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ABSTRACT

This dissertation presents results of research in the development, testing and
application of an automated calibration and uncertainty analysis framework for
distributed environmental models based on Bayesian Markov chain Monte Carlo
(MCMC) sampling and response surface methodology (RSM) surrogate models that use a
novel random local fitting algorithm. Typical automated search methods for optimization
and uncertainty assessment such as evolutionary and Nelder-Mead Simplex algorithms
are inefficient and/or infeasible when applied to distributed environmental models, as
exemplified by the watershed management scenario analysis case study presented as part
of this dissertation. This is because the larger numbers of non-linearly interacting
parameters and the more complex structures of distributed environmental models make
automated calibration and uncertainty analysis more computationally demanding
compared to traditional basin-averaged models. To improve efficiency and feasibility of
automated calibration and uncertainty assessment of distributed models, recent research
has been focusing on using the response surface methodology (RSM) to approximate
objective functions such as sum of squared residuals and Bayesian inference likelihoods.
This dissertation presents (i) results on a novel study of factors that affect the
performance of RSM approximation during Bayesian calibration and uncertainty
analysis, (ii) a new ‘random local fitting’ (RLF) algorithm that improves RSM
approximation for large sampling domains and (iii) application of a developed automated
uncertainty analysis framework that uses MCMC sampling and a spline-based radial
basis approximation function enhanced by the RLF algorithm to a fully-distributed
hydrologic model case study. Using the MCMC sampling and response surface
approximation framework for automated parameter and predictive uncertainty assessment
of a distributed environmental model is novel. While extended testing of the developed
MCMC uncertainty analysis paradigm is necessary, the results presented show that the
new framework is robust and efficient for the case studied and similar distributed
environmental models. As distributed environmental models continue to find use in
climate change studies, flood forecasting, water resource management and land use
studies, results of this study will have increasing importance to automated model
assessment. Potential future research from this dissertation is the investigation of how
model parameter sensitivities and inter-dependencies affect the performance of response
surface approximation.
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CHAPTER 1

INTRODUCTION

Background

In watershed hydrology, the use of simulation models to study the origins, storage

and movement of water, dissolved pollutants and sediment in a watershed is wide-spread

(Yang, Herath et al. 2000; Beven and Feyen 2002; Dunn, Freer et al. 2008; Soulsby, Neal

et al. 2008). Knowledge gained from hydrologic modeling and simulation studies guides

a variety of engineering, scientific and legislative applications, including the design of

civil works and human settlements, the formulation of water management and land use

policies and the prediction of critical phenomena in a watershed. Such phenomena could

include water scarcity, flooding, erosion, river morphology,  surface and ground water

pollution, threats to aquatic and riparian ecologies or impacts of climatic changes to a

watershed (Black 1996).

When computing power was limited, watershed modeling mainly involved

studying or predicting the average behavior, response, or variables of a watershed (Beven

2001). These watershed-averaged (or lumped) models are often adequate for studying

water balance, long-term behavior, and mean outlet discharge in the watershed

(Sivakumar 2008). However, lumped models do not represent the spatial distribution of

internal behavior, inputs, or responses of a watershed. For large drainage basins, the

spatial heterogeneity of precipitation, weather, channel networks, soils, land use, and land

cover is significant. Models that represent spatial heterogeneity in watershed inputs,

interactions, and responses tend to have better explanatory power and also have the



2

ability to identify and isolate a locale with critical watershed responses (Moreda, Koren et

al. 2006; Hansen, Refsgaard et al. 2007). Such models are called distributed hydrologic

models. They may also be referred to as complex models due to their high structural

detail, their representation of system non-linearity, and  their consequently high demand

for computational power (Hansen, Refsgaard et al. 2007).

Figure 1 shows a summary of the hydrologic processes that are often simulated in

land-phase hydrologic studies of watersheds. The square grids in Figure 1 represent the

spatial resolution or scale that a distributed modeling paradigm might use to capture

homogeneity and heterogeneity. Within each cell, parameters, hydrologic factors and

responses are homogeneous, while different grids can freely have different levels of the

parameters, factors and responses under study.
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Figure 1: Distributed hydrologic processes

Distributed models need not represent continuous spatial variability as found in

real systems. Instead, they often employ various schemes to sub-divide or delineate a

watershed into regular or regular sub-watersheds each containing homogenous

hydrologic factors under study. The entire watershed can thus be described by the

aggregation of the individual lumped sub-models.

Models that have a limit on the resolution to which heterogeneity can be

represented, such as the Soil Water Assessment Tool (SWAT) (Arnold, Srinivasan et al.

1998) and HYDROGEIOS (Efstratiadis, Nalbantis et al. 2007), are better known as semi
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or partially distributed models (Hansen, Refsgaard et al. 2007). Models with no limit to

the spatial resolution (scale) that they can represent, such as the Distributed Hydrology

Soil-Vegetation Model, DHSVM, (Wigmosta, Vail et al. 1994; Wigmosta, Nijssen et al.

2002)  and MikeSHE (Danish Hydraulics Institute), are considered fully distributed. The

higher the spatial resolution the greater the computational demand a distributed model

will have in simulation, calibration and analysis of sensitivity and uncertainty (Montanari

and Brath 2004; Muleta and Nicklow 2005). This is because the number of parameters or

structural constants of a model (and hence its computational complexity) increases with

resolution. Parameters of distributed models can theoretically be measured from the sub-

basin being modeled (if they correspond to measurable factors), researched from

literature or obtained using automated search algorithms such as the Nelder-Mead,

evolutionary, genetic, and Bayesian Markov chain Monte Carlo methods (Eckhardt,

Fohrer et al. 2005). This process of manually or automatically adjusting parameter values

so that the output of a model best matches a set of observed data is called optimization or

calibration. Parameter sensitivity analysis is the study of how changes to model

parameters affect model output. Sensitivity analysis (SA) is and should be conducted

before calibration and uncertainty analysis so as to exclude insensitive parameters from

further study and hence reduce the computational costs of calibration and uncertainty

analyses. SA is also useful in assessing the robustness and stability of the model to

changes in inputs and in ordering the strengths and relevance of inputs. Parameter

uncertainty analysis involves determining the likely probability distributions or

confidence intervals of parameter values and hence the likely distributions or confidence

intervals of the predictions of a model. Model predictive uncertainty information is
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critical to risk assessment, improved objectivity, creditability and hence acceptability of

simulation output (Montanari 2007; Sivakumar 2008).

While classical statistical methods are often used to identify and quantify

parameter and predictive uncertainty, the large number of runs required to do so can be

prohibitive for computationally expensive models such as distributed models (Bates and

Campbell 2001). In fact, early work on calibrating a semi-distributed SWAT model (see

Chapter 2) for a case study Lower Yellowstone watershed in Eastern Montana using the

native evolutionary algorithm, the Shuffled Complex Evolution – Uncertainty Analysis,

SCEUA, (Duan, Gupta et al. 1993) highlighted the computational difficulties associated

with conditioning distributed models. As Chapter 2 shows, automatic calibration of the

SWAT model would be unfeasibly long for urgent studies or for comprehensive

uncertainty analysis schemes. Second, the native routines of the SWAT model, like other

classical statistics frameworks, used “good enough’” parameter sets in constructing

uncertain distributions and confidence intervals. Within this paradigm, good enough

parameter sets are those that give the smallest sum of squared differences (residuals)

between simulated output and conditioning observed data. However, the often debated

issue is that the selection of “good-enough” parameter values depends on arbitrary

thresholds around the optimum parameter set (Selker 2002; Beven, Smith et al. 2006;

Mantovan and Todini 2006; Beven, Smith et al. 2007; Mantovan, Todini et al. 2007).

There is no rigorous statistical argument or justifiable assumptions that can be provided

to support these cut-off points on parameter values based on model residuals (Mantovan

and Todini 2006; Mantovan, Todini et al. 2007).
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Bayesian Markov chain Monte Carlo (MCMC) methods, which use Bayes’

conditional probability rule, offer a statistically coherent alternative to model calibration

and parameter uncertainty analysis (Kaheil, Gill et al. 2006). The MCMC paradigm to

uncertainty analysis is based on the statistical reasoning that, (i) if a joint-prior parameter

probability distribution is reasonably estimated and (ii) a parameter likelihood function is

chosen based on the assumptions about the probability distribution of the residual of a

model, then (iii) an ergodic Markov chain set on Bayes’ rule will always converge to the

target joint-posterior probability distribution of the parameters, as the chain gets long

and/or as observed data increases  (Gelman, Carlin et al. 2004).

While using Bayesian MCMC methods is appealing and has been successfully

used because of existing rigorous arguments that support the statistical coherency of the

resulting uncertainty analysis, MCMC methods do not solve the problem of long

calibration times for distributed models. Fortunately, by considering the simulation of a

distributed model for a given period as a being equivalent to evaluating a computationally

expensive black-box function, modelers can use response surface methodology (RSM) to

replace lengthy simulations during the calibration of distributed models (Gutmann

2001(a); Regis and Shoemaker 2004; Regis and Shoemaker 2005; Regis and Shoemaker

2007; Bliznyuk, Ruppert et al. 2008).  The response surface methodology is a statistical

tool that uses quantitative data from appropriate experiments to establish or explore any

existing relationships between several explanatory variables and one or more response

variables.

Figure 2 is a schematic of how computationally expensive distributed hydrologic

models can be replaced by emulators during the simulation run or by RSM models during
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calibration. An emulator is any system that mimics the responses of another system,

preferably at a lower cost or avoiding some other difficulty. Unlike RSM fitted functions,

emulators need not be developed from designed experiments. Adaptive sampling and

neural network algorithms are often used in emulators to mimic a set of observation or

characteristics. The surrogate models are generally statistical or mathematical functions

whose parameters ( ) are obtained from fitting inputs to responses of suitable sampled

model parameters ( ) of the computationally expensive distributed hydrologic models, as

illustrated in Figure 3. The RSM or emulator functions are orders of magnitude faster to

evaluate than the actual models and hence can be used to speed up the modeling and/or

calibration and uncertainty assessment.
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Figure 2: Schematic of surrogate models

Two common RSM approximation functions are radial basis and multiple linear

regression functions. These two RSM functions are particularly popular in environmental

applications for their conceptual simplicity and fitting properties assuring a small fitting

region that covers the neighborhood of a global optimum point. Figure 3 is a one-

dimensional (parameter) illustration of how the radial basis and a second order multiple

linear RSM functions may be sampled and fitted to the response or sum of squared

residual of the exact hydrologic model. In Figure 3, the big dots represent uniformly

sampled points (parameter values) used for running the model and hence at which to



9

evaluate the actual expensive model sum of squared residuals. Radial basis function

(RBF) fitting passes through all the previously evaluated design points, while a second

order multiple linear regression (MLR) function fits the design points to a single

optimum (uni-modal) curvature. Unlike in the hypothetical Figure 3, within the

neighborhood of most real global optima, the response surface tends to be uni-modal and

hence is often approximated by MLR curves.

Figure 3: Exact versus fitted RSM function response

Use of RSM for approximating computationally expensive black-box functions

has been studied (Gutmann 2001(a); Regis and Shoemaker 2004; Regis and Shoemaker

2005; Regis and Shoemaker 2007; Bliznyuk, Ruppert et al. 2008).  However, there is

limited research in the use of RSM methods during the calibration and uncertainty

assessment of distributed hydrologic models. Further, there has not been any published

research on the use of RSM methods specifically for the Bayesian calibration and
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uncertainty analysis of distributed hydrologic models. The research in this dissertation is

in part an attempt to fill that gap in application. Related to investigating the use of

MCMC methods on RSM fitting functions for hydrologic model optimization and

uncertainty is the study of factors that affect the performance of such an approach. Before

the research presented in this dissertation, there had not been any such performance

factors study. As a result of the MCMC-RSM performance factors study, a new routine

for response surface approximation was also developed to improve fitting performance.

Ultimately, the main contribution of research in this dissertation is to develop and

understand methods for automated Bayesian MCMC optimization and uncertainty

analysis for use with complex distributed hydrologic modeling.

Problem Statement and Scope of Research

The focus of this research is to respond to challenges arising from the use of

distributed or semi-distributed hydrologic models. Distributed hydrologic models can be

considered a class of complex environmental models and are finding increasing use in

studying the impacts of climate change, water pollution, land use changes, human

settlements and watershed management often for large watersheds. Their ability to

represent the heterogeneity of physical watershed processes as they are found in

geographic space gives them great explanatory power (Moreda, Koren et al. 2006;

Hansen, Refsgaard et al. 2007). Unfortunately their great level of detail presents two

major challenges. First, they require a much larger input dataset as compared to other

environmental models (Liu and Gupta 2007). Such data may not be readily available,

which makes model calibration, validation and uncertainty estimation difficult. Second,
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distributed models inherently require more parameters than lumped models

(Balakrishnan, Roy et al. 2003). This makes them harder and time consuming to calibrate

due to the higher dimensional spaces automated routines must search through during

analysis. Also, more parameters mean greater parameter uncertainty. Parameter

uncertainty contributes to the predictive uncertainty, together with uncertainties in input,

output and structure of the model (Kuczera, Kavetski et al. 2006). These two challenges

make model calibration, uncertainty and sensitivity analysis very useful for complex

environmental models.

While finding the most suitable set of parameters (calibration) is important,

environmental modelers often discover that there are usually many combinations of

parameter sets that give near-optimal model responses  ( Beven and Binley 1992; Beven

and Freer (2001a); Eckhardt, Breuer et al. 2003; Vogel and Sankarasubramanian 2003;

Pappenberger, Beven et al. 2005) . Such behaviour is what Beven and Freer (2001a)

termed parameter equifinality and is also known in statistics as the problem of parameter

identifiability. Equifinality, a term coined by Bertalanffy (1968), is the principle that in

open systems a given end state can be reached by many potential means. Therefore,

instead of focusing on calibration, the uncertainty paradigm offers the view that there

exists a probability distribution from which acceptable values of parameters can be

sampled (Eckhardt, Breuer et al. 2003). That is, parameter values sampled from a specific

joint distribution would define a model that makes statistically acceptable predictions.

Such a distribution, if it exists, would describe parameter uncertainty (Moradkhani, Hsu

et al. 2005; Helton, Johnson et al. 2006). Based on this uncertainty assessment paradigm,

calibration is secondary (Vogel and Sankarasubramanian 2003; Pappenberger, Beven et
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al. 2005). This research considers both approaches by focusing on parameter optimization

and on uncertainty assessment for complex distributed hydrologic models.

To achieve both model optimization and uncertainty assessment of distributed

hydrological models, there are strong arguments for using a framework that involves

Bayesian MCMC and RSM approaches. First, while other non-Bayesian optimization

algorithms are more effective than MCMC, the near-optimal parameter sets obtained

from non-Bayesian search methods cannot be used, in a statistically coherent manner, to

develop parameter and predictive uncertainty. This is largely because there is no

statistically rigorous justification for selecting which parameter sets to include for

uncertainty estimation. Bayesian MCMC optimization routines, however, provide output

that is statistically valid for use in uncertainty assessment, hence achieving both

optimization and uncertainty assessment with the same runs. Second, using Bayesian or

non-Bayesian search routines for calibrating and uncertainty assessment of distributed

hydrologic models is computationally expensive, thus often requiring infeasible time

except when using surrogate models. Lengthy times required for direct model calibration

thus supports the use of response surface approximation approaches.

The main concern with Bayesian MCMC optimization and uncertainty assessment

using RSM approximation for distributed hydrologic models is that this has not been tried

before. The effects parameter insensitivity and interdependence on RSM approximation

of, which are common to distributed hydrologic models, are currently poorly understood

Three synthetic and two case study models were used as proof of concept studies

to investigate the use Bayesian methods in conjunction with response surface

methodology. The developed “Bayesian MCMC on RSM” framework for the
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optimization and uncertainty assessment of distributed models was implemented to

calibrate a case study Distributed Hydrology Soil-Vegetation Model (DHSVM). The

rationale for choosing DHSVM is that (i) the model is fully distributed and significantly

computationally expensive, which is ideal for testing the developed framework and (ii)

the model has gained wide acceptance and use in key hydrologic research such as climate

change scenario analysis (Wiley and Palmer 2008), forest management (Wissmar,

Raymond et al. 2004), land use and land cover studies (Thanapakpawina, Richeyb et al.

2007). DSHVM has its roots in the hydrology-vegetation model (Wigmosta et al 1994)

that originally modeled canopy interception, evapotranspiration and snow accumulation

and melt, as well as runoff generation via the saturation excess mechanisms (Wigmosta,

Nijssen et al. 2002). Model inputs include boundary, meteorology, topography, soil,

vegetation, stream and road network and initial state geographic information science

datasets. Model outputs include main channel flow, water balance and sediment yields.

What makes the DHSVM model attractive to modelers is its relative consistency of

coding and documentation, clear inputs and outputs formats, flexibility of inputs and its

run-time stability (Wigmosta, Vail et al. 1994; Whitaker, Alila et al. 2003; Wigmosta,

Nijssen et al. 2002). However, as with other fully distributed modeling paradigms, there

has been little to no published routines for automatic calibration and parameter

uncertainty analysis for the DHSVM model (Yao and Yang 2009).

Research Objectives and Dissertation Outline

To fully address the problem statement, the four main objectives of this research

are to:
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i. Assess the feasibility of currently available non-Bayesian calibration frameworks for

use with optimization and uncertainty analysis of distributed hydrologic models.

ii. Study the factors that affect the performance of Bayesian Markov chain Monte Carlo

optimization and uncertainty analysis of model parameters using response surface

approximation (surrogate functions) with applications to hydrologic modeling.

iii. Develop an efficient Bayesian Markov Chain Monte Carlo optimization and

uncertainty analysis framework that uses response surface approximation for

suitability to distributed hydrologic modeling.

iv. Evaluate the potential of the developed Bayesian MCMC – RSM calibration and

uncertainty analysis framework when applied to a test case, in which the Distributed

Hydrology Soil-Vegetation Model is used.

The first objective is covered in Chapter 2 (Manuscript 1), titled “A new approach

to watershed management practices assessment using the Soil and Water Assessment

Tool, SWAT”. The second objective is addressed in Chapter 3 (Manuscript 2), titled “A

case study examining factors affecting the performance of response surface modeling

during Bayesian optimization and uncertainty analysis of hydrologic models”. Chapter 4

(Manuscript 3), titled “Bayesian constrained optimization and uncertainty analysis using

radial basis random local fitting”, covers the third objective.  The fourth objective is

addressed in Chapter 5 (Manuscript 4), titled “Bayesian calibration and uncertainty

analysis of the Distributed Hydrology Soil-Vegetation Model using radial basis

functions”.



15

Contribution of Authors and Co-Authors

Manuscript in Chapter 2:
A New Approach to Watershed Management Practices Assessment Using the Soil and
Water Assessment Tool, SWAT

Author: Able Mashamba
Contributions: Data collection and collation, model development and assessment, results
and manuscript write-up.

Co-author: Lucy Marshall
Contributions: Study proposal and supervision.



16

Manuscript Information

Able Mashamba and Lucy Marshall

Journal of Soil and Water Conservation

Status of manuscript (check one):

ü Prepared for submission to a peer-reviewed journal

___Officially submitted to a peer-reviewed journal

___Accepted by a peer-reviewed journal

___Published in a peer-reviewed journal

Publisher: Soil and Water Conservation Society



17

CHAPTER 2

A NEW APPROACH TO WATERSHED MANAGEMENT PRACTICES
ASSESSMENT USING THE SOIL AND WATER ASSESSMENT TOOL, SWAT

Abstract: We present here a study of watershed management practices using a

new systematic approach to scenario modeling with the Soil and Water Assessment Tool,

SWAT. Typical scenario analysis involves analyzing model output from a set of

parameter values selected to simulate various best management practices (BMPs). This

single selection tends to be highly subjective and does not show the sensitivity of the

model to the BMP being studied. The scenario analysis approach proposed here provides

a less subjective framework for the selection and assessment of a range of parameter

values (model scenarios). These are chosen relative to some calibrated and validated

baseline scenario to study the various impacts of each selected target BMP.

In this research, we applied SWAT to a case study watershed that included a

45,580 acre irrigation district called Buffalo Rapids. Nine conservation practices were

studied using 107 model scenarios that provided response trends and hence showed the

criticality and sensitivity of practices and case study SWAT model respectively. Ten

parameter value adjustments were used to test model response for most of the BMPs that

were studied. Where possible, these parameter value adjustments were within ±25% of

the baseline at 5% intervals. Where ±25% of the baseline gave values outside the feasible

range of parameters, 10 other values within the feasible space and close to the baseline

were selected. Conservation practices studied in this research for which it was not

feasible to test as many model adjustments were irrigation delivery, conservation tillage

and crop rotation. The main drawback with the new scenario analysis approach is that
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using more parameter value adjustments to test one conservation practices requires more

model runs.

Keywords: best management practices, scenario analysis, distributed modeling,

Soil Water Assessment Tool (SWAT), calibration, parameter sensitivity.

Introduction

Studying the impact of watershed management practices helps in the selection and

implementation of effective conservation policies that may minimize water pollution

concerns or improve water use and thus promote sustainable watershed productivity.

Hydrologic models are increasingly being used to quantitatively study the effects of

watershed conservation practices on water quality and quantity (Arnold and Fohrer 2005;

Jayakrishnan, Srinivasan et al. 2005). Among the models capable of basin-wide or

distributed hydrologic process assessment, the Soil Water Assessment Tool (SWAT) is

often cited as the most capable in representing agricultural management practices for

water quality studies (Arabi, Frankenberger et al. 2007; Gassman, Reyes et al. 2007).

However, the absence of widely acceptable representations of conservation practices in

the model and of a systematic scenario analysis procedure continues to undermine the

objectivity of any management practice assessment (Arabi, Frankenberger et al. 2007).

Currently, the main approach to watershed management scenario analysis using

SWAT involves building, calibrating and validating a baseline model from which

parameter values and other data inputs are then adjusted to represent different

conversation practice scenarios (Jayakrishnan, Srinivasan et al. 2005; Arabi,

Frankenberger et al. 2007; Gassman, Reyes et al. 2007). The baseline model is often set

to represent the current case study situation (Arabi, Frankenberger et al. 2007). To model
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the different scenarios, Arabi et al (2007) for example first identified target conservation

practices for study and then proposed parameter value changes to represent these

scenarios. However, the amounts by which parameter values were adjusted to represent

the different scenarios remain subjective. Jayakrishnan et al (2005) applies SWAT for

scenario analysis, in a limited way, to assess the effects of municipal wastewater and

dairy manure pollution on the total maximum daily load in surface water.

A new approach to studying different watershed management scenarios presented

in this chapter builds on the general approach by Arabi et al (2007). Firstly this involves

building, calibrating and validating a baseline SWAT model that represents an existing

case study situation. Next, we identify conservation practices to be studied and the

SWAT hydrologic response units, HRUs, in which these practices are to be applied. An

HRU is a contiguous area land within which hydrological properties and responses are

considered homogenous. HRUs are specified as the smallest homogeneous units of land

within a large heterogeneous watershed.  As with Arabi et al (2007), we also identify the

SWAT parameters and inputs representing the target conservation practices to be studied.

However, instead of subjectively determining some parameter and input values that

represent specific scenarios, the approach advocated here studies model responses for a

range of conservation practice-related parameter values close to the baseline values.  For

baseline parameters having near limit values, arbitrary values close to the baseline value

are chosen for testing; otherwise percent adjustments are used for the range of potential

parameter values. As an illustration, say we have targeted a conservation practice that is

likely to impact the universal soil loss equation practice factor parameter, USLE_P,

which is bound by the physical constraints of [0, 1]. If the USLE_P of the baseline model
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is 0.95, we simulate for 10 other arbitrary values of USLE_P close to 0.95 to assess how

the model responds to minor changes of parameters from the baseline, as would be

brought about by reasonably conservation practice implementation.  A positive 25%

parameter adjustment would be beyond the theoretical limit of 1.0. Whenever possible,

we use a parameter adjustment range of ± 25% around the baseline values with each

change being 5% apart thus providing 10 values to be tested for each parameter. This is

in keeping with the range of parameter adjustments used by the native SCEUA algorithm

in SWAT. For conservation practices that affect many parameters and inputs

simultaneously, the adjustments on the different parameters would be made to represent a

worsening or improving scenario throughout for each of the 10 positions making the test

range. Note that different parameter and or input range schemes could also be used.

Testing model response for a range of parameters or input values eliminates the

need to subjectively match one set of values to a specific conservation practice. Instead,

using ranges of practice-related parameter values near the baseline reveals the response

and sensitivity of a model to different levels of conservation practice implementation.

This extra information could help with estimating the costs versus benefits of different

levels of conservation practice implementation.

This paper details the processes that analysts could follow from model building to

scenario analysis using SWAT. To do this, summaries on methods and materials,

sensitivity analysis, calibration, validation, uncertainty and scenario analysis as well as on

results and discussions are included.
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Methods and Materials

The Soil and Water Assessment Tool

The Soil and Water Assessment Tool, (Arnold, Srinivasan et al. 1998) is a

conceptual, continuous time, semi distributed model developed in the early 1990s to

assist water resource managers in assessing the impact of management and climate on

water supplies and non-point source pollution in watersheds and large river basins.

SWAT is the continuation of over 30 years of FORTRAN 90 model development within

the US Department of Agriculture - Agricultural Research Service and was developed to

‘scale up’ past field-scale models to large river basins (Gassman, Reyes et al. 2007).

The model has also been adopted by the U.S. Environmental Protection Agency

(USEPA)’s Better Assessment Science Integrating Point and Nonpoint Sources

(BASINS) software package (Gassman, Reyes et al. 2007). There are currently over 250

peer-reviewed published articles that report SWAT applications, reviews of SWAT

components, or other research that includes SWAT (Gassman, Reyes et al. 2007). The

application of SWAT include streamflow calibration and related hydrologic analyses,

climate change impacts on hydrology, pollutant load assessments, comparisons with other

models, and sensitivity analyses and calibration techniques (Gassman, Reyes et al. 2007).

The main watershed processes that can be simulated in SWAT include climate,

automatic weather generation, hydrological processes, plant growth, land use

management, channel processes, impoundment processes and the routing of sediments,

nutrients, pesticides, bacteria and heavy metals. Further details on the technical theories

and assumptions underpinning SWAT are available from the software user manual, Soil

and Water Assessment Tool Theoretical Documentation, Version 2005.
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Case Study

The case study baseline model was built using weather, elevation, land use, soils,

and vegetation data for a 4,623,100 acre lower Yellowstone River watershed in eastern

Montana shown in Figure 4. Within the watershed lies a 25,580 acre irrigation district

called Buffalo Rapids whose agricultural and irrigation data were used in baseline input

management files settings. The Buffalo Rapids irrigation district is located in the Custer,

Prairie, and Dawson counties of Montana and parallels 64 miles of the lower Yellowstone

River.
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Figure 4: Lower Yellowstone Basin and the Buffalo Rapids Irrigation District

Reliance on irrigation delivery for crop production in the watershed provides an

opportunity to model the effects of irrigation and agricultural conservation practices for

improved water management.   The Buffalo Rapids district includes 155 full-time crop

and/or livestock producers with an average of 164 acres per full time farm.  Issues of

assessment of drinking water, pollution and prevention, and watershed management and

conservation are integral to the future agricultural sustainability and economics of the
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district and watershed. Three main potential causes of water-resource degradation in the

watershed include; (i) irrigation-related nutrient (nitrogen and phosphorous) and sediment

loading to the Yellowstone River, (ii) agriculturally-related nutrient and pesticide loading

to shallow alluvial groundwater, a primary domestic water supply in the watershed, and

(iii) inefficient use of water pumped from the Yellowstone River, which critically

reducing in-stream flows during low-flow periods of the year. Thus results of scenario

analysis from this research could help farmers and stakeholders in identifying

conservation practices and watershed management policies that could help improve water

quality and quantity in the watershed and irrigation district.

The large size of the case study watershed meant that the spatial variability of

hydrological processes would be significant; thus making the use of spatially distributed

modeling preferable. Ideally, a fully distributed model could represent the continuous

spatial variability of topography, weather, soil, land use or land cover found in real

catchments. However, limiting computing resources, the perceived limited gains in

knowledge for doing so (Moreda, Koren et al. 2006), and the scarcity of measured data at

higher spatial resolution limits the widespread application of fully distributed models

(V´azquez, Feyen et al. 2002). In this paper, the semi distributed SWAT was chosen as a

compromise between a fully distributed and a point modeling approach. SWAT also has

had widespread published use (Arnold and Fohrer 2005), and has a preferred ability to

better represent the most watershed management scenarios (Gassman, Reyes et al. 2007).

Input data for SWAT was prepared using ArcGIS 9.1 Geographic Information

System (GIS) software, from the Environmental Systems Research Institute, interfaced

with ArcSWAT 1.06 from the University of Texas A&M. (Winchell, Srinivasan et al.
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2007).  The digital elevation model, channels network shape files and river discharge data

were obtained from United States Geological Survey (USGS) online web database. Land

use and land cover data came from Natural Resources Information System (NRIS)-

United States Department of Agriculture (USDA) online servers. The State Soils

Geographic (STATSGO) soils data, from the USDA Soils Conservation Services, came

bundled with ArcSWAT 1.06. Water quality data was obtained from USGS National

Water Information System and from Montana State University Extension Services, MSU-

ES. The United States Department of the Interior-Bureau of Reclamation-Agricultural

Meteorology (Agrimet) provided daily weather data from two stations while data on

watershed management practices were provided by MSU-ES, Buffalo Rapids project

staff, MSU Eastern Agricultural Research Center and USDA Agricultural Research

Services, Sidney-Montana.

The model application proceeded by initial sensitivity analysis, automated

calibration, split-sample model validation, and model uncertainty analysis via the ParaSol

algorithm (van Griensven, Meixner et al. 2006) . Following this, our newly developed

approaches to scenario analysis were implemented and studied. The main new scenario

analysis approach involves investigating model responses to a set of systematically

selected conservation-related parameter values that are close to the calibrated baseline

settings. This allows for the study of how management scenarios represented by a range

of parameter values would affect model output without the need for subjectively

assigning specific arbitrary parameter values to represent specific management scenarios.

Model responses for a range of parameter values provide extra information on the

sensitivity or rate of change of the output to changes in a specific parameter, hence to
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implementation levels of the related conservation practices. Other management practice

scenarios that are not represented by parameter value ranges were also studied.

Model Sensitivity Analysis

Sensitivity analysis (SA) involves testing how model output is affected by

changes to parameters and or input data (Sieber and Uhlenbrook 2005). Sensitivity

analysis is critical because there is often uncertainty about the true values of inputs that

should be used for a particular model. Thus by investigating the stability and robustness

of a model against random inputs, a picture emerges of how reliable the predictions of a

model might be against possible future changes and about which parameters or inputs are

critical to the model (Zheng and Keller 2006). Our implementation of the SWAT model

commenced with a systematic sensitivity analysis to aid in model calibration and to

identify important model parameters.

The automatic sensitivity analysis involved using Latin Hypercube-One factor At

a Time (LH-OAT) to sample for up to 41 model parameters within specified boundaries

as recommended in the ArcSWAT 1.06 software framework. Sensitivity is expressed by a

dimensionless index I, which is calculated as the ratio between the relative change of sum

of squared residual (SSR) and the relative change of a parameter of a model,

}/){(]}/)({ 001001 θθθ −− SSRSSRSSR .  The subscripts 0 and 1 represent the SSR and the

parameter (θ ) before and after sampling and adjustment respectively. The ranges

00.1||and,00.1||20.0,20.0||05.0,05.0||00.0 ≥<≤<≤<≤ IIII  denote small to

negligible, medium, high and very high sensitivity respectively (Lenhart, Eckhardt et al.

2002). The SSR is calculated as 2
1

)ˆ(∑ =
−

n

i ii yy ; where iy  and iŷ  are the ith observed and
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simulated responses (e.g. channel discharge) respectively and the value n is the total

number of observations used in the sensitivity analysis. Input and calibration data were

used from the time period March 11, 1999 to December 31, 2008. The model output used

for assessing relative sensitivity were main channel discharge and concentrations of

sediment, organic nitrogen, nitrates, total nitrogen and total phosphorous.

For the case study watershed, of the 41 parameters tested, 29 showed an

identifiable trend in their scatter plots and had higher relative sensitivities (overall

sensitivity ranking) than the remaining parameters as shown in Table 1. Hence, these

were chosen for calibration and further study.

Table 1: SWAT model sensitivity analysis parameter ranking

Parameter Lower
Bound

Upper
Bound

Overall
Sensitivity
Ranking

1 Alpha_Bf, Baseflow alpha factor [days] 0 1 1
2 Surlag, Surface runoff lag time [days] 0 10 2
3 Cn2, Initial SCS curve number II value -25 25 3
4 Timp, Snow pack temperature lag factor 0 1 4

5
Ch_K2, Channel effective hydraulic
conductivity [mm/r]

0 150 5

6 Canmx, Maximum canopy storage [mm] 0 10 6
7 Ch_N, Main channel Manning's n value 0 1 7

8 Esco, Soil evaporation compensation factor 0 1 8
9 Blai, Maximum potential leaf area index 0 1 9

10 Sol_Z, Soil depth [mm] -25 25 10
11 Smtmp, Snow melt base temperature [degC] -25 25 11

12
Sol_Awc, Soil Available water capacity [mm
H2O/mm soil]

-25 25 12

13 Slope, Average slope steepness [m/m] -25 25 13
14 Biomix, Biological mixing efficiency 0 1 14

15
Usle_P, Universal soil loss equation support
practice factor

0 1 14

16 Epco, Plant uptake compensation factor 0 1 16
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Table 1 – Continued: SWAT model sensitivity analysis parameter ranking

Parameter Lower
Bound

Upper
Bound

Overall
Sensitivity
Ranking

17
Revapmin, Threshold water depth in the
shallow aquifer for revaporation [mm]

-100 100 17

18
Sol_K, Soil saturated hydraulic conductivity
[mm/hr]

-25 25 18

19 Slsubbsn, Average slope length [m] -25 25 19

20
Rchrg_Dp, Deep aquifer percolation fraction 0 1 21

21 Gw_Delay, Groundwater delay [days] -10 10 22
22 Nperco, Nitrogen percolation coefficient 0 1 23
23 Sol_Alb, Moist soil albedo -25 25 24

24
Gw_Revap, Groundwater revaporation
coefficient

-0.036 0.036 25

25
Usle_C, Minimum universal soil loss equation
cover factor

-25 25 26

26
Phoskd, Phosphorus soil partitioning
coefficient

100 200 27

27
Spcon, Linear re-entrainment parameter for
channel sediment routing

0 0.01 28

28
Ch_Cov, Channel cover factor 0 1 29

29
Ch_Erod, Channel erodibility factor 0 1 30

30
Spexp, Exponetial re-entrainment parameter for
channel sediment routing

1 2 31

31 Pperco, Phosphorus percolation coefficient 10 18 32

32
Gwno3, Concentration of nitrate in
groundwater contribution [mg N/L]

0 10 33

33
Gwqmn, Threshold water depth in the shallow
acquifer for flow [mm]

-1000 1000 33

34 Sftmp, Snowfall temperature [degC] 0 5 33

35
Smfmn, Melt factor for snow on December 21
[mm H2O/decC-day]

0 10 33

36
Smfmx, Melt factor for snow on June 21 [mm
H2O/degC-day]

0 10 33

37
Sol_Labp, Initial labile phosphorus
concentration [mg/kg]

-25 25 33

38 Sol_NO3, Initial nitrate concentration [mg/kg] -25 25 33
39 Sol_Orgn, Initial organic nitrogen -25 25 33

40
Sol_Orgp, Initial organic phosphorus
concentration [mg/kg]

-25 25 33
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Table 1 – Continued: SWAT model sensitivity analysis parameter ranking

Parameter Lower
Bound

Upper
Bound

Overall
Sensitivity
Ranking

41
Tlpas, Temperature lapse rate [degC/km] 0 50 33

Table 1 identifies the ranking of parameters that were sensitive in simulating main

channel discharge.  Note that channel discharge is greatly influenced by parameters that

are related to changes in watershed management practices (e.g. parameters related to

channel roughness or infiltration capacity). A great potential then exists to improve water

quantity targets in the channels by implementing suitable conservation practices.

Sediment yield was sensitive to the linear re-entrainment factor for sediment

routing, channel cover factor, channel erodibility factor, the universal soil loss equation

support practice factor and the universal soil loss equation cover factor. As for discharge,

the sensitive sediment yield parameters are mainly related to watershed management

practices.  We expect the implementation of conservation practices to control sediment

creation and transport to have a positive effect on our case study.

Nitrogen and Phosphorus yields responded to their respective percolation

coefficients as well as the deep aquifer percolation fraction.  This implies that, for the

case study, nutrients are carried to the channels mainly by infiltration into the shallow

aquifer and then into the streams by return flow; and not by surface runoff. Conservation

practices to reduce infiltration, such as avoiding flood irrigation, conservation tillage and

vegetative cover can be predicted to positively reduce nutrient loadings into the channels

in the case study watershed.



30

Model Calibration

Calibration involves selecting model parameter values, within the feasible

parameter space, so as to minimize some measure of error, such as SSR, between model

output and observation. For a model with many parameters, automated global search

algorithms have to be used to find parameter values which give the closest fit between

output and observation.  Typically, modelers use prior knowledge about actual systems to

manually adjust parameter values before or after automatic calibration. Manual

adjustment of parameter values before automatic calibration could help reduce the time to

find, as well as possibly improve the quality of, the optimum.  Adjusting parameter

values after automatic optimization might be appropriate for making the model structure

more realistic, at the expense of its predictive accuracy.

For the case study watershed, sensitivity analysis showed that the model is

sensitive to 29 of the 41 model parameters tested (Table 1). Insensitive parameters were

then fixed to suitable mean values. For the sensitive parameters, sensitive ranges defined

based on sensitivity analysis to provide the search space for model calibration.  No prior

knowledge of parameter values was assumed so manual calibration was omitted.  The

Shuffled Complex Evolution-Uncertainty Analysis, SCE-UA (Duan, Gupta et al. 1993),

algorithm was used to automatically calibrate the model, first for daily discharge and then

for the 4-days-per-month concentrations of sediment, organic nitrogen, nitrate, total

nitrogen and total phosphorous. The year 1999 was used as a warm-up period, and

calibration was for the period January 1, 2000 to October 31, 2007. After calibration,

model simulations were assessed via the Nash-Sutcliffe efficiency (NSE) (Nash and

Sutcliffe 1970), Equation 2.1.
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Where ii yy ˆand represent the ith measured and simulated response, such as

channel discharge, for an analysis period with n time steps. The y is the average of the

observed (measured) response for the entire period of analysis. Daily discharge

calibration gave a high Nash Sutcliffe efficiency of 0.951.

Model Validation

Split-sample model validation involved comparing simulated discharge to

observed discharge (m 3/s) for the Yellowstone River at Sidney, Montana, for the period

1 November 2007 through 31 December 2008. Due to the scant availability of water

quality data, split-sample validation of the model based on water quality predictions

could not be meaningfully performed. Results for the split-sample validation process

based on main channel discharge are shown in Figure 5.

Figure 5: Observed and simulated main channel discharge for the validation period, Oct
2007-Dec 2008
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The observed main channel flow of zero is due to the Yellowstone River freezing

at Sidney, the outlet station, in December of 2008. Compared to the years used in

calibration, the validation period, especially the 2008 season, received above normal

precipitation. Even then, the model managed to have an NSE of 0.968.

Uncertainty Analysis

Quantifying the predictive uncertainty of a model is critical in assessing the risk

or reliability associated with model-based decision making as well as in improving the

objectivity, creditability, and hence acceptability of simulation output (Montanari 2007;

Sivakumar 2008). A distinction between error and uncertainty as proposed by Huard and

Mailhot (2006) is that error refers to the difference between true values (assumed known)

and measurements or predictions while uncertainty is a probabilistic measure of our

incomplete state of knowledge about the true values.

SWAT 2005 implements two uncertainty analysis algorithms, the Parameter

Solutions (ParaSol) and the Sources of UNcertainty GLobal Assessment using Split

SamplES (SUNGLASSES) algorithms (van Griensven and Meixner 2006). ParaSol is a

global optimization and uncertainty assessment algorithm that relies on results from the

SCEUA evolutionary algorithm. ParaSol records all the modified SCE-UA optimization

parameter sets and uses either a chi-squared or Bayesian threshold to select which sets to

use in building uncertainty bounds, similar to the GLUE method (van Griensven and

Meixner 2006). On the other hand, SUNGLASSES is like ParaSol except that it uses an

evaluation period in addition to the calibration period so as to detect other sources of

uncertainty besides parameters (van Griensven and Meixner 2006). Since we are studying

conservation practices which are strictly related to SWAT model parameters, we used the
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ParaSol algorithm for uncertainty analysis. The scant 4-days-per-month water quality

data available meant we could only meaningfully assess the uncertainty associated with

the 21 sensitive parameters that affect daily discharge.

Parameter uncertainty analysis indicated that the 97.5% confidence interval for

the main channel average discharge for the years 2000 to 2008 is 0.43m3 /s. There is a

positive 0.36 correlation between the observed discharge and the size of the confidence

interval. This means that the greater the observed discharge being simulated the greater

the predictive uncertainty. Table 2 shows the 97.5 % confidence intervals for sensitive

parameters that control main channel discharge.
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Table 2: 97.5 % Confidence interval values for flow parameters

Parameter 97.5% CI
min

97.5% CI
max

Baseline
values

Alpha_Bf, Base flow alpha factor 0.9897 1.0000 0.9990
Biomix, Biological mixing efficiency 0.0000 0.3072 0.0923
Blai, Maximum potential leaf area index 0.3242 1.0000 0.5425
Canmx, Maximum canopy storage 0.0000 3.4770 0.7828
Ch_K2, Channel effective hydraulic
conductivity

42.1900 57.2930 50.2570

Ch_N, Manning's n-value for main channel 0.0499 0.0525 0.0519
CN2, Initial SCS CN II value -25.0000 -15.7010 -23.8950
Epco, Plant uptake compensation factor 0.2083 1.0000 0.9091
Esco, Soil evaporation compensation factor 0.0000 0.2379 0.0181
Gw_Delay, Groundwater delay -9.2371 10.0000 4.3954
Gw_Revap, Groundwater revaporation
coefficient

0.0360 0.2287 0.0380

Gwqmn, Threshold shallow aq. water depth for
flow

-1000.000 -226.930 -1000.000

Revapmin, Threshold shallow aquifer water
depth for revaporation

-100.0000 -23.6920 -73.1750

Slope, Average slope steepness -25.0000 5.2005 -25.0000
Smtmp, Snowmelt base temperature -25.0000 -2.3227 -15.5070
Sol_Alb, Moist soil albedo 0.5367 25.0000 19.0100
Sol_Awc, Soil available water capacity 18.3770 25.0000 23.9500
Sol_K, Saturated hydraulic conductivity -25.0000 -18.5570 -22.3680
Sol_Z, Soil depth -3.8554 25.0000 18.6280
Surlag, Surface runoff lag time 0.0000 0.0003 0.0002
Timp, Snow pack temperature lag factor 0.2765 1.0000 0.8588

Due to how the SWAT model variably adjusts the parameters with space, the

values in Table 2 are mostly percentages for adjusting the actual parameter in the

different delineations. Biomix, Ch_K2, Ch_N and CN2 are not just sensitive but are also

determined by the conservation practice in use and thus are important in scenario

analysis. The low values for surface runoff lag times correspond to low surface runoff for

our snowmelt-dominated watershed. Instead, water to the channels is mostly by shallow

aquifer return flow, as shown by the low Gwqmn values. Figure 6 shows the predictive
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uncertainty of the SWAT model for discharge of the Yellowstone River between the

years 2000 and 2008.

Figure 6: Predictive uncertainty of the Yellowstone River flow

The predictive uncertainty in Figure 6 is related to the parameter uncertainty of Table 2.

The 97.5% CI values of the parameters in Table 2 above allow for a combination of

parameters that give the maximum and minimum predicted discharge as in Figure 6.

Conservation Practices Scenario Analysis, A New Approach

Watershed conservation practices (a.k.a best management practices, BMPs)

scenario analyses involved identifying sensitive parameters associated with conservation

practices to be investigated, building a baseline scenario used to assess relative effects of

alternatives and finally building and testing alternative scenarios. Discharge and



36

concentrations of sediment and nutrients in the main channel were used as the target

responses of the model during scenario analysis. Crop yield was the other model output

that was monitored to evaluate the desirability of a scenario.

In implementing our approach, important agricultural conservation practices were

first selected for representation with the SWAT2005 model of the case study. The

selection was based on the applicability of the practice to the target area, the sensitivity of

the parameters representing the practices, and in consultation with the irrigation district

and MSU Water Quality Extension Service. Several USDA-NRCS conservation practices

(http://www.nrcs.usda.gov/tecnical/standards/nhcp.html) were not included in the

analysis as they were unlikely to be used in the case study watershed and had not been

identified by the Buffalo Rapids irrigation district. For instance, contour farming, strip-

cropping and parallel terraces were excluded for investigation in this analysis because the

case study watershed has gentle slopes (96.7% of the land has slopes of less than 7%) and

the surface runoff is predominantly generated by snow-melt. That is, runoff from snow-

melt is not expected to be as significantly erosive as that by rainfall, and hence there is no

need for conservation practices that reduce erosion.

Table 3 shows the 9 selected USDA-NRCS conservation practices that were

considered for conservation practice scenario analysis in the case study. These practices

were considered relevant and possibly useful to the case study watershed based on prior

knowledge of the area and on modeling data collected about the area.

http://www.nrcs.usda.gov/tecnical/standards/nhcp.html
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Table 3: Selected BMPs for Scenario Analysis

 Selected USDA-NRCS
Conservation Practices  (BMPs)

Target improvements

1 Channel stabilization Reduces channel erosion and deposition
2 Conservation crop rotation Reduces field soil erosion and requirement

of pesticide and nutrient. Improves moisture
efficiency

3 Conservation tillage (no tillage) Reduces field soil erosion and improves
moisture efficiency

4 Lined waterways Reduces erosion by channel flows
5 Field border/Strips Reduces field soil erosion
6 Irrigation delivery system

(gated pipes, wheel lines, center
pivots)

Reduces infiltration of water and nutrients
in loamy/sandy soil and reduces irrigation
water demand

7 Nutrient management Reduces nutrient available for infiltration
and wash-away and nutrient requirement

8 Stream-bank and shoreline
protection; use of vegetation and
structures

Reduces channel/gully erosion

9 Critical area and range planting Reduces soil erosion and surface runoff

Results from sensitivity analyses of 41 parameters of the case study model were

used to select the parameters to be adjusted during conservation practice scenario

analyses. Of the 29 sensitive parameters, those that are associated with conservation

practices  (Santhi, Srinivasan et al. 2006) are listed in Table 4. This list includes sensitive

parameters for discharge, sediment and nutrients modeling that are determined by

conservation practices being studied.
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Table 4: Sensitive parameters and operation associated with conservation practices

Sensitive parameters associated with
conservation practices

Management file parameters and
operations associated with conservation
practices

Biomix, biological mixing efficiency FILTERW, field filter width
Ch_K2, channel hydraulic effective
conductivity

CNOP, SCS Curve number II for
management operations

Ch_N, manning’s channel roughness Irrigation operations
CN2, initial SCS Curve number II value Irrigation amounts
Ch_Cov, channel cover factor Fertilizer operations
Ch_Erod, channel erodibility factor Fertilizer amounts
USLE_C, minimum USLE cover factor Crop rotation
USLE_P, USLE support practice factor Tillage operations

Having identified sensitive parameters associated with target conservation

practices, the next step was to develop a baseline management scenario from which the

relative effects on discharge, sediment and nutrient concentrations of alternative

scenarios would be measured. The sensitive parameters in Table 4 used baseline values

obtained from calibration for flow and for concentrations of sediment, organic nitrogen,

nitrate, total nitrogen and total phosphorous in the main channel. From field work by

MSU-ES, baseline management operations for the model included gated pipe irrigation,

nitrogen and phosphorous fertilizer application and tillage operations. On the other hand,

crop rotation and the use of center pivots and wheel lines for irrigation delivery were

considered as alternative scenarios to be investigated together with other conservation

practices.

The case study SWAT model had 70 agricultural hydrologic response units

(HRUs) and 145 range land HRUs. Table 5 (Kirkpatrick, Browning et al. 2006)

summarizes the cropping data used to build the baseline scenario for the agricultural
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hydrologic response units.  Except for irrigation, which was implemented only for

Buffalo Rapids, other agricultural management scenarios were applied to all the

agricultural HRUs; a total area roughly one fifth of the entire watershed.

Table 5: Baseline Agricultural Scenario Data for Case Study

 Agricultural
Operation

Major Buffalo Rapids Crop
Sugar
beets Alfalfa Barley Wheat Corn Beans

Pre-planting tillage

2 weeks
before

planting

2 weeks
before

planting

2 weeks
before

planting

2 weeks
before

planting

2 weeks
before

planting

2 weeks
before

planting
Start of growing
season 4/30 5/15 4/23 5/2 5/11 5/16

N fertilizer date

Once
 At

planting n/a
Once at
planting

Once at
planting

50% at
planting,
the bal
at 6/15 n/a

N kg/ha 235 0 55 65 90 0
P fertilizer  date 4/30 5/15 4/23 5/2 5/11 5/16
P kg/ha 56 40 30 35 40 35
Secondary tillage 6/01 No till No till No till 6/15 No till

Harvest and kill date 9/25
8/27 of
year 2 7/30 8/7 10/22 9/6

Heat Units 1925 5000 1400 1475 1605 1190
Available crop
acreage data 1530.4 978.8 875.9 783.4 704.8 424.2
 % crop acreage for
available data 28.9 18.5 16.5 14.8 13.3 8.0
Approximate area
under irrigation,
km2 57.80 37.00 33.00 29.60 26.60 16.00
Area under
cultivation,
watershed-wide,
km2 1319.74 844.82 753.48 675.85 607.35 365.32

Main sources of data for Table 5 were the annual cropping reports for 1996-2008

from USDA Montana-Sidney office for the entire Lower Yellowstone watershed, the

MSU-Extension Services field data as well as Buffalo Rapids project sources.  Crop
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acreages, totaling 5,297.1, are annual averages for a part of the Buffalo Rapids irrigation

project, where such data was available. However, the entire Buffalo Rapids project

irrigates 22,719 acres (http://www.usbr.gov/projects/Projects.jsp?proj_Name=Buffalo

+Rapids+Project). The total area under irrigation for the baseline model is 49421 acres,

slightly more than double the size of the Buffalo Rapids irrigation project (MSU-ES).

This includes irrigation acreages for individual or private irrigation schemes scattered

throughout the watershed.

The total agricultural acreage for the entire case study watershed is 1,141,100.

Hence most of the agriculture (1,091,679 acres) is dryland cropping. There are three main

varieties of wheat cultivated in the irrigation district; spring, winter and durum wheat. For

simplification, winter wheat (planting date 10/10, harvesting date 7/23 of the following

year) is not being represented in the planting dates of the “wheat” crop in Table 5. This is

because winter wheat is largely grown under dryland cultivation thus would not help with

the investigation of irrigation scenarios.

Nitrogen and phosphorus fertilizer application rates and secondary tillage

schedules for the different crops were as recommended by MSU-Extension Services’

staff (Jim Bauder, pers. comm.). Each crop’s heat units were calculated from standard

formula using data on planting to harvesting periods, maximum and minimum daily

temperatures, and the crops’ optimal growth and base temperatures. Crop allocation to

the 70 agricultural hydrologic response units (HRUs) in the watershed was randomized,

while matching percent crop acreage to percent area of allocated agricultural HRUs.

Once a baseline scenario was built using the best available data for the

approximation of the current situation in the watershed, the final step was to select, build

http://www.usbr.gov/projects/Projects.jsp?proj_Name=Buffalo
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and run alternative management scenarios. The four main approaches to scenario analysis

were (i) use of crop rotation, (ii) changes to irrigation delivery systems (and hence

irrigation amounts), (iii) use of zero tillage and (iv) the systematic adjustments of

sensitive parameters associated with target conservation practices.

Three irrigation delivery systems that were investigated are the gated pipes, wheel

lines and center pivots. These are the main systems currently in use in the district. Gated

pipe irrigation delivery, the most prevalent system in the case study watershed was used

as the baseline setting. Table 6 shows the average irrigation management scenarios and

schedules that were investigated.

Table 6: Irrigation scenarios for study (Kirkpatrick, Browning et al, 2006)

Gated pipes
(baseline)

Wheel lines Center Pivots

Start of irrigation season 5/01 5/01 5/01
Frequency 2 - 3 weeks 1wk 3days - 2

weeks
5 days

Amount per application
(mm)

152 88 35

Total Amount (mm) 760 528 460
End of irrigation season 8/25 8/25 8/25

In consultation with MSU-ES experts, the irrigation amounts were assumed to be

largely determined by the irrigation system in use and the irrigation schedules used. The

types of crops do not significantly determine the amount of water that will be delivered to

the fields on a particular irrigation date. Irrigation begins early May and water delivery to

the fields is staggered according to sections and farms to reduce demand on any specific

day. For the period of simulation, the observed minimum daily average main channel

flow was 28.60 m3/s, in late August of 2001. To prevent zero or negative flow, baseline
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irrigation schedules for the model were devised such that the main channel flow does not

fall below this minimum average discharge while ensuring that the channel provides the

full daily irrigation demand. To study the relative effects of crop rotation, the baseline

scenario did not include crop rotation. Sugar beets were rotated with barley and wheat

while beans were rotated with corn in the alternative scenario. Alfalfa is typically rotated

with pasture bi-annually; this rotation was not investigated to limit modeling complexity.

Another pertinent scenario that was investigated was the effect of zero tillage

(conservation tillage) on main channel discharge.

Finally, quantitative alternative scenarios were built from the baseline scenario by

using the new approach proposed in this paper. This involved making and testing “one

factor at a time” adjustments to the sensitive conservation-related parameters from their

baseline values. Ten adjustments were made and tested for each of the numerical

parameters in the agricultural HRUs of the case study.  The adjustments were for a range

of ±25 percent of the baseline values at 5% steps, where percent changes would not fall

out of the feasible parameter limits. This was to ensure parameters remained within

reasonable limits while we investigate how the degree of intervention might impact the

results. However, the baseline values for Biomix, FILTERW, USLE_P, Ch_Cov and

Ch_Erod were close to feasible limits, hence the ten alternative scenario values were

selected based on recommendations of typical values from SWAT 2005 manual and also

as guided by sensitivity analysis results. The results and discussions of these scenarios are

given in the results and discussions below.
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Results and Discussions

Baseline Scenario

Figure 7 and 8 show the yearly and monthly trends for discharge, concentrations

of sediment and yields for total nitrogen and total phosphorus for the baseline model

scenario.

Figure 7: Yearly average nitrogen, phosphorus and sediment for baseline scenario

Figure 7 shows the average yearly trend for sediment to be increasing for the years 2000

to 2008. The close similarity between the average yearly trends of the simulated total

nitrogen and phosphorus may suggest that the two nutrients are mainly from fertilizer

application. The monthly average output for the baseline scenario, Figure 8, shows that

simulated sediment concentration is highest in the months of May and June, which

happens to be when snowmelt induced discharge peaks.
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Figure 8: Monthly average nitrogen, phosphorus and sediment for the baseline scenario

Figure 8 shows the highest jump in predicted nutrients yields in March. Since this

jump coincides with the beginning of the planting season, when fertilizer application is

also at its highest, this could be confirming that nutrients yields in the main channel of

the watershed are due to fertilizers. In Figure 8, total nitrogen remains relatively high

until August mainly because of continued application during the rest of the plant growth

period and also from legumes’ nitrogen fixing. The rise in nutrient in winter might be due

to a combination of an increase fallen foliage and decreased biological activity.

Irrigation Scenarios

Figure 9(a) shows discharges, sediment concentrations (9b), and yields of total

nitrogen (9c) and total phosphorus (9d) for the gated pipes (baseline), wheel lines and

center pivots irrigation scenarios. The values are for simulated daily output for the period
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2000 to 2008, with 1999 omitted as the model warm-up year. The maximum outliers have

been are not represented in Figure 9 for readability.

Figure 9: Irrigation delivery scenarios

From gated pipes to center pivots, the amount of irrigation water per application

decreases while the frequency increases as given in Table 6. Although the total amount of

water applied at the end of the irrigation season decreases with each scenario along the x-

axis of Figure 9(a), counter-intuitively, the average main channel discharge also

decreases. We theorize this is due to larger amounts of irrigation water per application

with lower frequencies that allow for more infiltration into the shallow aquifer and hence

more return flow. Lower amounts of irrigation at higher application frequencies

encourage more water loss from the watershed due to evapotranspiration. However, the
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decrease in discharge from wheel lines to center pivots falls within 97.5% confidence

limits for wheel lines and is thus not differentiable from random error (Figure 9a).

The main channel sediment concentrations of Figure 9(b) also correspond to the

simulated discharges of Figure 9(a).  Hence Figure 9 (a and b) shows that the baseline

irrigation scenario results in higher flows and more sediment concentration in the main

channel than other irrigation schemes. Figure 9(c) and 9(d) show that the baseline

irrigation scenario produces the lowest yields of total nitrogen and total phosphorus in the

main channel. This is unexpected since the baseline scenario also has the most irrigation

amount per application and the highest total irrigation water quantity.  One would expect

that the higher return flows inferred to explain Figure 9(a) would also result in higher

infiltration of nutrients into the main channel. To explain Figure 9(c) and 9(d) without

contradicting 9(a), it is likely that the baseline irrigation water leeches the nutrients into

the shallow aquifer such that surface runoff washes away less of the nutrients into the

channels. Conversely, light application of irrigation water may leave more nutrients in the

top soils where surface runoff from precipitation can later wash them into the channels.

Tillage and Rotation Scenarios

Compared to the baseline, which had pre-planting, and secondary tillage and no

crop rotation, the no-tillage and rotation scenarios did not produce significant differences

in main channel flow. However, Figure 10(a) shows that practicing conservation tillage

(no till) reduces average yearly sediment concentrations in the main channel by 2%,

while crop rotation has no effect as compared to the baseline.



47

Figure 10: Tillage and crop rotation scenarios

Figure 10(b) and 10(c) show that no-tillage increases the total nitrogen and total

phosphorus yields in the main channel by about 9% and 17% respectively. In this

simulation, crop rotation increases total nitrogen and total phosphorus yields by about 1%

and 12% respectively. The increases of nutrients yields for crop rotation are likely due to
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the two-year rotation used resulting in every other year being assigned higher acreages

for higher nutrient-demanding crops than for the baseline scenario. Depending on the

actual rotation scheme used, lower nutrients yields can also be achieved for the same

reason. While zero tillage reduces sediment in the main channel, it may not be desirable

to have the higher percentage increases in nutrients loadings that result.

Biological Mixing Efficiency Scenarios

Biological mixing of soil is desirable and often increases when conservation

tillage is practiced. The activities of earthworms and other soil biota improve soil

hydraulic conductivity, aeration, nutrient mixing, and uptake of nutrients by plants, etc,

and thus improve crop growth. Biomix is the model parameter that accounts for the

extent of biological mixing for the watershed soils within the SWAT model. The Biomix

efficiency parameter of the case study was calibrated at 0.0018, a very low value

compared to the recommended value of 0.20. This might suggest that the watershed has

very low biological mixing of soil. Ten Biomix values were selected to adequately

explore the sensitivity of the model to this parameter and the results are presented and

discussed below.

First, Biomix does not affect flow or sediment yields in the case study. However,

Figure 11(a) and 11(b) show that greater biological mixing efficiencies significantly

reduce main channel yields of total nitrogen and total phosphorus. The baseline values

are shown as triangles.
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Figure 11: Biological mixing efficiency Vs nutrients scenarios

It should be noted in Figure 11 and most of the subsequent figures that baseline

values are also generally the local optimum for the simulation model. For instance in

Figure 11, the responses of the model are locally ideal around the calibrated Biomix of

0.0018, where both total nitrogen and total phosphorus values are relatively lower than

the neighborhood.  The proposed explanation for the paradoxical “off-trend local

optimizations” at calibrated baseline values is that they represent the degree to which the

effect of a parameter actually depends on the values of other parameters. The off-trend

local optimization is a measure of the interaction effects between the parameter

concerned and the rest. Adjusting a parameter from its calibrated value moves it away



50

from the optimum response point as well as change the strength of the interaction effects

between this parameter and the rest of the calibrated parameters. Thus for the situation

where this local optimum phenomenon does not manifest, this likely implies that the

interaction effect of a parameter with the other parameters is weak for the specific

responses, as in Figure 12(c) and 12(d) compared to Figure 12 (a) and 12(b). While this

seems to suggest a multi-factor scenario analysis is desirable for the most sensitive

parameters, the computational burden of the SWAT model means this is prohibitive. We

intend to pursue research that will tackle the issue of improving computational efficiency

for these types of applications.

SCS Curve Number Scenarios

The SCS curve number CN2, governs the amount of surface runoff increase.

Generally, as the value of CN2 increases, the main channel flow increases exponentially

as observed in Figure 12(a). However, the baseline, with 0% adjustment of the calibrated

SCS curve numbers, again shows the local optimum mentioned earlier.
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Figure 12: SCS curve number (surface runoff) scenarios

Figure 12(a) and 12(b) show a strong positive correlation between main channel

flow and sediment concentration in the main channel. Figure 12(c) and 12(d) show that

although higher values of CN2 significantly improve main channel flow, they would also

more exponentially promote higher values of total nitrogen and total phosphorus.

Typically the aim is to reduce soil erosion by surface runoff. In the case study, lowering

total water delivered for irrigation would lower CN2 and thus also results in significant

reductions in nutrients washed from the fields into the main channels.

USLE_C and USLE_P Scenarios

The minimum universal soil loss equation cover factor (USLE_C) and the USLE

support practices factor (USLE_P) are parameters that typically affect soil erosion and

hence sediment creation in the watershed. The conservation practices affecting USLE_C
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and USLE_P are generally those controlling tillage operations. In the scenarios of

USLE_C and USLE_P these two parameters (Figure 13) however did not have any effect

on sediment concentrations in the main channel. This negligible effect to sediment

concentration in main channel might be due to the weak effect of surface runoff in the

watershed to significantly cause erosion.

Figure 13(a) and 13(c) show that except for the local optimum around the baseline

calibrated values, reducing USLE_C linearly reduces total nutrients loadings in the main

channel. Conservation practices that improve vegetative growth on the land would reduce

the USLE_C by increasing nutrients uptake by plants more than nutrient deposition by

foliage, thus perhaps directly reducing net nutrients yields.

Figure 13: USLE_ C and USLE_P Vs nutrients scenarios

Figure 13(b) and 13(d) show another linear relationship between USLE_P and the

total nitrogen and total phosphorus released to the main channel. Given the optimum
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calibrated USLE_P value of .9065 there is sufficient ability for implementing

conversation practices that desirably lower the USLE_P values such as strip-cropping,

contour farming, grassed waterways and use of field borders. Although the graphs in

Figure 13(b) and 13(d) show steep gradients, note that a 12% reduction in the USLE_P

from .9065 to 0.80 would however only produce about 1%  and 0.5% improvements in

total nitrogen and total phosphorus yields respectively.

Fertilizer Application Scenarios

Figure 14 shows linear changes to total nitrogen and total phosphorus in the main

channel with percent changes to amounts of fertilizer per application. Reducing nitrate

fertilizer application reduces total nitrogen loadings more than reducing phosphate

fertilizers would reduce total phosphorus loadings.

Figure 14: Fertilizer application Vs simulated nutrients yield scenarios
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Using filter strips around crop fields as a conservation practice does not have any effect

on the amounts of nutrients or sediment carried to the channels in the model.

Channel Scenarios

Conservation practices that affect channel conditions affect effective hydraulic

conductivity (Ch_K2), Manning’s value (Ch_N2), erodibility factor (Ch-Erod) and the

cover factor (Ch_Cov). Among these channel scenarios, flow is affected by Ch_N2 and

Ch_K2 only, as given in Figure 15(a).

Figure 15: Percent adjusted channel parameters Vs flow, sediment and nutrients

From Figure 15(a), reducing the main channel hydraulic conductivity, Ch_K2,

from a calibrated value of 45.10, results in lower flows. Reducing hydraulic conductivity

of channel beds and banks reduces the water that leaves through seepage or enters the
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stream from return flow. Hence lower discharges from lower conductivity imply that the

main channel would experience a net gain of water by return flow from the shallow

aquifers. Otherwise it would experience net loss of water (influent channel) by recharge

to the shallow aquifer and the Ch_K2 graph would be reversed. If other local channels in

the watershed are also net gaining channels, including irrigation canals, stabilizing the

channels or making the beds and banks more impervious would potentially marginally

worsen flow by reducing water gains through return flow from shallow aquifers. The

Manning’s channel roughness, Ch_N2, was calibrated at 0.052, which implies sparse

vegetation along the banks of the main channel. Planting or encouraging more vegetation

growth along the channel banks would marginally reduces main channel flow as shown

in Figure 15(a). Using the earlier proposed explanation for the observed local optimality

of the baseline (calibrated) values, a pronounced difference between neighborhood and

calibrated responses means that both Ch_N2 and Ch_K2 are highly dependent on the

values of other parameters for their effect on flow. A conflicting benefit of increasing

Manning’s values as shown in Figure 15(b) is that more vegetation reduces sediment

concentrations in the streams. The slight increase in main channel sediment concentration

with increasing effective hydraulic conductivity is so small (after the decimal point) it is

not perceptible on the scale of the graph in Figure 15(b) and should be considered

negligible.

In contrast, Figure 15(c) and 15(d) show a significant reduction of total nitrogen

and total phosphorus yields with reductions in hydraulic conductivity. A speculative

explanation of this significant reduction in nutrients loadings with reduction in

conductivity is that shallow aquifer water, which might have higher concentrations of
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nutrients, mixes less with channel water. Although we did not monitor the prediction of

groundwater nutrients of the model, explanations for channel hydraulic conductivity as

well as for irrigation scenarios suggest that the watershed aquifers in fact typically

contain higher concentrations of leached nutrients than the streams.

As expected, higher Manning’s roughness values, perhaps because of more

aquatic vegetation and hence more nutrient uptake, reduce the amount of total nitrogen

and phosphorus yields in the main channel. The local optimization of the calibrated

baseline value of Figure 15(d) shows that both Ch_N2 and Ch_K2 are highly dependent

on interactions with other parameters for predicting total phosphorus. Other values of

Ch_N2 and Ch_K2 away from the calibrated value result in noticeable changes in the

predictions of phosphorus loadings of the model.

The calibrated channel cover and erodibility factors of 1.000 and 0.9968 mean

that the main channel has very little to no cover and is highly erodible respectively.

Figure 16 shows a similar gradient linear trend of the effect to sediment concentration in

main channel of adjusting the cover and erodibility factors. Values of Ch_Cov and

Ch_Erod close to zero are for high vegetative cover and very low erodibility of the main

channel respectively. From the baseline value in Figure 16, there is a lot of room for

reasonable reductions in sediment concentrations and related sediment yields through

reducing channel erodibility and improving vegetative cover.
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Figure 16: Average sediment concentration in main channel, Ch_Cov, Ch_Erod

There were no predicted effects of Ch_Cov and Ch_Erod on total nitrogen and

total phosphorus yields in the main channel. This is interesting since if Ch_Cov

represents channel plant cover then one would expect more plants to reduce the nutrients

loads as suggested for higher Ch_N2. Perhaps while this might be so, organic nitrogen

and phosphorus that result from decaying foliage balances out the plant nutrients uptake

in the long run.

Summary and Conclusion

A new way for reducing bias in the selection of parameter values representing

different conservation practice scenarios is to use a range of, instead of single, values for

each conservation practice. Besides reducing selection bias, using a range of parameter

values also shows the trends and sensitivities of parameters and hence the extent to which
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related conservation practices might have to be implemented before desirable results can

be expected. Using this range-based approach to scenario analysis the following points

were deduced about the case study watershed to the impact of multiple proposed

conservation practices.

To a limit, irrigation systems that deliver smaller amounts of water more

frequently counter-intuitively results in lower discharges than less frequent application of

larger amounts of water. This could be due to frequent water application promoting more

evapotranspiration while less frequent but larger amounts of water delivery promote more

return flows and also more sediment into the channels.

The baseline model shows that there has been a steady increase in sediment

concentration in the Yellowstone River. The sediment concentration is more correlated to

discharge than precipitation, and hence implies it is potentially generated by flow

processes in the channel. Channel conservation practices, such as controlling channel

erodibility, cover and Manning’s roughness can positively reduce sediment creation.

Practicing zero tillage reduces sediment concentrations but promotes the washing away

of nitrogen and phosphorus into the channels. Also, conservation practices that reduce

SCS curve numbers, CN2, would reduce sediment and by reducing surface runoff and

hence discharges. While reducing CN2 from baseline values do not reduce nutrients

yields into the channels, increasing CN2 would exponentially increase nutrients loadings.

The main source of total nitrogen and phosphorus is fertilizer application, which

produces the highest concentrations in March, the beginning of the planting season.

Improving biological mixing in the watershed would reduce nutrients concentrations in

the river without increasing sediment concentrations. Reducing the channels’ effective
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hydraulic conductivity (say, by making channel beds impervious) linearly reduces

nutrients loadings and discharges, but not sediment concentrations. Lower flows for more

impervious beds and banks imply that watershed channels are net gainers of water by

return flow from shallow aquifers. That is, more impervious surfaces prevent more return

flow into channels and hence reduce discharge. It also implies that return flow typically

has more nutrients than channel water, hence the significant rise in nutrients loadings

with more return flow. Field filter strips and crop rotation did not have significant

reductions to nutrients loadings in the channels. The limited effect of field strips again

perhaps indicates that nutrients and sediment are not typically lost from the fields to the

rivers through surface runoff.

Such a complete description of the effects of different scenarios can only be

obtained by testing for more than one value of a parameter for each conservation practice.

A drawback in using ranges of parameter values for each conservation practice being

studied is that the number of scenario runs and the analysis required multiplies. The

localized optimum observed in this study for several parameters suggests that considering

parameter interactions by use of factorial designs could additionally enhance the

approach. However, distributed models for large watersheds have heavy data

requirements and typically contain many parameters worsening the computational burden

of any sensitivity analysis, calibration and scenario analysis. Sensitivity analysis is

critical in determining which parameters and inputs affect model output the most.

Parameters and inputs that do not significantly affect model behavior are excluded from

calibration and uncertainty analysis, with significant time gains. Confidence intervals

from uncertainty analysis are useful in determining whether different model scenarios



60

being studied are significantly different or are otherwise indistinguishable from random

error. Overall, the utility of these models is undeniable but model efficiency and

usefulness would be enhanced by attempts to improve computational efficiency.
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CHAPTER 3

A CASE STUDY EXAMINING FACTORS AFFECTING THE PERFORMANCE OF
RESPONSE SURFACE MODELING DURING BAYESIAN OPTIMIZATION AND

UNCERTAINTY ANALYSIS OF HYDROLOGIC MODELS

Abstract: The use of response surface methodology (RSM) for approximating

objective functions during the optimization of complex time expensive models has been

well researched in environmental modeling and specifically hydrologic modeling (Ye, Li

et al. 2000; Buhmann 2003; Regis and Shoemaker 2004; Regis and Shoemaker 2007;

Bliznyuk, Ruppert et al. 2008). Generally, successful optimization algorithms based on

RSM approximated surfaces are provided as stand-alone RSM-optimization

implementations that are compared to existing alternatives. However, there has not been

any specific effort to compare the underlying factors that affect the performance of

different RSM based optimization and uncertainty assessment algorithms. A study of

factors affecting the performance of optimization on RSM fitted surfaces would help

analysts with applying effective RSM-based optimization approaches for computationally

time-expensive model calibration and analysis in operational modeling and not only in

research. We studied the effect on Bayesian optimization performance of (i) the

approximation function used and the type of model or response function approximated,

(ii) the number of points used in the RSM curve fitting, (iii) the size of the region from

which fitting points are sampled and (iv) the size of normal error in the observed-data.

We considered multiple typical hydrologic models, using synthetic and real data. The

performance of an RSM fitting scenario was measured as the Euclidean distance between

the optimum point obtained by Bayesian optimization on the RSM fitted surface and the
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optimum point obtained by Bayesian optimization directly on the actual model. We

maintain that a shorter distance implies better overall optimization performance than a

longer distance.  Bayesian Markov chain Monte Carlo (MCMC) optimization over a

fitted response surface created by the spline based  radial basis function (RBF) generally

improved parameter estimates over using the computationally simpler second order

multiple linear regression (MLR) except in cases where the simulated model had

similarities in structure.  Generally, increasing the number of points used in RSM fitting

improves the accuracy of fit and hence parameter optimization. However, results suggest

that beyond some value, more RSM points produce diminished improvements, or may

even begin to negatively affect the performance of RSM approximation for some

situations. Reducing the parameter sampling domains consistently improved the RSM

fitting and Bayesian optimization. From the results, we infer that fitting fewer points on a

smaller range gives better results than fitting many more points on a larger region.

Finally, the size of the Bayesian residual error (which may be analogous to observation

error or model structural error) significantly affects the performance of RSM

methodologies.

Keywords: Response surface methodology, radial basis function, Bayesian

optimization, uncertainty analysis, hydrologic modeling

Introduction

Computer modeling of hydrologic systems is becoming standard in hydrologic

science (Sivakumar 2008). It is now feasible to model physically-based as well as

spatially and temporally distributed hydrologic processes and interactions. Even so, such
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complex models often need calibration, in addition to the estimation of predictive

uncertainty desirable for many predictive models (Yang, Herath et al. 2000). Optimizing

such models and quantifying their predictive uncertainty is still often time consuming.

Practically, a large number of model runs is often needed for optimization and

uncertainty assessment. These models however have sufficient complexity that make a

large number of runs often time infeasible (Sahoo, Ray et al. 2006).   As such, a number

of approaches have been proposed that reduce the computational time needed to calibrate

and estimate predictive uncertainty for these computationally time expensive models.

Three prominent approaches (in hydrologic analysis in particular) for reducing

computational time during model calibration and uncertainty analysis are the use of more

efficient optimization algorithms (Vrugt, Gupta et al. 2003; Ter Braak 2006; Tolson and

Shoemaker 2007), the use of surrogate models that approximate the responses of actual

models (Regis and Shoemaker 2004; Regis and Shoemaker 2007; Bliznyuk, Ruppert et

al. 2008) and multi-node parallel processing (Vrugt, Gupta et al. 2003; Muttil, Liong et

al. 2007). Within hydrologic modeling, the development or optimization of fast global

search algorithms used for calibration may be reaching diminishing returns

(Andr´eassian, Lerat et al. 2007; Sivakumar 2008; Yang, Reichert et al. 2008). Parallel

processing has the potential for significant computational speed gains in complex

hydrologic modeling as processing networks become more available. An attractive way

for reducing computation time on single or serial processing machines is by using fast

surrogate models to approximate the responses of computationally time-expensive

hydrologic models during calibration and uncertainty analysis. Response surface

methodology (RSM) is a collection of statistical tools used for fitting an approximate
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function to the responses of an actual model, for suitably selected values of the

explanatory variables, with a view to using this fitted function in interpolating responses

at some other input values of the explanatory variables.

In this paper, we investigate four factors that affect the performance of Bayesian

calibration and uncertainty analysis when using simple RSM approximation for

hydrologic models. We are interested in how the (i) approximation function and the type

of model or response function approximated, (ii) the number of points used in the actual

curve fitting, (iii) the size of the region from which fitted points are sampled, and (iv) the

size of observed data error, affect the accuracy of Bayesian calibration and uncertainty

assessment when using RSM models. The size of residual model error affected the

performance of the Bayesian Markov chain Monte Carlo, MCMC, algorithm in finding

theoretical optima, and therefore could also affect the performance of response surface

fitting.

To our knowledge there has not been a review of these factors and their impact on

hydrologic or time series model specification presented in one paper. We feel that before

choosing specific algorithms, it may be informative for analysts to consider how the

different RSM factors and levels selected may affect the performance of the resulting

Bayesian optimization and uncertainty assessment.  The RSM approximating functions

reviewed are the second order least-squares multiple linear regression (MLR) and the

spline based radial basis functions (RBF), which were selected for their ease of

implementation and common use in RSM fitting (Buhmann 2003; Regis and Shoemaker

2004; Regis and Shoemaker 2007; Bliznyuk, Ruppert et al. 2008).One case study and

three synthetic simulation models were used for this study. The case study model is a
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simple water balance model that uses precipitation, evapotranspiration and discharge data

for a catchment in Australia to simulate runoff. The first synthetic model is a multivariate

quadratic function that has simple curvature. A cosine function was used to represent

basic time-series output, and a synthetic water balance hydrologic model chosen for its

comparatively many number of parameters that could provide a more complex response

surface. Finally we implemented a well established conceptual rainfall runoff model with

real data to investigate issues related to real model errors.

Although the functions assessed in this paper are not computationally expensive,

results from this study will help inform future efforts in setting up effective RSM

approaches for use with distributed hydrologic models. This is because recent efforts in

global RSM fitting (Buhmann 2003; Regis and Shoemaker 2004; Regis and Shoemaker

2007; Bliznyuk, Ruppert et al. 2008) assume prior knowledge of some highest posterior

density (HPD) region, which typically requires prior optimization. In Bayesian inference,

the HPD region is equivalent to a statistical confidence interval or credible interval.

However, for computationally expensive function evaluations, this prior optimization

adds to the total computational burden. Rather than determining the HPD prior to fitting,

using an extended sampling domain and local fitting is an alternative that Regis and

Shoemaker (2004) use with evolutionary optimization. It would be interesting to learn

how local and global RSM fitting compare, for use with Bayesian MCMC for cases

where there is prior knowledge of the HPD parameter sampling region.
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Methods for Model Optimization and Uncertainty Assessment in Hydrologic Modeling

Bayesian Inference and Markov Chain Monte Carlo

Bayesian inference is an approach to statistical inference in which all forms of

uncertainty are expressed in terms of probability (Gelman, Carlin et al. 2004). A

Bayesian approach to model parameter uncertainty assessment starts with the formulation

of a model that best describes the system under study. A prior distribution over the

unknown parameters of the model is formulated, which is meant to capture our beliefs

about the system before seeing the system data. After observing some system data, we

apply Bayes' Rule to obtain a posterior distribution for the unknown model parameters,

which takes account of both the prior and the data. From this posterior distribution we

can compute predictive distributions for future observations. Markov Chain Monte Carlo

sampling is the main computational implementation of Bayesian inference (Gelman,

Carlin et al. 2004). Classical statistical methods for predictive uncertainty analysis

typically rely on large numbers of model runs to create acceptable confidence intervals

on model variables and parameters under study. However, for complex hydrologic

models, the large number of model runs would require significant run-times (Mugunthan

and Shoemaker 2006). For such computationally time-expensive models, Bayesian

uncertainty assessment methods have been found to converge to an optimum faster than

classical statistics based methods, without necessarily being more effective (Hong,

Strawderman et al. 2005). While Bayesian methods are arguably more inefficient than

non-Bayesian evolutionary algorithms for global optimization in higher dimensional

spaces such as found in hydrologic models, they are effective for uncertainty analysis

(Hastings 1970; Bates and Campbell 2001; Huard and Mailhot 2006; Kavetski, Kuczera
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et al. 2006; Marshall, Nott et al. 2007; Huard and Mailhot 2008). A number of Bayesian

optimization and uncertainty assessment algorithms have been developed and

successfully tested in hydrologic models (Kaheil, Gill et al. 2006; Kuczera, Kavetski et

al. 2006; Yang, Reichert et al. 2007; Huard and Mailhot 2008).  These algorithms, such

as the Adaptive Metropolis, AM, (Haario, Saksman et al. 2001; Marshall, Nott et al.

2007; Smith and Marshall 2008) use MCMC sampling to implement Bayesian

optimization and uncertainty assessment.  MCMC sampling uses three main concepts; (i)

Markov chains, (ii) Monte Carlo (pseudo-random) sampling and (iii) Bayes’ Theorem

(Renard, Garreta et al. 2006).  Running a Bayesian Markov chain after its convergence is

equivalent to sampling from an underlying but unknown joint posterior probability

distribution of the model parameters. The histograms of sampled values after

convergence are in fact approximations of the parameters’ uncertainty distributions

(Huard and Mailhot 2008). Thus Bayesian inference gives more uncertainty information

than just the confidence intervals of classical statistical inference.

Say we cast a simulation model as Equation 3.1;

, = ( , ) + (3.1)

where ,  is the the observed or system data  at time step t,   is the simulated model,

θ is the unknown model parameters, X is the model input (forcing) data, and  is an error

term representing the model residual error (Bates and Campbell 2001; Kuczera, Kavetski

et al. 2006).

 Equation 3.2 shows the MCMC setup for implementing Bayes’ rule in sampling

the limiting posterior distribution in a Metropolis Hastings (Metropolis, Rosenbluth et al.
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1953; Hastings 1970) Markov chain at the  iteration (Gaganis and Smith 2001;

Gelman, Carlin et al. 2004);
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where
iθ is the current parameter value and

1−iθ  is the proposed parameter value.

The left hand side of Equation 3.2 is the ratio of the joint posteriors at states i (numerator)

and 1 (denominator) and is the probability of accepting the proposed parameter

state. ( | )  denotes the joint proposal probability densities for transitioning from

state 1 to  . For a symmetric random walk MCMC chain, ( | )  =

( | ) , a Gaussian multivariate distribution is typically used as the proposal

distribution (Gelman, Carlin et al. 2004). The P(y|. ) s are the joint likelihoods at the two

states, i and 1 and the P(. ) are the joint priors of parameters θ  at the two iteration

steps i and 1.

The five main decisions in implementing Bayesian MCMC uncertainty analysis

scheme are; (i) choosing a prior distribution, (ii) deciding on the proposal scheme, (iii)

choosing an appropriate likelihood function, (iv) determining the warm up period and (v)

finding a high posterior density (HPD) region from which to sample values (Jing Yang;

Gaganis and Smith 2001; Balakrishnan, Roy et al. 2003; Gelman, Carlin et al. 2004;

Kavetski, Kuczera et al. 2006).

A good choice of the prior distribution can help quicken chain convergence

(Gelman, Carlin et al. 2004). However, when a model-specific prior is not known,

hydrologic modelers often use a default non-informative uniform continuous distribution

for a prior (Smith and Marshall 2008). This works since large datasets often used in
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hydrologic modeling quickly correct the effects of poor priors (Gelman, Carlin et al.

2004).

The proposal distribution is a jump or perturbation distribution used for sampling

trial parameter values or input data under study (Gelman, Carlin et al. 2004). It provides

the transition mechanism of the Markov chain. A proposal distribution that is closer to

the often unknown limiting posterior distribution converges faster than a dissimilar

proposal (Gelman, Carlin et al. 2004). A popular Bayesian MCMC algorithm, the

Adaptive Metropolis, AM (Haario, Saksman et al. 2001), starts with a multivariate

random  normal proposal distribution whose initial covariance matrix  is defined by the

user based on prior model knowledge. As the MCMC chain progresses, the AM updates

the covariance matrix of the proposal distribution based on the accepted historical values

of the MCMC chain.

The likelihood function, P(Y), considered in the studies in this paper, Equation

3.3, is based on assuming normal error and is widely used for characterizing parameter or

input error in hydrologic modeling (Bates and Campbell 2001; Gaganis and Smith 2001;

Hong, Strawderman et al. 2005; Huard and Mailhot 2006; Marshall, Nott et al. 2007).

This is because Gaussian multivariate functions are readily integrable for any number of

dimensions and are generally considered a valid depiction of a random error probability

from an inferential point of view (Jaynes and Bretthorst 2003).
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Where  , ,  and are the observed data and the time-series values of system

observed data and simulated model output at time step t respectively. For example, these

could be discharge, or concentrations of sediment, nutrient, pesticide, bacteria or metals
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or any other responses under study. The variance, , is an estimate of the variance of the

model error and n is the number of the observed time-series data. In practice, the error

variance is not known before-hand and has to be sampled for and optimized together with

the other unknown model parameters (Gelman, Carlin et al. 2004). Useful variations of

the Gaussian likelihood function have also been successfully used in hydrology. A

notable example is the auto-correlated Gaussian error likelihood function (Romanowicz,

Beven et al. 1994; Romanowicz, Beven et al. 1996). The auto-correlated Gaussian error

likelihood is used where output data are not independent. Experts differ on the

improvements brought about by modifying the Gaussian likelihood to account for

autocorrelation (Gupta, Thiemann et al. 2003).

Proper likelihood functions are supported by statistical assumptions on the nature

of observed output data and error. Using simplified or generalized ‘likelihood functions’

compromises the statistical soundness of Bayesian analysis (Mantovan and Todini 2006;

Mantovan, Todini et al. 2007). For instance, objective functions have been extensively

used to replace the proper conditional probabilistic likelihoods in hydrology (Aronica,

Bates et al. 2002; Beven, Smith et al. 2006; Andr´eassian, Lerat et al. 2007; Beven, Smith

et al. 2007; Mantovan, Todini et al. 2007; Montanari 2007; Beven, Smith et al. 2008).

Unfortunately, the simplified or generalized objective functions are not based on any

justifiable statistical assumptions about the nature of error.  Hence Bayesian data analysis

on MCMC sampling schemes based on objective function or other informal likelihoods

have been as asserted as being statistically incoherent (Beven, Smith et al. 2006; Hall,

O'Connell et al. 2006; Mantovan, Todini et al. 2007).
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The Markov chain warm-up or burn-in period is the number of states the posterior

Markov chain transitions through before the influence of the initial values of the

parameters or inputs used becomes negligible (Gelman, Carlin et al. 2004). Identifying a

burn-in period helps in evaluating the performance of the MCMC in chain mixing and

convergence (Gelman, Carlin et al. 2004). During the burn-in period, posterior densities

are not updated (Thiemann, Trosset et al. 2001).  Gelman et al (2004) propose a general

rule of discarding half of the MCMC chain as burn-in period. Finally, an MCMC may

sample from the entire parameter space or only from the response surface as mapped by

the ‘good’ enough parameters from a prior calibration process (Balakrishnan, Roy et al.

2003).  For some complex hydrologic models, MCMC sampling from the entire

parameter space may be time-prohibitive, hence the need to sample from the HPD region

that tightly bounds the global optimum (Balakrishnan, Roy et al. 2003).

 Response Surface Methodology Approximation

Response surface methodology (RSM) is a collection of statistical and

mathematical techniques useful for developing, improving, and optimizing processes

through the exploration of relationships between several explanatory variables and one or

more response variables (Myers and Montgomery 1995).

Consider the model defined in Equation 3.1, and suppose it describes a hydrologic

system, such as channel flow.  The term  is the response of the system, which in this

case would be observed channel discharge. The function or model  represents the

average system relationships between inputs and outputs, which may be poorly known or

difficult to evaluate under all conditions given the complexity of .  is a vector of

known and controllable (input) variables, such as precipitation and initial soil moisture
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content.  is a vector of actual system parameters or constants of the poorly known

function or model and  represents the natural variability or error of the system. The long

term distribution of  is often assumed to be a normal with a mean of zero and variance,

 (i.e. Equation 3.1), such that the expectation of the hydrologic system ( ) =  =

[ ( , )] + ( ), is just, = ,   where  is the unbiased estimator of the model

or function f parameters. However, since is poorly known or difficult to evaluate, we

often have to approximate for  in order to feasibly characterize the hydrologic system,

for a given set of inputs (Myers and Montgomery 1995).  With known observed

discharge and input , estimating f is basically estimating for the  parameters. RSM

provides a sequential approach to the approximation of the response, = , , of a

model or function with some surrogate or fitted function, = = , .

The first step towards successful RSM approximation involves screening off all

explanatory variables that do not cause a statistically significant change to the response

variable(s) of the study. In modeling, finding the important explanatory variables is

known as sensitivity analysis while in other studies this involves designing and

conducting factorial experiments. The second step involves establishing the domains or

ranges of values that must be taken by the sensitive parameters vector, , to give near-

optimum response. This near optimum region is much smaller than the operability or

feasible region of the parameters. In Bayesian sampling schemes, this near optimum

region is called the high posterior density region. Prior optimization routines and

knowledge may be used to establish these narrow domains of near optimality. The third

step is to approximate for the true response in this narrow near-optimum region either

using regression, interpolation or emulation functions.
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For model optimization and uncertainty analysis, the response variable of interest

is generally the likelihood ( ) as given in Equation 3.3, not channel discharge .

Estimating likelihood functions helps with conditioning or calibrating the parameters of a

model based on historical observed data so as improve the capability of  the model to

predict some immediate future response. With the increasing use of complex hydrological

models, such as distributed models, computing an objective function such as a likelihood,

( ), can be particularly time-consuming especially if the models are being conditioned

to long time-series  data.

Popular RSM approximation methods include the least squares second order

multiple linear regression, the radial basis interpolation functions (Myers and

Montgomery 1995; Regis and Shoemaker 2004) and the use of neural networks (Jin,

Olhofer et al. 2000). The second order approximating function ( ) is developed by

finding the approximate  coefficients of Equation 3.4 so that the sum of squared

residuals between ( ) and ( ) is minimized;

( ) = + + + (3.4)

where the ’s are the elements of the parameter vector .  The attraction of the

second order regression model is that it is one of the simplest functions that can represent

curvature (Myers and Montgomery 1995; Regis and Shoemaker 2004). Since most

optimum points are turning points, with some curvature, fitting a second order

polynomial to the HPD region is often a good and reasonable approximation (Myers and

Montgomery 1995; Regis and Shoemaker 2004). Standard RSM literature provides

readily accessible further detail on the least squares method of locally fitting a second

order regression model (Myers and Montgomery 1995).
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A radial basis approximation function, Equation 3.4, is a generalized kriging

(interpolation) real-valued function of the form based only on the norm of  points with

known responses from a given point , whose response needs to be approximated

(Buhmann 2003; Regis and Shoemaker 2004).

( ) = ( ) + ( ) (3.5)

Typically, the norm  is some function of the Euclidean distance such that ( ) =

log , > 0 and (0) = 0 (thin plate spline), ( ) =  (cubic), ( ) = +

(multi-quadratic), or ( ) = , 0  and   is a positive constant (Gaussian)

(Regis and Shoemaker 2004). The is a weight showing how the Euclidean distance for

point  from a sampled point  contribute to the approximation of response at point .

The tail of the radial basis function, ( ), is often linear with respect to the explanatory

variables, but higher order polynomials could also be used. The coefficients ’s and ’s

in the radial basis approximation function  are found by solving for a system of linear

algebra using previously evaluated responses for the  points. Note the change in

notation for the RHS of the second order approximating function, for which  represents

a specific value of the  parameter while the RHS of the radial basis uses  to represent

a point on the multidimensional Cartesian coordinate system of parameters that give an

evaluated likelihood. The mathematical setup of the system of linear algebra equations to

obtain the coefficients is readily available from current papers in the area (Buhmann

2003; Regis and Shoemaker 2004; Regis and Shoemaker 2007; Bliznyuk, Ruppert et al.

2008).
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Current research that uses RSM methods within hydrologic modeling has been in

model calibration and, more usefully, uncertainty analysis of computationally time

expensive models (Regis and Shoemaker 2004; Regis and Shoemaker 2007; Bliznyuk,

Ruppert et al. 2008). The RSM method as applied to Bayesian optimization and

uncertainty analysis within modeling can be summarized in the following steps (Ye, Li et

al. 2000; Buhmann 2003; Regis and Shoemaker 2004; Regis and Shoemaker 2007;

Bliznyuk, Ruppert et al. 2008);

1. Calibrate model using a global optimization routine (Evolutionary Algorithm,

Dynamically Dimensioned Search, Greedy search, etc) and observed data, y, so as to

approximate the HPD region, the near optimum region of the parameters of the model

(Bliznyuk, Ruppert et al. 2008).

2. Sample some RSM design points, x, at which the response or objective function of

the expensive model is evaluated often using symmetric Latin hypercube sampling

design, SLHD, from the HPD region for unbiased sampling (Ye, Li et al. 2000; Regis

and Shoemaker 2004).

3. Evaluate the objective function on the selected RSM design points.

4. Fit a second order, or nth order, least squares multiple linear regression function or a

radial basis function to the best responses of a subset of the RSM design points

evaluated in 3. As much as all, or just the minimum nearest neighbors may be used

for fitting.

5. Run a Bayesian MCMC optimization and uncertainty (or any other optimization)

routine, evaluating on the fitted function for N number of cycles.
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6. Evaluate the actual response for the final Bayesian MCMC parameter set after the N

cycles in 5 and append to the RSM design points.

7. Repeat 4 to 6 until there are no further systematic improvements to the responses

being evaluated. Bayesian MCMC convergence to the optimum.

8. Use the parameter values drawn after Bayesian convergence to characterize the

uncertainty and optimality of the model.

In design points sampling, step 2, Regis and Shoemaker (2004, 2007), Gutmann

(2001) and Bliznyuk et al (2008) describe RSM approximation over a narrow parameter

sampling domain containing the global optimum. Regis and Shoemaker (2004) initially

sample design points using Latin hypercube sampling from the feasible domain and then

later use adaptive sampling from the HPD region as their local fitting scheme progresses.

On the other hand, Bliznyuk, Ruppert et al (2008) use an involved approach for design

points sampling. Some of their design points come from points evaluated during the

global optimization phase falling within some determined critical region. Other design

points come from points evaluated during the development of the critical region

(typically some 95% confidence interval) around the optimum set of parameter points.

Finally, a maximin design is used to further provide additional evaluated points that are

sufficiently far apart (Euclidian distance) from those so far selected and from each other,

within the critical region.

As yet, there has not been any approach presented that assumes ignorance of the

HPD region during RSM fitting for optimization of time – expensive models. The step 1

prior optimization may in fact involve a significant number of actual expensive model

runs, which may also need to be avoided, if possible.  Also, there has not been any
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detailed review of potential factors that affect the performance of RSM fitting during

optimization and uncertainty assessment.

Factors that have been indirectly considered, in different research - for choosing

an RSM procedure, include the average performance of a fitting function when applied to

different approximated models and functions, the locality and number of the points used

in fitting, and the RSM points sampling routine used (Regis and Shoemaker 2004), but

not the size of model error in the data. One relevant study, by Regis and Shoemaker

(2004), studies the second order and spline radial basis functions with the objective of

showing that fitting ( + 1)( + 2)/2 nearest neighboring points at a time, from RSM

design points sampled using the symmetric Latin hypercube sampling, could effectively

be used for optimization and uncertainty analysis of time-expensive functions.

Methods

We adopted the general methodology of Bliznyuk et al (2008), following the

findings of Regis and Shoemaker (2004) on the usefulness of RSM methodology for

hydrologic models. The four main standard steps used in the RSM likelihood fitting

(Equation 3.2) experiments were; (i) Sample a desired number of RSM design points

within a predetermined parameter space. We preferred using symmetric Latin hypercube

sampling of the design points for this report as used for initial design points sampling in

similar research (Ye, Li et al. 2000; Regis and Shoemaker 2004), leaving future work to

address in more depth adaptive sampling of design points for these types of models. (ii)

Evaluate the likelihoods (responses) of the actual model or function, for each of the

sampled RSM parameter points. (iii) Compute a surrogate or approximate function that

maps the sampled RSM points to the evaluated likelihoods (responses) as compared to
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the actual function and (iv) Use an MCMC algorithm to optimize for the approximate

likelihood (response) using the fitted function alone until convergence.

Setting up the Experimental Factors

To identify factors that affect the performance of RSM approximation, computer

experiments were set-up to examine the impact of the following four factors; (i) the

approximation function used and the type of model or response function approximated,

(ii) the number of points used in the actual curve fitting, (iii) the size of the region from

which fitting points are sampled and (iv) the size of normal observed data error. Details

of these experimental settings follow below.

For the approximating functions, we tested the performance of the second order

least squares multiple linear regression (MLR) and the spline radial basis (RBF)

functions. The MLR is ideal as one of the simplest non-linear function that can represent

curvature while radial basis functions are popular general interpolation methods

(Buhmann 2003; Regis and Shoemaker 2004; Bliznyuk, Ruppert et al. 2008). A simple

linear p(x) tail, Equation 3.4, was used for the spline radial basis function.

For experimental fitting, we used three hypothetical models having three different

properties and one case study water balance model. The first synthetic function has multi-

variable quadratic curvature to represent simple non-linearity. The second and more

complex model is a cosine time series function; to represent non-linear cyclic output

typical of time series model output. The third is a synthetic lumped hydrologic model

chosen for its relatively many dependent parameters, which is common with hydrologic

models. The case study is a water balance model using data from an Australian sub-basin.

For ease of reference, the quadratic, cosine and lumped flow models is referred to FX2,
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FCOS and FLO models respectively. The case study model is referred as the AWBM, for

the Australian water balance model.

The first function to be experimented on, using RSM approximation scenarios,

was a quadratic function (FX2) with two input variables,  and   and two parameters

or coefficients to be optimized for, as shown in Equation 3.6. A second order least

squares multiple linear regression fit is expected to perform well on such a quadratic

function. To test for the common effect of variable dependency found in most hydrologic

models, five years of maximum and minimum daily temperatures for a case study

watershed were used as the explanatory variables   and  .

( , ) = 2 0.5 + 20 (3.6)

The objective was to investigate how well the different RSM approximation

scenarios, coupled to MCMC optimization and uncertainty analysis, rediscover the

coefficients A and B in the function Equation 3.6, as well as the normal error variances,

(0, ), introduced to each set of hypothetical observed data used in the experiments to

represent potential data error or residual model error. Theoretical optimum parameter

values of A and B, parameter sampling ranges and MCMC starting values for two classes

of sampling ranges (extended and high posterior density) and three sizes of observed data

error (Level 1, Level 2 and Level 3) are shown in Table 7. Theoretical optimum values

(aka true values) are the parameter settings that used in creating the hypothetical

observed data used in experiments for the FX2, FCOS and FLO models.

To test for the performance of RSM fitting to time series models, a cosine

function (FCOS), Equation 3.7, was used.
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( ) = cos
180

, 0 12 (3.7)

This time series function, f(t), used values of t from 0 to 12 at 0.025 intervals, while the

theoretical optimum values of U1 and U2 values to be rediscovered were 180 and 30

respectively. Similar to the quadratic function scenarios already described, 3 sizes of

normal error (Levels 1, 2 and 3) were introduced to approximated function responses

making three hypothetical observed datasets, which were used in optimization and

uncertainty analysis. Selecting the default (Level 2) or initial normal error variance for

the three approximated models was somewhat arbitrary, with the only requirement that

the error should not dominate the output. Since the effect of observed data error was

considered for testing midway into experimentation, the other two sizes were selected by

subtracting or adding half of the default error to make Level 1 and Level 3 error sizes

respectively.

Table 8 shows the true and starting values of U1, U2 and of observed data errors

used and their respective sampling limits for both the EXT and HPD categories. A

slightly more complex response surface with more dimensions was obtained from a

synthetic lumped hydrologic model (FLO) shown in Figure 17 that tracks daily

precipitation, evapotranspiration, surface runoff, percolation, revaporation, lateral flow

and return flow to predict channel flow. The , , , , , ,  are the proportion factors.

Processes evt, srf, ltf, rvp, per, rcg, rtf and dsc are evapotranspiration, surface runoff,

lateral flow, revaporation, percolation, recharge, return flow and discharge respectively.

The min_process represent minimum amount of water required before process can occur

while rtf_min is minimum base flow. FLO was designed to represent more complex
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system behavior such as thresholds, and potential parameter interactions or insensitivities.

The five parameters , , ,  and min_srf were calibrated for while the rest were fixed.

Figure 17: Schematic view of the FLO bucket model.

Based on previous uncertainty analysis, the four most sensitive parameters ( , ,

, ) and one less sensitive one (min_srf) were selected for Bayesian calibration and

uncertainty experimentation while the other 10 were held constant. Five years of daily

precipitation data for the case study watershed, the Lower Yellowstone River basin, was

used as input to the hypothetical model, with all its 15 parameters set at specific values.

For hypothetical observed data, the simulated flow (in mm) is adjusted by a random
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normally distributed error (0, ), as shown in Table 9. Table 9 shows the experimental

settings that were used for the FLO model. Finally, the case study hydrologic model for

this study was the Australian water balance model (AWBM), Figure 18 developed in the

early 1990s (Boughton 1993; Boughton and Carroll 1993; Boughton 2004) considered to

be one of the most widely used models in Australia with research by a number of

researchers  (Sharifi and Boyd 1994; Cakers and Yu 1998; Cheung and Yu 1999; Bates

and Campbell 2001; Marshall, Nott et al. 2004). Observed discharge for the main channel

of the watershed was used for assessing the performance of the experimental

arrangements under study. Slightly more than ten years of daily observed data were used,

from the period towards the end of 1988 to end of 1998.

Figure 18 shows a schematic of the AWBM case study model and the parameters

that were used in experimentation. The parameters S, BS, BFI and KS are surface water

storage capacity, current baseflow storage, baseflow infiltration index and baseflow

recession index respectively. The parameters S, BFI and KS are considered variable for

experimentation. The processes P, E, QE, QS, QR, QB and Q are precipitation,

evapotranspiration, excess water available for surface flow, surface flow, recharge,

baseflow and channel discharge respectively. Direction of water flow is shown by arrows

and baseflow storage capacity is unlimited. The parameters S, BFI and KS are considered

variable for experimentation.
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Figure 18: Schematic view of the AWBM case study bucket model.

Tables 7 to 10 show the experimental settings that were used in the case study

models FX2, FCOS, FLO and AWBM. In Table 10, there are no different levels of

observed data error to be tested for, as in other tables for synthetic model settings. Also,

instead of using true values for performance comparisons, the case study scenarios use

the parameter values obtained by direct MCMC optimization.
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Table 7: Experimental settings for the quadratic function (FX2)

Table 8: Experimental settings for the cosine function (FCOS)

Property Parameter Type of
sampling
rangeU1 U2

Error variance
level

Size of error 1 2 3
 True value 180.00 30.00

5.00 10.00 15.00
Starting value 178.00 32.00

Lower bound 170.00 25.00 3.00 8.00 13.00
Extended
region,
EXTUpper bound 190.00 35.00 7.00 12.00 17.00

Lower bound 178.00 28.00 4.00 9.00 14.00
Reduced
region,
HPDUpper bound 183.00 32.00 6.00 11.00 16.00

Property Parameter Type of
sampling
rangeA B Error variance level

Size of error 1 2 3
 True value 6.00 -80.00

2.50 5.00 7.50Starting
value 5.50 -78.00

Lower bound 5.50 -85.00 1.00 3.00 3.00 Extended
region,
EXTUpper bound 7.00 -74.00 8.00 10.00 10.00

Lower bound 5.80 -81.00 1.00 4.00 5.50
Reduced
region,
HPD

Upper bound 6.40 -78.00 4.00 7.00 8.50
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Table 9: Experimental settings for the synthetic lumped hydrologic model (FLO)

Table 10: Experimental settings for the case study lumped hydrologic model (AWBM)

Property

Parameter

Type of
sampling
Range

S BFI KS

Error
variance

Direct MCMC
optimization,
Mean value 210.8821 0.4882 0.9307 35.0022

Starting value 209.00 0.4907 0.9005 36.5587

Lower bound 50.00 0.00 0.00 10.00
Extended
region,
EXTUpper bound 400.00 1.00 1.00 100.00

Lower bound 150.00 0.30 0.50 30.00
Reduced
region,
HPDUpper bound 250.00 0.60 1.00 40.00

The second order MLR, requires a minimum of ( + 1)( + 2)/2 RSM points

for full characterization while RBF functions with a linear tail require only  + 1 points

(Regis and Shoemaker 2004), where d is the number of dimensions or actual model

parameters under study. Thus the minimum RSM points required during MLR

Property Parameter Type of
sampling
rangealpha beta delta lambda min_srf

Error variance
level

Size of error 1 2 3
 True value 0.80 0.30 0.50 0.60 1.50

0.25 0.50 0.75Starting
value 0.75 0.40 0.50 0.65 1.45

Lower bound 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
Extended
region,
EXTUpper bound 1.00 1.00 1.00 1.00 5.00 0.80 0.80 0.80

Lower bound 0.60 0.20 0.40 0.50 1.00 0.00 0.40 0.40
Reduced
region,
HPDUpper bound 0.90 0.50 0.70 0.80 2.50 0.40 0.80 0.80
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approximation of the FLO model with 6 dimensions is 24. For this research, the numbers

of RSM design points used in fitting the approximate functions were 50, 200, 600 and

900. These points cover for the minimum RSM points required as well as allow for the

exploration of using excess points.  Other arbitrarily chosen values could have been used

as long as they satisfied the minimum number of RSM points required.

The size of the region from which the RSM points are sampled determines the

size of surface that must be fitted at a time, for global fitting. Larger surfaces can be more

difficult to approximate and hence result in poorer fits than smaller ones. This is because

it is more difficult to find approximate functions that can account for the mixed curvature

likely to be included in a large surface. In RSM approximation literature, the region from

which fitted RSM points are sampled is assumed to be in the HPD region (Regis and

Shoemaker 2004; Bliznyuk, Ruppert et al. 2008). Regis and Shoemaker (2004) and

Bliznyuk et al (2008) fit RSM functions to ‘nearest neighbors’ to implicitly avoid using

points that are spread out over a large region, which would result in a poor fit. To test

how the locality of RSM points used for fitting affects fitting accuracy, RSM points are

sampled from two sizes of regions, the reduced (HPD) and extended (EXT) regions,

respectively. For our study the reduced (HPD) region is bounded by the parameter ranges

found from prior converged direct MCMC optimization. Finding the HPD region using

MCMC optimization would not be possible for expensive models. The extended region,

which contains the HPD sampling domain, was based on our prior knowledge of the

physical values the parameters can take.

Complete experimentation would include tests for 2 approximating functions, 4

approximated models, 2 sampling spaces, 4 quantities of RSM fitted points, 3 levels of
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observed data error and 2 sampling strategies, resulting in 384 experiments. Due to time

constraints there was need to significantly reduce the total number of experiments.

However the different numbers of factor levels being investigated made factorial design

unwieldy. Experiments were thus conducted based on the Balanced Incomplete Block

Design, BIBD (Montgomery 2004), framework which gave a total of 150 experiments.

Adaptive Metropolis (MCMC) Uncertainty Analysis Settings

In applying Bayesian inference to the models and the fitted response surfaces, we

used the adaptive Metropolis algorithm adapted from Haario et al (2001). The starting

parameters, error, and variance-covariance matrix were manually set.  Echoing previous

studies, the rate of convergence of the algorithm was found to be sensitive to the starting

values (Smith and Marshall 2008). Starting values closer to global optima result in good

chain mixing and faster convergence than those further away.

A critical property of the AM algorithm is how the variance-covariance matrix of

the transition distribution, used for multivariate random normal sampling of the next

values in the MCMC chain, improves with increasing chain length. The starting variance-

covariance matrix was defined as a diagonal matrix of proposed parameter variances

(Haario, Saksman et al. 2001; Marshall, Nott et al. 2004; Smith and Marshall 2008). This

is a simplification which assumes no correlation between parameters. During the

algorithm execution, accepted parameter and error values after an initial chain length, set

at 5% of the stopping chain length, were used to generate the next variance-covariance

matrix. This data-based second variance-covariance matrix now includes the correlation

between parameters and error found from the initial accepted values.
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Subsequent variance-covariance values are updated adaptively using a history of

accepted parameter values. A multivariate sampling scale was set so as to obtain

acceptance rates between 25% and 45%, as recommended by Gelman et al (2004). Based

on preliminary runs to convergence and on execution times, the stopping criterion was set

at 100,000 MCMC iterations. The warm-up period, which is removed from analysis, is

half the MCMC chain (Gelman, Carlin et al. 2004).

The Euclidean distance, a common measure of proximity performance

(Lumijärvi, Laurikkala et al. 2004; Borkowski and Piepel 2009) was the main evaluation

criteria used for this research. For all situations, the Bayesian Adaptive Metropolis

(Haario, Saksman et al. 2001) algorithm was used as the optimization algorithm of choice

assuming that all observed data were normally and independently distributed. To block

variability, all the other factors such as random number seeds, starting values, processors

input datasets and Bayesian Adaptive Metropolis algorithm settings, except scaling

factors, were kept constant.

Results and Discussions

To minimize the volume of results presented, the mean distances of the parameter

values at maximum posterior, from the theoretical optimum points, are the main

performance measures reported on.

Effect of Size of Normal Observed Data Error

The results in Figure 19 are average Euclidean distances from the theoretical

optimum for the MLR and RBF approximation experiments on the FLO model. These are

results from computer experiments in the reduced (HPD) region and averaged over all
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(50, 200, 600 and 900) RSM fitting points. MCMC direct, MLR and RBF refers to the

results from optimizing directly on the FLO model using the MCMC algorithm, and from

optimizing using the fitted models MLR and RBF, respectively.

Figure 19: Effect of observed-data normal error size for the hydrologic bucket (FLO)
model.

The MCMC direct line shows the performance of direct MCMC optimization

with distance computed from theoretical optimum while the MLR and RBF lines have

distances computed from the optimum MCMC points.

Figure 19 shows that increasing normal error in the observed data reduces the

performance of the MCMC optimization on the FLO model (based on theoretical

optimum) and also reduces the performance of MCMC optimization on the fitted models.

The rate of performance degradation when using MLR fitting is greater than when the
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MCMC algorithm is applied to the FLO model directly. This suggests that the MLR

fitting gets worse with increasing observed data normal error, even after isolating the

performance of the MCMC algorithm. On the other hand, the rate at which optimization

performance declines when using RBF fitting is slightly less than when optimizing

directly for the model using MCMC, which implies that the RBF fitting has a

smoothening effect to the size of normal error in the observed data. For brevity, results

for FCOS and FX2, which were similar to those of AWBM and FLO models, are

excluded.

Performance of the Approximating Functions

The performance of the MLR and RBF function approximations for MCMC

optimization of the FLO, FCOS, FX2 and AWBM models are summarized in Figure 20.

This time, the distances presented for the scenarios when using the MLR and RBF fitting

functions are from the optimum parameter values obtained by direct MCMC optimization

to enable assessment of the appropriateness of the response surface for each model

outside of the MCMC results. The case study AWBM also has no theoretical optimum

values to assess the fitting the performances from, as is the case with the synthetic

models. Performances in experiments in the reduced (HPD) region and for all the number

of RSM approximating points and using only the default (Level 2) size of normal error

variance for the synthetic observed data are averaged and presented in Figure 20.
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Figure 20: Mean distance from MCMC optima for the AWBM, FCOS, FX2, and FLO
models using MLR and RBF approximation

Note that the mean distances in Figure 20 do not mean that the approximating

models were performing better for FLO than for AWBM as each model has a different

number of dimensions and uses different data. Instead, they show the respective

performances of each approximating function (radial basis function, RBF, vs. multiple

linear regression, MLR) for each approximated model. Figure 20 shows that RBF

scenarios obtained closer parameter approximates, on average, for AWBM, FLO and

FCOS models. For the case study model, AWBM, the MLR was about 6.6 times farther

from the MCMC optimum values than was RBF. However, for the FX2 model, the

RBF’s mean distance of 4.370 from the MCMC optimum was about 3.2 times farther

than MLR’s 1.351. To demonstrate the superior performance of MLR for the FX2 model,

Figure 21 shows that MLR approximation performed better than the exact model when
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mean distances a measured from the theoretical optimum. This superior performance is

generally expected, given that both the approximated and approximating functions are of

the same second order polynomial family.

Figure 21: Mean distance from theoretical optima for the FCOS, FX2, and FLO models
using MLR and RBF approximation and direct MCMC optimization.

Mean distance data for Figure 21 suggest that overall, using MLR for

approximation produced values that were about 2.48 times farther from the MCMC

optimum values than when using RBF approximation.  By considering the synthetic cases

only, and thus basing our distances from the theoretical optima, Figure 21 shows that

RBF was only about 4.6 times farther than optimizing for the actual models, while MLR

is about 7 times farther off the mark, when totaled for the three approximated models.
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Effect of the Number of Fitted RSM Points

To investigate how the number of fitted RSM points affects the performance of

the fitting functions, results from two sizes of sampling domains (HPD and EXT) were

investigated for each test model. Four settings of fitted points (50, 200, 600 and 900)

were used in the analysis. The results are given in Figure 22. MLR and RBF refer to

MCMC optimization on fitted second order multiple linear regression and on the fitted

radial basis functions respectively.

Figure 22: Optimization performance versus number of RSM points (50, 200, 600, and
900) used for fitting.

Figure 22(a) of the case study AWBM model shows that for both the MLR and

RBF fitting scenarios, the higher the number of RSM points used for fitting the closer the

optimum points get to the MCMC optimum, and hence the better the fit. The percentage
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improvement on the accuracy of the MLR and RBF fitting scenarios with MCMC search

was 33% and 62% for an 18 fold increase in RSM points (from 50 to 900 points),

respectively.  Figure 22(a) also shows diminishing parameter accuracy improvements as

the number of RSM points used for fitting increases.

Figure 22(b) shows that the performance of MCMC optimization on the fitted

MLR function seems to suffer slightly from increasing RSM points beyond 200.  Such

deterioration in performance, with increasing number of RSM fitted points, is also

observed in Figure 22(c) and 22(d). The deterioration in performance as RSM increase

beyond a certain number may be explained by two reasons. The first explanation could be

that the higher numbers of RSM points used for fitting provide points that are too close

together, making the algorithm’s matrix factorization and inversion less stable, as the

matrix becomes more singular with increasing similar points. A more likely explanation

is that the contrived response surfaces of the synthetic models, which are sharply peaked

at the global optima and relatively flat everywhere else in the experimental domain, result

in the majority of sampled points lying in the featureless region of the response surface.

Thus increasing RSM fitted points increases the distortion caused by points lying in the

insensitive and featureless region of the response surface, and hence weakening the

overall performance of the algorithm more.

Overall Figure 22(a - d) shows that increasing the number of RSM fitting points

improves the performance of fitting with diminishing returns. Results in Figure 22 may

also be interpreted as showing that there possibly is some optimum number of RSM

fitting points dependent on the model properties and parameter space complexity, for

which function approximation produces the best fitting performance. Further
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experimentation using a greater range of RSM numbers and more case study models may

be warranted.

Effect of the Size of Sampling Space

The summarized results presented are average performances, based on distance

from MCMC optimum, over all the numbers of RSM points used for fitting. Figure 23

shows that, as expected, reducing the sampling space (from EXT to HPD) improves

optimization accuracy for FLO, FX2 and FCO for all scenarios. The mean distances from

the MCMC optima, in Figure 23, should not be compared across FLO, FX2 and FCOS

since the values of the parameters determine their scales. The distances should only be

used as relative quantities within each approximated model. The EXT and HPD are the

extended and reduced high posterior density sampling regions for the test models

AWBM, FCOS, FX2 and FLO.
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Figure 23: Performance of optimization on fitted MLR and RBF functions based on size
of sampling region.

Reducing the parameter sampling ranges by as much as 70 percent resulted in

significant improvement in optimization performance for the MLR and RBF fitted

functions across all models. Although some of the resulting gains in accuracy are not

very high, the fact that there was always some improvement in accuracy from reducing

the experimental domain strongly advises on the need to have a reduced HPD region

before RSM fitting for both MLR and RBF surface approximations.

Representative Maximum Posterior Parameters

Tables 11 to 14 summarize maximum posterior parameters, excluding the error

variance estimates, for some representative experimental settings for each of the three

approximating and approximated functions for a single error size.
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Table 11: FLO model maximum posterior parameters after MCMC convergence for four
experimental settings

Experimental
setting

Parameters

alpha beta delta lambda min_srf Distance
True values 0.8 0.3 0.5 0.6 1.5
MCMC 0.7909 0.3201 0.4767 0.5879 1.5974 0.10326
MCMC +
MLR + HPD
+ 200 RSM
points

0.8660 0.2983 0.6000 0.5001 1.2001 0.3381

MCMC +
RBF + HPD +
600 points

0.8480 0.2948 0.5922 0.5000 1.4449 0.1544

The first experimental setting (MCMC + FLO + HPD), in Table 11, is when the MCMC

algorithm was acting on the FLO model directly using the HPD region, hence has  no

fitted RSM points.  Since the fitted points were the only actual function evaluations

during the MCMC algorithm’s 100,000 runs for the RSM approximation experiments, the

results were notably close to when AM was evaluating the actual FLO model 100,000

times. Also the reduced (HPD) region provided all the best maximum posterior

parameters in the FLO experimental settings.

Table 12: FCOS model maximum posterior parameters after MCMC convergence for
four experimental settings

 Experimental
setting

Parameters
Distance

U1 U2
True values 180.0000 30.0000
MCMC 180.6225 30.0841 0.6282
MCMC + MLR +
HPD + 600 points 183.2105 30.3441 3.2289

MCMC + RBF +
HPD + 200 points 179.7626 30.4308 0.4919
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Table 12 details results for the FCOS model when using MCMC directly in

comparison to two different RSM case studies. The results show that some approximation

setups performed marginally better than when optimization was directly on the FCOS

model.

Table 13: FX2 model maximum posterior parameters after MCMC convergence for four
experimental settings

Table 13 details results for the FX2 model. The table shows that if we exclude the

error variance approximation from performance estimates (distances), the best of MLR is

slightly poorer at optimizing for parameters compared the best of RBF approximation or

of direct optimization on the FX2 model.

Table 14: AWBM model maximum posterior parameters after MCMC convergence for
four experimental settings

Experimental setting Parameter values Distance
from

 MCMC
S BFI KS

MCMC 210.8821 0.4882 0.9307
MCMC+MLR +HPD + 900
points 203.2037 0.5306 0.9999 7.6788
MCMC+RBF+ EXT + 900
points 209.0013 0.4906 0.9006 1.8810

Finally, Table 14 shows that the distance from the MCMC optimum, for the

AWBM case study model, was created mostly from the S parameter. Further

Experimental
setting

Parameters
DistanceA B

True values 6.0000 -80.0000
MCMC 5.9998 -80.0000 0.0002
MCMC + MLR +
EXT + 900 points 6.0319 -80.1945 0.1971

MCMC + RBF +
HPD + 900 points 6.0002 -80.1033 0.1033
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investigation showed that parameter S, the surface storage capacity, was the least

sensitive of the three.

Summary and Conclusions

This study aimed at investigating how (i) the approximation function used and the

type of model or response function approximated, (ii) the number of points used in the

actual curve fitting, (iii) the size of the region from which fitting points are sampled, and

(iv) the size of normal observed data error affect the performance of RSM approximation

for Bayesian MCMC calibration and uncertainty analysis.

The main finding of this study is that the performance of fitting and optimization

was clearly negatively correlated to the size of sampling domains of the parameters and

error variance used. In all the experimental settings, reducing the parameter and error

variance sampling ranges improved the RSM fitting and hence Bayesian optimization

results. More importantly, fitting fewer points on a smaller range gave better results than

fitting many more points on a larger region. That is, a smaller neighborhood of points

fitted better than higher densities of points over a much larger sampling domain. We posit

that this is likely due to the response surface of typical hydrologic models, where the

likelihood is sharply peaked over a small portion of the domain (Beven and Freer 2001).

Hence despite the computational burden in locating the HPD region or in designing a

robust sampling strategy, the HPD region may be critical for acceptable performance of

RSM fitting for use with Bayesian optimization and uncertainty assessment.

Using MCMC to optimize over an approximate response surface created by the

spline based RBF function performed better overall than the second order multiple linear
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regression (MLR) for the case study (AWBM) discharge, the synthetic bucket discharge

(FLO) and the cosine (FCOS) models .  However, fitting a second order MLR function

resulted in MCMC optimization that was 3.4 times better than for the RBF fitting

scenarios, for the multivariate second order function (FX2). The overall marginal

superiority of MLR over RBF in approximating for FX2 was likely because MLR and

FX2 were same order polynomials. Even then, the best of RBF performed better than the

best of MLR when used in optimizing for FX2, if error variance estimation is excluded.

Generally, increasing the number of points used in fitting improves the accuracy

of fit and hence parameter optimization. However, it is likely that beyond some value,

more RSM points result in diminishing improvements or may even begin to negatively

affect the performance of approximation. A likely explanation for this is that the

contrived response surfaces of the synthetic models, which are sharply peaked at the

global optima and relatively flat everywhere else in the experimental domain, result in the

majority of sampled points lying in the featureless region of the response surface.  Thus

increasing RSM fitted points increases the distortion caused by points lying in the

insensitive and featureless region of the response surface, and hence weakening the

overall performance of the algorithm more.

While the computational time of the algorithms was not a focus of this study, the

average clock times for RBF, MLR and direct Bayesian MCMC over the test models

were 309.32, 313.42  and 3587.23 seconds respectively. These average times were from

fitting MLR and RBF functions based on 50 to 900 actual model runs followed by

100,000 runs on resultant approximate response surface versus optimizing for the direct

models using 100,000 actual model runs. RSM approximation gave 11 fold time savings
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and 100 times fewer actual function evaluations compared to when using direct model

evaluation.  The results show that the loss of parameter information from using RSM

approximation can easily be acceptable considering the potential computation time gains,

especially for computationally expensive models.

The size of the normal error in the observed data significantly affects the

performance of second order multiple linear regression (MLR) and radial basis function

(RBF) fitting performance. In non-synthetic studies, this variable is akin to the model

residual error and/or observation error. MLR performs worse than RBF as the normal

error in observed data increases. Parameter optimization for the FLO model using

MCMC directly was also sensitive to changes in size of observed data error variance than

when optimizing for the fitted MLR and RBF functions.

Poor algorithm performance caused by the presence of a large variance of normal

error may be slightly dampened by using a radial basis approximating function during

Bayesian uncertainty assessment, resulting in some smoothing effect of the optimization

surface. Very few actual function evaluations used with approximation can give very

close optimization results compared to when using large actual function evaluations

without approximation. The use of few evaluations during RSM approximation would be

beneficial for computationally time-expensive models, such as distributed hydrologic

models.

Based on these findings, for the models considered in this study RSM

approximation for Bayesian optimization performed best when the fitted to the HPD

region, with design points that are not too many or too few, when model or data error is

not excessive and when using the thin plate spline radial basis function as the
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approximating function over the second order function. That is, the number of design

points is less critical than where they are sampled from. Sampling from the HPD results

in better performance of RSM fitting for Bayesian optimization than sampling from an

extended region, as might happen when there is poor prior knowledge of the HPD region

before fitting.
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CHAPTER 4

BAYESIAN CONSTRAINED OPTIMIZATION AND UNCERTAINTY ANALYSIS
USING RADIAL BASIS RANDOM LOCAL FITTING

Abstract: This study describes improvements made by randomized local radial

basis function fitting compared to global fitting during constrained Bayesian model

calibration and uncertainty analysis as applied to hydrologic models. Random local fitting

involves using a randomly selected few of the previously evaluated neighbor points for

response surface methodology (RSM) fitting. Global fitting involves using all the

previously evaluated design points for radial basis function (RBF) fitting (Bliznyuk,

Ruppert et al. 2008; Mashamba and Marshall 2010).

In hydrologic modeling, distributed models are often computationally expensive

to automatically calibrate and assess for uncertainty due to their many parameters and the

resulting large numbers of model runs required (Wooldridge, Kalma et al. 2001; Wagener

and Wheater 2006; Muttil, Liong et al. 2007; Rouhani, Willems et al. 2007). The use of

radial basis function global fitting and Bayesian inference optimization has been shown

to be effective for automated hydrologic model calibration and uncertainty analysis

within a constrained highest posterior density (HPD) region (Bliznyuk, Ruppert et al.

2008). However, for effective global fitting, prior actual model evaluations are often

required to locate the parameter HPD region (Bates and Campbell 2001; Gelman, Carlin

et al. 2004; Regis and Shoemaker 2004; Regis and Shoemaker 2005; Regis and

Shoemaker 2007; Bliznyuk, Ruppert et al. 2008), which adds to the computational

burden.
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To reduce excessive prior actual model evaluations, larger parameter sampling

domains may be used to represent limited prior knowledge of the parameter bounds.

However, extended parameter sampling domains contain greater surface complexities

that significantly degrade the quality of global surface fitting and hence the optimization

and uncertainty analysis based on the RSM.  One case study and 3 theoretical models

were used to test the quality of calibration and uncertainty analysis results obtained from

the two fitting approaches for HPD and extended sampling domains.

The closeness (Euclidian distance) of the optimum points obtained through fitting

from those obtained by actual model evaluations during Bayesian Markov chain Monte

Carlo (MCMC) was the main performance measure for calibration. Means and standard

deviations of the convergent parameter posterior distributions were also used as measures

of performance of the MCMC uncertainty analysis on fitted responses.

The randomized local fitting routine adopted for Bayesian model calibration

performed better overall, and especially for the extended sampling domains than global

fitting. Although the global and random local fitting schemes were tested using only 400

previously evaluated points from SLHD sampling (for the four test models), the

comparison of the two fitting performances is expected to remain the same under some

other more elaborate adaptive sampling schemes. Also, a more robust DRAM (Haario,

Laine et al. 2006) may replace the basic adaptive MCMC algorithm to improve the

parameter distributions during uncertainty analysis on fitted models.

Keywords: Radial basis function, random local fitting, global fitting, response

surface methodology, design points, Markov chain Monte Carlo.
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Introduction

Research in the use of the response surface methodology (RSM) for

approximating computationally expensive functions (Jones, Schonlau et al. 1998; Booker,

Dennis et al. 1999; Bjorkman and Holmtrom 2000; Gutmann 2001(a); Regis and

Shoemaker 2004; Regis and Shoemaker 2007) can be and has been useful for the

calibration and uncertainty analysis of distributed hydrologic models (Mugunthan,

Shoemaker et al. 2005; Mugunthan and Shoemaker 2006; Bliznyuk, Ruppert et al. 2008;

Mashamba and Marshall 2010). The RSM approach involves the development of

approximate functions (aka surrogate models) that map input variables to some response

variable(s) or objective function(s) of an unknown or difficult to evaluate original or

exact function. The resulting surrogate functions are typically much faster to evaluate

than the original or exact function while providing comparable approximate responses

within pre-determined experimental domains (Regis and Shoemaker 2007; Bliznyuk,

Ruppert et al. 2008).

In hydrologic modeling, distributed models are often computationally expensive

to automatically calibrate and assess for uncertainty due to their many parameters and the

resulting large numbers of model runs required (Wooldridge, Kalma et al. 2001; Wagener

and Wheater 2006; Muttil, Liong et al. 2007; Rouhani, Willems et al. 2007). Thus RSM

function such as multiple linear regression, radial basis functions and other interpolation

functions (Powell 1996; Marazzi and Nocedal 2002; Bliznyuk, Ruppert et al. 2008) set up

to map how the model responds to changing parameter values have been used in finding

approximate  parameter values that give minimum model residuals.
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When the interest is in automated model calibration or function optimization only,

RSM functions can be directly evaluated to give the global optimum of the fitted model

(Conn, Scheinberg et al. 1997; Booker, Dennis et al. 1999; Bjorkman and Holmtrom

2000; Powell 2000; Gutmann 2001(a); Marazzi and Nocedal 2002; Regis and Shoemaker

2007). Instead of direct RSM function optimization, search algorithms can also be used to

find the optimum on the fitted function (Regis and Shoemaker 2004; Regis and

Shoemaker 2005; Bliznyuk, Ruppert et al. 2008).

When uncertainty analysis is as important as model optimization, as in an

increasing number of hydrologic modeling scenarios (Tyagi and Haan 2001;

Balakrishnan, Roy et al. 2003; Moradkhani, Hsu et al. 2005; Arabi, Govindaraju et al.

2007; Beven, Smith et al. 2007; Liu and Gupta 2007; Blasone, Madsen et al. 2008), an

approach initially using search algorithms over the RSM approximate function may be

used (Regis and Shoemaker 2004; Regis and Shoemaker 2005; Bliznyuk, Ruppert et al.

2008). In such a setup, the RSM method approximates the model objective function (such

as sum of squared residual or the likelihood) while a local or global search algorithm

finds the optimum parameters optimizing the objective function for that approximated

surface (Regis and Shoemaker 2004; Regis and Shoemaker 2005; Bliznyuk, Ruppert et

al. 2008).

The use of RSM approximation methods and Bayesian inference optimization

(Bliznyuk, Ruppert et al. 2008) has been shown to be effective for automated hydrologic

model calibration and uncertainty analysis within a constrained region that is highly

likely to contain the true optimum (Bliznyuk, Ruppert et al. 2008).  Prior model

evaluations are often required to locate this tightly constrained domain called the highest
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posterior density (HPD) region that has a high likelihood of containing the true optimum

model parameters (Bates and Campbell 2001; Gelman, Carlin et al. 2004; Regis and

Shoemaker 2004; Regis and Shoemaker 2005; Regis and Shoemaker 2007; Bliznyuk,

Ruppert et al. 2008).  Generally this involves rough-cut global optimization to determine

the HPD followed by RSM approximation of the model residual and Bayesian fine-tuning

local optimization within the HPD (Gelman, Carlin et al. 2004).  However finding the

HPD region by automated calibration routines uses actual model evaluations, which come

with increased computational overhead. It would be desirable to utilize an extended

parameter sampling region with little or no prior model evaluations for sampling RSM

fitting points and Bayesian optimization. This research demonstrates that it is possible to

use a much larger parameter sampling domain than the HPD, perhaps representing poorer

prior knowledge about the HPD from fewer model evaluations, but still successfully use

RSM fitting and Bayesian optimization and uncertainty analysis.

 From earlier work by Mashamba and Marshall, in review, Bayesian calibration

performs better at optimizing over a more extended parameter sampling domain than

does RSM global fitting over the same-sized domain. We use an algorithm heavily

adapted from concepts by Regis and Shoemaker (2004) and Bliznyuk et al (2008) to

enhance the performance of RSM radial basis function fitting with initial parameter

design points sampled from an extended region (EXT) multiple times larger than, and

containing, the HPD region. Although this study used adaptive Bayesian  MCMC

(Haario, Saksman et al. 2001), spline radial basis functions (Powell 1992; Powell 1996;

Booker, Dennis et al. 1999; Powell 2000; Gutmann 2001(a); Powell 2002; Buhmann

2003; Regis and Shoemaker 2004; Regis and Shoemaker 2005; Regis and Shoemaker
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2007; Bliznyuk, Ruppert et al. 2008), symmetric Latin hypercube design sampling

(SLHD) (Ye et al. 2000), and non-increasing actual function evaluations, the concept of

local fitting of randomly selected nearest neighbors can be used with other search

algorithms, approximating functions and sampling schemes for constrained model

optimization and uncertainty analysis.

There are three main differences between the random local function

approximation algorithm proposed here for optimization and uncertainty analysis and a

local approximation algorithm by Regis and Shoemaker (2004).  First, the proposed

algorithm uses a randomly selected decreasing number of nearest neighbors for local

fitting while Regis and Shoemaker’s 2004 algorithm uses a fixed (d+1)(d+2)/2 minimum

number of neighbors for curve fitting. Random local fitting allows for escaping possible

entrapments in local fitting subspaces that have localized optima. Decreasing the numbers

of neighbors for RSM fitting as the local Bayesian search progresses allows for a shift

from global to local optimum fitting. Second, the proposed algorithm uses a single

Markov chain Monte Carlo (MCMC) chain while Regis and Shoemaker’s (2004)

evolutionary algorithm requires multiple chains, from which to select the best estimates,

to be used for actual costly function evaluations.  Finally, Regis and Shoemaker’s (2004)

algorithm updates the fitted RSM function after approximating the objective functions of

each chain once only. This is because the genetic algorithm approach used by Regis and

Shoemaker (2004) requires the selection of ‘fittest survivors’ after only a few generations

or iterations, which are then used for updating the RSM fitting points. On the other hand,

the proposed MCMC based algorithm updates points used for fitting after a user defined

number of iterations, to reduce excessive fitting computations.
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The main concept from Bliznyuk et al (2008) adopted in the proposed algorithm

is the use of a Bayesian inference (Metropolis-Hastings) algorithm with RSM fitting

calibration and uncertainty analysis in environmental modeling. The Bliznyuk et al

(2008) algorithm relies on prior optimization using Powell’s (2002) UOBYQA derivative

free trust region optimization algorithm to help locate the reduced HPD parameter

sampling domain. The Unconstrained Optimization by Quadratic Approximation

(UOBYQA) algorithm starts off with a minimum number,( + 1)( + 2)/2, of

previously evaluated objective function points required for quadratic curve fitting. In the

UOBYQA algorithm, the distance between the overall exact and latest fitted (quadratic)

optima is used to adjust the jump step during the search. A shorter distance means a

shorter jump step (since close to the trust region) and conversely a longer distance means

a larger jump step (being away from the trust region). Based on the UOBYQA, Bliznyuk

et al (2008) proposed the HPD region as being made from design points sampled close to

the overall exact optimum, after an initial space filling design made from the minimum

number of points. Once the HPD is located, all the previously evaluated design points are

simultaneously used in the RSM function approximation. We call this, global fitting in

this study. The proposed method (on the other hand) uses only a randomly selected

fraction of the available design points for fitting, which we refer to as random local

fitting.

To evaluate the performance of random local fitting versus global fitting during

Bayesian Markov chain Monte Carlo (MCMC) model calibration and uncertainty

analysis, a number of experiments and performance measures were used. A case study

and three synthetic hydrologic-biased models were calibrated by using both a random
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locally and globally fitted spline radial basis function coupled to an adaptive MCMC

calibration routine. An HPD parameter sampling region was determined a priori from

MCMC calibration using the actual models and an extended (EXT) region was arbitrarily

proposed to be thrice larger than and to contain the HPD for all four of the models. The

scale of this extended region is on par with the feasible parameter ranges for similar

hydrologic models. The same RSM design points (400 actual model evaluations) were

used for the two RSM fitting approaches and all the other experimental factors were held

constant.  Thus the Euclidean distance between the optimum parameters found from the

global and random local RSM fitting schemes, and the optimum parameters from

evaluating the exact model during Bayesian MCMC calibration would in fact be a

relative measure of the accuracy of each fitting scheme.  Shorter distances infer better

accuracy of RSM approximation when all the other experimental factors are invariant.

Descriptive statistics were used to characterize the MCMC convergent parameter

distributions from both fitting schemes for the four models.

Radial Basis Function Model

The radial basis interpolation function has been extensively studied by Powell

(1992, 1996, 2000) and Buhmann (2005), and used by Gutman (2001a), Regis and

Shoemaker (2004, 2005, 2007), Bliznyuk et al (2008) in optimization and uncertainty

analysis. A radial basis function (RBF), ( ),  is a real-valued function whose value

depends only on the distance of  from the origin or from some given point called a

center so that given distinct points , . . . ,    , where the function values  ( ), .

. . ,  ( ),  are known, the RBF is an interpolant of the form as in Equation 4.1.
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( ) = ( ) + ( ), (4.1)

Where .  is the Euclidean norm,   for  = 1, …, n,    (a linear space of

polynomials in d variables of degree less than or equal to ), and  is either ( ) =

log , > 0 and (0) = 0 (thin plate spline), ( ) =  (cubic), ( ) = +

(multi-quadratic), or ( ) = , 0  where   is a positive constant (Gaussian)

(Regis and Shoemaker 2004). The is a weight showing how the Euclidean distance for

point  from a sampled point  contribute to the approximation of response at point .

The tail of the radial basis function, ( ), is often linear with respect to the explanatory

variables, but higher order polynomials could also be used. The thin plate spline and the

quadratic functions have been reported to have superior fitting performance especially for

applications similar to the case studies presented here (Buhmann 2003; Regis and

Shoemaker 2004; Regis and Shoemaker 2005; Bliznyuk, Ruppert et al. 2008).

To find the coefficients   and of tail function ( ) one proceeds as follows;

Select a particular . Define the matrix    by = ( ), , = 1, … , .

Define  to -1 if  is Gaussian, 0 if  is multi-quadratic and 1 if  is cubic or thin plate

spline.  Let   and let  be the dimension of the linear space , where =

+ . Also let , … ,  be a basis of , and define the matrix    as follows:

: = ( ), = , … , ; = 1, … , . The coefficients of the RBF function, ( ),

that interpolates the points , ( ) , … . , , ( )  are obtained by solving the

Equation 4.2 matrix system;

0 = 0
(4.2)
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where = ( ( ), … , ( ) , = ( , … , )    and  = ( , … , )    . The

coefficient matrix system in Equation 4.2 is invertible if and only if the matrix P defined

above has full column rank (Powell 1992).  Therefore as long as long as   the

matrix in Equation 4.2 above will be invertible and remain so with the addition of new

data points that are distinct from the previous ones (Regis and Shoemaker 2004).

MCMC Approach

Markov chain Monte Carlo (MCMC) methods are a class of Bayesian inference

algorithms for sampling from an unknown probability distribution based on constructing

a Markov chain (Markov 1906) that has the desired distribution as its equilibrium

distribution. The state of the chain stabilizes after a large number of steps and is then

used as a sample from the unknown desired distribution.

By Bayes theorem, given a joint prior density ( ), the joint posterior density

after  observations is as given in Equation 4.3;

( | ) =
( | ). ( )

( )
(4.3)

where ( | ) is the joint likelihood and ( ) is a (difficult to compute) marginal

probability density of data. In hydrologic modeling,  and   are typically vectors of

model parameters and observed response respectively (Gelman, Carlin et al. 2004; Huard

and Mailhot 2006; Marshall, Nott et al. 2007; Smith and Marshall 2008).  Setting up a

Markov chain and computing the ratios of the current and previous chain states based on

Equation 4.3 avoids the usually intractable computation of ( ) (Gelman, Carlin et al.

2004).  To hasten the convergence of a Markov chain based on Equation 4.3, the

likelihood and /or the prior must be closer to the unknown posterior. Often though,
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uninformative uniform continuous distributions suffice as priors in hydrologic modeling

where the time-series observed dataset  is often large enough to overwhelm poor

estimation of the prior (Gelman, Carlin et al. 2004; Marshall, Nott et al. 2004).

Multivariate random normal probability distributions are popularly used (Haario,

Saksman et al. 2001; Gelman, Carlin et al. 2004; Marshall, Nott et al. 2004; Marshall,

Nott et al. 2007; Smith and Marshall 2008) as the Markov chain transition probability in

the Metropolis random walk versions of the MCMC algorithms. Details of different

MCMC algorithms can be found in standard Bayesian inference texts.

Methods

The experimental methods used for this study are based on an earlier analysis

(Mashamba and Marshall 2010), which examined factors affecting the performance of

Bayesian calibration and uncertainty analysis using RSM fitting. To evaluate the

performance of global versus random local fitting of RSM points during Bayesian

MCMC calibration and uncertainty analysis, one case study and three synthetic models

were used. The test models were a cosine and a quadratic function, a synthetic storage-

based model of the land phase hydrology and a case study Australian water balance

model. The cosine function provides non-linear periodic time series behavior, as might be

observed with environmental data such as channel discharge. The second order

polynomial function possesses the simplest form of curvature, quadratic curvature. The

synthetic storage-based model for discharge and the Australian water balance case study

model provide more model complexity, as well as being similar to other water balance

hydrologic models.
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For each of the four test models, two sizes of parameter sampling domains are

used for fitting response surfaces.  That is, parameter values used for fitting were either

sampled from the high posterior density (HPD) or from extended (EXT) sampling

domains. The HPD sampling domains were the ranges of parameter values after

convergence obtained from prior direct Bayesian MCMC calibration and uncertainty

analysis runs. The extended (EXT) parameter sampling domains are arbitrarily thrice

bigger than, and inclusive of, the HPD region.  While characterizing the HPD regions

requires prior model knowledge, which itself usually takes prior model evaluations, the

EXT region represents poorer prior knowledge of such tight sampling domains.

The main measure of RSM fitting performance was the Euclidean distance

(Borkowski and Piepel 2009) between the optimum parameters found by using RSM

approximation, for the global and random local fitting schemes, and the optimum

parameters from evaluating the exact model during Bayesian MCMC calibration. Shorter

distances infer better accuracy of RSM approximation, for either of the two fitting

schemes, when everything else is invariant. Thus all the other experimental factors such

as the Bayesian MCMC method, starting parameter values, sampling and number of RSM

points and spline RBF fitting function were kept uniform across the global and local

random fitting schemes. Other performance measures that were monitored included the

processing times, and other descriptive statistics of the parameters produced by the two

fitting scenarios.

Test Models

Equations 4.4 and 4.5 are for the quadratic (FX2) and cosine (FCOS) models, two

of the test functions used for experimentation. The overall objective in using these
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synthetic cases was to investigate how well the different fitting scenarios (global Vs

random local fitting), coupled to MCMC optimization and uncertainty analysis,

rediscovered the coefficients A and B in Equation 4.4 and and in Equation 4.5 used

in creating the synthetic observed responses.

( , ) = 2 0.5 + 20 (4.4)

( ) = cos , 0 12 (4.5)

To introduce the effect of variable dependency found in most environmental models, five

years of maximum and minimum daily temperatures for a case study watershed were

used as the explanatory variables   and   of Equation 4.4. The Equation 4.5 time

series function, ( ), used values of from 0 to 12 at 0.025 intervals, while the

theoretical optimum values of  and  values were specified as 180 and 30

respectively.

Complex response surfaces with more dimensions that have higher parameter

dependency came from a synthetic lumped hydrologic flow model (FLO) and a case

study Australian water balance model (AWBM). The FLO synthetic hydrologic flow

model described processes of water storage and transfer between atmosphere, land

surface, soil, shallow aquifer, deep aquifer and channels.  These hydrological processes

include evapotranspiration, surface runoff, lateral flow, revaporation, percolation,

recharge, return flow and channel discharge. Out of 15 model parameters only the most

sensitive 5 were selected for study while the rest were held constant. Five years of daily

precipitation data for a case study watershed, the Lower Yellowstone River basin, was

used as input to the hypothetical model, with all its 15 parameters set at specific values.
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The hypothetical observed data of the synthetic case came from model output corrupted

by a random normally distributed error, (0, 0.5).

Figure 24 shows a schematic of the AWBM case study model and the parameters

that were used in experimentation. The AWBM model was developed in the early 1990s

(Boughton 1993; Boughton and Carroll 1993; Boughton 2004) and is considered as one

of the most widely used models in Australia (Boughton 2004) with studies by a number

of researchers (Sharifi and Boyd 1994; Cakers and Yu 1998; Cheung and Yu 1999;

Marshall, Nott et al. 2004). Slightly more than ten years (end of 1988 to 1998) of daily

observed climate and discharge data from an Australian case study watershed studied by

Marshall et al (2004) were used.

Figure 24: Schematic view of the AWBM case study bucket model.



121

The parameters S, BFI and KS are surface water storage capacity, baseflow

infiltration index and baseflow recession index respectively. The parameters S, BFI and

KS are considered variable for experimentation. The processes P, E, QE, QS, QR, QB and

Q are precipitation, evapotranspiration, excess water available for surface flow, surface

flow, recharge, baseflow and channel discharge respectively. Direction of water flow is

shown by arrows and baseflow storage capacity is unlimited.

The Random Local Fitting Algorithm

The random local fitting algorithm is presented in six general but explicit steps

below.  The words in italics are algorithm parameters, those in bold serve as key

instructive verbs and words in parentheses generally denote options that were used for

this study. For instance, this study used symmetric Latin hypercube sampling of design

points for RSM fitting. Other designs such as adaptive sampling could be used without

changing the performance comparisons between global and local fitting.

1. Set:

§ total number of MCMC iterations, ,

§ number of MCMC iterations before updating each fitted model, _ ,

§ number of MCMC iterations after which updating of fitted models ceases,

,

§ number of design points to be sampled from the experimental domain,

_ ,

§ number of model dimensions for optimization, ,
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§ counters: MCMC iteration counter,  = 0; RSM update counter, =

_ ,

§ minimum number of fitting points, _  = ( + 1)( + 2)/2,

§ parameters limits for the sampling domain, (   ).

§ logarithm of likelihood function at MCMC iteration , [ ]

§ current MCMC point (made from  elements) at ith  iteration, _ [ ]

2. Sample _  within experimental parameter sampling domain using space

filling designs or adaptive sampling. (In this case study, symmetric Latin

hypercube design (SLHD) sampling scheme was used)

3. Evaluate actual model MCMC likelihoods for each of the design points

( _ ) in Step 2.

4. Test If MCMC iteration counter,     AND RSM update counter,

 == _  THEN

a. Reset RSM update counter,  = 0.

b. Reset _  = ( , ), (where rsm_pts is the number of design

points used for RSM fitting) such that:

i. Test IF MCMC iteration,  /4, THEN

_ = ( 0.75 _ , _ ), ELSE

ii. Test IF MCMC iteration,   /2, THEN

_ = ( 0.5 _ , 0.75 _ ), ELSE

iii. Test IF MCMC iteration, 3 /4, THEN

_ = ( 0.25 _ , 0.5 _ ,

iv.  ELSE _  = (  _ , 0.25 _ ).
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c. Test IF MCMC iteration, == 0, THEN

i. Set the point with the best evaluated objective function as the

MCMC algorithm’s starting point,

ELSE

ii. Set the point with the best approximated objective function from

the latest RSM run as the MCMC algorithm’s starting point.

Where each RSM run is from  = 1, … , _ .

d. Find _  nearest evaluated points (Euclidian distance) to the current

MCMC algorithm starting point from Step 4(c) and fit a selected RSM

approximating function on those points. (The spline RBF approximation

function was tested in this case study)

5. Evaluate MCMC approximate likelihood of current point using the locally fitted

(RBF) function

a) Test IF [ ] >= [ 1], THEN

i. Accept current point, _ [ ], and its [ ] as the

latest MCMC values,

ELSE

Test IF (0,1) >= [ ]
[ ]

, THEN

ii. Accept current point, _ [ ],and its [ ] as the

latest MCMC values,

ELSE

iii. Reject current point, and its log likelihood and keep the previous

MCMC values: _ [ ] = _ [ 1] and
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[ ] = [ 1] as the latest MCMC

values,

b) Update MCMC iteration counter, = + 1; RSM update counter,

 =  + 1.

6. Test IF MCMC iteration counter,   , THEN

a. Go to Step 4,

 ELSE

b. Test IF MCMC iteration counter,  < , THEN

c. Go to Step 5

d. ELSE STOP.

The overall aim of the approach presented here is to randomly adapt the design

points used in the fitting process such that only the most informative design points are

used in the fitting process. By randomly selecting the number of points we avoid

potential sampling issues such as fitting to localized optima. The 0.25, 0.5 and 0.75

_  sampling increments (to design points) were selected so that the process

remained computationally efficient whilst still providing a minimum number of fitting

points.

For this study, the ,  and _  were set to 60000,

20000 and 400 respectively. From experimenting with various scenarios and models, the

length of the MCMC chain within which RSM updates occurs, , may not be

more than a third of the total chain, , to allow for MCMC convergence in the

remaining chain without disturbances in response surface caused by re-fitting. For
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algorithm stability under various scenarios, the and _  were set so that

there are only about a hundred RSM local function fittings in total.

Only results from the final section of the total MCMC chain, the final local

approximation, were used for Bayesian inference. Using the same local fitting function

for the last part of the MCMC chain allows the MCMC algorithm to converge to the final

local optimum to produce statistically coherent Bayesian output.

The algorithm for global fitting differs from the random local fitting algorithm

above, in that in Step 4(d), it proceeds by fitting all the design_pts at once. This means it

then uses (without updating), the resulting approximate response surface function for the

entire MCMC algorithm iterations. While the actual likelihood function could have been

evaluated during Step 4, we deliberately avoided doing so in order to maintain the same

number of actual function evaluations for the global as well as the random local fitting

algorithm.

Experimental Setups

We used Haario et al’s (2001) adaptive Metropolis algorithm (AM) for Bayesian

calibration and uncertainty analysis.  To enable fair comparison, the AM settings were

kept similar for both global and random local fitting algorithms scenarios. A property of

the AM algorithm is how the variance-covariance matrix of the proposal distribution,

used for multivariate random normal sampling of the next values in the MCMC chain,

improves with increasing chain length.

The starting variance-covariance matrix was defined as a diagonal matrix of

proposed parameter variances (Haario, Saksman et al. 2001; Marshall, Nott et al. 2004;

Smith and Marshall 2008). This is a simplification which assumes no correlation between
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parameters. During the algorithm execution, accepted parameter and error values after an

initial chain length, set at 5% of the stopping chain length, were used to generate the next

variance-covariance matrix. This data-based second variance-covariance matrix now

includes the correlation between parameters and error found from the initial accepted

values. Subsequent variance-covariance values are updated adaptively using a history of

accepted parameter values. A multivariate sampling scale was set so as to obtain

acceptance rates between 25% and 45%, as recommended by Gelman et al (2004). Based

on preliminary runs to convergence and on execution times, the stopping criterion was set

at 100,000 MCMC iterations. The warm-up period, which is removed from analysis, is

half the MCMC chain (Gelman, Carlin et al. 2004).

The Euclidean distance, a common measure of proximity performance

(Lumijärvi, Laurikkala et al. 2004; Borkowski and Piepel 2009) was the main evaluation

criteria used for this research. For all situations, the Bayesian Adaptive Metropolis

(Haario, Saksman et al. 2001) algorithm was used as the optimization algorithm of choice

assuming that all observed data were normally and independently distributed. To block

variability, all the other factors such as random number seeds, starting values, processors

input datasets and Bayesian Adaptive Metropolis algorithm settings, except scaling

factors, were kept constant.

Results and Discussions

Optimum convergent model parameters were obtained using an adaptive

Metropolis (Haario, Saksman et al. 2001) routine on the four actual (also known as

original, exact) models from 5 different initial parameter sets each. Global and random

local fitting schemes were used to approximate substitute surrogate models in subsequent
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AM calibration experiments. The mean Euclidian distances between the optimum

convergent parameters obtained using actual and surrogate models were taken as

measures of performance of the two fitting schemes (global Vs random local) since all

the other critical experimental settings were held constant. Shorter distances infer closer

accuracy of AM calibration on a particular RSM approximation scheme than longer

distances. There were no significant computational time differences between the two

fitting scenarios for all the four models given that each approach uses the same number of

design points.

Figure 25(a) shows that random local fitting consistently gave better averaged

parameter calibration accuracy than global fitting in the extended region, for all the four

models.  This is reasonable since globally fitting a model over an extend domain

produces poorer response surface approximation than approximating smaller regions at a

time as done within the random local fitting scheme.  That is, an extended sampling

domain includes greater response surface complexity, which makes global fitting

difficult, than smaller domains.  Figure 25(b) shows that when the HPD region is known,

possibly through prior optimization and actual model evaluations, using global fitting

over this region performs slightly better on the FCOS, AWBM and FX2 models than

random local fitting. This is because the HPD region likely has lower surface complexity

and hence using more fitting points is better than using fewer neighborhood points that

only partially interpolate the HPD at a time.
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Figure 25: Global vs random local fitting

Figure 26(a) more clearly shows how the performance of global fitting

deteriorates as the fitting region increases. Figure 26(b) shows that random local fitting

performs about 30% better in the extended region than in the HPD region. This is

potentially because in the HPD region, using smaller neighborhood points results in

points that are numerically similar and hence in the poorer performance of the matrix

inversion and factorization algorithms used. Even then, Figure 26(b) is better interpreted

as showing good performance of random local fitting in the EXT region than poor

performance in the HPD region. This is because the poorer HPD performance of the
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random local fitting has already been shown to be only slightly worse than the best

performance of global fitting in Figure 26(b).

Figure 26: Extended vs high posterior density region

Figure 27 shows the drop in performance suffered by most of the global fitting for

larger sampling domains compared to the other experimental scenarios. Conversely,

random local fitting within the EXT region shows the best performance of all scenarios

without excessive worsening of performance in the HPD region. Thus the average
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stability of performance of random local fitting in the HPD and EXT region is better

than that of global fitting in the same sampling domains.

Figure 27: Overall Global Vs random local fitting performance

Tables 15 and 16 show representative results of means and standard deviations of

parameter values for the AWBM and FLO models. The posterior distribution mean

values are from the second half (30,000 iterations) of the MCMC chain. The mean

parameter values were obtained by using the MCMC algorithm on the radial basis (400

actual model evaluations) are mostly within less than 20% of the mean values obtained

by 60,000 MCMC actual model evaluations. However, the parameter posterior standard

deviations from the fitted scenarios are much narrower than those from exact model

evaluation. That is, using the Adaptive Metropolis on fitted scenarios resulted in narrow

parameter posterior distributions.
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Table 15: Sample convergent parameter means and (standard deviations) for the AWBM
model

Scenario Parameter

S BFI Ks

Exact AWBM model
210.0513 0.4884 0.9302

(1.5683) (0.0093) (0.0067)

Global fitted model
HPD

210.4774 0.5810 0.9394

(0.1795) (0.0321 (0.0136)

EXT
210.1229 0.4880 0.9303

(1.5785) (0.0094 (0.0066)

Random local fitted

model

HPD
209.9855 0.4904 0.9217

(0.0038) (0.0001) (0.0002)

EXT
210.0684 0.4964 0.9295)

(0.0152) (0.0001) (0.0006)

Table 16: Sample convergent parameter means and (standard deviations) for the FLO
model

Scenario
Parameter

Alpha Beta Delta Lambda Min_srf

Exact AWBM model 0.8000 0.3015 0.4954 0.6007 1.5153
(0.0148) (0.0260 (0.0272) (0.0208) (0.1866)

Global fitted model
HPD 0.7386 0.2934 0.4067 0.7409 1.4178

(0.0026) (0.0020) (0.0029) (0.0024) (0.0057)

EXT 0.4997 0.4436 0.5144 0.2556 1.8285
(0.0030) (0.0014) (0.0030) (0.0030) (0.0039)

Random Local fitted

model

HPD 0.7688 0.3380 0.4457 0.6215 1.4461
(0.0002) (0.0010) (0.0011) (0.0019) (0.0017)

EXT 0.7523 0.3289 0.4582 0.6812 1.5480
(0.0022) (0.0031) (0.0020) (0.0049) (0.0074)

Improvements to the spread of the parameter distributions for fitted scenarios can

potentially be obtained by improving the performance of the MCMC algorithm. For

instance, using delayed rejection, DRAM (Haario, Laine et al. 2006), has been shown to
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give improved robustness to the Adaptive Metropolis (Haario, Saksman et al. 2001)

algorithm particularly in sampling the tails of the posterior distribution (Haario, Laine et

al. 2006; Smith and Marshall 2008).

Conclusions

This paper studies the improved performance of local random fitting compared to

global fitting over some experimental domain when using radial basis function

approximation and Bayesian MCMC methods for calibration and uncertainty analysis.

When the highest posterior density (HPD) region is known, fitting all the previously

evaluated points (global fitting) to the radial basis function produced a 30% more

accurate calibration results than local random fitting averaged over all the four test

models. However, when the parameter sampling domain is much larger than the HPD

region, fitting randomly selected local points performs about 144% better than global

fitting. Overall, local random fitting performs about 60% better than global fitting, based

on the Euclidian distance measure. We conclude that the global fitting scheme is highly

sensitive to the size of the parameter sampling domain used. Larger parameter sampling

domains result in poorer global fitting whereas random local fitting may even improve.

This makes random local fitting ideal for situations where limited prior knowledge and

model evaluations loosely locate a parameter sampling region much larger than the HPD.

This could help in reducing the number of prior expensive model runs required and thus

lower the total computational burden during calibration and uncertainty analysis.

Although the global and random local fitting schemes were tested using only 400

previously evaluated points from SLHD sampling (for the four test models), the
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comparison of the two fitting performances is expected to remain the same under some

other more elaborate adaptive sampling schemes.

The results also suggest that the approach may underestimate the potential

uncertainty of the true model but markedly narrow parameter posterior distributions. We

theorize this may be due to underestimation of the RSM uncertainty (as RBF parameters

are assumed exact) or due to the smoothing effect of the RSM around the parameters

optima.A more robust DRAM (Haario, Laine et al. 2006) may replace the basic adaptive

MCMC algorithm to improve the parameter distributions during uncertainty analysis on

fitted models.
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CHAPTER 5

BAYESIAN UNCERTAINTY ANALYSIS OF THE DISTRIBUTED HYDROLOGY
SOIL-VEGETATION MODEL USING RADIAL BASIS FUNCTIONS

Abstract: This manuscript demonstrates the feasibility of using radial basis

approximating functions in Bayesian optimization and uncertainty analysis of the

Distributed Hydrology Soil-Vegetation model (DHSVM). DHSVM is a physically based

model that models the dynamics of hydrology, vegetation, soil and topographical

interactions to predict sediment yields, water balance and channel discharge. The model

still requires some parameter calibration that is typically performed by drawing from

literature or expert knowledge of the case study sub-basin under study. In cases where

such knowledge is missing, automatic calibration would be useful if it were not

computationally expensive. In this case study we explore the use of surrogate models that

avoid having to run the 'expensive' model during the many optimization iterations that

may be necessary makes automatic calibration feasible. DHSVM is applied to the

Tenderfoot Creek Experimental Forest (TCEF) in central Montana. Automatic Bayesian

Markov chain Monte Carlo (MCMC) optimization and uncertainty assessment of 8 model

parameters using a fitted spline radial basis function (RBF) requiring only 300 actual

model runs improved the Nash Sutcliffe efficiency (NSE) on main channel flow from

0.83 after manual calibration to 0.89. We present the predictive and parameter

uncertainty assessment for the case study DSHVM obtained using MCMC on the radial

basis function.

Keywords: Radial basis function, Bayesian Markov chain Monte Carlo,

uncertainty analysis, parameter calibration.
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Introduction

Climate and land use change and their impact on precipitation patterns, land-

phase hydrology, flooding, water scarcity and the resulting need to better manage water

resources is attracting continued research in hydrologic modeling  (Brennan 2010; Li,

Zhong et al. 2010; Qureshi, Schwabe et al. 2010). Increased computing power now

permits modelers to use more complex physically-based distributed modeling paradigms

that have more realistic detail and descriptive power than the traditional lumped or basin-

averaged approaches (Beven and Binley 1992; Beven 2000; Beven and Feyen 2002).

These distributed hydrologic models describe the effect of spatial heterogeneity and

locality of catchment processes to fully represent sub-basin hydrology. Although many

distributed models (such as the Distributed Hydrology Soil-Vegetation Model (DHSVM)

(Wigmosta, Vail et al. 1994; Wigmosta, Nijssen et al. 2002) and MikeSHE  by the

Danish Hydraulics Institute) are physically based, they often need some type of

parameter calibration.  It is often feasible for hydrologists to manually specify many of

the physically based parameters, such as hydraulic conductivity or porosity, since these

can be measured from the sub-basin or researched from literature; typically however most

operational models require some form of model calibration.

An increasingly important aspect of modeling watershed processes is also

recognizing the uncertainty associated with models and subsequent model outputs, and

being able to assess the deficiencies in any model simulations. Addressing uncertainty

can give model users a better understanding of the likelihood or risk associated with

particular outcomes. In recent years, watershed modeling has evolved to take advantage

of computational advances in Monte Carlo methods, Bayesian inference, and data
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assimilation to better characterize the uncertainty associated with model predictions. The

operational nature of many watershed models (e.g. for water resources management or

prediction of the impacts of long term climate variability) has made this particularly

important. The biggest hurdle facing widespread adoption of process based models and

uncertainty methods is the computational burden associated with model simulations and

analysis of model outputs.  The large amounts of parameters that characterize distributed

models often make complete manual calibration difficult.  On the other hand, the

automated optimization and uncertainty assessment of spatially distributed models is

considered computationally expensive (Regis and Shoemaker 2007; Bliznyuk, Ruppert et

al. 2008) . Potential solutions to this computational complexity problem in hydrologic

models such as parallel processing and use of fast surrogate or meta-models are on-going

research objectives.

Among distributed models, DHSVM has gained wide acceptance and use in

climate change scenario analysis (Leung and Wigmosta 1999), forest management

(Storck, Bowling et al. 1998) and land use and land cover studies (Thanapakpawina,

Richeyb et al. 2007) as they relate to hydrologic processes. DSHVM has its roots in the

hydrology-vegetation model (Wigmosta, Vail et al. 1994) that originally modeled canopy

interception, evapotranspiration and snow accumulation and melt, as well as runoff

generation via the saturation excess mechanisms.   Model inputs include Geographic

Information System (GIS) datasets describing watershed boundaries, meteorology,

watershed topography, soils data, vegetation, stream and road networks and initial

watershed states (e.g. snow water equivalent and soil water content or storage). The main

outputs of DHSVM include channel flow, surface runoff, water balance, sediment yields,
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evapotranspiration, soil storage, road and channel interception, canopy storage, snow

water equivalent, and other snow and soil hydrology. Channel flow can be used to predict

flooding or critical low-flows; sediment yields indicate extent of soil erosion and river

siltation; higher canopy storage increases evapotranspiration; snow characteristics affect

surface runoff and channel wetting and recession patterns; and watershed storage affects

base-flow and vegetation. As with other fully distributed modeling paradigms, there have

been few published routines for automatic calibration and predictive uncertainty analysis

for the DHSVM model (Yao and Yang 2009).

One such study by Yao and Yang (2009) used an evolutionary algorithm to

automate the calibration of 5 parameters of DHSVM for a 4623 km2 case study watershed

in China with daily observed data for an unspecified calibration period and unspecified

spatial resolution. This approach reportedly took on average 61 hours to solve for

optimum parameter values on unspecified computing hardware. However, reducing the

time-step to hours and increasing the spatial resolution can dramatically increase the

calibration time. For instance, we calculated it would take over 25 days (608.3 hr) to

execute 1000 DHSVM calibration iterations using 1 year of observed data at 6-hourly

time-steps for the 22.99 km2 Tenderfoot Creek Experimental Forest (TCEF) sub-basin at

10 meter spatial resolution on an Intel Core 2 Quad with 2 x 2.83 GHz processor speed

and 4MB RAM 64-bit desktop machine.  Such increase in calibration time for reduced

time-steps and increasing spatial resolution makes the use of ordinary automated

calibration routines impractical. It is thus desirable to reduce the automated calibration

time required for such computationally expensive models. Other than parallel processing,

substituting expensive model runs with a faster fitted response surface model (RSM) is a
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feasible way of reducing long automatic calibration times.  A suitable measure of model

error or performance is computed for a carefully selected and limited set of parameter

values (design points) using the expensive actual model simulations. From the resulting

parameter-residual set, RSM approximating functions, such as the radial basis, kriging or

multiple linear regression models, can be developed to replace further expensive model

evaluations. The performance of RSM fitting decreases as the number of parameters or

dimensions increases. Thus it is important to perform model sensitivity analysis to

eliminate insensitive parameters and thus minimize the total number of fitting

dimensions.

To the best of our knowledge there is no published research that uses RSM fitting

for automated calibration and uncertainty assessment of the DHSVM model or of other

distributed hydrologic models in general. Thus the main objective of this research is to

use radial basis function fitting for Bayesian calibration and uncertainty analysis of a case

study DHSVM model. The purpose of this is to demonstrate that RSM fitting could be

successfully used for automated calibration of DHSVM or other similar distributed

models. While a Bayesian MCMC algorithm is used for uncertainty analysis, other

uncertainty routines may be used.  A secondary objective is to perform automated

sensitivity analysis of the parameters affecting stream channel discharge. As mentioned

above, sensitivity analysis is useful for pruning insensitive parameters so as to minimize

the fitting dimensions in the RSM model.
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The DHSVM Model and Parameter Selection

DHSVM development and application started in the 1990s (Wigmosta, Vail et al.

1994). DHSVM simulates the dynamics of hydrology, vegetation, soil and topographical

interactions to predict sediment yields, water balance and storages, and channel

discharge. DHSVM has been widely used for various hydrologic analyses, water

resources management, forest management research (Wissmar, Raymond et al. 2004),

land use studies (Thanapakpawina, Richeyb et al. 2007), flood forecasting (Gao, LÜ et al.

2003) and climate change scenario analyses (Wiley and Palmer 2008). DSVHM is

written in C computer language and runs from a computer command line. The source

code DHSVM is available for public distribution without a license.

DHSVM is a fully distributed model that is typically used to represent spatial

scales of 10-200 meter grid cells and time steps of 1-24 hours.  The model primarily uses

saturation excess to model surface runoff, although a basic infiltration excess paradigm

can also be used (Cuo, Lettenmaier et al. 2008). Darcy’s law is used to model infiltration

and unsaturated lateral flow (Yao and Yang 2009). DHSVM also includes a sophisticated

snow accumulation and release model, and physically-based relationships for canopy

interception, Penman-Monteith evapotranspiration and surface energy balance.

Figure 28 summarizes the DSHVM inputs and outputs. Main data types used for

the model simulation include meteorological time series as forcing data, initial catchment

state boundary conditions, and spatial data including those regarding soils, vegetation,

stream networks and topography. These spatial data are typically prepared via geographic

information system (GIS) software.
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Figure 28: Summary of DHSVM inputs and outputs

Various DHSVM parameters are considered sensitive for model simulations

depending on the purpose of the modeling exercise and the catchment characteristics. In

terms of catchment-wide constants or characteristics, rain and snow leaf area index

multipliers and snow water capacity could be considered important parameters to target

for calibration when simulated discharge is the output of interest as they affect snow

accumulation and evapotranspiration. For soil properties the model provides 16 default
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soil types each with 14 parameters that can take different numerical values for each soil

type and/or layer. Of these, lateral hydraulic conductivity, exponential decrease, porosity

and field capacity were the 4 soil parameters we considered potentially sensitive to main

channel flow. DHSVM vegetation is represented by 27 numerical parameters for each of

the 20 model vegetation types.  Of these vegetation parameters, we considered overstory

leaf area index, minimum stomatal resistance, snow interception efficiency, moisture

threshold, radiation attenuation and vapor pressure deficit as the 6 vegetation parameters

potentially sensitive to discharge. Thus in general, DSHVM has about 13 relatively

sensitive parameters that may be calibrated when channel discharge is the targeted

simulation output.

Yao and Yang (2009) propose that the 5 most sensitive parameters of these 13 are

lateral conductivity, exponential decrease, field capacity, porosity and minimum stomatal

resistance.  As with all distributed models, since parameters take on different values for

different soil and vegetation types in the DHSVM model, the final number of distinct

parameter values would be usually much higher than the original thirteen or Yao and

Yang’s (2009) five parameters.

Radial Basis Approximation

A radial basis functions (RBF) is one of the more popular approaches to

approximating the response surfaces of difficult to evaluate or computationally expensive

black box functions (Buhmann 2003; Regis and Shoemaker 2004; Mugunthan,

Shoemaker et al. 2005; Regis and Shoemaker 2005; Regis and Shoemaker 2007;

Bliznyuk, Ruppert et al. 2008). Other methods often applied may include multiple linear
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regression (Regis and Shoemaker 2005), kriging (Davis and Ierapetritou 2009) and the

more involved neural networks (Zorzettoa, Maciel Filho et al. 2001). Together these

approximation or curve fitting approaches belong to the response surface methodology

(RSM). Response surface methodology (RSM) is a collection of statistical and

mathematical techniques useful for developing, improving, and optimizing processes

through the exploration of relationships between several explanatory variables and one or

more response variables (Myers and Montgomery 1995).

The radial basis interpolation function was extensively studied by Powell (1992,

1996, 2000) and Buhmann (2005), and used by Gutman (2001a), Regis and Shoemaker

(2004, 2005, 2007), Bliznyuk et al (2008) in optimization and uncertainty analysis of

computationally expensive black-box functions. In hydrology, the automated

optimization and uncertainty assessment of distributed models is considered

computationally intensive. Thus approximating response surfaces of model residual

functions to changes in parameters would allow for faster parameter optimization and

uncertainty assessment by limiting the number of actual expensive model simulations

needed.  To our knowledge no published research exists where response surface models

have been used in the optimization and uncertainty analysis of the DHSVM.

A radial basis function (RBF), ( ),  is a real-valued function whose value

depends only on the distance  from the origin or from some given point (called a

center).Given distinct points , . . . ,    whose function values  ( ), . . . ,

 ( ),  are known, the RBF then is an interpolant of the form as in Equation 5.1;

( ) = ( ) + ( ), (5.1)
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where .  is the Euclidean norm,   for  = 1, …, n,    (a linear space of

polynomials in d variables of degree less than or equal to ), and  may take the forms

( ) = log , > 0 and (0) = 0 (thin plate spline), ( ) =  (cubic), ( ) =

+   (multi-quadratic), or ( ) = , 0  and   is a positive constant

(Gaussian) (Regis and Shoemaker 2004). The is a weight showing how the Euclidean

distance for point  from a sampled point  contributes to the approximation of the

response at point . The tail of the radial basis function, ( ), is often linear with respect

to the explanatory variables, but higher order polynomials could also be used. The thin

plate spline and the quadratic functions have been reported to have good fitting

performance for applications to complex models (Buhmann 2003; Regis and Shoemaker

2004; Regis and Shoemaker 2005; Bliznyuk, Ruppert et al. 2008). Further detail on how

to obtain the and ( ) radial basis coefficients from a system of linear algebra

matrices can be obtained from recent RSM literature (Regis and Shoemaker 2004; Regis

and Shoemaker 2005; Regis and Shoemaker 2007; Bliznyuk, Ruppert et al. 2008).

There are several implementation insights and recommendations for RSM

methods that are worth highlighting. First, RSM methods require that the regressand (the

model residual) be sensitive to the regressor variables (the distributed model parameters)

for the response surface approximation to exist (Regis and Shoemaker 2007). This is

because changes to parameters ought to affect the output for an approximate relationship

between inputs and outputs to be established. Second, our prior research (Mashamba and

Marshall 2010) shows that as the sampling ranges of regressor variable values increase,

the accuracy of fitting or approximation rapidly deteriorates. Thus the regressor variables

have to be sampled from minimum domains that contain the posterior distribution for the
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target regressand. Finally, while space filling sampling designs such as symmetric Latin

hypercube can be and have been used for regressor variable selection, adaptive parameter

sampling schemes have been favored in practice (Regis and Shoemaker 2004; Regis and

Shoemaker 2005; Bliznyuk, Ruppert et al. 2008). Adaptive sampling allows parameter

values and hence the fitting points to be selected near the global optimum thus

minimizing the number of actual model evaluations needed for smooth curve

approximation around the optimum.

Bayesian MCMC and RSM

Bayesian Markov chain Monte Carlo uncertainty assessment is based on setting

up a Markov chain (Markov 1906) on Bayes’ conditional probability Equation 5.2 so that

the chain converges to a limiting joint posterior distribution of the parameters under study

(Gelman, Carlin et al. 2004).

( | ) =
( | ). ( )

( )
(5.2)

Where  and  represent vectors or matrices of observed data and model parameters

under study respectively. First, to use Equation 5.2 for setting up a Markov chain we

assume a specific initial (prior) probability distribution of parameters, ( ). A

continuous uniform distribution can be used as ( ) when no better joint prior

parameters distribution can be inferred(Gelman, Carlin et al. 2004). Second, the

probability distribution for observing data ( ) given an unknown joint probability

distribution of parameters (the likelihood function) ( | ) has to be inferred.  The

inference of the likelihood function is based on the assumption about the variation of
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error in observed data (Gelman, Carlin et al. 2004). Thus if one assumes that error is

normally distributed, then the likelihood function ( (Y| )) is as given in Equation 5.3

(Haario, Saksman et al. 2001; Marshall, Nott et al. 2004; Haario, Laine et al. 2006; Huard

and Mailhot 2006; Marshall, Nott et al. 2007; Huard and Mailhot 2008; Smith and

Marshall 2008);
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where  and  are the observed (real system) and predicted (simulated) responses for

each time-step = 1 …  where n is the size of the observed dataset. The variance of the

model error (residual), , is an extra parameter to be found together with the

parameter. A Markov chain can now be set on the joint posterior distribution of

parameters ( ( | )) as given in Equation 5.4;
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where  and   represent joint proposal (perturbing or transition)

distributions for the Markov chain parameters changing from previous ( 1) values to

current ( ) values and vice versa respectively. The index  = 1, … , , where  is the

maximum MCMC chain length after convergence. This Markov chain is ergodic and

should eventually converge to a limiting posterior that is approximately equal to the

unknown joint posterior distribution of the model parameters under study (Markov 1906;

Gelman and Rubin 1992; Haario, Saksman et al. 2001; Gelman, Carlin et al. 2004). Once

such a distribution is found, parameter and hence predictive uncertainty can be

constructed. The ratio form of the Markov chain in Equation 5.4 is simply meant to avoid
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having to compute the total marginal distribution of the observed data ( ), which is

difficult or sometimes intractable (Gelman, Carlin et al. 2004).

The MCMC requires the evaluation of the posterior distribution for each step  =

 1, … , . But as Equation 5.3 shows, this requires simulating for the time-steps  =

 1, … ,  for each  MCMC chain. If the simulation period is long (large ) or if the

model computation is intense for each  then iterating through the MCMC chains can be

computationally intensive. To reduce the computational burden, approximate response

functions such as the radial basis function can be used to replace actual model simulation

during MCMC method. For Bayesian MCMC, our objective function of interest is the

likelihood function as given in Equation 5.3. Thus the RSM (such as the radial basis

function) is used to approximate the likelihood function and thus quicken the traversal of

the MCMC chain (Bliznyuk, Ruppert et al. 2008; Mashamba and Marshall 2010).

Methods

Case Study

The DHSVM model for this research was setup to simulate the discharge of the

Tenderfoot Creek Experimental Forest (TCEF) watershed. The TCEF watershed

encompasses 3693 hectares (9,125 acres) on the Lewis and Clark National Forest in

Meagher Country, Montana. Further details on the watershed characteristics are available

from the College of Forestry and Conservation 2007 Metadata Report from the

University of Montana and from Mincemoyer and Birdsall (2006) and Jencso, McGlynn

et al. (2009). The main channel of TCEF, the Tenderfoot Creek, is a headwater tributary

of the Missouri River that drains the Little Belt Mountains of central Montana in a
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westerly direction as shown in Figure 29. TCEF lies within the north, west, south and east

bounding coordinates of 46.957, -110.907, 46.891 and -110.832 decimal degrees

respectively. Slopes average  8 , although steeper 25  to 30 hillsides occur along the

main canyon and upper headwalls. Watershed elevation ranges from 1,991 m at the

watershed outlet to 2,420 m at the highest point on the watershed boundary.  The TCEF

watershed is heavily forested with few access roads. Lodgepole pine (Pinus contorta) and

mixed lodgepole pine with Engelmann spruce (Picea engelmannii) and subalpine fir

(Abies lasiocarpa) stands are the dominant forest types and occupy about 95% (3,514 ha)

of the experimental forest. Wet, irregularly shaped meadows are interspersed throughout

the forest but only cover approximately 3.5% (125 ha), of the area. High, exposed

hillsides with scree slopes and some dry grass communities make up the remaining 1.5%

(54 ha) of the research area.
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Figure 29: Tenderfoot Creek Experimental Forest

The most extensive soil groups are loamy skeletal, mixed Typic Cryochrepts and

clayey, mixed Aquic Cryoboralfs. Rock talus slopes are prominent on the perimeter of

the landscape, but rock outcrops are confined chiefly to areas adjacent to main stream

channels. Soils in the grassland parks range from well to poorly drained and with depth

ranging from 0.5 to 2 meters. Seeps and springs are common over the entire Experimental

Forest.  The TCEF watershed has a montane continental climate and the elevation-

weighted mean annual precipitation of 800 mm. Almost 70% of the annual precipitation
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falls as snow, which accumulates in the watershed between November and May. The

annual runoff occurs in response to snowmelt between May and early June, creating a

sharply peaked hydrograph. Base flow begins in mid July and persists through April.

Summer rainfall is limited, generally occurring as brief, high intensity thunderstorms, and

contributes little to the total runoff. TCEF is a suitable watershed for DHSVM discharge

modeling because of the availability of climate and discharge data at high temporal and

spatial resolution. Climate and discharge data is obtained from the Onion Park Snotel

(1008) research site located within the watershed.

Random Local Fitting Algorithm

The radial basis function approximation used as the surrogate model for DHSVM

in the Bayesian MCMC calibration and uncertainty analysis in this research depends

heavily on a fitting approach called the random local fitting (RLF) algorithm

(summarized in Figure 30). RLF improves the fitting performance of previously

evaluated parameter sets (design points), compared to other local or global fitting

methods. This is because RLF starts by global fitting, which helps in locating the region

of global optimality, before eventually fitting to a local region, which improves the

fitting. Fitting to a small region (local fitting) has been shown in previous research

(Mashamba and Marshall 2010) to improve overall approximation by reducing the

response surface complexity, compared to global fitting. Use of randomly selected sizes

of the neighbor points helps with a fitting routine that can escape from local optima.

 In the algorithm following, the words in italics represent RLF parameters, those

in bold serve as key actions and those in brackets generally denote options that were used

for this study. For instance, this study used symmetric Latin hypercube sampling for
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selecting design points used in RSM fitting. Other designs such as adaptive sampling

could be used together with the RLF algorithm below.

7. Set:

§ total number of MCMC iterations, ,

§ number of MCMC iterations before updating each fitted model, _ ,

§ number of MCMC iterations after which updating of fitted models ceases,

,

§ number of design points to be sampled from the experimental domain,

_ ,

§ number of model dimensions for optimization, ,

§ counters: MCMC iteration counter,  = 0; RSM update counter, =

_ ,

§ minimum number of fitting points, _  = ( + 1)( + 2)/2,

§ parameters limits for the sampling domain, (   ).

§ logarithm of likelihood function at MCMC iteration , [ ]

§ current MCMC point (made from  elements) at ith  iteration, _ [ ]

8. Sample _  within experimental parameter sampling domain using space

filling designs or adaptive sampling. (In this case study, symmetric Latin

hypercube design (SLHD) sampling scheme was used)

9. Evaluate actual model MCMC likelihoods for each of the design points

( _ ) in Step 2.

10. Test If MCMC iteration counter,     AND RSM update counter,

 == _  THEN
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a. Reset RSM update counter,  = 0.

b. Reset _  = ( , ), (where rsm_pts is the number of design

points used for RSM fitting) such that:

i. Test IF MCMC iteration,  /4, THEN

_ = ( 0.75 _ , _ ), ELSE

ii. Test IF MCMC iteration,   /2, THEN

_ = ( 0.5 _ , 0.75 _ ), ELSE

iii. Test IF MCMC iteration, 3 /4, THEN

_ = ( 0.25 _ , 0.5 _ ,

iv.  ELSE _  = (  _ , 0.25 _ ).

c. Test IF MCMC iteration, == 0, THEN

i. Set the point with the best evaluated objective function as the

MCMC algorithm’s starting point,

ELSE

ii. Set the point with the best approximated objective function from

the latest RSM run as the MCMC algorithm’s starting point.

Where each RSM run is from  = 1, … , _ .

d. Find _  nearest evaluated points (Euclidian distance) to the current

MCMC algorithm starting point from Step 4(c) and fit a selected RSM

approximating function on those points. (The spline RBF approximation

function was tested in this case study)

11. Evaluate MCMC approximate likelihood of current point using the locally fitted

(RBF) function
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a) Test IF [ ] >= [ 1], THEN

i. Accept current point, _ [ ], and its [ ] as the

latest MCMC values,

ELSE

Test IF (0,1) >= [ ]
[ ]

, THEN

ii. Accept current point, _ [ ],and its [ ] as the

latest MCMC values,

ELSE

iii. Reject current point, and its log likelihood and keep the previous

MCMC values: _ [ ] = _ [ 1] and

[ ] = [ 1] as the latest MCMC

values,

b) Update MCMC iteration counter, = + 1; RSM update counter,

 =  + 1.

12. Test IF MCMC iteration counter,   , THEN

a. Go to Step 4,

 ELSE

b. Test IF MCMC iteration counter,  < , THEN

c. Go to Step 5

d. ELSE STOP.

For this study, the , _ , , and _  were set to

20000, 100, 5000 and 300 respectively. This combination of values was chosen because

of how it improved the performance of the entire algorithm (Figure 30). Other values
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could be and perhaps should be tried for different models. Only the results from the

second half of the total MCMC chain (last 10,000 iterations) were used for estimating the

posterior distribution of parameters. Using the same local fitting function for the last part

of the MCMC chain allows the MCMC algorithm to converge to the final local optimum

to produce statistically coherent Bayesian output. The algorithm for global fitting differs

from the random local fitting algorithm above, in that instead of Step 4, it proceeds by

fitting all the _  at once. Thus global fitting always uses all the currently

evaluated points for surrogate model approximation during the entire MCMC algorithm

iterations. The use of a fixed number of neighboring design points (Regis and Shoemaker

2004) for radial basis function approximation is susceptible to being trapped on local

optimum fitting if the sampling domain is large and complex enough, which is avoided

by using randomly variable number of neighboring design points. Step 4 deliberately

avoids exact evaluation of the current parameter set in order to minimize the number of

computationally expensive actual function evaluations. Reducing the initial number of

design points would allow Step 4 to add exact function evaluation of current

approximately optimum parameter sets as a form of adaptive sampling.

Experimental Setup

DHSVM was setup for our case study watershed using climate and 10 meter grid

Geographic Information System (GIS) data for the Lower Tenderfoot Creek watershed. A

single six hourly time-step simulation needed 6 seconds per simulated day on an Intel

Core 2 Quad with 2 x 2.83 GHz processor speed and 4MB RAM 64-bit desktop machine.

As previously noted, the DHSVM parameters that can be calibrated are related to

catchment soil properties, vegetation properties, and climatic constants such as rainfall



156

and snowmelt leaf area index multipliers, and snow threshold and water capacity. Most of

the approximated parameter values were set based on literature research and knowledge

of the case study watershed. As DHSVM is actively used in hydrologic modeling

research, thirteen unique parameters were identified as most sensitive to discharge (The

DHSVM model and parameter selection).  Note that depending on the number of soil and

vegetation types identified in the model application the number of actual parameters to be

optimized would increase. Of these thirteen parameters, five were specifically considered

for automatic calibration by (Yao and Yang 2009). Thus, for this case study, lateral

hydraulic conductivity, exponential decrease, field capacity, and minimum stomatal

resistance were selected for automatic calibration while all other parameters were

calibrated manually. These parameters generally are expected to control the

characteristics of the wetting and recession periods of the hydrograph. As noted, these 4

parameters would have different values for different soil and vegetation types. Thus to

minimize the total number of distributed parameters for automatic calibration only the

two most significant soils and vegetation types were automatically adjusted for. Hence

effectively, 8 distinct distributed parameters were used to automatically calibrate the

DHSVM for discharge.

Table 17 shows the sampling domain of the parameters for our case study. The

sampling domain is obtained from the literature and represents limited prior knowledge

of the parameter value sets of the model or system. Of the 300 previously evaluated

(design points), the random local fitting algorithm (RLF) was used to fit between 300 and

55 nearest neighbors during surrogate model approximation. A minimum of 55 was

selected based on the tradition of using the minimum ( + 1) ( + 2) required to
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characterize a second order polynomial, the simplest non-linear function where  equals

9; the number of model parameters used in the fitting function. The number of points

used for fitting a surrogate model was limited to a maximum of 300 to prevent stack

overflows.

Table 17: Parameter sampling domain

Parameter LB UB Default

Lateral conductivity for loam soil, K_6 0.0001 0.2 0.01
Exponential decrease for loam soil, ExD_6 1.0 5.0 3.0
Field capacity for loam soil, FC_6 0.14 0.43 0.29
Lateral conductivity for silty clay soil, K_11 0.0001 0.20 0.01
Exponential decrease for silty clay soil,
ExD_11

1.0 5.0 3.0

Field capacity for silty clay soil, FC_11 0.25 0.43 0.37
Minimum stomatal resistance for evergreen
needle leaf, Rmin_1

200.0 1000.0 666.6

Minimum stomatal resistance for grassland,
Rmin_10

200.0 1000.0 200.0

Figure 30 illustrates the automated Bayesian MCMC calibration and uncertainty

assessment for the DHSVM model using radial basis function approximation. Initially the

sampling scheme involves symmetric Latin hypercube sampling of 300 design points.

The lower shaded region of Figure 30 shows how these 300 parameter design points are

firstly evaluated (simulated) using DHSVM (Route 1).  The RLF algorithm uses the exact

likelihoods calculated from the DSHVM runs and fits random local points into the

approximating radial basis function RSM( ) model. Route 2 represents subsequent

updates to the RSM( ) model during MCMC chains by use of new neighborhood points

(Step 4 and 5 in the algorithm described previously). When not updating the RSM( )

model, Route 3 is used to approximate the Bayesian likelihood (step 6(c) in the RLF

algorithm). After the initial SLHD sampling, the subsequent sampling schemes based on
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the multivariate random normal distribution of the MCMC. The top region of Figure 30

represents the Bayesian MCMC calibration and uncertainty assessment routine.

Figure 30: Schematic of algorithm interaction

Thus in general the automatic calibration and uncertainty analysis is setup by

replacing the computationally expensive DHSVM evaluation with a faster spline-based

radial basis surrogate model during the MCMC iterations. Except for the DHSVM model

which is coded in C, the implementation schema shown in Figure 30 was coded in Intel

FORTRAN 90.  We used 20000 iterations of Haario et al’s (2001) adaptive Metropolis

algorithm (AM) for Bayesian MCMC calibration and uncertainty analysis on the

surrogate radial basis function model made from 300 actual DHSVM model runs for the
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calibration period March to September, 2008. A property of the AM algorithm is how the

variance-covariance matrix of the proposal distribution, used for multivariate random

normal sampling of the next values in the MCMC chain, improves with increasing chain

length.  The starting variance-covariance matrix was defined as a diagonal matrix of

proposed parameter variances (Haario, Saksman et al. 2001; Marshall, Nott et al. 2004;

Smith and Marshall 2008). This is a simplification which assumes no dependency

between parameters. During execution, accepted parameter and error variance values

were used to generate the next variance-covariance matrix after an initial MCMC chain

length, set at 5% of the stopping chain length. This data-based second variance-

covariance matrix now includes the correlation between parameters and error found from

the initial accepted values. Subsequent variance-covariance values are updated adaptively

using a history of accepted parameter values. A multivariate sampling scale was set so as

to obtain acceptance rates between 25% and 45%, as recommended by Gelman et al

(2004). Based on preliminary runs to convergence and on execution times, the stopping

criterion was set at 20,000 MCMC iterations. The warm-up period, which is  removed

from analysis, is half the MCMC chain (Gelman, Carlin et al. 2004). We compared the

model simulations from the point of highest posterior density to those estimated via

manual calibration. We also consider the error of the fitting function and the uncertainty

associated with the model simulations.

Results and Discussions

Due to the high (10 meter) spatial resolution used for the DHSVM model and the

6-hour time step, we limited the calibration period to 7 months (March – September
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2008), so as to minimize the calibration time while capturing the spring runoff period and

hydrologic dynamics of the entire year. A further two years, 2006 and 2007, were used

for model assessment. The 300 DHSVM runs used for fitting the likelihood during

MCMC calibration took about 4.46 days, running at 6 seconds per day. By comparison,

20000 fitted runs using the response surface model only take about 3 minutes on average.

Typically, 30 meter grids are considered reasonable  resolution for distributed modeling

(VanShaar, Haddeland et al. 2002). Using 10 meter resolution for this research was

however desirable in connection with further work using the same model and given the

total catchment size.

Performance of the Radial Basis Function

Figure 31 shows how the (exact) logarithm of the Bayesian MCMC DHSVM

likelihood compares to its (fitted) radial basis approximation.  The linear scatter plot

made from the 300 previously evaluated points shows how well the radial basis function

is able to reproduce the log likelihood of the DHSVM model within the parameter

sampling space.
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Figure 31: Exact versus fitted log likelihood

Figure 31 provides confidence in the approximation method and overall results of

this case study. This is so because all the subsequent fittings were conducted within the

domain from which the 300 design points were sampled. The large variation of the

logarithmic likelihood in Figure 31 also shows that the parameters selected for the study

were sensitive and thus useful for use in Bayesian MCMC analysis.

Bayesian Optimization Performance

Figure 32 shows three hydrographs of Tenderfoot Creek during the analysis

period, April – September 2008. The observed, simulated (manual calibration) and

simulated (automated calibration) hydrographs show relatively very low base flow

followed by snow-melt driven peak flow from early May to early July. Automated
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Bayesian MCMC calibration on a fitted radial basis response function improved the

simulated discharge from a Nash Sutcliffe Efficiency (NSE) (Nash and Sutcliffe 1970) of

0.83, after manual calibration, to 0.89. The high prior knowledge of the TCEF watershed

coupled to the uncomplicated features of the hydrographs enabled a manual calibration

with an NSE of 0.83, which could be considered satisfactory (Eckhardt, Fohrer et al.

2005).  Nonetheless, the optimized simulation shows improved recession characteristics

(with a faster falling recession period) and a slower wetting up period.

Figure 32: Observed Vs simulated discharge for Tenderfoot Creek for the year 2008

Figure 33 shows the observed, simulated (manual calibration) and simulated

(automated calibration) hydrographs for the Tenderfoot Creek from March to September

of 2006 (6a) and 2007(6b) validation periods. The 3 peak flows correspond to the May-

June snowmelt periods for the two years.
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Figure 33: Observed Vs simulated discharge for Tenderfoot Creek for the validation
period 2006-2007

The NSE numbers for the simulated discharge after manual and automated

calibration are 0.796 and 0.765 respectively. This supports the view that automated

calibration slightly over-fitted the model parameters to the calibration period in Figure

32, and thus performing slightly poorer over other periods. Over-fitting of model

parameters to a calibration period can occur regardless of the calibration method. The

model assessment supports the view that the model calibration and robustness would be

improved by a multi-year calibration.
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Bayesian Uncertainty Analysis

Table 18 shows the optimization and uncertainty assessment results summary of

the 8 sensitive parameters that were studied. All the other DHSVM parameters were

manually calibrated from existing knowledge of the TCEF watershed. Table 18 results

were compiled from the converged last half (10000 iterations) of the MCMC chain. The

standard deviations and 95% confidence intervals (CI) represent the posterior distribution

of the ‘Bayesian MCMC on fitted radial basis function’ scheme. The parameter posterior

distributions are relatively narrow, indicating the likely limited uncertainty and high

sensitivity of he selected parameters.

Table 18: Uncertainty and calibration summary

Parameter
95% CI Std dev Mean Optimal

Min
Lateral conductivity for loam soil,
K_6

0.141578 0.141579 3.55E-06 0.141579 0.141582

Exponential decrease for loam
soil, ExD_6

1.046850 1.046854 9.94E-05 1.046852 1.046937

Field capacity for loam soil, FC_6 0.295196 0.295201 1.21E-04 0.295199 0.295306
Lateral conductivity for silty clay
soil, K_11

0.019528 0.019529 1.85E-05 0.019528 0.019512

Exponential decrease for silty
clay soil, ExD_11

1.888893 1.888934 1.04E-03 1.888914 1.888701

Field capacity for silty clay soil,
FC_11

0.413995 0.414003 2.01E-04 0.413999 0.413700

Minimum stomatal resistance for
evergreen needle leaf, Rmin_1

379.98574 380.02519 1.01E+00 380.00546 381.63633

Minimum stomatal resistance for
grassland, Rmin_10

236.05224 236.07605 6.07E-01 236.06415 236.28526

Figure 34 shows 6 soil parameter traces (parameter values sampled via the

MCMC algorithm), for the converged last half of the MCMC chain. K, ExD and FC refer

to the lateral conductivity, exponential decrease and field capacity respectively. The
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numbers 6 and 11 which refer to different soil types within the configuration file of

DHSVM: loam and silty clay soils. Note that the parameter samples appear to have

converged to the true posterior distribution for the catchment data. Although not included

to minimize clutter, the vegetation parameters share the same pattern as displayed for the

soil parameters.

Figure 34: Soil parameter traces

Figure 35 shows the corresponding posterior distributions of the 6 soil parameters.

The parameters are uni-modal and appear symmetric.
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Figure 35: Soil parameter probability distributions

In previous studies (Mashamba and Marshall 2010)  where fitting and exact

analysis could be compared, RLF fitting tended to produce narrower distributions than

direct Bayesian optimization and uncertainty assessment. This is often due to the

reduction in the fitting region as a result of using neighboring points only. Global fitting

sometimes help in widening the parameter probability distributions by widening the

fitting region.

Figure 36 shows the predictive uncertainty for the flow of Tenderfoot Creek

during the melt period of 2008. The lower and upper bounds are created by parameter

sets with the best and worst model residual of the 300 points.
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Figure 36: Predictive uncertainty for 2008 Tenderfoot Creek discharge

It is clear from Figure 36 that within the global experimental domain, the model

tends to over predict the wetting period (rising limb) and under predict the recession

(falling limb) of the Tenderfoot Creek discharge.  The bigger size of the range between

lower and upper bounds (Figure 36) means that the parameters chosen for this study

affect wetting more than recession in the case study.

Conclusion

The main goal of this case study was to demonstrate the feasibility of Bayesian

Markov chain Monte Carlo calibration and analysis of uncertainty for the DHSVM, a

fully distributed hydrologic model. MCMC methods typically require thousands of actual

model evaluations, which often make their use with computationally expensive spatially

distributed hydrologic models infeasible. To reduce high computation, a spline radial

basis approximation function replaced actual model evaluations during MCMC
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uncertainty analysis. The improvement of the model simulation after automatic

calibration demonstrates a strong potential for automated Bayesian optimization of the

DHSVM model using radial basis surrogate models. To compensate for a limited prior

knowledge of the highest posterior density, the random local fitting algorithm was

successfully used to improve the quality of fit and thus hasten the MCMC search.

The automated calibration tested in this research used basic space-filling sampling

in an extended parameter domain. Only 300 actual model evaluations were needed, which

took 4.64 days, for use in building surrogate models during the rest of the 20000

approximations, which took 3 minutes on average. Further reductions of actual model

evaluations may be possible by using adaptive sampling instead of relying on space

filling designs alone.

While the random local fitting algorithm improves response surface fitting in

extended regions, its tendency to reduce parameter uncertainty distributions may warrant

the use of global fitting within reduced sampling domains. Thus RLF may be used to

locate the region of optimality and a fixed global fitting scheme may be used to create

wider uncertainty distributions. For this research, implementing the fixed global fitting

algorithm to a limited domain did not widen the parameter distribution. Finally, radial

basis fitting and Adaptive Metropolis MCMC algorithms seem to demand significant

computer memory as the number of parameters and fitted points increases. Thus it is

always necessary to minimize the number of automatically calibrated parameters even

with the use of surrogate models.
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CHAPTER 6

CONCLUSION

Physically based and/or spatially distributed hydrologic models are increasingly

being used in climate change scenario analysis, flood forecasting, studies of water

scarcity, pollution and riparian ecological studies and in agricultural, settlement and civil

works planning and design. Spatial distribution in modeling allows for the identification

of localized critical hydrological processes such as flooding or water pollution in a large

watershed, while still allowing for basin-averaged output. Physical process based

modeling improves visualization and hence communication, conceptualization and

creditability of the model output, all of which are critical to decision makers.

However, the ongoing concerns of distributed models are their large numbers of

parameters and input data requirements, increased structural complexity and high

computational demand when compared to basin-averaged models.  Large input data

requirements limit where distributed hydrologic models can be used since fewer

watersheds have complete measured datasets required for modeling.  Where prior

knowledge and expertise exist about a watershed, distributed models benefit from manual

optimization.

On the other hand limited knowledge about a watershed or model structure forces

modelers to resort to automated optimization and uncertainty assessment. Optimization

involves adjusting model parameters manually or by automated search routines so that

the difference between simulation output and available observed data (sum of squared

residual) is minimized. Uncertainty analysis is about quantifying the range of values that
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model parameters and output can acceptably take and still be considered to be correctly

representing the real system in structure and output. Uncertainty assessment is important

because it is equivalent to finding a statistical measure of risk associated with making

decisions based on the output of a model. While model optimization seeks to find the

ideal set of parameter values that best fit the real system response, uncertainty analysis

establishes an ensemble of acceptable parameter values describing the real system

response.

 Among hydrologic modelers, there is increasing consensus that uncertainty

analysis is more important than calibration. This is because instead of a single optimum

set, there often exists a significant number of parameter combinations that give near

optimum model simulations. Modelers are thus interested in identifying these parameter

sets as a better way of model analysis than identifying only the best set. Among the

different ways of finding near optimum parameter sets that make uncertainty distributions

and intervals, Bayesian inference is arguably be the most statistically valid. As such it is

the approach for both uncertainty assessment and calibration that was used in this study.

Large numbers of parameters and increased simulation time associated with

distributed models make automated calibration and uncertainty assessment time

consuming or even infeasible. There are two ways to reduce computation time during

automated calibration and uncertainty analysis.  One approach, a technological or

hardware solution, involves parallel processing of the optimization and uncertainty

analysis routines. Computer networks and multi-core desktop computing favors this

brute-force solution. A second method features the conceptual or software solution

involving the use of surrogate models (models of models) that simulate or evaluate faster
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than the distributed model during optimization and uncertainty assessment.  The work

presented in the chapters of this dissertation described conceptualization,

experimentation, and implementation of the response surface methodology to automated

optimization and uncertainty assessment of distributed hydrologic models.

The first manuscript documented work on scenario analysis of a case study

irrigation watershed (the Buffalo Rapids) by use of a semi-distributed Soil and Water

Assessment Tool (SWAT) model. Native automated calibration routines were used to

condition the SWAT model to available observed data. In undertaking this model

assessment the problem of long computation times during calibration of such complex

models became apparent.  Although this study is concerned with best management

scenario analysis, long calibration times set the foundation for further work in the

subsequent manuscripts. The scenario analysis conducted for Buffalo Rapids used one

factor at a time experimental designs to link specific model parameters to best watershed

management practices.  More robust factorial designs were infeasible due to the different

levels of parameters (factors) that had to be considered. Further, the categorical nature of

several model parameters (such as irrigation delivery systems) in addition to numerical

parameters (such as irrigation water amounts per delivery) complicated typical

approaches to scenario analysis. A novel idea introduced in this scenario analysis

involved investigating how parameter changes might translate to best management

practices. This is a departure from the existing scenario analysis approach which focuses

on best management practices and how they might change the model parameter values.

The second manuscript is an investigation and review of the use of response

surface methodology for automated Bayesian Markov chain Monte Carlo (MCMC)
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calibration and uncertainty assessment of models. Three synthetic models and an

Australian Water Balance model were used in the study of factors that affect the

performance of Haario’s  (2001) Adaptive Metropolis calibration and uncertainty

assessment of models using the response surface methodology.  In the study, we

investigated how (i) the approximation function used and the type of model or response

function approximated, (ii) the number of points used in the actual curve fitting, (iii) the

size of the region from which fitting points are sampled, and (iv) the size of normal

observed data error affect the performance of RSM approximation for Bayesian MCMC

calibration and uncertainty analysis. The main findings of the study were that the

performance of response surface methodology and MCMC was negatively correlated to

the size of sampling domains of the parameters and error variance used. Reducing the

parameter and error variance sampling ranges improved the RSM fitting and hence

Bayesian optimization results. Fitting fewer points on a smaller range gave better results

than fitting many more points on a larger region. The radial basis function RSM method

performed better than the second order multiple linear regression fit. Generally,

increasing the number of points used in RSM fitting improves the accuracy of fit and

hence parameter optimization. However, it is likely that beyond some value, more RSM

points result in diminishing improvements or may even begin to negatively affect the

performance of approximation. Based on these findings, for the models considered in this

study RSM approximation for Bayesian optimization performed best when the fitted to

the high posterior density (HPD) region, with design points that are not too many or too

few, when data error is not excessive and when using the thin plate spline radial basis

function as the approximating function over the second order function. Overall, it was
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concluded that the number of design points is less critical than where they are sampled.

Sampling from the HPD results in better performance of RSM fitting for Bayesian

optimization than sampling from an extended region, as might happen when there is poor

prior knowledge of the HPD region before fitting.

The third manuscript is based on findings from the second. One of the main

findings in the second manuscript was how the size of the parameter sampling domain

affects the performance of RMS fitting and MCMC uncertainty assessment.  The best

RSM fitting and MCMC uncertainty assessment performance is when parameters are

sampled from a limited region of high posterior density (HPD). However the parameter

HPD region is established mostly on the basis of expertise and prior automated search.

Prior automated search to establish an HPD region from which RSM fitting values can be

sampled increases the computational burden since the search is conducted using the

actual computationally expensive model. Existing RSM fitting paradigms for distributed

model calibration and uncertainty analysis and for the optimization of other

computationally expensive black-box functions assume prior knowledge of the HPD

region.

To minimize the need for prior knowledge of the HPD region, we developed an

automated RSM fitting procedure that performs well in extended parameter sampling

regions. The new approach is called the random local fitting (RLF) algorithm. RLF uses

an adaptive and randomly decreasing number of neighboring design points (previously

evaluated parameter sets) to fit a response surface (the radial basis function) of the

likelihood function of the MCMC algorithm that is then used during calibration and

uncertainty analysis. When the highest posterior density (HPD) region is known, fitting
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all the previously evaluated points (global fitting) to the radial basis function produced a

30% more accurate calibration results than local random fitting averaged over all the four

test models. However, when the parameter sampling domain is much larger than the HPD

region, fitting randomly selected local points performs about 144% better than global

fitting. Overall, local random fitting performs about 60% better than global fitting, based

on the Euclidian distance measure.

We conclude that the global fitting scheme is highly sensitive to the size of the

parameter sampling domain used. Larger parameter sampling domains result in poorer

global fitting. However, random local fitting in the larger sampling domain resulted in

comparable performance to sampling from the HPD region. This makes random local

fitting ideal for situations where limited prior knowledge and model evaluations loosely

locate a parameter sampling region much larger than the HPD.  This could help in

reducing the number of prior expensive model runs required and thus lower the total

computational burden during calibration and uncertainty analysis. Although the global

and random local fitting schemes were tested using only 400 previously evaluated points

from SLHD sampling (for the four test models), the comparison of the two fitting

performances should be the same under some other more elaborate adaptive sampling

schemes.

Finally, the fourth manuscript is a feasibility study of the implementation of

MCMC calibration and uncertainty assessment using radial basis random local fitting

(RLF) for a Distributed Hydrology Soil Vegetation model (DSHVM) of the Tenderfoot

Creek Experimental Forest case study. Only 300 design points were used to approximate

20,000 simulations during the analysis. Calibration and predictive and parameter
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uncertainty analysis results from the study showed improved model simulations even

though no prior HPD region from which to sample design points was assumed. Overall,

the work in these manuscripts provides concepts, algorithms, experiments and a

demonstration of algorithm solutions to the problem of long computational times during

the Bayesian optimization and uncertainty analysis of spatially distributed models.
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