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Abstract

Many types of services are provided using some equipment or machines, e.g. trans-

portation systems using vehicles. Designs of these systems require capacity decisions,

e.g., the number of vehicles. In my dissertation, I use many-server and conventional

heavy-traffic limit theory to derive asymptotically optimal capacity decisions, giving

the desired level of delay and availability performance with minimum investment.

The results provide near-optimal solutions and insights to otherwise analytically in-

tractable problems.

The dissertation will comprise two essays. In the first essay, “Asymptotic Analysis

of Delay-based Performance Metrics and Optimal Capacity Decisions for the Machine

Repair Problem with Spares,” I study the M/M/R machine repair problem with

spares. This system can be represented by a closed queuing network. Applications

include fleet vehicles’ repair and backup capacity, warranty services’ staffing and

spare items investment decisions. For these types of systems, customer satisfaction is

essential; thus, the delays until replacements of broken units are even more important

than delays until the repair initiations of the units. Moreover, the service contract

may include conditions on not only the fill rate but also the probability of acceptable

delay (delay being less than a specified threshold value).

I address these concerns by expressing delays in terms of the broken-machines

process; scaling this process by the number of required operating machines (or the

number of customers in the system); and using many-server limit theorems (limits
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taken as the number of customers goes to infinity) to obtain the limiting expected

delay and probability of acceptable delay for both delay until replacement and repair

initiation. These results lead to an approximate optimization problem to decide on

the repair and backup-capacity investment giving the minimum expected cost rate,

subject to a constraint on the acceptable delay probability. Using the characteristics

of the scaled broken-machines process, we obtain insights about the relationship be-

tween quality of service and capacity decisions. Inspired by the call-center literature,

we categorize capacity level choice as efficiency-driven, quality-driven, or quality-

and efficiency-driven. Hence, our study extends the conventional call center staffing

problem to joint staffing and backup provisioning. Moreover, to our knowledge, the

machine-repair problem literature has focused mainly on mean and fill rate measures

of performance for steady-state cost analysis. This approach provides complex, non-

linear expressions not possible to solve analytically. The contribution of this essay

to the machine-repair literature is the construction of delay-distribution approxima-

tions and a near-optimal analytical solution. Among the interesting results, we find

that for capacity levels leading to very high utilization of both spares and repair

capacity, the limiting distribution of delay until replacement depends on one type of

resource only, the repair capacity investment.

In the second essay, “Diffusion Approximations and Near-Optimal Design of a

Make-to-Stock Queue with Perishable Goods and Impatient Customers,” I study a

make-to-stock system with perishable inventory and impatient customers as a two-

sided queue with abandonment from both sides. This model describes many con-

sumer goods, where not only spoilage but also theft and damage can occur. We

will refer to positive jobs as individual products on the shelf and negative jobs as

backlogged customers. In this sense, an arriving negative job provides the service to

a waiting positive job, and vice versa. Jobs that must wait in queue before potential

matching are subject to abandonment. Under certain assumptions on the magni-
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tude of the abandonment rates and the scaled difference between the two arrival

rates (products and customers), we suggest approximations to the system dynamics

such as average inventory, backorders, and fill rate via conventional heavy traffic

limit theory.

We find that the approximate limiting queue length distribution is a normalized

weighted average of two truncated normal distributions and then extend our results

to analyze make-to-stock queues with/without perishability and limiting inventory

space by inducing thresholds on the production (positive) side of the queue. Finally,

we develop conjectures for the queue-length distribution for a non-Markovian system

with general arrival streams. We take production rate as the decision variable and

suggest near-optimal solutions.
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1

Asymptotic Analysis of Delay-based Performance
Metrics and Optimal Capacity Decisions for the

Machine Repair Problem with Spares

1.1 Introduction

One of the main characteristics of successful systems is when unpredictable inter-

ruptions occur, little time is wasted. The secret of this appealing result lies within

the system design and management. In this essay, our objective will be to provide

insights about how to design a large-scale service system that will lead to less delays

after interruptions.

Delays have different implications depending on who is experiencing them. If the

service is provided by an operator and equipment pair, e.g. a truck fleet, redundant

workforce costs might be incurred if a truck driver (operator) experiences a long

delay to receive his truck (equipment) from the repair shop of his fleet. Moreover,

a company’s image is badly affected if the customers experience unacceptably long

delays such as having to wait too much for a new computer from warranty services.

Since both types of delay (experienced by operators and customers) will decrease the
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profit, we will analyze the relationship between the system design parameters and

these delays.

Consider a system serving a demand base requiring needs to be met continuously.

This demand might consist of customers who purchased a product with warranty

coverage, machines having a common type of component subject to spontaneous

breakdowns, or bus routes of a city in need of continuous and smooth transporta-

tion. One aspect of delivering exceptional service in these types of systems is when

continuous service gets interrupted, delays stay within acceptable bounds. Depend-

ing on the sector, the first reflection of this motive on the system design could be

on the amount of replacement goods kept by the warranty services, the amount of

spare parts kept by manufacturing companies (or maintenance providers), or on the

number of spare vehicles in a fleet. Hence, satisfying this type of demand will ne-

cessitate carefully made backup capacity investment. Moreover, it is important not

to only have enough backup resources but also to have sufficient repair capacity for

fixing the broken units so that they can be resent to the demand when needed.

To address the concerns above, we model the system as a machine-repairmen

problem with spares where a certain number of identical units have to be kept as

working (enough to cover the demand base), and these units break down sponta-

neously. When this happens, the broken unit (e.g. pc, machine component, city

transit bus) is sent to the repair center while the backup center provides an opera-

tional unit to the demand as soon as possible. The circulation of units within the

system is shown in Figure 1.1. All the spare units at the backup center are identical

to the ones at the demand base so all units circulating the system are identical. The

servers at the repair center are identical, each server can only work on one broken

unit, and each broken unit can only be worked on by one server. Simultaneous pres-

ence of idle servers and waiting to be repaired units is not allowed. Our objective

is to determine the backup and maintenance capacity levels to keep delays within
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DEMAND BASE

(n)

REPAIR CENTER

(sn, μ)

BACKUP CENTER

(mn)

λ

Figure 1.1: Circulation of Units Within the System

acceptable bounds and to achieve this with minimum amount of investment. Further

details about the model will be given in Section 1.3, but here we will point to some

characteristics of the model and the reasons for choosing them in our framework.

First, notice that the size of the demand base is taken as constant (n), and the

number of units circulating the system is the sum of the demand size and backup

capacity (n+mn). Thus, we are using a closed model. It can be argued that as units

start to wear, they will be replaced by new ones before they become unable to be

operated in acceptable performance levels, such as retired fleet buses, airplanes, etc.

getting replaced by new ones. While a bank customer would like to leave after his

transaction is finished, a city needs its transit bus fleet to work for most of the day

or a customer values a product when it stays functioning all the time. In this line

of work, the total service demand from the system depends on population of a city,

market share of a firm, utilization of machines with a common component and other

factors that are not subject to frequent major changes. Then, the system capacity

will not need to be changed at short intervals, which makes working with a closed

model possible.

Second, notice that the units are assumed to be identical. Consider a situation
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where you have different types of machines, vehicles, goods, etc. that you need

to repair when they break down. Since all of these are different, they might need

different tools, spare parts, and skills to fix, which creates extra burden on the

maintenance management and adds to the variations in the delays after breakdowns.

Moreover, other factors such as training of the operators (for ex, pilot training in

airline fleets) may make it difficult to maintain different types of units within the

system. Thus, large-scale service systems may opt to have identical operating units,

e.g. Southwest and Alaska Airlines.

Finally, notice that we assume the replacement provided by the backup are not

necessarily the same unit that has broken down at the demand base. However, the

users might be attached to the units and want to retrieve the same unit after repair

completion, e.g. taxi drivers might be accustomed to a particular car. When the

units are identical, these kinds of attachments will occur much less because running

the system more fluidly implies earning more money and hence users are likely to

compromise from their personal attachments. In other words, if all the cars are the

same and the vehicle they provide after breakdown is the same as the broken one, a

taxi driver will prefer to get back to work (if possible, immediately) and earn more

money instead of waiting for the repair completion.

To summarize, in this essay we study the machine repair problem with spares

and focus on the relationship between the backup and repair capacity investment

decisions and two types of delay associated with them: replacement and repair initi-

ation delays. Both types of delays occur when a unit breaks down. At that moment,

if there is an operational unit waiting at the backup center, it is sent to the demand

(or customers) to replace the broken one. The transportation time is assumed to be

negligible. Notice that we can deduce whether a delay for replacement would occur

by checking the number of broken units (or machines) at the moment of breakdown.

Since the model is a closed network model, if there are more broken machines than
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the whole backup capacity (or spare machines), it means no operational machines

can be kept idle at the backup center and all of them are currently working for

customers. Thus, a replacement delay will be experienced.

Similarly, a repair initiation delay will occur if at the time of breakdown there

are more broken machines than the whole repair capacity (or repairmen) because all

repairmen will be busy working on the previously broken machines. This suggests

that all performance measures regarding delays can be obtained by observing the

random process of broken machines in the system.

Following the discussion above, although it might seem that obtaining the distri-

bution of the broken machines in the system would be enough to uncover the capacity

investment and delay relationship, expressing delays by using the distribution of bro-

ken machines usually leads to complex expressions hard to analyze. However, certain

scaling approaches can be applied to this process to obtain the limiting values of delay

performance measures when the scaling parameters grow large.

Here we scale the process of broken machines by the number of customers (n) and

at the same time express the capacity investment decisions as a function of n. Using

Markovian assumptions for the time until breakdown and repair, we show that as

the number of customers grows large, the process of the ratio of broken machines to

the number of customers converges to a deterministic process giving an equilibrium

equation. Depending on the preferences of top management about how the firm

would place itself on its respective market, this equation establishes the effect of the

choice of capacity investment parameters on the broken machines process and hence

delays. What would be the firm’s level of quality of service? Would they be cost-

focused? Would they choose paying more while giving a more satisfactory service?

These preferences should be determined for both machine replacement and repair

services, and the limiting values of scaled backup and repair capacity levels reflecting

all feasible preferences can be explained on a two-dimensional graph (Figure 1.2).
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The first performance measure we will establish is the limiting expected delay as

n grows large, and a scaled investment cost function will be minimized, giving a set of

cost-efficient alternatives for backup and repair capacity investment decisions. Hence,

the setting would be to determine the expected delay based on strategic preferences

and use this performance measure to obtain the efficient frontier of cost-minimizing

capacity level choices.

Besides the optimum capacity investment alternatives that give the minimum

cost and an acceptable level of delay, one would like to consider the probability of

delay exceeding an arbitrary threshold value. This will also depend on the capacity

investment decisions on a more sensitive scaling and the second set of results give

the limiting values as n grows large for the distributions of the two types of delay.

Since the distribution of a random quantity possesses a lot more information than

its expected value, characterizing it might also require a more structured modeling

mechanism. In this study we give a partial characterization of the distribution of

delay until replacement and a complete characterization of the delay until repair

initiation distribution with graphical representations as well.

We believe this essay contributes to machine repair problem and many server

limit theorems literature in two ways. First, as Haque and Armstrong (2007) say,

“A factor common to most MIP(machine interference problem) research to date is

the tendency to focus on the mean value of system performance measures, such as

the average number of operational machines. We think it would be of interest to

look beyond these averages to also examine some measure of the variation in system

performance (e.g. standard deviation, 95th percentile, etc.).” By giving analytically

tractable approximations for delay distributions we take a first step for another level

in performance analysis on machine repair problem. Second, our model has two

types of capacity, repairmen and spares, hence we complement staffing decisions in

service systems via many-server limit theorems, with the addition of simultaneous
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spares capacity decisions. We believe this addition can be useful when services that

are provided via the use of some equipment are considered.

In Sections 1.2 we give the literature review. Then, Section 1.3 presents the

model and summarizes our method of asymptotic analysis via many-server limit the-

orems, Section 1.4 provides the analysis for the relationship between the delay until

replacement performance and capacity decisions, Section 1.5 gives the same analysis

for delay until repair initiation performance, Section 1.6 gives a comparison between

the exact or simulation results and the approximations as well as a comparison of

systems with exponential and nonexponential distributions, and Section 1.7 gives the

conclusion and discusses possible extensions.

1.2 Literature Review

Machine repairmen problem(MRP) or Machine interference problem (MIP) is a prac-

tical problem with many application areas as manufacturing, telecommunications,

coal shipment, aircraft(or other types of fleet) maintenance, warranty services, and

so on. The main framework can be summarized as having n machines subject to

breakdowns with s servers to repair them. When n > s, a machine might not be

able to go into repair directly at breakdown if all servers are repairing previously

broken machines. Thus, machines may interfere with each other.

Summaries of the history of MIP studies can be found in the excellent reviews

of Stecke and Aronson (1985), Cho and Parlar (1991), and Haque and Armstrong

(2007). As stated in the previous section, additional to the n machines and sn

repairmen, our model has mn spares and Markovian assumptions for time to failure

and time until repair completion. We will now review the studies that have similar

structures, approach, and focus in chronological order.

Barlow (1962) studies the same model as ours and obtain the probability distri-

bution of broken machines (given in (1.1)), the distribution of time until all machines
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are broken (which they call total failure), and the expected number of total failures

until a time t. Then, they obtain these quantities for various modified versions of

the main model such as with no spares, generalized breakdown and/or repair dis-

tributions, etc. In our study, we focus on the two types of delay described above

and obtain computable approximations for means and probability distributions using

asymptotic analysis.

Iglehart (1965) study our model; the only difference in their model is they assume

arbitrary queue discipline for repair initiation of the machines waiting in the queue

at the repair facility whereas we assume FCFS discipline. Here we also employ an

additional perspective for delay, the delay until replacement.

They scale the broken machines process by the size of the demand base n, and they

show that under a nonrestrictive assumption about the repair and backup capacity

choices the scaled broken machines process weakly converges to Ornstein-Uhlenbeck

(O-U) process. Then, they give the density of the virtual waiting time, which is the

time required to repair all the broken machines in the system at a time t.

Our focus is different in two ways. We do not only study the delay experienced

by machines, we also derive the replacement delay. Moreover, we present delay

distributions; thus, rather than the congestion of the whole system at a specified

time we give information on the waiting experience of a random machine/customer

at any time.

Iglehart and Lemoine (1974) again considers the same model as ours and use

the same assumption as they did in Iglehart (1965) for backup and repair capacity

determination. First, by using classical limit laws on the distribution of broken

machines, they give the equilibrium values for this process for some representative

cases regarding system parameters. This corresponds to our fluid limit theorem (in

Appendix), and we obtain this result for all cases and by using weak convergence

instead of classical limit laws. However, they do not prove any limit theorems for
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delays; instead they focus on the number of operable machines and obtain equilibrium

values for this process. Although the structure of their model would allow them to

obtain insights about limiting expected delay, obtaining the delay distribution would

require a more detailed model. Their study continues by applying the same analysis

on the machine-repairman problem with spares with two types of repairs.

The first studies on MIP considered derivation of some performance measures but

did not make further use of these measures. Then, the consequent research made cost

analysis using performance metrics such as expected number of broken machines,

busy repairmen, etc. Rather than asymptotic analysis, these studies use steady-

state analysis directly to construct the optimization problem. The steady-state cost

functions are usually not analytically tractable and various search procedures and

algorithms have been proposed to obtain the solution. In our cost analysis, using

asymptotic methods we obtain an analytically tractable approximate solution (with

error size in smaller scale than the square root of the system size) and generate

more insights. Unless otherwise mentioned, the following studies focus on M/M/R

machine repair problem with spares as cold standbys (spares has a breakdown rate

of zero as they wait idle).

Hillard (1976) uses steady-state cost analysis as described above and they develop

lemmas to reduce the feasible region their algorithm is searching. Gross et al. (1977)

consider a multi-year planning horizon where they allow breakdown and service rates

as well as capacity levels to change from year to year. Their cost function includes

the expected number of components repaired and they impose a threshold level on

the fill-rate (availability of spares). They develop a heuristic algorithm to provide a

solution.

Sivazlian and Wang (1989) do steady state cost analysis on M/M/R machine

repair problem with warm standbys (spares have a nonzero breakdown rate which

is smaller compared to the breakdown rate of operating machines), they consider
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machine availability (total fraction of time machines are running) and repairmen

utilization among their performance measures. Wang and Sivazlian (1992) repeat

the same analysis on a slightly different problem, they assume either cold or hot

standbys (spares have the same breakdown rate as the operating machines) and

when all repairmen are busy, repairmen switch to a faster repair rate. Wang (1993,

1994, 1995) then extends the analysis by adding the cold and warm mixed spares

but with only one repairmen service rate, cold standbys with two failure modes with

equal probability of repair, and two types of spares and two repair rates, respectively.

Jain (1997) develops a diffusion approximation to the broken machines process

using reflecting boundaries for (m,M) machine repair problem with spares where

the system shuts down if there are more than m broken machines. Then they obtain

expected number of broken and operating machines, probability of having any spare

units waiting as standbys, system availability, and idle repairmen. Their performance

measures are focused on system response rather than individual delay experiences

and they do not provide any solutions.

Wang and Lee (1998) continue the steady-state cost analysis approach on M/M/R

machine-repair problem by assuming cold standbys and multiple failure modes and

machines served by one or more repairmen. Jain et al. (2003) study the M/M/R

machine repair problem with balking, reneging, spares and two modes of failure,

and Singh and Jain (2007) continue on (m,M) machine repair problem with spares

and reneging with two repair rates by using transient analysis. They solve sets of

linear equations in terms of Laplace transform of the state probabilities. They obtain

system availability and mean time to system failure.

Ke and Wang (2007) study the machine repair problem by adding two types of

spares, two repair rates, and two vacation policies for repairmen. When a repairmen

gets idle, he goes to a vacation, when he comes back he either stays until a machine is

assigned to him or continues going vacations until he is assigned to a machine when
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he returns. They use matrix-geometric approaches to find the steady state solution,

then they derive mean values of several performance metrics, including machine

availability and repairmen utilization to construct the expected cost rate. They give

numerical examples of solution by direct search algorithm to their cost minimization

problem subject to system availability constraint for either of the vacation policies.

Jain et al. (2008) study machine repair problem with warm and cold standbys,

permanent and additional repairmen, two failure modes, and balking and reneging.

Using matrix-geometric approach they obtain mean values of performance measures

and machine availability and expected cost rate to use in cost minimization.

Ke et al. (2009) study the vacation model of Ke and Wang, they assume either

cold, warm, or hot standbys, and single, multiple, or hybrid vacations. In hybrid

vacations, the repairman waits for a random time and then goes to another vacation

after returning from his last one. They produce the expected cost rate through

steady state analysis.

As described in the beginning, we use a multi-dimensional many server model

approach to address the problem where the offered load to the servers for repair

remains roughly equal as we dimension the system. To our knowledge, this approach

to the machine repair problem with spares has first been taken by Mandelbaum and

Pats (1995, 1998) where they prove the diffusion limit theorem for the number of

broken machines in the system but do not study the delay distributions; and then de

Véricourt and Jennings (2008) use this approach on machine repair problem without

spares to apply on large membership services.

1.3 The Model and Asymptotic Analysis via Many Server Limit The-
orems

The system has a total of n + mn units which are either operable or broken, and

the system is required to provide n operable units at all times. However, this may
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not always be possible since the units are subject to spontaneous breakdowns. They

reside in one of three locations: the demand base, the repair center, and the spare

units center.

The demand base is responsible for providing n operable units to work contin-

uously. The repair center has a certain number of identical servers or repairmen,

which represents its capacity. To our knowledge of the existing literature on limit

theorems, the choice of the capacity level of the repair center can be expressed as a

function of the amount of units it will strive to keep working in the demand base;

hence, we will denote the repair center capacity by sn. The last center in the system

is the spare units center where undamaged units are kept ready as cold standbys (no

breakdowns are assumed to happen to spares during idling time) to replace the units

that break down in the demand base, and these units are identical to the ones at the

demand base. Based on the same reasoning for the number of servers in the repair

center, we denote the choice for the maximum number of units to be held as spares

by mn.

The geographical placement of the three centers in the system is assumed to be

such that the transportation times for a unit to circulate between them is negligible

and can be omitted in the calculations governing delays.

The mission of each center is as follows: the demand base is supposed to have

n units working all the time, the repair center will repair the broken units, and the

backup center is supposed to hold up to mn operable units ready to be sent to the

demand base as replacements when breakdowns occur. Thus, if there are more than

n operable units in the system, the additional ones will be waiting in the spare center.

Thus, a total of n+mn units will be in the system.

Suppose a unit is working in the demand base and then it breaks down. After

the breakdown the system faces two challenges: 1) there is a space open in the

demand base and an undamaged unit is required to start working instead of the
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broken one as soon as possible, 2) the broken unit has to be going into repair as

soon as possible as well. These challenges also correspond to the two types of delay

occurring in the system, determining its performance. The time it takes for a spare

unit to be provided to the demand base is the first type of delay and the time for

repair initiation of a broken unit is the second type of delay. Note that the first

type of delay is a performance metric for customer satisfaction, and the second type

represents the speed of circulation in the network. Assignment of a repairmen to

the broken unit and dispatching of a spare unit to the demand base are done on

first-come-first-serve (FCFS) basis. If either or both of these actions cannot be done

immediately, two different queues develop; the queue of broken units awaiting repair

and the queue of open spaces in the demand base awaiting replacement units.

After a unit breaks down, it goes to the repair center and either starts to be

repaired or waits in the queue and then gets repaired. At the end of the repair, the

unit is restored to an operational state. If there is an open space in the demand base

waiting for a unit to be working, the repaired unit is sent there; otherwise, it is sent

to the backup center until its services are needed at the demand base.

Consistent with the earlier claims, it can be seen that the model is closed; the

units circulate within the system. Moreover, no additional units are accepted to the

system once it starts (it is possible to extract a worn out unit from the system and

replace it with a brand new one, as long as the unit is not working at that time and

both actions are done simultaneously so that the total number of units in the system

will not change).

The source of randomness in the system is in two places; one is the time to failure

of a unit once it starts working in the demand base. The second is the time to repair

once a repairmen is assigned to a broken unit. We assume the former is exponentially

distributed with mean 1/λ, and the latter is also exponentially distributed with mean

1/µ. All breakdowns and repairs are assumed to be mutually independent.
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We will use the number of broken machines as the key system characteristic for

our analysis and denote this stochastic process by Nn ≡ {Nn(t), t ≥ 0}. This process

is assumed to be right-continuous with left limits, and the steady state of this process

is denoted by N st
n .

The system framework and the aforementioned assumptions implies that N st
n

is a birth-and-death process with births corresponding to breakdowns and deaths

corresponding to repairs, respectively. Suppose that k represents the number of

broken units in the system at the considered moment (k = 0, 1, 2, . . . , n + mn), x+

equals x if x is positive and zero otherwise, and ∧ is the minimum operator. Then,

since the units break down exponentially and independently from each other, the

breakdown rate λn(k) is λ times the number of units currently operating, which is

n or a smaller value if there are more broken units than the spares, thus, λn(k) =

λ(n − [k − mn]+). When there are more broken down units than the maximum

supply of spares (k > mn), it follows that there is a shortfall of k −mn units at the

demand base. The total breakdown rate is proportional to the number of units at

the demand base. Similarly, the repair rate µn(k) is µ times the number of repair

resources currently utilized, a quantity restricted by the number of broken machines

and the number of repairmen; µn(k) = µ(k ∧ sn).

Thus, for given n, sn, and mn, the probability distribution of the key system

characteristic for our analysis, the number of broken machines, is given as follows

(suppose that ρ ≡ λ
µ
; p0 is the appropriate normalizing constant; and when sn = mn,
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sn ∧mn = sn ∨mn = sn = mn):

P (N st
n = k) = pstn,k =



p0
nk

k!
ρk, k < sn, k < mn

p0
nk

sn!
ssn−kn ρk, sn ≤ k < mn

p0
nmn

k!
n!

(n−(k−mn))!
ρk, mn ≤ k < sn

p0
nmn

sn!
n!

(n−(k−mn))!
ssn−kn ρk, sn ≤ k, mn ≤ k.

(1.1)

Our results are based on the choice of the number of servers and the maximum

number of spare units to be kept which correspond to repair and backup capacity,

respectively. As stated before, they can both be expressed as functions of n, and

therefore we will denote our system design with the pair (sn,mn).

The model can be envisioned for systems where a certain number of customers

require an equipment to work continuously. For ex, the management of carrier fleets

as Fedex and UPS or of a city transit bus fleet will be asked to assign vehicles

on a certain number of routes, and in this case the routes will be the customers

(denoted by n). On the other hand, maintenance and backup support for warranty

services contracts of n sales of cell phones of a particular model or for a job shop

where n machine tools of the same type has to be working continuously can also be

represented by this model.

As can be seen from (1.1), any direct analysis using the process of broken machines

and other derivatives of this process may provide complex expressions hard to solve

analytically. To derive analytical solutions, we will consider a sequence of Markovian

models as described above, indexed by n (n ≥ 1), the required number of operating

units at the demand base. Besides n, we need to determine the parameters ρ and

(sn,mn) for each model in the sequence. We assume the same λ and µ (and hence the

same ρ) is valid for all models and for each one, (sn,mn) is expressed as a function of

its respective n value; thus, each sequence will have different capacity choice pairs.
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Our approach is to express all the delay performance measures of interest in terms

of the steady state distribution of the broken machines process (1.1), and then take

the limits of these measures as n→∞. This way we will obtain asymptotical and an-

alytically tractable approximations to the complex expressions of steady state delay

performance measures. The ones we are mainly concerned about are the mean delays

until spare unit provision and broken unit repair initiation, and the probability that

either type of delay exceeds an arbitrary threshold (the probability of experiencing

an unacceptable delay). The following sections demonstrate the relationship between

the repair and spares capacity and the explained performance metrics.

1.4 Analysis of the Relationship Between Delay Until Replacement
of a Broken Unit and Capacity Decisions

Our aim is to provide insights about how to design a system with acceptable delays,

achieved via rationalized capacity level, a process that will aid managerial decisions.

We have identified two types of delays that could be of concern regarding company

performance. One is the time to provide replacement units to the customers, the

other is the time to begin the repair of a damaged unit. The level of backup and

repair capacity would be the decisions affecting these two performance measures.

Thus, the problem we would like to solve is how to make the best backup and

repair capacity level investment decision to give the desired level of delay. In this

section, we concentrate mainly on the performance measures related with delay until

replacement of a broken unit.

1.4.1 Mean delay until replacement based design

Expressing delay as a function of design parameters

Here we will establish the limiting values of expected delay as n grows large. As

discussed in the model section, it can be assumed that the repair and backup capacity
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investments can be described in terms of the size of the demand base; and hence, they

could be denoted as sn and mn, respectively. We assume our family of parameters

have the following form:

sn = s̄n+ ŝn
√
n,

mn = m̄n+ m̂n

√
n

(1.2)

where s̄, ŝn, m̄, and m̂n are constants denoting the capacity level investment choices

and there exists constants ŝ and m̂ such that ŝn → ŝ and m̂n → m̂ as n → ∞. In

other words, sn = s̄n+ ŝ
√
n+o(

√
n) and mn can alternatively be defined in a similar

way.

Observe that mn
n
→ m̄ and sn

n
→ s̄ as n → ∞. Now consider a possible delay

for backup. The machine breaks down, no spares are available, and a customer

starts waiting for a functioning machine; however, there are other customers who

have started waiting before. When the number of broken machines exceeds the

number of spares available (mn), the customers start forming a queue (managed on

a FCFS principle); therefore the customer (including himself) will have to wait for

(the number of broken machines at breakdown + 1 - mn) repairs to be completed.

Notice that the repair rate can be arbitrary depending on whether all repairmen are

busy during the delay. This may cause the mean delay expressions to be complex;

however, we show that asymptotic analysis can help to obtain simple expressions as

approximations that provide analytical solutions.

The taxonomy we will employ to categorize the firm’s approach in capacity level

selection is adapted from the call center literature, where the call center staff level is

taken as a function of the call load. The many-server limit theorems applications to

the staffing problem in call centers classify the firm preferences into three categories.

The first category is described as efficiency-driven (ED) capacity level determi-

nation where high utilization is obtained. For ex, when the size of the demand base
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go to infinity, the resources chosen with this preference will be 100% utilized. The

second one is quality-driven (QD) determination to provide exceptional service, and

contrasting to the previous one, as n goes to infinity the resources will never be

100% utilized. The final one is quality- and efficiency-driven (QED) and inherits the

properties of both ED and QD.

The last category was the focus of Halfin and Whitt (1981), while the whole

taxonomy was first utilized by Garnett et al. (2002) and has been widely adopted

in the literature. Borst et al. (2004) uses this taxonomy to solve an approximate

cost minimization problem for staffing in call centers. Our work expands the usage

of this taxonomy to the determination of a pair of capacity levels: the number of

repairmen and maximum number of spare machines. Our representation will express

repairmen capacity level preference first and spare machines level preference second.

Specifically, the repairmen capacity can be ED, QD, or QED. Likewise, the spare

machines decision can be ED, QD, or QED as well.

When certain scaling approaches are applied to the birth-and-death process of

broken machines, a limiting equilibrium can be obtained, leading to the two di-

mensional graph of (s̄, m̄) pairs (Figure 1.2) partitioned into regions according to

the capacity level preference labels they are representing (from Theorem 12 in Ap-

pendix). Then, based on the firm’s preferences, the limiting value of expected delay

can also be expressed as a function of s̄ and m̄ as below:

Theorem 1. Let E[Drpl
n (sn,mn)] denote the mean steady state delay until replace-

ment. Under (1.2):

lim
n→∞

E[Drpl
n (sn,mn)] =


1/(s̄µ)− 1/λ ED|ED & QED|ED

1/µ− (m̄(1 + ρ)) / (µρ(1 + m̄)) QD|ED

0 otherwise.

(1.3)
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Figure 1.2: Pair of capacity level choices representing (s̄, m̄) values, cost-effective
region in bold

Remark 1. As can be seen from Theorem 12 in Section A.1.1, the equation s̄ =

1 + m̄− s̄
ρ

holds when capacity level is QED|ED. Hence, lim
n→∞

E[Drpl
n (sn,mn)]QED|ED

can be expressed in two ways: 1)1/(s̄µ) − 1/λ (as above), and 2) 1/µ − (m̄(1 + ρ))

/ (µρ(1 + m̄)).

Approximations for Optimal Capacity Decisions Giving the Desired Mean Delay Until
Replacement Performance

Let w be the cost rate per server staffed in the repair center, c be the cost rate for

each spare unit, and p be the penalty cost rate assessed for each customer waiting

for a replacement. Note that E[Drpl
n (sn,mn)] is the delay until replacement when a

breakdown occurs; hence, p ·E[Drpl
n (sn,mn)] corresponds to the penalty cost incurred

at breakdowns. Then, for a capacity choice of (sn,mn), we define the system design

cost, C(sn,mn), as:

C(sn,mn) = wsn + cmn + npE[Drpl
n (sn,mn)]. (1.4)
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Remark 2. The delay penalty is scaled-up by the size of the demand base to account

for the total inconvenience experienced by the demand. One can envision another

formulation that can yield the relative frequency of delay.

For all n, it is intuitive that E[Drpl
n (sn,mn)] is decreasing in both sn and mn.

Hence, the tradeoff in (1.4) is between the sum of the first two terms and the last

term. Thus, from (1.2), we will minimize the following limiting cost function:

Min C̄(s̄, m̄) = ws̄+ cm̄+ p lim
n→∞

E[Drpl
n (sn,mn)]. (1.5)

Some of the terms in the description of the following solution have strong im-

plications (and they also appear in Figure 1.2). For a machine repairmen problem

with no spares and total number of repairmen equal to the number of machines,

there will be no interference and hence no positive delay until repair initiation. Since

machines will alternate between working and under repair states, with Markovian

assumptions, λ/λ+µ will be the fraction of time a machine will stay broken. Hence,

λ/λ+µ will be the fraction of broken machines when the delay until repair initiation

is roughly zero. Thus, we may call λ/λ+ µ as the offered load for a system with no

replacements.

Another type of system with ample resources could be one where the breakdown

rate is very small compared to the repair rate. In this case, a large system can be

envisioned as an open system such as an infinite server queue, and λ/µ will be the

expected number of busy servers and thus the offered load.

Theorem 2. Under the assumption of Theorem 1, the solutions to the minimization

problem are summarized below:

i. If
√
p/(µw) < λ/(λ+ µ), then ED|ED is chosen with

s̄ =
√
p/(µw), m̄ = 0,
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ii. if λ/(λ+ µ) ≤
√
p/ [wµ+ (cµ(λ+ µ)) /λ] ≤ λ/µ, then QED|ED is chosen with

s̄ =

√
p/

[
wµ+

cµ(λ+ µ)

λ

]
, m̄ =

√
[p(λ+ µ)2] / [wµλ2 + cµλ(λ+ µ)]− 1,

iii. if λ/µ <
√
p/ [wµ+ (cµ(λ+ µ)) /λ] <

√
p/(µw), then QED|QED is chosen with

s̄ = m̄ =
λ

µ
,

iv. finally, if
√
p/ [wµ+ (cµ(λ+ µ)) /λ] < λ/(λ + µ) <

√
p/(µw), then QED|ED is

chosen with

s̄ = λ/(λ+ µ), m̄ = 0.

No other inequalities are possible.

This theorem shows that to choose the quality level of service and hence the

backup and repair capacity levels, only three capacity level preferences can be rec-

ommended, ED|ED, QED|ED, and QED|QED. These three preferences constitute

the cost efficient region, shown in Figure 1.2 (drawn by Theorem 12 in Appendix).

1.4.2 Distribution of delay until replacement based design

In many real circumstances, the managers will have threshold values for the delays,

and they would desire their capacity choices to limit the probability that delays

exceed their corresponding thresholds (the probability of unacceptable delay). In

the following theorems we will express the limiting delay distribution in terms of

capacity choices, and this will guide us to complement the capacity level choices

recommended before.

Theorem 3. Let Tε[0,∞]. For T > 0, a partial characterization of the limiting

probability of unacceptable delay until replacement, lim
n→∞

P (Drpl
n (sn,mn) > T ), is as

follows (given (1.2)):
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lim
n→∞

P (Drpl
n (sn,mn) > T ) =


1 for ED|ED, 1− µs̄T − s̄

ρ
> 0

Φ (−ŝ/s̄) for ED|ED, 1− µs̄T − s̄
ρ

= 0

0 for ED|ED, 1− µs̄T − s̄
ρ
< 0

0 for QED|QD − ED|QD − ED|QED
0 for QED|QED,QD|QED,QD|QD

.

(1.6)

For T = 0, the limiting probability of unacceptable delay until replacement,

lim
n→∞

P (Drpl
n (sn,mn) > T ), is as follows:
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lim
n→∞

P (Drpl
n (sn,mn) > 0)

=



1 ED|ED,
QED|ED,
QD|ED

0 QD|QD

{1 QED|QED,
m̂ > ŝ, ŝ 6= 0

+ [ρ (1− exp {− (ŝ(m̂− ŝ)) /ρ})φ (ŝ/ρ)] / [ŝ exp {− (ŝ(m̂− ŝ)) /ρ}Φ (−ŝ/ρ)]

+
[√
ρ φ (ŝ/ρ) exp {(ŝ(m̂− ŝ)) /ρ} Φ

(
ŝ/
√
ρ
)]
/
[
φ
(
−ŝ/√ρ

)
Φ (−ŝ/ρ)

]}−1

(
1 +
√

2 m̂/
√
π +
√
ρ
)−1

QED|QED,
m̂ > ŝ, ŝ = 0(

1 + Φ
(
m̂/
√
ρ
)

QED|QED
m̂ < ŝ

·
[(√

1 + ρ
)−1

φ
(
−m̂/√ρ

)
A+

(√
ρ
)−1

φ
(
−m̂/√ρ

)
B
])−1

{
1 +

[√
ρ φ (ŝ/ρ) Φ

(
ŝ/
√
ρ
)]
/
[
φ
(
−ŝ/√ρ

)
Φ (−ŝ/ρ)

]}−1
QED|QED
m̂ = ŝ{

1 +
[
Φ
(
m̂/
√
ρ
)
φ
(
m̂/
√
ρ(1 + ρ)

)]
/ QD|QED

[(√
(1 + ρ)

)−1

φ
(
−m̂/√ρ

)
Φ
(
−m̂/

√
(1 + ρ)ρ

)]}−1

(1.7)

where
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A =

[
Φ

(
ŝ
√

1 + 1/ρ− m̂√
1+1/ρ

)
− Φ

(
m̂√
ρ(1+ρ)

)]
/

[
φ

(
m̂√
ρ(1+ρ)

)]

B =

[
φ

(
ŝ
√

1 + 1/ρ− m̂√
1+1/ρ

)
Φ
(
m̂−

(
1 + 1

ρ

)
ŝ
)]

/

[
φ

(
m̂√
ρ(1+ρ)

)
φ
((

1 + 1
ρ

)
ŝ− m̂

)]
.

(1.8)

Remark 3. An interesting result is that for ED|ED, the limiting probability of un-

acceptable delay until replacement only depends on the parameters of repair servers,

sn, defined in (1.2); there is not m̄ or m̂ included. This implies that for large and

highly utilized systems, the repair capacity is the dominant resource in terms of delay

until replacement performance.

Note that for QED|ED and QD|ED, the limiting number of busy repairmen could

be smaller than the number of servers, sn, in order
√
n sensitivity (see Theorem 12

in Appendix, the fluid limit b is smaller than or equal to s̄). In this case, obtaining

the limiting probability of unacceptable delay until replacement (T > 0) is beyond

the scope of this model since the distribution of a random delay until replacement

will be hypoexponential and the rates will be determined by the trajectory of the

number of busy repairmen during the delay.

For ED|ED above, the equation 1 − µs̄T − s̄
ρ

= 0 defines a one-to-one match

between T and s̄ values. When s̄ increases, the corresponding T will be smaller.

With smaller threshold, one would expect a higher probability of unacceptable delay

(T > 0), which is the case with increasing s̄ value.

It is not possible to characterize the limiting value for the probability of delay until

replacement (T = 0) at the region representing the capacity level choices QED|QD-

ED|QD-ED|QED at Figure 1.2 (s̄ = ρ < m̄). When ŝ > 0, the limit is zero;
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however, when ŝ < 0, it is one. No conclusions can be drawn for ŝ = 0. One

possible explanation for this is as in Section A.3.2 in Appendix, whether there will

be a limiting value is determined by the comparison of the fluid limit b with m̄, and

from Theorem 12 and Table A.4 the limiting initial value of the fluid-scaled process

in (A.1), b̄(0), is equal to the fluid limit b itself; however, QED|ED, ED|QD, and

ED|QED all lead to three different (in)equalities between b and m̄, leading to three

different limiting behaviors of the probability of delay until replacement.

Suppose that the order n parameters in (1.2) are chosen with respect to Theorem

1.2 or via other methods; then, the formulas above for the probability of unacceptable

delay until replacement can be used to determine the (ŝ, m̂) pair giving the desired

probability value with minimum cost. This way all the parameters in (1.2) will

be determined and an actual capacity level pair (sn,mn) can be recommended. It

is intuitive that the probability of delay exceeding a threshold is decreasing in the

amount of resources used to satisfy the needs of who or what is experiencing the

delay; then, if an upper bound for the probability of unacceptable delay has been

determined (e.g. in a maintenance contract), Theorem 3 formulas can be used to

obtain curves of (ŝ, m̂) pairs that hit the probability bound to choose the minimum

cost pair within (note that using higher values than the curve pairs will only cost

more while still satisfying the constraint).

Below we give an example of this for QED|QED, λ is taken as 0.3 and µ is taken

as 0.5. We depict nine (ŝ, m̂) pair curves representing the feasible (ŝ, m̂) pairs hitting

the upper bound (0.1, 0.2, ..., 0.9) for the probability of delay until replacement.

1.5 Analysis of the Relationship Between Delay Until Repair Initia-
tion of a Broken Unit and Capacity Decisions

We will do an analysis for the delay until repair initiation similar to what was done in

the previous section. First, we will give the limiting mean delay until repair initiation
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Figure 1.3: Curves of capacity level choice QED|QED’s order
√
n parameters,

(ŝ, m̂), hitting the upper bounds 0.1,...,0.9 (from light to dark curves) for delay until
replacement

and use this value to minimize an approximate cost function. Then, we will give the

limiting probability of unacceptable delay and give another approximation for ED|ED

capacity level choices giving the minimum cost rate and at the same time satisfying

an asymptotic constraint on the probability of unacceptable delay. We will denote

the delay until repair initiation when sn repair servers and mn spare units are used

as Drpi
n (sn,mn).

Theorem 4. Let E[Drpi
n (sn,mn)] denote the mean delay until repair initiation. Un-

der (1.2):

lim
n→∞

E[Drpi
n (sn,mn)] =

{
1+m̄
s̄µ
− 1

λ
− 1

µ
ED|ED

0 otherwise.
(1.9)

where the capacity level preferences are being depicted as in Figure 1.2.

We will use the theorem above to minimize a limiting cost rate similar to (1.5),
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which is shown below (h is the penalty cost rate for each broken machine waiting for

repair).

Min C̄(s̄, m̄) = ws̄+ cm̄+ h lim
n→∞

E[Drpi
n (sn,mn)]. (1.10)

Theorem 5. Under Theorem 4, the solutions to the minimization problem above are

summarized below:

i. if λ/(λ+ µ) ≤ c/ (w + c+ c/ρ) ≤ λ/µ, then QED|ED (or if c/ (w + c+ c/ρ) = ρ,

QED|QED) is chosen with

s̄ = c/ (w + c+ c/ρ) , m̄ = [c (1 + 1/ρ)] / (w + c+ c/ρ)− 1,

ii. if c/ (w + c+ c/ρ) < λ/(λ+µ), and
√
h/wµ < λ/(λ+µ), then ED|ED is chosen

with

s̄ =
√
h/wµ, m̄ = 0,

iii. if c/ (w + c+ c/ρ) < λ/(λ+µ), and
√
h/wµ ≥ λ/(λ+µ), then ED|ED is chosen

with

s̄ = λ/(λ+ µ), m̄ = 0,

No other inequalities are possible.

Theorem 6. Let Tε[0,∞] and ϕ = 1+1/ρ+µT . For T > 0, the limiting probability

of unacceptable delay until repair initiation, lim
n→∞

P (Drpi
n (sn,mn) > T ), is as follows

(given (1.2)):
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lim
n→∞

P (Drpi
n (sn,mn) > T ) =



1 ED|ED,
m̄− s̄− s̄

ρ
+ 1− µs̄T > 0

Φ
(

(m̂− ϕŝ) /
√
s̄ (1/ρ+ µT )

)
ED|ED,
m̄− s̄− s̄

ρ
+ 1− µs̄T = 0

0 otherwise.

(1.11)

For T = 0, the limiting probability of unacceptable delay until repair initiation,

lim
n→∞

P (Drpi
n (sn,mn) > T ), is as follows:
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lim
n→∞

P (Drpi
n (sn,mn) > 0)

=



1 ED|ED

1 QED|QD − ED|QD − ED|QED, ŝ ≤ 0

1−
(

ŝ

ŝ+
√
ρ[φ(−ŝ/√ρ)/Φ(ŝ/

√
ρ)]

)
QED|QD − ED|QD − ED|QED, ŝ > 0

1−
{

1 +
[√

ρ
(

1− exp
{
− ŝ(m̂−ŝ)

ρ

})
φ
(
− ŝ√

ρ

)]
/
[
ŝ Φ
(

ŝ√
ρ

)]
+
[
φ
(
− ŝ√

ρ

)
exp

{
− ŝ(m̂−ŝ)

ρ

}
Φ
(
− ŝ
ρ

)]
/
[√

ρ φ
(
ŝ
ρ

)
Φ
(

ŝ√
ρ

)]}−1

QED|QED,
m̂ ≥ ŝ, ŝ 6= 0

1−
(

1 +
√

2
π

m̂√
ρ

+ 1√
ρ

)−1

QED|QED, m̂ ≥ ŝ, ŝ = 0

(
1 +

√
ρ Φ(m̂/√ρ)

Φ(m̂−ŝ−ŝ/ρ)

φ((1+1/ρ)ŝ−m̂)φ
(
m̂/
√
ρ(1+ρ)

)
φ
(
ŝ
√

1+1/ρ−m̂/
√

1+1/ρ
)
φ(−m̂/√ρ)

+
√

ρ
1+ρ

φ((1+1/ρ)((1+ρ)ŝ−ρm̂)(1+ρ)−1 − m̂)φ
(
m̂/
√
ρ(1+ρ)

)
φ
(

((1+ρ)ŝ−ρm̂)(1+ρ)−1
√

1+1/ρ− m̂/
√

1+1/ρ
)
φ(−m̂/√ρ)

·
Φ
(
ŝ
√

1+1/ρ−m̂/
√

1+1/ρ
)
−Φ
(
m̂/
√
ρ(1+ρ)

)
Φ(m̂−ŝ−ŝ/ρ)

)−1

QED|QED, m̂ < ŝ

(1.12)
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lim
n→∞

P (Drpi
n (sn,mn) > 0)

=



(
1 +

√
s̄

1+m̄
· φ((1+1/ρ)((1+ρ)ŝ−ρm̂))(1+m̄)−1−m̂)
φ
(

((1+ρ)ŝ−ρm̂)(1+m̄)−1
√

1+1/ρ−m̂/
√

1+1/ρ
)
φ(−m̂/√ρ)

·
φ
(
m̂/
√
ρ(1+ρ)

)
Φ
(

(ŝ−m̂ρ/(1+ρ))/
√

(1+m̄)ρ/(1+ρ)2
)

φ(
√
ρ−m̄ ρ−1 [((1+ρ)ŝ−ρm̂)/(1+m̄)])Φ

(
(m̂−ŝ−ŝ/ρ)/

√
s̄/ρ
)
)−1

QED|ED, (m̂ = ŝ = 0)′

(
1 +

√
s̄

1+m̄

)−1

QED|ED, m̂ = ŝ = 0

0 otherwise.

(1.13)

Remark 4. Note that in (1.11), the region ED|ED, m̄ − s̄ − s̄
ρ

+ 1 − µs̄T = 0

determines a new boundary for ED|ED, we call it QED(T)|ED since for T = 0 it

coincides with the regular QED|ED and depict it in Figure 1.4 (for some T > 0).

Remark 5. In (1.11), from m̄− s̄− s̄
ρ

+ 1− µs̄T = 0, Φ

(
m̂−ϕŝ√
s̄(1/ρ+µT )

)
can also be

represented as Φ

(
m̂−(1+m̄)ŝ/s̄√
s̄(1+m̄−s̄)

)
.

Now for QED(T)|ED and from (1.2), consider an optimization problem with

asymptotic constraints for sufficiently large n,
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Figure 1.4: QED(T)|ED represented by ED|ED, m̄ − s̄ − s̄
ρ

+ 1 − µs̄T = 0, for
T > 0

Min C(sn,mn) = n[ws̄+ cm̄] +
√
n[wŝ+ cm̂]

s.t.

Φ

(
m̂−ϕŝ√
s̄(1/ρ+µT )

)
≤ α

m̄− s̄− s̄
ρ

+ 1− µs̄T = 0

nm̄+
√
nm̂ ≥ 0

ns̄+
√
nŝ ≥ 0

s̄, m̄, ŝ, m̂ ε R

(1.14)

The objective is to minimize the system cost rate for the number of repair servers

employed and spare units kept. It is assumed that a threshold value T has been

determined exogenously for the acceptable delay. The first constraint represents

that the probability of having an unacceptable delay (delay exceeding T ) should be
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lower than a fixed α value in the limit; the second constraint represents the equal-

ity describing the QED(T)|ED in Theorem 6; and the third and fourth constraints

represent that number of repair servers and spares cannot be negative.

Since order n parameters are more dominant, one would first want to minimize

the first term in the objective function. From the constraints it is desired for m̄, s̄ ≥ 0

and also m̄− s̄− s̄
ρ

+ 1−µs̄T = 0. This gives ws̄+ cm̄ = ws̄+ c (s̄+ s̄/ρ+ µs̄T − 1).

s̄ = c/ (w + c+ c/ρ+ µcT ) makes this expression zero; however, the corresponding

m̄ value is −w/ (w + c+ c/ρ+ µcT ) < 0. Since m̄ is increasing in s̄ and vice versa

(from the equality), we conclude that the optimal order n parameter values are

s̄ = 1/ϕ, m̄ = 0.

Applying this in the first constraint gives Φ

(
m̂−ϕŝ√
1−ϕ−1

)
≤ α, notice that for

every (ŝ, m̂) pair satisfying this inequality, decreasing the m̂ value decreases the

second term in the cost function in (1.14) while still satisfying the inequality. From

the third constraint and the order n optimal values determined above, the smallest

feasible value for m̂ is zero; and since s̄ is positive and dominant, ŝ can be negative.

From the monotonicity of the standard normal distribution, this brings the solution

ŝ = −
(

Φ(α)−1
√

1− ϕ−1/ϕ
)
, m̂ = 0.

The solution of the optimization problem is

s̄ = 1/ϕ, m̄ = 0, ŝ = −
(

Φ(α)−1
√

1− ϕ−1/ϕ
)
, m̂ = 0.

Thus, it is best not to use any spares when QED(T)|ED capacity level choice is made.

Note that this actually represents the new boundary for ED|ED; hence, in both delay

until replacement and delay until repair initiation, when ED|ED is chosen or when

very high utilization of both repair and spares capacity is preferred, in terms of delay

performance, spares capacity is asymptotically not required.
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E[Drpl
n (sn,mn)]

n sn mn Simulation Approximation %Error
24 2 0 3.0058 3 -0.194
60 5 0 2.9975 3 0.0822
108 9 0 3.0203 3 -0.6757

P (Drpl
n (sn,mn) > lim

n→∞
Drpl
n (sn,mn))

24 2 0 0.476 0.5 4.809
60 5 0 0.4809 0.5 3.8166
108 9 0 0.497 0.5 0.601

Table 1.1: Comparison of Heavy-traffic Approximations with Simulation Results for
Delay until Replacement, ED|ED, λ = 1, µ = 3, s̄ = 1/12, m̄ = 0, ŝn = m̂n = 0

E[Drpl
n (sn,mn)]

n sn mn Simulation Approximation %Error
288 84 48 0.1713 0.1429 19.8806
480 140 80 0.1644 0.1429 15.0611
720 210 120 0.1640 0.1429 14.8252

Table 1.2: Comparison of Heavy-traffic Approximations with Simulation Results for
Delay until Replacement, QED|ED, λ = 1, µ = 3, s̄ = 7/24, m̄ = 4/24, ŝ = m̂ = 0

1.6 Numerical Results

In this section, we compare our approximations with the exact values (where ob-

tainable) or simulation results. The capacity level choices we choose to observe are

ED|ED, QED|ED, QED|QED since these are the cost-effective alternatives in Sec-

tion 1.4. When obtaining the data for the probability of unacceptable delay, we used

the limiting mean delays we have obtained in Theorems 1 and 4 as thresholds.

In Table 1.1, we see that for small to moderate systems in ED|ED, the fluid level

approximations for capacity choices (notice that ŝn = m̂n = 0) have very small %

errors. For these systems it can be more desirable to always use an order n level

parameter s̄1 rather than a (s̄n,2, ŝn,2) pair so that both alternatives give the same

sn value, and this s̄1 value can be used instead to obtain the approximations.
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E[Drpi
n (sn,mn)]

n sn mn Exact Value Approximation %Error
24 8 8 0.1102 0 N/A
48 16 16 0.0765 0 N/A
96 32 32 0.0534 0 N/A

P (Drpi
n (sn,mn) > lim

n→∞
Drpi
n (sn,mn))

24 8 8 0.6423 0.634 -1.3124
48 16 16 0.6401 0.634 -0.9558
96 32 32 0.6384 0.634 -0.6903

Table 1.3: Comparison of Heavy-traffic Approximations with Exact Values for Delay
until Repair Initiation, QED|QED, λ = 1, µ = 3, s̄ = 1/3, m̄ = 1/3, ŝ = m̂ = 0

In Table 1.2, we see that the approximations for delay until replacement for

QED|ED gives higher % errors with respect to their ED|ED counterparts. We believe

the cause of this difference could be the volatility in the number of busy repairmen,

that has come as a result of having QED repair capacity level choice; in this case,

there will be idle servers in the limit unlike the ED|ED and every delay until replace-

ment will observe a different trajectory of service rates for the service completions

occurring during the delay.

It can be observed from Table 1.3 that mean delay values for QED|QED ap-

proach the limiting values faster compared to the QED|ED case. The reason for this

observation could be because both of the capacity preferences are the same in the

QED|QED case, since we only use order n capacity parameters and they are both

equal to ρ, this system has the same value for both sn and mn. In the following ta-

bles, we compare the simulation results between the exponential and nonexponential

systems, with breakdown and repair times taken to be other types of distributions.

We created two nonexponential cases; for both breakdown and repair distributions,

in one case we chose to use an Erlang distribution with the same mean value but one

fourth of the variance of the exponential case and in the other a hyper-exponential

distribution with the same mean value but 5.5 times the variance of the exponential
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E[Drpl
n (sn,mn)]

n sn mn Sim. Expo. Sim. Erlang Sim. Hyper-expo.
24 2 0 3.0058 2.9951 3.0446
60 5 0 2.9975 2.9984 2.9034
108 9 0 3.0203 3.0003 2.9748

P (Drpl
n (sn,mn) > lim

n→∞
Drpl
n (sn,mn))

24 2 0 0.476 0.4841 0.4388
60 5 0 0.4809 0.4879 0.4179
108 9 0 0.497 0.4901 0.4561

Table 1.4: Comparison of Simulation Results between the Exponential and Nonex-
ponential Cases for Delay until Replacement, ED|ED, λ = 1, µ = 3, s̄ = 1/12, m̄ =
0, ŝ = m̂ = 0, Erlang ∼ (4, 4∗λ(orµ)), Hyper−expo. ∼ (0.8, 4∗λ(orµ), 0.2, λ(orµ)/4)

case.

For ED|ED, there is not a critical difference between the mean delays for exponen-

tial and nonexponential cases; however, there is a slight decrease in the probability

of unacceptable delay for the hyper-exponential case. We believe the reason for this

is that we have used a high probability (0.8) of choosing the repair time as four times

the previous rate.

For both QED|ED and QED|QED, we observe that the mean delays are higher

for systems with higher variance, but the probability of unacceptable delay is lower

for the same threshold value; hence, the delay distribution has a heavier tail when the

variance is high and when a delay is experienced it lasts for a longer time compared

to a system with lower variance.

1.7 Conclusion and Extensions

In this essay, we study a Markovian machine repair problem with spares where a

certain number of identical units have to be kept as working (enough to cover the

demand base), and these units break down spontaneously. When this happens, the

broken unit (e.g. pc, machine component, city transit bus) is sent to the repair
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E[Drpl
n (sn,mn)]

n sn mn Sim. Expo. Sim. Erlang Sim. Hyper-expo.
24 7 4 0.2489 0.2297 0.2807
48 14 8 0.2156 0.2035 0.2374
96 28 16 0.1922 0.1829 0.1969

P (Drpl
n (sn,mn) > lim

n→∞
Drpl
n (sn,mn))

24 7 4 0.6646 0.7404 0.5747
48 14 8 0.6779 0.7392 0.5851
96 28 16 0.6761 0.7300 0.562

Table 1.5: Comparison of Simulation Results between the Exponential and Non-
exponential Cases for Delay until Replacement, QED|ED, λ = 1, µ = 3, s̄ =
7/24, m̄ = 4/24, ŝ = m̂ = 0, Erlang ∼ (4, 4 ∗ λ(or µ)), Hyper − expo. ∼
(0.8, 4 ∗ λ(or µ), 0.2, λ(or µ)/4)

E[Drpi
n (sn,mn)]

n sn mn Exact V. Expo. Sim. Erlang Sim. Hyper-expo.
24 8 8 0.1102 0.0792 0.1417
48 16 16 0.0765 0.0582 0.1016
96 32 32 0.0534 0.0398 0.0769

P (Drpi
n (sn,mn) > lim

n→∞
Drpi
n (sn,mn))

24 8 8 0.6423 0.6598 0.5918
48 16 16 0.64 0.6701 0.6119
96 32 32 0.6384 0.6594 0.6386

Table 1.6: Comparison of Simulation Results between the Exponential and Non-
exponential Cases for Delay until Repair Initiation, QED|QED, λ = 1, µ = 3, s̄ =
1/3, m̄ = 1/3, ŝ = m̂ = 0, Erlang ∼ (4, 4 ∗ λ(or µ)), Hyper − expo. ∼ (0.8, 4 ∗
λ(or µ), 0.2, λ(or µ)/4)

center while the backup center provides an operational unit to the demand as soon

as possible. All units within the system as well as repair servers were assumed to

be identical, and the breakdowns were assumed to happen only to the working units

and exponentially; repairs were also assumed to be completed exponentially. The

breakdowns and repairs were assumed to happen independently.

We demonstrated an asymptotic analysis of the relationship between the delay

performance and capacity level choices (the number of repair servers and the spare
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units kept) for two types of delays: delay until replacement provision to the demand

base, delay until repair initiation of a broken unit. First, we obtained the limiting

mean delay for both delays and minimized an approximate cost rate to determine

the order n parameters for both types; this demonstrated a capacity choice frontier.

Second, we gave limiting distributions for both delays and demonstrated their use for

either as complements to the first set of results to obtain the order
√
n parameters

or as constraints in alternative approximate optimization problems. Among the

interesting results, we find that for highly utilized systems in both repair and spares

capacity, delay distribution do not depend on the spares capacity.

Extensions of this work could be to explore on what other complex machine re-

pair, reliability, and closed queuing systems this type of asymptotic analysis can be

applied to provide approximations. Moreover, it could be interesting to focus on how

to benefit from this approximate analytical performance analysis that establish the

relationship between the capacity and delay performance, for modeling competition

among maintenance providers according to the amount of resources they are willing

to devote and price they are charging; where the buyer of these services (e.g., a trans-

portation firm) is trying to get the best possible delay performance with minimum

cost.
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2

Diffusion Approximations and Near-Optimal
Design of a Make-to-Stock Queue with Perishable

Goods and Impatient Customers

2.1 Introduction

In this essay, we approximate and seek the near-optimal design of a make-to-stock

queue with perishable goods and impatient customers via modeling the system as

a double-sided queueing system subject to abandonment from both sides. For this

model, there are two types of exogenous arrivals, one resulting in unit increases in

the queue length and the other resulting in unit decreases. We refer to these as

positive and negative job arrivals, respectively. The queueing discipline is assumed

to be FIFO for both sides. By this we mean that a newly arriving negative (resp.

positive) job is matched with the oldest positive (resp. negative) job in queue, if such

a job exists. When a match between a positive and a negative job is established,

both jobs instantaneously leave the system. In this sense, an arriving negative job

provides the service to a waiting positive job, and vice versa. If no such match is

immediately available, the arriving job waits in the the queue. Jobs that must wait
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in queue before potential matching occurs are subject to abandonment.

There are several potential applications of this model. Our primary motivating

example is a production system with perishable inventory and impatient backlogged

customers. As our focus will be on this example, we will refer to positive jobs as

inventory stock and negative jobs as backlogged customers. A review of inventory

models with goods that perish completely after a time delay can be found in Nah-

mias (1982), whereas Raafat (1991) investigates models of continuously deteriorating

inventory. Goyal and Giri (2001) provide recent trends in perishable inventory mod-

els. Among the infinite horizon perishable inventory/production models for single

items with stationary stochastic demand, this is, to our knowledge, the first study

to include customer abandonment.

Our approximation approach falls into the category of conventional heavy traffic

limit theory. Specifically, we consider a sequence of diffusion-scaled systems as some

parameter – in our case the demand rate µ goes to infinity. Abandonment phe-

nomenon in such models constitutes a significant detour from typical conventional

heavy traffic limit theorems and, as such, has a relatively small associated body

of literature. Ward and Glynn (2005), Reed and Ward (2008), and Jennings and

Reed (2010) all study one-sided queueing models with general arrival, service, and

abandonment distributions. The last paper studies an overloaded multi-class system.

Theorem 8 of our paper considers the overloaded case, which we refer to as unbal-

anced, as overloadedness can take place on either side of the queue. Unbalancedness

is in contrast to a balanced system, which in this work refers to environments in

which the product and demand rates differ on a scale smaller than that of the rates

themselves.

Our approach is different than the technique employed in the papers above in

that we study directly the scalings of steady state distributions, whereas the other

works begin by the studying of diffusion-scaled processes. Our main results are
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first articulated for a Markovian system. Given an original queueing model and

its associated steady state distribution, we consider a sequence of scaled steady

state queue length distributions. We prove in Theorems 7 and 8 that under certain

assumptions on the magnitude of the abandonment rates, the scaled distributions

converge to the distribution of a continuous random variable. Slight modifications

of the limiting distributions serve as accurate approximations of the distribution of

the original system, a fact that we verify in numerical studies in Section 2.4.1.

Further, the limiting distributions allow one to approximate system performance

metrics, such as stock-out probabilities, expected queue lengths, lost sales, etc. Given

these approximations to system performance, one can formulate a math program

involving these approximations and then proceed to optimize. In Section 2.3 we

consider an approximate cost minimization problem, where the scaled difference be-

tween production rate and customer arrival rate (i.e. the difference between rates of

positive and negative jobs) β is the decision variable. The solution from the approx-

imate problem is then interpreted for the original system, yielding an approximately

optimal (unscaled) production rate α. We compare this value to the true optimal

quantity. Extensive numerical results are presented in 2.4.2. Our conclusion is that

our approach is extremely accurate in most reasonable parameter settings. This

particular goal of our work, finding the optimal production rate, is comparable but

distinguished from Graves (1982), who studies production control rules for queueing

systems with customer abandonment.

Heavy traffic limit theory can be an appealing technique for studying large and/or

complex systems. One of the benefits of the theory and accompanying analysis is the

resulting simplification of otherwise involved formulae, yielding aesthetically pleasing

expressions that not only capture the essence of the true solution but also make the

system amenable to otherwise elusive insight. Diffusion approximations such as ours

strike the delicate balance of preserving the underlying stochasticity of the original
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model and doing so in a more tractable form. Another advantage is that increases in

the size and complexity of the original models – for instance through the inclusion of

multiple customer and inventory classes or generally distributed random variables –

can sometimes be accommodated without any additional complexity in the ultimate

approximation. Indeed, though proving the result formally is beyond the scope of

this work, we dedicate Section 2.6 to conjecturing the analogous approximation under

general distributional assumptions for interarrival and abandonment times. The

approximation of the queue length distribution is tested using numerical examples.

Alternative asymptotic expressions involving the use of Laplace’s method applied

to a double-sided queue were employed by Zenios (1999), who proposed a queueing

model with reneging as an abstraction of transplant waiting list dynamics. One

fundamental distinction between this and our work is that the former assumes aban-

donment only on the patient side of the queue. Under the assumption that the

system is unbalanced, asymptotically, queues form only on the patient side; hence,

there’s no need for abandonment on the organ side. We address this unbalanced

case in Theorem 8. Zenios models the demand and supply of cadaveric organs, and

elucidates the relationship between an organ allocation policy and performance met-

rics such as queue length. Similarly, our model captures an interesting phenomenon

emerging within the organ transplant area. A person – call them a would-be recip-

ient – requiring an organ transplant may have a loved one – donor – who is willing

to donate but who is not a viable match for the recipient. All is not lost for this

couple. If a similar recipient-donor couple exists such that the organ offered by the

donor of the second couple satisfies the needs of the recipient from the first couple

and at the same time the needs of the recipient from the second couple matches the

organ offered by the donor of the first couple, then these two couples are compli-

mentary. Our queuing model captures the imbalance in the needs of couples looking

for matches and the delays until viable matches materialize. In this case, a couple
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abandons if an organ is found through other means or transplantation is no longer

an option.

There are additional papers to note. Markovian double-sided queues have been

studied by Conolly (2002), Ishihara and Utsumi (2005), and Mendoze et al. (2009).

The inspiring application area for the first two studies is a taxi stand where passenger

arrivals awaiting taxis form one side of the queue, whereas taxis waiting for passengers

form the other side. Having abandonments at both sides is natural in this setting.

Conolly (2002) provides transient analysis of the queue length distribution. Ishi-

hara and Utsumi (2005) allow multiple customer classes and investigate queueing

dynamics during a busy cycle. Mendoza et al. (2009) impose thresholds on both

sides of the queue to assure stability in the absence of abandonment and investigate

minimization of the expected total cost. We investigate the role of thresholds in

Section 2.5.

Among non-Markovian models, Xiao-ling and Jian (2004) consider the double-

sided queue with generalized batch arrivals on one side and Poisson on the other.

Similar to Mendoza et al., thresholds are imposed on both sides to ensure stability.

We also see the phenomenon of matching two Poisson streams with each other in

finance, specifically in dealership markets, where the market-maker determines the

buying and selling prices for stocks. This determines the rates of Poisson arrival

streams for buyers and sellers, respectively, and these arrival rates may depend on

many factors, e.g. the past stock prices, the mood of the market, etc.

The market-maker starts the market with some inventory of stocks and cash with

the objective of keeping a positive amount of both quantities and profiting on the

temporary fluctuations of supply and demand. The basic case of having the market

maker choosing a single price, hence a single arrival rate for either of buyer and sellers

has first been analyzed in Garman (1976) in his seminal paper. Afterwards, many

studies have been conducted on market microstructure; Biais et al. (2005) provide
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a review. The dealership model has evolved into more complicated forms employing

nonstationary behavior for Poisson streams with the focus of exploring the pricing

trends; see Horst and Rothe (2008). A major difference important to emphasize is

that these models do not include perishability, as this is not a feature of stocks or

cash reserve.

The remainder of the essay is organized as follows. In the immediately following

section we present the model, framework for diffusion-scaling, and the main asymp-

totic results for balanced and unbalanced systems. Section 2.3 employs these limiting

distributions in estimating various performance measures and obtaining a nearly op-

timal production rate. Next, numerical studies investigate the performance of the

approximation, both in terms of estimating the queue length distribution as well as in

terms of finding the optimal production rate. The remainder of the paper considers

extensions of the model. Thresholds with and without abandonment are explored in

Section 2.5.

Finally, in Section 2.6, we provide a set of equations that govern the virtual

waiting time for customers and products under general distributional assumptions

on the interarrival and abandonment times. We also provide a conjecture for the

steady state of the limiting scaled queue length distribution under these relaxed

assumptions. These analogs to the main theorems are validated with simulation

results. The paper concludes with closing remarks.

2.2 The model and main results

2.2.1 The model

In this section, we provide the model for the Markovian double-sided queue with

unlimited waiting space (or with no thresholds) at both ends, where stability is

achieved by having abandonment on both sides. We assume the arrivals generating

the unit increases and the arrivals generating the unit decreases in the queue length
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occur according to a Poisson process with rate α and µ, respectively; hence, we allow

the queue length to be any positive or negative number.

In the previous section, we emphasized that our focus will be on the application

of this model to a production system with perishable inventory and impatient cus-

tomers. We assume that production completions increase the queue length, whereas

the customer arrivals decrease it.

Since there are no thresholds on either side, when a product is finished, if there

are no customers in the system at that time, it starts waiting to be matched with

an arriving customer. If more products get finished before a customer arrives, then

a queue of finished products will form on the production side (which corresponds to

the positive values of the queue length).

We assume the inventory perishes at an exponential rate γ1 so all products in

the queue will be subject to departure due to perishability as well as due to being

matched with an arriving customer, whichever happens first. When a customer

arrives, among the products that lasted until that time, the product that arrived at

the earliest time will be matched with the customer and they will both leave the

queue. Hence, we assume FIFO discipline.

In case there are no products left when the customer arrives, a customer queue

may form with similar dynamics where we assume each customer has a patience

time which is exponentially distributed with rate γ2. Thus, a customer will either

depart with a product or abandon due to not being matched with one until his/her

patience runs out. All production completions, customer arrivals, product perishing,

and customer abandonments are assumed to be mutually independent. Figure 2.1

illustrates the model. Note that at any time a queue may form on only one side

because the arrivals coming to the opposite side will be matched immediately with

the oldest item in the queue.

We denote the queue length process by Q ≡ {Q(t), t ≥ 0}, and it is assumed

44



……

Customer Arrivals
~Poisson(μ)

Production
~Poisson(α)

Customer 
Abandonment

~Exponential(γ2)

Inventory 
Perishing

~Exponential(γ1)

Matched Customer 
and Product Leave 

the System

Figure 2.1: Markovian Double-sided Queue with No Thresholds

to be right-continuous with left limits. The system framework and aforementioned

assumptions imply that Q is a birth-and-death process with births corresponding

to production completions or customer abandonments (the latter possible only for

transitions made from negative states) and deaths corresponding to customer arrivals

or perishing of products (the latter possible only for transitions made from positive

states).

Suppose that k represents the value of queue length (k ∈ Z) at the considered mo-

ment. Let k+ = max(k, 0) and k− = max(−k, 0). Since the production completions

and customer abandonments occur exponentially and independently from each other,

the birth rate α(k) is the sum of the production rate α and total abandonment rate,

thus, α(k) = α + k−γ2. Similarly, µ(k) = µ + k+γ1. For given α, µ, γ1, and γ2, the

probability distribution of the queue length is given as follows (p0 = P (Q(∞) = 0)

is the appropriate normalizing constant):
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P (Q(∞) = k) ≡ pk =



p0 (α)k/
k∏
i=1

(µ+ iγ1) k > 0

p0 (µ)k
−
/
k−∏
i=1

(α + iγ2) k < 0

p0 =

[
1 +

∞∑
k=1

(
αk/

k∏
i=1

(α + iγ1) + µk/
k∏
i=1

(µ+ iγ2)

)]−1

.

(2.1)

2.2.2 Asymptotic expressions for balanced cases

The ubiquitous assumption is that abandonment rates are relatively small: max(γ1, γ2)

� min(α, µ), and γ1, γ2 are o(µ). Here we derive asymptotic expressions for the

queue length distribution, P (Q(∞) ≤ k), (k ∈ Z), for two types of systems: bal-

anced and unbalanced. By a balanced system, we mean that the difference between

the production completion rate α and customer arrival rate µ is much smaller com-

pared to the customer arrival rate, i.e. |α− µ| � min(α, µ).

The asymptotic regime for the balanced system assumes that both rates become

infinitely large, with the difference between them being O
(√

µ
)
. Moreover, our nu-

merical analysis shows that the approximation works well (the maximum percentage

error between the actual and approximate cumulative distribution function of queue

length < 5%), even when: 1) the above assumption is valid, e.g. α = 150, µ = 100;

2) the system is not necessarily large, e.g. α = 7, µ = 5; 3) γ2 does not satisfy the

assumption above, e.g. α = 80, µ = 100, γ1 = 1, γ2 = 100. Out of 132 cases tested,

only 5 cases had higher percentage error than 5%, as can be seen from Tables 2.1-2.4.

Towards an approximation we consider a sequence of systems indexed by n such

that:
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production rate = λn+ β
√
n

demand rate = λn
goods abandonment rate = θ1

customer abandonment rate = θ2.

(2.2)

Note that the difference between the production and demand rates is O(
√
n)

whereas the demand rate is O(n). Hence, based on the above definition, we categorize

each system in the sequence as balanced. We will denote the double-sided queue

length, dependent on n, with Qn ≡ {Qn(t), t ≥ 0}. Moreover, let N (µ, σ2, l, u)

denote the truncation and renormalization of a normal random variable with mean

µ and variance σ2, where l and u are the lower and upper bounds of the truncation,

respectively. Then, the following theorem summarizes the limiting behavior of the

queue-length process.

Theorem 7. Let

X− ∼ N (β/θ2, λ/θ2,−∞, 0)

X+ ∼ N (β/θ1, λ/θ1, 0,∞)

a =

(
1 +

√
θ2/θ1

h(β/
√
λθ2)

h(−β/
√
λθ1)

)−1

.

(2.3)

For the sequence of systems indexed by n with steady state queue length Qn(∞), the

sequence of out-of-stock probabilities converges:

lim
n→∞

P (Qn(∞) ≤ 0) = a, as n→∞.

Moreover, the sequence of queue length distributions converge. That is, for any

b ∈ R we have

lim
n→∞

P (Qn(∞) ≤ b
√
n) = a · P (X− ≤ b) + (1− a) · P (X+ ≤ b) . (2.4)
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Towards approximating the original system we set the parameters for the nth

system equal to the functions of the parameters of the real system in the following

way:

n = µ/λ (2.5a)

θ1 = γ1 (2.5b)

θ2 = γ2 (2.5c)

β = (α− µ)
√
λ/µ. (2.5d)

Note that λ can be chosen arbitrarily as long as the scale parameter, n, times λ

equals µ. In the following section, we will set λ to be 1 for ease of notation.

Hence, for a system with large values of α and µ, based on Theorem 7, we can

use the limit shown in (2.4) to approximate the queue length distribution:

P (Q(∞) ≤ b) ∼= a · P
(
X− ≤ b

√
λ/µ

)
+ (1− a) · P

(
X+ ≤ b

√
λ/µ

)
. (2.6)

Because b is either positive or negative, (2.6) simplifies, as either P
(
X+ ≤ b

√
λ/µ

)
= 0 or P

(
X− ≤ b

√
λ/µ

)
= 1.

In the numerical examples in Section 2.4 we observe that the maximum error

between the steady state cumulative distribution function of the original system and

that of our approximation has been less than 0.05 in all cases, usually it is much

smaller.

2.2.3 Asymptotic expressions for unbalanced cases

Now we look at the unbalanced system where the absolute difference between the

production and arrival rates, |α − µ|, is O(µ). Consider a sequence of systems,

indexed by n, such that in the nth system we have the following rates:
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production rate = (λ+ d)n (2.7a)

demand rate = λn (2.7b)

goods abandonment rate = θ1 (2.7c)

customer abandonment rate = θ2. (2.7d)

Since we consider the unbalanced system, the limiting probability distribution will

have all of its mass on the side having the arrival stream with the higher rate. For

d > 0, it will be on the production side, and for d < 0, it will be on the customer side.

Since d = 0 corresponds to the balanced case with β = 0, it will not be considered

here. Consider an unbalanced system with α � µ. The overloaded system (very

large values of α and µ) will have the balance equation:

α = µ+ Avg. Queue Length · γ1

⇒ Avg. Queue Length = (α− µ)/γ1

(2.8)

From (2.7) it corresponds to Avg. Queue Length = dn/θ1 and from conventional

heavy traffic limit theory, it is known that the recurrent states of the limiting queue

length distribution will be within O(
√
n) of the centering constant, dn/θ1. We assume

d 6= 0.

Theorem 8.

lim
n→∞

P (Qn(∞) ≤ dn/θ1 + b
√
n) = Φ

(
b/
√

(λ+ d)/θ1

)
, d > 0 (2.9a)

lim
n→∞

P (Qn(∞) ≤ dn/θ2 + b
√
n) = Φ

(
b/
√
λ/θ2

)
, d < 0. (2.9b)

The above formula can be used to approximate an unbalanced system in the

following way:
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P (Q(∞) ≤ b) ∼= Φ
((
b− α−µ

γ1

)
/
√
α/γ1

)
d > 0

P (Q(∞) ≤ b) ∼= Φ
((
b− α−µ

γ2

)
/
√
µ/γ2

)
d < 0.

(2.10)

2.3 Approximate performance metrics and near-optimal design

We will now provide approximations for the fill rate, average inventory, and av-

erage backorder quantities to propose a closed-form cost rate function leading to

near-optimal design in the balanced case. Numerical results of the percentage error

between the optimal and approximate values will be given in the next section.

In the proof of Theorem 7 we have shown that P (Q(∞) ≤ 0) ∼= a, where a is

as in (2.3). Since this quantity is our proposed approximation for the probability of

being out of stock, (1−a) is the approximate fill rate. Without loss of generality, we

will assume λ = 1 for ease of notation. Moreover, from (2.5) and (2.6) for sufficiently

large n

Avg. Inv. = E[max(Q(∞), 0)] ∼= (1− a)
√
µ E[X+|X+ > 0]

= (1− a)
√
µ
[
β/θ1 + h

(
−β/
√
θ1

)√
1/θ1

] (2.11)

where X+ ∼ N (β/θ1, 1/θ1, 0,∞) as in (2.3), and similarly,

Avg. Backorders = E[max(−Q(∞), 0)] ∼= a
√
µ E[−X−|X− < 0]

= a
√
µ
[
−β/θ2 + h

(
β/
√
θ2

)√
1/θ2

]
.

(2.12)

We now suggest an approximation to the expected cost rate where ĥ, w, b, and

p represent the holding cost, wages, backorder cost, and abandonment penalty per

customer per unit time, respectively. Then, with parameters chosen to satisfy (2.5)
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and from (2.11) and (2.12), the cost rate C can be expressed and then approximated

as follows:

C(α) = ĥE[max(Q(∞), 0)] + wα + (b+ pγ2)E[max(−Q(∞), 0)]

[C(α)− wµ]/
√
µ ∼= Ĉ(β) = ĥ(1− a)

[
β/θ1 + h

(
−β/
√
θ1

)√
1/θ1

]
+ wβ

+(b+ pθ2)a
[
−β/θ2 + h

(
β/
√
θ2

)√
1/θ2

]
.

(2.13)

2.4 Numerical analysis

We will now present our numerical results on the effectiveness of our approxima-

tion. The first subsection will be devoted to the effectiveness of the queue length

approximation in (2.6). We will focus on the balanced system only.

2.4.1 Tests of the Distributional Results

Tables 2.1-2.4 represent systems of different scales. We first choose a value for the

customer arrival rate µ and show the maximum percentage error for different com-

binations of α, γ1, and γ2 choices of the approximate cdf to the actual one. The

choice of µ represents the “size” of the system since |α − µ| � µ. We expect our

approximation to work better for large values of µ. We observed the steady state

and approximate values of P (Q(∞) ≤ b) for b = −200,−199, . . . , 200 and reported

the maximum absolute difference between the cdf and approximate cdf values. Both

actual and approximate cdf values are very close to zero and one for the b values

lower than -200 and higher than 200, respectively, so we do not report on these triv-

ial cases. It can be seen that all percentage maximum absolute errors for the two

distributions are less than 5% when |α− µ| � µ and γ1, γ2 < 0.1µ.
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µ = 100 Abandonment Rates,(γ1, γ2)
α− µ (1,1) (1,3) (1,5) (1,10) (1,20) (1,50) (1,100)

-50 0.66 1.15 1.43 1.77 2.93 5.01 6.88
-40 0.66 1.13 1.35 1.78 2.78 4.20 5.52
-30 0.66 1.07 1.24 1.66 2.30 3.21 4.05
-20 0.66 0.97 1.09 1.25 1.53 2.01 2.50
-10 0.59 0.78 0.88 1.01 1.13 1.12 0.96
0 0.35 0.46 0.51 0.57 0.62 0.65 0.65
10 1.24 1.34 1.39 1.45 1.51 1.55 1.57
20 2.29 2.25 2.26 2.29 2.31 2.34 2.35
30 3.25 3.23 3.22 3.21 3.19 3.17 3.17
40 4.14 4.14 4.14 4.14 4.13 4.13 4.13
50 4.97 4.97 4.97 4.97 4.97 4.97 4.97

Table 2.1: Maximum Absolute Difference in Percentile between the Actual and
Approximate Cdf Values for µ = 100, α = 50, 60, . . . , 150, (γ1 = 1, γ2 =
1, 3, 5, 10, 20, 50, 100)

µ = 20 Abandonment Rates,(γ1, γ2)
α− µ (1,1) (1,3) (1,5)

-8 1.46 2.07 2.39
-6 1.41 1.81 2.04
-4 1.27 1.64 1.62
-2 0.91 1.13 1.34
0 0.73 0.96 1.06
2 1.51 1.78 1.89
4 2.34 2.59 2.70
6 3.35 3.37 3.46
8 4.25 4.13 4.18

Table 2.2: Maximum Absolute Difference in Percentile between the Actual and Ap-
proximate Cdf Values for µ = 20, α = 12, 14, . . . , 28, (γ1 = 1, γ2 = 1, 3, 5)
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µ = 5 Abandonment Rates,(γ1, γ2)
α− µ (1,1) (1,3)

-3 2.80 4.34
-2 2.46 3.12
-1 1.81 2.36
0 1.34 1.71
1 2.72 3.16
2 4.25 4.45
3 5.94 5.67

Table 2.3: Maximum Absolute Difference in Percentile between the Actual and Ap-
proximate Cdf Values for µ = 5, α = 2, 3, . . . , 8, (γ1 = 1, γ2 = 1, 3)

µ = 1 Abandonment Rates,(γ1, γ2)
α− µ (0.1,0.1) (0.1,0.3)
-0.3 2.35 2.93
-0.2 1.92 2.57
-0.1 1.31 1.98
0 1.48 1.86

0.1 2.00 2.31
0.2 2.73 2.62
0.3 3.62 3.21

Table 2.4: Maximum Absolute Difference in Percentile between the Actual and Ap-
proximate Cdf Values for µ = 1, α = 0.7, 0.8, . . . , 1.3, (γ1 = 0.1, γ2 = 0.1, 0.3)

2.4.2 Tests of the Approximation

Here we compare the difference between the optimal production rate α and the rec-

ommended rate via approximation. To do this we find the approximate α through

finding the β, optimizing (2.13), and calculating the α value it corresponds to via

(2.2). Moreover, we also give the percentage error between the actual and approx-

imate objective function values. As can be seen from the Tables 2.5-2.8, although

the optimal solution values differ in many cases for systems with small scale, the

approximate objective function values are very close to the optimal value. Note that

the approximation uses (2.5) for matching the real and approximate system param-
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eters. We find the optimal α and the corresponding objective function value. Then,

we find the β minimizing Ĉ(β) and use it to derive an estimate for optimal α, α̂, via

(2.5). The data in Tables 2.5-2.8 is in the format C(α̂)−C(α̂)
C(α̂)

/ α̂−α̂
α̂

.

We now demonstrate some characteristics observed on the choice of the cost

parameters in the objective function. Notice that for overloaded systems with the

customer arrival rate (µ) higher than the production rate (α), from the balance

equations, the average queue length will be ((µ − α)/γ2). Hence, for each increase

in the production rate you will pay the wage per unit time, w, and have one less

customer not being backlogged, which will save b/γ2. Moreover, you will have one

less customer not abandoning the queue and it will save the penalty cost per unit

time, p. Thus, it follows that if w > p + b/γ2, then there is incentive to produce

nothing: α = 0. Our numerical examples support this claim. We summarize the

observations in Table 2.9 (α̂ is the production rate provided by our heuristic and α∗

is the optimal α).

The p value that makes both sides of the inequality equal to each other is called

pcritical and we check for higher and lower values of p than pcritical, where a lower

p value means no incentive to produce according to the inequality above. Notice

that at some cases although the inequality is not satisfied, there is still no incentive

to produce. The reason is this inequality is derived from fluid limit equations for

overloaded systems, and it assumes no inventory held when customer arrival rate

is higher. However, we observed nonzero expected inventory in the aforementioned

cases.

2.5 Thresholds

Here we analyze an extension of our model in Section 2.2 by imposing a threshold on

the positive side of the queue, which corresponds to having limited space for inventory
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w = 1 w = 5
µ = 100 γ1, γ2 γ1, γ2

(ĥ, b, p) (1,1) (1,3) (1,10) (3,1) (3,3) (3,10)
( 1, 1, 5) 0.00

0.11
0.00
0.14

0.00
0.14

0.00
0.10

0.00
−0.69

0.01
−7.60

( 1, 1, 8) 0.00
−0.01

0.00
−0.07

0.00
−0.14

0.00
0.39

0.01
0.82

0.02
1.51

( 1, 3, 5) 0.00
0.03

0.00
0.08

0.00
0.12

0.00
0.37

0.00
0.35

0.00
−1.74

( 1, 3, 8) 0.00
−0.08

0.00
−0.10

0.00
−0.16

0.01
0.40

0.01
0.81

0.02
1.49

( 1, 10, 5) 0.01
−0.19

0.00
−0.07

0.00
0.04

0.00
0.36

0.01
0.82

0.00
1.13

( 1, 10, 8) 0.01
−0.26

0.01
−0.21

0.00
−0.21

0.00
0.29

0.01
0.72

0.02
1.39

( 3, 1, 5) 0.01
0.24

0.01
0.36

0.02
0.47

0.00
0.07

0.00
−0.85

0.01
−8.49

( 3, 1, 8) 0.00
0.16

0.01
0.20

0.01
0.22

0.00
0.39

0.01
0.81

0.02
1.55

( 3, 3, 5) 0.01
0.18

0.01
0.32

0.02
0.45

0.00
0.34

0.00
0.27

0.00
−2.20

( 3, 3, 8) 0.00
0.11

0.00
0.17

0.00
0.20

0.01
0.41

0.01
0.81

0.03
1.54

( 3, 10, 5) 0.00
0.03

0.01
0.20

0.01
0.38

0.01
0.37

0.01
0.81

0.00
0.98

( 3, 10, 8) 0.00
−0.03

0.00
0.07

0.00
0.15

0.00
0.32

0.01
0.76

0.03
1.46

Table 2.5: Percentage Error between the Optimal and Approximate Rates (denu-
merator) and Objective Function (numerator), µ = 100

in a make-to-stock system. Since thresholds provide stability, such systems can

also occupy nonperishing inventory. An illustration similar to Figure 2.1 is shown

in Figure 2.2. Let the threshold value be T̂ and assume the same notation as in

Section 2.2. We explore three different models all with thresholds:

(1) with perishing inventory;

w = 1 w = 5
µ = 20 γ1, γ2 γ1, γ2

(ĥ, b, p) (10,1) (10,3) (10,10) (3,1) (3,3) (3,10)
( 10, 1, 5) 0.12

2.49
0.28
5.09

0.56
9.06

0.00
−0.60

0.07
−14.79

−2.19
−100.00

( 10, 1, 8) 0.07
1.82

0.11
2.89

0.11
3.41

0.03
1.78

0.09
4.25

0.26
10.53

( 10, 3, 5) 0.08
2.06

0.24
4.59

0.51
8.59

0.02
1.51

0.00
−1.04

0.25
−100.00

( 10, 3, 8) 0.04
1.40

0.08
2.47

0.10
3.14

0.06
2.06

0.11
4.45

0.28
10.42

( 10, 10, 5) 0.01
0.58

0.11
2.89

0.38
7.01

0.07
2.05

0.09
4.25

0.00
1.91

( 10, 10, 8) 0.00
−0.01

0.02
1.13

0.05
2.21

0.07
1.91

0.16
4.43

0.33
9.94

Table 2.6: Percentage Error between the Optimal and Approximate Rates (denu-
merator) and Objective Function (numerator), µ = 20
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w = 1 w = 5
µ = 5 γ1, γ2 γ1, γ2

(ĥ, b, p) (3,1) (3,3) (3,10) (1,1) (1,3) (1,10)
( 1, 1, 5) 0.12

3.47
0.21
5.48

0.34
7.96

0.00
1.63

0.14
−100.00

−5.46
−100.00

( 1, 1, 8) 0.00
0.32

0.00
−0.65

0.03
−1.70

0.18
6.34

0.40
12.83

0.89
25.25

( 1, 3, 5) 0.02
1.23

0.11
3.80

0.28
6.90

0.14
6.22

0.04
10.42

−10.02
−100.00

( 1, 3, 8) 0.02
−1.15

0.03
−1.57

0.04
−2.15

0.20
5.49

0.42
11.81

0.90
23.78

( 1, 10, 5) 0.19
−3.60

0.00
−0.65

0.11
4.03

0.15
4.07

0.40
12.83

0.32
82.49

( 1, 10, 8) 0.40
−5.02

0.22
−4.24

0.12
−3.47

0.11
3.11

0.39
8.94

0.88
20.05

Table 2.7: Percentage Error between the Optimal and Approximate Rates (denu-
merator) and Objective Function (numerator), µ = 5

w = 1
µ = 1 γ1, γ2

(ĥ, b, p) (1,1) (1,3) (1,10)
( 3, 1, 5) 3.04

35.71
7.72

106.32
15.61
371.85

( 3, 1, 8) 1.90
22.31

4.03
43.30

7.37
78.65

( 3, 3, 5) 2.25
26.07

6.69
80.85

14.76
298.18

( 3, 3, 8) 1.31
16.87

3.49
37.54

7.03
73.60

( 3, 10, 5) 0.54
9.63

4.03
43.30

12.26
176.73

( 3, 10, 8) 0.22
5.39

2.05
24.79

5.98
61.07

Table 2.8: Percentage Error between the Optimal and Approximate Rates (denu-
merator) and Objective Function (numerator), µ = 1

(2) with nonperishing inventory, α > µ, |α− µ| � µ ;

(3) with nonperishing inventory, α < µ, |α− µ| � µ.

Then, the steady state distribution for model (1) is the same as (2.1) but the

threshold T̂ will be an upper bound for the positive values of the queue length. Thus,

the first expression in (2.1) will be valid for only 0 < k < T̂ and the normalizing

constant p0 will change accordingly. The steady state distribution for models (2) and

(3) is as shown below:
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µ, γ1, γ2, h, b, w pcritical Tests α̂ α∗
(100, 1, 3, 1, 1, 1) 0.667 plow 0.567 0 0

phigh 0.767 76.62 76.99
(100, 1, 10, 1, 3, 1) 0.7 plow 0.6 0 0

phigh 0.8 69.34 69.75
(100, 1, 3, 1, 1, 5) 4.667 plow 4.567 0 0

phigh 4.767 68.52 69.68
(100, 3, 10, 1, 1, 5) 4.9 plow 4.8 0 0

phigh 5 45.09 48.8
(100, 10, 10, 1, 10, 5) 4 plow 3.9 0 0

phigh 4.1 34.54 40.27
(20, 1, 10, 1, 1, 1) 0.9 plow 0.8 0 0

phigh 1 6.29 6.85
(20, 3, 10, 3, 1, 1) 0.9 plow 0.8 0 0

phigh 1 1.37 3.14
(20, 10, 10, 3, 3, 5) 4.7 plow 4.6 0 0

phigh 4.8 0 0
pother 5.3 2.01 2.97

(5, 1, 10, 1, 1, 1) 0.9 plow 0.8 0 0
phigh 1 0 0
pother 1.5 2.96 2.11

Table 2.9: Optimal and Approximate Production Rates w.r.t Incentive to Produce

P (Q(∞) = k) ≡ pk =


p0 (α/µ)k 0 < k ≤ T̂

p0 (µ)k
−
/
k−∏
i=1

(α + iγ2) k < 0.

(2.14)

Theorem 9. Model 1. With a threshold T n = T
√
n on the inventory of goods and

perishable inventory (i. e. θ1 > 0), let

X− ∼ N (β/θ2, λ/θ2,−∞, 0)

X+ ∼ N (β/θ1, λ/θ1, 0, T )

a =

(
1 +

√
θ2/θ1

Φ
(
T
√
θ1/λ−β/

√
λθ1
)
−Φ(−β/

√
λθ1)

φ(−β/
√
λθ1)

· h
(
β/
√
λθ2

))−1

.

(2.15)
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and Product Leave 

the System

Figure 2.2: Markovian Double-sided Queue with Inventory Threshold

For the sequence of systems indexed by n with steady state queue length Qn(∞), the

sequence of out-of-stock probabilities converges:

lim
n→∞

P (Qn(∞) ≤ 0) = a, as n→∞.

Moreover, the sequence of queue length distributions converge. That is, for any

b ∈ R we have

lim
n→∞

P (Qn(∞) ≤ b
√
n) = a · P (X− ≤ b) + (1− a) · P (X+ ≤ b) . (2.16)

Theorem 10. Model 2. With a threshold T n = T
√
n on the inventory of goods

and nonperishing inventory (i. e. θ1 = 0), and with β > 0, let

X− ∼ N (β/θ2, λ/θ2,−∞, 0)

(T −X+) ∼ Exponential (−λ/β, λ2/β2, 0, T )

a =
[
1 +

√
λθ2
β

[exp {βT/λ} − 1]h
(

β√
λθ2

)]−1

.

(2.17)
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For the sequence of systems indexed by n with steady state queue length Qn(∞), the

sequence of out-of-stock probabilities converges:

lim
n→∞

P (Qn(∞) ≤ 0) = a, as n→∞.

Moreover, the sequence of queue length distributions converge. That is, for any

b ∈ R we have

lim
n→∞

P (Qn(∞) ≤ b
√
n)

= a · P (X− ≤ b) + (1− a) · P (X+ ≤ b) .

(2.18)

Theorem 11. Model 3. With a threshold T n = T
√
n on the inventory of goods

and nonperishing inventory (i. e. θ1 = 0), and with β < 0, let

X− ∼ N (β/θ2, λ/θ2,−∞, 0)

X+ ∼ Exponential (−λ/β, λ2/β2, 0, T )

a =
[
1−

√
λθ2
β

[1− exp {βT/λ}]h
(

β√
λθ2

)]−1

.

(2.19)

For the sequence of systems indexed by n with steady state queue length Qn(∞), the

sequence of out-of-stock probabilities converges:

lim
n→∞

P (Qn(∞) ≤ 0) = a, as n→∞.

Moreover, the sequence of queue length distributions converge. That is, for any

b ∈ R we have

lim
n→∞

P (Qn(∞) ≤ b
√
n) = a · P (X− ≤ b) + (1− a) · P (X+ ≤ b) . (2.20)
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2.6 General distributions

In this section we consider our basic model without thresholds as in Figure 2.1. Let

the arrival streams for the products and customers be generalized renewal processes

but with arbitrary finite variances. Further suppose that abandonment times are

generally distributed. We conjecture that the queue length distribution is a nor-

malized weighted average of two truncated normal random variables, just as in the

Markovian case.

Let 1/α and 1/µ be the product and customer interarrival time means; σ2
1 and

σ2
2 be the product and customer interarrival time variances, f1 and f2 be the density

functions of time until product perishing and customer abandonment, respectively.

Then, with

µP ≡ α−µ√
µf1(0)

µC ≡ α−µ√
µf2(0)

σ2
P ≡ [σ2

1α
3 + σ2

2µ
3] / (2µf1(0))

σ2
C ≡ [σ2

1α
3 + σ2

2µ
3] / (2µf2(0)) ,

(2.21)

we conjecture that (2.6) is still valid where

X− ∼ N (µC , σ
2
C ,−∞, 0)

X+ ∼ N (µP , σ
2
P , 0,∞)

a ≡
(

1 + σP
σC
h
(
µC
σC

)
/h
(
−µP
σP

))−1

.

(2.22)

We have tested our conjecture for eight different systems (ten simulation runs for

each), summarized in Table 2.10. Let λG represent the reciprocal of the mean for

the interarrival time. The arrival streams are combinations of distributions having
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Production Customer Demand
Dist. Type C. of Var. Dist. Type C. of Var. Max Dif. in Perc.

Exponential(96) 1 Erl.(2,200) 0.707 1.4622 ± 0.067
Exponential(96) 1 Erl.(5,500) 0.447 1.4605 ± 0.047

Hyp.(0.8,160:0.2,36.923) 1.51 Exp.(100) 1 1.7001 ± 0.062
Hyp.(0.8,500:0.2,22.684) 2.495 Exp.(100) 1 2.1562 ± 0.032
Hyp.(0.8,160:0.2,36.923) 1.51 Erl.(2,200) 0.707 1.6445 ± 0.059
Hyp.(0.8,160:0.2,36.923) 1.51 Erl.(5,500) 0.447 1.5596 ± 0.048
Hyp.(0.8,500:0.2,22.684) 2.495 Erl.(2,200) 0.707 2.17 ± 0.026
Hyp.(0.8,500:0.2,22.684) 2.495 Erl.(5,500) 0.447 2.2042 ± 0.034

Table 2.10: Maximum Absolute Difference in Percentile between the Simulated and
Approximate Cdf Values from Conjecture for Systems with General Distributions

forms Exponential(λG),Erlang (k, λG), and Hyperexponential(p1, λ
1
G, p2, λ

2
G).

Note that besides the systems with coefficient of variation equal to 2.495 for

production interarrival time, when arrival stream of one side is held at the same

distribution, as the coefficient of variation for the other side increases, so does the

maximum percentage error between the queue length distribution and our approx-

imation. For the production systems with high coefficient of variation (2.495), we

believe having more regular customer arrival times emphasizes the irregularity of pro-

duction; hence, our conjecture has a higher percentage error as coefficient of variation

for customer arrivals decreases.

2.7 Conclusions

In this essay, we studied a make-to-stock system with perishable inventory and im-

patient customers as a two-sided queue with abandonment from both sides. This

model describes many consumer goods, where not only spoilage but also theft and

damage can occur. Under certain assumptions on the magnitude of the abandon-

ment rates and the scaled difference between the two arrival rates (products and

customers), we suggested approximations to the system dynamics such as average

61



inventory, backorders, and fill rate via conventional heavy traffic limit theory.

We found that the limiting queue length is well approximated by a random vari-

able best described as a weighted average of two complementary truncated nor-

mal random variables, where by “complementary” it is meant that they have non-

overlapping support. We extended our results to analyze make-to-stock queues

with/without perishability and limiting inventory space by inducing thresholds on

the production (positive) side of the queue. Finally, we developed conjectures for the

queue-length distribution for a non-Markovian system with general arrival streams

and abandonment distributions. We took production rate as the decision variable

to suggest near-optimal solutions. It can be interesting to explore different perfor-

mance metrics to be used for other applications than make-to-stock queues. More-

over, obtaining structural results on the cost approximations that leads to closed

form expressions for near-optimal solutions can give more insights.
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Appendix A

Proofs of Results in Chapter 1

A.1 Proof of Theorem 1

A.1.1 Preliminary Results - Fluid Limit Theorem

The stochastic process {Nn(t), t ≥ 0} tracks, as a function of time, the number of

broken units in the system, we consider the family of fluid scaled processes {N̄n, n ≥

1}, where N̄n = {N̄n(t), t ≥ 0}

N̄n(t) ≡ Nn(t)
n
, t ≥ 0, (A.1)

for each n ≥ 0. We denote the convergence in distribution for sequences of stochastic

processes and random variables by ⇒, and the term “fluid” is used because the

limiting process of (A.1) above is continuous.

The following theorem shows that N̄n converges to a deterministic, continuous,

monotone process b̄ = {b̄(t), t ≥ 0} under fluid scaling. The limiting process b̄

can be used to approximate the transient, fluid-scaled broken-units process, and the

limiting value of this process, b = lim
t→∞

b̄(t), can be used to approximate the steady

state average number of broken units.
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Theorem 12. Let N̄n(t) be the scaled number of broken units in the system, defined

in (A.1). If N̄n(0)⇒ b̄(0), where b̄(0) is a deterministic number, then

N̄n ⇒ b̄, t ≥ 0 as n→∞, (A.2)

where b̄ obeys the ordinary differential equation (ODE)

db̄

dt
(t) = λ(1− [b̄(t)− m̄]+)− µ(b̄(t) ∧ s̄), (A.3)

and has the steady state values that depend on the decision pair (s̄, m̄) (note that

repairmen regime is given before the spare one, and ρ ≡ λ
µ

):

b ≡ lim
t→∞

b̄(t)

=



1 + m̄− s̄/ρ, ED|ED, s̄ < ρ, m̄ > s̄+ s̄/ρ− 1

s̄ = 1 + m̄− s̄/ρ, QED|ED, s̄ < ρ, m̄ = s̄+ s̄/ρ− 1

ρ(1+m̄)
1+ρ

, QD|ED, s̄ > ρ(1+m̄)
1+ρ

, m̄ < ρ

b̄(0), ED|QED, s̄ < b̄(0) = m̄, s̄ = ρ, m̄ > ρ

ρ, QED|QED, s̄ = ρ, m̄ = ρ

m̄, QD|QED, s̄ > ρ, m̄ = ρ

b̄(0), ED|QD, s̄ < b̄(0) < m̄, s̄ = ρ, m̄ > ρ

s̄, QED|QD, s̄ = b̄(0) < m̄, s̄ = ρ, m̄ > ρ

ρ, QD|QD, s̄ > ρ, m̄ > ρ.

(A.4)

Remark 6. Notice that ED|QED, ED|QD, and QED|QD capacity preferences imply

to have more machines circulating the system than the repair capacity (and they are

all placed on the same region in Figure 1.2 (s̄ = ρ, m̄ > ρ)). We emphasize that

these cases are intuitively undesirable and indeed degenerate because the process will

be stuck at the initial point b̄(0).
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Proof of Theorem 12

We follow the framework of Browne and Whitt in [4] which summarizes a use-

ful theorem of Stone in [36]. The fluid scaled process N̄n has the state space

{0, 1/n, 2/n, . . . , (n−1)/n, 1, (n+1)/n, . . . , (n+mn)/n} and drift and diffusion func-

tions

ῡn(x) = [λn(bnxc)− µn(bnxc)] /n = [λ(n− [bnxc −mn]+)− µ(bnxc ∧ sn)] /n

(A.5)

σ̄2
n(x) = [λn(bnxc) + µn(bnxc)] /n2 = [λ(n− [bnxc −mn]+) + µ(bnxc ∧ sn)] /n2,

(A.6)

respectively, where byc is the largest integer no greater than y. According to the

Stone’s result, when “appropriate” limits for the sequence of scaled (and centered)

drift and diffusion functions are provided, one can obtain a diffusion limit for the

scaled (and centered) sequence of processes, the parameters of which are the limiting

drift and diffusion functions. Now we take the limit of the sequences in (A.5) and

(A.6), and by Stone’s result, we obtain the infinitesimal mean and variance of our

limiting diffusion:

ῡ(x) ≡ lim
n→∞

ῡn(x) = λ(1− [x− m̄]+)− µ(x ∧ s̄) (A.7)

and

σ̄2(x) ≡ lim
n→∞

σ̄2
n(x) = 0.

Notice, the limiting infinitesimal variance is zero, implying that the limiting diffusion

is degenerate. Moreover, given the deterministic initial point, the path of b̄ is fully

determined. The drift of the limiting process, (A.7), coincides with the ODE in

(A.3).
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1. s̄ < m̄ 2. s̄ = m̄ 3. m̄ < s̄
1.1 b̄(0) < s̄ < m̄ 2.1 b̄(0) < s̄ = m̄ 3.1 b̄(0) < m̄ < s̄
1.2 b̄(0) = s̄ < m̄ 2.2 b̄(0) = s̄ = m̄ 3.2 b̄(0) = m̄ < s̄
1.3 s̄ < b̄(0) < m̄ 2.3 s̄ = m̄ < b̄(0) 3.3 m̄ < b̄(0) < s̄
1.4 s̄ < b̄(0) = m̄ 3.4 m̄ < b̄(0) = s̄
1.5 s̄ < m̄ < b̄(0) 3.5 m̄ < s̄ < b̄(0)

Table A.1: Possible Cases for the Comparison of the Initial Point of the Fluid Process
with Capacity Parameters

Drift

Trajectory 1 db̄
dt

(t) = λ− µb̄(t)

Trajectory 2 db̄
dt

(t) = λ− µs̄
Trajectory 3 db̄

dt
(t) = λ(1− b̄(t) + m̄)− µs̄

Trajectory 4 db̄
dt

(t) = λ(1− b̄(t) + m̄)− µb̄(t)

Solution
Trajectory 1 b̄(t) = ρ+ (b̄(0)− ρ)e−µt

Trajectory 2 b̄(t) = (λ− µs̄)t+ b̄(0)
Trajectory 3 b̄(t) = 1 + m̄− s̄/ρ+

(
b̄(0)− (1 + m̄− s̄/ρ)

)
e−λt

Trajectory 4 b̄(t) = ρ(1+m̄)
1+ρ

+
(
b̄(0)− ρ(1+m̄)

1+ρ

)
e−(λ+µ)t

Table A.2: Possible Drift and Solutions for the Limiting Fluid Process based on the
Starting Point

Table A.1 represents all possible cases of values of b̄(0) relative to s̄ and m̄. These

comparisons dictate the behavior of b̄(t) after time 0. The comparisons in Table A.1

above might lead to four possible starting solutions for the ODE in (A.3), which are

listed in Table A.2 for ease of reference:

Case 1.1: Note that in order to obtain an explicit expression of (A.3) we have to

compare b̄(0) with s̄ and m̄. Each case number refers to the elements of Table A.1

and hence is matched with one of the trajectories in Table A.2. We have Trajectory

1 here. Since lim
t→∞

b̄(t) = ρ, if b̄(0) < ρ, b̄(t) will increase towards ρ; else if b̄(0) = ρ,

b̄(t) will stay at ρ, otherwise b̄(t) will decrease towards ρ. Having b̄(0) < s̄ < m̄ in

this case calls for a comparison between ρ and s̄.
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Case 1.1.1, ρ < s̄: The formula for the drift will stay the same until the equilibrium

is reached because the monotone drift will not force the process to reach beyond s̄;

and hence the solution will stay the same. Thus, b = lim
t→∞

b̄(t) = ρ. Note that

we have b < s̄ < m̄, so this case represents a commodious capacity level choice

where both the limiting scaled repairmen and spare machines resources outweigh the

limiting scaled value of broken machines in need of them. Hence, the capacity level

choices ρ < s̄ < m̄ represents the QD|QD approach.

Case 1.1.2, ρ ≥ s̄: Since the b̄(t) will increase towards s̄ in this case, there will be a

time t0 such that b̄(t0) = s̄ and the analysis to obtain lim
t→∞

b̄(t) will follow from Case

1.2 by substituting b̄(t0) with b̄(0) and hence treating time t0 as the new starting

point. This type of connection between the cases will be denoted by −→; thus, Case

1.1.2 −→ Case 1.2.

Case 1.2: We have Trajectory 2 here, leading to the following subcases.

Case 1.2.1, ρ < s̄: Since the drift is negative, the b̄(t) process will decrease from

the starting point s̄; hence Case 1.2.1 −→ Case 1.1.

Case 1.2.2, ρ = s̄: With 0 drift we have b = b̄(0) = s̄ = ρ < m̄. Using similar

reasoning as in Case 1.1.1, we conclude QED|QD approach is taken here.

Case 1.2.3, ρ > s̄: The drift is positive, so Case 1.2.3 −→ Case 1.3.

The other cases can be analyzed similarly, which is summarized in Table A.4. When

capacity level approaches (where possible to finalize) and the regions leading to them

(listed as subcases) are matched, one can draw Figure 1.2. �

A.1.2 Preliminary Results - Lemma 1

We will denote ex with exp{x}, and loge(x) with ln(x) below.

Lemma 1. Let a1, a2, b1
n, and b2

n be constants and b1
n and b2

n depend on n. For any

positive real number ε, a function f(n) is said to be o(n−ε) if nεf(n)→ 0 as n→∞.
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Cases Trj. Subcases Fluid Limit Cap.
1.1 1 1.1.1 ρ < s̄ b = ρ QD|QD

1.1.2 ρ ≥ s̄ −→ Case 1.2

1.2 2 1.2.1 ρ < s̄ −→ Case 1.1
1.2.2 ρ = s̄ b = b̄(0) = s̄ = ρ < m̄ QED|QD
1.2.3 ρ > s̄ −→ Case 1.3

1.3 2 1.3.1 ρ < s̄ −→ Case 1.2
1.3.2 ρ = s̄ s̄ < b = b̄(0) < m̄ ED|QD
1.3.3 ρ > s̄ −→ Case 1.4

1.4 2 1.4.1 ρ < s̄ −→ Case 1.3
1.4.2 ρ = s̄ s̄ < b = b̄(0) = m̄ ED|QED
1.4.3 ρ > s̄ −→ Case 1.5

1.5 3 1.5.1 ρ < s̄ −→ Case 1.4
1.5.2 ρ = s̄ −→ Case 1.4
1.5.3 ρ > s̄ s̄ < m̄ < b = 1 + m̄− s̄/ρ ED|ED

2.1 1 2.1.1 ρ < s̄ b = ρ QD|QD
2.1.2 ρ = s̄ −→ Case 2.2
2.1.3 ρ > s̄ −→ Case 2.2

2.2 2 2.2.1 ρ < s̄ −→ Case 2.1
2.2.2 ρ = s̄ b = b̄(0) = s̄ = m̄ = ρ QED|QED
2.2.3 ρ > s̄ −→ Case 2.3

2.3 3 2.3.1 ρ < s̄ −→ Case 2.2
2.3.2 ρ = s̄ −→ Case 2.2
2.3.3 ρ > s̄ m̄ = s̄ < b = 1 + m̄− s̄/ρ ED|ED

3.1 1 3.1.1 ρ < m̄ b = ρ QD|QD
3.1.2 ρ = m̄ −→ Case 3.2
3.1.3 ρ > m̄ −→ Case 3.2

3.2 1 3.2.1 ρ < m̄ −→ Case 3.1
3.2.2 ρ = m̄ b = b̄(0) = m̄ = ρ < s̄ QD|QED
3.2.3 ρ > m̄ −→ Case 3.3

3.3 4 3.3.1 (ρ < m̄)⇒ (ρ(1+m̄)
1+ρ

< m̄); −→ Case 3.2

3.3.2 (ρ = m̄)⇒ (ρ(1+m̄)
1+ρ

= m̄); −→ Case 3.2

3.3.3 m̄ < ρ(1+m̄)
1+ρ

< ρ, s̄ b = ρ(1+m̄)
1+ρ

QD|ED

3.3.4 m̄ < s̄ = ρ(1+m̄)
1+ρ

< ρ −→ Case 3.4

3.3.5 m̄, s̄ < ρ(1+m̄)
1+ρ

< ρ −→ Case 3.4

Table A.3: Fluid Limit Analysis, cases taken from Table A.1
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Cases Trj. Subcases Fluid Limit Cap.
3.4 3 3.4.1 ρ < s̄ −→ Case 3.3

3.4.2 ρ = s̄ −→ Case 3.3
3.4.3 m̄ < 1 + m̄− s̄/ρ < s̄ < ρ −→ Case 3.3
3.4.4 m̄ < 1 + m̄− s̄/ρ = s̄ < ρ b = 1 + m̄− s̄/ρ QED|ED

3.4.5 s̄ < 1 + m̄− s̄/ρ, ρ −→ Case 3.5

3.5 3 3.5.1 ρ < s̄ −→ Case 3.4
3.5.2 ρ = s̄ −→ Case 3.4

3.5.3 m̄ < 1 + m̄− s̄/ρ < s̄ < ρ −→ Case 3.4
3.5.4 m̄ < 1 + m̄− s̄/ρ = s̄ < ρ −→ Case 3.4

3.5.5 s̄ < 1 + m̄− s̄/ρ, ρ b = 1 + m̄− s̄/ρ ED|ED
Table A.4: Continuation of Table A.4
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Proof of Lemma 1
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Using Taylor’s approximation for f(y) = ln(y) at the point y0 = 1 gives ln(y) =

(y − 1)− (y−1)2

2
+ (y−1)3

3
− (y−1)4

4
+ . . ., and hence
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we have
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A.1.3 Preliminary Results - Expressing Mean Delay by Conditioning on the Broken
Machines Process

Since the system state we follow is the broken machines process we would like to ex-

press E[Drpl
n (sn,mn)] in terms of this process. Therefore, we compute E[Drpl

n (sn,mn)]

by conditioning on {Nn(t), t ≥ 0} at the time of the breakdown. Let τb denote the

time of the breakdown and note that we assume the system is in steady state. Then,

E[Drpl
n (sn,mn)] =

n+mn∑
k=0

E[Drpl
n (sn,mn) | N st

n (τb) = k]P (N st
n (τb) = k). (A.14)

Notice that since we have a closed network, we cannot have P (N st
n (τb) = k) =

P (N st
n = k). Instead, let {Bn(t), t ≥ 0} be the counting process for breakdowns.

Then, for all k = 0, . . . , n+mn,

P (N st
n (τb) = k) = lim

t→∞

t∫
0

1(Nst
n (s)=k)dBn(s)

Bn(t)
(A.15)

{Bn(t), t ≥ 0} is a Poisson process with arrival (breakdown) rate proportional

to the number of units in use. Let {M̂n, n ≥ 1} and {M̃n, n ≥ 1} be two indepen-
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dent rate 1 Poisson processes, it follows that we have the following distributional

equivalences (denoted by =d).

t∫
0

1(Nst
n (s)=k)dBn(s) =d M̃n

(
λ

t∫
0

(n− [N st
n (s)−mn]+)1(Nst

n (s)=k)ds

)
(A.16)

and

Bn(t) =d M̂n

(
λ

t∫
0

(n− [N st
n (s)−mn]+)ds

)
. (A.17)

All states in {Nn(t), t ≥ 0} are positive recurrent with steady state probabilities

shown in (1.1). Thus, every state in {0, 1, 2, . . . n+mn− 1, n+mn} can be observed

infinitely often, and therefore the birth(breakdown) rate would be positive infinitely

often. It follows that the integrals in (A.16) and (A.17) will go to infinity as t →

∞. Using this with M̃n(t)
t
→ 1

(
M̂n(t)
t
→ 1

)
almost surely as t → ∞ for a rate

1 Poisson process from elementary Markov chain results (see, e.g. Resnick(1998),

Section 7.5.1), we can express (A.15) as

P (N st
n (τb) = k) = lim

t→∞

M̃n

(
λ
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0
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n (s)−mn]+)1
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ds

)
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t∫
0

(n−[Nst
n (s)−mn]+)ds

)
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)
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)
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E[(n−[Nst
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(A.18)
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where pn,k can be found in (1.1). �

A.1.4 Proof of Formulas for lim
n→∞

E[Drpl
n (sn,mn)]

Proof of Formulas for lim
n→∞

E[Drpl
n (sn,mn)] for ED|ED

Proof of Formulas for lim
n→∞

E[Drpl
n (sn,mn)] for ED|ED, mn ≥ sn First, we give some

preliminary results and state some properties used. We recommend checking them

as they are referred to in the proof.

Preliminaries-ED|ED-1

a.

an ≡ n (nρ)k

k!
, bn ≡ n nk

sn!
ssn−kn ρk, cn ≡ (n+mn − k)n

mn

sn!
n!

(n+mn−k)!
ssn−kn ρk.

(A.19)

b. Let ε be as in Lemma 1 and bxc and dxe represent the biggest integer smaller

than x and the smallest integer larger than x, respectively. Then, 1
2
< 1 − ε < 1.

We know that s̄ < ρ for ED|ED from Theorem 12. Thus, for sufficiently large n, we

have

mn ≤ bn (1 + m̄− s̄/ρ)− n1−εc − 1 ≤ dn (1 + m̄− s̄/ρ) + n1−εe+ 1 ≤ n+mn

(A.20)

c.

73



An ≡

[
bn(1+m̄−s̄/ρ)−n1−εc−1∑

k=mn

((k + 1−mn)/µsn) cn

]
/

[
sn−1∑
k=0

an +
mn−1∑
k=sn

bn +
n+mn∑
k=mn

cn

]
,

Bn ≡
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((k + 1−mn)/µsn) cn

]
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k=sn
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n+mn∑
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cn
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]
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k=0

an +
mn−1∑
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n+mn∑
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cn

]
.

(A.21)

d.

A′n ≡

[
bn(1+m̄−s̄/ρ)−n1−εc−1∑

k=mn

cn

]
/

[
sn−1∑
k=0

an +
mn−1∑
k=sn

bn +
n+mn∑
k=mn

cn

]
,

B′n ≡

[
dn(1+m̄−s̄/ρ)+n1−εe∑

k=bn(1+m̄−s̄/ρ)−n1−εc
cn

]
/

[
sn−1∑
k=0

an +
mn−1∑
k=sn

bn +
n+mn∑
k=mn

cn

]
,

C ′n ≡

[
n+mn−1∑

k=dn(1+m̄−s̄/ρ)+n1−εe+1

cn

]
/

[
sn−1∑
k=0

an +
mn−1∑
k=sn

bn +
n+mn∑
k=mn

cn

]
.

(A.22)

e.

Let Xn ∼ Poisson( sn
ρ

) and lb and ub denote the lower and upper bound, respec-

tively. Then, from a) above
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ub∑
k=lb

cn =
ub∑
k=lb

(n+mn − k)n
mn

sn!
n!

(n+mn−k)!
ssn−kn ρk

=
ub∑
k=lb

nmn

sn!
n!

(n+mn−k−1)!
ssn−kn ρk

(
sn
ρ

)n+mn−1 (
ρ
sn

)n+mn−1

exp{− sn
ρ
} exp{ sn

ρ
}

=
(
ρ
sn

)n+mn−1
nmn

sn!
n! ssnn exp{ sn

ρ
}

ub∑
k=lb

1
(n+mn−1−k)!

(
sn
ρ

)n+mn−1−k
exp{− sn

ρ
}

=
(
ρ
sn

)n+mn−1
nmn

sn!
n! ssnn exp{ sn

ρ
}

·P (n+mn − 1− ub ≤ Xn ≤ n+mn − 1− lb)

(A.23)

Note that (referring to a) above) if ub = n+mn, then
n+mn∑
k=lb

cn =
n+mn−1∑
k=lb

cn.

f. From (1.2) and s̄ < ρ for ED|ED (Theorem 12),

i. lim
n→∞

(n+mn − 1− bn (1 + m̄− s̄/ρ)− n1−εc+ 1− sn/ρ) .
(√

sn/ρ
)−1

= lim
n→∞

(n+mn − 1− n (1 + m̄− s̄/ρ) + n1−ε + 1− sn/ρ) .
(√

sn/ρ
)−1

= lim
n→∞

(m̂n

√
n+ n1−ε − ŝn

√
n/ρ) .

(√
(ns̄+ ŝn

√
n)/ρ

)−1

→ +∞,

(A.24)

ii. (n− 1− sn/ρ) .
(√

sn/ρ
)−1

= (n (1− s̄/ρ)− 1− ŝn
√
n/ρ) .

(√
(ns̄+ ŝn

√
n)/ρ

)−1

→ +∞,
(A.25)
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iii. lim
n→∞

(bn (1 + m̄− s̄/ρ)− n1−εc+ 1−mn) /µsn

= lim
n→∞
d(n (1 + m̄+ s̄/ρ) + n1−εe+ 1−mn) /µsn

= (1− s̄/ρ)/(µs̄) = 1/µs̄− 1/λ.

(A.26)

Main Part of the Proof

Let {Wn(t), t ≥ 0} be the stochastic process representing the amount of time the

system will provide a backup unit(spare machine) if a breakdown occurs at time t,

even if it is impossible for a breakdown to occur (i.e. when Nn(t) = n + mn). We

denote the steady state of this process by W st
n and emphasize its dependence on the

capacity levels by referring to it as W st
n (sn,mn). Let E[W st

n (sn,mn)|N st
n (τb) = k]

(see Section A.1.3) be the conditional expected delay for backup when a breakdown

occurs at the system state k (k does not include the broken unit itself). Then ,

E[Drpl
n (sn,mn)]

=

( ∑
k≥mn

E[W st
n (sn,mn)|N st

n (τb) = k](n− [k −mn]+)pstn,k

)

/

(∑
k

(n− [k −mn]+)pstn,k

)
.

(A.27)

Since mn ≥ sn, when a unit breaks down and a replacement cannot be provided

instantly (i.e. N st
n ≥ mn ≥ sn), it implies all repairmen are busy at the time of the

breakdown. Thus, even if we assume no breakdowns occur until the replacement

comes (which is N st
n + 1 − mn repair completions later), the number of working

repairmen will fall down to mn at most. Therefore, all repairmen will stay busy

during the delay. Hence, from (1.1), (A.27), Preliminaries-ED|ED-1 a)-c), and the

just explained implication, for sufficiently large n we can write
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E[Drpl
n (sn,mn)] =

(
n+mn∑
k=mn

((k + 1−mn)/µsn) cn

)
/

(
sn−1∑
k=0

an +
mn−1∑
k=sn

bn +
n+mn∑
k=mn

cn

)
= An +Bn + Cn.

(A.28)

Let Xn, Yn ∼ Poisson
(
sn
ρ

)
and note that 0 < ε < 1

2
as in Lemma 1. From

Preliminaries-ED|ED-1 c)-e),

An ≤ ((n+mn −mn)/µsn)A′n,

A′n =
(
(ρ/sn)n+mn−1 nmn(sn!)−1 n! ssnn exp{sn/ρ}

)
.P (n+mn − 1− bn (1 + m̄− s̄/ρ)− n1−εc+ 1 ≤ Xn ≤ n− 1)

.

[
sn−1∑
k=0

n (nρ)k

k!
+

mn−1∑
k=sn

n nk

sn!
ssn−kn ρk + (ρ/sn)n+mn−1 nmn(sn!)−1

·n! ssnn exp{sn/ρ}P (Yn ≤ n− 1)]−1 .

(A.29)

Let
(
(ρ/sn)n+mn−1 nmn(sn!)−1 n! ssnn exp{sn/ρ}

)
be factor1. Then,

A′n = P (n+mn − 1− bn (1 + m̄− s̄/ρ)− n1−εc+ 1 ≤ Xn ≤ n− 1)

.

[(
sn−1∑
k=0

n (nρ)k

k!

)
/factor1 +

(
mn−1∑
k=sn

n nk

sn!
ssn−kn ρk

)
/factor1 + P (Yn ≤ n− 1)

]−1

.

(A.30)

From (1.2), Preliminaries-ED|ED-1 f)i) and ii), and Central Limit Theorem

(CLT), for Zn, Z̄n ∼ Normal(0, 1) we have
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P (n+mn − 1− bn (1 + m̄− s̄/ρ)− n1−εc+ 1 ≤ Xn ≤ n− 1)

→ P (+∞ < Zn < +∞) = 0

P (Yn ≤ n− 1)→ P (Z̄n < +∞) = 1.

(A.31)

From Theorem 12, for ED|ED, for sufficiently large n, we know that nρ > sn− 1.

Hence, for k = 0, 1, 2, . . . , sn − 2

(
(nρ)k+1

k+1!

)
/
(

(nρ)k

k!

)
= nρ

k+1
≥ nρ

sn−1
> 1. (A.32)

Therefore, for k = 0, 1, 2, . . . , sn− 2, for suff. large n, (nρ)k

k!
is increasing in k, and

sn−1∑
k=0

n (nρ)k

k!
≤ n (nρ)sn−1

(sn−1)!
sn. (A.33)

Since,

n (nρ)sn−1

(sn−1)!
sn/factor1 = n nsn−1ρsn−1

(sn−1)!
sn

(
sn
ρ

)n+mn−1
sn!
nmn

exp{−sn/ρ}
n! snsn

= exp{−sn/ρ}
nmn−sn n!

sn

(
sn
ρ

)n+mn−sn
,

(A.34)

after applying Stirling’s approximation, n! ∼=
√

2πn nne−n to n!, we have (from

(1.2) and Lemma 1 with 0 < ε < 1/2)

exp{−sn/ρ}
nmn−snn!

sn

(
sn
ρ

)n+mn−sn ∼= 1√
2π

sn√
n

(
sn
nρ

)n+mn−sn
exp{n− sn

ρ
}

= 1√
2π

(s̄
√
n+ ŝn)exp

{
n− sn

ρ
+ (n+mn − sn)ln

(
s̄
ρ

)
+ o(n1−ε)

}
.

(A.35)

To obtain the limit of the last expression above we will use the following facts:
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i) Taylor’s approximation for f(y) = −ln(y) at the point y0 = 1 gives −ln(y) =

(1− y) + (1−y)2

2
+ (1−y)3

3
+ (1−y)4

4
+ . . ., and we use it for −ln

(
s̄
ρ

)
,

ii) s̄ < ρ for ED|ED from Theorem 12 and hence 0 < 1− s̄
ρ
,

iii) m̄ ≥ s̄ (since mn ≥ sn in this case),

iv) 1 + m̄ − s̄ ≥ 0 since we assume n + mn > sn (otherwise we will have ample

repairmen which leads to trivial cases which are out of concern here). Note that at

least one of the inequalities in iii) and iv) always have to be strict. Then, we get

1√
2π

(s̄
√
n+ ŝn)exp

{
n− sn

ρ
+ (n+mn − sn)ln

(
s̄
ρ

)
+ o(n1−ε)

}
= 1√

2π
(s̄
√
n+ ŝn)

exp

{
−n
{

(1 + m̄− s̄)
[(

1− s̄
ρ

)
+

(1− s̄
ρ)

2

2
+

(1− s̄
ρ)

3

3
+ . . .

]
+ s̄

ρ
− 1

}}

.exp
{
o(n1−ε)− ŝn

√
n

ρ
+ (m̂n − ŝn)

√
n ln

(
s̄
ρ

)}
= 1√

2π
(s̄
√
n+ ŝn)

/exp

{
n

{
(m̄− s̄)

(
1− s̄

ρ

)
+ (1 + m̄− s̄)

[
(1− s̄

ρ)
2

2
+

(1− s̄
ρ)

3

3
+ . . .

]}
+ o(n1−ε)

}
→ +∞

+∞ .

(A.36)

L’Hospital’s rule gives
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lim
n→∞

1√
2π

(s̄
√
n+ ŝn)

/

[
exp

{
n

{
(m̄− s̄)

(
1− s̄

ρ

)
+ (1 + m̄− s̄)

[
(1− s̄

ρ)
2

2
+

(1− s̄
ρ)

3

3
+ . . .

]}
+ o(n1−ε)

}]
= lim

n→∞
1√
2π
s̄

/

[
2
√
n

{
(m̄− s̄)

(
1− s̄

ρ

)
+ (1 + m̄− s̄)

[
(1− s̄

ρ)
2

2
+

(1− s̄
ρ)

3

3
+ . . .

]
+ o(1)

}

.exp

{
n

{
(m̄− s̄)

(
1− s̄

ρ

)
+ (1 + m̄− s̄)

[
(1− s̄

ρ)
2

2
+

(1− s̄
ρ)

3

3
+ . . .

]}
+ o(n1−ε)

}]
= 0.

(A.37)

Thus, from (A.33)-(A.37)

lim
n→∞

(
sn−1∑
k=0

n (nρ)k

k!

)
/factor1 ≤ lim

n→∞

(
n (nρ)sn−1

(sn−1)!
sn

)
/factor1 = 0

⇒ lim
n→∞

(
sn−1∑
k=0

n (nρ)k

k!

)
/factor1 = 0.

(A.38)

Similarly, from Theorem 12, for ED|ED, for sufficiently large n, we know that

nρ > sn. Hence, for k = sn, sn + 1, sn + 2, . . . ,mn − 1

(
(nρ)k+1

sn!snk+1−sn

)
/
(

(nρ)k

sn!snk−sn

)
= nρ

sn
> 1. (A.39)

Therefore, for k = sn, sn + 1, sn + 2, . . . ,mn − 1, (nρ)k

sn!snk−sn
is increasing in k, and

mn−1∑
k=sn

n nk

sn!
ssn−kn ρk ≤ n nmn−1

sn!
ssn−mn+1
n ρmn−1(mn − sn). (A.40)

Since,
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(
n nmn−1

sn!
ssn−mn+1
n ρmn−1 (mn − sn)

)
/factor1

= n nmn−1

sn!
ssn−mn+1
n ρmn−1 (mn − sn)

(
sn
ρ

)n+mn−1
sn!
nmn

(n!)−1 s−snn

·exp
{
− sn

ρ

}
= (mn − sn)

(
sn
ρ

)n
(n!)−1exp

{
− sn

ρ

}
,

(A.41)

after applying Stirling’s approximation to n!, we have

(mn − sn)
(
sn
ρ

)n
(n!)−1 exp

{
− sn

ρ

}
∼= 1√

2π

(mn−sn)√
n

(
sn
nρ

)n
exp

{
n− sn

ρ

}
.

(A.42)

Then, from (1.2), Lemma 1, s̄ < ρ for ED|ED by Theorem 12 (0 < ε < 1
2
), and

the same facts used for (A.35) we get

1√
2π

(mn−sn)√
n

(
sn
nρ

)n
exp

{
n− sn

ρ

}
= 1√

2π
((m̄− s̄)

√
n+ m̂n − ŝn) exp

{
n ln

(
s̄
ρ

)
+ o(n1−ε) + n− sn

ρ

}
= 1√

2π
((m̄− s̄)

√
n+ m̂n − ŝn)

/ exp

{
n

{
(1− s̄

ρ)
2

2
+

(1− s̄
ρ)

3

3
+ . . .

}
+ o (n1−ε) + ŝn

√
n

ρ

}
→ +∞

+∞ .

(A.43)

We apply L’Hospital’s rule which gives
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lim
n→∞

1√
2π

((m̄− s̄)
√
n+ m̂n − ŝn)

/

[
exp

{
n

{
(1− s̄

ρ)
2

2
+

(1− s̄
ρ)

3

3
+ . . .

}
+ o (n1−ε) + ŝn

√
n

ρ

}]

= lim
n→∞

1√
2π

(m̄− s̄)

/

[
2
√
n

{
(1− s̄

ρ)
2

2
+

(1− s̄
ρ)

3

3
+ . . .+ o(1)

}

exp

{
n

{
(1− s̄

ρ)
2

2
+

(1− s̄
ρ)

3

3
+ . . .

}
+ o (n1−ε)

}]
= 0.

(A.44)

Thus, from (A.40)

lim
n→∞

(
mn−1∑
k=sn

n nk

sn!
ssn−kn ρk

)
/factor1 ≤

lim
n→∞

(
nn

mn−1

sn!
ssn−mn+1
n ρmn−1(mn − sn)

)
/factor1 = 0

⇒ lim
n→∞

(
mn−1∑
k=sn

n nk

sn!
ssn−kn ρk

)
/factor1 = 0.

(A.45)

Thus, from (A.29)-(A.45)

An ≤ ((n+mn −mn)/(µsn))A′n,

A′n = P (n+mn − 1− bn (1 + m̄− s̄/ρ)− n1−εc+ 1 ≤ Xn ≤ n− 1)

.

[(
sn−1∑
k=0

n (nρ)k

k!

)
/factor1 +

(
mn−1∑
k=sn

n nk

sn!
ssn−kn ρk

)
/factor1 + P (Yn ≤ n− 1)

]
→ 0

0+0+1
= 0

⇒ lim
n→∞

An ≤ lim
n→∞

(
n+mn−mn

µsn

)
A′n = 0.

(A.46)
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Now we look at Bn. From (A.28) and Preliminaries-ED|ED-1 c)-e) and similar to

the analysis made for An and A′n (with factor1 having the same value and Xn, Yn ∼

Poisson
(
sn
ρ

)
),

((bn (1 + m̄− s̄/ρ)− n1−εc+ 1−mn)/(µ sn))B′n ≤ Bn

Bn ≤ ((dn (1 + m̄− s̄/ρ) + n1−εe+ 1−mn)(µ sn))B′n

B′n = P (n+mn − 1− dn (1 + m̄− s̄/ρ) + n1−εe

≤ Xn ≤ n+mn − 1− bn (1 + m̄− s̄/ρ)− n1−εc)

.

[(
sn−1∑
k=0

n (nρ)k

k!

)
/factor1 +

(
mn−1∑
k=sn

n nk

sn!
ssn−kn ρk

)
/factor1 + P (Yn ≤ n− 1)

]
(A.47)

Similar to Preliminaries-ED|ED-1 f) i) for Zn ∼ Normal(0, 1),

P (n+mn − 1− dn (1 + m̄− s̄/ρ) + n1−εe

≤ Xn ≤ n+mn − 1− bn (1 + m̄− s̄/ρ)− n1−εc)

→ P (−∞ < Zn < +∞) = 1

(A.48)

From (A.31)-(A.48) and Preliminaries-ED|ED-1 f) iii),

lim
n→∞

((bn (1 + m̄− s̄/ρ)− n1−εc+ 1−mn)/(µ sn))B′n ≤ lim
n→∞

Bn

lim
n→∞

Bn ≤ lim
n→∞

((dn (1 + m̄− s̄/ρ) + n1−εe+ 1−mn)/(µ sn))B′n

(1/µs̄− 1/λ) . 1
0+0+1

≤ limn→∞Bn ≤ (1/µs̄− 1/λ) . 1
0+0+1

⇒ limn→∞Bn = (1/µs̄− 1/λ) .

(A.49)

Now we look at Cn. From Preliminaries-ED|ED-1 c)-e) with Xn, Yn ∼ Pois.
(
sn
ρ

)
and the same value of factor1,
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Cn ≤ ((n+mn −mn)/µsn)C ′n,

C ′n = P
(
Xn ≤ n+mn − 1− dn

(
1 + m̄− s̄

ρ

)
+ n1−εe − 1

)
.

[(
sn−1∑
k=0

n (nρ)k

k!

)
/factor1 +

(
mn−1∑
k=sn

n nk

sn!
ssn−kn ρk

)
/factor1 + P (Yn ≤ n− 1)

]
(A.50)

Similarly, from Preliminaries-ED|ED-1 f)i) for Zn ∼ Normal(0, 1),

P
(
Xn ≤ n+mn − 1− dn

(
1 + m̄− s̄

ρ

)
+ n1−εe − 1

)
→ P (Zn < −∞) = 0

(A.51)

Similar to A′n, we have lim
n→∞

C ′n = 0 and

limn→∞Cn ≤ limn→∞

(
n+mn−mn

µsn

)
C ′n = 0⇒ limn→∞Cn = 0. (A.52)

To sum up, for mn ≥ sn for ED|ED, (A.27)-(A.52) gives

limn→∞E[Drpl
n (sn,mn)]

= limn→∞

( ∑
k≥mn

((k + 1−mn)/µsn) cn

)
/

(
sn−1∑
k=0

an +
mn−1∑
k=sn

bn +
n+mn∑
k=mn

cn

)

= limn→∞(An +Bn + Cn) =
(

1
µs̄
− 1

λ

)
.�

(A.53)

Proof of Formulas for lim
n→∞

E[Drpl
n (sn,mn)] for ED|ED, sn >mn We also have some

preliminary results here. Again, we recommend referring to them as they are referred

to in the proof.

Preliminaries-ED|ED-2
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a.

dn ≡ (n+mn − k)n
mn

k!
n!

(n+mn−k)!
ρk,

Ãn ≡
[
sn−1∑
k=mn

E[W st
n (sn,mn)|N st

n (τb) = k]dn

]
/

[
mn−1∑
k=0

an +
sn−1∑
k=mn

dn +
n+mn∑
k=sn

cn

]
,

B̃n ≡
[
n+mn∑
k=sn

E[W st
n (sn,mn)|N st

n (τb) = k]cn

]
/

[
mn−1∑
k=0

an +
sn−1∑
k=mn

dn +
n+mn∑
k=sn

cn

]
.

(A.54)

b.

Ãn
′ ≡
[
sn−1∑
k=mn

dn

]
/

[
mn−1∑
k=0

an +
sn−1∑
k=mn

dn +
n+mn∑
k=sn

cn

]
,

B̃n
′ ≡
[
n+mn∑
k=sn

cn

]
/

[
mn−1∑
k=0

an +
sn−1∑
k=mn

dn +
n+mn∑
k=sn

cn

]
.

(A.55)

c.

sn−1∑
k=mn

dn =
sn−1∑
k=mn

nmn

k!
n!

(n+mn−k−1)!
ρk

= nmn n!
(n+mn−1)!

(1 + ρ)n+mn−1
sn−1∑
k=mn

(
n+mn−1

k

)(
ρ

1+ρ

)k(
1

1+ρ

)n+mn−1−k

= nmn n!
(n+mn−1)!

(1 + ρ)n+mn−1 P (mn ≤ Yn ≤ sn − 1)

(A.56)

where Yn ∼ Binomial
(
n+mn − 1, ρ

1+ρ

)
.

d. From Theorem 12, we know that s̄ < ρ for ED|ED, and since sn > mn for this

case, we have m̄ ≤ s̄ < ρ. Therefore, from (1.2)
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(
mn − ρ

1+ρ
(n+mn − 1)

)
/
(√

(n+mn − 1) ρ
(1+ρ)2

)
= {(1 + ρ)m̄n+ (1 + ρ)m̂n

√
n− ρ[(1 + m̄)n+ m̂n

√
n− 1]} /

(√
(n+mn − 1)ρ

)
→ −∞.

(A.57)

Moreover, again from Theorem 12 we have s̄ + s̄/ρ − 1 < m̄ for ED|ED, hence

s̄ρ+ s̄− ρ− m̄ρ < 0, so

(
sn − 1− ρ

1+ρ
(n+mn − 1)

)
/
(√

(n+mn − 1) ρ
(1+ρ)2

)
= [(1 + ρ)(s̄n+ ŝn

√
n− 1)− ρ((1 + m̄)n+ m̂n

√
n− 1)] /

(√
(n+mn − 1)ρ

)
→ −∞.

(A.58)

e.

{
(1 + m̄) ln

(
(1+m̄)ρ
s̄(1+ρ)

)
+ s̄+ s̄

ρ
− (1 + m̄)

}
= s̄ (1+ρ)

ρ

[
(1+m̄)ρ
s̄(1+ρ)

ln
(

(1+m̄)ρ
s̄(1+ρ)

)
+
(

1− (1+m̄)ρ
s̄(1+ρ)

)]
.

(A.59)

f.

Since, xlnx − x + 1|x=1 = 0 and (xlnx − x + 1)′ = lnx > 0 for x > 1, xlnx

−x+ 1 > 0 for x > 1.

g.

Since 1 + m̄− s̄− s̄
ρ
> 0 for ED|ED from Theorem 12,
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(
n+mn − 1− sn − sn

ρ

)
/
√

sn
ρ

=
[
n
(

1 + m̄− s̄− s̄
ρ

)
+
(
m̂n − ŝn − ŝn

ρ

)√
n− 1

]
/
√

sn
ρ
→ +∞.

(A.60)

h.

Let τb be the random time of breakdown of a random unit such that a replacement

cannot be provided immediately and a delay will be incurred, and let W st,τb
n (sn,mn)

denote the delay to provide backup after that breakdown. Then, for an arbitrary

ε1 > 0, let the event Fn = {min
t∈(τb,τb+W

st,τb
n (sn,mn)]

N st
n (t) < sn − ε1.n} and F ′n be

its complement. Note that N st
n (t) emphasizes that we are considering the process

{Nn(t), t ≥ 0} after it reaches steady state. Then, we define

B̃1
n ≡

[
n+mn∑
k=sn

E[W st,τb
n (sn,mn) · 1Fn | N st

n (τb) = k] cn

]

/

[
mn−1∑
k=0

an +
sn−1∑
k=mn

dn +
n+mn∑
k=sn

cn

]
,

B̃n
2 ≡

[
n+mn∑
k=sn

E[W st,τb
n (sn,mn) · 1F ′n | N st

n (τb) = k] cn

]

/

[
mn−1∑
k=0

an +
sn−1∑
k=mn

dn +
n+mn∑
k=sn

cn

]
.

(A.61)

i.

Let ε1, ε̂1 > 0 and ε1 > ε̂1. For k = sn, sn + 1, . . . , n + mn and for sufficiently

large n, k
n
> s̄− ε̂1. Then, for N st

n (τb) = k,

P
(
min t∈(τb,∞)N

st
n (t) < sn − ε1.n | N st

n (τb) = k
)
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= P

(
min t∈(τb,∞)

N st
n (t)

n
<
sn
n
− ε1 |

N st
n (τb)

n
=
k

n

)
.

From Theorem 12, we know that N̄n(t) in (A.1) converges to a deterministic

process b̄(t) if the starting point is deterministic. Moreover, b = lim
t→∞

b̄(t) > s̄

for ED|ED. Here we have lim
n→∞

Nst
n (τb)
n

= lim
n→∞

k
n

acting as the deterministic starting

point (since its value is known when the observation starts), so we have for k =

sn, sn + 1, . . . , n+mn

P
(
min t∈(τb,∞)

Nst
n (t)
n

< sn
n
− ε1 | N

st
n (τb)
n

= k
n

)
= P

(
min t∈(τb,∞)

Nst
n (t)
n
− b̄(t) + b̄(t) < sn

n
− ε1 | N

st
n (τb)
n

= k
n

)
≤ P

(
min t∈(τb,∞)b̄(t)−max t∈(τb,∞)|N

st
n (t)
n
− b̄(t)| < sn

n
− ε1 | N

st
n (τb)
n

= k
n

)
= P

(
min t∈(τb,∞)b̄(t)− sn

n
+ ε1 < max t∈(τb,∞)|N

st
n (t)
n
− b̄(t)| | N

st
n (τb)
n

= k
n

)
→ P

(
min t∈(τb,∞)b̄(t)− s̄+ ε1 < 0 | b̄(τb) = lim

n→∞
k
n

)
= 0

(
since lim

n→∞
k
n
> s̄− ε̂1

)
(A.62)

j.

Since s̄ + s̄/ρ − 1 < m̄ for ED|ED from Theorem 12, for sufficiently large n we

have

sn ≤ bn (1 + m̄− s̄/ρ)− n1−εc − 1 ≤ dn (1 + m̄− s̄/ρ) + n1−εe+ 1 ≤ n+mn.

(A.63)

Main Part of the Proof
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From (A.27), (1.1), Preliminaries-ED|ED-2 a), and Preliminaries-ED|ED-1 a), we

have

E[Drpl
n (sn,mn)]

=

[
sn−1∑
k=mn

E[W st
n (sn,mn)|N st

n (τb) = k] dn +
n+mn∑
k=sn

E[W st
n (sn,mn)|N st

n (τb) = k] cn

]

·
[
mn−1∑
k=0

an +
sn−1∑
k=mn

dn +
n+mn∑
k=sn

cn

]−1

= Ãn + B̃n.

(A.64)

Since for a delay to occur, at least mn units should be broken down and with

sn > mn, at least mn repairmen should be busy during the whole delay time. Thus,

from Preliminaries-ED|ED-2 b) and similar reasoning used for (A.28)

Ãn ≤ ((n+mn −mn) /µmn) Ã′n. (A.65)

Let nmnn!((n+mn−1)!)−1(1+ρ)n+mn−1 be factor2. From Preliminaries-ED|ED-2

b) and c),

Ã′n = P (mn ≤ Yn ≤ sn − 1)
(
Yn ∼ Binomial

(
n+mn − 1, ρ

1+ρ

))
.

[(
mn−1∑
k=0

an

)
/factor2 + P (mn ≤ Yn ≤ sn − 1) +

(
n+mn∑
k=sn

cn

)
/factor2

]−1

(A.66)

From Preliminaries-ED|ED-2 c) and d) and CLT, we have

P (mn ≤ Yn ≤ sn − 1)→ P (−∞ < Zn < −∞) = 0 (A.67)

where Zn ∼ Normal(0, 1).
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From:

i) Preliminaries-ED|ED-1 e),

ii) Stirling’s approximation applied to (n+mn)! and sn!,

iii) (1.2) and Lemma 1 (0 < ε < 1
2
),

iv) Preliminaries-ED|ED-2 e) and f) with x ≡ (1+m̄)ρ
s̄(1+ρ)

(note that (1+m̄)ρ
s̄(1+ρ)

> 1 for

ED|ED),

v) Preliminaries-ED|ED-2 g), and CLT we have

(
n+mn∑
k=sn

cn

)
/factor2

=
((

(ρ/sn)n+mn−1 nmn(sn!)−1 n! ssnn exp{sn/ρ}
)
/factor2

)
·P (Xn ≤ n+mn − 1− sn)

= ssnn
sn!

(n+mn)!
(n+mn)

exp{sn/ρ}
(

ρ
sn(1+ρ)

)n+mn−1

P (Xn ≤ n+mn − 1− sn)

(
Xn ∼ Poisson

(
sn
ρ

))
∼=
√

n+mn
sn

(
(n+mn)ρ
sn(1+ρ)

)n+mn−1

exp{sn + sn/ρ− (n+mn)}

·P (Xn ≤ n+mn − 1− sn)

=
√

n+mn
sn

exp
{
n
{

(1 + m̄) ln
(

(1+m̄)ρ
s̄(1+ρ)

)
+ s̄+ s̄

ρ
− (1 + m̄)

}
+ o (n1−ε)

}
·P (Xn ≤ n+mn − 1− sn)

→
√

1+m̄
s̄
·+∞ · P (Z̃n < +∞) = +∞

(
Z̃n ∼ Normal(0, 1)

)
(A.68)

Since

(
mn−1∑
k=0

an

)
/factor2 ≥ 0 for all n, from (A.65)-(A.68), Ã′n → 0

+∞ = 0. From

(1.2) and (A.65),
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lim
n→∞

Ãn ≤ lim
n→∞

(n+mn −mn/µmn) lim
n→∞

Ã′n = 0⇒ lim
n→∞

Ãn = 0. (A.69)

Now we look at B̃n. From Preliminaries-ED|ED-2 a) and h),

B̃n = B̃1
n + B̃2

n, (A.70)

and for τb taken as given in Preliminaries-ED|ED-2 h), let F̄n = {min t∈(τb,∞)N
st
n (t)

< sn − ε1.n} and F̄ ′n be its complement. Then,

B̃1
n ≤

[
n+mn∑
k=sn

E[W st,τb
n (sn,mn) · 1F̄n | N st

n (τb) = k] cn

]

/

[
mn−1∑
k=0

an +
sn−1∑
k=mn

dn +
n+mn∑
k=sn

cn

]

=

[
n+mn∑
k=sn

E[W st,τb
n (sn,mn) | F̄n, N st

n (τb) = k] P (F̄n|N st
n (τb) = k) cn

]

/

[
mn−1∑
k=0

an +
sn−1∑
k=mn

dn +
n+mn∑
k=sn

cn

]
.

(A.71)

For k = sn, sn + 1, . . . , n+mn, the event {F̄n | (N st
n (τb) = k)} considers whether

the process {Nn(t), t ≥ 0}, after reaching steady state, will ever visit the region

N st
n = {0, 1, . . . , bsn−ε1.nc} given the observation starts at a state in N st

n = {sn, sn+

1, . . . , n+mn} at time τb. Note that since N st
n is a birth-and-death process with no

absorbing states, ∀k1, k2 ε {sn, . . . , n+mn}

P (F̄n | N st
n (τb) = k1) = P (F̄n | N st

n (τb) = k2) (A.72)

and we denote this probability with P τb
sn . Then, from Preliminaries-ED|ED-2 b)

and similar to (A.65) we have
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[
n+mn∑
k=sn

E[W st,τb
n (sn,mn) | F̄n, N st

n (τb) = k] P (F̄n | N st
n (τb) = k) cn

]

/

[
mn−1∑
k=0

an +
sn−1∑
k=mn

dn +
n+mn∑
k=sn

cn

]

=

[
P τb
sn

n+mn∑
k=sn

E[W st,τb
n (sn,mn) | F̄n, N st

n (τb) = k] cn

]

/

[
mn−1∑
k=0

an +
sn−1∑
k=mn

dn +
n+mn∑
k=sn

cn

]

≤ P τb
sn

(
n

µmn

)
B̃′n.

(A.73)

Thus, combining (A.71) and (A.73) we have

B̃1
n ≤ P τb

sn

(
n

µmn

)
B̃′n. (A.74)

From Preliminaries-ED|ED-2 b), i), and (1.2), 0 ≤ B̃′n ≤ 1, P τb
sn → 0, and

n/µmn → 1
µm̄

, respectively; thus, we have B̃1
n → 0.

Following Preliminaries-ED|ED-2 h) and similar to (A.71), we have

B̃2
n =

[
n+mn∑
k=sn

E[W st,τb
n (sn,mn) | F ′n, N st

n (τb) = k] P (F ′n | N st
n (τb) = k) cn

]

/

[
mn−1∑
k=0

an +
sn−1∑
k=mn

dn +
n+mn∑
k=sn

cn

]
.

(A.75)

Let the event Fn and F̄n be as defined in Preliminaries-ED|ED-2 h) and (A.71),

respectively. Then, for any k = sn, sn + 1, . . . , n+mn,

P (F ′n | N st
n (τb) = k) = 1− P (Fn | N st

n (τb) = k), (A.76)
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and from Preliminaries-ED|ED-2 i),

P (Fn | N st
n (τb) = k) ≤ P (F̄n | N st

n (τb) = k)→ 0

⇒ P (Fn | N st
n (τb) = k)→ 0;

(A.77)

and therefore

lim
n→∞

P (F ′n | N st
n (τb) = k) = 1. (A.78)

Let

[
mn−1∑
k=0

an +
sn−1∑
k=mn

dn +
n+mn∑
k=sn

cn

]
be denoted by denominator1. Thus, for suffi-

ciently large n and ∀ ε1, ε2 > 0, from (A.75)-(A.78) and Preliminaries-ED|ED-2 h)

and i)

[
(1− ε2)

n+mn∑
k=sn

((k + 1−mn) /µsn) cn

]
/denominator1

≤ B̃2
n ≤

[
(1 + ε2)

n+mn∑
k=sn

((k + 1−mn) /µ(sn − ε1.n)) cn

]
/denominator1.

(A.79)

Since ε1, ε2 > 0 is arbitrary, from (A.79)

lim
n→∞

B̃2
n = lim

n→∞

{[
n+mn∑
k=sn

((k + 1−mn) /µsn) cn

]
/denominator1

}
. (A.80)

Now let
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lim
n→∞

B̃A
2

n ≡ lim
n→∞

[
bn(1+m̄−s̄/ρ)−n1−εc−1∑

k=sn

((k + 1−mn) /µ sn) cn

]
/denominator1,

lim
n→∞

B̃B
2

n ≡ lim
n→∞

[
dn(1+m̄−s̄/ρ)+n1−εe∑

k=bn(1+m̄−s̄/ρ)−n1−εc
((k + 1−mn) /µ sn) cn

]
/denominator1,

lim
n→∞

B̃C
2

n ≡ lim
n→∞

[
n+mn∑

k=dn(1+m̄−s̄/ρ)+n1−εe+1

((k + 1−mn) /µ sn) cn

]
/denominator1.

(A.81)

From (A.80), (A.81), and Preliminaries-ED|ED-2 j), we have

lim
n→∞

B̃2
n = lim

n→∞
B̃A

2

n + lim
n→∞

B̃B
2

n + lim
n→∞

B̃C
2

n. (A.82)

First we look at the B̃A
2

n. Let Xn, Yn ∼ Poisson
(
sn
ρ

)
and factor1 as defined in

(A.30); then, from Preliminaries-ED|ED-1 e),

B̃A
2

n ≤
(
n+mn−mn

µsn

)[bn(1+m̄−s̄/ρ)−n1−εc−1∑
k=sn

cn

]
/denominator1

=
(

n
µsn

)
P (n+mn − 1− bn (1 + m̄− s̄/ρ)− n1−εc+ 1 ≤ Xn ≤ n+mn − 1− sn)

·
[(

mn−1∑
k=0

n (nρ)k

k!

)
/factor1 +

(
sn−1∑
k=mn

nmn

k!
n!

(n+mn−k−1)!
ρk
)
/factor1

+P (Yn ≤ n+mn − 1− sn)]−1

(A.83)

From Preliminaries-ED|ED-1 f)i) and Preliminaries-ED|ED-2 g), for Zn, Z̄n ∼

N(0, 1)
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P (n+mn − 1− bn (1 + m̄− s̄/ρ)− n1−εc+ 1 ≤ Xn ≤ n+mn − 1− sn)

→ P (+∞ < Zn < +∞) = 0

P (Yn ≤ n+mn − 1− sn)→ P (Z̄n < +∞) = 1.

(A.84)

Since sn > mn here, and s̄ < ρ for ED|ED regime from Theorem 12; for sufficiently

large n nρ > sn − 1 > mn − 1. Hence, for k = 0, 1, 2, . . . ,mn − 2

(
(nρ)k+1

k+1!

)
/
(

(nρ)k

k!

)
= nρ

k+1
> nρ

mn−1
> nρ

sn−1
> 1. (A.85)

Therefore, for k = 0, 1, 2, . . . , sn − 2, for sufficiently large n, (nρ)k

k!
is increasing in

k, and since sn > mn in this case,

(
mn−1∑
k=0

n (nρ)k

k!

)
/factor1

=

(
mn−1∑
k=0

n (nρ)k

k!

)
/

((
ρ
sn

)n+mn−1
nmn

sn!
n! ssnn exp{sn/ρ}

)

≤
(
n (nρ)sn−1

(sn−1)!
sn

)
/

((
ρ
sn

)n+mn−1
nmn

sn!
n! ssnn exp{sn/ρ}

)
.

(A.86)

Following (A.34)- (A.36), again we will have

(
n (nρ)sn−1

(sn−1)!
sn

)
/

((
ρ
sn

)n+mn−1
nmn

sn!
n! ssnn e

sn
ρ

)
∼= 1√

2π
(s̄
√
n+ ŝn) exp{−n {(1 + m̄− s̄)ln (ρ/s̄) + s̄/ρ− 1}+ o(n1−ε)}.

(A.87)

We know it is assumed n+mn ≥ sn in general (since otherwise the analysis will be

trivial), m̄ > s̄/ρ+ s̄−1 and s̄ < ρ for ED|ED from Theorem 12; thus, 1+m̄− s̄ ≥ 0,

ln (ρ/s̄) > 0, and hence we have
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(1 + m̄− s̄)ln (ρ/s̄) + s̄/ρ− 1 > (s̄/ρ)ln (ρ/s̄) + s̄/ρ− 1 = −(s̄/ρ)ln (s̄/ρ) + s̄/ρ− 1.

Note that this is the value of −xlnx + x − 1|x=(s̄/ρ) and it is the negative of the

function in Preliminaries-ED|ED-2 f). Therefore, we know that −xlnx − 1 + x > 0

for x < 1 and since s̄/ρ < 1, we conclude that

(1 + m̄− s̄)ln (ρ/s̄) + s̄/ρ− 1 > 0

⇒ 1√
2π

(s̄
√
n+ ŝn)/exp {n {(1 + m̄− s̄)ln (ρ/s̄) + s̄/ρ− 1}+ o(n1−ε)} → +∞

+∞ .

(A.88)

Then, using L’Hospital’s rule similar to (A.37), from (A.86)-(A.88) we conclude

that

(
n (nρ)sn−1

(sn−1)!
sn

)
/

((
ρ
sn

)n+mn−1
nmn

sn!
n! ssnn exp{sn/ρ}

)
→ 0

⇒
(
mn−1∑
k=0

n (nρ)k

k!

)
/factor1 → 0.

(A.89)

For k = mn,mn + 1, . . . , sn − 1,

n(n− 1)(n− 2) . . . (n− (k −mn)) < n.nk−mn (A.90)

and this gives

nmn

k!
n!

(n+mn−k−1)!
ρk < n (nρ)k

k!
. (A.91)

Then,

[
sn−1∑
k=mn

nmn

k!
n!

(n+mn−k−1)!
ρk
]
/factor1 ≤

[
sn−1∑
k=mn

n (nρ)k

k!

]
/factor1. (A.92)

96



Similar to (A.86)-(A.89),

[
sn−1∑
k=mn

n (nρ)k

k!

]
/factor1 ≤

[
n (nρ)sn−1

(sn−1)!
sn

]
/factor1 → 0

⇒
[
sn−1∑
k=mn

nmn

k!
n!

(n+mn−k−1)!
ρk
]
/factor1 → 0.

(A.93)

From (A.83)-(A.93) and (1.2),

lim
n→∞

B̃A
2

n ≤ lim
n→∞

(
n
µsn

)[bn(1+m̄−s̄/ρ)−n1−εc−1∑
k=sn

cn

]
/denominator1 = 0⇒ B̃A

2

n → 0.

(A.94)

Now we look at B̃B
2

n. Let Xn, Yn ∼ Poisson (sn/ρ). From (A.81) and similar to

(A.83),

((bn (1 + m̄− s̄/ρ)− n1−εc+ 1−mn) /µ sn)

B̃B
′2

n ≤ B̃B
2

n ≤ ((dn (1 + m̄− s̄/ρ) + n1−εe+ 1−mn) /µ sn) B̃B
′2

n

B̃B
′2

n = P (n+mn − 1− dn (1 + m̄− s̄/ρ) + n1−εe ≤ Xn

≤ n+mn − 1− bn (1 + m̄− s̄/ρ)− n1−εc)

·
[(

mn−1∑
k=0

n (nρ)k

k!

)
/factor1 +

(
sn−1∑
k=mn

nmn

k!
n!

(n+mn−k−1)!
ρk
)
/factor1

+P (Yn ≤ n+mn − 1− sn)]−1

(A.95)

Since 0 < ε < 1/2 is arbitrary, from (1.2), CLT, Preliminaries-ED|ED-1 f)i), and

the fact that the expressions in the denominator of B̃B
′2

n are the same as in B̃A
′2

n ,

(A.95) gives
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limn→∞ B̃B
2

n =
(

1−s̄/ρ
µs̄

)
=
(

1
µs̄
− 1

λ

)
. (A.96)

Now we look at B̃C
2

n. With Xn, Yn ∼ Poisson
(
sn
ρ

)
, from (A.81), and similar to

(A.83)

B̃C
2

n ≤ (n/µsn) B̃C
′2

n ,

B̃C
′2

n = P (Xn ≤ n+mn − 1− dn (1 + m̄− s̄/ρ) + n1−εe − 1)

·
[(

mn−1∑
k=0

n (nρ)k

k!

)
/factor1 +

(
sn−1∑
k=mn

nmn

k!
n!

(n+mn−k−1)!
ρk
)
/factor1

+P (Yn ≤ n+mn − 1− sn)]−1

(A.97)

From CLT and Preliminaries-ED|ED-1 f)i), for Zn ∼ Normal(0, 1)

P (Xn ≤ n+mn − 1− dn (1 + m̄− s̄/ρ) + n1−εe − 1)→ P (Zn < −∞) = 0

(A.98)

The expressions in the denominator of B̃C
′2

n are the same as the ones in the

denominator of B̃A
′2

n . Hence, limn→∞ B̃C
2

n = 0.

Thus, for sn > mn in ED|ED

lim
n→∞

E[Drpl
n (sn,mn)] = lim

n→∞
(Ãn + B̃n) = lim

n→∞
(B̃1

n + B̃2
n) = lim

n→∞
B̃2
n

= lim
n→∞

B̃B
2

n =
(

1
µs̄
− 1

λ

)
.�

(A.99)

Proof of Formulas for lim
n→∞

E[Drpl
n (sn,mn)] for QD|ED

Note that we have m̄ < b < s̄ from Theorem 12; and for sufficiently large n (1.2)

gives sn > mn as the only case here.
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Preliminaries-QD|ED

a.

Let 0 < ε < 1/2; then, for sufficiently large n, from Theorem 12 we have

mn ≤ dρ(1+m̄)
1+ρ

n− n1−εe ≤ bρ(1+m̄)
1+ρ

n+ n1−εc ≤ sn − 1. (A.100)

b.

From (1.2) and the inequalities describing QD|ED in Theorem 12,

lim
n→∞

[
bρ(1+m̄)

1+ρ
n− n1−εc − (n+mn − 1) ρ

1+ρ

]
/
[√

(n+mn − 1) ρ
(1+ρ)2

]
= lim

n→∞

[
−n1−ε − (m̂n

√
n− 1) ρ

1+ρ

]
/
[√

(n+mn − 1) ρ
(1+ρ)2

]
= −∞,

(A.101)

c.

For an ε1 > 0, let τb and W st,τb
n (sn,mn) be as in Preliminaries-ED|ED-2 h) and

let the event

Fn =
(
min

t ε (τb,τb+W
st,τb
n (sn,mn)]

N st
n (t) < ρ(1+m̄)

1+ρ
n− ε1.n− n1−ε

)⋃
(
max

t ε (τb,τb+W
st,τb
n (sn,mn)]

N st
n (t) > ρ(1+m̄)

1+ρ
n+ ε1.n+ n1−ε

) (A.102)

and F ′n be its complement. Finally, let denominator1 be as defined previously.

Then,

Ã1
n ≡

 b ρ(1+m̄)
1+ρ

n+n1−εc∑
k=d ρ(1+m̄)

1+ρ
n−n1−εe

E[W st,τb
n (sn,mn).1Fn|N st

n (τb) = k]dn

 /denominator1,

Ã2
n ≡

 b ρ(1+m̄)
1+ρ

n+n1−εc∑
k=d ρ(1+m̄)

1+ρ
n−n1−εe

E[W st,τb
n (sn,mn).1F ′n|N st

n (τb) = k]dn

 /denominator1.

(A.103)
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d.

Note that ε1 > 0 is arbitrary. For k = dρ(1+m̄)
1+ρ

n − n1−εe, . . . , bρ(1+m̄)
1+ρ

n + n1−εc,

similar to Preliminaries-ED|ED-2 i) and from Theorem 12 we have

P
((
min t ε (τb,∞)N

st
n (t) < ρ(1+m̄)

1+ρ
n− ε1.n− n1−ε

)⋃
(
max t ε (τb,∞)N

st
n (t) > ρ(1+m̄)

1+ρ
n+ ε1.n+ n1−ε

)
| N st

n (τb) = k
)

= P
((
min t ε (τb,∞)

Nst
n (t)
n

< ρ(1+m̄)
1+ρ

− ε1 − n−ε
)

⋃(
max t ε (τb,∞)

Nst
n (t)
n

> ρ(1+m̄)
1+ρ

+ ε1 + n−ε
)
| N

st
n (τb)
n

= k
n

)
= P

((
min t ε (τb,∞)

Nst
n (t)
n
− b̄(t) + b̄(t) < ρ(1+m̄)

1+ρ
− ε1 − n−ε

)⋃
(
max t ε (τb,∞)

Nn
n
− b̄(t) + b̄(t) > ρ(1+m̄)

1+ρ
+ ε1 + n−ε

)
| N

st
n (τb)
n

= k
n

)
≤ P

((
min t ε (τb,∞)b̄(t)−max t ε (τb,∞)|N

st
n (t)
n
− b̄(t)| < ρ(1+m̄)

1+ρ
− ε1 − n−ε

)
⋃(

max t ε (τb,∞)b̄(t) +max t ε (τb,∞)|N
st
n (t)
n
− b̄(t)| > ρ(1+m̄)

1+ρ
+ ε1 + n−ε

)
| N

st
n (τb)
n

= k
n

)
→ P (

(
min t ε (τb,∞)b̄(t) < ρ(1+m̄)

1+ρ
− ε1

)⋃(
max t ε (τb,∞)b̄(t) > ρ(1+m̄)

1+ρ
+ ε1

)
| b̄(τb)

= ρ(1+m̄)
1+ρ

) = 0.

(A.104)

Main Part of the Proof

Since sn > mn is the only possible case, E[Drpl
n (sn,mn)] is as defined in (A.64).

Let denominator1 be as defined in (A.79) and 0 < ε < 1/2. Then, from Preliminaries-

ED|ED-2 a) and QD|ED a), for sufficiently large n we can write
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Ãn =

b ρ(1+m̄)
1+ρ

n−n1−εc∑
k=mn

E[W st
n (sn,mn)|N st

n (τb) = k]dn

+
b ρ(1+m̄)

1+ρ
n+n1−εc∑

k=d ρ(1+m̄)
1+ρ

n−n1−εe
E[W st

n (sn,mn)|N st
n (τb) = k]dn

+
sn−1∑

k=d ρ(1+m̄)
1+ρ

n+n1−εe
E[W st

n (sn,mn)|N st
n (τb) = k]dn

 /denominator1.

(A.105)

Since at least mn units will be broken during the delay, similar to (A.65)

b ρ(1+m̄)
1+ρ

n−n1−εc∑
k=mn

E[W st
n (sn,mn)|N st

n (τb) = k]dn

 /denominator1

≤
(

n
µmn

)b ρ(1+m̄)
1+ρ

n−n1−εc∑
k=mn

dn

 /denominator1.

(A.106)

Let factor2 be as in (A.66) and Yn, Ȳn ∼ Binomial(n + mn − 1, ρ
1+ρ

). Then,

similar to Preliminaries-ED|ED-2 c) and (A.66)

b ρ(1+m̄)
1+ρ

n−n1−εc∑
k=mn

dn

 /denominator1 = P (mn ≤ Yn ≤ bρ(1+m̄)
1+ρ

n− n1−εc)

[(
mn−1∑
k=0

an

)
/factor2 + P (mn ≤ Ȳn ≤ sn − 1) +

(
n+mn∑
k=sn

cn

)
/factor2

]−1

.

(A.107)

Let Zn, Z̄n ∼ Normal(0, 1). Note that contrary to ED|ED, here we have s̄ρ+ s̄−

ρ− m̄ρ > 0. Then, from CLT, Preliminaries-ED|ED-2 d), and QD|ED b),
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P (mn ≤ Yn ≤ bρ(1+m̄)
1+ρ

n− n1−εc)→ P (−∞ < Zn < −∞) = 0,

P (mn ≤ Ȳn ≤ sn − 1)→ P (−∞ < Z̄n < +∞) = 1,

(A.108)

and since

(
mn−1∑
k=0

an +
n+mn∑
k=sn

cn

)
/factor2 ≥ 0, from (1.2), (A.106)-(A.108) we have

lim
n→∞

b ρ(1+m̄)
1+ρ

n−n1−εc∑
k=mn

dn

 /denominator1 = 0

⇒

b ρ(1+m̄)
1+ρ

n−n1−εc∑
k=mn

E[W st
n (sn,mn)|N st

n (τb) = k]dn

 /denominator1 → 0.

(A.109)

From Preliminaries-QD|ED c) we have

 b ρ(1+m̄)
1+ρ

n+n1−εc∑
k=d ρ(1+m̄)

1+ρ
n−n1−εe

E[W st
n (sn,mn)|N st

n (τb) = k]dn

 /denominator1 = Ã1
n + Ã2

n.

(A.110)

Let

F̄n =

(
min t ε (τb,∞) N

st
n (t) <

ρ(1 + m̄)

1 + ρ
n− ε1.n− n1−ε

)
⋃(

max t ε (τb,∞) N
st
n (t) >

ρ(1 + m̄)

1 + ρ
n+ ε1.n+ n1−ε

)
and F̄ ′n be its complement. Then, similar to (A.71)
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Ã1
n ≤

 b ρ(1+m̄)
1+ρ

n+n1−εc∑
k=d ρ(1+m̄)

1+ρ
n−n1−εe

E[W st,τb
n (sn,mn).1F̄n|N st

n (τb) = k]dn

 /denominator1,

=

 b ρ(1+m̄)
1+ρ

n+n1−εc∑
k=d ρ(1+m̄)

1+ρ
n−n1−εe

E[W st,τb
n (sn,mn)|F̄n, N st

n (τb) = k]P (F̄n|N st
n (τb) = k)dn


/denominator1.

(A.111)

For k = dρ(1+m̄)
1+ρ

n − n1−εe, . . . , bρ(1+m̄)
1+ρ

n + n1−εc, the event {F̄n | N st
n (τb) = k}

considers ∀ε1 > 0 whether the process {Nn(t), t ≥ 0}, after reaching steady state, will

ever visit the region {0, 1, . . . , bρ(1+m̄)
1+ρ

n−ε1.n−n1−εc}
⋃
{dρ(1+m̄)

1+ρ
n+ε1.n+n1−εe, . . .

, n+mn} if the observation starts at a state in {dρ(1+m̄)
1+ρ

n−n1−εe, . . . , bρ(1+m̄)
1+ρ

n+n1−εc}

at time τb. Note that since N st
n is a birth-and-death process with no absorbing

states, ∀k1, k2 =
{
dρ(1+m̄)

1+ρ
n− n1−εe, . . . , bρ(1+m̄)

1+ρ
n+ n1−εc

}
, P (F̄n|N st

n (τb) = k1) =

P (F̄n|N st
n (τb) = k2) and we denote this probability with P τb

d ρ(1+m̄)
1+ρ

n−n1−εe
. Then, from

Preliminaries-QD|ED d) we have
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Ã1
n

≤

 b ρ(1+m̄)
1+ρ

n+n1−εc∑
k=d ρ(1+m̄)

1+ρ
n−n1−εe

E[W st,τb
n (sn,mn) | F̄n, N st

n (τb) = k]P (F̄n | N st
n (τb) = k) dn


/denominator1

= P τb

d ρ(1+m̄)
1+ρ

n−n1−εe

·

 b ρ(1+m̄)
1+ρ

n+n1−εc∑
k=d ρ(1+m̄)

1+ρ
n−n1−εe

E[W st,τb
n (sn,mn) | F̄n, N st

n (τb) = k] dn

 /denominator1

≤ P τb

d ρ(1+m̄)
1+ρ

n−n1−εe

(
n

µmn

)  b ρ(1+m̄)
1+ρ

n+n1−εc∑
k=d ρ(1+m̄)

1+ρ
n−n1−εe

dn

 /denominator1

(A.112)

From Preliminaries-QD|ED d), P τb

d ρ(1+m̄)
1+ρ

n−n1−εe
→ 0; moreover, n

µmn
→ 1

µm̄
, and

0 ≤

 b ρ(1+m̄)
1+ρ

n+n1−εc∑
k=d ρ(1+m̄)

1+ρ
n−n1−εe

dn

 /denominator1 ≤ 1,

then we have Ã1
n → 0. Now we look at Ã2

n.

Following the same procedure for Ã1
n, and from Preliminaries-QD|ED c)

Ã2
n

=

 b ρ(1+m̄)
1+ρ

n+n1−εc∑
k=d ρ(1+m̄)

1+ρ
n−n1−εe

E[W st,τb
n (sn,mn) | 1F ′n , N st

n (τb) = k] P (F ′n | N st
n (τb) = k) dn


/denominator1.

(A.113)
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For k = dρ(1+m̄)
1+ρ

n− n1−εe, . . . , bρ(1+m̄)
1+ρ

n+ n1−εc

P (F ′n | N st
n (τb) = k) = 1− P (Fn | N st

n (τb) = k) (A.114)

and from Preliminaries-QD|ED d), as n→∞

P (Fn | N st
n (τb) = k) ≤ P (F̄n | N st

n (τb) = k)→ 0

⇒ P (F ′n|N st
n (τb) = k) = 1− P (Fn | N st

n (τb) = k)→ 1.
(A.115)

Then, from Preliminaries-QD|ED c) and d), and (A.113)-(A.115) we have for

ε1, ε2 > 0

(1− ε2)
{(
dρ(1+m̄)

1+ρ
n− n1−εe+ 1−mn

)
/
[
µbρ(1+m̄)

1+ρ
n+ ε1.n+ n1−εc

]}
Ã′2n ≤ Ã2

n

≤ (1 + ε2)
{(
bρ(1+m̄)

1+ρ
n+ n1−εc+ 1−mn

)
/
[
µdρ(1+m̄)

1+ρ
n− ε1.n− n1−εe

]}
Ã′2n

Ã′2n =

 b ρ(1+m̄)
1+ρ

n+n1−εc∑
k=d ρ(1+m̄)

1+ρ
n−n1−εe

dn

 /denominator1

(A.116)

Similar to Preliminaries-ED|ED-2 c) and (A.107), for Yn, Ȳn ∼ Binomial(n +

mn − 1, ρ
1+ρ

),

Ã′2n = P (dρ(1+m̄)
1+ρ

n− n1−εe ≤ Yn ≤ bρ(1+m̄)
1+ρ

n+ n1−εc)

.

[(
mn−1∑
k=0

an

)
/factor2 + P (mn ≤ Ȳn ≤ sn − 1) +

(
n+mn∑
k=sn

cn

)
/factor2

]−1

.

(A.117)

From Preliminaries-QD|ED b), CLT, and (A.108)
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P (dρ(1+m̄)
1+ρ

n− n1−εe ≤ Yn ≤ bρ(1+m̄)
1+ρ

n+ n1−εc)→ 1

P (mn ≤ Ȳn ≤ sn − 1)→ 1.
(A.118)

From Theorem 12, for QD|ED regime, for sufficiently large n, we know that

nρ > mn − 1. Hence, similar to (A.32), for k = 0, 1, 2, . . . ,mn − 2, for suff. large n,

(nρ)k/k! is increasing in k, and

[
mn−1∑
k=0

n (nρ)k

k!

]
/factor2 =

[
mn−1∑
k=0

n (nρ)k

k!

]
/
[
nmn n!

(n+mn−1)!
(1 + ρ)n+mn−1

]
≤
[
n (nρ)mn−1

(mn−1)!
mn

]
/
[
nmn n!

(n+mn−1)!
(1 + ρ)n+mn−1

]
.

(A.119)

Since,

[
n (nρ)mn−1

(mn−1)!
mn

]
/
[
nmn n!

(n+mn−1)!
(1 + ρ)n+mn−1

]
= (1+ρ) mn

ρ (n+mn)
ρmn mn

mn!
(n+mn)!

n! (1+ρ)n+mn ,

(A.120)

and because (1.2) implies ((1 + ρ) mn) / (ρ (n+mn)) → (1+ρ)m̄
ρ(1+m̄)

we will focus

on finding the limit of ρmn mn
mn!

(n+mn)!
n! (1+ρ)n+mn .

After applying Stirling’s approximation, n! ∼=
√

2πn nne−n, we have

ρmn mn
mn!

(n+mn)!
n! (1+ρ)n+mn

∼= ρmn mn√
2π

√
mn mnmn e−mn

√
2π

√
n+mn (n+mn)n+mn e−(n+mn)

√
2π

√
n nn e−n (1+ρ)n+mn

= 1√
2π

√
n+mn
n

√
mn

(
ρ(n+mn)
(1+ρ)mn

)mn (
n+mn
n(1+ρ)

)n
= 1√

2π

√
n+mn
n

√
mn exp

{
mn ln

(
ρ(n+mn)
(1+ρ)mn

)
+ n ln

(
n+mn
n(1+ρ)

)}
(A.121)

From Lemma 1, for 0 < ε < 1/2
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exp
{
mn ln

(
ρ(n+mn)
(1+ρ)mn

)
+ n ln

(
n+mn
n(1+ρ)

)}
= exp

{
n

[
m̄ ln

(
ρ(1+m̄)
(1+ρ)m̄

)
+ ln

(
1+m̄
1+ρ

)]
+ o (n1−ε)

}
,

(A.122)

and

m̄ ln
(
ρ(1+m̄)
(1+ρ)m̄

)
+ ln

(
1+m̄
1+ρ

)
= m̄ ln

(
(1+m̄)
(1+ρ)

)
+ m̄ ln

(
ρ
m̄

)
+ ln

(
(1+m̄)
(1+ρ)

)
= (1 + m̄) ln

(
(1+m̄)
(1+ρ)

)
+ m̄ ln

(
ρ
m̄

)
= (1 + ρ)

[(
1+m̄
1+ρ

)
ln
(

(1+m̄)
(1+ρ)

)
+ m̄

1+ρ
ln
(
ρ
m̄

)
− 1

1+ρ
ln
(
ρ
m̄

)
+ 1

1+ρ
ln
(
ρ
m̄

)]
= (1 + ρ)

[(
1+m̄
1+ρ

)
ln
(

(1+m̄)
(1+ρ)

ρ
m̄

)
− 1

1+ρ
ln
(
ρ
m̄

)]
=
[
(1 + m̄) ln

(
(1+m̄)
(1+ρ)

ρ
m̄

)
− ln

(
ρ
m̄

)]
=
[
−(1 + m̄) ln

(
m̄ (1+ρ)
(1+m̄) ρ

)
− ln

(
ρ
m̄

)]
.

(A.123)

Now we apply Taylor’s approximation for f(x) = −ln(x) at x0 = 1 (note that

1− m̄(1+ρ)
(1+m̄)ρ

= ρ−m̄
(1+m̄)ρ

). Then, for m̄ > 0 and k ≥ 2, (1 + m̄)
(

ρ−m̄
(1+m̄)ρ

)k
<
(
ρ−m̄
ρ

)k
, and

we have

[
−(1 + m̄)ln

(
(1+ρ)
(1+m̄)

m̄
ρ

)
− ln

(
ρ
m̄

)]
= (1 + m̄)

[
ρ−m̄

(1+m̄)ρ
+
(

ρ−m̄
(1+m̄)ρ

)2
1
2

+
(

ρ−m̄
(1+m̄)ρ

)3
1
3

+ . . .

]

−
[
ρ−m̄
ρ

+
(
ρ−m̄
ρ

)2
1
2

+
(
ρ−m̄
ρ

)3
1
3

+ . . .

]
< 0.

(A.124)

For m̄ = 0, we apply L’Hospital’s rule to m̄ ln
(
ρ(1+m̄)
(1+ρ)m̄

)
and
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lim
m̄→0

ln
(
ρ(1+m̄)
(1+ρ)m̄

)
/ (1/m̄) = lim

m̄→0
1/ [1/m̄+ 1] = 0. (A.125)

Following (A.122)-(A.125) we have

exp
{
mn ln

(
ρ(n+mn)
(1+ρ)mn

)
+ n ln

(
n+mn
n(1+ρ)

)}
→ exp{−∞} = 0, (A.126)

(1.2) and (A.121) with (A.126) gives

1√
2π

√
n+mn
n

√
mn / exp

{
−
[
mn ln

(
ρ(n+mn)
(1+ρ)mn

)
+ n ln

(
n+mn
n(1+ρ)

)]}
→ 1√

2π

√
1 + m̄ ∞

∞ .

(A.127)

Applying L’Hospital’s rule as in (A.44) gives

1√
2π

√
n+mn
n

√
mn / exp

{
−
[
mn ln

(
ρ(n+mn)
(1+ρ)mn

)
+ n ln

(
n+mn
n(1+ρ)

)]}
→ m̄
∞ = 0.

(A.128)

Then, (A.119)-(A.127) gives

[
mn−1∑
k=0

n (nρ)k

k!

]
/factor2 ≤

[
n (nρ)mn−1

(mn−1)!
mn

]
/
[

nmnn!
(n+mn−1)!

(1 + ρ)n+mn−1
]
→ 0

⇒
[
mn−1∑
k=0

n (nρ)k

k!

]
/factor2 → 0.

(A.129)

Now we look at

[
n+mn∑
k=sn

cn

]
/factor2. Contrary to ED|ED, we have (1+m̄)ρ

s̄(1+ρ)
< 1,

and following (A.68) gives

[
n+mn∑
k=sn

cn

]
/factor2 → 0 here.
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Following from (A.117) to here gives

Ã′2n =→ 1
0+1+0

= 1, (A.130)

and therefore (since ε1, ε2 > 0 are arbitrary) from (A.116) we get

Ã2
n → 1/µ− [m̄(1 + ρ)] / [µρ(1 + m̄)] (A.131)

From (A.64), (A.105), and (A.130)

 sn−1∑
k=d ρ(1+m̄)

1+ρ
n+n1−εe

E[W st
n (sn,mn) | N st

n (τb) = k] dn

+
n+mn∑
k=sn

E[W st
n (sn,mn) | N st

n (τb) = k] cn

]
/denominator1

≤
(

n
µmn

)(
1− Ã′2n

)
→ 0,

(A.132)

and we have

E[Drpl
n (sn,mn)] = Ãn + B̃n → 1/µ− [m̄(1 + ρ)] / [µρ(1 + m̄)] .� (A.133)

Proof of Formulas for lim
n→∞

E[Drpl
n (sn,mn)] for QED|ED

Note that this is the case with m̄ = s̄ + s̄/ρ − 1; when this equality is satisfied,

lim
n→∞

E[Drpl
n (sn,mn)] formulas for both ED|ED and QD|ED give the same value that

could be expressed as either way, and therefore we conclude that E[Drpl
n (sn,mn)]→

1/s̄µ− 1/λ = 1/µ− [m̄(1 + ρ)] / [µρ(1 + m̄)] .�

Proof of Formulas for lim
n→∞

E[Drpl
n (sn,mn)] for All Other Capacity Level Preferences

QED|QD and QD|QD: From (A.27) we know
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E[Drpl
n (sn,mn)] ≤

(
n

µmn

)[ ∑
k≥mn

(n− [k −mn]+)pstn,k

]
/

[∑
k

(n− [k −mn]+)pstn,k

]
.

(A.134)

Because our system is a closed network, the quantity at the right side is not

equal to the steady state probability of broken units being more than the spares.

Due to our fluid limit result, we know that the changes in the system state are of
√
n sensitivity, and it does not matter at the limit when it is possible to consider

a corresponding event that the scaled broken units process in (A.1) has a greater

value than the limiting scaled value of spares divided by n, m̄. In similar fashion to

Theorem 9 in [7], it can be shown that

lim
n→∞

[∑
k≥mn

(n− [k −mn]+)pstn,k

]
/

[∑
k

(n− [k −mn]+)pstn,k

]
= lim

n→∞
P (N st

n ≥ mn).

Then from Theorem 12 we have lim
n→∞

P (N st
n ≥ mn) = lim

n→∞
P (N

st
n

n
≥ mn

n
) → P (b ≥

m̄) = 0, and this implies lim
n→∞

E[Drpl
n (sn,mn)] = 0.

QD|QED and QED|QED: Let b as described in Theorem 12. Note that in these cases

b = m̄. As done in QD|ED it could be proven that db.n+n1−εe∑
k=bb.n−n1−εc

(n− [k −mn]+)pstn,k

 /[∑
k

(n− [k −mn]+)pstn,k

]
→ 1,

and therefore we will have

lim
n→∞

(
bb.n−n1−εc+1−mn

µbb.n+n1−εc

)
≤ lim

n→∞
E[Drpl

n (sn,mn)] ≤ lim
n→∞

(
bb.n+n1−εc+1−mn

µbb.n−n1−εc

)
⇒ lim

n→∞
E[Drpl

n (sn,mn)] = 0.�
(A.135)
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A.2 Proof of Theorem 2

As can be seen in Theorem 1 lim
n→∞

E[Drpl
n (sn,mn)] for ED|ED does not include m̄

and the limit for QD|ED does not include s̄, so the solution for the cost optimization

will have m̄ = 0 for ED|ED, and from Figure 1.2 it can be seen to reside on two

connected line segments; m̄ = 0, s̄ ε (0, λ
λ+µ

) and m̄ = s̄ + s̄
ρ
− 1, s̄ ε ( λ

λ+µ
, λ
µ
). The

first line segment is at the bottom of the ED|ED region and the second one is the

QED|ED region itself in Figure 1.2, here on we will refer to them as LS 1 and LS 2,

respectively.

At LS 1, we have lim
n→∞

C(sn,mn)
n

= ws̄+p
(

1
µs̄
− 1

λ

)
, and after taking the derivatives

w.r.t s̄

(
ws̄+ p

(
1
µs̄
− 1

λ

))′
= w − p

µ

(
1

(s̄)2

)
(
w − p

µ

(
1

(s̄)2

))′
= p

µ

(
2

(s̄)3

)
> 0

(A.136)

for s̄ > 0 since s̄ = 0 will give +∞ cost it is clearly not the solution. The cost

function is convex in this region, and therefore the first-order solution is optimal,

which gives (s̄ =
√
p/(wµ), m̄ = 0). However, this solution is valid only if s̄ =√

p/(wµ) ≤ λ/(λ+ µ).

Similarly, for LS 2 from Remark 1 we have lim
n→∞

C(sn,mn)
n

= ws̄ + c
[
s̄+ s̄

ρ
− 1
]

+

p
(

1
µs̄
− 1

λ

)
, and after taking the derivatives w.r.t s̄ we get

(
ws̄+ c

[
s̄+ s̄

ρ
− 1
]

+ p
(

1
µs̄
− 1

λ

))′
= w + c+ c

ρ
− p

µ

(
1

(s̄)2

)
(
w + c+ c

ρ
− p

µ

(
1

(s̄)2

))′
= p

µ

(
2

(s̄)3

)
> 0.

(A.137)

The cost function is convex in this region, and therefore the first-order solution

111



is optimal, which gives (s̄ =

√
p/
[
µ(w + c+ c

ρ
)
]
, m̄ = s̄ + s̄

ρ
− 1). However, this

solution is valid only if λ
λ+µ
≤ s̄ =

√
p/
[
µ(w + c+ c

ρ
)
]
≤ λ

µ
.

Now suppose both conditions obtained for s̄ from LS 1 and LS 2 hold. Then this

would mean p/(wµ) ≤
(

λ
λ+µ

)2

≤ p/
[
µ(w + c+ c

ρ
)
]
⇒ 1

w
≤ 1/

[
w + c+ c

ρ

]
, which

is a contradiction. Hence, both conditions cannot simultaneously hold. Thus, there

could be four cases:

1) Condition for LS 1 holds only: Then, we have

√
p/
[
µ(w + c+ c

ρ
)
]
<
√

p
wµ

<

λ
λ+µ

. From convexity, λ
λ+µ

is the best solution in LS 2, and since it is also in LS 1

and
√

p
wµ

is better, s̄ =
√

p
wµ
, m̄ = 0 is the solution.

2) Condition for LS 2 holds only: λ
λ+µ

is the best answer for LS 1, and since

s̄ =

√
p/
[
µ(w + c+ c

ρ
)
]

is better, s̄ =

√
p/
[
µ(w + c+ c

ρ
)
]
, m̄ = s̄ + s̄

ρ
− 1 is the

solution.

3) Both conditions are not satisfied and λ
µ
<

√
p/
[
µ(w + c+ c

ρ
)
]
<
√

p
wµ

: s̄ =

λ
λ+µ

is the best in LS 1 and s̄ = λ
µ

is the best in LS 2. Since LS 2 also includes

s̄ = λ
λ+µ

, s̄ = λ
µ
, m̄ = s̄+ s̄

ρ
− 1 is the solution.

4) Both conditions are not satisfied and

√
p/
[
µ(w + c+ c

ρ
)
]
< λ

λ+µ
<
√

p
wµ

:

s̄ = λ
λ+µ

is the best in LS 1 and LS 2 , therefore s̄ = λ
λ+µ

, m̄ = s̄ + s̄
ρ
− 1 is the

solution. �
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A.3 Proof of Theorem 3

A.3.1 Proof of Theorem 3 for Tε(0,∞)

Proof of Theorem 3 for Tε(0,∞), ED|ED

Proof of Theorem 3 for Tε(0,∞), ED|ED, and mn ≥ sn From (1.1), (1.2), and similar

to (A.27) we can write P (Drpl
n (sn,mn) > T ) as follows:

P (Drpl
n (sn,mn) > T )

=

( ∑
k≥mn

P (W st
n (sn,mn) > T |N st

n (τb) = k)(n− [k −mn]+)pstn,k

)

/

(∑
k

(n− [k −mn]+)pstn,k

)
(A.138)

Note that since we have more spare units than our repairmen, whenever a queue

for replacement units forms, all repairmen will be busy while the queue is nonempty.

Since a space at the demand base that experiences a breakdown when there are

k, k ≥ mn, units already broken down has to wait for k + 1 −mn repairs, from the

independence assumptions in the model, the waiting time for repair will be the sum

of k + 1 − mn independent exponentially distributed random variables with mean

1/µsn. Let an, bn and cn be as in Preliminaries-ED|ED-1) a), then we have

P (Drpl
n (sn,mn) > T ) =

[
n+mn∑
k=mn

k−mn∑
r=0

exp{−µsnT} (µsnT )r

r!
cn

]

/

[
sn−1∑
k=0

an +
mn−1∑
k=sn

bn +
n+mn∑
k=mn

cn

] (A.139)

Let factor1 =
(
ρ
sn

)n+mn−1
nmn

sn!
n! ssnn exp{ sn

ρ
} as in (A.30). Then, we can

write
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P (Drpl
n (sn,mn) > T )

= lim
n→∞

[
n+mn∑
k=mn

k−mn∑
r=0

exp{−µsnT} (µsnT )r

r!
cn/factor1

]

/

[
sn−1∑
k=0

an/factor1 +
mn−1∑
k=sn

bn/factor1 +
n+mn∑
k=mn

cn/factor1

]
.

(A.140)

Note that
sn−1∑
k=0

an/factor1 is the left side of (A.38) and
mn−1∑
k=sn

bn/factor1 is the left

side of (A.45). Then, from (A.30)-(A.45), we have

lim
n→∞

sn−1∑
k=0

an/factor1 = lim
n→∞

mn−1∑
k=sn

bn/factor1 = 0

. Moreover, from Preliminaries-ED|ED-1 e), CLT, and f) ii),
n+mn∑
k=mn

cn/factor1 =

P (Poisson(sn/ρ) ≤ n− 1)→ 1 as n→∞. From Preliminaries-ED|ED-1 e),

n+mn∑
k=mn

k−mn∑
r=0

exp{−µsnT} (µsnT )r

r!
cn/factor1

=
n+mn−1∑
k=mn

k−mn∑
r=0

exp{−µsnT} (µsnT )r

r!
1

(n+mn−k−1)!

(
sn
ρ

)n+mn−k−1

exp{− sn
ρ
}.

(A.141)

Let k′ = n+mn − 1− k; then, k −mn = n+mn − 1−mn − k′, and we have

n+mn−1∑
k=mn

k−mn∑
r=0

exp{−µsnT} (µsnT )r

r!
1

(n+mn−k−1)!

(
sn
ρ

)n+mn−k−1

exp{− sn
ρ
}

=
n−1∑
k′=0

n−1−k′∑
r=0

exp{−µsnT} (µsnT )r

r!
1
k′!

(
sn
ρ

)k′
exp{− sn

ρ
} = P (Xn + Yn ≤ n− 1)

(A.142)
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where Xn ∼ Poisson(µsnT ) and Yn ∼ Poisson
(
sn
ρ

)
. Since sum of two Poisson

random variables will have a Poisson distribution with a rate equal to sum of the

rates of the two random variables, we continue the last equation as

P (Xn + Yn ≤ n− 1) = P (Hn ≤ n− 1) (A.143)

where Hn ∼ Poisson(µsnT + sn
ρ

). We will apply CLT to take the limit as n→∞

of the last probability above. From (1.2),

[
n− 1− µsnT − sn

ρ

]
/
√
µsnT + sn

ρ

=
[
n
(

1− µs̄T − s̄
ρ

)
−
√
n
(
µŝnT + ŝn

ρ

)
− 1
]
/

√
n
(
µs̄T + s̄

ρ

)
+
√
n
(
µŝnT + ŝn

ρ

)

→


+∞ for 1− µs̄T − s̄

ρ
> 0

−ŝ/s̄ for 1− µs̄T − s̄
ρ

= 0

−∞ for 1− µs̄T − s̄
ρ
< 0

,

(A.144)

and we have

lim
n→∞

P (Xn + Yn ≤ n− 1) =


1 for 1− µs̄T − s̄

ρ
> 0

Φ (−ŝ/s̄) for 1− µs̄T − s̄
ρ

= 0

0 for 1− µs̄T − s̄
ρ
< 0

. (A.145)

Starting from (A.138) we conclude
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lim
n→∞

P (Drpl
n (sn,mn) > T )

= lim
n→∞

[
n+mn∑
k=mn

k−mn∑
r=0

exp{−µsnT} (µsnT )r

r!
cn/factor1

]

/

[
sn−1∑
k=0

an/factor1 +
mn−1∑
k=sn

bn/factor1 +
n+mn∑
k=mn

cn/factor1

]
= lim

n→∞
P (Hn ≤ n− 1)

=


1 for ED|ED,mn ≥ sn and 1− µs̄T − s̄

ρ
> 0

Φ (−ŝ/s̄) for ED|ED,mn ≥ sn and 1− µs̄T − s̄
ρ

= 0

0 for ED|ED,mn ≥ sn and 1− µs̄T − s̄
ρ
< 0

.�

(A.146)

Proof of Theorem 3 for Tε(0,∞), ED|ED, and sn ≥mn Let Fn be defined as in Pre-

liminaries -ED|ED-2 h),and an, cn, dn, be as in Preliminaries-ED|ED-1) and -2)a).

Then, we define
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P (Drpl
n (sn,mn) > T )

≡
[
sn−1∑
k=mn

P ({W st
n (sn,mn) > T} ∩ Fn | N st

n (τb) = k) dn

]

/

[
mn−1∑
k=0

an +
sn−1∑
k=mn

dn +
n+mn∑
k=sn

cn

]

+

[
n+mn∑
k=sn

P ({W st
n (sn,mn) > T} ∩ Fn | N st

n (τb) = k) cn

]

/

[
mn−1∑
k=0

an +
sn−1∑
k=mn

dn +
n+mn∑
k=sn

cn

]

+

[
sn−1∑
k=mn

P ({W st
n (sn,mn) > T} ∩ F ′n | N st

n (τb) = k) dn

]

/

[
mn−1∑
k=0

an +
sn−1∑
k=mn

dn +
n+mn∑
k=sn

cn

]
[
n+mn∑
k=sn

P ({W st
n (sn,mn) > T} ∩ F ′n | N st

n (τb) = k) cn

]

/

[
mn−1∑
k=0

an +
sn−1∑
k=mn

dn +
n+mn∑
k=sn

cn

]
.

(A.147)

Since P ({W st
n (sn,mn) > T} | Fn, N st

n (τb) = k) ≤ 1, similar to for Ãn in (A.65)-

(A.69),
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[
sn−1∑
k=mn

P ({W st
n (sn,mn) > T} ∩ Fn | N st

n (τb) = k) dn

]

/

[
mn−1∑
k=0

an +
sn−1∑
k=mn

dn +
n+mn∑
k=sn

cn

]

+

[
sn−1∑
k=mn

P ({W st
n (sn,mn) > T} ∩ F ′n | N st

n (τb) = k) dn

]

/

[
mn−1∑
k=0

an +
sn−1∑
k=mn

dn +
n+mn∑
k=sn

cn

]
→ 0;

(A.148)

and similar to (A.71)-(A.74) we have

[
n+mn∑
k=sn

P ({W st
n (sn,mn) > T} ∩ Fn | N st

n (τb) = k) cn

]

/

[
mn−1∑
k=0

an +
sn−1∑
k=mn

dn +
n+mn∑
k=sn

cn

]
→ 0.

(A.149)

Continuing in the same manner as in (A.75)-(A.80),

lim
n→∞

[
n+mn∑
k=sn

P ({W st
n (sn,mn) > T} ∩ F ′n | N st

n (τb) = k) cn

]

/

[
mn−1∑
k=0

an +
sn−1∑
k=mn

dn +
n+mn∑
k=sn

cn

]

= lim
n→∞

[
n+mn∑
k=sn

k−mn∑
r=0

exp{−µsnT} (µsnT )r

r!
cn

]
/

[
mn−1∑
k=0

an +
sn−1∑
k=mn

dn +
n+mn∑
k=sn

cn

]
.

(A.150)

Then, we can write
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[
n+mn∑
k=sn

k−mn∑
r=0

exp{−µsnT} (µsnT )r

r!
cn

]
/

[
mn−1∑
k=0

an +
sn−1∑
k=mn

dn +
n+mn∑
k=sn

cn

]
.

=

[
n+mn∑
k=mn

k−mn∑
r=0

exp{−µsnT} (µsnT )r

r!
cn

]
/

[
mn−1∑
k=0

an +
sn−1∑
k=mn

dn +
n+mn∑
k=sn

cn

]
.

−
[
sn−1∑
k=mn

k−mn∑
r=0

exp{−µsnT} (µsnT )r

r!
cn

]
/

[
mn−1∑
k=0

an +
sn−1∑
k=mn

dn +
n+mn∑
k=sn

cn

]
.

(A.151)

Let factor1 be as in (A.30). We can write, from (A.83)-(A.93) and (A.141)-

(A.142),

[
n+mn∑
k=mn

k−mn∑
r=0

exp{−µsnT} (µsnT )r

r!
cn/factor1

]

/

[
mn−1∑
k=0

an/factor1 +
sn−1∑
k=mn

dn/factor1 +
n+mn∑
k=sn

cn/factor1

]

=


1 for 1− µs̄T − s̄

ρ
> 0

Φ (−ŝ/s̄) for 1− µs̄T − s̄
ρ

= 0

0 for 1− µs̄T − s̄
ρ
< 0

.

(A.152)

Moreover, from Preliminaries-ED|ED-1)e) and (A.83)-(A.93) again

[
sn−1∑
k=mn

k−mn∑
r=0

exp{−µsnT} (µsnT )r

r!
cn/factor1

]

/

[
mn−1∑
k=0

an/factor1 +
sn−1∑
k=mn

dn/factor1 +
n+mn∑
k=sn

cn/factor1

]

≤
[
sn−1∑
k=mn

cn/factor1

]
/

[
mn−1∑
k=0

an/factor1 +
sn−1∑
k=mn

dn/factor1 +
n+mn∑
k=sn

cn/factor1

]
→ lim

n→∞
P (n+mn − sn < Poisson(sn/ρ) < n− 1);

(A.153)
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and since

[n+mn − sn − sn/ρ] /
√
sn/ρ =

[
n(1 + m̄− s̄− s̄/ρ) +

√
n(m̂− ŝ− ŝ/ρ)

]
/
√
sn/ρ

with inequalities for ED|ED from Theorem 12 and Preliminaries-ED|ED-1 f)ii) gives

(using CLT with Zn ∼ Normal(0, 1))

lim
n→∞

P (n+mn − sn < Poisson(sn/ρ) < n− 1) = Φ (+∞ < Zn < +∞) = 0,

(A.154)

we conclude that

P (Drpl
n (sn,mn) > T ) =


1 for ED|ED, sn > mn, 1− µs̄T − s̄

ρ
> 0

Φ (−ŝ/s̄) for ED|ED, sn > mn, 1− µs̄T − s̄
ρ

= 0

0 for ED|ED, sn > mn, 1− µs̄T − s̄
ρ
< 0

.�

(A.155)

Proof of Theorem 3 for Tε(0,∞), QED|QD-ED|QD-ED|QED, QED|QED, QD|QED,
QD|QD

Suppose lim
n→∞

P (Drpl
n (sn,mn) > T ) > 0; from Theorem 1 we know that

lim
n→∞

E[Drpl
n (sn,mn)] = 0

for these cases. Since it leads to a contradiction,

lim
n→∞

P (Drpl
n (sn,mn) > T ) = 0

here.�

A.3.2 Proof of Theorem 3 for T = 0

Proof of Theorem 3 for T = 0, ED|ED, QED|ED, and QD|ED

Note that when T = 0, we are actually looking at the probability of delay until

replacement, and it considers the event the number of broken units is greater than
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the spares at the time of a random breakdown; or in other words, it considers an event

that after a breakdown, a space at the demand base will see the system at a state

such that the number of broken units is more than the number of spares. Because

our system is a closed network, this event is not equal to the steady state probability

of broken units being more than the spares. Due to our fluid limit result, we know

that the changes in the system state (number of broken units) are of
√
n sensitivity,

and it does not matter at the limit when it is possible to consider a corresponding

event that the scaled broken machines process in (A.1) has a greater value than the

limiting scaled value of spares divided by n, m̄. In similar fashion to Theorem 9 in

[7], it can be shown that

lim
n→∞

P (Drpl
n (sn,mn) > 0) = lim

n→∞
P (N st

n (sn,mn) ≥ mn) (A.156)

From Theorem 12 we have lim
n→∞

P (N st
n (sn,mn) ≥ mn) = lim

n→∞
P (N st

n (sn,mn)/n ≥

mn/n)→ P (b ≥ m̄) = 1, and this implies lim
n→∞

P (Drpl
n (sn,mn) > 0) = 1.

Proof of Theorem 3 for T = 0, QD|QD

From Theorem 12

lim
n→∞

P (Drpl
n (sn,mn) > 0) = lim

n→∞
P (N st

n (sn,mn) ≥ mn)

= lim
n→∞

P (N st
n (sn,mn)/n ≥ mn/n)→ P (b ≥ m̄) = 0.

(A.157)

Proof of Theorem 3 for T = 0, QED|QED

We separate the proof into four main cases: m̂ > ŝ and ŝ 6= 0, m̂ > ŝ and ŝ = 0,

m̂ < ŝ, and m̂ = ŝ.

Before we study the cases, we will give a useful lemma.
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Lemma 2. Let an and cn be sequences of real numbers with an → a and cn → c, and

b a constant. Then,

e−anb
√
n
(

1 + an√
n

)bn+cn
√
n

→ e−
a2b
2

+ac (A.158)

Proof of Lemma 2

e−anb
√
n
(

1 + an√
n

)bn+cn
√
n

= e−anb
√
ne

(bn+cn
√
n)ln

(
1+ an√

n

)
(A.159)

Using Taylor’s approximation for f(x) = ln(1 + x) at the point x0 = 0 and the

definition; a function f(n) is o(nx) if f(n)
nx
→ 0 as n→∞, we have

e−anb
√
ne

(bn+cn
√
n)ln

(
1+ an√

n

)
= e−anb

√
ne

(bn+cn
√
n)

(
an√
n
−a

2
n

2n
+o( 1

n)
)

= e−anb
√
ne
anb
√
n−a

2
nb

2
+o(1)+ancn−

a2
ncn

2
√
n

+o
(

1√
n

)
→ e−

a2b
2

+ac. �

(A.160)

Case 1) m̂ > ŝ and ŝ 6= 0: For sufficiently large n, from (1.2) and m̄ = s̄ = ρ for

QED|QED, this leads to mn > sn.

From (1.1) and similar to above, we have

P (Drpl
n (sn,mn) > 0)

=

n+mn∑
k=mn

(n+mn−k)n
mn

sn!
n!

(n+mn−k)!
snsn( ρ

sn
)
k

sn−1∑
k=0

nn
k

k!
ρk+

mn−1∑
k=sn

n n
k

sn!
snsn( ρ

sn
)
k
+
n+mn∑
k=mn

(n+mn−k)n
mn
sn!

n!
(n+mn−k)!

snsn( ρ
sn

)
k

= Cn
An+Bn+Cn

=
(

1 + Bn
Cn

+ An
Cn

)−1

(A.161)

where we define An, Bn, and Cn as

122



An ≡
sn−1∑
k=0

nn
k

k!
ρk, Bn ≡

mn−1∑
k=sn

n nk

sn!
sn

sn
(
ρ
sn

)k
,

Cn ≡
n+mn∑
k=mn

(n+mn − k)n
mn

sn!
n!

(n+mn−k)!
sn

sn
(
ρ
sn

)k (A.162)

Now we look at the values of An, Bn, and Cn. Notice that

An = ne−nρenρ
sn−1∑
k=0

(nρ)k

k!
= nenρ

sn−1∑
k=0

e−nρ (nρ)k

k!
= nenρP (Xn ≤ sn − 1) (A.163)

where Xn ∼ Poisson(nρ). Moreover, we have

Bn = n sn
sn

sn!

mn−1∑
k=sn

(
nρ
sn

)k
= n sn

sn

sn!

(
mn−1∑
k=0

(
nρ
sn

)k
−

sn−1∑
k=0

(
nρ
sn

)k)
(A.164)

Multiplying and dividing Cn by sn
n+mn−1, ρn+mn−1, and e−

sn
ρ and reindexing our

summation, we have

Cn = nmn

sn!
n! sn

sn
n+mn∑
k=mn

(n+mn − k) 1
(n+mn−k)!

(
sn
ρ

)−k
= nmn

sn!
n! sn

sn ρn+mn−1

snn+mn−1 e
sn
ρ

n+mn−1∑
k=mn

e−
sn
ρ

(
sn
ρ

)n+mn−k−1
1

(n+mn−k−1)!

= nmn

sn!
n! sn

sn
(
ρ
sn

)n+mn−1

e
sn
ρ

n−1∑
j=0

e−
sn
ρ

(
sn
ρ

)j
1
j!

= nmn

sn!
n! sn

sn
(
ρ
sn

)n+mn−1

e
sn
ρ P (Yn ≤ n− 1),

(A.165)

where Yn ∼ Poisson
(
sn
ρ

)
. By (A.161)–(A.165), we have
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P (Drpl
n (sn,mn) > 0)

=

1 +
n sn

sn

sn!

(
mn−1∑
k=0

(nρsn )
k
−
sn−1∑
k=0

(nρsn )
k

)
nmn
sn!

n! snsn ( ρ
sn

)
n+mn−1

e
sn
ρ P (Yn≤ n−1)

+ nenρP (Xn≤ sn−1)

nmn
sn!

n! snsn ( ρ
sn

)
n+mn−1

e
sn
ρ P (Yn≤ n−1)


−1

=

(
1 +

(
sn
ρ

)n+mn−1
1

nmn−1 n! e
sn
ρ

(
mn−1∑
k=0

(
nρ
sn

)k
−

sn−1∑
k=0

(
nρ
sn

)k)
1

P (Yn≤n−1)

+
(
sn
ρ

)n+mn−1
sn!e

nρ− snρ P (Xn≤sn−1)
nmn−1 n! snsn P (Yn≤n−1)

)−1

(A.166)

We divide the expression above into four parts and take the limit as n → ∞ of

each part to obtain the limit of the whole expression. These parts are:

P (Xn ≤ sn − 1), P (Yn ≤ n− 1)

(
sn
ρ

)n+mn−1
1

nmn−1 n! e
sn
ρ

(
mn−1∑
k=0

(
nρ
sn

)k
−

sn−1∑
k=0

(
nρ
sn

)k)
,

and sn!
nmn−1

1
n!

1
snsn

(
sn
ρ

)n+mn−1

enρ−
sn
ρ

(A.167)

From (1.2), CLT and continuity of the standard normal cdf, we have

P (Xn ≤ sn − 1) = P
(
Xn−nρ√

nρ
≤ sn−1−nρ√

nρ

)
= P

(
Xn−nρ√

nρ
≤ sn−nρ√

nρ
− 1√

nρ

)
= P

(
Xn−nρ√

nρ
≤ ( snn −ρ) n√

n
√
ρ
− 1√

nρ

)
= P

(
Xn−nρ√

nρ
≤ 1√

ρ

(
sn
n
− ρ
)√

n− 1√
ρ

1√
n

)
→ Φ

(
ŝ√
ρ

)
(A.168)
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P (Yn ≤ n− 1) = P

(
Yn− snρ√

sn
ρ

≤ n−1− sn
ρ√

sn
ρ

)
= P

(
Yn− snρ√

sn
ρ

≤ nρ−sn
ρ
√

sn
ρ

− 1√
sn
ρ

)

= P

(
Yn− snρ√

sn
ρ

≤ (ρ− snn )n
√
ρ
√
sn
− 1√

sn
ρ

)
= P

(
Yn− snρ√

sn
ρ

≤ (ρ− snn )
√
n

√
ρ
√

sn
n

− 1√
sn
ρ

)
→ Φ

(
−ŝ
ρ

)
.

(A.169)

To explore the limits of the remaining terms, we will use Stirling’s approximation,

n! ∼=
√

2πn nne−n. Note that by f(n) ∼= g(n) we mean f(n) = g(n)(1 + o(1)). If

f(n) ∼= g(n) and lim
n→∞

f(n) exists, then g(n) has the same limit. Moreover, from

(1.2) and Theorem 12, we have sn = nρ+ ŝn
√
n and mn = nρ+ m̂n

√
n. Hence, we

have

(
sn
ρ

)n+mn−1
1

nmn−1 n! e
sn
ρ

(
mn−1∑
k=0

(
nρ
sn

)k
−

sn−1∑
k=0

(
nρ
sn

)k) ∼=
(
sn
ρ

)n+mn (
nρ
sn

)
1

nmn
√

2πn nn e−n e
sn
ρ

(
(nρsn )

mn−(nρsn )
sn

(nρsn−1)

)

=
(
sn
nρ

)n+mn (
nρ
sn

)
1√

2π
√
n
en−

sn
ρ

(
(nρsn )

mn−(nρsn )
sn

(nρsn−1)

)

=
(
sn
nρ

)n+mn (
nρ
sn

)
nρ+ŝn

√
n√

2π ŝn n
e−ŝn

√
n
ρ

((
nρ
sn

)sn
−
(
nρ
sn

)mn)
(A.170)

Using Lemma 2,
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e−
ŝn
ρ

(1+ρ)
√
n
(
sn
nρ

)n+mn
= e−

ŝn
ρ

(1+ρ)
√
n
(

1 + ŝn
ρ

1√
n

)(1+ρ)n+m̂n
√
n

→ e
− ŝ

2

ρ2
(1+ρ)

2
+ ŝm̂

ρ

(
nρ
sn

)
=
(
sn
nρ

)−1

=
(

1 + ŝn
ρ

1√
n

)−1

→ 1−1 = 1

eŝn
√
n
(
nρ
sn

)sn
= eŝn
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eŝn
√
n
(
nρ
sn

)mn
= eŝn
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and therefore
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√
n
ρ e−ŝn
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− ŝ2
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e
ŝ
ρ
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) (A.172)

Hence, we have shown that
(
sn
ρ

)n+mn−1
1

nmn−1 n! e
sn
ρ

(
mn−1∑
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(
nρ
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)k
−

sn−1∑
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(
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)k)
in (A.167) converges to
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φ
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ŝ
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)
ρ
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1− e−
ŝ(m̂−ŝ)

ρ

)]
/
[
ŝe−

ŝ(m̂−ŝ)
ρ

]
. Finally, for the fourth

part of (A.167), we apply Stirling’s approximation twice, to yield

sn!
nmn−1

1
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1
snsn

(
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(A.173)

Now, from (A.171)
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(A.174)

Hence, we have shown that sn!
nmn−1

1
n!

1
snsn

(
sn
ρ
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ρ in (A.167) converges

to
[√

ρ φ
(
ŝ
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)
e
ŝ(m̂−ŝ)

ρ

]
/
[
φ
(
− ŝ√
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.

Therefore, we finally showed that the probability in (A.166) converges to
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ρ
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ŝ
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− ŝ√

ρ

)
Φ
(
− ŝ
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as stated in Theorem 3 for the case QED|QED, m̂ > ŝ, and ŝ 6= 0. Now we

proceed to the second case.

Case 2) m̂ > ŝ and ŝ = 0: Since m̄ > s̄ for sufficiently large n, we have the same

formula for P (Drpl
n (sn,mn) > 0) as Case 1. Hence,

An = nenρP (Xn ≤ sn − 1)

Bn = n sn
sn

sn!

(
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(
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k=0

(
nρ
sn

)k)
= n sn

sn
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(
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(
nρ
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)k
Cn = nmn

sn!
n! sn
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(
ρ
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)n+mn−1

e
sn
ρ P (Yn ≤ n− 1),

(A.175)

and P (Drpl
n (sn,mn) > 0) =

(
1 + Bn

Cn
+ An

Cn

)−1

. To find the limit of P (Drpl
n (sn,mn)

> 0) as n → ∞, we start by taking the limit of Bn/Cn as n → ∞. Using Stirling’s

approximation with (1.2), we have
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ŝn
ρ

(1+ρ)
√
n
(
nρ
sn

)
. 1√

2π
1√
n

(m̂n−ŝn)
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(A.176)

Since ŝ = 0 and by (1.2), the Central Limit Theorem (CLT) and continuity of

the standard normal cdf, we have

[P (Yn ≤ n− 1)]−1 =

[
P
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ρ

)
/
√
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ρ
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n− sn

ρ
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√
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=
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√
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(A.177)
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From ŝ = 0, (A.171) and (A.177)

1
P (Yn≤n−1)

eŝn
√
n
(
nρ
sn

)sn (
sn
nρ

)n+mn
e−

ŝn
ρ

(1+ρ)
√
n
(
nρ
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)
→ 2 (A.178)

Now we concentrate on 1√
n

(m̂n−ŝn)
√
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(
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√
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(A.179)

For each value of n, two cases are possible: ŝn < 0 and ŝn ≥ 0. Hence, for any n,

either

(m̂n − ŝn) ≤ 1√
n

[
1 +

(
nρ

nρ+ŝn
√
n

)
+ . . .+

(
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(A.180)

or

(m̂n − ŝn) ≥ 1√
n
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(
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√
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(A.181)

In both cases, 1√
n

(m̂n−ŝn)
√
n−1∑
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(
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√
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(
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√
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√
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. Now we will study the limits of both bounds. From

ŝ = 0, (m̂n − ŝn) → m̂. In addition, from Lemma 2
(
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√
n
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√
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=
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(
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ρ
√
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√
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→ 1. Thus, both bounds approach m̂, and we have 1√
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→ m̂. The limit of the whole expression is (continuing from

(A.176)):
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(A.182)

Now we study the limit of An
Cn

. From (A.168), (A.177), ŝ = 0, (A.173), and

(A.174), we have
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= (enρP (Xn ≤ sn − 1)) /

(
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n! sn

sn
(
ρ
sn

)n+mn−1

e
sn
ρ P (Yn ≤ n− 1)

)

= sn!
nmn−1

1
n!

1
snsn

(
sn
ρ

)n+mn−1

enρ−
sn
ρ
P (Xn≤sn−1)
P (Yn≤n−1)

→ √ρ e−
ŝ2
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(A.183)

Hence, we finally showed that the probability in (A.166) converges to

(
1 +

√
2
π
m̂+

√
ρ
)−1

(A.184)

as stated in Theorem 3 for the case m̂ > ŝ and ŝ = 0. Now we proceed to the

third case.

Case 3) m̂ < ŝ: For sufficiently large n, this leads to mn < sn.

Define An, Bn, and Cn (using (1.1)) as
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(A.185)

We have

P (Drpl
n (sn,mn) > 0) = Bn+Cn

An+Bn+Cn
=
(

1 + An
Bn+Cn

)−1
(A.186)

Now we look at the values of An, Bn, and Cn. Notice that

An = nenρe−nρ
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where Xn ∼ Poisson(nρ). Moreover, since ρ = λ
µ

we have
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(A.188)

where Yn ∼ Binomial(n+mn − 1, λ
λ+µ

).
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Multiplying and dividing Cn by sn
n+mn−1, ρn+mn−1, and e−

sn
ρ and reindexing our

summation, we have
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(A.189)

where Zn ∼ Poisson
(
sn
ρ

)
. By (A.186)–(A.189), we have
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(A.190)

To obtain the limit as n → ∞ of the quantity above, we study the limits of the

parts:
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P (Xn ≤ mn − 1), P (mn ≤ Yn ≤ sn − 1), P (Zn ≤ n+mn − sn − 1)
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(A.191)

Similar to the previous cases, from (A.4) for QED|QED, (1.2), the CLT and

continuity of the standard normal cdf, we have

P (Xn ≤ mn − 1) = P
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(A.192)
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(A.193)

134



P (Zn ≤ n+mn − sn − 1)

= P

((
Zn − sn

ρ

)
/
√

sn
ρ
≤
(
n+mn − sn − 1− sn

ρ

)
/
√

sn
ρ

)

= P

((
Zn − sn

ρ

)
/
√

sn
ρ
≤
(
n+mn − sn

(
1 + 1

ρ

)
− 1− nρ+ nρ

)
/
√

sn
ρ

)

= P

((
Zn − sn

ρ

)
/
√

sn
ρ
≤
[(

mn
n
− ρ
)
n
]
/
√

sn
ρ

+
(
n+ nρ− 1− sn

(
1 + 1

ρ

))
/
√

sn
ρ

)

= P

((
Zn − sn

ρ

)
/
√

sn
ρ

≤
[(

mn
n
− ρ
)√

n
]
/
√

sn
nρ
−
(

1− nρ
(

1 + 1
ρ

)
+ sn

(
1 + 1

ρ

))
/
√

sn
ρ

)

= P

((
Zn − sn

ρ

)
/
√

sn
ρ

≤
[(

mn
n
− ρ
)√

n
]
/
√

sn
nρ
−
(

1 +
(
sn
n
− ρ
)√

n
(

1 + 1
ρ

))
/
√

sn
nρ

)

→ Φ
(
m̂− ŝ
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(A.194)

As in the previous cases, we use Stirling’s approximation, and Lemma 2 to get
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Note that the last part of (A.205) is the reciprocal of the last part of (A.167).

Hence, from (A.174) we have
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(A.196)

Hence, from (A.192)-(A.196) we have
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P (Drpl
n (sn,mn) > 0)

= (1 + P (Xn ≤ mn − 1)

{nmn−1 n! (1 + ρ)n+mn−1((n+mn − 1)!)−1 e−nρ P (mn ≤ Yn ≤ sn − 1)

+nmn−1(sn!)−1 n! sn
sn
(
ρ
sn

)n+mn−1

e
sn
ρ
−nρ P (Z ≤ n+mn − sn − 1)

})−1

→
(

1 + Φ
(
m̂√
ρ

)
{(√

(1 + ρ)
)−1 φ(−m̂/√ρ)

φ
(
m̂/
√
ρ(1+ρ)

)
[
Φ
(
ŝ
√

1 + 1
ρ
− m̂/

√
1 + 1

ρ

)
− Φ

(
m̂√

(1+ρ)ρ

)]

+ 1√
ρ

φ(−m̂/√ρ)
φ((1+1/ρ)ŝ−m̂)

φ
(
ŝ
√

1+1/ρ−m̂/
√

1+1/ρ
)

φ
(
m̂/
√
ρ(1+ρ)

) Φ
(
m̂− ŝ

(
1 + 1

ρ

))})−1

(A.197)

Case 4) m̂ = ŝ: For any ε > 0 and for sufficiently large n, this leads to

sn − 2ε
√
n < mn < sn + 2ε

√
n. It can be shown that the delay is decreasing in the

capacity level used. For sufficiently large n,

P (Drpl
n (sn, sn + 2ε

√
n) > 0) < P (Drpl

n (sn,mn) > 0) < P (Drpl
n (sn, sn − 2ε

√
n) > 0),

(A.198)

the limiting probability of delay until replacement for this case will be between

the limits of the bounds above; so, it will be between the probability of delay until

replacement obtained in the case where m̂ > ŝ and the case where m̂ < ŝ (remember

that these cases correspond to mn > sn and sn > mn, respectively).

Thus, for ŝ 6= 0 we have
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(
1 + ρ

(
1− e−

ŝ(m̂−ŝ)
ρ

)
φ
(
ŝ
ρ

)
/
[
ŝ e−

ŝ(m̂−ŝ)
ρ Φ

(
− ŝ
ρ

)]
+
√
ρ φ
(
ŝ
ρ

)
e
ŝ(m̂−ŝ)

ρ Φ
(

ŝ√
ρ

)
/
[
φ
(
− ŝ√

ρ

)
Φ
(
− ŝ√

ρ

)])−1

< limn→∞ P (Drpl
n (sn,mn) > 0)

<
(

1 + Φ
(
m̂√
ρ

)
/
[

1√
1+ρ

φ
(
− m̂√

ρ

)
A+ 1√

ρ
φ
(
− m̂√

ρ

)
B
])−1

(A.199)

where

A =

[
Φ

(
ŝ
√

1 + 1
ρ
− m̂√

1+ 1
ρ

)
− Φ

(
m̂√
ρ(1+ρ)

)]
/φ

(
m̂√
ρ(1+ρ)

)

B =

[
φ

(
ŝ
√

1 + 1
ρ
− m̂√

1+ 1
ρ

)
Φ
(
m̂−

(
1 + 1

ρ

)
ŝ
)]

/

[
φ

(
m̂√
ρ(1+ρ)

)
φ
((

1 + 1
ρ

)
ŝ− m̂

)]
,

(A.200)

and for ŝ = 0 we have

(
1 +

√
2
π
m̂+

√
ρ
)−1

< limn→∞ P (Drpl
n (sn,mn) > 0)

<
(

1 + Φ
(
m̂√
ρ

)
/
[

1√
1+ρ

φ
(
− m̂√

ρ

)
A+ 1√

ρ
φ
(
− m̂√

ρ

)
B
])−1

(A.201)

where

A =

[
Φ

(
− m̂√

1+ 1
ρ

)
− Φ

(
m̂√
ρ(1+ρ)

)]
/φ

(
m̂√
ρ(1+ρ)

)

B =

[
φ

(
− m̂√

1+ 1
ρ

)
Φ (m̂)

]
/

[
φ

(
m̂√
ρ(1+ρ)

)
φ (−m̂)

]
.

(A.202)

Letting m̂→ ŝ in the inequalities above, for ŝ 6= 0 we get
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(
1 + ρ

(
1− e−

ŝ(m̂−ŝ)
ρ

)
φ
(
ŝ
ρ

)
/
[
ŝ e−

ŝ(m̂−ŝ)
ρ Φ

(
− ŝ
ρ

)]
√
ρ φ
(
ŝ
ρ

)
e
ŝ(m̂−ŝ)

ρ Φ
(

ŝ√
ρ

)
/
[
φ
(
− ŝ√

ρ

)
Φ
(
− ŝ√

ρ

)])−1

< limn→∞ P (Drpl
n (sn,mn) > 0)

<
(

1 + ρ
(

1− e−
ŝ(m̂−ŝ)

ρ

)
φ
(
ŝ
ρ

)
/
[
ŝ e−

ŝ(m̂−ŝ)
ρ Φ

(
− ŝ
ρ

)]
+
√
ρ φ
(
ŝ
ρ

)
e
ŝ(m̂−ŝ)

ρ Φ
(

ŝ√
ρ

)
/
[
φ
(
− ŝ√

ρ

)
Φ
(
− ŝ√

ρ

)])−1

(A.203)

and for ŝ = 0 we get

(1 +
√
ρ)−1 < lim

n→∞
P (Drpl

n (sn,mn) > 0) < (1 +
√
ρ)−1 .�

Proof of Theorem 3 for T = 0, QD|QED

Since from Theorem 12 and Table A.4 we know that m̄ < s̄, for sufficiently large n

this implies mn < sn. Let An, Bn, and Cn be as in Case 3 above. Then, (A.185)-

(A.188) are still valid. Similar to (A.204) and (A.205),

P (Drpl
n (sn,mn) > 0)

= (1 + P (Xn ≤ mn − 1)[
(1/nenρ)nmn n! (1+ρ)n+mn−1

(n+mn−1)!
P (mn ≤ Yn ≤ sn − 1)

+ (1/nenρ)
n+mn∑
k=sn

(n+mn − k)n
mn

sn!
n!

(n+mn−k))! snsn−k ρk

])−1

(A.204)

To obtain the limit as n → ∞ of the quantity above, we study the limits of the

parts:
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P (Xn ≤ mn − 1), P (mn ≤ Yn ≤ sn − 1),

nmn−1 n! (1+ρ)n+mn−1

(n+mn−1)!
e−nρ, (1/nenρ)

n+mn∑
k=sn

(n+mn − k)n
mn

sn!
n!

(n+mn−k))!
sn

sn−k ρk.

(A.205)

From Theorem 12, (A.192) is still valid; since s̄+ s̄/ρ−1 > m̄⇒ s̄−(1+m̄) λ
λ+µ

>

0, from (A.193) P (mn ≤ Yn ≤ sn− 1)→ 1−Φ

(
m̂√

(1+ρ)ρ

)
; (A.195) is still valid, and

now we look at the limit of the last part.

First, note that

(1/nenρ)
n+mn∑
k=sn

(n+mn − k)n
mn

sn!
n!

(n+mn−k))!
sn

sn−k ρk

= nmn

sn!
n! sn

sn (1/nenρ)
n+mn−1∑
k=sn

n!
(n+mn−k−1)!

(
ρ
sn

)k
,

(A.206)

and for k = sn, sn + 1, . . . , n+mn − 1 (and for sufficiently large n)

(
1

(n+mn−k)!

(
ρ
sn

)k+1
)
/

(
1

(n+mn−k−1)!

(
ρ
sn

)k)
= ρ

sn
(n+mn − 1− k)

≤ ρ
sn

(n+mn − 1− sn) ∼= (1 + m̄− s̄)/(s̄/ρ) < 1.

(A.207)

Thus,

(
1

(n+mn−k−1)!

(
ρ
sn

)k)
is decreasing for k = sn, sn + 1, . . . , n+mn − 1, and

nmn

sn!
n! sn

sn (1/nenρ)
n+mn−1∑
k=sn

n!
(n+mn−k−1)!

(
ρ
sn

)k
≤ nmn

sn!
n! sn

sn (1/nenρ) n!
(n+mn−sn−1)!

(
ρ
sn

)sn
(n+mn − sn)

(A.208)

Applying Stirling’s approximation gives
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nmn

sn!
n! sn

sn (1/nenρ) n!
(n+mn−sn−1)!

(
ρ
sn

)sn
(n+mn − sn)

= nmn
√

2πn nn e−n√
2π
√
sns

sn
n e−sn

ssnn
1

n enρ

(
ρ
sn

)sn (n+mn−sn)2

(n+mn−sn)!

= nn+mn 1√
sn
esn−n 1

enρ

(
ρ
sn

)sn (n+mn−sn)2
√

2π
√
n+mn−sn (n+mn−sn)(n+mn−sn) e−(n+mn−sn)

= (n+mn−sn)2

√
sn
√
n+mn−sn

1√
2π
esn−n−nρ+n+mn−sn

(
n

n+mn−sn

)n+mn ( (n+mn−sn)ρ
sn

)sn
.

(A.209)

Similar to (A.35) and from Lemma 1 we continue (0 < ε < 1/2)

= (n+mn−sn)2

√
sn
√
n+mn−sn

1√
2π

exp
{
n
[
−(1 + ρ) ln(1 + ρ− s̄) + s̄ ln

(
(1+ρ−s̄)ρ

s̄

)]
+ o(n1−ε)

}
.

(A.210)

Using Taylor’s approximation similar to (A.36),

−(1 + ρ) ln(1 + ρ− s̄) = (1 + ρ)
[
(s̄− ρ) + (s̄−ρ)2

2
+ . . .

]
,

s̄ ln
(

(1+ρ−s̄)ρ
s̄

)
= −s̄

[[
(s̄−ρ)(1+ρ)

s̄

]
+
[

(s̄−ρ)(1+ρ)
s̄

]2

/2 + . . .

]
.

(A.211)

Since m̄ = ρ and we consider the nontrivial cases n + mn ≥ sn ⇒ 1 + ρ ≥ s̄,

observe that for any k ≥ 2 and for 1 + ρ > s̄

(1 + ρ)(s̄− ρ) = s̄
[

(s̄−ρ)(1+ρ)
s̄

]
,

(1 + ρ)(s̄− ρ)k < s̄
[

(s̄−ρ)(1+ρ)
s̄

]k
;

(A.212)
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and after applying L’Hospital’s rule as in (A.37) we conclude from (A.208) that

nmn

sn!
n! sn

sn (1/nenρ) n!
(n+mn−sn−1)!

(
ρ
sn

)sn
(n+mn − sn)→ 0

⇒ (1/nenρ)
n+mn∑
k=sn

(n+mn − k)n
mn

sn!
n!

(n+mn−k))!
sn

sn−k ρk → 0.

(A.213)

For 1 + ρ = s̄ we change the last equality in (A.209) in the following way

(n+mn−sn)2

√
sn
√
n+mn−sn

1√
2π
esn−n−nρ+n+mn−sn

(
n+mn−sn

n

)−(n+mn−sn)
(
nρ
sn

)sn
= (n+mn−sn)2

√
sn
√
n+mn−sn

1√
2π

exp
{
n
[
−(1 + ρ− s̄) ln(1 + ρ− s̄) + s̄ ln

(
ρ
s̄

)]
+ o(n1−ε)

}
(A.214)

Note that from L’Hospital’s rule, xln(x)|x=0 = 0, and from Theorem 12, 0 < ρ
s̄
<

1, that (A.213) is still valid.

Hence,

P (Drpl
n (sn,mn) > 0)

= (1 + P (Xn ≤ mn − 1)

/
[
(1/nenρ)nmn n! (1+ρ)n+mn−1

(n+mn−1)!
P (mn ≤ Yn ≤ sn − 1)

+ (1/nenρ)
n+mn∑
k=sn

(n+mn − k)n
mn

sn!
n!

(n+mn−k))! snsn−k ρk

])−1

→
(

1 +

[
Φ
(
m̂√
ρ

) √
(1 + ρ) φ

(
m̂√
ρ(1+ρ)

)]
/

[
φ
(
− m̂√

ρ

)
Φ

(
− m̂√

(1+ρ)ρ

)])−1

.�

(A.215)

A.4 Proofs for Theorem 4, 5, and 6

The proof for Theorem 4 is omitted because it is very similar to the proof of Theorem

1, because the only difference between these two proofs is that at Theorem 1 instead

142



of N st
n + 1−mn, N st

n + 1− sn repairs have to be completed until the end of a delay

until repair initiation since the availability of a repair server is desired in this case.

For Theorem 5, note that from Theorem 4, (1.10) can be written in two different

ways: for ED|ED choice in Figure 1.2,

Min C̄(s̄, m̄) = ws̄+ cm̄+ p
(

1+m̄
s̄µ
− 1

λ
− 1

µ

)
; (A.216)

for all the other capacity level choices

Min C̄(s̄, m̄) = ws̄+ cm̄. (A.217)

Notice that (A.217) implies, for the capacity level choices other than ED|ED, it

is best for a given s̄ value to have the minimum m̄ value possible and vice versa.

Moreover, from (A.216), in this region it is best for a given s̄ value to have the

minimum m̄ value. This ensures that the solution will lie on the two line segments

described as LS 1 and LS 2 as in the Proof of Theorem 2: LS 1 is the line segment for

the equation m̄ = 0 with end points (0, 0) and (λ/(λ + µ), 0), namely in the region

for ED|ED; and LS 2 is the line segment for the equation m̄ = s̄+ s̄/ρ− 1 with end

points (λ/(λ+ µ), 0) and (ρ, ρ), namely in the region for QED|ED.

First we will consider QED|ED, applying m̄ = s̄+ s̄/ρ− 1 to (A.217) we get

Min C̄(s̄, m̄)QED|ED = s̄ (w + c+ c/ρ)− c = 0. (A.218)

which gives the unconstrained solution

s̄ = c/ (w + c+ c/ρ) , m̄ = [c (1 + 1/ρ)] / (w + c+ c/ρ)− 1.

However, the constraint on this solution is that λ/(λ+µ) ≤ c/ (w + c+ c/ρ) ≤ ρ;

thus, if the solution above satisfies this, then we will have a zero asymptotic cost

rate, which is optimal. Otherwise, one would think either inequalities could be the
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case: c/ (w + c+ c/ρ) < λ/(λ + µ) or c/ (w + c+ c/ρ) > ρ. The second inequality

means negative asymptotic cost rate for QED|ED; however, it leads to 0 > wλ+ cλ,

which is not possible so we concentrate on the first inequality when the unconstrained

solution does not lie in QED|ED.

For c/ (w + c+ c/ρ) < λ/(λ+µ), since it implies an s̄ value smaller than equal to

λ/(λ+µ) will be chosen, we will compare it to the solution for ED|ED. Note that in

(A.216), for a specific value of s̄, only the smallest value of m̄ will give the minimum

asymptotic cost rate. For LS 1, m̄ = 0 and (A.216) becomes

Min C̄(s̄, m̄) = ws̄+ p
(

1
s̄µ
− 1

λ
− 1

µ

)
. (A.219)

The minimizing s̄ value for this equation is given in the proof of Theorem 2, and

it is s̄ =
√
p/(wµ), m̄ = 0. Thus, if this s̄ value is smaller than λ/(λ + µ), then it

is our overall optimum. If this is not the case, the function in A.219 is convex as

demonstrated in the proof of Theorem 2. Thus, s̄ = λ/(λ + µ), m̄ = 0 is the point

on LS 1 giving the minimum cost rate. Moreover, remember that we came to this

case because the unconstrained minimum for QED|ED was on the left side of LS

2; hence, s̄ = λ/(λ + µ), m̄ = 0 is the minimizing point for QED|ED as well. This

makes it the overall solution.

The proof for Theorem 6 is omitted since it is very similar to the proof of Theorem

3, because the only difference between these two proofs is that at Theorem 6 instead

of N st
n + 1−mn, N st

n + 1− sn repairs have to be completed until the end of a delay

until repair initiation since the availability of a repair server is desired in this case.�
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Appendix B

Proofs of Results in Chapter 2

B.1 Proof of Theorem 7

Let b ≤ 0 and

Seriesn1 =
∞∑
k=1

[(
λn+ β

√
n
)k
/

k∏
i=1

(λn+ iθ1)

]
(B.1a)

Seriesn2 =
∞∑
k=1

[
(λn)k /

k∏
i=1

(
λn+ β

√
n+ iθ2

)]
(B.1b)

Seriesn3 =
∑

k≤b
√
n,k∈Z

[
(λn)k

−
/
k−∏
i=1

(
λn+ β

√
n+ iθ2

)]
. (B.1c)

Then, from (2.1), Qn has the following distribution:

P (Qn(∞) ≤ b
√
n) = Seriesn3/ (1 + Seriesn1 + Seriesn2 ) . (B.2)

We will now obtain the limit of this expression as n → ∞ by investigating each

series.
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Series1 =
∞∑
k=1

[
(λn+ β

√
n)

k
/

k∏
i=1

(λn+ iθ1)

]

=
∞∑
k=1

[
(λn+ β

√
n)

k
/

(
(θ1)k

k∏
i=1

(
λn
θ1

+ i
))]

.

(B.3)

Note that

∞∑
k=1

[
(λn+ β

√
n)

k
/

(
(θ1)k

k∏
i=1

(
dλn
θ1
e+ i

))]
≤ Series1

≤
∞∑
k=1

[
(λn+ β

√
n)

k
/

(
(θ1)k

k∏
i=1

(
bλn
θ1
c+ i

))]
.

(B.4)

We will first consider the limiting behavior of the left side. From Stirling’s ap-

proximation,

∞∑
k=1

[
(λn+ β

√
n)

k
/

(
(θ1)k

k∏
i=1

(
dλn
θ1
e+ i

))]

=
(
dλn
θ1
e
)

!
∞∑
k=1

[(
λn
θ1

+ β
√
n

θ1

)dλn
θ1
e+k

/

((
dλn
θ1
e+ k

)
!
(
λn
θ1

+ β
√
n

θ1

)dλn
θ1
e
)]

≡
[(√

2π
√
dλn
θ1
e
(
dλn
θ1
e
)dλn

θ1
e

exp{−dλn
θ1
e}
)
/

((
λn
θ1

+ β
√
n

θ1

)dλn
θ1
e
)]

·
∞∑

k=dλn
θ1
e+1

(
λn
θ1

+ β
√
n

θ1

)k
/k!.

(B.5)

Let

An =
((

λn
θ1

+ β
√
n

θ1

)
/dλn

θ1
e
)dλn

θ1
e
·
(
dλn
θ1
e/λn

θ1

)dλn
θ1
e
·
(
λn
θ1
/dλn

θ1
e
)dλn

θ1
e

Bn = exp{−dλn
θ1
e}/ exp{−λn

θ1
},

(B.6)
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then,

[(√
2π
√
dλn
θ1
e
(
dλn
θ1
e
)dλn

θ1
e

exp{−dλn
θ1
e}
)
/
(
λn
θ1

+ β
√
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θ1

)dλn
θ1
e
]

·
∞∑

k=dλn
θ1
e+1

(
λn
θ1

+ β
√
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/k!

=
(√

2π
√
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e exp{β

√
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∞∑
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√
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+ β
√
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(B.7)

Now let Yn ∼ Poisson
(
λn
θ1

+ β
√
n

θ1

)
. Then we have

(√
2π
√
dλn
θ1
e exp{β

√
n

θ1
}B/A

)
·

∞∑
k=dλn

θ1
e+1

exp{−
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√
n

θ1

)
}
(
λn
θ1

+ β
√
n

θ1

)k
/k!

=

[√
2π
√
dλn
θ1
e/
(

1 + β
λ
√
n

)dλn
θ1
e
]
· exp

{
β
√
n

θ1

}

·
(
dλn
θ1
e/λn

θ1

)dλn
θ1
e
·
[
exp{−dλn

θ1
e}/ exp{−λn

θ1
}
]
· P
(
Yn > dλnθ1 e

)
=
[√

2π
√
dλn
θ1
e exp

{
β
√
n

θ1

}
/ exp

{
dλn
θ1
e ln

(
1 + β

λ
√
n

)}]
·
(
dλn
θ1
e/λn

θ1

)dλn
θ1
e
·
[
exp{−dλn

θ1
e}/ exp{−λn

θ1
}
]
· P
(
Yn > dλnθ1 e

)

(B.8)

and now we will look at the limiting behavior of the terms in the last expression.

xn is o(f(n)) if xn
f(n)
→ 0 as n→∞. Using Taylor’s approximation for f(y) = ln(1+y)

at y0 = 0 (f(y) = y − y2/2 + y3/3− . . .) gives
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exp
{
dλn
θ1
e ln

(
1 + β

λ
√
n

)}
= exp

{
dλn
θ1
e
[

β
λ
√
n
− β2

λ22n
+ o(1/n)

]}
; (B.9)

since dλn
θ1
e − λn

θ1
≤ 1,

lim
n→∞

exp
{
dλn
θ1
e
[

β
λ
√
n
− β2

λ22n
+ o(1/n)

]}
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n→∞
exp

{(
λn
θ1

) [
β

λ
√
n
− β2

λ22n
+ o(1/n)

]}
.

(B.10)

Moreover, again using Taylor’s approximation for f(y) = ln(1 + y) at y0 = 0

(
dλn
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e/λn

θ1

)dλn
θ1
e
·
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exp{−dλn

θ1
e}/ exp{−λn
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}
= exp
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dλn
θ1
e ln

(
1 +

(
dλn
θ1
e − λn

θ1

)
/λn
θ1

)
− dλn

θ1
e+ λn

θ1

}
= exp

{
dλn
θ1
e
(
dλn
θ1
e − λn

θ1

)
/λn
θ1

+ o(1/n)− dλn
θ1
e+ λn

θ1

}
→ exp{0} = 1.

(B.11)

Continuing (B.8), from (B.9)-(B.11), for sufficiently large n,

[√
2π
√
dλn
θ1
e exp

{
β
√
n

θ1

}
/ exp

{
dλn
θ1
e ln

(
1 + β

λ
√
n

)}]
·
(
dλn
θ1
e/λn

θ1

)dλn
θ1
e
·
[
exp{−dλn

θ1
e}/ exp{−λn

θ1
}
]
· P
(
Yn > dλnθ1 e

)
=
(√

2π
√
dλn
θ1
e exp

{
β
√
n

θ1

}
P
(
Yn > dλnθ1 e

))
/ exp

{
β
√
n

θ1
− β2

2θ1λ
+ o(1)

}
=
√

2π
√
dλn
θ1
e exp

{
β2

2θ1λ

}
P
(
Yn > dλnθ1 e

)
.

(B.12)

Since Yn ∼ Poisson
(
λn
θ1

+ β
√
n

θ1

)
, from CLT, for sufficiently large n,
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√
2π
√
dλn
θ1
e exp

{
β2

2θ1λ

}
P
(
Yn > dλnθ1 e

)
∼=
√

2π
√
dλn
θ1
e exp

{
β2

2θ1λ

}
Φ
(
β/
√
λθ1

)
;

(B.13)

and from (B.5)-(B.13), with h(x) = φ(x)/Φ(−x), the behavior of the left side of

(B.4) for large values of n can be expressed as

∞∑
k=1

[
(λn+ β

√
n)

k
/

(
(θ1)k

k∏
i=1

(
dλn
θ1
e+ i

))]
∼=
√

2π
√
dλn
θ1
e exp

{
β2

2θ1λ

}
Φ
(
β/
√
λθ1

)
=
√
dλn
θ1
e
{
h
(
− β√

λθ1

)}−1

.

(B.14)

Similarly, for sufficiently large n the right side of (B.4) can be expressed as

∞∑
k=1

[
(λn+ β

√
n)

k
/

(
(θ1)k

k∏
i=1

(
bλn
θ1
c+ i

))]
∼=
√
bλn
θ1
c
{
h
(
− β√

λθ1

)}−1

.

(B.15)

The limiting behavior of Series2 and Series3 can be analyzed analogously. Thus,

from (B.4)-(B.15), for sufficiently large n,

Seriesn1
∼=
√

λn
θ1

{
h
(
− β√

λθ1

)}−1

Seriesn2
∼=
√

λn
θ2

+ β
√
n

θ2

{
h
(

β√
λθ2

)}−1

Seriesn3
∼=
√

λn
θ2

+ β
√
n

θ2

Φ
(

(b−β/θ2)/
√
λ/θ2

)
φ(β/

√
λθ2)

,

(B.16)

which gives, from (B.2), for b ≤ 0,
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lim
n→∞

P (Qn(∞) ≤ b
√
n)

=
(√

θ1Φ
(

[b− β/θ2] /
√
λ/θ2

)
/φ
(
β/
√
λθ2

))
/
(√

θ1

{
h
(
β/
√
λθ2

)}−1
+
√
θ2

{
h
(
−β/
√
λθ1

)}−1
)
.

(B.17)

For b = 0, we have P (Qn(∞) ≤ 0). Since our inspiring example is a make-to-stock

queue with perishable goods and impatient customers, in this setting this quantity

corresponds to out-of-stock probability; which will be denoted by a and shown below:

a ≡ lim
n→∞

P (Qn(∞) ≤ 0)

=
(√

θ1

{
h
(
β/
√
λθ2

)}−1
)

/
(√

θ1

{
h
(
β/
√
λθ2

)}−1
+
√
θ2

{
h
(
−β/
√
λθ1

)}−1
)

=

(
1 +

√
θ2/θ1

h(β/
√
λθ2)

{h(−β/√λθ1)}

)−1

.

(B.18)

Note that a truncated normal random variable denoted by N (µ, σ2, l, u) (as ex-

plained in Section 2.2) has the distribution function

P (N (µ, σ2, l, u) < x) =
[
Φ
(
x−µ
σ

)
− Φ

(
l−µ
σ

)]
/
[
Φ
(
u−µ
σ

)
− Φ

(
l−µ
σ

)]
. (B.19)

Thus, for X− ∼ N
(
β
θ2
, λ
θ2
,−∞, 0

)
and X+ ∼ N

(
β
θ1
, λ
θ1
, 0,∞

)
we have (remem-

ber that b ≤ 0)

P (X− < b) =

[
Φ

(
b−β/θ2√
λ/θ2

)]
/

[
Φ

(
−β/θ2√
λ/θ2

)]
P (X+ < b) = 0.

(B.20)

It can be seen that
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lim
n→∞

P (Qn(∞) ≤ b
√
n)

= a · Φ
(

[b− β/θ2] /
√
λ/θ2

)
/Φ
(
−β/
√
λθ2

)
= a · P (X− ≤ b) + (1− a) · P (X+ ≤ b) .

(B.21)

Now let b > 0, and let

Seriesn4 =
∑

1≤k≤b
√
n, k∈Z

[
(λn+ β

√
n)

k
/

k∏
i=1

(λn+ iθ1)

]
. (B.22)

Then,

P (Qn(∞) ≤ b
√
n) = P (Qn(∞) ≤ 0) + Series4/ (1 + Series1 + Series2) . (B.23)

The limiting behavior of Series4 can be analyzed similar to Series1. The only

difference is in the summation, which leads to

P

(
dλn
θ1

e < Yn < d
λn

θ1

e+ b
√
n

)

in (B.8) and (B.12) instead of P
(
Yn > dλnθ1 e

)
. Hence, for sufficiently large n,

Seriesn4
∼=
√

λn
θ1

[
Φ
(

(b− β/θ1) /
√
λ/θ1

)
− Φ

(
(−β/θ1) /

√
λ/θ1

)]
/φ
(
−β/
√
λθ1

)
,

(B.24)

and we have again
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lim
n→∞

P (Qn(∞) ≤ b
√
n)

= a+
(√

θ2

{[
Φ
(

(b− β/θ1) /
√
λ/θ1

)
− Φ

(
(−β/θ1) /

√
λ/θ1
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/φ
(
−β/
√
λθ1
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/
(√

θ1

{
h
(
β/
√
λθ2

)}−1
+
√
θ2

{
h
(
−β/
√
λθ1

)}−1
)
.

(B.25)

Since, for b > 0,

P (X− < b) = 1

P (X+ < b) =
[
Φ
(

(b− β/θ1) /
√
λ/θ1

)
− Φ

(
(−β/θ1) /

√
λ/θ1

)]
/

[
Φ

(
β/θ1√
λ/θ1

)]
,

(B.26)

we have again

lim
n→∞

P (Qn(∞) ≤ b
√
n) = a · P (X− ≤ b) + (1− a) · P (X+ ≤ b) .� (B.27)

B.2 Proof of Theorem 8

Let d > 0 and for any b ∈ R,
(
dn
θ1

+ b
√
n
)
> 0 will hold for sufficiently large n.

Seriesn1 =
∞∑
k=1

[
(λn+ dn)k /

k∏
i=1

(λn+ iθ1)

]
(B.28a)

Seriesn2 =
∞∑
k=1

[
(λn)k /

k∏
i=1

(λn+ dn+ iθ2)

]
(B.28b)

Seriesn3 =
∑

k≤dn/θ1+b
√
n,k∈Z

[
(λn+ dn)k /

k∏
i=1

(λn+ iθ1)

]
. (B.28c)

Then, from (2.1), Qn has the following distribution:
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P (Qn(∞) ≤ dn/θ1 +b
√
n) = (Seriesn2 +Seriesn3 )/ (1 + Seriesn1 + Seriesn2 ) . (B.29)

We will now obtain the limit of this expression as n → ∞ by investigating each

series. Similar to the previous section, (B.3)-(B.8) are valid by exchanging β
√
n with

dn, which also gives ln (1 + d/λ) instead of ln (1 + β/λ
√
n) in (B.8). Now we will

look at the limiting behavior of the terms in the expression below which is analogous

to (B.8) in the unbalanced case:

[√
2π
√
dλn
θ1
e exp

{
dn
θ1

}
/ exp

{
dλn
θ1
e ln

(
1 + d

λ

)}]
·
(
dλn
θ1
e/λn

θ1

)dλn
θ1
e
·
[
exp{−dλn

θ1
e}/ exp{−λn

θ1
}
]
· P
(
Yn > dλnθ1 e

)
.

(B.30)

Note that ln(1+x)−x < 0 for x > 0 since its value is 0 at x = 0 and its derivative

is negative for positive x. Then, as n→∞

ln(1 + d/λ)− d/λ < 0

⇒ − (λn/θ1) ln(1 + d/λ) + dn/θ1 > 0

⇒ exp
{
dn
θ1

}
/ exp

{
dλn
θ1
e ln

(
1 + d

λ

)}
→∞.

(B.31)

From (B.11)

(
dλn
θ1
e/λn

θ1

)dλn
θ1
e
·
[
exp{−dλn

θ1
e}/ exp{−λn

θ1
}
]
→ 1, (B.32)

and from CLT, P
(
Yn > dλnθ1 e

)
→ 1 (since d > 0 and Yn ∼ Poisson

(
(λ+d)n
θ1

)
).

Observe that since d > 0,
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Seriesn2 =
∞∑
k=1

[
(λn)k /

k∏
i=1

(λn+ dn+ iθ2)

]

≤
∞∑
k=1

(λn/ (λn+ dn))k <∞.

(B.33)

Seriesn3 can be analyzed analogously to Seriesn1 , and this leads to have

P

(
dλn
θ1

e < Yn ≤ d
λn

θ1

e+ dn/θ1 + b
√
n

)

instead of P
(
Yn > dλnθ1 e

)
in (B.8) and afterwards. Hence, for sufficiently large n,

Seriesn3
∼=
√

2π
√

λn
θ1

Φ
(
b/
√

(λ+ d)/θ1

)
. (B.34)

From (B.29)-(B.34),

P (Qn(∞) < dn/θ1 + b
√
n)

∼=
√

2π
√

λn
θ1

Φ
(
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√
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e ln
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1 + d

λ
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+ Series2

]
→ Φ

(
b/
√

(λ+ d)/θ1

)
.

(B.35)

The case for d < 0 is very similar and hence omitted.�

B.3 Proof of Theorems 9-11

Model (1) follows the same way as in the proof of Theorem 7 with Series1 having

the upper bound T
√
n. This will lead to have P

(
dλn
θ1
e < Yn ≤ dλnθ1 e+ T

√
n
)

instead

of P
(
dλn
θ1
e < Yn

)
in (B.8) and (B.12) where Yn ∼ Poisson

(
λn
θ1

+ β
√
n

θ1

)
. Thus, we
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will have Φ
(
T
√
θ1/λ− β/

√
λθ1

)
−Φ

(
−β/
√
λθ1

)
instead of Φ

(
β/
√
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)
in (B.13).

Hence, for b < 0
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(B.36)

which gives, from (B.2) for b = 0,

a =

(
1 +

√
θ2/θ1

Φ
(
T
√
θ1/λ−β/

√
λθ1
)
−Φ(−β/

√
λθ1)
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· h
(
β/
√
λθ2

))−1

(B.37)

and the rest of the proof for Model 1 follows as in Theorem 7. For models (2) and

(3) the difference w.r.t the proof of Theorem 7 will be in Seriesn1 and Seriesn4 . We

will explore the limiting behavior of Seriesn1 and Seriesn4 will be similar.

T
√
n∑

k=1

(
λn+β

√
n

λn

)k
=
(
λn+β

√
n
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√
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β
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1− exp
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βT
λ

}]
.

(B.38)

From (B.2) and (B.36), for b ≤ 0 we have

P (Qn(∞) ≤ b
√
n)

∼=
√
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√
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,

(B.39)

and the rest follows. �
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