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ABSTRACT

The purpose of my research has been to find a good way to solve for the mechani-
cal and electrical behavior of piezoelectric polymer bimorphs which are electroded with
a low to medium conductivity material. Traditionally, metal with very high conductiv-
ity has been used as the electrode material. Any applied voltage to an electrode will be
distributed nearly instantaneously and uniformly throughout the electrode. Because of
this quality, the voltage was assumed to be known and uniform for any applied voltage
signal, including high frequency signals. The disadvantage of metal is that it is stiffer
than polymers, and thus impedes the bending of the bimorph to a greater extent than
for comparable polymer electrodes. With the modern invention of conductive polymers
with acceptably high conductivities, it is now possible to manufacture piezoelectric de-
vices with finite conductivity electrodes. For all but the very lowest frequencies of ap-
plied voltage signals, the voltage distribution cannot be assumed to be uniform through-
out the electrode, nor can it be assumed to be exactly in phase. With finite conductivity
electrodes there will be a loss in voltage amplitude due to resistivity, and there will also
be a phase lag. The piezoelectric problem involves solving a coupled set of differential
equations which involve mechanical displacement and electric potential. The electrical
behavior of the electrodes is also included in the formulation, so that the voltage distri-
bution in the electrodes is solved for simultaneously with the mechanical displacement
and electric potential in the piezoelectric sheets. In this dissertation the coupled set of
differential equations was solved using the Finite Element Method with quadratic La-
grange finite elements. The piezoelectric polymer which was modeled was polyvinyli-
dene fluoride (PVDF). The conductive polymer of interest was PEDOT-PSS, although the
model is valid for any type of isotropic finite conductivity material. The results of the
work show that for moderate conductivity, the mechanical response of the bimorph is
very good. There will not be a large phase lag within the first frequency mode. The
bimorph resonates at low frequencies, and so any large effect from finite conductivity
would only occur at higher modes.



CHAPTER 1

INTRODUCTION

The problem that is solved in this dissertation is the bending of a piezoelectric
polymer bimorph with lossy electrodes. Previous work has modeled actuators with the
assumption of perfectly conducting electrodes, since before recently only metal elec-
trodes (usually silver) have been commercially available for piezoelectric polymer sheets.
These metal electrodes substantially stiffen the sheets and significantly reduce the dis-
placement attainable for a given applied voltage. With the advent of highly conducting
polymers that can be applied as electrodes, much more displacement can be attained for
a given voltage. However, the much lower conductivity of these polymers compared to
metals makes it necessary to take into account the voltage distribution across the elec-
trodes when a time-varying voltage is applied to the electrode contacts. In this work,
the effect of this spatial voltage distribution on the actuator performance is taken into
account for the first time. The finite element analysis in this work is based on sinu-
soidal voltage applied to a rectangular bimorph actuator made of two polyvinylidene
fluoride (PVDF) sheets with PEDOT-PSS electrodes. The electrodes were included in the
model, and all the variables involved (electric potential and mechanical displacement)
were solved simultaneously. The model involved a set of coupled linear second-order
differential equations. The equations were converted into a finite element formulation,
and solved using quadratic Lagrange finite elements. The z-deflection was found to be

too small when using linear elements. This phenomenon is called locking [11].



PVDF History and Applications

Piezoelectricity is a linear coupling between electrical and mechanical processes
[1]. In the direct piezoelectric effect, when a piezoelectric material is compressed, an
electric polarization is formed across the material. In fact, the prefix piezo is derived
from the Greek word for press [1]. The converse piezoelectric effect is when an applied

electric field causes the piezoelectric to mechanically deform.

Piezoelectricity is made possible due to certain kinds of crystal structures which
lack a center of symmetry. Materials which are piezoelectric come in several forms.

There are single crystals, ceramics, and polymers (semi-crystalline) [20].

Polyvinylidene-fluoride (PVDF) is a piezoelectric polymer, which for actuator ap-
plications often comes in the form of a thin sheet (30 microns thick). Itis stretched along
the x direction to align the long chain molecules, and is poled in the z direction to align
the electro-negative and electro-positive parts of the molecular units (the hydrogen and

fluorine atoms) to create a strong piezoelectric constant, as shown in figure 1.2.

Because of the aligned dipoles, there is a charge polarization. When an electric field
is applied across the PVDF sheet, the molecules will either stretch or contract, depend-
ing on the direction of the field, as shown in figures 1.3 and 1.4. The other dimensions of
the PVDF sheet will also change. The thickness of the sheet is very small, but the length
is substantial and even an elongation of only a small percent will be noticeable. When
an electric field is applied across two sheets that are glued together with opposite po-
larization, the sheets will bend out of the plane. This is a bimorph, and the deflection
is much larger than the elongation of an individual sheet. This conversion from electric

field to mechanical deformation and vice versa is very useful.



A transducer is a device, or material, which converts one type of energy into an-
other. In the case of piezoelectricity, the conversion is between mechanical and electri-
cal energy. Piezoelectricity is a coupling between mechanical and electrical processes
[1]. It is a fundamental process, and couples mechanical and electrical energy in a lin-
ear fashion. The piezoelectric effect was first discovered in 1880 by Pierre Curie. This
effect is now an established branch of crystal physics. Piezoelectricity also finds wide
application in the electrical engineering field. Piezoelectric materials have been widely
used as electromechanical transducers, such as ultrasonic generators, filters, sensors,
and actuators. They have also been used for other purposes, such as Braille keyboards,

hi-fi tweeters, and sonar receivers.

The direct piezoelectric effect is that electric polarization is produced by mechan-
ical stress (deformation). Closely related to it is the converse effect, where a crystal be-
comes strained when an electric field is applied. Both effects are manifestations of the
same fundamental property of the crystal. Many of the theoretical concepts of electron-
ics are based on linear systems response. The piezoelectric effect is basically understood

to be a result of the linear interaction between mechanical and electrical systems.

The piezoelectric effect is present in many biopolymers, such as wood, bone, ten-
don, and even DNA. Eiichi Fukada, at the Kobayashi Institute of Physical Research in
Japan, extended the field of research from natural biopolymers to synthetic polypep-
tides. In 1969 was the first report of piezoelectricity in a synthetic commercial polymer
(PVDEF), by Heiji Kawai [1], also at the Kobayashi Institute. PVDF became commercially
available in 1961 for its use as a thermoplastic. It has good resistance to chemical ero-
sion, and it is a good electric insulator, suitable for electrical insulation of wires. Of the
piezoelectric polymer films, those which are based on PVDF have the highest piezoelec-

tric and pyroelectric activity [2].



Polyvinylidene fluoride film, with chemical structure (CH, — CF,),, is manufac-
tured by melting PVDF pellets and then putting it through rollers and exposing it to a
high electric field in order to align the dipoles. There are several ways to create and pole
the film. The method which produces the strongest piezoelectric constants seems to be
stretching and poling simultaneously, instead of stretching, and then poling at a lower
temperature for a longer time. For applications which require high quality, the PVDF
samples must be produced in smaller amounts with precisely defined properties by way
of a process which controls the amplitude, duration, and the history of the electric field
[4]. If the material is not poled, then the PVDF will predominantly be in the a phase.
The crystal packing is such that the dipoles alternate and cancel. In the § phase the
hydrogen-fluorine dipoles are all on the same side of the carbon backbone, and pol-
ing causes individual chains to align in the same direction, and the dipoles reinforce.
The overall film is 50% amorphous, so half does not contribute to the piezoelectricity of
the material, while the rest has crystal structure. Figure 1.1 shows a graphic of a PVDF
molecule. The carbon backbone is shown by the black spheres. The hydrogen is on top

colored white, and the fluorine is on the bottom in green.

Figure 1.1: The PVDF Molecule. Black = C, white = H, green = E



The PVDF molecule has a permanent electric dipole. The fluorine side of the molecule
is electro-negative, while the hydrogen side is electro-positive. This is shown schemat-
ically in figure 1.2. In the converse piezoelectric effect, when an electric field is applied
antiparallel to the polarization direction, the molecule stretches (figure 1.3). When the

electric field is parallel to the polarization direction, the molecule shrinks (figure 1.4).

Electro-positive
n

Electro-negative

Figure 1.2: PVDF schematic.

++++++++++
o+

o+

6_
FFFFFFF

Figure 1.4: PVDF shrink.




The Conductive Polymer PEDOT-PSS

Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) is a polymer mixture of
two ionomers. The PEDOT part is a conjugated organic polymer, also called an intrinsi-
cally conducting polymer or a synthetic metal [5]. This class of polymer is different from
conducting polymers which are a mixture of a nonconductive polymer and a conduct-
ing material such as metal or carbon powder. PEDOT does not have an intrinsically high
conductivity. Conjugated organic polymers are either electrical insulators or semicon-
ductors to start with. Their conductivity can be increased by several order of magnitude
by doping with small amounts of dopants. The conjugated polymers which are capable
of drastically increasing their conductivity with doping are called electronic polymers.
Since 1990 these types of polymers have become of great scientific and technological
importance because of their use in light emitting diodes. The native conductivity is
in the range 1071% to 107° S/cm, while the doped conductivity can be in the range of
about 1 to 10* S/cm, or higher. At ultra-low temperature, one doped polymer, poly(3-
hexylthiophene) actually attained superconductivity. The conductivity of a good metal
such as gold is 4.9 x 10° S/cm at 0° C [7], and 4.3 x 10° S/cm at 20° C [8]. Silver has

conductivity 6.67 x 10° S/cm at 0° C [7].

Chapter Outline

Chapter 1 contains the introduction, which discusses the history and uses of piezo-

electric actuators, PVDE and the conductive polymer PEDOT-PSS.

Chapter 2 describes the constitutive equations which describe the mechanical and

electrical response of the bimorph. The material constants are also described in detail.



Chapters 3 and 4 solve the static deflection of the bimorph. An analytical model is
also developed for the x and z deflections based on the Bernoulli-Euler beam model.

Chapters 5 and 6 solve the case of harmonic time dependence. The applied volt-
age is sinusoidal, and the response of the bimorph is also sinusoidal. The resonance
frequencies and the mode shapes are found. An analytical model was developed for this
case, which was an extension of the analytical model used for the static case.

Chapter 7 presents the conclusions, including a summary of the results and rec-
ommendations for future work.

Appendix A has an introduction to the Finite Element Method, including an exten-
sive section on using the higher-order Hermite finite elements for solving a second order
problem.

Appendix B and C list computer code used for solving the problems. Appendix B
contains some of the C programs used for generating the results in this Dissertation. The
C programs are fast, and use the C-Lapack package for solving linear systems. Appendix
C contains an example Mathematica program. The advantage with using Mathematica
is that the numerical precision can be specified to be any value. I used Mathematica for
testing the effects of numerical roundoff, to ensure that no errors were caused by round-
off. The reason that Mathematica was not used to generate all the results is because it
is very slow. Also, using more precision causes the problem to require the use of more

computer memory, which is in short supply.



CHAPTER 2

CONSTITUTIVE EQUATIONS

Constitutive equations relate the various types of fields. In the case of piezoelec-
tricity the variables of interest are mechanical displacement u, and the electric field E.
In the dynamic case, the electric field is changing so there is also a magnetic field, but in
most cases this is neglected, and the quasi-static approximation for the electric field is
used. A quantity that is sometimes taken into account is the temperature, since mate-
rial constants can be affected by the temperature, but that will also be disregarded here.

For a basic electro-mechanical (piezoelectric) problem, the constitutive equations are

as follows:
D=e-S+e5-E or Dy=en S+, Em. (2.2)

The coefficients on the right-hand sides are material constants, where c is the elas-
ticity, € is the dielectric constant, and e is a piezoelectric constant. These are all tensor
quantities. The electric quantities are the electric field E, and the electric displacement
D. The mechanical quantities are the stress T (force per area), and strain S, which are

second rank tensors. The expression for strain is given below in terms of the mechanical

displacement.
1(0 0
Sk1 = E(O_LJZC 6_;2)’ where u = {u, v, w} and x = {x, y, z}. (2.3)

In addition to the constitutive equations, we also have the electric charge condition
in the piezoelectric sheets (which are a dielectric material with no electric conductivity),

and the charge continuity equation in the electrodes.



Zero-charge condition in the piezoelectric sheets:

V-D=0. (2.4)
In the electrode, where p; is the volume charge density:

V-D=p, Gauss’s law. (2.5)

Gauss’s law always applies, but in a dielectric with no initial net charge the charge
will remain neutral at all times and there will not be a non-zero charge volume density.
The charge conservation (continuity) equation for the electrodes, where J is the

current density (current per area):

0
V- J+ % =0 Equation of Continuity. (2.6)

Another way of writing this is

oD
V. — | =0. 2.7
( 2 ) 2.7)
oD
J+ i VxH Maxwell-Ampeére law. (2.8)

H is the magnetic field, which is neglected in the quasi-static approximation.

At the interface between two different materials (mediums), where the normal vec-
tor for material one is 72; and points into material two (and 7,=-7,), the field continuity

conditions are as follows:

ny-Dy+hy-Dy = ps, (2.9

nyx Hy+hy x Hy =], (2.10)
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where p; is the surface charge density (charge per area), and J is the surface (tangential)
current density (current per meter).

The constitutive equation for the electric current density in the electrode:
J=0E. (2.11)

For a simple material, the conductivity o does not depend on direction. More gen-

erally, o is a tensor, and
Ji=0ijE;. (2.12)

In a material such as PEDOT-PSS, which is made of long polymers, it is possible
that if the strands were all stretched out in the same direction, the conductivity would
be highestin the stretch direction, and smaller in transverse directions. The conductivity
tensor would most likely be symmetric, since charge could just as easily flow backwards
as forwards, so 0;j =0 ;.

In the quasi-static approximation for the electric field,
E=-V¢, (2.13)

where ¢ is the electric potential.

The equations which govern the time dependent behavior of the variables are called
the equations of motion. For the elastic variables, we have a Newton’s second law (F = ma)
type equation. There is no equation of motion for the electric potential, so the equation
of continuity is used to determine ¢. In the absence of body forces (gravity), the force

equations for u are:

0’u =V.-T or _Ozul- __GT,-]'.

-— = 2.14
Por P o~ ox; @19
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02u _ OTH 0T12 N 0T13

_ 2.15
Poz = ox "oy oz o
6212 6T21 ang 6T23
_ 2.16
Por " 3x "oy oz e
2 T: T T
ocw 0 31+5 32+0 33 (2.17)

Por = ox "oy oz
The notation used for the various quantities and material constants will be clarified
in this section. The matrices T and S are symmetric, and the tensor e is symmetric in its
last two indices. The tensor ¢ is symmetric in the first and second pair of indices, and

also the two pairs can be interchanged.
Cijkl = CGij)(kl) = C(kD)(i)) (2.18)

Because of the symmetries, the constitutive equations can be written in an abbrevi-
ated form, which is called matrix notation. Each symmetric pair of indices is condensed
into a single index that runs from 1 to 6. The convention is to condense the two indices

as follows:
11-1, 22-2, 33—-3, 23—4, 13—5, 12—6 (2.19)
With the index notation, the equations for stress become
T = ¢}, Su—emrEm, (2.20)
where
T;j— T forall i, j,

Sl'j—>S,1 fOIiZj,

and

28;j— Sy for i # j.
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With this condensed notation, we get the following set of equations for T and D.

Th = c1181 +€1282 + €13S3 + €166 + €1555 + 1484 — €11 E1 — ex1 E» — e31 E3

T = €2181 + €2282 + 2383 + C26S6 + C2555 + €24S4 — €12 E1 — e Ex — e3p E3
T3 = 3151 + 3282 + 3383 + €36 S6 + €3555 + €34S4 — e13E1 — ea3Ex — e33E3
T = c6151+ C2S2 + C63S3 + Co6S6 + C6555 + 6454 — €16 E1 — €26 E2 — e3pE3
T5 = 5181 + 5282 + €5383 + €56 S6 + C5555 + C5454 — e15E1 — ea5 Bz — e35E3

Ty = 4181 + 4282 + €4353 + C46S6 + C4555 + €44 5S4 — €14 E1 — ex4Ep — e34 E3

_ S
Dy =enS1+enSa+e3Sz+esSs+eisSs+eSe+enEr+e2Ex +13E3
Dy = €151 + 2252 + €2353 + €24 54 + 2555 + €656 + €21 E1 + €22 Fp + €23 F3

D3 =e3151 + €325, + e3353 + 3454 + 3555 + €36 Sp + €31 E1 + €32 E» + €33 E3

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

The material for the piezoelectric sheets is PVDE which has crystal symmetry mm2

and allows the following forms for the material constants:

C11 Ci2 (13
Cl2 C22 (23
C13 (€23 (33

A= Caq
Cs5
Ce6 |
€15
ey = : : T e
€31 €32 €33
€1
Emn = &

€3

(2.31)

(2.32)

(2.33)
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These constants are for PVDF that is oriented so that the sheet is in the x-y plane.
Also, during the manufacturing process the sheet is stretched in the x direction and is
poled in the z direction. Poling is when a high electric field is applied in order to align the

dipoles in the PVDF molecules so that there is an overall strong piezoelectric constant.

With the allowed non-zero material constants, we get the following set of equations

for PVDE
T =cnSi+c1282+ 1383 —e31 E3 (2.34)
T> = 1281 + €2282 + 2353 — e32E3 (2.35)
T3 = 1381 + €23S2 + c3353 — e33E3 (2.36)
Ty = c44S4— exs B (2.37)
T5 = 5555 — e15 By (2.38)
Ts = c66S6 (2.39)
Dy =e5S5+&1E; (2.40)
Dy = e2454 + €2E (2.41)
D3 =e3151 +e3252 + e3353 + €3E3 (2.42)

To help clarify the definition of each of the variables, they are listed here.

ou ov ow
S S

S =—, =—, =—,
"Tox’ P oy’ P oz 0.43)
ov ow ou Jw ou Ov '
Sa=7—+—-—, Ss=—+—--, Se=7-+
0z Oy 0z Ox 0y Ox
d¢p 0¢ d¢
Ev=——, Eb=——, E3=—— 2.44
1 P 3y 3 3z (2.44)
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The equations of motion for PVDF:

azu_aTl 6T6+6T5 0

PoE " ox T dy 0z = 5x CuS1H 1252+ €135 — €1 Bs)

0 0
+ — (c66S6) + = (€55S5 — e15E1)

oy 0z
=cC 02u+c 02u+c 02u+(c + Cg6) v
= Héxz 666y2 55622 12 + Ce6 9x0y
) ) (2.45)
+ (c13+ C55) w+(e +e )6
13 + Cs55 9x02 31 15 %02

azv_aTg 6T2+6T4 0

= + = — (ce6S
Po = ax Ty "oz ox 6%

+ 9 (1281 + 2282 + €2353 — ez E3) + 9 (€44S4 — €24 Ep)
oy 0z
= (€12 + Cep) Ou + 6666212 + 022021} + 04462v
0x0y 0x? 0y? 072
w 0%

+(e3n +
3y0z (€32 + e24) 3y0z

(2.46)

+ (C23 + Ca4)

Ozw 6T5+0T4+6T3 0 ( S B+ 0 ( S By)
= =—I(c —-e — (c —e
p 32 dx | dy 0z ox 5595 — €151 ay 4494 — €242

0
+ e (1351 + €2352 + €3353 — e33E3)

O u + (o3 + C44) v +c Fw

0x0z 2T 8yaz T o2
2 2 2 2 2 (2'47)
0“w 0“w 0°¢ 0°¢ 0°¢

+ Cyq4 ayz + C33 922 + e15 12 + €24 ayz + es33 922

= (€13 + Cs55)

0D, N 0D, 0Ds 0

0
= —(e15S5s+e1Ey) + @ (2484 + €2E>)

V-D=
ox 0y " 0z Ox

0
+ e (e3151 + e3252 + e3353 + €3E3)

ou + (e24 + €32) v +e —62w+e _62w
oxoz 2t T oyaz Poxz 2t ay2
Fw g 0*p %P
922 “lox B

= (e15+e31)

(2.48)

+ €33
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Z Poling Direction

Figure 2.1: PVDF material directions.

In looking for references of the piezoelectric constants, I have found literature which
lists a different form than e, namely g [9]. To convert from the g;; piezoelectric constants

to e;j, the following two sums are used, which make use of the elasticity and dielectric

constants:
T
Ankl = €pm8Emkly (2.49)
E T E
Cnij = dnklckljj = Enm8mkiCryjj- (2.50)

Given that ¢;; has only diagonal terms that are non-zero:

€nij =) Enn&nkiCklij (2.51)
kl

€n) = Zgnngnpcp/l (2.52)
u

The g;; have the same non-zero entries as e;;.

es1 = €3(ga1011 + 32012 + g33C13) (2.53)
esr = €3(g31C12 + 32022 + g33C23) (2.54)
es3 = €3 (831013 + 32023 + g33C33) (2.55)
€24 = €2824C44 (2.56)

€15 = €1815C55 (2.57)
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The following values were given for g [9].

~0.32
gi1= : -027 - - |V-m/N
0.21 0.03 —0.46

For PVDF we have the following set of material constants.

[ 3.70 1.47 1.23
1.47 3.20 1.00
1.23 1.00 1.51

Cap = —_— x 10° N/m?
0.59 -
0.70 |
~1.34
eir = : -1.05 - - | x107*N/V-m
1.81 -0.392 -2.88
7.35
emn=| - 927 - | x&(=8.85x107"* C*/N-m?)

8.05

(2.58)

(2.59)

(2.60)

(2.61)



17

CHAPTER 3

BIMORPH: STATIC 3D CASE

w8 N e ——

Figure 3.1: Schematic of a bimorph (series configuration).

A piezoelectric bimorph consists of two thin piezoelectric sheets which have been
glued together, and two electrodes which are on the outside of the sheets, as shown in
figure 3.1. The piezoelectric sheets are made of poly(vinylidene fluoride), abbreviated
PVDE and the electrodes are made of the commercially available conducting polymer
PEDOT-PSS. The bottom electrode is usually grounded, and an alternating voltage is
applied to the top electrode. This creates a nearly uniform electric field across the PVDE
The mechanical response of the bimorph is only dependent on the resulting electric
field, so it is possible to shift the applied voltage by a constant with identical results. If
the total applied voltage is Vysinwt, then a common scenario is to have (V/2)sinwt

applied to the top electrode, and — (V/2) sinwt applied to the bottom electrode.

The piezoelectric sheets are manufactured so as to have a permanent electric dipole,
and an applied electric field will either cause a sheet to lengthen or shorten, depending
on the alignment of the dipole to the field. For an actuator, the polarization directions

of the two sheets are opposite each other so that one sheet will lengthen while the other
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shortens, causing the whole actuator to bend. This configuration is called a series bi-
morph. The parallel configuration is where there are three electrodes. There is a middle
electrode between the piezoelectric sheets, which is grounded. The same voltage is then
applied to the outer electrodes, and in this case the polarization direction would be the
same in the two sheets.

Figure 3.1 above shows a schematic of a bimorph, with exaggerated thickness. The
thickness of each PVDF sheet is 30 microns, since that is the common thickness for com-
mercially available PVDF sheets. The glue layer exists, but is neglected in modeling the
actuator. In order to apply a voltage to the electrodes, metal strips are glued on to one
end using highly conductive metallic glue. A wire is then glued to the strips, which con-
nects the strips to the voltage source. The electrodes, made of PEDOT-PSS, are applied
to the piezoelectric sheets by using an inkjet printer to print on multiple layers until the
desired thickness is achieved. The electrodes are printed onto the PVDF before the bi-
morph is assembled. The thickness of the electrode affects its conductivity, but thicker
electrodes are also stiffer and adversely affect the bimorph’s ability to bend.

In the static case, where a constant (non-time-changing) voltage is applied, the set

of coupled equations describing mechanical displacement and electrical potential are

as follows.
0T, 0Tg O0Ts
=0 3.1
0x i oy " 0z G-
0T 0T, 0T,
+ + =0 3.2
ox 0y Oz (8-2)
0Ts 0T, O0T;
=0 3.3
0x i o0y " 0z 5-3)
0D, N 0D, N 0D3 0 (3.4)
ox 0y 0z '

The following definitions can be made in order to simplify notation.

t,= T]JAC-I- Tﬁj’-l- T52 (3.5)
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ty=TeX+Toy+Tyz (3.6)

tw=Tsk+Tuj+ T3 (3.7)

With this notation, the governing equations are simple and only involve the diver-

gence.
V-t,=0 (3.8)
V-t,=0 (3.9)
V-t,=0 (3.10)
V-D=0 3.11)

The weak form of the governing equations are shown below. For each differential
equation, we first multiply by the appropriate variation, and integrate over the entire
domain of the problem (the volume of the bimorph). The divergence operator is then
transferred to the variation variable, and we get a boundary integral. The volume (or
domain) integral is represented by Q. The boundary of Q is represented by I'. The nor-
mal vector, which points out of the volume along T, is 7. A schematic of a domain and

boundary is shown in figure A.1, in appendix A.

Q r
Q r
Q T

fV&/)-D dQ—jg&pD-ﬁdl“:O (3.15)
Q r
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The procedure for converting a differential equation into its weak form is illus-
trated here. The differential equation is multiplied by the variation of the primary vari-

able (u in this example), and integrated over the entire domain.

T T T
f(Su(a 1+(3 6+a 5)dQ:O
Q

ox 0y 0z
__f (66uT+65uT+65uT)dQ
~Jolax T ey T ez Y

0 0 0
+f (—(5uT1)+—(6uT6)+—(6uT5))dQ
alox oy 0z
~ ~ ~ (3.16)

f V. [5M(T1.i'+ T651+ T52)] dQ
Q

— f [5M(T156+ ng'+ T52)] -fdl’
r
r

The quantities in the boundary integrals tell us what are good boundary condi-
tions. If we specify the value of the variable along the boundary, then the variation will
be precisely zero. On the other hand, we could specify the surface tractions (¢, - 7), or
the surface charge density D - 71 for the electrical condition. The simplest case is to spec-
ify these values to equal zero whenever the variable itself is not being specified on the
boundary. If either one value or the other is specified on T', then the entire boundary
integral is zero. This will be the case here for all the variables.

The explicit forms of the governing equations in the weak form are shown here,

where the boundary integrals are equal to zero.

J

—|Ci1i— F+Ci2— +Ciz3—t+e31— |+ ¢ + —
0x 0y Ox

0x o0y 0z 0z GGE

05u( ou ov ow 6([)) obu (au 01})

LB 2,20 g o
0z 0z 0x 0x
f 066@ G_u+@)+@(Clzd_u+022@+0236_w+6326_¢)
Q ox \0y o0x) ady 0x oy 0z 0z (3.18)
+6;5v Caq a—v+a—w)+eg4a—¢)]d§2:0
0z 0z 0y

dy
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—+
0z 0y

f oow (c (0_u+6_w) . 6_(/))+66w (c (61/ 6w)+e 0_(/5)
ol ax \(™loz " ox Y ox oy 4 24 oy
0ow ou ov ow 0o

+ — — 43— +Cc33—+e33—||dQ=0
oz (C“‘ax 235y T, e330z)]
)

0z e310x 63203/ 63 0z Esdz

66(/)( (du Gw) 6([)) 66(/)( (Ov dw) 6(/))
— e —e1— |+ —=— e |5 — &2
The solutions of the variables, which we are trying to find, are functions and can

(3.19)

ox \“®\5z "ox) %ax) Ty %5z T oy ) 5y

66(,[)( ou ov ow 6(/)) (3:20)

dQ=0

thus can be considered to have an infinite number of degrees of freedom. In the finite
element method, we reduce the problem from having infinite degrees of freedom, to one
of finite degrees of freedom. The problem is transformed so we are solving for a finite set
of unknown coefficients. The functions for u, v, w and ¢ are approximated by a finite

set of basis functions of our choosing, where the i basis function is denoted by ;.

N N

u@x) =) uyi(x), oulx)= ) Sujy;(x) (3.21)
i=1 i=1
N N

v(x) = ) viyix), Svx) =) Sviyi(x) (3.22)
i=1 i=1
N N

w@ =) wiyi(x), Swx) =) swiy;x) (3.23)
i=1 i=1
N N

P =) Piyix), Ppx) =) piyi(x) (3.24)
i=1 i=1

The only necessary condition on the basis functions is that they form a complete
set, meaning the sum of all the functions equals one, Zi.\i L Vi(x) = 1. In the Finite El-
ement Method (FEM), the basis functions are usually polynomials. If the polynomials
go up to a certain order (cubic, for example), then all the lower order polynomials are
also represented by the basis functions. For example, we would not have a basis that in-
cluded first and third order polynomials, but didn’t include second order polynomials.

In an elasticity problem such as the bimorph, there are drastically different dimen-

sions involved. The thickness is very small compared to the length, and the z deflection
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is also large. Because of this, the order of the basis functions has to be sufficient in order
the prevent what is called locking, where the deflection solution is much smaller than
it should be. It appears that using a second order basis is sufficient, while a linear basis
causes locking.

In the Finite Element Method, the series approximations for each variable are sub-
stituted into the governing differential equations. For each i variation, such as ou;, we
get an independent equation which is equal to zero, since all variations are indepen-
dent from each other. Each term involving a variation is individually equal to zero. If we
have N total unknown coefficients for each variable, then the problem involves solving
for a total of 4N unknowns. From the 4 differential equations, we get a 4N x 4N linear
system. The coefficients are then found by inverting the resulting matrix, which will be
symmetric, but not positive-definite. The matrix is indefinite because of the inclusion of
the electrical continuity equation, which has the opposite sign of the potential, relative

to the elasticity equations.

Kll K12 K13 K14 u Fl
( K12) T K22 K23 K24 v | F2
(KIS)T (K23)T K33 K34 : w = | g3 (3.25)
(K14) T (K24) T (K34) T K4 ) F*

The bold vectors such as u are the collection of all the (IN) nodal values for that
variable. The matrix is called the stiffness matrix, and the right-hand side is called the
load vector. Since we don’t have any force terms, the only non-zero contributions to
F'! are from the non-zero boundary node entries in the K" sub-matrices. In the sim-
ple case where the bimorph is glued to the wall, the only non-zero entries are from the
boundary potential nodes. On the top face we have a non-zero applied potential. These
few nodes give the only non-zero contributions to the load vector, since the mechanical
boundary conditions are all equal to zero. Either the displacements are equal to zero on

the boundary, or the surface tractions are specified to be zero.



Each of the sub-matrices have N x N entries, which are listed here.
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K} = fQ :cuaali" 6{;’;" o aa”;" 6{;?/" aail (;’U’ dQ (3.26)
Kj2= fQ :clza;fc" 601/;]- 6660? a;/;j do (3.27)
K3 = fQ :clgaali" aawzj C550(;Zi a;/;j‘dg (3.28)
K} = fQ :eglaau)’c" a(;pzj 5661?' a{;”;f dQ (3.29)
K2 = fQ :c%‘?i" 6(;2,- 226(;?/" a;ﬁ/j T 66”” a;//] ]dQ (3.30)
K2 = fQ :623 aa”;" 6(;/;; Caa aaii 6(;//’ dQ (3.31)
K2 = fQ :egzaatg" aawzj e24aat" a{;ﬁ/j ] dQ (3.32)
K = fQ 1055001? 6;’; c44a(;§" a;l;j 033%% dQ (3.33)
Kisj'l:fg :6156(;? a;fcj 824601? 5(;[;/]' 336(;?% dQ (3.34)
== [ [ ey e o 639

Assuming the material constants are uniform, we can take those out of the inte-

grals. This is valid everywhere except at the transition from the lower to the upper piezo-
electric sheet. There some care must be made for the electric terms since the e;} change
sign. The M*" matrices are just the integrals of the derivatives of the basis functions, so

that MY} = [, 5t i 4.

op ov
Kll = CHMxx + Cg@Myy + C55MZZ (3.36)
Klz = Clngy + Cgp (Mxy)T (3.37)

K" = ¢1sM™ + c55 (M%) (3.38)
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K" = e, M + 15 (M*?)" (3.39)
K% = cggM™ + cooM?V + ¢y M%* (3.40)
K% = cosMY* + ¢4y (MPP)" (3.41)
K% = e, MY + ey (MY?)T (3.42)
K3 = c55s M + cyuMYY + c33M* (3.43)
K3 = e1s M** + e3s M7V + 33 M*? (3.44)
K¥ = -\ M*™ —g;M"V — e5M** (3.45)

As a test problem, we have the following specifications for a bimorph. There are
two PVDF sheets, each 30 microns thick. The bimorph is 2.5 centimeters long and 1.25
centimeters wide. The bottom face is grounded (¢ =0), and the top face has an ap-
plied voltage of 600 volts. The bimorph is clamped at the left end (« =0 at x =0), but
the y and z displacements are nearly free. v is specified to be zero along the vertical
line (x =0, y = 0) for symmetry reasons, and w is only specified to be zero at the point
(x =0,y=0,z= 0). This puts less constraint on the overall deformation of the bimorph.
Wherever the boundary displacements are not specified, the surface tractions are zero.
The shape of the bimorph after deformation is shown in figure 3.2.

The problem was solved using the Finite Element Method using quadratic Lagrange
elements, so that each element contains 3 nodes in each direction, for a total of 27 nodes
per element. Because the only way that I know which solves the system of linear equa-
tions accurately is using a direct solver, the problem size is limited by the amount of my
computer’s memory. For a bimorph which is broken into 8 x 6 x 6 quadratic elements,
there are a total of 2535 nodes with 4 degrees of freedom (DOFs) per node, for a total
of 10,140 DOFs. The matrix size needed for this system is N x N = 108. Double float-

ing point precision was used, and the total amount of memory required was 950 MB.
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Increasing the number of divisions along any axis would very quickly overrun the com-
puter memory, which was 4 GB on a 64-bit system. The results at this level of mesh
refinement were still good. The results are consistent with results from the 2D model,

which allows a much higher mesh refinement.

0.0

-2.33e-3
0.0

2.5e-2"6-25¢-3

Figure 3.2: The deformed shape with 600 V applied voltage. Dimensions in meters.

Figure 3.3 shows v at x = L. It is anti-symmetric, and proportional to y-z. Its
magnitude is an order of magnitude smaller than u, which is already three orders of
magnitude smaller than w. Figure 3.4 shows u at x = L. It appears that u is independent
of y, at least at the end of the bimorph. We can see from figure 3.5, where w is plotted at
x = 0, that there is some curvature in the y direction. Figure 3.6 shows dw/dy at x =0,
which is exactly linear, and thus w has constant curvature in the y direction, and w is
proportional to y?. This dependence on y is so small that it is not noticeable in figure

3.2.
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6.25¢-3 ~3-0e-5

Figure 3.3: vatx = L.

Figure 3.4: uatx=L.
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0.0

-5.25e-6

-1.05e-5

-1.58e-5

-2.10e-5

6.25¢-3 ~3.0€-5

Figure 3.5: wat x =0.

6.72e-3

3.36e-3

-3.36e-3

6.25e-3 ~3.0€-5

Figure 3.6: 0w/0y at x = 0.
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CHAPTER 4

BIMORPH: STATIC 2D CASE

piezoelectric sheet

Figure 4.1: Schematic of a bimorph.

In the two-dimensional case, the bimorph is thin in the y direction, as shown
schematically in figure 4.1. There are several types of beam approximations, commonly
ranging from second order to fourth order. Different methods make different assump-
tions about the type of bending that occurs. The simplest thin beam approximation is to
set To = 0. There is only bending in the x-z plane, so T, = Ts = 0, but T5 is not zero. Also,

D, =0 since there is no applied electric field component in the y direction and S4 = 0.
To = 1281+ €282+ €353 —e3pE3 =0 4.1)
We solve for Sy, and substitute it into the other equations.

1
Sp = — (e32E3 — 1251 — €2353) (4.2)
C22

Th =c1181 + 1282+ 1353 — €31 E3

e32E3 — 1251 — 2383

=cnS1+ 2 ( ) +C1353 —e31 B3 4.3)

C22

2

c C12C c

12 1223 12
=(011——)51+(013— )53—(931——C 932)53

C22 C22 22
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T3 =¢1351 + 2352 + 3353 — e33E3

e3pE3 — 1281 — €353

=C1351 + C23 ( ) +¢3353 — es3E3

C22

2
C23C12 Co3 C23
=(013— S1+|c33——|S3—|es3——e3|E3
Coo C22 C22

Ds 263181 + 63282 + 93353 +ée3E3

e32E3 — 1251 — 2353

263181 +€32( )+63383+£3E3

C22
C12 C23 €3
32
= (631 - —632) S1+ (633 - —632) S3+|e3——|E3
C22 C22 C22
We can define new material constants.
2 2
C C1o C: C
* 12 * 12023 * 23
cii=¢C1——, C3=C3— y C33=033——
C22 C22 C22
2
* _ C12 . _ C23 . _ €32
€31 = €31 ——€32, €33=6€33— €32, €E3=E3——
C22 C22 C22

(4.4)

(4.5)

(4.6)

4.7)

With these new constants, we can define a new set of governing differential equa-

tions.
T, = cﬁSl + Cik383 — €§1E3
Tg = c;‘3$1 + C§353 - e;’kgEg
T5 = ¢55S55 — e1sEl
D;=e55+¢€1E;
D3 = e;lsl + 6;353 +£;E3

Static condition:

0T, 9Ts _
ox 0z
oT:

0Ts  0Ts _
0x 0z
0D, 6D3_0

W_'_ 0z

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)
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Weak form:
oou oou
f —T1+—T15|dQ=0 (4.16)
Q ox 0z
oow oow
f —T5+—T3|dQ =0 4.17)
Q ox 0z
00
f _(P (35([) —D3({dQ=0 (4.18)
Q 0x 0
o6u . ob6u
/(; ox (cHSl + 01353 831E3) + E (5585 —e15E1) [dQ2 =0 (4.19)
0ow 0ow .
f — (5585 —esE1) + —— (61381 + 03383 833E3) dQ=0 (4.20)
ol 0x 0z
00 00
f —¢(€15S5+£1E1)+—¢(e§181+€§383+€§E3)] dQ=0 (4.21)
al Ox 0z
f @(C*G_u c*a—w ex 6_(/))+65_u(c (G_u_l_a_w) e a(p)]dﬂ 0 (4.22)
alox (Max ™oz  3az) a6z (™loz ox)  Pox - '
f 00w (c (au 4 aw) s a¢>) L (c* Oy g2 W o 0—4’)] dQ =0 (4.23)
alox \™\oz" o Box)" 6z \Bax ez Boz B
06([) ou Ow 6(/)) 66(/)( . Ow *6(/5)
+ +ea,— —€2—||dQ=0 4.24
fg s ( (az ax) 9x) " oz e3lax 35, "%, (4.24)
The form of the sub-matrices:
K" = ¢, M* + c55s M** (4.25)
K'2 = ¢}, M* + c55 (M™2)" (4.26)
K" = el M** + e15 (M*?)" (4.27)
K% = cssM™ + ¢, M** (4.28)
K? = e;sM™ + e}, M** (4.29)
K = —g\M*™* — el M* (4.30)

The test case that was chosen is a bimorph with length L = 2.5 x 1072 meters, height

H =6x107° meters, and applied voltage V; = 600 volts. In the static case, each electrode
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will have a uniform voltage. The voltage is applied (specified) everywhere on the lower
and upper surfaces of the bimorph (z = + H/2). The dielectric breakdown electric field
for PVDF is 3 x 108 V/m [19], and 600 V over 60 microns gives a field strength of 1 x 107
V/m which is well below the breakdown point. The solutions for the variables, along with
their derivatives, are shown in figures 4.2-4.11. Figure 4.9 shows the difference between
the linear solution for the potential and the FEM solution. The electric field differs from
constant because of the direct piezoelectric effect. If there was no piezoelectricity, then
the PVDF would be a plain dielectric, and the electric field would be constant with the

value Es = —V,y/H.

Figure 4.2 shows the solution for the z-deflection w, which has a maximum value
at the tip of w (L) = —2.334 mm. The amplitude of w is very large compared to the x-
deflection. The overall shape of the deformed bimorph is thus dominated by w. The
shape of w is parabolic in the x direction, and nearly constant in the z direction (the z
dependence is very small). This is evident from the x derivative of w, shown in figure
4.3, which shows that 0w/0x is linear. Since the value of w and dw/0dx are both zero at

x =0, w is equal to a constant times x2. Thus, the curvature of the bimorph is constant.

The z-derivative of w is shown in figure 4.4. The z-dependence is quite small, but
not zero. The derivative is linear, except there is a jump at z = 0. This is because there
is a jump in the ferroelectric polarization, and thus in the piezoelectric constants, be-
tween the two piezoelectric sheets. All of the e; jx piezoelectric constants in one sheet
have the opposite sign relative to the other sheet. If a transition layer is created between
the two sheets so that the piezoelectric constants vary continuously, then dw/0z will
be continuous. This type of bimorph was solved numerically with the Finite Element
Method. The total thickness was kept the same, and a very thin transition layer was cre-

ated at z = 0 from z = —w; to z = w;, where w; is the transition layer thickness which
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is much smaller than the thickness of a PVDF sheet. The tip deflection was found to
decrease very slightly due to this assumed transition layer. The transition layer would
be very difficult, if not impossible, to actually manufacture, since the poling method of
simply applying a very strong electric field causes the dipoles all to align in the same di-
rection. The transition layer requires the dipoles all to vary continuously over a distance.
Mathematically speaking, it would remove the discontinuity in several of the derivatives
of interest, and allow the use of some advanced FEM techniques which require contin-

uous derivatives.

When the bimorph bends downward, the top surface will stretch, so u is positive,
while the bottom surface will shrink and have a negative u. As can be seen in figure 4.5,
u is proportional to xz. Both du/dx and 0u/0z are linear, as can be seen in figures 4.6
and 4.7. At a particular value of x, u will vary linearly and symmetrically about z = 0.
The volume of a sheet will tend to be conserved, so that as u increases, w will tend
to decrease. In this way, we can see how the z derivative on the top sheet is negative,
and positive on the bottom sheet, since the top sheet will get thinner in response to
it lengthening, and the bottom sheet will get thicker in response to the sheet getting
shorter. From this description, it would seem that the derivative should be a continuous
plane symmetric about z = 0. This is the effect from bending alone. In addition to the
bending effect on w, we also have an effect from the converse piezoelectric effect. When
an electric field is applied across a piezoelectric sheet which is free, it will get shorter and
thicker when the electric field is aligned with the polarization, or longer and thinner
when the field is antiparallel to the polarization. Since the field will be parallel in the
bottom sheet, it will get thicker by a certain amount from the converse piezoelectric
effect. The top sheet will get thinner by the same amount. Since the two sheets are glued

together at z = 0, the contribution to w from the converse effect will be zero there, and
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vary linearly toward the +/ surfaces. Thus, the contribution to 0w/dz from the converse
effect will be constant. Thus, we add a positive constant to dw/0z in the bottom layer,
and subtract the same constant from dw/dz in the top layer, which accounts for the gap
inodw/dzatz=0.

The electric potential is shown in figure 4.8. The electric field component in the z
direction is nearly constant, and so the potential varies linearly with only a very small
deviation. 0¢p/0z = —E3 is shown in figure 4.10. The direct piezoelectric effect will cause
a slight variation from linearity in the potential, which is shown in figure 4.9. The differ-
ence is piece-wise quadratic. The magnitude of the difference is only 0.44/600, which is
less than 0.1%. This indicates that it is accurate to assume a constant electric field when
using simplified models.

The numerical results for the x derivative of ¢ are shown in figure 4.11. This plot
shows erroneous behavior in the derivative. The FEM solution only provides the func-
tions for the variables, not their derivatives. To find the derivatives, we simply take the
derivative of the series solution u' = ¥ u; . There is always the possibility of not having
enough numerical precision, and thus the derivatives will be inaccurate compared with
the solution. That does not seem to be what has happened here. The same problem was
solved using 30 decimal places of precision in Mathematica, which is nearly twice the
16 digits of precision found in double floating point numbers in C programs. The same
behavior was seen, which indicates something else is going on. The derivative should

be zero everywhere since the potential is a constant in x in this example.
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Figure 4.6: 0u/dx
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Figure 4.8: ¢
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Figure 4.11: 0¢p/0x, erroneous behavior.
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Analytical Solutions

In trying to find in the literature analytical solutions for the deflection of the bi-
morph, a common model that is used is the Bernoulli-Euler beam model [11, 15, 16].
The three-dimensional bimorph is assumed to bend in a specific manner, which reduces
the governing equation of the z-deflection to a 4™-order differential equation in x only.

The more general 2D theory is given by the Mindlin-Reissner plate theory [11]. A
plate is very thin in the z direction, but has comparable dimensions in the x and y di-
rections. The assumptions governing this model are given as follows [11]:

1. Planar cross-sections which are perpendicular to the middle (z = 0) surface deform
linearly and remain planar after bending. Thus straight lines lying on normals remain
straight lines, but might not remain normal to the middle surface. This is the linearity
hypothesis.

2. The z-deflection (w) does not depend on z, so w = w (x, y).

3. The middle (z = 0) layer only deflects in the z direction (« and v are zero).

4. T3 vanishes (=0).

From these constraints, we have the following forms for the displacements:

u=-z601(xy), (4.31)
v=-20,(xy), (4.32)
Ww=w (x, y), (4.33)

where 6, and 6, are rotations in radians. If the bimorph has a non-deformed upward
normal pointing in the +z direction, then 0, is the rotation of the normal in the x — z
plane, while 6, is the rotation of the normal in the y — z plane. The rotations are not

known and must be solved for just like the deflections.
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In order to eliminate the rotations as unknowns, we can further assume that:
5. A vector which starts out normal to the middle surface will remain normal to the
middle surface after bending. This is the normal hypothesis.

With the normal hypothesis, the rotations will have the form

_ow (4.34)
b axi ’ )
so that
ow
u=-z—, (4.35)
0x
and
ow
V= —z—01. (4.36)
ay

In the Bernoulli-Euler beam theory, the y deflection is small and is neglected. Now

the z deflection will be a function of x only. The only strain that is non-zero is S;.

S ou 0’ w 4.37)
=—=—-z— .
' ox 0x?
For the piezoelectric bimorph,
0w
Th=cnS1—e3 k3= —tnZa g e31 Es. (4.38)

The piezoelectric constant es; is constant within a PVDF sheet, but the top sheet
has a negative sign relative to the bottom sheet. The torque, 7, is related to T; by the

integral over the cross-section

h
T:f szldydz
—h y
0 2

0 h 02
=b [f (—Cuzz—w—eglEgZ) dZ+f (—Cllzz—w+631E3Z)dZ
_n 0x2 0 0x2

( 0*w h hz)
=2b —C11 —+€31E3— ,

(4.39)

0x2 3 2
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where h = H/2 is the thickness of one PVDF sheet, and b is the width of the bimorph.
Here it is assumed that Ej is constant through the thickness. The direct piezoelectric ef-
fect will cause a deviation in the electric field, but the difference is small. This expression
allows Ej3 to be x-dependent.

If we set the torque equal to zero, then we get the equation

02 w _ 3631E3

6x2 B 2()11]’1 '

(4.40)

We have the boundary conditions that at the left end w = 0, and also the slope is

Zero.
w(0)=0 (4.41)
ow
—(0)=0 (4.42)
0x

This gives the solution, for a uniform electric field

363153 2
w(x)= X7, 4.43
(x) 2o h (4.43)
3es3 E
u(x,z) = -3 7. (4.44)
2611h

The tip deflection for E5 = —V,/ H, applied voltage V) = 600V, total thickness H =

6 x 107> m, and length L =2.5 cm is

3(1.819 x 1072) (600) (2.5 x 1072)?

—— =—7.681x10"" m. (4.45)
2(3.70x10%) (6 x 1075)

w(l)=-

The tip deflection value of —7.681 x 10~* m is only one-third of the expected value
of —2.334 x 1073 m. There is definitely something not right about this solution. The
problem may be in the assumption that w does not depend on z. If we drop that as-
sumption, and instead use the thin beam assumption as before that 7> = 0, and extend

it so that T3 = 0, then we get a much better result, which will be derived next. There is
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a paper written by Jan Smits and Susan Dalke [13] titled “The Constituent Equations of

Piezoelectric Bimorphs” which gives the following formula for the z-deflection:

3ds1 B3 ,
_ 208178 2 4.46
w (x) an > (4.46)
which gives a tip deflection of
3(1.496 x 10711) (600) (2.5 x 1072)? 5
w(L) = =2.338x 10" m, (4.47)

2(6x1075)°
which is practically identical to the numerical solution of —2.334 x 103 meters. This
formula was derived starting from a different form of the constituent equations. Now I

will re-derive the previous expression using the 7> = 0 and T3 = 0 conditions.

T, = 01181 + (,‘1282 + 01353 —e31 E3 (4.48)
Tg = 61281 + 62252 + 6'2383 - engg =0 (4.49)
T3 = 01381 + 62352 + 03383 —e33E3=0 (4.50)

The values of S, and Sz can be found.

Cx2 €23 So ) ( —C12 e3 )( S1 )
= (4.51
( C23 €33 )( S3 —C13 €33 Es )
1 _ _
( So ): . ( 33 €23 )( Cl2 e3 )( S1 ) (4.52)
S3 C22C33 —Cyy \ —C23 (22 —C13 €33 Es

Substituting the expression for S, and S3 into 77, we get an expression for 7; with

new material coefficients.

T = cﬁSl - e;{Eg (4.53)
C12 (—c33C12 + C23C13) + €13 (C23C12 — €22C13)
cﬁ:cn+ 12 (—€33€12 + €23C13) + €13 (C23€12 — €22C13 (4.54)

2
€22C33 — Cy5

C12 (—c33e32 + Ca3e33) + C13 (C23€32 — C22€33)
e = es + (4.55)

2
€22033 = Cyg
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When we substitute the expressions e3; = )  d3iCk; into the expression above, we

find that

eX =ds cX. (4.56)

It also turns out that
cX =1/s11. (4.57)

The inverse of the elasticity tensor is called the compliance tensor. Since the two

tensors are inverses of each other, we have the relation

%Ciququkl :6(ij)(kl)' (4.58)

This also works in the reduced notation.
ZC,’ijk=5ik. (4.59)
J

Here it is in matrix form. We also have c44 = 1/ 844, ¢55 = 1/ 855, and cg = 1/ Sg6.

c11 €12 Ci3 S11 S12 813 100
Cl2 C2 C23 S12 S22 S23 |=[ 0 1 O (4.60)
C13 C23 C33 S13 $23  S33 0 01
1 C22C23 — ng C13C23 — C12C33 C12C23 — C13C22
s= C13C23 — C12€33  C€11C33 — C%g C12€13 — C11C23 (4.61)
Det(c)

2
C12€23 — C13C22  C12€13 — C11C23 C11C22 — €1y

2
Det (¢) = ¢11 (€22¢33 — €53) — €12 (C12€33 — €13C23) + €13 (C12C23 — €13C22) (4.62)

From here was can see that s;; =1/ cﬁ.

The rest of the analysis continues as before. When we do the torque integral, we

2 . . .
assume that %T’ﬁ’ is a constant, which means the bimorph has a constant curvature. We
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now get the same expression for w as Smits and Dalke, and we also get an expression for

u.

= , 4.63

w (x) m (4.63)
3ds1 E3

2)=— 4.64

u(x,z) T Xz (4.64)

Now we can see what the maximum x deflection is according to this analysis. The
maximum seen from the 2D static FEM was 5.60 x 10~ m. This is in excellent agreement
with the analytical result. It is good that both w and x have good agreement with the
analytical result, which shows that the analytical model is consistent, and also that the

numerical results are most likely accurate in more complicated cases.

3(1.496 x 1071) (600)

L h)=
Hik, ) 2(6x107°)

(25x107%) =5.61 x 10°m. (4.65)

We know that w has a small dependence on z, but we would need some extra con-
ditions to determine the coefficients. From numerical results, we might guess that w

has the form

2
+ + for z >
w(x,2) = 2 x wo+wz wgz2 orz>0 (4.66)
wo—wiz+ wyz® forz<0
where
3ds1 E3
wo = . 4.67
0 ih (4.67)

From numerical results, we can estimate the other coefficients, for the example

problem of V) =600 Vand =3 x 10~° m.
wy =-3.735 (4.68)

w; =—-2.328x107*4 (4.69)

wy =—-4.715 (4.70)
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We thus have the empirical formula w (x, z) = —x* (3.735 + 2.328|z| + 4.7152%). When
z = h we have the terms 3.7, 7.0 x 107>, and 4.2 x 1072, thus the second term is on the
order of 107 times less than the leading term, and can be neglected.

Next we can look at the result from a slightly more involved problem. From [14]
we have equations 4.71 to 4.74 which take into account the non-uniform electric field.
This formula is for what is called a parallel bimorph, in which there is a third electrode
between the two piezoelectric sheets. This middle electrode is grounded, and V;/2 is ap-
plied to both the top and bottom electrodes. The polarizations of the two sheets point
in the same direction, but the electric fields are opposite. The behavior should be iden-

tical to the series bimorph, for which the potential is only applied on the outside of the

bimorph.
3b11baadz L Vy/2
w(l) = 11044031 20 2 4.71)
(4b11bas —3b7,) R
C11€3, + C11C33€3 — C24€3 — 2C13€31 €33 + C33€5
by, = 33 13 31 (4.72)
€§3+6‘3383
C13€33 — C33€
bl4:w (4.73)
€33 T C33€3
c
Dyy = 33 (4.74)

6?2’3 + C33€3
From this formula we get a tip deflection of —2.353 x 1073 meters, which is also in

good agreement with the FEM solution.
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CHAPTER 5
BIMORPH: HARMONIC 3D CASE

When the electrode material does not have a very high conductivity, it cannot be
assumed that the voltage distribution within the electrode will be uniform and instan-
taneously equal to the applied voltage when the applied voltage is changing with time.

Within a conductive material, we have the following electrical continuity equation:
oD
V-(J+—]=0. 5.1
1+%2) o
The constitutive relation giving the electric current in terms of the electric field is
J=0E, (5.2)

where o is the electric conductivity.
Since the electrode material is made of a polymer which is not piezoelectric, the

constitutive relation for the electric displacement is
D =¢E, (5.3)

where ¢ is the dielectric constant within the electrode. It is assumed that the electrode
material is isotropic, so o and ¢ are being treated as scalars.

The continuity equation for the electrode, written out in component form, is

9 ( E +£aE1)+ 9 ( E +£6E2
ox\" Vs ) oy P ar

0
+_
0z

E +eaE3) 0 (5.4)
(0 — | =0U. .
P

Within the piezoelectric sheets the conductivity is zero, and so there is no current.

8 (0D; 0D, 0D
( 1 2 3):0 (5.5)

— +
ot\ ox 0y Oz
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Since the electric behavior of the electrodes is of more interest than the mechan-
ical behavior, in the cases where the electrodes are not too thick and don’t impede the
bending motion, a convenient simplification is to only solve for the electric potential in
the electrodes, and not include the mechanical displacement.

For the piezoelectric sheets, we have the equations of motion.

62u 0T1 6T6 0T5
+ =0

- 5.6
P32 "ox "oy "z (5.6)
~ 62v+6T6+0T2+6T4_0 5.7
Por " ox "oy "oz '

2 T: T, T:
ow of oh oL _, (5.8)

o2 Tox "oy "oz
In a harmonic analysis, it is assumed that the response of the bimorph matches
the frequency spectrum of the input voltage, without any non-linear effects. In the case
where we have only a single input frequency, which is the case with a sinusoidal applied
voltage, then the bimorph will respond at that same frequency. Using complex notation,

we have the following forms for the variables.

u(x, 1) = up () + (au(x) +1Bu(x)) e (5.9)
v(x, ) = vp(x) + (0, (x) + B, (x)) €'’ (5.10)
w(x, 1) = wo(x) + (@, (X) + 1By (x)) '’ (5.11)
P, 1) = po(x) + (@g(x) +ify(x)) e’ (5.12)

where €'“! = coswt +isinwt, and i= v—1.
These forms are substituted into the differential equations. After solving for the a’s

and f’s, the final solution is the real part.

u(x) =Re[up (%) + (ay (x) +ify (x)) (coswt +isinwt)]
(5.13)

=uy(x)+ay,(x)coswt— B, (x)sinwt



48

v(x)=v9(X)+a,x)coswt— P, (x)sinwt (5.14)
w(x)=wpx)+ayx)coswt - P, (x)sinwt (5.15)
¢ (x) = P (X) + @y (X) coswt — P (X) sinwt (5.16)

The equations of motion for PVDF:

[ fen 22 e e022) 2 [ 224 22)
0x Hax lzay Bz loz oy 00 0y Ox (5.17)
2 fe[242) ) 2 g |
0z\“*\8z " ox ) ox) Por2
[ o[22 2 o222 402
ox | % 0y O0x dy 2x Zzay 0z "oz (5.18)
P DO .1 P |
T oz\ 5z "oy ) Tey) Por | T
22 22 20) 2
alox\™\az  ox P ax dy cd 0z 0y 240y (5.19)
+£(c a—u+c @+c a—w+e 0¢) 02_w dQ=0 |
0z \Box TG, TG, TG, ) TP | T
0 0 ou oOw 6([) ov ow 6(,[)
—f ol £251 Dyl B3 bow €| -t 3
o0tJa|ox 0z Ox 0x ay 0z dy ay
(5.20)
+i(e au+e a—v+e a—w—g 0¢) dQ=0
0z Plox T oy Poz oz B
In the electrode:
0o( 0 00 0( 0 66 0o( o0 00
3 (o2, 2000 0 (00, 000) 000 000) gy,
Oox\ o0x o0tox) Oy ay 6t0y 0z\ 0z 0to0z

The time-constant part of the solution is called the bias. For example, it is possi-
ble to have an applied voltage which has a non-zero average, or there could be a load
applied to the bimorph so that its starting deformation is non-zero. In this case, the
applied boundary conditions will have a constant part, and the biases can be solved ex-

actly as in the static case. In fact, if the applied conditions are comprised of a sequence
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of orthogonal frequencies (such as with a Fourier series), then the solution can be solved

independently at each frequency, and we would have a final solution of the form

u(x, 1) = uo (%) + Y (@b (x) + Bl e, (5.22)
k

For an applied voltage with a particular frequency w, we have the following har-

monic equations for PVDE

0

= | poran+ 2 (e 0% 4 0, 0% 1 0, 0% ai)
-1° ‘7 ox 0x 12 oy B0z e 0z

6 (c (dau+6ay))+i(c (Oau+6aw)+e 6%;)
oy 5y Tax ) T 02\ Bz T ax ) T ox

By 0Bu 0ﬁ¢)

C11

(5.23)

0
. 2
+ + — 24 + +
t|pw By ox 011 ox C12 3y C13 9z €31 5z

0 0By 6ﬁv) 0( (aﬁu aﬂw) 0,3(/;)]
Y (Cea(ay T ox ) T82\"\ 5z T ox ) T

o,
0 oay, aay)) 0 (Gav Gaw) aa(p)]
+ (666( + +az Ca4 oz + ay + e94 ay

0By 0Puw aﬁcb)

(5.24)

+ C2o + Co3 + e

Oy 0z 0z
0
0x Oy Ox Oz az oy oy

(Oau daw) 0a¢)
Cs5 +— |+ 15—

_ 2
‘[p‘“ Ywt 5% oz 0

+i(c (0a,,+0aw)+e 6a¢)

oy\"™\az oy )" oy

6( oay oa, oay 006(;))]
13

+ — + + +
0z 0x €23 oy €33 0z ¢ 0z

. 0 0 0 0p
+1i pwzﬁw+a 055( (fzu+—§xw)+elsa—;)

9 3By O,Bw) 0ﬁ¢)
+ay (044( 9z + 6y + €24 ay

(5.25)

0 9By 9Buw 5ﬁ¢)]
+ — + + +
0z (013 0x €23 oy €33 0z é3 0z
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0 0
e ) ) o )
0 0z 0x 0x oy 0z 0y oy
0 0 0
+ — (631 'Bu +6326ﬁy + eggaﬂw — €3 /3([))
0z 0x oy 0z 0z (5.26)
vio i(e (aau+0aw)_g 006¢)+i . (6@,, aaw) Ooa (p) '
ox\ "\ oz ox " ox o0y #\ oz dy 6y
0 a o oa o
+£(631 au+632 ayv+€33 aw—é‘g az(p)
In the electrode:
0 0 0 0 0 0
= 6( aﬂ+w£ ﬁ(p)+6( aﬂﬂu ﬁ¢)+6( aﬂﬂu 'B(p)
0x 0x 0x oy oy oy 0z 0z 0z (5.27)
+1i|— (00,3¢ we%)—i(a%+we%)——(a% +w£a—¢) .
ox\ ox 0x oy\ ay o0y 0z\ 0z 0z

Since these equations must be satisfied for both the real and imaginary parts, the
two parts can be separated. We now have twice the number of unknowns that we had

in the static case, since we need to solve for the cosine coefficients, and the sine coeffi-

cients.
oa
0= =pw au+i Cllaau-l-clgaav-i—clgaaw-l-egl (,b)
0x 0x oy 0z 0z (5.28)
+i(c (6au +606”))+i ¢ (aa” +_6aw)+e %) |
oy \ "oy "ox )] 0z\" oz " ox ) Pax
0 0 0 0 0
0=pw’By+—=—|c11 ﬁu+012 'BU+013 'Bw+€31 ,64,)
0x 0x oy 0z 0z (5.29)
+i(c (aﬁ”+a’6”))+i(6 (0'6” aﬁw)+e Oﬂ) |
oy \ "oy " ox )] oz 0z 0 B 0%
oa
0= =pw ay+i(6120au+()220av+6230aw+€32 (!))
oy 0x oy 0z 0z (5.30)
6 (c aau+0a,,))+£(c (aa,, 6aw)+e Oi) '
6x 06 dy  Ox 0z | oz oy 24 oy
0 9By 0Buw 5ﬁ¢>)
0=pw’By + -
pw ﬁ”+6y 012 PP =+ 5y T~ e s
( 0Bu aﬁv)) 0 ( (6,31) 6,3w) aﬁ(l’) '
+ — | Ce6 + + —|Cyq +— €ry—
0x oy O0x 0z 0z 0y oy




51

0 da, O oa
_ 2 e u w (P
0=pw aW+0x 055(6Z+ ax)+815 ax)
0 oa, daw) 506¢>)
+— + + 32
dy (C‘*‘*( oz oy ) oy >
0 oa oa oa oa
+&(Cls dxu + C23 ayv"'css sz +é33 az(p)
) 0B, 0P 9Py
_ 2 e u w
0=pw ﬁW+0x 655( 0z - 0x )+€15 Gx)
0 aﬂv aﬁw) aﬁ¢)
— 5.33
- oy (C4 ( 0z oy €2 oy ( )
0 0Pu 0By 0Bw 0,3¢)
"oz (C“’ ox By TWTG, TRy,
0 0 0 0 0 0 0 0
Oz—w[ (615( 'Bu+ 'Bw) €1 ﬁ¢) (24( ﬁv"‘ 'Bw)—gz ﬁ¢)
0x 0z 0x 0x ay 0z oy oy (5.34)
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To convert to the weak form, the appropriate variation must be used in each case.

For the equation which corresponds to the real part, we use the variation of the cosine
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coefficient. The sine coefficient is used for the imaginary part.
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Since the cosine and sine coefficients are coupled, a purely sinusoidal input voltage

will generate cosine contributions, and there will be phase differences in the solution

relative to the input. The “phase lag” is very important in understanding the response of

the bimorph.

The harmonic linear system:
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Damping

It is possible for the elasticity to be complex, in which case we get mechanical
damping. When looking at the response of the bimorph as a function of frequency, the
amplitude of the deflection will blow up at the resonance frequencies. Having damp-
ing will cause those peaks to broaden, and the amplitude will not go to infinity. There
can also be electrical damping and air resistance. There will already be some electrical
damping because of the resistivity of the electrodes, and so we do not use any imag-
inary components of the piezoelectric constants or the dielectric permittivity. Air re-
sistance is a non-linear function of the velocity of the air surrounding the bimorph. It
requires solving the Navier-Stokes equations, which requires using a very different ap-
proach than simple Lagrange FEM. The Navier-Stokes equations can be converted to a
finite element formulation, but the variables in the air resistance problem are air pres-
sure and air velocity, while the variables for the bimorph problem are electric potential
and mechanical displacement along with velocity. This system involves mixing different
types of variable, which would be very difficult to solve for simultaneously. The problem

is advanced enough that it would require a separate study.

Cij = C:-j + iC;,j (5.64)

The elasticity constant splits into real and imaginary parts. This will strengthen the
coupling between the cosine and sine coefficients. The modified differential equations

are shown below.
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The harmonic linear system with damping:
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CHAPTER 6

BIMORPH: HARMONIC 2D CASE

In the two-dimensional approximation, the bimorph is thin in the y direction (small
width), and it can be approximated as a beam. The simplest approximation is to set
T, = 0, and eliminate v as an unknown from the differential equations. This approxi-
mation can be made because the bending is only in the x — z plane. There is no shear
bending, so T, and T are also zero. There would be no reason for an electric field com-
ponent to develop in the y direction, so D, is zero. Since there is no asymmetry in the
applied voltage about the y = 0 plane, there is no force which would induce the bimorph
to twist. The bending is almost entirely in the x — z plane, with a very small symmetric
curvature in the x — y plane which can be neglected.

The equations of motion for PVDF are similar to the 3D case, with the y quantities

eliminated:

0214 _ 0T1 6T5

— 6.1
Pz~ ox oz 6.1
02w_0T5+6T3 6.2)
P = ox oz '
ot\ ox 9z ) '

The continuity equation for the electrode, where o is the electric conductivity and
¢ is the dielectric constant for the electrode:

6(E+ aEl)+6(15+ 653)—0 (6.4)
ox 7 T o | T o\ T T G | T '

Just as with the 2D static case, we find the value of S, by setting 7> equal to zero, and
then substituting the expression for S, into the remaining equations. We get new effec-

tive material constants, designated with a “*”. The definitions for the two-dimensional
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constitutive relations are as follows.

ou ow , 0¢

Lo0u ,ow , 0¢
To=c (a“+a“’ L 6.7)
T ™6z ' ox oy '
D (6u+6w) 0o 6.8)
=e5|—+—|-e1— .
! Bloz " ox Yox
LO0u ,ow ,0¢

In the harmonic analysis, the variables oscillate at the same frequency as the ap-

plied voltage.
u(x, ) = o (%) + (a0, (%) + By (x)) &' (6.10)
w(x, 1) = wo(x) + (@ (X) + 1By (x)) '’ (6.11)
P(x, 1) = Po(x) + (ap(x) +ify(x)) €'’ (6.12)

If the applied voltage oscillates around a non-zero values (has a bias), then there
will be a non-zero constant part to the solutions. The constant solution is found in the
same way as the static problem.

The time-harmonic weak form for a given applied frequency w is shown here. The
integrals are performed only in the appropriate regions, so the integrals for PVDF are
only performed over the PVDF sheets, while the continuity condition for the electrodes

integral is only performed in the electrodes.
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(6.15)
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(6.19)

(6.20)

If the elasticity constants have an imaginary part, then there will be mechanical

damping. We can express each component of the elasticity tensor as having a real and

imaginary part, where the real part is c; i , and the imaginary part is ¢/

cl]—c ‘ch

ij J

(6.21)

Now the real and imaginary parts of the solution will be further coupled because

of the complex elasticity.
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The behavior of interest in solving the bimorph problem is how the bimorph re-
sponds to a given input voltage. When the desired effect is to have the greatest tip de-
flection, then we want to know what the deformations are, and what are the phase lags.
It is usually not desirable to have the tip of the bimorph bending out of phase with the
input voltage, although there may be some applications. There is some work being done
in creating piezoelectric fins for underwater devices that can swim through the water in
a similar manner to fish [18].

After we have solved for the cosine and sine components of the mechanical dis-

placements and the electric potential, we can determine the amplitude and phase of
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the solutions. First, instead of representing a solution as a cosine plus a sine solution,
we can instead represent it as an amplitude and phase. The formula below shows how

we can convert the solution into this form.

¢ =acoswt— Bsinwt = Asin(wt +6)

(6.30)
= Asind coswt+ Acosdsinwt
From here we see that
Asiné = a, (6.31)
and
Acosd = —p. (6.32)
The phase can be found by taking any of the trigonometric inverses.
5 =sin"! (a/A) =cos ! (-B/A) =tan"! (~a/B) (6.33)

The problem was solved for a bimorph with length L = 2.5 cm, and an applied volt-
age of V) = 600 V. The voltage was applied symmetrically, so —300 V was applied to the
bottom electrode, and 300 V was applied to the top electrode. The piezoelectric sheets
each have a thickness of 1 = 3x 10™° m, which is a typical value available for commercial
PVDE The density of the PVDF is p = 1.78 x 10% kg/m?®. Various values of electric conduc-
tivity were used so the effects of conductivity could be seen. For the results shown below,
high conductivity refers to a conductivity o = 1 S/m. Medium conductivity is 0.004 S/m,
low conductivity is 0.001 S/m, and very low conductivity is 0.0001 S/m. The medium
conductivity value was chosen because it resulted in a phase lag of approximately 45
degrees.

At high conductivity (o = 1 S/m), the results are very nearly the same as with a

uniform applied voltage, where the voltage is applied over the entire electrode. In these
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cases where we are trying to find the electrical response of the electrodes themselves,
the applied voltage is only applied along the small edge of the electrode at x = 0. Each
electrode is given a height of h, = 1 x 107> m. Since only the electric response of the
electrode is being modeled, and not the mechanical response, the height doesn’t matter
much. Because of the way the voltage is applied (along the left edge), the current in the
electrode will flow back and forth in the x direction, and have no detectable variation
in the z direction. Practically speaking, then, the current is a function of x only. For the
finite element formulation, the piezoelectric part of the bimorph was broken into 25 x 12
elements, which means there are 25 divisions along the x direction, and 12 divisions
along the z direction. The electrodes each have 2 divisions in the z direction, and the
same number of divisions in the x direction as the PVDE Each element is quadratic, so
each rectangle contains a total of 9 nodes (3 x 3). In this section, only the conductivity
was varied, and all the results are for an angular frequency of w = 50 rad/s, which is well

below the first resonance frequency of 116 rad/s.

Figures 6.1 to 6.16 show the results for the electric potential ¢p. The first four plots
(figures 6.1 to 6.4) show the sine components of the potential. Since the applied voltage
has a sine component only, the cosine components of the solutions will be zero for infi-
nite conductivity and will increase in amplitude while the sine components decrease as
the conductivity decreases. This will result in a phase lag. For high conductivity, the sine
component looks just like the static solution, where the potential is uniform through-
out each electrode. The only difference would be a greater contribution from the direct
piezoelectric effect because of the increased deformation due to inertia. As the conduc-
tivity decreases, the amplitude decreases more and more dramatically at the end of the

bimorph (x = L), until the amplitude is zero, and there is no potential difference across
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the bimorph at the end. The plotting scale is equal in these four plots, since for any
conductivity, the voltage at x = 0 will always be +300 V.

The second set of plots (figures 6.5 to 6.8) show the cosine components of the po-
tential. Because of the boundary condition at x = 0 where the voltage is specified, the co-
sine component will always be zero at x = 0, and the sine component will alway be equal
to £300 V. The cosine solutions are anti-symmetric about z = 0. As the conductivity de-
creases from high conductivity to very low conductivity, the cosine component starts out
having a maximum value which is very small. For infinite conductivity, the value would
be zero. At medium conductivity, the cosine component is quite large, reaching over half
the value of the applied voltage. Then as the conductivity decreases further, the maxi-
mum value for the cosine component begins to decrease because of the amplitude loss
due to the resistivity. Although the cosine component is comparable to the sine compo-
nent near the end of the bimorph, both values are very small. The wave-like nature of
the potential begins to become apparent in figures 6.7 and 6.8, with the wavelength of
the attenuated wave decreasing with decreasing conductivity.

Figures 6.9 to 6.12 show the total amplitude of the potential, which decreases to
nearly zero at low conductivity. Here the lossy nature of the electrodes is evident. The
slope of the potential (the x derivative) is always zero at x = L in the electrode, since the
boundary condition is that the current is zero at the end.

Figures 6.13 to 6.16 show the phase lag. It ever increases with decreasing conduc-
tivity. The phase lag at x = 0 is always zero, since the voltage there is equal to the input

voltage.
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Figure 6.2: The sine component, —f (x, z). Medium conductivity.
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Figure 6.3: The sine component, —f (x, z). Low conductivity.
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Figure 6.4: The sine component, —f (x, z). Very low conductivity.
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Figure 6.5: The cosine component, ay (%, z). High conductivity.
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Figure 6.6: The cosine component, ay (X, z). Medium conductivity.
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Figure 6.7: The cosine component, ag (x,z). Low conductivity.
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Figure 6.8: The cosine component, ay (x, z). Very low conductivity.
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Figure 6.12: The amplitude, , /aé + ﬁé. Very low conductivity.
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Figure 6.13: Phase, 6, in degrees. High conductivity.
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Figure 6.14: Phase, §, in degrees. Medium conductivity.
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Figure 6.15: Phase, 9, in degrees. Low conductivity.
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Figure 6.16: Phase, §, in degrees. Very low conductivity.
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Figures 6.17 to 6.28 show the results for w. The mechanical displacements will
be affected by inertia. As the frequency of the applied voltage begins to increase from
zero, inertia will cause the bimorph to bend more and more. The frequency at which the
bending amplitude maximizes is called the resonance frequency. After the amplitude
peaks, it will decrease to a minimum near zero, and then begin to increase again until
it has a local maximum at the next resonance frequency. There is an infinite number of
resonance frequencies. When the electrode conductivity is finite, the electric field across
the bimorph will decrease with increasing frequency. There are two effects which are at
odds. The inertia increases the amplitude, while the electric field strength loss decreases
the amplitude.

For high conductivity, the sine components of the solutions will look almost iden-
tical to the static solution. The cosine components will be close to zero for high con-
ductivity, but as the conductivity decreases, they will become comparable in amplitude
to the sine components, or even surpass them. The greater the amplitude of the cosine
component relative to the sine component, the greater the phase lag. As the conduc-
tivity is decreased, the curvature near the middle and end of the bimorph will become
more flat, until it has zero curvature. At very low conductivity all the bending will be
from a short region near x = 0, where the electric field is highest. As the conductivity
begins to decrease, the cosine component will increase, until the conductivity becomes
too small and the overall bending of the bimorph is greatly decreased.

Figures 6.29 to 6.40 show the results for u, which behaves similarly to w for varying
conductivity. As the conductivity is decreased, the stretch and compression start out
being distributed almost uniformly along x, but end up taking place at small x where
the electric field is greatest. The amplitude of u is shown in figures 6.37 to 6.40. The

crease with zero amplitude at z = 0 results from u being zero along z = 0.
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Figure 6.17: The sine component, —f,, (x, z). High conductivity.
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Figure 6.18: The sine component, —f3,, (x, z). Medium conductivity.
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Figure 6.19: The sine component, —f,, (x, z). Low conductivity.
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Figure 6.20: The sine component, —f3,, (x, z). Very low conductivity.
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Figure 6.21: The cosine component, &, (x, z). High conductivity.
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Figure 6.22: The cosine component, @ (X, z). Medium conductivity.
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Figure 6.23: The cosine component, & (X, z). Low conductivity.
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Figure 6.24: The cosine component, a,, (x, z).

Very low conductivity.
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Figure 6.25: The amplitude, \/a?, + $2,. High conductivity.
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Figure 6.26: The amplitude, \/a?, + f%,. Medium conductivity.
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Figure 6.28: The amplitude, \/a?, + f2,. Very low conductivity.
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Figure 6.29: The sine component, —f, (x, z). High conductivity.
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Figure 6.30: The sine component, —f3,, (x, z). Medium conductivity.
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Figure 6.32: The sine component, —f, (x, z). Very low conductivity.
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Figure 6.33: The cosine component, &, (x, z). High conductivity.
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Figure 6.34: The cosine component, &, (x, z). Medium conductivity.
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Figure 6.35: The cosine component, &, (x, z). Low conductivity.
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Figure 6.36: The cosine component, &, (x, z). Very low conductivity.
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Resonance Frequencies

In the classical Bernoulli-Euler beam theory, the differential equation which gov-
erns the z-deflection w is [15]

0% w

Elaz w
0x2

62

0x?2

where E is the modulus of elasticity, I is the cross-sectional moment of inertia about the
neutral (z = 0) axis, A is the cross-sectional area, and p is the mass volume density.

The moment of inertia is

h 2bh3
I= f f Z?dydz= : (6.35)
-ndy 3

where b is the width of the bimorph, and # is the half-height H/2. The cross-sectional

area is the width times the height, so A =2bh. The modulus of elasticity is

E=1/s11, (6.36)
which is the coefficient of S; in the stress-strain relation given in chapter 4.

Th = (1/s11) S1— (d31/811) E3. (6.37)

The assumption with the given form of the differential equation is that the rest-
ing shape of the beam is straight with no deflection. In the piezoelectric case, with an
applied electric field, the equilibrium shape, as was derived earlier in the Analytical So-
lutions section of chapter 4, is given by the expression

3d31E3

2
. 6.38
an (6.38)

Weq (X) =

Since the equilibrium deflection is not zero, the differential equation is modified

so that w is substituted with the change in w from the equilibrium.

(6.39)

9z (W Wed) =55 A ox2  2h

02 62 3d31E3 2 _Ozw 3d31E3
0x? v )T -
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The differential equation now reads

62
0x?

02 3ds, E 02
( w24 3)]+ Yoo (6.40)

x> 2h 012

When a uniform electric field is applied, the x derivative of E3 is zero, and so we get
back the original differential equation. There would only be a difference if Es = E3 (x).
Since the bimorph has a cross-sectional area which is constant, and the elasticity is also
constant, the EI coefficient can be moved to the outside of the derivative. We now have

a final form of the governing differential equation.

0w 0%w
El——+pA—-=0. (6.41)
X

In the harmonic case, when the electric field is changing sinusoidally, we have
w(x, 1) = w(x)e'!, (6.42)

and so the differential equation becomes

0w ,
EIW—pAa) w=0. (6.43)

This can be written more compactly as

0*w
ax4 = k4 w, (6.44)
where
A
k= PA e 3PS o (6.45)

~EI h?
The solution to the differential equation is given in terms of Krylov-Duncan func-

tions [15].
w(kx)=C1S(kx)+CoT (kx) + C3U (kx) + C4V (kx) (6.46)

S(kx) = % (cosh (kx) + cos (kx)) (6.47)
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T (kx) = %(sinh(kx) +sin (kx)) (6.48)
U(kx) = % (cosh (kx) — cos (kx)) (6.49)
Vikx) = % (sinh (kx) —sin (kx)) (6.50)

Having the solution in this form is useful when applying boundary conditions.
Also, the derivatives of the functions are transformed into each other. The list below

show the values of the functions and their derivatives at x = 0.

S0=1 S0O=0 S"0=0 S"0)=0
TO)=0 T'0=1 T'0)=0 T"(0)=0

(6.51)
Uuo)=0 UO®=0 U'0=1 U"0)=0
vVio)y=0 vV'©0=0 V'0=0 V"0 =1
The boundary conditions are as follows.
w(0)=0 (6.52)
w' (0) =0, The slope at the clamped end. (6.53)
w' (L) = 3ds1 E3, The curvature at the free end. (6.54)
w" (L) =0 (6.55)

From the first two boundary conditions, we know that C; = 0 and C; = 0. From the

third and fourth boundary conditions, we have

" Csk? Cik? . ,
w' (L) = (cosh (kL) + cos (kL)) + 5 (sinh (kL) +sin (kL)) =3ds1E3, (6.56)
3 3
w'" (L) = Csk (sinh (kL) — sin (kL)) + Cak (cosh (kL) + cos (kL)) = 0. (6.57)

2

After simplifying a bit, the coefficients are

3 3ds31E5 cos(kL)+ cosh (kL)

_ , 6.58
3 k? 1+ cosh(kL)cos(kL) (6.58)
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3 3ds31 E3 sin(kL)—sinh (kL)

C .
4 k? 1+ cosh(kL)cos(kL)

(6.59)

To find the resonance frequencies, we find the frequencies which cause C3 and Cy
to go to infinity. Besides the non-solution of k = 0, which is the static case and therefore

not a resonance frequency, we have
1+ cosh(kL)cos (kL) =0. (6.60)

This is a transcendental equation, which has an infinite number of roots, the first

six of which are
k,L=1.8751, 4.6941, 7.8548, 10.9955, 14.1372, 17.2788, ... (6.61)

If we set 1, = k,, L, then we have the expression for the resonance frequencies
2
AL h

==, (6.62)
L* \/3ps1;

Wn
where h =3x10°m, L =2.5x10"2 m, p=1.78x 103 kg/mg, and s;; = 3.9544x10710 mszlkg,
and so

wy, = A% (33.0315) rad/s. (6.63)

The first six theoretical resonance frequencies are

w, =116.14, 727.83, 2037.97, 3993.54, 6601.68, 9861.73 rad/s. (6.64)

The theoretical values match up fairly well with the numerical results, listed be-
low, with a difference of less than 2 percent. The numerical resonance frequencies were
found by looking at which frequencies the amplitudes of the z deflection had a local
maximum, which is plotted in figures 6.41 to 6.44. Neither damping, nor conductivity,
affected the positions of the resonance frequencies. Damping only caused the peaks to

broaden and decrease in amplitude, as shown in figure 6.42.

w, =116, 730, 2051, 4037, 6713, 10100 rad/s (6.65)
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Figure 6.41: Maximum amplitude vs. frequency for high conductivity.
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Figure 6.42: Maximum amplitude vs. frequency for high conductivity, with damping.
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Figure 6.43: Maximum amplitude vs. frequency for medium conductivity.
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Figure 6.44: Maximum amplitude vs. frequency for very low conductivity.
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Figure 6.47: The 2" mode at w = 730 rad/s.
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Figure 6.48: The analytical mode shape for the 2"¢ mode.
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Figure 6.51: The 4™ mode at w = 4037 rad/s.
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Figure 6.52: The analytical mode shape for the 4™ mode.
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Figure 6.54: The analytical mode shape for the 5 mode.
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CHAPTER 7

CONCLUSIONS

Traditionally, and for many applications, metal has been used as the electrode ma-
terial for piezoelectric actuators. With the advent of intrinsically conductive polymers
which can attain a moderately high conductivity with doping, it is now possible to use

polymers instead of metal for electrodes.

A consideration when using finite-conductivity electrodes is what will be the elec-
trical potential distribution within the electrodes for various frequency ranges. For very
high conductivity electrodes, if a single voltage is applied anywhere on the electrode,
the voltage will propagate nearly instantaneously throughout the electrode, and we can
assume to have a uniform applied voltage. When this is the case, the electrodes do not
need to be included when modeling the problem, except in the case where the elec-
trodes contribute significantly to the stiffness of the device, in which case only the me-

chanical properties need to be modeled.

When the conductivity of the electrodes is not high enough for a particular applied
voltage frequency, there will be two differences. First, there will be a significant decrease
in the amplitude of the voltage as you get farther along the electrode away from the
point of the applied voltage. Second, there will be a phase lag. In the case of harmonic
time dependence, where all the variables respond to the applied voltage at the same
frequency, the response will not be in phase. It is possible to have applications where
this is a good thing. For the most part, having different parts of the bimorph respond at

vastly different phases is problematic for predictability and control.
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Independent of the conductivity, there is also the issue of frequency modes. Al-
though for a given finite conductivity there will be a significant phase lag and a decreas-
ing in voltage amplitude for high enough frequencies, for all but the lowest conductivi-
ties, the larger issue is that the bimorph will change shape depending on which mode it
is in. For a bimorph, the resonance frequencies are low, and so the bimorph will enter
into the higher modes quickly, before there might be issues with voltage and bending

amplitude degradation.

The piezoelectric bimorph problem was modeled using coupled second order dif-
ferential equations. It was straightforward to convert these equations into a finite ele-
ment formulation. Although the resulting matrix was indefinite, and also problematic
in that it had a very high condition number, it was still possible to solve the system of
equations with a direct solver. The results show that for small bimorphs, the response
will be very similar to metal electrodes as long as the conductivity is not very low. With
the vast improvements over intrinsic conductivity by doping, it appears that PEDOT-PSS
and similar polymers will be highly usable. There are other issues to consider though,
such as the lifecycle of the polymer, and whether it is suitable for various environmental

conditions, such as high moisture.

This work, being the first to show the effect of finite conductivity electrodes on the
performance of a piezoelectric polymer actuator, can be extended to actuators of other
designs and employing other materials. Such analysis will be a great aid in the design of
higher performance actuators that employ the much more flexible conductive polymer
electrodes. Since the Finite Element Method is suitable for any piece-wise polygonal
geometry, it is possible to model a vast array of differently shaped actuators. Also, the
voltage can be applied in any pattern. In this dissertation, the applied voltage was only

applied along one edge of the bimorph. This is not a requirement, however. The voltage
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can be applied in any pattern, in what is called a mask. For example, it is possible to
have a very thin metal grid overlaying the polymer electrodes. This would minimize the
reduction in the deflection from the stiffness of the metal, but also help ensure a more

uniform applied voltage.

Results

There were three types of problems solved. There is the static case, where the con-
ductivity of the electrodes does not affect the solution. This was solved for the full 3D
case, and also the 2D case for the simple beam approximation of 7> = 0. In addition to
the FEM numerical solutions, an analytical solution was developed which involved most
of the Bernoulli-Euler beam assumptions [11] along with the approximations 7> = 0 and
T3 = 0. This analytical model, in the final form, involved the material constants s1; and
ds;. The agreement between the theoretical and numerical results was astonishing. The
first attempt at developing a model using pure Bernoulli-Euler beam assumptions used
the material constants c;; and e3;. The amplitude of the results were highly inaccurate,

although the form of the solution was correct.

The second problem solved was the case of harmonic time dependence. In the
general time-dependent case, the applied voltage is an arbitrary function of time. The
response of the bimorph would need to be calculated at each time step. An appropri-
ate value for the time-step would need to be chosen, and most importantly, the cor-
rect method for stepping the solution forward in time would need to be chosen, pos-
sibly a Runge-Kutta scheme. If the applied voltage is sinusoidal, then the response
of the bimorph will also be sinusoidal, since the governing equations for the bimorph
are linear. If the input voltage is V = Vjsinwt, then the solution will have the form

Re [ue'®!] = acoswt — Bsinwt, where u is complex. The solution will only have a zero



101

cosine component if there is no phase lag of any kind, which is the case for infinite-
conductivity electrodes and no damping. Electrode resistivity and mechanical damping
will cause a cosine solution to develop. For a given frequency, the solutions for several

different values of conductivity were found.

The third problem was finding the positions of the resonance frequencies and the
mode shapes. This was an extension of the case of harmonic time dependence. A the-
oretical model was developed to find both the resonance frequencies, and the shape of
w for any given frequency. Again the model was based on the Bernoulli-Euler beam as-
sumptions. The analytical solution found for the static case was extended for the case
of harmonic time dependence. The mode shapes appear identical to the FEM solu-
tions, and the values of the resonance frequencies are very close, but not identical, being

within 2% of each other for the first five resonance frequencies.

Future Direction

The results presented in this dissertation were found using Lagrange finite ele-
ments. These types of elements allow only one degree of freedom, which is the primary
variable, such as u, v, w, or ¢p. Other degrees of freedom which we might want to know
are the derivatives of the primary variables, or functions of the derivatives such as the
strains S; , or the electric displacement D. The formulas for calculating these quantities

involve the first derivatives of all the primary variables, so that D = D (a” u Ou Qv )

ox’ Er 9z’ O0x’ "

If we only want to know the strains and the electric displacement, then we could look at
what are called mixed finite element methods [11]. These methods are known to be un-
stable, and so ensuring their correctness requires more advanced methods. The strains
and electric displacement on the boundary are of interest because some of the bound-

ary conditions for the bimorph problem include having surface traction values of zero,
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and also a surface charge density of zero whenever the potential is not specified on the
boundary. It would be nice to ensure that these boundary conditions are enforced in the

solution.

If we are interested in the individual derivatives of the primary variables, then it
may be possible to find the derivatives by taking the derivatives of the basis functions,
since the solutions are just coefficients times basis functions. Problems could arise when
using this approach, however, because although Lagrange basis functions are continu-
ous across element boundaries, they are not smooth, and their derivatives are not nec-
essarily continuous. Another approach is to use Hermite basis functions, which include
the first derivatives, and the mixed second derivative in the finite element formulation.
This method is a higher-order method, and although I have found it to be stable for
certain problems, it seems to be unstable when solving the piezoelectric problem. One
possible problem with my Hermite formulation, which was suggested to me, was that,
in the Hermite approach, the derivatives on the boundary should not be included as
unknowns in the formulation, that only interior derivatives should be included. The in-
terior derivatives help to ensure smoothness of the solution. Also, Hermite elements are
higher-order, and thus a coarser mesh can be used to achieve the same level of accuracy

as Lagrange elements [17].

One problem that clearly arises when using Hermite elements is the problem of
smoothness in the unknowns. When using Lagrange elements, only the primary vari-
ables need to be continuous. There are some advanced methods, such as the Discontin-
uous Galerkin Method, which can be used in solving problems which have jumps. They
involve using extra terms in the finite element formulation, such as penalty (or stabiliza-
tion) terms. If Hermite elements are used, then itis assumed that all the variables used in

the formulation are continuous. In the case of the piezoelectric bimorph, there is a jump
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in some of the derivatives across the boundary between the two piezoelectric sheet lay-
ers, since the polarization direction has a jump. The problem can be transformed into a
continuous problem by adding a thin transition layer in which the polarization changes
continuously. If the problem is not altered, then it is possible that the variables will sim-
ply be averaged across jumps, although serious oscillations can also occur which would
render the solution useless.

The weak form of the equations of motion and the continuity equation with the
boundary integrals are shown below. When using Hermite elements, some care is needed

in dealing with the boundary integrals.

fQ[péuiHVéu-tu]dQ—fréutu-ﬁ dl =0 (7.1)
fQ[pﬁvii+V6v-tv]dQ—j§F6vt,,-fz dl'=0 (7.2)
fQ[péww+V6w-tw]dQ—y§r5wtw-ﬂ dr=o0 (7.3)
Lv&p-(ﬂ‘;—? dQ—fr&p(H%—It))-ﬁdr:o (7.4)
where
t,=Tx+Tegy+ Tsz, (7.5)
t,=Tex+ Toy+ 1,2, (7.6)
ty=Tsx+Tyy+ T52. (7.7)

For a second-order differential equation (or system of equations), only one type
of boundary condition can be specified simultaneously. Usually two types of boundary
conditions can be specified for the problem (Dirichlet or Neumann), but they must be
specified on different parts of the boundary. If the value of the primary variable is speci-

fied, then that is called a Dirichlet boundary condition. The weak form of the differential
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equation reveals the form of the Neumann boundary condition. For the Poisson equa-

tion, the Neumann boundary condition is the normal derivative on the boundary. We

can assume that either one type or the other is specified on the entirety of the boundary,

for each primary variable. In a set of coupled differential equations, the positions of the

Dirichlet and Neumann regions do not need to coincide for all the variables.

I'=Tp+Ty

(7.8)

When the primary variables are not specified, the boundary condition is that all

surface tractions are zero, and the surface charge density is zero. Therefore, the bound-

ary integral is zero on all Neumann regions of the boundary, and we only have the

Oya

Dirichlet regions to consider.
f 05u( 0u+c 6v+c 0w+e 0¢>)+C Oéu(au 61})
o | ox nys lzdy 135 Teso 66 3y
obu ou Ow 0
+ — 9z (655(az+ ax)+€15a) dQ

—f ou (Clla—u+0126—V+6130—w+6316¢)x+666(6—u+@)A
Tp, 0 oy 0z 0z
+ ((,‘55 (a—u + a—w) + 6156(p)
0z Ox 0x

ndl“:—f pduii dQ
Q

Clao—-t+C2——+C3——+e€3

J

aév(du 61}) 06v( ou ov ow 0(1))

6 3 |3 T
ox \0y o0x) ady 0x oy 0z 0z
oov ov Oow 0o
-— dQ
i az( 4(0z 6y)+6240y)
f ov | ¢ (6u+6v)x+(c 6u+c 6U+c aw+e 6(,b)
f— v — — — —
. 66 3y " ox 125~ 2203/ 235 tes2 s y

ov aw) a(p)
—+—|+exy
oy

0z Oy

+ (044 -pdl’ = f povi dQ

oy Ox‘y

(7.9)

(7.10)
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f 65w( (au aw) 6([)) 66w( (61/ dw) 6([))
—_ sl —+—]|+e — | Cyy| —+— |+ e
ol 0x 0z Ox Pox oy 0z 0y oy
+_66w(c a—u+c @+c a—w+e 6¢) dQ
0z \ Pox " oy Paz Poaz .
(o[22 s o[22y
o 5z T ax ) TPk 5z " ay )T ey )Y
o] o] o] 9]
+ 0130—Z+0236—;+0330—L;+e330—(£)2 -fzdfz—fgpéqudQ
f 06¢>( (au GLU) a¢) 66(/)( (61) aw) 6([))
€15 eyl —+
ol 0 0z Ox Yox o0y 0z 0y Oy
06¢ ou ov ow 6(/))
+ 9z (631 ox +€326y+€33 9z &3 9z dQ
_f R (e (du aw) ap x+(e (av 6w) a¢>) (7.12)
b, P115\52 " ox) " ox 23z "oy ) Pay)?
+(e %+e @+e a—w—e 6—¢)z -ndl'=0
315 T €32 3y 8357 ~ 85, =

Figures 7.1 to 7.8 show the solution to the 2D bimorph problem when using Her-
mite elements. In this case the electric field was specified, and ¢ was not included as an
unknown. There are some obvious problems, especially with ¢. This may be caused by
an incorrect implementation of Hermite elements.

There is a problem with the mixed second derivative. When the mesh is refined,
the second derivative becomes worse, as shown if figures 7.9 and 7.10. There seems to
be an instability which becomes worse with smaller mesh size. I do not think this is
a numerical round-off problem. The same solution was found when the problem was

solved in Mathematica with 60 decimal places of precision.
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FINITE ELEMENT METHOD



113

The Finite Element Method (FEM) is a variational method [16]. The idea is that
we have a situation where the best solution is the minimum of some function (or func-
tional). This functional (a function of a function), for example, could be a measure of
the energy of a system, where the function we are trying to find is the mechanical defor-
mation of an elastic object. The idea of an energy can be applied very loosely, but in the

end we are minimizing something to find the best approximate solution.

FEM is also a series solution. Instead of finding the exact analytical expression for
a function, we can approximate it with a series of known (and simple) functions of our
choosing. In the finite element method the known functions are almost always low-
order polynomials of small support (meaning they are zero everywhere except in a small

region which we call an element).

I will now show an example of a functional. Let’s say we want to solve a very simple
differential equation such as this second order equation in 1D, where the domain of

interest is a line of length L, and f is a known function of x, called the source function.

@+f—0forxe[ou (A1)
dx? - ’ '

With the FEM, we need to specify boundary conditions to get any kind of solution.
The simplest possible boundary condition is to have u equal zero everywhere on the
boundary. In the one-dimensional case the boundary consists of the two points x =0

and x= L.

If we have a functional, then to find the extremum(s) we set the first variation equal
to zero. There are only certain kinds of differential equations and boundary conditions

which will have an explicit functional. First of all, the orders of the derivatives must be
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" and so on. For the FEM to work we don’t need an explicit

even, so you can have u, u”, u
functional because there is an equivalence between the variational (or weak) formula-
tion of the problem and the original differential (or strong) form. But, for the sake of

getting a feel for the topology of the energy functional which we are trying to find the

global minimum of, it is usually nice to get the functional in explicit form.

To get the functional, we start by multiplying our differential equation with the
variation of our function, 6u, and then integrating over the domain.

L 2
f Su (ﬂ + f) dx=0 (A.2)
0

dx?

We can use the distributive property of derivatives to change the second order
derivative into a first order derivative on u. This is called the weak form, since from
a mathematical perspective, the required smoothness of the function u has been de-
creased. It is now alright for u to have a discontinuity, because there are no infinities.
If you take the derivative of a discontinuity you get a delta function, which you can still

integrate, but taking the derivative of a delta function is problematic.

Lrd d déud
f —(6u—u)——u—u+(6u)f dx=0

o [dx dx dx dx A3)
= 5u% L+fL[——d6u%+(5u)f dx |
a dx |, Jo dx dx

Here is where the boundary conditions come in. According to the term 5ug—’;€‘, we

should either specify u, so that du = 0, or we should specify the derivative u'. In order
to get a functional we need this term to equal zero. Therefore, if we don’t say what u
is at both endpoints, then its derivative needs to be zero at the endpoint where u is
unspecified. This is only if we want an explicit functional.

K

déu du
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Now we can "back out" the variation. We want to have the variation symbol out
in front. Variations are like derivatives, except they only work on unknown functions.

Since we know the function f, and it has no dependence on u, the variation of f is zero.

L1 1(du)?
(e v

Now we have the functional, which is the integral

L
F__f
0

This kind of functional is called a quadratic functional, and its minimum is guaran-

dx=0 (A.5)

1(du\?
> ( “ dx. (A.6)

a) +uf

teed to be equal to the solution of the original differential equation. Now we can move
on to the finite element part of FEM. We want to represent our true solution u with a
not-so-good series of simple functions. The simple functions are called basis functions,

which I will represent with the letter v, where the i basis function is ;.
N
u(x) =y cjyi(x) (A7)
i=1

We now substitute this expression into the functional, and we minimize it with

respect to every unknown coefficient cy.

F:fOL
:fOL

In order to find an extremum of the functional with respect to the coefficients, we

1d

‘EE(Z n/n) (Zw;)#ZWz

N (A.8)

[ o RO P

i=1

set the derivative with respect to each coefficient equal to zero. This gives a set a linear

equations.

OF L

d
sz Cj +f1//k
'—1
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This can be written in terms of the matrix equation,

& [ty dy; t
. dx =  dx, A.10
jZZICJdedxxfofwlx (A.10)

or more compactly,

K-c=bh, (A.11)
where
bdy, dy;
- I dx, A12
)y dx dx dx ( )
and
L
by = fo wif dx. (A.13)

To solve for the coefficients, we invert the matrix, which is often called the stiffness

matrix in elasticity problems.

c=K'1-b (A.14)

We can get this same set of equations from the step just before we got the func-
tional, the second part of equation A.3. We just substitute in the series solution for u
and d6u, taking into account that éu is zero when u is specified on the boundary. Get-
ting the functional and then minimizing it is not necessary in practice, but it is good for
analysis. If the stiffness matrix is well behaved, then the coefficients can be solved using
an iterative method, in which an initial guess is improved at each iteration until the so-

lution converges. In this case, the matrix does not need to be explicitly inverted.

In one dimension, the boundary only consists of the two endpoints. In two dimen-

sions, the boundary is a closed curve, and in three dimensions the boundary is a closed
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surface. The boundary can be broken into different regions, where each region spec-
ifies a different type of boundary condition. For a second order differential equation,
we would expect to have two types of boundary conditions, Dirichlet or Neumann. In
the case of Poisson’s equation, Dirichlet boundary conditions correspond with specify-
ing the value of the primary variable on the boundary. Neumann boundary conditions
correspond with specifying the value of the normal derivative on the boundary. If purely
Neumann boundary conditions are used, then at least one nodal value of the primary
variable should be specified, otherwise the solution could be shifted by an unknown
amount. Figure A.1 shows an example of a two-dimensional domain with two types of

boundary condition regions.

Figure A.1: An example domain Q and boundaryI'=T'p + .
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Lagrange Finite Elements

Lagrange elements are some of the simplest elements. The most simple Lagrange
element in one dimension is the hat function, which is composed of first order polyno-
mials (lines). For each element, the basis function is equal to one at the node point, and

equal to zero at its left and right neighbor nodes.

. . ° . .
=0 X

X

Figure A.2: A 1D mesh with six nodes.

1.0
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00 1 1 L

Xi-1 Xi Xi+1

Figure A.3: A hat function, or first order Lagrange basis function.

A basic element is comprised of two nodes, and two basis functions. There is a
distinction between a local element, and a global element. Strictly speaking, an element
represents the support for a particular node. If I have a node at the point x;, and if we are
somewhere in the middle of our domain, then the element spans x;_; to x;;+;. The basis
function for the i™ node is the hat function that is equal to one at x;, and zero at x;_;
and x;+;. From the point of view of constructing the matrix equations, we would focus
on the local element, with a partial basis function for the two nodes within the element.

In one dimension, a global basis function v; could at most be composed of two local
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basis functions y¢. In two dimensions or higher, one node can belong to a lot of differ-
ent neighboring elements. With a simple 2D grid, a non-boundary node will belong to 4

different elements.

vi(x)= Z y? (x), where e runs over all elements that node i belongs to. ~ (A.15)
e

The basis function must be smooth enough to represent the continuity require-
ment of the solution. In some cases, a first order basis is not adequate, and we must use
second order (quadratic) polynomials. In this case, a local element would be comprised
of three nodes, since we need three points to specify a quadratic function. A global ele-

ment which is not on the edge of the domain would then have 5 nodes total.

A k' order Lagrange element has k + 1 nodes, with k + 1 local basis functions. If
the nodes within the element are located at positions x;, then the basis functions have

the following formula:

k+1 X—X;
vi= [] L (A.16)
j=1,j#i Xi ~Xj

For a linear Lagrange element that runs from 0 to h, the basis functions are as fol-
lows.

h—x
h

Y1 (x) = (A.17)

( _ X (A.18)
Y2 x)—h .

For a quadratic Lagrange element with node positions {0, /2, h} the basis func-

tions are as follows.

h—2x)(h-

Y1) =" ’22( X) (A.19)
4x(h—x)

W (X) = ———— (A.20)

h2
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x(2x—-h)

2 (A.21)

Y3 (x) =

The functions for interior nodes are called bubble functions. For quadratic ele-

ments, ¥, is a bubble function.

1.0

0.8

0.6

0.4

0.2

Figure A.4: Quadratic Lagrange basis functions.

When constructing basis functions for higher dimensions, the functions are simply

the products of the one-dimensional functions.

Hermite Finite Elements

A characteristic of Lagrange elements is that they are used for interpolating a func-
tion u(x) based on the values of u at all the node points r;. There are other types of ele-
ments which use more information to interpolate u(x), namely the values of the deriva-
tives of u at each node. The Hermite element uses the value of the variable, and also
its first derivative. In this section I will show how this type of element and other higher

order elements (using higher derivatives) can be used to solve a second order equation
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in one dimension. I will then give a more in-depth treatment for two-dimensional ele-

ments.

Let’s say we want to solve the Poisson equation. The source function is the known

function f(x). If f = 0 then we get Laplace’s equation.

0%u
32 = f(x)forxe [0, L] (A.22)

The weak form is

K

If we use the Hermite elements, then our interpolation will have two types of terms.

L

=0. (A.23)
0

ou
0x Ox 5“&

dx+

6u,~

The basis function for u; is denoted by ¥/, and the basis function for u; = 7 is denoted
by v}.
N
mm:;&mmm+@ﬂuﬂ (A.24)
]:
N
su) = Y [ousyi(0) + ouiyi(x)| (A.25)
i=1

The Hermite interpolation is then substituted for u and du in the weak form.

N L] N . oy’ oy oy’
Z{f —Z(éuia%+6ux 1//,)( Vi ])
i=1 | JO

i 0x I 9x " 0x I ox

dx (A.26)

L
=0
0

All of the variations are independent from each other. For each value of i, we have

+ (6uiy; +6ulyl) f

N

)

J=1

X
oy; OV

a term which is multiplied by éu;, and another term which is multiplied by 6u;. Both
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terms are independently equal to zero.

Ll Mooy oy OV
6ui{f0 —;ax (uj6x+u16 +v,f|dx
. wa L (A.27)
oy j ,-)
+ viluj—+ui— =0
j; ( ) Tox )|,
L N oyt oy i x
P f _ Y e el d
u’{ 0 ].Z:lax (u] ox  “iox tyf|dx
N wx I (A.28)
oy
X ] X J
TS c__J -0
+j; e (u] p + U] ax) 0}

A basic requirement of the finite element method is that in the interior of the do-
main, all variables are unknown. We can only specify the values of variables on the
boundary. If we specify the value of the variable u at a certain node i, then du; will
equal zero. If we specify u?, then éu; will equal zero. This is true for all degrees of free-

dom.

If u; or uf are unknown, then their respective variations will be an unknown value,
not necessarily equal to zero. Since equations A.27 and A.28 are equal to zero regardless
of the values of the variations, the terms themselves must equal zero when the variations

are unknown (when the variables are unknown).

o e R
(A.29)
N au/] 61[/;6 L
+Z Vi Uj—— ox +UJW 0
Ll Nooyi( oy OV
fo _];ax(jaer “i ox tyif|dx
(A.30)
N aw wx L
x J X J
) x__J 0
+j:1 v (u] ox +u] ax)
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These are the general finite element equations for solving the one-dimensional the
Poisson equation with Hermite elements. We can simplify the equations a little bit by
taking a good look at the boundary terms. If i is an interior node, then v; and w7} will
equal zero on the boundary. Therefore, the boundary terms will be zero for all interior
nodes. This is true because of a requirement on the basis functions themselves, which

is explained in the section below on calculating the basis functions.

If i is a boundary node, then the situation is more interesting. v; is equal to one
at node i, but 7 is equal to zero. It just so happens that in one dimension, the bound-
ary consists of node points alone, and the basis functions for the derivatives will always
equal zero at node points. The only boundary term which is possibly non-zero is the
boundary term in equation A.29 when u; is unknown and on the boundary. It is also the
case that the derivative of the basis functions for u are also zero at all node points, so

that term can also be discarded. We therefore have the following possibilities.

For i an interior node,

LI Mooy ow;  0V]
- dx=0. A.31
fo Zl P (u] pyal uj o | TV fldx= (A.31)
If i is a boundary node, and u; is unknown,
L
L[ N oy, oy awx aw;‘
- d =0. A.32
fo ;Ox(]6x+16 il x+]Zu . (A-32)
For i either an interior or boundary node,
L[ Moyl oy; Ov;
- +u + dx=0. A.33
fo Lo ( ox TGy VS |4x= (A-33)

Since we are solving a second order equation, we usually either specify u or its

derivative on the boundary. For the sake of simplicity, I will assume that to be the case.
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Therefore, if we don't specify u; on the boundary, then we will specify u]. With this in
mind, I can write the previous equations in a matrix format, with unknown values on

the left-hand side, and known values on the right.

For i an interior node,

u Loy, oy; ud Loy, 0V;
. Vig ; d d A.34
jzzlu]j(; 0x Ox x+j§ IJo 0x 0x o f vif dx. ( )

If i is a boundary node, and u; is unknown,

- oy 0w Loy, O
i dx
]-2:1 u]f ax ox X7 Z f ox Ox

(A.35)
L
:fo yif dx+ (uf ifx=L, or —uf if x=0)
For i either an interior or boundary node,
N Loyt oy N L oyy oy oy
i dx u’; d f d A.36
;”ffaxax ]Zzlfoaxaxx vif dx. (A.36)

As far as implementation is concerned, there is no reason to treat the various types
of degrees of freedom differently from each other. Instead of having a set of #; and an-
other set of u7, we can have one large set of degrees of freedom a;. We would have one
big set of basis functions 1; corresponding to a;, and each degree of freedom would get
aunique node number. When assembling the stiffness matrix and load vector, we would

start with the following construction:

NDOF L awl au/] L
| [ G s | - [Twiras a3
or
Npor
Y. Kijaj=b;, (A.38)

j=1
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where
Loy, oy oy;1"
- =L A.
Y )y dx ox dx [ "ox 0 (4.39)
and
L
by = fo wif dx. (A.40)

In this case Npor = 2N. After constructing K;; and b;, we would loop through the
set of known boundary values and take the corresponding columns in the stiffness ma-
trix, multiply them by the known values, and subtract that from the load vector. If we
specify a specific value u;, then the i™ column from K times u; is subtracted from b.
Since u; is not an unknown, it does not need to be solved for, and its corresponding
row and column are removed from the stiffness matrix, as is b;. If we know N}, values,
then the dimension of K is reduced from Npog X Npog t0 (Npor — Np) % (Npog — Np),
and the length of b is reduced to Npor — Njp. This method automatically takes care of
the boundary integrals. Most of the boundary integrals will be zero, but we don’t need to
know which ones. For two-dimensional elements, the boundary integrals become more
complicated, and it becomes essential that the assembly algorithm takes care of all the

boundary terms automatically.

As an example, let’s say we have four nodes (IV = 4), and we have eight degrees of

freedom (Npor = 8). We would start with the following construction:

[ ki kiz kiz ks kis kie kiz kig ] [a ] [ b ]
kov kop ko koa kos kpe ko7 kog ap b
k31 k32 kss kss kss ks k37 ksg as b3
ko ksp ka3 Kaa kas kae Kz Kag | | as | _ | ba (A4l
ksi ks2 ks ksa kss kse ks7  ksg as bs | '
ker kez kes kes kos kes ker Kes as be
k7v k2 ki k7a kis ki k77 kag az b7

| kg1 kg2 kg3 kss kss kss ksy kss | [ as | | bs |
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If we have Dirichlet boundary conditions, where u; and u4 are specified, then we

would end up with the following final matrix equation:

[ koo Koz kos ko Koz ks | [ a2 | [ ba—koiar —koaas ]
k32 k33 kss ks k37 ksg as b3 — k31a1 — k3say
ksz kss kss kse ks7 kss | | as | _ | bs—ksia1—Kssas (A42)
ke kes kes kes ker kos as be — kerar — keaas |- '
k7o k73 k75 k7 k77 Krg az b7 — knay — kzaay

| kg ks kgs kss ksz ksg | | as | | bs—ksiar—kgsas |

In order to determine our unknown values ({ay, as, as, as, az, ag} which correspond
to {u, us, uj, u), uy, u,}), we would only have to invert the final K matrix, and multiply

that by our final b vector.

Calculating the 1D Hermite Basis Functions

The Hermite basis functions are cubic polynomials in x in one dimension. The set

of polynomials (the space) which will make up the basis functions is
Q=1{1,x,x* x°}. (A.43)
Each basis function v; is equal to Q times a coefficient vector C;.
Yi(x)=Q-Ci=cj1+ciax+ cl-g,x2 + ci4x3 (A.44)

In order to determine these coefficients, we need four equations. A Hermite ele-
ment consists of two nodes with two degrees of freedom each, for a total of four degrees
of freedom. Although there are two nodes as far as position is concerned, in terms of
degrees of freedom, we can treat the element as having four separate nodes. A node,

then, will be defined by both position and the degree of freedom it represents.
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We have two types of degrees of freedom, the Lagrange DOFE which is just the value
of our function u, and also the first derivative 0u/dx. As with all Lagrange degrees of free-
dom, the basis function is required to equal one at its respective node, and equal zero
at all the other nodes within the element. For the Hermite type degrees of freedom (the
derivatives), the respective derivative of the basis function has the same requirements
as the Lagrange basis functions. For a basis function ¥; which represents a particular
derivative, which we can represent as an operator L;, the requirement on the basis func-
tion is that L;y; equal one at the node r;, and equal zero at all other nodes r;. This can

be represented compactly as
(Ljwi) (rj) =6ij, (A.45)

where §;; is equal to one if i equals j, and is equal to zero otherwise.

Since v; = Q- C;, we have
[(L;Q) (rj)] - Ci =6 (A.46)

Each value of i gives a row in a matrix, which when inverted gives us all the coef-
ficients, since the right hand side becomes the identity matrix. If we order the degrees
of freedom as {u(O), u(h), u'(0), u'(h)} so that the node positions are {0, /1,0, h} and the

operators are {1,1,0/0x,0/0x}, then for the one-dimensional Hermite element we have

Q(0) = {1,0,0,0} (A.47)
Q(h) = {1, h, h*, 1’} (A.48)
0Q
E(O) =1{0,1,0,0} (A.49)
0Q

= {0,1,2h,3h%}. (A.50)
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The final matrix equation reads

Fl 0 0 0 [ C11 C21 €31 C41 1 0 0 O
1 h h* R 0100
| G2 22 G2 Ca2 | , (A51)
0 1 0 0 C13 C23 (€33 (43 0 010
| 0 1 2k 3h* | | cla a4 Gz cCm 0001
and the solution is
[ c11 ¢ e ocq | oo 0 0
Clz2 C2 €32 C2 | _ 1 o o0 n 0
C13 C23 C33 (43 " h3| -3h 3h —2n® —-n? |- (A.52)
| Cla Ca C3a Cas | 2 -2 h h
We now know the four basis functions.
3x> 2x8
1//1 = 1 - h2 F (A53)
3x2 2x3
Ve=gz T (A-54)
2 X (A.55)
=X—— _ .
Y3 Y2
2 i3
=——+— A.56
[Z! Y (A.56)

The basis functions and their derivatives are shown below for h = 2.

1.0F 0.3r

0_3:_ A 0.2:

06k 0.1F
[ 0.0

04} 01:
Y2 B
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Figure A.5: The local 1D Hermite basis functions.
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Figure A.6: Derivatives of the local 1D Hermite basis functions.
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Figure A.7: The global 1D Hermite basis function for u.

0.8

212

0.4

LI L

0.0

S
=Y
T

o
o
—
o
L
o
(5]
=]

4.0

Figure A.8: The derivative of the global 1D Hermite basis function for u.
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Figure A.9: The global 1D Hermite basis function for 0u/0x.
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Figure A.10: The derivative of the global 1D Hermite basis function for du/dx.

Example

Solve the Poisson equation for the test function u(x) = sin (27 x + 7/5) with a Dirich-

let boundary condition at x = 0 and a Neumann boundary condition at x = 1.

’u ) .
——— =4n°sin 2nx +x/5) for x € [0, 1] (A.57)
0x2
u(0) =sin(m/5) (A.58)
ou
— (1) =2mcos(m/5) (A.59)
0x

Since this is a one-dimensional problem, the domain will be a line, and the mesh

will be a series of segments with two nodes each. Each node will represent two degrees
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of freedom, u and g—’;. The boundary will be the two end points. In the diagram below,

a Lagrange degree of freedom is represented by a dot, and the first derivative is repre-

sented by a ring.
e—o———o—9
x=0 x=L
Figure A.11: A 1D Hermite mesh with six nodes.
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Figure A.12: The solution for u. The dots are the nodal values.
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Figure A.13: The solution for 0u/dx. The dots are the nodal values.
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2D Hermite Element

The two-dimensional Hermite element is a four-node rectangular element with 16
degrees of freedom. It is also known as the Bogner-Fox-Schmidt rectangle [11]. It has
C! continuity, meaning it is continuous and smooth across neighboring elements. The

degrees of freedom at each node are

z_{ua_ua_uaz_u} (A.60)
| ox’ oy’ oxoy|’ '

In this section I will go into detail about the use of these type of elements for solv-
ing second order equations. It is generally ill advised to use higher order basis functions
to solve lower order problems. This is for the simple reason that without a priori knowl-
edge of the smoothness of the solution, it is possible that the solution will have a lower
smoothness than the basis functions. For example, a second order equation admits a
C? solution which is continuous but not smooth everywhere, such as a piecewise lin-
ear function, or a function which has two regions where there is a discontinuity in the
first derivative across the boundary between the two regions. That being said, there are
ways around these situations, and there are plenty of problems where it is known that
the solution is smooth. In the worst case scenario, there is going to be an error at the dis-
continuity, such as a large oscillation, and a very fine mesh will be needed to converge

to the correct solution in the rest of the domain.

As an example second order equation, I will solve the Poisson equation:
~Vu+ fx,y) =0, (A.61)
where the weak form is

fQ[—Véu-VLH 6w f] dx+7§r6ug—zdl“ =0. (A.62)
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The exact nature of the boundary integral needs to be clarified. When converting
the differential equation into the weak form, we got the term which was destined to

become the boundary integral,
f V- (6uVu)dQ. (A.63)
Q

This is the flux through the surface. It can be converted into a line integral using Green’s

theorem in the plane, which is a special case of the generalized Stokes’ theorem, which

states that
0Q 0P
———|dxdy=¢ (Pd dy). A.64
| (52-5)axay = (pax+Qay (a.6)
For our boundary term,
ou
Q=6u—, (A.65)
ox’
and
ou
P=-6u—. (A.66)
oy

We therefore have

f V- (OuVu)dQ = j{&t(—— dx + g_u dy|. (A.67)

This integral can be represented as
f 6u—dF (A.68)

where dI is the path-length element counterclockwise around the outside of the do-

main.

The finite element equations are

Npor

Y. aj

J=1

fVu/l Vy; dQ - j{%( 1?/] dx+ 6 )] fu/fdQ (A.69)
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In the one-dimensional case, when we had Dirichlet boundary conditions and u
was specified everywhere on the boundary, the boundary integrals could be neglected.
That was because the boundary consisted of nodes and all the derivative basis functions
are equal to zero at nodes. In higher dimensions, however, the boundary will consist
of curves, and now there will be non-zero boundary integrals. It is essential that these

terms are not neglected.

When solving a second order equation, we usually supply u, or a combination of
first derivatives on the boundary. With the Hermite square elements we have a mixed
second derivative as a degree of freedom, which will remain unspecified on the bound-
ary. Even if we were solving a fourth order equation, the second derivative would still
be free on the boundary. This situation is more extreme with higher order elements,
such as the Argyris triangle. Since a certain number of unknowns will be free on the
boundary, they will be treated similarly to unknown nodal values in the interior. The
only difference is that the stiffness matrix will be modified by the boundary integrals
for those elements which reside along the boundary. As far as the formulation is con-
cerned, the extra degrees of freedom on the boundary are no different than any other

type of unknown nodal value.

Calculating the 2D Hermite Basis Functions

The basis functions are bicubic. They are equal to products of the one-dimensional basis

functions.

vx,y)=yxX)y(y) (A.70)

v (x,y) =y (X)w(y) (A.71)
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v (x,y) =) (y) (A.72)

v (x, ) =yt ()Y (y) (A.73)

2.0 0.0 20 0.0

Figure A.14: The local 2D Hermite basis functions for u.
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20 00 20 00

Figure A.15: The local 2D Hermite basis functions for 0u/0x.
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20 00 20 00

Figure A.16: The local 2D Hermite basis functions for du/dy.
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Figure A.17: The local 2D Hermite basis functions for 0?1/0xdy.
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40 00

Figure A.18: The global 2D Hermite basis function for u.

4.0 0.0

Figure A.19: The global 2D Hermite basis function for du/dx.
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4.0 0.0

Figure A.20: The global 2D Hermite basis function for du/dy.
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Figure A.21: The global 2D Hermite basis function for 6?u/0xdy
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Example

Solve the Poisson equation for the test function u(x, y) = w with Dirichlet bound-

ary conditions.

2_1)sin(r) +
_yzy o Eosin(0 +reos() X, ye[=12,12], r = \/x2 + )2 (A.74)

r3

The domain is square, with a total of 400 elements (20x20).

0.75

0.50

0.25 {\\\
000 ’4" 12.0
6.0
-0.25
-12.0
y

Figure A.22: The solution for u.
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0.44

0.22

12.0-12.0

Figure A.23: The solution for 0u/0x.
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-0.22

12.0-12.0

Figure A.24: The solution for du/dy.
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0.16

0.08

-0.08

12.0-12.0

Figure A.25: The solution for 0?u/dx0y.

Figure A.26: The solution error for u.
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12.0 -12.0

Figure A.27: The solution error for du/0x.

12.0 -12.0

Figure A.28: The solution error for du/0y.
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Figure A.29: The solution error for 0?1/0x0y.

Let’s go back to the weak form of the Poisson equation.

9
f (-Vou-Vu+©u) f] dx+f5u—”dr =0
Q r On

12.0

6.0

0.0

(A.75)

If we have Dirichlet boundary conditions, where we specify u on the boundary T,

we might be tempted to say 6u = 0 everywhere on I" and say that the boundary integral

is equal to zero. This, however, would produce incorrect results, because in actuality

we are not specifying u everywhere on I'. We are only specifying u at the node points,

so only 6u; = 0 on I'. If our interpolation only involved u;, then the boundary integral

would be zero. The Hermite interpolation includes terms other than u;, namely the x

and y derivatives, and the second order x, y mixed derivative. Since we are not speci-

fying these values on the boundary, their respective variations are not identically equal

to zero. We therefore cannot dismiss the boundary integral, even with pure Dirichlet
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boundary conditions.

If the boundary integral is discarded for the previous example, we get the solution
shown below. The error along the boundary is significant. This example shows that the

boundary terms must be treated very carefully, even when they would normally equal

zero when using Lagrange elements.

0.0
-0.47

-0.

12.0-12.0

Figure A.30: An incorrect solution.
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APPENDIX B

C PROGRAMS
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harmonic_3D_phi.cpp

The C programs are chiefly responsible for generating the results found in this dis-
sertation. The C-Lapack library was used for solving the linear system which resulted
from the Finite Element formulation. The version of the C-Lapack library used was the
version found in veclib, which is a framework optimized for the dual-processor Intel

Mac, 64-bit. The solver ran very fast compared to comparable Mathematica code.
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// Solve for u,v,w,phi, 3D harmonic case using quadratic Lagrange elements.

#tinclude <veclLib/vecLib.h>
#tinclude <iostream>
#tinclude <stdio.h>
#include <time.h>

#include <math.h>

#tinclude "../stuff.h"
#tinclude "../PVDF.h"

const bool VFREE = true;
const bool WFREE = true;
const bool DAMPED = true;

const double dens = 1.78e3; // PVDF mass density, kg/m”3
double freq = 50; // angular frequency, rad/s
double cond = ©.1; // electrode conductivity, S/m

// lengths in meters. 2.54 cm = 1.0 in

const double LZ = 60e-6; // thickness

const double LY 1.25e-2; // width

const double LX 2.5e-2; // length

const double LE = 1@e-6; // electrode thickness
const double phiTop = 300; // in V

const double phiBottom = -300;

const long int Ne = 3; // Nodes per electrode.
const long int Nx = 8;

const long int Ny = 5; // must be odd

const long int Nz = 5; // must be odd

const long int nZE = Nz+2*Ne-2; // total Z-nodes
const long int midY = (Ny-1)/2;

const long int midzZ = (Nz-1)/2 + Ne-1;

const double hx = LX/(double)(Nx-1);

const double hy = LY/(double)(Ny-1);

const double hz = LZ/(double)(Nz-1);

const double he = LE/(double)(Ne-1);

const long int LagrangeN = 3; // order + 1 = # of 1D node points
const long int NPE = LagrangeN*LagrangeN*LagrangeN; // nodes per element
const long int Nx2 = Nx*(LagrangeN-1)+2-LagrangeN;
const long int Ny2 = Ny*(LagrangeN-1)+2-LagrangeN;
const long int Nz2 = Nz*(LagrangeN-1)+2-LagrangeN;
const long int Ne2 = Ne*(LagrangeN-1)+2-LagrangeN;
const long int Nz3 = Nz2+2*Ne2-2;

const long int nNodes = Nx2*Ny2*Nz2;

const long int nNodes2 = Nx2*Ny2*Nz3;

long int nBNodes;

const long int nElements = (Nx-1)*(Ny-1)*(nZE-1);
const long int nVar = 4;

const long int nVar2 = 2*nVar;

const long int nDOF = 3*nNodes+nNodes2;

const long int nDOF2 = 2*nDOF;



const
const
const
const
const
const
const

long
long
long
long
long
long
long

int
int
int
int
int
int
int
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n_shift = (1-Ne2)*Nx2*Ny2;

NN1
NN2
NN3
NN4
NNa
NNb

= n_shift; //Shift u,w nodes to the left.
= nNodes+n_shift;

= 2*nNodes+n_shift;

= 3*nNodes;

=0_;

= nDOF;

int main (int argc, char * const argv[]) {
long int elNodes[nElements][NPE],*neighbors,nNeighbors;
long int i,j,k,m,n,s,m1i,m2,n1,n2,n3,p,pl,p2;
long int mla,m2a,m3a,md4a,mlb,m2b,m3b,m4b,nla,n2a,n3a,nda,nlb,n2b,n3b,ndb;
double F[nDOF2],Z[nDOF2],x,tau,beta,deltad;
bool *piezolLower = new bool[nElements],*electrode = new bool[nElements];
row_sp *A_sp = new row_sp[nDOF2],bNodes;

// Specify the global node numbers for each element. This is the mesh.
for (i=0; i<Nx-1; i++) {

for (j=0; j<Ny-1; j++) {

for (k=0; k<nZE-1; k++) {

n =

i+ j*(Nx-1) + k*(Nx-1)*(Ny-1); // element #

piezoLower[n] = (k < midZ);
electrode[n] = (k<(Ne-1) || k>=(Ne+Nz-2));
// global node # of bottom-left corner
m = (LagrangeN-1)*(i + j*Nx2 + k*Nx2*Ny2);
for (n1=0; nl<LagrangeN; nl++) {

for (n2=0; n2<LagrangeN; n2++) {
for (n3=0; n3<LagrangeN; n3++) {

// local node #

ml = nl + LagrangeN*n2 + LagrangeN*LagrangeN*n3;

S =m+ nl + Nx2*n2 + Nx2*Ny2*n3; // global node #
elNodes[n][ml] = s;

// Specify the boundary nodes.
// NNa = Cos component
// NNb = -Sin component

// u

if (n1==0 && i==0 && k>=Ne-1 && k<Ne+Nz-2) {
mla = bNodes.n;
bNodes.add_index(s+NN1+NNa,0.0);
bNodes.add_index(s+NN1+NNb,©.0);

}

/] v
if ((n1==0 && i==0 && k>=Ne-1 && k<Ne+Nz-2) &&
((VFREE && (n2==0 && j==midY)) || !VFREE)) {
mla = bNodes.n;
bNodes.add_index(s+NN2+NNa,0.0);
bNodes.add_index(s+NN2+NNb,©.0);

}
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/] w
if ((n1==0 && i==0 && k>=Ne-1 && k<Ne+Nz-2) &&
((WFREE && (n2==0 & j==midY) && (n3==0 && k==midZz))
|| 'WFREE)) {
mla = bNodes.n;
bNodes.add_index(s+NN3+NNa,0.0);
bNodes.add_index(s+NN3+NNb,©.0);

}

// phi - ground

if (n3==0 && k==0) {
mla = bNodes.n;
bNodes.add_index(s+NN4+NNa,0.0);
bNodes.add_index(s+NN4+NNb, -phiBottom);

}

// phi - applied
if (n3==(LagrangeN-1) && k==(nzZE-2)) {
mla = bNodes.n;
bNodes.add_index(s+NN4+NNa,©.0);
bNodes.add_index(s+NN4+NNb, -phiTop);
}
3133}

nBNodes = bNodes.n;

// The inverse of the 3X3 Jacobian matrix, for an affine transformation.
double ID = hx*hy*hz/8; // determinant

double j11 = 2.0/hx;

double j22 = 2.0/hy;

double j33 = 2.0/hz;

double JDe hx*hy*he/8;

double j33e = 2.0/he;

long int shifts[8] =
{NN1+NNa,NN2+NNa, NN3+NNa, NN4+NNa, NN1+NNb , NN2+NNb , NN3+NNb , NN4+NNb } ;

// The neighbor list. All the nodes in a particular element are neighbors
// of each other. A node is its own neighbor.
for (i=0; i<nElements; i++) {
for (j=0; Jj<NPE; j++) {
m = elNodes[i][j]; // global node #
for (k=0; k<NPE; k++) {
n = elNodes[i][k]; // global node #

if (electrode[i]) {
A_sp[m+NN4+NNa].add_index(n+NN4+NNa) ;
A_sp[m+NN4+NNa].add_index(n+NN4+NNb) ;
A_sp[m+NN4+NNb].add_index(n+NN4+NNa) ;
A_sp[m+NN4+NNb].add_index(n+NN4+NNb) ;
} else {
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for (m1=0; ml<nVar2; ml++)
for (n1=0; nl<nVar2; nl++)
A_sp[m + shifts[ml]].add_index(n + shifts[n1]);
}
}
}
¥

for (i=0; i<nDOF2; i++) {
n=Asp[i].n;
A_sp[i].x = new double[n];

}

// Remove the boundary nodes from the matrix. Calculate the row/column
// shifts for the remaining stiffness matrix entries.
long int rcount[nDOF2];
bool bcheck[nDOF2];
for (i=0; i<nDOF2; i++) {
rcount[i] = 1i;
bcheck[i] = true;
}
for (i=0; i<nBNodes; i++) {
m = bNodes.j[i];
bcheck[m] = false;
for (j=m; j<nDOF2; j++)
rcount[j]--;
}
long int a_N = nDOF2 - nBNodes;
long int global_dof_number[a_N];
for (i=0; i<nDOF2; i++) {
if (bcheck[i]) {
m = rcount[i];
global_dof_number[m] = i;
}
}

// stiffness matrix +++++++++++++++++++++HHHHHH R

polynomial baseslD[LagrangeN],baseslD_der[LagrangeN];
double M1D[NPE][4];
for (i=0; i<LagrangeN; i++) {

baseslD[i] = LagrangelD(i,0,1);

baseslD_der[i] = derivative(basesl1D[i],9);

}

for (i=0; i<LagrangeN; i++) {
for (j=0; j<LagrangeN; j++) {
n =i + j*LagrangeN;
M1D[n][@] = integral(basesiD[i]*basesl1D[j]); // psi*psi
M1D[n][1] integral(derivative(bases1D[i],0)*bases1D[j]); // psi'*psi
MiD[n][2] integral(bases1D[i]*derivative(bases1D[j],0)); // psi*psi’
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M1D[n][3] = integral(derivative(basesiD[i],0)*
derivative(basesliD[]],0)); // psi'*psi’
}
}

// All the integrals for a single element.
double **MMxx, **MMxy, **MMxz , **MMyy , **MMyz , **MMzz , **MM;
double **MMxxe,**MMyye, **MMzze;
initSqrMat (MMxx,NPE);
initSqrMat(MMxy,NPE);
initSqrMat(MMxz,NPE);
initSqrMat(MMyy,NPE);
initSqrMat(MMyz,NPE);
initSqrMat(MMzz,NPE);
initSqrMat (MM, NPE);
initSqgrMat(MMxxe,NPE);
initSqgrMat(MMyye,NPE);
initSqrMat(MMzze,NPE);
for (m1=0; ml<LagrangeN; ml++) {
for (n1=0; nl<LagrangeN; nl++) {
for (pl=0; pl<LagrangeN; pl++) {
j = ml + nl*LagrangeN + pl*LagrangeN*LagrangeN;
for (m2=0; m2<LagrangeN; m2++) {
m = ml + m2*¥LagrangeN;
for (n2=0; n2<LagrangeN; n2++) {
n = nl + n2*LagrangeN;
for (p2=0; p2<LagrangeN; p2++) {
k = m2 + n2*¥LagrangeN + p2*LagrangeN*LagrangeN;
p = pl + p2*LagrangeN;

MMxx[§]1[k] = ID*j11*j11*M1D[m][3]*M1D[n][@]*M1D[p][O];
MMyy[j][k] = ID*j22*j22*M1D[m][@]*M1D[n][3]*M1D[p][@];
MMzz[§][k] = JID*j33*j33*M1D[m][0]*M1D[n][0]*M1D[p][3];
MMxy[§]1[k] = JID*j11*j22*M1D[m][1]*M1D[n][2]*M1D[p][@];
MMxz[§][k] = JID*j11*j33*M1D[m][1]*M1D[n][@]*M1D[p][2];

MMyz[§][k] = JID*j22*j33*M1D[m][0]*M1D[n][1]*M1D[p][2];
MM[§]1[k] = JD*M1D[m][@]*M1D[n][@]*M1D[n][0];

MMxxe[§][k] = JDe*j11*j11*M1D[m][3]*M1D[n][@]*M1D[p][0];
MMyye[§][k] = JDe*j22*%j22*M1D[m][0]*M1D[n][3]*M1D[p][0];
MMzze[j][k] = JDe*j33e*j33e*M1D[m][0]*M1D[n][0]*M1D[p][3];

133399

__CLPK_integer N = (__CLPK integer)(a_N); // order of the matrix (N by N)
__CLPK_integer NRHS = (__CLPK_integer)(1); // number of columns in the RHS
_ CLPK_doublereal *AMat = new __ CLPK_doublereal[a_N*a_N];

__CLPK_integer LDA = N; // leading dimension of the matrix

_ CLPK_integer *IPIV = new _ CLPK_integer[a_N]; // output
__CLPK_doublereal *1loadVec = new _ CLPK doublereal[a_N]J;

__CLPK_integer LDB = N; // leading dimension of the RHS (=N)
__CLPK_integer INFO; // output
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[/ +
// LOOP +++++++++++++++++++++++++++++++++++++++
[/ +
int imax, loopcount,loopN = 1;

freq = 1.0;

FILE *output_Z,*output_z2;
if (loopN > 1)

output_z = fopen("../../ZScan.dat","w");
else

output_z2 = fopen("../../Z.dat","w");

for (loopcount=0; loopcount<loopN; loopcount++) {
if (loopN > 1) {
// near a known resonance frequency.
if (loopcount==0)
freq = 0.001;
else if ((fregq>100 && freq<130) ||
(freq>720 && freq<740) ||
(freq>2040 8&& freq<2060) ||
(freq>4030 && freq<4050) ||
(freq>6700 && freg<6720))
freq += 2.0;
else
freq += 10.0;
}

// solving +++++++++ttttttttt bttt
for (i=0; i<nDOF2; i++) {
n = A_sp[i].n;
for (k=0; k<nj; k++)
A_sp[i].x[k] = ©;
}

for (i=0; i<nElements; i++) {
s = (piezoLower[i] ?» 1 : -1);
for (j=0; j<NPE; j++) { // local node #
m = elNodes[i][j]; // global node #
mla = m + NN1;
m2a = m + NN2;
m3a = m + NN3;
mda = m + NN4;
mlb = mla + nDOF;
m2b = m2a + nDOF;
m3b = m3a + nDOF;
mdb = m4a + nDOF;
for (k=0; k<NPE; k++) { // local node #
n = elNodes[i][k]; // global node #
nla = n + NNI1;
n2a = n + NN2;
n3a = n + NN3;
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nda = n + NN4;

nlb = nla + nDOF;
n2b = n2a + nDOF;
n3b = n3a + nDOF;
n4b = n4a + nDOF;

if (electrode[i]) {
X = MMxxe[j][k] + MMyye[j][k] + MMzze[]j][k];
A_sp[m4a].add(n4da, -cond*x);
A_sp[m4a].add(ndb,freq*eps3*x);
A_sp[m4b].add(n4da, -freq*eps3*x);
A_sp[m4b].add(n4db, -cond*x);
} else {
e B T T T
A_sp[mla].add(nla,cl1*MMxx[j][k] + c66*MMyy[j][k]

+ c55*MMzz[j][k] - freq*fregq*dens*MM[j][k]);
A_sp[mla].add(n2a,c12*MMxy[j][k] + c66*MMxy[k][j]);
A_sp[mla].add(n3a,c13*MMxz[j][k] + c55*MMxz[k][j]);
A_sp[mla].add(nda,s*(e31*MMxz[j][k] + el5*MMxz[k][j]1));

A_sp[mlb].add(nlb,c11*MMxx[j][k] + c66*MMyy[j][k]

+ c55*MMzz[j][k] - freqgq*freg*dens*MM[j][k]);
A_sp[mlb].add(n2b,c12*MMxy[j]1[k] + c66*MMxy[k][j1);
A_sp[mlb].add(n3b,c13*MMxz[j][k] + c55*MMxz[k][]j]);
A_sp[mlb].add(ndb,s*(e31*MMxz[j][k] + el5*MMxz[k][j]1));

if (DAMPED) {
A_sp[mla].add(nib,-(c11l_i*MMxx[][k] + c66_i*MMyy[3][k]
+ 55 i*MMzz[F]1[k]));
A_sp[mla].add(n2b,-(c12_i*MMxy[j][k] + c66_i*MMxy[k][31));
A_sp[mla].add(n3b,-(c13_i*MMxz[§][k] + c55 i*MMxz[k][§]1));

A_sp[mlb].add(nla,cll_i*MMxx[j][k] + c66_i*MMyy[j][k]

+ c55_i*MMzz[j][k]);
A_sp[mlb].add(n2a,c12_i*MMxy[j][k] + c66_i*MMxy[k][j1);
A_sp[mlb].add(n3a,c13_i*MMxz[j][k] + c55_i*MMxz[k][j1);

}
e B T T T
A_sp[m2a].add(nla,c12*MMxy[k][j] + ce6*MMxy[j]1[k]);
A_sp[m2a].add(n2a,c66*MMxx[j][k] + c22*MMyy[j][k]

+ c44*MMzz[j][k] - freq*fregq*dens*MM[j][k]);
A_sp[m2a].add(n3a,c23*MMyz[j][k] + c44*MMyz[k][j]);
A_sp[m2a].add(nda,s*(e32*MMyz[j][k] + e24*MMyz[k][j]1));

A_sp[m2b].add(nlb,c12*MMxy[k][j] + c66*MMxy[j]1[k]);
A_sp[m2b].add(n2b,c66*MMxx[j][k] + c22*MMyy[j][k]

+ c44*MMzz[j][k] - freq*fregq*dens*MM[j][k]);
A_sp[m2b].add(n3b,c23*MMyz[j]1[k] + c44*MMyz[k][]j]);
A_sp[m2b].add(ndb,s*(e32*MMyz[j][k] + e24*MMyz[k][j]1));

if (DAMPED) {
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A_sp[m2a].add(nib,-(c12_i*MMxy[k][j] + c66_i*MMxy[j]1[k]));
A_sp[m2a].add(n2b, - (c66_i*MMxx[][k] + c22_i*MMyy[3][k]

+ 44 i*MMzz[F1[K]));
A_sp[m2a].add(n3b,-(c23 i*MMyz[][k] + c44_i*MMyz[k][31));

A_sp[m2b].add(nla,c12_i*MMxy[k][j] + c66_i*MMxy[j]1[k]1);
A_sp[m2b].add(n2a,c66_i*MMxx[j][k] + c22_i*MMyy[j][k]
+ c44_i*MMzz[j]1[k]1);
A_sp[m2b].add(n3a,c23_i*MMyz[j][k] + c44_i*MMyz[k][j1);
}
e B T T T
A_sp[m3a].add(nla,c13*MMxz[k][j] + c55*MMxz[j][k]);
A_sp[m3a].add(n2a,c23*MMyz[k][j] + c44*MMyz[j][k]);
A_sp[m3a].add(n3a,c55*MMxx[j][k] + c44*MMyy[j][k]
+ c33*MMzz[j][k] - freqgq*fregq*dens*MM[j][k]);
A_sp[m3a].add(nda,s*(el5*MMxx[j][k] + e24*MMyy[]j][k]
+ e33*MMzz[j]1[k]));

A_sp[m3b].add(nlb,c13*MMxz[k][j] + c55*MMxz[j][k]);
A_sp[m3b].add(n2b,c23*MMyz[k][j] + c44*MMyz[j]1[k]);
A_sp[m3b].add(n3b,c55*MMxx[j][k] + c44*MMyy[j][k]

+ c33*MMzz[j][k] - freqgq*fregq*dens*MM[j][k]);
A_sp[m3b].add(ndb,s*(el5*MMxx[j][k] + e24*MMyy[]j][k]

+ e33*MMzz[j]1[k]));

if (DAMPED) {
A_sp[m3a].add(nib,-(c13_i*MMxz[k][j] + c55 i*MMxz[j][k]));
A_sp[m3a].add(n2b,-(c23 i*MMyz[k][j] + c44_i*MMyz[j][k]));
A_sp[m3a].add(n3b,-(c55 i*MMxx[][k] + c44_i*MMyy[3][k]
+ 33 i*MMzz[F]1[k]));

A_sp[m3b].add(nla,c13_i*MMxz[k][j] + c55_i*MMxz[j][k]1);
A_sp[m3b].add(n2a,c23_i*MMyz[k][j] + c44_i*MMyz[j]1[k]1);
A_sp[m3b].add(n3a,c55_i*MMxx[j][k] + c44_i*MMyy[j][k]
+ c33_i*MMzz[j][k]);
}
e B T T T
A_sp[md4a].add(nlb,s*(e31*MMxz[k][j] + el5*MMxz[]j][k]));
A_sp[md4a].add(n2b,s*(e32*MMyz[k][j] + e24*MMyz[]j]1[k]));
A_sp[md4a].add(n3b,s*(el5*MMxx[j][k] + e24*MMyy[]j][k]
+ e33*MMzz[j]1[k]));
A_sp[mda].sub(ndb,eps1*MMxx[j][k] + eps2*MMyy[]j][k]
+ eps3*MMzz[j]1[k]);

A_sp[ma4b].add(nla,s*(e31*MMxz[k][j] + el5*MMxz[j]I[k]));
A_sp[ma4b].add(n2a,s*(e32*MMyz[k][j] + e24*MMyz[]j]l[k]));
A_sp[m4b].add(n3a,s*(el5*MMxx[j][k] + e24*MMyy[j][k]

+ e33*MMzz[j]1[k]));
A_sp[ma4b].sub(nda,eps1*MMxx[j][k] + eps2*MMyy[]j][k]

+ eps3*MMzz[j]1[k]);
e B T T T
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}
}
}
}

// load vector ++++++++++t+ttttttttttttttbbt bbb
for (i=0; i<nDOF2; i++)
F[i] = 0.90;

for (i=0; i<nBNodes; i++) {
n = bNodes.j[i]; // column
X = bNodes.x[1];

if (x 1= 0) {
neighbors = A_sp[n].j;
nNeighbors = A_sp[n].n;

for (j=0; j<nNeighbors; j++) {
m = neighbors[j]; // row
F[m] -= x*A_sp[m].x_at(n);
}
}
}

for (i=0; i<nDOF2; i++) {
if (bcheck[i]) {
m = rcount[i];
loadvVec[m] = F[i];
}
}

j = a_N*a_N;
for (i=0; i<j; i++)
AMat[i] = 0.0;

for (m=0; m<nDOF2; m++) {
neighbors = A_sp[m].];
nNeighbors = A_sp[m].n;
for (k=0; k<nNeighbors; k++) {
n = neighbors[k];
ml = rcount[m];
nl = rcount[n];
if (bcheck[m] && bcheck[n]) {
AMat[ml + a_N*nl] = A_sp[m].x[k];
}
}
}

// Solves a general square matrix with LU decomposition.
dgesv_ (&N, &NRHS,AMat,&LDA,IPIV, loadVec,&LDB,&INFO);
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for (i=0; i<a_N; i++)
Z[global_dof_number[i]] = loadVec[i];

// add in the boundary node values
for (i=0; i<nBNodes; i++) {

m = bNodes.j[i];

X = bNodes.x[1];

Z[m] = x;
}

if (loopN == 1)
fprintf(output_z2,"%1d %1d %1d %1d %1d %e %e %e %e %e
\n",LagrangeN,Nx,Ny,Nz,Ne, LX,LY,LZ,LE,freq);

deltad = 0.0;
for (i=0; i<nDOF2; i++) {
if (loopN == 1) {
if (i<nDOF)
fprintf(output_z2,"%1.30e ",Z[i]);
else
fprintf(output_z2,"%1.30e ",-Z[i]);
}
if (i >= NN3-n_shift && i < NN4) {
tau = ((deltad < 0) ? -delta@ : deltao);
//beta = ((Z[i] < @) ? -Z[i] : Z[i]);
beta = sqrt(zZ[i]*Z[i]+Z[i+nDOF]*Z[i+nDOF]);
if (beta > tau) {
delta@ = beta;//Z[1i];
imax = i;
}
}
}

if (loopN > 1)
fprintf(output_z,"%1.30e %1.30e %1.30e %1.30e\n",freq,deltao,
Z[imax],-Z[imax+nDOF]);

printf("%e %e (%e,%e)\n",freq,delta®,Z[imax],-Z[imax+nDOF]);

if (loopN > 1)

fclose(output_2Z);

else

fclose(output_z2);

delSgrMat (MMxx,NPE);
delSgrMat(MMxz,NPE);
delSgrMat(MMzz,NPE);

return 0;
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PVDEh

This “include” file contains all of the material constants for PVDE
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#ifndef _PVDF_H
#define _PVDF_H

// in N/m"2

const double cll = 3.70e9;
const double c22 = 3.20e9;
const double c33 = 1.51e9;
const double c44 = 0.55e9;
const double c55 = ©.59e9;
const double c66 = 0.70e9;
const double cl12 = 1.47e9;
const double c13 = 1.23e9;
const double c23 = 1.00e9;

// imaginary parts, for testing

const double cl11_i = 0.01%cll;
const double c22_i = 0.01%*%c22;
const double c33_i = 0.01%*%c33;
const double c44_i = 0.01%*%c44;
const double c55_i = ©.01*c55;
const double c66_i = 0.01*c66;
const double c12_i = 0.01%*%c12;
const double c13_i = 0.01%*%c13;
const double c23_i = 0.01%c23;

// in C"2/N*m”2

const double epsi
const double eps2
const double eps3

7.35%8.85e-12;
9.27*8.85e-12;
8.05*8.85e-12;

// in V*m/N

const double g31 = 0.21;
const double g32 = 0.03;
const double g33 = -0.46;
const double gl15 = -0.32;
const double g24 = -0.27;

// in N/V*m

const double e31
const double e32
const double e33
const double el5
const double e24

eps3*(g31*c11+g32*c12+g33*c13); /* 1.807524e-02 */
eps3*(g31*cl2+g32*c22+g33*c23); /* -3.915240e-03 */
eps3*(g31*c13+g32*c23+g33*c33); /* -2.876604e-02 */
epsl*gl5*c55; /* -1.336704e-02 */
eps2*g24*c44; /* -1.051380e-02 */

// for T2=0 2D approximation

const double c11 2 = c11-c12*c12/c22;
const double c13_2 c13-c12*c23/c22;
const double ¢33 _2 = ¢33-c23*c23/c22;
const double e31 2 = e31-cl12*e32/c22;
const double e33_2 = e33-c23*e32/c22;
const double eps3_2 = eps3-e32%e32/c22;



// imaginary
const double
const double
const double

t#tendif

parts,
cl1_2i
c13_2i
€33_2i1
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for testing

= 0.01%cll_2;
0.01*c13_2;
0.01%c33_2;
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stuff.n

This “include” file contains all of the auxiliary functions and data structures used

in implementing the finite element method with Lagrange elements.
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#ifndef _Stuff_H
#define _Stuff_H

#tinclude <stdio.h>
#tinclude <stdlib.h>
#include <string.h>
#include <math.h>

#include <iostream>

extern const long int LagrangeN;

#tdefine PI M_PI /* From <math.h>. */

#define EPSILON 1.0e-15

#define APPROX(A1,A2) (((A1)>=((A2)-EPSILON)) && ((A1)<=((A2)+EPSILON)))

#tdefine initSqrMat(M,NM) \
M = (double **)malloc(NM*sizeof(double *)); \
for (i=0; i<NM; i++) \
M[i] = (double *)malloc(NM*sizeof(double)); \
for (i=0; i<NM; i++) \
for (j=0; j<NM; j++) \

M[i][3] = e;

#tdefine delSqgrMat(M,NM) \
for (i=0; i<NM; i++) \
delete[] M[i]; \
delete[] M;

class polynomial;

polynomial operator+(polynomial L,polynomial R);
polynomial power(polynomial base,int t);

polynomial operator-(polynomial L,polynomial R);
polynomial operator*(polynomial L,polynomial R);
polynomial operator*(double v,polynomial R);

polynomial operator*(polynomial R,double v);

polynomial operator*(int v,polynomial R);

polynomial operator*(polynomial R,int v);

std::ostream& operator<<(std::ostream &s,polynomial &L);

class polynomial {
public:
double *coefficient;
int **exponent;
int N; // number of non-zero coefficients
int n_dim; // dimensions

~polynomial() {}//destroy();}
void destroy() {

if (coefficient != NULL)
delete[] coefficient;
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if (exponent I= NULL) {
int i;
for (i=0; i<N; i++)
delete[] exponent[i];
delete[] exponent;

}

coefficient = NULL;
exponent = NULL;

}

double* alloc_coeff(int d1) {
return (double *)malloc(dl*sizeof(double));

}

int** alloc_exp(int di,int d2) {
int i,**r;
r = (int **)malloc(dl*sizeof(int *));
for (i=0; i<dl; i++)
r[i] = (int *)malloc(d2*sizeof(int));

return r;
}
void resize(int n) {
destroy();
N = n;
if (N> 0) {

coefficient = alloc_coeff(N);
exponent = alloc_exp(N,n_dim);

}

}

polynomial() {
N =0;
n_dim = 1;

coefficient = NULL;
exponent = NULL;

}

polynomial(int n,int d=1) {
n_dim = d;
coefficient = NULL;
exponent = NULL;
if (n == 0)
N =0;
else
resize(n);

}

void minimize(bool use_approx=false) { // remove zero-valued entries.
int i,j,count=0;
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for (i=0; i<N; i++) {
if (use_approx) {
if (!APPROX(coefficient[i],0))
count++;
} else {
if (coefficient[i] != @)
count++;
}
}
if (count < N) {
double *c2 = alloc_coeff(count);
int **e2 = alloc_exp(count,n_dim);
count = 9;
for (i=0; i<N; i++) {
if (use_approx) {
if (!APPROX(coefficient[i],0)) {
c2[count] = coefficient[i];
for (j=0; j<n_dim; j++)
e2[count][j] = exponent[i][]];
count++;
}
} else {
if (coefficient[i] != @) {
c2[count] = coefficient[i];
for (j=0; j<n_dim; j++)
e2[count][j] = exponent[i][]];
count++;
}
}

}
destroy();

N = count;
coefficient = c2;
exponent = e2;
}
}

void add(int *p,double v) {
if (v == 0.0) return;
int i,j,count;
bool found = false, remove = false;
for (i=0; i<N && !found; i++) {
found = true;
for (j=0; j<n_dim; j++) {
if (exponent[i][j] !'= p[J])
found = false;
}
if (found) {
coefficient[i] += v;
if (coefficient[i] == @) {
remove = true;
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count = i;
}

}
}
if (remove) {
double *c2 = alloc_coeff(N-1);
int **e2 = alloc_exp(N-1,n_dim);
for (i=0; i<count; i++) {
c2[i] = coefficient[i];
for (j=0; j<n_dim; j++)
e2[i][j] = exponent[i][]];
}
for (i=count+1; i<N; i++) {
c2[i-1] = coefficient[i];
for (j=0; j<n_dim; j++)
e2[i-1][j] = exponent[i][]];

}
destroy();
N--;

coefficient = c2;
exponent = e2;
}
if (!found) {
double *c2 = alloc_coeff(N+1);
int **e2 = alloc_exp(N+1,n_dim);
count = 9;
for (i=0; i<N; i++) {
c2[i] = coefficient[i];
for (j=0; j<n_dim; j++)
e2[1][j] = exponent[i][]];
}
C2[N] = v;
for (j=0; j<n_dim; j++)
e2[N][J] = p[3l;
destroy();
N++;
coefficient = c2;
exponent = e2;
}
}

polynomial& operator=(polynomial R) {

if (N != R.N || n_dim != R.n_dim) {
n_dim = R.n_dim;
resize(R.N);

}

int i,7;

for (i=0; i<N; i++) {
coefficient[i] = R.coefficient[i];
for (j=0; j<n_dim; j++)

exponent[i][j] = R.exponent[i][]j];
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}

return *this;

}

polynomial& operator+=(polynomial R) {
int i;
n_dim = R.n_dim;
for (i=0; i<R.N; i++) {
add(R.exponent[i],R.coefficient[i]);
}

return *this;

}

polynomial& operator-=(polynomial R) {
int i;
n_dim = R.n_dim;
for (i=0; i<R.N; i++) {
add(R.exponent[i],-1*R.coefficient[i]);
}

return *this;

}

polynomial& operator*=(double v) {
int i;
for (i=0; i<N; i++) {
coefficient[i] *= v;
}

return *this;

}

polynomial translate(double x@) {
int i;
polynomial R,base(2);
base.exponent[0][0] = ©;
base.exponent[1][0] = 1;
base.coefficient[@] = -x0;
base.coefficient[1] = 1;
for (i=0; i<N; i++) {

R += coefficient[i]*power(base,exponent[i][0]);

}
return R;

}

double evaluate(double *x) {
double r = 0.0, d;
int i,3,k,p;
for (i=0; i<N; i++) {
d =1.0;
for (j=0; j<n_dim; j++) {
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p = exponent[i][J];
for (k=0; k<p; k++)

d *= x[J];
}
r += coefficient[i]*d;
}
return r;

}

polynomial evaluate(double x,int n) {
polynomial S(@,n_dim);
double d;
int i,j,k,p,e2[n_dim];
for (i=0; i<N; i++) {
p = exponent[i][n];
for (j=0; j<n_dim; j++)
e2[j] = exponent[i][]j];
e2[n] = 0;
d =1.0;
for (k=0; k<p; k++)
d *= x;
S.add(e2,coefficient[i]*d);
}

return S;

}

double evaluate(double x) {
polynomial S(@,n_dim);
double d;
int i,j,k,p,e2[n_dim];
for (i=0; i<N; i++) {
p = exponent[i][@];
for (j=0; j<n_dim; j++)
e2[j] = exponent[i][]j];
e2[0] = 0;
d =1.0;
for (k=0; k<p; k++)
d *= x;
S.add(e2,coefficient[i]*d);
}
if (S.N == 0)
return 0,
else
return S.coefficient[@];

}

double operator()(double x) {
return evaluate(x);
}
}s
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polynomial power(polynomial base,int t) {

int 1i;

polynomial R(1);
R.exponent[@][0] = ©;
R.coefficient[0] = 1;

for (i=0; i<t; i++) {
R = R*base;

}

return R;

}

polynomial operator+(polynomial L,polynomial R) {
polynomial S;
S = L;
return (S += R);

}

polynomial operator-(polynomial L,polynomial R) {
polynomial S;
S = L;
return (S -= R);

}

polynomial operator*(polynomial L,polynomial R) {
polynomial S;
S.n_dim = L.n_dim;
int *p = new int[S.n_dim];
int i,j,k;
for (i=0; i<L.N; i++) {
for (j=0; j<R.N; j++) {
for (k=0; k<S.n_dim; k++)
p[k] = L.exponent[i][k]+R.exponent[j][k];
S.add(p,L.coefficient[i]*R.coefficient[j]);
}
}

return S;

}

polynomial operator*(double v,polynomial R) {
polynomial S;
if (v == @) return S;
S = R;
int 1i;
for (i=0; i<S.N; i++)
S.coefficient[i] *= v;
return S;

}

polynomial operator*(polynomial R,double v) {
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polynomial S;

if (v == @) return S;

S = R;

int 1i;

for (i=0; i<S.N; i++)
S.coefficient[i] *= v;

return S;

}

polynomial operator*(int v,polynomial R) {
polynomial S;
if (v == @) return S;
S = R;
int 1i;
for (i=0; i<S.N; i++)
S.coefficient[i] *= v;
return S;

}

polynomial operator*(polynomial R,int v) {
polynomial S;
if (v == @) return S;
S = R;
int 1i;
for (i=0; i<S.N; i++)
S.coefficient[i] *= v;
return S;

}

std::ostream& operator<<(std::ostream &s,polynomial &L)

{
int i,j,N = L.N;

for (i=0; i<(N-1); i++) {
s << (' ;
for (j=0; j<L.n_dim; j++)
s << L.exponent[i][j] << ',";

s << L.coefficient[i] << ") ";

}
if (N> 0) {
s << (' ;
for (j=0; j<L.n_dim; j++)
s << L.exponent[i][j] << ',";
s << L.coefficient[i] << ")";

}
if (N==0) s << "0";

return s;
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// integral along all directions
double integral(polynomial P) {
polynomial S;
S = P;
int i,3;
for (i=0; i<S.N; i++)
for (j=0; j<S.n_dim; j++)
S.coefficient[i] /= ++S.exponent[i][]];

for (i=0; i<P.n_dim; i++)

S = S.evaluate(1,i) - S.evaluate(-1,i);
if (S.N == 0)

return 0;
else

return S.coefficient[0];

}

double integral(polynomial P,double limits[]) {
// limits[2*i] = x_i start, limits[2*i+1] = x_i end
polynomial S;
S = P;
int i,3;
for (i=0; i<S.N; i++)
for (j=0; j<S.n_dim; j++)
S.coefficient[i] /= ++S.exponent[i][]];

for (i=0; i<P.n_dim; i++)

S = S.evaluate(limits[2*i+1],1i) - S.evaluate(limits[2*i],i);
if (S.N == 09)

return 0;
else

return S.coefficient[0];

}

// derivative along one direction (the J-direction)
polynomial derivative(polynomial P,int J=0) {

polynomial S;

S = P;

int 1i;

for (i=0; i<S.N; i++)

S.coefficient[i] *= S.exponent[i][J]--;
S.minimize();
return S;

}

// Lagrange basis fuction (order = LagrangeN-1).
polynomial LagrangelD(long int type,long int d,long int ndim) {
// type = node position (@ to LagrangeN-1)
// d = coordinate index (@ to ndim-1)
long int i,
polynomial P(2,ndim),L(1,ndim);
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for (i=0; i<ndim; i++) {
L.exponent[@][i] = ©;
P.exponent[@][i] = ©;
P.exponent[1][i] = ©;

}
L.coefficient[@] = 1; // L = 1 initially
P.exponent[1][d] = 1;

double x[LagrangeN];
for (i=0; i<LagrangeN; i++)
x[LagrangeN-1-i] = cos(PI*i/(LagrangeN-1));

for (i=0; i<LagrangeN; i++)
if (1 = type) {

P.coefficient[1] = 1.0/(x[type]-x[i]);
P.coefficient[@] = -x[1i]/(x[type]l-x[1i]);
L = L*P;
}
return L;

}

// sparse row
class row_sp {
public:
long int *j,n;
double *x;

row_sp()
n = 0;
X = NULL;
j = NULL;
}

void push_back(long int p) {
long int i;
if (n > @) {
long int *old_j = new long int[n];
for (i=0; i<n; i++)
old_j[i] = J[i];
delete[] j;
j = new long int[n+1];
for (i=0; i<n; i++)
j[i] = old_j[i];
delete[] old_j;

} else
j = new long int[1];
jln++] = p;

}

void add_index(long int p) {



173

long int i;
bool found = false;
for (i=0; i<n; i++) {
if (j[i] == p) found = true;
}
if (!found)
push_back(p);
}

void push_back(long int p,double val) {
long int i;
if (n > @) {
long int *old_j = new long int[n];
double *old_x = new double[n];
for (i=0; i<n; i++) {
old_j[i] = J[i];
old_x[i] = x[i];
}

delete[] j;

delete[] x;

j = new long int[n+1];

X = new double[n+1];

for (i=0; i<n; i++) {
j[i] = old_j[i];
x[1i] = old_x[i];

}

delete[] old_j;

delete[] old_x;

} else {
j = new long int[1];

X = new double[1];
}
jln] = p;
x[n] = val;
n++;

}

void add_index(long int p,double val) {
long int i;
bool found = false;
for (i=0; i<n; i++) {
if (j[i] == p) found = true;

if (!found)
push_back(p,val);
}

long int find_index(long int p) {
long int i=@;
for (55) {
if (1 >=n) {
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printf("find_index: not found (%1d)\n",p);
return -99;

}
if (p == j[i])
return i;
i++;
}
}

double x_at(long int p) {
return x[find_index(p)];

}

void add(long int p,double val) {
x[find_index(p)] += val;
}

void sub(long int p,double val) {
x[find_index(p)] -= val;
}
}s

t#tendif
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APPENDIX C

MATHEMATICA PROGRAMS
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2Dphi_wfree.nd

This Mathematica program solves the two-dimensional bimorph in the static case.
The approximation that 7> = 0 was made in order to simplify the full 3D equations. The
y-deflection, v, is neglected since it is small in the beam approximation. The designa-
tion “wfree” means that the z-deflection is mostly free everywhere on the boundary, and
is only specified to be zero at a single point on the left edge (x = 0, z = 0) in order to have
a unique solution. In contrast, the x-deflection, u, is specified to be zero everywhere
along the left edge (x = 0), so that we have clamped-free boundary conditions (clamped
at the left end, and free at the right end).

What makes the Mathematica program of interest is that I have a routine called
Exact[] which can turn all numerical values, such as given material constants, into inte-
ger fractions, and thus have infinite precision. I can then choose how much numerical
precision I want to have in the solution. For the most part, [ have chosen to have 30 dec-
imal places of precision, although I have also used as much as 60 when I wanted to test
whether the solution is affected by round-off error. I have found that double precision
(16 digits of precision) gives the same solution to within 3 decimal places as the higher
precision. This indicates that no drastic errors are occurring because of round-off. Also,
any plots of results or the derivatives have looked the same at all amounts of precision.
Any problems that may occur in the solutions are therefore from the discretization prop-
erties of the model itself. This is important to know, because sometimes round-off error

can cause serious errors in the solution.
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(# This program solves the 2D bimorph problem for u,w and electric

potential by using quadratic Lagrange elements. =*)

Clear[hx, hz, x, z];
LagrangeN = 2; (% Order of the lagrange basis functions. =)
NPE = (LagrangeN + 1) ~2;
Kron[u_, v_] := Outer[Times, u, v];
Lag[n_, i_, x_, h_] := Module [{], k, v},
v = Function[{k}, (1+Cos[Pi* (1+n-k) /n]) «h/2];
Product [T£[j = i, 1, (x-y[i]) / (v[i1-¥[ID], (3, n+1}]]

basisX = Table[Lag[LagrangeN, i, x, hx], {i, LagrangeN +1}];
basisXDer = Simplify[D[basisX, x]];
basisZ = Table[Lag[LagrangeN, i, z, hz], {i, LagrangeN + 1}];
basisZDer = Simplify[D[basisZz, z]];
Mx = Table[Null, {i, (LagrangeN +1) ~2}];
For[i =0, i < LagrangeN, i++,
For[j = 0, j < LagrangeN, j++,
n=1+i+j* (LagrangeN +1);
Mx[[n]] = Simplify[Integrate[{basisX[[1+i]] *basisX[[1+]]],
basisXDer[[1+i]] *basisX[[1+3]],
basisX[[1+1i]] *basisXDer[[1+3]],
basisXDer[[1+1i]] *basisXDer[[1+3]]}, {x, O, hx}]];
1:1;
Mz =Mx /. hx - hz;

MMxx = Table[Table[Null, {i, NPE}], {j, NPE}];
MMxz = MMxX;
MMzx = MMxX;
MMzz = MMxX;
For[il =0, il < LagrangeN, il ++,
For[jl =0, jl1 < LagrangeN, jl++,

j=1+1il +jl % (LagrangeN +1);

For[i2 = 0, i2 < LagrangeN, i2 ++,

For[j2 =0, j2 < LagrangeN, j2++,

k=1+12 +j2 % (LagrangeN + 1) ;
m=1+il +i2 % (LagrangeN +1);
n=1+jl+3j2 * (LagrangeN +1);
MMxx [[j, k]] =Mx[[m, 4]] *Mz [[n, 1]];
MMzz [[j, k]] =Mx[[m, 1]] *Mz [[n, 4]];
MMxz [[j, k]] =Mx[[m, 2]] *Mz[[n, 3]];
MMzx [[j, k1] =Mx[[m, 3]] *Mz[[n, 2]];
1:1:1:13

GPrec = 30; (* global precision =*)
$MaxExtraPrecision = 40;
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Exact[n_] := Module[{p, q, ¢, d},
q = MantissaExponent [n];
c=q[[1]];
p=ql[2]];
d=1;
While[FractionalPart[c*d] # 0, d x= 10;];
(IntegerPart[c*xd] /d) *10"p
1;

(* constants and boundary values =*)
cll = Exact[3.70 *10"9]; (+ in N/m"2 %)
c22 = Exact[3.20 *10"9];

c33 = Exact[1.51 *x10"9];

c44 = Exact[0.55 *10"9];
c55 = Exact[0.59 *10"9];
€66 = Exact[0.70 +10°9];

cl2 = Exact[1.47 *1079];
cl3 =Exact[1.23 x10"9];
c23 = Exact[1.00 *10"9];

(# in C"2/N*m”"2 =*)

epsl = Exact[7 .35 %8.85 % 10712 ];

eps2 Exact[9.27 #8.85 10712 ];

eps3

Exact[s.os +8.85 1012 ];

(# in Vxm/N x)

g31 = Exact[0.21];
g32 = Exact[0.03];
g33 = Exact[-0.46];
gl5 = Exact[-0.32];
g24 = Exact[-0.27];

(# in N/Vim =)
e3l =eps3 * (g3l *xcll+g32*xcl2+g33*xcl3); (» 1.807524e-02 %)

e32 =eps3 * (g31 xcl2+g32*c22+9g33 xc23); (% -3.915240e-03 =*)
e33 =eps3 * (g31*xcl3 +g32*xc23 +g33 *xc33); (» -2.876604e-02 )
el5 =epsl xgl5xc55; (» -1.336704e-02 =*)
e24 =eps2 xg24 xc44; (» -1.051380e-02 =*)

clls =cll-cl2%xcl2/c22;
cl3s =cl3-cl2%xc23/c22;
c33s = ¢33 -c23 xc23 /c22;
e3ls =e3l1-cl2xe32/c22;
e33s =e33-c23 xe32/c22;
eps3s = eps3 -e32xe32 /c22;
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(# Piezo sheet dimensions, in meters. %)
Lz = Exact[60 *10"-6];
Lx = Exact[2.5%10"-2];

(# Electrical boundary values. %)
phiTop = Exact [600];
phiBottom = Exact[0];

Nx = 11;

Nz =7; (* must be odd, 23 %)
midZ = (Nz -1) /2;

hx =Lx/ (Nx-1);

hz =Lz / (Nz-1);

NDIM = 2; (* spacial dimensions =x)
Nx2 = Nx * LagrangeN + 1 - LagrangeN;
Nz2 = Nz * LagrangeN + 1 - LagrangeN;

nNodes = Nx2 % Nz2;

nBNodesU = Nz2;

nBNodesW = 1;

nBNodesPhi = Nx2;

nElements = (Nx -1) * (Nz-1);

nvar = 3; (* Number of variables per node. %)

nDOF = nVar * nNodes; (* Total number of degrees of freedom.

nnl = 0;
nn2 = nNodes;

nn3 = 2 *x nNodes;

MMxx = N[MMxx, GPrec];
MMxz = N[MMxz, GPrec];
MMzx = N[MMzx, GPrec];
MMzz = N[MMzz, GPrec];

bnodes = Table[Null, {i, nBNodesU}];

bnodesW = Table[Null, {i, nBNodesW}];

philLower = Table[Null, {i, nBNodesPhi}];

phiUpper = philLower;

elnodes = Table[Table[Null, {i, NPE}], {j, nElements}];

(# Specify the global node numbers for each element.
This is the mesh. x)

piezoLower = Table[Null, {i, nElements}];

count = 0;

pl =0;

p2 =0;

*)
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For[i=0, i< (Nx-1), i++,
For[k=0, k< (Nz2-1), k++,

n=3i+k* (Nx-1);

piezoLower[[1l+n]] = (k <midZ);

m = LagrangeN * (i +k » Nx2);

For[nl = 0, nl <= LagrangeN, nl ++,

For[n3 = 0, n3 <= LagrangeN, n3 ++,

ml = nl +n3 » (LagrangeN + 1) ;
node =m +nl +n3 * Nx2;

elnodes[[n+1, ml +1]] = node;

If[(nl ==0) && (1=0), If[(n3 >0) || (k==0),
bnodes[[1 + count ++]] = node;
11;
If[(i==0) && (k ==midZ) && (nl == 0) && (n3 == 0),
bnodesW[[1]] = node;
1;
If[(n3 ==0) && (k=0), If[(n1>0) || (1==0),
phiLower[[1l+pl++]] = node;
11;
If[(n3 == LagrangeN) && (k == (Nz -2)),
If[(nl1>0) || (i=0),
phiUpper[[1l+p2++]] = node;
11;
1111

nMat = nDOF;
AMat = Table[Table[0, {i, nMat}], {j, nMat}];
loadVec = Table[0, {i, nMat}];

For[i =1, i <= nElements, i++,

If [piezoLower[[i]],s=1,s=-1;];

For[j =1, j <= NPE, j++,

m=1+elnodes[[i, j]];

ml =m +nnl;

m2 =m +nn2;

m3 =m +nn3;

For[k =1, k <= NPE, k++,
n=1+elnodes[[i, k]];
nl =n+nnl;
n2 =n+nn2;
n3 =n+nn3;
AMat[[ml, n1]] += clls *MMxx[[j, k]] +c55 *MMzz [[j, k]];
AMat [[ml, n2]] += c13s *MMxz [[j, k]] +c55 *MMzx [[j, k]];
AMat [[ml, n3]] += s * (e31s *MMxz [[j, k]] +el5 xMMzx [[j, k11);
AMat [[m2, n1]] += c13s *MMzx[[j, k]] +c55 *MMxz [[j, k]];
AMat [[m2, n2]] += c55 *MMxx[[j, k]] +c33s *MMzz [[], k]];
AMat [[m2, n3]] += s * (el5 *xMMxx[[j, k]] +e33s *xMMzz [[], k]]);
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AMat[[m3, nl]] += s * (e31ls *MMzx[[j, k]] +el5 *xMMxz [[], k]]);
AMat [[m3, n2]] += s * (el5 *MMxx[[j, k]] +e33s *xMMzz [[j, k]]);
AMat[[m3, n3]] -= epsl *MMxx[[j, k]] +eps3s *xMMzz [[j, k]];
171313

For[j =1, j <= nBNodesPhi, j++,
m = 1 +phiLower[[j]];
loadVec -= phiBottom » AMat [[All, m +nn3]];
m = 1 +phiUpper[[j]];
loadVec -= phiTop » AMat [ [All, m +nn3]];
1i

zero = Table[0, {i, nMat}];
For[j =1, j <= nBNodesU, j++,
m = 1+bnodes[[j]];
ml =m+nnl;
loadVec[[ml1l]] = 0;
AMat[[ml]] = zero;
AMat [[All, ml]] = zero;
AMat[[ml, ml1]] = 1;
1i

For[j =1, j <= nBNodesW, j++,
m = 1+bnodesW[[j]];
m2 =m+nn2;
loadvVec[[m2]] = 0;
AMat [ [m2]] = zero;
AMat [[All, m2]] = zero;
AMat [[m2, m2]] = 1;
1;

For[j =1, j <= nBNodesPhi, j++,
m = 1+phiLower[[j]];
m3 =m +nn3;
loadVec[[m3]] = phiBottom;
AMat [[m3]] = zero;
AMat [[All, m3]] = zero;
AMat[[m3, m3]] = 1;
m = 1+phiUpper[[j]];
m3 =m +nn3;
loadVec[[m3]] = phiTop;
AMat [[m3]] = zero;
AMat [[All, m3]] = zero;
AMat[[m3, m3]] = 1;

AMat = N[AMat, GPrec];
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loadVec = N[loadVec, GPrec];
Print["solving"];
sol = LinearSolve[AMat, loadVec];

Print [ScientificForm[Max[Abs[sol[[1;; 1+nn3]]]]11]1;

rl =1;

r2 =1;

r3 =0.5;

nx2 = 5;

nz2 =5;

(Nx-1) » (nx2-1) +1;
(Nz -1) » (nz2-1) +1;

nNodes3 = nx3 *xnz3;

nx3

nz3

Clear[plist, r, count];
plist = Table[Null, {i, (nx3-1) * (n2z3-1)}];
r = Table[Null, {i, 12}];
For[c2 =0, c2< 3, c2++,
For[cl =0, cl <4, cl++,
count = 1;
For[i=0, i< (Nx-1), i++,
For[k=0, k< (Nz-1), k++,
n=1i+k* (Nx-1);
x0 = i xhx;
z0 =k xhz;
hx3 =hx / (nx2-1);
hz3 =hz / (nz2-1);
m = LagrangeN * (i + k * Nx2);
t =0;
For[nl = 0, nl <= LagrangeN, nl ++,
For[n3 = 0, n3 <= LagrangeN, n3 ++,
node =1+m+nl +n3 % Nx2;
If[cl =0,
tx = basisX[[nl +1]];
tz =basisz[[n3 +1]];
1i
If[cl =1,
tx = basisXDer[[nl +1]];
tz =basisz[[n3 +1]];
1i
If[cl =2,
tx = basisX[[nl +1]];
tz = basisZDer[[n3 +1]];
1i
If[cl =3,
tx = basisXDer[[nl +1]];
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tz = basisZDer[[n3 +1]];
1;
t += tx *tz * sol[[node + nNodes * c2]];

1:1:

t=(t/. {x>x-%x0, 2>52-20});
For[nl =0, nl <nx2-1, nl++,
For[n3 =0, n3 <nz2-1, n3 ++,
x1 = x0 +nl % hx3;
z1l =20 +n3 xhz3;
x2 = x1 + hx3;
z2 =21 +hz3;
plist[[count++]] = {EdgeForm[{Black}], Polygon[N[{
{x1,2z1,t/. {x->x1, z->2z1}},
{x2,2z1,t/. {x->%x2,z->2z1}},
{x2,22,t/. {x->%x2,2z->22}},
{x1,22,t/. {x->x1, z->22}}
}, GPrec]]};

1:1:
1:1:
r[[1+cl +c2 %x4]] = Graphics3D[plist, Axes - True,
BoxRatios -» {rl, r2, r3}, AxesLabel - {x, z, ""}];

1:1;

Show[r[[1]]]
Show[r[[2]]]
Show [r[[3]]]
Show [r[[4]]]
Show [r[[5]]]
Show [r[[6]]]
Show[r[[7]]]
Show [r[[8]]]
Show [r[[9]]]
Show [r[[10]]]
Show [r[[11]]]

Show [r[[12]]]
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