E-03 | LCP1 3512874
2.6 | 7.1E-04 | MDH2 3009299 2.0 | 5.7E-03 | CPNE8 3450655
2.6 | 2.3E-03 | EIF2AK2 2548402 2.0 | 3.8E-04 | GNS 3460127
2.6 | 1.2E-04 | TRIM14 3217123 2.0 | 2.8E-03 | MRPL48 3340032
2.5 | 1.7E-04 | EXO1 2388219 2.0 | 4.4E-03 | MRPS9 2497892
2.5 | 1.6E-03 | SIAE 3396003 2.0 | 8.3E-03 | EBNA1BP2 2409220
2.5 | 7.0E-04 | LMAN1 3810472 2.0 | 1.3E-03 | BTG3 3926080
2.5 | 5.0E-04 | KIF21A 3450775 2.0 | 8.8E-04 | PRKAG1 3453556
2.5 | 3.6E-05 | FUT8 3540552 2.0 | 3.5E-05 | AGK 3027808
2.5 | 7.4E-03 | LCK 2328841 2.0 | 3.8E-03 | NDUFS3 3329904
2.5 | 2.3E-03 | MLLT3 3200982 2.0 | 7.0E-03 | ACP2 3372097
2.5 | 1.0E-03 | CHMP5 3166844 2.0 | 2.3E-05 | MOV10 2352275
2.5 | 3.3E-04 | SLC7A11 2786322 2.0 | 2.4E-04 | NUP37 3468261
2.5 | 3.6E-04 | SLC38A5 4007437 2.0 | 1.3E-03 | ASNA1 3821847
2.5 | 1.1E-03 | MNDA 2362333 2.0 | 2.2E-03 | SURF4 3228674
2.5 | 1.9E-05 | C190rf48 3868659 2.0 | 1.4E-04 | SRA1 2878347
2.5 | 5.7E-04 | RBM47 2766788 2.0 | 1.6E-04 | NOD2 3660175
2.5 | 2.2E-03 | YARS 2405192 2.0 | 2.4E-03 | TTC35 3111375
2.5 | 1.2E-03 | FERMT3 3334257 2.0 | 9.7E-03 | TROAP 3413875
2.5 | 2.6E-04 | BUB1B 3589697 2.0 | 7.3E-04 | GALK2 3593339
2.5 | 2.0E-04 | FANCI 3607537 2.0 | 1.3E-03 | RAB11A 3598482
2.5 | 7.4E-04 | TNFSF10 2705706 2.0 | 6.3E-03 | RTN3 3333942
2.5 | 1.0E-04 | ACAT1 3347615 2.0 | 5.2E-04 | NDUFA8 3224197
2.5 | 2.3E-03 | CD80 2690900 2.0 | 5.3E-05 | GMNN 2898597
2.5 | 6.0E-04 | ANXA6 2881747 2.0 | 7.7E-03 | ZMYNDS 3908149
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Appendix B: Genes decreased in LCLs vs. naive B cel Is

Fold TCluster Fold TCluster
Decrease | P-Value Gene 1D Decrease | P-Value Gene 1D
15.5 | 1.0E-04 | FAM129C 3824427 2.9 | 1.1E-03 | FAM65B 2945741
15.2 | 6.8E-05 | TGFBR2 2615360 2.9 | 3.0E-03 | KIAAD999 3392996
11.1 | 1.2E-07 | ADAM28 3090209 2.9 | 7.8E-04 | FAM53B 3311269
11.0 | 3.0E-04 | CXCR4 2578028 2.9 | 7.9E-03 | RASA3 3526831
11.0 | 7.1E-06 | ARRDC2 3824713 2.9 | 7.2E-04 | DCK 2730714
9.2 | 2.8E-06 | FOXP1 2681753 2.8 | 7.6E-05 | FCRL2 2439052
7.7 | 1.0E-03 | TAGAP 2982076 2.8 | 2.6E-03 | IL13RA1 3988538
7.7 | 6.2E-04 | BANK1 2737596 2.7 | 3.0E-04 | TMEM71 3154185
7.5 | 2.5E-03 | C130rf18 3512948 2.7 | 3.5E-04 | PLEKHA1 3268274
7.3 | 3.9E-05 | BACH2 2964553 2.7 | 6.8E-04 | VAV3 2426385
6.5 | 7.7E-03 | KIAAQ746 2764192 2.7 | 3.1E-04 | SLC6A16 3867734
GALNACA4S-

6.5 | 4.7E-05 | 6ST 3268940 2.6 | 3.7E-03 | GABBR1 2947889
6.2 | 1.2E-04 | RASGRP2 3376976 2.6 | 5.5E-03 | BANP 3673091
5.9 | 5.6E-04 | ARHGAP25 | 2486927 2.6 | 8.4E-03 | EZR 2981912
5.5 | 7.3E-06 | HHEX 3258221 2.6 | 4.4E-03 | HLA-DMB 2950263
5.5 | 2.8E-06 | NOTCH2 2431112 2.6 | 1.5E-03 | IL16 3604287
5.2 | 1.2E-03 | BCL6 2709778 2.6 | 2.0E-03 | BCL2L11 2500275
5.2 | 1.0E-03 | FCRL3 2439001 2.6 | 4.2E-03 | DGKD 2532894
5.0 | 6.0E-03 | HIP1R 3435548 2.5 | 6.1E-03 | PTPRC 2373842
5.0 | 5.3E-05 | MTSS1 3151970 2.5 | 1.1E-03 | RASSF2 3896034
4.9 | 5.9E-03 | CD83 2895841 2.5 | 1.2E-03 | KIAAD226 2713555
49 | 3.6E-03 | TXNIP 2356115 2.5 | 1.5E-03 | TNFRSF10A 3127775
4.8 | 1.9E-07 | COBLL1 2584787 2.5 | 1.7E-03 | SLA 3154263
4.8 | 2.7E-03 | CD72 3204648 2.5 | 1.5E-04 | NBPF14 2433686
4.8 | 6.4E-03 | APLP2 3356115 2.5 | 7.2E-04 | RP11-94]2.2 2432851
4.8 | 7.1E-05 | NUAK2 2452405 2.4 | 2.4E-03 | ZNF238 2388794
4.4 | 3.6E-05 | MAP4K4 2496727 2.4 | 3.9E-04 | RP11-9412.2 2355365
4.4 | 8.5E-06 | CMTM7 2615938 2.4 | 3.1E-03 | GGA2 3685183
4.4 | 1.6E-03 | SATB1 2665199 2.4 | 1.9E-04 | USP24 2413943
43 | 1.1E-03 | LTB 2949118 2.3 | 3.4E-03 | MLXIP 3435192
4.3 | 3.8E-05 | OSBPL10 2667809 2.3 | 1.8E-03 | FAM65A 3665550
4.1 | 3.6E-05 | PFKFB3 3233605 2.3 | 1.4E-04 | TRAK1 2619120
3.9 | 2.7E-03 | FADS3 3375582 2.3 | 4.7E-03 | SH3BP5 2664209

84




3.9 | 6.7E-03 | NDRG1 3154317 2.3 | 5.1E-04 | --- 3734966
3.7 | 4.9E-04 | ARHGAP24 2734421 2.2 | 2.7E-03 | BACE2 3921933
3.6 | 4.2E-05 | JAZF1 3043264 2.2 | 2.9E-04 | SIDT2 3350775
3.6 | 4.7E-03 | ILAR 3654175 2.2 | 8.4E-03 | ABLIM1 3307939
CSGALNACT
3.6 | 4.4E-04 | TGIF1 3776504 22| 46E-03 |1 3126504
3.5 | 6.3E-03 | MED13L 3473083 2.2 | 6.7E-03 | NTSE 2915828
3.5 | 5.8E-04 | IGFIR 3610804 2.2 | 6.9E-03 | MLL5 3017547
3.5 | 1.0E-03 | ZNF395 3129304 2.2 | 1.3E-03 | ECE1 2400518
3.3 | 2.6E-05 | COL9A3 3892974 2.2 | 1.4E-04 | FLOT2 3751121
3.3 | 5.9E-04 | PMEPA1 3911217 2.2 | 9.7E-03 | CASP8 2522728
3.2 | 4.0E-04 | PDE3B 3321512 2.2 | 2.1E-03 | ZNF532 3790361
3.2 | 1.9E-04 | CXCR5 3351675 2.2 | 1.2E-05 | BZW2 2991103
3.2 | 6.4E-04 | JAK1 2416522 2.1 | 1.6E-04 | PRDM2 2321238
3.2 | 1.8E-03 | REL 2484358 2.1 | 9.1E-03 | NR4A1l 3415229
3.2 | 2.8E-03 | LY9 2363248 2.1 | 9.1E-04 | ABCA1 3218528
3.2 | 3.9E-04 | QSOX2 3229797 2.1 | 5.2E-03 | ZMAT1 4016001
3.2 | 6.7E-03 | ADAM19 2883440 2.1 | 2.6E-03 | FYN 2969886
3.1 | 6.7E-03 | STAT4 2592356 2.1 | 9.2E-03 | KIAA0355 3829638
3.1 | 3.0E-03 | PTPRO 3406329 2.1 | 8.7E-03 | KDM6B 3709153
3.1 | 2.0E-03 | CHMP7 3089853 2.0 | 4.5E-04 | TRAF5 2378662
3.1 | 6.6E-03 | ZHX2 3113894 2.0 | 2.7E-03 | KMO 2388085
3.1 | 1.9e-03 | PXK 2626167 2.0 | 1.0E-03 | ADAM6 3581637
3.0 | 9.6E-04 | INPP5F 3267382 2.0 | 7.1E-04 | EZH1 3758078
3.0 | 2.8E-04 | NFATC1 3795184 2.0 | 2.5E-03 | ABCB4 3060117
3.0 | 4.3E-04 | EBF1 2883878 2.0 | 7.5E-05 | EVL 3551566
2.9 | 4.7E-03 | C120rf42 3468610 2.0 | 1.7E-03 | INPP5D 2532699
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Appendix C: Genes alternatively processed in LCLs v

naive B cells

S.

Array | Rank | Gene TCluster ID | Hyp | Prot | Category Subtype
Exon 1 | KIAA1797 3164601 | Yes | No Alt 5' Init More 3' start
U133 2 | TRIM37 3764680 | Yes | Yes Internal Event Exclusion
U133 2 | NFYA 2906607 | No | No Unclassified

U133 3 | CPSF2 3548788 | Yes | No Tandem 3' UTR Shorten
Exon 4 | CASC5 3590014 | Yes | Yes Internal Event Exclusion
Exon 5 | ADFP 3200648 | Yes | No Alt 5' Init More 5' start
U133 5 | ZNF277 3019401 | Yes | Yes | Alt3'TE—APA More 3' TE
Exon 6 | PRKDC 3134034 | Yes | Yes Internal Event Exclusion
U133 6 | DDX59 2450416 | Yes | Yes Alt 3' TE - Alt 3'SS More 5' TE
Exon 7 | RRBP1 3899173 | Yes | Yes Internal Event Inclusion
U133 7 | DDX58 3203086 | Yes | No Tandem 3' UTR Shorten
U133 8 | WDR33 2575054 | Yes | Yes | Alt3'TE—APA More 5' TE
U133 9 | HAUS2 3591044 | Yes | No Tandem 3' UTR Shorten
U133 10 | PHC3 2704894 | Yes | No Tandem 3' UTR Shorten
U133 11 | CTSS 2434575 | Yes | No Tandem 3' UTR Shorten
Exon 12 | MYO3B 2514745 | Yes | Yes Internal Event Exclusion
U133 12 | ATXN3 3576889 | Yes | No Tandem 3' UTR Shorten
U133 13 | MARCH6 2801608 | Yes | No Transcript Length -

Exon 14 | DYNC1H1 3552847 | No | No Unclassified ---

U133 14 | FAM36A 2389062 | Yes | No Tandem 3' UTR Shorten
U133 15 | MXD4 2757751 | Yes | No Tandem 3' UTR Shorten
Exon 16 | TMEM135 3343546 | Yes | Yes | Alt3'TE-AIt3'SS More 3' TE
U133 16 | UBE2] 3643703 | No | No Unclassified ---

Exon 17 | STAU1 3908786 | Yes | Yes Internal Event Exclusion
U133 17 | N4BP2L2 3508696 | No | No Unclassified ---

U133 18 | RUNX1 3930360 | No | No Unclassified

U133 19 6-Sep 4019486 | Yes | Yes | Alt3'TE-Alt3'SS More 5' TE
U133 20 | RRP7B 3962469 | No | No Unclassified ---

Exon 21 | CDC2L5 2998536 | Yes | No Alt 5' Init More 5' start
U133 21 | DBT 2425212 | Yes | No Tandem 3' UTR Shorten
U133 22 | ZNF207 3717635 | Yes | Yes | Alt3'TE—APA More 5' TE
U133 24 | NASP 2334404 | Yes | No Tandem 3' UTR Shorten
U133 25 | C170rf69 3723572 | No | No Unclassified ---
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Exon 27 | PASK 2607055 | Yes | Yes Alt 3' TE — APA More 3' TE
U133 27 | NUB1 3032017 | Yes | No Tandem 3' UTR Shorten
Exon 29 | FAM111A 3331926 | Yes | No Internal Event (3' TE) | Exclusion
U133 29 | ALMS1 2488785 | No | No Unclassified

U133 30 | TXNL4B 3698055 | Yes | No Tandem 3' UTR Shorten
U133 31 | JMID7 3590709 | Yes | Yes Alt 3' TE — APA More 5' TE
U133 32 | RER1 2316558 | Yes | No Tandem 3' UTR Shorten
U133 33 | POLR1B 2500838 | Yes | No Tandem 3' UTR Shorten
Exon 34 | TCFL5 3913483 | Yes | No Alt 5' Init More 5' start
U133 36 | HEXA 3632152 | Yes | No Internal Event (3' TE) | Exclusion
U133 37 | ALPK1 2739792 | Yes | Yes | Alt3'TE-AIlt3'SS More 3' TE
Exon 38 | CCDC90A 2942578 | Yes | Yes Internal Event Exclusion
U133 38 | PCTK1 3976124 | Yes | No Tandem 3' UTR Shorten
U133 39 | LRCH4 3064082 | No | No Unclassified

U133 40 | TPCN2 3337918 | No | No Unclassified ---

Exon 41 | SH2B3 3431892 | No | No Unclassified ---

U133 41 | CDC42SE2 2828146 | Yes | No Tandem 3' UTR Shorten
U133 42 | PHF17 2743315 | Yes | Yes Alt 3' TE — APA More 5' TE
Exon 43 | CRTAP 2616166 | Yes | No Tandem 3' UTR Shorten

Both 43 | TXNDC5 2940826 | Yes | Yes Alt 3' TE - Alt 3' SS More 3' TE
U133 44 | SYMPK 3865715 | Yes | Yes | Alt3'TE—APA More 3' TE
U133 45 | ATF7IP 3406015 | Yes | Yes Alt 3' TE — APA More 3' TE
U133 46 | RBBP6 3653317 | Yes | No Alt 5' Init More 3' start
Exon 47 | SCMH1 2408499 | Yes | Yes Internal Event Exclusion
U133 47 | VKORC1 3688197 | Yes | Yes Alt 3' TE - Alt 3'SS More 5' TE
Exon 48 | SYNE1 2979871 | Yes | Yes Alt 5' Init More 5' start
U133 48 | PPP2R5C 3552729 | Yes | Yes Alt 3' TE — APA More 5' TE
U133 50 | UBOX5 3895232 | Yes | Yes | Alt3'TE-AIt3'SS More 5' TE
U133 51 | CLPTM1 3835935 | Yes | No Internal Event (3' TE) | Exclusion
U133 52 | TRIOBP 3944922 | Yes | Yes Alt 3' TE - Alt 3'SS More 3' TE
Exon 53 | PGPEP1 3824963 | Yes | Yes Internal Event Exclusion
Exon 54 | ARCN1 3351531 | Yes | No Alt 5' Init More 5' start
U133 54 | PNO1 2486740 | Yes | No Tandem 3' UTR Shorten
Exon 56 | CASP7 3264948 | Yes | Yes Internal Event Exclusion
U133 56 | HAUS5 3830571 | Yes | No Tandem 3' UTR Shorten
Exon 57 | TCL6 3550139 | No | No Unclassified ---

U133 57 | CRAMP1L 3643966 | Yes | No Tandem 3' UTR Shorten
U133 59 | ATG5 2967550 | Yes | No Tandem 3' UTR Shorten
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U133 61 | AGGF1 2816563 | Yes | No Tandem 3' UTR Shorten
U133 62 | FLYWCH1 3645402 | Yes | Yes | Alt3'TE—APA More 5' TE
U133 64 | PRMT2 3924783 | Yes | No Transcript Length -

Exon 65 | SCLT1 2785282 | Yes | Yes Internal Event Exclusion
U133 65 | BCL2 3811339 | Yes | No Tandem 3' UTR Shorten
U133 66 | PPHLN1 3412008 | Yes | Yes Alt 3' TE — APA More 5' TE
Exon 68 | PFAS 3709540 | Yes | No Tandem 3' UTR Shorten
U133 68 | C2orf64 2566383 | Yes | No Tandem 3' UTR Shorten
U133 70 | CBR4 2793054 | Yes | Yes | Alt3'TE—APA More 3' TE
U133 72 | ARGLU1 3524618 | Yes | No Alt 5' Init More 5' start
U133 73 | TRIM4 3063536 | Yes | No Tandem 3' UTR Shorten
Exon 74 | PTER 3236786 | Yes | Yes Internal Event Exclusion
U133 75 | TRIM27 2947572 | Yes | No Tandem 3' UTR Shorten
Exon 77 | ARHGAP26 2833286 | Yes | Yes Internal Event Exclusion
U133 77 | MBNL1 2648141 | No | No Unclassified ---

Exon 78 | MTRF1 3511189 | Yes | Yes Internal Event Exclusion
U133 78 | LONP2 3659306 | No | No Unclassified ---

Exon 79 | ZNF3 3063646 | Yes | No Alt 5' Init More 3' start
U133 80 | HPS1 3302805 | Yes | Yes | Alt3'TE—APA More 5' TE
U133 83 | CPT1B 3966057 | Yes | Yes Alt 3' TE — APA More 3' TE
Exon 85 | BRCAl 3758317 | Yes | No Transcript Length ---

U133 87 | TRMT61A 3553803 | Yes | No Tandem 3' UTR Shorten
U133 88 | GNL3L 3978453 | Yes | No Tandem 3' UTR Shorten
U133 89 | CHCHD7 3099089 | Yes | No Tandem 3' UTR Shorten
U133 90 | C10orf4 3300793 | No | No Unclassified ---

U133 91 | BTN2A2 2899340 | Yes | No Tandem 3' UTR Lengthen
U133 92 | HNRNPH1 2890148 | Yes | No Transcript Length -

U133 94 | MBNL2 3497586 | No | No Unclassified

Exon 95 | DCTN1 2559967 | Yes | Yes Internal Event Exclusion
Exon 96 | SAP18 3480657 | Yes | No Tandem 3' UTR Shorten
U133 96 | TMEM97 3715489 | Yes | No Tandem 3' UTR Shorten
U133 97 | TTLLA 2528020 | Yes | No Transcript Length -

Exon 99 | C190rf54 3862785 | Yes | No Internal Event (3' TE) | Exclusion
U133 101 | PECR 2598606 | Yes | No Tandem 3' UTR Shorten
U133 102 | ANP32E 2434319 | Yes | No Tandem 3' UTR Shorten
U133 106 | TMC8 3736162 | Yes | No Tandem 3' UTR Shorten
U133 108 | STXBP2 3819016 | Yes | Yes Alt 3' TE — APA More 3' TE
U133 112 | TCP11L1 3325839 | Yes | No Tandem 3' UTR Lengthen
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Exon 114 | MOSPD1 4022833 | Yes | No Tandem 3' UTR Shorten
U133 115 | TRNAU1AP 2327542 | Yes | No Tandem 3' UTR Shorten
Exon 116 | IFT81 3431426 | Yes | Yes Internal Event Exclusion
U133 117 | SLC35E1 3854000 | Yes | Yes | Alt3'TE—APA More 3' TE
U133 119 | GCOM1 3595441 | Yes | Yes Alt 3' TE - Alt 3'SS More 3' TE
U133 120 | CALM3 3836841 | Yes | No Tandem 3' UTR Shorten
U133 126 | FAM129C 3824427 | Yes | Yes | Alt3'TE—APA More 5' TE
U133 127 | LIMK2 3942838 | Yes | No Tandem 3' UTR Lengthen
U133 128 | FCRL5 2438892 | Yes | Yes | Alt3'TE—APA More 5' TE
Exon 129 | FBXL17 2870113 | Yes | Yes Internal Event Exclusion
U133 131 | SFRS15 3928866 | Yes | Yes | Alt3'TE—APA More 3' TE
Exon 132 | IFT20 3750595 | Yes | Yes Internal Event Exclusion
U133 132 | DENND1A 3224650 | Yes | Yes Alt 3' TE - Alt 3'SS More 5' TE
U133 133 | MTSS1 3151970 | Yes | No Tandem 3' UTR Shorten
Exon 135 | E2F2 2401448 | Yes | No Tandem 3' UTR Shorten
U133 136 | ACSL4 4017810 | No | No Unclassified

U133 137 | Clorfl107 2378180 | Yes | No Tandem 3' UTR Shorten
U133 142 | CASP6 2781693 | Yes | No Internal Event (3' TE) | Inclusion
U133 145 | TRIM69 3592054 | Yes | Yes | Alt3'TE-AIt3'SS More 3' TE
Exon 147 | PDIA6 2469529 | Yes | Yes Internal Event Exclusion
U133 148 | C18orf25 3787031 | Yes | No Tandem 3' UTR Shorten
U133 150 | PRKRIP1 3016692 | Yes | No Tandem 3' UTR Shorten
U133 153 | STAU2 3140640 | Yes | Yes | Alt3'TE—APA More 5' TE
U133 154 | DGCRS8 3937183 | Yes | No Alt 5' Init More 3' start
U133 157 | STAT5B 3757770 | Yes | Yes Alt 3' TE — APA More 3' TE
Exon 160 | RAB3IP 3421706 | Yes | Yes Internal Event Exclusion
Exon 165 | EPS15L1 3853814 | Yes | Yes Internal Event Exclusion
Exon 166 | STAB1 2623922 | No | No Unclassified ---

U133 166 | RBM19 3472468 | Yes | Yes Alt 3' TE — APA More 5' TE
Exon 167 | PLD2 3707214 | Yes | Yes Internal Event Exclusion
Exon 169 | SLFN11 3753500 | Yes | No Internal Event (3' TE) | Inclusion
U133 172 | CCDC88C 3576441 | No | No Unclassified ---

U133 175 | SOS1 2549092 | No | No Unclassified

Exon 176 | TCF4 3808854 | Yes | Yes Alt 5' Init More 3' start
U133 177 | XRCC4 2818454 | Yes | Yes | Alt3'TE-AIlt3'SS More 3' TE
U133 179 | ST7 3020496 | Yes | Yes | Alt3'TE-AIt3'SS More 3' TE
U133 181 | TRIM14 3217123 | Yes | No Tandem 3' UTR Lengthen
U133 182 | STS 3967689 | Yes | No Tandem 3' UTR Lengthen
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Exon 183 | VGLL4 2662956 | No | No Unclassified ---

U133 183 | CACYBP 2368198 | Yes | No Tandem 3' UTR Shorten
U133 184 | PHF19 3223687 | Yes | Yes Alt 3' TE — APA More 5' TE
U133 187 | MLF1IP 2796510 | Yes | No Tandem 3' UTR Lengthen
U133 188 | ZKSCANS5 3014855 | Yes | No Tandem 3' UTR Shorten
Exon 189 | PTPRE 3270270 | Yes | Yes Internal Event Inclusion
U133 189 | TRMT5 3567469 | Yes | No Tandem 3' UTR Shorten
U133 192 | SLC25A17 3961622 | Yes | No Tandem 3' UTR Shorten
U133 193 | EIF1 3721400 | No | No Unclassified

Exon 198 | C21lorf7 3917204 | Yes | Yes Internal Event Exclusion
Exon 199 | C200rf27 3895679 | Yes | No Transcript Length ---

U133 201 | CCDC25 3129121 | Yes | No Tandem 3' UTR Shorten
Exon 203 | USP30 3430894 | Yes | Yes Internal Event Exclusion
Exon 207 | ANKRD20B 2564520 | Yes | Yes Internal Event Exclusion
Exon 208 | FZR1 3816988 | No | No Unclassified ---

Exon 209 | TERF1 3103187 | Yes | No Alt 5' Init More 5' start
Exon 211 | LILRB2 3870733 | Yes | Yes Internal Event Inclusion
U133 216 | MYO19 3754227 | Yes | Yes Alt 3' TE — APA More 3' TE
U133 219 | RCL1 3160773 | Yes | No Tandem 3' UTR Shorten
U133 220 | EXOC7 3771336 | Yes | Yes Alt 3' TE — APA More 3' TE
U133 224 | KIAA1715 2588319 | Yes | No Tandem 3' UTR Shorten
U133 231 | CPSF6 3421446 | Yes | No Tandem 3' UTR Shorten
U133 233 | Cl6orf35 3674886 | Yes | No Transcript Length ---

Exon 239 | WDR74 3376235 | No | No Unclassified ---

U133 243 | MGEAS5 3304012 | Yes | Yes Alt 3' TE — APA More 3' TE
Exon 246 | RTCD1 2348854 | Yes | Yes Internal Event Exclusion
Exon 249 | USP6 3707498 | Yes | No Alt 5' Init More 3' start
Both 250 | AURKB 3744263 | Yes | No Transcript Length ---

U133 252 | DIS3 3517594 | Yes | No Tandem 3' UTR Shorten
U133 253 | CLCC1 2426791 | Yes | No Tandem 3' UTR Shorten
Exon 255 | TIAP1 2908008 | Yes | No Alt 5' Init More 5' start
Exon 256 | BTG3 3926080 | Yes | Yes Internal Event Exclusion
U133 258 | MSH3 2817837 | Yes | No Transcript Length ---

Exon 261 | PPILS 3534785 | Yes | Yes Internal Event Exclusion
Exon 270 | ZNF215 3318989 | Yes | No Transcript Length -

Exon 271 | - 2563785 | Yes | Yes Internal Event Inclusion
Exon 283 | ITPA 3874249 | Yes | Yes Internal Event Exclusion
Exon 287 | C120rf48 3428845 | Yes | Yes Internal Event Exclusion
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Exon 290 | LTB 2949118 | Yes | No Alt 5' Init More 5' start
Exon 291 | KAT2A 3757630 | Yes | No Alt 5' Init More 5' start
U133 303 | COPZ1 3416522 | Yes | No Tandem 3' UTR Shorten
Exon 309 | LPAL2 2982630 | Yes | No Transcript Length -

U133 317 | ZMYMA4 2329752 | Yes | No Tandem 3' UTR Shorten
Exon 327 | --- 3850832 | Yes | No Alt 5' Init More 3' start
Exon 328 | ZNHIT6 2420958 | Yes | No Alt 5' Init More 5' start
Exon 333 | CTCF 3665603 | Yes | Yes Internal Event Inclusion
Exon 340 | APBB2 2766893 | Yes | Yes Alt 5' Init More 5' start
U133 346 | ETNK1 3408018 | Yes | No Tandem 3' UTR Shorten
U133 348 | KLHDC5 3409364 | Yes | No Tandem 3' UTR Shorten
Exon 356 | ABCC4 3521174 | Yes | Yes | Alt3'TE-AIt3'SS More 3' TE
Exon 358 | FAM160B2 3089140 | Yes | Yes Internal Event Exclusion
U133 367 | PDXK 3923257 | Yes | No Tandem 3' UTR Shorten
Exon 375 | MESDC2 3635456 | Yes | Yes Alt 3' TE— APA More 5' TE
Exon 381 | ZNF613 3839955 | Yes | Yes Internal Event Exclusion
U133 397 | CAST 2821194 | Yes | No Tandem 3' UTR Shorten
Exon 399 | MARK3 3553690 | Yes | No Alt 5' Init More 5' start
Exon 400 | GKAP1 3212189 | Yes | No Transcript Length -

U133 401 | TCF3 3845365 | Yes | No Tandem 3' UTR Shorten
U133 412 | SRR 3706219 | Yes | No Tandem 3' UTR Shorten
Exon 421 | PRKAR1A 3732885 | Yes | No Alt 5' Init More 5' start
U133 423 | SMARCA4 3820921 | Yes | Yes | Alt3'TE—APA More 3' TE
U133 427 | TPR 2448232 | Yes | No Transcript Length -

Exon 434 | RABGAP1L 2367963 | Yes | Yes Alt 3' TE - Alt 3' SS More 3' TE
Exon 444 | ATMIN 3670668 | Yes | No Alt 5' Init More 5' start
U133 449 | RAD50 2828564 | No | No Unclassified ---

Exon 455 | SF1 3377044 | Yes | Yes Internal Event Inclusion
Exon 481 | SMYD5 2488680 | Yes | No Alt 5' Init More 5' start
U133 488 | RABL3 2691475 | Yes | No Tandem 3' UTR Shorten
Exon 490 | STAG3 3015338 | Yes | Yes Internal Event Exclusion
Exon 493 | PSMD12 3768103 | Yes | Yes Internal Event Exclusion
U133 493 | RAB35 3474228 | Yes | No Tandem 3' UTR Shorten
Exon 496 | OBFC2B 3417485 | Yes | No Internal Event (3' TE) | Exclusion
Exon 498 | H3F3B 3770944 | Yes | No Tandem 3' UTR Shorten
Exon 500 | SLC25A45 3377569 | Yes | Yes Internal Event Inclusion
U133 503 | MSI2 3728147 | Yes | Yes Alt 5' Init More 3' start
Exon 505 | C190rf28 3846238 | Yes | Yes Internal Event Exclusion
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U133 518 | CUGBP2 3234760 | No | No Unclassified ---

U133 522 | FBXO9 2910477 | Yes | No Tandem 3' UTR Shorten
Exon 537 | ACD 3695786 | Yes | Yes Internal Event Exclusion
Exon 550 | COL9A3 3892974 | Yes | No Transcript Length ---

Exon 556 | DPEP2 3696142 | Yes | Yes Internal Event Exclusion
U133 568 | GRK6 2843163 | Yes | No Tandem 3' UTR Shorten
Exon 572 | GARNL4 3706439 | No | No Unclassified ---

U133 575 | DENR 3435490 | Yes | No Tandem 3' UTR Shorten
Exon 578 | KDM4B 3817733 | Yes | No Transcript Length -

Exon 580 | ZNF335 3907561 | Yes | Yes Internal Event Exclusion
Exon 593 | SLFN13 3753568 | Yes | No Tandem 3' UTR Shorten
Exon 602 | PRDM1 2919669 | Yes | Yes Internal Event Exclusion
U133 606 | --- 3717052 | Yes | No Tandem 3' UTR Shorten
Exon 607 | MSC 3140213 | Yes | No Alt 5' Init More 3' start
Exon 614 | RAD54L 2334646 | Yes | Yes Internal Event Exclusion
Exon 616 | HOMER2 3636391 | Yes | Yes Internal Event Inclusion
Exon 622 | PKD2 2735221 | Yes | Yes Internal Event Exclusion
Exon 645 | ELMO1 3046197 | Yes | Yes Alt 5' Init More 3' start
Exon 648 | MRPL35 2492015 | Yes | No Alt 5' Init More 3' start
U133 664 | OGT 3981120 | Yes | No Tandem 3' UTR Shorten
Exon 665 | C20rf18 2473965 | Yes | No Transcript Length ---

Exon 667 | ZFAT 3154700 | Yes | Yes Alt 3' TE — APA More 3' TE
U133 671 | SYT11 2361154 | Yes | No Tandem 3' UTR Shorten
Exon 672 | TNS1 2599153 | Yes | Yes Internal Event Inclusion
Exon 675 | ACSF2 3726406 | Yes | Yes Internal Event Exclusion
Exon 678 | RABEP2 3686750 | No | No Unclassified ---

Exon 679 | STAP2 3846709 | Yes | Yes Internal Event Exclusion
Exon 692 | BAI1 3119017 | Yes | Yes Internal Event Exclusion
Exon 713 | Clorf85 2438093 | Yes | Yes Internal Event Exclusion
Exon 714 | PIP5K1A 2358761 | Yes | No Alt 5' Init More 5' start
Exon 719 | ENTPD5 3571667 | No | No Unclassified ---

Exon 731 | ZEB2 2579572 | Yes | No Internal Event (3' TE) | Inclusion
U133 766 | OTUB1 3334137 | Yes | No Tandem 3' UTR Shorten
U133 787 | USP43 2400718 | Yes | No Tandem 3' UTR Shorten
Exon 797 | YES1 3795942 | Yes | Yes Internal Event Exclusion
Exon 806 | SPNS1 3655172 | Yes | No Transcript Length -

Exon 885 | KIAAO513 3672059 | Yes | Yes Internal Event Exclusion
Exon 886 | ZWINT 3290210 | Yes | Yes Internal Event Exclusion
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Exon 899 | IL10 2452948 | Yes | No Alt 5' Init More 3' start
Exon 907 | HIST2H4A 2357891 | Yes | No Tandem 3' UTR Shorten
Exon 939 | PDE2A 3381150 | Yes | No Alt 5' Init More 3' start
Exon 988 | Cllorf51 3380996 | No | No Unclassified ---

Exon 1019 | CCDC48 2641449 | No | No Unclassified ---

Exon 1055 | NBEA 3485292 | Yes | No Alt 5' Init More 5' start
Exon 1071 | ALG13 3987446 | Yes | No Tandem 3' UTR Shorten
Exon 1238 | SH3PXD2A 3304853 | Yes | No Transcript Length -

Exon 1252 | HIST2H4A 2434102 | Yes | Yes | Alt3'TE-AIt3'SS More 5' TE
Exon 1256 | MAP3K12 3456212 | Yes | No Alt 5' Init More 5' start
Exon 1263 | METTLS8 2586744 | Yes | No Transcript Length ---

Exon 1264 | MAN1B1 3195174 | No | No Unclassified ---

Exon 1275 | DNM2 3820758 | No | No Unclassified ---

Exon 1316 | FAMG3A 2434746 | Yes | No Transcript Length -

Exon 1399 | PCMTD1 3134922 | No | No Unclassified ---

Exon 1449 | NSDHL 3995371 | Yes | Yes Internal Event Exclusion
Exon 1601 | SNAP29 3937755 | Yes | No Transcript Length -

Exon 1639 | RBM8A 2356181 | No | No Unclassified ---

Exon 1672 | RRAS2 3363868 | Yes | No Alt 5' Init More 5' start
Exon 1724 | MRPS25 2664099 | Yes | No Tandem 3' UTR Shorten
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Appendix D: SplicerEX Categorization Algorithm

We devised an algorithm to categorize SplicerEXjgted changes in alternative
MRNA processing into distinct mechanistic and dicgl categories. This algorithm
was created with two main goals 1) to provide lgatally useful distinct categories and
2) to provide an algorithm that was as simple aside to promote transparency of the
method.

Algorithm Input

To categorize AS events, the algorithm uses twocgsuof input for each gene 1)
the genomic coordinates of the two features usegnerate the isoform ratio (chapter 2)
and 2) a database of all known UCSC gene transgeipbmic coordinates. The two
features used to generate isoform ratios come fhensingle most significant
probesets/metaprobesets found in the A and B peblgesups. The program uses single
probesets as features for the U133 array and sigtaprobesets for the HUEX array.
The UCSC known gene list has been developed anatairzed by the University of
California, Santa Cruz, which also runs the UCS@ogee browser (Kent et al. 2002).
The UCSC known gene list contains predictions basedata from RefSeq, Genbank,
CCDS and UniProt and contains about 10% more prat@iling genes than RefSeq and
about twice as many splice variants.

Categorization Decision Tree

The categorizer works by stepping through a bimi@gision tree that asks

guestions about the two probesets (or metaprohesedgheir overlap with known

UCSC genes (Figure 17). The categorizer sequbntisks a set of five questions. If the
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answer to any of these questions is no, the progissigns a category and then
terminates. If no category has been assignedthise five questions, the common

transcript inference algorithm is used to assigatagory.

Do probesets overlap UCSC genes.....

At all?
... with any common No
(No Class)

5 start?

...Wwith any common No Yes

TTE? (Tandem 3’ TE)

... with different 3’ Yes

TEs? (Alt3' TE)
...that are a No
common transcript? (NoClass)
[ Common Transcript a0 Alt5 Alt

Inference Event Start Uit Rt

Figure 17: Binary decision tree used to categorize alternative mRNA prossing
events into discrete categories.

MMOO T >

The first question (panel A) asks whether both psels interrogate any known
UCSC genes. Because we filter out probesets thabtimeet this criteria, this first step
does not exclude any possible categories for oallysis. This step would, however,
allow others to run the program where such a fitas unavailable, such as on a novel
platform. In this case, events where either prebésl not interrogate a UCSC gene
would be unclassified.

The second question (panel B) asks if interrogftd€&C genes share any
common 5’ start location. This removes poorly daatexl events in which probesets are

targeting unrelated transcripts that begin in tepasate locations and for which no
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overlapping transcript has ever been observedntB\kat do not pass this criteria are
placed into the unclassified (no class) category.

The next question (panel C) asks if the probeseget a common 3’ TE. In this
case, we have evidence that the same 3'TE is uoihgrdifferent changes in abundance,
which is most commonly explained by changes in RJ&ngth. Changes in 3'TE
regional abundance can also be explained by twer @ents 1) inclusion/exclusion of
internal 3'TE content and 2) use of an alternaBv8S. The program checks for internal
inclusion/exclusion (described in common transdrifgrence). If an internal
inclusion/exclusion is ruled out, then the prog@seigns this category as “Tandem 3’
TE”. All events categorized in this step are asstito result in non-coding changes (the
OREF is not altered), as they are typically limitedhe 3’ UTR.

Step 4 (panel D) asks if each probeset interrggatdifferent 3'TE. In this case,
the suggestion is that a gene is undergoing myteatilusive selection of which 3’ end
of the gene it will use. These events almost unifp result in changes in transcript
ORF. All events identified in this step are catéxgd as affecting protein coding
regions.

The next question asks if both probesets inteteogay common UCSC known
transcript. If the answer is no, the event is assifiable and the program terminates. |If
the answer is yes, the categorizer attempts catagion using only the common UCSC
transcript. In the case where there are multipharoon UCSC transcripts interrogated,
these transcripts are combined into a single reptasve transcript that comprises only

common exons.
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Common Transcript Inference (CTI)

Events placed in the common transcript inferencd)(€ategory are categorized
based on each probeset’'s exon count and locatihinvihe common transcript. CTI
events can be categorized as internal eventspatiee 5’ initiation, alternative transcript
length, or uncategorized (Table 9).

Table 9: Common transcript inference (CTI) categories

Category Criteria | SubTypds Criteria
Internal Event | 1) probesetl: Contained internallyinclusion | Probesetl is from
within probeset2 Group A
OR Exclusion| Probesetl is from
2) probesetl: Single exon, interna Group B

probeset2: Multiple exons

5" Alt Initiation | 1) Probesetl: Single 5’ located expMore 5° | Group A

OR probeset is more
2)Probesets 1 &2 each target 3 or 5
more exons & do not overlap More 3’ | Group A
probeset is more
3
Alt Transcript | 1) Probeset 1 or 2 interrogates 3’ TR/A
Length
Unclassified/ | Unable to be categorized using N/A
No class above

Of events not assigned hypotheses, only a hantievemts had reasonably clear
hypotheses that could be assessed subjectivelyegrgsearchers. These additional
events could be accurately categorized by SplicesfiX additional modifications to the
categorization algorithm. However, it was feltttti@e increased additional complexity
required to categorize these few events was nahwvibe loss in transparency. These

modifications were not included in the final SpHeX program.
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Appendix E: Discovery of Dengue virus host factors In
Insects and humans

In 2009, Sessions et al. published the first genamde siRNA screen for Dengue
virus host factors in Drosophi(&essions et al. 2009). | performed the data arsaly
select hits from the first round of the screen,chilviequired the development of a
nonparametric screen statistic to deal with deaatiolated assumptions of normality
and was subject to several sources of bias and.nois
Screen/Data Structure

The Dengue screen was performed in duplicate B3dgwell plates. Each of the
384 wells had a unique dsRNA printed on it fromdbeeening library. After 72 hours of
infection by Dengue, the percent of cells that baen infected and total cell counts
within each well were assayed in order to deterrtheesffect of each dsRNA on
infectivity. The primary goal of the screen wasdentify Dengue host factors, defined
by factors required by Dengue. Knockdown of a Renigost factor in a well would be
expected to decrease infectivity in that well. Phienary goal of the study was therefore
to identify wells with unusually low levels of infBvity as a result of dSRNA knockdown
of a required Dengue host factor.

Data Analysis

We observed that the infectivity rates within eptdte were not normally

distributed and had highly variable infection rdtesn plate to plate and day to day. This

us to approach the data analysis using a nonpatiarapproach, which was similar in
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theme to quantile normalization. | developed then&Rank algorithm to deal with data

we encountered during the analysis of the drosaplghgue siRNA screen.

1/2/2/ 456|717 8(9/10/11/12/13 14/15/16/17/18/19/20/21(72/23 | 24

A R | 2 2 1

B 2 1 4 i 1 1 2 1

C 1 1 1 1 {9 3 1
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Figure 18: Heat map of low infectivity hits detected from the screenybplate

positition. The number of total hits detected within each pasitanged between 0 and
7. Clear enrichment of hit selection (low infedlyy was seen in rows E and . Only a
single hit per column was selected from columr3, 23, and 24. The probability of
having 7 or more hits come from any well on theeglaas p=6e-5, demonstrating highly
significant plate effects. Non-random distributimingenes on the plate may have also
been partially responsible for observed spatiaddsa Plate effects are a common
practical problem in genome wide siRNA screensdaskrve more discussion in the
published accounts of siRNA screens.

The Sum Rank algorithm functions to produce a sisginmary statistic for each
SiRNA tested in duplicate using two separate 38U plates and is implemented as
follows:

Exclusion Criteria
First each siRNA well on both plates is examinadsidficient cell growth. Any

well with less than 2000 cells/field is removednfrthe analysis, along with its duplicate
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in the other plate. The 16 control wells are atsnoved prior to analysis. For each pair
of 384 well plates, up to 368 (= 384 — 16) wells @xcluded in the analysis.
Sum Rank algorithm

Within each plate, wells are ranked by the peroémfected cells, with the least
infected well being given rank 1. For each siRM#&rank from each plate is summed to
yield that well’'s Sum Rank statistic.

Sum Rank = Rank on plate #1 + Rank on plate #2 [1]

For each pair of duplicate plates, we obtain aibistion of Sum Ranks. For an
experiment with no excluded wells (368), the Sumigacan potentially range from 2 to
734 (= 368 * 2). In generally the Sum Rank cargeafiom 2 to (#Valid Wells * 2). In
order to assess the significance of observing angBbum Rank, we calculated a null
distribution for the Sum Rank statistic.

All possible ranks are present on every plater eékample, every plate will
contain one well ranked #1, one well ranked #petcp to the # of valid wells. When
the ranks from a duplicate plate are added tdfitisisplate, there is only one way that a
Sum Rank of 2 can be achieved. The #1 rankedfieeti plate must also be ranked #1
on the duplicate plate. Since there are 368 wallthis second plate, there is only 1/368
ways that a Sum Rank of 2 would be observed. v@rage, a Sum Rank of 2 would be
expected to be observed in 1/368 (= .0027) plats.pdhis is the expected number of
times we would observe a Sum Rank of 2 by chara®eal There are two possible ways

to achieve a Sum Rank of 3 (Ranked #1 on plated¥&non plate B, or #2 on plate A
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and #1 on plate B). The resulting expectation36&2 ( = .0054). In this way, the
expectation of Sum Rank for the lowest infectedsuel given by the following equation:
E[SR] = (SR -1)/368 [2]

For the highest infected wells, within a pair aditels with no excluded wells, the
distribution mirrors that of the low infected wellsth the maximum Sum Rank being
least likely:

E[SR] = (734 - SR) / 368 [3]

These equations can be generalized to apply fmalblates, regardless of the
number of valid wells:

Expectation of observing lowest Sum Ranks:

E[SR] = (SR - 1) / (# Valid Wells) [4]

Expectation of observing highest Sum Ranks:

E[SR] = ((#Valid Wells * 2) — (SR - 1)) / (# Valitlells) [5]

| confirmed this theoretical distribution usingheputational simulations in R.
The key assumption of this null distribution isttrenks within a plate are randomly
distributed. This assumption can be invalid ifrhare local biases in infectivity within a
plate, for example if edges are infected more tteanter wells. Such affects are likely
present in our assay, and we therefore expeaglatislihigher false discover rate than
would be predicted by theory alone. We have nbagesessed the magnitude or
implication of such spatial biases within duplicptates. Such spatial biases would

affect any statistical analyses and not just them 8ank method.
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A Drosophila Expectation Analysis (Screen Data)

Observed Frequency
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B Random Infectivity Analysis (Simulated Control Distribution)
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Figure 19: Histogram of empirical and theoretical distributions of exgcted Sum
Rank values. For each paired well in the screen, a Sum Ranisstaivas calculated.
Each Sum Rank’s expected frequency by random charst®wn on the horizontal axis,
with uncommon extremes in low infectivity to thétland high infectivity to the right.
The vertical axis indicates the frequency with vilheach expectation value was actually
observed during the screen (A) and during a sinanlaif random infectivity (B). Sum
Ranks expected to occur fewer than 0.065 timepaieed duplicate plates are
highlighted in blue and red, representing extreafdsw and high infectivity,
respectively. Wells from the Drosophila screen yi#Jded a significantly larger number
of wells with extremes of lowyR = 62.8, p<.0001) and high2 = 108, p<.0001)
infectivity compared to that expected by wells gssd random infectivity (B),
suggesting significant departures from random Igickl variation upon treatment of
cells with dsRNAs. Using the random infectivityadysis to determine the false
discovery rate suggests approximately 24% of dedettits” (expectation less than
0.065) were due to random chance alone, in rougteagent with the validation rate of
putative hits.
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