
 

 

 

 

Theoretical and Empirical Investigations into Adaptation 

by 

Kevin Wright 

Department of Biology 

Duke University 

 

Date:_______________________ 

Approved: 

 

___________________________ 

John H. Willis, Co-Chair 

 

___________________________ 

Mark D. Rausher, Co-Chair 

 

___________________________ 

A. Jonathan Shaw 

 

___________________________ 

Gregory Wray 

 

___________________________ 

Thomas Mitchell-Olds 

 

Dissertation submitted in partial fulfillment of 

the requirements for the degree of Doctor of Philosophy in the Department of 

Biology in the Graduate School 

of Duke University 

 

2010 

 

 



 

  

 

 

ABSTRACT 

Theoretical and Empirical Investigations into Adaptation 

by 

Kevin Wright 

Department of Biology 

Duke University 

 

Date:_______________________ 

Approved: 

 

___________________________ 

John H. Willis Co-Chair 

 

___________________________ 

Mark D. Rausher Co-Chair 

 

___________________________ 

A. Jonathan Shaw 

 

___________________________ 

Gregory Wray 

 

___________________________ 

Thomas Mitchell-Olds 

 

An abstract of a dissertation submitted in partial 

fulfillment of the requirements for the degree 

of Doctor of Philosophy in the Department of 

Biology in the Graduate School 

of Duke University 

 

2010 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by 

Kevin Wright 

2010 

 



 

 iv 

 

Abstract 

The problem is two fold: how does natural selection operate on systems of 

interacting genes and how does natural selection operate in natural populations. To 

address the first problem, I have conducted a theoretical investigation into the evolution 

of control and the distribution of mutations in a simple system of interacting genes, a 

linear metabolic pathway. I found that control is distributed unevenly between 

enzymes, with upstream enzymes possessing the greatest control and accumulating the 

most beneficial mutations during adaptive evolution. To address the second problem, I 

investigated the evolution of copper tolerance in the common yellow monkeyflower, 

Mimulus guttatus.  I genetically mapped a major locus controlling copper tolerance, Tol1. 

A Dobzhansky-Muller incompatibility was hypothesized to also be controlled by Tol1, 

however, we have demonstrated that it maps to another, tightly linked locus, Nec1. 

Finally, we investigated the parallel evolution of copper tolerance in multiple new 

discovered mine populations. We found that copper tolerance has evolved in parallel 

multiple times via at least two distinct physiological mechanisms. In four mine 

populations, there was a strong signal of selection at markers linked to Tol1, implying 

that copper tolerance has evolved via the same genetic mechanisms in these 

populations.  
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1. The Evolution of Control and the Distribution of 
Adaptive Mutations in a Metabolic Pathway 

1.1 Introduction 

Theoretical research on the process of adaptation has focused primarily on 

describing the size and number of genetic changes underlying phenotypic change (Fisher 

1930, Kimura 1983, Orr 1998, 2002, 2003). By contrast, comparatively little theoretical 

attention has been given to the question of whether certain genes or types of genes are 

preferentially involved in the process of adaptation.  Yet the current debate over the 

relative importance of regulatory vs. structural genes in morphological evolution 

(Hoekstra and Coyne 2007, Stern and Orogogozo 2008) clearly indicates that this 

question is of interest to evolutionary biologists.   

One situation in which this question is pertinent is the evolution of characters 

that are influenced by the concentration of end products of metabolic pathways. Often 

change in end-product concentration can be achieved by substitutions in any one of 

several genes in the pathway.  One example is the intensity of floral pigmentation.  To a 

first approximation, final pigment concentration, and hence color intensity, can be 

viewed as being determined by the flux rate down the pigment biosynthetic pathway for 

a fixed time corresponding to the duration of floral development.  More generally, any 

situation in which flux rate determines phenotype is likely to fall in this category.  In 

such situations, metabolic control theory (MCT) (Kacser and Burns 1973) and similar 
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approaches (Heinrich and Rapoport 1974; Savageau 1976) indicate that changes in flux 

can be achieved by changing the activity of any enzyme in the pathway.  We seek to 

determine whether, and if so, why, enzymes differ in the probability that they contribute 

to evolutionary change in pathway flux. 

It has been suggested as a general principle that enzymes with the greatest 

control over flux will be disproportionately involved in such evolutionary change (Hartl 

et al. 1985; Eanes 1999; Watt and Dean 2000).  This argument is based on the theoretical 

expectation that the probability of fixation of an advantageous allele is roughly 

proportional to its selection coefficient (Hedrick 2000).  Since mutations equivalent in 

terms of enzyme kinetic properties will have greater effects on flux, and hence on fitness, 

in enzymes with greater metabolic control, mutations in those enzymes will be 

substituted preferentially.   

While this argument is likely sound, it simply pushes back the question of which 

genes evolve preferentially to the question of which enzymes are expected to have 

greatest control over flux.  Although we are unaware of any theoretical attempts to 

model the evolution of flux control, many authors have speculated about where in 

pathways control is expected to be highest. 

Kacser and Burns (1973) hypothesized that the magnitudes of flux control 

exerted by different enzymes may be very similar. This hypothesis was based on the 
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result from MCT that in linear pathways, overall flux control can be shared by all 

enzymes.  Since metabolic pathways often consist of many enzymes, each would be 

expected to have only a limited potential to influence flux.  Subsequent theoretical 

analysis of this hypothesis demonstrated that a given flux is consistent with many 

different flux-control distributions, including, at one extreme, equal flux control by all 

enzymes and, at the other extreme, major control by one or a few enzymes and little 

control for all others (Mazat et al. 1996).  However, the question of which of these 

possibilities, if any, are likely to be favored by selection has not been addressed.   

Another hypothesis, the epistatic or synergistic principle, predicts that control 

will be vested in a single enzyme at any given time, but will shift over time among 

enzymes (Dykhuizen et al. 1987; Keightley 1989; Bost et al. 2001) According to this 

hypothesis, starting from equal control among enzymes in the pathway, selection to 

increase (or decrease) flux will cause the activity of one enzyme to increase (decrease).  

This change results in a decrease (increase) in flux control for the enzyme that changes, 

and an increase (increase) in control for the other pathway enzymes, causing control to 

be unequally shared.   While this argument seems plausible, there has been no analysis 

of whether over time all enzymes have equal chance of having elevated control.   

Finally, Eanes’ (1999) review of enzyme polymorphisms found that control is 

often centered in enzymes at pathway branch points, which constitute the most 
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upstream enzymes of their specific branch.  Flowers et al. (2007) also demonstrated that 

branching enzymes tend to exhibit more adaptive substitutions than downstream 

enzymes as would be expected under the principle that evolutionary change will be 

concentrated in enzymes with the largest control coefficients. In addition, evolutionary 

changes in these enzymes may be favored because they allow organisms to modify flux 

allocation to alternate functions and track environmental fluctuations. This suggestion is 

supported by the “branch point effect”, a theoretical demonstration that control 

coefficients can dramatically shift between enzymes depending on the kinetic rates of 

the two competing enzymes (LaPorte et al. 1984). However, this study does not address 

the question of how the distribution of control is likely to evolve, but only describes 

which distributions of control are mathematically possible. Thus, Eanes (1999) concludes 

his review stating: “all enzymes in [a] contributing pathway may not be equal; 

determining the rule[s] for these inequalities should be a major goal in studies of 

enzyme polymorphism.”  

A Control Coefficient (CC) indicates the degree to which flux through a pathway 

is altered by a small change in the activity of an enzyme (see Appendix A; this is 

equivalent to the Sensitivity Coefficient of Kacser and Burns 1973).  The “rules” 

governing the distribution of control coefficients are determined by the biological 

evolution of metabolic systems.  While research demonstrates that there are many 
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possible distributions of control coefficients, none has examined which of these is most 

likely to evolve. The optimization of metabolic systems has been explored in detail 

(Heinrich et al. 1991; Heinrich et al. 1997; Heinrich and Schuster 1998).  In these studies, 

however, the investigators employ as optimization criteria maximizing flux, maximizing 

transient times, or minimizing metabolic intermediates, criteria whose biological and 

evolutionary relevance is unclear.   

In an effort to understand how control is expected to be shared among enzymes, 

and predict which enzymes are most likely to contribute to adaptive genetic changes, we 

present two models of the evolution of flux control in a simple linear pathway.  The first 

model employs the framework of MCT. Although, there have been many challenges to 

the MCT framework (Savageau 1976; Cornish-Bowden 1989; Savageau and Sorribas 

1989; Savageau 1992), it should be made clear that our aim is not to construct a precisely 

parameterized model of a particular biological system, but to use this generalized 

framework to address a single, critically ignored question: what are the rules governing 

how control will evolve to be distributed among enzymes? The use of the MCT 

framework to address questions in evolutionary genetics is firmly established, with 

investigation focused on the molecular basis of dominance (Kacser and Burns 1981; 

Keightley 1996a, Phandis and Fry 2005, but see Bagheri and Wagner 2004), the 

relationship between metabolic flux and fitness (Dykhuizen et al. 1987, Szathmary 1993), 
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the amount of additive and non-additive genetic variance in metabolic systems 

(Keightley 1989), whether this variation can be explained by mutation-selection balance 

(Clark 1991) and patterns of response of quantitative traits to selection (Keightley 1996b). 

The second model, saturation kinetics (SK) we examine is based on Michealis-Menten 

kinetics, and enables us to relax one major assumption of MCT: that enzymes are far 

from saturation.  

Here we limit our analysis to linear pathways as an initial attempt to examine 

these issues.  We find that for such pathways control coefficients will generally evolve to 

be unequal; that the magnitude of this inequality depends on the thermodynamic 

properties, rather than the kinetic properties, of each reaction step; that upstream 

enzymes tend to evolve higher control coefficients than downstream enzymes; and that 

upstream enzymes fix advantageous mutations in greater numbers, and those mutations 

have larger effects than in downstream enzymes. 

1.2 General Modeling Approach 

We concentrate here on a simple, linear metabolic pathway containing two, three 

or ten enzymes. Following Dykhuizen et al. (1987), Clark (1991), and Szathmary, (1993) 

we assume that flux through the pathway is the sole component of fitness and flux is 

subject to stabilizing selection.  Such selection would arise, for example, when there is 

stabilizing selection on a character (e.g. lactose metabolism, floral pigment intensity, 
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glucosinolate production following herbivory) whose value is determined by flux.  This 

framework also allows us to examine the effects the effects of directional selection that 

arises when the optimal level of flux changes, as might occur for floral pigment intensity 

if there were environmental shift in the optimal intensity for attracting pollinators. We 

assume, as is usual in an MCT framework, that enzymes are at sufficiently high 

concentration that they are substantially below saturation (Kacser and Burns 1973). This 

assumption is subsequently relaxed to investigate the effect of enzyme saturation on the 

distribution of control coefficients.  

 To model the evolution of flux control, we assume that flux may be changed 

either by altering the level of expression of individual enzymes in the pathway 

(increasing expression level generally increases flux) or by altering the kinetic properties 

of individual enzymes in the pathway (increasing the specific rate of reaction of an 

enzyme generally increases flux).  We subsume both of these effects by focusing on 

changes in the overall rate of reaction of an enzyme under standard metabolic 

conditions. Specifically, we represent the forward rate of reaction i, ki ,  to be a product of 

(1)  the amount of the enzyme present, and (2) the standard per-unit-enzyme forward 

rate constant. For a given ki ,  the reverse rate of reaction i, k-i , is a thermodynamic 

property of the system; it is determined by the difference in free energy between 

products and reactants (Nelson and Cox 2000), and is not subject to organic evolution. 
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To determine the control properties of each enzyme at evolutionary equilibrium, we 

initialize replicate populations described by the enzyme activities (k1 , k2 . . .  ki) of a 

metabolic pathway determining fitness of organisms in the population.  Each replicate 

population is seeded with random ki values.   

Mutations occur in a randomly chosen enzyme, i. We do not allow enzymes to 

differ in their mutation rates. The effect size of each mutation, ∆ki , is drawn from a 

Gaussian distribution centered at zero. We measure the effect of each mutation on flux 

and fitness (∆W) and determine whether the mutation is fixed based on the standard 

population-genetic fixation probability. Mutations are allowed to occur repeatedly until 

the flux reaches its optimum. This process produces one evolutionary trajectory, defined 

as the route across an adaptive landscape from an initial flux toward a new optimal flux.  

Trajectories are determined for a large number of different initial sets of randomly 

chosen ki values all evolving toward the same optimal flux. In essence, this procedure 

simulates a situation in which the optimal flux has just shifted, and the starting points 

represent many different previous optima.  We do not assert that all of these starting 

values are biologically likely, but adopt this approach in order to explore the entire 

space of possible activity values.  We perform additional simulations to model a 

situation in which populations repeatedly shift between two different environmental 

optima.  All simulations are repeated assuming a range of k-i values to determine how 
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the control evolves under varying thermodynamic environments. Details of the models 

used are presented in the Appendix A.   

 This analysis yields two types of information: a frequency distribution of the 

final degree of flux control for each enzyme at evolutionary equilibrium and the 

distribution of number and size of mutations in every evolutionary trajectory.  By 

analyzing two models of metabolic control (MCT and SK) and conducting multiple sets 

of runs with different values of model parameters (e.g. mutational distribution, 

reversibility of reactions, initial size of substrate pool, intensity of stabilizing selection; 

Table 1), we are able to evaluate the robustness of our conclusions.   

Table 1: Parameters for MCT and SK simulations 

ki Rate of reaction for enzyme i. (MCT model)

Vi Maximum rate of reaction for enzyme i . (SK  model)

Ci Control coefficient for enzyme i. 

αi k-i / ki ; Ratio of reverse to forward rate of reaction.
σJ Standard deviation of optimal flux in fitness function, strength of selection.
σk Standard deviation of normal distribution describing mutational effect sizes.

Jopt Optimal flux/ optimal fitness.
N Population size.
Ι Substrate input into pathway.
Τ Threshold limit for substrates (SK  model).

 

1.3 Results 

1.3.1 General behavior of MCT model 

In our model, N, αi , σJ , σk , I, and Jopt are fixed parameters (Table 1).  We first 

consider in detail the behavior of the model for a population size of N = 1000, I = 10, an 
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optimal flux of Jopt =1, a strength of selection of σJ = 0.5, and a variance in mutation size of 

σk = 0.05. Subsequently we discuss how the behavior of the model changes as these 

parameters are varied.  We also assume that there is some maximal enzyme efficiency 

that is the same for each enzyme, and we scale this maximum to 1 (i.e. we assume that ki 

< 1) by choosing the appropriate unit for time. For simplicity, we consider the case 

where the enzyme reversibilities, αi, are the same for all i and equal to α, and we let α = 

0.001, 0.05, 0.50, or 0.95, representing respectively conditions of very low, low, 

intermediate, and high reaction reversibility. A total of 200 trials were run with each 

model for each α value, each trial beginning from a randomly chosen starting point (k1 , 

k2). 

Simulations usually reached the optimal flux in 500 – 2000 mutation/fixation 

cycles, typically having undergone 10-25 substitutions. In most simulations, pathways 

with two-steps reached the fitness peak more quickly than models with three or ten-

steps. The reversibility parameter α also influenced the rate of adaptation: when α = 

0.001 or 0.05, pathways reached equilibrium more rapidly than when α = 0.50 or 0.95.  

1.3.2 Evolution of control under the two-step MCT model:  

The two, three, and ten-step pathways exhibit similar evolutionary patterns, and 

because these patterns are easier to visualize for two-step pathways, we begin by 

examining the evolution of control in two-step pathways.   
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For largely irreversible reactions (α = 0.001 and 0.05), populations starting at 

random (k1, k2) values evolve highly inequitable control coefficients, with the control 

coefficient (CC) for the first enzyme being on average about three to twenty times 

greater than that of the second enzyme (Table 2).  

Table 2: Control coefficient, Ci , for enzyme i, for two and three-step MCT 

simulations. 

Pathway Length αααα C1 C2 C3 C1 v C2 v C3

0.001 0.946 (0.192) 0.054 (0.192) - C1 > C2

2 0.05 0.780 (0.316) 0.220 (0.316) - C1 > C2

0.5 0.580 (0.323) 0.420 (0.323) - C1 > C2

0.95 0.502 (0.297) 0.498 (0.297) - NS

0.001 0.909 (0.255) 0.036 (0.145) 0.055 (0.219) C1 > C2 = C3

3 0.05 0.769 (0.329) 0.155 (0.285) 0.076 (0.213) C1 > C2 = C3

0.5 0.500 (0.312) 0.298 (0.287) 0.202 (0.262) C1 > C2 > C3

0.95 0.355 (0.226) 0.332 (0.225) 0.312 (0.220) NS  

 

As expected (Figure 1a), populations converge to an equilibrium line 

corresponding to the hyperbola 

 

 k2 = α1 / [ (I/Jopt) – (1/k1) ]      (1) , 

 

which is obtained from the two-enzyme equation for flux analogous to (A1).  Although 

different runs converged to different points on this line, the majority of these points lie 

in the region corresponding to C1 > C2 (Figure 1a) above the (dashed) C1 = C2 line: 

 k2 = α1 k1       (2) 



 

 12 

 

 derived from Equation A3. 
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Figure 1: Equilibrium distribution of k1 and k2 for two-step MCT simulations. 

Equilibrium reaction rates (red circles) from 200 replicate simulations of the 

two-enzyme model.  Paramerers were:  N = 1000, σJ = 0.5, σk = 0.05, I = 10, and Jopt = 1.0. 

Solid blue lines is equilibrium predicted for MCT model (Equation 1 ). Dashed lines 

denotes combinations of k1 and k2 for which C1 = C2 (Equation 2). For all points 

above this line, C1 > C2 and for all points below, C1 < C2 . Arrows indicate direction 

of average instantaneous evolutionary trajectories for given starting values.  Length of 

arrows scaled to be visible. A. MCT Simulations with αi = 0.05. B. MCT Simulations 

with αi = 0.5. C. MCT Simulations with αi = 0.95. 
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Two factors contribute to this bias in evolutionary outcomes.  First, for a 

randomly chosen starting (k1 , k2) there is an initial bias for the CC of the first enzyme to 

be greater than that of the second enzyme.  This bias arises because the space above the 

C1 = C2 line (corresponding to C1 > C2) is much larger than the space below the line 

(corresponding to C1 < C2) (Figure 1a).  Second, except for starting points very near the C1 

= C2 line, the average instantaneous trajectories are virtually horizontal, i.e. the average 

change in k1 is large while the average change in k2 is small (Figure 1a).  This means that 

trajectories from most starting points will tend to move populations toward a point on 

the equilibrium line lying in the C1 > C2 region.  In fact, this second property is a direct 

consequence of the first. When C1 > C2, equivalent mutations affecting k will have larger 

effects on flux if they occur in enzyme 1. The selection coefficient favoring a beneficial 

mutation will thus on average be greater for mutations in enzyme 1.  Since probability of 

fixation of an advantageous mutation is approximately proportional to its selection 

coefficient, mutations in enzyme 1 will have a greater chance of fixation than mutations 

in enzyme 2.   

 For reactions with intermediate reversibility (αi = 0.5), the evolutionary outcome 

is still biased toward larger CC in the first enzyme, but this bias is not as large as in the 

previous case (Table 2).  And for largely reversible reactions (αi = 0.95), there is little bias 

(Table 2).  Paralleling this decrease in bias with increasing reversibility is both a decrease 



 

 15 

 

in the expected proportion of starting points with C1 > C2 and a decrease in the 

proportion of instantaneous trajectories for which k1 is substantially larger in absolute 

value than k2  (Figure 1b, c).  

To assess the generality of these results, we performed analogous simulations for 

different combinations of the values of the parameters N, αi , σJ , σk , I, and Jopt. 

Simulations were run in a factorial design varying all six parameters by at least two 

orders of magnitude, yielding 972 different comparisons, each with 20 replicates.  We 

used an ANOVA (JMP, SAS Institute Inc., 2005) to analyze the effect of altering these 

parameters on the equilibrium control coefficient for the two enzymes.  As expected, 

varying α significantly effected mean control coefficients, but changes in the other five of 

the parameters (N, σJ , σk , I, and Jopt) did not significantly alter the mean control 

coefficient (Table 3). 
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Table 3: Effects of varying parameters in two-step MCT model.  

ANOVA testing effects of varying parameters on the evolution of C1 in two 

enzyme model. Note that the results for C2 are completely analogous because of the 

summation property. Parameter levels used in simulations are: αi – 0.001, 0.05, 0.50, 

0.95; N - 10, 1000, 100000; σJ - 0.01, 0.10, 1.0; σk- 0.01, 0.10, 1.0; I –0.1, 1.0, 10.0;  Jopt  - 

0.01, 0.10, 1.0. 

Variable df SS I F p 
α 3 350.66 12.24 0.000

J 2 0.23 0.11 0.894

K 2 52.39 2.68 0.108
Jopt 2 20.18 0.97 0.407
Ne 2 1.07 0.35 0.714

I 2 12.24 0.9 0.433

α * σJ 6 0.77 1.27 0.265

Κ  6 10.66 17.67 <.0001

α * Jopt 6 26.47 43.86 <.0001

α * Ne 6 1.01 1.67 0.123

α * I 6 20.79 34.45 <.0001

σJ * Κ 4 2.04 5.06 0.000

σJ * Jopt 4 0.87 2.15 0.072

σJ * Ne 4 1.04 2.57 0.036

σJ * I 4 1.23 3.06 0.016

Κ * Jopt 4 18.73 46.56 <.0001

Κ * Ne 4 2.79 6.94 <.0001

Κ * I 4 9.97 24.78 <.0001

Jopt * Ne 4 2.66 6.62 <.0001

Jopt * I 4 3.29 8.18 <.0001

Ne * I 4 0.55 1.36 0.243  

Many of the interaction terms were statistically significant (Table 3), but these effects are 

subtle and do not change the fundamental evolutionary trend: the mean control 

coefficient for the first enzyme is larger then that of the second for every comparison 

(Table 4). 
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Table 4: Least Square Mean control coefficients for a. each variable level and b. 

two way interaction between variables for the two-step MCT model. 

 

 

The previous analyses demonstrate that a shift in the flux optimum will, when averaged 

over random starting points, tend to yield a new equilibrium at which flux control is 

biased toward the upstream enzyme.  However, it is not known whether all possible 

starting combinations of (k1, k2) are equally likely.  Moreover, the analysis does not 

necessarily imply that equilibria at which the majority of control is vested in the second 
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enzyme are not evolutionarily stable in a shifting environment. It is thus conceivable 

that the above analysis fails to completely capture the dynamics of CC evolution in an 

environment in which the optimal flux varies.   

 To examine this issue, we simulated evolutionary trajectories in which the 

optimal flux fluctuated between two values, with shifts in the optimum occurring every 

30,000 mutation-fixation cycles. Simulations were performed with six pairs of optimal 

flux (1.0, 0.5; 1.0, 3.0; 1, 5.0; 3.0, 0.5; 3.0, 1.0; 3.0, 5.0). Simulations were initiated with all 

replicates at optimal fitness, equally spaced along the high fitness hyperbola, with half 

of the starting points at C1 > C2 and half C2 > C1. The parameters α and σk were varied 

over at least an order of magnitude across replicate simulations to determine the effect 

on the equilibrium distribution of control.  To determine the long-term distribution of 

genotypes along the equilibrium curve we used our simulations to estimate transition 

probabilities from one class of (k1, k2) values to all other classes. Using this information, 

we constructed a transition matrix, M.  Each element, mij of this matrix represents the 

proportion of replicates starting at the midpoint of segment j that ended within segment 

i.  Under the approximation that this transition probability is the same for any starting 

point within segment j, the long-term, equilibrium probability that a population will be 

in segment k is just the kth element of the leading eigenvector of M.  
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 In general, modeling evolution in a fluctuating environment produced results 

similar to those already obtained: many more trials yielded greater control by the 

upstream enzyme (C1 > C2 ) than the reverse (Table 5).   The few exceptions to this trend 

occur only when mutations are small and reactions are of intermediate or high 

reversibility, a condition that appears uncommon in biochemical reactions (see 

DISCUSSION). 

Table 5: Proportion of pathways that evolve C1 > C2 in shifting environmental 

optimum.  

Populations were initialized with equal number of pathways with C1 > C2 and 

C1 < C2. Pathways evolved under six regimes of shifting environmental optima: 1.0 – 

0.5; 1.0 – 3.0; 1.0 – 5.0; 3.0 – 0.5; 3.0 – 1.0; 3.0 – 5.0. Only 3 combinations of parameters 

(bolded type) resulted in a majority of pathways evolved C2 > C1. 

 Jopt Shift σk        0.01 0.05 0.1
0.001 1.000 1.000 1.000

1.0 - 0.5 0.05 0.993 1.000 0.999
0.5 0.999 1.000 0.992
0.95 0.806 0.948 0.913
0.001 0.831 0.850 0.726

1.0 - 3.0 0.05 0.870 0.823 0.799
0.5 0.778 0.861 0.810
0.95 0.430 0.778 0.795
0.001 0.688 0.748 0.835

1.0 - 5.0 0.05 0.643 0.652 0.715
0.5 0.405 0.659 0.688
0.95 0.213 0.560 0.653
0.001 1.000 1.000 0.972

3.0 - 0.5 0.05 1.000 0.967 0.951
0.5 1.000 0.953 0.852
0.95 0.809 0.941 0.898
0.001 0.972 0.959 0.960

3.0 - 1.0 0.05 1.000 0.862 0.871
0.5 0.996 0.903 0.909
0.95 0.813 0.937 0.919
0.001 1.000 1.000 1.000

3.0 - 5.0 0.05 0.998 1.000 1.000
0.5 0.994 0.999 0.989
0.95 0.528 0.843 0.929  
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1.3.3 Evolution of control under the three-step MCT model  

As with the two-step MCT model, a total of 200 trials were run with this model 

for each α value, each trial beginning from a randomly chosen starting point (k1 , k2 , k3).  

In these simulations, the evolution of CC in a three-step pathway exhibits similar 

patterns to those described above for a two-step pathway.   All trials converged to an 

equilibrium hyperboloid represented by Equation (1), with J = Jopt = 1 (Figure 2).  

 

Figure 2: Equilibrium distribution of k1 , k2 , k3 for three-step MCT 

simulations.  

Optimal flux surface and equilibrium reaction rates from 200 replicate 

simulations of the three-enzyme MCT model.  Parameters as described for Figure 1.  
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Blue points: equilibria for which C1 > C2, C3.  Red points: equilibria for which C2 > 

C1, C3.  Purple points: equilibria for which C3 > C1, C2  A. αi = 0.05.  Two alternate 

views of the optimal flux surface (grid lines) is divided into three regions, differently 

colored: purple corresponds to C1 > C2, C3.  Orange corresponds to C2 > C1, C3.  Light 

blue corresponds to C3 > C1, C2 .  B. As A, but with αi = 0.5. 

As for the two-step pathway, when α = 0.001  and αi = 0.05, there is a strong bias for 

trajectories to converge to points having high CC for the first enzyme: the mean C1 is 

twenty times greater than the mean C2 and C3 for α = 0.001 and more than three times 

greater for α = 0.05 (Table 2; Figure 2a).  This bias is reduced for αi =  0.5 and essentially 

absent when αi = 0.95 (Table 2; Figure 2b, Figure 3 ).  

 

Figure 3: Equilibrium distribution of k1 , k2 , k3 for three-step MCT 

simulations when αi = 0.95.  

Optimal flux surface and equilibrium reaction rates from 200 replicate 

simulations of the three-enzyme MCT model with αi = 0.95.  Parameters as in Figure 2. 

A. and B. are same graph from different viewpoints. 

This pattern is not dependent on the values of the fixed parameters in our model. As in 

the two-step model, we generated simulations for all combinations of parameters values 

(N, αi , σJ , σk , I, and Jopt), each of which was varied over two orders of magnitude.  Once 



 

 22 

 

again, we found that effect of αi on the mean values of the control coefficients for each 

enzyme were significant, while variation in the other five parameters (N, σJ, σk , I, and 

Jopt) had little effect on  CC for any of the enzymes (Tables 6, 7).   

Table 6: Effects of varying parameters in three-step MCT model.  

ANOVA testing effects of varying parameters on the evolution of control in 

the three-step pathway; a. C1 b. C2  c. C3  . Parameter levels used in simulations are: αi 

– 0.001, 0.05, 0.50, 0.95; N - 10, 1000, 100000; σJ - 0.01, 0.10, 1.0; σk- 0.01, 0.10, 1.0; I –0.1, 

1.0, 10.0;  Jopt  - 0.01, 0.10, 1.0. 
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Table 7: Least Square Mean of control coefficients for a. each variable level 

and b. two way interaction between variables in three enzyme MCT model. 

 

1.3.4 Evolution of control under the ten-step MCT model  

As a final examination of the generality of our results, additional simulations 

using a model of a longer metabolic pathway containing ten enzymes. Two hundred 

replicates pathways were evolved for 20,000 mutation/fixation cycles with α = 0.001 and 

0.05, CC decrease rapidly with position in the pathway and on average the degree of 

control for the first enzyme is approximately eight and three times greater, respectively, 

than that of the second enzyme (Table 8).  With α = 0.5, this bias is less, but the first two 
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enzymes share two-thirds of the control, and the first three enzymes account for more 

than 75% of the control.  Finally, as with the shorter pathways, when α = 0.95, control is 

much more equitably distributed on average, with the CC of the first and last enzymes 

differing by only 0.032 (Table 8). 

Table 8: Mean (standard deviation) of equilibrium control coefficients for ten-

step MCT simulations. 

α C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

0.001 0.849 (0.317) 0.096 (0.254) 0.054 (0.216) 0 0 0 0 0 0 0

0.05 0.665 (0.368) 0.197 (0.310) 0.041 (0.153) 0.031 (0.151) 0.044 (0.202) 0.022 (0.080) 0 0 0 0

0.5 0.38 (0.262) 0.247 (0.236) 0.121 (0.159) 0.088 (0.154) 0.059 (0.118) 0.028 (0.083) 0.022 (0.078) 0.024 (0.089) 0.02 (0.107) 0.01 (0.076)

0.95 0.117 (0.021) 0.115 (0.022) 0.109 (0.018) 0.106 (0.019) 0.103 (0.020) 0.099 (0.019) 0.093 (0.017) 0.088 (0.017) 0.085 (0.018) 0.085 (0.019) 

1.3.5 Properties of fixed mutations under the MCT model 

We examined three properties of fixed mutations: the number of substitutions 

(Nµ) in a trajectory, the change in enzyme activity caused by each mutation (∆ki), and the 

change in fitness caused by each mutation (∆W). We compared the value of these 

properties for different enzyme steps, during different phases of an evolutionary 

trajectory.  Adaptive walks were divided into two phases: the first phase when the 

population is far from the optimum (W(J) < 0.95) and evolution is dominated by 

directional selection, and a second phase when the population is near the optimum 

(W(J) >0.95) and evolution is dominated by stabilizing selection.    

For pathways with low reversibility (αi = 0.001 and 0.05), during the first phase of 

the adaptive walk, 2-3 times as many substitutions occurred in the first enzyme as in the 

second or third enzymes (Table 9a).  Although the average effect of these substitutions 
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on k were similar for the different enzymes, the average effect on fitness was larger for 

the first enzyme (Table 9a). Moreover, many more substitutions improved fitness in the 

first enzyme, compared to those downstream (αi = 0.001: 2E pathway- 44.0% versus 

10.3%; 3E pathway- 38.2% versus 7.3% & 2.7%). In the second phase, the same pattern 

emerges in the distribution of beneficial mutations between up and downstream 

enzymes (αi = 0.001: 2E pathway- 91.6% versus 26.1%; 3E pathway- 93.7% versus 35.1% 

& 0.5%). There were many more substitutions that had no effect on fitness during the 

first phase then during the second phase.  This unexpected result is caused by mutations 

that were fixed primarily when populations were far from the fitness optimum and the 

landscape was essentially flat. The average effect on k during the second phase was 

significantly smaller for the first enzyme than for the more downstream enzymes, 

presumably reflecting the fact that for enzymes with greater flux control, only mutations 

with very small effects will either not overshoot the optimum or will have small enough 

fitness effects to be fixed by drift (Table 9a).  Nevertheless, the effects on fitness were 

largest for the first enzyme, though ∆W is approximately an order of magnitude lower 

than in the first phase (Table 9a). These patterns indicate that during the directional 

selection phase, adaptive substitutions are fixed primarily in the first enzyme, and that 

neutral mutations occur in both phases of selection, but are fixed most frequently in 

downstream enzymes. 



 

 26 

 

Table 9: The mean values of Nµ , ∆k, ∆W for two and three step MCT and SK 

models. 

The mean values (standard deviation in parentheses) of Nµ , ∆ki, ∆W. All 

values were calculated from 200 replicate simulations of two and three-step pathways 

initialized with random values of ki. Mutations were determined to occur under one 

of two selective regimes: directional (D) W < 0.95 or stabilizing (S) W ≥ 0.95. 

Comparison of means between pathway steps conducted using post-hoc T-test or 

Tukey test, significant threshold: α = 0.05. A. MCT simulations. B. SK simulations.  

 

 Pathways with intermediate to high reversibility (αi = 0.5 or 0.95) yield a very 

different pattern.  In particular, enzymes tend not to differ in either phase for number of 

substitutions, or their effects on enzyme activity or fitness (Table 9).  These results 

demonstrate that a fairly high degree of irreversibility is needed to cause upstream and 

downstream enzymes to differ in the properties of their associated fixed mutations.  
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 The results for three properties of fixed mutations investigated are robust to the 

defined threshold between the two phases of adaptive evolution (W > 0.95 or W > 0.99) 

and the distribution of mutational effects (results not shown). We analyzed three 

Gaussian distributions with mutations skewed toward decreasing enzyme function (µ = 

0.0, µ = -σk , µ = -2σk) and found no effect on final distributions of Nµ , ∆W, or ∆k1.    

1.3.6 Evolution of control under the SK model:  

The saturation kinetics model contains one more parameter than the MCT model.  

Under saturation kinetics, when downstream enzymes have slower rates of reaction, 

there is the potential for the buildup of large pools of pathway intermediates. Because 

high concentrations of intermediates are likely to be deleterious, we follow Clark (1991) 

in introducing a fitness penalty for high substrate pools, represented by the parameter T  

(see Appendix A).  We first examine an exemplar set of simulations for the two- and 

three-enzyme models in which I = T = 10, N = 1000, Jopt = 0.5, σJ = 0.05, and σk = 0.05, then 

consider how the behavior of the model changes as these parameters are varied. For 

simplicity, we again consider the case where αi are the same for all i and equal to α.  

Two-hundred trials were run with for the SK model for each α value, each trial 

beginning from a randomly chosen starting point (V1 , V2).    
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The evolution of control in these exemplar simulations of two- and three-enzyme 

pathways yields patterns that are very similar to those exhibited by the MCT model 

(Supplementary Table 6).    

Table 10: Equilibrium control in two and three-step SK simulations. 

Mean (and standard deviations) control coefficients for SK model. Average 

enzyme control generated from 200 replicate simulations. Variation in enzyme control 

analyzed using post-hoc Tukey test (a = 0.05).  

Pathway Length αααα C1 C2 C3 C1 v C2 v C3

0.001 0.904 (0.006) 0.005 (0.007) - C1 > C2

2 0.05 0.806 (0.085) 0.080 (0.080) - C1 > C2

0.5 0.401 (0.196) 0.355 (0.211) - C1 > C2

0.95 0.330 (0.131) 0.315 (0.140) - NS

0.001 0.829 (0.245) 0.033 (0.152) 0.030 (0.142) C1 > C2 = C3

3 0.05 0.806 (0.076) 0.061 (0.064) 0.017 (0.021) C1 > C2 > C3

0.5 0.237 (0.090) 0.228 (0.103) 0.185 (0.125) C1 = C2 > C3

0.95 0.161 (0.042) 0.152 (0.038) 0.143 (0.046) NS  

In this model, Equation A12 with v = Jopt defines a line (2-enzyme pathway) or surface (3-

enzyme pathway) of optimal flux corresponding to the set of enzyme maximal 

velocities, V1 , V2, V3, that make the reaction velocity equal to the optimum (blue curves 

in Figure 4 a,b, surfaces in Figure 5 a,b).  This line or suface is divided into distinct 

regions corresponding to control by the different enzymes (dashed line in Figure 4 a,b, 

blue line in Fig. 5a).   
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Figure 4 Equilibrium distribution of V1 and V2 for two-step SK simulations. 

Equilibrium maximum reaction velocities (red circles) from 200 replicate 

simulations of the two-enzyme SK model.  Parameters were: N = 1000, σJ = 0.05, σk = 

0.05, I = T = 10, and Jopt = 0.5. Vectors as in Figure 1.  Dashed line represents 

combinations of V1 and V2 for which C1 = C2 derived from Equation A13.  A. αi = 

0.05.  B. αi = 0.5.   E. αi = 0.05.  Contours of pool size of intermediate B derived from 
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Equation A14. C. countour of pool size αi = 0.05. D. countour of pool size αi = 0.50. F. 

countour of pool size αi = 0.95.  
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Figure 5: Equilibrium distribution of V1 , V2 , V3 for three-step SK simulations. 

Optimal flux surface and equilibrium maximum reaction velocities from 200 

replicate simulations of the three-enzyme SK model.  Parameters as described for 

Figure 4.  Blue points: equilibria for which C1 > C2, C3.  Red points: equilibria for 

which C2 > C1, C3.  Purple points: equilibria for which C3 > C1, C2   A.  αi = 0.05. 
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Alternate views of optimal flux surface. Blue line divides regions based on which 

enzyme exerts greatest control: purple corresponds to C1 > C2, C3.  Orange 

corresponds to C2 > C1, C3.  Light blue corresponds to C3 > C1, C2 .  For positions on 

the optimal flux surface above and to the right of the red line, the size of the 

intermediate pool is lower than the threshold T.  B.  As A, but for αi = 0.5.  All points 

on the optimal flux surface have pool sizes < T.    

For both two- and three-enzyme pathways, our simulations yielded final values 

of the Vi that lie on or very close to the line/surface of optimal flux (Figures 4 and 5). 

Slight deviations from the surface largely reflect nearly neutral substitutions fixed by 

drift after a population has evolved very close to the optimum.  However, the portion of 

the optimal line/surface occupied depends on the reversibility of the reaction.  This point 

is clearly illustrated for the 2-enzyme model with low reversibilty: all points lie in the 

C1>C2 region because of the threshold on the size of substrate pools (Figures 4c), even 

though the optimal flux hyperbola extends into the C2>C1 region (blue line, Figure 4a).  

Enzyme activity values on the optimum line/surface will produce very high 

intermediate substrate levels when V2 (or also possibly V3 in the 3-enzyme pathway) is 

very close to v, making V2 – v (or V3 – v) very small.  Because the concentration of the 

intermediate, B, is inversely proportional to V2 – v (and, in the 3-enzyme pathway, 

intermediate C concentration is proportional to V3 – v )  (Appendix A), the intermediate 

pool becomes very large and a strong fitness penalty is imposed.  Thus, for largely 

irreversible reactions, fitness penalties associated with large pools of the intermediate 

constrain the equilibrium to be in the region in which C1>C2 . If the penalty threshold T 
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were greater, some trials would evolve to equilibria with enzyme 2 (or 3) exhibiting 

greatest control.  However, unless T is unreasonably large, a majority of trials will yield 

equilibria with enzyme 1 having greatest control.  

 With moderately to highly reversible reactions (α = 0.5, 0.95), this constraint is 

absent (Figure 4d, f) and consequently the system evolves to equilbria that lie along the 

entire line/surface of optimal flux (Figure 4b,e, and Figure 5b,c).  In the two-enzyme 

pathway, approximately half the equilibria correspond to C1 > C2, and half to C2 > C1; in 

the three-enzyme pathway, approximately one-third of the equilibria correspond to 

greatest control by each of the enzymes.   Our interpretation of this result is as follows:  

in a reversible reaction, the net forward flux is countered by a backward flux, even if the 

intermediate pool is small.  Consequently, in order to achieve a given optimal flux, the Vi 

must be higher than when reactions are less reversible.  This effect displaces the 

line/surface of optimal flux toward higher values of V1, V2 (Figure 4 a,b:, blue lines 

shifted toward higher V1 and V2 with increasing reversibility) or V1, V2, V3 (Fig 5a,b: 

optimum surface shifted toward higher Vi).  Because of this displacement, at all points 

along the line/surface V2 (and V3) is substantially larger than the actual flux v (0.5 in this 

example).  Consequently, V2 – v (and V3 – v )  remains relatively large and the 

intermediate pool remains relatively small, avoiding the fitness penalty associated with 

high intermediate pools.  In these examples, pools corresponding to the line/surface of 
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optimal flux never exceed the threshold value of T (Figure 4d,f and Figure 5b,c).  There 

is thus no constraint preventing equilibria outside the region in which enzyme 1 exerts 

greatest control.   

In summary, a bias favoring dominant control by enzyme 1 can arise in 

pathways with low reaction reversibility if there is a fitness penalty associated with large 

pools of intermediates.  This penalty does not cause the Vi to deviate from the surface of 

optimal flux, but rather restricts the portion of that surface that corresponds to a high-

fitness equilibrium.  By contrast, this restriction greatly decreases in pathways with 

moderately or highly reversible reactions because reversibility prevents large 

intermediate pools from building up.  Consequently, all enzymes have a roughly equal 

chance of exerting predominant control over flux.  

To assess the generality of these results, we performed simulations for different 

combinations of the values of the parameters α , Jopt , σk, σJ , I, and T. Simulations were 

run in a factorial design varying all six parameters by at least two orders of magnitude, 

each with 25 replicates. We employed a restricted factorial design to avoid simulations 

run with unrealistic parameter values and decrease the computer running time of these 

simulations (for details see Table 11). The data was analyzed with an ANOVA testing 

effects of single parameters and two-way interactions on the distribution of control.  
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Table 11 - Effects of varying parameters in two-step SK model. 

ANOVA testing effects of varying parameters on the distribution of control in 

the  two-step SK model. Note that the results for C1 and C2 are completely analogous, 

because they are analyzed as percentage of total control distributed among each 

enzyme. Parameter levels used in simulations are: αi – 0.001, 0.05, 0.50, 0.95; Jopt  - 

0.01, 0.10, 1.0; σk- 0.01, 0.10, 1.0; σJ - 0.001, 0.01, 0.1;  I – 1.0, 10.0, 100; T – 1.0, 10.0, 100.0. 

Not all pairwise combinations were investigated, the restrictions employed were: 1) 

Jopt ≥ σJ  2) Jopt ≥ σk  3) I > Jopt 4) T > Jopt 5) T ≥ I . The restrictions on specific 

parameter combinations, resulted in a loss of degrees of freedom for many statistical 

comparisons. 

Variable df SS I F p 
α 3 8.05 20.47 <.0001
Jopt 1 0.24 1.81 0.18  LostDFs

K 0 0.00 . .  LostDFs
J 1 3.16 24.08 <.0001  LostDFs
I 2 2.86 10.92 <.0001
T 0 0.00 . .  LostDFs

α * Jopt 6 6.38 8.11 <.0001
Κ  6 4.37 5.56 <.0001

α * σJ 6 0.75 0.96 0.45
α * I 6 13.48 17.14 <.0001
α * T 6 9.94 12.64 <.0001

Jopt * Κ 1 0.90 6.83 0.009  LostDFs
Jopt * σJ 3 6.71 17.06 <.0001  LostDFs
Jopt * I 3 3.05 7.76 <.0001  LostDFs
Jopt * T 3 4.72 12.00 <.0001  LostDFs

Κ ∗ σJ 4 2.23 4.25 0.002
Κ * I 3 0.55 1.40 0.24  LostDFs
Κ * T 3 0.43 1.10 0.35  LostDFs

σJ * I 4 1.02 1.95 0.10
σJ * T 4 1.62 3.09 0.01
 I * T 1 1.94 14.80 0.0001  LostDFs  

 Varying two parameters, σJ , and I, had a significant effect on the distribution of 

control (Table 11 and Table 12), but these effects are subtle and do not change the 

fundamental pattern: control coefficients evolve to be larger for upstream enzymes 

(Table 13 and Table 14).  However, there were two instances in the three-enzyme case in 

which the second enzyme had the greatest control coefficient in the pathway: α =0.95, σJ 

= 0.01 ; σJ = 0.01, I = 100 (Table 14). Additionally, there is a third instance (I = 100, T = 100) 

in which control is quite evenly shared between all three enzymes. These three cases 
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demonstrate that, for a few parameter combinations, control can evolve to be centered in 

a downstream enzyme. Regardless, the fundamental evolutionary pattern for this 

model, and every other model investigated, is that control evolves to be centered in the 

most upstream enzyme.  

Table 12: Effects of varying parameters in three-step SK model. 

ANOVA testing effects of varying parameters on the evolution of CC in three 

enzyme SK model. a. C1 b. C2 c. C3 Parameter levels used in simulations are: αi – 

0.001, 0.05, 0.50, 0.95; Jopt  - 0.01, 0.10, 1.0; σk- 0.01, 0.10, 1.0; σJ - 0.001, 0.01, 0.1;  I – 1.0, 

10.0, 100; T – 1.0, 10.0, 100.0.   
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Table 13: Least Square Mean control coefficients for a. each variable level and 

b. two-way interaction between variables for two step SK model. 
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Table 14: Least Square Mean control coefficients for a. each variable level and 

b. two-way interaction between variables for three-step SK model. 

 

The three properties of mutations examined in this analysis, Nµ , ∆ki , and ∆W, 

were similar between the SK and MCT (Table 9).  For reactions with low reversibility, 

during the directional selection phase, most substitutions occurred in the first enzyme 

and the fitness effects of these substitutions was larger for the first enzyme, despite the 

fact that substitutions in downstream enzymes have a larger effect on enzyme activity 

(Table 4b). During the stabilizing selection phase, the last enzyme in the pathway 

accumulated the greatest number of mutations, and a substantial portion of these tended 
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to have neutral or detrimental fitness effects (αi = 0.001: 2E pathway- 10.6% versus 55.0%; 

3E pathway- 11.2% versus 49.6% & 60.8%) and were thus fixed by drift.  These 

differences among enzymes were greatly reduced when reactions were largely 

reversible (Table 9b).   

1.4 Discussion 

1.4.1 Evolution of control coefficients 

The evolution of metabolic control has been the subject of much speculation.  A 

number of different arguments have been put forward:  (1) metabolic control is likely to 

be shared roughly evenly across enzymes in a pathway (Kacser and Burns 1973); (2) 

control will shift between enzymes in a pathway and no one enzyme is expected to be 

more likely to have high control (Dykhuizen et al. 1987; Keightley 1989; Bost et al.  2001); 

and (3) control will be unequally shared and is likely to be highest for enzymes just 

below branch points because of fluctuating selection for allocation of flux along different 

branches (Eanes 1999).    

Our simulations lend little support to any of these arguments.  For example, 

except when reactions are largely reversible, control is very unevenly shared among 

enzymes. The unequal distribution is a result of selection for control to be centered in a 

single enzyme and is not simply a consequence of the summation property, as 

hypothesized by Bost et al. (2001). Our simulations find no evidence for constant shifts in 
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control between enzymes (Dykhuizen et al. 1987; Keightley 1989). This result hinges on 

the assumption of directional versus stabilizing selection; under directional selection to 

always increase flux, control will shift between enzymes, while we assumed stabilizing 

selection because a pathway’s flux will eventually be inhibited at some rate. Under 

stabilizing selection, the strong tendency for the most upstream enzyme to gain 

predominant control tends to prevent frequent shifts in control among enzymes and 

means that most enzymes have a greatly reduced chance of exercising major control. 

Finally, we are catious about extending our conclusions concerning linear pathways, to 

separate branches of a branching pathway.  We believe additional research focused on 

branching pathways needs to be conducted to fully address this question.  Nevertheless, 

to the extent that this is possible, our results suggest that fluctuating selection on 

allocation between branches is not necessary for the evolution of major control by the 

most upstream enzyme in a pathway branch. 

Our analysis does reveal, however, two properties of control that are expected to 

evolve, at least in linear pathways, when stabilizing selection acts on pathway flux and 

reactions have low reversibility: (1) metabolic control will be concentrated in one or a 

few enzymes, and (2) control tends to be located in upstream enzymes.  These are 

general properties of the system which evolve under a large range of parameter values 

and regardless of whether enzymes are assumed to be saturated or unsaturated.  
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 In the MCT model, these patterns result from two interacting properties.  The 

first is that a very large portion of the (k1, k2, . . .) phenotypic space corresponds to 

greater control for upstream enzymes (e.g. Figure 1a).  The second factor arises when 

comparing mutations of equivalent magnitude on enzyme kinetic properties in enzymes 

with small and large control coefficients. A beneficial mutation will more likely fix in the 

enzyme with greatest control, because it will have a greater effect on flux and hence on 

fitness.   Thus, the initial biased distribution of control in upstream enzymes is 

maintained and intensified by this biased distribution of beneficial mutations. 

These same patterns arise for different reasons under the SK model. In our 

examples, the regions of the line/surface of optimal flux in which the different enzymes 

exert dominant control are roughly equal in size.  Random starting points thus have a 

roughly equal probability of corresponding to dominant control of a specific enzyme.  

Instead, a fitness penalty associated with large intermediate pools differentially 

penalizes downstream enzymes and prevents them from evolving to exert dominant 

control.   

 The concentration of intermediate metabolites may also contribute to favoring 

major control in upstream enzymes in the MCT model. Although this was not formally 

included in our simulations, in the Supplementary Material it is shown that the 

concentration of a pathway’s intermediate is proportional to the ki’s of the reactions 
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preceding the intermediate and inversely proportional to the ki’s of the reactions 

following it.  If there is a cost associated with maintaining pools of intermediates, and if 

that cost increases with the concentration of the intermediate, then there will no longer 

be an equilibrium surface given by Equation 1.  Instead, there will be an equilibrium 

point corresponding to a low value of k1 and high values of the remaining ki , i.e. to a 

high CC for the most upstream reaction and a low CC for all others.  Thus, the inequality 

of flux control due to selection against large intermediate pools in the SK model is likely 

to be seen in the MCT model as well. 

1.4.2 Expected and observed bias in control  

Our simulations indicate that reaction reversibility, α, has the greatest influence 

on the degree of bias among enzymes in flux control.  As shown in Appendix A, the 

value of α for a particular reaction is directly related to the equilibrium constant for the 

reaction, i.e. α = 1/Keq .  Because Keq is a thermodynamic property of the reaction (it is 

determined by the difference in free energy between products and reactants (Nelson and 

Cox 2000)), α is not influenced by the kinetic properties of the enzyme associated with 

that reaction.  Because, unlike kinetic properties, thermodynamic properties cannot 

evolve, the extent of bias in control is set a priori by intrinsic chemical and physical 

properties of the reactions.   
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Whether in general one would expect to see substantial bias in control thus 

depends on whether metabolic reactions tend to be reversible or irreversible.  

Equilibrium constants have been measured for many enzymatic reactions and they 

overwhelmingly tend to be large, indicating irreversibility.  For example, the tryptophan 

biosynthetic pathway has equilibrium constants ranging from 7.6•108 to 9.2•1012, 

corresponding to α values much less than the α = 0.001 used in our simulations (Kishore 

et al. 1998).  Two additional studies (Tewari et al. 2002a, b) of metabolic pathways found 

that the majority of Keq measured are greater than 108, and only two reactions had 

smaller equilibrium constants (e.g. Keq = 1.7 and 4.6, corresponding to α = 0.59 and 0.22 

respectively). Although these examples do not constitute an exhaustive survey, they 

indicate that for many biochemical pathways, if not most, reactions are largely 

irreversible, and therefore the bias toward high CC in upstream enzymes predicted by 

our model should often be found.   Given that most estimated values of α are several 

orders of magnitude smaller than the smallest value (0.001) used in our simulations, we 

would expect this bias to be substantially stronger than we found (e.g. Table 2).   

 Evaluating agreement between the predictions of our model and patterns of flux 

control in real pathways is complicated by the fact that most pathways are not strictly 

linear.  Instead, they are often branched or cyclical, and it is not clear whether and how 

predictions from our model carry over to such pathways.  Nevertheless, a literature 
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survey of linear and nearly linear metabolic pathways provides strong support for our 

first conclusion that control is distributed unequally in pathways and marginal support 

for the second claim that control should be vested in upstream enzymes. In thirteen 

control analysis studies, all but one (Wisniewski et al. 1995), demonstrated significant 

evidence for non-uniform distributions of control (Groen et al. 1986; Dykhuizen et al. 

1987; Albe and Wright 1992; Hill et al. 1993; Kashiwaya et al. 1994; van der vlag et al. 

1995; Roussel et al. 1998; Thomas and Fell 1998; Bost et al. 2001; Cronwright et al. 2002; 

Pritchard and Kell 2002; Wu et al. 2004). These studies are sampled across a broad 

spectrum of organisms and metabolic pathways. Half of them focused on the glycolysis 

pathway, but other pathways included the tricarboxylic acid cycle, oxidative 

phosophorylation pathway, gluconeogenesis, lactose catabolism, and the succinate 

pathway.  

Our second prediction, that upstream enzymes tend to evolve larger CC than 

downstream enzymes, is less well supported. Five studies provided strong support for 

this prediction: results indicated that the first enzyme had the highest control coefficient 

(Groen et al. 1986; Dykhuizen et al. 1987; Roussel et al. 1998; Cronwright et al. 2002; 

Pritchard and Kell 2002). Pritchard and Kell’s (2002) analysis of the entire glycolysis 

pathway indicates that the two most upstream enzymes exhibit the majority of control in 

this pathway.  By contrast, five investigations found that either an enzyme in the center 
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of the metabolic pathway (Albe and Wright 1992; Kashiwaya et al. 1994; van der vlag et 

al. 1995; Thomas and Fell 1998) or at the end of the pathway (Wisniewski et al. 1995) 

exerted the majority of control.   

It should be noted that our analysis does not predict that downstream enzymes 

will never exhibit the greatest flux control.  Even with low reaction reversibility (α = 

0.001 or 0.05), approximately 5%-25% of our simulations evolved to equilibria at which 

the highest CC corresponded to an enzyme downstream of the first enzyme in the 

pathway.  Moreover, our simulations of shifting optima revealed that pathways with 

control centered in the most upstream enzyme can evolve majority control in another 

enzyme, and that there is a low, but not insignificant, probability that at any given time, 

a downstream enzyme will exert majority control.  It is thus not surprising that 

examples exist in which control is vested in downstream enzymes.  The real question is 

whether this situation is as common as the reverse.  Although the slight bias in these 

studies toward control being exerted in upstream enzymes is consistent with our 

expectation, this small sample clearly does not provide sufficient evidence to either 

support or refute the prediction that control should most commonly be vested in 

upstream enzymes. 



 

 46 

 

1.4.3 Which genes participate in bouts of adaptive evolution?  

The ultimate goal of our analysis was to determine whether predictions can be 

made about which genes in a pathway are likely to be involved in adaptive change.  In 

doing so, we aim to extend the general theory of adaptation (Fisher 1930, Kimura 1983, 

Orr 2005) beyond its current focus on predicting the number and size distribution of 

mutations involved in bouts of adaptation.  Initially, we suspected that a simple 

principle would govern the choice of genes involved in an adaptive walk: mutations in 

genes for which flux control is highest would be used preferentially because such 

mutations are likely to have greater effects on flux and hence on fitness (Hartl et al. 1985; 

Eanes 1999; Watt and Dean 2000).   

 Our analyses confirm the operation of this principle.  In both the MCT and SK 

models, when reactions are largely irreversible and the distribution of control is the 

most inequitable between enzymes, most substitutions, as well as substitutions with the 

largest effect on fitness occur in upstream enzymes during adaptive walks toward an 

optimal flux. However, this pattern reverses, such that the majority of substitutions 

occur in downstream enzymes, as the population nears the optimum.  Moreover, many 

substitutions fixed in this phase appear to be nearly neutral (Ohta 1973, Kimura 1983).  

This shift occurs because near the optimum most mutations are deleterious and because 

substitutions in downstream enzymes have smaller effects on fitness because of their 
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reduced control.  Consequently, a mutation with a given effect on enzyme activity will 

have a smaller detrimental effect, and thus a greater probability of being fixed by drift, 

when it occurs in a downstream enzyme. Some adaptive substitutions continue to be 

fixed, however, as compensation for slightly deleterious substitutions, and these occur 

preferentially in the upstream enzymes. To summarize, the difference in control causes 

upstream enzymes to be subject to strong directional selection during the first phase of 

an adaptive walk and purifying selection during second.  

The distribution of substitutions among genes within metabolic pathways has 

been investigated in three systems of which we are aware. The anthocyanin pathway is a 

linear pathway comprised of six enzymes that produce pigments involved in flower 

coloration across angiosperms. Three studies of molecular evolution in the anthocyanin 

pathway, looking at broad and narrow phylogenetic scales (between three angiosperm 

families and within the genus Ipomea), found that upstream enzymes had the lowest 

rates of substitution and the downstream enzymes had the greatest rates of substitution 

(Rausher et al. 1999, Lu and Rausher 2003; Rausher et al. 2008).  These studies found no 

evidence of positive selection, suggesting that most substitutions were of neutral or 

slightly disadvantageous mutations.  To the extent that these substitutions were 

disadvantageous, this pattern is consistent with expectations under our model: because 

of reduced flux control, mutations that cause deviation from the flux optimum are more 
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likely to have smaller effects on fitness in downstream enzymes, and are thus more 

likely to be fixed by genetic drift (Hedrick 2000). An independent study of four 

terpenoid biosynthesis pathways obtained similar results, a strong correlation between 

elevated rates of substitution and downstream enzyme position (Ramsay et al. 2009). 

This study finds that the elevated rates of substitution in downstream enzymes are, at 

least partly, caused by relaxed selection in the downstream enzymes, a pattern 

consistent with the expectations of our model. Tests for positive selection at a broad 

phylogentic scale (between angiosperm families) found significant effects for multiple 

genes distributed between up- and downstream positions of the pathways. Ramsay et al. 

(2009) conclude that decreased pleiotropy in downstream genes resulted in relaxed 

selection on these enzymes; however, our model provides another explanation: the 

control of downstream enzymes is greatly reduced compared to upstream enzymes and 

they accumulate many neutral or nearly-neutral mutations.   

An additional study by Flowers et al. (2007) examined rates of molecular 

evolution in Drosophila for 17 metabolic enzymes in five pathways (glycolytic, 

gluconeogenic, glycogenic, trehalose, and pentose shunt) that intersect at glucose-6-

phosphate enzyme. This study found a strong signature of adaptive evolution on the D. 

melanogaster and D. simulans lineages. The three enzymes that showed statistically 

significant elevated rates of adaptive evolution are all upstream enzymes occurring at 



 

 49 

 

the branch points between pathways.  Flowers et al. (2007) interpret this pattern as 

arising from fluctuating selection on the relative magnitudes of flux on different 

branches.  However, this pattern may also be consistent with our models’ prediction that 

adaptive substitutions will be concentrated in the most upstream enzyme of a terminal 

linear pathway, if the evolution of a pathway branch behaves similarly to the evolution 

of the linear pathways described here.  This issue will only be resolved, however, by 

examining the evolution of control in branched pathways. 

1.4.4 Conclusion 

We present population genetic models of the evolution of metabolic pathway 

flux in order to investigate whether predictions can be made about whether different 

genes in a pathway will be differentially involved in the process of adaptation.  

Although the models pertain only to linear pathways, they indicate that there are likely 

to be strong differences among enzymes in the numbers and types of substitutions they 

accumulate.  While the extent to which the specific predictions of our model may be 

extended to pathways with more complex topology is unclear, the fact that our model 

generates strong patterns of bias suggests that similarly strong, though perhaps 

different, patterns may be expected in more complicated pathways.  We suggest that the 

approaches presented here will be useful for examining these more complex situations. 
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2 The Genetic Control of Copper Tolerance in M. 
guttatus 

2.1 Introduction 

The relationship between adaptation and speciation has been a thoroughly 

contested topic in evolutionary biology. There is wide support for the hypothesis that 

adaptation to novel environments drives reproductive isolation through the 

development of prezygotic barriers such has mating preference, location and timing 

(Mayr 1942; Simpson 1953; Shemske and Bradshaw 1999; Schluter 2000; Nosil et al. 

2002). The model of intrinsic post-zygotic isolation put forth independently by Bateson 

(1909), Dobzhansky (1937) and Muller (1942) is agnostic toward the evolutionary forces, 

drift or natural selection, that generate reproductive isolation. This model states that 

Dobzhansky-Muller incompatibilities (DMIs) may arise when unique mutations from 

two different gene pools are brought together and interact epistatically to reduce fitness. 

The beauty of this model is that new substitutions can be neutral or beneficial in their 

native background, and only when they are exposed to a foreign genome, are they 

deleterious. Populations do not have to cross a fitness valley during the process of 

speciation. Dobzhansky (1951) hypothesized that intrinsic post-zygotic barriers would 

likely be a by-product of natural selection because the genotype is an integrated set of 

co-adapted genes shaped by a specific ecological niche and hybridization would 

‘produce discordant gene patterns’ or intrinsic post-zygotic barriers. Initial research on 
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the genetic basis of intrinsic post-zygotic isolating barriers supported this hypothesis; 

three of the four “speciation genes” first identified had strong signals of positive 

selection (Coyne and Orr 2004). However, as more cases of intrinsic post-zygotic 

isolation have been genetically dissected, greater evidence has accumulated that 

alternative evolutionary forces such as: mutation pressure, drift, and intragenomic 

conflict, may drive the fixation of DMI (Barbash et al. 2003; Brideau et al. 2006; Harrison 

and Burton 2006; Masley et al. 2006; Mihola et al. 2008; Bikard et al. 2009; Ferree and 

Barbash 2009). A possible counter example to this thesis is the adaptation to a copper 

mine by Mimulus guttatus driving the fixation of a post-zygotic incompatibility locus 

(Coyne and Orr 2004; Futuyma 2005). In this chapter we aim to further investigate this 

hypothesis, by investigating the genetic basis of copper tolerance and hybrid lethality 

and the evolutionary forces that shaped these two phenotypes.  

Adaptation to heavy metal enriched environments by plants is a classic example 

of microevolution, because, much like antibiotics and pesticides, heavy metal enriched 

soils impose strong selection for tolerance and prevent most species from colonizing 

these environments (Futuyma 2005). M. guttatus is a common wildflower inhabiting 

many different environments in western North America, including serpentine soils 

enriched for heavy metals such as zinc, and copper mines. Copper tolerant M. guttatus 

were first described inhabiting copper mine tailings of four mine sites within Calaverous 
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County, CA, the largest of these populations was found at the Keystone mine at 

Copperopolis (Allan and Sheppard 1971). Macnair (1981; 1983) has investigated the 

genetic basis of copper tolerance with multiple crossing experiments and established 

that this phenotype has a simple genetic basis, controlled by a single dominant locus. 

Repeated backcrosses of tolerant to nontolerant plants found that tolerance, scored as 

ability to grow roots above a threshold of copper, segregated in a 50:50 ratio over 

successive generations (Macnair 1983; Strange and Macnair 1991). However, these 

experiments cannot exclude the possibility that tolerance is controlled by multiple, 

tightly linked loci or that there is an inversion segregating between the parental lines. 

When tolerance is measured as a quantitative character, as opposed to a threshold 

character, the tolerance locus does not explain all of the genetic variation in tolerance 

(Macnair et al. 1987; Smith and Macnair 1998). We propose to measure the amount of 

quantitative genetic variation explained by this major tolerance locus. 

A by-product of this investigation into the genetic basis of the tolerance locus 

experiments is that crosses with one population, Cerig-y-drudion (Cerig), produced 

hybrid lethal offspring, while crosses to another population, Stinson Beach, were 

completely viable (Macnair and Christie 1983). When hybrid lethality was observed, it 

always cosegregated with copper tolerance, leading Macnair and Christie (1983) to 

hypothesize that the tolerance and hybrid lethality were controlled by the same locus. 
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However, these experiments cannot exclude the possibility that tolerance and hybrid 

lethality are controlled by multiple, tightly linked loci or that there is an inversion 

segregating between the parental lines. An investigation into the distribution of the 

incompatibility alleles found that the DMI cosegregating with tolerance is fixed in the 

Copperopolis population (Macnair and Christie 1983; Christie and Macnair 1987). The 

fixation of the Copperopolis DMI allele in this population could be due to drift or to 

selection on this locus in the Copperopolis population, because the tolerance and DMI 

are controlled by the same locus, or there are two tightly linked loci and the DMI was 

swept to fixation, or there are two loci, and each one is beneficial in the mine 

environment. Hybrid lethality in the Cerig population was variable; the results from 

crossing experiments indicated that at least two polymorphic DMI loci are segregating 

within this population (Macnair and Christie 1983; Christie and Macnair 1987). The 

segregating polymorphisms in the Cerig DMI alleles indicate that they may be evolving 

neutrally or subject to balancing selection. An understanding of the physiological and 

genetic basis of the DMI loci will enable us to distinguish between these possibilities.   

Hybrid lethality in crosses between Copperopolis and Cerig manifests as F1 

hybrid necrosis, seedling leaves become yellow and die very early in development 

(Macnair and Christie 1983). Hybrid necrosis has been noted by breeders for a hundred 

years, but has only recently been appreciated as a common postzygotic isolating barrier 
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within plant species (Bomblies and Weigel 2007). The physiological phenotype of tissue 

necrosis is similar across many angiosperm clades, implying they all may share a 

common genetic basis (Bomblies 2009). For systems in which the genetic basis of this 

trait has been investigated, all studies have implicated the disease resistance genes, R 

genes, and their interacting proteins (Kruger et al. 2002; Bomblies et al. 2007; Alcazar et 

al. 2009; Jeuken et al. 2009).  It is hypothesized that tissue necrosis is a result of the plant 

hypersensitive response; the R genes from one background are negatively interacting 

with proteins from the other genome and triggering this response. The tissue necrosis 

phenotype is very similar to the plant hypersensitive response, in which cell are locally 

aborted to prevent the spread of obligate biotrophic pathogens. These results suggest 

that tolerance and hybrid incompatibility are unlikely to be controlled by the same locus.  

In this study, we propose to investigate the genetic basis of tolerance to 

determine: 1) is copper tolerance controlled by a single locus?, 2) how much phenotypic 

variation does this locus explain?, 3) are tolerance and hybrid incompatibility controlled 

by the same locus?, and 4) do R genes underlie the DMI loci in crosses between 

Copperopolis and Cerig plants?  

2.2 Methods 

M. guttatus is a common wild flower distributed throughout western North 

American. M. guttatus is the most common member of a species complex composed of 
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many interfertile subspecies varying in habitat preference, mating system, many life 

history traits (Vickery 1959). Adaptation to extreme edaphic environments is very 

common in this group, multiple populations and subspecies are locally adapted to 

serpentine soils and copper mine tailings (Macnair and Gardner 1998). This group has 

been subject to intense ecological research for over 50 years and has recently developed 

into a model system for ecological and evolutionary functional genomics (Wu et al. 

2008).  

2.2.1 Mapping Copper Tolerance Locus 

To map the major copper tolerance locus we will use an introgression line 

developed by Macnair with the tolerance allele backcrossed into a nontolerant genome 

(Macnair 1983; Strange and Macnair 1991). In keeping with precedence (Macnair 1983), 

we refer to this as a major effect locus and acknowledge that the effect of this locus on 

quantitative variation in tolerance has not been measured. Macnair created this line by 

crossing plants from three different populations (Figure 6). The first cross was between 

two outbred plants, a tolerant plant (COP10) from the central smelter in Copperopolis, 

CA and the nontolerant plant (CER34) from Cerig, Wales, UK (Allan and Sheppard 

1971). M. guttatus is native to North America, but has been found as a garden escapee in 

the UK for over a hundred years (Allan and Sheppard 1971). A single tolerant F1 plant 

was backcrossed to a second outbred, nontolerant plant from Stinson Beach (SB), Marin 
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County, CA (Macnair 1983; Strange and Macnair 1991). Macnair repeated backcrossing a 

single tolerant line to different outbred plants from SB for six generations (Figure 6). 

Each backcross generation segregates 50:50 plants that are heterozygous for the 

tolerance allele (BC7T) and homozygous for the nontolerant allele (BC7NT). We generated 

our mapping population by intercrossing a line BC7T and BC7NT line to produce 5014 F1BC7 

plants.  

 

Figure 6: Generation of Major Tolerance Locus Mapping Lines 

 

We scored copper tolerance in our mapping population as a threshold character, 

root growth in solution with elevated copper concentration (Macnair 1983). We planted 

F1BC7 seeds into 12” x 18” trays filled with potting soil and stratified them for one week 



 

 57 

 

at 4C. They were then transferred to greenhouse at University of Exeter, United 

Kingdom, and grown in under 8 hour light, 16 hour dark. Upon germination plants 

were thinned to 32 plants per tray. Plants were maintained in short day conditions to 

encourage vegetative growth and prevent flowering. When natural day length exceeded 

8 hours, black out screens were used to prevent additional light. After eight weeks of 

growth, cuttings were taken, stripped of roots, and placed into solution of 0.5 g ml-1 

CaNO3 and 0.5 µg ml-1 CuSO4. Cuttings were grown in solution for five days and scored 

as tolerant if they initiated new root growth or nontolerant if they were unable to initiate 

new root growth. Plants were grown in seven successive blocks of 768 plants from 2005 - 

2007. We repeated tolerance assays on all plants with ambiguous root growth results.  

Our approach in mapping the tolerance locus was to first identify the 

heterozygous genomic regions in the tolerant introgression line BC7T, and second to 

demonstrate that a heterozygous region associates with the tolerance phenotype in the 

F1BC7 mapping population. To genotype these lines we collected leaf and bud tissue into 

96 well plates and shipped the tissue on dry ice to Duke University, Durham, NC, USA. 

We extracted genomic DNA from bud and leaf tissue using a CTAB/chloroform protocol 

(Doyle and Doyle 1990) modified for use in 96-well format (Fishman et al. 2005). We 

used a previously developed set of MgSTS markers that amplify intron length 

polymorphisms (described in Wu et al. 2008). We used these markers to identify 
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heterozygous genotypes in the BC7T line and homozygous genotypes in BC7NT. We 

screened 541 markers in BC7T and BC7NT lines and confirmed any putatively linked 

markers by screening them in 72 F1BC7 plants and testing for a correlation with tolerance 

and marker segregation. For fine mapping, we designed additional intron length 

polymorphism markers using the M. guttatus 7X genome assembly produced by the 

Department of Energy’s Joint Genome Institute (www.phytozome.net). Marker size was 

analyzed by capillary electrophoresis and fragment analysis on an ABI 3730x1 DNA 

Analyzer. Markers were scored manually in GENEMARKER (SoftGenetics, 2005, State 

College, PA). 

2.2.2 Quantitative Copper Tolerance Analysis  

To estimate the effect of the major tolerance locus, we needed to measure copper 

tolerance as a quantitative trait. Many quantitative phenotyping methods have been 

proposed, such as: measuring root length or biomass after growing in solution at a 

single heavy metal concentration (Smith and Macnair 1998), measuring of accumulation 

of heavy metals in root/shoot tissue (Salt et al. 2008), and the sequential method which 

measures the concentration of heavy metals that inhibits new root growth (Schat et al. 

1996). In this method, plants are grown in hydroponic solution and exposed to a series 

of sequentially increasing heavy metal concentrations. Prior to each treatment, roots are 

stained black with activated charcoal and after an interval of a few days, new root 
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growth is scored by the presence of white root tips. Tolerance is scored as the heavy 

metal concentration at which new root growth ceases (Schat et al. 1996). This method is 

very laborious, but it is preferred to measuring root length or biomass, because of the 

possible confounding effects of the rate of plant growth. Measuring the accumulation of 

heavy metal ions is very precise, but it is very expensive and not feasible for a large 

number of samples.  Thus, we sought to modify the sequential method for measuring 

tolerance in a large QTL mapping population. 

For our quantitative mapping experiment, we tested a large mapping population 

using the sequential method. Instead of scoring new growth by staining roots black with 

activated charcoal, we grew plants in straws suspended in hydroponic solution and 

monitored root growth with rubber bands placed around the straws. To implement this 

new phenotyping method, we constructed 21 watertight boxes (6” X 12” X 15”) made of 

PVC foam (Piedmont Plastics, Morrisville, NC) with wells drilled through the tops of the 

boxes. We used fishing line to attach clear drinking straws, length: 7”, diameter: ¾” 

(Dispozo Plastics, Columbia, SC) to the wells in the lid, so the straws were extending 

down into the boxes. We punched between 20-30 small holes in each straw to facilitate 

the movement of solution. This design allowed plants to grow roots from the top of the 

well and into the straws suspended in hydroponic solution. The straws enabled us to 

track the root growth of each individual plant without them becoming intertwined. 
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Boxes were filled with ¼ strength Hoglands solution (Hewitt 1966), set at pH 5.7; this 

was our baseline hydroponic solution for all experiments. Copper was added to this 

baseline in the form of CuSO4. The solution was constantly mixed and supplemented 

with oxygen using aquarium air pumps.  

To phenotype copper tolerance, plants were grown in the hydroponic boxes and 

monitored for root growth in solution of increasing copper concentration. Plants were 

grown from seed on an inert hydroponic medium, Rockwool. We filled 0.5 mL 

microcenterfuge tubes with Rockwool and planted the seeds into the substrate. After 

germination, seedlings were thinned to one per tube, the bottom of the microcenterfuge 

tube was cut off, and placed into a well in one of the boxes. Seedlings were grown in the 

baseline solution for a minimum of two weeks before initiating copper treatment. Prior 

to initiation of the first treatment, we marked the root length of all plants. To mark root 

length, we placed rubber bands on the outside of each straw and positioned them to be 

level with the bottom of the plants longest root. Rubber bands were stiff enough to 

prevent accidental shifting in between census dates, but were easily rolled up and down 

the straw to track growing roots on census dates. At the initiation of the first treatment, 

we replaced the solution in all boxes with the baseline, supplemented with 1 µg ml-1 Cu. 

Plants were censused for increased root growth after three days; we recorded which 

plants had extended their roots, moved the rubber bands to mark the new maximum 
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root length, and replaced the baseline solution with the next treatment level. If root 

length exceeded the length of the straws, we used rulers to measure root length at each 

census date. We tested the plants at seven treatment levels: 1, 2, 3, 4, 6, 8, 10 µg ml-1 Cu. 

Our measurement of tolerance was the concentration of copper at which root growth 

ceased.  

We used this quantitative phenotyping method to measure copper tolerance in a 

large F2 mapping population. We used two inbred lines, from mine and off-mine 

habitats respectively, to generate our mapping population. The tolerant line, COP52, 

was collected from Copperopolis, CA, at the same site as tolerant line in the first 

mapping experiment, COP10. The nontolerant plant, MED84, was collected at a site free 

of copper contamination near Moccasin, Tuolumne County, CA, located 20 km from 

Copperopolis. We selfed parental lines for 4 generations and reciprocally crossed them 

to generate two F1 lines, differing only in their maternal backgrounds. We selfed each F1 

plant to develop a mapping population segregating autosomal and organelle genomes. 

In total we measured copper tolerance of 1387 plants: 32, COP52; 98, MED84; 95, F1; 

1162, F2. We stratified seeds for 1 week at 4C and transferred them to a growth chamber, 

set at 20C, 8 hr light and 16 hr dark. Plants were completely randomized among 21 

blocks containing 72 or 144 wells. Due to a large environmental variability in this 

experiment we subsequently repeated this experiment.  
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In order to reduce the environmental variability and increase the accuracy of our 

measurements, we repeated this experiment with cuttings from a subset of plants from 

the first experiment. The second experiment was initiated six weeks after the completion 

of the first experiment, in which the plants were allowed to grow in the baseline solution 

containing no excess copper. We tested 356 plants in the second experiment: 29 MED84, 

31 COP52, 44 F1s, and 252 F2s from 96 unique genotypes. All roots we stripped from 

cuttings and they were immediately placed in first copper treatment. In this experiment, 

we increased the level of copper plants were tested against, the treatment levels: 2, 4, 6, 

9, 12, 15, 18 µg ml-1 Cu. As in the first experiment, plants were censused every three days 

for new root growth and then transferred to the next treatment level. Our measurement 

of tolerance was the concentration of copper at which root growth ceased. 

We analyzed the phenotypic variation in copper tolerance, and estimated the 

heritability of tolerance and the effect size of the tolerance locus. We calculated the mean 

and variance of tolerance for each genotypic class (COP parent, MED parent, F1, F2) and 

tested the phenotypic distributions for normality (Shapiro-Wilks W-test). To statistically 

control for block effects in each experiment we fitted a single factor ANOVA. We used 

the residuals of this model to calculate the mean tolerance for each parental, F1 and 

unique F2 genotype. We calculated 2a as the difference between the mean for each 

parental class. Dominance, d, was calculated as the difference between the F1 mean 
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phenotype and the midpoint between the two parents (Lynch and Walsh 1998). We 

estimated the environmental variance, VE, using phenotypic variance from the three 

genetically homogenous classes: the F1 hybrids and the two parental lines. We 

calculated VE as a weighted average of the parental and F1 phenotypic variances, VE = [2 

Var(F1) + Var(COP) + Var(MED)] / 4 (Lynch and Walsh 1998). We calculated the 

genotypic variance, VG, by subtracting the F2 phenotypic variance from VE and then 

estimated broadsense heritability for tolerance as H2 = VG /Var(F2) (Lynch and Walsh 

1998). To estimate the effect size of the tolerance locus, we first genotyped each F2 line 

for a marker linked to the tolerance locus and then compared the difference between the 

two homozygous genotypic classes, 2aMarker, to the difference between the parental 

classes. We present these differences in phenotypic variation scaled by the 

environmental standard deviation (ESD), which is the square of the environmental 

variance VE. All statistically analyses were conducted in JMP V. 7.0 (SAS Institute, Cary, 

NC). 

2.2.3 Fine Mapping Copperopolis Incompatibility Locus  

In order to determine if the copper tolerance and hybrid incompatibility 

phenotypes are controlled by the same locus, we crossed an incompatible Cerig line, 

CER10, to 19 F1BC7 plants (10 nontolerant and 9 tolerant) identified as having a 

recombination breakpoint near the tolerance locus and scored their progeny for necrosis. 
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As a control, we also crossed CER10 to 8 nonrecombinant F1BC7 plants (6 nontolerant and 

2 tolerant).  We measured necrosis as the percentage of progeny with yellow or dead leaf 

tissue. Plants were scored three weeks after germination, any ambiguous seedlings were 

not included in further analyses. We scored necrosis in 2-8 replicate grow-

outs/genotype, two blocks/grow-out, 30 seedlings/block. All progeny were grown in the 

glass house at the University of Exeter. Plants were grown under ambient light and 

temperature conditions. Temperature was measured every day in the greenhouse. 

Seedlings were monitored every day for yellow and necrotic tissue. Recombinant and 

control lines were genotyped for multiple markers developed using the M. guttatus 7X 

genome (www.phytozome.net). Most of the markers amplified intron length 

polymorphisms and were scored as described above. Three markers, Sc84.180kb, 

Sc84.234kb, and Sc84.297kb were sequence-based markers used to identify SNPs. We 

direct sequenced genomic DNA from each line and ran these markers and identified 

SNPs as base pairs that consistently had two peaks in tolerant control and a single peak 

in the nontolerant control plants in Sequencer.  

2.2.4 Mapping Cerig Incompatibility Locus(i) 

To map the DMI(s) in the Cerig population interacting with the Copperopolis 

locus we created an F2 population segregating for the Cerig DMI(s), phenotyped them 

for hybrid lethality and genotyped them for markers near our candidate necrosis genes. 



 

 65 

 

The two parents in our mapping population were chosen based on a preliminary set of 

crosses between 10 Cerig lines and a Copperopolis and scoring the hybrid progeny for 

necrosis. We found that CER10 had the highest offspring lethality, between 80%-100%, 

and CER35 had the lowest, between 0%-10% offspring lethality (Macnair and Christie 

1983; Christie and Macnair 1987). We intercrossed these lines, and selfed a single F1 

plant to generate an F2 mapping population of 168 plants. To measure hybrid lethality 

for each F2, we conducted two crosses to two distinct, outbred Copperopolis genotypes. 

A total a seven Copperopolis lines were used in the entire experiment, so not all F2s 

were crossed to the same Copperopolis genotype. This is unlikely to introduce much 

error into this experiment because it has previously established that the Copperopolis 

DMI is fixed in the mine population (Macnair and Christie 1983; Christie and Macnair 

1987). We scored the progeny for necrosis as described previously. We scored necrosis in 

four successive growouts from May-August 2009. 

Previous research has demonstrated that R genes are the root cause of many 

cases of hybrid necrosis (Bomblies and Weigel 2007; Alcazar et al. 2009). R genes are 

disease resistance loci that trigger plant defense responses after they identify signals of 

pathogen attack. These genes are very numerous, and they are often clustered together, 

in different genomic regions (Meyers et al. 2003). We identified the number and 

distribution of R genes in the M. guttatus genome. To identify R genes in the M. guttatus 
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genome, we conducted BLAST searches against the 7X genome assembly 

(phytozome.net). Our query amino acid sequences were three genes from each of the 

two major A. thaliana R gene sub-families, CC-NBS-LRR and TIR-NBS-LRR (Meyers et 

al. 2003). We identified all genomic scaffolds containing four or more R genes. We then 

identified the MgSTS markers located in those genomic scaffolds, or designed new 

markers for scaffolds lacking markers. Clearly, this approach will not identify all of the 

R genes in the M. guttatus genome, however it will provide a coarse estimate of the 

number of genes and their location. To map QTLs contributing to hybrid lethality we 

screen markers linked to our candidate genes in the F2 population. 

To map the DMI in the Cerig population, we conducted a bulk-segregant QTL 

mapping experiment. We screened 73 markers linked to R gene clusters in 12 plants 

taken from the each end of the F2 phenotypic distribution. All markers with a skewed 

allele distribution between the two F2 pools were then screened in the total set of F2s. 

We statistically controlled for variation among growout date, block and Copperopolis 

line by fitting a three-factor ANOVA. We used the residuals of this model to calculate 

the mean and standard deviation for the marker genotypes.  We assessed significant 

differences between marker genotypes with a single factor ANOVA.  
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2.3 Results 

2.3.1 Tolerance Locus Mapping 

In order to map the tolerance locus, we first needed to identify heterozygous 

genomic  regions in the tolerant introgression line, BC7T, and homozygous regions in the 

BC7NT lines. To confirm the heterozygous region affects tolerance we will then test for an 

association with tolerance in the mapping population, F1BC7. We screened 541 BC7T and 

BC7NT lines and identified 52 markers that were heterozygous in the BC7T line. To confirm 

which markers are linked to the tolerance locus, we screened them in two panels of F1BC7 

lines and tested for a correlation between phenotype and allele segregation. We screened 

52 markers in an initial panel of 8 F1BC7 lines and found a correlation between with six 

markers. We then screened these markers in 72 F1BC7 and winnowed the list of linked 

markers to four: MgSTS217, MgSTS242, MgSTS536, MgSTS745. Previous mapping 

experiments showed all of these are within 20 cM of each other on linkage group (LG) 9 

(mimulusevolution.org). The tightest linked marker, MgSTS242, had no recombinants 

between tolerance phenotype, and all other markers are arrayed on the same side of the 

tolerance locus as e242. We name the copper tolerance locus Tol1. 

We then proceeded to fine map the tolerance locus in a large growout of F1BC7 

lines. We scored 2229 F1BC7 plants as tolerant, 2609 plants as nontolerant, 176 lines were 

removed from the analysis because we were unable to accurately score their phenotype. 
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Of the plants that were unambiguously phenotyped, we genotyped 4340 of these lines 

with marker MgSTS242. We mapped marker MgSTS242 to be 1.57 cM from Tol1, there 

were 68 recombinants between this marker and the tolerance locus (Figure 7). Marker 

MgSTS242 is located on the end scaffold 103, which is 972kb in length (Figure 7). We 

soon discovered that this region of the M. guttatus genome is filled with repetitive DNA 

and the assembly was quite poorly. There are no large scaffolds that span sizeable 

portion of the linkage group, LG 9. In order to proceed with fine mapping Tol1, we 

needed to identify additional genomic scaffolds in this region. We identified one other 

marker that mapped to this region of LG 9, MgSTS481. This marker is located in the 

middle of genomic scaffold 84, which is 1.01 MB in length. We hypothesized that this 

scaffold would contain the tolerance locus because previous estimates of the ratio of 

physical to genomic distances in M. guttatus range from 50-250 kb/cM (D.B. Lowry, 

unpublished data).  We designed markers Sc84.1788 and Sc84.Atg5 located at opposite 

ends of scaffold 84 to determine if this scaffold contains the tolerance locus. We 

genotyped these new markers in 68 F1BC7 recombinant lines and discovered that scaffold 

84 did not include Tol1 (Figure 7). This genomic region, (at least in this cross) has a 

greatly reduced recombination rate, the physical distance between Sc84.1788 and 

Sc84.Atg5 is 693 kb and the genetic distance is 0.51 cM, which corresponds to 1.36Mb/ 
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cM.  We measured the recombination rate between Sc84.Atg5 and Tol1 to be 0.74 cM, 

thus we estimate that the physical distance to the Tol1 to be 1 MB (Figure 7).  

 

 

Figure 7: Fine Mapping of Major Copper Tolerance Locus 

2.3.2 Quantitative Measurements of Copper Tolerance 

To estimate the effect size of Tol1 we conducted a sequential tolerance assay to 

quantitatively measure copper tolerance in a F2 population segregating copper 

tolerance. We measured the presence or absence of new root growth in 1293 plants at 

seven levels of copper, from 1 - 10 µg ml-1 Cu. The parental lines had overlapping 

distributions of copper tolerance and the distribution of tolerance in the F1 and F2 

populations was significantly skewed toward higher levels tolerance (Figure 8). The 
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mean difference between the two parental lines, 2a, is 3.25, the ratio of 2a/ESD is 1.09, 

and the broad sense heritability is 0.14 (Table 15). Due to the overlap between the 

parental lines and the skewed distribution in the F1 and F2 lines, we repeated this 

experiment testing lines at higher levels of copper. 

 Table 15- Mean copper tolerance from 1st quantitative root growth assay 

Source n Mean SD 2a /ESD H2

CCC52 30 0.22 3.38 1.09 0.14

MED84 97 -3.03 3.36

F1 96 1.61 2.55
F2 1070 0.068 3.22  
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Figure 8: Distribution of copper tolerance from 1st root growth assay for 

parental (top), F1 (middle), and F2 (bottom) classes. 

We conducted a second quantitative tolerance assay. In order to reduce the 

amount of environmental variability we took multiple cuttings from plants in the first 

experiment and to decrease the overlap between parental lines we tested lines at higher 

concentrations of copper. We took multiple cuttings from each F2 line (average 2.6 

replicates / F2 line). Plants were tested for new root growth at seven treatment levels, 
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from 2 -18 µg ml-1 Cu. The overlap between parental lines was greatly reduced in the 

second experiment (Figure 9). Tolerance was normally distributed in the F1 (W = 0.954; p 

= 0.082) and F2 (W = 0.98; p=0.15) classes (Figure 9). The difference between the two 

parental lines was larger then previously measured, 2a = 7.55, as was the ratio of 

parental divergence to environmental error was also larger, 2a/ESD = 2.15 (Table 16). We 

measured tolerance to be partially dominant, d is 2.59 and d/a is 0.69. We were unable to 

reduce the amount of environmental variation in this experiment, ESD = 2.98 in the first 

experiment and ESD = 3.51 in the second experiment. The broad sense heritability 

remained approximately the same, H2 = 0.13.  

Table 16: Mean copper tolerance from 2nd root growth assay. 

Source n Mean SD 2a /ESD H2

CCC52 29 3.11 3.07 2.15 0.13

MED84 27 -4.44 3.74

F1 43 1.93 3.59
F2 96 -0.088 3.76  
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Figure 9: Distribution of copper tolerance from 2nd root growth assay for 

parental (top), F1 (middle), and F2 (bottom) classes. 

To test for an effect of the tolerance locus on the quantitative tolerance 

phenotype, we screened one marker, Sc103.1657, in 96 F2s from the second experiment. 

This marker is 1.54cM from the Tol1, adjacent to MgSTS242 at the end of scaffold 103 

(Figure 7). We conducted a single-marker ANOVA and found a significant effect of 

Sc103.1657 on tolerance (Table 17). The difference between the alternative homozygous 

alleles at this marker is 2a1657 = 2.34 (Table 18). Comparing the ratio of the genotypic class 
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divergence to the environmental standard deviation, we find 2a1657/ESD = 0.67 , which 

accounts for 31.1% the parental divergence. The Copperopolis allele at marker 1657 is 

completely recessive, d = -1.18 and d/a = -1.01, this contrasts with our estimate of partial 

dominance of tolerance in F1 class.  

 

Table 17: Single marker ANOVA testing for effect of genotype on copper tolerance.  

Source df SS MS F p R2

Model 2 94.4 47.2 3.64 0.030 0.077

Error 87 1126.7 13.0

Total 89 1221.1 13.7

Sc103.1657

 

Table 18: Copper tolerance least square mean (LSM) and standard error (SE) 

for alternate genotypes, Copperopolis (C) and Moccasin (M).    

Genotype n LSM SE 2a/ESD
CC 23 1.66 0.75 0.67

CM 42 -0.69 0.56

MM 26 -0.68 0.72

Sc103.1657

 

2.3.3 Fine Mapping Copperopolis Incompatibility Locus 

In order to determine if the incompatibility and copper tolerance phenotypes are 

caused by the same locus, we crossed 19 recombinant F1BC7 plants (9T, 10NT) to CER10, 

a line that yields high offspring lethality when paired with the tolerance locus. We found 

two lines, 25E01 and 25E11 where the tolerance and lethality phenotypes were 

disassociated (Figure 10). This indicates that the tolerance and lethality phenotypes are 
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controlled by different loci and these lines must have had a recombination event in 

between these two loci. We name the Copperopolis DMI locus, Nec1. To identify the 

location of the incompatibility locus we genotyped 19 lines for eight markers along 

scaffold 84. We found that 16 of 19 lines have recombination breakpoints that map the 

incompatibility locus to a region in-between markers at Sc84.234kb and Sc84.297kb on 

scaffold 84 (Figure 11). There are no annotated genes located within this interval, our 

markers are located in each of the two nearest genes. Sc84.234kb amplifies the 4th exon, 

4th intron, and 5th exon and has high similarity to a Jumanji (JMJ5) transcription factor. 

The Sc84.297kb marker amplifies ~ 500bp of the 5th exon of a protein with high similarity 

to a glycosyltransferase protein. We found that the Copperopolis allele at this marker 

has a large indel in the 5’ end of the 5th exon.  

 

Figure 10: Mean percentage of necrotic offspring for recombinant F1BC7 lines 

crossed to Cerig10 genotype. Red bars are tolerance and blue lines are nontolerant. 

Numbers above bars are number of replicate lethality assays. 
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Figure 11: Fine mapping hybrid incompatibility locus, Nec1. Red lines denote 

COP allele, black lines denote SB (nontolerant) allele, and grey hatched lines are 

equivocal. Circles represent phenotypic measurements: tolerant genotypes have red 

circles and high offspring lethality genotypes have blue circles. 

2.3.4 Mapping Cerig Incompatibility Locus(i) 

To map QTLs underlying the Cerig DMI(s), we generated an F2 mapping 

populations, from two lines, CER10 and CER35, which produce different levels of lethal 

offspring when crossed to Copperopolis. We measured the level of offspring lethality by 

scoring the percentage of lethal offspring from crosses between 168 F2 plants and 

Copperopolis lines. We measured offspring lethality of 131 F2s when crossed against 
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two different Copperopolis genotypes, we measured 33 F2s for hybrid lethality when 

crossed to only a single Copperopolis genotype, and four F2 lines perished during the 

experiment before any crosses could be completed. We measured the parental mean 

hybrid offspring lethality as CER35 = 6.7% and CER10= 79.7%.  The distribution of 

offspring lethality is not normal (W = 0.94, p<0.001), it is skewed toward lower levels of 

necrosis (Figure 12). The F2 distribution encompasses the parental mean on the low end, 

but only one plant approaches the parental mean at the high end (Figure 12).  

 

Figure 12: Distribution of necrosis in F2 population derived from CER10 and 

CER35. Black arrow is mean for CER35 parent, blue arrow is mean for CER10 parent. 

To map the genetic basis of offspring lethality we first needed to identify the 

location of the R genes in the M. guttatus genome. We used BLASTp to query the M. 

guttatus genome for amino acid matches to A. thaliana R genes with e-value scores <e-10. 

We identified 476 unique R gene hits distributed among 133 scaffolds. The distribution 
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of hits was highly skewed, the four scaffolds with the greatest number of hits contained 

28% of the total number of R genes identified and 72 scaffolds had a single R gene hit. 

We identified 24 scaffolds with four or more unique R gene clusters.  

To determine if any of these R gene clusters affect the level of hybrid necrosis, we 

genotyped the Cerig F2s for markers linked to the R gene clusters. We found 73 markers 

in the 24 scaffolds with four or more R genes.  To identify allelic variation between the 

parental lines we screened them in the CER10 and CER35 parents, 25 of 73 markers were 

polymorphic. We screened the polymorphic markers in 24 F2s taken from the extremes 

of the distribution, 12 high plants, mean necrosis 49.5%, and 12 low plants, mean 

necrosis 0.3%. We found that 3 of the 25 markers screened showed skewed allelic 

distribution between the two F2 pools. We screened these three markers in 162 F2s and 

found that two markers were significantly associated with hybrid lethality (Table 5).  

Coincidently, these two markers, MgSTS217 and MgSTS416 are located on LG 9 on 

scaffold 68 near a cluster of seven R genes approximately 21 cM from the primary 

incompatibility locus (mimulusevolution.org). We name this locus Nec2. The two 

markers comprising Nec2, MgSTS217 and MgSTS416, had R2 values of 0.32 and 0.35 

(Table 19). Both of these markers exhibit segregation distortion, with an excess of 

heterozygotes compared to either homozygote class (Table 20).  
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Table 19: Single marker ANOVA testing for association between markers and 

necrosis in Cerig F2s. 

Source df SS MS F p R2 df SS MS F p R2 df SS MS F p R2

Model 2 0.86 0.43 37.2 <.0001 0.32 2 0.961 0.48 43.8 <.0001 0.35 2 0.04 0.02 1.23 0.295 0.016
Error 160 1.86 0.01 160 1.754 0.01 149 2.48 0.02
Total 162 2.72 162 2.715 151 2.52

MgSTS473MgSTS416MgSTS217

 

Table 20: Hybrid necrosis least square mean (LSM) and standard error (SE) for 

alternate genotypes, Cerig10 (C10) and Cerig35 (C35). 

Genotype n LSM SE n LSM SE
C10C10 13 0.029 0.030 16 0.038 0.026

C10C35 92 0.055 0.011 89 0.058 0.011

C35C35 60 -0.099 0.014 60 -0.104 0.014

MgSTS416MgSTS 217

 

2.4 Discussion 

In this study, we demonstrate that the copper tolerance locus, Tol1, maps to an 

unassembled region of the M. guttatus genome. We further demonstrate that Tol1 

explains a large amount of the quantitative variation in copper tolerance. We next show 

that the Copperopolis DMI locus does not map to Tol1, but is controlled by a separate 

locus, Nec1. Lastly, we demonstrate that Nec1 interacts with at least one DMI in the Cerig 

genome, Nec2, to cause F1 hybrid lethality. Nec2 maps near a cluster of seven R genes. 

2.4.1 Genetic Basis of Copper Tolerance 

Macnair (1983) originally proposed that tolerance was controlled by a single 

dominant locus of large effect. However, this experiment could not distinguish between 

a single major locus, multiple tightly linked loci, or an inversion containing a large 



 

 80 

 

genomic region. We mapped a single locus, Tol1, to an unassembled region of the M. 

guttatus genome. There is no inversion in this genomic region, but we cannot eliminate 

the possibility that tolerance is controlled by multiple tightly linked loci. We will 

continue fine mapping this region as the assembly of the M. guttatus 7X genome 

improves. Experiments are currently underway to genetically map all of the 

unassembled genomic scaffolds by re-sequencing 64 recombinant inbred lines at low 

coverage to identify SNPs in every scaffold and map the scaffolds onto the existing 

linkage map.  This procedure could place many more scaffolds near scaffold 84, and we 

can continue fine mapping Tol1. We would also like to know the phenotypic effect size 

of this locus to qualitatively estimate the strength of selection on this locus.  

Macnair (1983) hypothesized that the copper tolerance locus has large 

phenotypic effects. However, this conclusion was based on the results from experiments 

that measured tolerance as a threshold character. When tolerance was measured as a 

quantitative trait, the tolerance locus did not explain all of the genetic variation in 

tolerance (Macnair et al. 1993; Smith and Macnair 1998).  In these studies, tolerance was 

selected in two different directions, high and low, while holding the Copperopolis 

alleles at Tol1 constant. There was a response to selection in both directions and they 

concluded that additional loci contribute to tolerance. This experimental design did not 

allow for clean estimation of the phenotypic effects of the tolerance locus. We conducted 
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an experiment to quantitatively measure the effect of Tol1 in an F2 mapping 

populations, and we found that this locus accounts for 31% of the divergence between 

parental lines. Although there has been much debate over what constitutes a QTL of 

large effect (Fishman et al. 2002), this data indicates that this locus does explain a 

substantial amount of the quantitative variation in tolerance. Therefore, this indicates 

that this locus is under strong selection in the mine environment.  

We had hoped to map additional tolerance QTLs in our quantitative mapping 

experiment, but we decided against conducting a genome-wide QTL analysis because of 

the high environmental variation in our quantitative root growth assays. We may be 

able to decrease environmental variation and increase our estimate of heritability from 

0.14 by repeating our quantitative root assay, and measure the rate of root growth at 

each copper treatment. Macnair and colleagues conducted a selection experiment and 

estimated the realized heritability of copper tolerance to be 0.39 when tolerance was 

phenotyped as the rate of root growth in a single copper treatment level (Macnair et al. 

1993).  

2.4.2 Hybrid incompatibility, a pleiotropic consequence of selection 
for tolerance? 

One of the few examples of habitat-mediated selection causing the fixation of an 

intrinsic post-zygotic isolation factor is the association of a DMI factor and copper 

tolerance locus in the Copperopolis population of M. guttatus (Coyne and Orr 2004, 
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Futuyma 2005). Post-zygotic isolation in this system manifests as hybrid necrosis, which 

has been linked to incompatibility between interacting plant pathogen response genes 

(Kruger et al. 2002; Jeuken et al. 2009; Bomblies 2009). Is hybrid lethality a pleiotropic 

effect of copper tolerance or is it caused by plant pathogen response genes? 

Macnair and Christie (1983) proposed that strong selection in the mine 

environment resulted in the fixation of a copper tolerant allele that also caused post-

zygotic reproductive isolation. They performed numerous crosses between mine and 

off-mine genotypes and found that copper tolerance and hybrid lethality always 

segregated together. Macnair and Christie did not have any genetic markers in this 

experiment, so they could not rule out the possibility that the phenotypes are controlled 

by two loci that are tightly linked or reside in an inversion. We found that copper 

tolerance and hybrid necrosis phenotype are controlled by two tightly linked loci: Tol1 

and Nec1. We reject the hypothesis that hybrid necrosis is a direct pleiotropic byproduct 

of an allele conferring copper tolerance. We find no evidence of inversions in this 

genomic region, although we will need to continue fine mapping Tol1 to confirm this 

result. If tolerance and hybrid lethality are controlled by two separate loci, how did they 

both become fixed in the Copperopolis populations?  

There are two hypotheses describing the fixation of both tolerance and hybrid 

offspring lethality phenotypes in the mine population: it was swept to fixation along 
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with the tolerance locus, or Nec1 is beneficial in the mine environment. We conclude that 

it is unlikely there was selection on Nec1 in the mine environment because the two loci 

nearest our mapped interval, a Jumanji transcription factor and a glycosyltransferase, 

seem unlikely candidate genes for conferring fitness in the mine environment. We have 

presented evidence that Tol1 has a large effect on copper tolerance, so we expect that 

selection is very strong on this locus in the mine environment. Therefore, we conclude 

that the tight linkage between Nec1 and Tol1 and strong selection on Tol1 caused Nec1 to 

be swept to fixation in the Copperopolis population. We present additional data 

supporting this conclusion in the next chapter. This data seems to support a mechanism 

that DMI can become swept to fixation because of tight genetic linkage to another locus 

under direct selection. 

2.4.3 Genetic basis of hybrid incompatibility 

The final goal of this project was to test the hypothesis that hybrid lethality is 

controlled by genes involved in the plant pathogen response pathway. The offspring 

from crosses between Copperopolis and Cerig genotypes develop yellow leaves and 

necrotic tissue. Similar tissue necrosis traits have been observed in hybrid offspring from 

many plant systems, this indicates that necrosis has a shared underlying physiological 

mechanism (Bomblies 2009). Tissue necrosis is a result of induced cell death, this 

phenotype is characteristic of the hypersensitive response of plants used to limit the 
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spread of pathogens that require living tissue to proliferate. To test the hypothesis that 

hybrid necrosis is controlled by plant pathogen response genes, we genetically mapped 

DMI loci controlling hybrid inviability between Copperopolis and Cerig genotypes. 

We mapped the Copperopolis DMI, Nec1, to an interval of 63kb, between 

markers Sc84.234kb and Sc84.297kb on scaffold 84 of the M. guttatus 7X genome 

assembly. Three of 19 recombinant plants do not support this locus mapping to this 

region (Figure 6). We believe that these genotypes must have been contaminated while 

being maintained as perennial plants for two-three years in the University of Exeter 

greenhouse. There are no annotated genes within the mapped interval and the nearest 

genes are the two markers that define the interval, neither of which have a perfect 

association with the phenotype. These two genes are in opposite orientation along the 

chromosome, such that the 5’ region of each gene extends into the mapped interval. Our 

markers are located in the 3’ end of each gene. We hypothesize that the functional 

change underlying Nec1 is in an exon or a regulatory region at the 5’ end of one of these 

genes. Marker Sc84.234kb is a Jumanji transcription factor, these are involved in 

methylation and histone modification (Hong et al. 2009). Marker Sc84.297kb is a 

glycosyltransferase, these genes are involved in the widespread modification of plant 

secondary compounds and the regulation of hormones, including salicylic acid (Gachon 

et al. 2005). This gene is an interesting candidate because of the central role salicylic acid 



 

 85 

 

plays in pathogen response. To determine the functional mutation underlying Nec1, we 

plan to continue fine mapping this interval and compare the expression of these two 

genes in green living tissue and yellow necrotic tissue in hybrid offspring. The ultimate 

confirmation that the glycosyltranferase underlies Nec1 would be to transform the 

Copperopolis allele into a Cerig compatible genotype and cross the transformed line to 

Cerig see if we recover the lethality phenotype. To test our hypothesis that hybrid 

necrosis is caused by plant pathogen response genes, we also investigated the genetic 

basis of the DMI locus in the Cerig genome.  

We hypothesized that the Cerig DMI locus, Nec2, would be an R gene. To map 

the Cerig DMI locus we identified all of the genomic scaffolds with four or more R genes 

and screened markers within those scaffolds in an F2 population segregating for the 

Cerig DMI. We identified a single locus effecting hybrid lethality, Nec2, which is defined 

by two markers tightly linked to a cluster of 7 R genes on scaffold 68. Nec2 accounts for a 

large portion of the variation in necrosis: the single marker ANOVA for MgSTS217 and 

MgSTS416 have R2 values of 0.32 and 0.35. However, these results also imply that other 

loci also affect hybrid lethality in the Cerig background. Our mapping approach was not 

comprehensive and additional R genes or other defense response genes may contribute 

to hybrid lethality.  There is strong segregation distortion for both Nec2 associated 

markers, the ratio of genotypic classes is 1:6:4, with the homozygote genotype for the 
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high allele, Cerig10, being underrepresented. This distortion could not be caused by 

hybrid lethality because these genotypes are of the Cerig F2 population and the lethality 

only manifests in Cerig x Copperopolis crosses. We are unsure of the cause of this 

distortion, but this phenomenon is often found in crosses between M. guttatus 

populations (Fishman et al. 2002; Hall and Willis 2005). Our finding that an R gene 

contributes to the Cerig DMI locus is congruent with previous research that the 

incompatibility factor is polymorphic in the Cerig population (Macnair and Christie 

1983; Christie and Macnair 1987). R genes are highly polymorphic within populations 

because pathogen pressures produce strong balancing selection on these loci (Bakker et 

al. 2006). Conversely, we find that the Copperopolis DMI, Nec1, does not map to a 

known R gene, and the incompatibility allele is fixed within this population (Macnair 

and Christie 1983; Christie and Macnair 1987).  Our results are consistent with previous 

findings that R genes are the genetic basis for hybrid necrosis. 

Recent investigations into the genetic basis of hybrid necrosis indicate that plant 

pathogen response genes are the genetic basis for this trait (Kruger et al. 2002; Bomblies 

et al 2007; Alcazar et al. 2009; Jeuken et al. 2009). Tissue necrosis in tomato was 

identified to be associated with resistance to the mold fungus, Cladosporium fulvum 

(Langford 1948). Recent molecular characterization of wild and domesticated tomato 

lines determined that Cf-2 is a NB-LRR gene that monitors conformation changes in a 
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cystenine protease gene, Rcr3, that is often targeted during pathogen attack (Kruger et 

al. 2002). Tissue necrosis arises when Cf-2 from wild tomato interacts with Rcr3 from the 

domestic tomato, but this reaction is prevented when Cf-2 and Rcr3 are both from the 

wild tomato. In A. thaliana, the two hybrid necrosis systems that have been genetically 

characterized found R genes involved in hybrid necrosis (Bomblies et al. 2007; Alcazar et 

al. 2009). Hybrid necrosis in interspecific crosses between cultivated and wild lettuce 

species, Lactuca sativa and L. saligna cosegregates with resistance to powdery mildew 

(Jeuken et al. 2009). Molecular characterization of this phenotype indicates that this locus 

is homologous to the A. thaliana gene, Rin4, which is a plasma membrane associated 

protein targeted by at least three pathogen effectors and is protected by two R genes 

(Jeuken et al. 2009). To summarize, these studies have found two genes, Rin4 and Rcr3, 

that act as DMI loci when paired with R genes from another genomic background. 

Under normal conditions, these proteins are “guarded” by R genes and any change in 

their conformation triggers plant defense response (Bomblies 2009). The proposed model 

of hybrid necrosis in these cases is that R genes and the guardee proteins are co-evolving 

in each lineage and when different alleles come together through hybridization, they do 

not recognize each other and the hyper-sensitive response is triggered, killing the plant. 

Our candidate gene at the Copperopolis DMI locus, a glycosyltransferase protein, does 

not conform to this model because it directly interacts with salicylic acid, not R genes. If 
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the glycosyltransferase protein proves to be the functional gene underlying Nec1, then 

the physiological model of how the hypersensitive response is triggered in necrotic 

plants will have to be modified. How do these conclusions influence current paradigms 

about the relationship between adaptation and speciation?   

2.4.4 Adaptation driving the fixation of DMI loci 

Many researchers have argued about the role of adaptation in driving speciation 

of plant lineages. There are many examples of habitat-mediated selection driving 

prezygotic isolation through changes in mating behavior, flowering time, pollinator 

visitation, and habitat preferences (Mayr 1942; Simpson 1953; Shemske and Bradshaw 

1999; Schluter 2000; Nosil et al. 2002). There is less consensus on the effect of adaptation 

on the evolution of intrinsic post-zygotic isolating barriers. Recent discoveries have 

linked the neutral processes, such as genomic rearrangements, and genomic conflict to 

driving intrinsic post-zygotic reproductive isolation (Presgraves 2010). Genome 

rearrangements have been shown to cause intrinsic post-zygotic isolation in Drosophila 

and A. thaliana because essential genes are moved into different parts of the genome and 

hybridization can produce F2s progeny that maybe missing essential loci (Masley et al. 

2006; Bikard et al. 2009). Genomic conflict has been demonstrated to cause intrinsic post-

zygotic isolation because of the break up of tightly co-evolved selfish elements and the 

repressors of those elements in each genomic background (Barbash et al. 2003; Brideau 
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et al. 2006; Mihola et al. 2008; Ferree and Barbash 2009). As discussed here, intrinsic 

post-zygotic incompatibilities have also been linked to co-evolution of interacting plant 

defense response genes due to pathogen pressures (Bomblies 2009).  

We present data supporting two evolutionary forces contributing to the fixation 

of DMI loci within a single system. First, out evidence suggests that an R gene 

contributes to hybrid incompatibility in the Cerig background. R genes may be under 

strong selection because of their critical role in detecting plant pathogens. Previous 

studies have indicated that some R genes are under strong balancing selection and 

maintain ancient polymorphisms (Bakker et al. 2006). The DMI locus in the 

Copperopolis background may act in the plant pathogen response system through 

regulation of salicylic acid, but it is unlikely that the R gene and glycosyltransferase 

interact directly. Previous models of plant pathogen response genes causing hybrid 

necrosis state that incompatibilities arise when hybridization brings together divergent 

proteins that interact directly (Bomblies 2009). Our results do not fit this model, so it is 

not clear how pathogen-mediated selection pressures may drive the incompatibility of 

Nec1 and Nec2 in this system.  

The second evolutionary force driving the fixation of a DMI locus in this system 

is mediated, indirectly, through adaptation to a novel environment. Our evidence 

suggests that Nec1 was swept to fixation in the Copperopolis population due to tight 
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linkage between Tol1 and Nec1. We found that Tol1 has a large effect on copper tolerance 

and is likely under strong selection in this environment. We will continue to explore this 

strength of selection on Tol1 in the Copperopolis population in the following chapter. 

For now, we offer a tentative conclusion that a DMI locus can become fixed between 

species or populations because of habitat mediated selection on another locus in tight 

linkage.   
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3 Parallel Evolution of Copper Tolerance in M. guttatus 

3.1 Introduction 

The parallel evolution of ecologically important phenotypes is a common 

observation in the natural world. Parallel evolution describes the evolution of the same 

phenotype in genetically independent populations inhabiting similar environments.  

This process has been observed in multiple systems, including: the reduction of body 

armor and pelvic spines in independent freshwater three-spine stickleback (Gasteroteus 

aculeatus) populations (Bell and Foster 1994), the repeated evolution of various Anolis 

ecomorphs on numerous Caribbean islands (Losos et al. 1998), the divergence between 

dwarf and normal morphs in multiple lake whitefish Coregonus clupeaformis (Pigeon et 

al. 1997), and the colonization of serpentine soils and other edaphically stressful habitats 

by multiple species of Lashenia (Rajakaruna et al. 2003). Evolutionary biologists have 

long studied parallel evolution because this is strong evidence for natural selection 

driving phenotypic change in natural populations (Simpson 1953, Endler 1986). A 

question arising from these studies is whether replicate phenotypic changes arise via 

similar physiological or genetic changes? 

To examine this question researchers have investigated the physiological and 

genetic basis of traits undergoing parallel phenotypic evolution. Recently a great deal of 
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progress has been made in identifying the genetic basis of ecologically important 

phenotypes and determining if independent populations have substitutions in the same 

locus or, possibly, the same nucleotide. One of the best examples of this involves the 

evolution of reduced body armor plating in freshwater populations of threespine 

sticklebacks. Researchers demonstrated that independent freshwater populations are 

more closely related to adjacent marine populations, yet all but one populations has 

evolved reduced body armor by the same genetic mechanism, a mutation in the Eda 

gene (Colisomo et al. 2005). This mutation segregates at low frequency in the marine 

population, indicating that ancestral variation was important in the evolution of reduced 

body armor. However, the researchers did find a single freshwater population that 

evolved reduced body armor via changes in a different gene, supporting the notion that 

there is more than one way to evolve a given phenotype. Additional research on the 

genetic basis of traits evolving in parallel will enable researchers to determine the 

relative contribution of shared ancestral polymorphism or independent novel mutations 

in driving phenotypic change. 

The colonization of extreme edaphic environments by plant species is an ideal 

system to study parallel evolution. Extreme edaphic environments, such as serpentine 

(ultramafic) soils, high salinity soils, and mine tailings all create strong selective 

environment for organisms living on them (Antonivics et al 1971; Flowers et al 1986; 
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Macnair and Gardner 1998; Brady et al. 2003). Metal ore mine tailings often present 

multiple stress factors, including low water holding capacity, cation exchange capacity, 

pH (acidic), and macronutrient concentration, as well as high concentrations of 

bioavailable heavy metals (Tordoff et al. 2000). These environments are distributed as 

terrestrial islands, they are often restricted on a local scale and replicated on a regional 

scale, enabling comparative investigation of physiological mechanisms of tolerance. In 

response, organisms often display specific morphological or physiological adaptations 

to cope with edaphic stress.  The physiological and genetic basis of heavy metal 

tolerance has been studied in many plants inhabiting heavy metal-rich environments 

(Baker 1987; Shaw 1989). Physiological heavy metal tolerance mechanisms may include 

exclusion, sequestration/detoxification, and toxicity tolerance, all of which are typically 

coupled with translocation regulation at the plant organ level (Baker 1987; Shaw 1989; 

Hall 2002; Marschner 2002). Different physiological mechanisms for tolerance suggest 

parallel evolutionary trajectories may not always proceed via the same physiological 

changes. The molecular mechanisms underlying these physiological process has been 

well studied in Arabidopsis (reviewed in Rauser 1999; Cobbett 2000; Hall and Williams 

2003; Burkhead et al. 2009). Natural variation between mine and off mine populations of 

multiple species has also been investigated (Macnair 1983; Schat et al. 1996; Turner et al. 



 

 94 

 

2010). We aim to study the evolution of copper tolerance in the common monkey flower, 

Mimulus guttatus.  

M. guttatus has become a model plant species in the study of ecological 

divergence (Wu et al. 2008).  M. guttatus, and its many sibling species comprise the 

morphologically and physiologically diverse M. guttatus species complex.  M. guttatus is 

an herbaceous, rosetted annual (seasonally dry environments) or rhizomatous perennial 

(perennially moist environments).  M. guttatus inhabits a wide diversity of habitats 

throughout western North America including coastal, riparian, alpine, thermal hot 

springs, serpentine, and mine tailings (Wu et al. 2008). The colonization of copper mine 

tailings by M. guttatus has been investigated for many years.  

Investigations into the evolution of heavy metal tolerance in M. guttatus have 

focused on populations in California’s Sierra Nevada foothills copper belt, primarily a 

population inhabiting the large North Union-Keystone Union mine complex at 

Copperopolis (Allan and Shepard 1971, Macnair 1983, Macnair and Christie 1983; 

Macnair et al. 1993; Tilstone and Macnair 1997).  Common garden experiments 

demonstrate a genetic basis for copper tolerance in mine populations (Allan and 

Shepard 1971; Macnair 1981; Macnair et al. 1993). An investigation into the distribution 

of copper tolerant plants found that tolerance is fixed in six mine populations located in 

the foothills copper belt near Copperopolis, and is segregating < 5% in off mine 
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populations, despite these populations growing in close proximity (Christie and 

Macnair 1987). To investigate the genetic basis of tolerance in the Copperopolis 

population, Macnair  (1983) analyzed the segregation of tolerance in a series of crosses 

and found that tolerance was primarily controlled by a single, dominant locus of large 

effect. The physiological effect of this locus was investigated using an introgression line 

with the Copperopolis tolerance allele backcrossed into a nontolerant genomic 

background and measuring the concentration of copper in root and shoot tissue and cell 

membrane integrity after exposure to copper ions (Strange and Macnair 1991; Tilstone 

and Macnair 1997). These experiments found that the Copperopolis tolerance allele 

introgression line had lower concentration of copper in its root tissue and greater cell 

membrane integrity then nontolerant off mine plants (Strange and Macnair 1991; 

Tilstone and Macnair 1997). In collaboration with Macnair we have fine mapped this 

large effect tolerance locus, Tol1, to a small region of linkage group 9 (Chapter 2). In this 

chapter, we aim to expand our investigation into the evolution of tolerance by 

continuing to examine the physiological basis of copper tolerance and patterns of 

selection on Tol1 at Copperopolis and compare these finding to other mine populations 

of M. guttatus.    

There are three major deposits of copper in California. The aforementioned Sierra 

Nevada foothills belt is the largest, extending from Madera county in the south to 
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Nevada county in the north, the Plumas copper belt is restricted to Plumas county on 

the eastern side of the Sierra Nevada mountains, and the Shasta belt occupies portions of 

Shasta, Trinity, and Siskiyou counties at the northern end of the state (Jenkins 1948). M. 

guttatus has been found on eight copper mines within the foothills belt: Copperopolis, 

Little Quail Hill, McNulty, Napoleon, Nassau, Newton, Penn, and Star-Excelsior (Allan 

and Shepard 1971, Macnair et al. 1987). We have recently discovered new populations 

inhabiting the Iron Mountain mine/Keswick smelter and Bully Hill mines in the Shasta 

belt and the Walker mine in the Plumas belt. The mines and smelters of the Sierra 

Nevada foothills and Shasta Cu belt began operations around 1860, while mines of the 

Plumas Cu belt did not begin operations until around 1900 (Jenkins 1948).  Mining and 

smelting activity at most of the mines ceased around 1945. Non-metallicious populations 

are quite abundant throughout all three of these regions. The distribution of habitat 

islands and variation in tolerance begs the question: did copper tolerant alleles evolve 

once and then migrate to other mines or did tolerance evolve independently at each of 

these mines? If tolerance did evolve independently, did they use the same physiological 

and genetic mechanisms to achieve tolerance? 

We will investigate the parallel evolution of copper tolerance in M. guttatus by 

comparing the physiological mechanisms of tolerance and selection on the major 

tolerance locus between Copperopolis and three other mine populations from the 
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foothills belt, and a single mine population from the Shasta and Plumas belts. We will 

address a number of specific questions:  1) do other mines have soil copper 

concentrations similar to Copperopolis?, 2) do other mine populations have reduced 

concentration of copper in their root tissue similar to Copperopolis?, 3) are mine 

populations more share more neutral genetic variation with each other or with adjacent 

off mine neighbors?, and finally, 4) we will determine if there is evidence of selection on 

the tolerance locus by measuring the extent of genetic differentiation, Fst, between the 

Copperopolis and adjacent off-mine populations at markers linked and unlinked to Tol1. 

We will compare the estimates of Fst at Copperopolis to other paired mine and off-mine 

populations. 

3.2 Methods 

3.2.1 Soil Collection and Analyses 

In order to compare the abiotic edaphic habitat between mine and off-mine 

populations, we measured the pH and the concentration of four heavy metals, Cu, Zn, 

Fe, and Mn at six paired mine and off mine sites, two mine populations were sampled at 

the McNulty population (Table 21). We did not collect soil at two unpaired off mine 

sites, CVROM1 and CVROM2, but these populations are located in different water drainage 

systems more than 4 km from the nearest mine. Soil samples were collected at 0 – 15 cm 

depth from where each population was growing, this depth represents the rooting zone 
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of M. guttatus. Soil samples were air dried and sieved to < 2mm. For most soil samples, 

pH (saturated paste extract; Rhoades and Miyamoto 1990) and bioavailability of heavy 

metals (DTPA extract; Lindsay and Norvell 1978) was analyzed by A&L Agricultural 

Labs, Inc. (Modesto, California, USA; analysis suite S3C). Soil from two populations 

(MCNM2 and MCNOM; Table 21) was analyzed at the Texas A&M soil analysis lab using 

the same extraction method.  

Table 21: Description of population habitat, location, pH and concentration of four 

heavy metals. 

Population 
Location

Population 
Abbreviation Habitat Latitude Longitude

Elevation 
(m) pH

 Cu2+         

(ug g-1 )

 Zn2+       

(ug g-1 )

 Fe2+       

(ug g-1 )

 Mn2+       

(ug g-1 )
KESM Mine 40.631627 -122.463645 231 5.9 116 48 8 2

KESOM Off 40.617606 -122.482405 288 5.8 4 3 69 27

WKRM Mine 39.965041 -120.665661 1869 6.1 295 1 2 5

WKROM Off 39.964167 -120.660556 1903 6 4 28 66 10

NASM Mine 38.044588 -120.648879 506 4.7 56 49 29 5

NASOM Off 38.046111 -120.646667 493 7.2 5 4 52 15

PENM Mine 38.232421 -120.877191 86 4.6 156 34 1 9

PENOM Off 38.235278 -120.871389 119 5.9 15 18 66 23

COPM Mine 37.977145 -120.637969 293 6 199 2 3 3

COPOM Off 37.962067 -120.614329 238 6.4 11 2 84 44

MCNM Mine 37.912222 -120.723889 252 4.4 252 50 37 34

MCNM2 Mine 37.934575 -120.732822 260 5.9 64 39 41 42

MCNOM Off 37.840102 -120.626463 164 7.3 2 4 18 26

CVROM1 Off 37.929255 -120.639902 260 - - - - -

CVROM2 Off 37.959805 -120.689355 282 - - - - -
Calaverous Cty

McNulty

Copperopolis

DTPA extractable (Bioavailable)

Keswick

Walker

Nassau

Penn

 

3.2.2 Copper Concentration in Root and Shoot Tissue 

In order to compare the physiological mechanisms of tolerance between 

Copperopolis and the other mine and off-mine populations we grew plants in three 

different copper treatments and analyzed the concentration of copper ([Cu]) in root and 

shoot tissue. We investigated paired mine and off-mine populations from four foothill 
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mines: Copperopolis, McNulty, Nassau and Penn, as well as paired populations from 

the Plumas belt, Walker mine, and Shasta belt, Keswick mine (Figure 13, Table 21). For 

this analysis we did not include a paired off mine population for the McNulty mine. 

Seed was collected by pooling seed pods from 50 maternal families. We germinated all 

seeds on potting soil (UC mix).  Seven days after germination, prior to the emergence of 

true leaves, seedlings were randomly selected and transplanted into plastic conetainers 

(164 ml; SC10, Stuewe and Sons, Inc., Corvallis, Oregon, USA) containing sand culture.  

Plants were watered twice weekly with full strength Hoaglands solution containing 0.5, 

2.0, or 4.0 µg ml-1 CuSO4.  Macnair (1981) previously established 2.0 µg ml-1 Cu as the 

toxicity threshold for off mine M. guttatus populations. A total of 10 replicates per 

population per [Cu] treatment were established. Plants were housed outdoors in 

Hollister, California, USA (ambient climate).   Plants were harvested 45 days post-

transplant when all individuals were at flowering stage.  At harvest, roots were 

separated from shoots, cleaned, and oven dried at 60°C.  Root and shoot samples were 

then dry ashed in a muffle furnace at 500°C, dissolved in 1N HCl, and analyzed by 

flame atomic absorption spectrophotometry (Atomic Absorption Spectrometer AAnalyst 

800, PerkinElmer Instruments, Waltham, Massachusetts, USA). We analyzed the 

measurements of [Cu] in root and shoot tissue with an ANOVA or t-test in JMP v.7.01 
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(SAS Institute Inc. 2007). All statistical comparisons for the McNulty population were 

made to the nearest off mine population at Copperopolis, 10 km.  

 

Figure 13: Map of northern California, red markers indicate mines and blue 

markers are off-mine populations. 

3.2.3 Population Structure Plant Material 

To measure the genetic differentiation between mine and off mine populations 

we collected genomic DNA from 15 populations of M. guttatus, we sampled all 11 

populations included in the physiological testing, an additional population from 

contaminated soil near the McNulty mine and three additional off mine populations 

from Calaverous county (Figure 13, Table 21). We sampled 9 - 30 (mean 17) field 
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collected individuals per population, for a total of 239 individuals, 125 mine and 114 off-

mine. Seeds used in population structure analysis were collected as individual maternal 

families, with the exception of PENM and PENOM. Samples from the Penn mine were 

collected as 50 pooled maternal families, below we discuss how we accounted for 

possible sampling of siblings in these populations. Seeds were planted into 2.5in pots 

with Fafard 4P potting soil and stratified at 4C for seven days. Seeded pots were 

transferred to a greenhouse (Duke University, Durham, NC), watered daily, and grown 

under 18 hr day lengths at 20° C. Thirty days after germination, tissue was collected and 

genomic DNA was extracted from bud and leaf tissue using a CTAB/chloroform 

protocol (Doyle and Doyle 1990) modified for use in 96-well format (Fishman et al. 

2005). 

We genotyped a total of 16 molecular markers in our 15 M. guttatus populations. 

Eleven markers are unlinked and dispersed across the genome (mimulusevolution.org), 

this represents our “neutral” marker dataset, but we acknowledge that we have not 

formally established that these are evolving neutrally. The five remaining markers are 

all tightly linked to a QTL for copper tolerance, Tol1  (Chapter 2). Hereafter, we will refer 

to the five Tol1 linked markers as Tol1LINK, and the 11 Tol1 unlinked markers as Tol1UL. 

Tol1LINK are located at the end of linkage group 9, on scaffold 84 and scaffold 103 (M. 

guttatus genome, 7X build, Department of Energy, Joint Genome Institute, 
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www.phytozome.net). All markers are on the same side of the tolerance locus, we 

previously estimated the genetic and physical distances from the tolerance QTL as: 

Sc84.Atg5: 0.74cM/1.01MB, Sc84.G4: 0.86cM/1.18MB, Sc84.G5: 1.04 cM/1.41MB, Sc84.G9: 

1.22cM/1.67MB and Sc103.1657: 1.54 cM/2.11MB ( Chapter 2). These physical distances 

are an estimate based on the recombination rate between two markers at opposite ends 

of scaffold 84 (Chapter 2). The markers are all size fragment polymorphisms. All 

markers, save one, were designed with primers in exons flanking introns containing 

microsatellites or other indel polymorphisms (as described in Wu et al. 2008). Marker 

aat217 amplifies a microsatellite located in an intergenic region (Hall and Willis 2005). 

Marker size was analyzed by capillary electrophoresis and fragment analysis on an ABI 

3730x1 DNA Analyzer. Markers were scored manually in GENEMARKER (SoftGenetics, 

2005, State Collage, PA).   

To determine if plants from the Penn populations could have originated from the 

same maternal parent, we analyzed the number of shared alleles between all plants 

within each population. Two plants that were found to share at least one allele at each of 

the 16 markers were considered to be potential siblings and they were removed from all 

analyses.   
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3.2.4 Population Structure Analysis 

To determine if copper tolerance evolved in parallel, we first need to establish if 

mine populations are more related to each other or to their neighboring off mine 

populations. To address this problem, we first conducted an AMOVA to measure how 

genetic variation is distributed between habitats, populations, and individuals (Weir and 

Cockerham 1984). We also conducted a MANTEL test to determine if there was a 

correlation between the genetic distance matrix and geographic distance matrix (Sokal & 

Rolf 1994).  Genetic distance was calculated as pairwise Fst. Pairwise geographic distance 

was calculated using the Geographic Distance Matrix Generator 

(http://biodiversityinformatics.amnh.org). The AMOVA and MANTEL tests were 

implemented in Arlequin v.3.1 (Excoffier et al. 2005). 

Our second method for measuring the genetic independence of mine populations 

was to analyze the extent of shared genetic variation between populations using the 

program STRUCTURE (Pritchard et al. 2000). Briefly, STRUCTURE uses a model-based 

clustering algorithm to group individuals into a predefined number of populations, k, by 

maximizing the Hardy-Weinburg equilibrium of marker alleles among individuals 

within the population. To determine the number of significantly differentiated 

populations within our data set we ran two independent simulations for values of each  

k = 2-13, and performed likelihood ratio tests to determine the value of k which best 
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explains the data. Each simulation was run for 100,000 iterations, with a 50,000 burn-in, 

assuming a uniform amount of admixture within individuals. We only used the Tol1UL 

dataset in all analyses because we wanted to estimate the amount of shared genetic 

variation at a neutral set of loci and because STRUCTURE assumes that all genetic 

markers are unlinked. We acknowledge that we have not formally tested if these 

markers are evolving neutrally, but we have an expectation that they will be a better 

proxy for neutral evolution then the Tol1LINK dataset. 

3.2.5 Selection on Tolerance Locus in Natural Populations 

We will investigate if the major tolerance locus identified in the Copperopolis 

population affects tolerance in other mine populations. We will estimate selection on 

Tol1 in the Copperopolis population and compare these findings to the other mine 

populations. We assume that evidence for selection on Tol1in Copperopolis and other 

mine populations indicates that these mines have a shared genetic basis for copper 

tolerance. If selection is strong, the loci under selection are expected to exhibit reduced 

genetic variation and extreme levels of differentiation between divergently selected 

populations (Beaumont and Nichols 1996; Charlesworth et al. 1998; Beaumont and 

Balding 2004; Novembre and Di Rienzo 2009). As a general description of allelic 

diversity for our two marker sets in each population, we calculated the average number 

of alleles (NA), the observed heterozygosity (Ho), expected heterozygosity (He) for the 
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Tol1UL and Tol1LINK markers in all populations using the program Arlequin v.3.1 

(Excoffier et al. 2005).  We used the same data sets to estimate the level of genetic 

differentiation between pair mine and off-mine populations.  

To estimate the level of genetic differentiation we measured Fst for every marker 

between paired mine and off-mine populations. If selection is acting on the tolerance 

locus, we predict that the Tol1LINK markers will show greater Fst then Tol1UL markers. We 

compared the estimates of Fst at Copperopolis to the other paired mine and off-mine 

populations. We predict that if Copperopolis and the five other mines share a genetic 

basis for tolerance, then they will also share patterns of selection at Tol1.  We measured 

Fst and He between paired mine and off mine populations for each marker using Fdist 

(Beaumont and Nichols 1996). Note, this measure of He includes all individuals from the 

paired populations, it is important to measure He because the observed level of genetic 

differentiation between populations will depend on the number of alleles segregating at 

a particular marker. Paired mine and off-mine populations were analyzed separately to 

control for the effect of population structure.  Each population was used in only a single 

comparison to avoid multiple testing. For this analysis, we combined the two McNulty 

mine populations, MCNM1 and MCNM2. Included in these data are two off mine 

populations (CVROM1, CVROM2) that are located in between the Copperopolis and 

McNulty mines and not paired with either mine population (Figure 1) We used 
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information from our STRUCTURE analysis to determine whether to pair each 

population with either the Copperopolis or McNulty mines.  

In contrast to many genome scan studies that attempt to identify Fst outliers 

from a large set of markers, we are testing the specific hypothesis that the Fst values for 

the Tol1LINK are significantly elevated compared to the Tol1UL dataset. This was 

accomplished by comparing observed levels of Fst for the Tol1LINK to expected 

distribution of Fst under neutral evolution. To generate the expected distribution of Fst 

under neutral evolution, we used the Tol1UL dataset to generate 90,000 coalescence 

simulations in LOSITAN, a GUI for Fdist (Antao et al. 2008). Tol1LINK were not included 

in coalescence simulations because these simulations assume markers are unlinked 

(Beaumont and Nichols 1996). We activated two recommended features of the program, 

‘neutral marker simulations’ and ‘force mean Fst’.  

3.3 Results 

3.3.1 Soil Charcteristics 

The soil at Copperopolis was very high in copper, it has 199 µg g-1 Cu and was 

comparable to all other mine sites, which range from 56 – 295 µg g-1 Cu (Table 21). The 

Cu concentrations at all off-mine sites were less than 15 µg g-1 (Table 21).  Soil pH and 

Zn, Fe, and Mn concentrations were variable between mine and off-mine sites with no 

clear trends.   
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3.3.2 Copper Concentration in Root and Shoot Tissue 

We measured the concentration of copper in root and shoot tissue for six mine 

and five off-mine populations under three experimental treatments: 0.5, 2.0 and 4.0 µg g1 

CuSO4. Root tissue [Cu] for four mine populations COPM, MCNM, PENM, and WKRM 

was significantly lower than their paired off mine population plants at all three Cu 

treatment levels (Figure 14). Shoot tissue [Cu] were only significantly lower than off 

mine populations at the 4.0 µg g-1 Cu treatment (Figure 14).  Hereafter, we describe the 

physiological mechanism of copper tolerance in these four populations as copper 

“avoidance”. Two mine populations, NASM and KESM, had root and shoot [Cu] equal to 

the paired off mine populations (Figure 14).  These two populations will be referred to as 

“non-avoidance” physiological mechanism. There was no heterogeneity in the Cu 

concentration among off-mine populations (Figure 14).  
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Figure 14: Root and shoot concentration of copper ions. Plants collected from 

paired mine (grey bars) and offmine (white bars) populations. * p<0.05. **p<0.001. 

***p<0.0001. 

3.3.3 Population Structure Analysis  

To test for genetic isolation between mine and off-mine populations, we 

conducted an analysis of molecular variance (AMOVA) using the Tol1UL data set of 

neutral markers. We analyzed 239 individuals, 6 genotypes were removed because >30% 

of the markers did not successfully amplify. We found no significant effect of habitat 

(mine versus off-mine) on the distribution of genetic variation (Table 22). There was 
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significant variation distributed within habitat between populations, and within 

populations, within individual plants (Table 22). We found a significant correlation 

between geographic and genetic distance (r=0.641, p<0.001) using a Mantel test. Adjacent 

populations, on and off-mine, are more closely related at neutral loci then populations 

from the same habitat located at greater geographic distance.  

Source df SS Var %Var F p
Among Habitat 1 20.2 -0.05 -0.01 -0.99 0.82
Among Pop, w/in Habitat 13 358.8 0.74 0.16 16.10 <0.001
Among Individ., w/in Pop 218 1074.1 1.00 0.22 21.70 <0.001
Within Individ. 233 680.5 2.92 0.63 63.19 <0.001
Total 465 2133.6 4.62  

Table 22: AMOVA analysis of distribution of genetic variation. Habitats: mine 

versus off mine. *** p<0.0001.  

 

To test the consistency of these results, we analyzed the same dataset in the 

program STRUCTURE. We ran STRUCTURE for k = 2-13, with two independent runs at 

each value of k. We found that k = 9 yielded the greatest maximum likelihood estimate 

for the number of populations in our dataset (Table 23). To identify the populations with 

the greatest genetic divergence we examined how populations were assigned in 

STRUCTURE as k is increased from 2-9. We found that as k is increased, the Keswick, 

Walker, and Penn mine complexes form distinct genetic groups, with on and off mine 

populations at each complex clustering together (Figure 15).  The large number of 

populations in southern Calaverous county presents a more complicated picture. MCNM 
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and MCNOM were the first to break from the rest of southern Calaverous county and 

form their own cluster (k=4, Figure 15). NASM and COPM form their own independent 

clusters as k increases, but there is more admixture between these mines and between 

the neighboring off mine populations (Figure 3). Our results also inform the question of 

which mine population, MCNM or COPM, is most closely related to the two Calaverous 

county off-mine populations, CVROM1 and CVROM2. These populations are located in 

between the Copperopolis and McNulty mines and the results from this STRUCTURE 

analysis indicates that CVROM1 is more closely related to McNulty, and CVROM2 is more 

closely related to Copperopolis (k=4-7; Figure 15). These grouping will inform the 

pairing of mine and off-mine populations in the subsequent analysis. 
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Figure 15: STRUCTURE results for allocation of genetic variation between 

populations. 
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Table 23: Maximum likelihood probability of number of populations (K) and 

admixture (a).  Bold k=9 value best explains the data;  p<0.0001 from likelihood ratio 

test. 

K Ln P(D) Var[LnP(D)] a
2 -12495.9 369.6 0.0282
2 -12494.2 366.7 0.0282
3 -12102.8 556.3 0.0291
3 -12245.1 656.2 0.0314
4 -11723.6 777.3 0.0288
4 -11714.6 763.1 0.0284
5 -11489.5 949.9 0.0283
5 -11483.3 938.9 0.0284
6 -11460.9 1067.6 0.028
6 -11394.9 1098.4 0.0279
7 -11400.3 1246.9 0.028
7 -11346.3 1211 0.0279
8 -11535.7 1452.4 0.0277
8 -11452.2 1370.2 0.0276
9 -11319.7 1428.6 0.0275
9 -11410.6 1487.6 0.0275
10 -11461 1438.1 0.0273
10 -11408.9 1468.6 0.0272
11 -11482.2 1471.6 0.027
11 -11389.9 1590.6 0.0272
12 -11403.2 1601.4 0.027
12 -11399.9 1593.2 0.0272
13 -11414.8 1609.1 0.027
13 -11482 1575.5 0.027  

3.3.4 Evidence for Selection at Tolerance Locus in Natural 
Populations 

We found substantial genetic variation in both marker datasets within and 

among populations (Table 24). The average number of alleles (NA) at Tol1UL ranges from 

4.3 to 9.9 and NA at the Tol1LINK ranges from 1.8 to 7.8 (Table 24). In general there is a 

reduction in NA at Tol1LINK markers compared to Tol1UL markers for all mine populations, 

this trend was not as strong in the off-mine populations. Average Ho is less then He for 

all populations, implying large deviations from Hardy-Weinberg equilibrium in these 

populations (Table 24). We found a reduction in Ho and He for all mine populations, and 

there was a greater reduction for the copper avoidance populations compared to the 

non-avoidance populations (Table 24).  
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Table 24: Na, He, Ho for Tol1UL and Tol1LINK markers. 

Loci N Na Ho He N Na Ho He N Na Ho He N Na Ho He N Na Ho He N Na Ho He N Na Ho He
332 24 3 0.250 0.236 26 2 0.154 0.271 28 4 0.357 0.323 28 3 0.143 0.140 18 2 0.111 0.111 40 3 0.150 0.145 22 3 0.364 0.325
836 24 11 0.583 0.902 26 12 0.769 0.923 28 12 0.571 0.910 28 3 0.143 0.680 18 5 0.778 0.752 38 10 0.684 0.844 22 10 0.818 0.788
571 24 10 0.667 0.906 26 7 0.692 0.766 28 6 0.714 0.733 28 5 0.500 0.701 18 2 0.333 0.425 38 6 0.684 0.795 22 5 0.727 0.771
617 24 8 0.250 0.848 26 11 0.462 0.815 28 12 0.714 0.857 28 9 0.643 0.733 18 5 0.556 0.601 40 10 0.550 0.881 22 9 0.545 0.887
648 24 8 0.583 0.873 26 9 0.538 0.865 28 9 0.643 0.825 28 12 0.571 0.870 18 3 0.333 0.307 38 9 0.421 0.841 22 6 0.455 0.632
278 24 10 0.500 0.902 26 14 0.615 0.914 28 13 0.500 0.931 28 10 0.571 0.899 18 6 0.667 0.817 40 13 0.800 0.912 22 10 0.727 0.892
423 24 10 0.250 0.888 26 12 0.462 0.926 28 11 0.571 0.905 28 11 0.643 0.892 18 6 0.222 0.771 40 13 0.650 0.905 22 6 0.364 0.758
672 24 11 0.583 0.924 24 10 0.667 0.797 28 10 0.571 0.910 28 5 0.571 0.696 18 3 0.667 0.621 40 9 0.600 0.851 22 11 0.727 0.918
837 22 7 0.636 0.844 26 8 0.154 0.797 26 12 0.538 0.935 26 7 0.077 0.742 18 5 0.556 0.752 40 7 0.450 0.649 20 9 0.500 0.858
641 24 13 0.583 0.938 26 15 0.846 0.945 26 13 0.769 0.935 28 17 0.786 0.950 18 6 0.889 0.824 40 16 0.800 0.913 22 9 0.636 0.844
a217 24 6 0.583 0.746 26 4 0.231 0.662 28 7 0.571 0.765 28 7 0.786 0.825 18 4 0.444 0.673 40 5 0.600 0.695 22 5 0.545 0.528

Mean 8.82 0.497 0.819 9.45 0.508 0.789 9.91 0.593 0.821 8.09 0.494 0.739 4.27 0.505 0.605 9.18 0.581 0.766 7.55 0.583 0.745
s.d. 2.79 0.164 0.200 4.01 0.242 0.192 3.05 0.115 0.179 4.25 0.256 0.220 1.56 0.240 0.231 3.84 0.188 0.224 2.62 0.156 0.183

1657 24 4 0.333 0.627 24 8 0.583 0.826 26 8 0.538 0.825 28 7 0.571 0.765 18 4 0.556 0.647 40 6 0.450 0.745 22 6 0.455 0.788
Atg5 24 2 0.333 0.290 26 7 0.462 0.812 28 2 0.143 0.349 28 3 0.571 0.582 18 4 0.333 0.575 38 3 0.368 0.411 22 7 0.636 0.840

G4.2nd 24 2 0.833 0.507 16 5 0.625 0.842 14 2 0.429 0.363 2 1 0.000 0.000 10 4 0.200 0.733 4 3 0.500 0.833 16 10 0.750 0.942
G5.I1 14 2 0.000 0.264 24 10 0.500 0.859 26 7 0.385 0.523 28 3 0.143 0.265 18 5 0.444 0.641 28 3 0.214 0.204 16 7 0.625 0.833
G9.I5 22 3 0.182 0.515 26 9 0.308 0.705 28 5 0.429 0.717 28 4 0.357 0.513 18 5 0.444 0.405 38 4 0.579 0.622 18 7 0.333 0.837

Mean 2.60 0.336 0.441 7.80 0.496 0.809 4.80 0.385 0.555 3.60 0.329 0.425 4.40 0.396 0.600 3.80 0.422 0.563 7.40 0.560 0.848
s.d. 0.89 0.310 0.157 1.92 0.123 0.061 2.77 0.147 0.212 2.19 0.256 0.298 0.55 0.135 0.123 1.30 0.139 0.256 1.52 0.165 0.057

Nassau
MCNM2MCNM1 NASOMNASMCOPOM MCNOM

Copperopolis McNulty
COPM

 

Loci N Na Ho He N Na Ho He N Na Ho He N Na Ho He N Na Ho He N Na Ho He N Na Ho He N Na Ho He
332 52 3 0.231 0.324 56 3 0.143 0.137 36 4 0.500 0.543 36 5 0.333 0.495 36 3 0.667 0.552 20 3 0.400 0.358 20 2 0.400 0.505 24 2 0.083 0.083
836 52 10 0.462 0.808 56 16 0.750 0.903 36 10 0.722 0.781 36 8 0.722 0.816 36 5 0.389 0.687 20 3 0.100 0.279 20 9 0.600 0.884 24 9 0.333 0.870
571 52 7 0.654 0.777 56 7 0.714 0.805 36 3 0.500 0.624 36 4 0.444 0.410 36 3 0.500 0.641 20 4 0.700 0.647 20 4 0.400 0.563 24 6 0.750 0.670
617 52 8 0.346 0.777 56 11 0.464 0.853 34 6 0.294 0.711 36 5 0.722 0.592 36 7 0.722 0.827 20 5 0.900 0.747 20 3 0.500 0.574 24 9 0.833 0.837
648 52 7 0.769 0.697 54 7 0.481 0.655 36 2 0.167 0.157 36 6 0.778 0.733 36 6 0.667 0.829 20 4 0.900 0.684 20 6 0.600 0.821 24 7 0.667 0.833
278 52 10 0.500 0.792 56 12 0.464 0.823 36 7 0.611 0.729 36 5 0.556 0.778 36 7 0.778 0.778 20 5 0.500 0.721 20 6 0.700 0.789 24 10 0.833 0.920
423 52 9 0.462 0.767 56 11 0.500 0.845 36 6 0.389 0.649 36 8 0.611 0.824 36 6 0.278 0.810 20 5 0.600 0.726 18 7 0.889 0.856 24 7 0.417 0.833
672 52 13 0.692 0.736 56 6 0.464 0.540 36 6 0.556 0.706 36 9 0.889 0.771 36 5 0.389 0.598 20 5 0.700 0.695 20 5 0.700 0.668 24 9 0.667 0.804
837 52 9 0.423 0.747 54 9 0.407 0.843 36 6 0.444 0.825 36 7 0.500 0.775 34 6 0.118 0.784 20 6 0.200 0.832 18 8 0.333 0.889 24 7 0.000 0.797
641 52 11 0.615 0.760 56 12 0.607 0.762 20 9 0.100 0.911 14 3 0.000 0.484 36 6 0.778 0.775 20 7 0.800 0.832 20 6 0.400 0.716 24 8 0.750 0.891
a217 52 7 0.654 0.678 56 7 0.321 0.323 36 6 0.944 0.763 36 8 0.833 0.789 36 4 0.667 0.722 20 2 0.600 0.505 20 4 0.800 0.711 24 7 0.667 0.848

Mean 8.55 0.528 0.715 9.18 0.483 0.681 5.91 0.475 0.673 6.18 0.581 0.679 5.27 0.541 0.728 4.45 0.582 0.639 5.45 0.575 0.725 7.36 0.545 0.763
s.d. 2.62 0.163 0.135 3.63 0.170 0.249 2.34 0.242 0.198 1.94 0.257 0.153 1.42 0.221 0.096 1.44 0.264 0.182 2.11 0.184 0.136 2.16 0.294 0.234

1657 50 4 0.160 0.349 56 5 0.429 0.641 32 7 0.375 0.734 36 7 0.500 0.819 36 3 0.611 0.589 20 5 0.800 0.779 20 6 0.400 0.579 20 6 0.700 0.842
Atg5 52 2 0.077 0.145 56 5 0.250 0.479 36 2 0.500 0.513 36 5 0.667 0.721 36 2 0.056 0.056 20 5 0.700 0.816 18 5 0.778 0.817 24 6 0.417 0.725

G4.2nd 42 1 0 0 54 6 0.370 0.553 28 2 0.357 0.495 30 6 0.267 0.805 8 2 0.250 0.250 14 3 0.143 0.560 20 8 0.900 0.853 24 9 0.583 0.772
G5.I1 34 1 0 0 40 2 0.050 0.450 32 2 0.000 0.121 22 7 0.364 0.840 6 2 0.000 0.533 16 3 0.125 0.642 20 11 0.700 0.889 16 6 0.250 0.783
G9.I5 50 1 0 0 54 5 0.370 0.435 36 5 0.444 0.730 36 10 0.722 0.810 36 3 0.389 0.379 20 5 0.500 0.774 20 6 0.300 0.811 24 7 0.833 0.888

Mean 1.80 0.047 0.099 4.60 0.294 0.512 3.60 0.335 0.518 7.00 0.504 0.799 2.40 0.261 0.361 4.20 0.454 0.714 7.20 0.616 0.790 6.80 0.557 0.802
s.d. 1.30 0.071 0.153 1.52 0.151 0.085 2.30 0.196 0.250 1.87 0.194 0.046 0.55 0.250 0.217 1.10 0.311 0.108 2.39 0.255 0.122 1.30 0.230 0.064

WKRMPENM KESM KESOM CVROM2

Calaverous Cty Offmine
WKROMPENOM

Keswick WalkerPenn
CVROM1
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To determine if there is evidence of selection at Tol1 in natural populations we 

measured the extent of genomic differentiation markers linked to Tol1 between paired 

mine and off mine populations. We used the program Fdist (Beaumont and Nichols 

1996) to measure Fst and He for the Tol1LINK markers and compared those observed values 

to an expected distribution of Fst generated from our Tol1UL dataset. We first examined 

the distribution of Fst values for the two marker datasets between the mine and off-mine 

populations at Copperopolis. We found that the three markers with tightest linkage to 

Tol1, Sc84.Atg5, Sc84.G4, and Sc84.G5, show significantly elevated levels of Fst  compared 

to neutral expectations (Table 25, Figure 16). The mean Fst for all Tol1LINK markers was 

five times greater than for the Tol1UL markers. These results demonstrate colocalization 

between a genomic region of significantly elevated Fst between mine and off-mine 

populations and a previously mapped copper tolerance QTL. 

We next examined the distribution of Fst and He at each marker dataset for the 

five remaining pairs of mine and off-mine populations. We found that three of the five 

populations had elevated Fst at three or more Tol1LINK markers, similar to Copperopolis 

(Table 25, Figure 16). The McNulty mine showed elevated Fst at the four markers most 

tightly linked to Tol1. The Walker mine showed significantly elevated Fst at three Tol1LINK 

markers, the other two markers, Sc84.G5 and Sc84.G9 had poor amplification in this 

population.  The Penn mine had significantly elevated Fst at three of the five markers, 



 

 115 

 

although the marker closest to Tol1 was not significantly elevated. In these three 

populations the average Fst is 4-5 times greater for Tol1LINK markers than the Tol1UL 

markers (Table 25). Two mines, Keswick and Nassau, had significantly elevated Fst at a 

single marker, Sc84.G5 (Table 25, Figure 16). The average Fst is 1.5 – 2.5 times greater for 

Tol1LINK markers than the Tol1UL markers in these two populations, however this trend is 

entirely attributable to differentiation at Sc84.G5 (Table 25).  

The four populations that show significantly elevated Fst at multiple Tol1LINK 

markers are the same populations with the avoidance mechanism of tolerance. The two 

populations with a greatly reduced level of differentiation at the Tol1LINK markers have 

the nonavoidance mechanism of tolerance. The avoidance populations also had reduced 

Ho and He compared to non-avoidance mine populations and off-mine populations.  
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Figure 16: Distribution of He by Fst for six paired on and off mine populations. Red 

circles represent observed values of Tol1LINK and blue circles represent observed 

values Tol1UL. Dark blue line is 95% CI for higher then expected Fst, light blue line is 

95%CI for lower then expected Fst, grey line is mean value of Fst. 
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Table 25: Values of Fst and He for Tol1LINK and Tol1UL for six pair mine and offmine population pairs. p values >0.95 

indicate markers with significantly elevated amount of shared variation and p<0.05 indicate markers with 

significantly reduced amount of shared variation. 

Marker Location   He    Fst    p    He    Fst    p    He    Fst    p    He    Fst    p    He    Fst    p    He    Fst    p  
e332 Tol1UL 0.209 -0.010 ns 0.332 0.071 ns 0.241 0.043 ns 0.472 0.036 ns 0.241 0.025 ns 0.651 0.203 ns
e836 Tol1UL 0.942 0.039 ns 0.914 0.037 ns 0.902 0.052 ns 0.560 0.137 ns 0.867 0.059 ns 0.897 0.110 ns
e571 Tol1UL 0.922 0.106 ns 0.690 -0.003 >0.995 0.878 0.100 >0.95 0.633 -0.017 >0.995 0.791 0.010 ns 0.617 0.162 ns
e617 Tol1UL 0.911 0.060 ns 0.858 0.068 ns 0.826 0.014 ns 0.849 0.072 ns 0.960 0.079 ns 0.952 0.315 ns
e648 Tol1UL 0.926 0.045 ns 0.931 0.098 ns 0.668 -0.011 ns 0.803 0.058 ns 0.914 0.194 ns 0.616 0.277 ns
e278 Tol1UL 0.968 0.044 ns 0.978 0.056 ns 0.815 0.009 ns 0.856 0.124 ns 0.947 0.047 ns 0.865 0.129 ns
e423 Tol1UL 0.963 0.055 ns 0.934 0.023 ns 0.816 0.013 ns 0.782 0.018 ns 0.982 0.153 ns 0.964 0.236 ns
e672 Tol1UL 0.911 0.016 ns 0.943 0.120 ns 0.646 0.013 ns 0.886 0.270 ns 0.902 0.020 ns 0.958 0.229 ns
e837 Tol1UL 0.905 0.094 ns 0.965 0.072 ns 0.817 0.027 ns 0.900 0.102 ns 0.843 0.106 ns 0.897 0.108 ns
e641 Tol1UL 0.971 0.027 ns 0.983 0.073 ns 0.763 0.002 ns 0.914 0.121 ns 0.948 0.073 ns 0.971 0.282 ns
a217 Tol1UL 0.758 -0.001 ns 0.830 0.071 ns 0.553 0.094 ns 0.711 0.137 ns 0.626 0.023 ns 0.924 0.160 ns

Mean 0.853 0.043 0.851 0.062 0.721 0.032 0.760 0.096 0.820 0.072 0.847 0.201
sd 0.22 0.04 0.19 0.03 0.19 0.04 0.15 0.08 0.22 0.06 0.14 0.07

cM - Tol1LINK

Sc103.1657 1.54 0.876 0.171 ns 0.865 0.077 ns 0.526 0.060 ns 0.978 0.301 <0.05 0.865 0.114 ns 0.972 0.201 ns
Sc84.G9 1.22 0.745 0.097 ns 0.938 0.231 <0.05 0.259 0.160 <0.05 0.967 0.414 <0.01 0.794 0.082 ns 0.962 0.200 ns
Sc84.G5 1.04 0.979 0.401 <0.005 0.997 0.365 <0.005 0.325 0.308 <0.005 - - - 0.913 0.432 <0.01 1.000 0.520 <0.05
Sc84.G4 0.86 0.942 0.289 <0.005 0.977 0.281 <0.005 0.352 0.214 <0.05 - - - 0.984 0.098 ns 0.939 0.308 ns
Sc84.Atg5 0.74 0.747 0.270 <0.05 0.851 0.228 <0.05 0.356 0.123 ns 1.000 0.564 <0.005 0.734 0.148 ns 0.780 0.209 ns

Mean 0.858 0.245 0.926 0.237 0.364 0.173 0.981 0.426 0.858 0.175 0.931 0.288
sd 0.11 0.12 0.07 0.10 0.10 0.09 0.02 0.13 0.10 0.15 0.09 0.14

NASM v. NASOM KESM v. KESOMCOPM v. COPOM & CVROM2 MCNM1+2 v. MCNOM & CVROM1 PENM v. PENOM WKRM v. WKROM
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3.4 Discussion 

We investigated parallel evolution of copper tolerance in M. guttatus. We found 

that the soil in mine populations had more copper then off mine populations, although 

there was no consistent trend with the other three heavy metal investigated. We found a 

difference in the [Cu] in root and shoot tissue between mine populations, four 

populations had reduced [Cu] and two had the same level of [Cu] when compared to 

off-mine populations. We found that adjacent mine and off-mine populations share 

more genetic variation at a genome-wide marker set than other mine populations, 

indicating that the mine populations are genetically independent from each other. 

Finally, we find strong evidence that populations that maintain lower [Cu] in their root 

tissue have higher genomic divergence at markers linked to a QTL for copper tolerance.  

3.4.1 Parallel Evolution of Copper Tolerance  

Parallel evolution describes the evolution of the same phenotype in genetically 

independent populations inhabiting similar environments. We find that all mine 

populations inhabit soils with 10-25 times the concentration of copper as the average off-

mine population. To inhabit these environments, all mine populations must have 

evolved some level of copper tolerance because high [Cu] is toxic to plants (Baker 1987; 

Shaw 1989). To determine if the mine populations are genetically independent, and 

therefore if they display parallel evolution, we analyzed the distribution of neutral 
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genetic variation with an AMOVA and MANTEL test. We found that genetic variation 

sorts according to geographic distance and not habitat differences. The STRUCTURE 

analysis confirmed these patterns, although the three mines in southern Calaverous 

county (Copperopolis, McNulty and Nassau) are not as differentiated from each other as 

the other mine complexes. The high differentiation between populations is consistent 

with other observations of genetic structure in M. guttatus (Lowry et al. 2008). Thus, we 

conclude that copper tolerance has evolved in parallel due to similar selection pressures 

on genetically independent populations. This conclusion is in agreement with the 

consensus emerging from many other studies on the evolution of heavy metal tolerance 

(Bradshaw 1991). However, our results are also consistent with a scenario of tolerance 

evolving in a single population, followed by migration of tolerance alleles to other mines 

and hybridization with local populations. We believe this maybe unlikely because most 

of these mines began operation in the 1860s, providing a window of only ~150 

generations for a chance migration event and interbreeding to obscure any evidence of 

shared ancestry. This scenario only seems likely in the case of the Copperopolis and 

McNulty mines because they have the same mechanism of tolerance, they are located 

with 10km of each other, and they share more genetic variation then any other mine 

populations. These results enable us to ask, do populations experiencing parallel 
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selection evolve tolerance via the same physiological mechanisms? Does tolerance 

evolve via the same genetic mechanisms? 

3.4.2 Physiological Mechanism of Copper Tolerance 

We contend that copper tolerance in M. guttatus has evolved in parallel via at 

least two independent physiological mechanisms. This conclusion is supported by our 

finding that four mine populations, Copperopolis, McNulty, Penn, and Walker, 

maintain lower root [Cu] and two mine populations, Keswick and Nassau, have equal 

root [Cu] compared to off mine populations (Figure 2). Our finding of lower root [Cu] in 

the Copperopolis population is consistent with previous measurements of root [Cu] in 

this population (Strange and Macnair 1991; Tilstone and Macnair 1997). However, our 

finding of reduced shoot [Cu] contrasts with previous results of Copperopolis plants 

accumulating more copper in their shoots then off-mine plants (Tilstone and Macnair 

1997). There are two possible mechanisms of tolerance in populations with lower root 

[Cu]: plants may reduce the influx or increase the efflux of copper ions into/out of their 

roots. Molecular characterization of heavy metal transporters in Arabidopsis thaliana has 

found that exclusion of copper can be achieved through the reduced expression or 

functionality of the cell membrane copper transport proteins: AtCOPT1,2, AtZIP2,4, and 

AtFRO2,3 or through increased expression of AtSPL7, a transcription factor repressor of 

AtCOPT1,2 (Burkhead et al. 2009). Conversely, a reduction in root [Cu] could be 
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achieved through the increased expression or functionality of the heavy-metal efflux 

protein AtHMA5 (Burkhead et al. 2009). This avoidance mechanism of tolerance has 

been observed in many plant species (Wu and Antonovics 1975; Baker et al. 1983; 

Lolkema et al. 1984; de Vos et al. 1992). However, this is not the only mechanism of 

copper tolerance in M. guttatus.  

Tolerance in the Keswick and Nassau populations is not achieved through 

avoidance of copper; [Cu] in root and shoot tissue for these mine populations was 

indistinguishable from off-mine populations. It is unlikely that these populations are 

intolerant, because the soil copper levels at these mines is much greater then levels seen 

in off-mine populations (Table 1).  Other studies have found the same concentration of 

heavy metals in root tissue of tolerant and nontolerant genotypes (Lin and Wu, 1994; 

Hall et al. 2002). In these cases, tolerance could be achieved through the intracellular 

sequestration of heavy metals. Investigation into the genetic basis of Zinc tolerance in A. 

hallerii identified three QTLs that co-localize with the heavy metal transporters 

AhHMA4, AhMTP1-A,B (Willems et al. 2007). AhMTP1-A,B are Zn-specific vacuole 

transporters (Hall and Williams 2003). AhHMA4 also transports heavy metals into 

cellular organelles but this protein contributes to Zn hyperaccumulation rather then 

tolerance (Roosens et al. 2008, Hanikenne et al. 2008). Other studies of serpentine soil 

adapted plant species Sedum anglicum and Lasthenia californica found that the 
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sequestration of magnesium is an important aspect of tolerance (Tibbetts and Smith 

1992; Rajakaruna et al. 2003). Research in A. thaliana indicates that intracellular 

sequestration of copper could be achieved through the increased expression or 

functionality of vacuole copper transport proteins, AtCOPT3, 5 (Burkhead et al. 2009). It 

will be interesting to test if this protein affects tolerance in the Keswick and Nassau 

populations, however this is not the only possible non-avoidance mechanism of 

tolerance.  

Tolerance can be achieved through intracellular detoxification. The two most 

investigated mechanisms of detoxification are: the heavy metal binding peptides, 

phytochelatins, and the heavy metal chelators, metallothioneins (Macnair 1993; 

Burkhead et al. 1993; Hall et al. 2002). It is clear that phytochelatins and metallothioneins 

act as intracellular metal homeostasis molecules/proteins and that they are effective in 

ameliorating heavy-metal toxicity at low levels, but there has been much debate as to 

whether they contribute to tolerance at high heavy metal levels (Schultz and Hutchinson 

1988, De Knecht et al. 1992; Hall et al 2002; Jack et al. 2007; Hassinen et al. 2009). An 

investigation into metallothioneins from Copperopolis lines found that only 6% of the 

available copper was bound to metallothioneins in root tissue, so the authors concluded 

this was the not mechanism of tolerance (Robinson and Thurman 1986). Blocking the 

activity phytochelatins in the roots of the same lines from Copperopolis reduced their 
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copper tolerance, but it remains unknown as to whether this is the causal mechanism of 

tolerance (Salt et al. 1989). Given our results, it seems that the Copperopolis population 

may achieve tolerance through avoidance and detoxicification, however the relative 

contribution of these two mechanisms remains to be determined. Additionally, it would 

be interesting to repeat these experiments with the Keswick and Nassau populations 

and determine if this mechanism contributes to tolerance in these lines. Our 

measurements of genetic differentiation at the major tolerance locus in our six mine 

populations will inform the differentiation of the avoidance and non-avoidance 

populations.   

3.4.3 Selection on Tol1 in Copper Avoidance Populations 

We found that the four populations with the avoidance mechanism have 

significantly elevated Fst at 3-4 markers tightly linked to Tol1. We also observe that these 

populations had fewer alleles and reduced heterozygosity for Tol1LINK markers. This 

contrasts with the two non-avoidance populations, which have significantly elevated Fst 

at only a single Tol1LINK marker. The strong genetic differentiation between populations 

and reduced genetic variation is consistent with models of strong selection, over short 

time span, on initially rare alleles (Beaumont and Nichols 1996; Charlesworth et al. 1998; 

Beaumont and Balding 2004; Novembre and Di Rienzo 2009). Selection on alleles at 

higher frequency or over long periods of time would reduce the signal of genetic 
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differentiation between populations (Hermission and Pennings 2005). Many researchers 

have cautioned against concluding that selection drives elevated Fst between 

populations (Storz 2005, Stinchecombe and Hoekstra 2008, Excoiffer et al. 2009, Nosil et 

al. 2009). However, we are not conducting a genome-wide scan for outliers, we are 

testing a specific hypothesis that Tol1LINK markers have significantly elevated Fst 

compared to unlinked markers. We find this pattern is repeated for multiple markers in 

four independent populations. Similar patterns of genetic variation are seen in 

domestication alleles and drug resistance (Palaisa et al. 2004; Caicedo et al. 2007; Sutter 

et al. 2007) and in natural, ecologically mediated, selection in sticklebacks (Cano et al 

2006; Makinen et al. 2008). Does our finding of elevated Fst in the avoidance populations 

indicate that the physiological effects of Tol1 are to reduce the [Cu] in root tissue? 

We found a perfect correlation between the mine populations with reduced [Cu] 

in their root tissue and elevated Fst at the Tol1LINK markers. These data suggest that Tol1 

affects the influx or efflux of copper into root tissue. This assertion is supported by a 

previous experiment that found reduced [Cu] in root tissue of near isogenic line with 

Tol1 introgressed into a nontolerant background (Strange and Macnair 1991). Thus, Tol1 

may be an intercellular copper transport proteins or a regulator of these proteins 

discussed in the previous section. Could the four avoidance populations share the same 

genetic basis for tolerance?  
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The co-localization between the elevated region of Fst and a previously mapped 

locus for copper tolerance suggests that the tolerance locus mapped in the Copperopolis 

population also contributes to tolerance in the McNulty, Walker and Penn populations. 

Examining how marker Fst is effected by distance to the tolerance locus, we found that 

the tightest linked marker, Sc84.Atg5 (position: 0.74cM/1.01MB), has significantly 

elevated Fst in all avoidance populations except Penn, however even in this population 

Fst at this locus is still an order of magnitude higher then nearly all of the Tol1UL loci 

(Table 25). Conversely, the furthest marker, Sc103.1657 (position: 1.54 cM/2.11MB), is 

only significantly elevated in a one of the four avoidance populations. These data 

suggest that conclusion that tolerance has a shared genetic basis in all four avoidance 

populations. Three previous studies came to similar conclusions after finding 

colocalization between QTLs and elevated regions of Fst in replicated populations 

(Olafsdottir et al. 2006; Rodgers and Bernatchez 2007; Baxter et al. 2010), however 

another study of edaphic specialization in Helianthus failed to find any such 

colocalization (Yatabe et al. 2007). Because we have not conducted specific experiments 

(i.e., QTL mapping) to determine the genetic architecture of copper tolerance in the 

avoidance populations, save Copperopolis, we cannot definitively state whether they 

have a shared genetic basis. Furthermore, the region of elevated Fst extends over 1MB 

and contains many genes that may affect tolerance in different populations.  
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Evidence from two other investigations into parallel evolution to extreme 

edaphic habitats also finds evidence for shared genetic basis for tolerance. 

Complementation crosses between two copper tolerant subspecies of Siliene vulgaris of 

indicate that this phenotype is controlled by the same locus (Schat et al 1996). A genome 

scan for elevated Fst between serpentine tolerant and nontolerant A. lyrata populations 

identified many loci that may contribute to tolerance, including Mg and Ca ion 

transporters and metallithiones; one of these loci was also shown to be differentiated in 

an independent serpentine A. lyrata (Turner et al. 2010). We conclude that our data 

suggest that copper tolerance has a shared genetic basis in the four avoidance 

populations, however we need to conduct additional experiments to specifically test this 

hypothesis. What is the origination of copper tolerance in these populations?  

3.4.4 Origination of Copper Tolerance Alleles 

We found that there are at least two independent derivations of copper tolerance, 

each with different physiological mechanisms, in M. guttatus. When comparing 

populations that share the same mechanism for tolerance, we would like to determine if 

tolerance evolved from independent new mutations or from shared ancestral 

polymorphisms. Our data demonstrate that the avoidance populations share the same 

physiological mechanism of tolerance, but the two non-avoidance populations maybe 

achieve tolerance through either detoxification or intracellular sequestration. We 
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observed elevated Fst in the Tol1LINK markers in all four avoidance populations, this 

indicates that the causal allele could not have been maintained at intermediate to high 

frequency, but must have been a low frequency segregating polymorphism or a new 

mutation (Hermission and Pennings 2005). Our finding of selection at the same locus in 

all four avoidance populations supports the hypothesis that copper tolerance evolved 

from shared ancestral polymorphism segregating at low frequency. There are multiple 

copper transport proteins and transcription factors that could be mutated to achieve the 

same avoidance phenotype (Burkhead et al. 2009), so it is unlikely that independent 

mutations would all target the same protein. Two caveats of this assertion are that we do 

not know how many of these possible candidate genes are linked to Tol1, nor do we 

have any knowledge of the mutation rate or pleiotropic constraint for each of these 

proteins. The recent age of these mines, all are less than 150 years old, also argues 

against the independent mutation hypothesis. Alleles that reduce the level of copper 

uptake may be segregating in ancient populations because of high concentration of 

naturally occurring copper outcrops throughout California (Jenkins 1948).  Previous 

research on heavy metal tolerance indicates that segregating polymorphisms for 

tolerance are a major determinant of whether populations will be able to colonize metal-

enriched environments.  
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The consensus from studies of heavy metal tolerance is that segregating 

polymorphisms for tolerance are the primary factor determining whether a population 

may colonize a metal enriched habitat (Bradshaw 1991). Studies of plant communities on 

and off copper mines in the UK found that species with a low frequency of tolerant 

plants in off-mine populations were able to colonize mine environments, while those 

species lacking tolerant individuals in off-mine populations were not found in the mine 

environment (Gartside and McNeilly 1974). This result was replicated in a study of plant 

communities growing under galvanized electricity pylons (Al-Hiyaly et al. 1988, 1990). 

Rainwater causes zinc to leach from these structures into surrounding soils. The recent 

origin of these structures argues against opportunities for gene flow between disjunct 

regions and their ubiquity allows for multiple comparisons of which species are present 

in the contaminated areas. Al-Hiyaly and colleagues (1990) found that particular species 

were unable to colonize the contaminated soil at every pylon, even though it may be 

abundant in the area. Colonization of contaminated soils occurs only when neighboring 

populations also exhibit low frequency of tolerance (Al-Hiyaly et al. 1993). Additional 

studies have found that high levels of zinc tolerance has evolved in genetically 

independent populations of A. halleri, although this work is complicated by the fact that 

this species is a Zn hyperaccumulator and all populations have some level of tolerance 

(Pauwels et al. 2005).   Although these studies indicate that segregating polymorphisms 
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are important for the evolution of heavy metal tolerance, we will not be able to fully 

address this question in our system until we fine map the actual causal locus in the 

Copperopolis population and determine if the same locus contributes to tolerance in the 

other avoidance populations. 

3.4.5 Selection for Copper Tolerance Fixes Hybrid Incompatibility 
Allele at Copperopolis 

These results also address an interesting question about the evolution of a post-

zygotic incompatibility factor in the Copperopolis population. Macnair and Christie 

(1983) proposed that a hybrid incompatibility factor became fixed in the Copperopolis 

population as a pleiotropic byproduct of selection for copper tolerance. Macnair and 

Christie never found a recombinant between copper tolerance and post-zygotic 

incompatibility and hypothesized that the same locus caused both phenotypes. We 

previously demonstrated that these two phenotypes are controlled by two separate, but 

very tightly linked loci, Nec1 and Tol1 (Chapter 2).  In this chapter, we demonstrate that 

the region of elevated Fst in the Copperopolis population includes Nec1, implying that 

selection on copper tolerance caused a hybrid incompatibility factor to become fixed in 

this population.  

We previously demonstrate that Nec1 maps to a region in between two markers 

located at position 234kb and 297kb of scaffold 84 (Figure XX). Here we find that the 

window of elevated Fst in the Copperopolis populations extends to marker Sc84.G5, 
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which is located at 346kb on scaffold 84 (orientation of markers shown in Figure XX).  

This provides strong evidence that selection for copper tolerance resulted in Nec1 being 

swept to fixation in the Copperopolis populations.  The elevated Fst between on and off 

mine populations could not be caused by the F1 incompatibility itself because 1) the 

hybrid incompatibility only manifests in crosses between Copperopolis genotypes and 

four other populations, none of which are located immediately adjacent to the mine 

(Christie and Macnair 1987) and 2) we find the same window of elevated Fst in three 

additional mine populations, all of which lack F1 hybrid necrosis. The elevated Fst was 

caused by selection for copper tolerance, this is the first example of habitat-mediated 

selection indirectly causing the fixation of a post-zygotic inviability locus. 

3.4.6 Conclusion 

The objective of this study was to determine if copper tolerance has 

independently evolved in multiple M. guttatus mine populations and, if it has occurred 

multiple times, to determine if it was through similar or divergent genetic mechanisms. 

We find that tolerance has evolved independently multiple times, via two distinct 

physiological mechanisms. All four populations that exclude copper have undergone 

changes at the same locus, which colocalizes with a previously mapped QTL for copper 

tolerance. These results indicate that copper tolerance sometimes evolves via the same 
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physiological and genetic mechanisms in independent populations or can evolve via 

alternative physiological mechanisms and alternative genetic mechanisms.  
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Appendix A 

Here we demonstrate, for two- and three-step pathways, that the concentration of 

pathway intermediates is proportional to the ki for reactions upstream of the intermediate 

and inversely proportional to ki for reactions downstream of the intermediate.  Proof for 

longer pathways is analogous. 

Consider first a two-reaction pathway with intermediate B.  The rate of change of 

the concentration of B, [B] is given by 

 d[B]/dt = k1I – αk1[B] – k2 [B]  . 

When flux reaches an equilibrium, this rate of change is zero, which means that 

the equilibrium concentration of B is 

 [B]eq = k1I/(αk1 + k2) . 

Increasing k1 results in an increase in [B]eq , as can be seen by taking the 

derivative with respect to k1: 

 d[B]eq/dk1 = k2I/ (αk1 + k2)
2 , 

which is always positive because α, I, k1 and k2 are positive.  Similarly, increasing 

k2 results in a decrease in [B]eq, since d[B]eq/dk2 =  – αk1I/ (αk1 + k2)
2 , is always 

negative.  Thus, an increase in k1, corresponding to the reaction upstream of B, causes 

[B] eq to increase, while an increase in k2, which is downstream of B, causes [B]eq to 

decrease. 
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 Now consider a three-reaction pathway, with intermediates B and C.  The 

rates of change of the concentrations of these two intermediates are 

 

 d[B]/dt = k1I +αk2[C]  – αk1[B] – k2[B]   

 d[C]/dt = k2 [B]  – αk2[C]  – k3[C] 

At flux equilibrium, these to equations will equal 0.  Solving for the equilibrium 

concentrations of [B] and [C] gives 

 [B]eq = k1 (α
2k2 + k3)I/( α

2k1k2 + αk1k3 + k2k3) 

 [C]eq = k1k2I/( α
2k1k2 + αk1k3 + k2k3) 

Taking derivatives, 

 d[B]eq/dk1 =  k2k3(αk2 + k3)I/D
2    > 0 always 

 d[B]eq/dk2 =  – k1(k3)
2I/D2    <  0 always 

 d[B]eq/dk3 =  – αk1(k2)
2I/D2    <  0 always 

 d[C]eq/ dk1 =  k1(k2)
2k3I/D

2    > 0 always 

 d[C]eq/ dk2 =  α(k1)
2k3I/D

2     > 0 always 

 d[C]eq/ dk3 =  – k1k2I(αk1 + k2)/D
2     > 0 always 

 

where D = ( α2k1k2 + αk1k3 + k2k3) . 

Thus, [B]eq is increased by an increase in k1 (upstream) and is decreased by an 

increase in either k2 or k3 (downstream); and [C]eq is increased by an increase in either k1 

or k2 (upstream) and decreased by an increase in k3 (downstream).  
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