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Abstract

Negative differential conductivity (NDC) is a nonlinear property of electronic trans-

port for high electric field strength found in materials and devices such as semiconduc-

tor superlattices, bulk GaAs and Gunn diodes. In spatially extended systems, NDC

can cause rich dynamics such as static and mobile field domains and moving charge

fronts. In this thesis, these phenomena are studied theoretically and numerically

for semiconductor superlattices. Two classes of models are considered: a discrete

model based on sequential resonant tunneling between neighboring quantum wells

is used to described charge transport in weakly-coupled superlattices, and a contin-

uum model based on the miniband transport is used to describe charge transport

strongly-coupled superlattices.

The superlattice is a spatially extended nonlinear system consisting a periodic

arrangement of quantum wells (e.g., GaAs) and barriers (e.g., AlAs). Using a dis-

crete model and only considering one spatial dimension, we find that the boundary

condition at the injecting contact has a great influence on the dynamical behavior

for both fixed voltage and transient response. Static or moving field domains are

usually inevitable in this system. In order to suppress field domains, we add a side

shunting layer parallel to the growth direction of the superlattice. In this case, the

model includes both vertical and lateral spatial degrees of freedom. We first study

a shunted weakly-coupled superlattice for a wide range of material parameters. The

field domains are found to be suppressed for superlattices with small lateral size and
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good connection between the shunt and the quantum wells of the superlattice. As

the lateral size of the superlattice increases, the uniform field configuration loses its

stability to either static or dynamic field domains, regardless of shunt properties. A

lower quality shunt generally leads to regular and chaotic current oscillations and

complex spatio-temporal dynamics in the field profile. Bifurcations separating static

and dynamic behaviors are characterized and found to be dependent on the shunt

properties. Then we adopt the model to study the shunted strongly-coupled super-

lattice with the continuum model. Key structural parameters associated with both

the shunt layer and SL are identified for which the shunt layer stabilizes a uniform

electric field profile. These results support the possibility to realize a SL-based THz

oscillator with a carefully designed structure.

Another important behavior of the static field domains in the weakly-coupled su-

perlattice is bistability, i.e., two possible states (i.e., electric field configurations)

for a single voltage. Noise can drive the system from one of these states (the

metastable state) to the other one (the globally stable state). The process of es-

cape from the metastable state can be viewed as a stochastic first-passage process

in a high-dimensional system that possesses complex stability eigenvalues and for

which a global potential energy function does not exist. This process is simulated

using a stochastic differential equation system which incorporates shot noise. The

mean switching time τ is fitted to an exponential expression e
1
D

(Vth−V )α , where Vth

denotes the voltage at the end of the current branch. The exponent α in the fitting

curve deviates from 1.5 which is predicted for a generic one dimensional system.

We develop an algorithm to determine an effective locally valid potential. Principal

component analysis is applied to find the most probable path for switching from the

metastable current state.
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1

Introduction

Nonequilibrium dissipative systems, which constitute an important subset of complex

systems, have been attracting increased attention in the past several years. Nonequi-

librium states of a dissipative system can only be maintained by a continuous flux

of energy and possibly matter. The dissipation of energy leads to the shrinkage of

volume of a set of state points in the phase space - the space of dynamical variables

that describes the state of the system. In contrast, the volume of a set of state points

of a Hamiltonian system is conserved.

The inherent nonlinear properties of these systems often cause them to display

complex spatio-temporal structures when they are driven, also known as pattern

formation[1]. A famous example of pattern formation is provided by the Belousov-

Zhabotinsky (BZ) reaction. This family of chemical reactions not only can show

oscillation in time but also develops rich spatial patterns such as stationary waves,

moving fronts and spiral waves[2]. Systems like the BZ reaction give rise to the

concept of an excitable medium, which has the capability of propagating some kind

of nonlinear wave excitation. Other examples of pattern forming systems are fluid

convection[3], combustion[4], turbulence[5], signal transmission in nerves[6], vegeta-
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tion fronts in ecological system[7] and galaxy formation in the universe[1].

Pattern formation is a self-organization phenomenon, which does not fall under

the purview of the second law of thermodynamics. In other words, the emergent pat-

terns are typically not understood as a manifestation of a maximum entropy state.

Self-organization is a feature of complex systems which are composed of intercon-

nected parts, but the behavior of complex systems is not obvious from the individual

composing parts. Other interesting phenomena emerge from complex systems, such

as self-organized criticality[8] and synchronization[9, 10]. More recently, the study

of complex systems has reached the areas of biology and social science. Specific

examples include genetic networks[11], neural networks[11] and social networks[12].

Although great efforts have been made to develop general theories about nonequi-

librium dissipative systems[13, 14], a unifying theory still does not exist. Understand-

ing these systems is critical to answer many fundamental questions in fields as diverse

as biology, social sciences and physical sciences. So this is a very important area of

scientific inquiry for which the methods of equilibrium statistical mechanics can not

provide an adequate explanation, and a lot of research is currently focused on such

problems.

Semiconductors may be considered as nonequilibrium dissipative systems when

they are driven electrically and/or optically far from equilibrium. Nonlinear elec-

tronic transport in semiconductors often results in rich dynamics and self-organization

as the Ohm’s Law breaks down under high electric field. The development of semi-

conductor science and technology over the last sixty years has not only brought us

a myriad of devices that significantly revolutionized our lives, but also provided us

excellent systems to study nonequilibrium phenomena. Some remarkable features of

semiconductors are: 1) High-quality materials. The most important semiconductors,

silicon and gallium arsenide, are made with astonishing structural and compositional

perfections, i.e., low defect densities and great control over impurity doping pro-
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files. These perfections are achieved not only in bulk material, but also at interfaces

where different materials meet. 2) Precise fabrication. Semiconductor can be grown

with precision of a single atomic layer and patterned with sub-micro resolution. 3)

Simplicity. The microscopic complication of materials can be greatly simplified by

treating the carriers and the media with effective parameters such as effective mass

and dielectric constants. 4) Sensitivity. The dynamics in semiconductors is sensitive

to changes of material and structure parameters and external driving forces. These

features make semiconductors robust and ideal to study nonequilibrium phenomena.

From the semiclassical perspective, the state of a semiconductor can be described

by space and time dependent density of charge carriers and local electric field. The

dynamics of carrier transport is largely determined by the current density j as a

function of local electric field E, the J−E curve, which is the constitutive relation of

the media. In most cases, when the electric field is low, the current density increases

as the electric field strength increases linearly(Ohm’s Law). However, as the electric

field increases, deviations from this linear behavior inevitably occur. In certain

special materials or structures, the current density may actually decrease as electric

field strength increases for high field intensity. This nonlinear phenomenon is called

negative differential conductivity (NDC). There are two major categories of NDC[15]:

S-shaped NDC (SNDC) and N-shaped NDC (NNDC), shown in Fig 1.1. Negative

differential conductivity, a simple nonlinear local property usually causes spatio-

temporal instability in semiconductors as systems driven far from equilibrium. The

S-shaped NDC typically causes current filaments, an inhomogeneity in the current

density distribution lateral to the direction of the current flow. Examples of systems

that exhibit SNDC are heterostructure hot-electron diodes (HHED)[16] and certain

types of double barrier resonant tunneling (DBRT) diodes[17]. The N-shaped NDC is

often associated with field domains and charge accumulation and depletion fronts. In

this thesis, we will mainly study NNDC in superlattices (SLs). Examples of systems

3



Figure 1.1: Schematic of negative differential conductivity (NDC): The current
density j versus the electric field F for (a) NNDC and (b) SNDC.

that have the NNDC property are tunnel diodes, Gunn diodes and superlattices.

The tunnel diode is a specially designed p−n junction whose static current-voltage

characteristics show NNDC. It was first invented in 1957 [18] and earned its inventor,

Leo Esaki, the Nobel prize. After its invention, much research was carried out to

exploit its NNDC property. The NNDC property can cause instability and generate

oscillation in a tunnel diode circuit[19]. However, after the failure of the attempt

to achieve widespread application, they were soon replaced by other semiconductor

devices and are only used in certain niche applications nowadays[20].

The Gunn diode, invented in 1963 [21], has local N-shaped drift velocity vs.

field characteristics due to the scattering of electrons to upper k-space valleys in the

conduction band under high field. This is a bulk property of the semiconductor,

which is also called the bulk negative differential conductivity effect. This bulk

NNDC often gives rise to traveling field domains along the direction of current flow.

A lot of work has been performed to model and analyze these traveling fronts. Gunn

diodes are now widely used to generate signals at microwave frequencies from a few

GHz to 100 GHz[22].

The superlattice was first proposed in 1970 by Esaki and Tsu [23]. It is an

artificial structure composed of alternating layers of two different semiconductor ma-

terials, forming a periodic arrangement of quantum wells and barriers. Superlattices
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can be grown using single crystal depositing techniques such as molecular beam epi-

taxy (MBE) and metal organic chemical vapor deposition (MOCVD). These sophis-

ticated techniques are capable of depositing layers as thin as a single atomic layer.

A loose category of weakly- and strongly-coupled superlattices is based the degree

of coupling of electrons in different quantum wells, which provides different mecha-

nisms that give rise to NNDC. Accordingly, transport models that treat space as a

continuous variable are developed for strongly-coupled superlattices while spatially

discrete models are used to describe weakly-coupled superlattices. Thus, weakly-

coupled superlattices have relatively thick barrier layers so that the electron gases

in neighboring quantum wells can be viewed as only weakly-coupled to one another.

On the other hand, strongly-coupled superlattices have relatively thin barriers and

generally reveal the formation of mini-bands.

Although the mechanisms behind NNDC are different, the continuum model suc-

cessfully predicts moving fronts inside the strongly-coupled superlattices similar to

those in the Gunn diode. The continuum model can be viewed as a continuum

limit of the discrete model. However, the discrete model is successful in predicting

static current branches in the I−V curves that are only observed in weakly-coupled

superlattices. The moving wave fronts in superlattices are associated with current

self-oscillation which can serve as a source of Gigahertz oscillation[24]. The quantum

cascade laser which operates at far infrared and Terahertz regime is a specially de-

signed superlattice that operates without field domains. Its rapid development and

success in the last decade attracted renewed interest in superlattice structures.

Another remarkable feature of weakly-coupled superlattices is the presence of

bistable states, i.e., for a range of fixed applied voltage, two distinct current states

are possible. In regimes of bistability, the dynamics of the superlattice may be partic-

ularly sensitive to shot noise which may cause switching from the metastable state to

the globally stable state. Stochastic switching between coexisting metastable states
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driven by noise is an important phenomena found in diverse nonlinear systems such

as Josephson junctions [25], mechanical oscillators [26], genetic regulatory networks

[27], chemical reactions [28], and protein folding [29]. Among the preceding exam-

ples, chemical reactions and protein folding are exceptional in that they are typically

studied using thermal equilibrium theory; however, most of the preceding systems

are far-from-equilibrium and also non-conservative, i.e., these are systems for which a

global potential energy function cannot be defined. Stochastic switching phenomena

are typically understood as an example of a noise-driven first-passage process [30].

For general stochastic systems, an expression for the mean first-passage time can be

defined in terms of a backward Fokker-Planck equation. However, this equation can

be analytically solved in closed form only for one-dimensional systems [30]. In po-

tential energy systems with higher dimension, useful approximations can be defined

by straightforward projection onto minimum energy escape paths [31]. But, for non-

potential systems, analytical approximate forms for mean escape times are generally

not available. In this thesis, I have addressed these questions in the weakly-coupled

superlattice and the approaches I have implemented might be carried over to other

non-conservative systems.

This thesis is organized as follows: In Chapter 2, the semiconductor superlattice

is introduced. The sequential tunneling model for weakly-coupled superlattices and

the miniband transport model for strongly-coupled superlattices are reviewed. In

Chapter 3, the dependence of the front dynamics for weakly-coupled superlattices on

the boundary condition - the contact conductivity, is investigated. Especially when

the applied voltage is suddenly switched from one value to another, also known as

transient response, the system shows different behavior depending on the contact

conductivity and size and polarity of the switching voltage step. In Chapter 4, the

model of the weakly-coupled superlattice with a shunting side layer is studied. It is

found that a uniform field with high strength in the NDC region can be stabilized
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provided that the sample cross section is sufficiently narrow. In Chapter 5, the shunt-

ing idea is further tested on the strongly-coupled superlattice and the possibility of

a superlattice based THz oscillator is discussed. In Chapter 6, stochastic switching

from the metastable state to the stable state is simulated for the weakly-coupled

superlattice. The scaling behavior of the mean switching time versus applied voltage

is studied by fitting to a function of the applied voltage. In Chapter 7, a model of an

array of tunnel diodes connected in series and its connection to superlattices is inves-

tigated and analogies with superlattice transport are studied. In the last Chapter,

the thesis is summarized and some interesting future directions are discussed.
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2

Vertical electronic transport in superlattices

In this chapter, we will discuss electronic transport theory in superlattices. Two

major regimes of transport, sequential resonant tunneling and miniband transport,

which are applied in weakly-coupled and strongly-coupled superlattices respectively,

will be introduced. They are essential to understand the subsequent chapters. Other

approaches will also be briefly discussed. The modeling of electronic transport in

superlattices was recently reviewed by Wacker[32] and, separately, by Bonilla[33]. In

addition, various advanced texts have a broad coverage of the different theoretical

and modeling approaches to electronic transport in nanostructures, see, for example,

Ref. [34].

2.1 Electronic transport in nanostructures

Nanostructures possess variation in some material property on the length scale of 100

nanometer or smaller in at least one dimension (1 nm = 10−9 m). Electrical currents

can be generated by methods such as applying a potential difference between two

electrodes of the structure or by immersing the system in an oscillating electric field.

Due to the nanoscale feature of these systems, the phenomena of electronic transport
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can be very different from those systems with much larger characteristic dimensions.

Let’s step back and consider electrical current carefully. Electrical current is a

macroscopic phenomenon of collective behavior of all microscopic electrons under

external forces. Thus, electronic transport is a non-equilibrium statistical problem.

Many well-established equilibrium approaches, such as use of an equilibrium ther-

modynamic ensemble or quantum statistical theories, may not be fully applicable in

non-equilibrium problems. To be more elaborate, in quantum mechanics, the whole

system can be represented by a many-body state wave function |Φ(t)〉 satisfying the

time-dependent Schrodinger equation

i~
|Φ(t)〉
dt

= Ĥ |Φ(t)〉 , |Φ(t0)〉 = |Φ0〉 , (2.1)

where Ĥ is the many-body electron Hamiltonian. Since the exact state of the system

is generally not known, the current is an ensemble average of all possible states |Φi(t)〉
each with probability pi. Thus, the observation (expectation value) of any operator

Â can be written as

〈Â〉t = Tr{ρ̂(t)Â}, (2.2)

where ρ̂(t) is the density matrix

ρ̂(t) =
∑
i

pi |Φi(t)〉 〈Φi(t)| (2.3)

which evolves according to the Liouville-von Neumann equation for closed quantum

systems

i~
dρ̂(t)

dt
= [Ĥ, ρ̂(t)]. (2.4)

By contrast, the equilibrium density matrix ρeq may be calculated within canonical

or grand-canonical ensembles.
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Notice that the state of the system |Φ〉 can include information besides the elec-

tronic degrees freedom. When phonons are also considered |Φe,ph〉 = |Φe〉 |Φph〉, the

Hamiltonian also includes electron-phonon interaction:

Ĥ = Ĥe + Ĥph + Ĥe−ph, (2.5)

where He and Hph denote the electronic and phonon parts of the Hamiltonian, and

He−ph denotes the electron-phonon interaction. One common approach to this many-

body problem is via Green’s functions which describe how a system evolves from a

state q′ at initial time t′ to a state q at a later time t. Within the framework of

second quantization, the Green’s function can be written in terms of creation and

annihilation operators. While the Green’s function approach can deal with strong

scattering processes, it results in integro-differential equations difficult to solve either

numerically or theoretically.

Various theories have been developed to calculate current without directly solving

equations such as Eq. 2.4 under different assumptions and approximations. We will

develop our superlattice models based on the following two approaches:

One approach is the Kubo formalism, which models the system initially in global

equilibrium subject to an small external perturbation by an electromagnetic field

[35]. This formalism will be used to derive the tunneling current in weakly-coupled

superlattices. The use of the Kubo formalism requires a few assumptions. For

example, the system is assumed to evolve under Hamiltonian dynamics, i.e, closed

quantum systems. However, it is subject to external forces, thus, not isolated. Also,

the system is assumed to be initially in global equilibrium with a bath at temperature

T . In weakly-coupled superlattices, electrons relax quickly due to phonon scattering

(order of picoseconds) after tunneling, and this gives a local equilibrium in each

quantum well of the superlattice, while the tunneling process is relatively slower

depending on the miniband width (order of nanoseconds). This means perturbations
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are weak because the overlap of wave functions in neighboring quantum wells are

very small.

Another approach is to simplify the scattering processes of electrons to some re-

laxation time τ , the average time between two successive collisions and this approach

is inherently semiclassical in the sense that the electron is treated as a classical par-

ticle. As the collision can be either elastic or inelastic, two different relaxation times

τE and τp can be defined, respectively. A classical model based on this assumption

is the Drude model, which uses Newtonian dynamics. The Boltzmann transport

equation is a semiclassical equation of motion for the non-equilibrium single particle

distribution function and can be used to derive the miniband transport in strongly-

coupled superlattices. The Boltzmann equation approach can also be derived fairly

rigorously from microscopic quantum dynamics using the Wigner equation[36].

The above approaches are based on the viewpoint that the electronic current

flows in response to an electric field. Yet there is another viewpoint: the field may

be viewed as a consequence of carrier flow [34] - the Landauer approach that we

will not use in this thesis. The idea is that the conductance between electrodes is a

result of transmission, which can be calculated from Green’s functions[34] or other

methods[37]. Scatterers can induce self-consistent local fields, which then appear as

self-energy terms in calculating the Green’s functions.

2.2 The semiconductor superlattice

The remarkable progress of crystal growth technology has made possible to grow

semiconductor structures composed of different semiconductor materials with as-

tonishing precision at the level of one atomic layer at a time. These structures

are called heterostructures. The sharp transitions between the composing materials

cause abrupt changes of the conduction band and valence band, forming spatially

varying potential energy for charge carriers in semiconductors, i.e., electrons and
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mc Eg Ec
GaAs 0.067me 1.52 eV 0 eV
AlAs 0.15me 3.13 eV 1.05 eV

Table 2.1: GaAs and AlAs parameters at Γ point.

holes. The spatial structure of the potential energy can be designed by carefully

choosing the composing materials, which is often referred to as band engineering. A

myriad of devices have been fabricated based on semiconductor heterostructures.

The semiconductor superlattice was first proposed by Esaki and Tsu in 1970.

It has a periodic arrangement of quantum wells and barriers, made of alternating

layers of two different semiconductors deposited on each other along the growth

direction z, illustrated in Fig. 2.1. One of the best-studied and most used systems

is GaAs/AlxGa1−xAs because AlxGa1−xAs is always lattice matched with GaAs for

any composition of Al, x. GaAs is always direct gap and AlxGa1−xAs is also direct

for x < 0.45. They are widely used in optical devices for their direct bandgap. They

form a type I heterostructure, where the material that has the higher conduction

band edge has the lower valence band edge than the other material. This is clearly

shown in Fig. 2.1(b), where AlxGa1−xAs forms barriers for both electrons and holes

and GaAs is the quantum well material. The height of the barrier can be varied

by changing the composition of Al, x. Some key parameters of GaAs and AlAs are

listed in Table 2.1.

2.3 Electronic states in superlattices

In this thesis, I will only study electronic transport in n-doped superlattices, where

the hole densities are negligible. At low temperature, the electrons are mostly

trapped in the quantum wells. In order to study any quantum processes in the

superlattices, one has to find a set of basis states formed by the electrons. For a
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(a) (b)

Figure 2.1: (a) Schematic of the superlattice structure. (b) Schematic of the band
structure of the conduction band the valence band of the GaAs/AlAs superlattice
with well width w, barrier width d and period d = w + d. The conductance band
offset is ∆Ec and the valance band offset is ∆Ev.

single quantum well, the electron can only stay on discrete levels which can be ob-

tained by solving the Schrödinger Equation. However, when many such wells are

placed close enough to each other forming a superlattice, the states in different wells

start to overlap and energy bands will form, similar to those in single crystals. In a

superlattice, this can be described by the Kronig-Penney model [37].

Using the effective-mass approximation [37], which incorporates the effects of the

ion potential to the conduction band and effective mass, the Hamiltonian of electrons

in the superlattice can be written as

H = −∇ ~2

2m∗(z)
∇+ Ec(z) (2.6)

where Ec(z) is the conduction band edge seen by electrons as potential and m∗(z)

is the effective mass. The z dependence in these two variables is due to the periodic

structure of the superlattice. The vertical and the lateral dynamics can be decoupled

with eigenfunctions of the form

ψk⊥(r⊥, z) = eik⊥·r⊥ψ(z) (2.7)

where r⊥ and k⊥ lie in the lateral (x, y) plane. The vertical part obeys the one-
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dimensional Hamiltonian

Hz = − ∂

∂z

~2

2m∗(z)

∂

∂z
+ Ec(z) (2.8)

Hence the Bloch’s theorem applies and the eigenfunctions have the form of

ψk(z) = eikzuk(z) (2.9)

where uk(z) is a rapidly varying function with period of the underlying superlattice

structure, i.e., uk(z + nl) = uk(z) for any integer n, while the Bloch wave vector

k along z direction gives the phase shift of the wave function from one period to

the next. It also can be viewed as the free electron wavefunction eikz modulated by

uk(z).

Using the transfer or T -matrix, it can be shown [37] that the Bloch wave vector

k satisfies

cos kl = cos kWw coshκBb− (kW/m
∗
W )2 − (κB/m

∗
B)2

2(kW/m∗W )(κB/m∗B)
sin kWw sinhκBb (2.10)

where m∗W and m∗B are the effective mass of electron in the wells and in the barri-

ers, respectively; kW =
√

2m∗WEk/~ and κB =
√

2m∗B(∆EC − Ek)/~ are the wave

numbers in the quantum wells and barriers, respectively; Ek is the energy of the

electron. The right hand side of this equation is a function of Ek and the value must

lie in [−1, 1]. Thus, the allowed energy state of electrons form energy bands, called

minibands with bandwidth ∆ν , where ν = 1, 2, .... The corresponding states are

called Bloch states φνk(z) and can be specified with band number ν and Bloch vector

k. The example shown in Fig. 2.2 has relatively wide minibands. These are called

strongly-coupled superlattices. As the barrier becomes thicker, the miniband width

becomes narrower. For very thick barriers, the electrons are localized within each

well. This is called the weakly-coupled superlattice. When the coupling lies between
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Figure 2.2: the Kronig-Penney model for a GaAs/AlAs 4/1 superlattice with w = 4
nm and b = 1 nm. The first miniband width ∆1 is 55 meV. See also Ref. [38].

these two extreme cases, the tight-binding approach can be used[32]. A particular

and special superposition of Bloch states allows one to define the Wannier states as

follows

Φν(z) =

√
l

2π

∫ π/l

−π/l
dkφνk(z). (2.11)

This is a localized wave function with exponentially decaying extension into neigh-

boring wells.

2.4 Electronic transport in superlattices

Different types of superlattices lead to different approaches of electronic transport

such as miniband transport, Wannier-Stark hopping and sequential tunneling. Wacker

[32] proposed ranges of validity for the different approaches for superlattice trans-

port. This is shown in Fig. 2.3, where Γ = ~/τ is the broadening of the individual

energy levels due to scattering and τ is the scattering time, the average time the

electron stays in one Bloch state before scattered to another Bloch state. We may
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Figure 2.3: Different approaches for electronic transport in superlattices (repro-
duced from Ref. [32]).

expand the miniband structure Eν(k) calculated from the Kronig-Penney method as

Eν(k) = Eν +
∞∑
h=1

2T νh cos(hkz), (2.12)

where T νh are coupling strength in the Hamiltonian of the superlattice within the

Wannier basis

Hsuperlattice =
∑
n,ν

[
Eνaν†n a

ν
n +

∞∑
h=1

T νh (aν†n+ha
ν
n + aν†n−ha

ν
n)

]
. (2.13)

where aν†n+h and aνn are creation and annihilation operators of the state ν at position

n associated with the Wannier functions, respectively. It has been shown that the

first component, i.e, the nearest neighbour coupling strength T ν1 ≈ ∆ν/4 [32].

So Fig. 2.3 suggests that miniband transport applies to the case where the voltage

drop across a period is smaller than one fourth of the miniband width and the

miniband width is larger than four times the scattering broadening. As the fields

becomes large, the electronic transport is treated as hopping between elements of the
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Wannier-Stark ladder, which are the eigenstates of the Hamiltonian with energies

Ej = E0−jeF l and, similar to Wannier states, extends over several periods. Finally,

if the bandwidth is extremely narrow for thick barriers, the electrons are localized

in each well. The transport in this case is due to the residual coupling between

neighboring wells leading to tunneling through barriers, which is called sequential

tunneling from well to well.

In the next two sections, we will review the sequential tunneling model and the

miniband transport model which correspond to the weakly- and the strongly-coupled

superlattices, respectively, the two types of superlattices that we study in this thesis.

2.5 The sequential tunneling model for weakly-coupled superlattices

The discrete rate equation model that we employ for the simulations below has been

developed over the past several years and has proved useful to model experimental

results with good accuracy for parameters so far studied (for a review, see Ref. [33]).

A heuristic derivation of the model using Fermi’s golden rule has also been presented

in Ref. [33]. Here we present an alternative derivation of the discrete rate equation

model starting from a microscopic tunneling Hamiltonian that aptly characterizes

the weakly-coupled superlattice. Among the advantages of this approach are that

it is relatively straightforward to generalize to include additional physical effects,

such as phonon scattering, phonon- or photon-assisted tunneling, or electron-electron

interaction.[39] Additionally, this approach makes clear that the derived rate equation

model is the result of a consistent first-order perturbation theory; such an approach

could also serve as a starting point for calculations that are higher order in tunnel

coupling as would be needed, e.g., if one were to consider somewhat thinner barriers.
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The tunneling Hamiltonian is written as follows:[40, 41]

Htotal = H +HT (2.14)

=
N+1∑
i=0

Hi +
N∑
j=0

HT j

=
N+1∑
i=0

∑
ki

Eikic
†
iki
ciki +

N∑
j=0

∑
kjkj+1

(Tkj+1kjc
†
j+1kj+1

cjkj + h.c.). (2.15)

Here the summation over i extends over the left lead (i = 0), the quantum wells

(i = 1 to N) and the right lead (i = N + 1). The operators c†iki (ciki) denote creation

(annihilation) operators for electrons in the i-th well or lead with three-dimensional

momentum ki, and satisfy standard fermionic commutation rules: {ciki , cjkj} =

cikicjkj + cjkjciki = 0, {c†iki , c†jkj} = 0, {ciki , c†jkj} = δijδkikj . The amplitude Tkj+1kj

denotes the tunneling matrix element between the j-th and j+1-th well/lead. In this

model, the unperturbed Hamiltonian H denotes a sum of individual Hamiltonians for

each quantum well or lead and assumes that they are uncoupled from one another.

The unperturbed single-electron states have absolute energies denoted by Eiki which

are defined such that, for all i, the zero of energy is taken as the conduction band

edge in the left lead (i.e., the emitter contact). Below, it will be convenient to define

an alternative quantity εki as the energy of the single-particle states relative to the

conduction band edge of the i-th well/lead. The relationship between these two ways

of expressing energy is summarized in Eiki = εki + eVi where e < 0 is the electron

charge and Vi denotes the electric potential at the position of the i-th well/lead. Fur-

thermore, each quantum well comprises a set of two-dimensional free electron gases -

one for each subband. Each quantum well or lead is assumed to be characterized by

a distinct internal chemical potential value µi and these are determined below using

a self-consistency argument based on the classical Poisson equation. The entire sys-

tem is assumed to have temperature T . The second term in Eq. 2.15, HT , represents

18



the effect of tunnel coupling between adjacent wells and/or leads and is treated as a

small perturbation, expected to be appropriate for weakly-coupled superlattices. It

should also be noted that when an energetic electron tunnels into a quantum well it

is assumed to relax instantly to the ground state for that quantum well.

The tunneling current from the i-th period to i + 1-th period in steady state

may be expressed in terms of the rate of change of the number of particles in the

i-th period.[35] This rate can be expressed in terms of a commutator of the number

operator Ni =
∑

ki
c†ikiciki with the total Hamiltonian:

eṄi =
i

~
[Htotal, eNi]

=
i

~
[HT i−1, eNi] +

i

~
[HT i, eNi]

= Îi−1→i − Îi→i+1. (2.16)

Here, Îi−1→i = i
~ [HT i−1, eNi] corresponds to the tunneling current operator from

i − 1-th period to i-th period and a similar definition applies for Îi→i+1. Going

to the interaction representation, the operators transform according to HT (t′) =

eiHt
′
HT e−iHt

′
and Îi→i+1(t) = eiHtÎi→i+1e−iHt, and we may express the tunneling

current from i-th period to i + 1-th period in terms of the following Kubo formula

[35]

Ii→i+1(t) =

∫ t

−∞
dt′〈
[
Îi→i+1(t), HT i(t

′)
]
〉. (2.17)

Here it is understood that the expectation value is computed using the appropriate

unperturbed thermodynamic ground states for the two electron gases in the i-th and

i+ 1-th wells. Note that this expression is first order in the perturbation, HT .

The evaluation of Eq. 2.17 is straightforward if somewhat lengthy, and the re-
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sulting current can be simply expressed as

Ii→i+1 =
4πe

~
∑

kiki+1

|Tki+1ki |2 δ(εki+1
− εki − eFil)

[
nF (εki+1

− µi+1)− nF (εki − µi)
]
,

(2.18)

where nF (x) = [1 + exp(x/kBT )]−1 denotes the Fermi function, and we have defined

Fi as the average electric field between wells i and i+ 1 so that, in terms of electric

potential, one writes −Fi = (Vi+1−Vi)/l. The tunneling matrix element is calculated

using a method due to Bardeen:[42, 41]

|Tki+1ki |2 =
~4

4m∗2
Ti(εi,z) δki⊥,ki+1⊥ , (2.19)

where

Ti(εi,z) =
16k2

i k
2
i+1α

2
i (k

2
i + α2

i )
−1(k2

i+1 + α2
i )
−1

(w + α−1
i−1 + α−1

i )(w + α−1
i+1 + α−1

i )e2αid
, (2.20)

~ki =
√

2m∗εi,z, (2.21)

~ki+1 =
√

2m∗[εi,z + e(d+ w)Fi], (2.22)

~αi−1 =

√
2m∗

[
|e|Vb + e

(
d+

w

2

)
Fi − εi,z)

]
, (2.23)

~αi =

√
2m∗

[
|e|Vb − ewFi

2
− εi,z)

]
, (2.24)

~αi+1 =

√
2m∗

[
|e|Vb − e

(
d+

3w

2

)
Fi − εi,z)

]
. (2.25)

Here, ki⊥ is the component of ki perpendicular to the current flow, εi,z is the energy

in the parallel direction - i.e., the z component of the total energy εki , d denotes the

width of one barrier, w the width of one well, and m∗ the electron effective mass

(taken as 8.43×10−32 kg corresponding to an appropriately weighted average of GaAs
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and AlAs effective masses). Additionally, |e|Vb is the barrier height in the absence

of an applied potential drop (taken as 0.982 eV for the GaAs/AlAs interface).

In order to calculate the current Ii→i+1, we carry out the summation in Eq. (2.18)

in the parallel directions and sum over the subband energy levels by inserting a

spectral function Aν(εz) which is centered at νth level Eν with a scattering width γν

Aν(εz) =
γν/π

(εz − Eν)2 + γ2
ν

. (2.26)

For transport between adjacent quantum wells, Eq. (2.18) can be written as

Ii→i+1 =
π~3e

m∗2

nmax∑
ν=1

∑
ki⊥ki+1⊥

∫
A1(εi,z)dεi,z

∫
Aν(εi+1,z)dεi+1,z

×Ti(εi,z) δ(εki+1
− εki − eFil)

[
nF (εki+1

− µi+1)− nF (εki − µi)
]
δki⊥,ki+1⊥ . (2.27)

Carrying out the k⊥ summations and the integration over εi+1,z, dividing by cross-

sectional area, and replacing the remaining integration variable εi,z with ε, we can

write the current density as

Ji→i+1 = e
~kBT
2m∗

nmax∑
ν=1

∫ +∞

0

A1(ε)Aν(ε+ eFil)Ti(ε) ln

(
1 + e(µi−ε)/kBT

1 + e(µi+1−eFil−ε)/kBT

)
dε,

(2.28)

which is identical to the tunneling current expression derived using a Fermi’s golden

rule approach as described, e.g., in Ref. [33].

The integral of Eq. (2.28) can be approximately calculated by assuming the scat-

tering width is small compared to the subband energies and chemical potentials:

Ji→i+1 =
evf (Fi)

l

{
ni − m∗kBT

π~2
ln

[
1 + exp

(
− eFil
kBT

)
×
(

exp

(
π~2ni+1

m∗kBT

)
− 1

)]}
,

(2.29)

where we have defined the two-dimensional electron density in the i-th well

ni =
m∗kBT
π~2

ln
[
1 + e(µi−E1)/kBT

]
, (2.30)
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Figure 2.4: Tunneling current density for well-to-well transport vs. electric
field under uniform electric field conditions Jsuperlattice(F ). The straight lines rep-
resent Ohmic contact characteristics for different σ values: σ1 = 0.08(Ωm)−1,
σ2 = 0.064(Ωm)−1, σ3 = 0.016(Ωm)−1, and σ2 = 0.00168(Ωm)−1.

and the effective electron drift velocity

v(f)(Fi) =
nmax∑
j=1

~3l(γ1+γj)

2m∗2 Ti(E1)

(E1 − Ej + eFil)2 + (γ1 + γj)2
. (2.31)

Equation (2.29) above indicates that, in general, the tunneling current density de-

pends on the variables ni, ni+1, and Fi and this dependence can be clarified by

writing Ji→i+1(ni, ni+1, Fi). In Fig. 2.4 we plot the field dependence under the con-

dition of uniform electric field (equiv., no net space charge) so that ni = ni+1 = ND,

where ND is the two-dimensional doping density in the i-th well; this defines the

superlattice current-field characteristic which we denote as follows: Jsuperlattice(Fi) ≡
Ji→i+1(ND, ND, Fi).

The fundamental tunneling current expression, Eq. (2.18), can also be used to de-

velop (generally nonlinear) current-field characteristics that describe transport from

the emitter to the first quantum well or from the last well into the collector. A

key ingredient is the structure of electronic states in the emitter/collector, typically
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different than the structure of states in the quantum wells. One plausible approach

treats the emitter as a three-dimensional Fermi gas of electrons with local chemical

potential determined by the donor concentration in the contact region.[40, 43] We

have performed our calculations using both this microscopic boundary condition and

an Ohmic boundary condition and we find good agreement, provided that the effec-

tive σ value is chosen so that the microscopically-based contact J −F characteristic

and the Ohmic characteristic both intersect the J − F curve of the superlattice at

the same point (cf. Fig. 2.4). A separate question of importance for experiment is

to relate the effective value of σ to parameters that can be controlled in real su-

perlattices, for example, the donor concentrations in the emitter and collector and

the thicknesses of the first and last superlattice barriers. We will study these effects

and the results in Chapter 3[44]. For the present study, we use the following Ohmic

boundary conditions:[43, 45]

J0→1 = σF0, (2.32)

JN→N+1 = σFN
nN
ND

, (2.33)

where σ denotes the effective contact conductivity.

Integrating over one superlattice period, the Poisson equation and the charge

continuity equation are expressed as:

Fi − Fi−1 =
e

ε
(ni −ND), i = 1, ..., N. (2.34)

e
dni
dt

= Ji−1→i − Ji→i+1, i = 1, ..., N. (2.35)

where ε is the dielectric constant. Equations (2.34) and (2.35) together with the

boundary conditions, Eqs. (2.32) and (2.33), comprise the sequential tunneling model

that we simulate, which takes the form of a rate equation model with the nonlinear

drift-diffusion current of Eq. (2.29). The fundamental dynamical variables are the
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averaged field values in each quantum well plus the field values in the injecting and

receiving contacts. Differentiating Eq. (2.34) with respect to time gives:

ε
dFi
dt

+ Ji→i+1 = J(t), i = 0, ..., N. (2.36)

in which the total current density J(t) is the same for all periods. The bias condition

is

1

N + 1

N∑
i=0

Fi =
V (t)

(N + 1)l
, (2.37)

where V (t) is the total voltage bias across the sample. This is a global coupling

among all the field values.

For simulations reported in this thesis, the parameter values generally follow the

experimental structure of Rogozia et al.[46] Thus, the number of superlattice periods

is N = 40 while the doping density in each quantum well is ND = 1.5× 1011 cm−2.

The widths of each quantum well and barrier are 9 nm and 4 nm, respectively,

which implies that the subband energies are E1 = 44 meV, E2 = 180 meV, and

E3 = 410 meV. Additionally, we assume that the scattering widths are independent

of subband index so that γ = γj = 8 meV. [45, 47]

2.6 Miniband transport

Miniband transport, also sometimes referred to as semiclassical transport, was first

discussed by Esaki and Tsu in the paper where the superlattice was originally

proposed[23]. The approach they followed is very simple and intuitive. Assume

the dispersion relation of the miniband energy E and Bloch vector k is approxi-

mately given by the following form that can be derived for electrons in a weakly

periodic potential [48]:

E(k) ≈ E(0)− ∆

2
cos(kl). (2.38)
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Figure 2.5: Schematic of energy and velocity versus Bloch vector.

The velocity of an electron moving in the potential is given by

v(k) =
1

~
∂E

∂k
=

∆d

2~
sin(kl). (2.39)

This is illustrated in Fig. 2.5. Under an external electric field F , the electron is

accelerated as

dk

dt
=
eF

~
. (2.40)

Or, k = eF t/~, i.e., the Bloch vector increases linearly in time. Substituting this

result back in Eq. 2.39, we see that the velocity oscillates in time with the Bloch fre-

quency ωB = elF/~, which depends on the applied voltage. If there is no scattering,

the electron will perform oscillation without drifting. This ideal oscillation is called

the Bloch oscillation, but has never been observed in single crystals. This is because

scattering processes tend to restore the electron to thermal equilibrium and, thus,

before the Bloch vector can increase significantly, it is scattered back to near k = 0.

So k can only explore a very narrow range near k = 0 in the first Brillouin space.

However, for the superlattice, the electron can explore a wider range in the first

Brillouin space because the lattice constant, i.e., the period of the superlattice, is

significantly larger than the lattice constant of a crystal. Equivalently, the size of
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the first Brillouin space 2π/d becomes much smaller, so the electron has a chance to

explore a wider range in the first Brillouin space before being scattered. This effect

is manifested in the following remarkable current-field characteristic, see Fig. 2.6.

As the field becomes larger, the electron can explore a wider k space and possibly

perform a few periods of Bloch oscillation. For an ensemble of electrons, this reduces

the average drift velocity. So the drift velocity decreases as the field increases for

high field. The drift velocity can be written as

vd = vm
2eFd/Γ

1 + (eFd/Γ)2
= vm

2F/Fc
1 + (F/Fc)2

(2.41)

Again, Γ = ~/τ is the broadening due to scattering. This is called the Esaki-Tsu

characteristic and was derived by them using an elementary kinetic theory argument.

[23]. When F = Fc ≡ ~/edτ , the drift velocity reaches a local maximum. For larger

τ and fixed F , the electron can perform more periods of Bloch oscillation and thus

vd enters negative differential region more easily, i.e., smaller Fc.

This relation is derived more rigorously using the Boltzmann equation. Denote

f(k) as the steady-state distribution function of electrons in k space, which satisfies

the one-dimentional Boltzmann equation [49].

∂f

∂t
+
eF

~
∂f

∂k
= −1

τ
(f − f0), (2.42)

where f0 is the equilibrium distribution without an external electric field. The current

can be written as

j = 2e

∫
v(k) f(k)dk, (2.43)

where v(k) = ∂E(k)/∂k. We can solve Eq. 2.42 for f in the integral form and

substitute f into Eq. 2.43. Then, we Fourier transform it into frequency domain

and, in the low frequency limit, it can be shown the current has the form

j = j0
2eFd/Γ

1 + (eFd/Γ)2
. (2.44)
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In the above equation, the peak current

j0 =
eN∆d

4~
I1(∆/2kBT )

I0(∆/2kBT )
, (2.45)

where Ik(x) are modified Bessel functions. The factor I1(∆/2kBT )
I0(∆/2kBT )

accounts for the

temperature effect. As the temperature increases such that kBT is larger than the

miniband width ∆, the electrons almost uniformly occupy the miniband although

not fully. Thus, the electric field is unable to alter this momentum distribution and

conductivity of the superlattice vanishes. This is called thermal saturation [50]. The

miniband transport model forms the basis of a drift-diffusion transport model for

strongly-coupled superlattices as discussed in detail in Chapter 5.

2.6.1 Gain

A remarkable property of this transport process in strongly-coupled superlattice con-

cerns the behavior of the ac gain up to and near, but just below the Bloch frequency.

Consider the applied field as a superposition of a dc field F and an ac field:

F (t) = F + F1 cos(ωt). (2.46)

This is illustrated with the Esaki-Tsu characteristic in Fig. 2.6. The energy trans-

ferred from the alternating field to the medium is

P =

∫
j(t)F1 cos(ωt)dt. (2.47)

If the increase of electric field causes decrease of the current, then P < 0, and the

energy is transferred from the medium to the alternating field, causing amplification.

Ktitorov et. al. were the first to point out this gain in their seminal paper

[51]. They linearized the Boltzmann equation with both the elastic and the inelastic

scattering time constants and found the high-frequency conductivity of the form:

σ(ω) = σ0
1− ω2

Bτeτp − iωτe
(ω2

B − ω2)τeτp + 1− iω(τp + τe)
. (2.48)
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When ω2
Eτpτe > 1, the optical propagation constant

α =
σ(ω)√
εε0c

(2.49)

has a negative real part for the frequency from 0 to near ωB and has a maximally

negative real part just below ωB.

It is more instructive to rewrite this gain using a quantum derivative notation[52]

g = − ed

nrε0c

jdc(eFd+ ~ω)− jdc(eFd− ~ω)

2~ω
. (2.50)
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This has the meaning that the gain/absorption is proportional to the dc differential

conductivity while the energy is discretized in units of the photon energy ~ω.

Now this can be explained in terms of the quantum-mechanical Wannier-Stark

picture[53]. The individual Wannier-Stark ladder states are shifted in space in units

of a superlattice period. Since the energy drop across each period is elF , the en-

ergy difference between neighboring Wannier-Stark ladders is equal to elF , which is

also equal to ωB~ by simply rewriting the Bloch frequency. The transition between

neighboring Wannier-Stark ladder states may also be assisted by phonon, which can

cause emission and absorption of photons with energy slightly less than ~ωB. This

explanation has been fully described by Willenberg et.al.[53] using density matrix

calculation. The gain obtained using this approach agrees very well with the gain

obtained from the semiclassical approach, that is, Eq. 2.50 above in high temperature

limit.
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3

Dependence of front dynamics on contact
conductivity in weakly-coupled superlattices

The current vs. field curves with NDC introduced in Chapter. 2 describe the local

property in superlattices: the tunneling current through a barrier in weakly-coupled

superlattices or the current at one point in strongly-coupled superlattices. When

a bias voltage is applied across the whole structure, the current vs. total voltage

curve turns out to be quite different from the local current vs. field curves. The

underlying reason is that the field inside the superlattice is non-uniform and forms

domains. The interfaces where field domains with different field intensities meet are

called fronts, much as the fronts in fluid dynamics. The weakly-coupled superlattice

is a system where rich front dynamics occurs, manifested by the total current and

its relationship with the applied voltage.

In this Chapter, we will study front dynamics in weakly-coupled superlattices

with different contact conductivities. We will first see static or moving field do-

mains/fronts under fixed bias voltages. Then we will study how the system respond

to sudden switching of the bias voltage.
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3.1 The model for one-dimensional superlattices

To remind ourselves of the sequential tunneling model, the model equations which

are the Poisson equation (2.34), the charge continuity equation (2.35) and the total

applied voltage (2.37) are copied here:

Fi − Fi−1 =
e

ε
(ni −ND), i = 1, ..., N. (3.1)

e
dni
dt

= Ji−1→i − Ji→i+1, i = 1, ..., N. (3.2)

l
N∑
i=0

Fi = V (t), (3.3)

This model is for one-dimensional superlattices where the dynamics in the lateral

direction is assumed to be uniform and neglected. Only the dynamics along the

growth direction z is considered in this model.

The charge continuity equation determines the evolution of electron density ni

in time and space. It is composed of partial derivative of ni with respective to time

and difference of currents due to the discrete nature of weakly-coupled superlattices.

In continuum limit, it is a partial differential equation. However, due to the unique

structure of this system which we will show below, this system can be cleverly written

as a ordinary differential equation set, which not only is easier to simulate but also

easier to perform stability analysis on.

First, differentiating Eq. (3.1) with respect to time and plugging into Eq. (3.2):

ε
dFi
dt

+ Ji→i+1 = J(t), i = 0, ..., N. (3.4)

in which the total current density J(t) is the same for all periods. This equation

tells us that the total current is composed of the tunneling current Ji→i+1 and the

displacement current εdFi/dt. Moreover, the total current is the same everywhere
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inside the superlattice. Summing Eq. 3.4 over index i, one obtains the total current

in terms of all Fi:

J(t) =
1

N + 1

εdV

l dt
+

1

N + 1

N∑
i=0

Ji→i+1, (3.5)

where we applied the total voltage condition Eq. 3.3. Then plugging Eq. 3.5 back

into Eq. 3.4 yields:

dFi
dt

=
1

(N + 1)l

dV

dt
+

1

(N + 1)ε

N∑
j=0

Jj→j+1 − 1

ε
Ji, (3.6)

for i = 0, ..., N .

Now we have rewritten the model equations (3.1) - (3.3) to a system of ordinary

differential equations (ODEs). The advantage of this representation of the model

is that the bias condition, Eq. (3.3), is naturally embedded and this renders the

numerical simulation straightforward and relatively stable. We have used both first-

order Euler and fourth-order Runge-Kutta methods to solve this system (3.6), with

initial condition

Ei(0) = Ei0, i = 0, ...N, φ(0) =
N∑
i=0

Ei0
N + 1

. (3.7)

The simulations show rapid convergence, so it is not necessary to use higher order

or implicit methods.

3.2 Contact conductivity vs. doping density

The microscopic model for the tunneling current through the boundary is similar

to the tunnelling within the superlattice [54]. From Eq. 2.27, treating the contact

as three dimensional Fermi gas and calculate the tunneling matrix T , we have the

tunneling current from the emitter contact:

J0→1 ≈ j(f)
e (F0)− n1w

(b)(F0), (3.8)
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j(f)
e (F0) =

n∑
j=1

16k2
0k

2
1α

2
0(k2

0 + α2
0)−1(k2

1 + α2
0)−1

(w + α−1
0 + α−1

1 )e−2α0d
θ
(
Ej − eF0

(
l +

w

2

))

×kBT
2π~

ln

(
1 + exp

(
εF + eF0(l + w/2)− Ej

kBT

))
, (3.9)

w(b)(F0) =
8~k0k

2
1α

2
0(k2

0 + α2
0)−1e−2α0d

m∗(w + α−1
0 + α−1

1 )(k2
1 + α2

0)
θ
(
E1 − eF0

(
l +

w

2

))
(3.10)

where,

εF =
~2

2m∗
(3π2Nc)

2/3; (3.11)

where Nc is the doping density in the emitter.

~k0 =
√

2m∗(Ej − eF0(d+ w)) (3.12)

~k1 =
√

2m∗Ej (3.13)

~α0 =
√

2m∗(eVb − E j + eF0(d+ w/2)) (3.14)

~α1 =
√

2m∗(eVb − E j − eF0w/2) (3.15)

Similarly, the tunneling current to the collector is

JN→N+1 ≈ nNw
(f)(FN), (3.16)

w(f)(F ) =
8~kN+1k

2
Nα

2
N(k2

N + α2
N)−1e−2αNd

m∗(w + α−1
N−1 + α−1

N )(k2
N+1 + α2

N)
(3.17)

where

~kN+1 =
√

2m∗(E1 + eFN(d+ w)) (3.18)

~kN =
√

2m∗E1 (3.19)

~αN−1 =
√

2m∗(eVb − E1 + eFN(d+ w/2)) (3.20)

~αN =
√

2m∗(eVb − E1 − eFNw/2) (3.21)
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Figure 3.1: Dashed line: the tunneling current from the emitter to the first period
for doping density in the emitter (a) Nc = 1× 1018cm−3 and (b) Nc = 2× 1018cm−3.
Solid line: the intrinsic tunneling current inside the superlattice.
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Figure 3.2: Effective contact conductivity versus Nc.
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The tunneling current from the emitter to the first period is plotted in Fig. 3.1

for doping density in the emitter (a) Nc = 1× 1018cm−3 and (b) Nc = 2× 1018cm−3

along with the intrinsic tunneling current. A discrepancy between the two curves

can be clearly seen. The emitter current intersects the intrinsic current for relatively

small Nc and is higher than the intrinsic current for large Nc. If we approximate the

emitter current with a straight line that intersects the intrinsic current at the same

point as the detailed emitter model, we find that the behavior of the superlattice is

qualitatively the same. So we can describe the emitter by a single parameter contact

conductivity σ and the emitter can current can be written as

J0→1 = σF0. (3.22)

Similarly, the collect current is

JN→N+1 = σFN
nN
ND

, (3.23)

which also depends on the electron density in the last period. The values of contact

conductivity corresponding to different emitter doping density are listed in Table 3.1

and also plotted in Fig. 3.2. It can be seen that the contact conductivity increases

as doping density in the emitter increases.

Nc (×1018cm−3) 1.0 1.1 1.2 1.3 1.4
σ (Ωm)−1 0.030 0.036 0.046 0.062 0.106

Table 3.1: Doping density values equivalent to contact conductivity σ values.

3.3 Dependence of time-averaged I−V curves on contact conductivity

For larger values of σ, the I − V curves typically exhibit as many stable current

branches as there are superlattice periods. Each branch corresponds to the location

of a single static charge accumulation layer in a particular quantum well of the

35



superlattice. Typically, there is also multistability between adjacent branches. The

overall electric field configuration has a high-field domain on the collector side of

the superlattice and low-field domain on the emitter side of the superlattice. As

the contact conductivity is lowered, the static domain configuration loses stability in

favor of an oscillatory current. In many respects the overall behavior is qualitatively

similar to that observed for superlattices in which the doping level of each period in

the superlattice was lowered from a level that corresponds with intentionally doped

structures to undoped structures.[55, 56] However, for very low values of σ the I−V
behavior is not similar to the case of very low doping level and one finds a high-field

region next to the emitter contact as discussed below. We have calculated both

ramped and time-averaged I −V curves, and these two possess nearly identical form

in regimes where the field profile is time-independent. The ramping procedure is as

follows: the time step is 1.47 ns and total number of ramping steps from 0 V to 4 V

and back to 0 V is 8 × 105, i.e. total ramping time is about 1.2 ms. The up and

down sweeps show the presence of hysterisis. The time-averaged I − V curves which

we show in Fig. 3.3 below are calculated as follows: at every ramping step described

above, the current is averaged over a period of time so long that the time-averaged

current value converges, before proceeding the next voltage. This time is at least

14.7µs, much longer than oscillation periods (typically less than 1µs).

3.3.1 Current branches and field domains at high σ

For the highest value of σ studied here, the I − V curves are composed of regularly-

spaced, stable branches shown in Fig. 3.3(a). Each branch corresponds to a field

configuration with a high field domain near the collector and a low field field domain

near the emitter, illustrated in Fig. 3.4(a). The high field domain expands by one

period when a new current branch forms. The field for upsweep in Fig. 3.3(a) as

a function of period number and applied voltage is shown in Fig. 3.4(b). The two
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Figure 3.3: Time-averaged I−V curves for different σ values: (a) σ = 0.08(Ωm)−1,
(b) σ = 0.024(Ωm)−1, (c) σ = 0.016(Ωm)−1, and (d) σ = 0.00168(Ωm)−1. In (c) the
thin curves show the envelope of extrema of the time-dependent current.
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domains are separated by a charge accumulation layer that is mostly confined to

two adjacent quantum wells. As the branch number increases by one, the center of

the accumulation layer jumps by one period of the superlattice, i.e., to a quantum

well that is one period closer to the emitter contact. The contour plot for electron

density for upsweep as a function of period number and applied voltage is shown in

Fig. 3.4(c).

A significant feature of the I − V curve in Fig. 3.3(a) is that the upsweep curve

does not match the downsweep curve. At certain ranges of the applied voltage,

the upsweep current (upper branch) is larger than the downsweep current (lower

branch). This is called bistability or hysteresis. This is because for these values of

applied voltage, the CAL can either be one well or the next, corresponding to two

different field configurations. An example is shown in Fig. 3.4(d) for 1 V. The CAL

stays either in the 32nd well for upsweep or in the 31st well for downsweep. For

higher voltages, tristability and multi-stability occurs.

3.3.2 Current self-oscillation

As σ decreases to intermediate values corresponding to Fig. 3.3(b), the stable current

branches become smaller and gaps open up between them. In these gap regions

there is no stable static field configuration and current self-oscillations occur which

correspond to the periodic motion of the charge dipole layers across all or part of

the superlattice. This behavior is similar to that reported by Hizanidis et al. for

a distinct model of superlattice transport and different device parameters.[57] It is

likely that the bifurcation diagram of superlattice current behavior versus σ reported

in Ref. [57] is also applicable in our system. Finally, it is interesting to note that

similar bifurcation behavior is found when the doping level is varied instead of σ,

although in the case of intermediate doping levels, the current self-oscillations are

associated with charge monopoles.[55]
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Figure 3.4: (a)Schematic of bistable field domains. (b) Field vs. voltage V and
superlattice period for upward ramping. (c) Charge density n vs. voltage V and
superlattice period for upward ramping. (d) Bistable field distribution and charge
density distribution for V = 1 V.

For lower σ values corresponding the Fig. 3.3(c), the stable branches cease to exist

and all the points on the plateau correspond to current self-oscillation, i.e., stable

static electric field configurations do not occur for these σ values. The structure of

the time-varying electric field profile is that of the dipole layer moving across the

entire sample and then re-cycling and is similar to that found in previous studies.[57]

The electron density evolution and the current traces at different bias voltages are

plotted in Fig. 3.5. Although the current traces appear very different, there are

some common features in electron density evolution. A charge depletion layer (CDL)

followed by a CAL forms near the emitter and both move toward the collector. After

CAL reaches the superlattice period where a CAL could build for high σ, the CAL
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Figure 3.5: Current oscillations for σ = 0.016(Ωm)−1 at (a),(b) V = 1 V, (c),(d)
V = 2 V and (e),(f) V = 3 V. Left column: charge density contour plot. Right
column: current time series.

stays at that position for a short period of time. During this time, the front CDL

either has reached the collector for high voltages or has annihilated with an old CAL.

Then the CAL failed to settle down, it continues to move toward the collector and a

new CDL and CAL pair form at the emitter. This is a periodic process.
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3.3.3 Extremely low σ

Fig. 3.3(d) shows a typical I − V curve for very low σ value such that the contact

characteristic sits below the intrinsic J − F characteristic of the superlattice [cf.

Fig. 1]. In this case, we find a stable I − V curve without apparent branches or

multistability. Remarkably, this corresponds to a stable, static electric field domain

configuration in which the low field domain is adjacent to the collector and a non-

constant high field region is adjacent to the emitter. These are separated by a

static depletion layer that extends over three or more periods, shown in Fig. 3.6.

Because the depletion layer has significantly lower absolute value of charge density

than the accumulation layers described above, bistability is not expected or observed

in this case. To our knowledge, such a field configuration has not been reported or

predicted previously for weakly-coupled superlattices though there is evidence for

such a field configuration in certain multiple-quantum well device structures.[58]

This behavior can be understood by examining the time-independent continuum

limit of the discrete rate equation model, Eqs. (2.34) and (2.36) which provides a

good description provided that the spatial scale of electric field variation is not too

rapid. We begin by approximating the field difference in Eq. (2.34) in terms of the

spatial field derivative, i.e., Fi−Fi+1 ' l(∂F/∂x)i. Substituting this expression into

Eq. (2.34) and solving for ni allows us to write

ni ' εl

e
(∂F/∂x)i +ND. (3.24)

The current equation, Eq. (2.36), can be written in time-independent form as

σF0 = Ji→i+1(ni, ni+1, Fi), (3.25)

where we have dropped the displacement current and explicitly included the bound-

ary current. Referring back to the expression for well-to-well tunneling current,
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Eq. (2.29), we see that, except for fields very close to zero, it is reasonable to include

the drift term only so that Ji→i+1(ni, ni+1, FI) ' eniv
f (Fi)/l. [33] Now, substitut-

ing Eq. (3.24) into Eq. (3.25) and using the aforementioned drift approximation, we

arrive at a first-order differential equation for the static field profile

e

l
[
εl

e
(∂F/∂x) +ND]vf (F ) = σF0. (3.26)

The numerical results are easier to interpret if we write this equation in terms of

∂F/∂x as follows

∂F

∂x
=
eND

εl
(

σF0

Jsuperlattice(F )
− 1), (3.27)

where we have used the drift limit of the superlattice current-field characteristic under

uniform field conditions, Jsuperlattice(F ) ' eNDv
f (F )/l. Equation (3.27) provides a

good qualitative description of the key features in the field profile of Fig. 3.6. For

instance, the field profile can be calculated by integrating Eq. (3.27) from x = 0 (i.e.,

the injecting contact) into the sample, subject to a boundary condition F (x = 0) =

F0, where F0 is ultimately to be determined in terms of the total applied voltage,

i.e., V =
∫ Nl

0
F (x)dx. In the limit of small σ such that |σF0| < |Jsuperlattice(F )|

we see immediately (from the right hand side of Eq. (3.27)) that only regions of

depleted charge are possible. Furthermore, the magnitude of depleted charge will

be maximal when |Jsuperlattice(F )| is largest, and this explains the appearance of

the predominant depletion layer in the range of wells 17 to 20. The structure of

Eq. (3.27) also explains why the field profile is not constant in the high field region

between the emitter and the depletion layer: for sufficiently small σ, we have |σF0| <
|Jsuperlattice(F )| throughout this range of fields and there is a non-zero charge density

in this region (corresponding to depletion of electrons) that is approximately uniform

- since Jsuperlattice(F ) is approximately constant for these field values, cf. Fig. 1.

Furthermore, Eq. (3.27) gives insight into the shape of the I − V curve at low σ,
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Figure 3.6: The spatial profiles of electric field and charge density for applied
voltage V = 1 Volt and contact conductivity σ = 0.00168(Ωm)−1. A static charge
depletion layer seperates the high field region next to the emitter and the low field
domain next to the collector.

cf. Fig. 2(d). The plateau occurs because for this range of applied voltages, the

boundary field F0 is almost constant with increasing voltage; the increasing voltage

is achieved by the shifting the position of the depletion layer towards the collector.

Equation (3.27) also allows us to see why the low σ behavior reported here is

different from that previously reported for low doping level or, equivalently, for small

values of ND.[55, 33] For σ fixed at a moderately large value, Eq. (3.27) implies the

presence of charge accumulation layers, regardless of the value of ND. When ND is

small this leads to stable, static field profiles and I − V curves that are proportional

the local superlattice current-field characteristic.[55]
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3.4 Dependence of Relocation Type on contact conductivity and Volt-
age Step

We now consider the response of electric field profiles and associated current tran-

sients to abrupt steps in applied voltage. We focus on a contact conductivity value

σ = 0.064(Ωm)−1 (which is slightly below the characteristic value defined above, i.e.,

σc ≡ JM/FM = 0.07924(Ωm)−1) and nearby values for which static field domains

are stable under time-independent voltage bias. In Fig. 3.7 we indicate the initial dc

voltage by the point A and then points B, C, D, and E correspond to the successive

final voltages in the following discussion.

The transition from point A (0.75 V) to point B (0.82 V) exhibits the injected

dipole process with relatively complex spatio-temporal structure and long relocation

time tr. The corresponding current transient behavior and space-time evolution of

the net charge density are shown in Fig. 3.8. The voltage step causes a current jump

which injects electrons into the superlattice. Prior to the voltage step, there is a

small depletion layer at the emitter due to the higher field in the emitter contact;
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the injected electrons form between the contact and the depletion layer, pushing

the depletion layer into the sample. At the same time, the initial accumulation

layer jumps back one well, from well number 34 to 33. Then, the small dipole

configuration detaches from the emitter and moves into the superlattice. For the

particular conditions shown here it remains small amplitude (so that it is not visible

on the gray scale of Fig. 3.8(b)) and moves at a steady velocity for the first 0.1 µsec

after the voltage step; during this time, the initial accumulation layer remains at a

fixed in well number 33 and the current has a large, approximately constant value.

After this initial behavior, the dipole layer grows rather abruptly into a moving, fully

developed dipole. The initial accumulation layer detaches from well number 33 and

begins to move towards the collector at the same speed as the accumulation part of

the injected dipole. The current drops to a new approx. steady value during this

interval - from roughly 0.2 to 0.4 µsec in Fig. 3.8(a). The small rapid oscillations in

current are due to the motion of the large-amplitude accumulation layers between

adjacent wells and these have been discussed previously.[46, 45] These three charge

layers move toward the collector and the foremost two layers disappear successively at

the collector. Finally, the injected accumulation layer stops at the new position (i.e.,

well number 33) forming the stable field configuration that corresponds to the final

voltage. It should be noted that this injected dipole is slightly different than that

described in Ref. [45]. In that case, a smaller assumed σ value led to the appearance

of the fully-developed injected dipole beginning at the emitter contact. Additionally,

we note that the overall shape of the current transient reflects the prevalence of

dipole motion and is similar to that which occurs in the bulk Gunn effect. [59, 60]

As the voltage step size increases there is a smooth transition to the next sce-

nario, in which the injected dipole layers become smaller and move faster. Thus, the

relocation time becomes smaller as shown in Fig. 3.9 which corresponds to a voltage

jump from point A (0.75 V) to point C (0.86965 V) in Fig. 3.7. In this case the final
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Figure 3.8: Injected dipole relocation mechanism for σ = 0.064(Ωm)−1: (a) tran-
sient current response, and (b) space-time portrait of charge density. Voltage switches
from 0.75 V to 0.82 V (cf. point B in Fig. 3.7).

accumulation layer is at well number 32, two steps closer to the emitter than the

initial position. This faster behavior is a direct consequence of the larger voltage step

which implies the injection of more electrons. This, in turn, leads to more complete

filling of the depletion layer at the emitter resulting in a smaller charge dipole at

the emitter. It also can be seen that a small charge layer moves faster than a fully

developed one. This can be understood because for a smaller overall charge value

in either the accumulation or depletion layer there is less charge to tunnel through
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Figure 3.9: Shortened injected dipole relocation mechanism for σ = 0.064(Ωm)−1:
(a) transient current response, and (b) space-time portrait of charge density. Voltage
switches from 0.75 V to 0.86965 V (cf. point C in Fig. 3.7).

each barrier and the motion is therefore faster.

Further increasing the voltage step, we can see the single monopole shift mech-

anism shown in Fig. 3.10, which corresponds to a voltage step from point A (0.75

V) to point D (0.88 V) in Fig. 3.7. In this scenario, the injected electrons have

almost completely filled the depletion layer at the emitter and the fluctuation is so

small that it simply dies out as it begins to move into the superlattice. The original

accumulation layer just moves backward by one period and the whole system reaches
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Figure 3.10: Single monopole shift σ = 0.064(Ωm)−1: (a) transient current re-
sponse, and (b) space-time portrait of charge density. Voltage switches from 0.75 V
to 0.88 V (cf. point D in Fig. 3.7).

a stable state. This process is the simplest and the relocation time is the smallest.

At a large voltage step size that takes the system across two current branches

(corresponding to the transition from point A (0.75 V) to E (1.00 V) in Fig. 3.7),

we observe an injected monopole shown in Fig. 3.11. The large number of injected

electrons rapidly fill the depletion layer at the emitter contact and a small accumu-

lation layer is formed at the emitter. This accumulation layer moves rapidly into

the superlattice and comes to rest at the new stable position. The original accu-
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mulation layer simply shrinks and disappears. The relocation time of this process

is also relatively short. The initial motion of the small accumulation layer is rapid

and it gradually slows as its amplitude increases to the final stable value. At the

same time, the current response is strikingly different than that for dipole motion.

The overall waveform that drops smoothly as the accumulation layer moves into the

sample and then rises as the accumulation layer reaches its final location; the in-

tervals of approximately steady current response associated with dipole motion are

absent. This behavior is similar to that observed in studies of the bulk Gunn effect

in which moving dipole domains were found to give time-periodic current with flat

intervals, while moving monopoles were associated with a more sinusoidal current

oscillation.[59, 60]

To get a complete picture of the dependence of relocation mechanism and relo-

cation times on contact conductivity, we have computed the relocation time for an

entire range of σ and Vstep values; the results are summarized in Fig. 3.13. For this

figure, the initial voltage is 0.75 V and is in the middle of the 7th branch on the

I − V curve. An overall feature of this diagram is that we observe a series of three

plateaus with increasing Vstep. The first plateau, with small Vstep and independent of

σ, corresponds to voltage switching on the same branch in which domain relocation

occurs via single monopole shift and is rapid. On the second step, the voltage step

crosses one current branch and there is a plateau of long relocation time correspond-

ing to the injected dipole for smaller values of σ; however, the relocation time drops

sharply for larger values of σ, indicating suppression of the injected dipole for σ val-

ues above a characteristic value σ∗ ≈ 0.072(Ωm)−1. While this transition is not an

abrupt bifurcation point in σ, it does occur over a relatively narrow range of σ values

which correspond approximately with the σ value where the contact characteristic

no longer intersects the J −F curve in the NDC region, cf. Fig. 1 the σc value. This

suppression occurs because the depletion layer at the emitter becomes small for large
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Figure 3.11: Injected monopole relocation mechanism for σ = 0.064(Ωm)−1: (a)
transient current response, and (b) space-time portrait of charge density. Voltage
swiches from 0.75 V to 1.00 V (cf. point E in Fig. 3.7).

σ values so that even a small amount of injected electrons associated with Vstep can

fill the depletion layer before it has a chance to propagate into the superlattice. The

third step mostly consists of shorter relocation time behavior corresponding to the

injected monopole mechanism. These fast transient response for large voltage steps

are confirmed in the recent experiments carried out on samples with large contact

conductivity[61]. Figure. 3.12(b) shows such a measured current response which has

the same order of magnitude of response time. However, there is a small part of the
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lower lefthand corner of the third step where injected dipole behavior is observed

and this becomes more prominent for σ values below those shown.

Figure 3.12: Measured current response for large voltage step switching and (a)
low contact conductivity (from Ref. [46]) (b) high contact doping 2 × 1018 cm−3

corresponding to a high contact conductivity, σ > 0.1(Ωm)−1, [61] see Fig. 3.2.

The wall separating the plateau and the first step indicates steady small-amplitude

current oscillation behavior that typically occurs at the ends of static current branches.
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Figure 3.13: Dependence of relocation time on voltage step Vstep and contact
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This behavior was first reported in Ref. [47] and corresponds to steady-state oscilla-

tion of the accumulation layer between adjacent wells. It is interesting to note that

this behavior also ceases for σ values above σ∗ implying that the current branches do

not end in small-amplitude oscillations for sufficiently large σ. On the other hand,

the ridge between the second and the third steps - which results from metastable

behavior during switching and produces a delayed shift - becomes more pronounced

for larger σ. This behavior gives rise to non-trivial stochastic switching effects that

have been studied experimentally and theoretically.[62, 63] We also note a preva-

lence of injected monopole behavior for values of σ in excess of the characteristic

value σc. This behavior is analogous to that found in earlier work on the bulk Gunn

effect in which periodically moving dipoles were associated with lower values of σ

(i.e., σ < σc) while periodically moving charge monopoles were associated with large

values of σ (i.e., σ & σc).[59]
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3.5 Conclusion

We have studied how contact conductivity σ, characterizing the boundary condition

for the sequential tunneling model, affects the time-averaged I−V characteristics of

weakly-coupled superlattices and their response to sudden switching of the applied

voltage. We find that for relatively large σ values the I − V curves exhibit static,

multistable branches that reflect the presence of a static charge accumulation layer

that separates the sample into low- and high-field domains. For intermediate values of

σ the I−V curves reflect the presence of current self-oscillations which are due to the

periodic motion of charge dipole layers across portions of the sample. Finally, at very

small σ the I − V curve is a stable curve without branches, and reflects an inverted

static field configuration in which the high field domain is next to the emitter. The

overall trend in σ-dependent behavior is seen to result from the role of the contact in

setting a limit on the quantity of electrons that enter the superlattice. While there

are some similarities between σ dependence and doping density dependence studied

previously [55, 56] for large and intermediate conductivity values, the behavior for

very small σ is distinct from that occuring for small doping density.

Relocation response to a range of σ values and voltage step values Vstep is charac-

terized by studying the relocation time tr and shows that the injected dipole occurs

only for a specific range of σ values (within the multistable I − V range) and small

Vstep. Transitional regions are found to occur between different relocation types. A

figure of relocation time versus σ and Vstep, serving as a phase diagram for different

relocation types, has been plotted and discussed. The dependence of relocation types

on both σ and Vstep results from the crucial role these two factors play in determining

the quantity of electrons that are injected into the superlattice through the emitter

contact.
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4

The weakly-coupled superlattice with a shunting
side layer

In Chapter 3, we have seen that the superlattice with negative differential conductiv-

ity is a nonlinear medium having rich front dynamics and nonuniform field domains.

A question arises: how can we control front behavior in such a system? More specifi-

cally, can we suppress the fronts in such a media? In other words, can one stabilize a

spatially uniform electric field distribution in the superlattice? A direct application

of this capability of suppressing fronts is the superlattice-based THz oscillator, which

we will investigate in next Chapter.

We propose a structure of a weakly-coupled superlattice with a shunting layer

grown on its side. This opens a parallel channel connected the superlattice at each

quantum well. The idea of using the shunt to suppress space-charge instability first

appeared in Ref. [64]. However, their oversimplified model was not able to show

rich dynamics in this structure. In this Chapter, a model is first proposed and rich

electronic transport dynamics in this system is studied. Additionally, we are able to

determine a maximum lateral size for which a uniform electric field is stabilized by
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a shunt layer.

4.1 Laterally extended model of the superlattice with shunt layer

The dynamical properties of weakly-coupled semiconductor superlattices have been

successfully described by the sequential resonant tunneling model over the past sev-

eral years.[65, 32, 33, 44] However, previous works usually consider only the dynamics

along the growth (vertical) direction of the superlattice and ignore the dynamics in

the in-plane (lateral) direction, i.e., treat each period as an infinitely large plane

with uniform charge density. More recently, Amann et al.[66] developed a theoreti-

cal framework which describes both lateral and vertical electronic dynamics. Here,

we extend this framework to include the effects of a shunting side layer.

The structure of the shunted superlattice is shown in Fig. 4.1. Each quantum

well forms a slab that is parallel to the x− y plane, with cross sectional dimensions

Lx and Ly. There are N such quantum wells stacked on top of each other in the

z direction, sandwiched between an emitter layer and a collector layer. The shunt

layer is located between −δx ≤ x ≤ 0, with thickness δx. The superlattice period

is l = w + d, where w and d are the width of the quantum well and width of the

barrier, respectively. The external voltage is applied in the z direction, across the

emitter and the collector.

4.1.1 The laterally extended model for superlattice

Inside the superlattice, the electrons are localized within one quantum well due to

the relatively thick quantum barriers. Furthermore, the electrons are assumed to

be at local equilibrium and the local two-dimensional charge density at time t is

denoted by nm(x, y, t), where m is the well index, x, y are the in-plane coordinates.

The charge continuity equation in the superlattice can be written as:

e ṅm(x, y, t) = j‖m−1→m − j‖m→m+1 −∇⊥ · j⊥m, (4.1)
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Figure 4.1: Schematic of the shunted superlattice. The growth direction is along
the z direction and the quantum wells are parallel to the x direction. The superlattice
is located at x > 0 and the shunt is at x < 0. The thick line on the right is the
potential energy of an electron in the conduction band of the superlattice.

where

∇⊥ = ex
∂

∂x
+ ey

∂

∂y
, (4.2)

and j‖m−1→m denotes the three dimensional vertical current in z direction tunneling

through each barrier (units: [A/m2]) and j⊥m is the lateral two-dimensional current

density (units: [A/m]). The electron charge is e < 0. The y-dependence is ignored

and Eq. (5.2) can be rewritten as:

e ṅm(x, t) = j‖m−1→m − j‖m→m+1 − ∂j⊥m(x)

∂x
. (4.3)

The local vertical tunneling current j‖m→m+1 through each barrier is described

by the sequential resonant tunneling model which has been derived using different

methods;[32, 33, 44] in this paper, we have used the same form as in Refs. [33, 44].

This tunneling current depends on the electric field F‖m(x) across the barrier through

which the tunneling occurs and the electron charge densities nm−1(x) and nm(x) in
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the neighboring quantum wells of this barrier. Thus, the tunneling current has the

functional form:

j‖m−1→m(x) = j‖m−1→m[F‖m(x), nm−1(x), nm(x)]. (4.4)

If the charge density is uniform, the tunneling current J‖(F,ND, ND) follows the

dash-dot curve in Fig. 4.3b. The conductivity peak is due to resonant tunneling

between non-equivalent levels in adjacent wells. The negative conductivity part is

due to non-resonant tunneling of electrons when the applied field across the barrier

is high enough such that the ground levels in neighboring quantum wells mismatch.

The tunneling current densities through the emitter and collector layers are modeled

by Ohmic boundary conditions,[66] that is, j‖0→1(x) = σF‖0(x), and j‖N→N+1(x) =

σF‖N(x)nN/ND, with contact conductivity σ and two-dimensional doping density

ND in each well.

The lateral dynamics is caused by the in-plane current j⊥m which consists of a

drift part and a diffusion part. When the y-dependence is ignored, this becomes

j⊥m(x) = −eµnmF⊥m − eD0
∂nm
∂x

(4.5)

where F⊥m(x) is the in-plane component of the electric field at x in well m, µ is the

mobility and D0 is the diffusion coefficient. The generalized Einstein relation [67]

establishes the connection between µ and D0 for arbitrary two-dimensional electron

densities including the degenerate regime:

D0(nm) =
nm

−eρ0(1− exp[−nm/(ρ0kBT )])
µ (4.6)

with the two-dimensional density of states ρ0 = m∗/(π~2), where m∗ is the electron

effective mass. Here we assume that µ and D0 are fixed.

Both the lateral and vertical currents depend on the electrical fields which in turn

depend on the scalar potential φm(x, y). The potential can be solved by the Poisson
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equation

∆φm(x, y) = (∆⊥ + ∆‖)φm(x, y) = − e

lεrε0
(nm −ND), (4.7)

with

∆⊥φm(x) =
∂2

∂x2
φm(x), (4.8)

∆‖φm(x) =
φm−1(x)− 2φm(x) + φm+1(x)

l2
, (4.9)

where εr and ε0 are the relative and absolute permittivity, respectively. Then the

field can be calculated as

F‖m(x, y) =
φm+1(x)− φm(x)

l
,

F⊥m(x) = −∂φm(x)

∂x
. (4.10)

Here we solve the Poisson equation using an approximation method assuming that

the typical structures in the lateral direction vary on a length scale much longer than

the mean free path of the degenerate electrons.[66]

4.1.2 The shunt

The drift-diffusion dynamics of the shunting layer is similar to that of the lateral dy-

namics within each superlattice quantum well. First, we neglect x-dependence in the

shunt, that is, the shunt is collapsed into a single layer along the z-direction. Note

also that unlike the superlattice, which possesses an intrinsic discreteness along z di-

rection, the shunt is a continuous layer. Therefore, we make a further approximation

that the shunt is divided into blocks aligned with the periods of the superlattice and

that the charge density is locally uniform within each block. This assumption not

only provides the discretization required by numerical simulation, but also matches
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the dynamics of the shunt with that of the superlattice. With these two assumptions,

we can write down the continuity equation in the m-th shunt block as follows:

e ˙̃n(s)
m (t) · δx l Ly = j

(s)
‖m−1→m · δx Ly − j

(s)
‖m→m+1 · δx Ly − j̃

(s)
⊥m · l Ly, (4.11)

where the superscript (s) denotes the quantities in the shunt and the tilde denotes

that the quantities are three-dimensional, i.e.,

n(s)
m = ñ(s)

m · l; j
(s)
⊥m = j̃

(s)
⊥m · l. (4.12)

Here, the quantity j
(s)
⊥m denotes the lateral current that flows between the shunt and

the superlattice through their interface. Then we can write Eq. (4.11) in the form:

e ṅ(s)
m (t) = j

(s)
‖m−1→m − j

(s)
‖m→m+1 −

j
(s)
⊥m
δx

, (4.13)

Note that the vertical current in the shunt has a very different form than the

tunneling current in the superlattice. It follows a similar dynamics as the in-plane

current in the superlattice quantum wells and is related to the three-dimensional

charge density in the shunt:

j
(s)
‖m−1→m = −eµñ(s)

m F
(s)
‖m − eD0

∂ñ
(s)
m

∂z
. (4.14)

Here we assume the mobility µ and the diffusion coefficient D0 have the same values

as in the superlattice.

Next, we examine the lateral current that connects the shunt and the quantum

well layer within the superlattice:

j
(s)
⊥m = −eµnm(x = 0)F⊥m −D0∇⊥nm

∣∣∣∣
x=0+

. (4.15)

In this equation, the boundary should be defined at x = 0+ for calculation of both

the current and the potential in the shunt. Since the shunt is assumed to be uniform
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in x direction, defining the above equation at x = 0− implies that F⊥m and ∇⊥n(s)
m

are zero which would lead to zero boundary current. Another advantage of choosing

the boundary at x = 0+ is that the potential in the shunt should be equal to the

potential in the superlattice close to its boundary, i.e., φ
(s)
m (x < 0) = φm(x = 0+),

since the potential is continuous everywhere. This relation allows us to equate the

potential in the shunt with that at the inner boundary of the superlattice. So the

potential at the boundary of the solution of Eq. (4.7) is just the potential in the

shunt. The fields required to calculate the current in Eq. (4.15) can be obtained by

F
(s)
‖m(x) =

φ
(s)
m+1(x)− φ(s)

m (x)

l
,

F⊥m(0+) = −∇⊥φm(x)

∣∣∣∣
x=0+

. (4.16)

The charge density and its normal gradient at the boundary are

nm(x = 0) =
nm(0+) + n

(s)
m (0−)

2
, (4.17)

∇⊥nm
∣∣∣∣
x=0+

= lim
∆x→0+

nm(∆x)− n(s)
m

∆x
. (4.18)

4.1.3 Connectivity

Here we also note the possible effects of energy band structure of the shunted super-

lattice and the doping density in the shunt. In the above discussion, the situation

has been simplified because no band bending is included. However, variations in

doping densities in the shunt and the superlattice can cause band bending effects

at the interface. Even if the shunt is doped to have the same Fermi level as that

in the superlattice so that little band bending might be expected, there are other

issues that impact the connection quality between the shunt and the superlattice,

for example, surface roughness and the presence of trap states or a thin oxide layer.
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On the other hand, these effects can be minimized through the use of a fabrication

process such as cleaved edge overgrowth which is known to produce very high quality

interfaces.[68, 69] To quantify the quality of the connection between the superlattice

and the shunt, we introduce a parameter 0 ≤ a ≤ 1 such that a = 1 corresponds

to a perfect connection and a = 0 corresponds to no connection. This leads to the

following modification of Eq. (4.15):

j
(s)
⊥m = a ·

(
−eµnm(x = 0)F⊥m −D0∇⊥nm

∣∣∣∣
x=0+

)
. (4.19)

Here we note that the determination of a values for specific interface types would be

a separate theoretical or experimental work which is beyond the scope of the present

paper.

4.1.4 Doping density in the shunt

Similarly, we introduce a separate parameter b > 0 that allows us to model the effect

of having different doping density and/or mobility in the shunt vs. superlattice

quantum wells. Also, recognize that the field in the shunt is almost uniform and

n
(s)
m ≈ N

(s)
D when the conductance in the shunt is high, where N

(s)
D is the doping

density in the shunt. This leads to the following modification of Eq. (4.14),

j
(s)
‖m−1→m = −eµñ(s)

m F
(s)
‖m − eD0

∂ñ
(s)
m

∂z
≈ −ebµ(s)ÑDF

(s)
‖m, (4.20)

where bµÑD = µ(s)Ñ
(s)
D . Note that b > 1 when the doping density in the shunt is

greater than that in the quantum wells and b is much less than one when the shunt

is weakly conducting so that only a small fraction of the total vertical current flows

through it.
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4.1.5 The total current

It is also useful to point out that the total current,

J =
(
εrε0Ḟ

(s)
‖m + j

(s)
‖m→m+1

)
· δx +

∫ Lx

0

(
εrε0Ḟ‖m + j‖m→m+1

)
dx, (4.21)

is the same for each period. To show this, note that the Poisson equation can be

written as

∇ · (F⊥ + F‖) =
e

lεrε0
(nm −ND), (4.22)

or

F‖m − F‖m−1

l
+
∂F⊥
∂x

=
e

lεrε0
(nm −ND). (4.23)

Substituting the above equation into Eq. (4.3) yields

lεrε0
d

dt

(
F‖m − F‖m−1

l
+
∂F⊥
∂x

)
= j‖m−1→m − j‖m→m+1 − ∂j⊥m(x)

∂x
. (4.24)

Then, one integrates both sides of the preceeding equation with respect to x from

−δx to Lx. Due to the vanishing boundary conditions F⊥(−δx) = F⊥(Lx) = 0 and

j⊥m(−δx) = j⊥m(Lx) = 0, the lateral terms in the above equation integrate to zero.

This yields

εrε0
d

dt

∫ Lx

−δx
F‖mdx+

∫ Lx

−δx
j‖m→m+1dx = εrε0

d

dt

∫ Lx

−δx
F‖m−1dx+

∫ Lx

−δx
j‖m−1→mdx.

(4.25)

which shows that the total current is independent of the well index m. Note that the

current through the shunt will be the dominating contribution to the total current of a

superlattice if the shunt is thick and well-conducting. Even a completely disconnected

shunt (i.e. a = 0) contributes a constant current of J
(s)
0 = δxeµNDU/(Nl + d) to

the total current J of a homogeneous superlattice. Since we are interested in effects

62



arising from the interaction between the superlattice and the shunt, we will in the

following discuss the current dynamics on the basis of the superlattice current defined

by Jsuperlattice(t) = J(t)− J (s)
0 .

4.2 Parameters and Time scales

The parameters that we use in the simulation are listed in Table I. These parameters

come from weakly-coupled GaAs/AlAs superlattice structures that have been studied

in experiments.[62] Variations of the parameters such as barrier thickness and doping

density have been extensively studied in previous work and dynamical features are

found to be robust.[33] The nonlinear behaviors such as current branches are clearly

seen at low temperature in experiments.[70] The quantum wells and the shunt are

GaAs with same doping level and the barriers are undoped AlAs. We make the

assumption that mobility µ and D0 are fixed and choose typical values for GaAs.[66]

We expect qualitative agreement over a large parameter regime. We found that there

N ND w d µ D0 T εr
- (m−2) (nm) (nm) (m2/Vs) (m2/s) (K) -

40 1.5× 1015 9 4 10 0.015 5 13.18

Table 4.1: Parameters used for the shunted weakly-coupled superlattice.

are very different time scales in this complex structure which requires an implicit

method of numerical iteration. The first time scale τb is the dielectric relaxation time

in the bulk material both in the shunt and in each quantum well in the superlattice. It

is determined by the doping density. We know that the conductivity g is proportional

to the charge density

g ≈ eµND/l ∼ 1.6× 10−19 × 10× 1023(Ωm)−1 ∼ 105(Ωm)−1 (4.26)
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So the dielectric relaxation time in the shunt layer and within each quantum well is

approximated as

τb =
εrε0
g
∼ 0.1× 10−9

105
(s) ∼ 10−15(s) (4.27)

which is relatively fast due to the high conductivity. This is the time it takes for a

fluctuation in the charge density to be neutralized within either the shunt layer or

quantum wells.

The second time scale τt is the one in the vertical dynamics. According to

the sequential resonant tunneling model, the vertical current is to the order of

10−4 (A/m2) and the positive differential conductivity gt is of order 0.1 (Ω m)−1.

Thus, τt = εrε0/gt ∼ 10−9 s, a much larger time scale than τb. Moreover, from

numerous previous works, we also know that the behavior of the electrons in the

vertical direction is not simply dielectric relaxation. More complex phenomena, such

as current self-oscillation, or injected dipole relocation due to switching, have much

longer time scales ranging up to microseconds. The time scale τt sets a lower limit

of the time scales for these nonlinear processes.

Another important time scale τi is the time that it takes to carry away or supply

the electrons in the superlattice through the shunt. Because the vertical processes are

relatively slow, if the shunt has good connection and high conductance, the electrons

will move laterally, pass through the intersection between the quantum well and the

shunt, and drift away through the shunt. This time scale τi is considerably larger

than τb since the electrons have to move into the shunt first. Later we will see that it

takes 1 ns to deplete a full CAL in a small superlattice. The presence of extremely

different time scales means that the numerical integration is a stiff problem and this

suggests the use of an implicit method. The numerical procedure is described in the

Appendix.
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4.3 Numerical method

In order to implement the implicit method, the dynamical variables, i.e., the electron

densities nm(x), should be computed from the system Eqs. (4.3) and (4.13). However,

the nm(x) are deeply buried in these equations, where the currents depend on the

field that relates to nm(x) by solving Poisson equation Eq. (4.7). So instead of solving

for nm(x) directly, we use the semi-implicit Euler method and numerically calculate

the Jacobian matrix that is needed for this method. The procedure is as follows:

after discretization of the space, the quantities of potential and charge density are

placed on the grid. The fields and currents (also the charge density that is needed to

calculate the currents) are placed on a staggered grid. Knowing the charge density

distribution, the potential is determined by the Poisson equation using a method

described in Ref. [66]. After that, the currents to each grid point are calculated from

the electric fields which are immediately obtained from the potential (cf. Eqs. (4.10)

and (4.16)). Then the charge densities are iterated one step forward in time as

en′ = en + dtJ(n′), (4.28)

where n = (n11, n12, ..., n21, n22, ...)
T is the vector whose components are the charge

densities on each grid point. The first subscript denotes the superlattice period

number and the second one is the grid point index in the x direction. The vector

current J is the total current flow into or out of each grid point. n′ is the new charge

density configuration after time step dt. Since we are using the implicit method, J

must depend on the future charge density configuration instead of the old one. We

linearize the equations:

n′ = n +
dt

e

[
J(n) +

∂J

∂n

∣∣∣∣
n

· (n′ − n)

]
, (4.29)
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where ∂J/∂n is the Jacobian matrix, whose dimension is N by N , where N is the

number grid points. Rearranging this equation yields:

n′ = n +
dt

e

[
1− dt∂J

∂n

]−1

· J(n) (4.30)

We mentioned that the currents do not depend on the charge densities explicitly. So

to calculate the Jacobian matrix, we first calculate J(n), then slightly change the

charge density at one grid point to nij + δnij and calculate the currents J′ based

on this charge configuration. Then one row of the Jacobian matrix is immediately

obtained by (J′ − J(n))/δnij.

To solve Eq. (4.30), we do not invert the matrix. Instead, we write it as:

dtJ(n)

e
=

[
1− dt∂J

∂n

]
· (n′ − n). (4.31)

Then we solve this set of linear equations by Gauss elimination.

4.4 Dependence of shunting dynamics on the lateral size of the Su-
perlattice

In this section, we discuss the effects of the lateral size Lx of the superlattice with

a high quality shunting layer, i.e., a = b = 1. The shunting layer has a width δx

such that varying δx does not affect the dynamics in the shunt. This is numerically

confirmed even for the chaotic case that we will discuss below, where a 80 nm shunting

layer has the same effect as a 8 mm one. This is because τb is much smaller than τi and

the electrons entering the shunt are carried away so fast that a change in the shunt

conductance does not change τi. We will study the superlattices with a relatively

high contact conductivity σ = 0.04 (Ωm)−1. At this value of σ, without a shunt,

the superlattice has a static high field domain near the emitter and a static low field

domain near the collector separated by a static charge accumulation layer (CAL).
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Due to the high quality shunt the total current is dominated by the contribution

of the current through the shunt. As discussed at the end of Section 4.1, we will

therefore consider the superlattice current Jsuperlattice. Also, since we are varying Lx,

we scale current to current density.

4.4.1 High quality shunting layer with small Lx

Figure 4.2 shows charge and current density plots for a relatively narrow superlattice

with lateral extent Lx = 20 µm. The initial state is prepared as a charge configuration

for the superlattice without shunt at total applied voltage U = 2.1 V and shows a

static charge accumulation layer at the 20th period. After an interval of about 1 ns,

the space charge configuration is almost uniform. The in-plane current is plotted as

a vector field and shows the electrons in the CAL move in the lateral direction (the

opposite direction of the current) into the shunt. We can see that when the system

reaches steady state, the net charge is almost neutral, i.e., n = ND, everywhere in

the superlattice and the shunt. There are still some small lateral current flows at the

first and the last period.

If we take a close look at the steady state, we find that there is a small CAL at the

first period and a CDL nearby (Fig. 4.3(a)). The situation is almost inverted near

the collector. To better understand this, we focus on the operation points near the

emitter shown in Fig. 4.3(b) at x = 20 µm. In this case, the field is almost uniform

in the superlattice and each period is biased in the NDC region. The field across the

first barrier between the emitter and the first well will also have this same value in

the absence of charge accumulation in the first well. This causes a vertical current

from the emitter to the first period (thin solid line in Fig. 4.3(b)) which is much

larger than the vertical current in the corresponding NDC region of the superlattice.

Close to the shunt this extra current will give rise to a lateral current which will

quickly reach the shunt and is carried away by the shunt. A little further away from
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Figure 4.2: Charge density plots (left column) and current vector plots of j⊥m(x)
(right column) for a superlattice with Lx = 20 µm, U = 2.1 V and σ = 0.04 (Ωm)−1

at 0.02, 0.2 and 6 ns. Initial condition is a CAL at the center of the superlattice.
The shunt is at the bottom. The color bar on the left of the first contour plot is the
scale encoding in units of ND used throughout this chapter.
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Figure 4.3: The steady state for a superlattice with Lx = 20 µm, U = 2.1 V and
σ = 0.04 (Ωm)−1 at x = Lx: (a) field profile (solid line) and charge density (dashed
line), (b) The solid dots indicate the actual current operation points on the local
vertical current field characteristics j‖m→m+1(F, nm, nm+1).

the shunt where the lateral current is not sufficient to completely neutralize this

extra current, a small CAL is formed in the first well which lowers the electric field

and therefore the current across the first barrier. At the same time, the electric field

in the second barrier is pushed above the uniform field, causing a very small CDL

next to the CAL. Similar arguments can be applied to the collector to explain the

appearance of a small CDL in the last quantum well. The overall effect is that a

nearly uniform vertical electric field configuration is stabilized for these conditions.

69



4.4.2 High quality shunting layer with large Lx

As the lateral size Lx of the superlattice becomes larger, the CAL and CDL near

the emitter become more prominent (cf. Fig. 4.4(a)-(c), Lx = 160 µm) since with

increasing distance to the shunt the lateral current becomes less efficient at carrying

away the excess current from the emitter to the shunt.

For wider superlattice (cf. Fig. 4.4(d)-(f), Lx = 640 µm), the field closer to the

shunt is more uniform and the CAL is still attached to the emitter. However, away

from the shunt, the CAL detaches from the emitter and locates itself in the first few

periods and the nonuniform field region becomes larger. This behavior is due to the

lateral current being insufficient to carry away the extra current from the emitter.

Thus, the CAL grows bigger and tends to move toward the collector. With the center

of the CAL located in different wells at different x positions, the lateral gradients

can be increased and a sufficient lateral current can be sustained. The field profile

at x = 640 µm is plotted in Fig. 4.4(f). Field domains are forming as the field is low

to the left of the CAL and high to the right of the depletion region. In this case, the

upstream CAL (closer to the emitter, at the left bottom corner of Fig. 4.4(d)) and

the downstream CAL (closer to the collector, the wider one in Fig. 4.4(d)) are still

connected and this is a time-independent steady state.

In the above case, the lateral size of the superlattice is just below a characteristic

value for which the steady state loses stability to oscillatory behavior. Figure 4.5

(Lx = 800 µm) shows the simulations of a slightly wider superlattice than considered

above. The large downstream CAL still stays in that position. However, due to the

large size of the superlattice, the lateral current is not able to sustain a connected

stable CAL. The small upstream CAL touches and breaks off from the downstream

CAL periodically. There is a small amplitude oscillation in the total current which

is shown in the top panel.
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Figure 4.4: Steady states: (a), (d) Charge density plots, (b), (e) current vector
plots and (c), (f) field profile (solid line) and charge density (dashed line) at x = Lx
for Lx = 160 µm (left column) and Lx = 640 µm (right column), respectively, with
U = 2.1 V and σ = 0.04 (Ωm)−1.

For an even wider superlattice (Fig. 4.6 with Lx = 1.28 mm), the upstream and

downstream CALs are mostly disconnected. The upstream CAL extends laterally

into the superlattice and moves toward the downstream CAL(at time 1.969 ms). For
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Figure 4.5: superlattice current density Jsuperlattice/Lx and snapshots of charge
density distribution for Lx = 0.8 mm, U = 2.1 V and σ = 0.04 (Ωm)−1. The times
of the snapshots are marked as solid circles in the upper panel. The contour plots
have the same superlattice period labeling as the first panel.

certain times during the dynamical evolution (not shown in Fig. 4.6), the upstream

CAL breaks off from the emitter and reaches and merges with the downstream CAL.

Mostly, there is a depletion region forming between the upstream and downstream

CALs (2.211 ms). For certain times, it grows into a full CDL extending across the

entire lateral dimension of the structure and, in this case, the upstream CAL also

grows into a full CAL (2.395 ms). Then all three fronts begin to move downstream.

The downstream CAL and the CDL quickly dissipate and the upstream CAL splits

into two segments separated by a small CDL, and we return to the situation shown in

the leftmost contour plot of Fig. 4.6. Although these behaviors are quite complicated,

they are still periodic, and during each period, the upstream and downstream CALs
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Figure 4.6: superlattice current density Jsuperlattice/Lx and snapshots of charge
density distribution for Lx = 1.28 mm, U = 2.1 V and σ = 0.04 (Ωm)−1. The times
of the snapshots are marked as solid circles in the upper panel. All the contour plots
have the same superlattice period labeling as the first panel of Fig.4.5.

merge several times.

However, for an extremely wide superlattice (Fig. 4.7, Lx = 2.56 mm), the be-

havior is apparently chaotic. The effect of the shunt is to cause a CAL attached to

the emitter near the shunt. For large values of x, the shunt has less effect and this

CAL detaches from the emitter, tends to move downstream to the collector and thus

extends toward the downstream CAL. Due to the large lateral size of the superlat-

tice, the impact of the shunt layer becomes very weak on the opposite side of the

superlattice. Thus, the downstream CAL is located very close to the 20th period

where it would be in the absence of a shunting layer. The merging of the CALs

described in last paragraph also appears here except that the merging events are
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Figure 4.7: superlattice current density Jsuperlattice/Lx and snapshots of charge
density distribution for Lx = 2.56 mm, U = 2.1 V and σ = 0.04 (Ωm)−1. The times
of the snapshots are marked as solid circles in the upper panel. All the contour plots
have the same superlattice period labeling as the first panel of Fig.4.5.

now difficult to predict and manifestly not periodic.

Figure 4.8 shows the behavior of a superlattice with Lx = 5.12 mm. It should be

noted that real superlattice samples rarely have such a large size. In this case, the

unstable dynamics only occurs in the portion of the superlattice closest to the shunt.

In the portion of the superlattice away from the shunt, a CAL is located at the 20th

well, where the shunt has no apparent influence. Over time, the lateral extension of

this CAL changes. When a large CDL collides with it at 5.696 ms, the static CAL
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Figure 4.8: superlattice current density Jsuperlattice/Lx and snapshots of charge
density distribution for Lx = 5.12 mm, U = 2.1 V and σ = 0.04 (Ωm)−1. The times
of the snapshots are marked as solid circles in the upper panel. All the contour plots
have the same superlattice period labeling as the first panel of Fig.4.5.

shrinks to a small size, causing a large dip in the current trace. The presence of

such charge tripole configurations [71] of one CDL and two CALs has already been

shown to be associated with chaotic behavior in one-dimensional superlattice models

without lateral dynamics.[72]

To summarize, we are able to identify three characteristic length scales in the x

direction. The shortest one is the decay length L̄x (of order 10 µm) at which the

charge density in the first quantum well increases from ND at the superlattice-shunt

interface to its maximum value (cf. Fig. 4.4(a)-(c)). The next length scale (of order

200 µm) is the range above which the vertical field configuration loses uniformity

and static field domains start to form (cf. Fig. 4.4(d)-(f)). The longest length
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scale (of order 700 µm) is the width of the superlattice above which the steady state

loses stability to oscillatory behavior. This implies that lateral uniformity in the

electric field distribution can be expected when Lx is smaller than the intermediate

characteristic length scale. The shortest decay length L̄x can be estimated by noting

that the extra current coming from the emitter must be directed to the shunt by the

negative gradient of the lateral current J⊥, i.e., ∂J⊥(x)
∂x

= J‖0→1(x) − J‖1→2(x) < 0.

Then there is approximately a decay length L̄x, at which the quantities such as

J⊥(x), n(x) and Fx(x) approach asymptotic values exponentially. Calculation shows

that L̄x is of order 10 µm for the parameters used in Table I, in agreement with our

numerical results.

4.5 Dependence of dynamical behavior on the shunt properties

In the previous section, we have seen that the width of the superlattice determines

the lateral dynamics of electronic transport and that the shunt can stabilize a nearly

uniform field configuration in sufficiently narrow superlattices. Now we investigate

the effects of the shunt properties on a small superlattice with width of 20 µm where

the lateral field and electron density profiles are almost uniform. Since the charge

density is almost uniform laterally, we modify the model such that the superlattice

is collapsed to one point in x direction. This modification significantly reduces the

complexity of the simulation. We first study the effects of connectivity parameter a on

a superlattice with conductivity σ = 0.04(Ωm)−1 chosen as in the previous section.

Then we study the effects of a on a superlattice with lower contact conductivity

σ = 0.016(Ωm)−1, which corresponds to moving fronts and current self-oscillations

in unshunted superlattices,[44] and briefly discuss the effects of shunt conductivity

parameter b and width δx. The calculation results from this reduced superlattice

model have been confirmed by the full superlattice model for a range of different

values of a. Since Lx is fixed, we plot the unscaled superlattice current Jsuperlattice.
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4.5.1 Dynamical behavior vs. connectivity parameter a for large contact conductiv-
ity

Figure 4.9(a) shows a bifurcation diagram using as the bifurcation parameters the

connectivity parameter a and the voltage U for σ = 0.04(Ωm)−1. There is a bounded

region where the system exhibits periodic or chaotic oscillations, shown as the region

enclosed by dashed lines in Fig. 4.9(a). The value of the connectivity parameter a

of the oscillatory region ranges from about 6 × 10−3 to 7 × 10−6. In real samples,

such a weak connection between the superlattice and the shunt could be associated

with a potential barrier formed between the superlattice and the shunt due to band

bending or an oxide layer.

For a & 6× 10−3, the charge density in the superlattice is almost uniform except

for a small CDL near the emitter, the same situation shown in Fig. 4.2. With the

increase of voltage, this CDL becomes more prominent and there is an CAL in the

first period. However, this CAL never detaches from the emitter for any value of

voltage when a & 6×10−3. This is reasonable because for a & 6×10−3, the connection

is strong enough that the shunt is able to maintain the field in the superlattice almost

uniform.

Another stable region is a . 7× 10−6. In this region, a static CAL is formed in

the superlattice and located close to the position where it is expected when there is

no shunt. This is also easy to understand because the connection is so weak that the

shunt has almost no influence on the superlattice.

Between these two values of a, we have a transition region where oscillations

occur for certain ranges of applied voltage. Here, the bifurcation scenarios by varying

voltage are investigated for two sets of values (A and B) of the control parameters.

The bifurcation for point A occurs at a = 1.00 × 10−3 and U = 1.485 V

(Fig. 4.9(b), 4.10-4.12). Inside the oscillatory region (approximately U ≤ 1.485 V),

the charge density distribution in the superlattice oscillates and the oscillation only
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Figure 4.9: (a) Bifurcation diagram for σ = 0.04 (Ωm)−1, Lx = 20 µm, b =
1.00. Dashed curve shows the approximate boundary of the oscillatory region and
location of studied bifurcation points A and B. (b) Bifurcation scenario at A for
a = 1.00 × 10−3: amplitude vs. voltage (main figure) and frequency vs. voltage
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involves part of the superlattice (cf. Fig. 4.10). There is a static CAL near the

emitter but this is clearly detached from the emitter. The oscillation occurs in the

wide region to the right of the CAL in the form of moving charge dipoles (CALs and

CDLs), cf. Fig. 4.10(a). However, at any given time, there are three to four pairs of

dipoles present. From Fig. 4.10(b), we can see that the charge densities have large

amplitude fluctuations along the z direction and the higher frequency component of

the current oscillation is due to the movement of these dipoles (Fig. 4.10(c)). This

higher frequency f1 is nine times the lower one f2 at which the collector receives the

moving dipoles. Here we observe the coexistence of static CAL and steady moving

fronts.

The bifurcation scenario of A is illustrated by Fig. 4.9(b), where the amplitude

of the current oscillation is plotted versus the applied voltage. There is a bistability

region between U ≈ 1.485 V and 1.50 V, where the system either oscillates (upper

branch) or is in a steady state (lower branch).

The bifurcation at point Al at the end of the lower branch is studied in Fig. 4.11.

When the system starts from a uniform configuration at U = 1.486 V, shown in

Fig. 4.11(a), (b), (c), it first oscillates similar to the full oscillation in Fig. 4.10,

except that the CALs and CDLs are much smaller in Fig. 4.11(b). The oscillation

gradually decays to a steady state where there is only a single stable CAL and no

charge fronts to its right, as shown in Fig. 4.11(c). The amplitude of the current

oscillation is quite small and decays to zero. The well-to-well hopping of the small

charge fronts does not have an appreciable effect on the current oscillation form

as found for the mature fronts in Fig. 4.10(c). Instead, the shape of the current

oscillation is smooth and sinusoidal and possesses a well-defined frequency. After a

transient interval, the amplitude A(t) of the current oscillation decays exponentially,

i.e., A(t) = A(t0) expλt and the rate λ can be determined by fitting. It also should

be mentioned that the initial state corresponding to the uniform field configuration
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Figure 4.10: (a) Charge density distribution evolving in time (gray scale is the
same as in Fig. 2), (b) a snapshot of field profile (solid line) and charge density
profile (dashed line) at t = 8 ns and (c) superlattice current Jsuperlattice on the upper
branch of Fig. 4.9b. Parameters: a = 1.00× 10−3, U = 1.46 V, σ = 0.04 (Ωm)−1.

falls into the basin of attraction of the upper oscillatory branch for U . 1.486 V.

Hence, to obtain λ for the lower branch, we start the system from the steady state of

U = 1.486 V. This initial state is used for all the points of the lower branch. In the

case of U = 1.481 V, shown in Fig. 4.11(d), the amplitude of the current oscillation

increases exponentially at first and after passing a certain threshold value, quickly

evolves into the large oscillations of the upper branch. The inset shows the transition

region and indicates that the small charge fronts grow into mature ones. The rate

λ can also be fitted and now it is positive. The resulting λ versus U is plotted in
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Fig. 4.11(e), showing a linear scaling. This clearly indicates that the bifurcation

at Al is a subcritical Hopf bifurcation. Supercritical Hopf bifurcations in different

superlattice models have been found by Patra et al.[56] and by Hizanidis et al [73]

at low contact conductivity with no shunt. Here we can also see that the time scales

have the following relationship: τb � 1/f1,2 � 1/λ.

It is likely that the bifurcation scenario at Au in Fig. 4.9(b) is a saddle-node

bifurcation which is probably caused by the collision of the stable limit cycle and

the unstable limit cycle that arises from the subcritical Hopf bifurcation at Al. In

Fig. 4.12(c), the power spectrum of the limit cycle (U = 1.4997 V) and the power

spectrum of the transient oscillation at U = 1.49985 V - which exceeds the saddle-

node bifurcation value UAu - are almost identical. This rules out a subcritical torus

bifurcation. Then we start the system from a configuration corresponding to the

steady oscillation at U = 1.46 V, but for voltages just above UAu where there are no

limit cycle states, so it eventually reaches the lower branch. Figure 4.12(a) shows this

process at U = 1.49985 V. After a short time interval of about 1 µs, the oscillation

amplitude A(t) enters a regime of transient oscillations and after a relatively long

time T , it suddenly exits this region and reaches a steady state. This process looks

like a reverse process of Fig. 4.11(d). Figure 4.12(b) shows the decay of the CALs and

CDLs. If we choose the critical value to be 1.499791 V, then the slope in Fig. 4.12(d)

is -0.5. This means that T ∝ 1√
U−UAu

, consistent with a system that undergoes a

saddle-node bifurcation of limit cycles.[74]

The bifurcation at point B is at a = 1.00×10−5 (Fig. 4.13). For U . 2.305 V, the

system oscillates. At first, there is a single CAL in the superlattice and a dipole is

injected from the emitter. The CAL and dipole all move into the superlattice. The

leading CDL moves about twice as fast as the two CALs[75] and when it catches

up with the original CAL, they annihilate. The CAL of the dipole continues to
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σ = 0.04 (Ωm)−1.
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Figure 4.13: Bifurcation scenario at point B of Fig.9: (a), (c) charge density
distributions vs. time, (b), (d) superlattice current Jsuperlattice for U = 2.3 V (upper
panel) and U = 2.304 V (lower panel), respectively, with a = 1.00 × 10−5, σ =
0.04 (Ωm)−1.

move forward until it reaches the position of the original CAL and stays there for

a certain period of time, waiting for another round of dipole injection. Such a

bifurcation of a stationary domain state has been reported before by Hizanidis et

al. [57] for a one-dimensional superlattice model without shunt at higher contact

conductivity. The time needed for a dipole to be injected is called the activation

time and the time needed to return from the excited state to the fixed point is

called the excursion time.[57] As the applied voltage U approaches the boundary,

the activation time becomes longer and longer. Taking the critical value UcritB of

voltage to be 2.30441 V and plotting the frequency of oscillation versus U − UcritB,

we find the frequency obeys the square-root law which is the characteristic scaling

law for the saddle-node infinite period bifurcation or SNIPER,[57] which is a global

bifurcation of a limit cycle.

Inside the oscillatory region in the a − U parameter space (Fig. 4.9(a)), we also
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Figure 4.14: Charge density distribution vs. time for a = 1.00 × 10−3, σ =
0.04 (Ωm)−1 at (a) U = 1.2 V, (b) U = 1 V, and (c) U = 0.5 V. (d) superlattice
current at U = 0.5 V.

find regimes of chaos. We still use a = 1.00 × 10−3. As the voltage U decreases

inside the oscillatory region, the oscillation shown in Fig. 4.10 involves a larger part

of the superlattice and the CAL near the emitter becomes less and less prominent

until these moving dipoles cover almost all the superlattice shown Fig. 4.14(a),(b)

at U = 1.2 V and 1.0 V. Further decrease of the voltage causes the disappearance

of the static CAL and the dipoles either annihilate inside the superlattice or reach

and disappear at the collector, shown in Fig. 4.14(c) for U = 0.5 V. Similar chaotic

behavior has also been found in superlattices without a shunt.[75] These complicated

and apparently chaotic oscillations are found at many points in the oscillatory regime

of Fig. 4.9(a).

In the regime of the stable states between a ≈ 6 × 10−3 and 7 × 10−6 (cf. the

right hand region of Fig. 4.9(a)), the superlattice usually has a static CAL either

inside the superlattice (for low a) or attached to the emitter (for high a) and there

is a small static CDL to the right of this CAL. This means that the overall field
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profile is nearly uniform for larger a (& 6 × 10−3), but static field domains form as

a decreases.

4.5.2 Dynamical behavior for small contact conductivity

The bifurcation scenario for lower contact conductivity σ is simpler than for the

high σ case. Figure 4.15 shows the bifurcation diagram for σ = 0.016 (Ωm−1). This

value of σ corresponds to current self-oscillation in the superlattice when there is

no shunt.[44] The parameter space is again divided into an oscillatory regime and a

stable stationary regime. The oscillatory regime starts at about the same value of

a as the high σ case, i.e., a ≈ 6 × 10−3. However, this oscillatory region does not

have a lower bound. This is because without the shunt the superlattice still exhibits

oscillations.

The different behaviors at a = 1.00 × 10−4 are shown in Fig. 4.15. As the

voltage is deep inside the oscillatory region, dipoles are periodically injected into

the superlattice and travel through the entire superlattice (Fig. 4.15(b)). As voltage

increases, the distance that the dipoles travel becomes shorter and the CAL and CDL

annihilate near the emitter (Fig. 4.15(c)). Similar behaviors have been found in a

superlattice model without shunt.[75] As the voltage approaches the boundary, the

CDL becomes less and less prominent and the length that the CALs travel becomes

even shorter. After the voltage crosses the boundary, the CALs becomes static. The

bifurcation scenario is similar to point A, described in the previous section, where

there is bistability between oscillatory and steady states. The bifurcation scenarios

at other points on the right hand boundary of the oscillatory region appear to be

similar to that at point C.
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Figure 4.15: (a) Bifurcation diagram for σ = 0.016 (Ωm)−1. Charge density
distribution vs. time near bifurcation point C, a = 1.00× 10−4 at (b) U = 1.6 V, (c)
U = 2.1 V, (d) U = 2.7 V, and (e) U = 3.0 V.

4.5.3 Dynamical behavior vs. shunt conductivity parameter b

The above discussion focuses only on varying the connectivity parameter a with a

shunt of high conductance. It is also possible to change other parameters of the shunt,

such as the conductivity parameter b in the shunt. A bifurcation diagram can be

plotted for b versus U with fixed a = 1.00 and δx = 200 nm, and it is similar to that

shown in Fig. 4.9, with an oscillatory regime between b ≈ 4.5× 10−8 and 4.5× 10−7.
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Another possible control parameter is the width of the shunt. Simulation shows

that only when the width of the shunt is narrower than about 1 × 10−4 nm, which

is unrealistically small, the superlattice starts to have oscillation. The oscillatory

region for a in Fig. 4.9 and 4.15 is almost not affected when b and δx are above

certain values so that the current between the shunt and the superlattice can always

be supported by the shunt. In reality, δx and b should be kept as low as possible to

reduce the power dissipated in the shunt and minimize heat production.

4.6 Conclusion

We have theoretically studied the effect of a shunting side layer parallel to a semi-

conductor superlattice, and find that such a structure can have an almost uniform

electric field over the entire structure even when biased in the negative differential

conductivity (NDC) region. However, even for a shunt with high conductivity and

strong connection to the superlattice, the field in the superlattice can be stabilized

only for structures with relatively small lateral extent. As the lateral size Lx be-

comes larger, the lateral current in the quantum well loses the ability to deplete the

extra current coming from the emitter and the field becomes nonuniform. For a suf-

ficiently thin superlattice whose lateral dynamics is uniform, the connection between

the shunt and the superlattice and the conductivity of the shunt determines the dy-

namics in the superlattice. We have also established the bifurcation diagrams for

superlattices for different values of the shunt parameters and identified the presence

of both local (Hopf) and global (SNIPER) bifurcations.

Although the microscopic nature of electronic transport in weakly-coupled su-

perlattices is different than for strongly-coupled superlattices, the NDC property is

known to produce similar dynamics in both types of structures when they are not

shunted. Thus, it seems plausible that for suitable shunt connectivity and superlat-

tice lateral width that a stronly-coupled superlattice might also be stabilized with
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a shunting side layer. This could enable the realization of a superlattice-based THz

oscillator.
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5

The superlattice-based THz oscillator

The gain for Terahertz (THz) radiation in semiconductor superlattices and its re-

lation to Bloch oscillations has been theoretically studied since the 1970s,[23, 51]

suggesting that the superlattice can serve as an active medium for THz radiation.

However, such a device has never been realized due to space-charge instabilities as-

sociated with NDC. One major motivation for this work in Chapter 4 is to identify

conditions that would permit the realization of the superlattice-based THz oscillator.

We have shown the possibility that field domains in the weakly-coupled superlattice

can be suppressed by the side shunting layer. However, the Bloch oscillation lead-

ing to the terahertz gain occurs in strongly-coupled superlattices with miniband

structure. In contrast, the resonant tunneling model describes weakly-coupled su-

perlattices.

In this Chapter, the previously developed method is adapted to model transport

in the strongly-coupled superlattice with a shunting layer. We will also discuss the

problems that still need to be solved for practical devices and compare this method

to other proposals for SL-based THz oscillators.
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5.1 Overview

Theoretical work by Esaki and Tsu [23] in 1970 was the first to propose a Bloch oscil-

lator based on a superlattice structure. In that paper, they derived current-voltage

(I-V) characteristics of a superlattice which showed negative differential conductivity

(NDC) associated with Bloch oscillations[76, 77] of the miniband electrons under a

DC bias. However, direct observation of Bloch oscillations in solid state materials

is difficult due to decoherence caused by electron scattering. However, recent work

in trapped atomic gases has shown possibilities to observe Bloch oscillations[78]. In

Chapter 2, we have already shown that miniband electron transport leads to associ-

ated amplification of high frequency signals thereby suggesting an alternative means

of THz oscillation. This is was first predicted by Ktitorov, Simin and Sindalovskii

[51] in their important early work. This dynamic negative high-frequency differential

conductivity remains negative up to the Bloch frequency ωB and reaches a resonance

minimum at a frequency closely below ωB, suggesting that the superlattice may serve

as an active medium for THz radiation, see Fig. 2.7.

However, no such devices have been realized to date more than three decades

after Esaki-Tsu proposal because the NDC causes space-charge instability. Although

Bloch oscillations have been observed experimentally in undoped superlattices [79] by

studying optical dephasing of Wannier-Stark ladder[80] excitations using degenerate

four-wave mixing,[81, 82] the power of coherent THz emission is very small. However,

these experiments have shown that the frequency of the emission is tunable by simply

changing the applied voltage.[83, 84] For high current densities, the space-charge

instability causes moving charge accumulation layers (CALs) and charge depletion

layers (CDLs) and thus the superlattice exhibits oscillations similar to the Gunn

effect.[21] While devices based on these oscillations may operate in the microwave

range, they do not extend to the THz region.[24]
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The lack of suitable THz radiation sources and detectors hampers the technologi-

cal exploitation of the frequency regime spanning from 300 GHz to 10 THz. Quantum

cascade laser devices have been shown to operate in the THz range for temperatures

up to 164 K.[85] On the other hand, if superlattice-based Bloch oscillators could be

successfully realized they might be expected to have certain advantages relative to the

quantum cascade structures.[53] Recently, rapid progress in THz technology [86, 87]

including biomedical sensing, three-dimensional imaging and chemical agent detec-

tion has attracted renewed attention to Bloch oscillators. Some structures have been

proposed to stabilize the field in the superlattice against NDC-related instabilities.

One scheme theoretically proposed by Hyart et al.[88] is the dc-ac-driven superlattice

which requires the presence of an initial THz pump. The superlattice is biased in

the NDC region under a DC electric field, initially superposed with an AC pump

electric field which stabilizes the field distribution.[89] Then the initial pump field

can be gradually turned off when THz oscillation has been already established in the

superlattice. Alternative schemes that do not require a THz pump include the use

of quasistatically modulated microwave bias[90] or parametric amplification.[91, 92]

Another suggestion is to stack a few short superlattices, where domains are not able

to form.[93] These short superlattices are separated by heavily doped material, and

an increase in terahertz transmission at dc bias has been observed.

Yet another scheme is to open a shunting channel parallel to the superlattice,

similar to a method that has been used to stabilize tunnel diode circuits.[94, 95]

Daniel et al. [64] used a distributed nonlinear circuit model to simulate the electric

field domain suppression in a superlattice. They have shown that the shunt is able to

suppress the voltage inhomogeneity above a critical bias voltage which depends on the

shunt width, the superlattice width, and the shunt resistivity. However, the circuit

model does not include aspects of the electronic tunneling transport that appear to

play an important role in superlattice behavior. The model possesses only a global
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coupling since the elements are connected in series and the I − V characteristic of

each element is fixed. On the other hand, the superlattice model has a more complex

structure that has both a global coupling due to the applied voltage constraint as

well as a nearest neighbor coupling arising from the varying charge densities that

dynamically change the local current density vs. field (J − F ) characteristics. As a

result, the nonlinear circuit model of Daniel et al. is not able to exhibit connected

field domains or current self-oscillations that are observed in superlattice structures

both theoretically and experimentally.[33]

In similar work by Feil et al.,[96] a side layer is grown on the cleaved edge of a

lightly doped GaAs/AlGaAs superlattice, such that a 2D electron gas is formed at the

interface between the superlattice and the side layer. The lightly doped superlattice

serves two purposes: (i) to provide a modulated potential for the 2D electron gas at

the interface so that under this periodic potential, the electron gas becomes a surface

superlattice with one lateral dimension; (ii) to provide a uniform field to this surface

superlattice since a lightly doped superlattice can maintain a uniform field under

external bias. While the suppression of field instabilities has been reported in this

type of superlattice, it is still not clear whether this lateral structure will be useful

as a THz oscillator.

5.2 The shunted strongly-coupled superlattice model

In last chapter, we studied the weakly-coupled superlattice with a shunting side layer.

In this chapter, we use develop a similar model to study the effect of the shunt on the

strong-couple superlattice. The structure is shown in Fig. 5.1(a). The superlattice

is grown along the z direction and has lateral extent in the x direction from 0 to

Lx. The extent in the y direction is assumed large. The shunt can be grown by

cleaved-edge-technique and is located at x < 0 with width Ls. The system evolves
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following the charge continuity equation:

e ṅ(x, z, t) = −∇ · j = −∂jx
∂x
− ∂jz
∂z

, (5.1)

and the Poisson equation

∇ · F =
∂Fx
∂x

+
∂Fz
∂z

= e (n−ND), (5.2)

where e < 0 is the electron charge, n (ND) is the electron (ionized donor) density, jz

is the vertical current density along the z (growth) direction, jx is the lateral current

density, and F denotes the electric field.
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Figure 5.1: (a) Schematic of the device structure: light shaded area denotes quan-
tum wells and the shunt and dark shaded area denotes barriers and the shunt clapping
layer. (b) The J − F characteristic and (c) gain profile for Structure 1.

In chapter 2, we have shown the local drift velocity v(Fz)

v(Fz) =
2vMFs
1 + F 2

s

, Fs = Fz/FM , (5.3)
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where Fz denotes the z component of the electric field. Thus the vertical current

inside the superlattice is

jz = e v(Fz)n− eD‖(Fz) ∂n
∂z
, (5.4)

where D‖ is field-dependent diffusion constant

D‖(Fz) =
kBT

e
µz =

2kBTvM
eFM(1 + F 2

s )
. (5.5)

The drift part of the current follows a curve shown in Fig. 5.1(b). The negative

differential conductivity in this current-field (J−F ) characteristic is associated with

spacio-temporal instability. Moving field domains and charge monopole or dipole

waves form, causing current self-oscillation. These have been well studied in Gunn

diodes and unshunted strongly-coupled superlattices.[38] At the emitter, the tunnel-

ing current is Ohmic with contact conductivity σ:

jz(z = 0) = σFz(z = 0). (5.6)

The lateral current is also of drift-diffusion form:

jx = e µ nFx − e∂(D⊥n)

∂x
, (5.7)

where Fx denotes the x component of the electric field.

Using the same numerical method developed in Chapter 4, the shunt occupies

one row of grid points in the simulation and has the same doping density as the

superlattice. The charge continuity equation is similar, but the drift part of the

vertical current is linear in Fz:

j(s)
z = e µs nFz − e∂(Dsn)

∂z
, (5.8)

where µs = µ and Ds = D⊥ = D if the quantum wells and the shunt are made of

the same material with bulk diffusion constant D = kBTµ/e.
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Similar to the shunted weakly-coupled superlattices, the system has multiple time

scales: The dynamics in the shunt and in the lateral direction ε0εr/(eµND) ≈ 5 fs

for Structure 1 below is much faster than vertical dynamics in the strongly-coupled

superlattice (10 ps to 10 ns). Therefore, the implicit method developed in Chapter 4

is also used.

For the structures studied here, we set the critical electric field value to FM =

1.4× 106 V/m, achievable at room temperature in InAs/AlSb superlattices.[93] The

value of peak drift velocity vM is variable and depends on well and barrier widths of

the superlattice.[38, 49] We bias the structures in the NDC region, with an average

field U/l = 6.67×106 V/m, where the total applied voltage U = 12 V is held constant

and l = 1.8 µm is the length of the superlattice in z direction. We find that excess

charge associated with accumulation or depletion layers in the superlattice moves

laterally into the shunt mainly through diffusion,[97] so the diffusion constant D⊥

needs to be sufficiently high for the field to be stabilized. Since D⊥ = kBT
e
µ, we

can enhance the diffusion process by working at room temperature, T = 300 K. We

assume a mobility µ = 2 m2/Vs, achievable using InAs quantum wells.[98, 99, 100]

We have found that the excess charge associated with accumulation or depletion

layers in the superlattice move into the shunt mainly through diffusion,[97] so the

diffusion constant D⊥ in the lateral direction needs to be sufficiently high for the

field to be stabilized. Since D⊥ = kBT
e
µ, to enhance the diffusion process, we set

the temperature at room temperature, T = 300 K and the mobility µ = 2 (m2/Vs),

which is achievable using InAs quantum wells.[98, 99, 100]

The parameters for the structures are listed in Table. I. There are two sets of ND

and vM , corresponding to different current density and absorption (gain). The gain

can be calculated through a semiclassical model at room temperature:[101]

g = − ed

nrε0c

jdc(eFd+ ~ω)− jdc(eFd− ~ω)

2~ω
. (5.9)
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The J−F characteristic and gain for Structures 1-3 and 6 are shown in Fig.5.1(b),(c).

The maximum value of the gain spectrum is about 9 (cm−1) for these structures, while

it is about 35 (cm−1) for Structures 4 and 5.

Lx ND vM σ
(µm) (1023m−3) (103m/s) (evMND/FM)

Structure 1 7 0.8 9 1
Structure 2 6 0.8 9 1
Structure 3 5 0.8 9 1
Structure 4 5 1.4 20 1
Structure 5 2.5 1.4 20 1
Structure 6 5 0.8 9 0.3

Table 5.1: Parameters used for the shunted strongly-coupled superlattice.

5.3 Results

The structure is biased at U with a uniform charge configuration n = ND everywhere

as initial condition. The left column of Fig. 5.2 shows snapshots of field and charge

configuration at x = Lx and the right column shows snapshots of the electron con-

figuration n for the whole structure after the system reaches static state or steady

oscillation. The rows are for Structure 1, 2 and 3 respectively, which have differ-

ent Lx, but are otherwise identical. Structure 1 has a wide lateral size and clearly

demonstrates spatio-temporal instability. There is a static charge accumulation layer

(CAL) near the emitter. At downstream (closer to the collector), alternating charge

accumulation and depletion layers (CDLs) form, move downstream, disappear at the

collector and reappear inside the superlattice. For wider superlattices, the transient

process before the system reaches the steady state is very long. Multiple CALs and

CDLs (dipole layers) are also found in the shunted weakly-coupled superlattice,[97]

while only single dipole layer or monopole layer occurs in the superlattice without

shunt.
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As the lateral size becomes smaller, a region with relatively uniform field of

strength as high as U/l start to emerge behind the CAL and CDL at the emit-

ter, c.f., Structure 2 in Fig. 5.2(c),(d). As the lateral size becomes smaller than

certain characteristic value, the field profile becomes static and uniform, shown in

Fig. 5.2(e),(f). Near the emitter, the field and charge configuration are nonuniform.

The amplitude of this spatial fluctuation decreases quickly and, downstream to this

region, the field and charge configuration becomes uniform and the total charge den-

sity n−ND = 0. The field in the uniform region is 6.7× 106 (V/m), almost equal to

the average value U/l.

The gain in Eq. 5.9 can be increased by increasing the doping density ND or the

peak drift velocity vM . However, this also increases the vertical current in the super-

lattice and the field configuration becomes more difficult to stabilize, i.e., Lx needs

to be smaller. So there is a trade-off between Lx and ND, vM . Comparing Structure

3 with Structure 4, we see that both have the same lateral size but Structure 4 os-

cillates similar to Structure 1, see Fig. 5.3(a). For this parameter set of superlattice,

a uniform field appears for a much narrower superlattice with Lx approximately up

to 2.5 µm, see Structure 5 in Fig 5.3(b).

In previous works, the contact conductivity σ was found to affect dynamical

behavior for both weakly- and strongly-coupled superlattice.[44, 97, 33] Here we

compare Structure 3 with Structure 6. Structure 6 has a much smaller σ. Fig-

ure 5.3(c),(d) show that a smaller σ decreases the spatial fluctuation of the upstream

configuration but does not change the healing length, defined as the length of the

nonuniform configuration region.

The shunt dissipates power without any optical gain, so to increase the wall-plug

efficiency, the current flowing in the shunt should be kept as low as possible. Since

NDC in the total current needs to be suppressed, given Lx, a necessary condition

is that the conductance of the shunt only needs to be high enough for this goal.
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Figure 5.2: Snapshots of field (solid line) and electron density (dash line) configura-
tion at x = Lx (left column) and electron density distribution of the whole structure
(right column) for (a),(b) Structure 1, (c),(d) Structure 2, (e), (f) Structure 3.

This is found to be a good estimate of the threshold width of the shunt. For the

shunt to work, the maximum magnitude of negative differential conductance of the

superlattice should be smaller than the conductance in the shunt: µNs Ls > gmND Lx

or

Ls > gmLx/µ, (5.10)

where gm = max(|∂v(F )/∂F |) is the maximum of the absolute value of the NDC.
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Figure 5.3: Snapshots of field (solid line) and electron density (dash line) config-
uration at x = Lx for (a) Structure 4, (b) Structure 5, (c) Structure 6 and electron
density distribution of the whole structure for (d) Structure 6.

Here, the doping density in the shunt Ns is equal to that in the superlattice ND.

For Structure 3, Ls > 4 (nm) using Eq. 5.10. Simulation shows that the threshold

value of Ls is between 4 and 5 (nm). This length is even smaller than the period of

the superlattice and quantum confinement will be significant in the shunt with this

width.

5.4 Discussion

We have argued that the lateral diffusion is critical for the stabilizing the superlattice.

Since the mobility D is proportional to Tµ, both T and µ need to be as high as

possible. We also know that µ increases as T decreases, but the decrease of T has

more impact on diffusion. For example, for bulk InAs, µ ≈ 3 m2V−1s−1 for T = 300

K and µ ≈ 4 m2V−1s−1 for T = 77 K. So we choose InAs for its high µ at room

temperature. InAs belongs to a different group of III-V semiconductors, called the 6.1
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Å family, whose band diagram is shown in Fig. 5.4. However, the mobility decreases

steeply as the width of the quantum well decreases for narrow wells (≤ 10 nm) due

to interface roughness scattering. This sets a lower limit for the width of quantum

wells in the shunted superlattice for THz radiation.

Figure 5.4: The energy band lineups of the 6.1 Å family semiconductor.[102]

In conclusion, we have numerically demonstrated that a strongly-coupled super-

lattice can have uniform field biased in the NDC region stabilized by a shunting

side layer, thus enabling a device scheme that has positive gain in the THz regime.

As the lateral size, the peak velocity vM or doping density ND becomes larger, the

system becomes more difficult to stabilize and eventually loses stability to moving

field domains. The diffusion in the lateral direction is essential for the stability and

should be kept as large as possible. The contact conductivity does not have much

impact on this stabilization scheme. The width of the shunt also needs to be large

enough to suppress the NDC in the superlattice and to avoid quantum confinement

effects.
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6

Stochastic switching in weakly-coupled superlattices

In previous chapters, we studied deterministic processes in superlattices with different

parameters and designs. We have seen that static field domains cause bistability in

the overall electrical current level. In this chapter, we switch to another interesting

topic, yet still relevant to NDC, stochastic switching between co-existing metastable

states in superlattices. Intuitively, one of two states in the bistable region becomes

”less and less stable” near the end of the bistable region. In the presence of noise, the

system can leave the less stable state and switch to the more stable state. The model

for a superlattice with shot noise will be developed in this chapter and the switching

process will be numerically simulated. Two major questions will be investigated: the

statistics of the switching time and switching path.

6.1 Stochastic switching between bistable states

In this section, we will review the theories of stochastic processes, stochastic switching

for a double well potential and the saddle node bifurcation. These are the major

theories necessary for understanding the stochastic current switching in superlattices.

More details on these topics can be found in Ref. [30].

102



6.1.1 Background and the Wiener process

Up to the end of the nineteenth century, classical mechanics from Newtonian mechan-

ics to Lagrangian and Hamiltonian mechanics use deterministic differential equations

to model natural processes. This kind of modeling and solutions are referred to as

deterministic processes whose initial conditions determine the state of the system at

any time in the future with absolute certainty.

However, this is not so, firstly, because in the microscopic regime, quantum me-

chanics tells us that the state of microscopic particles can only be determined prob-

abilistically. Secondly, even in the macroscopic regime, probability theory is applied

in statistical mechanics which explains uncertain processes such as fluctuation and

diffusion.

For example, small pollen grains suspended in a fluid are found to wander ir-

regularly, which is called Brownian Motion, named after a botanist Robert Brown

who was the first to systematically investigate this phenomena. In mathematics,

this is called the Wiener process. A Wiener process Wt is defined by the following

properties:

1. W0 = 0,

2. Wt is continuous,

3. Any increments of Wt in time ∆W = Wt − Ws has a normal distribution

N(0, t− s).

The third property also tells us that the variance of ∆W is

〈∆W 2〉 = ∆t = t− s. (6.1)
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6.1.2 Langevin equation

Stochastic processes can be modeled by incorporating random terms into differential

equations. Such stochastic differential equations are called Langevin equations. The

simple Langevin equation can often be written in the following form

dx

dt
= A(x, t) + b(x, t)ξ(t), (6.2)

where x is the dynamical variable to be solved, A(x, t) and b(x, t) are known functions

of x and time t and ξ(t) is the fluctuating random term which obeys

〈ξ(t)ξ(t′)〉 = δ(t− t′). (6.3)

This kind of ideal fluctuation is called white noise which has no autocorrelation at

different times. It can be shown that the integral of white noise ξ in time is the

Wiener process[30], i.e., ∫ t

0

ξ(t′)dt′ = W (t), (6.4)

or,

ξdt′ = dW. (6.5)

Now we can rewrite Eq. 6.2 as

dx(t) = A[x(t), t]dt+
√
B[x(t), t]dW (t), (6.6)

where
√
B[x(t), t] = b(x(t), t).

The solution to Eq. 6.2, or equivalently Eq. 6.6, is a stochastic integral equation

x(t)− x(0) =

∫ t

0

A(x(s), s)ds+

∫ t

0

b(x(s), s)dW (s). (6.7)

Since W is the Wiener process, the random variable x(t) will be different for each

realization.
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6.1.3 Fokker-Planck equation

The Langevin equation describes the dynamical variable x directly. Another ap-

proach to stochastic processes is to ask the probability distribution of x at time t.

This is described by the master equation if the state x of the system is discrete or

Fokker-Planck equation if x is continuous. The Fokker-Planck equation (FPE) has

the forward and the backward version.

The one dimensional forward FPE has the form:

∂tp(x, t|x0, t0) = −∂x[A(x, t)p(x, t|x0, t0)] +
1

2
∂2
x[B(x, t)p(x, t|x0, t0)], (6.8)

which describes the conditional probability p(x, t|x0, t0) of x at t given that the initial

value x = x0 at t = t0, i.e., the initial condition is

p(x, t0|x0, t0) = δ(x− x0) (6.9)

and t > t0.

It turns out that the backward FPE is more suitable for dealing with first passage

time problems. It has the form:

∂tp(x
′, t′|x, t) = −A(x, t)∂xp(x

′, t′|x, t)− 1

2
B(x, t)∂2

xp(x
′, t′|x, t), (6.10)

which describes the conditional probability p(x′, t′|x, t) of x at t given that the final

value x = x′ at t = t′, i.e., the final condition is

p(x′, t′|x, t′) = δ(x− x′) (6.11)

and t < t′.

A major difference between the forward and the backward FPE is that the factors

A and B as functions of the variables of interest, x and t, are inside the derivative

in the forward case while outside the derivative in the backward case. Also the sign

before the second derivatives are opposite for the two cases.
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The magic of FPE is that both the forward and the backward cases describe

the Langevin equation, Eq. 6.6, and the factors A and B are exactly the ones in

Eq. 6.6[30]. So the FPE and the Langevin equation describe the same process from

different point of views.

6.1.4 First passage time for a double well potential

Now assume that x is the coordinate of a particle which follows Eq. 6.6, thus Eq. 6.10

is also true for x. The particle is initially at x in the interval (a, b) at time t = 0.

The probability that at time t the particle is still in (a, b) is

∫ b

a

dx′p(x′, t|x, 0) ≡ G(x, t). (6.12)

With proper boundary conditions, this is also the probability that the time the

particle leaves (a, b), T ≥ t , i.e.,

Prob(T ≥ t) =

∫ b

a

dx′p(x′, t|x, 0). (6.13)

For homogeneous processes (factors A and B are independent of t) whose probability

approaches a stationary value p(x, t)→ ps(x) as t→∞ or as initial time t0 → −∞,

i.e., the process can be shifted in time, we can write

p(x′, t|x, 0) = p(x′, 0|x,−t) (6.14)

and the backward FPE for p(x′, 0|x,−t) can be written for p(x′, t|x, 0) as

∂tp(x
′, t|x, 0) = A(x)∂xp(x

′, t|x, 0) +
1

2
B(x)∂2

xp(x
′, t|x, 0). (6.15)

Integrating the backward FPE with respect to x′, one obtains

∂tG(x, t) = A(x)∂xG(x, t) +
1

2
B(x)∂2

xG(x, t). (6.16)
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The mean first passage time T (x) = 〈T 〉 is given by

T (x) = −
∫ ∞

0

t ∂tG(x, t)dt. (6.17)

Noting that ∫ ∞
0

∂tG(x, t)dt = G(x,∞)−G(x, 0) = −1, (6.18)

integrating Eq. 6.16 with respect to time t yields

A(x)∂xT (x) +
1

2
B(x)∂2

xT (x) = −1. (6.19)

Equation 6.19 is the equation for the mean first passage time to leave the interval

(a, b) from x. It can be solved directly by integration. If a is reflecting and b is

absorbing, i.e,

∂xG(a, t) = 0, (6.20a)

G(b, t) = 0. (6.20b)

So the boundary condition is T (b) = 0 and ∂xT (a) = 0.

Now let’s consider the particle moving in a double well potential shown in Fig. 6.1

according to the Langevin equation

dx

dt
= −U ′ +

√
2Dξ(t), (6.21)

or the corresponding FPE is

∂tp(x, t) = ∂x[U
′(x)p(x, t)] +D∂2

xp(x, t). (6.22)

The left boundary at a → −∞ is reflecting. Solving Eq. 6.19 with boundary

conditions Eq. 6.20, ones obtains

T (x1 → b) =
1

D

∫ b

x1

dy exp[U(y)/D]

∫ y

−∞
exp[−U(z)/D]dz, (6.23)
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Figure 6.1: Double well potential

where b > x2. If the potential barrier U(x2) is large compared to D, then the expo-

nent exp(U(y)/D) sharply peaks at y = x2, so a small domain near x2 contributes

to the integral
∫ b
x1
dy exp[U(y)/D]. For y near x2, the integral

∫ y
−∞ exp[−U(z)/D]dz

is almost a constant. So Eq. 6.23 can be written as

T (x1 → b) ≈ 1

D

∫ b

x1

dy exp[U(y)/D]

∫ x2

−∞
exp[−U(z)/D]dz. (6.24)

Now it becomes a product of two integral rather than a two dimensional integral.

The potential can be expanded locally near x1 as

U(x) ≈ U(x1) +
1

2

(
x− x1

a1

)2

(6.25)

and near x2

U(x) ≈ U(x2)− 1

2

(
x− x2

a2

)2

(6.26)

The first integral is dominated at x2, so plug Eq. 6.26 into it and raise x1 and b to

−∞ and ∞, respectively. The second integral is dominated at x1, so plug Eq. 6.25
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Figure 6.2: Illustration of saddle node bifurcation. The fixed points of Eq. 6.29
are plotted versus parameter p.

into it and raise x2 to ∞. Then one obtains

T (x1 → b) ≈ 2a1a2π exp{[U(x2)− U(x1)]/D}. (6.27)

6.1.5 Saddle node bifurcation

For an ordinary differential equation system:

ẋ = f(x,p) (6.28)

where x is a vector whose evolution in time follows the above equation and p is one

or more control parameters. The behavior of the system, e.g., stable or unstable

fixed points or limit cycles, may be qualitatively changed by varying the control

parameter(s), which is called a bifurcation.

The saddle node bifurcation is one of simplest and most common bifurcations,

where a stable fixed point and an unstable fixed point collide and annihilate each

other. This can be written in the simplest normal form

ẋ = −x2 − p. (6.29)
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Then the stable and unstable fixed points are plotted versus control parameter p in

Fig. 6.2. We can see that for p < 0 there are two fixed points, one stable and one

unstable. At p = 0, there is only one fixed point. For p > 0, there are no fixed points.

This behavior can also occur in high dimensional systems, which can be reduced to

a relatively simple normal form with the help of the center manifold theorem[103].

6.2 Sequential tunneling model with shot noise

In electronic devices, noises always accompany electrical currents, causing fluctuation

and uncertainty. There are different kinds of noises, such as thermal noise (also called

Johnson noise) and shot noise[104]. Thermal noise is due to the thermal motion of

free electrons. Its intensity decreases as the temperature drops. At low temperature,

shot noise dominates in superlattices.

The electric current in superlattices is formed by the tunneling of electrons

through barriers. Due to the discrete nature of electrons, the tunneling of elec-

trons constitutes a series of independent, random events. To be specific, this is a

Poisson process with average rate Ī/e, where Ī is the average current. So the current

can be written as

I(t) = e
∑
j

δ(t− tj) (6.30)

where tj are the times when the tunneling of electron occurs. The autocorrelation of

current is defined as

R(t′) = lim
T→∞

1

T

∫ T

0

dt I(t)I(t+ t′), (6.31)

110



so the autocorrelation of Eq. 6.30 is

R(t′) = lim
T→∞

e2

T

∑
j

∫ T

0

dt δ(t− tj)δ(t− tj + t′)

= lim
T→∞

e2

T

∑
j

δ(t′)

= eĪδ(t′). (6.32)

In the last step, we used the fact that as T →∞, the summation
∑

j → T Ī/e.

The Fourier transformation of I(t) is

I ′(ω) =

∫ T

0

dt e−iωtI(t). (6.33)

Then the spectrum is defined by

S(ω) = lim
T→∞

1

2πT
|I ′(ω)|2. (6.34)

It is easy to see that the spectrum is the Fourier transformation of autocorrelation

S(ω) =
1

2π

∫ ∞
−∞

e−iωtR(t) dt, (6.35)

or,

R(t) =

∫ ∞
−∞

eiωtS(ω) dω. (6.36)

This is the well known Wiener-Khinchin theorem[30]. So the spectrum of shot noise

is

S(ω) = 2eĪ. (6.37)

Adding a noise term to the superlattice model yields:

J(t) = ε
dFi
dt

+ Ji→i+1 + J
(r)
i→i+1(t). (6.38)
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From Eq. 6.32, the noise current has autocorrelation

〈I(r)
i→i+1(t)I

(r)
j→j+1(t′)〉 = 〈S · J (r)

i→i+1(t)S · J (r)
j→j+1(t′)〉 (6.39)

= eIi→i+1δ(t− t′)δij, (6.40)

where S is the cross sectional size of the superlattice. So,

〈J (r)
i→i+1(t)J

(r)
j→j+1(t′)〉 =

eIi→i+1δ(t− t′)δij
S2

(6.41)

=
eJi→i+1δ(t− t′)δij

S
(6.42)

= B2
i 〈ξi(t)ξj(t′)〉 (6.43)

where B2
i = eJi→i+1

S
and 〈ξi(t)ξj(t′)〉 = δijδ(t − t′). It is important to note the shot

noise term becomes relatively more important as the device cross section S decreases.

This means that fluctuation effects will be accentuated in SL samples with small cross

section. Most work recorded in this Chapter will use a sample size with diameter

60µm, except for the following single noise source.

Thus

J(t) = ε
dFi
dt

+ Ji→i+1 +Biξi(t), i = 0, ..., N. (6.44)

Summing Eq. 6.44 over all periods yields

(N + 1)J(t) =
εdV

l dt
+

N∑
i=0

(Ji→i+1 +Biξi(t)), (6.45)

and plug it back into each equation of Eq. 6.44 yields:

dFi =
1

(N + 1)l

dV

dt
dt+

1

ε

(
1

N + 1

N∑
j=0

eJj→j+1 − eJi→i+1

)
dt

+
1

ε

(
1

N + 1

N∑
j=0

Bj∆Wj(t)−Bi∆Wi

)
. (6.46)
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where Wi =
∫ t

0
ξi · dt′ are Wiener processes. If we hold the voltage as a constant,

the first term on the right hand side vanishes. We simulate the system using Heun’s

method [105].

The approach here includes spatial variation along only one dimension, i.e., along

z-direction. The dynamical variables in the lateral x − y plane are assumed to be

uniform. This is only true for very small lateral size superlattice. When the lateral

size becomes bigger, fluctuation at different positions in the lateral direction can

be different causing laterally nonuniform charge density and field. Drift-diffusion

process also occurs in the lateral direction. The deterministic drift-diffusion model of

superlattice with lateral dynamics was first studied in Ref. [66] and later investigated

with a more complicated structure by me in Ref. [97]. Direct numerical simulation

of such structure with noise has never been performed.

6.2.1 Fluctuation due to single noise sources

In reality, shot noise exists at each barrier. However, in simulation, we can turn off

noise at any barriers. The single noise effects are shown in Fig. 6.3. To increase

the noise effect, we use a smaller cross-sectional area size with diameter 10µm. The

noise turned on in the low field domain (at E10 in Fig. 6.3) causes fluctuation of

E36. Interestingly, the fluctuation of E36 due to noise sources in the low field do-

main is roughly additive. However the noise in the high field domain causes no E36

fluctuation. The reason for this behavior is still not clear.

6.3 Scaling behavior of the lifetime of the metastable state

6.3.1 Switching time distribution

In previous works, the deterministic sequential tunneling model for superlattices has

successfully produced static current branches in J − V curves. Figure 6.4(a) shows

a typical J − V curve with σ = 0.08 (Ωm)−1 and bistability is clearly seen for up-
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Figure 6.3: Fluctuation due to single noise sources. V = 0.47 V. Diameter is 10
µm. Shot noise turned on only (a) at 10th well, (b) from 10th to 15th well, (c) at
36th well, (d) at 37th well.

sweep and down-sweep of the applied voltage. Each current branch corresponds to

a unique spatial configuration of electric field. The field and charge configuration

for V = 0.47 V is shown in Fig. 6.4(b), where we see that the accumulation layer is

located at the 37th period. The bistability at the end of the current branch means

that the accumulation layer can either be in 37th or 36th period for the same applied

voltage. We find that Vth = 0.53903 V where Vth denotes the voltage corresponding

to the end of the 4th current branch, cf. Fig. 6.4(a).

Consider now the initial condition where one starts with the stable field configu-

ration corresponding to V0 = 0.47 V, where there is no bistability, and then switches
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Figure 6.4: (a) The deterministic J − V curve for superlattice with contact con-
ductivity σ = 0.08 (Ωm)−1 and other parameters defined in Ref [44]. (b) The field
(solid line) and the charge density (dash line) configuration for V = 0.47 V. (c) The
current trace for a typical pulsed switching process.
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Figure 6.5: Switching time distribution at V = 0.5388 V. a) Linear scale. b)
Logarithmic scale.
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abruptly to the voltage to V near the end of the same current branch. If there is no

noise, the system relaxes deterministically to the upper branch and remains there.

However, if we add shot noise to the tunneling current, the current stays on the

upper branch for a period of time τrelo and then switches to the lower branch which

is globally stable. The switching time τrelo is a type of first passage time (FPT)

and, in this paper, we refer to it as the lifetime of the upper branch. Figure. 6.4c

shows a typical current trace in response to a step function in applied voltage. The

initial upward jump of the current is due to the jump of voltage from V0 to V . After

this, the current is nearly constant until the system reaches a saddle point at which

point the current makes a smooth but relatively rapid transition to the low current

states. During the switching process, the accumulation layer moves backward by one

period of the superlattice. We refer to this initial state preparation scheme with an

initial jump of applied voltage as the pulsed IC, and note that this approach is easily

realized in experiments.

The distribution of τrelo for V = 0.5388 V is shown in Fig 6.5, and it clearly has

an exponential tail. This suggests that the switching process is well approximated

as a Poisson process. As V gets closer to Vth, the distribution becomes a skewed

Gaussian distribution and the mean switching time becomes shorter. Figure 6.6

shows the switching time distribution for V = 0.5392V and 0.54 V. It can be seen

that the switching time distribution is still skewed when V is beyond the end of the

current branch. It becomes a normal distribution when V becomes even larger.

If one simulates an ensemble of identically prepared systems with different noise

realizations, one can use this to generate histograms of charge density in the 37th

well n37 at various instances of time after the initial pulse. We find that for a FPT

distribution with exponential tail, the histogram is clearly bimodal, and for normal

FPT distribution, the histogram is unimodal. Histograms are plotted in Figs. 6.6c,d

for V=0.5392 and 0.54 V, respectively. As the final voltage passes significantly
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beyond the end of the current branch, the distribution tends to a Gaussian form.

6.3.2 3/2 scaling law

It has been shown that the mean first passage time from one stable fixed point to

the other in a one-dimensional double well potential is proportional to exp(∆U/D)

[30] a result that is sometimes called the Kramer formula. Here, ∆U is the height of

the potential barrier and D is the noise intensity or diffusion constant. For V < Vth,

there exist bistable states and there may exist a potential barrier in the direction of

the reaction coordinate s illustrated in Fig. 6.7. When V is close to Vth, the potential

near the metastable state s1 can be written in the following form to the 3rd order of

s:

U(s;V ) = K

(
−s

3

3
+ A(V ) s

)
, (6.47)
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where K > 0 is a constant and the variable A(V ) can be expanded near Vth as

A(V ) = A(Vth) + A′(Vth)(V − Vth) +O(V − Vth)2. (6.48)

To find the fixed point for a given V , set dU/(K dr) = −s2 + A = 0 and s = ±√A.

When the saddle-node bifurcation occurs at Vth, the two fixed points s1 and s2 collide

and only one fixed point s = 0 is left. So A(Vth) = 0. For V < Vth, there exist two

fixed points, so A′(Vth) = −β < 0. Then the metastable state is s1 = −√A and the

saddle point is s2 =
√
A. Subsequently, for V > Vth, there is no fixed point. When

V < Vth, we can find the potential barrier

∆U = U(s2)− U(s1) = K
4

3
A3/2. (6.49)

Substituting A(V ) = β(Vth−V ) into the above equation, the mean first passage time

τ ∝ exp(∆U/D) now becomes

τ ∝ exp

(
4Kβ3/2

3D
(Vth − V )3/2

)
. (6.50)

Or simply,

τ ∝ exp

(
1

DV

(Vth − V )3/2

)
. (6.51)

From the derivation, we can see that this is only true for Vth−V small. Meanwhile,

the original relationship Eq. 6.27 τ ∝ exp(∆U/D) is only true for ∆U � D,which

requires Vth − V not too small. For Vth − V not too large, the cubic potential

approximation will fail. So Vth − V can not be too small or too large. Also, when

deriving the relationship τ ∝ exp(∆U/D) itself, a few approximations have been

made, see Sec. 6.1.4. Finally, the calculated mean switching time is a Monte Carlo

estimate with non-zero variance for a finite number of trials. These factors all may

contribute to the result that the exponent α is not exactly 1.5.
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Figure 6.7: Schematic of the potential for the saddle-node bifurcation for V < Vth

(red solid line) and V > Vth (black dashed line).

6.3.3 The statistical model

After we obtain the distribution for the first passage time distribution, it is easy

to calculate the sample mean first passage time τ and its standard deviation sd for

applied voltage V . Figure. 6.8 shows τ vs. V using the pulsed scheme described in

Sec. 6.3.1. For comparison, we also plotted the simple fitting of linear and quadratic

relationship. The fitting is only applied to the five largest τ value points, i.e., the

leftmost five points in Fig. 6.8. The reason not to include the points closer to Vth

is that when deriving the scaling behavior, the effective potential barrier is large

compared to effective noise, i.e., the control parameter of the bifurcation is not too

close to its threshold value.

It has been shown that for a one-dimensional double barrier structure in which

lateral dynamics is neglected, the mean first passage time behaves as log τ ∝ (Vth −
V )3/2. From Fig. 6.8, it is difficult to tell if the exponent is 1.5. So we need to resort

to more rigorous statistical methods to fit the simulated τ vs. V. According to central

limit theorem, the sample mean τobs of simulated first passage time τrelo for each V

follows a normal distribution N(τ(V ), σ2(V )) and the variance σ2(V ) = σ2
relo(V )/n,

where σ2
relo(V ) is the variance of τrelo and can be estimated by its standard deviation
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Figure 6.8: Mean switching time vs. applied voltage using pulsed scheme. A
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s2
d and n is the number of trials. So we assume the relationship between τ and other

parameters is as follows:

τobs = τ0 e
1
D

(Vth−V )α + ε(V ), (6.52)

where τobs is the simulated mean first passage time, τ0, D and α are the parameters

to be fitted and ε(V ) = s2/n is normal noise whose variance depends on the applied

voltage V .

6.3.4 Bayesian nonlinear curve fitting

Frequentists use known data to calculate the statistics which estimate the unknown

but fixed parameters by minimizing likelihood or some other critieria. The distribu-

tion of the statistic over all possible random samples is called sampling distribution

which is used to make confidence inference. Bayesian statistics treats the unknown

parameters as random variables and their distributions are conditioned on the data.

This is based on the Bayes rule:

P (A|B) =
P (B|A)P (B)

P (A)
. (6.53)
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Now the distribution of the unknown parameter θ can be viewed as knowledge of

their uncertainty. Such a knowledge prior to the analysis of the data can be quantified

as the prior distribution π0(θ). The distribution of the random variable x conditioned

on parameter θ is called likelihood p(x|θ). The knowledge of the parameter given

data is called posterior distribution π(θ|x). According to Bayes’ rule,

π(θ|x) = p(θ|x) =
p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ . (6.54)

This is the probability of the parameters conditioned on the observed data, i.e., the

data updates the knowledge of the parameter.

Since the data are calculated for a discrete set of V values, we add subscript i

and rewrite Eq. 6.52:

τi = τ0 e
1
D

(Vth−Vi)α + εi (6.55)

where εi is normal noise N(0, s2
i /ni). The set of unknown parameters to be de-

termined by fitting is denoted by θ = {τ0, D, α}. Equation. 6.55 says that τi is

random variable having normal distribution N(τ0 e
1
D

(Vth−Vi)α , s2
i /ni). We adopt a

Bayesian approach, treating the parameters θ = {τ0, D, α} as random variables. Let

τ = {τ1, τ2, ..., τn} and denote f(τ ; θ) by the joint distribution of τ and θ, which can

be written as

f(τ ; θ) = f(τ |θ)π0(θ) = π(θ|τ)f(τ). (6.56)

In the above equation, f(τ |θ) is the conditional distribution of the data (τ) given θ.

When viewed as a function of θ, f(τ |θ) is called the likelihood L((τobs, V );α,D, τ0):

L((τobs, V );α,D, τ0) ≡ f(τ |θ) =
n∏
i=1

N(τi; τ0e
1
D

(Vth−Vi)α , s2
i /ni) (6.57)

π0(θ) denotes the prior distribution on θ, which can be used to incorporate prior

knowledge about the parameters. Here we use a flat noninformative prior distribu-
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tion:

π0(α,D, τ0) = π0(α)π0(D)π0(τ0) =

{
1 for α > 0 and D > 0 and τ > 0

0 for α < 0 or D < 0 or τ < 0
(6.58)

Then π(θ, τ) is called the posterior distribution, meaning the distribution of θ

given the observed data τ . So

π(θ|τ) =
f(τ |θ)π0(θ)

f(τ)
∝ L((τobs, V );α,D, τ0, s

2
i /ni), (6.59)

Therefore we can evaluate the posterior distribution π(α,D, τ0) for any value of the

unknown parameters α,D, τ0 by calculating L((τobs, V );α,D, τ0, s
2
i /ni) (Eq. 6.57).

Normalization and marginalization are performed by numerical integration.

The posterior distributions are plotted in Fig. 6.9. The exponent α is centered

at 1.82 and the 95% Bayesian highest probability density (HPD) for α is [1.64, 2.02].

This means that 95% of the chance α is in the interval [1.64, 2.02] and it is highly

unlikely that α is 1.5. The probability that α ≤ 1.5 is 5.1× 10−4. This suggests that

the sudden switching of the applied voltage at the beginning has significant influence

on the switching time.

To eliminate the effect of the sudden change of the applied voltage, we use the

metastable state of the deterministic system as initial condition and keep the cor-

responding voltage as a constant. We refer to this scheme as metastable scheme.

The switching time is measured right after the starting of the simulation. The data

points are shown in Fig. 6.10. Again, the leftmost five data points are fitted. The

distribution of α is shown in Fig. 6.11. It can been seen that α is centered at 1.63

with a HPD [1.49, 1.78]. The Probability that α ≤ 1.5 is 0.04. So we can see that it

is still unlikely that α = 1.5.

Although it is prohibitive to calculate even longer switching times due to ex-

ponentially increasing computation time, do more data points with relatively short

122



1 1.5 2 2.5
0

1

2

3

4

5

α

pr
ob

ab
ili

ty
 d

en
si

ty

0.01 0.015 0.02 0.025 0.03
0

50

100

150

200

250

D

pr
ob

ab
ili

ty
 d

en
si

ty

0 1 2 3 4
0

0.5

1

1.5

τ
0

pr
ob

ab
ili

ty
 d

en
si

ty

(a)

(b) (c)

Figure 6.9: The posterior distributions for parameters (a) α, (b) D, (c) τ0 for
pulsed scheme by direct integration.
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Figure 6.10: Mean switching time for metastable scheme.
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Figure 6.11: The posterior distributions for parameters (a) α, (b) D, (c) τ0 for
metastable scheme by direct integration.

mean switching time improve the results? Four more data points are added in the

metastable method, shown in Fig. 6.12. The posterior distributions are shown in

Fig. 6.13. α is centered at 1.67 with HPD [1.56, 1.80]. The probability that α ≤ 1.5

is 0.0028. This confirms the result that α is unlikely equal to 1.5.

Although four more data points were added, the variance of α remains large.

The marginal two dimensional posterior distributions are plotted in Fig. 6.14. It can

be seen that the parameters have strong pairwise correlation, which means that the

parameters are confounded. This is a property of this statistical model and cannot

be improved by adding more data points within the available range of V .
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Figure 6.12: Mean switching time for metastable scheme with more data points.
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Figure 6.13: The posterior distributions for parameters (a) α, (b) D, (c) τ0 for
metastable scheme with nine points by direct integration.
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τ0 for metastable scheme with nine points by direct integration.

6.4 Projection onto saddle-node trajectory

The scaling behavior clearly demonstrates that the biased voltage affects the switch-

ing probability. When the biased voltage decreases from the threshold voltage, the

metastable state becomes more and more stable and the switching is less and less

likely to occur. In a one-dimensional model, this corresponds to the increase of the

potential barrier that separates the two stable fixed points. Superlattices are high di-

mensional systems. Can we still find some quantity that characterize the switching?

Here a local effective potential will be developed.

The deterministic part of field model Eq. 6.46 has the form:

dF = G(F)dt (6.60)
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We know that on the current branch there is a stable fixed point F0 such that

G(F0) = 0. Then we can find the Jacobian matrix evaluated at F0, DG(F0) =

{∂Gi/∂Fj}. Diagonalizing this matrix gives us the manifolds of the system.

The Jacobian matrix has elements aij = ∂Gi/∂Fj. Summation along each column

equals
∑

i aij =
∂(

P
iGi)

∂Fj
=

∂d(
P
i Fi)/dt

∂Fj
= 0 under the constant total applied voltage.

If the eigenvector v = (v1, v2, ..., v41) has eigenvalue λ such that DG · v = λv. or


a11v1 + a12v2 + ...
a21v1 + a22v2 + ...

.

.

 = λ


v1

v2

.

.

 (6.61)

The summation of all the components of the vector on the left hand side equals∑
j(
∑

i aij)vj = 0 since
∑

i aij = 0 for each j. This yields the property of the

eigenvector that λ
∑

i vi = 0, or
∑

i vi = 0 unless λ = 0.

A typical eigenvalue spectrum is shown in Fig. 6.15a. All the real parts of the

eigenvalues are smaller than zero, except λ0 = 0. The eigenvalue λ1 is the one has

the largest non-zero real part. The eigenvectors w of the λ0 and v of λ1 are shown

in Fig. 6.15b. The summation of the coefficients are
∑

i vi = 0 and
∑

iwi 6= 0. Since

the system can only move in the manifold (hyperplane) C = {F|∑i Fi = U}, this

means that w is perpendicular to C and moving along w can only be achieved by

changing total applied voltage U . The fact that the summation of the components

of the other eigenvectors equals to zero means that these eigenvectors are in the

manifold C and moving along any combination of them is allowed. Also notice that

the component of E36 is very large in both w and v.

We explore the phase space along v, the corresponding has the largest non-zero

real value. The algorithm is described below: move the fields to a new position along

v by a small amount ε, i.e., F′ = F + εv. Calculate the Jacobian matrix at the new

position DG(F′), diagonalize it and update v and λ1. Then move the fields to the
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Figure 6.15: a) Eigenvalue spectrum of Jacobian matrix DG at metastable fixed
point F0 and total applied voltage V = 0.5389 V. The inset is the blowup of the
region enclosed by the rectangle. b) eigenvector of λ0 and λ1. c) eigenvector λ2
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next position along the new v by ε and repeat the above steps. As we carry out this

algorithm, we use s > 0 to denote the distance that we moved. Then λ1 is a function

of s, λ1 = λ1(s). We now create a one-dimensional system for s,

ṡ = f(s) (6.62)

where f ′(s) = λ1(s) with f(0) = 0. So f(s) =
∫ s

0
λ(s′)ds′. With f(s) determined,

we can find the effective potential (Lyapunov function) U(s) = − ∫ s
0
f(s′)ds′. The

computed effective potential U for V = 0.5389 V is shown in Fig. 6.16a. We can see

that the potential first increases and then decreases, forming a barrier with height

∆U and ∆U is a function of applied voltage V . In Fig. 6.16b, we plot mean first

passage time log(τ) vs. ∆U . The straight line indicates that τ has the form

τ = Ae∆U/D (6.63)

or,

ln τ = lnA+ ∆U/D (6.64)

Fitting the straight line, we find 1/D = 4.58×10−15, or D = 2.19×1014 (V2m−2s−1).

The plot of operational points Fig. 6.17 shows some insight into the switching

mechanism and the eigenvector v. The curves in Fig. 6.17 are the tunneling current

Ji→i+1 vs. field Fi with ni and ni+1 of the actual profile of the deterministic fixed

point of the system. The dots denotes the operation points, i.e., the tunneling current

Ji→i+1 with actual values of Fi, ni and ni+1.

It can be seen that when the applied voltage is far from the end of the current

branch, e.g., V = 0.47 V in Fig. 6.17b, all the operation points are in the positive

differential conductivity regions. However, when V is near the end of the current

branch, F36 is in the NDC region, shown in the inset of Fig. 6.17a. However, at the

end of the current branch, the operation point for the J36→37 is already in the NDC

region which causes instability. This is consistent with the large component of E36

in the eigenvector.
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Figure 6.16: a) the effective potential U for V = 0.5389 V. The inset is the
projection of the eigenpath onto subspace E36 and E37, with the circle denoting the
starting point and the square denoting the saddle point. b) mean first passage time
τ vs. potential barrier height ∆U .

6.5 Analysis of the ensemble

For an arbitrary system

dx

dt
= f(x) (6.65)

with fixed point x = x1. If the particle starts from the fixed point x1, then the distri-

bution of the particle coordinate over a period of time is a delta function δ(x− x1).

As noise is added to the system, the particle wanders around x1 and the distribution
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Figure 6.17: Operation points at V = 0.539V (left) and 0.47V (right)

is no longer a delta function. If the particle overcomes the attraction of x1 and moves

to another fixed point x2, a trajectory connecting x1 and x2 forms in the phase space.

Since there is randomness in the whole process, each switching process traces out a

different trajectory. An ensemble of trajectories of many trials can be recorded.

For the switching process in superlattices, the dynamical variable Fi(t) is 41

dimensional for N = 40. Figure 6.18 is the histogram in the subspace of F36 and

F37. In Fig. 6.18b, the histogram is plotted as a contour plot. The white curve is

the eigenvector path obtained in Sec. 6.4. The circle and the square mark the stable

fixed point and saddle point respectively.

(b)(a)

Figure 6.18: a) Histogram of F36, F37 b) Contour plot of the histogram of F36, F37
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The trajectories fluctuate around a path called most probable path along which

the particle is most often observed. From the histogram, we can find the most

probable path by locating the maximum of the histogram along the swamp of the

trajectories. This is shown in Fig. 6.19 as the blue curve. Chan et. al. showed that

the distribution of trajectories is a normal distribution centered at the most probable

path.
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Figure 6.19: Solid line is the ensemble mean. Dashed line is the eigenvector path.
Blue line is the most probable path.

In Fig. 6.19, an ensemble mean path is also plotted as the solid line. This is

obtained by first aligning the trajectories in time when the switching occurs, shown

in Fig. 6.20. Then calculate the mean value of Fi over the ensemble at each time

step. The most probable path, the ensemble mean and the eigenvector path (the

dash line) almost overlap in Fig. 6.19.

6.5.1 Multivariate statistics

Usually, the statistical tools are applied to a scalar response. The data in t-test,

ANOVA and the response in linear regression are all one dimensional. In practice,

multivariate data are very common. Simultaneous variables are measured on a single

sampling unit, forming a high dimensional data set. So each observation can be

132



Figure 6.20: Alignment of the switching processes.

represented by a p dimensional vector y. If there are n observations in a sample,

then the data can be denoted by y1,y2, ...yn, where

yi =


yi1
yi2
.
.
yip

 . (6.66)

The data matrix Y is a spread sheet with each row as a sampling unit and each

column as a dimension, i.e.,

Y =


yT1
yT2
.
.

yTn

 . (6.67)

Some statistics of univairate data can be extended to multivariate case. The sample

mean ȳ is the vector of sample mean of each dimension, i.e.,

ȳ =
1

n

n∑
i=1

yi =


ȳ1

ȳ2

.

.
ȳp

 , (6.68)
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where ȳj =
∑n

i=1 yij/n. Similarly, the population mean can be defined as the expec-

tation value of the sample mean:

µ = E(y) = E(ȳ) =


E(y1)
E(y2)
.
.

E(yp)

 =


µ1

µ2

.

.
µp

 . (6.69)

In univariate statistics, all kinds of variance play a critical role in many inference

tools. The counterpart of variance in multivariate statistics is the covariance matrix.

The sample covariance matrix S = (sjk) is a p by p matrix defined as

S = (sjk) =


s11 s12 . . s1p

s21 s22 . . s2p

. . . . .

. . . . .
sp1 sp2 . . spp

 , (6.70)

where the diagonal elements sjj are the sample variance of each dimension, i.e.,

sjj = s2
j =

∑n
i=1(yij − ȳj)2/(n − 1) and sjk is the covariance between jth and kth

variables, i.e., sjk =
∑n

i=1(yij − ȳj)(yik − ȳk)/(n− 1). The sample covariance matrix

can also be written in vector y as

S =
1

n− 1

n∑
i=1

(yi − ȳ)(yi − ȳ)T (6.71)

=
1

n− 1

(
n∑
i=1

yiy
T
i − nȳȳT

)
. (6.72)

Similarly, the population covariance matrix is also a p by p matrix

Σ = (σjk) =


σ11 σ12 . . σ1p

σ21 σ22 . . σ2p

. . . . .

. . . . .
σp1 σp2 . . σpp

 , (6.73)
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where σjk = E(sjk) and be written as

Σ = cov(y) = E[(y − µ)(y − µ)T ] = E(yyT )− µµ, (6.74)

or

E(S) = Σ. (6.75)

We can also define the sample correlation matrix as

R = (rjk) =


1 r12 . . r1p

r21 1 . . r2p

. . . . .

. . . . .
rp1 rp2 . . 1

 , (6.76)

where

rjk =
sjk√
sjjskk

=
sjk
sjsk

. (6.77)

The univariate variance characterizes the dispersion of data in one dimension.

Likewise, one meaning of the covariance matrix is the dispersion of data in high

dimensional space. For a high dimensional ellipsoid, called hyperellipsoid, (y −
ȳ)TS−1(y − ȳ) = a2 that just contains all data yi, the volume is proportional to

|S|−1/2. The determinent |S| = λ1λ2 · · · λp is called generalized sample variance,

where λi are eigenvalues of S. If some eigenvalues are zero or near zero, then the

variables are linearly dependent and there is redundancy in the data, thus some di-

mensions can be removed. Another way to characterize the total variance is the trace

tr(S).

The covariance matrix is extremely useful in multivariate statistics. For ex-

ample, when we test if the mean vector µ = µ0, the statistical distance d2 =

(ȳ− µ)T
(

S
n

)−1
(ȳ− µ) is useful rather than the Euclidean distance (ȳ− µ)T (ȳ− µ).

This is T 2 test: T 2 = d2. In multivariate analysis of variance (MANOVA), covariance
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matrices within groups and between groups are calculated and compared similar to

univariate analysis of variance (ANOVA).

In univariate statistics, if the data is multiplied by a scalar, i.e., z = ay, then

var(z) = var(ay) = a2var(y) = a2σ2. The sample variance of z is then s2
z = a2s2.

In multivariate statistics, the inner product of y and a constant vector a: z = aTy

has sample variance s2
z = aTSa. The sample covariance between z and another inner

product w = bTy is s2
zw = aTSb. So if there are k such inner products forming a

new multivariate data set:

z =


aT1 y
aT2 y
.
.

aTk y

 = ATy, (6.78)

the covariance matrix of z is

Sz = ATSA. (6.79)

6.5.2 Introduction to PCA

After the previous discussion of the covariance matrix, it is easy to understand prin-

cipal component analysis[106]. The hyperellipsoid (y − ȳ)TS−1(y − ȳ) = a2 has

principal axes which are the eigenvectors ai of the matrix S and can be obtained

by diagonalizing S. So Sai = λiai. It can also be written as SA = AD, where

A = (a1, a2, ..., ap) and diagonal matrix D = diag(λ1, ..., λp). Since A is an orthogo-

nal matrix, A−1 = AT . Any centered data point y having distance d2: yTS−1y = d2

can be written as d2 = yTAA−1S−1AA−1y = zTD−1z where y has been transformed

to z by z = ATy. According to Eq. 6.79, the diagonal matrix D = ATSA is the

covariance matrix of the new variables z.

This means that when the data is transformed to a new coordinate system whose

basis is the eigenvectors ai of the covariance matrix S, the variance of the data along
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direction ai is s2
zi

= λi. The components z1, z2, ..., zp of the transformed variable z are

called principal components, or simply pc. Their values of individual observations

are called z-scores. The first pc z1 with the largest eigenvalue λ1 corresponds to the

longest axis of the ellipsoid which accounts for the biggest portion of the variance

of the data. The pc’s with rank ordered eigenvalues accounts for decreasing portion

of the variance of the data. Some pc’s can be neglected if their eigenvalues are very

small, leading to reduction of dimension. This means that the actual dimension of

the system is smaller than p.

6.5.3 Results

From the histogram in Fig. 6.18, we can imagine that the trajectories form a narrow

tube around the most probable path in phase space when switching. If we pick a

narrow time window within which the trajectories do not have much curvature, then

the trajectories almost form a cylinder. If the dispersion of the trajectories is smaller

than the length of the trajectories, then the variation of the dynamical variables

occurs mostly along the height of the cylinder. Principal component analysis should

be able to capture this.

To test this idea, we first align the switching processes as in Fig. 6.20. In Fig. 6.21,

two narrow time windows t1 and t2 are chosen. The numerically generated discrete

data of the trajectories within these two time windows will be studied by PCA. For t2

in Fig. 6.21, there is a clear trajectory in phase space. The first principal component

(pc) at t1 and t2 are shown in Fig. 6.22. We can see that the first pc of t2 is close

to the eigenvector v of λ1, which means that the movement of the system in phase

space does not change its direction very much. This is why the histogram in Fig. 6.18

looks like a straight line. The histogram of projection of the trajectory onto the first

and second pc at t2, i.e., the z-score z1 and z2 at t2 is plotted in Fig. 6.24. The

distribution of z1 is almost uniform and that of z2 is almost normal. This means
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that the trajectories does move along the direction of the first pc and the form a

narrow tube. The z-score z1 at t1 is normal. This means that there is no definitive

trajectory in phase space and the PCA method fails to capture a major direction.

Since the eigenvectors and eigenvalues are calculated from an ensemble, that is,

a sample, to check if they are a good estimate of the eigenvectors and eigenvalues

from the populations of switching processes, we also calculate the eigenvectors and

eigenvalues from a subset of the ensemble. This is plotted in Fig. 6.23. We can see

that the results converge as the number of trials increases.

Figure 6.21: The two time windows to apply PCA.

The eigenvalues are plotted in Fig. 6.26 which are called scree graphs. The scree

plots in Fig. 6.26b shows that the largest eigenvalue corresponding to the first pc

at t2 is a dominant component of the variance while the largest eigenvalue at t1 is

much less dominant. The component of λ1/
∑
λi = 16.8% for t1 and 84.5% for t2.

However, in Fig. 6.22, we can see that the first pc at t1 also has a high peak at E37.

This captures the fact that E36 has a large variance, shown in Fig. 6.27.

To take into account of different values of variance of Ei, principal component

analysis can be applied to the correlation matrix rather than the covariance matrix.

The eigenvalues of the correlation matrix are plotted in Fig. 6.26c, d. We can see that
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Figure 6.22: The first principal components at t1 and t2
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Figure 6.23: The first principal components for sub-ensembles at a) t2 and b) t1.

the first pc still dominates at t2. we can see the first pc of the correlation matrix

in Fig. 6.28 and the first pc of the covariance matrix in Fig. 6.22 have the same

structure. For example, the first pc of the correlation matrix also peaks at E36 at t2,
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Figure 6.24: Histogram of z-scores on the a) first and b) second principal compo-
nent at t2.

but the component of E36 is much lower than that in the covariance matrix. This is

due to the fact that pca on correlation matrix is on the scaled the data (yi − ȳi)/si.
The big variance of E36 has been divided off, so the big peak of E36 in the first pc is

brought down significantly in the correlation matrix case. Since the data have been

scaled to their variance, the spatial structure has been changed, so the first pc in

this case is not the applicable in the Euclidean space.
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Figure 6.25: Histogram of z-scores on the first at t1.
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Figure 6.26: Eigenvalues of PCA on covariance matrix for a) t1 and b) t2. Eigen-
values of PCA on correlation matrix for a) t1 and b) t2.
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Figure 6.27: Variance of Fi

141



0 10 20 30 40
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

coefficient index

va
lu

e 
of

 th
e 

co
ef

fic
ie

nt

 

 

first pc at t
1

first pc at t
2

Figure 6.28: pc of correlation matrix

142



7

The tunnel diode model

Up until now, we have been studying superlattices. The nonlinear property NDC in

superlattices is the fundamental reason for the rich dynamics in previous chapters.

In this chapter, we study a different system which also possesses NDC, a circuit of

tunnel diodes connected series. We will compare this system with the superlattice

and study the similarity and difference between the two systems. This is motivated

in part by asking the question: what are the minimal ingredients necessary for a

spatially periodic electronic system to exhibit stable current branches and bistability

in current-voltage curves?

7.1 The tunnel diode circuit

The tunnel diode or Esaki diode was invented by Leo Esaki in 1957 and earned him

Nobel prize for the electron tunneling effect in these devices [18]. A tunnel diode is a

p-n junction between two degenerately doped semiconductors. In degenerately doped

n-type semiconductors, the electron density is so high such that the Fermi level lies

within the conduction band. Similarly, for p-type semiconductors, the Fermi level

lies within the valence band. Such a p-n junction is illustrated in Fig. 7.1. A distinct
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feature of this structure is overlapping of the valence band on the p side and the

conduction band on the n side. It is this feature that causes the unique tunneling

behavior of the tunnel diode. When a small forward bias V is applied, EFn raises

by qV with respective to EFp and the electrons under EFn on the n side can tunnel

through the band gap, occupying the empty states in the valence band on the p side.

This is illustrated in Fig. 7.1(a). As the bias increases, more electrons participate in

the tunneling process. The current increases as well until the bias increases to a point

where the electrons in conduction band on n side starts to pass by the valence band

on p side and direct tunneling process drop significantly. So the current decreases

as the bias increases, which is the now-familiar phenomenon of negative differential

conductance (NDC). This is illustrated in Fig. 7.1(c). As the bias further increases

beyond the NDC region, the diffusion current starts to dominate the forward current

as a normal p-n junction and the current increases again.

Figure 7.1: Band diagram for tunnel diodes under (a) zero bias, (b) small forward
bias, (c) increased forward bias in NDC region, (d) high forward bias.
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Figure 7.2: Schematic of circuit measuring I − V curve of tunnel diode. R = 52.6
Ω.
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Figure 7.3: The I−V curve of tunnel diode (model 1N3712) is measured and then
fit by a 5th order polynomial.

We have measured the current versus voltage for a single diode using the circuit

shown in Fig. 7.2. The measured I − V curve is shown in Fig. 7.3. Notice that this

measured I − V curve is not the intrinsic tunneling current versus applied voltage

across the p-n junction. A real tunnel diode has parasitic capacitance and inductance
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due to packaging, which can cause Hopf bifurcation, i.e., oscillation, and hysteresis

in the NDC region [19] for DC bias. It is difficult to measure the true intrinsic IV

curve due to the onset of temporal instabilities [94]. However, the increasing part of

the current, i.e., region I and III in Fig. 7.3 is still close to the intrinsic IV curve

of the tunnel diode. In the simulation below, we use a fifth order polynomial to

describe the intrinsic IV curve, which is qualitatively the same, shown in Fig. 7.3.

We also built and measured a circuit composed of tunnel diodes connected series

shown in Fig. 7.4. Again, we measure the total current versus applied voltage using

the same approach as the single diode case in Fig. 7.2. Figure 7.5 shows the measured

IV curve for eight diodes connected in series with no external parallel capacitors.

Surprisingly, the total IV curve is not the same as a single diode IV curve. Instead,

current branches similar to those of superlattices are clearly seen and hysteresis is

also present in this system. In rest of the chapter, we will build a simplified model

to studied this system.
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Figure 7.4: (a) Nonlinear element array model. Negative differential resistance
elements are connected in series with parallel capacitance associated to each element.
(b) The I − V curve for a typical element. Region (II) is the NDR region.

7.2 The tunnel diode model

Why are current branches observed in this system? We address this question by

introducing a nonlinear circuit model consisting of a voltage-biased series arrays
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Figure 7.5: Measured I−V curve of eight tunnel diode (model 1N3712) connected
in series. (Black circuit points: upsweep of voltage. Red dot points: downsweep of
voltage.)

of N ideal negative differential resistance elements, each connected in parallel to

a capacitance as shown in Fig. 7.4a. We find that heterogeneity in the element

properties leads to a form of coherence in the physical currents that flow through

individual elements, and manifested by the presence of multiple branches in current-

voltage curves and a non-uniform distribution of voltages across individual elements.

This model provides a simple example of a system in which organized patterns are

induced by noise - a type of behavior reported for more complex systems, e.g., chaotic

oscillators and reaction-diffusion models,[107] as well as arrays of chaotic oscillators

[108].

Each element is assumed to have an intrinsic I − V curve of the form Ii(vi) with

a typical example shown in Fig. 7.4b. The total electrical current is

I = Ii(vi) + Civ̇i, (7.1)
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for i = 1, 2, ...N , where vi denotes the voltage across the i-th element and Ci is the

parallel capacitance associated with the i-th element. The total applied voltage to

the array is V =
∑N

j=1 vj. Dividing both sides of Eq. (7.1) by Ci and summing over

i allows to express the total current as

I = CtotV̇ + Ctot

N∑
i=1

Ii/Ci, (7.2)

where C−1
tot ≡

∑N
i=1C

−1
i denotes the total equivalent series capacitance. Relabeling

the summation in Eq. (7.2) as over j and substituting the result back into Eq. (7.1),

the circuit model equations can be written in the following form:

v̇i =
Ctot
Ci

V̇ +
N∑
j=1

Kij(Ij(vj)− Ii(vi)), (7.3)

where Kij = Ctot
CiCj

. Equation (7.3) has the form of an N -dimensional dynamical

system subject to a constraint on the total voltage. The constraint is built into

the structure of the model, as seen by summing Eq. (7.3) over all i and using the

symmetry property Kij = Kji.

In this paper, we focus on the case of linear ramping (with ramp time T ) in the

total applied voltage V , so that V increases linearly between values 0 and NVmax

and V̇ = N Vmax
T
≡ Nα. The first term in Eq. (7.3) describes the effect of changing

total applied voltage, while the second term describes a global coupling between

individual circuit elements. The coupling term displays either positive or negative

feedback depending on the state of each element. It is interesting to compare our

model with the generalized Kuramoto model[109] as:

θ̇i = ωi +
N∑
j=1

Kij sin(θj − θi). (7.4)
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This model arises in studies of synchronization in systems of many nonlinearly cou-

pled oscillators. They all have a set of intrinsic frequencies and a sum of all coupling

terms in the form of Kijf(xi − xj). The fundamental difference lies in the coupling

function f which describes how elements are coupled to each other. In the Kuramoto

model, elements are always attracted to each other and tend to have same phase.

When θi < θj, the sine function is positive and this causes θi to catch up with θj.

When θj < θi, the sin function is negative which causes θi to slow down to θj. How-

ever, this attraction is not always true for the tunnel diode model. The function J(v)

has three branches, with the second branch as the NDC region. If vi and vj are both

on the first or the third branch then it’s easy to see that Ji(vi)−Jj(vj) has the same

effect as the sin function, that is vi and vm attract each other. If they are both on

the second branch, then they repel each other, see Figs. 7.6. This is the same effect

as if the coupling constant K in the Kuramoto model is negative.

What happens when some diodes are on the first branch and some are on the

unstable second branch? The first possible situation is captured in Fig. 7.6 where

Ji(vi) > Jj(vj). Both will move in the direction toward lower current. The i-th

diode is ”chasing” the j-th one. The slope of the IV curve determines how fast they

move. But eventually, the i-th will catch up with j-th because the slope of the second

branch tends to zero. If the i-th has caught up with j-th and they have the same

current, any noise will tear them slightly apart, then another case in Fig. 7.6 might

happen. Both will move upward to bigger current. This process ends up with same

current soon if both are not near the peak because the first branch is steeper than

the second, thus the j-th catches up with the i-th quickly.
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Figure 7.6: Coupling mechanism of the tunnel diode circuit model

7.3 Results

7.3.1 Current branches

If all the elements are identical, that is, no variance in capacitances and no variance

in intrinsic I−V characteristics, the simulated I−V curve for the TD circuit will be

a single curve with the same shape as a single tunnel diode under ramping condition,

no current branches observed. While this seems numerically stable, we have not yet

calculated stability analytically. When variance in capacitances is introduced into
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the model, Ci = C0 + δC × ri, i = 1, 2, ..., N,, where δC is the relative maximum

value of the fluctuation, ri’s are independent random numbers evenly distributed in

[0,1], we began to see current branches. Fig. 7.7 is simulation of I − V curves with

current branches for δC = 0.01. We will mostly focus on upramping, steady increase

in applied voltage. Figures 7.8 show voltage across each diodes changing with time.

We also found that the voltage across the diode with smallest capacitance (5.6 nF)

goes up to the higher branch of the I − V characteristic first. So we can order

the capacitance to imitate a field domain configuration as occurs in superlattices.

Ci = C0 − δCi/10, i = 1, 2, ..., N,.
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Figure 7.7: I −V curve of eight tunnel diode model with variance in capacitances:
δC = 0.01

Another way to have current branches is to introduce fluctuation to I − V char-

acteristics.

Ji = J0(1 + dJ × εi), (7.5)

where εi’s are N independent standard normally distributed random numbers and

dJ = 0.1, which is a typical value for real diodes. And the imitation of field domain
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by ordering capacitors is destroyed and voltages become disordered again when the

variance in I-V is introduced. So it seems that I-V variance has a more significant

effect than a 1% variance in the 5.6nF capacitances.
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Figure 7.8: Voltage evolution of each element in the eight tunnel diode model with
variance in capacitances: δC = 0.01
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7.3.2 Field inhomogeneity parameter

In analogy with studies of the synchronization properties of the Kuramoto model,

it is possible to define a parameter which is analogous to the synchronization order

parameter.[109] If the coupling term in Eq. (7.3) is neglected, one finds an uncoupled

state in which the element voltages increase independently. Starting from the initial

condition v
(0)
i (0) = 0 for all i, typical for experimental systems [33, 110, 111], the

voltage of each element is given by v
(0)
i = V × Ctot/Ci. Since the Ci have a small

dispersion, the uncoupled state is associated with a field profile that is nearly uniform.

When the coupling term is nonzero, the system deviates from the uncoupled state

and the field profile becomes non-uniform. This behavior is usefully characterized

by introducing a field inhomogeneity parameter rmax defined by:

rmax = max{r(t) : 0 < t < T}, (7.6)

where

r(t) =
1

N

N∑
j=1

(
vj − v(0)

j

v
(0)
j

)2

. (7.7)

The quantity r(t) expresses the time-dependent level of field nonuniformity in the

system for ramp time T , while rmax gives the maximal degree of nonuniformity during

the entire ramping process and associates a single value to the entire process. For

the uncoupled state, rmax tends to zero; however, when the effect of the coupling

term is large, rmax assumes a value of order 1.

If the total voltage is held constant, the system always relaxes to a state exhibiting

current coherence. This corresponds to a stable fixed point of the system with V̇ = 0.

If the average applied voltage, V/N , falls in the NDR region of the single element

I − V curve, there are multiple fixed points corresponding to distinct arrangements

of individual element voltages. For a completely homogeneous system, such that all
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elements are identical, i.e., Ci = C and Ii(v) = I0(v) for all i, these fixed points are

highly degenerate corresponding to the same overall device current [112]. When the

homogeneous system is subjected to a ramped voltage, starting from the initial state

vi(t = 0) = 0 for all i, the element voltages remain identical throughout the ramp

process, i.e., vi(t) = V (t)/N , and the overall I − V curve has a similar shape to that

of a single element. The use of non-uniform initial conditions is equivalent to the

introduction of heterogeneity to the system.

When heterogeneity is introduced into the system current branches emerge in the

static limit as shown in the I−V curve of Fig. 7.9a. The variance in the element I−V
characteristics is expressed as Ii(vi) = I0(vi)(1 + εi), where the εi’s are independent

and identically distributed (i.i.d.) random numbers, distributed normally with mean

zero and standard deviation σI , i.e., σ2
I ≡ 1

N

∑N
i=1 ε

2
i . We use a Gaussian distribution

on [-1,1] and have found that the coherence behavior is not sensitive to the detailed

form of distribution. We have also explored the effect of capacitance variation and

variation due to electrical noise in individual elements, and find that the qualitative

behavior is the same as that observed when the only variance is in the element I−V
curves.

When the ramp time T is large, the system exhibits well-defined current branches

in the static I − V curves, shown in Fig. 7.9a for N = 8. As the total voltage ramps

higher, the elements jump rapidly from Region I to III one by one, and the parameter

rmax takes a value of order 1, indicative of a highly non-uniform distribution of

element voltages. Figure 7.9b shows the corresponding contour plot in which the

current level is plotted in gray scale vs. element number i and total voltage V . The

presence of current coherence is shown by the clear horizontal bands, indicating that,

for all parts of the ramping process, the individual device currents are identical. The

degree of this coherence is determined by the relative strength of coupling term in

Eq. (7.3). While there is a structural similarity between Eq. (7.3) and the Kuramoto

154



0 2 4
0

0.5

1

Voltage (V)

C
ur

re
nt

 (
m

A
)

0 2 4

0

2

4

6

O
rd

er
 p

ar
am

et
er

 r

Element number

V
ol

ta
ge

 (
V

)

 

 

1 2 3 4 5 6 7 8

4

3

2

1
0.2
0.4
0.6
0.8
1

0 2 4
0

0.5

1

Voltage (V)

C
ur

re
nt

 (
m

A
)

0 2 4

0

2

4

6

O
rd

er
 p

ar
am

et
er

 r
Element number

V
ol

ta
ge

 (
V

)

 

 

1 2 3 4 5 6 7 8

4

3

2

1
0.2
0.4
0.6
0.8
1
1.2

0 2 4

1.5

2

1

Voltage (V)

C
ur

re
nt

 (
m

A
)

0 2 4

0

2

4

6

O
rd

er
 p

ar
am

et
er

 r

Element number

V
ol

ta
ge

 (
V

)

 

 

1 2 3 4 5 6 7 8

4

3

2

1
0.2

0.4

0.6

0.8

1

(a) (b)

(c) (d)

(e) (f)

Figure 7.9: Current-voltage (I−V ) curves and coherence contour plots for different
ramp times, all with N = 8, C = 200 nF and σI = 0.1. (a) Fully coherent case:
I − V curve with ramp time T = 500 ms. Dashed curve shows the parameter r(t).
(b) Coherence contour plot for T = 500 ms (gray scale in units mA). (c) I−V curve
for the partially coherent case with T = 2 ms. (d) Coherence contour plot for T = 2
ms. (e) I − V curve for the incoherent case with T = 0.1 ms. (f) Coherence contour
plot for T = 0.1 ms.

oscillator model, it should be noted that the circuit model presented here does not

describe temporal synchronization in the currents Ij(t).

As the ramp time decreases, the elements show only partial coherence, see Fig. 7.9c.

In this case, more than one element can jump to Region III at the same time.
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The field distribution deviates less from the uniform state, the current branches

are rounded and smaller in number and amplitude, and the abrupt jumps between

current branches disappear. A similar rounding of experimental current branches

versus ramping rate has been reported in weakly-coupled GaAs/AlAs semiconductor

superlattices [46]. The rmax value also decreases from its large T value. Figure 7.9d

shows the corresponding contour plot in which the presence of partial coherence is

indicated by a background of horizontal bands, interrupted by localized dark areas

that correspond to the passage of individual or pairs of elements through Region II.

For fast ramping, the elements do not cohere and they pass through the NDR

region simultaneously (Fig. 7.9e). The rmax parameter approaches zero, implying

that the system behavior is very close to the uncoupled state. The I − V curve

of the full array follows closely that of an individual element, I0(v). The contour

plot, Fig. 7.9f, shows smooth behavior and horizontal features are absent. We have

also considered ramping from different initial states as well as more elaborate circuit

array models - e.g., including small series inductance and parallel capacitance with

each nonlinear element - and find a similar overall behavior as reported above.

Plotting the value of rmax versus ramp time T for several different N values

in Fig. 7.9a indicates that the transition from uncoupled to coherent behavior is a

smooth transition with an onset that is independent of system size N . For large

ramp time, rmax approaches an asymptotic value that is N -dependent. As N →∞,

rmax → 2.85, a value that depends only on the single element function I0(v). For

the parameters used here, the transition from uncoupled to coherent behavior occurs

as the ramp time increases from ∼ 100 µs to ∼ 10 ms, a timescale range that is

significantly greater than the zero-bias characteristic RC time constant associated

with an individual element, i.e., τ = CdI0/dv |v=0' 2 µs.

To better understand this behavior, we investigate the effect of perturbations
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Figure 7.10: (a) The parameter rmax versus ramp time T for indicated values of
N . Each curve is an average of ten different statistical configurations of the Ii(vi)
curves with C = 200 nF and σI = 0.1. (b) Closed circles give rmax vs. T near the
characteristic value for N = 400. The solid curve is a first-order calculation using
Eqs. (7.6) and (7.15), while the dashed curve is based on Eq. (7.16). (c) Tth versus
σI , comparing analytical prediction with simulation for N = 40.

about the uncoupled state of the form

vi = v
(0)
i + δvi ≡ v + δvi, (7.8)

where v
(0)
i (t) = αt denotes the uncoupled state solution. Substituting this form into

the dynamical model, Eq. (7.3), to leading order we can write:

˙δvi =
1

Nc
{I0(αt)

N∑
j=1

(εj−εi)+I ′0(αt)
N∑
j=1

(δvj−δvi)+I ′0(αt)
N∑
j=1

[εjδvj−εiδvi]}. (7.9)

Note that the third term is higher order.
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For extremely fast ramping (α very large), δvi is very small, so the second term

can be neglected. Using
∑N

j=1 εj = 0 and the voltage constraint
∑N

j=1 δvj = 0, we

write

˙δvi = −εi
c
I0(αt). (7.10)

Integrating this equation, we have

δvi(t) = −εi
c

∫ t

0

I0(αt′)dt′ = − εi
c α

∫ v

0

I0(v′)dv′ ≡ − εi
c α

P (v). (7.11)

According to the definition of order parameter,

r(v) =
1

N

N∑
i=1

(δvi)
2

(v
(0)
i )2

=

(
1

N

N∑
i=1

ε2i

)(
P (v)

c α v

)2

=

(
σIP (v)

c Vmax v

)2

T 2. (7.12)

So

rmax =
σ2
IT

2

c2V 2
max

max(P (v)/v)2. (7.13)

Eq. 7.13 shows that rmax scales as T 2 for small values of T .

For somewhat smaller α (i.e., larger ramping time T ) the second term of Eq. 7.9

cannot be neglected and we write

˙δvi = −I0(αt)

c
εi − I ′0(αt)

c
δvi. (7.14)

This equation can be solved explicitly as

δvi = − εi
Cα

e−
I0(v)
Cα

∫ v

0

I0(v′) e
I0(v′)
C α dv′, (7.15)

with the initial conditions δvi(0) = 0 for all i.

For large values of α, the two exponentials in Eq. (7.15) are approximated

by unity, and it immediately follows that rmax ∝ T 2 where the coefficient of pro-

portionality is independent of N ; this is confirmed in Fig. 7.10a. For somewhat
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smaller α values and provided the local maximum of the element I − V curve is

sufficiently sharp, Eq. (7.15) can be evaluated using a saddle point method to

write δvi ≈ εiIM
√
π√

β cα
e
IM−I0(v)

Cα , where β = − I′′(v)
2
|vM> 0. Inserting this result back

into the definition of r(t), cf. Eq. (7.6), gives r(v) =
πσ2

I I
2
MT

βCVmaxv2 e
2(IM−I0(v))

Cα . Not-

ing that the exponential term takes a maximum value if we set v = vm, so that

IM − I0(v) = IM − Im ≡ ∆I, where vm and Im are the voltage and current coordi-

nates of the local minimum in the element I −V characteristic, cf. Fig. 7.4b, we see

that r takes its maximum value over the whole ramp process, so that

rmax =
πσ2

II
2
MT

βCVmaxv2
m

e
2∆I
Cα . (7.16)

Figure 7.10b plots the values of rmax calculated from both Eqs. (7.15) and (7.16)

and compares them with the numerical results for N = 400, demonstrating that there

is a range of ramp times (around 10−4 seconds) for which the asymptotic expression,

Eq. (7.16) follows closely the transition to coherence behavior. In order to develop

an analytic criterion for the onset of coherence behavior, we define a characteristic

value of ramp time Tth lying in this range. Denoting the corresponding characteristic

value of rmax by rth, we have ln rth = 2 lnσI + ln
(

πI2
M

Cβv2
m

)
− lnα + 2∆I

αC
. Solving for

Tth, we can write

Tth = −C Vmax
∆I

lnσI +K, (7.17)

where K = CVmax
∆I

(
1
2

ln rthβCVmaxv
2
m

πI2
M

− 1
2

lnTth

)
is slowly varying. Equation (7.17)

shows explicitly the dependences of Tth on element heterogeneity (i.e., σI) as well

as the single element NDR behavior. Interestingly, the pre-factor of the ln σI term,

calculated to be C Vmax
∆I

' 1.18×10−4 s, has the form of an RC time with an effective

resistance that depends only on the total current drop in the NDR region, ∆I.

Figure 7.10c plots Tth versus the variance level (with the specific choice rth = 0.1)
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and shows good agreement with numerical data for N = 40.

7.4 Connection between the weakly-coupled superlattice and the tun-
nel diode array

If we ignore the diffusion term in the superlattice model (see, for example, Eq. 2.29

from Chapter 2), we have the approximate tunneling equations:

Ji→i+1 = ev(f)(Fi)ni/l, (7.18)

where l is the period of the superlattice so that the density ni/l and the current J

are three dimensional quantities. This approximation is valid for Fi of the order of

the first resonant value or larger [33]. This approximate expression has been used

in some previous work [113]. Meanwhile, the Poisson equation relates the charge

density with the field values:

Fi − Fi−1 =
e

ε
(ni −ND), i = 1, ..., N. (7.19)

Inserting it into the Eq. 7.18 yields

Ji→i+1 =
v(f)(Fi)

l
[ε(Fi − Fi−1) + eND]

=
eNDv

(f)(Fi)

l

[
ε

eND

(Fi − Fi−1) + 1

]
. (7.20)

In this equation, we can see that the current depends on the fields in the present and

the previous periods. Note that this coupling is inherently more complex than for the

tunnel diode model, Eq. 7.3. It is this difference that explains, for example, why the

superlattice exhibits formation of connected low- and high-field domains, whereas in

the tunnel diode array such domain formation does not occur. Interestingly, we see

that the superlattice model approaches the tunnel diode model when the quantum
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well doping level ND is very large. In other words, the value of the field in the

previous period is feed forward into the present one.

We have also used these insights to design an analog circuit using tunnel diodes

that could be used to simulate the superlattice. This is shown in Fig. 7.11, which is

the schematic of a possible circuit simulating the superlattice structure.

The box in Fig. 7.11 with input x and y and output x ·y denotes a circuit element

that takes in the voltages across the previous and the present elements and calculate

the difference between them (e.g. using differential amplifier) and then multiply it

with the voltage across the small resister r connected in series with the tunnel diode.

This result is then used to generate a current of value (vi − vi−1) · Ii(vi) · r/R by

the current source. Such a circuit element could be implemented by commercially

available analog amplifier circuits or ADC processors (micro-controllers). The current

is then feed back into the circuit. So the current through each period is

Ii = (1 + (vi − vi−1) · r/R) · Ii(vi) (7.21)

Comparing this equation with Eq. 7.20, one immediately sees that by tuning the

resister R, the coefficient r/R can simulate the effect of doping density ε/eND in Eq.

7.20.

The first resister serves as the ohmic boundary condition in the superlattice.

I1 =
v1

Rc

(7.22)

The collector boundary probably is not necessary because it does not play a key role

in the superlattice model. If needed, it can be implemented as

JN→N+1 = σFN

[
ε

eND

(FN − FN−1) + 1

]
. (7.23)
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Figure 7.11: Circuit schematic of a circuit based on tunnel diodes to simulate the
superlattice.

7.5 Conclusion

We have shown that negative differential resistance and element heterogeneity are

key sources for the observation of non-uniform field distributions and multiple cur-

rent branches in the electrical conduction properties of a series array of nonlinear

circuit elements. Specifically, we have shown how the system approaches a state of

full current coherence as the element variance level and voltage ramp rate are varied.

Generally, this globally-coupled model provides a particularly simple example of how

element heterogeneity can enhance collective behavior in a complex system. The nu-

merical and analytical results that can be obtained from this model may provide

useful insight for understanding similar self-organizing behaviors that are found for

a range of more complex electronic systems, for example, semiconductor superlat-

tices and quantum cascade laser structures [33, 110, 15]. In practical devices it is
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often desirable to have an electric field configuration that is as uniform as possible.

The model introduced here may be useful in developing new control strategies for

stabilizing such configurations.
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8

Summary

As we have seen in this thesis, negative differential conductivity (NDC) gives rise

to rich dynamics in spatially extended systems. It causes spatio-temporal charge

instability in an electronic transport system driven far from equilibrium. A host of

interesting phenomena emerge, such as static field domains, moving fronts and bista-

bility. From a scientific perspective, studying these systems enriches our knowledge

of the behavior of in far-from-equilibrium systems, a major puzzle that needs to be

solved and is relevant to many natural and social phenomena. From a technological

perspective, the semiconductor superlattice is the foundation of many devices such

as multi-quantum well photodecters and the quantum cascade laser and itself is pro-

posed to generate THz emission. Understanding the effect of NDC will help us in

building successful advanced devices.

Different mechanisms can cause NDC. We have focused here on the discrete model

of the sequential resonant tunneling in the weakly-coupled superlattice and the con-

tinuum model on the miniband transport in the strongly-coupled superlattice. More-

over, we have gone beyond these well-established models and investigated shunted
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structures in this thesis.

In Chapter 3, we study the effect of the contact on the weakly-coupled superlattice

along the vertical direction. The contact controls the amount of electrons injected

into the system, thus playing a similar role as the doping level. Moreover, different

transient responses are found with different contact conductivity and voltage steps.

In order to suppress the spatio-temporal charge instability, we add a parallel shunt

to the weakly-coupled superlattice in Chapter 4. Accordingly, the lateral direction is

incorporated into the system. The results show that the shunt can stabilize a uniform

field biased in the NDC region in the superlattice with relatively small lateral size and

high quality connection between the shunt and the superlattice. However, as either

the lateral size becomes larger or the connection quality deteriorates, the system loses

stability and different types of bifurcation are found between different behaviors of

the system. After the role of the shunt is confirmed, we move on to study if the shunt

can work for a strongly-coupled superlattice which may serve as a THz gain medium

in Chapter. 5. Taking into consideration of devices, more realistic parameters of the

materials are used. Simulation results show that the shunt can stabilize the high field

in NDC with gain in THz range. However, in this case, a much narrower superlattice

is allowed and the device is best operated at room-temperature to achieve sufficient

diffusion in the lateral direction. Of course, room temperature operation is a big

advantage for practical devices.

In Chapter. 6, we switch to a different topic, the behavior of stochastic switching

between bistable static states caused by NDC in the weakly-coupled superlattices.

A stochastic differential equation system incorporating shot noise is numerically in-

tegrated. The stochastic switching from a metastable state to a globally stable state

is successfully simulated and the mean switching time is fit to exp(|V −Vth|α) and α

is unlikely to be 1.5 which is predicted for a one-dimensional system. Another key

subject, the switching path, is also studied using a linear decomposition method at
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the metastable state, leading to an effective potential. Principal component analysis

suggests a most probable path for part of trajectories beyond the saddle point.

In Chapter. 7, we have studied another system, a circuit of tunnel diodes con-

nected in series. We find that although the I−V curve shows similar current branches

due to NDC of each tunnel diode as those in the superlattice, field domains do not

form due to the lack of next neighbor coupling in the superlattice system. Ramping

of the total applied voltage can significantly change the shape of the I−V curve and

the evolution of the voltage across each diode element.

Up until now, we have studied a broad range of topics related to NDC in spatially

extended systems. Here we list a few questions and possibilities for future research:

We used a simple ohmic contact as the boundary condition. Although we used

a 3D Fermi gas model at the injecting contact to calculated equivalent contact con-

ductivity, how can we use a more microscopically detailed model that can include,

for example, band bending to describe the contact? How can we design the contact

to have either similar or substantially different behavior? How might different types

of contacts than those assumed here, affect predictions on the dynamics of relocation

or stability properties of the spatially-uniform electric field state?

In the shunt models, we assumed that the connection between the shunt and the

superlattice can have high quality. While this can likely be achieved by a sophisti-

cated in-situ growth technique such as cleaved edge overgrowth, it would interesting

to study other common technique such as evaporation of a thin metallic layer as

shunt. In the latter case, one wants to understand how does the geometry at the

interface between the shunt and the quantum well affect the electron states and,

thus, the connection? Of course, the shunt model we proposed here is still in an

early stage, and significant research has to be done down the road in order to realize

practical devices.

In the stochastic work, we assumed lateral uniformity of the charge density in
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each SL quantum well. However, what happens when the size becomes large enough

such that this is no longer true guaranteed, i.e., when the lateral size is much greater

than the in-plane mean free path. While such a scenario has been considered for

single quantum well structures by Tretiakov et al., the extension to the SL is a

challenging and open question. Questions to consider in a study of the role of lateral

dynamics include correlation of noises between different positions in the same well

and multiple timescales.
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[75] A. Amann and E. Schöll. Bifurcations in a system of interacting fronts. J.
Stat. Phys, 119:1069, 2005.

173
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