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ABSTRACT

A number of scenarios have been proposed for the origin of the supermassive black
holes (SMBHs) that are found in the centres of most galaxies. Many such scenarios
predict a high-redshift population of massive black holes (MBHs), with masses in the
range 102 to 105 times that of the Sun. When the Laser Interferometer Space Antenna
(LISA) is finally operational, it is likely that it will detect on the order of 100 of these
MBH binaries as they merge. The differences between proposed population models
produce appreciable effects in the portion of the population which is detectable by
LISA, so it is likely that the LISA observations will allow us to place constraints on
them. However, gravitational wave detectors such as LISA will not be able to detect
all such mergers nor assign precise black hole parameters to the merger, due to weak
gravitational wave signal strengths. This dissertation explores LISA’s ability to distin-
guish between several MBH population models. In this way, we go beyond predicting
a LISA observed population and consider the extent to which LISA observations
could inform astrophysical modelers. The errors in LISA parameter estimation are
applied in two ways, with an ‘Error Kernel’ that is marginalized over astrophysically
uninteresting ‘sample’ parameters, and with a more direct method which generates
random sample parameters for each source in a population realization. We consider
how the distinguishability varies depending on the choice of source parameters (1 or
2 parameters chosen from masses, redshift or spins) used to characterize the model
distributions, with confidence levels determined by 1 or 2-dimensional tests based on
the Kolmogorov-Smirnov test.
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CHAPTER 1

INTRODUCTION

There is substantial evidence (e.g., Kormendy & Richstone, 1995; Richstone et al.,

1998) for the existence of supermassive black holes (SMBHs) in the nuclei of most

galaxies, the black hole in our own galaxy being the best studied and most clearly

justified of these objects. However, the origin of these black holes remains an unsettled

question. In one scenario, the more massive black holes formed from the merger and

coalescence of smaller ‘seed’ black holes created in the very early Universe (e.g., Madau

& Rees, 2001). Several models of this process have been proposed and numerically

simulated (e.g., Haehnelt & Kauffmann, 2000; Volonteri et al., 2003). Typical seed

black holes have masses M• ∼ 100M� at high redshift (e.g., z ∼ 20), so these models

predict an evolving population of massive black holes (MBHs), with masses that can

cover the entire range from ∼ 100 to 109M�.

Younger members of this population fall into the intermediate-mass range (100M�

. . . 105M�), and are not suited to electromagnetic detection, making it very difficult

to verify a particular formation and evolution scenario or to discriminate between

models. When the Laser Interferometer Space Antenna (LISA) is finally operational,

however, it is likely that it will detect on the order of 100 merging MBH Binaries in

the range Mtot & 1000M�. Since the differences between proposed population models

produce appreciable effects in the subset of the population that LISA can detect,

LISA observations should allow us to place constraints on the models.

Once we have the LISA detected population in hand, we will need to determine

how it constrains models of the astrophysical population which gave rise to it. Equiv-

alently, we will want to know which model (with its associated parameters) is most

likely to have produced the observed population. We also want to know how strongly
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the LISA data set will constrain the models: How dissimilar from the actual popu-

lation does a model population need to be before it can be distinguished based on

the LISA data? Fully answering this question requires considering LISA’s ability to

detect sources, the parameter estimation errors associated with sources inferred from

the LISA data, and, eventually, the a posteriori source parameter distributions of

sources extracted from the LISA data. It also requires considering how to quantify

the differences between populations as they would be observed from the LISA data

and associating a degree of confidence with these difference quantities.

In this dissertation, we consider methods of applying the parameter estimation

errors and LISA detection thresholds, apply these methods to various population

models, and compare the resulting distributions of estimated parameters using varia-

tions of the Kolmogorov-Smirnov (K-S) test. We consider how the distinguishability

of the models depends on a variety of factors (see below). The results demonstrate

the ability of LISA to constrain the astrophysics of MBH formation, and shed light

on the directions of future research in MBH population models, LISA instrument

models, and model comparison efforts.

The organization of this dissertation is as follows. Chapter 2 reviews the astro-

physical models of MBH formation and evolution. Chapter 3 gives overviews of the

production of Gravitational Waves (GWs), their effects and detection with LISA, and

calculation of LISA parameter estimation errors using the Fisher Information Matrix

approximation. It also describes the LISA instrument and lists the parameters which

determine the GW signal, highlighting the ‘population’ parameters which are rele-

vant to the astrophysical population models. In Chapter 4, we describe the statistical

tests we use to assess the distinguishability between models. In particular, we define a

modified version of the K-S test which is sensitive to the differences between the model

predictions of overall number count in addition to differences between the individual
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source parameter distributions (the standard K-S test is only sensitive to the latter).

Chapter 5 describes an ‘error kernel’, K(λ̂i, λi), that marginalizes the LISA parameter

estimation errors over the MBH binary parameters (‘sample’ parameters) which have

the same distributions for all models. We apply this error kernel to several model

results obtained from the literature, producing estimated detection rates as functions

of the best-fit parameter values and comparing the resulting distributions. In Chapter

6, we apply the LISA parameter estimation errors to four sets of simulation results

obtained from Dr. Marta Volonteri, generating random sample parameters for each

source appearing in the simulation results. We compare the resulting distributions

of parameters between each of the models, investigating how their distinguishability

depends on the LISA observation time, which BH parameters are compared, and

whether or not the parameter estimation errors are applied to the model parameter

distribution. Chapter 7 draws conclusions from this work and indicates the direction

for future research on this topic.
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CHAPTER 2

MASSIVE BLACK HOLES: BACKGROUND

2.1 Existence of Supermassive Black Holes

Observations of the high redshift quasar population (Fan et al., 2001; Stern et al.,

2000; Zheng et al., 2000; Becker et al., 2001) suggest that a population of SMBHs has

existed since early epochs (z ∼ 6). The local census of SMBHs has been increasing in

recent years (Tremaine et al., 2002), driven by a growing body of observational evi-

dence linking the mass of SMBHs with observational properties of their host galaxies.

Early studies revealed a rough correlation between SMBH mass and the bulge lumi-

nosity of the host galaxy (Kormendy & Richstone, 1995; Magorrian et al., 1998). A

much stronger correlation was later discovered between the SMBH mass, M•, and the

stellar velocity dispersion, σ, in the galactic core, the so-called ‘M -σ’ relation (Geb-

hardt et al., 2000; Ferrarese & Merritt, 2000; Tremaine et al., 2002). The current best

fit to the M -σ relation (Merritt & Ferrarese, 2001; Tremaine et al., 2002) gives the

mass of the central black hole M• as

log

(
M•

M�

)
= 8.13 + 4.02 log

(
σ

200km/s

)
. (2.1)

The observational data supporting the M − σ relation currently spans a mass range

from ∼ 105M� to ∼ 109M�.

2.2 SMBH Origins

Given this observational evidence for the existence of an SMBH population, the

question arises: how did these objects come to be? What is the nature of the initial
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population? Several SMBH progenitor scenarios are proposed (see Volonteri et al.,

2003; Portegies Zwart et al., 2004a; Begelman et al., 2006; Mack et al., 2007):

1. Direct gravitational core collapse of pregalactic dark halos,

2. Growth from smaller seed black holes through merging and accretion over time,

3. Gravitational runaway collapse of dense star clusters,

4. Primordial BH remnants from the big bang.

In case 1, SMBHs can form very early in the Universe through direct collapse of dark

matter halo with mass of ∼ 106M� or larger (Bromm & Loeb, 2003), or from direct

core collapse of mini halos through a quasi-star phase instead of through ordinary

stellar evolution (Begelman et al., 2006), leading to a population with masses in the

range ∼ 104M� to ∼ 106M�. In case 2, on the other hand, (Madau & Rees, 2001;

Haehnelt & Kauffmann, 2000; Volonteri et al., 2003; Tanaka & Haiman, 2009), seed

black holes produced in the early universe can be significantly smaller and grow by

accretion, coalescences and merging, leading to the population of SMBHs seen in the

Universe today. In most cases (e.g., Volonteri et al., 2003), the seed black holes have

mass less than ∼ 300M� and are the remnants of Population III stars. Detailed stellar

evolution calculations have recently found, however, that these seed black holes can

be remnants of very massive Population III stars, referred to as CVMSs (Tsuruta

et al., 2007; Ohkubo et al., 2009; Umeda et al., 2009). These metal-free CVMSs

evolve quickly and then collapse in the early universe, yielding an IMBH population

with masses in the range of ∼ 500M� − 10, 000M�.

The scenario involving direct collapse is not difficult to distinguish from that

involving Population III stars, because the former predicts only a small number of

the more massive BHs while the latter predicts considerably more BHs with a wider
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range of masses and redshifts. In case 3 (e.g., Ebisuzaki et al., 2001; Portegies Zwart

et al., 2004b,c), IMBHs (of ∼ 1000M�) can be formed at any time in dense star

clusters and grow by merging in the given environment. Such a process can produce

a low level population of mergers at all redshifts. Although there is currently no

evidence for the existence of primordial BHs, case 4 is theoretically possible (Mack

et al., 2007). In each case, these seed populations can grow through merger and

accretion into the population of SMBHs observed today. This dissertation considers

population model results produced with the high mass Begelman et al. (2006) and

low mass Volonteri et al. (2003) seed populations.

2.3 Modeling the MBH Merger and Accretion History

Models of SMBH evolution through merging and accretion generally make use of a

‘merger-tree’ framework(Volonteri et al., 2003; Cole et al., 2000). In these frameworks,

generation of the MBH merger and accretion history proceeds in three stages:

• First, the history of the parent dark matter haloes is constructed, often starting

with our understanding of the present-day distribution of haloes and working

backwards to high redshift.

• The high-redshift progenitor haloes are seeded with massive black hole progen-

itors based on the seed population model (e.g., BVR’s high-mass seeds, etc).

• The already-generated halo merger history is then followed forward in time,

applying our understanding of merging and accretion processes to the MBHs to

evolve them along with their parent haloes.

Each aspect of this process can be carried out in various ways; we review some of

them below.
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2.4 Generation of Halo Merger Histories

The history of the dark matter haloes is carried out first. As dark matter com-

poses over 80% of the mass of the universe (Jarosik et al., 2010) and interacts only

gravitationally with other matter, its evolution is largely independent of the baryonic

components. The baryonic components (in this case, the SMBH progenitors), on the

other hand, are gravitationally bound to the dark matter haloes, and follow their

merger history.

The dark matter halo history can be evaluated either directly using numerical

N-body simulations (e.g., Micic et al., 2007), or via a hybrid Monte Carlo technique

using an analytical halo merger probability. This section concentrates on the semi-

analytical techniques, since the models used in this dissertation are based on such

techniques. The discussion is based on Cole et al. (2000), Volonteri et al. (2003), and

Somerville & Kolatt (1999).

These models have their origins in the work of Press & Schechter (1974), which

envisioned a process of self-similar condensation growing out of statistical randomness

in an “incoherent dust” model:

“As the expanding Friedmann cosmology evolves, the mass points con-

dense into aggregates which (when they are themselves sufficiently bound),

we identify as single particles of a larger mass. In this way, the condensa-

tion proceeds to larger scales.

. . .

When condensation has proceeded to lumpiness on a certain scale, the

statistical randomness in the positions of the discrete lumps is itself a

perturbation to all larger scales, and this causes condensation of increas-
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ingly large masses at later and later times. We take these statistical

fluctuations as the only source of long-wavelength perturbations.”

They were able to use this description to calculate the number density of haloes as a

function of their mass and redshift, and the results agree with the results of N-body

simulations (Efstathiou et al., 1988).

The Press-Schechter model has since been extended (Lacey & Cole, 1993a; Bond

et al., 1991) to calculate the conditional probability that a halo at some mass and

redshift had a progenitor at some earlier redshift in a specified mass range. The

results of these models also agree with N-body simulations (Lacey & Cole, 1994).

Volonteri et al. (2003) uses the results of this work, writing the number of progenitors

of mass M into which a halo of mass M0 fragments when a small step δz is taken

back in time as

dN

dM
(z = z0) =

1√
2π

M0

M

1

S3/2

dδc
dz

dσ2
M

dM
δz. (2.2)

In this equation, δc(z) is the critical threshold on the linear density for spherical col-

lapse at redshift z and S ≡ σM(z)−σM0(z) is defined in terms of the linear theory rms

density fluctuation at redshift z smoothed over a volume containing mass M , σM(z).

These depend on the cosmology only (see Volonteri et al., 2003), and the cosmology

has been reasonably well defined by electromagnetic observations (Jarosik et al., 2010,

for instance). The distribution of halo mergers is thus also well constrained, so the

primary uncertainties in these models is in the nature of the seed population and the

merger and accretion history of black holes within the haloes, which we will consider

shortly.
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The semi-analytic halo merger model then proceeds by recursive application of

Equation 2.2 to modern-day haloes at various fiducial masses1, repeatedly breaking

the haloes up into progenitors at increasingly high redshift and tracking the resulting

hierarchy of mergers. The process is repeated multiple times to ensure that the

statistical variation in the merger tree has been adequately sampled.

2.5 The Black Hole Seed Population

After the halo merger tree has been determined, the high-redshift haloes are seeded

with progenitor black holes that will grow by merger and accretion into modern-day

SMBHs. There are multiple unknowns in this seed population, including:

• The mass distribution of the seeds. These can range from ∼ 100M� in some

models to ∼ 105M� in others.

• The redshift at which they occur, typically between z = 10 and z = 20.

• The frequency with which they occur; usually only a small fraction of the high-

redshift haloes host a progenitor BH.

In one common scenario (Madau & Rees, 2001; Volonteri et al., 2003), the seeds

are the remnants of massive Population III stars, with masses in the hundreds of

M� (according to Volonteri et al., 2003, the precise mass used makes little difference

to the simulation results). They occur at z ∼ 20 and are placed in only the most

massive haloes, those whose density exceeds the mean by some threshold (e.g. 3.5σ).

This corresponds to mini-haloes of mass ∼ 107M� in a standard ΛCDM cosmology,

1To relate the results to the population in the universe, each fiducial mass has a corresponding

weighting which is determined by observations of the modern-day universe.
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and seeded haloes account for ∼ 0.0005 of the total halo mass (given a Gaussian

distribution).

Another scenario which has received considerable attention of late is that of Begel-

man et al. (2006). They suggest that BHs of mass & 105M� can be formed prior to

z ∼ 10 in haloes with low angular momentum and viral temperatures & 104K. There,

global dynamical instabilities such as the ‘bars-within-bars’ mechanism (Shlosman

et al., 1989) can lead to the formation of a ‘quasi-star’ with ∼ 105M�. The quasi-star

core quickly collapses to form a BH of ∼ 20M� and grows by accretion of its envelope,

leading to a BH of mass comparable to the quasi-star. This may lead to a population

of ∼ 106M� black holes with number density ∼ 1000Gpc−3 at redshift z = 10 (see

section 8 of Begelman et al., 2006).

In a variation on these scenarios, Tanaka & Haiman (2009) choose to seed haloes

based on a virial temperature threshold2. They perform simulations with both low

mass (100M�) and high mass (105M�) seeds, using a 1200 Kelvin threshold for the

low mass seeds and a 1.5 × 104 Kelvin threshold for the high mass seeds. In either

case, only some fraction ‘fseed’ of the haloes were seeded, and the simulation was

performed with varying values of fseed (10−3 ≤ fseed ≤ 1).

2.6 Merger and Accretion Processes

The merger and accretion process is the most complicated and involved aspect

of the MBH population simulations. This section touches on some of the important

2Per Begelman et al. (2006), the virial temperature is related to the halo mass according to

Mh ≈ 104∆−1/2
vir T

−3/2
vir M�, where ∆vir is the virial density in units of δc (∆vir ≈ 178Ω0.45; see Eke

et al., 1998)
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factors in modeling this process; a detailed review is beyond the scope of this work.

We turn first to the accretion scenarios.

Volonteri et al. (2003) do not attempt to model the accretion process in detail, but

rather assume that, with each halo merger, the SMBHs accrete mass with a scaling

based on the m − σ relation. In addition, the amount accreted has a normalization

factor (of order unity) which fixes the final SMBH mass distribution so that it matches

the locally observed m− σ relation.

In Tanaka & Haiman (2009), black holes are assumed to accrete gas from their

surroundings according to a standard ‘Bondi-Hoyle-Littleton’ formulation, capped at

the Eddington rate. This accretion model depends on the mass of the SMBH and

the gas density profile of the host halo, and does not assume a feedback mechanism

whereby the accretion rate is limited (i.e., it does not assume that the accretion

depletes the immediate surroundings of the SMBH of gas), except that they cannot

accrete more than the total baryon mass of their host halo. Tanaka & Haiman (2009)

also ran their simulation with accretion scaled according to the m− σ relation, as in

Volonteri et al. (2003).

In both of these examples, most of the final mass in SMBHs comes from gas

accretion, the mass of the original seeds accounting for only a small fraction of the

mass of modern-day SMBHs.

In addition to the overall amount of accreted material, another interesting aspect

of the accretion process is whether it occurs in a sustained or intermittent fashion. In

a sustained accretion scenario (e.g., Thorne, 1974), the constant angular momentum

axis of the material accreted causes the black hole to spin up, resulting in BHs with

high spins. In an alternative ‘chaotic accretion’ scenario (King & Pringle, 2006),

material falls onto the BH with rotation in both senses, resulting in relatively low

net spins. Since the spins of a chirping BH binary are well determined from the
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gravitational waveform, LISA observations should shed considerable light on this

aspect of the SMBH formation process.

In order for a halo merger to result in an MBH merger, the parent haloes must

both contain MBHs, and the MBHs must sink to the center of the new halo prior to

merging. There are a number of ways this can fail to happen in a timely fashion. First,

if the halo mass ratio is too large, tidal stripping of the smaller halo can leave its BH

too far from the larger BH for a binary to be formed(Volonteri et al., 2003; Tanaka

& Haiman, 2009). The threshold mass ratio varies appreciably in the literature;

Volonteri et al. (2003) take it to be ∼ 0.3, while Tanaka & Haiman (2009) use ∼ 0.05.

Once the two BHs have formed a binary, their orbits must shrink by dynamical friction

(gravitational interactions which transfer energy from the BH binary orbit to stars

passing near one of the BHs) until they can merge quickly (i.e., within a Hubble

time) by gravitational radiation. It is challenging to make this process work with the

efficiencies required, since the binary can deplete stars from its ‘loss cone’ (the region

of phase space with angular momenta small enough to allow the stars to interact with

the BHs) and stall the contraction of its orbit before gravitational radiation can take

over (This is known as the ‘final parsec problem’). However, there are other ways

of replenishing the loss cone and of extracting angular momentum from the binary

(for a review, see Merritt & Milosavljević, 2005), so these difficulties are probably

surmountable (If nothing else, there is very little astrophysical evidence for binary

black holes at 1 parsec separation, so binaries apparently do manage to shrink to

<< 1pc and merge). Tanaka & Haiman (2009) assume that binaries always merge

prior to any interaction with another BH, while Volonteri et al. (2003) use a simple

analytical model of the time taken for a binary to harden.

If a binary does not manage to merge prior to an encounter with another BH-

containing halo, then the BHs can undergo a triple interaction, which usually results
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in the ejection of the least massive black hole from the galaxy, while the remaining

BHs form a more tightly bound binary. Volonteri et al. (2003) found that, for BHs

with roughly equal mass, the resulting binary is tight enough to merge by gravitational

radiation, avoiding the final parsec problem mentioned above.

Three-body interactions will also lead to a population of wandering black holes

which are not associated with a host galaxy; Volonteri et al. (2003) find that, at z = 0,

the mass in these wandering MBHs is a few percent of that in SMBHs. Additionally,

a newly merged black hole can be ejected from its parent galaxy by recoil from

gravitational waves produced by its merging precursors. Tanaka & Haiman (2009)

find that the wandering BH population resulting from gravitational recoil can be

appreciable in some cases. Since wandering black holes are stripped of their haloes,

they are unlikely to participate in future merger events, or contribute to the future

development of the SMBH population.

2.7 MBH Observation Prospects

While the presence of MBHs at high redshift is very difficult to establish with

electromagnetic observations, the LISA gravitational wave detector will be able to

detect the coalescence black hole binaries with M & 1000M� at z ∼ 20. Moreover,

the (redshifted) masses, spins, eccentricity, and, luminosity distance of a source can

be determined from its gravitational waveform. The detected parameters of LISA

observed sources can thus provide a wealth of information about the processes involved

in MBH formation and evolution. Below, we compile a partial list of the modeled

astrophysical processes which have been discussed in this section, along with some

ways in which they might affect the distribution of MBH coalescences observed by

LISA:
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• The cosmology employed, which determines the halo merger history. This is

reasonably well constrained by CMB and Type Ia Supernovae data, but it is

possible that, for instance, the cosmological constant may differ from the stan-

dard ΛCDM description in the epochs where SMBH formation is most active.

If so, this could produce an observable effect on the frequencies of mergers

observed by LISA.

• The details of MBH seed population, namely the redshifts where seeds occur,

their masses, and their frequency of occurrence, will have significant effects on

the distribution of high-redshift coalescences observed by LISA. In the higher

mass seed cases, LISA should be able to observe the seeds directly3.

• The accretion scenario, including its overall rate and whether it is sustained or

intermittent. The overall rate of accretion can be inferred from gravitational

wave observations by observing how the average mass of BHs involved in mergers

increases at later redshifts. Since the accretion scenario has significant effect

on the SMBH spin distribution (sustained accretion leads to high spin, while

intermittent accretion leads to low spin), it can also be inferred, to some extent,

from gravitational wave observations.

• The halo mass ratio threshold for BHs to sink to the center of their galaxy and

form a binary should have an effect on the typical mass ratios of black hole

mergers, which can be determined from gravitational wave observations.

• The timescales for binaries to contract via interaction with their environs should

produce lags in the rate of coalescences as a function of redshift. If the binaries

3For instance, the LISA calculator(Crowder & Cornish, 2006) gives an SNR of 19 for a coalescing

pair of 104M� BHs at z = 15 (settings were otherwise left at their defaults)
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can shrink quickly via interaction with local matter, these lags should be short.

If, on the other hand, triple interactions and additional halo mergers are required

to shrink binaries to the point where gravitational wave emission is effective,

there will be lags with timescales comparable to the halo merger timescales.

These differences may be detectable in the population of binaries observed by

LISA.

• Black holes being ejected by recoil from gravitational radiation would have a

depleting effect on the halo occupation fraction, resulting in fewer mergers at

high redshift than would otherwise be expected.

Gravitational waves offer an exciting new source of information about the origins

of supermassive black holes. We next turn our attention to the gravitational wave de-

tection process, considering detection criteria and analysis of errors in a gravitational

wave source.
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CHAPTER 3

GRAVITATIONAL WAVES

3.1 Overview

To date, the vast majority of astronomical observations have been made using

electromagnetic radiation. From radio antennas such as the Very Large Array, to

optical telescopes such as the Hubble Space Telescope, to X-Ray observatories such

as NASA’s Chandra, all operate in the electromagnetic spectrum. Electromagnetic

waves have provided a wealth of information regarding all manner of processes in the

universe, but are subject to certain limitations. Light is easily scattered by intervening

matter, and the nature of the source is not necessarily obvious from the spatial and

spectral distribution of the detected waves. Many distant sources are too weak or

small for their nature to be inferred from their electromagnetic radiation.

Einstein’s General Theory of Relativity (GR) predicts an entirely distinct spec-

trum in the waves which propagate on space-time itself, called Gravitational Waves

(GWs). Unlike electromagnetic radiation, GWs only interact gravitationally with

matter (by gravitational lensing, for instance), so they are only very weakly absorbed

or deflected by interaction with matter between the source and the detector. Also,

they are produced by the orbital dynamics of massive, astrophysically interesting

objects (and, potentially, some other sources), so the properties of a GW source

can be inferred directly from its observed spectrum. While GWs have not yet been

observed directly, the effects of GW emission on the orbits of binary pulsar have been

observed and agree with the predictions of GR to very high accuracy. Most notably,

the decay of the orbit of the ‘Hulse-Taylor’ pulsar, PSR1913+16, has been monitored
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over multiple decades, finding precise agreement with the predictions of GR regarding

GW emission(Hulse & Taylor, 1975; Weisberg & Taylor, 2005).

Because of GW’s weak interaction with matter, highly sensitive detectors are

required, and these are only now beginning to come online. They are of the laser

interferometer type, where laser light is sent on a round trip along two distinct paths

which are at some angle to each other, and recombined on their return (see Figure

3.1). The resulting pattern of interference fringes is sensitive to differences in the

path lengths of the beams which are smaller than the wavelength of the laser light

(∼ 5 × 10−7 meters), and the location of the nulls in the interference fringes can be

measured with high accuracy. Thus, these detectors can reach the sensitivity needed

to measure the variation, caused by an astrophysical GW, of one part in ∼ 1020 in the

optical path length of the beams (Figure 3.2 shows the strain sensitivity attained by

initial LIGO’s 5th science run). The most sensitive current instruments, the LIGO

detectors, are not yet at the point where their expected event rates are ∼ 1yr−1

or better (Abbott et al., 2009). However, upgrades will soon begin(Smith & LIGO

Scientific Collaboration, 2009) which will bring LIGO to an ‘advanced’ configura-

tion, which has much higher sensitivity and is expected to see ∼ 10 events per year.

The frequency band covered by LIGO ranges from 10 . . . 10000 Hz, and so it will be

sensitive to coalescences of binaries containing white dwarfs, neutron stars or stellar

mass black holes, as well as to asymmetric supernovae and rapidly spinning pulsars

with ‘mountains’. Unfortunately, it is not sensitive to mergers of MBHs, as their

size places their maximum emitted frequencies below the LIGO sensitivity band (for

comparison, the fundamental ringdown frequency of a newly merged 1000M� black

hole at z = 10 is ∼ 3 Hz).

Sensitivity to lower frequencies in the range of 10−4 . . . 10−1 Hz is required to ob-

serve the inspiral and coalescence of MBHs, but excessive noise due to the terrestrial
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Figure 3.1: Diagram showing the configuration of the LIGO instrument.

environment precludes detection of gravitational waves in that frequency band from

Earth. A space-based detector is therefore required, and the planned Laser Interfer-

ometer Space Antenna (LISA) mission is designed for this purpose (see Danzmann &

Rüdiger, 2003). LISA will consist of three identical spacecraft in 1 AU heliocentric

orbits trailing the Earth by 20◦ of ecliptic longitude. Each orbit has an eccentricity

of ≈ 0.01, and their arguments of perihelion, inclinations and orbital phases vary in

such a way that the spacecraft move together around the sun in a roughly equilateral

triangle, with armlength 5×109 km (see 3.3 for a diagram of the LISA configuration).

Each spacecraft contains a drag-free system which ensures that it follows an inertial

trajectory around the sun, unperturbed by non-gravitational influences such as the

solar wind and radiation pressure. All of the spacecraft are linked to the others by

laser tracking systems, so that their relative separations are monitored to better than

one part in ∼ 1020. LISA will be able to see mergers of ∼ 1000M� black holes out
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Figure 3.2: Strain sensitivity achieved by the 5th science run of the initial LIGO
instrument. This graph can be found in (Smith & LIGO Scientific Collaboration,
2009), which also discusses anticipated sensitivity curves for advanced LIGO.
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Figure 3.3: Diagram showing the orbits of the LISA constellation (not to scale).

to z ∼ 20 (Crowder & Cornish, 2006), so it is very well suited to observing MBH

populations. This dissertation therefore concentrates on LISA, although many of the

topics discussed are relevant to other detectors and/or source populations.

3.2 Production of Gravitational Waves

Calculating the detectability of binary systems emitting gravitational waves is a

standard problem in the gravitational wave community; see, for instance, Flanagan

& Hughes (1998a,b), and Cutler & Flanagan (1994). We review the problem here for

convenience and locality of reference.

First, an overview of Einstein’s General Theory of Relativity, which constitutes our

current understanding of gravity. This is reviewed in considerable detail in introduc-

tory textbooks on gravitation, such as (Schutz, 1985; Hartle, 2003); the derivation here

largely follows Hartle (2003). As is customary when working with General Relativity,
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we use natural units where the speed of light and Newton’s gravitational constant are

unity, and the Einstein summation convention (index variables appearing twice in a

term are summed over) is in full effect unless otherwise stated.

The curvature of space-time, encapsulated in the Einstein tensor Gµν , is related

to the stress-energy-momentum tensor, Tµν , according to

Gµν = 8πTµν . (3.1)

The Einstein tensor is derived from the Ricci tensor Rµν and metric gµν according to

Gµν = Rµν −
1

2
gµνR, (3.2)

where the Ricci curvature scalar, R, is just the trace of the Ricci tensor. The Ricci

tensor is defined by a contraction of the Riemann curvature tensor, Rαβγδ:

Rµν ≡ Rα
µαν . (3.3)

The Riemann curvature tensor describes how infinitesimally separated geodesics (the

paths travelled by unaccelerated test particles) diverge from each other due to the

curvature of space-time, and it is derived from the Christoffel symbols, Γα
βγ:

Rαβγδ =
∂Γα

βδ

∂xγ
−
∂Γα

βγ

∂xδ
+ Γα

γεΓ
ε
βδ − Γα

δεΓ
ε
βγ (3.4)

The Christoffel symbols, in turn, describe how a vector changes when it is moved

around a space via parallel-transport, and are derived from the fundamental tensor

describing a spacetime, the metric gµν :

Γα
βγ =

1

2
gαδ

[
∂gδβ

∂xγ
+
∂gδγ

∂xβ
− ∂gβγ

∂xδ

]
(3.5)

The metric, finally, describes how the physical separation between two points in the

space-time is related to the coordinates of the points. Specifically, the line element
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ds between a point x and a point infinitesimally separated from it by a coordinate

displacement dx is

ds2 = dxαdxβgαβ. (3.6)

The metric also provides the mapping from vectors to their dual vectors, represented

in the standard notation by whether the vector is indexed by a superscript or by a

subscript, and similarly for tensors. For instance, Rαβγδ is related to Rα
βγδ (compare

equations 3.3 and 3.4) by

Rαβγδ = gαεR
ε
βγδ. (3.7)

The Einstein equation then relates, via the complicated relationships defined

above, the components of the metric tensor of a space-time to the energy, momentum,

and stress contained in the space-time. It constitutes a system of 10 second-order cou-

pled, nonlinear, partial differential equations for gµν given Tµν . Needless to say, exact

analytical solutions of these equations are impossible for all but the simplest systems.

In fact, managing to produce a functioning numerical simulation of the general two-

body problem has required decades of heroic effort by modelers(For recent advances

in the two-body problem in GR, see Pretorius, 2005; Baker et al., 2006; Campanelli

et al., 2007). In contrast, the two-body problem in Newtonian gravity has been solved

analytically and is the subject of undergraduate mechanics texts, and production of

functioning numerical solutions for arbitrary numbers of bodies is trivial (although

their evaluation can be computationally expensive). The basics of gravitational-wave

production, propagation, and detection, however, are largely accessible with a far

simpler weak-field approximation, which we review next.

Let us suppose that the metric can be written as the sum of the flat space metric of

special relativity, ηµν = diag(−1, 1, 1, 1), plus a small perturbation hµν � 1. Working
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to first order in hµν , we have

gµν = ηµν + hµν . (3.8)

If we define a ‘trace-reversed’ amplitude as

h̄µν = hµν −
1

2
ηµνh

α
α, (3.9)

then the Einstein equation reduces to

�h̄µν = −16πTµν , (3.10)

where the D’alembertian or wave operator � is equal to −∂2/∂t2+∇2. Thus, the com-

ponents of the metric obey standard wave equations with sources given by −16πTµν .

This equation is straightforward to solve using standard Green’s function techniques.

When this result is solved in the limit of long wavelengths for the fields far from the

source, it is found that the spatial (i.e., x, y, and z) components of the trace-reversed

metric amplitude are1

h̄ij(t,x) =
2

r

d2

dt2
I ij(t− r), (3.11)

where the dependence on the stress-energy-momentum tensor, Tµν , has simplified to

(see Chapter 23 of Hartle, 2003) dependence on I ij, second mass moment of the source

(which has mass density ρ):

I ij =

∫
d3xρ(t,x)xixj. (3.12)

In the case of a binary of reduced mass µ in a circular orbit in the x-y plane of

diameter d and orbital phase Φ, we have

I ij → µd2

2


1 + cos (2Φ) sin (2Φ) 0

sin (2Φ) 1− cos (2Φ) 0

0 0 0

 . (3.13)

1We employ the convention that Latin indices refer only to spatial components, while Greek

indices refer to the full dimensions of the space-time.
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To lowest non-vanishing order, the metric perturbation is then given by

h̄ij → −4µd2Φ̇2

r


cos [2Φ(t− r)] sin [2Φ(t− r)] 0

sin [2Φ(t− r)] − cos [2Φ(t− r)] 0

0 0 0

 . (3.14)

Thus, in a reference frame comoving with the source, the fundamental frequency of

the gravitational radiation, fs, is twice the orbital frequency, fs,orb ≡ Φ̇s/(2π). At

this point, we use Kepler’s law to express the orbital separation, ds, in terms of fs,

and express the mass dependence in terms of the ‘chirp mass’:

Mc ≡ [m1 +m2]
2/5 × µ3/5 (3.15)

The metric perturbation then becomes

h̄ij → −8Mc

r

[
πfsMc

]2/3


cos [2Φ(ts − r)] sin [2Φ(ts − r)] 0

sin [2Φ(ts − r)] − cos [2Φ(ts − r)] 0

0 0 0

 . (3.16)

The orbit will gradually decay due to the power radiated in these gravitational waves

(see Peters & Mathews, 1963), with the result that the gravitational wave frequency

increases with time according to

dfs

dts
=

96

5

fs

Mc

(
πfsMc

)8/3
. (3.17)

This describes the gravitational radiation of a circular, non-spinning binary to lowest

non-vanishing order in a frame that is comoving with the source. In practice, higher

order than linear terms are needed to characterize the waveform of a binary that

is nearing coalescence, but the above derivation illustrates how the process may be

carried out. First, the Einstein equations are evaluated, keeping terms up to some

order in the metric perturbation. Then, the gravitational radiation encapsulated in
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the resulting metric is characterized, using expressions for the orbit evolution obtained

using post-Newtonian expansions. After that, the radiation reaction on the orbit due

to the emission of gravitational waves is determined. The new orbit can then be

used to add higher order corrections to the metric and the resulting radiation. This

process quickly becomes very mathematically cumbersome, and we do not attempt

to reproduce it here (see, for instance Blanchet, 2006). The waveforms used in this

work do employ higher order corrections, however. The spinning BHB code used

in Chapter 6 is valid to 2PN order (i.e, [v/c]4) in both amplitude and phase (Arun

et al., 2009), while the LISA calculator code used in Chapter 5 is valid to 2PN order

in phase and lowest order in amplitude, but assumes zero spin.

3.3 Detection of Gravitational Waves

We now consider a signal in the frame of a detector situated (at distance r) with

azimuthal angle ψ and polar angle ι with respect to the source. The cosmology is

such that the redshift between the source and detector is z, which alters the source’s

observed amplitude and frequency variation. In terms of the detector-frame variables,

we note that f = fs/(1 + z) and t = ts(1 + z), so that

ḟ =
96

5

f

Mc(1 + z)

(
πfMc(1 + z)

)8/3
. (3.18)

Writing the geometrical distance, r, in terms of the luminosity distance, DL, the

gravitational wave amplitude becomes

−8Mc(1 + z)

DL

[
πfMc(1 + z)

]2/3
. (3.19)

Thus, observing the chirp of a binary (the ramping up of its frequency with time) de-

termines its redshifted chirp mass, Mc(1+z), and observing the amplitude determines
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its luminosity distance (although somewhat poorly since it is strongly correlated with

the binary’s inclination and sky location). Mc always appears in the GW signal

accompanied by a factor of (1 + z), so only the redshifted chirp mass can be inferred

from observation of the gravitational wave. In general, all dimensionful mass variables

appearing in the GW signal are redshifted, and the rest frame masses of the binaries

cannot be inferred directly from the signal. If a particular cosmology is assumed, the

redshift can be inferred from the luminosity distance, but this adds significant error

to the determination of the mass (it may be possible to constrain the redshift of a

binary by observing an optical counterpart, however). Unless otherwise specified, we

use redshifted mass variables from this point onwards.

Since we have restricted our attention to the case of circular orbits, we can take

advantage of this and, choosing the y axis to be orthogonal to the line of sight, rotate

the x and z axes about the y axis so that the z direction is along the line of sight

(i.e. the direction of propagation of the wave). Following the prescription given in

(Chapter 21 of Hartle, 2003), the spatial part (h̄ij) of the metric perturbation in the

transverse-traceless gauge2 at the detector is

−4Mc

DL

[
πfMc

]2/3


(1 + cos2 ι) cos [2Φ(f)] 2 cos ι sin [2Φ(f)] 0

2 cos ι sin [2Φ(f)] −(1 + cos2 ι) cos [2Φ(f)] 0

0 0 0

 , (3.20)

2GR possesses a gauge freedom corresponding to a particular choice of coordinate system. In

particular, we can add to each of the coordinates, xα, an arbitrary small function ξα(x), without

resulting in any change in the physics of the system. It turns out that these ξα can be chosen so that

only the metric perturbation components transverse to the propagation direction are non-zero and

the metric perturbation has zero trace. The result is imaginatively named the transverse-traceless

gauge.
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and the other components of the metric perturbation (i.e., h̄µ0 or h̄0ν) are zero. In

equation 3.20, we have suppressed an initial gravitational-wave phase offset Φ0 and

written Φ as a function of the fundamental gravitational wave frequency f , which is

a function of time (see equation 3.18):

Φ(f) ≡
∫ t

f(t′)dt′ + Φ0. (3.21)

Note that in the coordinate system of equation 3.20, the y axis remains in the plane

of the binary’s orbit, and points along the long axis of the apparent ellipse formed by

the binary’s circular orbit as viewed from the detector. It is customary to break the

gravitational wave apart into two independent polarization states whose amplitudes

h+ and h× are given by

h+(f) =
4Mc [πfMc]

2/3

DL

(1 + cos2 ι) cos [2Φ(f)]

h×(f) = −8Mc [πfMc]
2/3

DL

cos ι sin [2Φ(f)] . (3.22)

We can now write the full gravitational wave metric as

gµν →



−1 0 0 0

0 1− h+ −h× 0

0 −h× 1 + h+ 0

0 0 0 1


. (3.23)

The separations between two coordinate locations in the space-time of the GW

are determined by the metric. For instance, the physical space-time interval, ∆s,

between two events at xa and xb measured along a locus of points with coordinates

specified by the set of functions xµ(λ) is determined by integrating the line elements

(specified by the metric tensor) over the path between the points (compare equation

3.6):

∆s =

∫ λb

λa

√
gµν

dxµ

dλ

dxν

dλ
dλ (3.24)
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For purposes of LISA’s measurement of the GW, we are interested in photon

times-of-flight along one arm of the interferometer. This can be found by determining

the null geodesic (i.e., ds2 = 0) trajectories connecting the transmitting spacecraft (at

time of transmission) to the receiving spacecraft (at time of reception), and integrating

the dt2 given by equation 3.6 along the trajectory. This takes a simple form in

the special case of flat background spacetimes in Minkowski coordinates, with the

spacecraft at rest with respect to the coordinate system (i.e., the coordinates of the

spacecraft are constant), and with the GW perturbation expressed in the Transverse-

Traceless gauge (see Finn, 2009; Cornish, 2009). In this case, the time delay due to

the gravitational wave can be written:

δt =
∆xi∆xj

2L2(1−∆z/L)

∫ τb

τa

hij(τ)dτ, (3.25)

where ∆x ≡ xa − xb, L ≡ |∆x|, τ = t − z determines the gravitational wave phase,

and the wave propagates along the z axis as before. It has only recently been realized

that this simple form applies only to the rather restricted conditions described above

(see again, Finn, 2009; Cornish, 2009), and care must be taken when making similar

calculations. One must ensure that the above conditions are satisfied when using this

result. Fortunately, the conditions can be satisfied in the case of GW detection with

LISA.

If we consider a circular (in the unperturbed metric) ring of test masses, the

effect of the gravitational wave is to affect the distances between the test masses into

those for an ellipse, with the strength of the distortion and the orientation of the

ellipse varying in time in a way that depends on the relative strength of h+ and h×

(see Figure 3.4). It is important to note that, in the transverse-traceless gauge, the
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Figure 3.4: The effects of the h+ (top) and h× (bottom) gravitational wave polariza-
tions on the distances between a circular ring of test masses.

coordinates of the test masses themselves are not ‘moved’ (i.e., accelerated) in any

way by the GW; it is only the distances between the test masses that change.

For gravitational waves far from a general source, the polarization amplitudes h+

and h× can be expanded in terms of harmonics as

h+,×(τ) =
∑

n

h
(n)
+,× exp[inΦ(τ)], (3.26)

where τ is now given by τ = t− k̂ ·~x, which locates the surface of constant phase for a

gravitational wave propagating in a general direction k̂. When the binary is far from

coalescence, the dominant emission is the n = 2 quadrupole, and the polarization

amplitudes take the form of equation 3.22.
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3.4 LISA Detection

In the case of LISA, the orientations of the arms will vary as the spacecraft orbits

the sun, and the measured distances between the 3 arms, as given by equation 3.25,

are thus a complicated function of time. In the low-frequency limit, however, the

phase of a signal in the interferometer is directly proportional to the amplitude of the

wave. The response of the LISA detector to the two polarizations of a gravitational

wave from a binary can then be written as

y(τ) = F+(θ, φ, ι, ψ, τ)h+(τ) + F×(θ, φ, ι, ψ, τ)h×(τ), (3.27)

where F+ and F× are the LISA form factors that depend on the position (θ,φ) and

orientation (ι,ψ) of the source relative to the time-dependent LISA configuration.

These are discussed in, for instance, Moore & Hellings (2002).

One measure of the ability of the LISA detector to observe a binary signal is the

signal-to-noise ratio, defined as

(SNR)2 = 4

∫ ∞

0

|h̃(f)|2

SLISA(f)
df , (3.28)

where |h̃(f)|2 = |h̃+(f)|2 + |h̃×(f)|2, with h̃+(f) and h̃×(f) being the Fourier trans-

forms of the polarization amplitudes in equation 3.22, and where SLISA(f) is the

apparent noise level of LISA’s Standard Curve Generator (Larson (2000), hereafter

SCG), an estimate that averages the LISA response over the entire sky and over all

polarization states and divides the LISA instrument noise, Sn(f), by this averaged

response.

Previous treatment of LISA observations of binary black hole populations (Sesana

et al., 2007) have employed this measure of detectability, while other treatments

(Sesana et al., 2004) have used a characteristic strain hc, following the prescription
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of Thorne (1987). In this measure, the raw strain h of a source is multiplied by the

average number of cycles of radiation emitted over a frequency interval ∆f = 1/Tobs

centred at frequency f . The amplitude of the characteristic strain is then compared

directly against the 1-year averaged strain sensitivity curve from the SCG to produce

an SNR. In either case, a source is considered detectable if the resulting SNR exceeds

some standard threshold value (typically between 5 and 10).

While interesting for planning LISA data analysis pipelines, these SNR estimates

fail to address the fact that a detection is of little use for comparison with astrophysical

theory if the parameters of the binary are poorly determined. In particular, unless

the masses and redshifts of the detected black holes are measured, the observations

cannot be compared with the black-hole evolution models. A more complete analysis

that incorporates the effects of uncertainty in the binary parameters is required.

Parameter error estimation for black hole binaries detected via gravitational wave

emission has been discussed by many researchers (Cutler & Flanagan, 1994; Vallisneri,

2008; Moore & Hellings, 2002; Crowder, 2006). The following is a review of the

covariance analysis for a linear least squares process, based on the Fisher information

matrix, the method which forms the core of the error analysis in this work.

Let us suppose that the LISA combined data stream consists of discrete samples

of a signal given by (Eq. 3.27), with added noise:

sα = yα(λi) + nα (3.29)

Here, λi are the parameters of the source and nα is the noise, assumed to be stationary

and Gaussian. The probability distribution of the αth data point is therefore

p(sα|λi) =
1√
2πσ2

α

× e−
1
2
[sα−yα(λi)]

2/σ2
α , (3.30)
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where σα (with Greek subscript) is the standard deviation of the noise in the αth

data point.

The likelihood function for a particular data set, with parameters λi, is the product

of the probabilities (Eq. 3.30) for each data point. It is

L(sα|λj) ∝ exp

[
−

∑
i

1

2

[sα − yα(λj)]
2

σ2
α

]
(3.31)

The set of parameters, λ̂i, that maximizes the likelihood function is an unbiased

estimate of the the set of actual model parameters, λi. To calculate the λ̂i, we assume

that the differences between the estimated values and the true values, ∆λ̂i ≡ λ̂i − λi

are small enough that yα(λ̂i) can be approximated by its first-order Taylor series

expansion about λi:

yα(λ̂k) ≈ yα(λk) +∇iyα∆λ̂i. (3.32)

where ∇i represents the partial derivative with respect to λi. This first-order expan-

sion is valid when the SNR is high enough, and the degree of correlation between the

parameters is low enough that the resulting ∆λi are small. Using Eq. 3.31 we find3

that the likelihood is maximized by

∆λi = (F−1)ij

∑
α

1

2

(sα − yα)∇jyα

σ2
α

, (3.33)

where the matrix F is the Fisher information matrix, with components

Fij =
∑

α

1

2σ2
α

∇iyα∇jyα. (3.34)

The expected parameter covariance matrix is

〈∆λi∆λj〉 = F−1
ij (3.35)

3It is also necessary to keep only terms that are first order in the inverse of the SNR; see Vallisneri

(2008)
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The standard deviations in each detected parameter, σi (with Latin subscript), are

given by the diagonal elements of the covariance matrix:

σ2
i = F−1

ii (no sum over i) (3.36)

It is important to remember that the Fisher error estimate is accurate only when the

parameter uncertainties are small compared to the characteristic scales of the system

being fit (Vallisneri & Mock LISA Data Challenge Taskforce, 2006), a condition that

is not well satisfied for all of the binaries being modelled here. In these cases, however,

the method tends to overestimate the degree of uncertainty in systems with a sharply-

defined minimum, and the resulting error estimates tend to be conservative.

Rather than write our own Fisher error estimation codes, we have made use of two

codes. One is the LISA Calculator (Crowder & Cornish, 2006; Crowder, 2006). The

LISA Calculator uses the same instrument noise model Sn(f) that is used as input

to the SCG, and an analytic signal model similar to that discussed here (although

the frequency evolution incorporates some higher order terms). The LISA calculator

(Crowder & Cornish, 2006) executes quickly, but its signal model is relatively simple

(it lacks higher harmonics of the waveform) and it assumes circular, nonspinning

binaries. It is accurate to second Post-Newtonian order (i.e., v4/c4) in the binary

phase evolution, and lowest order otherwise. This is the code used to construct the

error kernels in Chapter 5. In Chapter 6, we use the recent Montana/MIT group

code, discussed in Arun et al. (2009), which was provided to us by Neil Cornish and

Scott Hughes. This waveforms used by this code (based on Apostolatos et al., 1994)

incorporate the effects of higher harmonics in the wave form, spins and spin precession,

but it executes much more slowly than the LISA calculator, so it is computationally

impractical to use it to calculate error kernels (defined in Chapter 5). It is accurate

to second Post-Newtonian order.
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In either case, the codes take as input a set of source parameter values, λj, and

output a set of standard deviations (equation 3.36), σi, for the detected parameter

values, λ̂i. Each detected parameter, λ̂i, is assumed to have a Gaussian probability

density with mean λi and standard deviation σi,

pD(λ̂i|λi) =
1√
2πσ2

i

exp

[
−

[
λ̂i − λi

]2

2σ2
i

]
. (3.37)

A primary focus of this dissertation is using such error distributions to assess the

distinguishability of MBH population models as they would be seen by LISA. In the

next section, we consider and categorize the various source parameters which effect

the signal of a Black Hole Binary (BBH) detected by LISA.

Note that equation 3.37 neglects the (sometimes large) correlations between the

parameter estimation errors, effectively assuming that the axes of the error ellipse are

parallel to the parameter directions. In cases where the parameter estimation errors

are strongly correlated, this exaggerates the effects of the errors. In Chapter 6, how-

ever, we find that only one parameter (namely, χ2) has errors which significantly effect

the estimated parameter distributions predicted by the models, so this simplification

should not affect the results presented here. Also note that we are only considering

parameter estimation errors due to noise in the LISA instrument; other sources of

noise, such as variations in the amplitudes due to weak gravitational lensing effects,

are not included.

3.5 BBH Parameters & their Errors

Each black hole binary may be characterized by a number of parameters, which are

sometimes divided into two categories. The first category is the intrinsic parameters

which have to do with the local properties of the binary in its rest frame. They arem1,



35

the mass of the primary, m2, the mass of the secondary, two sets of initial black hole

spin and orientation parameters (relative to the orientation of the binary orbit), and

either the initial orbital separation, a, frequency, f (related to a by Kepler’s third law)

or time to coalescence, tc, (related to a by the quadrupole formula)4. A set of mass

parameters equivalent to m1 and m2 but more directly related to the gravitational

waveform, is the chirp mass (discussed in section 3.2), Mc = (m1m2)
3/5(m1+m2)

−1/5,

and the symmetric reduced mass ratio η = (m1m2)/(m1 + m2)
2. We use as spin

parameters the dimensionless spin variables χ1 and χ2, related to the spin angular

momenta s1 and s2 of the BHs according to s1 = χ1m
2
1 and s2 = χ2m

2
2. χ1 and χ2

are restricted to the range 0 . . . 1; this is discussed in, for instance, Hartle (2003).

The remaining parameters fall into the second category, and are called extrinsic

parameters. These have to do with the binary’s location and orientation with respect

to the LISA constellation. They are the luminosity distance DL (or equivalently, the

redshift z), the (initial) principle gravitational wave polarization angle ψ, the (initial)

binary inclination ι, the sky location angles θ and φ, and the initial phase of the

binary orbit Φ0.

As shown in section 3.2, to first order the mass dependence of the waveform is on

Mc only. Other mass variables such as η enter into the amplitude and phase of the

waveform, along with the chirp mass, at higher orders. The luminosity distance affects

the overall amplitude of the gravitational wave, while the orbital inclination changes

the relative amplitudes of the h+ and h× components of the metric. The sky position

variables produce a modulation of the wave amplitude and frequency as the LISA

spacecraft orbit the sun, changing the relative orientation of the LISA constellation

4In general, the list of intrinsic parameters also includes the binary’s initial orbital eccentricity.

Here, however, attention is restricted to the simplified case of circular orbits.
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Figure 3.5: Example spinning binary waveform. The binary mass ratio is m1/m2 = 10
and the (redshifted) Mc = 106. The spin of the more massive binary begins aligned
with the orbit, while the spin of the smaller binary is rotated by 40◦ with respect to
the orbit. The waveform has a Hann window applied to the final orbits, to reduce
ringing in the Fourier domain.

and the plane of the GW as well as the velocity of the detector with respect to the

source. To second Post-Newtonian order, the BH spins affect the phase evolution

of the orbit and the orbital orientation due to spin-orbit and spin-spin interactions.

Figure 3.5 shows the time-domain signal of an example spinning binary.

Redshift and luminosity distance are used interchangeably as source parameters,

with the relationship between them determined from the standard WMAP cosmology

(ΩM = 0.27, Ωvac = 0.73, Ωrad = 0.0, and a Hubble constant of 71 km/s/Mpc).

Gravitational lensing can impart an error in the determination of the luminosity
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distance of order ∼ 10% at z = 15(see Holz & Linder, 2005), but we have not

incorporated this effect into our analysis.

As noted in section 3.3, in the gravitational wave signal, the masses are scaled by

the redshift, so that the natural mass variables for gravitational wave data analysis

are redshifted. For instance, the redshifted chirp mass is Mc × (1 + z), although the

reduced mass ratio remains unchanged since it is dimensionless. Since the luminosity

distance (and therefore the redshift, assuming a particular cosmology) is poorly de-

termined from the gravitational wave signal and the redshifted masses are very well

determined (see section 3.3), the natural mass variables for GW population analyses

are redshifted. We therefore compare model astrophysical source distributions as

functions of the redshifted masses, rather than expressing them as functions of rest-

frame masses, which is more customary (see Figure 3.6). As previously mentioned,

mass variables used in this dissertation are redshifted unless otherwise noted.

Since the predictions of the population studies are given as functions of masses

and redshift, the binary parameters are best divided into two sets in a different

way, for purposes of constraining the population models. The first set, consisting

of Mc, η, the two spin magnitude parameters χ1 and χ2, and DL (or z), are what

we will call population parameters, since these are the parameters that characterise

the population model predictions. The remaining parameters, ψ, ι, θ, φ, tc, and Φ0,

represent particular samples drawn from the population model and will be referred

to as sample parameters. Sample parameters have distributions that are essentially

stochastic and contain no useful information about the astrophysical processes which

give rise to the black hole population. The model results we employ do not give

spin orientation distributions, so we also assume that they are each independently

stochastic (uniformly distributed on the sky) and list them as sample parameters,



38

z

ln(m1/(1+z))

Low-spin VHM source parameters (with SNR cut)

0
2
4
6
8

10
12
14
16
18

6 8 10 12 14 16 18 20

z

ln(m1)

Low-spin VHM source parameters (with SNR cut)

0
2
4
6
8

10
12
14
16
18

6 8 10 12 14 16 18 20

Figure 3.6: Example plot showing the difference between parameter distributions
expressed in terms of redshifted (top) and non-redshifted (bottom) mass variables.
Note that an SNR cut has been applied to these distributions.
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Table 3.1: The parameters which define a source. There are a variety of combinations
of m1 and m2 which can be used to specify the masses of the source, depending on
context

Name Description Classification

DL The luminosity distance Population
m1 The mass of BH # 1 Population
m2 The mass of BH # 2 Population
χ1 The dimensionless spin parameter of BH #1 Population
χ2 The dimensionless spin parameter of BH #2 Population
e The eccentricity of the binary (assumed to be zero

in this work)
Population

θ Co-latitude angle. Sample
φ Azimuthal location. Sample
tc Initial time to coalesce Sample
i The (initial) orbital inclination angle Sample
Ψ The (initial) rotation angle of the plane of the orbit Sample
φGW The (initial) gravitational wave phase Sample

θs1, φs1 The spin orientation parameters of BH #1 Sample
θs2, φs2 The spin orientation parameters of BH #2 Sample

although this may not be true in general (see Berti & Volonteri, 2008). Table 3.1

summarizes parameters and their classifications.

Despite the fact that the sample parameters are not part of the intrinsic astro-

physical model, they can have a dramatic effect on LISA’s source characterisation

capabilities. This is because population parameters can be correlated with sample

parameters and all parameters must be fit to the data in the process of extracting the

population parameters of interest. In particular, the luminosity distance is correlated

with the inclination angle and orbital phase (this can be seen from equation 3.20) in

such a way that the luminosity distance error varies significantly depending on the

source’s inclination. It is therefore important to incorporate the effects of variation

in the sample parameters on the errors in the source parameters.

This dissertation employs two distinct methods of applying the errors to produce a

detected population. The first method, described in chapter 5, is to calculate average
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LISA error distributions for the population parameters by averaging over a Monte

Carlo ensemble of many sources, each having randomly-chosen values for the sample

parameters. Such error distributions are referred to as ‘error kernels’. The second

method, described in the Chapter 6, generates a new set of random sample parameters

for every source in a realization of a population. It has the advantage, compared to

the error kernel, that it is easier to implement and the up-front computational cost is

quite low. It also scales easily to the case where there are more than a few population

parameters, while the error kernel does not. On the other hand, once error kernels are

computed, new realizations of a LISA detected parameter set can be produced very

quickly. The error kernel also provides a convenient way to visualize LISA’s average

parameter determination error (see Figure 5.1).
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CHAPTER 4

MODEL COMPARISON

A data set is a collection of information that results from observations made with

some instrument. This information is represented as a series of data points, Ai, each

point describing a source or event found by the observations. In this work, each data

point is a set of best-fit parameters for a source found in a realization of the LISA data

stream. Our objective is to simulate such data sets for the various population models

and consider whether or not their differences are statistically significant. Comparing

a pair of data sets to see if they are drawn from the same population is a standard

problem in statistical analysis. For instance, section 14.3 of Press et al. (2002) states:

“Given two sets of data, we can generalize the questions asked in the

previous section and ask the single question, ‘Are the two sets drawn from

the same distribution function, or from different distribution functions?’

Equivalently, in proper statistical language, ‘Can we disprove, to a certain

required level of significance, the null hypothesis that the data sets are

drawn from the same population distribution functions?’”

In the traditional frequentist picture, which we use here, a ‘statistic’ is proposed

which quantifies the differences between the two data sets (call them A and B). In

the case of the familiar chi-squared test, the parameter space is divided into bins and

the statistic is found by taking the differences between the counts nA,i and nB,i in

each bin, normalizing them by the combined counts in the bins, and summing the

result:

χ2 =
∑

i

(nA,i − nB,i)
2

nA,i + nB,i

(4.1)

Then the question is asked,
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Suppose that these two data sets were drawn from the same distribu-

tion, and the same experiment performed a large number of times. With

what frequency, p, would one obtain values of the statistic at least as

extreme as that which we actually observed?

If this p is low, we conclude that the data are unlikely to have been drawn from the

same population, and quantify our level of confidence in the result as (1− p)× 100%.

In other words, the confidence level is the cumulative distribution function (CDF) of

the test statistic in the case of the null hypothesis that both data sets were drawn

from the same population. For simple test statistics, this CDF is relatively easy to

calculate. In the case of the χ2 statistic, for instance, the CDF is an incomplete

gamma function (see Press et al., 2002, section 14.3), as plotted in Figure 4.1. For

more complicated test statistics, the CDF can be found by calculating the statistics for

Monte Carlo draws of two data sets which are both drawn from the same distribution

(consistent with the null nypothesis), a technique employed in this chapter.

4.1 The 1-D K-S Test and Variants

The tests used in this work are based on the Kolmogorov-Smirnov (K-S) test. Its

nonparametric and unbinned nature makes it well suited to the sparsely distributed

(∼ 100 sources spread over multiple decades and parameter dimensions) MBH popu-

lation, unlike the binned χ2 test. In practice, however, it is restricted to distributions

which are functions of at most two parameters. The analysis performed in Chapter

6 uses various choices for those two parameters, applying the tests to comparisons

of astrophysical model predictions for the distributions of best-fit parameters and

considering LISA’s model distinguishing power for each.
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Figure 4.1: Example Probability Density Function (PDF) and Cumulative Distribu-
tion Function (CDF), for the χ2 statistic. The PDF indicates the fraction of draws
from the distribution which fall between χ2 and χ2 + dχ2, while the CDF is the
fraction of draws which are less than χ2. The CDF is thus the integral of the PDF.
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In its one-dimensional form, the K-S statistic is almost deceptively simple to

implement. First, form a cumulative histogram from each data set, and normalize

both to one. These are an estimate of the CDFs from which the data sets were

drawn, and are sometimes referred to as ‘Empirical Distribution Functions’ (EDFs).

See Figure 4.2 for an illustration of the EDFs and cumulative histograms of two

data sets. The K-S statistic, D, is the maximum difference between the two EDFs.

Because the size of this difference does not change under reparametrization of the x

axis (i.e., arbitrary stretching or shrinking of the separation between data points), the

K-S test is nonparametric. For instance, the same values of the statistic are obtained

for comparison of the data sets {A2
i } and {B2

i }, and for the data sets {Ai} and {Bi}

(assuming all of the data points are positive). For the standard one-dimensional K-S

test, the confidence level is given by Press et al. (2002) as

QKS

([√
Ne + 0.12 + 0.11/

√
Ne

]
×D

)
, (4.2)

where the function QKS can be evaluated as the series

QKS(λ) = 2
∞∑

j=1

(−1)j−1e−2j2λ2

(4.3)

and the ‘effective’ number of data points, Ne, is determined by NA and NB, the

numbers of points in data sets A and B:

Ne =
NANB

NA +NB

. (4.4)

This standard K-S test is sensitive only to variation in the CDFs of the two

populations from which the data sets are drawn. As long as the EDFs of the two

data sets are similar, the test will report that the null hypothesis is true, even if the

number of counts in the two sets are very different. Since the number of detected LISA

sources is also an important prediction of a population model, we have constructed a
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Figure 4.2: Comparison of two example data sets illustrating the calculation of the
E statistic. Top plots show the two cumulative histograms used in calculating the E
statistic, as well as the differences between them. The lower left plot shows only the
differences between the two pairs of histograms, the largest of which is the E statistic.
Shown in the lower right are the normalized cumulative distribution functions on
which the K-S test is based. These example data sets were created with the probability
density function (PDF) p(x) = xα/(1 + α) (x ranging from zero to one), and Poisson
distributed total number counts. Data set A had α = 0.6 and Poisson parameter 56,
while data set B had 1.5 and 72
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modified test that is also sensitive to differences in both the CDFs and the number

of sources. We begin by defining a new statistic, E, which differs from the K-S D

statistic most notably in that the cumulative histograms going into its calculation are

not normalized. Instead of ranging from 0 to 1, values of the statistic will range from

0 to NA and 0 to NB. Thus, significant differences in the total count rate can also lead

to significant differences in the statistic. We have found that using only the standard

cumulative histogram, which accumulates data counts going from left to right (low

to high data values), is sensitive primarily to distributions whose differences occur at

the upper end of the distribution, and insensitive to differences on the low end (the

upper two panels of Figure 4.2 illustrates this). In order to allow differences between

the model CDFs more opportunities to manifest themselves, we consider two sets of

differences between the data EDFs, one set with EDFs accumulated ranging from

small values of the data variable to large values, and the other set ranging from large

values to small values (see Figure 4.2). The statistic itself is taken to be the largest

difference found in the sets. Note that this statistic retains the useful nonparametric

nature of the standard K-S test. Then, we modify the null hypothesis:

Suppose that the two data sets are drawn from the same CDF, and

that the numbers of data points (i.e., the total number of sources) are

the result of a Poisson process with the same rate parameter. With what

frequency, p, would one obtain values of the E statistic at least as extreme

as that which we actually observed?

Rather than calculate the CDF of the test statistic analytically, we calculate it

numerically using Monte Carlo draws given this null hypothesis. Since the statistic

is nonparametric, our null hypothesis draws can use data points that are uniformly

distributed without loss of generality. Moreover, we have numerically determined
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that the mean of the (one-dimensional) E statistic (in the case of the null hypothesis)

scales with the Poisson rate parameter, λ, approximately as

〈E〉 = 1.773
√
λ− 0.487, (4.5)

and its variance scales approximately as

Var(E) =
1

2
(1.046λ+ 0.5). (4.6)

Thus, we can use a fiducial CDF calculated for one λ to find the CDF for any other

by scaling E according to the above equations. Note, however, that the statistic can

only take on discrete values, so CDFs calculated with small λ will not smoothly cover

the range of E. In the case of two data sets, the average of the two number counts,

(NA +NB)/2, should be used as an estimator of λ. Figure 4.3 shows a fiducial CDF

calculated using 2.5× 105 null hypothesis draws with λ = 2.5× 104, which should be

sufficient for most uses.

The differences between the various tests are illustrated by the confidence levels

in Figure 4.4.

4.2 Two-Dimensional Tests

Since each detected LISA source has a set of best-fit parameters (masses, redshifts,

spins, etc) rather than a single parameter, the model comparison tests employed

should be sensitive in multiple dimensions as well. In this work therefore, we also em-

ploy a version of the two-dimensional K-S test, modified to be sensitive to differences

in the total event counts.

The two-dimensional test statistics are somewhat more complicated than those

for the one-dimensional case, because the CDF and the cumulative histogram are not
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well defined in two or more dimensions (there’s a well defined rank ordering in one

dimension, but not in two or more). However, a working surrogate can be obtained

in two dimensions (Peacock, 1983). For each data point (xAi, yAi) in the set A, find

the fractions (one for data set B, one for data set A) of data points in the four

quadrants defined by (x < xAi, y < yAi), (x < xAi, y > yAi), (x > xAi, y < yAi), and

(x > xAi, y > yAi), for data set A and for data set B. Then, find the point x, y and

choice of quadrant for which the difference between these fractions is the greatest. Do

the same thing, but running over each data point in B, rather than each data point

in A, and average the two fractions1. This is the two-dimensional D statistic, first

implemented in this fashion by Fasano & Franceschini (1987). The two-dimensional

E statistic is the same except that, in place of the fraction of data points in each

quadrant, we use the number of data points in each quadrant.

In the case of the null hypothesis, the distribution of the D statistic is very nearly

independent of the shape of the two-dimensional distribution of the data points (Press

et al., 2002), and this appears to be the case for the E statistic as well (see section

4.3). The confidence levels (i.e., the CDFs for draws given the null hypothesis) for

both D and E can be calculated using draws given the null hypothesis, as before.

For the D statistic, Press et al. (2002) give an equation (14.7.1) that can be used

to calculate the CDF (specifically, it gives 1 − CDFD), although it is only roughly

correct for confidence levels & 90% (see section 4.3):

P
(
D > Observed) = QKS ×

D
√
N

1 +
√

1− r2(0.25− 0.75/
√
N)

(4.7)

where N = NANB/(NA + NB), and r depends on the Pearson’s linear correlation

coefficients, rA and rB, of the samples according to r =
√

1.0− (r2
A + r2

B)/2. QKS

is given in equation 4.3. The E statistic CDFs were determined by Monte Carlo

1Press et al. (2002) give an algorithmic definition in the C language, which may be more clear
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draws consistent with the null hypothesis, as with the one-dimensional case (see

Figure 4.3). We have not attempted to estimate scaling rules similar to equations

4.5 and 4.6 for the two-dimensional E statistic, however. Instead, we calculate the

CDF directly using Monte Carlo draws for each sample size, and store the results for

future reference. Figure 4.5 show several such CDFs.

4.3 Validation of Tests

Before we apply these tests, we would like to know if the confidence levels we

obtained in the previous sections are, in fact, valid for any distribution. We have
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therefore performed some test cases to see if the distribution of confidence levels (in

the case of the null hypothesis) has any appreciable dependence on the distribution

used to make the draws. Recall that the confidence level for some value of a statistic

is the percentage of draws given the null hypothesis which are less than or equal to

that value. If the null hypothesis is true, therefore, the confidence levels resulting

from a series of data sets drawn from the population will approximate2 a uniform

distribution: 10% of null hypothesis draws will have confidence levels less than 10%,

20% will have draws less than 20%, etc. We can use this fact to check our method of

calculating the confidence levels by performing draws given the null hypothesis (that

the data sets both have the same CDF and number counts drawn from the same

Poisson distribution) which use different CDFs than those used in the calculation of

the confidence levels. If we obtain a uniform distribution of confidence levels for data

sets which have distributions significantly different than those used in the construction

of the confidence levels, then it is likely that our method of calculating confidence

levels is correct in general.

For the one dimensional tests, we have used as a test distribution a Lorentzian,

or Cauchy distribution, which has the probability density function

p(x) =
1

π

γ2

(x− x0)2 + γ2
, (4.8)

where x0 is the median of the Lorentzian, and γ is its half-width at half maximum

(HWHM). The Lorentzian distribution is semi-pathological because it has very large

tails (see Figure 4.6), so large that its mean and standard deviation are undefined

(although it is, of course, normalizable), and it consequently makes for an interesting

2Since the statistics in question take on discrete values, the confidence levels will also take on

discrete values. Thus, a cumulative histogram of the confidence levels will increase in discrete steps

rather than the uniform distribution’s straight line of unit slope.
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test case. Rather than making all pairs of null hypothesis draws from identical distri-

butions, we have chosen a different set of random distribution parameters for each pair

of synthetic data sets drawn given the null hypothesis (naturally, each comparison

performed was between data sets with the same set of distribution parameters). The

Poisson rate parameters were chosen from a logarithmic distribution (rounded to the

nearest integer) ranging from 10 to 1000, and the Lorentzian median and HWHM

parameters were also chosen from logarithmic distributions ranging from 10 to 1000.

The results of 5000 such trial draws are shown in Figure 4.7, with the E statistic

confidence levels closely matching the expected uniform distribution. We have also

made draws with a reduced range of distribution parameters, to verify that variation

in the distribution parameters was not masking flaws in the confidence levels, but ob-

tained the same uniform distribution. This suggests that our E statistic confidence

levels are trustworthy, and that the nonparametric nature of the statistic does indeed

render it independent of the shape of the distribution. Curiously, the standard K-S

confidence levels exhibit a slight preference towards low confidence levels, for both the

Press et al. (2002) version (shown in Figure 4.7) and that used by the GNU Octave

software program.

For the two dimensional tests, one significant concern (see Peacock, 1983; Fasano

& Franceschini, 1987) is how the confidence levels are affected by the degree of corre-

lation in the data. We therefore use 3 test distributions. The first is a completely cor-

related Gaussian distribution along the line defined by θ = 45◦ (see Figure 4.8). The

second is partially correlated, and is composed of a pair of elongated two-dimensional

Gaussians, partially overlapping and rotated with respect to the x and y axes (see

Figure 4.9). The third is uncorrelated, and consists of a single circular two dimensional

Gaussian distribution (see Figure 4.10).
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Example 2-Dimensional Distribution: Gaussian, Fully Correlated
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Figure 4.8: Two dimensional test distribution consisting of a completely correlated
Gaussian distribution along the line defined by θ = 45◦
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Example 2-Dimensional Distribution: Gaussian, Semi-correlated
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Figure 4.9: Two dimensional test distribution consisting of two overlapping, elon-
gated, rotated 2-dimensional Gaussians



58

Example 2-Dimensional Distribution: Gaussian, Uncorrelated
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Figure 4.10: Two dimensional test distribution consisting of a single circular two
dimensional Gaussian distribution (see Figure 4.10
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Figure 4.11: Cumulative histogram of confidence levels for draws given the null hy-
pothesis with semi-correlated distributions. Also shown is the straight line of unit
slope which is the correct cumulative histogram in the limit of a large number of
draws and a large number of samples in each draw. 5000 draws were made given
the null hypothesis, with each data set having a Poisson total number count with
parameter λ = 200. Individual data points were drawn from the same distribution as
that shown in Figure 4.9

For each of these distributions, we have performed 5000 comparisons of pairs of

data sets drawn from the distribution. In each case, the total number of counts in

the data set was Poisson distributed with λ = 200. The results of these comparisons

are show in Figures 4.11, 4.12, and 4.13.

As one might expect, the E test confidence levels, which were calculated using

a null hypothesis with uncorrelated distributions, diverge somewhat from the ideal

distribution when applied to correlated data. However, even in that case they work
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Figure 4.12: Cumulative histogram of confidence levels for draws given the null hy-
pothesis with fully correlated distributions. Also shown is the straight line of unit
slope which is the correct cumulative histogram in the limit of a large number of
draws and a large number of samples in each draw. 5000 draws were made given
the null hypothesis, with each data set having a Poisson total number count with
parameter λ = 200. Individual data points were drawn from the same distribution as
that shown in Figure 4.8
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Figure 4.13: Cumulative histogram of confidence levels for null hypothesis draws with
uncorrelated distributions. Also shown is the straight line of unit slope which is the
correct cumulative histogram in the limit of a large number of draws and a large
number of samples in each draw. 5000 draws were made given the null hypothesis,
with each data set having a Poisson total number count with parameter λ = 200.
Individual data points were drawn from the same distribution as that shown in Figure
4.10
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well in the range of 95 . . . 100% confidence. Since only confidence levels in that range

are considered statistically significant in any case, the E statistic confidence levels

are suitable for use in practice (compare Peacock, 1983). For the semi-correlated

case, the accuracy is much better, and it is nearly perfect for the uncorrelated case.

The number count confidence levels match the ideal distribution for all cases, but

this is trivially true, since it is completely insensitive to the distribution of data

points, and only considers the differences between the total number counts. The

2-Dimensional K-S test, as implemented from Press et al. (2002), does surprisingly

poorly, considering that it attempts to account for the degree of correlation between

the data sets. Although it never significantly over-estimates the confidence levels, it

appears to significantly underestimate the fraction of confidence levels over 95% in the

case of 100% correlated data. We have not investigated this further, however, because

the issue generally appears to make the standard K-S test more conservative, it is

widely accepted, and because our results are based on the E statistic comparisons.

We also perform the same check on each of the MBH population model results

discussed in Chapter 6 of this dissertation, in case the MBH parameter distributions

contain features which expose problems in the confidence level estimates which are

not revealed by the above tests. We find that, with 5000 comparisons made given

the null hypothesis for each model and combination of model parameters, the frac-

tion of confidence levels above 95% is very consistently within 0.04 and 0.06. This

indicates that our model comparison test performs correctly for the models used in

this dissertation.
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CHAPTER 5

CONSTRAINING MBH POPULATIONS USING THE ERROR KERNEL

The output of the astrophysical models of interest can be described in terms of a

coalescence rate, Γ(M, η, z), per unit redshift and time. However, the coalescence rate

observed in the LISA detector, Γ′(M̂, η̂, ẑ), will differ from Γ(M, η, z) because some

sources will be too weak to be detected and because errors in the LISA parameter

determination will assign incorrect parameters to the source, due to the effect of the

noise on the estimation process. The effect of these errors can be summed up in a

LISA ‘error kernel’, K:

Γ′(M̂, η̂, ẑ) =

∫
pop

Γ(M, η, z)× ε(M, η, z)

×K(M̂, η̂, ẑ|M, η, z) dz dη dM, (5.1)

where ε(M, η, z) is the average detectability of a source with parameters {M, η, z}

in the LISA detector. This error kernel is the average conditional probability that a

source will be detected with population parameters λ̂i in the LISA data, given the

existence of an astrophysical source with population parameters λi. The resulting

error kernels can be applied directly to model coalescence rates, producing a new set

of coalescence rates as functions of the best-fitting, ‘detected’, parameter values.

5.1 Calculating the Error Kernel

As discussed in section 3.5, coalescence rates given by the various models are

functions of the population parameters only. They do not depend on the sample

parameters, which arise from the random relationship between the observer and a
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particular binary in the population. We therefore produce a Monte Carlo average

or ‘marginalisation’ over the sample parameters, compiling the Fisher matrix error

estimates into an ‘Error Kernel’ which is a function of sample parameters only.

Since we have no a priori reason to expect inhomogeneous or anisotropic distribu-

tion, the values of the extrinsic sample parameters of a black hole binary are assumed

to be uniformly distributed – angular location and orientation variables are uniformly

distributed on the sky, and Φ0 is uniformly distributed over the interval [0, 2π] (see

Table 5.1).

The appropriate distribution to use for tc is somewhat more complicated, owing to

two primary considerations. First, astrophysical models of the MBH population are

usually expressed in terms of the number of coalescences per unit time and redshift.

Second, the LISA detectability of a binary (generally related to SNR) is a monoton-

ically decreasing function of the binary’s tc (all else being equal) for tc longer than

the LISA observation time Tobs. Because of their relatively stronger signals, binaries

coalescing inside or soon after the LISA observation lifetime window are far more

likely to be detected than those with long times to coalescence, so those with long

times to coalescence represent a negligible fraction of the set of detected binaries. In

calculating the error kernel, we found that the number of additional detected sources

coalescing in the year following the end of LISA observation was a negligible fraction

of the total, and decided to simply use a 1 year observation time and range of tc for

most of our results, multiplying by 3 to get results for a 3 year observation. We found

that the results were not significantly different from, for instance, using a full 3 year

observation time and 4 year range of tc.

While the binary masses are also population parameters, the models we have

found in the literature generally divide their mass spectra into very wide logarithmic

bins or give no mass spectra at all. Since the mass also has a significant effect on
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the detectability and parameter estimation error of a source, however, we cannot

simply generate masses completely at random or treat them in some other trivial

fashion. We therefore partially marginalize over the mass and attempt to make a

reasonable choice for the mass distribution within the mass bins published in the

literature. This choice of mass distribution is somewhat problematic, since additional

information on the mass distribution is available for some of the models studied

(Volonteri et al. (2003), for instance), but not for others. Even if useful information

on the mass distribution were available for all of the models studied, we prefer not

to tailor intra-bin mass distributions to each particular model, because we want the

error kernels to be model-independent. We have decided, for purposes of this work,

to use a simple uniform logarithmic distribution within each mass bin. While this

distribution can produce significant differences in detection rates for the coarsely-

binned models studied here, our opinion is that it remains a reasonable choice for a

model independent intra-bin mass distribution, and such problems are best solved by

increasing the mass resolution of the reported model results. For similar reasons, we

also completely marginalise over mass ratio. We use the three mass ranges found in

Sesana et al. (2007) for our mass bins. The redshift is not marginalised, and separate

Monte Carlo runs are made at uniformly spaced values of z ranging from 0 . . . 20 (see

Table 5.1) and the statistics are collected as a function of redshift. The ‘population’

parameter space is thus considered as a collection of two-dimensional volume elements

chosen from the three mass bins and up to 80 bins in redshift.

Within each volume element, values for the marginalised parameters are chosen

randomly and a covariance error analysis is performed, with the probability distri-

bution function (PDF) for each sample being calculated using Eq. 3.37. A typical

single PDF for one sample is shown in Figure 5.1a. PDFs from the random sampling

of the source parameters are stored and averaged, producing a PDF for the popu-



66

Table 5.1: This table of parameters lists the completely marginalised case param-
eters (grey boxes) along with their ranges and describes the treatment of the three
population parameters. Reduced mass ratio η is averaged, z is held constant and
total mass (Mtot) is divided into three units.

Binary Parameter Marginalisation Range(s)

ψ 0 : π
ι 0 : π/2
θ 0 : 2π
φ −π/2 : π/2
Φ0 0 : π
tc 0:4 years
η 0.0025 : 0.25
z Not Marginalised

Mtot

250 : 104M� Low Mass Case
104 : 106M� Medium Mass Case
106 : 108M� High Mass Case

lation parameters corresponding to the source volume element chosen. An example

of a marginalised PDF is shown in Figure 5.1b. This conditional probability – the

probability of LISA assigning a particular redshift to a source, given that the source

parameters are within this mass and redshift bin – is exactly what is meant by the

error kernel in Eq. 5.1. The marginalised error kernel is thus

K(λ̂i|λi) =
1

N

N∑
µ=1

1√
2πσ2

i,µ

exp

[
−

[
λ̂i − λi

]2

2σ2
i,µ

]
, (5.2)

where σi,µ is the uncertainty in the ith parameter in the µth randomly generated set

of source parameters within the bin. N is the total number of samples generated in

the bin.

Although each individual element of the sum is a Gaussian, the process results

in a non-Gaussian distribution since the size of the uncertainty, σi,µ, changes with

each new set of sample parameters. This can be seen by comparing Figures 5.1a and

5.1b. The sum of Gaussians, all centred on the value of the source parameter, has a
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taller peak and fatter tails than a single Gaussian with average standard deviation[∑N
µ=1 σ

2
i,µ

]0.5
/N .

There are two limitations in the way we have generated the error kernel that stem

from our use of the linear least-squares LISA Calculator. First, sources at moderate

redshift and large sigma will have tails that extend to low z, even though a true nearby

source would not be confused with a stronger source at moderate redshift. Production

of the true PDF for such a case would involve a more complete algorithm, avoiding

the limitations of linear least-squares analysis and resulting in a shorter low-z tail.

Second, the LISA Calculator, like many least-squares tools, drops an ill-determined

parameter when the information matrix is singular, and gives an inappropriately low

sigma for the remaining parameters. This did occur in a number of the cases we ran

and contributed some anomalously strong peaks to the Monte Carlo averaging.

Our covariance studies found that the fractional uncertainties in the redshifted

mass variables were always much less than the fractional uncertainties in redshift (see

Figure 5.2), and are insignificant compared to our coarse mass binning1. For the

purposes of this initial study, we have ignored the mass errors and considered only

the distribution of the detected redshifts. The error kernel is thus

Ki(ẑ, z) =
1

Ni

∑
µi

1√
2πσ2

z,µi

exp

[
−(ẑ − z)2

2σ2
z,µi

]
, (5.3)

where i corresponds to one of the mass ranges defined in Table 5.1 and where the

sigmas are understood to be the uncertainties determined for each mass bin. Thus,

our Monte Carlo study returns three error kernels at a given redshift, one for each

mass range. Each error kernel consists of a set of PDFs, one PDF for each redshift bin

ẑ. These source redshifts are uniformly spaced between 0 and 20 (see Figure 5.1c).

1Rest-frame variables with dimensions of mass will have an error that is 100% correlated with

the error in the redshift, a detail we will investigate in future work.
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Each of these PDFs represent Monte Carlo averages of LISA calculator Gaussian

PDFs, varied over the sample parameters and the mass parameter ranges listed in

Table 5.1. Each error kernel contains about 2 million LISA calculator runs. One may

get a feel for the shape of the entire kernel by looking at the 70% confidence intervals

shown in Figure 5.1d.

5.1.1 Applying the Error Kernel

Once the error kernel in Eq. 5.3 has been calculated, it may be applied to any

population model that gives the source coalescence rate in the corresponding mass (i)

and redshift bin Γi(z), producing a prediction for the detected coalescence rate, Γ′i(ẑ).

This is accomplished by a straightforward convolution, which we write in continuum

form as

Γ′i(ẑ) =

∫ zmax

0

Γi(z)×Ki(ẑ, z)dz. (5.4)

As we noted in Eq. 5.1, some of the binaries sampled will have signal-to-noise

ratios too small to be detectable, regardless of the error in the parameters. Previous

analysis by Sesana et al. (2007) has used the fiducial SNR limit of 5. We chose to

use a cutoff at SNR = 8, but the number of additional sources dropped due to our

more conservative cutoff was negligible. The PDFs of binaries which do not make

the SNR cutoff should not be included in the error kernels, but the proportion of

rejected binaries in each source parameter bin must still be taken into account when

the error kernels are applied to the models. Therefore, the error kernels (which would

otherwise normalise to 1) are weighted with the fraction of binaries in each bin, εi(z),

having SNR ≥ 8. Taking this detectability into account, the convolved coalescence

rates may be written

Γ′i(ẑ) =

∫ zmax

0

Γi(z)× εi(z)×Ki(ẑ, z)dz. (5.5)
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Figure 5.1: Creating the error kernel for the ‘medium mass’ bin and marginalised
parameters described in Table 5.1, total masses between 10, 000M� and 100, 000M�.
a) The Gaussian PDF implied by simple RMS error. b) Adding the probability
densities resulting from many different marginalised parameters results in a highly
non-normal distribution. Shown here (in solid black) is the distribution of possible
detections given several hundred sources at a redshift of 10 in a mass range 104 :
106M�. Overlaid (in dashes) is the distribution obtained by simply adding the errors
in quadrature. c) The zs = 10 PDF inserted into its place in the error kernel. Source
redshifts are sampled at even redshift intervals of 0.25. d) 70% confidence intervals
for LISA determination of redshift gives an overview of the resulting error kernel.
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5.2 Discriminating Between Population Models

As an illustration of LISA’s ability to discriminate between black hole population

models, we consider four formation models. The models we have chosen for the

demonstration – those by Volonteri et al. (2003), Koushiappas et al. (2004), and two

by Begelman et al. (2006), one with ‘high’ feedback and one with ‘low’ feedback,

(hereafter VHM, KBD, BVRhf, and BVRlf respectively) – are variations on the ex-

tended Press-Schecter (EPS) formalism by Lacey & Cole (1993b) which assigns a

mass-dependent probability to halo mergers. Key variations between these models

are their assumptions for accretion, their binary hardening scenarios, their choices

for mass and redshift of seed formation, and the details of the way they handle MBH

binary interactions near the merger.

5.2.1 Convolving The Models with the LISA Error Kernel

The effect of the error kernel on population model testing can be seen in Figure

5.3, where we have taken the VHM model with its three mass bins lumped together,

spanning the range from 300 M� to 108M�. The VHM model, with its unique seeding

scenario, predicts a large number of low mass, high redshift binaries. The distribution,

shown as the large-amplitude solid curve in Figure 5.3, peaks and then rolls off sharply

at z ≈ 17. The number of sources in this model that are expected to be visible with

LISA, using a SNR> 8 cut-off relative to the averaged sensitivity curve from the SCG,

is given by the low-amplitude dotted curve (see Sesana et al., 2007). The dashed curve

represents our results, produced by integrating the model with the kernel, as in Eq.

5.4. It gives predictions for the distribution of best-fitting parameters detected by

LISA, using a cutoff at SNR = 8. The obvious point to be made is that the redshift

uncertainties smear out a model’s features, so that, while the VHM model of Figure
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5.3 has a very distinctive shape in its theoretical incarnation, the distribution that

would be observed by LISA will be far less so.

The presence of detected sources at very low (z < 2) redshifts, where the VHM

population model says that there should be very few, is a result of the excessively

large low-z tails of the error kernel discussed in section 5.1. The less sharply peaked

shape of the error kernel results as compared with the Sesana results, however, is a

consquence of applying detection errors to the redshifts, and will persist even when

more robust error-estimation techniques are employed.

Even with our SNR cutoff, we predict more visible sources (179 vs. 96) than

did Sesana et al. (2007). This is due in part to our error kernel, with its use of

the logarithmic mass distributions within the large mass bins found in the literature,

having more massive binaries at high redshift than is actually the case for the VHM

models. We also found a discrepancy in Sesana et al. (2007) between their stated

event counts (∼ 250 for the VHM model with a 3 year range of coalescence times)

and the event counts found by integrating the curves in their figure 1 (over 400 for

the same case). We have consulted with Alberto Sesana on this subject and he has

confirmed that the discrepancy in the event counts is due to a mistaken factor in

the production of the plot. The correct figure is the 250 events listed in the text of

Sesana et al. (2007). Since our model event rates were obtained by extracting the

curves from that figure, this discrepancy could also contribute to the differing number

of visible sources.

5.2.2 Discriminating Between Models

For the four models we have chosen to consider as illustrative examples, the results

of the error kernel convolutions are shown in Figure 5.4. The graph in the upper left

is for all masses and the other three graphs represent the three mass bins we used.
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Figure 5.3: The effect of the LISA error kernel on the MBH binary population pre-
dicted by Volonteri et al. (2003) for a 3 year observation. Solid line: modelled source
distribution for masses below 108M�. Dotted line: modelled source distribution with
SNR > 8 cut, as applied by Sesana et al. (2007). Dashed line: convolution of modelled
source distribution with LISA error kernel. The error kernel distribution incorporates
the large errors inherent to binary redshift determination.
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Figure 5.4: Binary merger redshift spectra, after smearing by the LISA error kernel
in the style of Sesana et al. (2007). Solid line - VHM, short-long dashed line - KBD,
short dashed line - BVRlf, dashed line - BVRhf.

We use a modified version of the Kolmogorov-Smirnov (K-S) test as a measure of

separability of the models. Our test differs from the K-S test in that it is sensitive to

differences in the model event rates as well as to the cumulative distribution functions

(CDFs) of samples drawn from the models, as discussed in Chapter 4. For each pair

of models shown in Table 5.2, we have simulated Monte Carlo draws of the number

of sources in each redshift bin, using a Poisson distribution with probability given

by each of the models. One thousand draws were taken for each model and our

test statistic was calculated, finding the greatest deviation between the cumulative

histograms of the two models. The probability that the two draws were from the

same model was then found using the one dimensional CDFs of Chapter 4.
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Several comparisons were done between the four models chosen from Sesana et al.

(2007). For each comparison, we assumed one year of LISA observations and randomly

drew coalescence parameters using the probability distributions for the two models

being compared. In each set of draws, our modified K-S statistic, E, was determined

andQ, the probability that two such draws would be produced by the same model, was

calculated. The results for each random draw were then averaged over one thousand

such realisations, giving the values displayed in Table 5.2. In the two data columns,

we show the results from the raw models themselves, with no parameter uncertainties

taken into account, and the results from the models after they have been convolved

with the LISA error kernel. As can be seen in the table, the probability that any

of the simulated data sets for one model might have been produced by one of the

other models is small. The models examined here appear to be easily distinguishable

from each other, with the exception of the comparison of the BVRhf model with

the BVRlf model with its average Q value of 0.055 (corresponding to a rather shaky

94.5% confidence). Even in that case, when we look at the median of Q rather than

its mean, we find it to be 0.012 (98.8% confidence), implying that a BVRlf realization

can usually be distinguished from a BVRhf realization.
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Table 5.2: Comparisons of models before and after convolution with LISA kernel, for
binaries coalescing within the observation window, assuming one year of observation
time. The ‘Before LISA’ comparisons effectively assume that all of the sources are
detectable and have zero redshift error, while the ‘After LISA’ comparisons incorpo-
rates the effects of both parameter uncertainty and detectability. E is the maximum
deviation between the cumulative histograms of random draws from the two models.
Q is the corresponding probability that random fluctuations could be responsible for
the deviation.

Models Compared Before LISA kernel After LISA Kernel
〈E〉 〈Q〉 〈E〉 〈Q〉

VHM - KBD 175.6 < 10−4 90.5 < 10−4

VHM - BVRlf 119.7 < 10−4 49.7 < 10−4

VHM - BVRhf 132.9 < 10−4 58.9 < 1.0× 10−4

BVRhf - BVRlf 14.29 0.021 9.82 0.055
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CHAPTER 6

DIRECT APPLICATION OF ERRORS; 2-DIMENSIONAL TESTS

In this chapter, we use the model comparison tests developed in Chapter 4 to

compare results of four models provided by Dr. Marta Volonteri. These models,

which were also used in Arun et al. (2009), are divided into two pairs:

• A pair of model results using low-mass seeds (per Volonteri et al., 2003), which

differ from each other only in that one uses a standard ‘prolonged accretion’

scenario while the other uses a chaotic accretion scenario. The two accretion

scenarios give approximately identical source counts, but varying distributions

in the population parameter space.

• A second pair of results using high-mass seeds (per Begelman et al., 2006), which

differ from each other in the same way as do the low-mass seed results. This

high-mass seed scenario results in a significantly different source distribution

than the low-mass case, with a smaller number of more massive sources.

These model results were created using the semi-analytical hierarchical SMBH

merger and accretion simulation framework described in Chapter 2, specifically that

which was originally developed in Volonteri et al. (2003). Each corresponds to a set

of simulation runs using a particular combination of prescriptions for BH accretion

and for the initial BH seed population. The prescriptions are listed below:

• In the high-mass seed prescription, seed black holes are of mass ∼ 105M� and

form at redshifts z ∼ 10 via a ‘quasi-star’ stage.

• In the low-mass seed prescription, seed black holes have mass ∼ 100M� and

form at redshifts z ∼ 20 via collapse of the first Population III stars.
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• The chaotic accretion prescription results in BHs with minimal spin due to

accretion occuring in short episodes, some with co-rotating material and some

with contra-rotating.

• The prolonged, ‘efficient’ accretion prescription results in BHs with high spin

due to sustained accretion of co-aligned material.

These are described in additional detail in Chapter 2. Following Arun et al. (2009),

we use these labels for the four set of model results:

SC: small seeds (a là Volonteri et al., 2003), chaotic accretion (low spin)

SE: small seeds, efficient accretion (high spin)

LC: large seeds (a là Begelman et al., 2006), chaotic accretion (low spin)

LE: large seeds, efficient accretion (high spin)

These four model results give an interesting range of source distributions, for

purposes of examining LISA’s model discriminating power. They are similar enough

that it is not immediately apparent (on the basis of their event rates) that they

are distinguishable, yet they differ in ways that are physically important. We use

these models as test cases to investigate LISA’s ability to distinguish between MBH

populations.

As discussed in Chapter 2, the simulations begin with modern-day dark matter

haloes at various fiducial masses, repeatedly breaking the haloes up into progenitors at

increasingly high redshift and tracking the resulting hierarchy of mergers. The process

is repeated multiple times to ensure that the statistical variation in the merger tree

has been adequately sampled. These high-redshift haloes are then seeded with SMBH

progenitors, and the halo merger tree is then followed forward in time, applying the
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Table 6.1: The Press-Schechter weights, fiducial masses, and numbers of trees for the
model results compared in this chapter.

WPS nt M

0.006044 20 1.43× 1011

0.003393 20 2.66× 1011

0.001944 20 4.96× 1011

0.001117 20 9.24× 1011

0.000639 20 1.72× 1012

0.000363 20 3.20× 1012

0.000205 20 5.96× 1012

0.000116 20 1.11× 1013

6.570× 10−05 20 2.07× 1013

3.718× 10−05 20 3.85× 1013

4.330× 10−05 10 1× 1014

2.701× 10−06 5 1× 1015

prescriptions for MBH merging and accretion as the simulation proceeds. Each set

of model results consists of 12 files, one for each fiducial halo mass, Mi, which list

all of the mergers that occurred during the simulation runs for that halo mass. The

probability that, during some time interval ∆t, a source corresponding to an present-

day halo mass Mi will appear as a coalescence in a realization of the population is (cf

Arun et al., 2009)

ps(Mi,∆t) = 4πc∆t

[
DL(z)

1 + z

]2
WPS(Mi)

nt(Mi)
, (6.1)

where WPS(Mi) is the ‘Press-Schechter Weight’ of that fiducial mass, corresponding

to the present-day comoving number density of sources, and nt(Mi) is the number of

halo merger hierarchies that the simulation traced at fiducial halo mass Mi (See Table

6.1). Figures 6.1 through 6.5 show each model’s overall distribution as a function of

the population parameters (masses, luminosity distance, and spins). Unless otherwise

noted, mass units in this chapter are M�, and luminosity distance is in units of Gpc.
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Figure 6.1: The source parameter distribution of m1 (the redshifted mass of the larger
black hole) for binaries detected by LISA. An SNR cutoff has been applied (SNR =
10) to the model distribution, but no parameter estimation uncertainties.
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Figure 6.2: The source parameter distribution of m2 (the redshifted mass of the
smaller black hole) for binaries detected by LISA. An SNR cutoff has been applied
(SNR = 10) to the model distribution, but no parameter estimation uncertainties.



81

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

-1 0 1 2 3 4 5 6
ln(DL)

Low-spin VHM source parameters (39 sources per year)

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

-1 0 1 2 3 4 5 6
ln(DL)

High-spin VHM source parameters (36 sources per year)

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

-1 0 1 2 3 4 5 6
ln(DL)

Low-spin BVR source parameters (18 sources per year)

0

0.05

0.1

0.15

0.2

-1 0 1 2 3 4 5 6
ln(DL)

High-spin BVR source parameters (22 sources per year)

Figure 6.3: The source parameter distribution ofDL for binaries detected by LISA. An
SNR cutoff has been applied (SNR = 10) to the model distribution, but no parameter
estimation uncertainties.
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Figure 6.4: The source parameter distribution of the spin of the larger black hole for
binaries detected by LISA. An SNR cutoff has been applied (SNR = 10) to the model
distribution, but no parameter estimation uncertainties.
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Figure 6.5: The source parameter distribution of the spin of the smaller black hole
for binaries detected by LISA. An SNR cutoff has been applied (SNR = 10) to the
model distribution, but no parameter estimation uncertainties.

6.1 Direct Error Application Method

Due to the much larger number of bins required to cover a 5-dimensional parameter

space and the far slower execution time of the code used to calculate parameter

estimation errors of spinning BH binaries, the error kernel method used in Chapter

5 is not practical for the distributions studied here. Rather than producing an error

kernel in the 5-dimensional population parameter space (masses, luminosity distance,

and spins) therefore, we compute and apply the parameter estimation errors with a

simpler, more direct method. It proceeds as follows:

To each source in the model result files mentioned above, we assign a randomly

generated set of sample parameters (sky positions, orientations, spin orientations).

In practice, we found that the very small spins of the SC and LC distributions caused
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Figure 6.6: Quartiles of the luminosity distance estimation errors for the SC (small
seeds, small spins) model. This figure illustrates the lack of dependence of the error
on tc, and as a result we only use error distributions produced with a one year range
of tc, even for longer observation windows.

unrealistically high spin estimation errors due to the Fisher matrix becoming singular

for zero spin. To alleviate this issue, we have altered the spin distributions of these

models so that spins which were below 0.01 instead lie between 0.01 and 0.1. For

the range of the time to coalescence, tc, we only employ a 1 year range for all draws

from the models, rather than producing new draws with a larger range of tc when we

draw sources for the 3 and 5 year observations discussed below. The dependence of

the errors on tc appears to be minor, as illustrated by Figure 6.6.

We then calculate the SNR and parameter estimation errors of each source, using

both of the Fisher Information matrix codes mentioned in section 3.4. The LISA

calculator (Crowder & Cornish, 2006) is first used to obtain a rough estimate of the

source’s SNR, and the more advanced (but much slower) spinning BH code (Arun

et al., 2009) is used to calculate the errors of each source which has a LISA calculator
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SNR ≥ 5. The LISA calculator used a galactic foreground confusion noise estimate

from Timpano et al. (2006), while the spinning BHB code used the instrument and

confusion noise model listed in section 4.2 of Arun et al. (2009).

We then store the source parameters, SNRs, and parameter estimation uncertain-

ties (i.e., the a priori standard deviations in the estimated parameters for that set of

source parameters) to disk. Thus, for each of the model result files mentioned above,

we have a corresponding file that lists a full set of binary parameters (including ran-

domly generated sample parameters), binary SNRs, and parameter estimation errors

for every source in the model result file. For each of the low-mass seed models (SC

and SE), there are ≈ 150000 sources, while the high mass seed models have ≈ 40000

sources.

Next, we generate a model predicted realization of the set of sources occurring

during some observation window ∆tobs. We run through each source occurring in the

model’s result files, performing a Bernoulli trial with probability of success given by

equation 6.1 to determine whether that source will occur in the realization. For each

of those sources, we look up its previously calculated parameter estimation errors and

draw from the corresponding gaussian distributions1. This produces a realization of

the model predicted best-fit parameters, as estimated by LISA, for sources occurring

within the observation window.

We then calculate these sets of estimated parameters for a pair of population

models, and compare them using the statistical tests discussed in Chapter 4 to see

whether or not there is a statistically significant difference between them. We re-

1If resulting parameters fall outside of the possible ranges of these parameters (e.g., the spin

parameters lie between 0 and 1, by definition), the parameters are wrapped around so that they

remain within the range. We also add a small 10−3 Gaussian variation to the source parameters, to

avoid issues with the model comparison caused by sources grouped at a single parameter value.
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peat the experiment many times to control for statistical variation in the comparison

results, and we investigate the distinguishability of each combination of models and

choices of population parameters. We also consider how the increased number of

sources afforded by longer (i.e., 3 and 5 year, as opposed to 1 year) observation

windows affect the distinguishability of the models, and compare the LISA best-fit

parameter realizations to realizations with no parameter estimation errors, to see if

these errors have a significant effect on model distinguishability. The results of this

work are presented in the next section.

6.2 The Parameter Estimation Errors & Estimated Parameter Distributions

In this section, we list the distribution of parameter estimation errors for each

model. The extent to which these errors affect the estimated parameter distributions

will depend on whether or not the errors are larger or smaller than the feature sizes of

the distribution to which they are applied, as illustrated by the example distributions

in Figure 6.7. When the source distribution has a feature smaller than the errors

(Example B), the errors have a significant effect on the parameter distribution, and

the estimated parameter distribution of Example B cannot be distinguished from

those of Example C, which has a feature at the same location which is similar in

size to the parameter estimation errors. Both examples can be distinguished from

Example A, however, which has no feature at that location. The errors have no

significant effect on the distributions for Examples A and C.

When compared to the characteristic feature sizes of the model distributions (Fig-

ures 6.1 and 6.2), the parameter estimation errors in the masses (Figures 6.8 and 6.9)

are quite small for all of the models involved. By that measure, we do not expect
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Figure 6.7: The effects of parameter estimation errors on some example distributions.
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unit variance. The errors have a significant effect on Example B, but not on Examples
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that the parameter estimation errors in the (redshifted) masses to have a significant

effect on LISA’s ability to distinguish between the models.

The luminosity distance errors (Figure 6.10), on the other hand, are somewhat

large compared to the characteristic feature sizes of the models (Figure 6.3), so they

may have an effect on the model distinguishability.

The spin errors are also both large compared to the model feature sizes, but it is

less certain how meaningful the result is in this case. In the case of the high-spin

models, the spin distributions of the sources (Figures 6.4 and 6.5) are extremely tightly

clustered (most of the spins parameters of the larger BH are equal to 0.9982), so that

even though the spin errors (Figures 6.11 and 6.12) are quite small, the parameter

distribution cannot be constrained as tightly as the model’s predicted distribution.

For the low-spin parameters, the parameter estimation errors are unrealistically high,

due to the linear assumptions of the Fisher information matrix approach, and the

actual parameters may be better constrained due to higher order corrections to the

likelihood surface. The large size of the error in spin 2 (i.e., χ2) is not surprising

when we remember that the spin angular momentum of a black hole is given by χm2

(mentioned in section 3.5) and typical mass ratios are ∼ 0.1, so that spin angular

momentum of the smaller BH is only a small fraction of the angular momentum of

the system (recall that χ ≤ 1).

The sizes of these errors are summarized in Table 6.2, which shows the third

quartile parameter estimation error for each combination of model and parameter.

For instance, the entry in the ‘SC’ column and the ‘lnDL’ row shows that 3/4, or

75% of the parameter estimation errors in lnDL for the small seed, chaotic accretion

model are distributed with a standard deviation of 0.168 or less

2Uses an estimated maximum from Thorne (1974)
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Table 6.2: Third quartiles (75th percentiles) of the standard deviation of estimated
parameters for each of the four models considered.

SC SE LC LE

lnm1 0.029 0.006 0.014 0.006
lnm2 0.022 0.005 0.011 0.005
lnDL 0.168 0.112 0.084 0.036
Spin 1 0.042 0.027 0.021 0.017
Spin 2 0.766 0.079 0.397 0.033
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Figure 6.8: The parameter estimation error in lnm1 (the redshifted mass of the larger
black hole) for binaries detected by LISA.



89

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1
Standard Deviation of estimated ln(m2)

Low-spin VHM source parameters

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 0.2 0.4 0.6 0.8 1
Standard Deviation of estimated ln(m2)

High-spin VHM source parameters

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 0.2 0.4 0.6 0.8 1
Standard Deviation of estimated ln(m2)

Low-spin BVR source parameters

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 0.2 0.4 0.6 0.8 1
Standard Deviation of estimated ln(m2)

High-spin BVR source parameters

Figure 6.9: The parameter estimation error in lnm2 (the redshifted mass of the
smaller black hole) for binaries detected by LISA.
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Figure 6.10: The parameter estimation error in lnDL for binaries detected by LISA.
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Figure 6.11: The parameter estimation error in the spin of the larger black hole for
binaries detected by LISA.
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Figure 6.12: The parameter estimation error in the spin of the smaller black hole for
binaries detected by LISA.
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Figures 6.13 through 6.17 show the distribution of best-fit parameters which are

obtained when random estimated parameters are drawn from the distribution of each

source’s parameter estimation errors, as described in section 6.1. Each plot also shows,

for comparison, the corresponding source parameter distributions (i.e., Figures 6.1

through 6.5).

As can be seen from the figures, the parameter estimation errors have no significant

effect on the distribution of mass variables. The DL estimation errors, on the other

hand, do have some effect on the distribution of the luminosity distance in the case

of the low spin VHM model (the ‘SE’ model), and a smaller effect on the higher

spin VHM model. The luminosity distance errors do not appear to have a significant

effect on the parameters of the two BVR models (LE and LC), which is unsurprising

given the larger masses and closer distances of those sources. For the low-spin models

(SC and LC), the parameter estimation errors lead to a very significant difference

in the spin distribution of the smaller BH, and a somewhat significant difference in

the spin of the larger BH. For the high-spin models (SE and LE), the effects of the

spin determination errors are less significant, although they still have an effect on

the parameter distribution due to the model’s tight clustering around a spin of 0.998

(also mentioned above).

6.3 Model Comparison Results; 1 and 2 Dimensions

This section reports the results of comparisons between each of the models using

the tests developed in Chapter 4. For each pair of models and model parameters,

we have made 5000 comparisons as described in section 6.1. We quantify the degree

of distinguishability of the models by the fraction of comparisons which resulted in
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Figure 6.13: The estimated parameter distribution of m1 (the redshifted mass of the
larger black hole) for binaries detected by LISA. Also shows the corresponding source
parameter distribution (an SNR=10 cutoff has been applied to both distributions).
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Figure 6.14: The source parameter distribution of m2 (the redshifted mass of the
smaller black hole) for binaries detected by LISA. Also shows the corresponding source
parameter distribution (an SNR=10 cutoff has been applied to both distributions).
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Figure 6.15: The source parameter distribution of DL for binaries detected by LISA.
Also shows the corresponding source parameter distribution (an SNR=10 cutoff has
been applied to both distributions).
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Figure 6.16: The source parameter distribution of the spin of the larger black hole
for binaries detected by LISA. Also shows the corresponding source parameter distri-
bution (an SNR=10 cutoff has been applied to both distributions).
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Figure 6.17: The source parameter distribution of the spin of the smaller black hole
for binaries detected by LISA. Also shows the corresponding source parameter distri-
bution (an SNR=10 cutoff has been applied to both distributions).

a 95% or higher confidence level that the models were not drawn from the same

distribution. These fractions can be understood as follows:

• If 9/10 of comparisons resulted in a confidence level above 95%, the models can

be considered ‘consistently distinguishable’.

• If 3/4 of comparisons resulted in a confidence level above 95%, the models can

be considered ‘often distinguishable’.

• If 1/2 of comparisons resulted in a confidence level above 95%, the models can

be considered ‘sometimes distinguishable’.

Table 6.3 shows the resulting fractions for comparison of the distributions of detected

parameters and one year of observation. All of the models can be consistently distin-

guished based on some combination of one or two of their parameter distributions:
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• The SE and SC (High and Low spin VHM) models can be consistently distin-

guished based on the distribution of spin 1, unsurprisingly (see Figure 6.16).

• The LC and SC (Low spin VHM and BVR) models can be consistently dis-

tinguished based on the distributions of lnm1 (Figure 6.13) and lnm2 (Figure

6.14).

• The LC and SE (Low spin BVR and high spin VHM) models can be consis-

tently distinguished based on almost any combination of parameters. The lone

exception is the distribution of lnDL (Figure 6.15), but even in that case the

models can often be distinguished.

• The LE and SC (High spin BVR and low spin VHM) models can be consistently

distinguished based on the lnm2 or spin distributions (Figures 6.14, 6.16, and

6.17).

• The LE and SE (High spin BVR and VHM) models can be consistently distin-

guished based on their distribution of lnm2 (Figure 6.14). The lnm1 distribu-

tions, on the other hand are only sometimes distinguishable.

• The LE and LC (High and low spin BVR) models, like the SE and SC models,

can be consistently distinguished based on the distribution of spin 1.

Naturally, these numbers improve when a longer observation window affords more

sources to make the comparison. Table 6.4 shows comparison results when sources

are chosen from equation 6.1 according to a 3 year observation window, and Table

6.5 according to a 5 year observation window. With the 3 years of sources, the only

model parameter distributions that cannot be reliably distinguished are the SE vs.

SC distributions and the LE vs. LC distributions, as functions of the masses and
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Table 6.3: E statistic Model comparison results for 1 year of observation, showing the
fraction of confidence levels which were above 95%. To make the table easier to read,
comparisons where 1/2 of the confidence levels were above 95% are marked in light
gray, comparisons where 3/4 were above 95% are marked in medium gray, and those
where 9/10 were above 95% are marked in dark gray.

SE vs. SC LC vs. SC LC vs. SE LE vs. SC LE vs. SE LE vs. LC
lnm1 0.0776 0.918 0.9274 0.566 0.5992 0.163

lnm2 & lnm1 0.086 0.989 0.9926 0.9716 0.9878 0.1982
lnm2 0.0618 0.989 0.991 0.9842 0.9948 0.1148

lnDL & lnm1 0.0894 0.9504 0.9532 0.5296 0.5502 0.2964
lnDL & lnm2 0.0716 0.9936 0.9946 0.9678 0.9876 0.2376

lnDL 0.0562 0.8956 0.8422 0.5336 0.4366 0.1834
Spin 1 & lnm1 1 0.9154 1 1 0.6742 0.9854
Spin 1 & lnm2 1 0.9774 1 1 0.9964 0.9758
Spin 1 & lnDL 1 0.8912 0.9992 1 0.5204 0.9674

Spin 1 1 0.784 0.9996 1 0.5086 0.9808
Spin 2 & lnm1 0.7958 0.9574 0.9982 0.9792 0.6928 0.892
Spin 2 & lnm2 0.7882 0.9898 1 0.9992 0.9944 0.8186
Spin 2 & lnDL 0.7638 0.9086 0.9696 0.9622 0.5136 0.7682
Spin 2 & Spin 1 1 0.836 0.9996 1 0.59 0.9918

Spin 2 0.7674 0.8328 0.9646 0.983 0.494 0.786

DL. The SE and SC distributions of masses and DL, in particular, are not generally

distinguishable. The distributions of lnDL and lnm1 for the LE and LC models, on

the other hand, are often distinguishable. With 5 years worth of sources, the LE and

LC mass and redshift distributions (especially the distribution of lnDL and lnm1)

can be consistently distinguished from each other, but the SE and SC distributions

remain indistinguishable.

Since we are interested as much in the limits of LISA’s ability to distinguish

between the population models as in whether or not LISA will be able to distinguish

between these particular sets of models (which will undoubtedly be superseded with

improved versions by the time LISA is operational), Figures 6.18 and 6.19 show the

distributions of lnDL and lnm1, and of lnDL and lnm2. The plots serve to illustrate

distributions which have varying levels of distinguishability.
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Table 6.4: E statistic Model comparison results for 3 years of observation, showing
the fraction of confidence levels which were above 95%. To make the table easier to
read, comparisons where 1/2 of the confidence levels were above 95% are marked in
light gray, comparisons where 3/4 were above 95% are marked in medium gray, and
those where 9/10 were above 95% are marked in dark gray.

SE vs. SC LC vs. SC LC vs. SE LE vs. SC LE vs. SE LE vs. LC
lnm1 0.2246 1 1 0.979 0.9984 0.597

lnm2 & lnm1 0.1926 1 1 1 1 0.6242
lnm2 0.0838 1 1 1 1 0.299

lnDL & lnm1 0.1956 1 1 0.976 0.9954 0.7702
lnDL & lnm2 0.0796 1 1 1 1 0.589

lnDL 0.069 1 0.9994 0.9696 0.9318 0.4972
Spin 1 & lnm1 1 1 1 1 0.9996 1
Spin 1 & lnm2 1 1 1 1 1 1
Spin 1 & lnDL 1 1 1 1 0.9814 1

Spin 1 1 0.9984 1 1 0.9728 1
Spin 2 & lnm1 1 1 1 1 0.998 1
Spin 2 & lnm2 1 1 1 1 1 1
Spin 2 & lnDL 1 1 1 1 0.9732 1
Spin 2 & Spin 1 1 0.9994 1 1 0.9826 1

Spin 2 0.9998 0.9992 1 1 0.9562 1

Table 6.5: E statistic Model comparison results for 5 years of observation, showing
the fraction of confidence levels which were above 95%. To make the table easier to
read, comparisons where 1/2 of the confidence levels were above 95% are marked in
light gray, comparisons where 3/4 were above 95% are marked in medium gray, and
those where 9/10 were above 95% are marked in dark gray.

SE vs. SC LC vs. SC LC vs. SE LE vs. SC LE vs. SE LE vs. LC
lnm1 0.371 1 1 0.9998 1 0.8878

lnm2 & lnm1 0.3216 1 1 1 1 0.897
lnm2 0.1026 1 1 1 1 0.513

lnDL & lnm1 0.3336 1 1 0.9998 1 0.9576
lnDL & lnm2 0.0924 1 1 1 1 0.8488

lnDL 0.08 1 1 0.9996 0.9962 0.7624
Spin 1 & lnm1 1 1 1 1 1 1
Spin 1 & lnm2 1 1 1 1 1 1
Spin 1 & lnDL 1 1 1 1 0.9998 1

Spin 1 1 1 1 1 0.9998 1
Spin 2 & lnm1 1 1 1 1 1 1
Spin 2 & lnm2 1 1 1 1 1 1
Spin 2 & lnDL 1 1 1 1 0.999 1
Spin 2 & Spin 1 1 1 1 1 0.9998 1

Spin 2 1 1 1 1 0.9984 1
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Figure 6.18: Distributions of estimated m1 and DL parameters. With 3 years of
sources, the SC and SE models cannot consistently be distinguished, while the LE
and LC models can often (in 77% of realizations) be distinguished at 95% confidence.
Other 3 year comparisons consistently give 95% or greater confidence levels.
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Figure 6.19: Distributions of estimated m2 and DL parameters. With 3 years of
sources, the SC and SE models cannot consistently be distinguished, while the LE and
LC models can sometimes (in 59% of realizations) be distinguished at 95% confidence.
Other 3 year comparisons consistently give 95% or greater confidence levels.
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6.3.1 Effects of Parameter Estimation Errors on Model Distinguishability

In order to assess the significance of the effects of parameter estimation error

on the distinguishability of the models, we have also performed model comparison

tests with no parameter estimation errors. The results of these tests, for one year

of observations, are shown in Table 6.6. The differences between these model distin-

guishability fractions and those found in Table 6.3 (which incorporate the parameter

estimation errors) are shown in Table 6.7. These differences show how the fraction

of significantly different model realizations decreases when the parameter estimation

errors are applied.

For comparison of the SE and SC models (and to a lesser extent for the LE and LC

models), the parameter estimation errors in the spin of the smaller BH significantly

decrease the fraction of significantly different model realizations, as anticipated in

section 6.2. The parameter estimation errors in DL might be expected to have an

effect on the distinguishability of some of the model parameter distributions, but

it appears that they do not. This is not so surprising when we remember that the

source distributions of DL (Figure 6.3) are fairly smooth on the scale of the parameter

estimation errors in DL (Figure 6.10). The effects of parameter estimation error on

the distributions of the spin of the second BH and on DL can be seen in Figures 6.17

and 6.15, respectively. Other than the distributions of spin 2 and DL, the parameter

estimation errors have no significant effect on the fraction of confidence levels above

95%. Of the distributions considered here, only the spin distributions are sharply

peaked enough (compared to the errors) for the parameter estimation errors to have

a significant effect on model distinguishability.

In some cases, application of the parameter estimation errors causes the confidence

levels to increase slightly. This is due to cases where one of the parameters (e.g., DL)
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for two models are distributed quite similarly, but the parameter estimation errors

are significantly different between the models, due to one of the other parameters

(such as the spins) affecting the GW signal having very different distributions. Thus,

the source parameter (e.g., DL) distribution can be very similar, while the estimated

parameter distribution can be different (due to a larger spread in the distribution of

the source with larger parameters). This does not mean that it is possible for the

models to be more distinguishable on the whole with errors than without, however,

since we are ignoring the parameter distributions (the spins in this example) that are

very different and concentrating on just one of the parameter dimensions of the model.

When we consider the distinguishability of the models across all of the parameters

which affect the signal, we should find that the models are indeed less distinguishable

when the parameter estimation errors are applied. This is what we see when we

look at Table 6.7: the parameter estimation errors for each of the model comparisons

decreases the fraction of confidence levels above 95% (the positive values in the table)

more frequently than it increases them (the negative values in the table).

6.4 Summary

This work makes use of 4 sets of model simulation results (see also Arun et al.,

2009), each of which uses a different combination of two accretion (‘chaotic’ - low

spins and ‘efficient’ - high spins) and seeding (low mass and high mass) scenarios.

The results are labelled ‘Small Chaotic’ (SC), ‘Small Efficient’ (SE), ‘Large Chaotic’

(LC), and ‘Large Efficient’ (LE). We have applied the LISA parameter estimation

errors and SNR thresholds to each, allowing us to produce realizations of the LISA

estimated parameter distributions predicted by the models. We then compare these

estimated parameter distributions using the 1 and 2-Dimensional variants of the K-S
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Table 6.6: E statistic Model comparison results for 1 year of observation with no
parameter estimation errors, showing the fraction of confidence levels which were
above 95%. To make the table easier to read, comparisons where 1/2 of the confidence
levels were above 95% are marked in light gray, comparisons where 3/4 were above
95% are marked in medium gray, and those where 9/10 were above 95% are marked
in dark gray.

SE vs. SC LC vs. SC LC vs. SE LE vs. SC LE vs. SE LE vs. LC
lnm1 0.078 0.9188 0.9278 0.5648 0.6006 0.1626

lnm2 & lnm1 0.0858 0.9892 0.9924 0.9708 0.9878 0.1964
lnm2 0.0616 0.9894 0.9914 0.9842 0.995 0.1148

lnDL & lnm1 0.0878 0.9556 0.9536 0.5458 0.559 0.2904
lnDL & lnm2 0.0696 0.9942 0.995 0.9672 0.9888 0.2334

lnDL 0.0586 0.8988 0.8486 0.5454 0.4476 0.1816
Spin 1 & lnm1 1 0.9288 1 1 0.703 0.9878
Spin 1 & lnm2 1 0.9828 1 1 0.9938 0.9774
Spin 1 & lnDL 1 0.8974 0.9996 1 0.6038 0.973

Spin 1 1 0.7842 0.9998 1 0.585 0.9846
Spin 2 & lnm1 0.999 0.8658 0.9992 0.999 0.6548 0.981
Spin 2 & lnm2 0.9996 0.9638 1 1 0.9878 0.9734
Spin 2 & lnDL 0.9994 0.8654 0.9992 0.9988 0.5158 0.9718
Spin 2 & Spin 1 1 0.7154 1 1 0.6704 0.9998

Spin 2 0.9998 0.7172 0.9996 0.9996 0.5142 0.9864

Table 6.7: The difference between the fraction of confidence levels which were above
95% without parameter estimation errors and with parameter estimation errors. To
make the table easier to read, differences above 0.1 are marked in light gray, differences
above 0.2 are marked in medium gray, and those above 0.3 are marked in dark gray.

SE vs. SC LC vs. SC LC vs. SE LE vs. SC LE vs. SE LE vs. LC
lnm1 0.0004 0.0008 0.0004 -0.0012 0.0014 -0.0004

lnm2 & lnm1 -0.0002 0.0002 -0.0002 -0.0008 0 -0.0018
lnm2 -0.0002 0.0004 0.0004 0 0.0002 0

lnDL & lnm1 -0.0016 0.0052 0.0004 0.0162 0.0088 -0.006
lnDL & lnm2 -0.002 0.0006 0.0004 -0.0006 0.0012 -0.0042

lnDL 0.0024 0.0032 0.0064 0.0118 0.011 -0.0018
Spin 1 & lnm1 0 0.0134 0 0 0.0288 0.0024
Spin 1 & lnm2 0 0.0054 0 0 -0.0026 0.0016
Spin 1 & lnDL 0 0.0062 0.0004 0 0.0834 0.0056

Spin 1 0 0.0002 0.0002 0 0.0764 0.0038
Spin 2 & lnm1 0.2032 -0.0916 0.001 0.0198 -0.038 0.089
Spin 2 & lnm2 0.2114 -0.026 0 0.0008 -0.0066 0.1548
Spin 2 & lnDL 0.2356 -0.0432 0.0296 0.0366 0.0022 0.2036
Spin 2 & Spin 1 0 -0.1206 0.0004 0 0.0804 0.008

Spin 2 0.2324 -0.1156 0.035 0.0166 0.0202 0.2004
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test developed in Chapter 4, investigating how the distinguishability of the models

varies with the choice of parameter compared, the length of the observation window,

and other factors. The results are as follows:

• All of the models compared can be consistently distinguished with a single year

of LISA data, the spin distributions of the chaotic accretion models (SC, LC)

being almost trivially distinguishable from those of the efficient accretion models

(SE, LE).

• The parameter estimation errors in the spin of the smaller BH can have appre-

ciable effects on the distinguishability of the models, while those in the masses

and the spin of the large BH do not. The parameter estimation errors in lnDL

are too small, compared to the rather smooth model lnDL distributions, to have

a significant effect on the model distinguishability.

• The distributions of estimated lnm1 and lnDL for each of the four models illus-

trate which parameter distributions LISA can distinguish with ease, and which

are more difficult to distinguish. For instance, LISA cannot distinguish between

these distributions for the SE vs. SC comparison, but can often distinguish

between them for the LE vs. LC comparison (given 3 years of observation).

The ease with which these models can be distinguished demonstrate the promise of

LISA, and point the way forward for MBH population modelers and model comparison

testing. It is clear from these results that LISA is uniquely suited to examining and

constraining the distribution of the cosmological MBH population. Moreover, since

these models are so readily distinguished, it is clear that LISA will also be able to

discriminate between significantly more subtle variations between the populations.
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Note that the model comparisons performed here made use only of the estimated,

or best-fit, parameters associated with sources found in a realization of the LISA data

stream. They do not consider the posterior distribution of likely source parameters

associated with each binary whose presence is inferred from a realization of the LISA

data stream.In reality, we will be able to determine from the LISA waveform that some

sources will have better signals (e.g., those with a higher SNR or longer observation

time) than others, and the range of binary parameters which could have given rise to

these detected events will be more tightly constrained. Thus, some sources will have

a larger contribution to our state of knowledge about the population models than

others. In order to take these varying contributions into account, Bayesian model

selection methods should be employed, as discussed in Chapter 8.
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CHAPTER 7

CONCLUSION

In this work, we have applied the Laser Interferometer (LISA) parameter estima-

tion errors to the populations of Massive Black Holes predicted by various models,

and compared the distinguishability of the resulting distributions of parameters. We

consider how the distinguishability of the models varies depending on the choice of

parameters compared, the time of observation, and whether or not the parameter esti-

mation errors are applied. Our objective is to investigate LISA’s ability to distinguish

between population models; for instance, how dissimilar from the actual population

does a model population need to be before it can be distinguished based on the LISA

data?

Chapter 1 introduces the problem and gives an outline of the dissertation.

Chapter 2 reviews the state of the astrophysics behind the population models,

and the implementation of the models. We review various important aspects of

the models, such as the seeding and accretion prescriptions. We describe the semi-

analytical approach which produced the model simulation results used in this work

(specifically, we use simulations based on Volonteri et al., 2003), and mention which

seeding (Volonteri et al., 2003; Begelman et al., 2006) and accretion (Thorne, 1974;

King & Pringle, 2006) prescriptions are used in the simulations. We also review the

astrophysical processes being modeled to which we might expect LISA to be sensitive.

Chapter 3 reviews Gravitational Wave (GW) production and detection. We begin

by describing the promise of GW detection, discussing current and future detectors.

Next, beginning with Einstein’s equation, we describe how GWs are produced, and

how they can be detected. We then specialize to the case of LISA, introducing the

response of LISA and LISA signal-to-noise (SNR) calculations. We then show the
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derivation of the Fisher Information Matrix (FIM), which we use to approximate the

parameter estimation errors of sources extracted from the LISA data stream. Lastly,

we describe each of the parameters which define a black hole binary, dividing them

into ‘population’ parameters, whose distribution depends on the population model,

and ‘sample’ parameters, which have the same distribution for all population models.

In Chapter 4, we introduce the modified versions of the Kolmogorov-Smirnov (K-

S) D statistic, which we call the ‘E statistic’, used to quantify the degree of difference

between the model parameter distributions. We illustrate the calculation of these

statistics, describe how their confidence levels are calculated, and demonstrate that

the distribution of the E statistic in the case of the null hypothesis is essentially

independent of the distribution of the data sets being compared.

Chapter 5 illustrated the computation of an error kernel, K(λ̂i, λi), which can be

applied directly to model coalescence rates, producing a new set of predicted detection

rates as functions of the best-fitting, ‘detected’, parameter values. The error kernels

allow visualization of the distribution of parameter estimation errors for a particular

source predicted by a model, and can be constructed without reference to any single

model. We produced estimated detection rates for several populations drawn from

Sesana et al. (2007), and compared them with each other using the modified version

of the one dimensional Kolmogorov-Smirnov (K-S) test discussed in Chapter 4. Our

tests found the model predictions to be statistically different, indicating that LISA

will have appreciable model-discriminating power and is likely to finally resolve the

question of the origin of MBHs.

In Chapter 6, we apply the parameter estimation errors directly to four sets of

simulation results obtained from Dr. Marta Volonteri (also used in Arun et al., 2009).

The parameter estimation errors are applied by generating a random set of population

parameters for each source which occurs in a realization, calculating the errors corre-
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sponding to that source, and generating the source’s estimated parameters from the

corresponding Gaussian distribution. We then compare the resulting distributions of

estimated parameters using the tests developed in Chapter 4. We found that each of

the models can be distinguished based on 1 year of LISA observations, investigated

the effects of parameter estimation errors on the distinguishability of the models, and

examined which parameter distributions were indistinguishable, which were easily

distinguishable, and which were difficult to distinguish.

In summary, we find that LISA can discriminate between each of the models

studied here, and that it possesses a strong ability to distinguish between various

scenarios for the origins of SMBHs. In particular, the seeding and feedback formation

scenarios here are readily distinguishable on the basis of LISA observations, but would

be very difficult to distinguish based on electromagnetic observations. Comparison of

the LC vs. LE and SE vs. SC models (see Figures 6.18 and 6.19) gives a good example

of estimated mass and luminosity distance distributions which are challenging to

distinguish (LC vs. LE) and indistinguishable (SC vs. SE).
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CHAPTER 8

FUTURE WORK

The natural direction for future research on this topic will be to move beyond the

Fisher Information Matrix error estimates and the frequentist K-S tests, and employ

Bayesian parameter uncertainty estimates and model selection methods:

• Produce improved, more accurate parameter uncertainty estimates, particularly

Bayesian estimates of source posterior probability distributions (e.g., Littenberg

& Cornish, 2009).

• Develop Bayesian population model comparison tests which are sensitive to the

full dimensionality of the population parameter space (binary masses, distance

and spins). These tests would be used in conjunction with the Bayesian source

posterior distributions mentioned above.

• Investigate the uncertainty in the models, or their sensitivity to variation in the

assumptions they employ. This will involve interdisciplinary collaboration with

the researchers who have developed the population models.

The objective would be to produce a statistically sound, end-to-end study of the

strength of the LISA data stream’s constraints on the astrophysical processes involved

in cosmological massive black hole formation and evolution. While LISA’s probable

discovery of a significant number of gravitational wave sources will be exciting in

its own right, this work will bridge the gap between gravitational wave detection

research and MBH population modeling, exploring how to put LISA’s discoveries to

use in investigating the origins and evolution of cosmological massive black holes, an

important question in contemporary astrophysics. Many of these techniques could

also be applied to other classes of error analysis and model comparison problems.
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Cutler, C. & Flanagan, É. E. 1994, Phys. Rev. D, 49, 2658

http://www.physics.montana.edu/lisa/lisacalculator/
http://www.physics.montana.edu/lisa/lisacalculator/


110
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