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ABSTRACT

Twist of magnetic field is believed to play important role in driving instabilities
that result in eruptive events on the Sun. This thesis provides different methods to
measure twist in the solar corona.

First, given a model of coronal field, twist of a magnetic domain (i.e., a volume
that contains all field lines connecting two regions of interest in the photosphere) is
well studied for cases when the domain is a thin cylinder. For cases when such approx-
imation is inapplicable a generalization of twist can be derived from a quantity called
additive self-helicity. I develop explicit numerical methods to compute generalized
twist. I also demonstrate that such a quantity sets a threshold on kink instability like
the traditional twist does for thin cylinders.

In a more realistic scenario, coronal magnetic field is not known and so neither
is its helicity. There are two principal methods to overcome this problem. The
first is to integrate helicity flux across the photosphere (as helicity is believed to
be approximately conserved in the corona) using magnetic field on Sun’s surface.
There is little published evidence as yet that coronal helicity indeed corresponds to
its integrated photospheric flux. The second is to extrapolate the coronal magnetic
field using surface measurements as boundary conditions and use this extrapolation
for helicity computation; for fields with complicated structure such extrapolations are
extremely challenging and suffer from major drawbacks.

I develop a method to estimate twist of coronal fields without attempting compli-
cated extrapolations or studying helicity flux. The method builds a simple uniformly-
twisted magnetic field and adjusts its properties until there is one line in this field
that matches one coronal loop; this is repeated for all evident coronal loops resulting
in twist measurements for each individual loop.

I use this method to demonstrate that the rate of change of twist in the solar
corona is indeed approximately equal to the one derived from photospheric helicity
flux.

The results of this dissertation are useful for better understanding of magnetic
topology in general. They are also extremely promising for extrapolating coronal
magnetic fields. Measurements of coronal twist might aid in predicting magnetic
instabilities.
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1. INTRODUCTION

1.1. Magnetic Field Lines and Their Properties

Non-relativistic and non-resistive plasma.

Magnetic tension. Frozen-in conditions.

A magnetic field line (hereafter a “field line”) r(b) of a field B is a solution of

dr

db
=

B

B
, (1.1)

obtained by integration in b in both directions from a given starting point r0. Equa-

tion (1.1) has a unique solution except for the points in which B = 0 or B → ∞.

As

∇ · B = 0, (1.2)

the field lines are curves, that have no starting or ending points (except at points

where B = 0 of B → ∞) and that with the same exception they do not cross.

When a magnetic field is present in plasma, field lines have a few more properties,

relevant to this dissertation work.

I will further only consider a non-relativistic and non-resistive plasma. The first

means that plasma velocity |v| ≪ c and so Ampere’s law could be simplified to

J =
c2

4π
∇× B (1.3)

in CGS-ESU system of units [Jackson, 1975].
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When a plasma moves at a velocity v in electric field E and magnetic field B, the

electric field it experiences in its own rest frame is

E′ = E + v × B. (1.4)

Ohm’s law, J = σE′, allows us to express E through B and J in the induction

equation. The latter could be simplified using Equations (1.3) and (1.2) and vector

identities:

∂B

∂t
= −∇× E = ∇× (v × B) − c2

4πσ
∇2B, (1.5)

where the first term describes convection and the second one describes diffusion with

a diffusivity coefficient η = c2/4πσ. The non-resistive approximation means that the

conductivity σ is so high that the second term in Equation (1.5) can be neglected,

i.e., the diffusivity η ≪ Lv, where L is a typical length scale of the problem and v is a

typical velocity. This is more commonly viewed by introducing a “magnetic Reynolds

number”: Rm = Lv/η. Rm ≫ 1 for most astrophysical plasmas. In particular, for

solar corona Rm ≈ 108 − 1012 [Aschwanden, 2006].

In general, when a field line is curved, there is a restoring force, that tries to

straighten it. This restoring force is similar to the tension force in elastic strings.

Indeed, the plasma is subject to Lorentz force:

FL = J × B =
1

4π
(∇× B) × B. (1.6)

From basic vector identities it follows that

FL = − 1

8π
∇B2 +

1

4π
(B · ∇)B. (1.7)
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Here the first term is a magnetic pressure term that acts in all directions. Let us take

a closer look at the second term, representing B as B = B(b)b̂(b), where |b̂| = 1 and

b is a natural parameter along a field line. Note that in these terms Bx = Bdx/db.

Then, using Equation (1.1),

1

4π
(B · ∇)B =

1

4π
B

dB

db
=

1

4π
Bb̂

dB

db
+

1

4π
B2db̂

db

=
1

8π
b̂

dB2

db
+

1

4π
B2db̂

db
.

(1.8)

The first term in Equation (1.8) cancels out the magnetic pressure term from Equa-

tion (1.7) in b̂ direction1. The second term is exactly 1
4π

B2k, where k is a curvature

vector, as it is commonly defined in analytic geometry; its length is equal to inverse

of the curvature radius 1/R and it is directed towards the center of the curvature.

Plugging the result of Equation (1.8) to Equation (1.7), we get

FL = − 1

8π
∇⊥B2 +

1

4π
B2k. (1.9)

That means, the Lorentz force exerts magnetic pressure in directions perpendicular

to B and a magnetic “tension” in the direction towards local curvature center.

Another important property of field lines in a non-resistive plasma are the frozen-

in conditions, that relate the motions of plasma to the changes in magnetic field. The

first part of this is that plasma moves along with field lines: if two elements of the

plasma are on the same field line, they will stay on the same field line forever. The

second is the conservation of magnetic flux: if plasma elements forming a curve C1

1To see this, it is enough to introduce two more unit vectors û and v̂ to make a orthonormal set
with b̂ and express ∇B2 in these coordinates.
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have evolved and at later time form a curve C2, the magnetic flux through both curves

is the same. These are the basic results of low-resistive plasma physics, covered in

most textbooks, e.g., [Aschwanden, 2006, Choudhuri, 1998, Priest & Forbes, 2000].

1.2. Coronal Loops

Flux tubes in the solar corona. Low-β plasma.

Importance of Lorentz force. Moving footpoints.

The frozen-in condition allows us to introduce an entity called magnetic flux tube,

typically viewed as a tube-like volume, occupied by a bundle of field lines initiated

within a closed contour. A common object of study is a thin flux tube, that has a

well-defined axis and that has a diameter much smaller than all other length scales

in the system (such as tube’s length, curvature radius and so on). The magnitude

of magnetic field and the tube’s width could vary along the flux tube. However,

as magnetic flux across the “walls” of the tube is zero, the magnetic flux along the

axis of the tube should be constant, so that for any arbitrary subsection of the tube

the total magnetic flux across the surface of the subsection is zero, as demanded by

Equation (1.2).

Because of the frozen-in condition, an ideal plasma cannot leave or enter a flux

tube, but can only move along it. It is also recognized that magnetized plasma has

a highly anisotropic thermal conductivity: along the magnetic field it is many orders

of magnitude higher than across the field [Ireland et al., 1992]; the reason for that
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is the difference in the mean free path of particles along and across the field lines.

So a localized heating event effectively heats the entire flux tube it is embedded in,

but not its surroundings. Observations of solar corona in Soft X-Ray (SXR) and

Extreme Ultraviolet (EUV) indeed reveal thin emitting strands, called coronal loops

(see Figure 1).

The above mentioned properties allow to address coronal loops in many senses as

distinct isolated structures [Rosner et al., 1978].

Figure 1. Coronal loops, as seen in Extreme Ultraviolet (EUV) by TRACE
[Handy et al., 1999].
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Within this thesis I will consider flux tubes, that are in equilibrium, that is, the

total force acting on them is zero. The latter is in general a sum of gravity force,

pressure gradient force, Lorentz force and viscosity force:

Ftot = −∇p +
1

4π
(∇× B) × B + ρg + ρν∇2v. (1.10)

If loops are not moving, the viscosity term vanishes. It also turns out that in the

quiescent solar corona the gas pressure and the gravity terms are negligibly small

compared to the Lorentz force term. The ratio of pressure force to the magnetic

pressure is commonly referred as plasma β:

β =
p/L

B2/8πL
= 8π

p

B2
. (1.11)

In solar corona, for at least up to the heights of ∼ 100Mm, β ≪ 1 [Gary, 2001] and

the magnetic pressure dominates over the gas pressure. Now, the ratio of the pressure

force to the gravity force could be obtained using the fact that p = kBTρ/µ (where

µ is a mean particle mass, for solar corona µ ≈ 1.27mH [Aschwanden, 2006]) and

introducing the pressure scale height H = kBTµg:

∇p

ρg
∝ p

Lρg
=

H

L
, (1.12)

where L is a typical length scale of the system. Pressure scale height is a function

of temperature, and for temperatures typically found in the corona, H ∝ 100Mm

[Aschwanden, 2006]. So in low-β plasma for loops of height L ≤ H the gravity term

in Equation (1.10) could be neglected along with the pressure term.
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Summarizing the aforementioned, coronal loops are in equilibrium if the Lorentz

force vanishes. Of course, FL = 0 does not mean that both terms in Equation (1.9)

vanish. In general it means that the magnetic pressure balances the magnetic tension.

In particular, magnetic tension could be expected to be larger in flux tubes in

which field lines have in some sense stronger “bend”, or smaller curvature radius,

e.g., twisted and entangled flux tubes. They become so due to the plasma motions

in the photosphere they are “anchored” to. While in rarefied low-β corona magnetic

field drives the plasma motion, the opposite happens in the dense high-β photosphere

and Sun’s interior. Plasma flows that take place in the photosphere move around

and spin the footpoints of coronal flux tubes. In the non-resistive corona flux tubes

cannot cross or penetrate into each other, so a few tubes might become entangled due

to braiding motions or an isolated tube might develop inner twist due to spinning

motions. If such motions happen sufficiently slowly, flux tubes might relax to a new

equilibrium state, in which magnetic pressure would again balance magnetic tension.

An obvious question to ask is whether such equilibrium would be stable. Apparently,

in certain cases it would definitely be unstable. I will further concentrate on only one

scenario, the so-called kink instability.
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1.3. Kink Instability in Thin Flux Tubes

Twisted flux tubes. Kink instability.

Practical applications.

Kink instability is typically described in flux tubes that carry twisted magnetic

field, that is, which has a non-zero azimuthal component2. A classical example of such

is a straight uniformly twisted and axially symmetric flux tube [Aschwanden, 2006,

Gold & Hoyle, 1960], with the field

B = Bz(ρ)ẑ + Bϕ(ρ)ϕ̂, (1.13)

where Bz = B0/(1 + b2ρ2), Bϕ = bρBz and b = const = 2πTw/L (note that this b

is different from the arc-length used before). It could be easily verified that for such

field FL = (∇ × B) × B = 0 and thus the field is in equilibrium. Its field lines are

described by equation

ϕ(z) = bz = 2πTw
z

L
(1.14)

and make Tw full revolutions about the axis3 per length L. For a finite cylinder of

length L the quantity

Ψ = bL = 2πTw (1.15)

has the meaning of total twist angle the field lines make about the axis.

2In the sense of it being perpendicular to the axis of the tube.
3Note that Tw is not in general a natural number.
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As was shown in [Hood & Priest, 1979], such equilibrium is unstable to the m =

±1 mode in the normal mode decomposition of the displacement

ξ = Re
[
(ξρ, ξϕ, ξz)e

i(mφ+kz)
]

(1.16)

(Figure 2), known as kink mode, if Ψ = 2πTw ≥ Ψcrit. [Hood & Priest, 1979] esti-

mated

Ψcrit ≃ 3.3π (1.17)

for a thin4 uniformly twisted flux tube. This result was obtained by minimizing the

energy perturbation with respect to ξ and performing a numerical integration of the

resulting Euler-Lagrange equation. [Hood & Priest, 1979] found that for Ψ ≥ Ψcrit

the field would be unstable to a certain range of wavenumbers k in Equation (1.16).

For Ψ < Ψcrit the field is stable to perturbation of any wavenumber and thus is in

general stable.

Figure 2. Kink mode displacement.

The studies of kink instability have practical applications in solar physics. Twisted

flux tubes are believed to exist in the solar corona, as sunspots, the footpoints of

the flux tubes with the strongest magnetic fields, are sometimes observed rotating

4In the sense of it having a definite axis and the diameter being negligibly small compared to the
pressure gradients, so that the only force acting on the flux tube is the Lorentz force.
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(see [Yan et al., 2008], [Brown et al., 2003] and references therein). Sunspot rotation

is associated with the formation of S-shaped structures in the corona, observed in

EUV and SXR, called sigmoids. The latter are indeed found to be likely to erupt

[Canfield et al., 1999] and in the modern paradigm kink instability is thought to be

one of the possible drivers for such eruptions [Canfield et al., 2000]. Existing numer-

ical simulations demonstrate remarkable morphological correspondence between sig-

moids and twisted flux tubes [Fan & Gibson, 2003] and between some eruptions and

simulations of kink instability of twisted flux tubes, see [Rust, 2003, Török & Kliem, 2004,

Rust & LaBonte, 2005, Gibson & Fan, 2008] and Figures 3 and 4.

The thin axisymmetric flux tube approximation, that is discussed above, is not

always applicable for real and simulated structures. An example is shown in Figure 5,

right panel. For a “thick” structure without a definite axis, Tw in the sense of

Equations (1.14) and (1.15) could not be defined. Yet, in numerical simulations

discussed above such structures are “twisted” in some sense and definitely undergo

an instability. Apparently, there is a way of quantifying twist in an arbitrary-shaped

structure through a quantity called magnetic helicity. In Chapter 2 I demonstrate

that a generalization of Tw has an instability threshold in a manner similar to Tw

for thin flux tubes. Please refer to this chapter for more information in Figures 3, 4

and 5.
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Figure 3. An example of a solar eruptive event that might have been caused by kink
instability and a simulation of kink instability, using data from [Fan & Gibson, 2003]. The
two columns represent time sequence of TRACE 195Å observations (the same event was
mentioned in [Ji et al., 2003, Rust, 2003, Török & Kliem, 2004, Gibson & Fan, 2008]) and
the simulation data; time increases from top to bottom and the sequence continues in
Figure 4. TRACE images were rotated 90◦ counterclockwise and then reflected about
vertical axis to enhance the similarity between the data and the simulations. For more
details on the simulation data, see Chapter 2.
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Figure 4. Continuation of Figure 3.
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Figure 5. While the structure on the left could to some extent be modeled as a thin flux
tube with a definite axis, the structure on the right definitely could not be. So for the
structure on the right, Tw in the classical sense of an angle field lines wind about the
axis, could not be estimated. Yet, such a structure can undergo an instability triggered by
excessive twist of its field lines. The image on the left is in fact a subportion of the image on
the right, simulation data which was designed as a set of twisted coaxial tubes and in this
sense it indeed had an axis. In general no such assumption about the axis could be made.
Simulation data adapted from [Fan & Gibson, 2003]; for more details on it, see Chapter 2.
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1.4. Magnetic Helicity

Topological meaning of helicity.

Twist and writhe. Relative helicity.

Generalization of twist number.

Magnetic helicity of a field B in volume V is defined as

H(B,V) =

∫

V

B · AdV, (1.18)

where A is a vector potential. Helicity defined this way is only gauge-independent

if B is fully confined in V , that is, if there is no magnetic flux across the boundary

of V : B · n̂|∂V = 0 (in other words, no field lines enter or leave this volume). To see

this, consider a gauge transformation A′ = A +∇ψ. Then, using Equation (1.2) and

the divergence theorem, Equation (1.18) would change by

∫

V

B · ∇ψdV =

∫

∂V

ψB · n̂dS, (1.19)

which would vanish if B is fully confined to V .

It turns out [Berger & Field, 1984, Moffatt & Ricca, 1992] that magnetic helicity

has a physical meaning related to the topology of the field. For example, let us con-

sider B vanishing everywhere in the volume, except within two toroidal thin volumes

V1 and V2, that carry fluxes Φ1 and Φ2 along axes L1 and L2; suppose at first that

the field within these two tubes is untwisted in the sense described above. Suppose

also that these two tubes are linked like the links in a chain, as in Figure 6, middle



15

panel. The helicity of such a configuration is then

H(B) =

∫

V1

B · AdV +

∫

V2

B · AdV. (1.20)

Now using BdV = Φdl and noticing that the flux along the tube has to be constant,

we get

H(B) = Φ1

∫

L1

A · dl + Φ2

∫

L2

A · dl = ±2Φ1Φ2, (1.21)

provided the flux tubes are “untwisted”, that is, there is no azimuthal flux of each

tube across the contour of its own axis, because then the only flux across the surface

bounded by L1 is Φ2 and the same is true for L2 and Φ1 (the sign would depend on

the direction of one curve with respect to the surface normal of the other one, but

would be the same for both terms of the sum). The result is easily generalized as

H(B) = 2LΦ1Φ2, (1.22)

where L is the total number of times one tube crosses the surface bound by the axis of

the second tube. Note that such crossings can be either positive or negative, depend-

ing on the direction of the magnetic field compared to the direction of the normal to

the surface. L, called the Gauss linking number, is a topological invariant that can’t

be changed without breaking the tubes or making them penetrate into each other. This

is true in non-resistive plasma: two flux tubes do not reconnect or penetrate into each

other. That means, their linkage number and thus helicity is a quantity preserved

under any evolution of frozen-in plasma5.

5In low-resistive plasma helicity is not conserved in general. When the diffusive term in Equa-
tion (1.5) is small, but not negligible, both energy and helicity dissipate. However, in this case
helicity typically dissipates slower than magnetic energy [Berger, 1984].
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Figure 6. Examples of two interlinked circles with linking number, left to right: L = 0,
L = ±1, L = ±2.

The result in Equation (1.22) was made assuming the flux tubes were untwisted.

Let us now consider helicity of a twisted flux tube. A simple example of such is a uni-

formly twisted torus that carries flux Φ and twist Tw in the sense of Equation (1.15).

Its helicity could be calculated by considering different thin tubes within the torus, as

shown in Figure 7, if the tubes are sufficiently thin so that we can neglect their inner

twist. Every pair of such tubes with fluxes dΦ1 and dΦ2 has helicity of 2dΦ1dΦ2Tw,

as in Equation (1.22) and the helicity of the torus as a whole is H = TwΦ2 (the factor

1/2 ensures that each pair is not counted twice).

The result obtained in the previous paragraph does change with continuous de-

formations of the torus. Indeed, consider a torus with Tw = 1, as on the top row of

Figure 86. The axis of the torus could be deformed in such a way that the field inside

it would appear untwisted7, as shown in Figure 8, bottom row. The two subtubes,

6Of course, the sign of Tw would depend on the direction of the field lines. In this example let
us suppose they are directed in such a way that Tw > 0.

7It is not obvious how to define an “untwisted” field within a shape like in the bottom row of
Figure 8. [Berger & Field, 1984] adopt a following definition: when viewed from a plane projection,
a line can be drawn on “top” of the tube along its entire length, that sets the zero of the azimuthal
coordinate. We will further in Chapter 2 adopt a more rigorous definition: the zero of the azimuthal
coordinate is to be transferred along the tube with parallel transport.
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Figure 7. Two views of the same uniformly twisted torus. Two thin “subtubes”, red and
blue, are located on two different toroidal shells. If we neglect inner twist of both subtubes,
their mutual linking number is L = Tw = ±4 (depending on the direction of the field lines),
equal to the number of turns each tube makes about the minor axis of the torus.

however, would keep their linking number unchanged and the helicity of the field

would remain constant.

In general it is accepted that linkage number for an arbitrary set of structures is

L = Tw + Wr. (1.23)

This might be used to define writhe number Wr, but it could also be defined rigorously

through integrals, so as Tw and L [Berger & Field, 1984, Moffatt & Ricca, 1992].

While Tw and L depend on mutual properties of two curves (e.g., an axis and a

field line winding about it or two interlinked circles), Wr is a property of a sin-

gle curve, that could be viewed as an amount of self-crossings in a planar projec-

tion of such curve, averaged over all possible viewing angles [Berger & Field, 1984,

Moffatt & Ricca, 1992].

Helicity, by analogy with Equation (1.23), could be decomposed into twist helicity

and writhe helicity. They could be defined in thin flux tubes as TwΦ2 and WrΦ2.
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Tw = 1, Wr = 0

Tw = 0, Wr = 1

Figure 8. A uniformly twisted torus (top row) and an untwisted figure-8 tube (bottom
row), that such torus could be deformed into, illustrate that Tw and Wr could convert into
one another, however, keeping the topological invariant L = Tw + Wr constant.

We will further explore ways to generalize these concepts on arbitrary magnetic con-

figurations.

In these terms the scenario of kink instability, described above and illustrated

by Figures 3 and 4, could be viewed as a transformation of Tw into Wr, subject to

constant L.

The concept of helicity in the form described by Equation (1.18) could not, in gen-

eral, be applied to the solar corona. Magnetic flux present at the lower boundary of the

corona makes helicity not gauge-invariant, that is, a gauge transformation term like

that in Equation (1.19) does not vanish at all boundaries of V . [Berger & Field, 1984]
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first introduced relative helicity as a difference of two helicities:

H(B1,B2,V) = H(B1,V) − H(B2,V) =

∫

V

B1 · A1dV −
∫

V

B2 · A2dV (1.24)

provided the two fields have the same normal components everywhere on the boundary

of the volume, and proved that relative helicity is gauge-independent if

n̂ × A1|∂V = n̂ × A2|∂V . (1.25)

An alternative form for relative helicity was proposed by [Finn & Antonsen, 1985]:

H(B1,B2,V) =

∫

V

(B1 − B2) · (A1 + A2)dV, (1.26)

which is fully equivalent to Equations (1.24) and (1.25) but places no restrictions on

the vector potentials A1 and A2.

Relative helicity is defined on a magnetic domain, that could be viewed as a

generalization of a thin flux tube concept. Within this dissertation a domain is

a volume, bounded by magnetic surfaces (i.e., surfaces with no magnetic flux across

them) except at the “footpoints” at the photospheric boundary, in which the magnetic

flux is allowed to enter or leave.

Physically, relative helicity has the following meaning. It is the helicity of a

composite field in the volume, that is a composition of V and a mirror reflection

of V “underneath” the photosphere. The composite field is B1 in V and a mirror

reflection of B2 in the reflection of V . Such a field in such a volume is fully bounded

by magnetic surfaces, so classical definition of helicity, as in Equation (1.18), could
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Figure 9. A side view on two magnetic domains (see text for description). z = 0 is the
photosphere. Green and blue lines are field lines belonging to different domains. White
and black dots at z = 0 locate Bz 6= 0 in the footpoints, negative and positive respectfully.
Hereafter we will assume that the modeled piece of the corona is small enough so that the
photosphere could be approximated as a plane, the coordinate system is Cartesian and z is
the height above the photosphere.

be applied to it. Equation (1.25) ensures that field lines in this composite volume are

still continuous curves and the resulting field still satisfies Equation (1.2).

For a given coronal field B, its helicity is well-defined relative to a reference field.

A popular choice of such reference field is a potential field BP , defined as a solution

of ∇ × BP = 0 (and it is called “potential” because there is a scalar function such

that BP = ∇φ). There are several reasons for this choice. First, for a given set

of boundary conditions BP is unique, as φ is a solution of Laplace’s equation (see

Chapter 2). Second, BP has minimal magnetic energy for given boundary conditions

(see next section and [Taylor, 1974]), so a non-zero relative helicity would imply an

energy above the minimal possible state. Third, a potential field has in a sense

the least possible twist (the reasons for that will be clear in the next section and in

Chapter 3).
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Relative helicity is a quantity, that is well conserved in the corona, it was shown

that even for low-resistivity plasma (but not of a zero resistivity) changes of B at

the photosphere are much more effective for changing helicity than internal currents

[Berger, 1984]. For a non-resistive plasma the only changes of relative helicity are

due to changes in magnetic flux at the photosphere.

All the discussed theory of relative helicity was initially intended and has received

a wide use for V being a half-space, V = Z+. But suppose the magnetic domain of

interest is smaller than that, D ⊂ Z+, for example, the inner domain in Figure 9 (or

a structure shown in Figure 5, either left or right panels). Suppose that the magnetic

field vanishes outside of D. Then, strictly speaking, every volume that contains D

and is contained in Z+, would be a magnetic domain. A potential field, however,

would depend on the shape of such domain and so will relative helicity. Figure 10

shows two different potential fields, one considers BP in a reflection of D for comput-

ing H(B,BP (D),D) and the other one uses Z− for computing H(B,BP (Z+), Z+).

[Longcope & Malanushenko, 2008] have pointed out that the two relative helicities

are different by H(BP (Z+),BP (D), Z+) and that H(B,BP (D),D) has an “additive”

property, that is, such helicity, called additive self helicity or HA, of a composition

of two domains would be equal to the sum of additive self helicities of the individual

domains.

[Longcope & Malanushenko, 2008] have also mentioned, that HA = HTw for thin

flux tubes and argued that HA might be analogous to twist helicity in more complex
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configurations. In Chapter 2 I will further develop this analogy. I will present explicit

numerical methods to compute additive self helicity. I will apply these methods to

the simulation of kink instability from Figures 3, 4 and 5 to demonstrate that the

quantity

Twgen = HA/Φ2 (1.27)

behaves like Tw in kink instability of a structure, that could not be approximated as a

thin flux tube. That is, the instability happens when Twgen exceeds certain threshold,

close to the threshold found for thin flux tubes, as in Equation (1.17). I also extract

a “core” portion of the studied structure, that can be viewed as a thin flux tube and

demonstrate that for this subdomain Twgen = Tw.

I thus conclude, that Twgen, given by Equation (1.27), could indeed be treated as

a generalization of Tw from Eqution ( 1.15). This allows quantitative studies of kink

instability in the structures of arbitrary shape.

1.5. Measurements of Twist in Solar Corona

Force-free fields and coronal α.

(N)LFFF. Relation between α and Tw.

Evolution of Tw for a rotating active region.

The results achieved in Chapter 2 allow one to study kink instability quanti-

tatively, provided the coronal magnetic field B is known. The existing instruments,

however, routinely provide observations of the magnetic field only at the photosphere.
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Figure 10. Two different potential fields that can be used to compute relative helicity for
the same domain: the field confined to the volume of the domain and the field confined to
half space.

Most of instruments, such as SOHO/MDI [Scherrer et al., 1995] and KPNO/Vacuum,

provide the line-of-sight component of the magnetic field, which approximately equals

to Bz close to the disk center. Such observations of BLOS on the solar disk are called

magnetograms. More modern instruments, such as KPNO/SOLIS and SDO/HMI are

capable of observing all three components of B, providing with vector magnetograms.

Magnetograms can be used to extrapolate magnetic field to the corona, assuming

certain properties of the field. For example, for force-free fields Lorentz force, given

by Equation (1.6), should vanish, what immediately leads to

J||B, (1.28)

or that there is such a scalar constant α(r), that

∇× B = αB. (1.29)



24

By taking divergence of both sides of Equation (1.29) with Equation (1.2) one could

immediately verify, that

B · ∇α = 0, (1.30)

meaning that while α might vary in space, it should be constant along each field line.

Then by taking curl of both sides of Equation (1.29) and keeping Equation (1.2) in

mind, Equation (1.29) can be transformed to

∇2B + α2B = B × (∇α). (1.31)

If ∇α = 0, Equation (1.31) becomes a Helmholtz equation and its solution is called a

linear force-free of a constant-α field. If ∇α 6= 0, Equation (1.31) remains a non-linear

system and the solution is called non-linear force-free field (hereafter NLFFF).

While in general α is not constant, a coronal field is believed to try to relax to a

constant-α field. This is because for a constant helicity (and unless there are changes

at the photosphere, the ideal corona evolves in such a way to keep relative helicity

constant) constant-α field has the smallest possible energy [Taylor, 1974]. If for a

given configuration several constant-α fields are possible, the one with the smaller

α has less energy. However, the study of [Burnette et al., 2004] found, by visually

comparing lines of constant-α fields with visible coronal loops, that some solar active

regions definitely can not be approximated with linear field.

There are many methods for solving the non-linear system (1.31), e.g., [Metcalf

et. al., 2008, Schrijver et. el., 2008, DeRosa et. al., 2009] and references therein.
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Figure 11. Constant-α fields, with α increasing from left to right and α = 0 for the middle
image. Gray scale is Bz at the photosphere and the lines are the projections of several of
the field lines on XY plane. The lines are chosen to “outline” a flux tube with circular
cross-section at y = 0 and some height z above the photosphere.

However, obtaining a NLFFF has proven to be an extremely challenging problem

on its own. In the beginning of Chapter 3 I outline basic problems that ultimately

lead to the fact that different methods, when applied to the same data, may give

significantly different results, as was found in [DeRosa et al., 2009].

In this dissertation I develop a way of estimating Twgen in the solar corona without

the aid of NLFFF models. The similarity between field lines of a NLFFF and the

coronal loops is usually treated as an important measure of success or failure of the

result. The method presented in this dissertation works backwards in this scheme.

It uses coronal loops to construct field lines of a constant-α field, that best match

coronal loops in the projection onto the plane of the sky. Figure 11 illustrates how

field lines of different constant-α fields have noticeably different shapes. α is allowed

to vary from loop to loop, so every field line, “reconstructed” this way, belongs to a

different constant-α field in Z+.
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Strictly speaking, a composition of two force-free fields would not in general be a

force-free field. To verify this, it is enough to consider two pairs: B1, α1 and B2, α2,

each obeying Equation (1.29) and verify that B1+B2 would only obey Equation (1.29),

if α1(r) = α2(r).

It is also not possible in general to obtain a force-free field by combining sub-

domains of different constant-α and confined to Z+ fields. While the Lorentz force

will vanish within each of such subdomain, it is not guaranteed to vanish on the

boundaries between these domains.

I just tried to convince the reader that my method of estimating coronal α should

not work. In Chapter 3 I try to convince the reader of the opposite. I make theoretical

arguments and support them with thorough tests on many analytic NLFFF’s. It turns

out that such a method8 does work under certain circumstances, that are relevant to

solar corona.

The (N)LFFF procedure estimates the following quantities for each observed coro-

nal loop:

• 3D shape r(l) of a field line, that was found to match the coronal loop.

• αfound of a constant-α field it belongs to. In Chapter 3 I show that this αfound

correlates with αreal of the original synthetic “loop” in the non-linear field.

• The profile of (constant-α) magnetic field, B(l), along the field line. It was also

found to correlate with the non-linear field that has produced such loop, when

8In Chapter 3 I refer to it as “α-h fit”, but later Carolus Schrijver has suggested a better name:
a (non)-linear force-free field, hereafter (N)LFFF.
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tried on synthetic examples. The correlation was the best at the photosphere.

As (N)LFFF does not use vector magnetograms as an input, its outcome is in

a sense an independent measure of horizontal components of B.

Figure 12 shows the result of one such reconstruction for real solar data, shapes of

field lines and their α.

Such an outcome cannot per se be plugged in Equation (1.24). This is because

the latter involves a volume integral and the result of (N)LFFF is not volume-filling

data. It turns out, however, that α by itself is closely related to Tw.

For example, for a uniformly twisted cylinder, described by Equation (1.13), it

can be easily verified, that

α =
2b

1 + b2ρ2
, (1.32)

and if the cylinder is thin, i.e., ρ/L ≪ 1, then

2πTw ≈ αL/2. (1.33)

For a domain in a constant-α field, [Longcope & Malanushenko, 2008] demonstrated

that

2πHA/Φ2 ≈ α〈Li〉/2, (1.34)

where 〈Li〉 is the average length of field lines in that domain. Equations (1.33)

and (1.34), along with Twgen given in Equation (1.27) and supported with results

from Chapter 2, establish a connection between Twgen and α via HA as a bridge

between them. The (N)LFFF method, developed in Chapter 3, allows to estimate α.
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Figure 12. A magnetogram (top panel) and EUV image (bottom panel). The field lines,
reconstructed by (N)LFFF, are plotted over the EUV image. Different colors correspond
to different values of α. The few loops for which the procedure has failed, are plotted as
dashed white-red lines.
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In Chapter 4 I use (N)LFFF method to study evolution of twist in a rotat-

ing active region. Its footpoints were observed rotating at a well-measurable rate

[Longcope et al., 2007] and its Twgen, measured in the corona should change accord-

ingly to its change at the photosphere. I observe that the rate of change of Twgen in

the corona matches its rate of injection in the photosphere. This gives observational

evidence of how helicity flows into the corona through photospheric motion.

In Chapter 5 I give an overview of possible impact of this work and plan the

future research on this topic.
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2. ADDITIVE SELF HELICITY AS A KINK MODE THRESHOLD

2.1. Abstract

In this chapter we propose that additive self helicity, introduced by [Longcope &

Malanushenko, 2008], plays a role in the kink instability for complex equilibria, similar

to twist helicity for thin flux tubes [Hood & Priest, 1979, Berger & Field, 1984]. We

support this hypothesis by a calculation of additive self helicity of a twisted flux tube

from the simulation of [Fan & Gibson, 2003]. As more twist gets introduced, the

additive self helicity increases, and the kink instability of the tube coincides with the

drop of additive self helicity, after the latter reaches the value of HA/Φ2 ≈ 1.5 (where

Φ is the flux of the tube and HA is additive self helicity).

We compare additive self helicity to twist for a thin sub-portion of the tube to

illustrate that HA/Φ2 is equal to the twist number, studied by [Berger & Field, 1984],

when the thin flux tube approximation is applicable. We suggest, that the quantity

HA/Φ2 could be treated as a generalization of a twist number, when thin flux tube

approximation is not applicable. A threshold on a generalized twist number might

prove extremely useful studying complex equilibria, just as twist number itself has

proven useful studying idealized thin flux tubes. We explicitly describe a numerical

method for calculating additive self helicity, which includes an algorithm for iden-

tifying a domain occupied by a flux bundle and a method of calculating potential



31

magnetic field confined to this domain. We also describe a numerical method to cal-

culate twist of a thin flux tube, using a frame parallel transported along the axis of

the tube.

2.2. Introduction

According to a prevalent model coronal mass ejections (CMEs) are triggered by

current-driven magnetohydrodynamic (MHD) instability related to the external kink

mode [Hood & Priest, 1979, Török et al., 2004, Rachmeler et al., 2009]. The external

kink mode, in its strictest form, is a helical deformation of an initially symmetric,

cylindrical equilibrium, consisting of helically twisted field lines. The equilibrium

is unstable to this instability if its field lines twist about the axis by more than a

critical angle, typically close to 3π radians [Hood & Priest, 1979, Baty, 2001]. The

helical deformation leads to an overall decrease in magnetic energy, since it shortens

many field lines even as it lengthens the axis.

Equilibria without symmetry can undergo an analogous form of current-driven in-

stability under which global motion lowers the magnetic energy [Bernstein et al., 1958,

Newcomb, 1960]. Such an instability implies the existence of another equilibrium with

lower magnetic energy. The spontaneous motion tends to deform the unstable field

into a state resembling the lower energy equilibrium. Indeed, it is generally expected

that there is at least one minimum energy state from which deformation cannot lower
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the the magnetic energy without breaking magnetic field lines; its energy is the ab-

solute minimum under ideal motion.

Linear stability and instability are determined by the energy change under in-

finitesimal motions. An equilibrium will change energy only at the second order since

first order changes vanish as a requirement for force balance. Ideal stability demands

that no deformation decrease the energy at second order, while instability will re-

sult if even one energy-decreasing motion is possible. The infinite variety of possible

motions make it impractical to establish stability in any but the simplest and most

symmetric equilibria.

Based on analogy to axisymmetric systems it is expected that general equilibria,

including those relevant to CMEs, are probably unstable when some portion of their

field lines are twisted about one another by more than some critical angle. This

expectation was mentioned in a study by [Fan & Gibson, 2003] of the evolution of

a toroidal flux rope into a pre-existing coronal arcade. They solved time-dependent

equations of MHD in a three-dimensional, rectangular domain. Flux tube emergence

was simulated by kinematically introducing an isolated toroidal field through the

lower boundary. The toroidal field was introduced beneath a pre-existing arcade

slowly enough that the coronal response never approached the local Alfvén speed.

Fan and Gibson concluded that the system underwent a current-driven instability

after a critical amount of the torus had been introduced. They bolstered this claim
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by performing an auxiliary run where the kinematic emergence was halted and the

system allowed to evolve freely; it settled into an equilibrium.

While twist angle has proven useful in a few cases, it is difficult to demonstrate

its utility as a threshold in general, asymmetric equilibria. Indeed, in any but a few

very symmetric cases there is no simple, obvious way to define the angle by which

the field lines wrap about one another. The local rate of twist is given by the current

density, which is after all the source of free energy powering the instability. On the

other hand, excessive local current density is not sufficient to drive instability. This

fact is illustrated by numerous examples of discontinuous field which are minimum

energy states.

It has been suggested that a threshold exists, in general equilibria, for some global

quantity such as free magnetic energy or helicity [Zhang et al., 2006, Low, 1994]. If

this is the case then we expect the instability to lower the value of this global quantity

so that it falls below the threshold value in the lower-energy, stable equilibrium.

Magnetic helicity is a logical candidate to play this role since it is proportional to

total twist angle in cylindrical fields. Relative helicity in particular is a proxy for

currents. Helicity is, however, conserved under ideal motion and therefore will not be

reduced to a sub-threshold value by an ideal instability.

The total helicity of a thin, isolated flux tube can be written as a sum of two

terms called twist and writhe [Berger & Field, 1984, Moffatt & Ricca, 1992],

H = HT + HW .
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The writhe depends on the configuration of the tube’s axis while the twist depends

on the wrapping of field lines about one another. A cylindrical tube has a perfectly

straight axis and therefore zero writhe helicity. Any ideal motion which helically de-

forms the entire flux tube will increase the magnitude of the writhe helicity. Since

the motion preserves total helicity the change in writhe must be accompanied by

an offsetting change in twist helicity. If the writhe has the same sign as the initial

twist, then the motion will decrease the twist helicity. In cases where the mag-

netic energy depends mostly on twist, this motion will decrease the magnetic energy

[Linton & Antiochos, 2002]. The straight equilibrium is therefore unstable to an ex-

ternal kink mode.

Topologically, the foregoing properties of magnetic field lines could be compared

to the properties of thin closed ribbons. One may introduce twist number, writhe

number and their combination, called linkage number, is a preserved quantity in the

absence of reconnection [Berger & Field, 1984, Moffatt & Ricca, 1992],

L = Tw + Wr.

By analogy to the case of a thin isolated flux tube we consider the twist helicity,

rather than the total helicity, to be the most likely candidate for a stability threshold.

Indeed, within a thin flux tube it is possible to derive a net twist angle among field

lines and HT = Φ2Tw = Φ2∆θ/2π, where Φ is the total magnetic flux through a

cross-section of the tube and ∆θ is the net twist angle.
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Twist and writhe are, however, defined only in cases of thin, isolated magnetic

flux tubes, and can no more set the threshold we seek than the net twist angle can.

Recently [Longcope & Malanushenko, 2008] introduced two generalizations of rel-

ative helicity applicable to arbitrary sub-volumes of a magnetic field. They termed

both generalized self-helicity, and the two differed only by the reference field used

in their computation. The one called additive self-helicity (that we denote HA) uses

a reference field confined to the same sub-volume as the original field, and can be

interpreted as a generalization of the twist helicity to arbitrary magnetic fields. The

additive self-helicity of a thin, isolated flux tube is exactly the twist helicity.

Since the additive self-helicity can be computed for arbitrary magnetic fields we

propose that it (normalized by the squared flux) is the quantity to which current-

driven instability sets an upper limit, which could be considered a generalized twist

number:

Tw(gen) = HA/Φ2. (2.1)

The chapter is organized as follows. In Section 2.3, we describe a method for

calculating additive self helicity and Tw(gen) numerically. There are two large and

nontrivial parts of this calculation, that we describe in 2.3.1 and 2.3.2: locating

a domain containing a given flux bundle and constructing a potential field in this

domain by Jacobi relaxation. In Section 2.4, we apply the method to a simulation to

support our hypothesis, the emerging twisted flux tube from [Fan & Gibson, 2003]. In

2.4.1 we briefly describe this simulation, and then in 2.4.2 we show different embedded
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domains defined by different subportions of the footpoints. In 2.4.3 we describe, how

the twist of [Berger & Field, 1984] could be calculated for those of the domains for

which thin flux tube approximation is applicable. In Section 2.5 we present the

evolution of additive self helicity, unconfined self-helicity, twist (for “thin” domains)

and the integrated helicity flux in the simulation. We demonstrate that Tw(gen)

increases corresponding to helicity flux, that it drops after it reaches a certain value

(about 1.5) and that this drop coincides with the rapid expansion of the tube due to

the kink instability. We also demonstrate that the unconfined self helicity grows only

when helicity flux is nonzero and that it stays constant when kink instability happens.

We also show that Tw(gen) corresponds to Tw when thin flux tube approximation is

applicable.

2.3. Numerical Solutions

The object of study is a magnetic field B (r) defined in a domain D, r ∈ D, that

lies on and above the photosphere, z ≥ 0. By domain we understand a volume that

encloses the field: B · n̂ = 0 on all boundaries, ∂D, except at the photosphere, where

B · n̂ = Bz(x, y, z = 0). Figure 9 illustrates this concept. The self-helicity is given by

HA (B,BP (D) ,D) =

∫

D

(B − BP ) · (A + AP ) dV , (2.2)

as defined in [Longcope & Malanushenko, 2008]. Here BP is the potential magnetic

field, whose normal component matches the normal component of B on the boundary
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∂D,

BP · n̂|∂D = B · n̂|∂D, (2.3)

A and AP are the vector potentials of B and BP respectively (as discussed in

[Finn & Antonsen, 1985], helicity, defined this way is gauge-independent).

Once the self-helicity is known, the twist is given by Equation (2.1) with Φ being

the total signed flux of the footpoints of the configuration:

Φ =

∫

z=0,Bz≥0

Bzdxdy = −
∫

z=0,Bz≤0

Bzdxdy. (2.4)

In the next two sections we discuss methods of numerically obtaining D, from given

footpoints, and BP .

2.3.1. Finding the Domain.

In order to describe the domain on a grid we introduce the support function:

Θ(r) =





1, if r ∈ D

0, if r /∈ D.

This is a function of the given magnetic field B and some photospheric area, called

the boundary mask. By definition, every field line, initiated at any point on the

boundary mask and having the other footpoint somewhere within the mask, is com-

pletely inside the domain D. If the field line traced in both directions from some

coronal point ends within the photospheric mask, then this point also belongs to the

domain. In numerical computations we replace “point” with a small finite volume,
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voxel vijk (3-dimensional pixel). We define a voxel to be inside D (equivalent to saying

Θ (vijk) = 1), if there is at least one point inside it that belongs to D.

The simplest method of constructing the support function would be to trace a

field line in both direction from every voxel of the computational grid, set Θ = 1 in

the voxel if the footpoints both terminate in pixels from the boundary regions, and set

Θ = 0 otherwise. This, however, is a very time-consuming algorithm, especially for

large arrays of data. Instead we use an algorithm which reduces the computational

time by tracing field lines from a subset of voxels. It works by progressively adding

voxels to Θ adjacent to those already known to belong to D.

We add a voxel centered at ri,j,k to the domain under two different circumstances.

1. A field line initialized somewhere within the volume of the voxel vi,j,k, centered

at ri,j,k, is found to have both footpoints within the boundary mask. 2. A field line

initiated in some other voxel, and determined to belong to D, passes through some

portion of the volume vi,j,k.

Initially, the domain consists only of footpoint voxels, so the initial step is to trace

field lines initiated at the footpoints, assuming, that at least some of these lines will

lie in the domain.
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We illustrate the method on a simplistic case of a potential magnetic field, con-

fined to a half-space, with Bz = 0 everywhere at the photosphere, except at four

pixels, as shown in Figure 13. We have computed the magnetic field inside a small

box of 15 × 15 × 15 pixels, centered around the photospheric sources. The boundary

mask consists of these four voxels at the photosphere with non-zero vertical magnetic

field. In this simplistic example the initial guess would be four field lines, initiated at

four footpoint voxels, as shown in Figure 13, left (note that in this particular example

a field line, initiated at one voxel, ends at another voxel within the mask and thus is

the same as the field line, initiated at that another voxel, so these four initial guesses

are really two, not four field lines). The voxels of the initial guess are shown with

crosses.

In an algorithm, this would be the first step:

Step 1: Make the initial guess: trace field lines from the footpoints.

As soon as an initial step is made, the next step is to assume, that the immediate

neighbourhood of voxels known to be in D are likely to be also in the domain. Thus,

in the next (iterative) search the following steps are performed:

Step 2: Locate voxels on the boundary of the current domain.

Step 3: For every voxel on the boundary: trace a field line and check whether it is in

the domain.
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If yes: Add the voxel to the domain. Add all voxels along the line to the domain.

Exclude them from the boundary (there is no need to check them again).

If no: Mark the voxel as “questionable”. (If there is a field line, which passes

through the voxel and does not belong to the domain, then at least part

of the voxel is outside of the domain. Since its immediate neighbourhood

is in the domain, then it is possible that part of it is also in the domain.)

Loop: Repeat steps 2-3 until all the voxels in the boundary are “questionable” and no

new voxels are added.

When the iterative search does not find any new voxels, we make the final check

of the boundary voxels. The idea is to trace field lines from all corners of such “ques-

tionable” voxels to see, which corners (and thus which part of a voxel) belongs to the

domain. We consider this to be optional check, which may improve the precision of

the definition of the domain by at most one layer of voxels.

This last search may also give information about the normal to the domain sur-

face. If it is known that some corners of a voxel are in the domain and some are not,

it is possible to approximate the boundary as a plane separating those two groups of

corners.
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Figure 13. (left) — The first iteration of the iterative search: from the initially selected
voxels (crosses), check those surrounding (circles) for membership in the domain. Repeat
until no “surrounding” voxels can be added to the domain. (middle) — The voxels, checked
on all iterations in the middle plane. For every field line, a cross shows where it was initial-
ized. Yellow are “accepted” lines (and thus all voxels that contain them are “accepted”)
and black are “not accepted” lines (and thus only voxels where these lines were initializes
from are “not accepted”). (right) – The end result. The green crosses mark voxels that are
found to belong to the domain and the green circles are the neighbourhood of the domain.
White (initial), yellow (iterative) and red (final) field lines are traced and found to be in the
domain; black lines are found to be not in the domain. Note that the domain is “covered”
by much fewer lines than an exhaustive search would do.

2.3.2. Constructing the Potential Field Bp

Confined to the Domain

Once the domain has been determined, the next step is to construct the potential

magnetic field confined to it. We use a common relaxation method on a staggered

grid in order to account for the complex boundaries of D.

We introduce a scalar potential Bp = ∇χ and look for the solution of the Laplace’s

equation for χ

∇ · BP = ∇2χ = 0.
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By the definition of D, field lines never cross ∂D, except at the lower boundary,

z = 0. Thus, boundary conditions for Bp could be written as: Bp · n̂|∂D,z 6=0 = 0 and

Bp · n̂|∂D,z=0 = Bz(x, y). This is equivalent to Neumann boundary conditions for χ:

∂χ
∂n

∣∣
∂D,z 6=0

= 0,
∂χ
∂z

∣∣
∂D,z=0

= Bz(x, y).
(2.5)

The Algorithm for the Relaxation Method

We use the Jacobi iterative method (see, for example, [LeVeque, 1955]) to solve

for the potential field. Here we briefly summarize the algorithm and further explain

in details. The n + 1-th iteration is

1. ∀r ∈ D: calculate a new iteration χ[n+1] as a solution of the equation χ[n+1] −

χ[n] = Kh2∇2χ[n], where h is the grid spacing. The Laplacian ∇2χ[n] (r), found

using standard finite difference methods, is equivalent to an average over some

stencil of neighbouring points minus the central value; K is a constant that

depends on the exact shape of the stencil.

2. ∀rb ∈ ∂D: set χ[n+1] (rb) so as to satisfy boundary conditions (BCs).

3. Repeat steps 1–2, until the difference between χ[n] (r) and χ[n+1] (r) is sufficiently

small in some sense (namely, until ||χ[n+1] − χ[n]|| < ǫ, where ǫ is pre-defined

small number).
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Staggered Mesh

The functions Bx(x, y, z), By(x, y, z) and Bz(x, y, z) are defined on the same mesh

points (xi, yj, zk). If we are interested in finding χ(x, y, z), so that Bx = ∂χ
∂x

, By = ∂χ
∂y

and Bz = ∂χ
∂z

, it is advantageous to define χ in between the original mesh points and

calculate the derivatives using finite difference as following:

Bx(xi, yj, zk) =
χ(xi+1/2, yj, zk) − χ(xi−1/2, yj, zk)

xi+1/2 − xi−1/2

,

and so on for By and Bz. χ, then, would only be defined in the middle of the faces

of cubic voxels, i.e., at points (i ± 1/2, j, k), (i, j ± 1/2) and (i, j, k ± 1/2).

Such a mesh, called a “cartesian staggered mesh”, is known to have better numerical

properties, such as immunity from decoupling of variables and having a smaller nu-

meric dispersion (see, for example, [Perot, 2000]).

The finite difference approximation of a Laplacian at one point can be interpreted

as a weighted average over a stencil of several points minus the value at that point.

For example, in the 2D case the second order approximation to ∇2χ(x, y) on a uniform

Cartesian grid at the point (xi, yj) could be computed over a 5-point stencil:

∇2χ (xi, yj) ≈
1

h2
(χ (xi−1, yj) + χ (xi+1, yj) + χ (xi, yj−1) + χ (xi, yj+1) − 4χ (xi, yj))
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(here h is the spacing of the grid). It could be rewritten as

χ (xi, yj) ≈
1

4
(χ (xi−1, yj) + χ (xi+1, yj) + χ (xi, yj−1) + χ (xi, yj+1))−

h2

4
∇2χ (xi, yj) .

The Jacobi method uses this equation to iteratively update the value at the point,

constantly assuming ∇2χ = 0. In the case of the 5-points stencil the updated value

would be

χ[n+1] (xi, yj) =
1

4

(
χ[n] (xi−1, yj) + χ[n] (xi+1, yj) + χ[n] (xi, yj−1) + χ[n] (xi, yj+1)

)
.

In our case of a 3D staggered mesh, choosing a stencil becomes more complicated.

We propose a 13-point scheme, shown on the right of Figure 14 (black dots). To

motivate this stencil, we derive it from the “unstaggered” one (Figure 14, left, gray

dots). In an “unstaggered” finite differencing scheme the [n+1]-th iteration in Jacobi

method would be expressed as

6χ[n+1](O) = χ[n](A1) + χ[n](A2) + χ[n](B1) + χ[n](B2) + χ[n](C1) + χ[n](C2).

But for the staggered mesh χ is undefined at these nodes. This can be resolved by

setting χ at each “gray” point to be equal to the average of its 4 closest neighbours,

χ[n](A1) = 1
4

[
χ[n](SA1) + χ[n](TA1) + χ[n](SA1) + χ[n](O)

]
,

χ[n](B1) = 1
4

[
χ[n](SB1) + χ[n](TB1) + χ[n](SB1) + χ[n](O)

]
,

χ[n](C1) = 1
4

[
χ[n](TA1) + χ[n](TA2) + χ[n](TB1) + χ[n](TB2)

]

and so on. Then we may substitute this in the original expression and get:

6χ[n+1](O) = 2 × 1
4

[
χ[n](TA1) + χ[n](TA2) + χ[n](BA1) + χ[n](BA2)

]
+

+ 2 × 1
4

[
χ[n](TB1) + χ[n](TB2) + χ[n](BB1) + χ[n](BB2)

]
+

+ 1
4

[
χ[n](SA1) + χ[n](SA2) + χ[n](SB1) + χ[n](SB2)

]
+

+ 4 × 1
4
χ[n](O),
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which is eqivalent to

χ[n+1](O) = 1
12

[
χ[n](TA1) + χ[n](TA2) + χ[n](BA1) + χ[n](BA2)

]
+

+ 1
12

[
χ[n](TB1) + χ[n](TB2) + χ[n](BB1) + χ[n](BB2)

]
+

+ 1
24

[
χ[n](SA1) + χ[n](SA2) + χ[n](SB1) + χ[n](SB2)

]
+

+ 1
6
χ[n](O).

With these weights th “farthest” nodes S[AB][12] have half the influence on the lapla-

cian, of the “closer” nodes. Note also, that the sum of the weights is one.

A1
A2

B2

B1

C2

C1

TA1
TB1

TB2
TA2

BA1

BB1
BB2BA2

SB1

SB2
SA2

SA1

Figure 14. The averaging kernel for the laplace’s equation on 3D staggered mesh (right)
and the motivation for it (left). For example, the stencil for a face with normal vector ẑ

would include five “ẑ faces” (including itself), four “x̂ faces” and four “ŷ faces” (two of
each above and below).



46

Boundary Conditions

Boundary conditions (given by Equation (2.5)) in the staggered mesh are particu-

larly easy if one assumes that the boundary surface passes inside of boundary voxels,

rather than on their sides. Suppose, for example, that the boundary plane normal to

ẑ passes through the center of the voxel vijk. Then the BC for this voxel would be

that Bz (i, j, k) = 0, or simply χ
(
i, j, k + 1

2

)
= χ

(
i, j, k − 1

2

)
.

To motivate such choice of the boundary, we note that boundary voxels, by def-

inition, are the voxels part of which is inside of D while part is outside. Such a

conclusion is made about voxels, some of whose corners are inside of D, and some of

the corners are outside of D (this information about the domain is obtained in the

optional last step of the algorithm, described in section 2.3.1). We approximate the

boundary inside of each boundary voxel as a plane, that passes through the center

of the voxel and that separates its “exterior” part from its “interior” part. Such

approximation will err by no more that 1/
√

2 voxel’s length off the real location of

the boundary. We also find it easier to work in terms of faces rather than corners,

since this is where χ is defined. (We say, that a face is “exterior” to the domain if

more than two of its corners are not in the domain, i.e., for a voxel, we say, that if

only one corner or only one edge are “exterior”, we do not consider it subject to BC’s).
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There are several ways to orient such a boundary plane inside a voxel, based on

the behavior of the boundary in the immediate surrounding of the voxel.

1. The voxel has only one face outside of the domain. Then we consider the

boundary parallel to that face of the voxel (see Figure 15, left). If, say, the

boundary is parallel to the face between faces A and A1 (see Figure 15, bottom

left), then the normal field to the boundary is B · ÂA1 (hereafter ÂA1 denotes

a unit vector along the line from A to A1, which might be ±x̂, ±ŷ or ±ẑ), and

BC would be formulated as

χA = 1 · χA1
+ 0 · χB1

+ 0 · χC1
.

2. The voxel has two adjacent faces outside of the domain. Then we approximate

the boundary as a plane, that cuts off these two faces, as shown in Figure 15,

middle. If faces A and B are outside and faces A1 and B1 are inside of the

domain, then we consider the normal field to be B · 1√
2

(
ÂA1 + B̂B1

)
and set

BC’s as

χA = 0 · χA1
+ 1 · χB1

+ 0 · χC1
,

χB = 1 · χA1
+ 0 · χB1

+ 0 · χC1
.

3. Similarly, if three mutually adjacent faces of the voxel are outside of the domain

(and three others are inside), as shown in Figure 15, right, then, analogously,

we assume that the normal field is B· 1√
3

(
ÂA1 + B̂B1 + ĈC1

)
and BC’s could

be set in the following way:

χA = 0 · χA1
+ 1

2
· χB1

+ 1
2
· χC1

,
χB = 1

2
· χA1

+ 0 · χB1
+ 1

2
· χC1

,
χC = 1

2
· χA1

+ 1
2
· χB1

+ 0 · χC1
.
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(Note that in this case there are really three variables and one equation to

satisfy; thus, there are different solutions to χ. But each of those solutions

would be valid, as long as it satisfies B · n̂ = 0.)

4. “Everything else”: the voxel has three or more non-adjacent faces that are out-

side of the domain, but still is on the boundary. It is considered an extraneous

voxel and is removed from the boundary.

Figure 15. Different ways to approximate the boundary surface inside of a boundary voxel,
depending on which portion of the voxel is found to be outside of the domain. White dots
are the centers of the “interior” faces, gray dots are the centers of the “exterior” faces (see
explanation in the text), the thick plane is the proposed approximation of the boundary
surface ∂D.

2.4. The Experiment

The method described above was tested on a simple quadrupole example, and

the values of self-helicity it gives are in a good agreement with theoretical predictions

[Longcope & Malanushenko, 2008]. That work, however, does not consider any sort

of stable equilibrium and does not study any kinking instability thresholds, similar

to those developed in [Hood & Priest, 1981].
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The objective of the current work is to test whether the parameter HA/Φ2 be-

haves like a total twist in the sense that it has a critical value above which a system

is unstable to a global disruption. To do so, we use the numerical simulation of kink

instability in an emerging flux tube from [Fan & Gibson, 2003].

2.4.1. Simulation Data

The initial configuration is a linear arcade above the photosphere, into which a

thick, non-force-free torus was emerged. Inside the torus the field lines wind around

its minor axis and the field magnitude drops with distance from the minor axis. The

exact shape of the magnetic field, in the coordinates shown on Figure 16, is the

following:

B0 = Bψψ̂ + Bϕϕ̂ = Bte
−̟2/a2

(
q
̟

ρ
ψ̂ +

a

ρ
ϕ̂

)
, (2.6)

where a = 0.1L is the minor radius, R = 0.375L is the major radius, q = −1,

Bt = 9B0, L is the length scale of the domain (further in our calculations L = 1), B0

is the characteristic strength of the photospheric arcade the torus is emerging into,

and the time is given in the units of Alfven time, τA = L/vA. The field strength drops

as e−̟2/a2

with ̟ being the distance from the minor axis. At ̟ = 3a magnetic field

was artificially set to 0.
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Figure 16. B is set in spherical coordinates (r, θ, φ) with the polar axis directed along ŷ.
We will mainly use different coordinates, namely, (̟, ψ, φ). R is the major radius of the
torus, a is the minor one, ρ = r sin (θ) is the distance from the y axis.

The torus is “emerged” from underneath the photosphere with a constant speed.

There is a mass flow across the photosphere in the area, and the emerging tube is

driven into the domain by an electric field at the boundary. This is made in the

following way: for each time step (starting at t=0 and until the axis of the torus

has emerged, t=54) the vertical photospheric field is set to that from the appropriate

slice of the torus’s field. Dynamical equations are then solved in order for the field

above z = 0 to relax, so that at every time step the resulting configuration is a force-

free equilibrium. The unsigned photospheric flux as a function of time is shown in

Figure 17.

A visual representation of characteristic times is shown on Figure 18. Different

rows correspond to different times: t = 15 – the tube is about to emerge; t = 24 – the

minor axis of the torus has emerged; t = 32 – the bottom of the torus has emerged;
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t = 45 – the tube undergoes acceleration; t = 54 – the major axis of the torus has

emerged, the torus has stopped emerging, the tube starts getting a significant writhe;

t = 58 – the tube escapes the domain; the simulation is over. Note that the torus

starts to kink at t ≥ 45 and keeps kinking until it escapes the computational domain

at t = 58.

Figure 17. The total amount of unsigned photospheric flux, as defined in Equation (2.4),
of the torus (not counting the arcade), plotted as a function of time. The major axis of the
torus emerges at t = 54. The maximal value of flux is reached earlier than that because of
the field winding aroung the torus and thus being not necessarily normal to ẑ. After t = 54
the torus has stopped emerging and thus the magnetic field at the photosphere remains
constant.

2.4.2. Computing HA For Given Volume
And The Potential Field.

We define different domains, D, with the same field, by making different choices

of boundary mask. We were interested in how different portions of the torus, namely,
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t=15

t=24

t=32

t=45

t=54

t=58

Figure 18. The characteristic times for the simulation of Fan & Gibson, 2003, different
rows correspond to different time (see detailed explanation in text). First column – XZ
slices, the analytical shape of the rising tube is shown beyond the photosphere, solid-dashed
line is ̟ = 1.0 – the formal “edge” of the torus; dotted line is ̟ = 3.0. Second column –
magnetograms at z = 0. Third column – side view of the field lines, initiated at ̟ = 1.0
(their footpoints are shown as diamonds in the second column).
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the “core” and the outer layers behave during the instability.

Our masks are defined to be within the photospheric intersection of the emerging

torus, ̟ ≤ ̟max. By choosing different values of ̟max we construct domains, con-

taining different portions of the emerging flux tube. The footpoints of domains with

different ̟max are shown in Figure 19. The shape is distorted with respect to the

original cross-section of a torus due to reconnection with the arcade, current sheet

formation and due to near horizontality of some field lines.

We found domains for masks with ̟max ∈ [0.5, 1.0, 2.0] R at different times dur-

ing the emergence. We computed Θ (̟max, t) and then constructed a potential field

confined to it. The results are shown in Figures 19, 20 and 21.

For each t and ̟max we calculated vector potentials of the actual field,

Θ (t,̟max)B (r, t), and the reference field BP (r, t, ̟max). To do this we used a gauge

in which one of the components of the vector potential (in our case, Az) is identically

zero. The other two could be found with a straight-forward computation:

Ax(x, y, z) =
z∫
0

By(x, y, z′)dz′

Ay(x, y, z) = f(x, y) −
z∫
0

Bx(x, y, z′)dz′

f(x, y) =
x∫
0

Bz(x
′, y, 0)dx′

(2.7)
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Figure 19. An example of footpoints of domains Θ (̟max ∈ [0.5, 1.0, 2.0] , t = 50). The
vertical field, Bz, is shown in grayscale and horizontal field is shown with arrows. Three
pairs of concentric curves, counting from inside out enclose footpoints of the domains defined
by ̟max = 0.5, ̟max = 1.0 and ̟max = 2.0.

In terms of these elements the additive self helicity the additive self-helicity:

HA (t,̟max) =

∫

Θ(t,̟max)

(ΘB − BP ) · (A + AP ) dV (2.8)

is computed.

2.4.3. Measuring Twist in Thin Flux Tube
Approximation

To make contact with previous work we compare the additive self helicity to the

twist helicity in our flux bundles. It can be shown analytically that in the limit of a

vanishingly thin flux tube these quantities are identical. Here we must compute twist

helicity for flux bundles of non-vanishing width. We do this in terms of a geometrical

twist related to twist helicity.
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̟max =
2.0

̟max =
1.0

̟max =
0.5

1

Figure 20. (left column) – field of a torus, confined to domains of different ̟max, with
footpoints shown in Figure 19. (right column) – the potential field, constructed for each
such domain.

One cannot really speak of twist, or of an axis, in the domains defined above.

First, the thickness and the curvature radius of the flux bundles are comparable to

their lengths. Secondly, the magnetic field and the twist vary rapidly over the cross-

section of the bundle.

The domains constructed from the smaller masks, ̟max = 0.5 and ̟max = 1.0,

may, however, be suitable for approximation as thin tubes. Even in these cases the
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Figure 21. The strip plot of the results of the computation. The original data is shown
above and the relaxed potential field BP – below the photosphere. The dotted line indicates
slices of the domain Θ (̟max = 2.0). The magnetogram in the second column and the field
lines in the third column are those of BP . All notation is similar to Figure 18.
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approximation may suffer near the top part at later times: at t = 50 the radius of

curvature becomes comparable to the width, and later, during kinking the radius of

the tube becomes comparable to the length (see Figures 18 and 19).

We define an axis for the flux bundle by first tracing many field lines within it.

Then we divide each field line into N equal segments (N is the same for all lines)

of length Li/N , where Li is the length of the ith line. If the bundle were an ideal

cylinder, the midpoints of the nth segment from every line would lie on a single plane;

provided the bundle is thin these midpoints will lie close to a plane. We define the

nth point on an axis by the centroid of these approximately co-planar points. The set

of N centroids forms the axis of our tube.

We then define the tangent vector l̂i along this axis, and a plane normal to this

vector and thus normal to the flux tube (at least in the thin flux tube approximation).

If the tube has some twist in it, then the point where one field line intersects the plane

will spin about the axis as the plane moves along the tube. Such spinning must be

defined relative to a reference vector on the plane which “does not spin”. The net

angle by which the intersection point spins, relative to the non-spinning vector, is the

total twist angle of the tube. In a thin tube all field lines will spin by the small angle;

in our general case we compute an average angle.
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We produce a non-spinning reference vector using an orthonormal triad, arbitrar-

ily defined at one end of the tube, and carried along the axis by parallel transport.

For a curve with tangent unit vector l̂, the parallel transport of a vector u means

l̂ · (∂u/∂l) = 0. To impliment this numerically an arbitrary unit vector û0 is chosen

at one end of the axis perpendicular to the tangent, û0 · l̂0 = 0. The third member

of the triad is v̂0 = û0 × l̂0. At the next point, û1 is chosen by projecting û0 onto a

plane normal to l̂1 and normalizing it

û1 =
û0 −

(
û0 · l̂1

)
l̂1

∣∣∣û0 −
(
û0 · l̂1

)
l̂1

∣∣∣
,

(see Figure 22). Then v̂1 = û1 × l̂1, and the procedure is repeated for every segment

along the axis. Figure 23 shows an example of such vectors l̂, û and v̂ computed

along the axis of the tube at t = 58.

Figure 24 shows the axis of the torus and the behavior of one field line in such

a nonspinning reference frame and a field line, traced from the similar location at a

later time, after the tube has kinked. Both the trajectory of the field line and the

total spin angle demonstrate how the thin tube twist is decreased by kinking.

2.5. Results

Based on the analogy between Tw and HA/Φ2, it would be natural to introduce

quantity analogous to L and Wr in a similar way. We propose that L in the general

(non-“thin”) case might be analogous to the unconfined self-helicity, introduced in

[Longcope & Malanushenko, 2007] as the helicity of the field relative to a potential
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i-th normal plane

i+1-th norm
al plane

Figure 22. An illustration of parallel transport of a coordinate system. At every next step
one unit vector of the previous coordinate system is projected to a new normal plane and
normalized; the second vector is created anew as perpendicular to the new unit vector. l̂ is
the tangent vector of the axis, n̂ is the unit vector in normal plane, carried with the plane
along the axis.

Figure 23. An example of the axis, found for ̟max = 0.5, t = 58, and the corresponding
coordinate system, carried along by parallel transport. l̂, û and v̂ are drawn in red, green
and blue colors respectively.
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Figure 24. An illustration of how kinking decreases twist. An axis (solid) of a “thin”,
̟max = 0.5, tube and a single field line (dotted with diamonds) at a different times: top
row is t = 50, the field line has ∆θ ≈ −3.1π and bottom row is t = 58 and the field line has
∆θ ≈ −2.4π (and Tw = ∆θ/2π). Left column is sideview and right column is the trajectory
of the line in the tangent plane with coordinate system decribed above.
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field filling V (which is constant in time and larger than D at all times during the

evolution of the field; V could typically be Z+ or a computational box), and Wr

is similar to the helicity of the confined potential field relative to the unconfined

potential field. From equation (3) of [Longcope & Malanushenko, 2007]

H(B,BP,V ,V) ≡
∫

V

d3xB · A−
∫

V

d3xBP,V · AP +

∫

z=0

dxdyBz(x, y, 0)

x∫

x0

dx′ [A(x′) − AP (x′)]

(2.9)

(where x = r(x, y, 0) and BP,V is a potential field confined to V that matches bound-

ary conditions B · n̂|∂V = BP,V · n̂|∂V) by plugging it into H(ΘDB,BP,D,V) and

H(B,BP,V,Θ,V) and adding them together it immediately follows, that

H (ΘDB,BP,D,V) + H (BP,D,BP,V,Θ,V) = H (ΘDB,BP,V,Θ,V) , (2.10)

where D ⊂ V and ΘD is a support function of D. By BP,D we mean the poten-

tial field confined to D (and identically zero outside of D) that matches boundary

conditions B · n̂|∂D = BP,D · n̂|∂D, and by BP,V,Θ we mean the potential field, con-

fined to V , that matches boundary conditions ΘDB · n̂|∂V = BP,V,Θ · n̂|∂V . As long

as D is fully contained in V , which is constant in time, the quantity Hunc,V/Φ2 ≡

H (ΘDB,BP,V,Θ,V) /Φ2 will behave like L and H (BP,D,BP,V,Θ,V) /Φ2 would then

behave like Wr.
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Figure 25 compares the generalized twist number, HA/Φ2, with helicity, uncon-

fined to the flux bundle’s volume, but confined to the computational domain of the

simulation: Hunc,box. In this case V is the computational domain, a rectangular

box. The behavior of all quantities matches expecation: Hunc,box/Φ
2 increases as the

torus emerges, and stays nearly constant after the emergence is complete (the slight

decrease is due to the reconnection with the arcade field). The generalized twist

number, HA/Φ2 also increases with the emergence, but decreases between t = 50

and t = 58 – the time when the torus kinks (see Figure 18). For different ̟max the

decrease seems to start at a slightly different time.

Figure 25 demonstrates as well, that the general behavior of Hunc,V/Φ2 is qual-

itatively similar whether the volume V over which unconfined helicity is computed

is the computational domain or the half space. To compute the unconfined helic-

ity in the half space, Hunc,Z+
, we integrate the helicity flux in the way described in

[DeVore, 2000] and used in [Fan & Gibson, 2004]. The helicity flux is computed rel-

ative to the potential field in half space, and thus, the helicity flux, obtained in this

way, might be considered “confined to a half space”.

Longcope and Malanushenko (2008) show that Hunc,box = Hunc,Z+
when the vol-

umes, V and Z+ and the vertical field, Bz(z = 0), all share a reflectional symmetry.

This situation occurs in the simulation only for t ≥ 54 when the torus is fully emerged

and its major axis is at the photosphere. At these times the vertical component of
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the field is the toroidal component of the torus, which is symmetric about y = 0.

Due to reconnection with the arcade, however, the footpoints of D may not share this

symmetry, in which case the photospheric field ΘDBz is not precisely symmetric. If

the two helicities were ever to coincide, it would be at t = 54, so we choose constant

of integration by setting Hunc,box = Hunc,Z+
at that time. The time histories of both

unconfined helicities are plotted in Figure 25. The discrepancy between the two be-

fore t = 54 arises from the non-vanishing helicity of BP,V,Θ relative BP,Z+,Θ owing to

a photospheric field, Bz, lacking reflectional symmetry. In spite of the discrepancy,

we draw from each curve the same basic conclusion, that the kink deformation of D

does not change Hunc,V .

Figure 26 compares the generalized twist number to the traditional twist number

described above. The twist number was computed only for the thinner subvolumes

of the torus, ̟max = 0.5R nd ̟max = R. Figure 26 shows agreement quite well for

̟max = R and less well for ̟max = 0.5R. The reason might be the following: the

smaller the subvolume, the fewer points does it have, so that, first, there are fewer

field lines to be traced to measure twist, and second, the potential field, obtained by

relaxation is numerically less precise. Nevertheless, the magnitudes and the general

behaviors do agree.

Figure 26 also shows the twist number measured for the potential field in a sub-

volume BP , is zero to measurement error. Note, that a significant portion of the torus

is emerged, its length is not large enough (relative to the thickness) for the thin tube
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Figure 25. The comparison between HA (i.e., confined to the volume of the flux tube),
Hunc,box (confined to the box in which the original simulation was performed) and Hunc,Z+

(confined to half-space), normalized by Φ2. Vertical dashed line at t = 54 indicates the time
when the emergence has stopped and all further changes in Tw would be due to kinking
and numerical diffusion, and all earlier changes are altered by the emergence of the tube
and thus non-zero helicity flux over the surface. For ̟max of 2.0 and 1.0 it’s clearly visible,
that: a) after t = 54 the unconfined helicities remain nearly constant, while the confined to
flux bundle’s D, that is, additive self helicity, decreases due to kinking; b) before t = 54 the
difference between Hunc,Z+

, that is, the integrated helicity flux, and Hunc,box is non-zero.
The threshold for HA/Φ2 seems to be −1.7 for ̟max = 2.0 and −1.4 for ̟max = 1.0.
̟max = 0.5 seems to be too noisy to draw a reliable conclusions; possible reasons for that
are discussed in the text.
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approximation to be valid. As the twist of the potential field should theoretically be

zero (as well as generalized twist), this plot also gives an idea of the magnitude of

the error of twist measurements; at most times the error is less than 15% of the value.

Figure 26. A comparison between generalized twist number (solid line with diamonds) and
the “thin tube” classical twist number (dotted line with asterisks) for two subvolumes of
a different size. Also, the “classical” twist number for a potential field (dashed line with
squares).

2.6. Discussion

We have demonstrated that, at least in one MHD simulation, the quantity,

Tw(gen), defined in terms of the additive self helicity shows a threshold beyond which
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the system became dynamically unstable. The simulation we considered, originally

studied by [Fan & Gibson, 2003], is a three-dimensional, numerical solution of the

time-dependent, non-linear evolution of an emerging flux system. The original study

established that the system became unstable to a current-driven (kink) mode at some

point during its evolution. In this work we have shown that the quantity Tw(gen) in-

creases until the instability (Tw(gen) ≃ 1.5) at which time it drops. This drop occurs

as a natural consequence of the instability itself.

The quantity we propose as having a threshold, Tw(gen), is computed using a ver-

sion of the self helicity previous defined by [Longcope & Malanushenko, 2008]. The

present work has provided a detailed method for computing this quantity for any

complex bundle of field lines within a magnetic field known on a computational grid.

We also demonstrate that for the very special cases when that bundle can be approx-

imated as a thin flux tube, Tw(gen) is approximately equal to the traditional twist

number, Tw. In the case of thin flux tubes which are also dynamically isolated, free

magnetic energy is proportional to (Tw)2. Their free energy may be spontaneously

reduced if and when it becomes possible to reduce the magnitude of Tw at the expense

of the writhe number, Wr, of the tube’s axis.

All this supports the hypothesis that Tw(gen) could be treated as a generalization

of Tw. Such a generalization might be extremely useful in predicting the stabil-

ity of magnetic equilibria sufficiently complex that they cannot be approximated

as thin flux tubes. The case we studied, of a thick, twisted torus of field lines
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[Fan & Gibson, 2003], appears to become unstable when Tw(gen) exceeds a thresh-

old value between 1.4 and 1.7. This value happens to be similar to the thresh-

old on Tw for uniformly twisted, force-free flux tubes, Tw ≈ 1.6, as ∆θ ≈ 3.3π

[Hood & Priest, 1979].

Previous investigations have shown that the threshold on Tw depends on details

of the equilibrium such as internal current distribution [Hood & Priest, 1979]. It is

reasonable to expect the same kind of dependance for any threshold on Tw(gen), so

we cannot claim that Tw(gen) < 1.7 for all stable magnetic field configurations. To

investigate such a claim is probably intractable, but useful insights may be obtained

by applying the above analysis to magnetic equilibria whose stability to the current-

driven instability is already known. The paucity of closed-form, three-dimensional

equilibria in the literature, and far fewer stability analyses of them, suggests this may

be a substantial undertaking.
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3. RECONSTRUCTING THE LOCAL TWIST OF CORONAL MAGNETIC
FIELDS AND THE THREE-DIMENSIONAL SHAPE OF THE FIELD LINES

FROM CORONAL LOOPS IN EUV AND X-RAY IMAGES

3.1. Abstract

Non-linear force-free fields are the most general case of force-free fields, but the

hardest to model as well. There are numerous methods of computing such fields by

extrapolating vector magnetograms from the photosphere, but very few attempts have

so far made quantitative use of coronal morphology. We present a method to make

such quantitative use of X-Ray and EUV images of coronal loops. Each individual

loop is fit to a field line of a linear force-free field, allowing the estimation of the field

line’s twist, three-dimensional geometry and the field strength along it.

We assess the validity of such a reconstruction since the actual corona is probably

not a linear force-free field and that the superposition of linear force-free fields is

generally not itself a force-free field. To do so, we perform a series of tests on non-

linear force-free fields, described in [Low & Lou, 1990]. For model loops we project

field lines onto the photosphere. We compare several results of the method with the

original field, in particular the three-dimensional loop shapes, local twist (coronal α),

distribution of twist in the model photosphere and strength of the magnetic field. We

find that, (i) for these trial fields, the method reconstructs twist with mean absolute

deviation of at most 15% of the range of photospheric twist, (ii) that heights of the

loops are reconstructed with mean absolute deviation of at most 5% of the range of
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trial heights and (iii) that the magnitude of non-potential contribution to photospheric

field is reconstructed with mean absolute deviation of at most 10% of the maximal

value.

3.2. Introduction

Most active region coronal magnetic fields are believed to be in a force-free state,

∇× B = α(r)B, (3.1)

where α is a scalar of proportionality, e.g., [Nakagawa et al., 1971]. It turns out

that α is closely related to the local twist of magnetic field lines. For example, in a

cylindrical uniformly-twisted flux tube, field lines twist about the axis by an angle

θ = 1
2
αL over axial distance L [Aschwanden, 2006].

If α varies in space, a solution of Equation (3.1) is called a non-linear force-free

field, as it solves a non-linear system of equations for different components of B and

the scalar α. [Demoulin et al., 1997] described basic problems arising when trying

to solve these equations. In particular, the existence and uniqueness of a solution

is not entirely clear. Another difficulty is the fact that the only source of boundary

conditions available at the moment are vector magnetograms measuring the field

within the non-force-free photospheric layer.

A particular case of a force-free field, called a linear force-free field, or a constant-

α field, occurs when ∇α = 0. In this case, using ∇ · B = 0, Equation (3.1) is

transformed to a Helmholtz equation for B. This is much easier to solve and the
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conditions for existence and uniqueness of solution are known. Nor does the solu-

tion require vector magnetogram data, but only a line-of-sight magnetogram and

a value of the constant α. This boundary condition is affected less by the fact

that the photosphere is probably not force-free. There are many methods of solv-

ing for linear force-free fields, e.g., [Nakagawa & Raadu, 1972, Chiu & Hilton, 1977,

Altschuler & Newkirk, 1969, Lothian & Browning, 1995, Alissandrakis, 1981]. In par-

ticular, we will use the Green’s function method, described in [Chiu & Hilton, 1977],

as it does not place any restrictions on α and it generates a field over an entire half-

space, without boundaries.

While they are simpler to generate, linear force-free fields have proven insuffi-

cient to model complex geometries of the solar corona. Observations of curvature of

Hα structures, visual studies of twist in coronal loops, and estimations of local twist at

the photospheric level via vector magnetograms reveal active regions with spatially

varying twist, and even varying sign of twist, for example, [Burnette et al., 2004,

Nakagawa & Raadu, 1972]. In light of this any constant-α approximation would ap-

pear to be, strictly speaking, incorrect. Over the past decade there have been many

attempts to perform extrapolations of non-linear force-free magnetic field into the

corona and to assess the quality of the extrapolation by comparing lines of the re-

sulting field to coronal loops, e.g., [Schrijver et al., 2008, DeRosa et al., 2009] and

references therein.
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In the current work we apply a completely different approach. We use the visible

shapes of coronal loops to infer the twist of the magnetic field. Instead of measuring

twist in the photosphere, where Equation (3.1) is not appropriate, we perform mea-

surements in the region of interest, in the low-β force-free solar corona. The method

thus relies solely on EUV or X-Ray images of coronal loops and on line-of-sight mag-

netograms.

The basic idea is to try to approximate every visible coronal loop with a field

line from a linear force-free field, and allow α to be different for every loop. Even for

non-linear force-free fields, α must be constant along each field line1. If α changes

smoothly then it would be reasonable to expect that α is nearly constant in the

vicinity of a given field line. Of course, a superposition of constant-α fields would not

in general be a force-free field and at first sight such a method could not be expected

to yield meaningful results. In the next few paragraphs we argue that such a method

might work under certain circumstances relevant to the solar corona. Within the

core of this work we support the hypothesis with tests first using analytic non-linear

force-free fields and then with solar data.

Our method is similar to the ones proposed by [Green et. al., 2002] and [Lim et.

al., 2007], however, with several important advantages. First, it does not require the

full length of a coronal loop to be visible for a successful reconstruction. Second, it

does not require either of the footpoints to be visible. Third, it allows the user to draw

1This result is obtained by taking the divergence of both sides of Equation (3.1) and using ∇·B = 0
and the identity ∇ · (∇× B) = 0, so that B · ∇α = 0.
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a smooth curve (a Bézier spline) interactively on top of the loop, rather than selecting

a few points along the loop. This maximizes the amount of information taken from the

coronal image. The fit itself is similar to the one used by [van Ballegooijen, 2004]; but

while van Ballegooijen (2004) fits loops with lines of a particular non-linear force-free

field model, we fit loops with lines of many different linear force-free fields, choosing

the best α.

Consider an imaginary example of two dipoles far apart compared to their sizes.

Suppose that they constitute a non-linear equilibrium, having different twist, possibly

of opposite signs. Suppose, however, that within each dipole the twist is more or less

constant. In such a scenario there would probably be some transition region between

the dipoles where α changed significantly. Provided the dipoles are far apart we may

claim that in the vicinity of the footpoints of one of them the current of the other

would not significantly perturb the field, and in the close vicinity of each of them the

field would be nearly a constant α field.

To support this reasoning we note that the dipolar term of a magnetic field drops

as 1/r3 and thus the effect of a distant dipole is in general not very large compared to

the nearby dipole. Indeed, this is why studying a magnetic field of an isolated region

of the corona is at all meaningful.

We therefore argue that a non-linear force-free field could be considered to be

linear in the regions of slowly changing α (in some sense of the term). Thus the
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geometry of a field in isolated regions of slowly-changing α might be approximated

by the geometry of a constant-α field.

What is the limit of applicability of such an assumption? It is quite clear that

it could work well for an isolated uniformly-twisted active region. Is it possible to

pick a field line in an active region, and to suppose that the field’s geometry is not

significantly different from that of a linear field in a close vicinity of this field line?

We herein conduct several experiments on both synthetic and real data which provide

evidence that at least in certain cases of interest such an assumption is reasonable.

The chapter is organized in the following manner. In Section 3.3 we explicitly

define the function to be minimized in order to obtain a best fit, a “distance” between

two curves, d. In Section 3.4 we describe the minimization process, varying α and

the line-of-sight coordinate h, and report that it indeed works in the obvious case,

where the loop is a field line from an actual linear force-free field. In Section 3.5

we describe the typical features of the function d(α, h) and attempt to explain their

appearance. In Section 3.6 we present the results of applying this procedure to several

analytic non-linear force-free fields, described by [Low & Lou, 1990]. We also present

an additional step proven necessary for the best fit procedure. This step amounts to

minimizing d(α, h) in a very specific region of (α, h) parameter space. We demonstrate

that this step significantly improves the results for strongly twisted fields. In Section

3.7 we demonstrate the same method applied to real data: line-of-sight magnetograms
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from SOHO/MDI and coronal images from Hinode/XRT. In Section 3.8 we discuss

the results and their possible use in studying coronal magnetic fields.

3.3. The Distance Between Two Lines

In order to compare two curves, we seek a function quantifying the discrepancy

between the curves. The ideal function would yield similar results to those obtained

by visual comparison. It would be large when a human observer would consider the

two lines to be far apart or unlike one another and small when a human observer

would consider them to be similar and close to one another.

We use for this purpose a function first introduced by [Green et al., 2002] and

later used by [Lim et al., 2007]. We apply it, however, to a different set of objects.

While Green et al (2002) and Lim et al (2007) compare a few points along the loop to

a set of field lines traced from the photosphere, at the presumed location of the loop’s

footpoints, we compare a smooth curve, chosen to visually match the loop, to a set of

field lines traced from different locations along the line-of-sight at some point along

the curve. The same method was used by [van Ballegooijen, 2004]. Therefore, unlike

method of Lim et al (2007), our method does not require knowledge of the footpoints.

In fact, it will work with even a small portion of a loop.

The discrepancy function is defined between two smooth curves in a plane, L1 =

{x1(l), y1(l), 0 ≤ l ≤ L1} and L2 = {x2(l), y2(l), 0 ≤ l ≤ L2}. For every point l on L1

it is possible to define a minimal distance between that point L1(l) and L2 in the
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classical sense: the smallest of the distances between the point L1(l) and every point

along L2. It could also be defined as the length of the shortest perpendicular from

the point L1(l) to the curve L2, given sufficient smoothness. We will refer to this

distance as δ(L1(l),L2). The discrepancy between the two curves is the average of

δ(l) over curve L1,

d(L1,L2) =
1

L1

L1∫

0

δ(L1(l),L2)dl. (3.2)

A numerical scheme to compute this integral is quite simple. Sample line L1

into n1 segments with equal lengths ∆l1 = L1/n1. Provided the segments are small

compared to the local radius of curvature, for every point on L1,

δ(L1(li),L2) = min
(√

(x1(li) − x2)2 + (y1(li) − y2)2

∣∣∣ (x2, y2) ∈ L2

)
. (3.3)

The discrepancy integral can then be approximated by the sum

d(L1,L2) =
∆l1
L1

n1∑

i=0

δ(L1(li),L2), (3.4)

representing the mean distance between points of one curve and the whole second

curve; it has the units of length.

The trivial properties of the discrepancy function d(L1,L2) are, first, that it is

non-negative and second, it is non-commmutative, meaning d(L1,L2) is different in

general from d(L2,L1), as illustrated in Figure 27.
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Figure 27. The discrepancy between the two lines. The left panel illustrates the calculation
of d(L1,L2) and the right shows d(L2,L1). For each point on the first curve (the first
argument of d), denoted by a triangle, one finds the closest point on the second curve (the
second argument). The closest distance is shown as a dashed line. The net discrepancy
is the average of all such distances. Comparison of the two panels illustrates that the
discrepancy is non-commutative.
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3.4. α-h-fit

For a visible coronal loop it is possible to construct a smooth two-dimensional

curve L0 in the plane of the sky visually approximating the loop, or some portion

of the loop. The loop is really a three-dimensional structure and for every point on

L0, the third coordinate, i.e. along the line of sight (LOS), is unknown. If the loop

is at disk center, then the LOS coordinate is the height above the photosphere. For

simplicity in notation, we will thereafter refer to this coordinate as “height”, denoted

h, even when it is not vertical.

The main idea of what we call an h-fit is to choose a point l0 on the loop L0 and

prescribe a certain height. Then, if the magnetic model is known, trace a field line

from the three-dimensional location (L0x(l0), L0y(l0), h) and compare its plane of the

sky projection L(h) to the original loop by calculating d(h) = d(L0,L(h)). Finally,

we vary h to find the minimum of d(h).

To illustrate this method we construct a synthetic magnetogram and generate a

magnetic field (the potential field of a magnetic quadrupole in half-space Z+). As a

model of the ‘loop’ we take an actual field line, projected onto the x–y plane. We then

take the mid-point of the projected loop, L0(
1
2
L0), and trace field lines at different

heights (see Figure 28). Figure 29 shows the function d(h) with one minimum at the

actual height, to within one step of the h search.

Suppose now that the coronal magnetic field is not known, but belongs to a known

family of magnetic fields, described by certain parameters. It is then possible to do
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fitting not only in height, but also in the space of these magnetic field parameters.

For example, if there is a reason to believe that the actual field is constant-α , but

with unknown α, then the discrepancy is a function of both α and h, d = d(α, h) and

the minimization must be done over (α, h) space.

To illustrate such a minimization we perform the following experiment. From the

quadrupolar magnetogram of Figure 28 we extrapolated a constant-α field into the

corona (Z+). We produced several such fields with different values of α. For each

of these fields we selected several magnetic field lines at random, which we projected

onto x–y plane. We then treated these projections as synthetic loops and performed

an α − h fit. Provided the method works, the best-match α should have one-to-one

correspondence with the real α for each field line.

The constant-α fields were generated using Green’s function [Chiu & Hilton, 1977]

for a field in a half-space. This has the advantage that it places no limitations on

α, whereas Fourier methods using periodic images separated by L, require |α| < 2π
L

[Nakagawa et al., 1971]. In Section 3.6 we demonstrate that our method can recon-

struct values of |α| up to π
h
, where the height h of a point (not necessarily the highest

one) along the loop could be much less than the linear size of the computational

domain L. For the method we propose, to perform α − h fit within the full region of

interest, including h < L/2, α values larger than the maximal allowed by the Fourier

method are needed.
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Figure 28. The synthetic example used to illustrate the h-fitting routine. Top: The syn-
thetic magnetogram (in gray-scale) was used to generate the potential field in Z+. One
field line was selected to represent the synthetic loop (in white; its starting point is shown
as the triangle). It was projected onto x–y plane and compared with field lines, traced
from the points with the same (x0, y0) (in this case (x0, y0) ≈ (38, 51)), but at different
heights. These trial field lines are shown as dashed lines; they are traced for every pixel
of the column (x0, y0, z ∈ [1, nz − 1]). To make the plot clearer, only every second one
is drawn. The point (x0, y0) was chosen as the mid-point of the projection of the “loop”
(shown in diamond). Bottom: The same example, viewed in x–z projection. The initial
“loop” is shown as gray, the traced field lines are shown as dashed lines, and their starting
points are shown as diamonds. The thick dashed line shows the best h-fit .
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Figure 29. The function d(h) has its minumum at a height h ≈ 17 within the numerical
error of the real height of the field line it is modeling. Note that for h < 11 pix and h > 93
pix the length of the projection of the traced lines is smaller than the length of the “coronal
loop”. Such lines could be automatically discarded from consideration, since the “loop”
should be a part of a field line, and the length of a part of a curve cannot be greater than
the length of the whole curve. We discard them by making d(h) artificially large if the
length of L0 is smaller than the length of L1.

The results of the fit show that there is indeed a strong correlation between best-

match α and the real α. However, in some cases (46 points out of 689, about 7% of all

field lines) the fit seems to be off by more than one step of α. We attribute these errors

of the fit to several factors. One factor is the gridded search algorithm whereby we

calculate d(α, h) for each point on a grid with fixed steps in both α and h (it is clear

that a better algorithm could be implemented, however, in this work we concentrate

on the theoretical possibility of the method, rather than on programming tasks). A

second is that the fit is poorly constrained when a field line’s shape is hidden by the
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projection. Finally, there are numerical errors associated with numerical integration

of a field line from a field represented only on discrete grid points.

Figure 30. (left) – The parameter space of d(α, h). The yellow asterisk shows the location
of the “real” (α, h) of the field line and the cyan triangle shows the “best-fit” (α, h). The
blue dotted lines are hyperbolae h = nπ/α, n = 0,±1,±2, ... For this field line, as for
nearly all of them, the “real” minimum lies in the “branch” of local minima, that is within
−π/α ≤ h ≤ π/α. We sped up the computation significantly by computing d only for
(α, h), for which at the initial point (x0, y0) the magnetic field makes a relatively small

angle with the normal of the loop: | cos(θ)| =
∣∣∣B · l̂

∣∣∣ /|B||̂l| ≤
√

2/2. Our study shows

that for most of the “loops” the local minima lie within this range of | cos(θ)|. (right)
– The parameter space of the Green’s function for constant α field in half-space. The

function being plotted is | cos(θ)| =
∣∣∣Gy(r − r0, α)/

√
G2

x(r − r0, α) + G2
y(r − r0, α)

∣∣∣, where

r0 = (0, 0, 0) and r1 = (10 cos(320◦), 10 sin(320◦), h). The red contours are | cos(θ)| =
√

2/2,
the blue dashes contours are h = nπ/α, n = 0,±1,±2, ....

3.5. Shape of d(α, h) in the Parameter Space

Figure 30 shows the function d(α, h) for one of the loops from the experiment

described above. This function has valleys (dark) in the shapes of hyperbolae, located

at or between the hyperbolae h = nπ/α, n = ±1,±2, ... After examining parameter

spaces of many field lines we have concluded that there is one and only one “branch”
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of local minima in each nπ/α ≤ h ≤ (n+1)π/α, except for n = ±1; there are usually

two or more “branches” in −π/α ≤ h ≤ π/α.

The foregoing behavior can be explained by the Green’s function in the far field.

Far from the photospheric flux concentration at r0 the field is dominated by the

monopole moment, B(r) ∝ G(r−r0). For a field restricted to half space, Green’s func-

tion G is given in [Chiu & Hilton, 1977] and later in [Lothian & Browning, 1995]. It

depends on sin(ωh+φ0) and cos(ωh+φ0), where ω ∝ α and φ0 ∝ α
√

(x − x0)2 + (y − y0)2.

If one changes both α and h in such a manner that αh = const, that is, remaining

on the same hyperbola in (α, h) parameter space, the sin(ωh + φ0) and cos(ωh + φ0)

terms remain constant.

This observation about the parameter space suggests a useful heuristic restriction

to the search. Tracing field lines from (x0, y0, h) for increasing values of h (provided

α 6= 0) causes the angle between the field line and L at (x0, y0, h) to increase or

decrease monotonically. The cosine of this angle,

cos(θ) =
B(x0, y0, h, α) · L(x0, y0)

|B||L|

will be a local maximum near the local minima of d(α, h), but not exactly at the

same place. Evaluating the magnetic field at one point is, of course, much faster,

than tracing a whole field line. We found that without loss of any information about

local minima of d, we may restrict the search to only those (α, h), for which | cos(θ)| ≤
√

2/2.
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It is clear why the local minima of d(α, h) are co-aligned with maxima in | cos(θ)|.

Since L is a smooth curve, there will be a vicinity of (x0, y0), where L is, to first order,

a straight line. The same is true for field lines of a force-free field: the field lines are

smooth curves, so the field line traced from (x0, y0, h) in a close vicinity of this point is

also to the first order a straight line. Suppose | cos(θ)| = 1, i.e., B(x0, y0, h) is parallel

to L(x0, y0). Then in the neighborhood of (x0, y0) the two curves would be exactly

the same, and d would be close to zero, if averaged only in that vicinity. Farther from

(x0, y0) the two may differ significantly resulting in non-zero d over the whole length

of the loop.

If the line-of-sight angle is such that the loop’s projection is nearly a straight line,

then there will be many field lines, with different α, that are high enough and long

enough to appear nearly straight along all the length of the projection. In this case

the fit may give poor results. The upshot is that even though one does not need the

whole loop to perform the α-h fit, the projection of the visible portion should not be

“too straight”. We develop a more quantitative measure for this criterion below.

3.6. α-h fit: Applied to Low & Lou Field

We next test the α-h fit on a set of non-linear force-free fields from [Low & Lou, 1990].

Each of these can be viewed as the field of a singular point source placed below the

photosphere and inclined. The field is specified by parameters a (related to character-

istic range of field’s α), l (depth of the source under the photosphere, we used l = 0.3
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for all fields), Φ (orientation of the source, we used Φ = π/2 for all fields) and n (for

explicit derivation and definitions, see the Appendix A).

The experiments were conducted as follows. We generated several Low & Lou fields

with different parameters. For each field, we traced a few hundred field lines, pro-

jected them on the x–y plane and used them as synthetic loops. Then for each such

loop we conducted an α-h fit (by gridded search), with values of α being within the

range of Low & Lou’s field photospheric α.

We found that for a “dipolar” field (in the sense of it having two distinct polarities,

see Figure 31) with n = 1, a = 0.02, the values resulting from constant α fits do indeed

correlate with the real values of the field lines, as shown in Figure 32 (left plot).

For this dipolar field the d(α, h) plots for most loops had one distinct valley of

local minima (horizontal or nearly horizontal), and hints of other valleys at larger α

or h. Another notable feature of the low valley is that it tends to cross the α = 0 line

rather than approach it asymptotically. The parameter space for one of these loops is

shown in Figure 33 (left plot). Notable in that plot is the global minimum was always

in the lowest nearly-horizontal valley. The “true location” (from the original Low &

Lou field line) was also within that valley; however, it is sometimes offset with respect

to the global minimum. In general, α of the global minima are correlated with α of the

original Low & Lou field lines, as shown in Figure 32 (left plot). Finally, Figure 33

(right plot) shows that the constant α field line of the global minimum seems to

approximate the original Low & Lou field line quite well, although a tendency to
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under-estimate α is evident, and still clearer in the histogram of Figure 32 (right

plot).

For notational convenience, we hereafter refer to lines of Low & Lou fields as real

field lines and to their best-fits of constant α field as found field lines. We will also

use (αreal, hreal) to denote the parameters of the real field line (recall: h is a height

in the midpoint of the line’s projection into the photosphere). Similarly, we will use

(αfound, hfound) notation to refer to the parameters of the found field line.

Best-fits are potentially useful in reconstructing the photospheric distribution of

α. We constructed a photospheric map of α by assigning the coronal value to the

footpoints of the reconstructed field lines. A full map requires a smoothing, averaging

or interpolation, to assign α to photopsheric points around the footpoints of observed

loops. To illustrate this possibility we did a robust reconstruction with bicubic spline

interpolation (see, for example, [Press et al., 1986]), shown in Figure 34. The fit that

we did is simple and robust, nevertheless it is able to reconstruct the general shape

of the actual distribution of α in the Low and Lou field.

Another measure of the quality of the fit is its reconstruction of magnetic field

B, for example, at z = 0. We utilize the form Bff = Bpot + Bnp, where Bff is the

full force-free field, Bpot is the potential field with the same normal component at

the boundary, and Bnp is a “current contribution” — a non-potential (and not in

general a force-free) field with Bnp · n̂|∂V = 0. Note that Bpot is the same for BL&L

and Brecon (reconstructed), since it is uniquely defined by the volume and by the
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Dirichlet boundary conditions. For “weakly non-potential” field |Bpot| ≫ |Bnp|; this

is true of some of our cases. Rather than comparing BL&L to Brecon, we compare their

“current contribution” terms, normalized by the potential field: |BL&L −Bpot|/|Bpot|

to |Brecon −Bpot|/|Bpot|. The histogram for z ∈ [0, 2] pix is shown in Figure 35 (left).

To make it, we evaluated BL&L, Brecon and Bpot along the found field lines. It seems

that for most of points the two fields were nearly identical, suggesting the accuracy

of the reconstruction.

From both Figure 32 and Figure 35 it seems that the reconstruction does a better

job for smaller α and for weaker Bnp, than for larger α and for stronger Bnp. This

and the reasoning from the previous section suggest that α-h fit might not work for

strongly twisted, or maybe strongly non-linear, fields. We tried to determine the range

of α for which the fit would yield reliable results. For that, we generated several more

Low & Lou fields, this time quadrupolar (in the sense of it having three polarities,

like the field of a point quadrupole): we kept n = 2 and gradually increased a over

the following values: a ∈ [0.05, 0.1885, 0.3, 0.6, 1.0, 1.5, 2.0]; in addition we computed

a field for n = 3, a = 0.4. We generated both signed and unsigned Low & Lou fields;

both have identical photospheric Bz, but the first one has α > 0 and α < 0, while

the second one has only α > 0 (see Appendix A). This was done in order to relate

the errors of the fit with the “non-linearity”, that is, with how much α changes over

a fixed length.
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Typical parameter spaces for those fields are shown in Figure 36 and Figure 37.

We found that for weakly twisted fields (that is, a = 0.05, a = 0.1885 and marginally

a = 0.3, for which |Brecon − Bpot|/|Bpot| is at most 0.15, 0.3 and 0.4 respectively

within the computational box close to the photosphere) a typical d(α, h) parameter

space has one valley of local minima, with the same characteristics as the parameter

space for n = 1.0, described earlier. It does not seem to approach α = 0 or h = 0

asymptotically like a hyperbola would, but rather it crosses α = 0 axis. The global

minimum always lies on this valley. The point (αreal, hreal) also lies on this valley. It

seems that the more horizontal this valley is, the more offset could be the “real” and

“found” points along the valley, so the more different could be αreal and αfound; hreal

and hfound always appear to be very close.

For more strongly twisted fields (a > 0.3) the parameter space within the range

of α and h of the real field reveals more valleys, although the larger-scale behavior

seems to follow the analytic Green’s function behavior shown in Figure 30. That

is, d(α, h) seems to have valleys of local minima that look like hyperbolae and are

located at or in between the hyperbolae αh = ±π,±2π, .... Except for |αh| < π, there

is one and only one valley in between every two hyperbolae nπ < αh < (n + 1)π,

n = ±1,±2, .... Within |αh| < π there are usually two or more valleys, and one of

them is usually “non-hyperbolic” in the sense described above. In these more strongly

twisted cases we observed that the global minimum could be in one of the “higher”

valleys. It seems that the field line corresponding to (α, h) of the global minimum is
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much longer than the “loop” (line of Low & Lou field) and morphologically is quite

different. Its smaller d results from a small portion of the long line coinciding with the

“loop”. This happens especially often for loops that are “too straight” in some sense.

This is qualitatively described in Section 3.5 and quantitatively described further in

the text.

After inspecting a great number of these parameter space plots we have noticed

that (αreal, hreal) still tends to correlate with the location of the “non-hyperbolic”

valley. To prove this point, we conducted the following experiment. First we excluded

loops that were “too straight”. Second, we chose as the best fit for each of the loops

a local minimum on the non-hyperbolic valley, rather than the global miminum. The

results of this two-step procedure are shown in Figure 39. The explicit description of

the procedure is below.

As a definition of “too straight” we adopted the ratio of sides of a box circum-

scribing the loop. The box is aligned with the least-square line fit to the loop, its

length being the length of the loop along this line and its width being twice the max-

imal deviation. Based on visual examination we chose the minimum width-to-length

ratio to be 0.05 for the “loop” to be eligible for the analysis.

As for selection of the “non-hyperbolic” valley, we developed and followed an

algorithm based on the shape of the parameter space. We have found that for Low &

Lou fields this algorithm yields good results. First of all, for a given parameter space

plot we identified several one-dimensional local minima for each column (αi, h). Then
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we manually select some of those local minima that belong to only one of the valleys

and find a local minimum of d(α, h) within this valley.

For the selection of the valley, we followed these steps:

0. Consider only the valleys for which |αh| < π.

1. Is there one “non-hyperbolic” valley in this region? If yes, select the local

minima within it. If definitely no, proceed to the next step. If not sure, discard

this loop from consideration. If there are several local minima along this valley,

select the one that has the lowest h. Example in Figure 38, top left.

1a. If the “non-hyperbolic valley” merges with a “hyperbolic-like” loop, select the

local minima in the “non-hyperbolic” part. If unclear, discard this loop from

the consideration. Example in Figure 38, top right.

2. Does this “non-hyperbolic” valley seem to change directions, possibly crossing

α = 0 more than once? If yes, select local minima on the lowest (smallest h)

section of it. If definitely no, proceed to the next step. If not sure, discard this

loop from consideration. Example in Figure 38, middle left.

3. Are there two “non-hyperbolic” valleys on either side of α = 0, and neither of

them crosses α = 0 line? If yes, select local minima on the one that extends

to a bigger range of h. If definitely no, proceed to the next step. If not sure,

discard this loop from consideration. (We found that such parameter space

plots often happens for a “too straight” loop, and threshold of 2σ/L = 0.05
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seems to eliminate the majority of them. For the latter ones, αreal seems to be

on the higher-extending valley.) Example in Figure 38, middle right.

4. If there is no such special valley, among the “hyperbolic” valleys in |αh| < π

there is a “lowest-order” one, that is, the one that has smallest |α| for h → ∞. Is

there enough of this loop presented? (I.e., that did not fall below the threshold

on |cosθ| ≤ π/2, as described in Section 3.5, or that did not fall below any

other threshold that was used, such as difference in length being too big, or

the length of the field line being significantly smaller than the length of the

loop, or the amount of self-crossovers of a field line being two large – we use

the second and third thresholds, but not the first one.) If yes, select the lowest

in h local minima on this valley. If definitely no or not sure, discard this loop

from consideration. Example in Figure 38, bottom left.

5. Hard to classify cases: discard from consideration. Example in Figure 38, bot-

tom right.

As shown in Figure 39, for signed field with a = 1.5, the global minima selection

does not work very well. The above-mentioned algorithm of selection of only “non-

hyperbolic” minima works much better; it significantly improves the correlation of

αreal and αfound for large a (and big ranges of α). We also tested this algorithm for

when the loops belong to linear force-free fields and verified that it yields the correct
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results at least within the range |α|L ≤ 5, which is far beyond the range of all Low

& Lou fields studied in this work.

The results for all Low & Lou fields are summarized in Table 1. The individual

results are shown in Figs. 40 - 43. This includes scatter plots of αreal versus αfound,

hreal versus hfound, the comparison of Bff and Brecon and photospheric distributions of

αreal and αfound. The magnetic fields are compared in the same manner as described

in Figure 35: Bff and Brecon are evaluated at the photospheric level for each of

the reconstructed field lines, and a two-dimensional histogram is computed. The

photospheric distributions of αfound are plotted in the same color table and with the

same contours as αreal and are obtained in the same manner as described in Figure 34:

αfound(x, y, z = 0) is collected from all reconstructed field lines; the resulting set of

points is used for two-dimensional spline interpolation.

We draw several conclusions based on the results of this analysis, First, at least

for some range of α, field lines of Low & Lou fields could indeed be approximated with

the field lines of constant α fields of similar α and h. The reconstructed photospheric

distribution of α seems to recover the general shape of the original field. Amazingly,

it is also able to recover the area of the strongest gradients of α. Second, the height

of the loops is reconstructed very well for the fields with a small range of α and less

well for the fields with a greater range of α (see correlation coefficients and errors in

Table 1; note that for unsigned fields the range of α is about half the range in signed
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fields). Third, this method is also capable of reconstructing the magnetic field, at

least near the photosphere.

We summarize all the results on two plots in Figure 44. For each Low & Lou field,

we looped through αfound and measured the mean and standard deviation of αreal,

and plotted 〈αreal〉±σ versus αfound. We did the same for h. It seems that the method

systematically underestimates α by a small amount and it sometimes overestimates h

by a small amount. The least-squares line fit of the mean values, including standard

deviation, gives an estimate 〈αreal〉 ∝ 1.23αfound and 〈hreal〉 ∝ 0.79hfound.

Figure 31. (left) – A synthetic magnetogram of a non-linear nearly-dipolar field at the
photosphere, with synthetic “loops” – field lines – projected onto x–y plane. For each of
those lines we tried to approximate it with a line of a constant α field, recording αfound

and comparing it with the real α of the original field line. (right) – Best-fit field lines of
constant α fields, each line belonging to a different constant α field. Hereafter all lengths
are given in the units of L0 – a characteristic separation distance between two polarities, we
calculated it as the distance between the pixels with maximal and minimal magnetic fields.
In this case, L0 = 6 pix.
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Figure 32. Results for the data, shown in Figure 31. On the left is a scatter plot of αreal vs.
αfound. The correlation is evident. On the right is the histogram of the error αreal−αfound.

Figure 33. (left) – A typical d(α, h) parameter space for one of the field lines shown in
Figure 31. There is one nearly horizontal valley of local minima and a clue to other possible
valleys for larger (α, h). White diamonds show the local minima in individual columns.
Cyan triangle shows the location of the global minimum. A yellow triangle shows “real”
(α, h) of the Low & Lou field line. Blue dashed lines (barely visible on this plot, but more
evident on the other plots of this kind) are hyperbolae αh = nπ, n = 0,±1,±2, ... (right) –
Best-fit for the same field line (cyan), field of the constant α field, traced from the “real”
values (yellow), and the the Low & Lou field line (red). The difference is barely visible,
however, the cyan line seems to match red line better than the yellow line.
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Figure 34. (left) – Photospheric distribution of α for the field from Figure 31. The yellow
contours are contours of α. (right) – the result of the reconstruction using α-h fit. The
grayscale and contours on this reconstruction are identical to those on the real distribution.
The red contours show the location of the footpoints of the found lines, that is, there is
no information outside of these contours, and whatever is outside is shown solely for easy
viewing. The only meaningful part is inside of the red contours. The result was extrapolated
using thin plate splines fit into the set of footpoints with found α. This robust fit is sensitive
to individual noisy points, and it is intended only to illustrate of the potential possibility of
such reconstruction. Yet, with all these remarks, such robust fit is capable of reconstructing
the principal shape of the distribution.
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Figure 35. (left) – the comparison of reconstructed magnetic field, Brecon to the Low
& Lou field, BL&L, at the photospheric level (0 < h < 2 pix). We follow the “found”
(best-fit) field lines and evaluate Blfff (with different α for each field line), BL&L and Bpot

along them. By Brecon we mean the composition of Blfff ’s for all loops (strictly speaking,
the way it’s constructed makes it in general not force-free and probably not even source-
free, so it could hardly be called a magnetic field at all, rather, an approximation of the
reconstructed field, evaluated along different field lines). As discussed in the text, most of
the field is potential, so we compare the “non-potential” contributions only, normalized by
the potential field. Here Bpot is a potential magnetic field, that is restricted to the upper
half-space and has the same Dirichlet boundary conditions as BL&L and the same as Brecon.
It seems that the non-potential part of the magnetic field is reconstructed well. (right) –
scatter plot of hreal vs. hfound. It seems, that h is found with much better confidence than
α.
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Figure 36. (left column) – typical parameter spaces for Low & Lou fields with gradually in-
creasing a. Here dashed blue lines are hyperbolae αh = 0,±π,±2π, ..., white diamonds show
local minima in each column α = const, yellow triangle shows the location of (αreal, hreal)
and cyan triangle shows the location of the global minimum, that is, (αfound, hfound). (right
column) – the original “loop” of each of those parameter spaces (red), the “global minimum”
field line (cyan) that has (αfound, hfound) and a constant α field line, that has (αreal, hreal)
(yellow).
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Figure 37. The continuation of Figure 36 for larger a, the notation is the same. Note that
(αreal, hreal) is still at or near the “non-hyperbolic” valley, while the global minimum could
be at one of the other valleys. The field line, corresponding to the global minimum, is much
longer than the loop and part of this field line happened to match the loop.
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Figure 38. The illustrations of the algorithm that helps to select local minimum on “non-
hyperbolic” valley. The notation is the same as in Figure 36. For description, please refer
to the different options in the algorithm.
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Figure 39. (top) – a scatter plot of αreal vs. αfound for “signed” a = 1.5, n = 2 Low
& Lou field. (middle) – same, but with “too straight” loops removed. (bottom) – same,
but with “too straight” loops removed and with the minima selected only along “non-
hyperbolic” valleys rather than the global minimum.
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Figure 40. The results of the fit for “signed” Low & Lou fields: scatter plots of αreal vs.
αfound (first column), hreal vs. hfound (second column), histogram of |Bff − Bpot|/|Bpot|
(third column), real and reconstructed photospheric distributions of α (fourth and fifth
columns respectively, the notation is same as in Figure 34). Note that as the range of
α increases, the reconstructed photospheric distribution of α gets better, but the correlation
of hreal and hfound gets worse.
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Figure 41. The results of the fit for “signed” Low & Lou fields. The notation is the same
as in Figure 40. Note that the last row corresponds to an n = 3 field.
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Figure 42. The results of the fit for “unsigned” Low & Lou fields. The notation is the
same as in Figure 40.
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Figure 43. The results of the fit for “unsigned” Low & Lou fields. The notation is the
same as in Figure 40. Note that the last row corresponds to an n = 3 field.
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n a sign
of α

L0,
pix

α range,
1/L0

α fit results h fit results |B − Bpot|/|B| fit results

LAD
slope

LAD
mean
abs.
dev.

rs LAD
slope

LAD
mean
abs.
dev.

rs LAD
slope

LAD
mean
abs.
dev.

rs

1 0.02 + 6.0 0.196 1.63 6.65 0.805 0.99 0.55 0.967 1.03 3.21 0.934
2 0.05 + 8.0 0.080 0.17 10.15 0.160 1.01 0.73 0.968 1.06 7.29 0.563
2 0.1885 + 8.0 0.302 0.60 7.55 0.585 1.01 0.92 0.966 0.59 6.99 0.647
2 0.3 + 8.0 0.484 0.86 6.49 0.743 0.99 1.13 0.954 0.64 5.79 0.812
2 0.6 + 7.0 0.871 1.03 5.63 0.805 0.93 1.59 0.944 0.75 4.01 0.937
2 1.0 + 7.0 1.486 1.19 5.22 0.799 0.87 1.86 0.926 0.82 3.21 0.943
2 1.5 + 5.0 1.564 1.09 6.36 0.696 0.90 2.22 0.825 0.78 6.74 0.896
2 2.0 + 5.0 1.985 1.19 5.45 0.789 0.87 2.11 0.870 0.79 9.02 0.809
3 0.4 + 5.0 0.315 0.45 7.50 0.567 1.06 0.60 0.965 1.32 3.37 0.775
2 0.05 ± 8.0 0.159 0.72 15.00 0.601 1.00 0.85 0.964 0.94 6.60 0.593
2 0.1885 ± 8.0 0.598 1.36 9.14 0.879 0.96 1.80 0.921 0.67 6.84 0.708
2 0.3 ± 8.0 0.949 1.41 8.78 0.889 0.89 2.70 0.855 0.68 7.38 0.749
2 0.6 ± 7.0 1.642 1.40 10.02 0.875 0.53 4.83 0.715 0.73 6.58 0.885
2 1.0 ± 7.0 2.647 1.30 12.14 0.660 0.35 5.41 0.621 0.81 5.56 0.895
2 1.5 ± 5.0 2.647 1.42 10.16 0.770 0.47 3.48 0.756 0.88 6.49 0.818
2 2.0 ± 5.0 3.268 1.49 8.36 0.795 0.56 3.89 0.689 0.64 3.50 0.821
3 0.4 ± 5.0 0.529 0.95 11.38 0.704 0.98 1.25 0.889 0.22 6.23 0.386

Table 1. A brief summary of the results, shown in Figs. 40-43. LAD fit and Spearman’s rank order correlation rs

were computed for αreal(αfound). LAD mean absolute deviation for α is given in percent of the range of α along the
photosphere, for h in percent of the maximal height, and for |B − Bpot|/|Bpot| in percent of the maximal value along all
measured field lines in the same height range that is used for the histograms. All statistics for the latter one is measured
for |B − Bpot|/|Bpot| > 0.05. The confidence of Spearman’s rank-order correlation is bigger than 99.95% of α for signed
n = 2, a = 0.05 and bigger than 99.999% for all other entries..
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Figure 44. (left) – Compound plot based on all Low & Lou fields measurements. For each
field we went through all αfound and measured mean and standard deviation of αreal. Each
such measurement corresponds to a point and error bar on this plot. (right) – same for h.
The units for α are 1/L0 and for h are L0, where L0 is a separation distance between two
polarities.

3.7. α-h-Fit Applied To Solar Data

As a further test of the applicability of the method, we applied the algorithm de-

scribed above to real solar data. We chose the unnumbered active region close to disk

center on 2007 February 10. This region, denoted SOL2007-02-10T11:22:L290C101

according to the Solar Object Locator2, was observed by the instruments on Hin-

ode [Kosugi et al., 2007], particularly the X-Ray Telescope (XRT, [Golub et al., 2007,

Kano et al., 2008]). As reported by [McKenzie & Canfield, 2008], the region had a

sigmoidal shape indicative of highly sheared coronal loops. Such regions are believed

2http://www.iac.es/proyecto/iau divii/IAU-DivII/documents/target naming convention.html
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to comprise strongly twisted non-potential magnetic fields, and thus store significant

amounts of energy, and commonly erupt in flares and/or coronal mass ejections. For

this reason, coronal sigmoids present a very reasonable target structure for applica-

tion of the proposed method of magnetic field modeling. The 2007 February sigmoid

is particularly useful because the high-resolution observations of Hinode/XRT (1 arc-

second per pixel) and the sigmoid’s location near disk center facilitate tracing of

the individual loops forming the sigmoid. We utilized the XRT image from 2007

February 10, 11:22:06UT, to identify and trace 12 coronal loops. The magnetic mod-

els were generated from LOS magnetograms from the MDI instrument on SOHO

[Scherrer et al., 1995], and then utilized for fittings to obtain the 3D shape and α of

the coronal loops.

To get the two-dimensional shape from XRT image we manually drew smooth

curves (3-point cubic spline) over each of the loops. We then visually co-aligned XRT

and MDI images and obtained (x, y) of the loops in MDI coordinates. No de-rotation

was needed since MDI and XRT data were within one minute of each other. Since the

region of interest was small enough, and close to disk center, we worked in a tangent

plane approximation where the photospheric plane, z = 0, was taken to be the plane

of the sky.

To perform the fitting we extracted a region measuring 506′′× 506′′ from the full-

disk MDI magnetogram (257 × 257 pixels). In order to save computation time, we

downsized the magnetogram by a factor of two in each dimension. Then we generated
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constant α fields confined to half space (using Green’s function from [Chiu & Hilton, 1977])

in a 506′′ × 506′′ × 200′′ computational box. We generated 41 different fields with

−0.04 ≤ α ≤ 0.04 arcsec−1.

The results are summarized in Table 2 and Figure 45. Visually it seems that the

fit did a good job for all but three loops. The parameter space plots, such as the one

shown in Figure 46, all looked like those for Low & Lou fields. For all of them we

applied the proposed algorithm of selecting local minima on “non-hyperbolic” valley.

Disregarding the three “unsuccessful” fits, it seems that α was of the order of

0.010 − 0.015 arcsec−1 in the outer region of the sigmoid, and higher in the middle,

exceeding 0.02 arcsec−1. Using the solar radius 983.13′′ and recalling a typical bias

of αreal ∝ 1.23αfound (see Figure 44), we estimate αreal to be 1.7 − 2.6 × 10−8m−1

in the outer regions and over 3.5 × 10−8m−1 in the core. These values fall in the

range typical of active region fields, such as those reported in [Burnette et al., 2004]:

±4×10−8m−1. The magnetic field strength along all the non-potential field lines was

always within 50% of the strength of the potential field, evaluated along the same

path; it was within 25% in at least half the cases.

Assuming a typical separation distance L ≈ 50′′ (see Figure 45) the values of

αfound was of the order of 0.5 − 0.75L−1 outside of the sigmoid and exceeded 1.0L−1

inside of the sigmoid. This is within the range of reconstructed α in the trial Low &

Lou fields (see Figure 44).
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Loop # α, arcsec−1 hmax, arcsec
0 0.012 12.9
1 0.016 0.0
2 0.014 23.8
3 0.026 9.5
4 0.008 35.4
5 0.024 33.9
6 0.020 14.3
7 0.014 12.7
8 0.010 31.5
9 0.010 24.5
10 0.012 27.4
11 0.010 3.3

Table 2. The results of the α-h fit to solar data. Here hmax is maximal height (not height
at mid-point, as before in the text). Loops that don’t seem to give a good fit to the data
are in italic.

3.8. Discussion

In this work we have proposed a semi-automated method that, from a given two-

dimensional EUV or X-Ray image of coronal loops and a line-of-sight magnetogram,

reconstructs local twist and a three-dimensional shape of each loop. It tacitly as-

sumes that coronal loops follow magnetic field lines. Our fitting matches the plane

of sky projection of each loop to the projection of lines of linear force-free fields,

traced from different heights along the line-of-sight and that have different twist in

them. The method thus constructs a linear force-free field and one field line in it,

that is the best match of an individual loop. The method is similar to the ones

proposed by [Green et al., 2002] and [Lim et al., 2007], however, it holds several im-

portant advantages. First, it does not require a full length of the loop to be visible
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for a successful reconstruction. Secondly, it does not require any of the footpoints to

be visible. Thirdly, it allows the user to draw a smooth curve (e.g., a Bézier spline)

interactively on top of the loop, rather than selecting a few points along the loop,

thus maximizing the amount of information taken from the coronal image.

We address the question of validity of such a reconstruction, given the fact that

the coronal field is probably non-linear force-free and that the superposition of linear

force-free fields obtained for each individual loop would not, in general, be a force-free

field. To do so, we perform a series of tests on non-linear analytic force-free fields,

described in [Low & Lou, 1990], and as model loops we utilize projections of field lines

on the photosphere. We compare several results of the method with the original field:

3D shapes of loops, local twist (coronal α), distribution of twist in the photosphere

and the strength of magnetic field.

We also find that the best-fit line may not be a global minimum of d(α, h), but

one in a particular part of parameter space. We developed an algorithm that aids

in locating the appropriate region of the parameter space. We followed it manually,

but it could be automated. The algorithm seems to improve the results on Low &

Lou fields, but it probably does not describe every possible feature of the parameter

space resulting from every single arbitrary magnetic field. The algorithm could be

improved and expanded, based on further research involving other non-linear fields

and real solar data.
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Based in Table 1 we draw the conclusions (i) that on the trial fields the twist

is reconstructed with mean absolute deviation of at most 15% of the range of pho-

tospheric twist, (ii) that heights of the loops are reconstructed with mean absolute

deviation of at most 5% of the range of trial heights, and (iii) that the magnitude of

non-potential contribution to photospheric field is reconstructed with mean absolute

deviation of at most 10% of the maximal value.

As shown in Figure 44, there is a typical underestimation of twist when performing

this procedure. Based on the experiments with Low & Lou fields we conclude, that

typically αreal ≈ 1.23αfound.

We also demonstrate how this method can be applied to real solar data, by do-

ing the reconstruction based on the data from SOHO/MDI magnetograms and Hin-

ode/XRT X-Ray images. The resulting field lines visually match the observed loops,

have reasonable heights and self-consistent amount of twist of the magnitude that

agrees with existing measurements of twist in active regions [Burnette et al., 2004].

This work was supported by NASA grants NNX07AI01G and NNX06AB83G.
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Figure 45. Out of 12 loops that we selected, three, namely, loops 4, 5, 9 don’t seem to give
a good fit to the data, and the rest seem to give fairly good fit.
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Figure 46. Parameter spaces for loops shown in Figure 45.
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4. DIRECT MEASUREMENTS OF MAGNETIC TWIST IN THE SOLAR
CORONA

4.1. Abstract

In the present work we study evolution of magnetic helicity in the solar corona.

We compare the rate of change of helicity in the corona to the helicity flux through the

photosphere and find that the two rates are similar. This gives an observational evi-

dence that helicity flux across the photosphere is indeed what drives helicity changes

in solar corona during emergence.

For the purposes of estimating coronal helicity we neither assume a strictly linear

force-free field, nor attempt to construct a non-linear force-free field. For each coronal

loop evident in Extreme Ultraviolet (EUV) we find a best-matching line of a constant-

α field and allow α to be different for each line. This method was introduced and its

applicability was discussed in [Malanushenko et al., 2009b].

The object of the study is emerging and rapidly rotating AR 9004 over the time

interval of about 80 hours. As a proxy for coronal helicity we use the quantity 〈αiLi/2〉

averaged over many reconstructed lines of magnetic field. We argue why it is approx-

imately proportional to “flux-normalized” helicity H/Φ2, where H is helicity and Φ

is total enclosed flux of the active region. The time rate of change of such quantity in

the corona is found to be about 0.021 rad/hr (about 1.2 deg/hr, comparable to many

such observations).
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This result is compared to the helicity flux through the photosphere, using data

from [Longcope et al., 2007] for the same AR at the same time, obtained using local

correlation tracking method. The flux of normalized helicity is found to be 0.016

rad/hr.

4.2. Introduction

Magnetic helicity is generally accepted to be an important quantity in under-

standing evolution of coronal magnetic fields and studying solar eruptions. It is

approximately conserved when conductivity is high, as it is expected to be in solar

corona. This sets up an important constraint on evolution of a magnetic field. It is

believed that helicity in excess of a certain threshold could be responsible for trig-

gering magnetohydrodynamics instabilities and thus be responsible for coronal mass

ejections (CMEs) (see [Démoulin, 2007] for further discussion).

Helicity is a function of magnetic field H = H(B), defined as a volume in-

tegral of A · B (where A is the vector potential and B is the magnetic field),

if no lines of magnetic field leave this volume. For situations, when field lines

leave the volume (e.g., B · n̂ 6= 0 on the boundary), such as the solar corona,

where there is a nonzero magnetic flux through the photosphere, helicity is de-

fined relative to some reference field: Hrelative = H(B,Bref ) = H(B) − H(Bref ),

that has the same normal component of magnetic field at the boundary of the

volume [Berger & Field, 1984, Finn & Antonsen, 1985]. A potential magnetic field
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(∇ × Bref = 0) has the minimum possible energy, so using it as a reference means

a non-zero helicity demands some free energy. Relative helicity, defined this way, is

approximately conserved under internal (to the volume of integration) motions of the

plasma.

Direct measurements of helicity in the corona remain an extremely challenging

problem. They are usually performed by extrapolating magnetic field into corona

using photospheric magnetic field as a boundary condition and then estimating the

helicity of this field. The extrapolations are often performed in such a way that lines of

resulting magnetic field resemble observed coronal loops evident in extreme ultraviolet

(EUV) or soft X-Rays (SXR). The popular choices of magnetic fields are constant-

α field1 confined to a box, e.g., [Green et al., 2002, Lim et al., 2007] and non-linear

force-free (NLFFF) extrapolations [Régnier et al., 2005]. Both methods remain im-

perfect. The main drawbacks of the constant-α field are that it is clearly wrong for

active regions with field lines of clearly different twists [Burnette et al., 2004], and it

places restrictions on α depending on the domain size. The second method has prob-

lems dealing with solving non-linear equations and with the use of ambiguity-resolved

vector magnetograms in a non force-free photosphere (see [Demoulin et al., 1997] for

further discussion). Applying different extrapolation methods to the same data was

found to produce significantly different solutions [DeRosa et al., 2009].

1See Section 4.3 for description
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A quantity that is easier to measure than helicity is the flux of helicity through

the photosphere. It can be shown that for changing relative helicity, changes of

magnetic flux at the boundary are far more effective than internal electric currents

in the presence of high connectivity [Berger, 1984]. This allows one to express the

change in the magnetic helicity in the corona through apparent motions of photo-

spheric magnetic features, as first suggested by [Chae, 2001] and later developed by

[Démoulin & Berger, 2003].

The theoretical prediction that the coronal helicity is injected from underneath

the photosphere is not supported by much observational evidence. Only a few works

compare integrated helicity flux through the photosphere to coronal helicity. [Pevtsov

et. al., 2003] have studied the evolution of coronal α and found that its evolution

is consistent with theoretical estimates of such for an emerging twisted flux tube.

[Burnette et al., 2004] have found a correlation between coronal α of a linear field

(chosen to visually match most of SXR loops) and α measured in the photosphere

using vector magnetograms (averaged, in some sense, over the whole active region).

[Lim et al., 2007] have found that helicity injection through photosphere (obtained

using local correlation tracking) is consistent with the change observed in corona

after taking account, approximately, of helicity carried away by CMEs; they assume

linear field and a typical value for a helicity in CME. Comparisons of the change in

coronal helicity with helicity of interplanetary magnetic clouds have demonstrated
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both a clear correspondence of the two [Mandrini et al., 2004] and a lack of such

[Green et al., 2002].

In the current work we study an emerging active region over a long period of

time with high temporal cadence. We compute a rate with which coronal helicity2

changes and find that this rate is consistent with rate of helicity injection through

the photosphere, reported for the same active region by [Longcope et al., 2007]. This

is the first time (of which we are aware) that the helicity change rate in the corona

over long period of time has been found to be consistent with the helicity flux in the

photosphere.

We approximate the state of the coronal field using a method recently proposed by

[Malanushenko et. al., 2009b]. It approximates coronal loops with lines of constant-

α field like the above mentioned works, however, it allows α to vary from line to

line. That is, each of the coronal loops is approximated by a field line of a different

constant-α field. Strictly speaking, this approach is wrong, as a superposition of linear

force-free fields will not resemble a force-free field at all. [Malanushenko et al., 2009b]

argued that it might work for some cases relevant to the solar corona and have sup-

ported the reasoning with tests on analytical non-linear (or non-constant-α) force-free

fields [Low & Lou, 1990] with amount of twist comparable to one typical to solar ac-

tive regions as reported by [Burnette et al., 2004].

2Or rather a quantity closely related to it. The reasons for choosing this quantity will be clear
in Section 4.3.
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This method of determining properties of coronal loops does avoid some of the

problems faced by linear or non-linear extrapolations. We will henceforth refer to it

as (Non)-Linear Force-Free Field or shortly (N)LFFF3. It bears less uncertainty than

a linear extrapolation, as α is allowed to vary in space. Also it is immune to some

of the drawbacks plaguing non-linear extrapolations; in particular, it does not use

vector magnetograms (which are obtained in the photosphere, where the force-free

approximation is questionable, see [Demoulin et al., 1997] for further discussion) and

does not attempt to solve non-linear equations.

The chapter is organized in the following manner. In Section 4.3 we review the

methodology, describe the measured quantity and establish its relation to helicity. In

Section 4.4 we describe the data to be used. In Section 4.5 we summarize results

and findings from the data analysis. Section 4 contains the discussion of the results

achieved. The Appendix B explains tangent plane projection and why it was chosen

for the present work.

4.3. The Method

Most active region coronal magnetic fields are believed to be in a force-free state,

given by Equation (3.1), where α is a scalar of proportionality [Nakagawa et al., 1971].

Extrapolations of coronal magnetic field usually imply solving this equation using

photospheric data as a boundary condition. When ∇α = 0, Equation (3.1) reduces

3We are grateful to Carolus Schrijver for this name.
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to a system of linear equations and thus is called linear or constant-α field. When

α varies in space, Equation (3.1) represents a non-linear system and the solution is

called a non-linear of non-constant-α field.

In the present work we use linear fields confined to half space, computed using

Green’s function from [Chiu & Hilton, 1977]. Such fields are less popular than linear

fields confined to a box [Alissandrakis, 1981] because it takes much more compu-

tational time to build them. We use them, however, because they do not impose

restrictions on α based on the size of the computational domain and because the

field lines are allowed to leave the computational domain. We believe this is a better

representation of coronal magnetic fields.

The result of the procedure of [Malanushenko et al., 2009b] is a line of a constant-

α field4 best-fitting a coronal loop for every visible loop. This gives the following set

of parameters for every coronal loop that was successfully fit: its α, shape r(l) and

the profile of magnetic field B(l).

In the current work we do not compute a helicity, but rather a quantity re-

lated to it, αiLi/2 (where Li is the length of i-th field line and αi is its α). Most

classical definitions of helicity involve a volume integral, which requires knowledge

of magnetic field on a grid or analytically in a volume. (N)LFFF does not pro-

vide such gridded data or even volume-filling data. However, αL/2 is closely related

to helicity. For example, self-helicity of a uniformly twisted torus is H = TwΦ2,

4Note that even for non-linear force-free fields α = const along every field line, of ∇α · B = 0.
This result is obtained by taking the divergence of both sides of Equation (3.1) and using ∇ ·B = 0
and the identity ∇ · (∇× B) = 0, so that B · ∇α = 0.
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where Tw is a number of turns that a field line makes per unit length and Φ is

a net flux [Berger & Field, 1984, Moffatt & Ricca, 1992], and for a thin cylindrical

uniformly-twisted flux tube5 it can be shown that 2πTw = αL/2 over axial distance

L [Aschwanden, 2006].

It is not immediately clear, that the same expression could be used for a more

complex flux configuration when thin flux tube approximation is not applicable. How-

ever, [Longcope & Malanushenko, 2008] have demonstrated how additive self helicity

(helicity of a field relative to a potential field confined to the same domain) is consis-

tent with an empirical function α〈Li〉Φ2/4π with 〈Li〉 being the average length of a

field line in the domain6 and Φ being the total flux in the domain. This was shown for

a case when the thin flux tube approximation was clearly inapplicable: for a constant-

α synthetic field of a quadrupolar field confined to a box, for a domain, connecting

two polarities. Later [Malanushenko et al., 2009a] suggested that “flux-normalized”

additive self helicity could be treated as a generalized twist, HA/Φ2 = Twgen for an

arbitrary magnetic configuration. That leads to a conclusion that

2πTwgen = α〈Li〉/2, (4.1)

in a similar manner as in thin flux tubes, at least in linear force-free fields. [Malanushenko

et. al., 2009] demonstrated that Twgen is equal to Tw for a thin flux tube and that it

5Thin flux tube approximation usually refers to a structure with well-defined axis, with diameter
small compared to its length and with radius of curvature large compared to its diameter.

6By “domain” we mean the same thing as [Longcope & Malanushenko, 2008] and
[Malanushenko et al., 2009a]. It is a volume occupied by field lines connecting two given footpoints,
so there is no magnetic flux across the boundaries of such a volume, except at the footpoints.
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behaves like Tw in arbitrary magnetic configurations, for example, serving as a kink

instability threshold. We hereafter refer to Twgen = HA/Φ2 as “twist”.

To the best of our knowledge, such relationship between α and helicity has not

been established for general non-linear force-free fields. However in a thin non-

uniformly twisted cylinder it might be expected that Twgen would be proportional to

axial length with a constant of proportionality, that should reduce to α if the cylinder

were uniformly twisted. For a more complex configuration Twgen might be expected

to be proportional to some length scale times a constant that has dimensions of α.

We choose to use a quantity 〈αiLi/2〉, averaged over many field lines as a proxy of

Twgen and find that it changes consistently with the injection of coronal twist.

We compare this quantity to the normalized helicity flux across the photosphere,

measured by [Longcope et al., 2007]. They split flux of unconfined self helicity (of

a field confined to half space relative to the potential field in half space) into two

parts: the “spinning” and the “braiding” contributions, as illustrated in Figure 47.

The first one comes from rotation of footpoints about their axis and its change rate

was expressed by [Longcope et al., 2007] through the average spinning rate θ̇spin as:

Ḣa
spin = − 1

2π
Φ2

aθ̇
a
spin, (4.2)

for a-th footpoint. The second one comes from the relative rotation of footpoints and

its change rate could be expressed through the average tilt angle θbraiding:

Ḣab
braiding = − 1

π
ΦaΦbθ̇

ab
braiding. (4.3)
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Ḣspin and Ḣbraiding are not equivalent to fluxes of “twist” and “writhe” helici-

ties [Berger & Field, 1984, Moffatt & Ricca, 1992]. In addition to the discussions in

[Longcope et al., 2007] and [Longcope & Malanushenko, 2008], we would like to pro-

vide an illustrative example of this statement. Consider a thin untwisted torus from

Figure 47 (a), deformed in the following way: first, the footpoints are rotated about

each other by θ, then each of the footpoints is rotated about its own center by −θ/2.

This transformation is equivalent to a rotation of the whole torus as a rigid body and

adds no helicity to it. However, an observer, who believes that Ḣbraiding is equivalent

to the flux of writhe helicity, might consider that the writhe helicity has increased

by Φ2θ/π. This is certainly not true, as the resulting configuration has no twist in

it. [Longcope et al., 2007] argued that “spinning” and “braiding” fluxes of helicity

might be produced by different physical processes.

Combining Equations (4.2) and (4.3) and noticing that for a flux-balanced dipole

Φa = −Φb, we get:

Ḣtotal/Φ
2 = − 1

2π

(
θ̇a

spin + θ̇b
spin − 2θ̇ab

braiding

)
. (4.4)

From Equations (4.1) and (4.4) it follows, that if the quantity 〈αiLi〉/2 is roughly

proportional to H/Φ2 in a non-linear field, its change rate should be proportional to

−
(
θ̇a

spin + θ̇b
spin − 2θ̇ab

braiding

)
. We would like to note, that 〈αiLi〉/2 is really meant

to represent Twgen and thus be relevant only to the additive self-helicity HA, that

is to helicity of the field in a subdomain relative to the potential field in the same

subdomain, and Htotal is the helicity of the field in half space relative to potential field
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in half space (see [Longcope & Malanushenko, 2008] for further discussion). However,

the difference Htotal − HA only depends on the shape of the subdomain and both

[Longcope & Malanushenko, 2008] and [Malanushenko et al., 2009a] have studied the

cases with subdomains of relevant shapes and found this difference to be small (except

at the pre-CME state).

(a)

(b) (c)

Figure 47. A schematic illustration of braiding and spinning motions of footpoints. (a) An
untwisted torus. (b) A configuration that results from relative rotation of the footpoints
(braiding). (c) A configuration that results from rotation of one of footpoints about its
center (spinning). In general case, the total injected helicity is proportional to θ = θpos.spin+
θneg.spin − 2θbraiding.

4.4. The Data

The present study is devoted to AR 9004. It was emerging, as its flux was

increasing. [Longcope et al., 2007] managed to follow its evolution beginning at a

time it had about 30% of its final flux. The other feature of this active region is that
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Figure 48. We studied the region with AR’s 9002 and 9004 from 2000-05-18 12:48:03 till
2000-05-22 03:12:03. AR 9002 was an old diffuse active region and AR 9004 was emerging
and rapidly rotating active region.

its footpoints were rotating about each other and about themselves at measurable

pace. The measurements of the rotation were performed by [Longcope et al., 2007].

We chose 21 full-disk MDI magnetograms in the time range between 2000-05-18

12:48 and 2000-05-22 03:12. The first and the last images are shown in Figure 48.

The magnitude of the magnetic field on each magnetogram was corrected for the

foreshortening factor, assuming the magnetic field to be purely radial: Bz(x, y) =

Blos(x, y)/
√

1 − ρ(x, y)2/R2
⊙, where ρ(x, y) =

√
x2 + y2 is the plane-of-the-sky dis-

tance from the disk center to the point (x, y). Each magnetogram was then remapped

to the disk center in orthographic projection (see Appendix B).

For each magnetogram we selected several (typically two) TRACE 171Å images

taken within 30 minutes of the magnetogram. The selection criteria was the visibility
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of many distinct coronal loops. On each TRACE image as many loops as could

be discerned were “traced”, or visually approximated with a smooth curve, a two-

segment Bézier spline (e.g., [Prautzsch et al., 2002]).

Each magnetogram on the tangent plane was rebinned on a coarser grid, half

the size in each dimension, and then used to construct 41 constant-α fields with

α ∈ [−0.05, 0.05] arcsec−1 and with step of ∆α = 0.0025 arcsec−1 in a box with

zmax = 200 arcsec and ∆z ≈ 1.5 arcsec. Both ranges of α and z have proven to be

sufficient to reconstruct most of the loops. For every “traced” coronal loop we traced

many field lines along the line of sight from the midpoint of the loop, as illustrated in

Figure 49. The procedure was repeated for all constant-α fields. Each field line (that

is described by α of the constant-α field it belongs to and the coordinate along the

line of sight h) was projected onto the plane of the sky. The mean distance d(h, α)

between this projection and the traced loop was computed. Then the minimum

of d(h, α) on a grid of given values α and h was found following a semi-automatic

algorithm described in [Malanushenko et al., 2009b].

We found that for many loops (∼55% of all 301 loops) the general shape of the

d(h, α) parameter space matches one of the types described in [Malanushenko et.

al., 2009]. As for the “undescribed” types, we chose not to ignore them, but try to

identify anything that looks like the non-hyperbolic valley and choose a local mini-

mum on it that resulted in visually better fit. Among those “undescribed” types of

parameter spaces there was one that has found to occur frequently enough (∼ 36%
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Figure 49. (left) – TRACE image in the plane of the sky and de-rotated MDI images shown
with their respective angles. For every coronal loop (yellow) the algorithm browses through
several different constant-α fields. In each field it traces field lines (cyan) along the line
or sight (red). The field lines are than projected back to TRACE image and compared to
the loop using the semi-automatic selecting algorithm. Best-fit field line is shown in darker
shade of blue. (Field lines are of α = 0.025 arcsec−1, that corresponds to the best-fit α for
this particular loop, so the dark blue line is the resulting best-fit line for this loop.) Gray
box shows the actual computational domain. (right) – a fragment of the TRACE image in
the plane of the sky, the traced loop (yellow), the projection of the best fit to the plane of
the sky (cyan) and the midpoint of the loop (red).

of all loops) to warrant new classification. The “anomalous” (or “non-hyperbolic”)

valley in the parameter space of this type looked like two branches at each side

of α = 0 line joined together (see Figure 50). According to the algorithm from

[Malanushenko et al., 2009b] such a loop had to be either ignored or the local mini-

mum on this valley that corresponded to lowest height was to be chosen. We found

that such a choice results in visually much worse fit than chosing the global min-

imum of this valley. We thus proceded with selecting the global minimum on the

non-hyperbolic valley. This type of the parameter space had not been found on tests
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in analytic data and there is no clear indication that it is trustworthy, except for the

better visual correspondence to the coronal loops. We believe it might represent a

distortion of “conventional” shapes due to the inclination of the line of sight. We

would like to mention that such classification of parameter spaces is subjective and

sometimes ambiguous, but it has been found to yield statistically reasonable results

when tested on analytical fields.

This procedure resulted in a “best-fit” line of a constant-α field for every coronal

loop. The quality of the fit was visually judged and assigned a subjective grade

between 0 (unsuccessful fit) and 1 (perfect fit). For further analysis, only loops that

had a fit quality greater than 0.7 were used. For example, the fit in Figure 50 was

given a quality grade of 0.7 and the fit in Figure 49 was judged to be of quality 1.

4.5. Results

We have performed the reconstruction procedure for the total of 303 coronal loops

of AR 9004. 61 of them (20%) had quality 0.7 and 219 (73%) had quality 1, so in total

there were 280 (93%) successful reconstructions. The real percentage of the successful

fits might be slightly lower, as some coronal loops seeming to belong to AR 9004 on

EUV image were reconstructed as open field lines or as field lines interconnecting ARs

9002 and 9004, and some of those fits have failed as well. We could have estimated

how many loops seemed to have incorrect reconstructed connectivity, but we chose
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(a)

(b)
(c)

Figure 50. A type of parameter space, not described in [Malanushenko et al., 2009b] on
tests with analytic fields. (a) — The parameter space. White diamonds: local minima in
columns. White diamonds with red dots: selected “non-hyperbolic” valley. Three colored
squares: points that correspond to the local minima on this valley. Blue dotted lines:
hyperbolas h = nπ/α, n = 0,±1,±2, .... (b) — d(α, h) along the selected valley. (c) — A
fragment of TRACE 171Å image with the traced loop (dashed red) and three field lines,
corresponding to the three local minima. It seems that the one, corresponding to the lowest
h (magenta) is visually a much worse fit than the one, corresponding to the global minimum
on this valley (cyan). We consider the valley to the left of the ’hump’ a different valley, that
could have been a degenerate hyperbolic. Based on this, we decide that the cyan line should
be used. We update the algorithm from [Malanushenko et al., 2009b] with the parameter
space of this type.

not to do so. The reason is that it would involve visual estimation of the connectivity

that may or may not be right on its own.
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The following evolution was observed:

• Up to t = 35.5 hrs7 (images 1-7 in Figure 53) the loops had mainly negative

(left-handed) twist and the median twist has decreased in magnitude.

• From t = 48.2 hr to t = 51.7 hr (images 10-11 in Figure 54) had twist of both

signs, with negative twist predominantly in the eastern half of the dipole and

positive twist predominantly in the western half. The median was close to zero.

(Only half of the region was seen on images 8 and 9, so we could not draw any

conclusion about spatial structure of the twist from t = 38.0 hr to t = 41.3 hr.)

• Most of the loops on image 12, t = 54.6 hr, had twist of positive sign.

• The loops on image 13, t = 58.9 hr, were poorly fit. As suggested in [Malanushenko

et. al., 2009], this might indicate that the field was strongly twisted or maybe

strongly non-linear.

• Almost no loops of AR 9004 were observed and well fit on images 14-16 (t = 64.0

hr to t = 70.3 hr). It is possible that the existing loops were outside of TRACE

field of view.

• Most of loops on images 17-21 (t = 72.2 hr to t = 99.4 hr) had twist of pos-

itive sign (or right-handed twist). The median twist appeared to be slightly

increasing.

The emergence of AR 9004 was evident from the evolution of the magnetic flux.

The magnetic flux, according to [Longcope et al., 2007], was steadily increasing until

7All times are in hours since 2000-05-18 00:00:00.
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about t = 55 hrs, and after that it exhibited a slight decrease. This decrease was

contemporary with the drop in the combined twist angle in Figure 51.

For any given time there was a wide distribution of measured twist. There was,

however, a general trend for the twist to increase. While most of the loops were

negatively twisted at early times, most of loops at later time exhibit positive twist.

We summarize the findings in Figure 52. Each point there represents αL/2 of a

single loop versus time when it was measured. At every time we find a mean twist

and mean of the absolute deviation (this way the time frames with many data points

would not be given more weight in the fitting procedure than the time frames with

few data points). We then fit a line to the twist as a function of time using least

absolute deviation fit to the means using the mean of the absolute deviation. We

only fit the line in the time interval from t = 10 hrs to t = 55 hrs. The start time is

the earliest time available and the final time is where the photospheric twist starts to

decrease. We have measured 〈αL/2〉 to increase at about 0.021 rad/hr.

Figure 51 shows the twist injection rate as measured by [Longcope et al., 2007]

as a black curve. It also shows individual spinning (red for positive and blue for

negative) and tilt (green) angles. We fit a line to the combined angle using least

absolute deviations to the same time interval as on the coronal measurements and

find a twist injection of about -0.0160 rad/hr.

We conclude, that the rate of change of the coronal twist is consistent with the

twist injection through the photosphere.
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Figure 51. Twist rate, as measured by [Longcope et al., 2007]. The data points within
time interval from t0 = 12 hours to t1 = 57 hours were fit to a line with least absolute
deviations. The lower boundary of the interval was chosen to be the lower boundary for
(n)lfff data and the upper boundary was chosen where the linear twist injection was no
longer obvious.

4.6. Discussion

In the current work we have observed how helicity flows into the corona through

photospheric motion. In the beginning of the time sequence coronal loops of AR

9004 appear to have negative helicity and after about 60 hours all the coronal loops

appear to have positive helicity. We have observed that when a negatively twisted

field is subject to the injection of helicity of positive sign, magnetic field does not

pass through the potential state. Rather, it passes through a complex non-linear
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Figure 52. Twist of coronal loops versus time, using (n)lfff reconstruction from
[Malanushenko et al., 2009b]. (top) — Diamonds show twist of individual loops (larger
correspond to quality 1 and smaller to quality 0.7). Blue squares are medians for each
individual time. The line shows least absolute deviation to the means with means of the
absolute deviations fit to the diamonds within the selected time range (same range as in
Figure 51). (bottom) — A histogram showing time-twist distribution of coronal loops makes
the trend evident. Black color corresponds to 20 points or more and white corresponds to
one or no points.
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equilibrium that has parts with distinct positive and parts with distinct negative

twist.

There were two weak flares associated with AR 9004 in the examined time interval,

according to Solar Monitor [Gallagher et al., 2002]. These included one C2.7 flare at

t = 52.6 hrs and then a C1.9 at t = 88.6 hrs. [Kusano et al., 2003] have proposed a

model in which the field of an active region, featuring twist of both signs, undergoes

magnetic reconnection. This process is accompanied by a flare and results in an

untwisted magnetic field (that is, with zero helicity). The flares in AR 9004 do not

seem to be associated with confident drops of twist. Moreover, the AR that we study

does have twist of both signs at t ∈ [20, 55] hrs and yet does not seem to relax to a

potential state at later times, after t = 72 hrs. It is worth noting, however, that in

the period of t ∈ [58.9, 70, 3] hrs there were almost no loops that were successfully

fit, leaving open the question of what might have happened at that time. It could be

argued that the field indeed had relaxed to the potential state and its further positive

(right-handed) twist was injected through the photosphere, but at least the apparent

injection of negative helicity within about t ∈ [55, 70] hrs (evident in Figure 51)

suggests that this might not be the case.

We have studied the time rate of change of the following quantity: 〈αiLi/2〉

averaged over many reconstructed field lines. In Section 4.3 we argued that it might

be proportional to the additive self helicity [Longcope & Malanushenko, 2008] of a

non-linear field in the similar manner as αL/2 is proportional to twist helicity of a
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thin flux tube and as α〈Li〉/2 is related to additive self helicity for a linear force-free

field.

We have found that the time rate of change of 〈αiLi/2〉 (and arguably a general-

ized twist, Twgen = HA/Φ2) is found to be about 0.021 rad/hr. This rate is similar

to the time rate of change of the flux-normalized total helicity Htotal/Φ
2 (or uncon-

fined self helicity, of a field in half space relative to potential field in half space) that

was found to be 0.016 rad/hr. We would like to mention, that HA and Htotal differ

from each other by a helicity of potential field confined to the domain containing the

dipole of interest relative to a potential field with the same footpoints confined to

half space; however, for configurations studied in [Longcope & Malanushenko, 2008]

and [Malanushenko et al., 2009a] this difference was found to be small. This gives a

hope that we are measuring different, yet close quantities in the present work.

The difference between HA and Htotal might be responsible for the fact that even

though Htotal starts to decrease after about t = 55hrs, the twist derived from coronal

loops remains of a positive sign and does not show any signs of decrease. We have

noticed that a lot of bright coronal loops connecting ARs 9004 and 9002 appear at

about t = 75hrs and later at about t = 100hrs. It is possible that while photospheric

helicity injection changes sign, magnetic reconnection that happens after that changes

the balance between “twist” and “writhe” helicities8. In the current paragidm mag-

netic reconnection results in a decrease of magnetic energy. It is also true that linear

8In the sense of HA as a “generalized twist helicity” and Htotal − HA as a “generalized writhe
helicity”.
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force-free fields with larger α are typically thought of having larger magnetic energy

than those with smaller α [Aly, 1992]. However the field of AR 9004 was found to

be non-linear, which means, for the same system there exists a linear force-free field

with lower energy [Woltjer, 1958]. A possible scenario for the observed phenomena

is the following: magnetic reconnection between ARs 9004 and 9002 lowers the total

magnetic energy and possibly turns AR 9004 to a linear (or nearly linear) force-free

field. Total helicity of AR 9004 is decreased due to photospheric motions, however, its

self-helicity stays nearly constant, signifying a decrease of “generalized writhe helic-

ity”. The latter appears to be only a function of the shape of the domain containing

field of AR 9004. So both magnetic reconnection (that has decreased the volume of

this domain by reconnecting some of the flux to AR 9002) and photospheric motions

might have contributed to that.

This work was supported by NASA under grant NNX07AI01G and NSF under

award ATM-0552958.
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Figure 53. All reconstructed field lines of quality 0.7 or 1 (solid lines). Their color corre-
sponds to α. The original coronal loops are shown as dashed white (for successful recon-
struction) or dashed red-white (for unsuccessful). Different image sizes are due to different
amount of data within the field of view. The image sequence continues in Figure 54.
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Figure 54. Continuation of Figure 53.
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Figure 55. Continuation of Figure 53.
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5. CONCLUSIONS

Novel results. Applications to Solar Physics.

Possible improvements of the methods.

In this dissertation I was able to systematize and verify several generalizations

of important topological quantities developed for a thin flux tube. In particular,

a generalization of Tw via HA for structures of arbitrary shape was found to have

practical applications for studies of kink instabilities. Another generalization that

was verified is the relation of 〈αL/2〉 to Twgen in a structure of arbitrary shape in

the similar manner as αL/2 is related to Tw in a thin axisymmetric structure. It is

not entirely clear, what would be the threshold value, similar to Equation (1.17), for

an equilibrium of an arbitrary shape. The numerical methods developed within this

thesis make such studies possible.

In the course of this work, an extremely promising tool was developed and care-

fully tested. This tool allows for a three-dimensional reconstruction of coronal loops

based on as little information as a line-of-sight magnetogram and one projected image

of the solar corona in the EUV or Soft X-Ray.
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While many of the individual parts of this method were presented in earlier works,

as shown in Table 3, (N)LFFF is novel in several aspects. This includes tests on ana-

lytic data, nontrivial improvements of the fitting algorithm and the use of unconfined

magnetic fields1.

There is one more aspect of (N)LFFF that makes it novel. The whole method is

based on the following statement:

For a field line of a NLFFF, there would be a field line of a LFFF that is close
in shape; this LFFF has α similar to the one of the field line of the NLFFF.

This is not true in general, as was explained in Chapter 1. But there are some

arguments of why in some cases it might be approximately true in the solar corona.

The tests on analytic cases support this hypothesis. The first study of twist in solar

corona made with (N)LFFF is in agreement with the theoretical predictions. The

success of (N)LFFF is strong evidence in favor of the highlighted statement.

(N)LFFF reconstruction has a wide range of possible applications within Solar

Physics. These include:

• Detailed information of coronal currents on a sparse set of curves in space.

This might help to construct better NLFFF models and improve the results of

[DeRosa et al., 2009].

1The latter are less popular because of the extensive computing time, however, are more rewarding
as they lay no restrictions on the magnitude of α and are physically a better approximation to the
coronal field. Recent development of powerful computers makes such computations possible.
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• An improved knowledge of three-dimensional geometry of the coronal loops.

This might be applicable to the problem of expansion of magnetic flux tubes

[Lopez Fuentes et al., 2006].

• A potential for better studies of intensity profile along optically thin loops. This

might aid in tackling the problem of heating of coronal loops [Klimchuk, 2009].

• The estimates of magnetic energy could be performed directly from the out-

put of (N)LFFF using Monte-Carlo method. A manuscript on this topic is

currently in preparation [Longcope and Malanushenko, 2010, in preparation].

Such estimates could aid in studies of energy storage and release in the solar

corona.

• α of the magnetic field lines could be used to estimate Twgen from available

observations. This might allow the study of magnetic instabilities in the solar

corona in addition to the numeric simulations.

The developed methods and ideas have received one immediate application, de-

scribed in Chapter 4. The evolution of Twgen was observed in the solar corona and

compared to the evolution of photospheric field. The latter is believed to inject he-

licity and thus twist to the corona. Chapter 4 presents good observational evidence

of this fact.

As with most new methods, (N)LFFF could be greatly improved. At the present

stage it has several steps that require a human intervention. For the method to

be easier to use, these steps should be automated. The visual selection of coronal
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loops could be replaced with an automatic detection using, for example, one of the

algorithms from [Aschwanden et al., 2008]. The visual selection of the region in (α, h)

space where the minimum is found to correlate with the real parameters of the loop,

should also be automated, possibly, using one of the image recognition algorithms.
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References α-fit
LOS-
fit

Numerical Fit
Error
Analysis

Comment

[Nakagawa & Raadu, 1972,
Pevtsov et al., 2003,
Burnette et al., 2004]

+ − − − Fit to footpoints; fit of all loops
to one LFFF.

[van Ballegooijen, 2004] − + + − Fit to a single NLFFF.
[Green et al., 2002,
Lopez Fuentes et al., 2006,
Lim et al., 2007]

+ − + − Fit to footpoints; fit of all loops
to one LFFF.

[Malanushenko et al., 2009b] + + + +
(N)LFFF. Chapter 3 of this dis-
sertation.

Table 3. Comparison of the (N)LFFF reconstruction to some of the preceding methods.
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APPENDIX A

ON LOW & LOW FIELDS.
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[Low & Lou, 1990] constructed a class of non-linear force-free magnetic fields be-

ginning with an axi-symmetric field. An axi-symmetric, divergence-free magnetic field

can be written, in all generality, as

B = ∇A ×∇φ + Q∇φ =
1

r sin θ

(
1

r

∂A

∂θ
r̂ − ∂A

∂r
θ̂ + Qφ̂

)
, (5.1)

where A(r, θ) is the flux function and the azimuthal component is Bφ(r, θ) = Q(r, θ)/r sin θ.

The poloidal components of the force-free condition, ∇×B = αB, are satisfied only

if Q and α are each functions of the flux function alone

Q(r, θ) = Q[A(r, θ)] , α[A(r, θ)] =
dQ

dA
. (5.2)

The azimuthal component of the force-free condition

r2 sin2 θ ∇ ·
( ∇A

r2 sin2 θ

)
= −αQ

dQ

dA
= −1

2

dQ2

dA
, (5.3)

is known as the Grad-Shafranov equation for flux function A.

The Grad-Shafranov equation contains one free function Q2(A) for which Low

and Lou took a particular form. We generalize their choice to

Q2(A) = a2 |A|2+2/n , (5.4)

where a and n are free constants. The absolute value signs, absent from the original

formulation, are introduced here so that Q2 is real, and non-negative, even where the

flux function is negative. Equation ( 5.3) can then be made homogeneous in r by

proposing a solution

A(r, θ) = P (cos θ) r−n , (5.5)
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for a still-unknown function P (µ). Using this in the Grad-Shafranov equation, and

defining µ = cos θ, leads to the non-linear equation

(1 − µ2)
d2P

dµ2
+ n(n + 1)P = −a2

(
1 +

1

n

)
|P |2/n P , (5.6)

for the unknown function P (µ).

Equation (5.6) has real solutions for any a and any n > −2; n need not be an

integer. Boundary conditions, similar to those of [Low & Lou, 1990], are P ′(1) = −10

and P (1) = 0, so the solution is regular along the positive z axis. The solution will

be regular along the negative z axis only when the solution satisfies the additional

condition P (−1) = 0. For a given value of n this condition will be satisfied only for

certain choices of the eigenvalue a. (Integer choices of n always have one eigenvalue,

a = 0, for which P (µ) is sin2 θ times the Legendre polynomial of order n.)

The final magnetic field, defined for z ≥ 0, is constructed by rotating the axi-

symmetric field by angle Φ about the y axis and translating it downward a distance

ℓ. For rotation angles Φ ≤ π/2 and non-vanishing displacement, ℓ > 0, the origin

and what had been the negative z axis lie in z < 0, outside our domain. This means

the regularity condition, P (−1) = 0, is not needed to assure a regular magnetic field.

We therefore make no restriction on P (−1) and consider both n and a to be free

parameters.

The function Q(A), required for the final field of eq. ( 5.1), is found from the

square root of eq. ( 5.4). When the solution P (µ) changes sign there can be more
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than one choice of square root for which Q(A) is a continuous real function.2 We

focus on two such choices, we call signed and unsigned

QU(A) = aA|A|1/n , (5.7)

QS(A) = a|A|1+1/n , (5.8)

both of which satisfy eq. ( 5.4) when A(r, µ) = P (µ)/rn is real. Taking the derivative

of these functions gives the twist parameters for the two cases

αU(A) = a

(
1 +

1

n

)
|A|1/n , (5.9)

αS(A) = a

(
1 +

1

n

)
|A|1/nsgn(A) . (5.10)

The unsigned case has a single sense of twist determined by the sign of the constant

a; the signed case has both senses provided A changes sign.

2There will be 2m distinct choices when P (µ) changes sign m times over −1 < µ < 1.
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APPENDIX B

ON TANGENT PLANE PROJECTION
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A tangent plane projection is an orthographic projection onto a plane, tangent to

the Sun at the point which is called the center of the projection and the projection

of the solar North directly upwards. It could easily be obtained from the plane of

sky using the following transformations. In the starting plane of sky the coordinate

system is assumed to be heliographic-cartesian [Thompson, 2006]. That is, Cartesian,

with the origin at the Sun’s center, x axis directed towards solar West in the plane

of sky, y axis directed towards solar North in the plane of sky and z axis directed

towards the observer. The image plane is then rotated as described by Equation 5.11:

first, by −b0 (where b0 is solar B-angle) about x-axis, then by −φc (where φc is the

longitude of the desired projection center) about the new y-axis, then by −θc (where

θc is the latitude of the desired projection center) about the new x-axis. After this

sequence of rotations solar North would lie on the new y-axis and solar West would

lie on the new x-axis. The last step is to perform the orthographic projection in the

new z direction, that is, simply to set z coordinate to 0 for all points in the visible

hemisphere.

Ax(θ) =




1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)




Ay(φ) =




cos(φ) 0 sin(φ)
0 1 0

− sin(φ) 0 cos(φ)




A = Ax(b0)Ax(−θc)Ay(−φc)Ax(−b0) (5.11)
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This projection is non-conformal (it does distort local shape) and distorts the dis-

tances. But those distortions are independent of the location of the point of tangency

and only increase with the size of the desired box. For example (see Figure 56), if

one considers a point on the sphere, which radius-vector from Sun’s center r makes

an angle γ with the radius-vector from Sun’s center to the projection center, r0, then

the distance on the sphere between r and r0 is Rγ and the distance between the pro-

jections of these two points on the tangent plane is R sin γ. For γ = 30◦ (or the box

of 60◦, which is enough to fit most active regions), the foreshortening factor would be

about 5%.

Figure 56. Distortions of distance on tangent plane projection are small if the size of the
extracted region is small. For example, if a distance between the point of tangency and
another point on the Sun is Rγ, then (if γ ≤ π/2) the distance between the center of the
projection and the projection of that point is R sin γ.

For purposes of tracking long time sequences and dealing with off-center solar

images, heliographic coordinates (with longitude φ along horizontal axis and latitude θ

along vertical) are often used, with the longitude either either equally spaced along the

vertical axis [Thompson, 2006] or with spacing that changes with the distance from
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the equator [Welsch et al., 2009]. The first one is commonly referred in cartography

as plate Carrée projection and a particular case of the second one frequently used in

Solar Physics is called Mercator projection [Frederick Pearson, 1990].

A tangent plane projection that we use is somewhat less common. The first reason

why we chose it is that the distortions are independent of latitude (unlike for Mercator

or plate Carrée projections, which have systematic latitude-dependent errors), as

explained above. The second reason why we choose the tangent plane projection is

that it is distorts global shapes less than cylindrical projections. Since the shape of

a coronal loop is crucial for determining its α, we believe it is more important to

conserve shapes globally rather than locally, and orthographic projections are better

in this sense than the cylindrical ones. For example, let us consider a 30◦ × 30◦

“square” ABCD, centered at 0◦W, 15◦N (roughly the size and position of ARs 9002

and 9004 when they pass through the central meridian), as shown in Figure 57.

The lengths of the arches on the sphere are AB = BC = AD = π
6
R⊙ ≈ 0.524R⊙

and CD = π
6

cos π
6
R⊙ ≈ 0.454R⊙, so CD/AB ≈ 0.86. In a cylindrical projection

CD/AB = 1 and on a tangent plane centered at 0◦W, 15◦N, CD/AB ≈ 0.87 (the

latter is obtained by writing parametric equations for the projections of the box’s sides

and computing their length using standard methods). The foreshortening factors on

the tangent plane are about the same for all four sides and are about 0.99. We

thus believe that by using tangent plane projection in this particular case we make

about 1% error due to the projection effect, as opposed to about 15% error in a
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cylindrical projection (given for CD/AB; the ratio AB/BC would differ depending

on the particular type of the cylindrical projection).

Figure 57. Illustration of heliocentric-cartesian (orthographic) and heliographic projec-
tions. ABCD is a 30◦×30◦ “square”, centered at 0◦W, 15◦N (roughly the size and position
of ARs 9002 and 9004 when they pass through the central meridian) in three different
projections. (Left) – in the plane of the sky (orthographic projection, centered at 0◦W,
0◦N and neglecting the b-angle for illustrative purposes), (middle) – in the tangent plane
(orthographic projection, centered in the middle of ABCD, i.e., 0◦W, 15◦N), (right) – in he-
liographic coordinates (plate Carrée projection). Dashed lines are lines of constant latitude
and longitude.
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