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ABSTRACT 

Nuclear magnetic resonance experiments and Lattice-Boltzmann simulations are 
powerful techniques for studying pore scale dynamics in porous media. Several applications of 
these methods to the study of pore scale hydrodynamics and transport are discussed.  Of special 
interest are concepts relating to pore structure characterization.  In the first application it is 
shown that nuclear magnetic resonance measurements of pre-asymptotic transport dynamics in 
random open cell foams provide a characteristic structure length scale. These measurements and 
Lattice-Boltzmann simulations for a model foam structure demonstrate dynamical behavior 
similar to lower porosity consolidated granular porous media; suggesting a generalized approach 
to pore structure characterization. Normalizing the data by the characteristic length collapses 
data for different foam samples and mono-disperse packed beds. The non-equilibrium statistical 
mechanics theory of pre-asymptotic dispersion is used to model the hydrodynamic dispersive 
dynamics. In the second application transport of hard sphere colloidal particles under flow 
through an open cell foam is studied using nuclear magnetic resonance. The temporal dynamics 
of the colloidal particles and suspending fluid phase are obtained through spectral chemical 
resolution. The data is interpreted in the broader context of classic hydrodynamic dispersion 
theory and mechanisms of transport for each phase. In the third application pore scale 
hydrodynamics of flow over a model porous surface are investigated using three dimensional 
Lattice-Boltzmann simulations and nuclear magnetic resonance. The Lattice-Boltzmann and 
nuclear magnetic resonance data are used to interpret classic interfacial hydrodynamic boundary 
conditions.  Finally, in the fourth application a study of magnetic resonance microscopy to novel 
tape cast porous ceramics is conducted. 
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INTRODUCTION 

This thesis research studies flow and transport in several porous media systems using 

Magnetic Resonance Microscopy (MRM) experimental techniques and computational Lattice 

Boltzmann (LB) simulations.  The media studied in this work are polymer cellular structures, 

tapered pore ceramics, and partially porous channels.  Each of these media represent important 

classes of porous media that find application and occurrences in many technological and natural 

media; e.g. bones and filters in the case of cellular structures and river and sea-floor bottoms in 

the case of partially porous channels.  For the former two structures, foam and tapered pore 

ceramics, the theme of research concerns structural characterization while questions regarding 

pore-scale hydrodynamics and transport will be addressed in the partially porous channel case.  

An additional set of results will be presented which experimentally probes the flow and transport 

of a hard sphere, Brownian particle colloidal suspension through the polymer cellular structure. 

The practical challenges associated with experimentally observing three dimensional 

pore-scale transport in optically opaque porous media has historically regulated the experimental 

approach to classic bulk transport methods, e.g. breakthrough type curves.  A significant advance 

over previous experimental methods is the application of nuclear magnetic resonance to the 

study transport processes.  These developments have produced a set of techniques, known as 

pulsed gradient methods, which allow one to non-invasively probe the time correlation functions 

of single and multi-phase fluid transport in porous media.  In parallel with these technological 

developments a computational technique based upon the discrete Boltzmann equation, the so-

called Lattice Boltzmann method, allows for efficient simulation of fluid flow in domains 
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containing complex boundaries.  These relatively new methods represent a powerful set of 

experimental and numerical tools which allow one to non-invasively observe fluid transport in 

porous media over a range of temporal and spatial scales.  While these experimental and 

numerical techniques are quickly maturing, the significant advantages which they provide over 

previous approaches to observing transport in porous media affords an extensive list of potential 

practical applications.  The majority of results contained within this thesis is orientated toward 

the practical application of MRM and LB simulations to addressing questions of scientific and 

engineering interest in porous media, rather than advancing the techniques themselves.   

The following thesis is organized as follows, chapters one through three will provide an 

overview of the nuclear magnetic resonance phenomenon and experimental technique, the lattice 

Boltzmann method, and an overview of transport in porous media theory.    Chapters four 

through six will discuss the experimental and numerical results from studies on the polymer 

cellular structures, tapered pore ceramics, and partially porous channels, respectively.  Chapter 

four will also discuss results from the study of flow and transport of a colloidal suspension 

through the polymer cellular structures.  Chapters four through six are organized in a manner 

similar to standalone research documents with an introduction and theory section, discussion of 

results, and conclusion section.  Chapter seven will summarize the primary results of this work 

with concluding remarks.   
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MAGNETIC RESONANCE MICROSCOPY 

Magnetic resonance microscopy is a suite of experimental methods which manipulate 

and observe the nuclear magnetic resonance phenomenon.  These techniques allow for a range of 

information to be collected from a sample including chemical [1-3], spatial [4], and dynamic [5, 

6]; to name but a few.  Nuclear magnetic resonance is an encompassing term which refers to the 

intrinsic magnetic moment behavior of a nucleus’s protons in the presence of electromagnetic 

fields.  The scope and complexity of this phenomenon, which is inherently quantum mechanical, 

is too large to provide a comprehensive discussion in this work, the reader is referred elsewhere 

for a more detailed quantum mechanical oriented discussion [7].  The following will instead 

focus upon the semi-classical ensemble average or macroscopic behavior of the nuclear 

magnetic resonance phenomenon. 

Fundamental Concepts of Magnetic Resonance Microscopy 

Spin and the Zeeman Interaction 

Atomic nuclei are known to possess an intrinsic property known as spin or spin quantum 

number.  The discrete value of spin, I, which can be either integer or half integer values, 

quantifies the number of energy or basis states available to atomic nuclei.  The number of energy 

states available to a nucleus is governed by the relation 2I+1; which produces a range of states 

from –I, -I+1,…,I-1,I.  This work is concerned strictly with spin I = ½ nuclei so that only two 

energy states are available, the so-called spin-up and spin-down states.  Furthermore, the 

following discussion will focus generally upon a spin system in the liquid state.  In addition to 

the property of spin, atomic nuclei also possess an intrinsic magnetic dipole moment, µ.  In the 
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presence of a large external magnetic field the dipole moment of a spin ½ nuclei can occupy, e.g. 

align with, the two available energy states according to the Boltzmann probability distribution 

[8] 

 ( )o
N exp γ B kTN

−

+
= − =   (2.1). 

Where N- and N+ are the populations of an ensemble of spins in the lower, spin down, and upper 

spin up states, γ is the gyromagnetic ratio, Bo is the magnitude of an applied magnetic field, ħ is 

Planck’s constant, k is the Boltzmann constant, and T is the temperature.  The numeric disparity 

of spin populations in Eqn. (2.1) governs the polarization which develops for a population of 

spins in the presence of an applied magnetic field.   

The interaction energy of spins in the presence of an applied magnetic field is given by 

the Zeeman Hamiltonian [6] 

 z oH γ I B=− =  (2.2). 

Where Iz is an operator for the angular momentum acting in the direction of the applied magnetic 

field, typically along the z-axis.  It is important to note the energy separation for the spin states is 

independent of the spin quantum number.  The Zeeman interaction given by Eqn. (2.2) can be 

interpreted as an applied torque to the magnetic dipole.  Using the Schrödinger equation, the 

formal solution to the time evolution of the spin state given in Eqn. (2.2) produces an evolution 

operator, U(t) = exp(iγBoIzt).  This evolution operator is equivalent to rotation of the magnetic 

moment about the Bo axis at the rate 

 o oω γB=  (2.3). 
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Where ωo is known as the Larmor frequency. For protons γ is equivalent to 2.675 x 108 rad s-1 T-

1.  For an ensemble of spins N is typically on the order of Avogadro’s number and as such the 

collective evolution of the spin population in the presence of an applied magnetic field can be 

treated as net polarization often written as M.  In the presence of a static magnetic field the net 

polarization, M, is also a static magnetic field with a single component aligned parallel with the 

applied magnetic field.  Nuclear magnetic resonance experiments use the ensemble polarization 

as the experimental observable.  The two key phenomenon which make NMR experiments 

possible are the polarization given by the Boltzmann distribution, Eqn. (2.1), and magnetic 

moment precession given by the Larmor frequency, Eqn. (2.3). 

The Torrey-Bloch Equation 

In the presence of a large external magnetic field spin ½ nuclei develop a net magnetic 

polarization with an angular momentum given by M/γ.  The net magnetization evolution is given 

by the semi-classical Torrey-Bloch equation [6, 9, 10] which relates the angular momentum of 

net magnetization to the torque created by the applied magnetic field 

 γ v= × + +M M B M M� R  (2.4). 

In Eqn. (2.4) B is the applied magnetic field.  The first term on the right hand side of Eqn. (2.4) 

is the rate of magnetization change due to the torque from the applied magnetic field.  The 

operator v in Eqn. (2.4) represents convection-diffusion of the magnetization, this can be 

described in terms of classical transport theory because net magnetization is a conserved quantity 

[10].  The operator v is  

 2
mDv = ∇ ⋅∇- v  (2.5). 



6 

Where v is the local ensemble flow speed vector and Dm is the molecular diffusion coefficient.  

The operator R in Eqn. (2.4) generalizes relaxation and will be discussed later in the text.  

Additional terms can be added to Eqn. (2.4) to describe such phenomenon as radiation damping 

and dipolar field, the reader is referred to other works for a description of these important 

additions [1, 11].    

Boundary conditions for Eqn. (2.4) vary according to the local electromagnetic 

environment at the domain surface.  A general feature of the boundary conditions is that the 

phenomenological expression is one that describes a decoherence or loss of net magnetization at 

the domain boundary.  This magnetization loss is governed by the electromagnetic coupling of 

the surface and near surface spins.  Fluid molecules making up the domain must migrate very 

close to the surface via Brownian motion for this coupling to occur.  An often used boundary 

condition for the local net magnetization is [12] 

 2
mD= ∇M M�  (2.6) 

 
m

r
D

∑

⋅∇ =−n M M  (2.7). 

Where r is the surface relaxivity (units of length/time) and n is the outward normal vector from 

the surface ∑.  In this model the rate of magnetization loss at the surface is linearly proportional 

to the surface relaxivity and magnetization magnitude at the surface. 

Excitation and the Rotating Frame of Reference 

Nuclear magnetic resonance experiments are governed by the applied magnetic field, B, 

in Eqn. (2.4).  The applied field is composed of a large stationary magnetic field (the polarizing 
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field), a time dependent radio-frequency “r.f.” pulse and a spatially and temporally varying 

magnetic field 

 ( ) ( )1 ot , t B= + +B B G r k  (2.8). 

The unit vector k in Eqn. (2.8) is along the direction of the polarizing field, throughout this work 

it will be referred to as the longitudinal direction.  In Eqn. (2.8) G is an applied magnetic field 

used in imaging and measurements of molecular dynamics; it will be neglected in this section.  

The radio frequency pulse in Eqn. (2.8), B1, is a linearly polarized field applied in the transverse 

plane.  The solution to Eqn. (2.8), with null operators, and only the single field, Bok, is 

precession of M about k at the rate ωo.  The beginning of an NMR experiment is a state of 

thermal equilibrium in which the net magnetization is aligned with the longitudinal direction.  

The term excitation refers to perturbation of the net magnetization from thermal equilibrium via 

the application of B1 in Eqn. (2.8).  This perturbation results in a temporally varying net 

magnetization; this is the observable in an NMR experiment.  The following discussion will 

outline the excitation process using a semi-classical approach. 

 The linearly polarized field in Eqn. (2.8) can be decomposed into two circularly polarized 

counter-rotating fields [6].  One of these fields rotates with the same orientation as the polarized 

nuclear spins and therefore governs the spin interaction.  The other field is negligible for a spin 

Hamiltonian dominated by the polarizing field, e.g. |B1|<<Bo.  The circularly polarized field is  

 iωt
1B e=1B   (2.9). 

Where B1 is the half amplitude of the linearly polarized magnetic field.  The resonance 

phenomenon occurs for ω = ωo.  For this special case the apparent applied magnetization, as 

viewed from a frame of reference moving with the rotating net magnetization, is entirely due to 
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the applied magnetization given by Eqn. (2.9).  With the initial condition that defines thermal 

equilibrium M = Mok, the solution to Eqn. (2.4) is [6] 

 ( ) oiω t
oM sin γ t e cosγ t= +1 1M B B k  (2.10). 

For the case of resonance the effect of applying the field B1 is to rotate the net 

magnetization into the transverse plane at the rate |B1|γt, at the same time the field rotates around 

the longitudinal axis at the rate ωo.  The net magnetization is thus perturbed from thermal 

equilibrium, this defines excitation.  Equation (2.10) is for the case of resonance, a discussion of 

off-resonance behavior is given in the next section.  Rotation of the net magnetization around the 

longitudinal axis provides a mechanism for signal detection, as will be discussed later in the text.  

During the excitation process the applied magnetic field, B1, dominates the local electromagnetic 

environment.  The spins are thus decoupled from another and their surrounding environment and 

as a result the spin phases are all equivalent.  After the field is removed the local electromagnetic 

environment acts to return the system to thermal equilibrium and “de-phase” the spin population, 

e.g. increase the system entropy.  These processes are known as relaxation. 

Relaxation 

 Relaxation is an encompassing term for the electromagnetic pairing of individual spins 

and with the surrounding environment.  These effects act on individual nuclei dipoles, however 

for the many-body problem, e.g. a fluid, a stochastic or continuum treatment of relaxation is 

necessary [13, 14].   The broad range of mechanisms altering the local electromagnetic 

environment of nuclei contributes to two subcategorizes of up-scaled relaxation: transverse and 

longitudinal relaxation.  Transverse relaxation refers to effects that act to dephase the net 
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magnetization in the transverse plane while longitudinal relaxation refers to effects which act to 

return the spin system to thermal equilibrium.  These will be summarized in the following 

narrow discussion of dipolar relaxation, for a more comprehensive discussion of relaxation the 

reader is referred to other work [6, 15]. 

Transverse Relaxation: The molecules of a fluid are constantly in rotational and 

translational motion.  This motion leads to a local time varying electromagnetic environment or 

equivalently a varying spin system Hamiltonian.  For spin ½ nuclei the dominant mechanism of 

spin coupling is the dipolar interaction whereby spins interact locally through their dipolar 

moments [6, 8].  This interaction is quantified by the spectral density function 

 ( ) ( ) ( ) iωtJ ω h 0 h t dte
∞

−∞

= ∫  (2.11). 

Where J is the spectral density function and h is the local magnetic field along a Cartesian 

direction.  The original theory of relaxation developed by Bloembergen, Purcell, and Pound  

relates the spectral density function evaluated at multiples of the Larmor frequency and spatial 

components to phenomenological constants governing relaxation [6, 14, 16].  There are two 

limits of motion for the interaction of dipoles given by Eqn. (2.11).  In the fast motion limit the 

characteristic time scale of decay for the correlation function in Eqn. (2.11), τc, is significantly 

greater than the ‘precession period in the dipolar field’ [13]; e.g. τc
-1>>ωo.  In this limit and when 

the sequence of interactions given by Eqn. (2.11) forms a random process, e.g. h(0)h(t) decays 

exponentially with time, then the decay of transverse magnetization is written as 

 ( ) ( ) ( ) ( ) 2T⎡ ⎤⋅ + ⋅ =− ⋅ + ⋅⎣ ⎦M i i M j j M i i M j j� �  (2.12). 
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Where T2 is the transverse relaxation time constant.  The decay of magnetization given by Eqn. 

(2.12) thus forms an exponential process in time; this is the classical description of transverse 

relaxation or ‘spin-spin’ relaxation.  

 In addition to dipolar interactions of individual nuclei there are other mechanisms which 

contribute to the spin system T2 value. A simple representation of these mechanisms is [8] 

 
*

2 2 2 2

1 1 1 1
T T T T

S B

⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
  (2.13). 

Where (1/T2)S is the contribution from interaction of dipoles with the domain surface, *
21 T  is the 

contribution from diffusion within local magnetic field homogeneities, and ( )21
B

T  is the bulk 

contribution from molecular tumbling.  The diffusion contribution in Eqn. (2.13) is a reversible 

magnetization decay, as will be shown later in the text.  The other mechanisms are irreversible 

magnetization losses.  By its very nature Eqn. (2.13) suggests multi-exponential decay.  The 

single exponential nature of magnetization decay given by Eqns. (2.12) and (2.13) is only valid 

when a single mechanism dominates.  Equation (2.13) is only meant to illustrate the potential for 

various mechanisms which contribute to transverse relaxation.  A generalized form of relaxation 

using a distribution of relaxation times must be used to model multi-exponential dynamics. 

Longitudinal Relaxation:  Excitation can be interpreted as perturbing the spin system 

from thermal equilibrium with the surrounding environment.  Longitudinal relaxation refers to 

the exchange of energy between the spin system and the surrounding environment following 

excitation: ‘spin-lattice relaxation’.  From a continuum perspective this exchange of energy acts 

to return the net magnetic vector to the longitudinal axis.  On a quantum level the energy 
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exchange is a stimulated transition of the spin ½ nuclei between the spin-up and spin-down 

states.  These transitions release energy in the form of photons.  The theoretical treatment of 

longitudinal relaxation is handled by the Bloembergen, Purcell, and Pound theory and 

alternatively by the density matrix formalism.  Equivalent to transverse relaxation, in the fast 

motion limit decay of longitudinal relaxation can be written as 

 ( )o 1M TM k -M k⋅ = ⋅�  (2.14). 

Where T1 is the longitudinal relaxation constant.  Similar to T2 a number of effects, such as 

surface boundary effects, contribute to the value of T1.  In the fast motion limit the longitudinal 

and transverse relaxation have unique values with T1>T2.  For liquids the dominant mechanism 

of relaxation is a result of thermal motion, therefore both relaxation constants are sensitive to the 

sample temperature.  Furthermore, the relaxation values are governed in part by the strength of 

dipolar interacts or energy separation of the spin states and therefore are sensitive to the 

polarizing field strength.  This concludes the discussion of relaxation.  An introductory treatment 

was presented for the fast motion limit of liquids and spin ½ nuclei.  In conclusion we may now 

write the operator in Eqn. (2.4) as 

 ( ) ( ) ( )2 2 o 1R T T M / T⎡ ⎤=− ⋅ + ⋅ − ⋅⎣ ⎦i i j j k k  (2.15). 

Signal Detection 

 Precession of the net magnetic vector about the longitudinal axis is the mechanism 

through which information is collected about the spin system.  Through Faraday’s law this 

rotating magnetic field will induce an oscillatory electric current in a surrounding conductive 

coil which has the symmetry axis transverse to the polarizing field.  The signal collected in this 
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way is a bulk transverse signal arising from the superposition of all net magnetic vectors within 

the sample [6] 

 ( ) 2t T
oM P ω e exp dω

∞
−

−∞

= ∫ iωt
+M  (2.16). 

Where M+ is the total complex magnetization in the transverse plane per unit volume and P(ω) is 

the probability distribution of frequencies within the sample.  Equation (2.16) is a Fourier 

relationship for P(ω) and therefore upon inverse Fourier transform of the complex signal yields 

the amplitude and phase of the frequency distribution in the sample.   The distribution of 

frequencies can contain a variety of information about the sample including chemical, structural, 

and molecular dynamics.  An important point concerning Eqn. (2.16) is that the temporal 

electromagnetic environment which causes transverse relaxation is also responsible for a 

“broadening” of the signal frequency distribution; e.g. the frequency distribution P(ω) appears 

broader than the single Larmor frequency distribution: P(ω) = δ(ω-ωo).  For relaxation dynamics 

governed by a single exponential, as suggested by Eqn. (2.16), broadening of the frequency 

distribution is Lorentzian [13].    Spatial manipulation of the frequency ω by application of G in 

Eqn. (2.8) is the basis for imaging and molecular dynamic measurements in NMR.  These 

techniques are discussed in the next section. 

Experimental Methods 

The governing equation of the net magnetic vector evolution given by Eqn. (2.4) is an 

indication of the potential bulk NMR signal information content.  Experimental methods in 

NMR encode sample information through application of r.f. and magnetic field gradient time 



13 

sequences and then extract the desired information from the observed bulk signal.  These 

techniques are roughly grouped into two categories: chemical NMR and imaging and transport 

measurements.  Chemical NMR methods utilize free spin precession and relaxation dynamics to 

extract chemical information at an atomic and molecular scale.  Before measuring free spin 

precession chemical NMR methods apply a series of r.f. and gradient pulses to prepare the signal 

with the desired information.  Imaging and transport measurements apply a series of r.f. and 

magnetic field gradient pulses to encode the NMR signal with spatial and/or molecular dynamic 

information for the purpose of observing phenomenon occurring on the continuum scale.  The 

following discussion outlines imaging and transport measurements.  The methods of spin echo, 

selective excitation, imaging, transport, and relaxation are reviewed. 

The Spin Echo 

In the previous section discussing signal relaxation *
2T  was said to be reversible.  The 

technique used to exploit this reversibility is known as the spin echo [17].  In the presence of 

macroscopic magnetic field homogeneities P(ω) in Eqn. (2.16) is a broadened distribution 

relative to the intrinsic chemical line width  

 ( )*
o G + G rω = ω + γ ⋅  (2.17) 

 ( ) ( ) ( )
V

1 d
V

P r r rω = ρ ω∫  (2.18). 

Where G* in Eqn. (2.17) is the magnetic field homogeneity, V in Eqn. (2.18) is the sample 

volume and ρ is the spin density at r.  Over a time τ the phase acquired by a differential element 

of net magnetic vector due to the magnetic field homogeneity will be  
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 ( )* *t, tr G rφ = γ ⋅  (2.19). 

The decrease in bulk signal amplitude from this homogeneity is given by 

 ( ) ( )* * * * *

0

1 P cos d dM M t
τ

τ
φ φ φ

∞

+
−∞

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∫ ∫  (2.20) 

Where ( )*P φ  is the probability of phase, *φ , in volume V after time τ.  If one is able to ‘invert’ 

the relative precession of net magnetic vectors at time τ then the amplitude modulation from the 

magnetic field homogeneity at time 2τ will be null 

 ( ) ( )
2

* * * * * *

2 t
1 P cos d dt 0M M M

∞ τ

+τ
−∞ τ

⎛ ⎞
= − − φ φ φ =⎜ ⎟

⎝ ⎠
∫ ∫ (2.21). 

The inversion of relative precession from magnetic field homogeneity forms the basis of spin 

echoes.  In this technique the relative precession of the net magnetic vectors in a magnetic 

homogeneity field is inverted by applying a B1 field which rotates the net magnetic vector 180° 

about the rotating frame axis.  This sequence is written schematically as 

 

 

Figure 1:  The spin echo pulse sequence schematic 
 

With the application of a 180° single valued r.f. pulse, shifted in phase 90° from the initial 

excitation pulse, at time τ the transverse signal amplitude returns to nearly its initial amplitude 

 

r.f. 
180x 90y 

+M  

Mo 

τ               τ 
time 
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after time 2τ.  There is a non-zero component of signal attenuation at time 2τ from irreversible 

relaxation and molecular diffusion within the magnetic field homogeneities.  A variation of the 

spin echo sequence is the stimulated echo sequence [18] shown schematically in Figure 2. 

 

Figure 2:  The stimulated echo pulse sequence schematic 
 

In the stimulated echo sequence the sample magnetization is rotated into the longitudinal axis 

and stored for a time τ.  Because transverse relaxation does not occur during the storage time, 

this sequence can greatly extend the observation time of experiments. 

Selective Excitation 

In the previous section it was shown how application of an oscillatory r.f. pulse at the 

Larmor frequency will rotate the net magnetic vector into the transverse plane at the rate |B1|γt.  

Often within a sample there exists a range of Larmor frequencies due to unintentional magnetic 

field homogeneities, the chemical environment, or applied magnetic fields.  For the off-

resonance case in which ω ≠ ωo, where ωo is the frequency of the B1 field, the applied magnetic 

field relative to the net magnetic vector will have an additional component along the longitudinal 

axis with a magnitude ∆ω/γ; where ∆ω is the frequency difference between the local Larmor 

frequency and B1.  Therefore, in the off-resonance case the local net magnetic vector is partially 

rotated into the transverse plane and contributes less to the bulk NMR signal magnitude relative 

r.f. 

90x90y

τ           

90x

+M  

Mo 
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to a local magnetic vector in resonance.  For local Larmor frequencies within the bandwidth of 

the single frequency r.f. pulse, 1/T where T is the r.f. pulse duration, the apparent applied net 

magnetic field is entirely along the transverse plane.  The ability to adjust the pulse duration of 

the single valued r.f. pulse allows one to control the range of frequencies rotated into the 

transverse plane.  This process of ‘selecting’ the range of frequencies rotated into the transverse 

plane is termed selective excitation [19].  The term hard pulse refers to the use of a single valued 

r.f. pulse magnitude and soft pulse refers to the use of a temporally varying r.f. pulse magnitude 

sometimes in conjunction with an applied magnetic field. 

Formal solution to the transverse magnetization evolution for the off-resonance case with 

small tip angles is [20, 21] 

 ( ) ( ) ( ) ( )
T

iT∆ω i t∆ω
o

T

, t i γM t dte e−
+

−
∫r r

1M r = B  (2.22) 

Equation (2.22) is an important relationship because it demonstrates how the range of excited 

frequencies is given by the frequency distribution of the B1 pulse.  One can design the desired 

frequency distribution by ‘shaping’ the temporal r.f. pulse function; e.g. if one requires a square 

or hat function of frequencies, then the r.f. pulse must be a sinc-function in time.   

The ability to control the frequency offset, ∆ω, by applying magnetic field gradients 

allows one to excite a spatial region within a sample, termed slice selection [4, 22].  For a linear 

magnetic field gradient, G in Eqn. (2.17) and the offset frequency become 

 x y zG G GG i j k= + +  (2.23) 

 ( ) * o0
∆ω γ ω ω

=
= ⋅ = −

G
r G r k  (2.24). 
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Inspection of Eqn. (2.22) shows that application of the linear magnetic field gradient given by 

Eqn. (2.23) over time 2T dephases the local signal relative to Larmor precession by an angle

∆T ω .  This reversible dephasing can be recovered by application of a negative gradient of equal 

amplitude for a time T.  For a single gradient component along the longitudinal axis the pulse 

sequence schematic used to excite a hat function of frequencies and recover the reversible 

dephasing is shown schematically in Figure 3.  The slice direction in Figure 3 is equivalent to the 

longitudinal axis. 

 

Figure 3:  The slice selection pulse sequence schematic 

 

The one dimensional slice selection sequence shown in Figure 3 is a common preparation of the 

signal for imaging and other post-preparation measurements.  In most chemical NMR and some 

dynamic measurements one typically uses a hard pulse for signal preparation. 

Imaging Methods 

Imaging refers to measurement of the continuum spin density distribution, ρ(r); where ρ 

is the number of discrete spins within a differential volume element of arbitrary units.  In Eqn. 

(2.16) it was shown that the bulk NMR signal and the distribution of frequencies making up that 

signal share a Fourier relationship.  Furthermore in Eqn. (2.24) it was shown that one can control 

the spatial distribution of frequencies by application of a magnetic field gradient.  Therefore, 

r.f. 

slice

90x

Gz

2T
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following preparation and during a linear one-dimensional magnetic field gradient the bulk 

signal can be written as 

 
( ) ( ) i tt e dγ

V

ρ ⋅= ∫ G rS r r
 

(2.25) 

 ( ) ( ) i2e dπγ

V

ρ ⋅= ∫ k rS k r r  (2.26). 

The three dimensional spatial frequency variable is k = (2π)-1γGt [4, 22, 23].  Relaxation is 

neglected in Eqns. (2.25) and (2.26) because it is assumed the time scale of relaxation, e.g. T2, is 

significantly less than the duration of G.  Equation (2.26) is a Fourier relationship between the 

spin density ρ(r) and the bulk signal.  Therefore, one can determine the spin density or sample 

‘image’ upon inverse Fourier transform of the bulk signal obtained as a function of k.  The two-

dimensional acquisition of the signal is conveniently represented by a ‘k-space’ raster as shown 

in Figure 4.  The k-space raster is a complex valued and discrete data set. 

 
Figure 4:  Two dimensional k-space raster with discrete acquisition points 

 

kread

kphase
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The vast array of two dimensional spin density imaging sequences accomplish the task of filling 

out the amplitudes of the complex k-space raster shown in Figure 4.  The methodology can vary 

greatly depending upon the desired acquisition speed, accuracy or signal to noise ratio, and 

hardware limitations.  The raster in Figure 4 is shown in discrete points because of the digital 

nature of the sampling that occurs during signal acquisition, this will be discussed later in the 

practical considerations section below.   

 A common two dimensional imaging method is the spin warp imaging technique [24] 

shown in Figure 5. 

 
Figure 5:   Two dimensional spin-warp imaging sequence 

                                                 schematic with slice preparation 
 

In the spin-warp sequence signal acquisition occurs during the application of the read direction 

gradient.  The phase encoding gradient is stepped in discrete intervals.  The spin-warp sequence 

fills the k-space raster as shown in Figure 6. 

r.f. 
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90x 

phase 

read 

acquisition 
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Figure 6:  Spin-warp imaging k-space acquisition 

The spin-warp imaging sequence will be used throughout this work in various two-dimensional 

images.  This concludes a brief discussion of imaging.  A basic treatment is given by the 

introduction of the Fourier relationship between the spin density, ρ(r), and bulk transverse NMR 

signal during applied linear magnetic field gradients.   

Relaxation Methods 

 Relaxation methods measure the magnetization decay rates in the transverse and 

longitudinal directions, e.g. T1 and T2.  These decay rates provide chemical and structural sample 

information.  The following discussion outlines classic approaches to measuring the longitudinal 

and transverse relaxation rates.  As mentioned in the relaxation theory section while the net 

magnetization is aligned with the longitudinal axis, signal attenuation is due entirely to 

longitudinal relaxation.  This principle forms the basis of the inversion recovery sequence [25] 

used to measure the longitudinal relaxation rate, shown in Figure 7. 

kread
phase encoding step 1 

2 
3 

… 

kphase 
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Figure 7:  Inversion recovery sequence schematic 

 

In the inversion recovery sequence magnetization is initially stored along the negative 

longitudinal axis.  After a period of time, td, magnetization is rotated into the transverse plane 

and the signal amplitude is measured.  Decay of signal amplitude following the 90º pulse in 

Figure 7 will occur according to the generalized relationship[26] 

 
( ) It/T

o i I
0

M 1 2 P T dTe
∞

−
+

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

∫M =
 

(2.27). 

Where P(Ti) is the probability distribution of longitudinal relaxation rates.  The expression is a 

Laplace relationship between the signal and relaxation distribution, therefore inverse Laplace 

transform of the NMR signal will yield the distribution of decay rates.  For the single relaxation 

rate given by Eqn. (2.14) the relaxation distribution is P(Ti) = δ(Ti – T1).  The transverse 

relaxation rate is measured by the CPMG (Carr, Purcell, Meiboom, Gill) sequence [27], see 

Figure 8. 

 
Figure 8: CPMG sequence schematic 
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In the CPMG sequence the net magnetization is rotated in the transverse plane and then recorded 

at increments of τ.  The series of 180º pulses are used to marginalize reversible relaxation loss.  

The transverse signal amplitude decay is 

 
( ) 2t/T

o 2 2
0

M P T dTe
∞

−
+ ∫M =

 
(2.28). 

Where the decay rate is generalized by a probability distribution.  Inverse Laplace transform of 

Eqn. (2.28) yields the distribution of decay rates, P(T2). 

 In this section two methods were introduced to measure the longitudinal and transverse 

relaxation rates.  There are many variants to these methods including coupling with imaging 

sequences and expansion into two dimensional domains [28, 29].   

Transport Measurement Techniques – the Pulsed Gradient Method 

Before introducing NMR transport measurements a brief discussion of stochastic 

variables appearing in the measurements is necessary.  The translational motion of an individual 

molecule in a population is characterized by the time dependent position vector, ri(t).  For an 

ensemble of molecules it is not practical to resolve the position vector for every molecule.  

Instead, quantitative analysis of molecular dynamics typically reverts to course grained 

stochastic particle tracking variables.  Amongst these variables, the van-Hove self correlation 

function [30], P(r|r′,t), is the probability distribution of molecular displacement from r to r′ in 

the time t.  The average propagator is given by a volumetric average of the van-Hove self 

correlation function 
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( ) ( ) ( )s sP , t P | ρ d

V
∫R = r r+R r r

 
(2.29). 

The value of NMR transport measurements lies in the ability to directly measure the average 

propagator [5, 6]  given by Eqn. (2.29) and also higher order correlation functions [29]. 

In the imaging section it was shown that application of a linear magnetic field gradient 

spatially localizes evolution of the net magnetic vector phase.  This spatial localization of the 

magnetization phase is the basis of NMR transport measurements.  The standard narrow pulse 

bipolar gradient method encodes the NMR signal with spatial displacement information by 

applying two short gradient pulses of opposite sense separated by an observation time of ∆, see 

Figure 9. 

 
Figure 9:  The pulse gradient spin echo (PGSE) sequence schematic 

 

The boxes in Figure 9 denote arbitrary preparation or acquisition modules; e.g. hard or soft pulse 

preparation, spatial or spectral signal acquisition.  For the case of spectral acquisition, the signal 

at the acquisition point is given by 

  ( ) ( )i 2π i 2π∆ dse P , e= ∫q R q RS q = R Ri i   (2.30). 

Where the displacement frequency variable is q = γδg(2π)-1.  The NMR signal and average 

propagator in Eqn. (2.30) share a Fourier relationship and therefore inverse Fourier transform of 

the signal acquired as a function of the displacement frequency variable yields the average 
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propagator.  From the formalism of stochastic processes [31], Eqn. (2.30) demonstrates the 

signal to be the characteristic function of the displacement variable R.  A low q cumulant 

expansion [32] of Eqn. (2.30) therefore relates the moments of the volume average propagator to 

the magnitude and phase of the signal 

 
( )j

i2π
j

j 1

i2π
ln

j
q R q

X
!

e
∞

=

=∑i   (2.31). 

 

Where  Xj  is the jth displacement cumulant of the average propagator.  To fourth order the phase 

and magnitude of the signal are given by [33]: ( )332 1 6 2ζ q γ q= −φ π π  and 

( )22ln 1 2 2S q=− σ π .  Where ζ , 2σ , and 3γ  are the first, second, and third moments of the 

average propagator.  At low q the first moment governs phase modulation.  The average velocity 

of the molecular ensemble over time ∆ is given by <v> = ∆ζ .  A course grained version of 

the Eularian velocity field can be measured by a low q acquisition of the PGSE signal coupled 

with addition of an imaging module to the sequence given in Figure 9.  An effective dispersion 

coefficient of the ensemble dynamics is given by D = ( )2 ∆ 3σ −δ .  The δ/3 correction is the 

finite pulse correction of the PGSE origin due to Stejskal and Tanner [5]. 

Acquisition of the PGSE signal in the spectral domain, e.g. free precession, allows one to 

allocate the dynamics to chemical species [34].  This methodology will be employed in chapter 

four to allocate multi-phase fluid dynamics.  The observation time in the PGSE experiment is 

limited by transverse relaxation; typically less than fifty milliseconds for practical experiment 

times with liquid water in a 300 MHz field.  To extend the limit of observation time the 
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stimulated echo can be used to allow observation times on the order of the longitudinal 

relaxation time, T1, typically on the order of one second. 

Among the many variations of the PGSE method this work will also employ the 

refocused PGSE sequence [35], see Figure 10.  In this sequence a second pair of gradients 

(separated from the first pair by mixing time τm) are applied with opposite sense relative to the 

first pair. 

 
Figure 10:  The refocused pulse gradient sequence with stimulated echo 

 

During acquisition the NMR signal of the refocused gradient sequence is [35] 

 
( ) ( ) ( ) ( )2i 2π

s s mP ,∆ P , τ e d d⋅ −∫ ∫ ∫ ∫ 1q R R
1 1 2 1 2S q = R R R R R (2.32). 

Where the subscripts 1 and 2 refer to displacement occurring between the first and second 

gradient pairs.  For stationary motion occurring over the entire experiment inspection of Eqn. 

(2.32) shows that there is a null net phase shift and hence zero average displacement for the 

refocused PGSE sequence.  The ensemble magnetization phase is ‘refocused’ following 

application of the second gradient pair.  The effective dispersion coefficient of the refocused 

PGSE experiment is [35] 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

2
eff m

eff 1 2 m

D ∆ ∆ 6 0 ∆ τ

D 2∆ D 2∆ 1 ∆ ∆ τ

v R v v R

R R

⎡ ⎤= −⎢ ⎥⎣ ⎦
= −

�

�
 (2.33). 
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Two cases are given in Eqn. (2.33) for the observation time relative to the mixing time.  In the 

first case R is the total displacement at the experiment end.  In the second case D is the effective 

dispersion coefficient from the single PGSE experiment.  A comparison of the single PGSE 

experiment and the second case of the refocused PGSE experiment therefore provides an indirect 

measurement of the displacement correlation 1 2R R .  The first case can provide a measurement 

of the velocity autocorrelation function [36]. 

Practical Considerations of MRM Experiments 

An important aspect of NMR signal acquisition suggested in the imaging section above is 

the discrete nature of signal acquisition.  For a Fourier acquisition modality the discrete signal 

can be written as [6, 37] 

 ( ) ( )
N 2 1

i2πmn N

n N 2

1S mT M n NT e
N

−
−

=−

= ∑  (2.34). 

Where T is the data point time spacing and N-1 is the total number of discrete data points.  In 

Eqn. (2.34) S is the NMR signal while M is the signal frequency distribution.  With quadrature 

(complex) detection the maximum detectable frequency is ±1/2T [37].  This discrete spacing sets 

the field of view in imaging, dynamic, and spectral measurements to ±1/2T.  In a typical Fourier 

acquisition scheme one collects a number of data points in powers of 2 to allow rapid inversion 

by the fast Fourier transform [38]. 

 Nuclear magnetic resonance experiments have an inherently low signal to noise ratio.  

For thermal polarization the signal to noise ratio is governed by the Boltzmann distribution and 

signal acquisition efficiency.  To enhance the accuracy of experiments one often performs an 

equivalent set of experiments and then averages the signal over the set.  The noise inherent to a 
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signal will appear in random phase throughout the set while the signal will be additive.  The 

signal to noise ratio will then scale like S/N α avgsN  [6]. 

This chapter has provided an overview of NMR theory and techniques used to measure 

spatial, chemical, and dynamic sample information.  Dynamic and spatial information were 

shown to share a Fourier relationship with the bulk NMR signal while relaxation phenomenon 

shares a Laplace relationship.  This chapter is meant to serve as a review; the reader is referred to 

the many descriptive texts cited throughout this work for a more comprehensive discussion of 

NMR theory and techniques.  
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THE LATTICE BOLTZMANN METHOD 

The lattice Boltzmann method is a technique for simulating continuum hydrodynamics.  

The numerical technique had its theoretical beginnings in lattice gas (LG) automata which was 

quickly realized to be a variation of the discrete Boltzmann equation [39] 

 , 1,..., ,i
i i i i

f f i b
t

∂
+ ⋅∇ =−Ω + ⋅ =

∂
e e g  (3.1). 

Where b is the number of discrete phase coordinates, f is the phase space probability distribution 

of particle streaming at velocity e, Ω is a relaxation operator governed by particle collision and g 

is a body force.  A widely used model of Ω is the so-called BGK (Bhatnagar-Gross-Krook) 

approximation which assumes a single linear relaxation rate of the distribution functions to an 

equilibrium distribution 

 ( )1Ω eq
i i if f

ω
= −  (3.2). 

The equilibrium distribution, eq
if , is chosen to recover the macroscopic Navier-Stokes equations.  

For small Mach numbers the distribution 

  ( )2 2
i

9 3w 1 3
2 2

eq
i i if ρ u

⎡ ⎤
⎢ ⎥= + ⋅ + ⋅ −
⎢ ⎥⎣ ⎦

e u e u
 

 (3.3) 

recovers the Navier-Stokes equations to O(u2) [40].  Where w0= 4/9, w1 = w3 = w5 = w7 = 1/9, w2 

= w4 = w6 = w8 = 1/36, and i
i

ρ f=∑ .  The macroscopic velocity is given by i
i

u= eiρ f∑ .  With 

the BGK approximation the first order upwind finite difference form of Eqn. (3.1) is  
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 ( ) ( ) ( )( )∆ , ∆ , Ω ,i i i i if x t t f t f t+ + = + + ⋅x e x x e g  (3.4). 

Where ∆x and ∆t are unit lattice spacing.  The body force g models a macroscopic pressure 

gradient.  The dynamic fluid viscosity is 
22 1 ∆

6 ∆
ω xν

t
−

= .  For a no-slip solid wall the boundary 

condition for Eqn. (3.1) is spectral fi reflection (bounce-back) from the surface [41]; a first order 

boundary condition.  Equation (3.4) and (3.2) coupled with the bounce back condition are used 

in the single phase hydrodynamic simulations in chapters 5 and 8.  In these simulations 

symmetric boundary conditions coupled with the body force in Eqn. (3.4) model Newtonian 

fluid flow subject to a steady pressure gradient. 
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TRANSPORT IN POROUS MEDIA THEORY 

Hydrodynamics 

Fluid transport in porous media is a critical, often governing process for many biological, 

environmental and industrial systems.  The vast implications of this phenomenon have motivated 

an extensive and comprehensive body of theory governing the hydrodynamics and transport of 

fluid in porous media.  This thesis is concerned with steady Newtonian single-phase and 

Newtonian-colloid suspension dynamics in nonreactive, solid porous media lacking micro-

porosity but having a fully open pore space.  This system is composed of a solid media σ-phase 

and a saturating fluid β-phase, see Figure 11.  The following discussion of transport in porous 

media theory is meant to serve as an introductory overview and reference guide for the results 

section of this thesis. 

 
Figure 11: Porous media schematic 

Single Phase Newtonian Hydrodynamics 

Hydrodynamics in porous media are governed by scale dependent equations.  At the 

lowest microscopic scale the Navier-Stokes equations govern the pore space Eularian velocity 

field in pressure driven flow.   In steady flow of Newtonian fluid viscous hydrodynamics forces 

solid σ-phase 

liquid β-phase 
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typically are significantly greater than inertial forces so that the pore Reynolds number is much 

less than one:  || 1�mv l D  where l is the characteristic pore size, ||v  is the mean flow 

direction velocity and Dm is the molecular diffusion coefficient.  In the low Reynolds number 

regime, termed Stokes flow, the pore-scale single-phase Eularian velocity field is governed by 

[42, 43] 

 0v∇⋅ =β  (4.1) 

 2v f∇ = ∇ +pβ β β βµ  (4.2). 

Where v is the local fluid velocity vector, p is the scalar fluid pressure, and f is a body force 

acting on the fluid.  For solid, nonreactive surfaces the fluid-solid boundary condition for Eqn. 

(4.2) is v β  = 0.  Solving Eqns. (4.1) and (4.2) in the complex domain of a realistic porous media 

is an impractical task.  Therefore, these equations are scaled up to a macroscopic description of 

hydrodynamics using the method of volume averaging [43] 

 0vβ∇⋅ =  (4.3) 

 p
K

v gββ
β β β

β

⎡ ⎤= ⋅ ∇ −ρ⎢ ⎥⎣ ⎦µ
 (4.4). 

Equation (4.4) is the generalized form of Darcy’s law resulting from averaging Eqn. (4.2) over 

the intrinsic phase average or liquid-phase volume.  The averaging volume is assumed to be 

significantly greater than the pore size but less than the system size.  During the averaging 

procedure a closure problem for variation of the local unknowns about their mean, Gray’s 

decomposition: v v v
β

β β β= −� , is necessary.  Solution of the closure problem relates the 



32 

fluctuating unknowns to the permeability tensor, Kβ, in Eqn. (4.4).  Equations (4.1) and (4.2) are 

a linear set of differential equations which can be cast into a single differential equation whose 

solution is independent of flow velocity and viscosity [44].  The flow profile of a Newtonian 

fluid in a porous media is therefore independent of viscosity and flow velocity in the Stokes 

regime.  This linearity has important implications for the dynamics of transport in porous media 

as will be shown later in this thesis.  An alternative form of Eqn. (4.4) exists to account for non-

linear inertial effects; known as the Forchheimer equation [45].  Other forms have been 

developed to model two-phase macroscopic hydrodynamics [46]. 

Hydrodynamic Boundary Conditions 

Equation (4.4) is irrotational, 0vβ∇× = , and therefore is thus unable to describe a 

macroscopic velocity shear gradient.  Such a macroscopic gradient will exist near a free fluid or 

no-flow interface in cross-flow, see Figure 12. 

 
Figure 12:  Two cases of macroscopic shear in porous 
media a) free surface in cross flow b) solid wall in 
cross flow 

Equation (4.4) has been rigorously derived to account for macroscopic shear effects in porous 

media, the result is known as the Darcy-Brinkman equation [43] 

vβ

vβ
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 2
eff pv v

K
ββ

β β β
β

µ
µ ∇ − =∇  (4.5). 

The value of the Brinkman or effective viscosity, µeff, and even validity of the Brinkman 

correction in Eqn. (4.5) remains debatable [47, 48].  The brinkman viscosity is typically 

evaluated outside of the divergence operator, in which case following the analysis of Ochoa and 

Whitaker [43] effµ = µ φ , where µ is the fluid viscosity and φ  is the porosity.   However, 

Sahraoui and Kaviany [49] have shown the Darcy-Brinkman equation requires use of a variable 

effective viscosity to correctly model macroscopic shear and therefore the effective viscosity 

must be evaluated inside the divergence operator.   

Case a) in Figure 12 requires additional considerations to model the hydrodynamic 

boundary layer.  The broad occurrence of this physical scenario has promoted extensive inquiry 

into the correct form of the hydrodynamic boundary conditions [50-52].  The boundary 

conditions can be categorized by the scale of description; a macroscopic and mesoscopic scale, 

see Figure 13. 

 
Figure 13:  Two scales of porous media free 
surface cross-flow a) macroscopic b) mesoscopic 

 

In Figure 13b) a single equation, valid over both domains, is assumed to govern the 

hydrodynamics [52]; e.g. Eqn. (4.5).  This approach requires knowledge of the change in the 

y
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macroscopic quantities through the interface, e.g. K and φ .  Of course knowledge of these 

quantities requires that interfacial morphology be resolved at the pore scale.  For practical 

reasons this level of description is unfeasible and therefore the macroscopic approach in Figure 

13a) is the more common method.  In Figure 13a) the two domains are treated separate from 

another and an excess shear stress jump condition governs the free fluid velocity gradient at the 

interface.  The first macroscopic boundary condition to appear in literature was a semi-empirical 

equation postulated by Beavers and Joseph [50] 

 ( )s y
y 0

dv v v
dy K →−∞

=

α
= −  (4.6). 

 
Where vs is the free fluid velocity at the interface (y = 0) and α is an adjustable slip parameter.  

The value of α depends upon the interface location, y = 0, and therefore the value of α is not an 

intrinsic property of the interface.  A closed form derivation was developed by Ochoa and 

Whitaker [52, 53] where the excess stress jump condition is derived from the volume averaged 

transport equation valid over the entire domain 

 1
y 0

y 0 y 0

d v d v1 v
dy dy K+ −

=
= =

β
− =−

φ
 (4.7). 

Where β1 is an adjustable parameter dependent on the chosen location of the interface, e.g. y = 0.  

Equations (4.6) and (4.7) are linear boundary conditions; therefore the interfacial excess shear 

stress scales linearly with flow velocity.  While deriving Eqn. (4.7) Ochoa and Whitaker noted 

inertial effects may be important at a porous interface in cross flow, they stated: “the curvature 

of the streamlines will be of the order of the pore or particle diameter and this may lead to non-
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zero values of the inertial terms, v vρ ⋅∇ ” [52].  Equation (4.7) was modified by Ochoa and 

Whitaker to account for potential inertia effects [54] 

 2
1 2y 0 y 0

y 0 y 0

d v d v
v v

dy dy K+ −
= =

= =

µ µ
− µ =β +β ρ

φ
 (4.8). 

Where β2 modulates the inertial contribution to excess shear stress at the interface.  To the 

author’s knowledge the inertial term importance remains explored in literature.  This may in part 

be due to the computational and experimental difficulty of investigating non-Stokesian flow at a 

porous interface.  The importance of inertial effects at a porous interface is addressed in Chapter 

8 using three dimensional pore scale LB simulations and NMR measurements. 

Dispersion 

Passive Scalar Transport in Porous Media 

The pore scale transport of a passive scalar (i.e. temperature, mass, magnetization) in the 

convective velocity field within a porous media is modeled by the advection diffusion  

 
2

m
c D c c
t

v∂
= ∇ − ⋅∇

∂  
(4.9).

 

The following discussion is limited to mass transport.  In Eqn. (4.7) c is the local mass 

concentration and Dm is the molecular diffusion coefficient.  The subscript β has been removed 

from the fluid phase variables for simplicity.   Equation (4.7) is an Eularian description of 

transport.  An equivalent form is the Lagrangian frame which models movement of individual 

particles using the Langevin equation 

 
m

ˆd dt 6D dtr v ξ= +
 

(4.10). 
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Equation (4.10) decomposes motion into deterministic and random components.  In Eqn. (4.10)

dr is the differential displacement over time dt of a passive particle in the convective field and ξ̂  

is a randomly oriented unit vector.  The solution or Green’s function of Eqn. (4.10) is the 

average of Eqn. (4.7) over all possible random trajectories integrated over a time ∆ .  This 

function is the probability of molecular displacement from 1r to 2r  over time ∆ : ( )1 2P ,∆r r .  

Solving Eqn. (4.7) at the pore scale or resolving ( )1 2P ,∆r r  in a porous media is a difficult task 

because of the convective profile complexity.  Thus for practical purposes these equations are up 

scaled.  The averaged form of Eqn. (4.7) is[44, 55] 

 
m

c
c D c c 0

t
v v

∂ ⎡ ⎤′ ′+∇ − ∇ + =⎢ ⎥⎣ ⎦∂
i

 
(4.11). 

The volume averaged concentration and velocity vector are decomposed into a local variation 

about the mean using Reynolds or Gray’s decomposition, v v v′= + .  When pore scale 

velocities do not vary on a hierarchy of length scales and the volumetric average size is much 

greater than the largest length scale of velocity fluctuation, the closure solution for Eqn. (4.7) is 

[44, 56] 

 
* 2c

c c
t

v D
∂

= ∇ − ∇
∂

i
 

(4.12). 

The form of Eqn. (4.12) is equivalent to Eqn. (4.9) however the asymptotic dispersion 

coefficient, *D , is the result of molecular diffusion and spatial variations in flow velocity.  In the 

long time limit the propagator of displacement R averaged over the starting position, ( )P ,∆R , 
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is the solution or Green’s function of Eqn.(4.12).  From the average propagator the asymptotic 

dispersion coefficient in Eqn. (4.12) is defined by the Einstein relation  

 
2

t

1 d
2 dt

* lim
→∞

=
σD  (4.13). 

Where σ2
 is the variance or second moment of the average propagator: ( )22 P ,∆ dσ R R R

∞

−∞

= ∫ .  

An alternative definition of the asymptotic dispersion coefficient is the Green-Kubo relation 

using the average autocorrelation function of tracer velocity 

 
( ) ( )

0

0 t dtD v v
∞

′ ′= ∫*

 
(4.14). 

An asymptotic dispersion coefficient as defined by Eqns. (4.14) and (4.13) implies an 

exponential decaying velocity autocorrelation with time and therefore an average propagator that 

evolves in time according to a Gaussian function[31].  The time regime much shorter then that 

necessary to fulfill the long time limit in Eqn. (4.13) is known as preasymptotic dispersion.  For 

real transport dynamics Eqns. (4.13) and (4.14) will produce slightly different values of the 

asymptotic dispersion coefficient because Eqn. (4.14) retains preasymptotic information while 

Eqn. (4.13) is temporally localized to the long time limit.  In the preasymptotic regime or when 

the velocity profile fluctuates on a hierarchy of length scales the dispersion flux in Eqn. (4.12) is 

not proportional to the local concentration gradient[57].  In these anomalous dispersion examples 

Eqn. (4.13) is not valid and therefore the variance will grow in time either greater than linear 

(super-diffusive) or less than linear (sub-diffusive)[58].  A nonlocal approach is necessary to 

model transport in the case of anomalous dispersion.  The effective dispersion coefficient is 

defined according to the nonlocal approach as[57] 
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( ) ( ) ( ) ( ) ( )NL , P P , dD R v r v r R r r r R r′ ′τ = + + τ∫

 (4.15)
 

 
( )NL

0

d dD D R R
∞

= τ τ∫ ∫
V

* ,
 

 

The nonlocal dispersion tensor, DNL, is the velocity autocorrelation as a function of displacement 

R averaged over the initial position r.  In the nonlocal approach, the asymptotic dispersion 

coefficient is the nonlocal dispersion tensor integrated over displacement and time.  The 

generalized concentration flux is the convolution integral of the nonlocal dispersion tensor and 

concentration gradient integrated over past time and starting position. 

Non-Equilibrium Statistical Mechanics of Preasymptotic Dispersion: This section is 

concerned with adopting results from nonequilibrium statistical mechanics which serve as a 

model of preasympototic dispersion in porous media.  The governing equation of a self 

correlation function of motion (velocity autocorrelation function)  ( ) ( ) ( ) 20 voψ t t′ ′= v v , is 

known as the memory function equation 

 ( ) ( )
0

t

ψ K t t ψ t dt′ ′ ′=− −∫�  (4.16) 

In Eqn. (4.16) K is known as the memory function.  Equation (4.16) is formally derived from the 

Liouville equation of motion and projection operator formalism [59]. Because of the generalized 

nature of the derivation, Eqn. (4.16) is applicable to any multibody system of dynamics; e.g. 

molecular hydrodynamics, turbulence, porous media, etc.  It is through the memory function that 

a model of ( )ψ t  is typically introduced and thus has significant practical as well as theoretical 



39 

value.  At short times K is equal to the force autocorrelation function:  

( ) 2 2 20 v vF vo oK m= = � .  The formal solution of Eqn. (4.16) in terms of the frequency 

moments of the velocity autocorrelation function is due to Mori [60], the result is 

 ( )
( )4 2 22

v v vv
ω ω ωω1ψ s

s s s
−

=
+ + +

� "
… … …

 (4.17) 

This equation expresses the Laplace transform of the velocity autocorrelation function is terms 

of its frequency moments.  It is easy to show that the short time behavior of the velocity 

autocorrelation function is given by the frequency sum rule 

 ( ) ( )2 2 4

0
1 O

→
= − +vt

ψ t t ω t  (4.18) 

Where the second frequency moment is ( )2 2 20v oω K= = v v� ; the restoring force of the 

dynamics.  The form of Eqn. (4.17) provides a basis for models of K(t).  Truncating Eqn. (4.17) 

to second order produces the exponential memory function model [61] 

 ( ) ( )2 expvK t ω t τ= −  (4.19). 

Equation (4.19) is used as a model of the dynamics in chapter 5, the resulting autocorrelation 

function is given by 

 
( ) ( ) 1exp 2 cos sin

2
ψ t t τ ωt ωt

ωτ
⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥= − + ⎟⎜ ⎟⎜⎢ ⎥⎝ ⎠⎣ ⎦  

(4.20). 

Where the frequency of oscillation is governed by both the relaxation time and leading 

coefficient of the model; ω= ( )21 4vω τ− .  Examples of the effective diffusion coefficient 
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from the exponential memory function model are plotted in Figure 14 for several values of the 

relaxation time with ωv = vo = 1. 

 
Figure 14:  Effective diffusion coefficient of the exponential 
memory function model plotted for several values of the 
relaxation time with ωv = vo = 1 

 

At small values of the relaxation time coherence is lost in the dynamics and the dispersion 

coefficient rapidly asymptotes to a constant rate.  As the relaxation time increases the effective 

diffusion coefficient develops a coherence pattern at regular beats similar to sinusoidal flow.  In 

this domain structural information is apparent within the dynamic behavior.  There are many 

other models for the memory function in the literature, the reader is referred to other work for 

discussion of these models [61]. 
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Colloid Transport in Porous Media 

Colloid transport in porous media refers to the transport of Brownian, rigid particles 

suspended in a fluid (assumed Newtonian).  The first order advection diffusion equation has 

been used to model macroscopic transport of a passive scalar and colloidal particles. 

 
*

att

c
c c k c

t
v D

∂ ⎡ ⎤+ ⋅∇ =∇⋅ ⋅∇ −⎢ ⎥⎣ ⎦∂  
(4.21). 

Where c  is the macro scale average concentration of the colloidal particles or liquid-phase and 

the reaction coefficient, katt, accounts for deposition of colloidal particles on the porous structure 

surface.  Dispersion of colloidal suspension in porous media, modeled by D* in Eqn. (4.21), 

remains a mostly unexplored phenomenon.   In order to calculate D* and katt, Eqn. (4.21) must be 

assumed to govern particle and liquid phase transport and then fit to breakthrough curves [62-

64].  Models based on the passive random walk of individual particles have been used to 

investigate particle dispersion and particle deposition [65].  However, colloidal particle 

hydrodynamics and hence transport is governed in part by particle-particle collision, inertia, and 

forces induced by colloid-porous media interaction [66].   

 For a colloidal suspension the displacement dynamics are discretized by the two phases.  

Equation (4.21) makes a direct assumption about the existence of an asymptotic dispersion 

coefficient.  However there appears to be no direct evidence demonstrating Eqn. (4.13) for either 

phase of real colloidal suspension transport dynamics in porous media.  In chapter 6 the 

existence of Eqn. (4.13) as it applies to colloid suspension dynamics is investigated.  The 

transient evolution of pore structure resulting from colloid filtration or deposition, suggested by 
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katt in Eqn. (4.21), suggests non-Markoffian and hence anomalous transport dynamics.  The 

results presented in chapter 6 apply to the stationary regime of colloid transport where katt = 0.  

Further work beyond what is presented in this thesis is needed to explore suspension dynamics 

modulated by transient pore structure changes resulting from colloid deposition. 
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STUDY OF TRANSPORT IN CELLULAR MEDIA & STRUCTURE CHARACTERIZATION 
BY TRANSPORT DYNAMICS 

Introduction 

Solid cellular structures are an important class of technological and natural porous media.  

Many highly optimized naturally occurring materials (e.g. lightweight woods, sponges, 

cancellous bone, etc.) are cellular in nature[67, 68].  Some properties of cellular structures 

including low permeability and high solid phase surface area to fluid volume ratio have been 

recognized as attractive characteristics to optimize transport applications[69-71].  Despite the 

advantageous utility of cellular materials for transport applications there is limited published 

data on temporal and asymptotic dispersion dynamics.  In this work, dispersion refers to 

transport of a passive scalar within a steady, non-reacting, Newtonian velocity field.  A potential 

explanation for this literature gap is the absence of efficient structural characterization 

methods[72].  Consideration of cellular structures as porous media leads to the concept of a 

transport length scale [73, 74].  In the study of consolidated granular porous media the length 

scale is taken to be a characteristic pore size l ~ φ/(1- φ)(V/S) based on the surface to volume 

ratio (S/V) and volume fraction φ, which derives from the concept of hydraulic radius in fluid 

mechanics.  In highly porous solid foams, complications in structural simulation and modeling 

are posed by the solid phase forming a sample spanning cluster, which is not the case in lower 

porosity granular porous systems where phases become isolated as in percolation theory when p 

< pc [73, 75].  This suggests definition of a characteristic length scale governing transport in 

foams an open and important question.  A component of this chapter is to present a direct 

characterization of the transport length scale in open cell solid random foam using pulsed 
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gradient spin echo nuclear magnetic resonance (PGSE NMR) measurements and Lattice-

Boltzmann (LB) simulation of short time correlations inherent to the hydrodynamic dispersion 

molecular dynamics during pressure driven fluid flow.  Dynamic PGSE NMR measurements 

have been found to provide length scale characterization due to pore structure sampling by 

molecular diffusion [76, 77] and advection [78, 79].  PGSE NMR measurement and LB 

simulation of scale-dependent hydrodynamic dispersion has been systematically applied to 

compacted granular media [79-85] but not to characterize transport in open-cell foams.  NMR 

measurements [83, 85] and LB simulations [86] of hydrodynamic dispersion in random spherical 

bead packs demonstrate a correlated motion in the transverse direction perpendicular to the 

applied flow.  This results in a negative lobe in the transverse velocity autocorrelation function 

(VACF), and equivalent preasymptotic maxima in the time dependent hydrodynamic dispersion 

coefficient, analogous to that observed in molecular dynamic simulations of dense fluids [87, 

88].  In this work an equivalent phenomenon is shown to occur in open cell foams.  This short 

time correlation provides a measurement of the characteristic structure length.  Nonequilibrium 

statistical mechanics has been used to rigorously derive a theory of preasymptotic hydrodynamic 

dispersion for porous media with hierarchical structure [89] in the context of time correlation 

functions of dynamical variables [87, 88].  This formalism, which is outlined in the previsou 

chapter, is adopted as a theoretical framework and model of the preasymptotic correlations 

inherent to transverse dispersion in foam structures and other porous media.   

This chapter is organized as follows.  Section one is an introduction to the polymeric 

cellular structures, section two presents the PGSE NMR and LB dispersion data and the 
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nonequilibrium statistic mechanics model fit, section three interprets some of the stochastic 

dynamics in section two with an elementary toy model, and section four summarizes the data.  

Polymer Cellular Structures 

Solid cellular structures are composed of an interconnected network of solid thin struts or 

ligaments which merge at junctions to form polyhedral-like volumetric cells.  The faces or 

windows of the volumetric cells can be either filled (closed cell) or unfilled (open cell) with the 

structure material.  A number of image based techniques and methodologies exist for quantifying 

the structure of three dimensional foams [67, 70, 72, 90, 91].  Using three dimensional NMR and 

CT images, Montminy et al. found real open cell polymer foam structures to have highly 

disperse geometric statistics (e.g. strut length, intersection angles, etc.).  Furthermore it was 

found that real polymer foam structures are primarily composed of irregular pentagonal windows 

and polyhedral-like volumes.  Idealization of foam structures by some form of the polyhedral 

family of unit cells is a common interpretation of foam structures [67, 92-97].  Gibson and 

Ashby noted the Kelvin cell approximation, tetrakaidecahedron, closely resembles the polymer 

foam structure.   

The NMR transport measurements in this work are limited to commercial open cell 

polymer foam, see Figure 15. 
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Figure 15:  Images of 110 PPI Foamex open cell 
polyurethane foam a) optical b) MRI. 

 

It is clear from the images in Figure 15 that the polymer foam structure is composed of a 

hetereogenous network of polyhedral-like volumetric cells.  Incorporating all solid structure 

statistics from the images into a single length scale is obviously a challenging if not ill-posed 

problem.  In this work 110PPI and 80PPI Foamex© polyeurthane foam are used in the NMR 

transport measurements and a digitized 50PPI Air Products© polyeurthane foam is used for the 

LB simulations.  The 110PPI foam structure geometry was characterized through two 

dimensional images from an Olympus© Bx41 optical microscope interfaced with a Xli© CMOS 

digital camera, see Table 1.  Also shown in Table 1 are statistics from the digitized polymer 

foam. 
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Table 1:  Foam structure geometry statistics 

Parameter 110PPI foam 50PPI foam, Montminy et al. [72] 

Mean strut length 198 µm* 281 µm 

Mean strut width 60 µm - 

Porosity 97% 93% 
Window shape distribution 

quadrilaterals- 
pentagons 
hexagons 
heptagons+ 

 
21% 
62% 
15% 
2% 

 
24% 
55% 
19% 
1% 

*A probabilistic technique applied to two dimensional images was used to measure the    
  mean strut length, see Appendix A 
 

The porosity of the 80PPI foam sample is 97%.  The characteristic length of 

commercially available foam is reported by the manufacturer designated pores per unit length, 

e.g. PPI (pores per inch).  Typically, this number reflects the mean hydraulic diameter of the 

windows.  The definition and measurement of this number can vary [97] and does not account 

for all structure statistics [91].   

Experimental Results and Discussion 

Spatially Resolved Flow Velocity Images 

The spatially resolved PGSE NMR experiment was used to measure two dimensional 

images of steady water flow through the 110PPI foam structure, see Figure 16.  Image a) in 

Figure 16 is in the transverse plane parallel to the flow direction, image b) is in the axial plane, 

and image c) is in the transverse plane of the LB simulation coursed grained to a similar axial 
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resolution as image b).  In plane resolution is 1.0 mm in images a) and b) and 1.9 mm in image 

c). 

 
Figure 16: Two dimensional experimental NMR images at 
different orientations of the axial component of the microscopic 
velocity field within the 110PPI foam pore structure averaged 
over the slice thickness of 1.0 mm, 34 x 34 µm/pixel, ∆ = 10 ms,  
<v||> = 0.95 mm/s 

 
Image weighting in Figure 16 is the flow velocity magnitude in the direction of applied pressure 

gradient; this direction is referenced by the || subscript and the transverse direction by ┴.  

Inspection of images b) and c) in Figure 16 demonstrates how the foam structure segregates the 

convective profile into a distribution of poisuelle-like channels.  In the images there is 

heterogeneity in the convective profile on multiple length scales, which is an indication of the 

cellular structure heterogeneity.  This heterogeneity is also evident in image a) of Figure 16.  A 

close examination of image a) in Figure 16 suggests a remarkable homogeneity in the streamline 

bifurcations, which indicates a high degree of coherent oscillatory motion in the transverse 
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plane.  Image b) in Figure 16 was quantified using the normalized spatial auto correlation 

function of the flow velocity fluctuating component: ( ) ( ) 2
|| || ||r r R′ ′ ′+v v v , see Figure 17.  The 

spatial correlation function shown in Figure 17 is averaged over two in-plane orthogonal 

coordinates of image b) in Figure 16. 

 
Figure 17:  Spatial self correlation function of the 
fluctuation about the mean velocity from the in-plane 
experimental NMR flow velocity image b) in Figure 
16 

 

The curve shown in Figure 17 is characterized by a damped oscillation with a wavelength of 

approximately 500 µm.  The oscillations shown in Figure 17 are the result of structure 

periodicity (the cells) which imparts a similar periodicity in the Eularian convective velocity 

field.  This analysis suggests the characteristic length of the 110PPI structure to be on the order 

of 250 µm.  The correlation function of Figure 17 agrees for two orthogonal directions at 

displacements of less than 250 µm.  Another useful statistic is the probability distribution of flow 

velocities.  Knowledge of the pore scale velocity probability distribution allows one to estimate 

the short time dynamics of dispersion through a convolution with molecular diffusion [reference 

needed].  Figure 18 shows a comparison of the probability distribution of normalized axial flow 
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velocities from two transverse plane NMR flow velocity images (the orientation of image b) in 

Figure 16) and the non-coarse grained flow velocity distribution from the LB simulation. 

 
Figure 18:  Probability distribution of the normalized axial 
flow velocity compared for two in-plane NMR images at 
different voxel resolutions and from the three dimensional 
pore scale lattice Boltzmann simulation 

 
The experimental and numerical curves of Figure 18 differ due the variation in spatial coarse 

graining of the data sets.  The non-coarse grained lattice Boltzmann curve is characterized by a 

small population at zero velocity and a large high speed population with a maximum at || ||v v

≈  0.8.  One might conceptualize the flowing population as the superposition of flow velocity 

populations from the distribution of tubular-like passages.  The maximum pore scale flow 

velocity from the lattice Boltzmann simulation is vmax ≈ 4.5 ||v , for a packed bed of 

monodisperse spheres this relationship is vmax ≈ 10 ||v [98], and for a circular tube vmax = 1.5

||v .  The spatial coarse graining of the NMR experiment represents a loss of information in 

regard to the velocity probability distributions in Figure 18.  In the limit of infinite voxel size the 

normalized velocity probability distribution is a delta function: ( ) ( )|| || || || 1P v v v v=δ − .  The 
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velocity probability distribution transition to a delta function is governed by the voxel size 

relative to the scale(s) in the velocity field heterogeneities.  A comparison of the velocity 

probability distribution at different voxel sizes and slice thicknesses therefore gives an indication 

of the proper representative element volume (REV) size [99].  

Temporal Dispersion Dynamics in Foam 

 The distributions of Figure 18 are an instantaneous Eularian observation of the convective 

velocity field and therefore have a limited description of transport.  This section provides a 

systematic outline of dispersion dynamics in the foam structures using the NMR and LB 

measured spatially coursed grained probability of displacements or van-Hove self correlation 

function, ( )P ∆R, , and its moments.  Shown in Figure 19 and Figure 21 is the temporal evolution 

of the volume averaged propagator in the 110PPI foam for the longitudinal and transverse 

directions at a mean flow velocity of 3.4 mm/s.  Also shown in Figure 19 is the temporal 

evolution of the volume averaged propagator from the LB simulation.  The distributions shown 

in Figure 19 and Figure 21 are the magnitude of the Fourier transformed single PGSE signal 

which is obtained as a function of the displacement frequency variable q for fixed observation 

times. 
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Figure 19: Temporal evolution of the axial displacement 
propagator a) NMR - 110 PPI foam <v||> = 3.4 mm/s b) LB – 50 
PPI foam <v||> = 4.7 mm/s 

 

The axial displacement propagators in Figure 19 are characterized by two distinct populations.  

The slow flowing population near || 0=ζ  is distinct from the fast moving bulk population.  The 

slow moving population represents fluid within the boundary layer very near the foam structure 

or regions of relatively high permeability (e.g. the sample outer surface boundary layer) or fluid 

trapped within stagnant or closed streamline features. The slow flow population in the foam data 

is not a true stagnant feature because it contains a net axial displacement.  The axial 

displacement propagators in Figure 19 can also be viewed in the reciprocal q-space or Fourier 

domain, see Figure 20. 
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Figure 21: Temporal evolution of the transverse 
displacement propagator within the 110 PPI foam 
pore structure, <v||> = 3.4 mm/s 

 
Using the low q cumulant expansion given in Eqn. (2.31) the transverse and axial 

variance temporal evolution was measured using the single pulse PGSE experiment; see Figure 

22 and Figure 23.  The error bars shown in the following figures are 95% confidence intervals of 

the data points.   

 
Figure 22:  Temporal evolution of the axial displacement 
variance within the 110 PPI foam structure as a function of 
mean flow velocity 
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The linear growth of the axial variance at high observation time, ∆ > 0.4s in Figure 22 suggests 

the onset of asymptotic, stationary, Gaussian dynamics.  This suggests the validity of Fick’s law 

to modeling transport in the structure.  Furthermore, it suggests that a REV for the structure 

exists.  In the asymptotic regime the effective asymptotic dispersion coefficient is given by Eqn. 

.  The asymptotic axial dispersion coefficient scaling with Peclet number is reported later in the 

text.  At short times, ∆ < 0.2 s, and in the high Peclet number limit the axial variance grows 

ballistically: 2 2′=& &
2σ v t . 

The temporal evolution of the transverse variance at high Peclet number is characterized 

by approximately four time domains.   

 
Figure 23: Temporal evolution of the transverse 
displacement variance for the 110 PPI foam for two 
mean flow velocities,  inset: short time evolution of 
the transverse variance for a single mean flow velocity 
superimposed is a ballistic plus diffusive fit for the 
variance evolution;  Dm = 2x10-9 m2/s, < v⊥ > = 1.8 
mm/s 
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Initially the transverse variance evolves according to molecular diffusion.  As the observation 

time is increased convective begins to dominate and ballistic growth of the variance occurs.  The 

inset of Figure 23 shows the short time growth of the transverse variance for a single flow 

velocity and a fit of the data to a model superimposing ballistic and diffusive motion.  Using this 

model the mean amplitude of the transverse flow velocity was found to be 1.8 mm/s when the 

mean flow velocity was 6.8 mm/s.  The ratio of axial and transverse velocity, v v⊥&  = 3.78 

for the 110 PPI foam, is a fixed constant in the Stokes flow regime.  For the simulated LB foam 

this constant was found to be v v⊥&  = 4.66.  As the observation time increases beyond the 

ballistic regime the variance growth experiences a transition regime due to recorrelation of tracer 

particles with their original transverse position.  This recorrelation effect is a result of the 

oscillatory streamline motion around the structure of the cellular foam media; this effect will be 

further discussed below.  The linear growth of the transverse variance at high observation times, 

e.g. ∆ > 0.05 s, signals the onset of asymptotic dispersion. 

The transverse and axial variance can be converted to an effective time dependent 

dispersion coefficient through dividing the variance data points by the observation time.  Shown 

in Figure 24 is the temporal evolution of the effective axial dispersion coefficient compared for 

the single and double PGSE experiments.  The effective dispersion coefficient from the single 

PGSE experiment reflects the dynamics of the true volume averaged propagator variance.  The 

double PGSE experiment refocuses coherent motion so that the evolution of the double PGSE 

dynamics shown in Figure 24 are governed by the stochastic or random dispersion dynamics.  



57 

The double PGSE data in Figure 24 is for the case of null mixing time; e.g. the dynamics given 

by Eqn. (2.33) b. 

 

Figure 24: Comparison of the single and double PGSE 
effective axial dispersion coefficient for the 110 PPI 
foam as a function of observation time, Dm = 2x10-

9m2/s, inset: axial displacement correlation function 
determined from a comparison of the single and 
double PGSE effective dispersion coefficient 

 
A comparison of the single and double PGSE effective dispersion coefficient allows for 

calculation of the axial displacement correlation function as shown in the inset of Figure 24.  If 

the effective dispersion coefficients of the single and double PGSE experiment asymptote to a 

fixed asymptotic dispersion coefficient (e.g. if the displacement of tracer particles are entirely 

uncorrelated between the two gradient encoding intervals of the double PGSE experiment) then 

displacement correlation function must grow slower than t.  At high observation times this 

behavior is present in the inset of Figure 24 which further suggests the applicability of Fick’s 

law to modeling transport in the structure. 
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The following discussion returns to the recorrelation dynamics of transverse dispersion in 

the foam structures.  The problem of defining and accurately measuring a characteristic length in 

foams, which was posed in the introduction, is now addressed.  The recorrelation regime of 

transverse dispersion can be interpreted using the time dependent effective dispersion coefficient 

( 2D σ ∆⊥ = ), see Figure 25. 

 
Figure 25: NMR measured and simulated 
hydrodynamic dispersion coefficient normalized by 
the molecular diffusion of the fluid and mean flow 
velocity as a function of displacement observation 
time ∆ in terms of mean displacement length <ζ||> = 
<v||>∆ at 3 flow rates for the 110 PPI foam (open 
circles) and the fit to the dynamics with the 
exponential memory function (blue line) and 2 flow 
rates for the 80 PPI foam (open squares) and 1 flow 
rate for the 50 PPI LB foam sample (red line) 

 
The increase and plateauing decrease of the transverse dispersion coefficient shown in Figure 25 

is a stochastic phenomenon known as backscattering [100] .  The backscattering dynamics are a 

reflection of the oscillatory streamline waveform of the fluid navigating through the foam 

structure and hence a reflection of the structure itself.  The oscillatory motion forces some fluid 

molecules to recorrelate nearly or completely to their original transverse position after flowing 
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some distance in the axial direction.  The data collapse in Figure 25 is due to the linearity of 

transverse dispersion with flow velocity in the high Peclet number limit [101].  Transverse 

backscattering is known to occur in flow through mono-disperse packed beds [98, 102, 103].  In 

a study of 2D displacement correlation dynamics in monodisperse packed beds and a sandstone 

rock core, Stapf et al.[102] noted similar correlations suggest a measurement of the structure 

characteristic length.  Also shown in Figure 25 is a model fit to the 110 PPI NMR data using the 

exponential memory function model in Eqn. (4.19) fit to the data using a nonlinear least squares 

routine.  The model oscillates somewhat more strongly than the data however the general 

agreement is quite good over the range of observation time.  The model fit values are given in 

Table 2. 

Table 2: Exponential memory function model values for the 110PPI foam 

<v||> (mm/s) 2
vω (s-2) τ (s2) 2ϖ (s-1) 

15 31807 0.0117 178 
12.1 21308 0.0137 145 
7.1 7714 0.0199 88 
3.7 2309 0.0362 48 

 

The maximum of the dispersion curves in Figure 25 occur at a fixed mean displacement 

of || ∆ 0dD d
l

⊥ =
= ζ with l = 250 µm for the 110PPI foam, l = 300µm for the 80PPI foam and l = 

475µm for the 50PPI LB simulated foam.  This fixed displacement is on the order of the 

streamlines primary axial oscillations half wavelength.  For a foam structure one would expect 

this distance to be on the order of the intercellular spacing and indeed these lengths agree well 

with the quantity provided by the manufacturer in the units of pores per inch.  This definition of 

length scale is deterministic and accounts for all structure statistics.  Its accuracy is only limited 
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by the ability to resolve the curves in Figure 25.  This is in contrast to ad hoc image analysis of 

foam structures where measurement accuracy contains inherent error because of the 

nondeterministic nature of pore size or length scale definition and subsequent measurement.   

A primary role of characteristic length scale is to serve as a universal scaling parameter.  

If a set of foam structures are self similar, e.g. if the underlying geometry of the structures are 

invariant to physical dimension, then the length scaled defined above will serve as a universal 

scaling parameter.  To demonstrate this it is instructive to plot a normalized version of Figure 25, 

see Figure 26. 

 

Figure 26: The transverse dispersion coefficient normalized 
by its maximum amplitude as a function of the axial 
displacement length scaled by the transport length scale l 
for LB simulation (red line), the NMR data for the 110 PPI 
(open circles), 80 PPI (open squares), the scaled memory 
function model (blue line) and LB simulation for a 
consolidated random sphere packing [24] (black line).  

The three foam samples data collapse shown in Figure 26 suggests the underlying geometry of 

the structures to be invariant to physical dimension.  The monodisperse packed bed dynamics 
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(black line) nearly agree with the foam dynamics at short times, suggesting the streamline paths 

of the packed bed are similar to the foam structure, an interesting if only coincidental similarity.   

The recorrelation effect is confirmed by observing the normalized mean displacement 

dependence of the normalized transverse velocity autocorrelation function: VACF = 

( ) ( ) 20v v t v⊥ ⊥ ⊥ .  Shown in Figure 27 is the VACF for the LB simulation and 110 PPI NMR 

data calculated from the second time derivative of the transverse variance in Figure 23.  Also 

shown in Figure 23 is the exponential memory function model fit.  The VACF curves shown in 

Figure 27 are for the high Peclet number limit.   

 

Figure 27: Transverse VACF as a function of 
normalized mean displacement for the LB simulated 
foam pore structure (red line), 110 PPI NMR data 
(open circles), and exponential memory function 
model with l = 250µm (blue line) 

 
The negative lobe of the VACF in Figure 27 is a result of tracer particles having a transverse 

velocity orientation at time t opposite of their original transverse velocity orientation.  The low 

point of the VACF corresponds to the high point of the diffusion coefficient curve.  The model 

curve shown in Figure 27 (blue line) oscillates more strongly than the data.  From the frequency 
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sum rules: 2 2
vVACF 1-

t
t ω

→∞
= , it is obvious from Figure 27 that the model fit underestimates 

the second frequency moment or restoring force, 2
vω .  Accessing this short time domain to 

accurately measure 2
vω  is impractical with the single PGSE experiment; however with the 

frequency modulated PGSE NMR method [104], 2
vω  can be measured directly as the second 

moment of the resulting VACF frequency distribution. 

Physical Interpretation of the Dynamic Length Scale Using a Toy Model 

To help interpret the physical meaning of the dynamic length scale defined above, this 

section presents an elementary toy model of backscattering dynamics.  The dynamics discussed 

in this section result from particles moving at a fixed tangential velocity along a sinusoidal path, 

see Figure 28. 

 
Figure 28: Sinusoidal path of the toy model    

 

For the sinusoidal path the y-coordinate in terms of the x-coordinate is 
 
 y = H sin(2πx/L) (4.22) 

and the y-coordinate velocity in terms of the x-coordinate velocity is 

 vy = vx (2πH/L) cos(2πx/L) (4.23). 

 

 

V
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The x-coordinate velocity in terms of x is  

 [ [2 2
xv V 1 (2 H L)cos(2 x L) ⎤ ⎤= + π π ⎥ ⎥⎦ ⎦

2    (4.24). 
 
The arc length between two x-points is 

 ( ) ( )
1

2

x
2

1 2
x

S 1 2 H L cos 2 x L dx−
⎡ ⎤= + π π⎣ ⎦∫  (4.25). 

Constant tangential flow velocity along the sinusoidal path requires that the time to travel an arc 

length S is t = S/V.  Due to the analytical difficulty of solving Eqn. (4.25) for the x-coordinate in 

terms of time and starting position, the equations are solved numerically in MATLAB (see 

Appendix B) for the mean transverse variance, VACF, and effective diffusion coefficient as a 

function of mean displacement; see Figure 29. 

 
Figure 29:  Transverse correlation functions of the sinusoidal toy model  
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The first critical point of the transverse variance and VACF occur at a mean displacement of 

exactly half the sinusoid wavelength: 0.5L.  The diffusion coefficient critical point occurs at a 

mean displacement of 0.375L.  This analysis tends to support the conjecture posed above in 

which it was stated that the diffusion coefficient maximum or VACF minimum occurs at a mean 

displacement of half the primary axial oscillation wavelength.  This is an interesting fact because 

it suggests the ability to measure the physical dimensions of a streamline path by observing time-

correlation dynamics.  The streamline dimensions of flow in porous media are a reflection of the 

pore structure itself.  Therefore this analysis suggests the opportunity to resolve a pore structure 

through the streamline path via the time correlation functions of transport.  The total information 

content of the first order correlations, e.g. average VACF, and higher order correlations, e.g. 

non-local dispersion tensor, as they relate to the physical dimensions of a streamline path 

remains an unexplored concept. 

Asymptotic Dispersion Dynamics 

Definition of a characteristic length scale now allows for scaling of the asymptotic 

dispersion coefficients with Peclet number.  Shown in Figure 30 are the scaling of the axial and 

transverse asymptotic dispersion coefficient with Peclet number for the 110PPI foam and 80PPI 

foam.  The asymptotic coefficients are determined by measuring the linear slope of the long time 

limit variance. 
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Figure 30: Asymptotic dispersion coefficient as a function of Peclet number 
(based upon the correlation length l)  a) axial coefficient for the 110PPI foam b) 
transverse coefficient for the 110PPI (open circles) and 80PPI foam (open 
squares),  Dm = 2x10-9 m2/s 

 
As expected the asymptotic transverse dispersion coefficient scales linearly with Peclet number.  

For a given Peclet number the transverse coefficient of foam is significantly reduced compared 

to a monodisperse packed bed.  A power law fit to the asymptotic axial dispersion coefficient of 

the form Peα, with α = 1.82, is over-layed on the axial data in Figure 30.  For pure diffusive 

mixing α = 2 while for pure mechanical mixing α =1.  Given the highly open nature of the 

110PPI foam structure one might expect a power law exponent more similar to diffusive mixing.  

The reduced scaling of the transverse dispersion coefficient (compared to monodisperse packed 

beds) supports the observation of reduced mechanical mixing.  For transport applications this 

result is significant because it can help to quantify the relative balance of permeability (or other 

statistics) and dispersion relative to alternative structures such as monodisperse packed beds. 
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Conclusion 

This chapter presented a survey of experimental and numerical data analyzing dispersion 

in polymer cellular foam.  The characteristic length scale of cellular foam structures was defined 

by a length scale inherent to the stochastic dynamics of transport within the open space of the 

structures.  This efficient measurement of length scale is a significant improvement over 

previous ad hoc image analysis techniques in part because the definition and measurement 

coarse grains all structure statistics.  The definition made in this work, || ∆ 0dD d
l

⊥ =
= ζ , agrees 

well with the PPI parameters provided by the manufacturer.  It is important to note that the 

definition of length scale is in part an ill-posed concept; there are in fact many potential length 

scales that can act as a universal scaling parameter.  Higher order correlations, such as the 

nonlocal dispersion coefficient […], can reveal similar length scales in transport dynamics.  

However for practical applications the simplest and most robust measurement method is often 

the most appealing.  From this perspective the single PGSE measured dispersion coefficient is a 

highly attractive approach.  When considering cellular structures for transport applications one 

must weigh the importance of mechanical mixing to the relative advantages (e.g. high 

permeability).  The data in Figure 30 will help decide if foam structures are indeed the ideal 

structure for transport applications. 
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TRANSPORT OF COLLOIDAL PARTICLES IN AN OPEN CELL POLYMER FOAM 
POROUS MEDIA 

 
Introduction 

The flow and transport of a colloidal suspension through a porous material is an 

important process found within a broad range of disciplines, spanning geophysics, engineering, 

and medicine.  The importance of colloid-related (e.g. microbe, radio-nuclide, etc.) transport in 

the subsurface has motivated much theoretical and experimental work focused upon 

understanding the mechanisms of colloid transport and deposition in porous media [105-107].  

The practical challenges associated with experimentally observing the transport of colloids in 

opaque media have relegated past studies to classic breakthrough-type methods [63, 65, 108].  

The purpose of this work is to present results from nuclear magnetic resonance (NMR) 

measurements of a moderate concentration (φ  = 0.15), hard sphere (mean particle radius of R = 

1.25µm), colloidal suspension transport through a high porosity open-cell polymer foam.  The 

use of cellular foam as the porous media is motivated by the desire to prevent complete blockage 

of flow paths and also the ubiquity of the structures in technological and biological media e.g. 

sponges, trabecellular bones, filters[67].  The application of NMR in the study of colloid 

suspension transport in porous media allows for the non-invasive, phase-resolved observation of 

transport dynamics [66, 109] and therefore marks a significant advance in the experimental study 

of suspension transport in porous media.  

Nuclear magnetic resonance has proven to be a valuable non-invasive tool for probing 

the spatial and temporal dynamics of single phase transport in porous media [110].  The 
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technique is an ideal experimental method in the sense that the liquid molecules of the advective 

velocity field within the pore space are the tracer particles.  The measurements are therefore free 

of entrance effects and require no assumptions regarding the governing mass transport equation 

inherent to break through curve methods.  The recent development of manufacturing core shell 

oil filled particles [111] has allowed for the separation of liquid and solid-phase dynamics in 

NMR measurements of colloidal suspensions [34, 109, 111, 112].  The proven application of 

NMR in the study of single phase transport in porous media coupled with the recent 

developments in NMR-active core shell colloidal suspensions have established all the 

experimental details necessary to directly probe the transport of colloidal suspensions in porous 

media.   

The experimental observations in this work are limited to the long time limit of colloid 

transport; times much greater than the transient so-called “clean-bed removal” filtration phase 

[106].  As will be later demonstrated, in this “stationary” regime the interplay of colloid 

attachment and flow has equilibrated so that the solute and colloid dynamics are steady state.  

Colloidal particle dynamics in porous media are typically subcategorized into transport (flow) 

and attachment steps [63].  As a probe of these dynamics the value of NMR lies partially in the 

ability to discern the behavior of the subcategories through temporally resolved molecular 

displacement dynamics, i.e. the propagator of motion [30].  The temporal observation of coarse 

grained attachment dynamics provides an indication of the means through which the various 

chemical-colloidal-surface interactions [113, 114] impact attachment and is therefore useful for 

testing conceptual models.  Analogously, the temporal observation of flow or transport dynamics 

provides a platform through which one can investigate the potential influence of non-Brownian 
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colloidal flow effects; e.g. colloid-colloid hydrodynamic interactions, inertia, and shear induced 

migration [115, 116].  The ability of NMR to discern the sub-categories of dynamics provides 

important information regarding the pore scale dynamics which generate the macro-scale 

transport behavior; information which is otherwise lost in the inherent coarse graining of 

classical methods. 

Materials and Methods 

Materials and Hardware 

Polyurethane open-cell foam (Foamex, Inc.) was used as the porous media.  The foam 

has a porosity of 97% and an approximate average pore size of 110PPI (pores per inch).  The PPI 

designation given by the manufacturer is an approximate characterization of the pore structure.  

An 8x8x150mm rectangular column of foam was sealed at the four outer faces using adhesive 

backed PEEK tape and epoxy.  The NMR transport experiments were conducted on a section of 

the foam sample 2/3 of the column length from the inlet. 

The NMR experiments were conducted on a Bruker super-wide bore 300MHz magnet 

with a Micro2.5 magnetic field gradient probe containing a 15mm birdcage coil and networked 

to a Bruker Avance III spectrometer with gradient controls.  The gradient set is capable of 

producing orthogonal magnetic field gradients up to 1.5T/m.   

The transport experiments began by flushing the sample with de-ionized water 

(Millipore, Inc.) for about 12 hours at a mean flow velocity of 20 mm/s using a peristaltic pump 

(Masterflex, Inc.).  Transport measurements of pure water flow from a Pharmacia P500 pump 

were then taken for comparative purposes.  After the pure water measurements were finished the 
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sample was preequilibrated with the colloidal suspension through 6 hours of continuous up-flow 

at a mean flow velocity of 1 mm/s.  During flow, the reservoir of colloidal suspension was 

slowly mixed using a magnetic stir bar to prevent aggregation or creaming.  The flow of 

colloidal suspension was driven by a programmable syringe pump (KDS Scientific, Inc.) 

interfaced to a 50ml glass syringe (Hamilton, Inc.). 

The core-shell oil particles were constructed using the method of Loxley and Vincent 

[111].  A short review of the technique follows.  An oil-phase containing 3.0 g of poly(methyl-

methacrylate) (PMMA) MW 350,000, 60 ml of dichloromethane, 3.8 ml of acetone and 5 ml of 

hexadecane was added drop-wise to 80 ml of a 2% wt. polyvinyl alcohol (PVA) solution while 

being stirred with a Heidolph Silent Crusher M homogenizer.  To obtain the desired particle 

sizes a constant shear rate of 12,000 rpm was applied for a period of one hour following the oil-

phase addition. The resulting emulsion was then added to 120mL of a 2% wt. PVA solution and 

the volatile solvent was allowed to evaporate overnight resulting in a PMMA shell encasing the 

oil, thus separating the oil and water phases. The microspheres are short range repulsive due to 

short chain PVA molecules which adhere to the surface and exhibit hard sphere behavior [117].  

The resulting particle size distribution was estimated from light microscopy images of the 

suspension.  A custom edge-detection image analysis program was used to extract the particle 

diameters from optical suspension images, see Figure 31.  The results from light microscopy 

were corroborated by an equivalent analysis of Field Emission Microscopy (FEM) images.  
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Figure 31: Size distribution of the colloidal 
suspension, mean diameter = 2.5µm, inset: FEM 
colloidal suspension image 

 

The suspension dynamics studied in this work are limited to a colloidal volume fraction of φ  = 

0.15.  To arrive at a precise volume fraction the unprocessed suspension was centrifuged 

(Sorvall, Inc.) at 8,000 rpm and 15,000 rpm for 10 minutes each.  The resulting concentrated 

phase was then re-suspended to the desired volume fraction.  To measure a precise volume 

fraction capillary tubes filled with the suspension were centrifuged (IEC, Inc.) and the resulting 

relative heights of the concentrated phases were used to quantify a precise volume fraction. 

Results and Discussion 

Spatially Resolved Velocity Images 

Spatially resolved maps of the flow-direction velocity were measured for both pure water 

and the colloidal suspension, see Figure 32.  Figure 32 a) & b) were obtained under identical 

mean flow speeds and experimental parameters.  The colloidal suspension velocity image was 



72 

obtained following approximately 12 hours of continuous pumping.  The chemical shift of the 

colloidal suspension due to the presence or oil and water created a read-direction artifact in 

Figure 32a).  The artifact is visible in the shifted edge on the right-hand side of Figure 32a).  The 

velocities of the colloidal suspension image are therefore partially weighted by a spatial 

correlation with neighboring pixels.  As a result of the artifact the distribution of flow velocities 

in the colloidal suspension image appears to narrow. 

 
Figure 32:  Spatially resolved images of the flow direction velocity within the 
foam sample for pure water (left) and 15% colloid suspension (right), image 
resolution is 60x60x1000µm/pixel, <v||> = 250µm/s, acquisition time was 
30min, the colloidal suspension image is weighted by a chemical shift artifact 

 

Neglecting the image artifact, the colloidal suspension and pure water images of Figure 32 have 

qualitative similarities.  Regions of high velocity in the pure water image are also regions of fast 

velocity in the colloidal solution.  Measurements on an AR-G2 rheometer (AR Instruments, Inc) 

demonstrate the 15% colloidal suspension behaves as a Newtonian fluid over a wide range of 

shear rates.  Therefore, neglecting any structural changes due to particle deposition one would 

expect the flow profile of the colloidal suspension and pure water to be equivalent.  The 
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qualitative similarity of Figure 32 suggests that any changes in the pore structure from particle 

deposition occur at a local pore scale in contrast to regional or macro-scale changes. 

Displacement Propagator Dynamics 

The temporal evolution of the displacement propagator, ( )P ∆R, , was measured as a 

function of observation time for both pure water and the colloidal suspension.  The propagator 

for each phase of the colloidal suspension was obtained by integrating the spectral dimension of 

the two dimensional Fourier transformed signal over the water and oil peaks thus providing the 

propagator for the suspended particle solid phase (oil) and the suspending liquid phase (water).  

The phase resolved axial and transverse displacement propagators of the colloidal suspension are 

compared in Figure 33 for a mean flow velocity of 1.0 mm/s at several displacement observation 

times.  The data in Figure 33 was obtained following 6 hours of continuous suspension flow.   
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Figure 33: Average propagator temporal evolution of the water liquid 
phase (solid line) and oil particle solid phase (dashed line) of the 
colloidal suspension at a mean flow velocity of 1 mm/s; a)-c) axial 
propagators, d) transverse propagators 

 

The axial propagator of the colloidal suspension solid-phase, Figure 33a)-c), contain a 

significant portion of the population near ζ|| = 0, indicating hold-up of colloidal particles.  The 

large displacement behavior of the solid-phase propagators appear similar to the liquid-phase 

however there is a difference in the liquid and solid phase axial displacement propagators at 

moderate displacements, between ζ|| = 0 and the mean displacement (<ζ||>).  The transverse 

displacement propagator of the solid-phase, Figure 33d), contains a significant portion of the 

population near ζ┴ = 0 while the liquid-phase appears nearly Gaussian over the range of 

displacements.  Despite hold-up of colloidal particles the mean flow velocity of the colloidal 
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suspension solid and liquid-phase are equivalent over a broad range of mean flow speeds, see 

Figure 34.  The flow speed is calculated from <v||> = <ζ||>/∆. 

 
Figure 34: Relative flow velocities of the 
colloidal suspension solid and liquid-phase 

 

Shown in Figure 35 is a comparison of the colloidal suspension liquid-phase and pure 

water axial propagators at a mean flow velocity of 1mm/s.  Also shown in Figure 35b) is a 

comparison of the colloidal suspension axial propagator at a fixed observation time following 6 

and 24 hours of continuous flow.  The equivalence of the axial propagators in Figure 35b) 

suggests the dynamics of the colloidal suspension to be steady state, e.g. invariant to the 

beginning of time. 
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Figure 35: Axial propagator temporal evolution of the phase resolved 
colloidal suspension and pure water at a mean flow velocity of 1 mm/s a) 
single-phase water and colloidal suspension liquid-phase axial propagator 
b) colloidal suspension axial propagator following 6 and 24 hours of 
continuous flow 

 

The axial propagators of pure water, see Figure 35a), are characterized by a fast moving bulk 

population and smaller population of slow flowing molecules near ζ|| = 0.  In comparison, the 

axial propagator of the colloidal suspension liquid-phase contains a greater portion of the 

population near the mean displacement and the pure water propagator contains a significantly 

larger high displacement tail at longer displacement times.   

Agreement of the solid and liquid-phase axial displacement propagators in Figure 33a)-c) 

at large displacements, ζ|| > <ζ||>, suggests similar streamlines of the two phases in regions of 

high velocity.  The difference in the propagators for ζ|| < <ζ||> leading up to ζ|| = 0, suggests the 

existence of a low particle concentration boundary layer near the solid structure consistent with 

shear induced particle migration [66, 109].  Analogous to flow in a straight tube, the local 

incoherent motion of colloids is governed not only by Brownian motion but also the complex 

interparticle hydrodynamic interactions of neighboring colloids and their interaction with the 
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solid structure.  Within a porous media the sequence of interparticle interactions is further 

confounded by the separation of advective streamlines by mechanical mixing.  An intuitive 

product of the mechanical dispersion dynamics is that particles on adjacent streamlines can only 

interact for a time period proportional to the time that two streamlines remain adjacent, i.e. τ α 

l/<v||>, where l is the characteristic length of the media and τ is the characteristic relaxation time 

of the advective dynamics.  Furthermore a time varying flow direction and speed along a given 

streamline introduces the possibility of inertial effects impacting colloid movement.  Relative to 

the liquid-phase, colloids moving at high speed would respond less quickly to abrupt changes in 

the flow direction.  Further work is required to fully isolate and understand the various 

mechanisms of active colloid transport in the complex advective flow fields within porous 

media. 

The axial propagator disparity between pure water and the colloidal suspension liquid-

phase, seen in Figure 35a), suggests dissimilar advective velocity distributions due to dissimilar 

pore structure.  Transformation of the pore structure is the result of colloidal deposition on and 

near the solid structure.  The hold-up of colloidal particles near the solid pore structure 

introduces an additional suspension dispersion mechanism to the intrinsic dispersion of the pore 

structure.  A fraction of the colloidal particle population must wait a time period before 

continuing advective transport through the structure.  The hold-up mechanism will contribute to 

the asymptotic solid-phase dispersion coefficient like Peln(Pe)[58, 101].   The process of 

exchange between the flowing and stagnant colloids can be quantified through the stagnant 

fraction of the solid-phase population.  The immobile fraction of the solid-phase population can 

be determined from the q = 0 intercept of a linear fit to a Stejskal-Tanner plot, ln|S| vs. 4π2q2(∆-
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δ/3), of the PGSE signal at high q, Figure 36a).  The immobile fraction can also be estimated 

from the cumulative distribution function of the axial displacement propagator; i.e. the area 

underneath the hold-up peak [118].  Figure 36b) shows the stagnant fraction of the solid-phase 

population as a function of observation time for a mean flow velocity of 1 mm/s estimated from 

the high q behavior of the Stejskal-Tanner plot and the cumulative distribution function of the 

axial propagator evaluated to a displacement of ζ|| = 0.04mm. 

 
Figure 36:  Colloidal suspension axial dynamics for <v||> = 1mm/s a) phase-
resolved Stejskal-Tanner plot of the PGSE signal amplitude for ∆ = 250ms b) 
immobile fraction of the solid-phase as a function ∆, estimated by integrating 
the propagator under the hold-up peak and also from the high q behavior of 
the Stejskal-Tanner plots as in a) 

 

The initial, ∆ < 0.4s, rapid decline of the solid-phase immobile fraction in Figure 36b) suggests a 

portion of stagnant colloids undergo fast exchange with the flowing population, e.g. colloids 

very near the stagnant fluid surface.  The slow decline of the stagnant solid-phase population for 

∆ > 0.4s indicates a slow exchange population, e.g. colloids trapped within stagnant or 

recirculation volumes or fixed to a surface.  The scaling of the data in Figure 36b) is therefore an 

indication of the various mechanisms responsible for solid-phase deposition and therefore the 

functional form of the stagnant population wait time. 
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Time Dependent Dispersion Dynamics 

The following discussion will now focus upon the time dependent dispersion of the 

colloidal solution.  The variance or second moment, σ2, of the displacement propagator can be 

determined from a low q fit to the PGSE signal amplitude.  A time dependent dispersion 

coefficient is defined as the variance divided by the observation time, D = σ2/(∆-δ/3).  The two 

quantities share the same information content but in different form.  The time dependent phase-

resolved variance and dispersion coefficient are shown in Figure 37 for the transverse and axial 

direction.  Images a) & c) contain the axial dispersion dynamics as a function of mean 

displacement and images b) & d) contain the transverse dynamics.  The data shown in Figure 37 

was obtained following at least 6 hours of continuous flow.   
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Figure 37: Phase resolved axial and transverse dispersion dynamics of the 
colloidal suspension within the foam pore structure, a) & b) axial and 
transverse displacement variance as a function of mean displacement for a 
mean flow velocity of 1mm/s, c) & d) axial and transverse effective 
dispersion coefficient as a function of mean displacement, Dm = 2x10-9 m2/s, 
also shown in d) are the dynamics of pure water at a mean flow velocity of 
1mm/s 

 

The linear growth of the axial and transverse variance, see images a) & b), at high observation 

time, ζ|| > 0.6mm, suggests the existence of a unique asymptotic dispersion coefficient for both 

phases.  To our knowledge these are the first measurements directly demonstrating this behavior 

of a colloidal suspension in a porous media.  At long times the axial variance of the colloidal 

suspension solid-phase grows faster than the liquid-phase variance.  This is plausible considering 

the additional hold-up mechanism impacting the solid-phase dynamics.  There is a transition 
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point in the axial dynamics before which the liquid-phase axial dispersion is greater than the 

solid-phase, see image c).  This short time difference is the result of a number of potential factors 

including the significantly greater molecular mobility of the liquid-phase and also perhaps a 

greater scattering of the liquid-phase throughout the advective velocity field.  In contrast the 

liquid-phase transverse dispersion is consistently greater than the solid-phase dispersion.  The 

backscattering effect seen in the transverse dispersion dynamics of both phases, see image d), is 

the result of oscillatory streamlines within the structure.  Within the backscattering dynamics 

there exists a “fingerprint” of the solid pore structure, see chapter 6.  For pure water, at high 

Peclet number, the maximum of the transverse dispersion curves occur at a fixed mean 

displacement of l = 250µm; a number which is on the order of the half wavelength of the axial 

oscillations of streamlines within the pore space.  This fixed displacement is a characteristic 

length of the structure[119] and will be used in the Peclet number definition later in the text.   

The colloidal solution transverse dispersion dynamics are qualitatively similar to the pure 

water dynamics.  However the liquid-phase transverse dispersion magnitude is significantly 

enhanced relative to the solid-phase and pure water dispersion, see image d).  The enhanced 

transverse dispersion of the liquid-phase relative to the solid-phase is the result of a number 

factors including the greater molecular mobility of the liquid-phase, hold-up of solid-phase near 

ζ┴ = 0 and possibly migration of flowing colloids into less mechanically driven regions (e.g. 

away from the solid pore structure).  The enhanced transverse dispersion of the liquid-phase 

relative to pure water however is an indication of the change in pore structure and the resultant 

effects on the advective flow profile.  In general the comparison made in image d) indicates the 

liquid-phase experiences enhanced mechanical mixing relative to the solid-phase and pure water.   
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Asymptotic Dispersion Dynamics 

The amalgamation of effects stemming from deposition of colloids on the pore structure 

and particle-particle, particle-structure interactions, and inertia are manifested in the asymptotic 

dispersion coefficients of the colloidal solution.  The phase-resolved axial and transverse 

asymptotic dispersion coefficients are plotted in Figure 38 as function of Peclet number.  The 

Peclet number was varied by adjusting the mean flow velocity.  In the advection dominated 

regime, i.e. Pe>100, classical dispersion theory predicts a power law scaling of the asymptotic 

axial dispersion coefficient with Pe[120].  Power law fits to the axial asymptotic dispersion 

coefficients are therefore also shown in image a).  For purely Taylor dispersion the asymptotic 

axial dispersion coefficient scales like Pe2 while for purely mechanical mixing the coefficient 

scales like Pe and hold-up dispersion contributes like Peln(Pe).  The asymptotic coefficients 

shown in Figure 38 were determined from the long time behavior of D as a function of time, 

similar to the so-called effective dispersitivity[121], rather than fitting a linear curve to the long 

time behavior of the variance.  Therefore the asymptotic coefficients shown in Figure 38 retain 

pre-asymptotic information such that the axial coefficients are underestimated while the 

transverse coefficients are overestimated. 
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Figure 38:  Phase resolved axial and transverse asymptotic dispersion 
coefficients of the colloidal suspension as a function of mean flow velocity 
(non-dimensionalized in the Peclet number), Dm = 2x10-9 m2/s 

 

The asymptotic axial dispersion coefficient of the colloidal solution solid-phase was 

found to scale like Pe1.71 while the liquid-phase was found to scale like Pe1.53; for pure water the 

coefficient scales like Pe1.81 (determined from a linear fit to the long time variance).  Therefore, 

as mentioned in the earlier transverse dispersion discussion, the dynamics of the colloidal 

solution liquid-phase are more significantly driven by mechanical effects then either the solid-

phase or pure water dynamics.  The solid-phase dynamics however appear more like Taylor 

dispersion.  From an earlier analysis of the axial propagators one is able to conclude that the 

solid-phase experiences the mechanical effects which govern the liquid-phase dynamics; 

however these effects are offset by the hold-up mechanism and possible particle migration.  As a 

result the solid-phase coefficients in Figure 38 appear more similar to Taylor dispersion then the 

liquid-phase. 
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Conclusion 

The active transport of a colloidal suspension within cellular foam was probed using 

nuclear magnetic resonance.  The dynamics of both the liquid and solid-phase of the suspension 

were presented over a range of observation times and mean flow velocities.  The deposition of 

colloidal particles onto the solid pore structure were shown to cause a transformation of the solid 

pore structure which in turn alters the macro-scale dynamics of both phases relative to single 

phase transport.  The modeling of colloid transport in porous media should therefore consider the 

pore structure transformation effects of colloid deposition and the resultant variation in the 

macro-scale dynamics.  The various phenomenon presented in this work are limited to a specific 

structure and surface chemistry and should therefore cautiously be interpreted when considering 

the dynamics within other media.  The mechanisms of colloid deposition in high porosity 

polymer cellular foam are not the mechanisms one would expect in a lower porosity granular 

media exhibiting different physical and chemical surface characteristics.  However the results in 

this work mark an important first step.  The advantageous capabilities that NMR provides in 

regard to the study of colloid transport in porous media will surely be valuable in the ongoing 

process of model development and experimental verification.   
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MAGNETIC RESONANCE MICROSCOPY ANALYSIS OF TRANSPORT IN A NOVEL 
TAPE CAST POROUS CERAMIC 

 
Introduction 

Recent advances in ceramic processing technology have introduced the ability to produce 

spatially evolving pore structures in which the pore dimensions exhibit one dimensional affine 

characteristics [122].  These complex pore structures suggest the opportunity to design ceramics 

with unique transport properties for many industrial applications including fuel cells, filtration, 

and catalyst supports.  However, the detailed nature of these pore structures including inter-pore 

connectivity has yet to be established.  This experimental study utilizes nuclear magnetic 

resonance (NMR) transport measurements to probe the characteristics of the freeze tape cast 

ceramic pore structure and induced transport phenomena defining this new class of ceramics 

with engineered porosity. 

Nuclear magnetic resonance microscopy is well suited to the study of opaque porous 

structures because of the ability to easily obtain information concerning the dynamic behavior of 

a fluid or gas occupying the pore structure [123, 124].  The magnetic basis of information 

transmission in an NMR experiment overcomes the material opacity constraint of many optically 

based methods historically used to study porous materials.  Furthermore, NMR methods offer the 

ability to spatially resolve data.  The spatial resolution capability is particularly attractive to this 

study because the ceramic samples exhibit spatial scaling of the pore structure as mentioned 

above. 
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The majority of literature relating to NMR based studies of ceramic materials focus upon 

either solid state type measurements [125] or image intensity based measurements [126-129].  In 

parallel with these efforts an array of NMR methodologies, e.g. gas diffusion and fluid transport 

techniques, have been developed which can be used to study porous materials[102, 110, 123, 

124, 130, 131].  These NMR techniques and others have emerged as powerful tools used in the 

study of structural and transport characteristics of classic porous media, e.g. mono-disperse bead 

packs [32, 131-133].  This article expands the application of these NMR transport techniques to 

the structural characterization of the novel ceramics with heterogeneous pore structures. 

This chapter will overview the manufacturing process of freeze tape cast ceramic 

structures and the experimental NMR methodologies in section one.  Section two reports the 

experimental results involving a range of spatially resolved and bulk NMR measurement and the 

resultant analysis of the data to determine both structural pore information and transport 

dynamics.  Section three provides concluding remarks focusing on the potential to design pore 

structures for controlled dynamics. 

Freeze-Tape-Cast Ceramic Pore Manufacture and Experimental Methods 

The porous structures of interest to this study are manufactured using a novel freeze tape 

casting procedure [122].  The ceramic material selected is yttria stabilized zirconium oxide 

(YSZ).  Traditional tape cast pore-forming techniques used in the manufacture of ceramics 

utilize homogeneously dispersed packing of thermal fugitive compounds [134] (polystyrene, 

carbon, etc.).  The ability to control the pore structure of these traditional tape cast ceramics is 

governed by the morphology of the pore former (i.e. spherical, acicular, etc.) and the orientation 
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and distribution of the thermal fugitives in a suspension, thereby limiting the precision and 

complexity of the pore structures that can be obtained.  In addition, the drying process limits the 

tape thickness due to settling and drying stresses yielding cambered substrates and undesirable 

density gradients.  Freeze casting methods have been recognized as a methodology to produce 

ceramic pore structures not possible with traditional casting methods [135-137], including 

graded and columnar pore morphologies in a single processing step.  However due to the 

complex nature of the casting dies and freezing baths, freeze casting methods are generally 

considered commercially unviable.  The tape casting process used in conjunction with freeze 

casting methods has been shown to retain the pore-forming control mechanisms of freeze casting 

methods while expanding the technology to commercially viable casting volumes [122], see 

Figure 39.  Freeze tape casting yields long range pore alignment from a controlled nucleation 

front allowing large area ceramic fabrication with a common pore orientation. 

 

Figure 39:  Typical freeze tape cast ceramic pore structure as viewed using 
SEM microscopy, bar = 400 µm 

 

x
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The SEM images of Figure 39 provide high resolution two dimensional pore scale detail on a 

limited region of the ceramic.  The imaging method requires destructive sampling.  Non-

destructive magnetic resonance imaging (MRI), though at lower resolution, is not limited by the 

opaque nature of the ceramic structure.  Furthermore, dynamic MRI measurements permit the 

measurement of transport dynamics within the pore structure, thereby sampling inter-pore 

connectivity.  Magnetic resonance imaging of pore structure is accomplished by measurement of 

a saturating liquid or gas spin density ρ(r).  The resultant image is a pixel intensity map where a 

given pixel is weighted by the local spin density.   

All NMR experiments were conducted on a Bruker Avance DRX spectrometer system 

with a Bruker Micro5 probe and gradient amplifiers interfaced with a 250 MHz superconducting 

magnet.  A custom designed sample holder was used to rigidly fix cylindrical ceramic samples 

within a 10 mm birdcage rf. coil for the flow and diffusion measurements.  The sample holder 

was designed to allow flow through a ceramic disk while preventing flow at the disk outer edge.  

The imaging was conducted on samples in a 10 mm birdcage coil.  Several individual ceramic 

samples were used to generate the experimental data however all ceramic samples were 

manufactured using YSZ ceramic and an equivalent manufacturing process.  The ceramic sample 

thicknesses varied from 1.0 to 2.5 mm.  A Pharmacia P500 syringe pump created the steady 

laminar flow of octane through the ceramic samples.  Octane was chosen because of air 

desaturation in the ceramic pore structure when using other fluids.  The orientation of the 

ceramic samples was such that Octane flow was always in the direction of divergent pore 

growth. 
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Experimental Results and Discussion 

Magnetic Resonance Imaging of Freeze Tape Cast Ceramic and PGSE 
Diffusion Probe of the Pore Structure 

The one dimensional affine spatial scaling of the freeze tape cast ceramic pore 

dimensions is highly visible from magnetic resonance imaging of a Magnevist© doped water 

saturated ceramic disk, as shown in Figure 40.  The images are each a slice of 200 µm thickness 

from the top Figure 40a) to bottom Figure 40c) of the sample as shown.  The in-plane image 

resolution at each depth is 26 µm by 26 µm.  Note the impact of the varying pore size on the 

water density image.  In the large pores near the upper surface, Figure 40a), regions of no signal 

in the ceramic and strong signal in the pores indicate the spatial averaging scale of 26 µm is 

smaller than the pore size.  Elongation of the pores in a preferred direction at approximately 45º 

to horizontal is evident.  The image clearly indicates the connectivity of the pores in the image 

plane; information not available from SEM.  As the imaged plane is moved down the thickness a 

blurring of the image results from the partial voluming of the pore water signal and solid ceramic 

within the 26 µm spatial dimension due to the decreasing pore dimension. 
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Figure 40:  Magnetic resonance imaging of a water saturated YSZ freeze tape 
cast ceramic disk showing the transition of pore dimensions, slice thickness = 
200 µm, 26 x 26 µm/pixel, bar = 2.0 mm 

 
Diffusive spin behavior has been recognized as another method to obtain pore scale information 

in porous media [124].  Attenuation of the PGSE NMR signal of a saturated porous media under 

no-flow conditions (assuming weak magnetic susceptibility induced internal magnetic field 

distortions) is a result of molecular diffusion during the observation time ∆.  For a porous media 

a comparative reduction in the non-restricted diffusion signal attenuation occurs because at 

sufficient observation times the pore structure restricts the diffusive movement of saturating 

molecules and therefore reduces the PGSE NMR signal attenuation [6, 35, 123, 124]. 

Using the one dimensional spatially resolved PGSE sequence a data set quantifying 

transverse restricted diffusion (perpendicular to the direction of pore growth) in a freeze tape 

cast ceramic structure was obtained by angular adjustment of a transverse gradient vector, see 

Figure 41.  

slice thickness 
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Figure 41:  Orientation of the applied gradient vector 
relative to the transverse pore shape for the single pulse 
PGSE experiment, plane shown is perpendicular to the 
main Bo field and direction of pore growth 

 
The characteristic diffusion time required for spins to sample a pore restriction is given 

by 2
ma D , where a is the characteristic pore size and Dm is the molecular self diffusion 

coefficient.  The characteristic diffusion length scales with the square root of the observation 

time ∆d ml D∝ , so smaller pores will have a larger reduction in signal attenuation when 

compared to larger pores because more spins will have experienced the pore wall restriction.  

Therefore, for a fixed observation time smaller pore dimensions will result in a lower effective 

diffusion coefficient.  Shown in Figure 42 is the effective diffusion coefficient within a freeze 

tape cast ceramic from a single pulse PGSE experiment with both angular and one dimensional 

(parallel to pore growth direction) spatial resolution.  Diffusion in the longitudinal direction over 

the observation time ∆ coarsens the spatial resolution in the longitudinal direction. Therefore a 

relatively short observation time (as compared to the expected transverse diffusive time scales of 

the structure) of ∆ = 30 ms was chosen to minimize spins longitudinal movement while 

allocating their dynamics to a particular longitudinal location.   

 

 x 

g 
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Figure 42:  Effective diffusion coefficient from the single pulse PGSE experiment 
as a function of longitudinal position and transverse gradient vector orientation 
within a YSZ freeze tape cast ceramic, ∆ = 30 ms 

 
The data clearly indicates depth and in plane angular orientation of the average pore structure.  

Figure 42a) indicates the growth in the average pore size from the small pore region, z = 0 mm, 

to larger pores up to z = 2.25 mm.  In all three in plane orientations there is a strong restriction of 

motion (small pore region) at z = 0.25 mm with a fairly rapid decay in the z-dimension until a 

depth of z = 1.0 mm, indicating a rapid increase in pore size over this region.  For z > 1.5 mm the 

effective diffusion coefficient asymptotes to in plane orientation values below the free molecular 

diffusion coefficient signaling that pore growth has nearly diminished.  Outside of the ceramic 

structure the effective diffusion coefficient asymptotes to the room temperature self diffusion 

coefficient of octane 2.35e-9 m2/s.   In Figure 42b) the pore size variation with in plane angular 

orientation at four depths is shown through the variation of Deff.  The depth and angular 

dependence of Figure 42b) is evident and clearly a strong elongation of the pores can be seen in 

the three profiles within the ceramic.  In the isotropic fluid outside of the ceramic the profile is 

independent of the gradient orientation as seen in uppermost profile of Figure 42b).  The ceramic 
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is thus heterogeneous in both the depth and radial dimensions.  This determination using NMR 

techniques is non-destructive and describes only the connected open pore structure accessible by 

liquid penetration. 

Spatially Resolved PGSE NMR of Steady Pressure Driven Flow Through 
Freeze Tape Cast Ceramic Pore Structures 

Pulsed gradient spin echo NMR techniques were used to measure velocity weighted two 

dimensional images of pressure driven octane flowing through a freeze tape cast ceramic disk, 

see Figure 43.  Flow direction is from the small to the large pore region by a pressure drop 

applied across the ceramic.  The images of Figure 43 are weighted by the longitudinal 

component of the voxel average spin velocity vector in the z-axis flow direction through the disk 

thickness. 

 
Figure 43:  Depth resolved two dimensional longitudinal velocity images of steady 
pressure driven octane flowing though a YSZ freeze tape cast ceramic disk, bar = 
1.00 mm, 40 x 80 µm/pixel, slice thickness = 300 µm, ∆ = 5 ms, flow is parallel to 
direction of pore growth 
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Figure 43A is determined through interpolation of the transverse velocity planes.   From a visual 

interpretation of Figure 43 the velocity distribution is narrower for the small pore region.  This is 

a result of the transverse image resolution significantly exceeding the local pore dimensions, 

leading to a measurement of the regional average velocity as opposed to a velocity measurement 

near the pore scale as seen in Figure 43B.  Due to the inclined nature of the pore structure, see 

Figure 39B, the local enhancement of the velocity present in Figure 43b) & c) could indicate 

transitions between individual pores as the streamlines must reorient themselves upward to 

transition between the individual pores.  

A velocity probability distribution or histogram of velocities, calculated from the 

spatially resolved velocity images of Figure 43 represents the statistical distribution of coarse 

grained velocities averaged over the voxel dimensions of the image and the observation time ∆.  

A distribution of displacements over time ∆ weighted by spin density, i.e. average propagator [6, 

138], is measured using the one dimensional spatially resolved PGSE sequence.  The 

longitudinal spin velocity probability distribution can then be calculated by dividing the 

longitudinal displacement ˆR zi  by the observation time ∆.  The velocity distribution of the one 

dimensional spatially resolved PGSE experiment thus reflects the dynamics of spins without the 

spatial coarse graining inherent in the two dimensional velocity image.  Hence different spin 

density weighting is present in the velocity probability distribution calculated from the two 

dimensional velocity images.  Differences between velocity probability distributions determined 

from the entire spin ensemble and the spatially coarse grained images reflect the nature of the 

variation between the distributions of non-spatially averaged and spatially averaged dynamics.  

Figure 44 shows the longitudinal velocity probability distribution from the PGSE sequence at 
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several longitudinal positions for the steady flow of octane through a freeze tape cast ceramic.  

Overlaid on the data is the velocity distribution resulting from the spatially resolved velocity 

imaging sequence.  The flow direction is from the small to large pore region. 

 

Figure 44:  Velocity probability distributions of steady 
pressure driven octane from the PGSE propagator 
sequence for several z-axis locations in a YSZ freeze tape 
cast ceramic, ∆ = 30 ms, flow is parallel to direction of 
pore growth 

 
In a short porous media with evolving pore structure the concept of asymptotic dynamics 

is not relevant and pre-asymptotic dynamics or evolving dynamics must be considered.  The 

measured velocity probabilities reflect the stationary dynamics at each depth z over a 

displacement observation time of ∆ = 30 ms.  At z = 0.53 mm there is clear evidence of a strong 

peak at zero velocity and a small peak near the average velocity of 2.0 mm/s with decreasing 

probability of higher velocity.  This behavior indicates two populations of spin dynamics, 

ceramic
small pores large pores octane

z
0.53mm   1.17mm       2.30mm

flow
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restricted and backbone, which undergo limited exchange in ∆ = 30 ms[118, 139].   As the pore 

size increases with increasing z, at z = 1.17 mm depth the propagator takes a form resembling 

data in model bead packs for which the displacement observation time ∆ allows only a pore 

length displacement [140, 141].  Based on the structural images this seems to indicate spin 

motion within channels in which mixing is limited, i.e. dynamics are distributed continuously 

between spins in the low velocity pore wall regions to the fastest spins in the pore tube center, 

with no mechanical or diffusive Taylor dispersion mixing in time ∆ = 30 ms.  It should be noted 

that entrance effects can impact the dynamics at the upper and lower ceramic boundaries.  This is 

indicated by a dual population of octane present downstream of the ceramic boundaries.  This 

behavior indicates the jetting of fluid from the porous ceramic with slow flow regions between 

pores and a discrete volume of stagnant fluid at the outer edge of the ceramic disk.  The spatial 

depth variation of the average porosity (fluid volume fraction) can be estimated using the two 

dimensional velocity images and spatially resolved propagator data.  Porosity estimations from 

the two dimensional velocity images rely upon overestimation of the volumetric flow rate due to 

image pixel dimensions exceeding the local pore dimensions.  Porosity estimations from the 

PGSE propagator data utilize the planar average fluid velocity.  The average spin velocity from 

the single pulse PGSE data can be calculated from the first moment of the displacement 

distribution  

 ( )1 ˆ , ,∆
∆

R z R Rizv P z d
∞

−∞

= ∫  (1). 
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The longitudinal dependence of the transverse porosity is then 

 εxy
�
act

t z

V
A v

=  (2). 

Where εxy is the transverse porosity, actV� is the known volumetric flow rate, At is the total (fluid 

and ceramic) transverse area.  The transverse area, At, in Eqn. (2) can be found using either the 

imaging data from Figure 43 or Figure 40.  Figure 45 shows the longitudinal distribution of the 

average transverse porosity estimated using the single pulse propagator data and spatially 

resolved velocity images.  Also shown in Figure 45 is the bulk porosity for a similar freeze tape 

cast ceramic sample estimated from an Archimedes porosity experiment. 

 
Figure 45:  Transverse porosity of a YSZ freeze tape cast 
ceramic as a function of longitudinal position from the 
single pulse propagator data and spatially resolved velocity 
images  

 
The calculated porosity from the NMR data exhibits a minimum in porosity at the ceramic depth 

of 1.25 mm.  The porosity calculations from P(vz) data are weighted by magnetic susceptibility 

effects very near the ceramic edges, i.e. ±0.5 mm, resulting in unrealistic values of the porosity. 
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Experiments were conducted on a freeze tape cast ceramic sample using the spatially 

resolved repeated and refocused experiments to determine the spatial dependence of the effective 

axial dispersion coefficient D*zz.  Shown in Figure 46 are the spatially resolved effective axial 

dispersion coefficients from the velocity sensitive repeated PGSE and velocity compensated 

PGSE pulse sequences[142, 143]. 

 
Figure 46:  Spatially resolved effective axial dispersion coefficient of 
steady pressure driven octane flow in a YSZ freeze tape cast ceramic 
for the repeated and refocused echo sequences, 80 x 160 µm/pixel, 
slice thickness = 300 µm, 2∆ = 10 ms, τ = 5 ms 

 
The refocused and repeated sequences vary in that the repeated sequence contains echo 

attenuation due to the distribution of coherent motion over the displacement time 2∆ as well as 

diffusive or random motion.  In contrast, the refocused sequence refocuses magnetization 
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dephasing due to the spatial distribution of coherent motion and therefore echo attenuation is due 

to incoherent motion generated by free diffusion and mechanical dispersion only.  This is 

achieved by reversing the effective polarity of the 2nd gradient pair in the refocused double 

PGSE experiment, see Figure 10.  A comparison between Figure 46a) and Figure 46b) indicates 

that longitudinal motion of octane remains largely refocus-able for the time scale 2∆ = 10 ms 

probed.  This is a consequence of the pore structure forcing the octane to maintain a relatively 

constant average velocity and limiting the amount of mechanical dispersion over the observation 

time 2∆ = 10ms.  Figure 43A supports the limited role of mechanical dispersion by the backbone 

flow behavior appearing in the image. 

Using the Stejskal -Tanner approximation the longitudinal dependence of the average 

axial effective dispersion coefficient was estimated from a one dimensional single pulse PGSE 

experiment, the results are shown in Figure 47.  The choice of observation time ∆ resulted in 

∆<<a2/Dm; so that molecular diffusion induced Taylor dispersion is small relative to mechanical 

and boundary layer dispersion mechanisms.   
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Figure 47:  Average effective axial dispersion 
coefficient of steady octane flow within a YSZ freeze 
tape cast ceramic, ∆ = 30 ms 

 
Outside of the ceramic a measurement near the room temperature self diffusion coefficient of 

octane was found.  The distribution of the effective axial dispersion coefficient is a result of 

coupled variation in the pore dimensions and inter-pore connectivity.  Figure 47 highlights the 

opportunity of these controllable pore structures to produce custom tailored transport dynamics. 

Conclusion 

A range of NMR techniques were used to characterize the pore structure of freeze tape 

cast ceramics and the pore structure impact on transport dynamics.  Freeze tape cast ceramic 

pore structures prepared by a uni-directional solidification process are a complicated network of 

interconnected pores in which the average pore dimensions grow as a function of depth.  Yttria 

stabilized zirconium oxide was found to agree well with the NMR experiment constraint that the 

sample material should induce only weak distortions in the applied magnetic fields.  Spatially 

resolved NMR measurements were found to provide valuable, non-destructive, non-invasive, 
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information regarding the three dimensional variable freeze tape cast pore structure.  The ability 

to resolve both the transport and pore structure information is a valuable asset to the study of 

these, and other, opaque structures.  Further work is needed to probe the impact of variation in 

freeze tape casting manufacture parameters, e.g. casting bed temperature, on the ceramic pore 

structure and its effect on transport dynamics.  However the data presented here outlines some of 

the opportunities of these structures to produce unique, custom tailored transport dynamics. 
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PORE SCALE HYDRODYNAMICS NEAR A ROUGH POROUS SURFACE OF MODEL 
SPHERE PACKS 

 
Introduction 

The hydrodynamic boundary layer near a porous surface is a phenomomenon of 

significant importance in many natural and industrial systems.  In aquatic environments the 

water-porous hydrodynamic interface has important influence over the bio-geochemical cycle.  

In fuels cells the membrane-gas interface plays an important role in the chemical cycle and 

device operation.  These and other examples have motivated extensive inquiry into the correct 

form of the hydrodynamic boundary conditions near a porous interface, see chapter 4.  The most 

widely adopted condition is that proposed by Beavers and Joseph.  Recent work has shown the 

assumption of Beavers and Joseph in which the boundary layer thickness is assumed to be on the 

order of K , where K is the porous media permeability, underestimates actual boundary layer 

thicknesses by at least an order of magnitude [144, 145].  Furthermore it has been recognized 

that α , a property originally believed to be dependent on the interfacial structure, is dependent 

on the location of the macroscopic interface and hence not an intrinsic property of the interface 

[146].  The Beavers and Joseph and majority of other conditions are linear boundary conditions 

in which the gradient of velocity scales linearly with flow speed.  It is unknown what if any role 

nonlinear inertial effects play in interfacial hydrodynamics.  The purpose of this work is to 

explore the nature of interfacial hydrodynamics for a model porous media with the specific 

intent of addressing the question of inertia effects.  Both NMR experiments and three 

dimensional LB simulations are used. 
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Materials and Methods 

The model porous media used in the NMR experiments and LB simulations are 

monodisperse sphere packs.  A square channel was partially filled with the packed array for the 

NMR experiments, see Figure 48. 

 
Figure 48: MRI cross section of the interfacial 
sample used in the NMR experiments 

 

The packed bed shown in Figure 48 is composed of monodisperse polymer spheres of diameter 

1.5mm.  The bed is treated with a chloroform solvent to lightly bond the polymer spheres 

together and thus forming a rigid bed.  The bed has porosity of approximately 0.45.  The open 

channel has a width of approximately 15mm and a height from the average upper layer sphere 

mid point of 4.75mm or 3.17 sphere diameters.  The lower surface was drilled with randomly 

chosen hole sites to make the surface of the packed bed facing the channel appear “random”.  

The resulting distribution of y-axis sphere locations is shown in Figure 49. 
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Figure 49: Distribution of sphere locations from the 
upper channel surface for the experimental sample 

 

For the LB simulations three numerical samples of varying channel height were used, see Table 

3. 

Table 3: Parameters of the LB interfacial domain 

Series Channel height
(spheres) Bed porosity

I 5.0 0.44 
II 7.5 0.44 

III 10.0 0.44 
 

The porous packed bed has a porosity of 0.44, the channel heights are H = 5, 7.5, and 10 sphere 

diameters.  The channel height is defined from the upper surface to the mean center point of the 

upper sphere layer, see Figure 50.   
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Figure 50:  Schematic of the LB simulation interfacial domain 

 

Identical sphere packing and hence interfacial surface are used in all three domains.  The 

channel height is defined from the upper surface to the mean center point of the upper sphere 

layer.  The square three dimensional domains of 10x10 sphere diameter cross section have 

periodic boundary conditions applied on the open faces and no flow conditions applied on the 

upper and lower walls.  Numerical resolution is 51 grid points per sphere.  The porosity profile 

through the numerical interface is shown in Figure 51. 

 

Figure 51: Porosity profile through the numerical interface 
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Results and Discussion 

Lattice Boltzmann Simulations 

The convective profile was solved for a range of pressure gradients and channel heights. 

The average planar velocity across the interface is plotted in Figure 52 for the low Reynolds 

number limit and three channel heights.  

 
Figure 52:  Low Reynolds number mean planar velocity profiles from LB 
simulation a) H/d=5 b) H/d=7.5 c) H/d=10 d) close up at the interface of the free 
fluid channel and porous media 

 

The boundary layer in Figure 52 at the porous interface is apparent in the transition to the mean 

flow velocity in the porous media.  It is not clear from the plots in Figure 52 what defines the 

interface, however the boundary layer thickness is on the order of a sphere diameter and agrees 
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well with the observations of Goharzadeh et al.  For a monodisperse packed bed of porosity 0.45 

the Brinkmann screening length ( K ) is on the order 0.04 sphere diameter; obviously an 

inaccurate estimation of the boundary layer thickness in Figure 52.  The flow profile near the 

interface is complicated by the high rate of shear and relatively fast velocities.  Images of the 

flow direction velocity are shown Figure 53 for the low Reynolds number limit. 

 

Figure 53: Examples of the flow direction velocity profile for the domain 
H/d=5 a) cross section at x = 0 b) interfacial cross section at y = -0.5d 

 

A small amount of recirculation or negative flow is apparent in image a) of Figure 53, suggesting 

a complex interfacial flow profile.  As the pressure gradient increases the convective profile near 

the interface changes from a Stokesian profile to one that includes inertial effects.  This change 

is demonstrated in Figure 54 which shows the flow velocity PDF at the interface (±0.5d) for 

H/d=5.0 and several channel Reynolds numbers; defined as Rec = H<vc>/η.  As the channel 

Reynolds number increases the distribution becomes wider to include greater negative and 

positive velocities. 
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Figure 54: Flow direction velocity PDF 
at the interface for several channel 
Reynolds numbers and H/d = 5 

The convective patterns near the model interface can be complex.  Shown in Figure 55 

are examples of the streamlines near the interface for H/d = 5.0 and channel Reynolds numbers 

of 230. 

 
Figure 55:  Examples of the flow streamlines at the interface (x = 
0) and channel Reynolds number of Rec = 230, field of view is 
the yz-plane 
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The streamline examples shown in Figure 55 are flow structures.  The type of flow structures in 

Figure 55 occur throughout the interface and can thus be thought of as a general high Reynolds 

number feature of the hydrodynamic transition between the free fluid and porous media for a 

monodisperse packed bed.  The open streamline flow structures in Figure 55 are visually similar 

to the horseshoe vortex [147].  The features suggest the importance of inertia at the interface at 

sufficiently high channel Reynolds number.  The effect of inertia is demonstrated by plotting the 

interface Reynolds number as a function of the channel Reynolds number in Figure 56. 

 
Figure 56:  Interface and channel Reynolds number as a function of porous 
media Reynolds number for various values of H/d a) interface b) channel 

 

Over the entire range of Reynolds number in Figure 56b) the channel Reynolds number scales 

linearly with porous media Reynolds number.  However the interfacial Reynolds number scales 

nonlinearly with the porous media Reynolds number at sufficiently high porous media Reynolds 

number.  For H/d =5.0 this departure occurs at a channel Reynolds number of approximately 50 

and with H/d=10 this departure occurs at a similar channel Reynolds number and interfacial 

Reynolds number.  The interfacial Reynolds number scaling with porous media Reynolds 

number is sub-linear at sufficient porous media Reynolds number.  This is expected because 
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inertial effects are an additional mechanism for pressure loss.  Figure 56 demonstrates that 

inertial effects can be important in the interfacial hydrodynamics and hence boundary conditions.  

However the channel hydrodynamics remain linear over the range of porous media Reynolds 

number and hence the nonlinearity of the interfacial hydrodynamics would not be detected in a 

pressure drop measurements such as the Beavers and Joseph experiment.  The velocity profile 

through the interface is plotted in Figure 57 for H/d = 5.0 and several channel Reynolds 

numbers.   

 

Figure 57: Velocity profile through the 
interface for H/d=10 and several channel 
Reynolds numbers 

 

The mean velocity gradient profile is plotted in Figure 58 as a function of the channel Reynolds 

number and H/d=10. 
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Figure 58:  Interfacial mean planar velocity gradient as a function of Reynolds 
number with H/d=10 a) profile of velocity gradient as a function of Rec b) 
maximum of velocity gradient as a function of porous media Reynolds number 

 

In Figure 58 there is a discontinuity in the velocity gradient which occurs at a point in the 

domain where the porosity transitions from one to less than one.  To the right of the 

discontinuity (in the free fluid domain) the planar velocity gradient scales linearly with direction 

while to the left of the discontinuity a nonlinear boundary layer is present in the transition to 

zero.  Arguably, the interface can be defined at the discontinuity point or point of porosity one 

because it represents a point in which the functional form of the mean planar shear stress is 

discontinuous.  To the author’s knowledge this point has not yet been observed or mentioned 

explicitly in literature.  The maximum velocity gradient in Figure 58 scales linearly with the 

porous media Reynolds number over the entire range even though the mean velocity at the 

interface scales nonlinearly with porous media Reynolds number at the higher Reynolds number 

values.  That is to say that a boundary condition based upon the velocity gradient or shear at the 

interface will inaccurately capture inertial effects at the interface.  This argues that the boundary 
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condition should be based upon the interfacial flow speed rather than the interfacial velocity 

gradient. 

Lagrangian Particle Tracking: This section presents a brief survey of lagrangian particle 

tracking statistics near the interface.  Shown in Figure 59 is the coordinate dispersion coefficient 

(D=σ2/∆) as a function depth in the porous media and nondimensional time in the porous media 

(t*=<v>|y→-∞∆/d).  The Reynolds number in the channel is sufficiently low so that the Stokes 

regime applies and the Peclet number in the porous media is 10.  The initial thickness of the 

particle tracking volume was ±0.1d. 

 
Figure 59: Effective dispersion coefficient as a function of 
particle tracking volume location and nondimensional porous 
media time 

 

The curves shown in Figure 59 are complex.  Starting with Figure 59b), the effective dispersion 

coefficient along the x-axis or perpendicular to the interface.  Far into the porous media the 
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dynamics reflect well known low Peclet number dynamics with an asymptotically increasing 

effective dispersion coefficient.  Near the interface however the mean flow velocity increases 

and the hydrodynamics begin to encounter complex vertical flow as seen in Figure 55.  This has 

the effect of introducing a second time scale in the dynamics.  The first high point of the 

effective dispersion coefficient is the result of pore scale vortices and the second much broader 

peak is the result of fluid motion around the structure.  The first peak is much narrower then the 

second broad peak, reflecting the much shorter time scale of the vortices motion.  Similar 

behavior is present in Figure 59a), the effective dispersion coefficient in the y-direction.  

However in this case the first peak has a significantly higher magnitude then the second peak.  

The first and second peaks occur on a similar time scale as those in Figure 59.  In Figure 59c) the 

longitudinal effective dispersion coefficient is shown.  Similar to the transverse curves in a) and 

b) the longitudinal curve contains an initial peak near the interface.  The first peak only occurs in 

a limited area near the interface, unlike the transverse curves where the initial peaks occur over 

seemingly the entire interfacial zone.  In the longitudinal curve there is only an initial curve and 

a continuously increasing effective dispersion coefficient.  Indeed all three coordinates direction 

effective dispersion coefficients are anomalous (non-asymptotic) in the long time limit.  This is 

to be expected considering the very different dispersion mechanisms and difference in flow 

velocities occurring in the two domains.  Accurate modeling of transport near the interface must 

therefore use a nonlocal approach. 

Magnetic Resonance Microscopy Data 

 Nuclear magnetic resonance was used to measure the flow direction velocity at the 

interface for water flow through the sample shown in Figure 48.  The sample has a channel 
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height of 4.5 sphere diameters.  Shown in Figure 60 is a flow direction velocity map at the 

sample interface for Reinterface = 1.0.  Slice thickness is 1.5 sphere diameter and the center of the 

slice is located at the upper sphere layer midpoint.  Flow direction is left to right across the page.  

The numerical and experimental sample differ in that the experimental sample is a channel, 

unlike the numerical sample which has periodic boundary conditions applied at all faces. 

 
Figure 60: NMR measured flow direction velocity map at the interface, 
slice thickness is ½ sphere diameter 

 

Significant regions of reverse flow can be seen in Figure 60.  These flow domains are 

qualitatively similar to those seen in Figure 55.  From this image is can be concluded that inertial 

hydrodynamic mechanisms are present at the hydrodynamic interface supporting the 

observations made in the numerical simulations above.  An image of the flow direction velocity 

field is also shown in Figure 61. 
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Figure 61:  NMR measured flow direction velocity map 
through the interface, slice thickness is ½ sphere diameter 

The velocity rainbow pattern in the channel of Figure 61 is the result of phase wrapping due to 

high velocities in the channel.  Interfacial flow eddies are apparent in the image.  A flow 

direction velocity map averaged in the flow direction was measured for the flow plane as shown 

in Figure 62, also shown in the average velocity profile through the interface of the inner one 

third of the channel. 
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Figure 62:  NMR measured flow direction velocity data a) average flow direction in 
plane low Reynolds number velocity map b) average velocity profile through the 
interface, at x=15mm, for several channel Reynolds numbers 

The boundary layer through the interface is apparent in the curved velocity profile near the 

interface (e.g. x = 15mm) in image b).  At high channel Reynolds (e.g. Rechannel>300) number the 

average velocity profile begins to blunt and the maximum of the profile approaches the upper 

(flat) boundary.  This is suggestive of unsteady flow within the channel. 

 The complex velocity field in Figure 60 results in a relatively high rate of dispersion at 

the interface.  Shown in Figure 63 is the NMR measured distribution of dispersion rates from a 

two dimensional image at the interface compared to the dispersion rates in the porous media. 

vz/<vz>channel
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Figure 63:  NMR measured dispersion coefficient 
distributions from two dimensional images at the interface 
and within the porous media, slice thickness is ½ sphere 
diameter and image resolution is 5 pixels per sphere, 
channel Reynolds number is 100, observation time is 
10ms 

The interfacial dispersion rates are significantly greater than the rates within the porous media, 

suggesting a wide range of velocities with the pixels at the interface.  The dispersion rates within 

the porous media are similar to molecular diffusion because of the low Peclet number within the 

porous media.  The interface contains a wide distribution of dispersion rates suggesting a wide 

range of velocities at the interface. 

Conclusion 

Hydrodynamics near the interface of a channel and porous media of monodisperse 

spheres were studied using three dimensional lattice Boltzmann simulations and nuclear 

magnetic resonance.  Unique horseshoe like vortices were found at sufficiently high Reynolds 
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numbers.  Inertial effects at the porous interface were found to become important at a channel 

Reynolds number of approximately 50.  The eddies which occur at the porous interface were 

found to introduce a second mixing time scale at the interface.  An important discontinuity in the 

mean planar velocity gradient was found to occur at the transition point to porosity one at the 

interface.  At this point the functional form of the mean planar velocity gradient changes from 

linear to nonlinear in the porous media boundary layer.  This point is the likely choice for the 

location of the interface because it is the point of obvious discontinuity.  It was argued that the 

interfacial boundary condition should be based upon the interfacial velocity rather than the 

velocity gradient to capture interfacial inertial effects. 
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APPENDIX A 

MEASURING THE MEAN STRUT LENGTH OF RANDOMLY ORIENTATED FOAMS 
USING TWO DIMENSIONAL IMAGES 
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The following discussion summarizes a technique which can be applied to two 

dimensional images of a randomly oriented strut population to determine the mean length of the 

population.  The mean length of large population of struts can be written as the first moment of 

the probability distribution of strut lengths: 

 ( )
0

l l P l dl
∞

= ∫  (A1) 

Where l  is the mean strut length and ( )P l  is the probability distribution of strut lengths l.  For 

a large population of randomly oriented struts in three dimensional space the distribution ( )P l  is 

invariant to angular orientation.  In other words the functional form of the strut length 

probability distribution oriented parallel with a unit vector, r̂ , is invariant to the orientation of r̂

.  With this assumption the mean length of the strut population in any Cartesian direction, il , 

can be written as the average of strut lengths in phase space: 
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Integrating yields: 

 
2

4 il lπ
=  (A3) 

Equation A3 expresses the mean strut length of a randomly oriented strut population in terms of 

the mean length of the population along a Cartesian direction.  The mean Cartesian length, il , 

can be determined from two dimensional images of the structure.  To demonstrate Eqn. (A3)  a 

MATLAB routine was written to measure the mean ligament length of a randomly orientated 
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single length population, ( )P l  = δ(l - L),  along a coordinate direction as a function of the 

number of struts, see Figure 64. 

 
 
Figure 64: Mean strut length of a single length strut 
population along a coordinate axis as a function of 
the number of struts, <l> = L 

 
With approximately a 100 strut population the mean strut length relative to the mean length 

along a coordinate direction asymptotes to Eqn. A3.  The mean strut length of a three 

dimensional randomly orientated strut population can thus be measured by sampling the mean 

orthogonal direction strut length from two dimensional images of the population. 
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APPENDIX B 

MATLAB CODE OF SINGLE WAVELENGTH AND FLOW SPEED TOY MODEL  
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%The following MATLAB code generates the average time correlation function  
%for particles moving along a sinusoid at a single tangential flow speed, y 
%is the wave height direction.  VACF is the orthogonal velocity 
%autocorrelation function % and sigma is the variance of y-displacements. 
  
clear all 
close all 
N=400                            ; % # of discrete points along wave 
L=1                              ; % wave length 
H=0.375                          ; % wave height 
x=(0:N-1)*L/N                    ; 
y=H*sin(2*pi*x/L)                ; 
V=2                              ; % tangential flow speed 
a=2*pi/L                         ; 
S=sqrt((H*a*cos(a.*x)).^2+1)     ; 
So=trapz(x,S)                    ; 
dS=So/N                          ; 
dS=0:dS:So                       ; 
  
for j=1:length(dS) 
xe=.001                          ; 
S2=0                                                    ; 
while S2<dS(j) 
xe=xe+.001                                              ; 
xx=0:xe/100:xe                                          ;   
SS=sqrt(1+(H*a*cos(xx*2*pi/L)).^2)                      ; 
S2=trapz(xx,SS)                                         ; 
end 
xend(j)=xe                                              ; 
end 
  
yend=H*sin(2*pi*xend/L)                                 ; 
    x  = xend                                           ; 
    y  = yend                                           ; 
    dt = 0.0005                                         ; 
    vxo=sqrt(V^2./(1+((H*2*pi/L)*cos(2*pi*x/L)).^2))    ; 
    vyo=vxo.*(H*2*pi/L).*cos(2*pi*x/L)                  ; 
    vacfx(1)=sum(vxo.*vxo)                              ; 
    vacfy(1)=sum(vyo.*vyo)                              ; 
  
    xo = x                                              ; 
    yo = y                                              ; 
    sigma(1)=0                                          ; 
    meanv=mean(vxo)                                     ; 
    sigma(1)=0                                          ; 
    tt(1)=0; 
    t=0; 
while meanv*t<1 
        tt(end+1)=tt(end)+dt; 
        t=tt(end); 
 
 vx=sqrt(V^2./(1+((H*2*pi/L)*cos(2*pi*x/L)).^2))        ; 
 vy=vx.*(H*2*pi/L).*cos(2*pi*x/L)                       ;    
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 dx = vx.*dt                                            ; 
 dy = vy.*dt                                            ; 
 x  = x+dx                                              ; 
 y  = y+dy                                              ; 
 vx=sqrt(V^2./(1+((H*2*pi/L)*cos(2*pi*x/L)).^2))        ; 
 vy=vx.*(H*2*pi/L).*cos(2*pi*x/L)                       ;    
vacfx(end+1)=sum(vxo.*vx)/vacfx(1)                      ; 
vacfy(end+1)=sum(vyo.*vy)/vacfy(1)                      ; 
sigma(end+1)=mean((y-yo).^2)                            ; 
end 
vacfx(1)=1                                              ; 
vacfy(1)=1                                              ; 
  
l=sqrt((xend(1:end-1)-xend(2:end)).^2+(yend(1:end-1)-yend(2:end)).^2); 
  
figure, plot(tt.*meanv,sigma./tt)                       ; 
figure, plot(tt.*meanv,sigma)                           ; 
figure, plot(tt.*meanv,vacfy)                           ; 
  
 
  
 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 


