DEVELOPMENT AND TESTING OF ALGORITHMIC SOLUTIONS FOR

PROBLEMS IN COMPUTATIONAL GENOMICS AND PROTEOMICS

by

Thiruvarangan Ramaraj

A dissertation submitted in partial fulfilment
of the requirements for the degree
of
Doctor of Philosophy
in

Computer Science

MONTANA STATE UNIVERSITY
Bozeman, Montana

May 2010



O©COPYRIGHT
by
Thiruvarangan Ramaraj
2010

All Rights Reserved



APPROVAL

of a dissertation submitted by

Thiruvarangan Ramaraj

This dissertation has been read by each member of the dissertation cerandtte
has been found to be satisfactory regarding content, English usage, fotatiat),ci
bibliographic style, and consistency and is ready for submission to the Division of
Graduate Education.

Dr.Brendan Mumey

Approved for the Department of Computer Science

Dr. John Paxton

Approved for the Division of Graduate Education

Dr. Carl A. Fox



STATEMENT OF PERMISSION TO USE

In presenting this dissertation in partial fulfillment of the requirementa f
doctoral degree at Montana State University, | agree that the Libraryrstia it
available to borrowers under rules of the Library. | further agréedpying of this
dissertation is allowable only for scholarly purposes, consistent with “klirass
prescribed in the U.S. Copyright Law. Requests for extensive copying oduepon of
this dissertation should be referred to ProQuest Information and Learning, 380 Nor
Zeeb Road, Ann Arbor, Michigan 48106, to whom | have granted “the exclusive right to
reproduce and distribute my dissertation in and from microform along with the non-

exclusive right to reproduce and distribute my abstract in any format in whole ot.fin pa

Thiruvarangan Ramaraj

May, 2010



iv

DEDICATION

To My Parents for their Unconditional Love, Support, and Sacrifices



\Y

ACKNOWLEDGEMENTS

First and foremost, | offer my sincerest gratitude to my adviBor Brendan
Mumey for his supervision, advice, excellent guidance, and support andeéiegely
patient with me this entire process. | have no words to exprgskeap gratitidue and |
am greatly indebted to him more than he knows. | would like to than Desaitis for
his valuable insights and comments with Immunology related aspkecty research.
Many thanks go to Dr. Ed Dratz for his valuable advice and digmus$n Biochemistry
related questions. | thank Dr. Denbigh Starkey for his constructwements on my
research work and thesis. | like to thank Dr. Joann Mudge, NCGR, SgnM for her
guidance, support and time on my genomics related research andeakstulty agreeing
to be on my committee. Also | would like thank Dr. Tom Angel for g thoughtful
discussion on my work.

| specially like to thank Ms. Jeannette Radcliffe, Ms. Kathy Hollenbadk\r.

Scott Dowdle of Computer Science department for providing me with great support. |
would like to thank Montana INBRE, Dept. of Computer Science, MSU-Bozeman, and
NCGR, Santa Fe, NM for their kind financial support. Several students have helped me
with my research work, | would like to give my special thanks to Robbie Lamb, Richar
MacAllister, lllai Karen, Anoop Sendamarai, and Anburaj Muthumani.

Last but not least | thank Anitha Sundararajan for all her moral support. | owe a

great debt of gratitude to everyone who helped me make this happen.



Vi

TABLE OF CONTENTS

I N I @ 15 1O L @ 1 PP 1
2. ANTIBODY/PROTEIN ANTIGENS INTERACTIONS:
COMPUTATIONAL SUMMARY OF 62 PDB STRUCTURES .........ccooiviiieeevieee, 4
] 0o [0 [X 1o ] o PP PPPPPPPP 4
Composition of AA Residues
Involved in the Antigen-antibody INterface ...........cccvvvvevieiiiiicie e, 6
DefinitioNs & METNOUS .........ooiiiii e 9
Antigen Epitope and NON-Epitope REQION..........ccceviiiiieieiiiiiiiiciee e e e e e e e 9
Antibody Paratope and Non-Paratope REQION ........ccoooviiiiiiiiiiiiiiiiiiiiiiee e 9
Surface ReSIdUES DeliN@AION .........uuiiiiiiiiiiiiiiiee e e e 9
Epitope and Non-Epitope Region Classification.............ccooviviiiiiiiiiiiiiiinieee e 10
Estimation of Surface Residues in Epitope/Paratope
and Non-Epitope/Non-Paratope REQIONS ........ccoooiiiiiiiiiiiiiiiiiiiiies e 11
Amino Acid Composition of Epitope/Paratope and Extra-Interface Surface .......... 11
1Y To] F= T o = Tox 1o ] o U 11
Average Molar FraCiON ...........uiiiieiiee e e e e e e e e e e e as 12
OCCUITENCE PIrOPENSILY ..uiiiiie ettt e e e e e e e e e e e 12
Average Epitope Occurrence Probability. ........cccccoeeeeeeiiiiiiieeecccese e 13
Antigen-Antibody Interaction SUIace ............ouuuviiiiiiiiii 14
Epitope/Paratope Site Amino Acids Frequency of Interaction Matrix ................... 15
Calculating Actual Frequency of Interaction MatriX ...........cccoeeveeeeeiiiiiieeiiiiinnn. 15
Calculating Actual to Scaled Expected
Ratio as a Measure of Strength of ASSOCIAtION ...........uvvviiiiiiiiiiieeieeieeeeeeiiiiis 15
Programming & STAliSHICS .......ceeiiiiiiiiiiecee e e e e e e e e e e e e e e e 17
RESUIS & DISCUSSION.....ceueiitiiiiiei e e e e e e ettt ettt e e e e e e e e e e e e e e e eeaeebbba e e e e e e eeeaaas 19
General EPItOPE FEAIUIES .....uuuiii it e e e e e e e e e e e eaees 19
AMINO ACIA COMPOSITION ...ciiiiiiiiiiiiiiiee ettt e e e e e e e e e e e eeeeeeeeennnans 22
Interactions of Antibody/Antigen Amino Acid Residues ...........ccccovvvvvvvvviviinicenennn. 30
Spatial Distribution of Amino Acids in the Interfaces.........cccccvvvviiiiiiiii e, 40
Secondary Structure of the Interface ... 42

(00] o 11 [ 11710 ] o [T UT T T TR TT 45



Vil

TABLE OF CONTENTS - CONTINUED

3. EPIMAP APPROACH: NEW ALIGNMENT SCORING MECHANISMS AND

MODIFIED DYNAMIC MULTIPLE SEQUENCE ALIGNMENT .......ccccovviviiieee, 48
1] 10 o [ [1 1o ] o ISP PPPPPPPPP 48
EPIMAP Approach - BackgroUNnd.............uuuueeiiiiiiiee e eeeeeaeeees 48
Investigation of the Specificity and
Substitutability of Antigenic Epitope RESIAUES............uuuuviiiiiiiiiieieeeeeeeeeeeeeeis 53
Investigation of the Average Epitope Amino Acid
Residue Occurrence Probability ..............eeiiii s 55
Different Approaches in Improving Epitope Alignment and
A E=T o] o Te I\ o o 111 T o [PPSR 58
Simple Scoring MeChaNISM.......ccooi i 58
Modified Dynamic Multiple Sequence Alignment Approach ..........ccccceeeeeeieeeeeeennn. 63
1Y/ T=Y T T (o] [T )Y/ 64
Searching BeSt PArameters .........uuuuuuiiiiiieee ettt e e e e e e eeeeeeeennnees 65
APX — HARDNESS of MSA EPIMAP Problem.......ccccccciiiiiiiiiiiiiiiiiie 65
EXperimental RESUITS............ e 68
Alignment Comparison of MSA — EPIMAP with Original EPIMAP.................. 71
Alignment Evaluation of MSA - EPIMAP ... 73
COoNCIUSIONS & FULUIE WOTK.......uuiiiiiiiiiiiiiiiiiiee e e 75
. DE NOVO GENOME ASSEMBLY ...ooiiiiiiiiiiiiiii ittt 76
11 o To [¥Tox 1 o] o ISP TRRRRPPPP 76
DNA Sequencing TECNNOIOQY ........couiiiiiiiiiiiiiiie e e et e e e e e e e e e e e eeeeeaenne 78
Comparison: Sanger Reads vs Solexa Short eads ...........cceeiiiiiiiiiiii e, 79
De Novo Sequence Assembly Process of
NEXt GENETAtION DAL ......uuueiiiiiiiiie e e e e e e e e e e e e e e eeaes 81
F TS 0] o] YA Y o o 11 a4 £ 81
Greedy APPIOACK ... et a e e e e e e 81
Overlap-Layout-Consensus Graph Approach ...........ccccceeeiiiiiiiiiiiiceeeecceee, 83
Eulerian Path Graph APProach..........ccooo i 85
Survey of Different Assembler ProtoCOIS ............uueeiiiiiiiiiiiicciieeer e 86

Genome Assembly Computational Challenges.............ceviiiiiiiieiiiiiiicci e 87



viii

TABLE OF CONTENTS — CONTINUED

GeNOoME ASSEMDIY METIICS ...uuuiiiiiii et a e e e 88
Number of Contigs ASSEMDBIEM .........oovviiiiiiee e 89
Genome Coverage/Number of Nucleotides Assembled..............ccccviieiiiiiiiiiiineee, 89
Maximum/Average Contig LENGLN ......evvvviiiiiii e 89
N L O PP 89
B2000 ...ttt et e e e e e e e e e e e e e bbb e 90

Sequence Parameters ANAIYSIS ........ e 90
Y=o [ 1= o o TN o ] = od €S 90
Sequence Data INfOrMAatioN ..........ccooviiiiiiiiiiiie s 91

Escherichia COli (E. COli) v.vuuuuuiiiiiiiiiiee et e e e e e e e e e e eeenenennnees 91
StaPNYIOCOCCUS AUIBUS. ....uviiiiiii e 91
F TS 0] o] A F= U0 17 1= S 92
ASSEMDBIY SOIWATE.....cceiiiiiiiie e 92
De Novo sequence asSEMBIIES .......cooooi i 92
E. COlIASSEMDIY. ... e e e e eeeneaee 92
ST LU (=10 ST S]=T 0 01 o] YA 93
Parametric Intricacies in de novo Genome Assembly Process ..........ccccvvviiiiiiiicciiennn. 93
I. Influence of Read Type in ASSEMDIY .......ccooiiiiiieieccee e 94
[I. Influence of Read Length iN ASSEMDIY .......uuiiiiiiiiii e 95
[ll. Influence of Depth of Genome Coverage in Assembly ...........ooevvviiiiiiiiiiinnnenn. 96
IV. Influence of High Quality and Low Quality Sequences in Assembly .............. 98
V. Influence of kmers on ASSEMDBIIES ... 100
Comparing ASSEMDBIEIS ...t e e e aanarana 101
(=T =] o ot PP PPPPPRPPPPPP 102
Assembly Parameter OptimiZation...........ooviiiiiiuiiiiiiaiiee e 103
KMEE SEIECTION ...t e e e e e e e e e e e e e e e e e e 103
(1] gl0] 0[N @101V T = To [ PO 103
ASSEMDBIY POSt PrOCESSING ...uuuuiiiiiiie e e e eee ettt e e e e e e e e e e e e e e e e e e e e e e e e e eaeaaees 104
Mutation Analysis of MM66 and MMG66-4 Strains.............cceueviviviiiiiiinnieeeeeeeeeeee 104
Validation and Correction for High Quality Assembly............cccoovvvviiiiiiiiiicciiieeee e 104
DISCUSSION ...ttt e e e e et e et ettt ettt et a e s e e e e e e e e e e e e e eeeeeeesbsbb b e e e e e e eeeeeaaeeeeees 105
FULUIE DIFECHIONS ..ottt e e e e e e bbb e e e e e e e e e e e e e e e e e e aeaans 106
5. CONCLUSIONS AND FUTURE WORK .....ctttiiiiiiiiiiiiiiieeeeeee e 107
REFERENCES CITED .....ciiiiiiiiiiiiiiie ettt e e e e e e e e e e e e e e e e s e s s s nnsnnnsseeeeeenees 110

APPENDIX A: Extended Tables and Matrix



LIST OF TABLES
Table Page
1. Characteristics of the antigen groUPS ........ccooeeciiiiiiii e 21
2. Properties of the antigen epitope groUPS.......cccevviiiiiiieeiiiiiiiiee e e e e e e 22
3. Frequency Of iINteraction MAIX..........ccouiiiiriieeiiiiiiirrs e e e e e e e e e e e e e aaeeas 32
4. Average of All Ratios (Actual to Excepted Frequency) Interaction matrix......... 33
5. Top 10 Actual to Scaled Expected Frequency of Interaction Ratio..................cceevvunnee 38
6. Derived SUDSHULION IMALIX .......oveiiiiiiiiiiie e e 54
7. Read Difference Between Sanger and Next Generation Technologies ........................ 80
8. Various Assembly AlgOItNMS......ccoii i e e 86
9. Sequence Read Information Escherichia Coli..............ouvviiiiiiiii e, 91
10. Sequence Read Information For All Five StrainS ..........cccceeeiiiiiiieee e 91
11. E Coli ASSEMDIY StaliSHICS .. .iiiiie e e e e e e e e e e e e eaees 93
12. S. aureus ASSEMDBIY StatiISTICS .........uuuuueiiiiiie e 93
13. S. aureus (MM66) — Read Type - Assembly Using ABYSS...........oovvvviviiviviiiiieeneenn. 94
14. S. aureus (MM66) - Read Length - Assembly Using ABYSS ........cccccceeiiiiiiiieeeeeeee, 96
15. S. aureus (MM66) - Varying Coverage - Assembly Using ABYSS ..........cccceeeeeeeennn. 97
16. S. aureus (MM66) - High Quality SEQUENCES .........cceevvviiiiiiiiiie e 99
17.S. aUrEUSMM25 STFAIN) ....cceiiieeieiiiiiiee e e e e e e et s e e e e e e e e e e e e e eeeeeeeesnsnnnnnns 101



LIST OF FIGURES

Figure

1.

Page
3-D Structure of 1JHL.The antigen chain A is shown in
magenta, antibody heavy chain in blue, and antibody light
chain in red. (a) shows the binding site, and (b) shows the
interfaces separated so that the surface is better visualized.............cccceeiiiiiiiiiiiiiiicenn. 7

2. (a) The epitope surface of the antigen and the antibody

in the interaction region is shown separated by an arbitrary

translation imposed on the complex. (b) The epitope surface

of the antigen and the antibody interface is shown but with the

surfaces of both molecules facing UPWardS. ...........uueeiiiiiiiiiiiieee e 7

. Ag-Ab Interaction Region Characterization Work FIOW...........ccccoooiiiiiiiiiiiiiiiiiinn 18

. Average Molar Fraction of Epitope surface (a) Group |,

(o) T (e 10T oI | =T To I (3 I ©1 {0 o N 1 1 SO 25

. Average Molar Fraction of Entire surface (a) Group I,

(b) Group I, and (€) GroUP Hl......eeeeeeeiieee e 26

. Occurrence Propensity of each amino acid residue type

in the epitope to the whole (epitope plus the nonepitope) surfaces.
(@) Group [, (b) Group I, (€) Group Hl.. ... 27

. (&)Average Molar Fraction of Each AA in the Paratope

Surface and (b) Average Molar Fraction of Each AA in

the Entire Antibody Surface (c) Occurrence Propensity of

Each AA in the Paratope the whole antibody

(Paratope plus the Non - Paratope) SUMaACE ..........uuuiiiiiiiieeee e 28

. Epitope Average Occurrence Probability (a) Group Il & 11l

Proteins combined and (b) Presented in descending order,
Values Of @aCh AA RESIHUES.......cooi it e e e e e e e e 29

. Interaction frequencies : (a) AAs in the epitope pairing with

AAs in the paratope, (b) AAs in the paratope pairing with AAs
reSIdUES IN the EPITOPE. ..ottt e e e e e e e e e e e e e e r bbb as 35



Xi

LIST OF FIGURES CONTINUED

Figure Page

10. Total Average Ratio of Actual to Expected AAs frequency
of interactions : (a) Epitope pairing with AAs in the paratope

and (b) Paratope pairing with AAS in the epitope..........ooviuiiiiiiiiiiiii e 35

11. A hierarchical cluster analysis of the Pearson product-moment
correlation coefficient of the eptitope (A) and paratope (B) amino acid

INEErACION fTEQUENCIES.. ..uviiiiiiiie et e e e ettt a e e e e e e e e e aeeees 36

12. (a) Average distance in A of AAs from the center of the average
center of the epitope surface and (b) Average distance in A of
AAs from the average center of the paratope surface ...,

13. Epitope Discontinuity with a minimum gap distance of 3(Blue)

AAs and a minimum gap distance of 4(Red) AAS. ......ooovviiiiiiiiiiiiee e 44

14. Percentage compositionwehelices(Tan) an@-sheets(Blue)
And Random Coil (Red) on the epitope region of peptides,
small proteins and large ProteiNS. .........uuuuueeiiiiiii e e e e e e e e e e e e eeeeenanann

15. Strongly binding peptide probes are sequenced from
selected phage DNA clones. These probes serve as “witnesses”

44

to the structure of the target Protein. .........eeeeeeiiiiiceiie e e 49

16. EPIMAP Approach Scoring MeChaniSM ............ovuuiiiiiiiiiiiiiiee e 51

17. p22 (phox) protein target sequence where each AA
position in the target sequence is plotted with is average
epitope occurrence Probabilility values. (a) Using values from
Group Il & Il Combined, (b) Using Values from

Groups I, 11, & I COMDBINEA. .....cooiie e e e e e e e e e e e 57

18. IL-10 protein target sequence where each AA
position in the target sequence is plotted with is average
epitope occurrence probability values. (a) Using values from
Group Il & Il Combined, (b) Using Values from

Groups I, 11, & HE COMDBINEM. .....cooii e e e e e e e e e e 58

19. kmer spectrum of a probe sequence for K=1, 2, 3....cccoiiiiiiiiiiiiiieee e



Xii

LIST OF FIGURES CONTINUED

Figure Page

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

(a) Single residue scoring mechanism and
(b) Paired residue SCOrNg MEChaNISM. .........cooiiiiiiiiiiie e 60

44.1 antibody probes aligned to p22 (phox) target protein

using the scoring mechanism with k tuple size of 4 and finding

the average of the overlapping k tuples. The graph clearly

indicates a spike in the epitope region 182 - 190..........uuiiiiiiieiiieeeeeeee e 61

44.1 antibody probes aligned to p22 (phox) target protein using k

values 1, 2, 3, and 4 and then summing all the values at each position

in the target. This approach did not produce any better result than using

a k tuple of 4, but still showed a spike in the true

epitope region (182 — 190). ...uuuuruuuiiiiii e e e e e e e et e e e e e e e ————————————— 61

9D7 antibody probes aligned to IL-10 protein target using the
scoring mechanism described above with k tuple size of 4 and
finding the average of the overlapping K tUPIeS. .......ccoovveiiiiiiiiii e, 62

9D7 antibody probes aligned to IL-10 protein target
using k values 1, 2, 3, and 4 and then summing all the
values at each position iN the target. ... 62

Actual Alignment 9D7 probes to IL10 Protein Target . ........coeeeevvvevieveeeviiiiceenennn 69

9D7 Antibody Probes against IL10 Protein (a) Plot representing
the scores at each target position. (b) Plot representing the frequency
of amino acids aligned at each target POSItION. ........cccoeeeeieiiiiiiieeeee e 70

44.1 Antibody Probes against p22 phox data (a) Plot representing the
Scores at each target position. (b) Plot representing the frequency of
Amino acids aligned at each target POSItION. ........ccooiiiiiieiiiiiiieee e 71

9D7 Antibody Probes against IL10 ProteinTarget — Comparison
Between Original EPIMAP to0 MSA - EPIMAP . ... 72

44.1 Antibody Probes against p22 phox Protein Target — Comparison
Between Original EPIMAP t0 MSA - EPIMAP. ... 72



Xiii

LIST OF FIGURES CONTINUED

Figure Page

30. Plotting the False Positives and False Negatives as a
Scatter plot and the area under the plot is shown for 9D7

Antibody probes against IL10 protein target .............uuuveeiiiiiiniie e 74
31. Sequencing and Genome Assembly WOrK FIOW ...........ccoouiiiiiiiiiiiiiiieeeeeeceeeiiiii 78
32. Read difference between Sanger and Solexa technology reads...........ccccceeeiieiiininnee. 80

33. The assembler joins, in order, reads 1 and 2, then reads 3 and 4,
then reads 2 and 3.
[http:/mwww.cbcb.umd.edu/research/assembly_primer.shtml]. ..o, 82

34. The thick edges in the picture on the left (a Hamiltonian cycle)
correspond to the correct layout of the reads along the genome
(figure on the right). The remaining edges represent false overlaps
induced by repeats (exemplified by the red lines in the figure on
the right) [http://www.cbcb.um.edu/research/assembly_primer.shtml] ..................... 84

35. (A) kmer spectrum of a DNA string (bold) for k=4; (B) Section
of the corresponding deBruijn graph. The edges are labeled with
the corresponding kmer and (C) Overlap between two reads (bold)
that can be inferred from the corresponding paths through the
deBruijn graph[Pop, M . 2009] .......oiiiiiiiiieeeeie e 85

36.S aureus ( MM66) ABYSS assembly. Effect of Paired-End
Read Types,the graph represents in log scale the number of contigs
assembled, Maximum contig length, and N50 for single
end reads VS. paired €Nd rEAUS. .......ccoiiiiie i ——————————— 94

37. Average quality scores along the solexa reads generated by
lllumina Sequencing Technology for s aureus (MMG66 Strain) ..........ccccooeeeeeeeeieeeeeennns 96



Xiv

LIST OF FIGURES CONTINUED

Figure Page

38.S. aureug MM66) Assembly with Varying Coverage (a) With
higher coverage the contig length and the N50 increase resulting
in better assemblies. (b) With higher coverage most of the genome
is assembled into a smaller number Of CONLIGS .....uuviiiiiiiii e 98

39. Bar graph representing number of contigs, largest contig,
and N50 for E coli data with 225X coverage and Kmer 80.............uueiiiiiiiineeeeeninnnnn. 100



XV

ABSTRACT

This dissertation covers three subjects: (i) computational ceawation of
Antigen (Ag)-Antibody (Ab) interactions (ii) a novel and effgetialgorithm to predict
the epitope of a protein based on an antibody imprinting technique ¢aingarison of
existing de novogenome assembler algorithms targeted specifically ahghembly of
data generated by Illumina (Solexa) short-read sequencing tecinalud) suggestions
for their improvement.

The first part focuses on identification, characterization amderstanding the
ways in which the antibodies and antigens interact. We anapifgpE/Paratope region
using a large dataset of Ag - Ab complex structural dat@ntakom the PDB.
Epitope/Paratope regions in our dataset have been characterizzthsnof their size,
average amino acid residue composition, residue-residue pairingepiads, and residue
dispersion in the epitope and paratope regions. This analysis provide® aipato-date
picture of the Ag-Ab interface and provides new insights into the ofl residue
composition and distribution in Ag-Ab recognition. The above analysis helgstaining
a refined substitution matrix optimized for antibody imprintinghteque and used to
improve the effectiveness of the epitope prediction algorithms that hBbEso been
developed and are the second focus of the thesis.

The third and the final part focus on the de novo genome assembly problems.
genome assembly programs takes the short reads generatfédobsy genome shotgun
sequencing technology and computationally reconstructs the genome. Fgenthee
assembly problem the connections between read length, read type, cepgdexity,
guality score and coverage and how these parameters help in improwigimishing
the capability of the assembly programs to assemble the seqietace/ere studied in
depth. At the end of this experimental process it gives us a beiderstanding of the
impact of the above mentioned parameters on the complexity of genseralbdg and
helps ascertain margins on these parameters of sequence danatbiat efficient and
accurate assembly by the programs.
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CHAPTER 1
INTRODUCTION

Proteins are large organic compounds composed of linear polypeptide izaief 20
different amino acids residues. To fully understand the biologicalofoée protein one
requires knowledge of its structure and function. There are selifmaknt proteins in
human cells and each protein has its own folded functional structuretercever the
three dimensional structure of a linear protein sequence could bemdetd, the
information has provided important insights into mechanisms of action aydbe
extremely useful in drug design. With the increased number of psotarilable,
traditional methods of protein structure determination are ofteestis not feasible. So
computational approaches to predicting the structure of proteins aemiog
increasingly popular. One of the main aims in biology is to dest¢row cells work and
define the rules by which they live. A main concept is “form defifumction”, if this is
guoted, where from which means that if we know the shape of the shapeaaécule
then we can better understand the function of that molecule. Antibthdiedind to
protein surfaces of interest can be used to report the three dimansiructure of the
protein. The general structure of all antibodies is very similar, bua srgion at the tip
of two identical arms of the protein is extremely variable. s Biiows more than £6-
10° antibodies with slightly different tip structures to exist. Tieigion is known as the
hypervariable region. Each of these variants can bind to a diffeneygt, known as an
antigen. This huge diversity of antibodies allows the immune raydte recognize

virtually any molecular surface.The unique part of the antigemgrezed by an antibody
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is called an epitope. The alignments of the antibody epitopesetaititontinuous
regions of the one dimensional amino acid sequence of a target proliegtes how
segments of the protein sequence must be folded together and provideahgeg
constraints for solving the 3-D protein structure.

Antibodies can recognize either continuous or discontinuous epitopes.
Discontinuous epitopes provide the most useful structural information iboept
imprinting because they can reveal distant segments of prirequngsce that are in close
proximity on the native, folded protein. This notion that an antibody bang@sotein
antigen might be exploited to derive structural information about the protein @&siter

In chapter 2 the PDB (Protein Data Bank), [Berman et al, 2000]nwaed for
unique antigen-antibody complexes to learn as much as possible hboutterface
region amino acid composition and structure and the substitutabilégtafen residues
when bound to an antibody. The interaction region amino acid characteristicsightsins
is used to improve the epitope predictions in the next chapter.

Chapter 3 focuses on improving EPIMAP, a method for predicting thieoalyti
binding site, or epitope of a protein using multiple sequence alignnppnbach and
refine the alignment scoring and improve on epitope prediction consigiersing the
Ag-Ab interface analysis and new insights into the role ofdues composition and
distribution in Ag-Ab recognition.

Chapter 4 delves into the genome assembly problem. In Bioinformagiosing
assembly refers to the process of taking a large numbeiodf BNA sequences which

are generated by shotgun sequencing project and putting themolbather to create a
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representation of the original chromosomes from which the DNA originated. Higityqua
de novo assembly using illumina (solexa) genome analayzer shorisgasible using
many publicily available short read assemblers. Several ngallefaced in terms of
assembly process were discussed by summarizing severabwvde bacterial genome

assembly experiments.
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CHAPTER 2

ANTIBODY/PROTEIN ANTIGENS INTERACTIONS: COMPUTATIONA

SUMMARY OF 62 PDB STRUCTURES

Introduction

The antibody — antigen interface determines the specifity andyaeidantibody
immune function. We present a generalized picture of the intsrizagtured from the
PDB, database of published structures of proteins, interactions idérifiour analysis
may be significant for binding and were used for improving epitopmmmaknts
discussed in the following chapter.

Proteins are linear polypeptide chains with a wide varietyawiino acid
sequences, typically comprised of hundreds of the 20 different amidoresidues
[Baker, Sali 2001]. Protein tertiary substructures or folds arerdeed implicitly by
their amino acid sequences and the local amino acid compositjgredgctive of the
secondary structural content and to some extent the complex fold afleisethaber et
al. 1996, Dubchak et al. 1993, Chou 1995]. Full understanding of biological role of
proteins requires knowledge of function, structure, multi-protein coafplenation, and
mechanism of action. There are about 100,000 different protein aminoeagidnses
and perhaps 1,000,000 different modified protein forms in human cells and etah pr
form has a characteristic folded 3D structure that is nege$sarproper function,
localization, and association with interactive partners. With tleeeased number of

proteins under investigation, it is clear that traditional methikesX-ray crystallography
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or Nuclear Magnetic Resonance (NMR) are often not feastnepfotein structure

investigation and determination.

Prediction of protein structure given knowledge of amino acid sequéme ia
not yet reliable, however with certain structural constrapasjtional information about
a limited number of amino acid residues in the three dimensiorlofol protein,
computational predictions of structure is now a regltgndekar et al. 1997, Bystroff et
al. 1998, Bystroff et al. 2002, Yuan et al. 2008lich information can come from the
protein surface in terms of side chain surface accessitiéprjett et al. 2008], nearest
neighbor distance information from cross-linking [Jacobsen et al. 2006t ai. 2008],
and NMR [Burritt et al 1998], and identification of proximity of @ifént regions of the
protein sequences based on their participation in an antibody antigéacetfdesaitis et
al, 1996, Burritt, et al, 1998, Bailey et al 2000]. Most proteins do noalaoe, but
function as components of protein-protein complex [Dhungana et al. 2009]c&urfa
structure drives protein association and the intrinsic informatioretraa structural
form is used by proteins to establish contacts and functionally pgreelunteractions.
Thus, determining the structure of one protein surface at an oegedan provide
structural information about the other protein surface, which inturrpcande enough

information from which the protein structures could be determined.
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Composition of AA Residues
Involved in the Antigen-Antibody Interface

Protein-antigen-antibody (Ag-Ab) complexes constitute a relativeiye lgroup of
protein-protein interfaces that have been characterized strictdraé size of a typical
protein Ag-Ab combined interface is approximately 1400-236pAkit, Mariuzza et al.
1986, Conte et al. 1999] based on certain types of calculations of molsatfiece or
solvent accessible surface area. The antibody amino acid reswoeésed in contact
with antigens are contained in 6 loops in the antibodies that ated céie
Complementarity Determining Regions or CDRs: 3 from the 25 igh& ¢hain CDRy.3
and 3 from the 50 kDa heavy chain GRR [Chothia et al. 1989]The amino acid
residues in the CDR loops form surfaces that make intimateacatowith the antigen.
Earlier extrapolation of a limited number of structures of AgeAmplexes indicated that
a major fraction of the antibodies recognize discontinuous epitopesvi@dely spaced
regions from the primary amino acid sequence of the antigen) on rpraeiaces
[Barlow et al. 1986]. When available, the structures of the antibody alone andigfemna
alone most often indicate that these complexes form in a lock anm&ayer with little
or no structural change induced upon complex formation, especiallyhéohigher
affinity antibodies [Van Regenmortel 1996]. Thus, the antibody saari@ dimensional
“imprint” of the protein contact surface in the fold of its vare@abght and heavy chain
domains and this surface represents the 3-dimensional complementleequivaa 3
dimensional photographic negative of the antigen surface structatacted by the

antibody. The Ag-Ab interface structures also represent tivedlawell defined model
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subset of all proteiprotein interfaces, where one prin of the complex has a very w

studied secondary struct.

Figure 1 3-D Structure of 1JHL (Ribbon Structu. The antigen chain A is shown
magenta, antibody heavy chain in blund antibody light chain in re¢a) shows the
bindingsite, and (b) shows the interfaces separated sthiaurface is better visualiz.

Figure 2 (a)The epitope surface of the antigen and the antiloodlye interaction regio
is shown separated by an arbitrary translation sedoon the complex. (IThe epitope
surface of the antigen and the antibody interfacehiown but with the surfacef both
molecules facing upwarc
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To better understand structural parameters involved in Ag-Ab atiena we
carried out an examination of the amino acid residue composition atitbwtion in
antigen and the antibody as well as the interactive pairing afuess between the
antigens and the antibodies. To date the number of complexes smeddms been
limited. A review by MacCallum et al. in 1996 considered 10 coxgsleDavies and
Cohen in 1996 reviewed three additional anti-idiotype complexes, and Lo€bale
1999 studied 19 antibody — antiggsmplexes of which 7 were lysozymes and [Sundberg
and Mariuzza 2003] listed the structures of 30 complexes but geaticals made from
this entire group were not discussed. Although the former studiedeoeithe size,
shape, planarity, and CDR residue contacting propensities of theegibues in
exceptional detail, generalizations about the properties of tigeastwas more limited.
Furthermore, the relatively small number of complexes exaniiméts gains in general
understanding regarding such a diverse group of interactions. We xawvened the
contact regions of 62 unique Ag-Ab complexes currently available fhenprotein data
bank (PDB). Although, there are approximately 101 Ag-Ab complexekeirPDB, of
those 39 were redundant owing to studies involving site-directed muteayehesngle
amino acid residues which we felt would bias the studies givigigehiweight for such
protein antigens. We, therefore, sought to expand our view of the oMirprAg
interface, to facilitate extraction of general structural imf@tion about the antigen
surface from the antibody contacts. For this study, we calculated thg@awvataes of the
following Ag-Ab interface parameters: size, eccentricityanglity, discontinuity,

secondary structure, hydrogen bonding, amino acid composition, and the amiino a
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interactions between the antibodies and the antigens. We then attaimpieesent a
generalized picture of the interfaces and the interactionsnthgt be significant for

binding.

Definitions & Methods

Antigen Epitope and Non-Epitope Region

A protein antigen epitope is the part of the protein macromolecule igha
recognized by the antibody. It is also called the antigeniermgtant. Figure 2 (a)
represents the 3-D ribbon structure of 1JHL antigen-antibody camplee epiope
surface region is highleted in magenta. Epitopes recognizadtlipodies can be taught
as 3-D surface features of an antigen molecule. These feétupeecisely and thus bind

to the antibodies.

Antibody Paratope and Non-Paratope Region

The paratope is the antigen binding part of the antibody, i.e the thpatrt
recognizes the antigen. Figure 2(a) shows the paratope soffgtoe 1JHL structure in

blue (heavy chain) and red ( light chain).

Surface Residues Delineation

The Ag-Ab data set was grouped based on the number of amineesicides in
the antigen for each complex. Group | leptidé antigens had fewer than 25 amino
acid residues, Group Il, ofsfmall siz& proteins, had more than 25 but less than 130
residues, while Group lll, of l4rge sizé& proteins, had greater than 130 residues. This

grouping helps examine how interactions differ with varying antgjee. The complete
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list of the complexes analyzed is given in Table Al of the AppeMidexdefined surface
residues in the epitope and non-epitope regions of the antigen as thidsesevith a
solvent-accessible surface area (SAS) of >%5@#nce the calculated surface area for the
amino acid residue with the smallest side chain, glycine, is 7%hfp://www.fli-
leibniz.de/IMAGE_AA.html) and for the largest (tryptophan) is 255 dur cutoff value
represents 2/3 of the maximum amino acid residue surface thdd Wwe necessary for
classification of a glycine to be included in the Ag-Ab contarface. For all the
analyses presented, we used > 584 a cut-off value. This surface calculation was
achieved using the UCSF Chimera molecular visualization program

(http://www.cgl.ucsf.edu/chimera/) The Chimera program calculates the molecular

surfaces with embedded software from the MSMS

(http://www.scripps.edu/~sanner/html/msms_home . jhpatlkage [Sanner et al. 1996].

Epitope and Non-Epitope Region Classification

There are two main approaches to describe epitope residues ib Agrfplexes.
The first approach uses the Solvent Accessible Surface AreaA)S#etween two atoms
of an interactive pair of molecules to calculate proximity (dokey et al. 2002], while
the second approach uses distance cut-off between antigen and antdiodyirathe
complexes. For our work, we used the second approach and defined epitdopen-
epitope regions by the contacting residues. The theoretical maxampanation distance
between two contacting atoms is 6.6 A, albeit in practice the ityagdrcontact residues
are < 5A apart [McConkey et al. 2003]. A 5A cutoff for interfaedinition has been

employed recently by [Hafenstein et al. 2009] in defining the pioat' of an antibody
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on and antigen surface. Thus we define the antigen epitope and antibatdp@as the
collection of amino acid residues of an antigen or antibody, in wdmghatom of the

epitope residue is separated from any antibody atom by a dist&fce

Estimation of Surface Residues in
Epitope/Paratope and Non-Epitope/Non-Paratope Regions

To calculate the surface residues in the interface regimmsiumber of atoms in
the interface region is counted explicitly. For example, twadrees, one having five
solvent-accessible atoms in the interface region and the other hawvingolvent
accessible atoms in the interface region would both be considecemtaduting to the
interface We identify all the antigen and antibody residue sobegdssible atoms that
were separated by a distance<dBA from each other. After this computation for all the
complexes, we identified and defined an epitope region and pareggpmn for the
antigen and antibody in each complex, respectively. Since some aftdhesantibody or
antigen are less that 5 A distant from the opposing surfacardutot on the surface of
their respective protein, we added another filter process, wheracgled only the

residues that were also on the surface of the uncomplexed protein as defined above.

Amino Acid Composition of Epitope/Paratope and Extra-Interface Surface

We calculated the raw frequency of occurrence of each amidoesidue for the
set of interface surfaces (epitope and paratope) and the entieinpantigen and

antibody surfaces of all the Ag-Ab complexes in our data set.

Molar Fraction For each epitope and paratope surface, we calculated the Molar

Fraction of an amino acid residue in that surface by dividing ake frequency of
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occurrence of that amino acid in that surface by the total nuwibeesidues in that
surface.

Total number of x in surface i

Molar Fraction (x,i) = - - - - -
' Total number of amino acid residues in surface i

x represents a particular amino residue typeiasdhei" interface surface (epitope and
paratope)

The molar fraction values for all the epitope paratope pairs provister way
of comparing the occurrence of any residue in the epitope/paratopace to its
occurrence on the surface outside the epitope/paratope. For a refetasure of
occurrence, we defined the Occurrence Propensity as the ratie aiverage molar
fractions of any amino acid over all epitopes or paratopes aaslatage molar fraction

over the entire surface of their respective protein (antibody or antigen)

Average Molar FractionWe calculate the average molar fraction for each amino

acid residue type in the average epitope and paratope surfacambyng all molar
fractions for a particular residue over all epitopes (or paratgeetaces and dividing by
the total number of surfaces.

1 Molar Fraction (x,1)

Average Molar Fraction (x) = -

Occurrence Propensityhe average occurrence propensity for a particular residue

type in an interface is calculated as the ratio of its averagjar fraction in the interface
surface and the average molar fraction of the residue over the sntiace of the protein

bearing that interface
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Average Molar Fraction (x in Epitope Surface)

A 0 p it =
verage Occurrence Propensity(x) Average Molar Fraction ( x in Entire Surface)

This average Occurrence Propensity speaks to the likelihood of firdiparticular
residue in the epitope surface versus the likelihood of findingyiivaere on the protein
surface. A high Occurrence Propensity suggests a higher digb#iat a particular
amino acid residue occurs in the epitope/paratope surface than onfdioe swtside the
interface. Average Occurrence Propensities < 1 indicate hkapdrticular amino acid
residue is less likely to occur in the epitope/paratope surfapeirinhe extra-interface

surface.

Average Epitope Occurrence Probabilitin this section we calculate the

estimated probability that each residue belongs to the epitope twee it is in the

antigen. For each complex in our data set we calculated the epitope occlraetnme.

Number of x in epitope surface i

Epitope O Probability (x,i) = - - -
pitope Occurrence Probability (x, i) Number of x in the entire surface Antigen

The average epitope occurrence fraction then can be calculated as follows,

™ . Epitope Occurrence Fraction(x, i)

Average Epitope Occurrence Probability = -

This value will be useful for giving an a priori score to each gmotarget
position as its likelihood of belonging to the epitope. The Average pspibacurrence
probability is presented in table A6 (See Appendix). We consideupgtl and Il
combined and graphically represented in figure 8.

The average epitope occurrence probability indicates the probaibibty amino

acid residue occurs on the epitope surface.
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Antigen-Antibody Interaction Surface

We characterized the Ag-Ab interfaces in terms of surfaaeapity, eccentricity,
size, and epitope discontinuity. ProtorP, a protein-protein interachaftysis server
[Reynolds et al. 2009] was used to calculate the surface plaaadtyccentricity. The
planarity of the surfaces between Ag-Ab complexes is cagmlillay computing the root
mean square deviation of the all the interface atoms from élsedgquares plane through
the interface atoms. If all the atoms would exactly fit #y@e plane, the planarity index
would be zero [Bahadur, and Zacharias, 2008, Jones, and Thornton, 1996]. As such, the
planarity can be viewed as an indication of how deep and roughutfeees of the
interface is.

Another parameter that we examined was the eccentridi$p (enown as
circularity) of the interface. The eccentricity is a measof the shape of the interface
[Reynolds et al. 2009]. The eccentricity is calculated as ti@ o&the length of the
principal axes of the least-squares plane through the atoms inténace. A ratio of
near 1.0 indicates that an interface is approximately circular.

We also calculated the maximum dimension of the epitope and parétepe,
largest distance between any two residues in a particuli@ceur This was determined
by doing a pair- wise Euclidean calculation of the distanted®n each pair of atoms in
the epitope or paratope surfaces.

Lastly, to understand the secondary structure of the interfaeealso examined
the continuity of sequence in the protein antigen surface asasethe content of

secondary structural elements. We calculated the epitope discontideiined as the
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number of segments of the Ag sequence within the epitope thasemaeated from their
neighbor regions by minimum gaps of 3 and 4 amino acid residues.tésohelical
and B-sheet content information of the interface regions were dégttdcom the PDB

file.

Epitope/Paratope Site Amino Acids Freqguency of Interaction Matrix

Calculating Actual Frequency of Interaction Matrixo obtain a measure of the

importance of a particular residue type to the epitope and paratopésovealculated the
raw frequency of interactions between particular residues oapib@pe surface to those
on the paratope surface and vice versa. A pair of amino acid residaued j was
considered to be in contact if the distance between at least tdmsraitoms was at most
5A (our defined cutoff distance). The number of pair wise interactigrisetween amino
acid residue type in the epitope surface andn the paratope surface is calculated. The

computed’;; values are represented in the 20 x 20 matrix (Table 3).

Calculating Actual to Scaled Expected
Ratio as a Measure of Strength of Associatidme best way to understand the

involvement of the amino acids in the interaction region, protein antigen epitope and the
antibody paratope is to study the ratio of actual to adjusted frequency of iotefact

each complex in our data set and then find the average of the all ratios. So irtithiis sec
the Actual Frequency of Interaction, adjusted expected frequency of irdaraid the

ratio of actual to adjusted frequency of interaction was calculated.
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Actual Frequency of Interaction Matri¥or Each complex the actual frequency
of interaction was calculated. The actual pair wise interaction can bewvagte
20
cl= Z A
ij=1
where(;; is the number of interactions between residues ofitgmethe epitope andon
the paratope in the compl&xThis is specified as a 20 x 20 matrix, which represents the
actual frequency of interaction matrix for a particular complex.

Expected Frequency of Interaction Matrbor each complex the expected
frequency of a pair of amino acid interaction is proportional to the product of aronsta
value and the product of the raw frequency of occurrence of each amino acid in their
respective interface regions, epitope and paratope.

Ef ~ ¢ x ffxff
The expected frequencies are the frequencies that we would predict Y @xeacth cell

of the matrix.

2
5B

k

wherek}, is the expected frequency of interaction of amino acidhe epitope and

amino acid residugin the paratope of complég andc, is a constant value, aifd is the

frequency of amino acidin the epitope surface aqfﬁs the frequency of amino agidn
the paratope surface of compleandCl-’j- is the total sum of all the actual pair wise

interactions, antEl-"‘j is the total sum of all the expected pair-wise interactions
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This is also specified as a 20 x 20 matrix, which represents the expected freafuency
interaction matrix for a particular complex.

Ratio of Actual to Scaled Frequency of Interactibar each amino acid pair wise
interaction, the ratio of the actual to scaled frequency of interactiorcidaiaid only if

the expected frequency of interactid@h; > O as follows

k
Rk &
lj Ek

R{‘j ratio of actual to scaled frequency of interacmg%i,s the actual pair wise frequency

of interactions, an(Ei""j is the scaled expected pair wise frequency of interaction. For each
complex a 20 x 20 matrix is computed which represents the ratio of actual tb scale
expected frequency of interaction for each amino acid pair wise interactian for

particular complex. Finally, the average of all ratios (entire datassedjculated and

represented as a 20 x 20 matrix in table 4.

Programming & Statistics

Perl scripting language was used for all our data generathoh pmocessing. R

(http://www.r-project.org/index.html) and Excel were used for statisticalysis.
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For each Ag-Ab PDB complex in the data set

/\

Identify Epitope Surface

are within 5A from the Ab

Identify all Ag atoms that have SASA > 53 dnd

Identify Paratope Surface

Identify all Ab atoms that have SASA > 56 A
and are within 5A from the Ag

A

Compute the
SASA of each
epitope surface

For Each Interaction

Region the Planarity,
eccentricity, and GVI,
H-bonds are reported
using the PROTOR

A 4

paratope
surfact

Compute the
SASA of each

For each AA residue
in the identified
epitope surface of
each Ag-Ab PDB
complex compute the
molar fraction

\ 4

For each AA residue
in the identified
epitope surface of
each Ag-Ab PDB
complex compute the
each AA residue
from the approx.
epitope centt

For each AA residue
in the identified
paratope surface of
each Ag-Ab PDB
complex compute the

\ 4

Compute the Average
Molar fraction for
each AA residue for
all the epitope
surfaces

Compute the
average distance
of each AA
residue from the
epitope center

A 4

Compute the Average
Molar fraction for
each AA residue for
all the paratope
surfaces

For each AA
residue in the
identified epitope
surface of each
Ag-Ab PDB
complex compute
the each AA
residue from the
approx. paratope

I

Compute the
average distance
of each AA
residue from the
paratope center

A - Angstroms unit; Ag — Antigen; Ab — Antibody; AA — Amino Acid; SASA|-
Solvent Accessible Surface Area; PDB — Protein Data Bank [Berman et al.
2000]; GVI — Gap Volume Index; PROTORP — Protein-Protein Interaction

Figure 3: Antigen-Antibody Interaction Region Characterization Work Flow
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Results & Discussion

General Epitope features

We used 62 non-redundant published structures of distinct protein or p&gtide
Ab complexes to gain a more generalized understanding of the Agté&dace region
than currently exists. The identification, with PDB codes, ofatitédbody paratopes and
antigen epitopes analyzed for all the Ag-Ab complexes investgatre listed in
Appendix Table Al.

The total solvent accessible surface area of a moleculacsugaomputed by
summing all the solvent accessible surface area of all trasain that surface. We
calculated the epitope and paratope solvent accessible surfacgSARAR) as well as
their sum, i.e. the combined interface region surface area. Thagavarea of the
solvent-accessible molecular epitope surfaces (Table 2), is 1135A# 8&0the 15
Group | antigens, 1075 + 1784or the 26 Group Il antigens, and 1125 + 233 21
Group Il antigens (Table 2). These surfaces have maximurmeiors of 21.4 +5.9 A,
29.3+9.3 A 29.9 +5.6 A, respectively (Table 2). For all the protein antifeqreater
that 25 amino acids (i.e. Group Il and Group Ill combined) theseesare 1097 + 204
A%and 29.6 + 7.8 A, respectively. Correspondingly, for the paratope, trege\aurface
area values are 749 + 263 A, 1015 + 202 A, 1063 + 226 A, respectiasuggest that
the areas of the epitope and paratope are very close to one anodmrfexthe group |

peptide antigens.
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The Group | (peptides) epitope and paratope solvent accessibleesartze
values are interesting. The average surface area ratiop@epis paratope) is ~1.5. This
differential indicates that the epitope surface is 50% biggerttieparatope surface and
might suggest that a paratope "ridge", as was suggested byaMant al. (1996) for
small antigens, which might wedge between two epitope peptideh&tsetuch like the
interaction between three pipes of equal diameter, i.e. the budacdfone pipe being
less than that of the other two combined. Considering all groups comthieadlues of
the epitope plus paratope surface areas also confirm SundbergaangZd's (2003)
estimate of ~1,400-2,300%/s the range of the combined Ag-Ab surface buried in an
interface based on a more limited set of structures (see )abéweraged over all 62
structures presented here, our value for the combined Ag-Ab surtzecésa2073 +459
Az,

When viewed from an axis perpendicular to its least squaresataidydlane, the
antigen antibody interface is not circular but has an eccéptviaiue of between 0.6 to
0.8, where the most a circular value belongs to the more diverse Eemtjgens (Table
2). The Ag-Ab interface is also irregular in the verticangl as evidenced by the
planarity index which is the root mean square deviation of interféoens from the
average plane. The planarity index ranges from 2.0 to 2.2 A frampQrto Group IlI
and its overall average is 2.2 + 0.2 A. These values suggest tisadetzhains, of either
paratope or epitope, which can be as long as 7 A in extended corndoriieatelatively
flat on this surface and that the surfaces probably don't intéatignore that 2-3 A.

Also, the number of H — Bonds ranges from 18+120.10 for Group |, 23.8& 19.36
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for Group IlI, 19.71+ 18.93 for Group Ill, 21.9& 18.86 for all protein groups (Group |
and 1) combined and 21.86 17.22 for all groups (Group |, II, and IIl) combined. The
gap volume index, another measure of the closeness of the iierastobtained by
calculating the quotient of the gap volume and the interface swafaeeand is given in
Table 2 for the different groups. Its values for the three Grouyggeritom 1.3, to 2.2,
and 3.6 for Groups | through IlIl, in that order. These values suggasthere is
relatively little space between antibody and antigen structureghauthe fit is tighter

for the smaller antigens and supportive of the presence of small whids could

contain water molecules [Sundberg and Mariuzza, 2003] between thedatgens and

their respective antibody interactive surfaces.

Table 1: Characteristics of the antigen groups

% of
t . Total # To(t)?l # Residues
H ¢ of on the
: Surface
Residues . Molecule
Residues
Surface
Antigen Data
Group | (15) 9.67 4.482| 145 145 100%
Group 1l (26) 112.92| 63.96| 2936 1454 49.5%
Group Il (21) 349.86| 145.167347 3221 43.8%
All Protein Groups Combined(47)218.78 | 193.11 10283 4675 45.5%
All Groups Combined (62) 168.19 195.870428 4820 46.2%
Antibody Data (62) 433.44 269.6126873 10804 40.2%

T - Mean,* - Standard Deviation
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Table 2: Properties of the antigen epitope groups

All Peptides
All Proteins | and Proteins
Group | Group Il Group llI Combined Combined
(Grp. H& 1) | (Grp. 1 &1l &
1))
u‘r c* |J-T c* |J-T c* |J-T c* u‘r c*
AA 6.90 4.28 17.60 13.40 | 14.10 8.18|  31.70 19.72  38.6§022.00
Epitope
Maximum 21.36 | 5.93 29.31 9.33 29.92 559  29.58 781  27.49 .16 8
Dimension(A)
Hydrogen 18.14 | 10.10 23.88 19.36 | 19.71 18.93  21.94 18|86 0821.| 17.22
Bonds
Epitope
Surface Area| 1134.7 | 349.6 1074.5 178.5| 11241 2334 1096.9  203B106.0 | 244.3
(A%
Gap Volume 1.30 0.74 2.36 1.02 3.55 299 290 221 253 2.08
Index (A)
Planarity (A) | 1.97 0.42 2.20 0.52 2.23 064 221 057 216 0.54
Eccentricity | 0.79 0.17 0.66 0.11 0.74 0.13| 0.70 0.1 0.72 0.15

t - Mean,* - Standard Deviation

AA — # of amino acid residues in the epitope surface

Gap Volume Index Definition: The gap volume is used to give a measure of the
complementarity and closeness of packing of the interface betweewotsaliunits. This

is accomplished by measuring the volume of empty space betiveeatams. The gap
volume index is measured in angstroms, and is computed by dividing gap vialdhe

by the Interface Area (ASA) inAReynolds et al 2009]

Amino Acid Composition

To determine the biochemical properties of the protein interfacesxamined
the amino acid compositions of the epitopes and paratopes of all 62 gempled
compared them with the compositions of the protein surfaces outside the epraipppa
interface regions. Based on the total number of residues expmosieel surface in each
Group, the percentage of the protein antigen residues on the sarfaceups I-11l, were
100%, 49.5%, 43.8% individually, 45.5% for the small and large proteins combined

(Groups Il & 111), and 46.2% for all peptides and proteins combined (@b I & 111)



23

(Table 1). The antigen epitopes contain 8.9 + 5.5, 13.4 + 12.0, 13.5 =+ 7.7, amdino ac
residues for the three Groups respectively (Table 2). Addinthallesidues of each
group as the total, the molar fraction of each type of the 20 aacids was calculated.
These results are presented in Table A2 of the Appendix fohalgtoups and their
combinations in alphabetical order of residue name. And the same l@sufiresented in
descending order by molar contribution for each amino acid residugures 4(a, b, c)
5(a, b, ¢), 6 (a, b, ¢) and 7 (a, b, c) for the epitopes and paratopes, respectively.

Inspection of the average molar fraction of the 20 amino acid residuthe
epitope surface of each class is revealing and is shown in Figures 4 (aTber) are no
occurrences of MET and CYS in the Group | (Figure 4a) epitopdsadess than 2.5
mole percent occurrence of mostly aromatic TRP< ILE< PHE<TYR. Wmstdant (> 7
mole %) in this group are ASP< VAL<GLU< GLN < LEU, a mbguof negatively
charged polar, and hydrophobic amino acids consistent with peptide splubiliGroup
Il (Figure 4b) the low abundance order of less than 2% occurrel@¢éSs PHE< ILE<
MET< HIS, essentially hydrophobic and aromatics and the two stdfuiaining groups.
The most abundant residues in Group Il (Figure 4b) with grelaaer & 5 mole percent
occurrence are THR< ASP< LYS< ARG<ASN. Lastly, in GrougFigure 4c) the low
abundance residues are (< 3 mole %) are the sulfurous and aromatiell aas the
smallest, least rotationally constrained residue, CYS<PHE<®IET<TRP. The most
abundant (> 7.5 mole %) are the four charged residues ARG<ASP<GLU<LYS.

Amino acid residues are differentially expressed on proteincasfdepending on

their intrinsic properties. These properties, have been almostsallyeapplied in what
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recently has been suggested as dubious attempts [Blythe M. 2@@5}lat predicting
antigenicity of sequences of proteins. However, they areussful in identifying the
significance of the above amino acid occurrences, if we considearameter that
describes the amino acid epitope/paratope expression relatigeoteertll expression on
the protein surface. We calculated the Occurrence Propersity ¢f frequency in the
interface to frequency overall) for each group to give a measiuthe significance of
finding a particular amino acid in the epitope vs the overall sudattee protein. Figure
6(a, b, ¢) and Appendix table A2 clearly shows that, for the proteigeasti TRP, TYR,
MET, ILE, GLN (which except for GLN are low abundance residuegumm the

epitope at a much higher than expected frequency (>1.5) suggdstinth¢y play a
special role on the recognition process. Indeed Nussinov and colleggmésed

surface TRP, PHE, and MET as residues that identify bindingactsf(Ma et al. 2003).
Furthermore, Bogan and Thorn [Bogan et al. 1998] identified TRP, TMR; as

enriched in distributed hotspots of binding energy surrounded by solvehidioge

residues that figure importantly in dimer interfaces of proteifbese differentials in
average occurrence propensities may suggest that a set rod aoid residues, with
higher average occurrence propensities may be more importaant #ib-Ag interaction
while those with less average occurrence propensity mayamititute much to the
interactions. Although highly informative, one also needs to conswmler"tvell" the

various interface residues interact with amino acid residues oopih@esing interface

surface.
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Additional insight emerges from considering the antibody paratop&csur The
amino acid average Occurrence Propensity values for the pareggmms of the
antibodies are shown in Figure 7c and numerically in the Appendie Ta3. The
Occurrence Propensities are quite high for some types of essidn the antibody
paratope (Figure 7c), whereas for small and large proteineastithe occurrence
propensities of different amino acids tend to be less distincligure 6b, 6c). The
highest ratios were TRP>TYR>PHE>ILE>HIS>MET, ranging frbrh to 1.5 suggesting
these residues to be very high value for antibody antigen intaraatid especially the
strong dominance of TRP and TYR in this interface. Interestirigly highest average
molar fractions amino acid residue occurrences in the paratef@e859, appendix table
A3), are TYR(0.21)>SER>THR>ASP>ARG>ASN>TRP (0.059) shown in Eifar. It
is worthy to note that TYR is 3X times more abundant than the bigbrabundance

residues and nearly 5X more abundant in the paratope surface tkiaa @mtire surface
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of the antibody. These differences suggest special functiorsl f@l these residues in

Ag-Ab interfaces.

Interactions of Antibody/Antigen Amino Acid Residues

Clearly, some amino acids are more represented than othersepitibyges and
paratopes. This probably means that they are of correspondigber importance to
the Ab-Ag interaction, yet it argues against their role in ifipyg, i.e. less abundant
residues could imply a higher degree of specificity. Howevethely have fewer
interactions with the paratope residues their contribution might be mgortant for
positional spacing in structure rather that amino acid side changmnition [Pinilla C et
al 1993]. To get another measure of the significance of particular residuddypesAb
binding, we sought to identify the residues that are the most fréguevdlved in the
interactions of the antigen and antibody pairs. We thus calculseatuimber of contacts
that each residue on the epitope makes with specific residues antihedy and vice
versa. The interacting residues were scored if the distamaedre at least one of the
atoms of the residue to the atoms of the complementary memisebelav the 5A
cutoff, consistent with our epitope/paratope site definition. We alsae mhe
corresponding calculation for the antibody paratope residues. This\g@r therefore,
is a combination that includes a component that depends on the number fatime
particular residue occurs in the epitope and paratope as wadhgsonent that depents
on side chain properties (i.e. size, hydrophobicity, etc.). Thislation is tabulated in
a 20 X 20 matrix showing the raw interaction number for residuegther the paratope

or epitope with residues in the opposing surface as is shown in Tdbl& &ble 4, the
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average of all ratios (entire data set) is calculated anésemed as a 20 x 20 matrix.
This ratio explains the strength of association between amid@gats in the interaction
region. The higher the ratios the higher is the strength of iaisocbetween the AA

pairs.



Table 3: Frequency of interaction matrix
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Table 4: Average of All Ratios (Actual to Expected Frequency) IrtieraMatrix
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Of all the residues on either surface, the paratope tyrosinact®al epitope residues
with high frequency, whereas only GLU and LEU on the epitope haveasshmad range
of interactions but with much lower frequency. This observation suggest for the
paratope at least TYR has a very special role

To display a measure of the overall interaction frequenciescbfreaidue of one
surface with with all the residues of complementary surfaeesimmmed rows or colums
from Table 3 and plotted the values for each amino acid type. Figyet8ahe absolute
frequency of interactions of each amino acid residue type iagiepe with any residue
in the paratope and Figure 9b plots the absolute frequency of trdiasaof each amino
acid residue type in the paratope with any residue in the epitbpese results show
differences and similarities for these parameters on thestwiaces. For the epitope
residues the number of interactions can be grouped into three cageg@@0 (low: CYS
< PHE < MET < TRP < HIS < VAL < ALA < SER < ILE <O < TYR), > 200-400
(intermediate: GLY < LEU < THR < GLU < GLN < ASP < IS§ and > 400 (high: ARG
> ASN). The groups on the frequencies of the paratope residuesitastantially
different with < 200 (CYS < MET < ALA<LEU < VAL <PRO <LYS <GLNGLY <
ILE < PHE < GLU < HIS) , > 200-400 (THR < ASP < SER < ARGSN), and > 400
(TRP < TYR). The most striking result from this analysighat the antibody TYRsS
made ~1500 contacts with antigen residues. The corresponding fealtiee epitope
TYRs, was about 200, suggesting the antibody TYRs make 7.5 timewuthieer of

contacts than the antigen TYRs.
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The remainder of the the paratope residues have approximately the saenef remgact
numbers as the epitope residues, suggesting that these interactions noag bienitar

and perhaps characterisitic of interactive protein surfaces in general.
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Figure 9: Interaction frequencies (a) AAs in the epitope pairingAdth in the paratope,
(b) AAs in the paratope pairing with AAs in the epitope.
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Because the occurences of the different residues in each tymariaice varies
considerably, the frequency of interaction of each residue tylpeefiect the number of
times it occurs in the epitope and paratope as well as anilspeaperty it might have
that increases its interaction with another residue (i.e. dizaeges, hydrophobicity etc.).
Figure 10a and 10b shows the average ratio of the actuapéxted frequencies. This
average ratio is calculated for each residue type in the epitmppamatope surface by
taking the actual number of interactions of a particular residoe wWith another and
dividing it by the expected number of interactions of each inepactive surfaces.
Figure 10a and 10b show these values total for all interectf one particular residue
type with all the others on the opposing surface. Thus in thigbdistm the relative
“importance” of each residue for making contacts on the correspondnfigce is
displayed. This distribution evens out the disparitiest shows that the paratope
residues 34.84 = TYR > LEU > CYS > PHE > HIS > ASN > TRP094 have the most
interactions on a per residue basis with the epitope while epigjmhies span the range
from 30.01 = MET > LEU > PHE > ASN > ILE > GLY > TYR > 19.20rftheir
interactions. Only LEU, ASN are shared by both lists suggeskiag each type of
surface mediates special complementary interactions withxttepon of those relying
on LEU and ASN, the two amino acids with large side chains..PAg&IR acts in a

special role for the paratope “intensively sampling” many points on the epitopeesurf



Additionally, one could interpret this analysis to suggest that theehithpe ratios the

higher is the strength of association between the amino acid pabie 5 represents the

top 10 ratios.
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Table 5: Top 10 Actual to Scaled Expected Frequency of Interaction Ratio

Ag-Ab Average Ratio
1 CYS-TYR 10.06
2 PHE-ALA 7.24
ASN-CYS
3 CYS-CYS 6.04
GLY-CYS
4 MET-PHE 5.27
5 MET-MET 5.09
6 MET-LEU 4.07
7 VAL-MET 3.61
8 LEU-LEU 3.49
9 PRO-GLN 3.24
10 ALA-MET 3.22

To examine the issue of complementarity further and to obtain ano#fasiure of
residue contribution to antibody recognition of antigen, a Pearson produotm
correlation coefficient analysis was performed on this dafBable 3. Such an analysis
provides a measure of which residues on each surface act like one anotiverteetatir

interactions with the apposing surface. The result of this asasyshown graphically in

Figure 11 as heat maps for antibody and antigen cross correlations.
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The numerical values for these matrices are given in Tabléa/&) of the Appendix.
Red thru black indicates that amino acids are more anti-correlateddirestiues do not
share that same contact specificity) while black through gremgests they are
uncorrelated or positively correlated, respectively.

For the antigen map, the residues TYR, TRP, MET, and CYS show|daste
cross correlation. This means that they do not interact withaime sesidues on the
paratope as most of the other epitope residues. The largeagesem the upper right
suggests that these residues are more promiscuous in thectiotes with the paratope
residues. Examining the antibody map suggests the the leadatmresidues are Met,
CYS, PRO, PHE but that there is a more steady gradation o&dhiten propensities
amoung the antibody residues but with TYR showing the most promisciihese
results confirm the special role of TYR and further suggésiisit interacts with a broad
range of epitope residues based on its intrinsic properties. They also suggbst et
correlated residues engage strongly in the specifity of ntibaaly antigen interaction.
Additionally, the large number of highly positively correlated ressdurethe epitope
suggest that a higher level of complexity may be required tewaelfll spcificity, which
may utilize units of two or three residues with specific sequé@hen, J et al 2007,
Wang, L et al 2009]. This latter notion is supported by the factithphage display
epitope mapping visual recognition is usually achieved by spotting daubieplets of

sequence that match the antigen being analyzed.



40

Spatial Distribution of Amino Acids in the Interfaces

Another contrasting compositional feature of epitopes and paratopethar
differences in the distribution of residue types in the plane oAtiéb interface. The
current notion of antibody epitope structure is that the crucial dsrdae made near the
center of the epitope but that for some antigens especially langs this role becomes
more distributed (MacCallum et al, 1996, Sundberg, E. J. and Mariuzza, R002,
Janin J. H. et al. 2003). Table A4 (see Appendix) gives the distam@ngstrom units
from the “geographic” center of the epitope and the paratoperretgrived from our
calculation for each residue type. This value and its standewdtion provide a
measure of how broadly and and uniformly the residues are distriinutiee interfaces.
Figure 12 shows the distribution of residue types from the aveeger of the epitope
(Figure 12a) and paratope (Figure 12b) surfaces. It is of abtiérat the residues that are
distributed most broadly or closest to the center of either thepepor paratope span the
full spectrum of specific frequency of interaction, suggesting thano preferential
distribution of frequency of interaction. Comparing the values bi€ra and figure 12b,
it is interesting to see that the farther the residuesrane the center of the paratope the
lower is their interaction frequency with antigen residues, badaloser the residues are
to the paratope center they greater is the frequency supportingliMmCat al's
hypothesis[MacCallum, et al 1996]. The antibody paratope residu€& ARN, HIS,
TRP and TYR that are most commonly used by the antigen epitddae®gso bind are

distributed in closer proximity (9—10 A, Table A4) to the center of the paratope.
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The other paratope residues ALA, ASP, GLN, GLU, ILE, LYS, PRO, did 8o not
interact as much with the antigen epitope amino acid residues alwtated farther ( >

11A, Table A4 ) from the paratope center, suggesting that thereréesbinding towards

the center of the paratope and less towards the exterior.

This overall difference suggests that the outer antibody residues play a unique role

around the periphery of the antigen. The most distant residues (~9.:0@AA4,) on

the epitope are GLY > TRP > THR > SER > ARG > VAL whimse of the paratope
(~11-12A, table A4,) are GLN > GLU > ILE > PRO > ALA ER > ASP > LYS. Such
differences might suggest that part of the binding mechanism, ingobharge pairing

and a mix of polar and aliphatic interactions, occur at the periphery of the iaterfac
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Figure 12: (a) Average distance in A of AAs from the center of the aveeauer of the
epitope surface and (b) Average distance in A of different AAs from tege center
of the paratope surface.

Secondary Structure of the Interface

We also examined the epitope for generalized secondary strueiataes. The
Ab interface clearly "reads" the Ag surface with a biasetdo$§ amino acid residues
contained in the 6 CDRs [MacCallum et al. 1996]. This arrangemuggests that the
antibody probes the Ag surface with at least six discontinuousesgg of the Ab light
and heavy chains. We examined the degree of discontinuity of tlemrsiquence in

the average epitope.
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Figure 13 shows the bimodal distribution of complexes having minimyrs gia
3 or 4 in their sequences in the epitope regions and shows that tiemalbyeinclude
complexes with 1 or 2 discontinuous segments (20-40%) but with approlirhaté
having 3-5 discontinuous segments. This observation suggests thatnairdgoal
constraints on the Ag structure may be coded within the conformatiothesie
discontinuous segments. Additionally, it suggests that antigetope mapping
strategies, such as phage display, need to take into account théutiont of
discontinuous regions of the antigen in formulating identification ofespondence in
phage display peptide sequences with antigen sequences.

These discontinuous epitope regions are contained in random coil configuration as
shown in Figure 14. Wilson and Stanfield suggested that mostdeeptitibody
interactions involved beta turns and beta strands. The histograrly chetkcates that
Group | peptide antigens are mostly composed of random coils (87Bolesst than 10%
contribution froma—helix andp—sheet. In Groups Il and Ill epitopes have higher
helical andp — sheet content representing about 50% of the interaction. . Theerela
contribution of these two structures was 17% vs. 26 % for group |l ast@@6/27 %
for group Ill.. In cases where these segments can be mimicked Ijegegptured from
random phage display peptide library sequences by antibodies, ibgagtsequences
may provide the structural constraints need to model the epitopeelags the Ag

surfaces [Jesaitis et al. 1999, Mumey et al. 2003].
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Conclusions

Protein antigen-antibody (Ag-Ab) interfaces are a rich sowfcenformation
about protein-protein interactions and provide important structuratniafiion about
protein antigens and how they are recognized and bound by antibodiesa Aetlat
comprised of the 3D structures of 62 non-redundant Ag-Ab complexes tii Protein
Data Bank (PDB), was assembled and used to determine the gamesighl as well as
biochemical features of the Ag-Ab interfaces. For the entioeiof structures, we
found that the average Ag-Ab interface had: 1) a combined solveessiole surface
area of 2073+ 459 Awith approximately equal contributions from both the antigen
epitope and antibody paratope surfaces; 2) a maximum dimension 6828 gap
volume index 2.5 + 2.1 A, planarity of 2.2 + 0.5 A, eccentricity of 0.7 1223 + 19.1
amino acid residues, and 21 £+ 17 hydrogen bonds; and 3) epitopes consigtintpafy
discontinuous regions with at least 3-4 residue gap lengths wif9%0beta sheet or
alpha helical secondary structural elements. We also found thiaadteabundant (<3.5
mole %) epitope residues were CYS, PHE, MET, ILE and HIS wadirelistributed
closest (5-9 A) to the center of the epitope. The most abundant egitigees (>7.5 %),
on average, were ASP, GLU, ARG, ASN, and LYS and were found 9-10af fram
the epitope center. The five greatest normalized interaction einetgs of epitope
residues with paratope residues were found with ARG>ASN>LEUSNX&LU.
Paratope residues CYS, MET, ALA, LEU, VAL had the lowest matamdance while
TYR>TRP>ASN>ARG>PHE>HIS>SER had the greatest specifitequency of

interaction with epitope residues. The amino acid residues PHE,TERE TYR AND
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HIS were distributed closest (8-9 A) to the center of the ppeat The most abundant
paratope residues (>7.5 %), on average, were ASP, SER, THR, andntiMRere found
from 8.5 to 11.5 A away from the epitope center. Because of the filgin abundance,
high specific frequency of interaction, low substitutability, andtreely tight and centric
distribution of Tyr we conclude that it plays a central role irAkgbinding. We also
conclude that interfaces of epitopes and paratopes use a diffeteot amino acid
residues to establish their highest frequency contacts. Both haree hpdrophobic
residues nearer the interface centers. The highest contampeepésidues include both
hydrophobic and positively charged species while corresponding paratigees were
primarily aromatic. Since most of the low abundance high frequehdnteraction
residues have been previously identified as components of protein-pirtteiaction
hotspots, we surmise that antigen epitopes rely on one or at nwobbtapots for their
interaction in the context of an interacting distributed network of complemdnianon-
substitutable amino acids from the epitope and paratope with TYRglag especially
important role in the paratope surface.

We have generalized the physical and biochemical charaicterddt antibody
antigen interfaces from the structures of 62 non-redundant compleQes.analysis
suggests that the interfaces have maximum dimensions of 29A bwitBAufficient
convolutions to double the surface area suggested by the product ofntbesidins
without producing significant dead volume between surfaces. Oveffainlig large
epitope surface there are significant discontinuities in sequsagraents with minor to

moderate secondary substructure. There is also little intextitigi of side chains as the
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planarity of the surfaces is relatively high. For the peptidégems, the antibody
probably presents itself as a ridge that can contact multipledpesgtiiuctures such as
alpha helicies while for larger antigens the antibody appeafsrto a cup-like or
concave surface that utilizes its edges to help hold on to thgeanwith multiple
interactions suggesting that the affinity of antibody for epitgselts from a distributed
structure including its edges. The composition of the surfacasch that at most one or
two residues especially MET, CYS, PHE, THR, and TYR provide hotspotsigh
interaction frequency with high specificity that may contribuigoortantly to antigen
recognition. TYR plays an especially important role in the parasaop@ce as it has the
highest relative representation and interaction frequency butsioRearson cross
correlation of interaction and may function as peg or probe tltiioes the epitope to
the paratope and multiple contact points. We also surmise thar lngier structures,
involving groups of amino acid residues probably play a very important irole
recognition. Based on the interaction frequencies of differeittues it may be possible
to predict antigen epitope structure from limited knowledge of prosdf component

amino acid residues.
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CHAPTER 3

EPIMAP APPROACH: NEW ALIGNMENT SCORING MECHANISMS AND

MODIFIED DYNAMIC MULTIPLE SEQUENCE ALIGNMENT

Introduction

A large fraction of protein structures of interest cannot be solyeakitional
structural biology techniques such as X-ray crystallography ang KMuclear Magnetic
Resonance). Antibodies can either recognize continuous or discontinuous eptdapes
virtually all epitopes that have been analyzed in detail a®odtinuous. Discontinuous
epitopes can potentially provide extremely useful structural infitomaecause with
suitable analysis they could reveal distant segments of prisegyence that are in close
proximity on the native, folded protein and could reveal changes iriprsiructure in
different functional states when appropriate antibodies areabla@ilPadlan, E 1996]. In
this approach peptide probes selected experimentally from a ranguitdepkbrary to
have a high affinity to antibodies of interest. The computational proatiressed in our
previous work on this issue was to align each probe individually toatigettprotein.

These alignments were performed with a program called EPIMAP [Metredy, 2003].

EPIMAP Approach - Background

The core idea of the antibody imprint method is that “probe” gegtihat bind to the
active region of a specific antibody are expected to be highly similar torttimgisite of

a protein that also binds to the same antibody. The computationaprebeks to align
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the probe amino acid sequens, to one or more regions of the “target” proteiniram
acid sequencd, Typically, s is in the range of 20 amino acids long and the tar
protein sequence,s several hundred amino acids. There is a préibathiat interacting
amino acids in the contact region might be sulistituwith chemically similar amin
acids.In addition, unlike traditional string alignmentomtems, we allow for localize
sequence rearrangements. Possible rearrangemeoitgec&ases where loops of i
linear protein sequence may be pinched togethdr setjuence inversions to form
antibod/ epitope binding site. Additionally, it is possbfor local rearrangements
amino acids to occur, reflecting the fact that biveding site of an antibody may be
complex surface, not just a linear sequence. A&h,dhe problem is outside the sc of

classical string alignment «orithms such as Smith-Waterman.

protein
e of the protein
and
of the probe are
likely to be highly similar
probe

Figure 15 Strongly binding peptide probes are sequenced felected phage DN
clones.These probes serve as “witnesses” to the struofitres target protei
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We have chosen an initial approach based on a general combinaligriatieat
problem. In general, we will allow any permutation of the prolpeesece to align to the
underlying protein sequence. Furthermore, gaps will be permiitdmbth probe and
target sequences. Large gaps can occur when aligning the prdieeteoget sequence
when as frequently found experimentally, the epitope is discontinuoesal¥g allow
unaligned probe residues, reflecting the possibility of a non-speegidue insertions in
the probe (such as might occur if there were an extended sheetntatidor and some
amino acid side chains would point away from the binding site on theipsairface. To
be a valid alignment, each probe position and target position can be usest ance per
mapping. Formally, an alignmeAt consists of a sorted st = {i; < i, < ... < i and
another seTa = {j1, j2, ..., k} with the interpretation that thg-th probe residus(iy), is
aligned to thgp-th target residuetjp), for 1 <= p <= k. We adopt a two-part scoring
system to evaluate the quality of alignments. The scoringermys$ composed of a
substitution score and an epitope gap cost and break point cost,

score(A) = S(A) - G(A) — B(A).

TheS(A)component is calculated with a substitution mattixsimilar in principle to
a Dayhoff matrix, used in other protein alignment contexts. The gulwsti matrix is
also used to score unaligned probe residues; if the probe resichasitioni is not
aligned to any target position it is charged a penalty acaprtbnthe charactec

occurring in position of the probe sequence.
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This cost coded in the substitution matrix, in the elt(y, -) and must be parameterized.
We have:

k
S =) MGGyt + M5, )

probe positions i €PA

G(A) = Z'f_l

d(ljp+1 _jpl)
j=1

each gap contributes to the distance cost:

\
L

cost

gap (; stance

pI'OZ’)@ seqiience

N

~. _—

A 4

target protein
seqiience
each aligned position contributes to
the substitution score
Figure 16: EPIMAP Approach Scoring Mechanism.

The epitope gap co$k(A) is calculated by examining the number of amino acid

residues skipped along the target protein sequence between sigcedggied probe

positions: whered(x) is the cost of skipping x amino acids along the target between
successive mapped probe positions.
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We introduce a break point scdB€A) fit each probes aligned to the target. We add break
points on to a probe based on the alignment. Circular probes with coedtrai
conformations (disulfide bonded loops) are sometimes used in random selju@nies
and so we also include the tedtjjk - j1|) in the above sum in the circular case. In some
cases, e.g. membrane spanning proteins, it may be known or surmisszttdia regions
of the target protein are inaccessible to antibodies and thus begkkcluded from
consideration as potential alignment positions. The computational prabteos to find
finding an alignmenA that maximizescore(A)

As a point of departure to systematically seek the best atigtsnof each peptide
probe sequence to the target protein sequence, we developed athralgord pilot
software in initial studies (Mumey et al., 2003), called EPIMAFhe gap penalty
function and the substitution matrix using in EPIMAP were initiadlgsessed by
analyzing Antibody Imprinting data previously derived from aliesaitis et al., 1999]
and analyzed at that time by visual inspection. We used a subatiosatrix developed
by Bordo and Argos for surface-exposed residues [Bordo and Argos, 199hjpead
experimented with other common matrices used for sequence compgDiapmoff,

PAM, etc).
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Investigation of the Specificity and
Substitutability of Antigenic Epitope Residues

One of the key components was to the mine the PDB (ProteinBaatg Berman et
al, 2000) for unique antigen-antibody complexes to learn as much ablpasiut the
substitutability of antigen residues when bound to an antibody (Chgptéris should
allow us to refine the alignment scoring and improve on epitope goedaxinsiderably.
So we analyzed 62 unique co-crystallized antibody-antigen complexastiie PDB
(Table Al, See Appendix for our Data Set). In chapter 1 we complégairwise
interactions in the interface area for the same data petifeally we can count the
number of times C(X, Y) residue pairing occurs where X isggantiresidue and Y is an

antibody residue. This will let us build a better substitution-scoring matrodlaw$:

Let P(i, j) be the probability that an epitope residue i pairs with antibottuees
C N C(i,j)/
P(,j) = .
2 20, C(0,k)

Then we can define the overall likelihood that a given probe i resndys to the same

unknown residue k on the antibody that a target residue | does

as



Table 6: Derived Substitution Matrix
Antibody Paratope Surface (Ab)
A R N D C Q E G H | L K M F P S T W Y \
A 0.005 0.024 0.020 0.104 0.131 0.060 0.040 0.039 0J067 0.038 -0.039 10.044 +0.063 -0.035 0.058 | -0.0086 -0.038 -0.064 0.149
R 0.160 0.115 0.171 0.21 0.160 0.118 0.117 0.181 0131 0/041 .156 40.001 0.010 0.132 0.085 0.083 @@mB5 | 0.205
N 0.140 | 0.214( 0.280 0.17 0.148 0.162 0.198 0.163 0.p58 0.160 Q.051 0.072 0.199 | 0.120 0.062 0.072 | 02627
D 0.334 0.421 0.273 0.259 0.248 0.276 0.242 0.135 0221 0109 Q.177 0.291 0.202 0.115 0.124 0.042 0.372
C 0.632 0.373 0.341 0.36 0.379 0.308 0.201 0.299 0.155 0/268 .400 0.332 0.122 0.101 -0.051 0.465
Q 0.251 | 0.220( 0.224 0.254 0.206 0.102 0.214 0.062 0.p97 0.250 181 D.085 0.051 -0.023 | 0.325
E 0.220 0.194 0.219 0.17 0.095 0.166 0.087 0.106 0J228 0.145 Q.065 0.028 +0.010 0.305
g G 0.248 0.242 0.176| 0.073 0.193 0.036 0.1p0 0.253 0J187 0J/051 Q.031 40.083 0.3060_I
g H 0.286 | 0.223 0.114 0.229 0.092 0.131 0.271 0.196 0.107 0/078 -0.015 0.331"}
§ | 0.207 0.085 0.189 0.108 0.089 0.234 0.137 0.067 0.969 -0.037 297
-‘g L 0.038 0.079 0.003 0.033 0.133 0.083 0.000 -0.041 -0/075 0.172
Lé K 0.217 0.064 0.027 0.22 0.151 0.042 0.063 -0.051 0284
;E M 0.154 0.054 0.157| 0.002 -0.045 -0.036 -0.115 0.166
F 0.163 0.170 0.051 -0.02: -0.016 -0.046 0.184
P 0.319 | 0.196 0.070 0.065 -0.064 0.3%0
S 0.154 0.023 0.012 -0.094 0.253
T 0.049 0.036 -0.001 0.142
W 0.164 0.018 0.116
Y 0.061 0.013
\ 0.443
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SGi,j) = ZkzlP(i, PG, k) = ZkzlP(i, IOPT (k, j)

Written as a matrix equatiors,= P - P'. The matrix S (Appendix Table A8) should be a
good candidate for a substitution matrix since it expresses phieri likelihood that an
aligned probe and target residue would bind to same (unknown) antibodyere¥ve
present this matrix S in logarithm form and add a conatémt calculations of sequence
similarity.

M(i,j) = log,o(S(i,j) + A),we chose A to be equal to 1

M (Table 6) is a symmetrical matrix and used in our alignment mechanisms.

Investigation of The Average Epitope
Amino Acid Residue Occurrence Probability

In this section we use the Average Epitope Occurrence Prdbatmiputed in
Chapter 2 presented in table A6 (See Appendix). We consider the drauna Il
combined average occurrence probability and is graphically represeriigdre 6 (a,b) .
This occurrence fraction is used against target protein amids. &ach target position
gets a score, which is its average occurrence fraction irpghepe surface. Specific
positions along the target that has high scores will be picked up fnggémt these

regions might be part of the true discontinuous epitope.
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We tested this on p22 (phox) protein to see ifghblished epitope28-ATAGRF
and 182-GPPQVNPWwas identified and also on the primary amino acid sequenc
recombinant human [0, interleukin protein which is 160 amino acidsdoThe IL-10
epitope isdiscontinuous and the two main epitope segmentx@msidered to be frol

71-83 and 128-37. The results are shownfigures 14, and 15.
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True Epitope - ATAGRF

31
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FIGURE 17 :p22 (phox) protein target sequence where ¢AA position in the trget
sequence iplotted with itc average epitope occurrence Probabiliglues. (a) Using
values from Group Il & Il Combined, (b) Using Va&s from groups I, I, & Il
Combined
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FIGURE 18: IL410 protein target sequence where eAA position in the trget
sequence is plotted with average epitope occurrence fraction valag.Using values
from Group Il & 1l Combined, (b) Using Values frogroups I, I, & Il Combine

Different approaches in Improving Epito
Alignment and Mapping Algorithms

Simge Scoring Mechanis

Here, a simple antigen epitope prediction methoohgughe above derive

substitution matrix from the frequency of interaatimatrix (Table 4, Chapter 1)

described. Each probe sequence is divided -tuple ( ={1, 2, 3,4, 5, 6, 7, 8, 9]

compositions (Figure J6Each tuple and its reversal of the probe sequence ayeeal

to the target sequence. The scoring of the aligtsnemme fronthe substitution matri

(Table 3) For =1, the residue in the prc that has highest substitution score is alig
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to the target residue and the target residue gets the substitien Fok = {2, 3, 4, 5,
6, 7, 8, 9} tuples, each tuple and its reversal is aligned to the target. Eattiple score
is the sum of each amino acid residue substitution score, and thetligbee is assigned
to thek tuple position of the target sequence. For a target of seqokleethl, when
k =1 each target position will get a score, kor 1, each overlapping tuple along the
target sequence will get a maximum score, in this casectre $ngth will become
(I — (k—1)). Also for k >1 each position on the target sequence the score asaépl
with the average of the overlapping k tuple alignment, this will bbagk the score
length to the original target length whichlisAn example of the scoring fdr =1 andk

=2 is shown in figure 17.

Probe Sequence ABCEBB

k=1 k=2 k=3
o A A B ABC
= B B A C B !
=3 C B C B CE
S = E C B ECB
25 B C E CEB
= B E C B E C
Do E B EBB
5 B E B B E
= B B

B B

Figure 19: Example showing a kmer spectrum of a probe sequence for k=1, 2, 3
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Faired Residue Scoring

Single Residue Scoring
Probe Alimment Scormg
Probe Sequences
Frobe Sequamies
.q“ ABCEBE B Bil:2s3)
ABCERB CCEFBA B Bils=3)
CCEFEA B Eil+é=T)
Prabe ANgumest Scirmg E Bid+l=4)
E Cid+2=h)
C E{3+i=9)
Blaz. Target Sequence ¢ Bi3+d=s)
Targel Sequence BIB2. . Aol
KT BABDACFECBCEF B Cinsl=y
o “ B Ail+i=d)
ARTiACFEC
BABDACFECBCEF qBE.:-. . . . A Birel=h
1:::1 ' Substituton Msirtz BABDACFECBCEF. ..
Siabtitmtion Matrix heE | I
PABDACFECECET ABCDEF...
) Pobel 4 & . . .
ABCDEF... ) NI BB oeled
B llidts B B (213
A L1245 Cllatdse B E (244=6)
B ol13d%d ’ D 451236 E B (17
'ABEIRET: ’ E 6431312 E C k=t
D 4511%é F oLi0010 C E i2+4=6)
E ,,lil' ('Bl:'ll-
P10 B (2435
B A 242=1)
' A Bl
BAEBEDACFECECEF. ..
L] . " .
(a) (b)

Figure 20: (a) Singleesidue scoring mechanisand (b) Pairedesidue scorin
mechanism.

This simple scoring mechanism and the substitunairix was used on pz
(phox) protein and antibody 44.1 to see if the [sligld epitope for this antibo« 28-
ATAGRF and 182GPPQVNP was identified. The program clearly identified tiegion
182- GPPQVNPtegion. The results are presentethe followingfigure 21 and 22.
Also this simple scoring mechanism and the suligifiumatrix was used on -10
protein and antibody 9D7 to see if the epitopetiics antibody, 33, 55, 59, 60, - 75,
78 -79, 82 83, 117, 119, 12- 126, 129 - 135, 136137 was identified. Theesults are

presented in the followinfigure 23 and 24.
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FIGURE 21: 44.Jantibody probes aligned to p22 (phox) targetein using the scorin
mechanisnwith k tuple size of and finding the average of the overlapping k t.. The
graph clearly indicates a spike in the epitopeaedi82- 190

160 —
140 ! II"\I
|
120 | |
100
One of the true epitope _,_/_,./-"“
80 A . e
regions
60 -
182- GPPOWIF
40
20
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FIGURE 22: 44.Jantibody probes aligned to p22 (phox) td protein using k values

2, 3, and 4 and then summing all the values at pasttion in the target. This approe
did not produce any better result than using gletof 4, but still showed a spike in t
true epitope region (182190).



62

84

82

80 A

78 A

76

74 A

72 A

70 A

68 -

66

64 A

62 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T

Figure 23 : 9D7 antibody probes aligned to IL-10 protein target using the scoring
mechanism described above with k tuple size of 4 and finding the average of the
overlapping k tuples.

250

20 WW\W

150 -

100 -~

50

Figure 24 :9D7 antibody probes aligned to IL-10 protein target using k values 1, 2, 3, and
4 and then summing all the values at each position in the target.
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Even though Epitope mapping using simple scoring ideas mentioned in the above
sections, 1) using the average epitope amino acid residue owaufraction, and 2) the
overlappingk tuple alignment method slightly picks up certain regions of thempit
does not cleary predict the epitope regions. Hence in the followtigps we provide an
improved EPIMAP algorithm apparoach MSA — EPIMAP that usediiple sequence

alignment.

Modified Dynamic Multiple Sequence Alignment Approach

As mentioned previously the principal goal of protein sequence atighia to
discover biological similarities among proteins. Multiple sequealggment can be a
useful technique for studying and analyzing sequence-structwgonships. So this
approach remains an important area of research as biologieedrices can be made
from the conservation or variation within the aligned positions, espeuwith reference
to the structure of at least one of the aligned sequences. linpgetpience alignment,
the degree of similarity between amino acids occupying &cpkar position in the
sequence can be interpreted as a rough measure of how conservicuapeegion is
among lineages. The absence of substitutions, or the presence of gntpneervative
substitutions in a particular region of the sequence, suggests thagilis has structural
or functional importance. In the previous EPIMAP approach only two segsicare
aligned at a time, one probe sequence at a time against the deggence. Multiple
sequence alignment incorporates more than two sequences at itoar approach the
goal would be to align all the probes sequences against the taggense at once. This

method should allow improved identification of the conserved sequence #wdasget.
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This conserved sequence can be used in conjunction with the structural information of the
target protein.
Multiple sequence alignment problems are computationally difficujproduce
and most formulations of the problem are NP complete combinatorialepreblWe
modify the EPIMAP approach to solve this probe-target alignmehhdooptimal and

suboptimal alignments.

Methodology

In order to improve the efficiency of the alignment, in this rg@proach a probe
is randomly selected from the probe list and is aligned to tigettaequence. Once a
random probe is aligned it is removed from the probe sequemn@ntisthe target gets
appended with the aligned probe. In the next step another random proleetsdsgbm
the probe list and is aligned to the new appended target. This piscepeated until all
the probes in the list are aligned to the target. For eaxdona probe alignment to the
target, the same scoring mechanism from EPIMAP is used ioedcabove in the
EPIMAP approach section) except at each target positionkeetha sum of pairs score
of the probe to the target plus a constafttefered to as theop Factoj times the probe
to the other probes aligned to the target at that position.

{target sop score + a ( probes sop score)} — gap penality — bp cost
{target sop score + a ( probes sop score)}, for each target position is stored and
printed out at the end for each random alignment. The main idemabsild up the
alignment in a scaffolding manner based on the probes that aeslyalaligned to the

target sequence. At the end this alignment gets a score, which will be
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ZSOP— ng— pr

Where sop score is the sum of pairs at each position in the alignmentgansl the total

gap length cost, ankp is the total break point cost. This random ordering of alignments
is repeated over several (usually 80 — 100) times and the aligmntlerthe highest score

is selected. This method of construction of alignments of probe seguent®e target

protein sequence would lead to better epitope predictions.

Searching Best Parameters

The program takes in several parameters, maximum gap cost, gapiextcost,
cost for deletion in a probe, sum of pairs factor, break point\&stun our program for

different combination of these parameters to get the best alignment.

APX — HARDNESS of (MSA) EPIMAP Problem

A reduction from MAX - 3SAT is used to show the APX hardness obtlgnal
EPIMAP alignment of a probe to a target problem [Garey, and Johnt$], 1¥e show

that MAX — 3SAT<pEPI — ALIGN<p MSA — EPI - ALIGN
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To begin with, we formally define the original EPI - ALIGN problem:
EPI- ALIGN Problem:

Input: A probe strings, a target string (over a common alphabet), a substitution
M, a distance penality functiafy an objective scor@.

Output: A decision on whether there exists an alignment with score atJeast

TheoremMAX — 3SAT <p EPI - ALIGN <p MSA — EPI - ALIGN

Proof: We show that EPI - ALIGN is APX — HARD via a polynomial time
reduction from MAX - 3SAT. Consider an instance of MAX — 3SAkx.sarconsisting
of a collection of clauseS = {c;, c,,c3, ...,y } ON a finite set of variablds =
{x1, %3, x3, ..., x;.}. We will construct an instandg (u) of EPI - ALIGN such thaim — u)
clauses inyaxsarare satisfiable then there exists an alignmenitaf¢u). We construdita
as follows: The string alphabet used is

A=U U{~xq, ..., x 3 U{cs, oo, i} U {ye, oo, Vi U {#,%, @}

All entries of M are set tow except the followingM (e, ) = 0 is a literal in clausg, M
G, ¥) = M(=x;, y) =kforall 1 <i <k andM(., *) = 0 (here “.” represents any
symbol).
For each literat, let [¢] be the multiplicity ofa among all clauses i@. The probe string
used is

s=@B,B,..B,,whereB; =x; ... x; @ =x;..—x; @

[xl-]+1 [—|xi]+1
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The target string used is

t= xkxx . x HHH#H#H . H#H 1y .. O V1 V3 - Vi

Is|—(m+k)+u |s|—(m+k)+u

The distance penalty function used is

d(l) = {0, ifl<|s|—-(m+k)+u
B 1/2, otherwise

Observe tham + k < [s]-(m+k)+u so only jumps across the central gap of #'s, referred
to as thébridge, will contribute to the gap cost. The leading @ @drces any finite-score
alignment to begin on the left side of the bridge. Note thatyenon# letter in the target
must be matched in order to completely align the probe (all probeopssihust be
matched ad (., -) = <0). In order to match all of thg 's, at least one literal from each
Bi must be used. Thus, eaBhcontributes at least one return jump across the bridge. If a
literal is matched against a clause symbfqlthen any truth assignment that makes this
literal true will satisfyc; . We chooseQ = k(k-1) to insist that eaclB; binds its
corresponding literal and contributeso jumps across the bridge. Because the positive
and negative literals in each blo8 are separated by an @, only literals of a single
polarity can be matched to symbols to the right of the bridge. éftsares a consistent
truth assignment. Thus, any alignment with score exdctlk - 1) will produce a

satisfying assignment fdy.x.sarand vice versa. [
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Experimental Results

To validate our new MSA — EPIMAP approach, we selected a modtnsywhere the
structure of the antibody epitope was previously known. We chose thHeukte protein
IL10 and antibody 9D7. The primary amino acid sequence of recombinant hivb@n
is 160 amino acids long. The structure of the antibody-antigen comp837-1L10 was
determined by x-ray crystallography (PDB: 11k3.pdb). From thayxcrystal structure of
the antibody (9D7) bound to its antigen (IL-10), the molecular cantaete determined
using CPP4 (Padlan 1996). The epitope for antibody 9D7 was then mappeyiegpl
the antibody imprinting method. Peptides that mimic the epitope on Ilk4a0 the
antibody 9D7 binds to were selected from a random peptide phage dibpday. The
9D7 epitope on IL-10 is discontinuous; it is composed of two regions in theanyr
sequence that are close together in the folded protein but are mt@uoas in the
primary amino acid sequence of IL-10. Antibody 9D7 binds to two regodni&10
composed of residues 71-83 and 125-137. The amino acid sequences dédtesl se
peptides (probes) were then aligned onto the primary sequence ofgetelltal0 using
MSA - EPIMAP. We ran this data on MSA — EPIMAP for a combaoraof different
parameter set. For Each parameter set on the search smhaeegdid a number of
random ordering of probe alignments and picked up the alignment withgimest score

(Figure 25).
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Producing wapInto
EPINAPS Alignuent Results

Parameters
costSlopa: 0.5 costMaz: 1.0 bpCost: 0.5 dalfest: 1.0 sopFactor: 0.25
sub matrix: Latest Scoring Matrix Derived From The FIN Marrix
WRIPDHGHG probe GMGNDPIRW bp O
PEQODERIW probe WRRSDQQKP bp O
WROTDREAT probe TASRDTORW bp O
ERETWRIQW probe EREYWRIQW bp O
SICWLRHLN probe NLHRLWCIS bp O
WETVE probe SVTGW bp 0
VEGLPHLNY probe YNLHPLGKY bp O
QEGQI probe QIQGHQ bp O
SHEFAALFS probe SFLAAFSKES bp O
SUFNERCAS probe SWFNERGAS bp O
PLERGEBAGA probe AGASGRELF bp O
LONTARARL probe LONTARARL bp O
SNVISIKNL probe LNEISIVME bp O
DOQFMARLTL probe DOPMARLTL bp O
WRIPDHGHNG probe GNGNDPIRW bp O
WRIFDMREIG probe GCIFNDPIRW bp O
QSFGLNTST probe ISTHNLGFSQ bp O
probe EAUN bp 0
EVIRNSHHE probe EVIRNSHHE bp 0
RLERGEACGA probe AGASCGRELR bp O
TLELWWH probe TLELWWH bp 0
DGSTLRLGE probe FGLRLTSGD bp O
GTNEATEGR probe RGETAENTG bp O
RQIEWMTAL probs RQIEWHTALL bp 0O
CRUNRSTFR probe GRUVNRSTFR bp O
MEENSCTHF PCHLPNML AL LRDAF S RUVKTFF QML QLDNLLLEESLLED FRGYLGCQALSENTQF VL EEVIP QAEN QD PP THAHVNS LGENLETLRLRLERCHRF L. EQVENAFNEL YHAMSEFDIFINY TEAVHTHKILN
- - el e .o hoiaieiaiainieiliei <= hknowm epitope pos:
1Z3456783017345678301234567890123456783012345678301234567850123456789012345678901734567830123456 7890123456 7850123456789017345678301234567890123456785012245678530
1 k3 £ & 7 k3 o z 3 4 )
1
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.00.000000.000000000000000000000000000000000000000000000000000000000000004¢E5.15 35752
2.826013.93.2000000000000000000000000000000000000000000000000000000000000000.00.0000.0
0.00.000000.0000000000000000000000000000000000000000000000000000000000000000.00.0000.0
Final Best E0F Score: 35 35799995935338
Final Bast CGap Length Score: 0.0
Final Best Freak Point Ecore: 0.0
Final Best Score: 35.35299999955558‘
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Figure 26: 9D7 Antibody Probes against IL10 Protein (a) Plot reptieg the scores at
each target position. (b) Plot representing the frequency of amadids aligned at each
target position
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We also aligned another data set, 44.1 antibody probes to p22 phox data. Wia&now
trtue epitope region which is 28-ATAGRF and 182-GPPQVNPI. We pressuits in

the following figure 27.
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Figure 27: 44.1 Antibody Probes against p22 phox data (a) Plot repredbetsupres at
each target position. (b) Plot representing the frequency of amaids aligned at each
target position

Alignment Comparison of MSA — EPIMAP with Original EPIMAPlere we

compare 9D7 Antibody Probes against IL10 Protein alignment using tgaabr
EPIMAP and our new improved MSA — EPIMAP. The result is shown iardig28.

Similar comparison is performed for 44.1 Antibody Probes against p22 pleoamththe
results are shown in figure 29. The results clearly indicateMB#& — EPIMAP approach

improved the alignment and helps in better epitope identification.



72

80

—+— EPIMAP

70 m —e— MSA-EPIMAP

60 -
50 - M
40 -~
30 -

20 -

Frequency of AA Aligned at the Target Position

10

0 v .

T
~
~

i
P

TTTTT
N o N N
00 00 0 OV O

AN OO NN AWM OOMNN AW oMM oW o AN AOAMNMN AN OO NN W o M
HEH NN ANOON NN O OO~ OO0 0O N AN NN D WN
Ll B B e I B B B B e I I I |

Target Sequence

Figure 28: 9D7 Antibody Probes against IL10 ProteinTarget — Casopabetween
Original EPIMAP to MSA - EPIMAP
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Alignment Evaluation of MSA - EPIMAPWe took the best alignment from the

MSA — EPIMAP approach and evaluated it. We identify the the higkesting
alignment and the parametrers for the corresponding alignmenthiBaalignment the
false positives, and the false negatives are indentified. FalgegoBredicting a region
as a possible true epitope site when it is not, and False Ned#tivpredicting a region
as a possible epitope site when in fact it is a true epitopeTdiis can done only when

the true epitope site is known.

E[i] = {0, if i & tothetrue epitope region
H= 1, if i € tothetrueepitoperegion

where,i goes from 1 to n,and n is the length of the target sequence

The {target sop score + a (probes sop score)} scoreS[i] for each taget position is
computed, we define, wheretmin is zero, andmax is equal to the maximum score) (

plus a small constagt(1.0001).

Tmin = 0; Tmax = P+ &

Interval[{ T,in.Tmaxt] represents 100 equal range of values betwegp,,,T;max- FOr

each interval point if make

4 (1, if Elil= <t
Plil = {O, otherwise

where,i goes from 1 to n,and n is the length of the target sequence
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Once we havé|[i], andP[i], each position afis compared,

if E[i] = P[i] = 0 or 1, correct prediction at position i

if E[i] =0and P[i] =1, report as false positive

if E[i] =1and P[i] =0, report as false negative
So for each interval point we be track of the number of falsetiyesiand false
negatives. Finally, the false positives and false negatives atedosst a scttor plot on the
X axis and y axis and the area under the plot is calculated afigasis reported as the

final alignment score and smaller the area better the alignment.

For the actual alignment shown in figure 25 for the 9D7 antibaaiesIL10 protein
target we evaluated the alignment and computed the area underothangl is

represented in figure 30.

25

20 ~
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10 ~

False Negatives

Area = 1305

O T T T T T T T
0 20 40 60 80 100 120 140 160

False Positives

Figure 30: Plotting the false positives and false negativessaatter plot and the area
under the plot is shown for 9D7 anibody probes against IL10 protein target.



75

Conclusions & Future Work

The MSA — EPIMAP problem improves upon our existing methods for epitope prediction
based on antibody imprinting. By solving the alignment problem using thedaeved
substitution matrix (Table 6) for all probes simultaneously emed the size of the
search space but lead to better epitope predictions. In our MSA dppveacse a simple
random localized serach approach. To futher improve the alignment we suwill
extensively search for the input parameters. Also tryinghfement more sophisticated
MSA approaches like Expectations — Maximization (EM) method, Gerdgorithms
(GAs), Simulated Annealing, Hidden Markov Models (HMM) and other |avis

methods.



76
CHAPTER 4

DE NOVO GENOME ASSEMBLY

Introduction

Recent technological advances have dramatically improved nextratene
sequencing throughput and quality. Due to these advances it is nowcmegper to
sequence entire genomes for different organisms. Genomes varg iinosn millions of
nucleotides in bacteria to billions of nucleotides in humans and masalarand plants.
With the rapid advances in the next generation sequencing technolagy ahgorithmic
advances have been made in de novo assembly using next generation sezpadsice
There have been a lot of assemblers developed targeted solepradugng the best
possible assembly from the data generated by the new skad sequencing
technologies.

In Bioinformatics, genome assembly refers to the procesalohg a large
number of short DNA sequences which are generated by a shotgun segjyeoect
and putting them back together to create a representation of geabchromosomes
from which the DNA originated. Some of the challenges faceteims of assembly
process include errors in the data due to limitations in sequetethgology, human
mistakes during laboratory work and most notably the presence ditivepsections
called repeats that can be thousands of nucleotides long and roctifierient locations
especially in large genomes. The DNA reads belonging to thetsepee difficult to

position and assemble correctly. Moreover some DNA fragments d&raqqanome are
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impossible to sequence resulting in gaps in coverage which furthmeplicates the
assembly process.

Whole genome shotgun sequencing, the basic strategy for all geaqoensing
projects, randomly shears DNA fragments to produce short reatlaallow for the
generation of mate-pairs where reads come in pairs with a knpproxamate distance
(insert size) between them. To guarantee that every domain gétloene is expressed in
the generated reads and to compensate for sequencing error, the gelowersampled
several times, a number referred to as the coverage of the genbmeassembly
programs use this information to computationally reconstruct the genéor the
genome assembly problem, connections between read length, read réppeat
complexity, quality score and coverage were studied in detaiassessment was made
as to how these parameters helped in improving or diminishingapbabitity of the
assembly programs while assembling the sequence data. Sega¢mceas presented
from different organisms in detail in terms of number of sequence readsemngéua kead
type, mate-pair information and genome coverage and results wepareahfrom the
different assembly programs in the following sections. Heraltee®f computational
challenges inherent with genome assembly and algorithmsimawraarized and results of
several de novo assembling experiments are discussed. At the sl edfperimental
process a better understanding of the impact of the above mentioaetefss on the
complexity of genome assembly can be gained as these expsrilmapt ascertain
margins on the parameters of sequence data that enable efficceaccurate assembly

by the programs.
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Figure 31: Sequencing and Genome Assembly Work Flow

DNA Sequencing Technology

Until recently, the main sequencing DNA methodology has been Sanger
sequencing. This sequencing method has major limitations and remahibitprely
costly and time consuming for many genome projects. Recently bzere been many
sequencing technologies developed that have the potential to overasedithtations,

but at the same time the data produced by these technologiesgywsehallenges in
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assembling the sequence reads. These sequencing technologidsneatlgeneration
sequencers have the ability to process millions of sequence neaaisilel. Some of the
commercially available sequencers are 1. Roche (454) GS FLX segu2ndllumina
genome analyzer, and 3. Applied Biosystems SOLID sequencethéde sequencers
produce shorter read lengths 35 — 400 Base Pairs depending on the pthtiorm
capillary sequencers which produce 650 — 800 base pairs. The secondiagieneaals
can impact the utility of the data for various applications sgctieanovo assembly and
genome resequencing. The sequencing technology used here at SN@&ROmMe
Sequencing Center is lllumina Genome Analyzer. lllumina GenoméZeraSystem is
based on the Solexa sequencing technology providing a high-speesilvatyaparallel
genetic analysis system for genetic analysis and functionanges. Some of the
highlights this technology are that, it has scalable ultra-highughput and it requires
sample input as low as 100 ng - 1pg enabling a host of applicatiome sdmaple is

limited. Also it is simple, fast and automated.

Comparison: Sanger Reads Vs Solexa Short Reads

The main issue between the sanger and solexa reads is theemgtd The
Sanger sequencing technology generates reads that are yo8@@L000 nucleotide
base pairs long, referred to as the first generation readsiekh@eneration technologies
(lumina, 454, ABI SOLID, etc) produce humungous quantities of sequdgiieein the
form of smaller reads, ranging from 36 — 400 nucleotide base pagsiépending on the

technology.
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The following table 4 shows how much the number of sequence readssaxifeam

Sanger technology to the Solexa short read technology for different organisms

Table 7: Read Difference Between Sanger and Next Generation Technologies

Sanger Reads with 8X Solexa Short
. . Reads with
Organism Genome size Coverage 00X C
(1000 nt) 100X Coverage
(100nt)

Virus, Phage®-X174 5,400 43 5400
Bacterium, Escherichia coli 4,000,000 32,000 4,000,000
(million reads)
Nematode,Caenorhabditis 98,000,000 784,000 98,000,000
elegans (million reads)
Plant, Arabidopsis thaliana 157,000,000 1,256,000 157,000,000
(million reads)
?gg:j”sr;‘a" Homo sapiens (billion | 5 54 550 000 25,600,000 3,200,000,00(

1.00E+10

1.00E+09

1.00E+08

1.00E+07

1.00E+06

1.00E+05

1.00E+04

1.00E+03

# of Reads ( Log Scale)

1.00E+02

1.00E+01

1.00E+00 T

_/

P v

—@— Sanger Reads (8X Coverage, 1000 nts long)

—— Solexa Short Reads (100X Coverage, 100 nts Long)

Virus, Phage ®©-X174

Bacterium, Nematode, Plant, Arabidopsis Mammal, Homo
Escherichia coli Caenorhabditis thaliana (million sapiens (billion
(million reads) elegans (million reads) reads)

reads)

Different Organisms

Figure 32: Read difference between Sanger and Solexa technology reads
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De novo Sequence Assembly Process of Next Generation Data

An important and a critical step in the sequencing of different genoméo
assemble all the short reads or fragments that are exriiom the sample to form a set
of contiguous sequences (contigs) that represents the DNA inntipbesdRead length is
very crucial when it comes to assembling accurate sequenceiallggec genomes as
complex and repetitive as the human and plants genome. Assemblempmeyusing
reads generated by the next generation sequencing technologieesrexjuifferent
approach than the methods that were developed for the long reads egkrmrathe
Sanger sequencing technology. Whole genome shotgun sequencingpasithstrategy
for most genome sequencing projects today; it randomly shears fbad¢fnents to
produce short reads and allows for the generation of mate-pairs whereaoseds pairs

with a known approximate distance (insert size) between them.

Assembly Algorithms

Greedy Approach

Greedy approach is the simplest solution to the assembly probferthisl
approach, starting with the reads that overlap best, and ending whermrthere more
reads to be combined, the assembler greedily combines readsethrabstr similar to
each other in an iterative fashion. Two reads are consideredrtapwath each other if
the prefix of one read shares sufficient similarity with théfixs of another sequence
read. The definition of an overlap read is commonly the length obikdap and the

percentage of nucleotides that is shared between the readandthisd provides the
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most intuitive solution but the disadvantage is that at each stiéye @ssembly process
only local information is considered and can be easily confused witiplex repeats
throughout the sequence data that can lead to misassemblies thus not eeadjtudpally
optimal solution.
Several assemblers like PHARP, TIGR, CAP3 developed for teedé@neration
(Sanger technology generated sequence reads) sequence dataedgealg@rithmic

approach.

A

150

150

30 4
] A 3
o,

Figure 33: The assembler joins, in order, reads 1 and 2, then reads 3 and 4, then reads 2
and 3. [http://www.cbcb.umd.edu/research/assembly_primer.shtml]
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Overlap-Layout-Consensus Graph Approach

This classical approach to sequence assembly is based on graghvitledhe
associations between the sequence reads to be assembled illustrateglasTdgnaodes
represent each of the reads and an edge connecting the two nodes sgrthatizhe
corresponding reads overlap.

Contigs are generated by identifying a path through the grapledhttins each
node at most once; in graph theory this path is called the Hamiltpatan( also called
traceable path, a path in an undirected graph which visits remtd (or vertex) exactly
once). The assemblers that follow this paradigm go through threesptiase Overlap
phase, Layout phase and finally the Consensus phase.

The Overlap Phasefhe assembler builds a graph structure by computing all pair
wise alignments between the sequence reads.

The Layout Phaséefhe graph structure is cleaned and simplified by removing all
its redundant edges thus resolving ambiguities. This refined gralpbowiprise of a set
of nonintersecting simple paths. Each path corresponds to a assembled contig.

The Consensus Phade:the third and final phase the assembler builds a multiple
alignment of the reads consistent with the chosen path covering/htble genome

inferring a consensus sequence.
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Figure 34: The thick edges in the picture on the left (a Hamiltonian cymespond to
the correct layout of the reads along the genome (figure on the right). Tai@irgm
edges represent false overlaps induced by repeats (exemplified by timesad the
figure on the right) [http://www.cbcb.um.edu/research/assembly_primer]shtml

This approach works best for limited number of reads with sigmfioverlaps.
The overlap graph could be extremely large making a de novo assembly

computational intensive. Few assemblers for next generation seqdate implement

the Overlap-Layout-Consensus approach
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Eulerian Path Graph Approach

Pevzner et al 1989 proposed an elegant formulation for contig recoistrast

an euler path problem on a deBruijn graph.

A AccACGOTRCGATAGAL
AGCA GETG GGTA
CCAC GTGC GTAG
CACG TG TAGA

ACGE GUGEE AGAC
CGGT CEGET
GTGEC
GTG TGS
CEGET GE?‘
B CGG NE<Tc) S

Figure 35: (A) kmer spectrum of a DNA string (bold) for k¥8) Section of the
corresponding deBruijn graph. The edges are labeled with the pamésg kmer and
(C) Overlap between two reads (bold) that can be inferred fnencdrresponding paths

through the deBruijn graph[Pop, M . 2009].
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In this approach the idea is to break each sequence reads int@werkmers, where a
kmer is a substring of lengthfrom the original sequence. In the next step a deBruijn
graph is constructed using tkmer spectrum. Each edge in the graph corresponds to a
kmer from one of the original sequence reads. The source and destinatles
correspond respectively ol prefix andk-1 suffix of the correspondingmer. The
assembly problem then reduces to finding the correct eulertan tpare are usually a
large number of eulerian paths. An eulerian path is a pathuiest every edge exactly

once.

Survey of Different Assembler Protocols

The following table 5 compares different currently availablet mgeneration sequence
data assembly software.

Table 8: Various Assembly Algorithms

Assembler . Sequence
Protocols Type Group Algorithm Type Test Data Read Type| Coverage
Single
Secuences |  Ended
De Novo Eulerian Solexa, Equli Reads,
VELVET EBI Path 454,SOLi T Paired End 50X
Assembly S.cerevisiae,
Approach | D, Sanger Reads,
C.elegans, Long
H.Sapiens Reads
EULER - Eulerian 454 E.Coli,
SR (Short UCSD Path So|e>‘<a S.pneumoniae,
Read) Approach Human BAC
Eulerian Solexa, | Streptococcuss .
SHORTY | DeNovo Stony Brook Path | 454,S0Li | Suis(simulated| ~aredend) g4y
Assembly short reads
Approach | D, Sanger )
Viral, Bacterial 40\2:;; or
Extension and Fungal Single- enomes
SSAKE De Novo BCGSC with Prefix Solexa Genomes ended, e?nd 100X
Assembly Tree PhiX174, Paired end for
Overlaps SARS, TOR2, reads
) H.Influen
H.influenzae 736
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Table 8 (cont’'d): Various Assembly Algorithms (cont’d)

Assembler . Sequence
Protocols Type Group Algorithm Type Test Data Read Type| Coverage
Max Planck Institute,| Extension Single
De Novo | Univ. of Regensburg, with Prefix . .
SHARCGS Assembly Regensburg, Tree Solexa H.Acinonychis Er;c;(é(;
Germany Overlaps
Humans, Single
Ended
Plants, Yeast,
De Novo Overlap- 454 Bacteria Reads,
Newbler Assembly 454 Life Sciences ct%)églrj\ts-us Sanger | Fungi, Viruses, P?_::::dlsfnd
YACs, BACs, '
Fosmids Long
Reads
Extension Viral and
VCAKE De Novo UNC, Wahlngton with Prefix Solexa Bacerial 50X
Assembly Univ. Tree Genomes
Overlaps
SHRIMP Allgr:men Univ. of Toronto Alignment
Eulerian .
ALLPSATH Esesgln%? Broad Institute Path Solexa Pag(eeg dznd 80X
y Approach
de novo restriction
FORGE assembly JGI mapping
Assembly
by alignment
Seqman Alignmen plus de novo
t
De Novo
Pcapa54 Assembly
De Novo
ABYSS Assembly BCGSC

Genome Assembly Computational Challenges

The recent development of high throughput short read DNA sequenasg h
revolutionized genome sequencing. There are two approaches in genembélgsse
novo approaches and comparative approaches. De novo approaches must be used to
reconstruct genomes that are not similar to any organismopséyvisequenced but are
often used for organisms with a potential reference as wetbrirputational complexity
theory the de novo assembly problem falls within a class of dliffroblems (NP —

Hard, Non Deterministic Polynomial Time Hard), so no efficiemmnputational solution
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is known [Bodlaender et al 1995, Medvedev et al 2009]. Comparative approaghks us
sequence of a closely related organism as a guide during thebassmocress, this
approach is much easier - essentially assemble a newly sedqugemmome by aligning
the set of reads onto a reference genome. The second generationcisgquiata
(discussed in this chapter, Solexa short read sequences gensmatetlumina Genome
Analyzer (GA) Il machine) have several features impacting sserably software and
forces many challenges. The short reads generated forgailtyfin assembling repeats.
lllumina GA Il have mate-pairs protocols, pairs are about t@gEexpensive but gives
twice as much coverage, in practice most data being generatedaéed reads. With
these short reads and variable read length and the large amowata,othe existing
assembly software has to be modified, new specific featusetohiae incorporated and
require parallel implementations or specialized hardware whglied to large genomes.
In this study,S aureusstrains were assembled by the de novo approach, followed by a

comparative approach for assembly validation.

Genome Assembly Metrics

The genome assembler result is a set of contigs. A completeangecannot be
constructed completely from the contigs alone. Contigs are contigissesnbled pieces
of sequence reads. The mate pair information can be used to det¢neinelative
placement of the assembled contigs along a genome. This preaadked scaffolding.
The output of this scaffolding process is a series of scaffolds. Two contidpe ¢aferred
to be adjacent in the genome if one end of a mate-pair is lblesenvithin the first

contig, and the other end is assembled within the second contig [Pd}Q08]. The



89
scaffolding problem like the denovo assembly program is shown tom@utationally
difficult [Huson, D. H. et al 2001]. Most assemblers do contain addaff module, but
still they lack true scaffolding to this point. There are sdvaratrics involved in

validating the quality of the assembled contigs.

Number of Contigs Assembled

The number of contigs generated should be to a minimum. If the number of

contigs rises to a maximum then the assembly generated is considered ¢rienteal.

Genome Coverage/Number of Nucleotides Assembled

This metric looks at the percentage of base pairs in theakigiference that was
covered by the contigs assembled by the assemblers. This campated only if a
reference (or closely related reference) genome is avadalifi¢he approximate genome

size is known.

Maximum/Average Contig Length

The biggest contig and the average contig length are computed. dher bi

contigs generated generally indicates good assembly.

NS0
This is a standard measure for de novo assembly. It is a waneaduring the
length of the contigs. N50 is the contig length such that 50% dddbembled genome

lies in blocks of this size or larger. N90, N80, etc. are also used.
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B2000

We define B2000 as the percentage of assembled nucleotide basbaiaare in
contigs 2000 base pairs or longer.

The above mentioned metrics are very straight forward and convéaitest the
guality of the contigs generated by the latest de novo assemblerof@he important
assessment of the quality of the assembly is by alignitagtite reference genome or the
reference genome of the closely related species if itadlajl but this wouldn’t be an

option for de novo assemblies for which there is no reference available.

Sequence Parameters Analysis

This section briefly describes the sequencing projects of Eandlifive different
strains of staphylococcus aureus (MM25, MM61, MM66, MM66-4, MVS8), the
assemblies of these sequence data using VELVET and AByS8kdsseand discusses

in detail how different sequencing parameters influence assembly.

Sequencing Projects

For both the genome sequencing projects, solexa short read sequerarested
read length and different coverage were generated using rBu@enome Analyzer
(GA) Il machine. Sequence data from sequenced genomé&sabierichia coliand
Staphylococcus aureusere utilized to study the preciseness of genome leveinasge

and the information thus obtained was used to guide future sequencing projects.
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Sequence Data Information

Escherichia coli (E. coli)E.coli a gram negative rod-shaped bacterium with an

approximately 4.6 Mbp genome was sequenced yeilding 36 base pairs, paired-end
sequences of approximately 225-fold coverage.

Table 9: Sequence Read Informattescherichia coli

Paired End Reads Sequence (Gbp) Coverage
E. coli 29,871,930 1,045,517,550 225X

Staphylococcus aureus (S. aureuS) aureus is a gram positive spherical

bacterium that occurs in microscopic clusters resembling grépeg.are present in nose
and skin of healthy humans and belong to the bacterial f&tajyhylococcaceadt has

a 3 Mbp genome and we sequenced five strains. Each strain wasceeaera single

lane of a flowcell generating in excess of 1 Gb and 300X covétalgie 7). Each strain

was sequenced with 90 nt paired reads sequenced from either end of a 380nt fragment

Table 10: Sequence Read Information For All Five Strains

Strain Pairs Sequence (Gbp) Coverage
MM25 10,365,826 1.87 643X
MM61 10,249,743 1.84 634X
MM66-4 10,204,136 1.84 634X
MMG66 5,809,956 1.05 361X
MV8 11,438,281 2.06 710X
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Assembly Hardware

Genome Assembly is a complex and computationally intensive tasteguules
large amounts of memory, especially when using second generatuensing
technology. For our assembly we used our local hardware resourcedsancn our
assemblies on Encanto, a New Mexico Super Computer which is aAl®G$ystem,
with 1,792 nodes each with two intel Xeon X5335 quad-core processors opeitadid

GHz for a total of 14,336 cores with 28.7 Terra bytes of RAM.

Assembly Software

For assembling the E. coli and strains of S. aureus ABySS dudt\&ssemblers
were usedAssemblyBy Short Sequences (ABySS) [Simpson, J.T et al 2009] is a de
novo sequence assembler designed for short reads developed by Clatties Smith
Genome Sciences Centre. It is a parallel assembler implechasing Message Passing
Interface (MPI) capable of assembling larger genomes. Vdeebino, D. R et al. 2008]
also a de novo genomic sequence assembler designed for short readvelazsed by
Daniel Zerbino and Ewan Birney at the European Bioinformaticstutes (EMBL —

EBI).

De novo sequence assemblies

E. coli Assembly Assembly was performed using the VELVET assembler with

different kmer sizes which consumed memory ranging from 1.5 — &Gtoli paired

end assembly results using the VELVET assembler are presented below irltable
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Table 11: E Coli Assembly Statistics

I Il 11 [\ vV VI
Read Type Pairs Pairs Pairs Pairs Single Single
Coverage 76X 76X 225X 225X 225X 225X
kmer Length 21 31 21 31 21 31
kmer Coverage (35 nt's) 28X 7X 84X 19X 84X 19X
Reads 10,096,536/ 10,096,536 29,871,980 29,871,030 29801, 29,871,93(
Contigs 684 4,964 1,636 405 6,094 855
Largest Contig 77,863 9,653 40,349 131,523 13,897 73,062
Contig N50 17,377 1,539 10,878 33,463 1,770 17,894
Total Length 4,701,905| 4,640,491 4,631,853 4,651,087 4,654,4355674569
Contigs >= 10kb 158 0 140 136 3 149
% nt's in Contigs >= 10kb 73% 0% 53% 89% 1% 73%
% Reads in Contigs 96% 88% 95% 88% 97% 89%

S. aureusAssembly Here results of the genome assembly of five strains (MM25,

MM61, MM64, MM66-4, and MV8) ofS aureuausing ABySS assembler with kmer size

of 70 are presented.

Table 12:S. aureusAssembly Statistics

MM25 MM66 MM66-4 MM61 MV8
Contigs 1,041 700 638 683 1,501
Bases Assembled | 3,009,314 | 2,967,552 2,981,179 3,034,238 3,725,212
Max. Contig Length 69,478 95,793 68,016 83,874 192,790
N50 17,803 14,391 19,272 16,851 79,009
N90 43,049 45,582 45,529 63,318 183,701
B2000 94% 93% 94% 95% 93%

Parametric Intricacies in de novo Genome Assembly Process

In this section, we study in detail the connections between eegth| read type,

repeat complexity, quality score and coverage and how these giaranmhelp in

improving or diminishing the capability of the assembly programsassemble the

sequence data.



94

I. Influence of Read Type in Assemblyo study how single-end versus paired-

end reads help in the assembly process we look in to the assersblis ofE. coli

(Table 11) using VELVET assembler and a straits ohureusMMG66 (Table 10) using

ABYSS assembler.

Table 13:S. aureugMM66) — Read Type - Assembly Using ABySS

Reads As Single ends As Paired ends
Contigs 1,142 700
Bases Assembled 2,888,341 2,967,528
Max. Contig Length 44,778 95,793
N50 11,656 14,391
B2000 89.00% 92.86%
100,000 -
B Single-End Reads
10,000 - M Paired-End Reads

1,000 -

Log Scale

100 -

10 -

Contigs Max. Contig Length N50

Assembly Quality Metrics

Figure 36: S aureus ( MM66) ABySS assembly. Effect of Paired-End Read, Type
graph represents in log scale the number of contigs assembled, Maximumeaayttig |
and N50 for single end reads vs. paired end reads.
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The experimental results clearly indicate for both assemibli&paired-end reads
help assemble more bases, maximum contig length has more thaeddoubkize and
N50 and B2000 have increased. From the results it is cleatigircehat paired end
sequence reads help generate longer assemblies.

Il. Influence of Read Length in Assembln this section the effect of read lengths

on the quality if the assembled contigs has been studied. MM66 stuerse data,
which was originally 90 bases long, was trimmed to 75 bases lggre 37 shows
quality graphs generated by lllumina machine for strain MM66 atirues. The quality
scores drop down dramatically towards the end. This is very ums@aitent through
quality does usually tends to drop down a bit towards the end. Sequereesimmed
from the 3’ end. The reason for doing this is as per lllumina sequgenechnology
standard if the first 25 base pairs passes the quality segirthen it generates the whole
sequence, so the chances are high that the low quality bastesvards the end. So by
doing this, the low quality bases were removed from the sequenceddwasets were
generated, one for 75 base pairs ( ~500-fold coverage aftenitrgnthe ends) and one
for 90 base pairs (~600-fold coverage) and were assembled usingSABRS assembly

result is as shown in table below (Table 11)
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Figure 37 Average quality scores along the solexa readsrgéed by Illuming
Sequencing Technology for s aureus (MM66 str

Table 14:S. aureugMM®66) - Read Length - Assembly Using ABySS

Read Length

75 mers (Trimmed)

90 mers (Original)

Contigs 1,186 700

Bases Assembled 2,935,514 2,967,52
Max. Contig Length 41,145 95,793
N50 6,696 14,391
B2000 85.96% 92.86Y

The results clearly indicatthat by trimming the reads, a more fragmer

assembly was obtained, the bases assembled and0 BR@pped slightly but th

maximum contig length and the N50 were less théin

lll. Influence of Depth of Genome Coverage in Asbbl. Here, the correlatic

between genome coverage and ably was examined. @&ome coverage is essentic

the oversampling of the genome. To achieve this,MIM66 strain was considered a

was sequenced at approximately 350X coverage. giesee data sets that had 20
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100X, 50X and 25X was created (Table 12). The same was do&e ¢ofi (Table 11).
These sequence data sets for different coverage are not indepéhdeis, iterative
subsets were taken ranging from 200X down to 25X. Assembly was doegcfoof the
datasets, including the original sequences. The results craplasize the advantage of
having high coverage for genome assembly.

Table 15:S. aureugMM®66) - Varying Coverage - Assembly Using ABySS

Coverage 25X 50X 100X 200X 350X
Contigs 314 1,507 3,337 3,122 596
Max Contig Length 1,705 2,408 6,880 28,563 86,764
N50 257 306 537 1,379 19,705
B2000 0.00% | 0.98% 10.64% 35.549 94.69%

100000 -

10000 -

1000

Log Scale

100 4

10 A

e=fil== Maximum Contig Length N50

25X 50X 100X 200X 350X

Different Coverages

(a)
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Figure 38: (a) With higher coverage the contig length and the N50 increatengein
better assemblies. (b) With higher coverage most of the genome is as$émninha
smaller number of contigs.

The consensus sequences statistics essentially tells ust tBd-fold coverage
that most of the genome will be assembled into smaller numbeintijs. As we go
down in coverage the assembly looks more fragmented and the maximugleogth
get smaller. Based on the above results it cannot be concluded tHatdBB0Overage is
required for good assembly, because sequencing at 350X coveragesmnomically

feasible and sheer computational requirements for larger genokeegplénts and

humans.

IV. Influence of High Quality and Low Quality Sequences in A#sky. In order

to study how quality of sequences affect the assembly proceddM66 strain all the

sequences with coverage of 200X were considered and another daith setowences
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that only had an average quality scer@0 was generated. Both data sets were run on
the assembly program.

Table 16:S. aureugMM®66) - High Quality Sequences

Sequences All Data High Quality Data
Coverage approx. 200X approx. 200X
Contigs 3,122 3,302
Bases Assembled 2,545,008 2,517,292
Max. Contig Length 28,563 28,078
N50 1,379 1,248
B2000 35.54% 31.73%

The results from table 13 clearly indicate that removing lowityusgquences did
not improve assembly. But it is important to mention here that assgmblers do not
take into consideration the quality score of the sequences. In tBIAB¥SS assembler
which was used for assembly does not take into the account qualig e it performs
some error correction based on bubbles in the graph that are rosupelorted
[Simpson, J. T et al 2009]. It is suggested to do a quality check skthesnce data by
aligning them to the reference genome using any availalgenaéint program. But this
wouldn’t be possible if we are doing de novo assembly. In this cagsultl be a good
experiment to try to apply pre filters on the quality sspti&e removing all reads that
contained ambiguous N characters (ABySS assembler do this awtiyawhile others
simply replace the N with a random nucleotide A, C, G, or T. Alsoconkd remove
reads where the first 80% of the reads did not contain qualityssgoeater than Q30.

Q30 refers to the Phred [Ewing, B et al 1998] score of that nucleotide base.



100

V. Influence of kmers on AssemblieSeveral assemblies were performedEon

coli data (Table 11 ) with VELVET using different kmer values. &ally, the kmer
value is limited on the upper side by the length of the readdimited on the lower side
by half the length of the reads. Technically, it is not lichim the lower end, and in
practice one wouldn’'t want to go too low. Ideally a kmer value of 85%ie read length
will allow for small amount of overlap, for example k=31 for 36 basespaad length
sequence data (our E coli data, Table 8 ). Smaller kmer vauesdmple k=21 for 36
base pairs data would increase the connectivity of the graph. Reoassembly results

(Table 8) it is clearly determined that VELVET performs best with k = 31 omlétés

1000000 -

m 225-fold coverage, k=21 m 225-fold coverage, k=31

100000

10000

1000

#in Log Scale

100 -

10 -~

1 4
# of contigs Largest Contig N50

Assembly Quality Metrics

Figure 39: Represents number of contigs, largest contig, and N3 doli data with
225X coverage and kmer values 21(Blue) and 31(Red).

With more coverage and a high kmer value the number of contigs have been
reduced by four times, the largest contig have been tripledzégeasid finally the contig
N50 also tripled in size. From this experiment we can conclumtewtith high coverage

and high kmer value the assembler tends to generate decent assemblies.
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Comparing Assemblers

In this section results from the ABySS and Velvet assembilers compared. It
is a non trivial problem to compare the results of different dsiseprograms. In this
case, MM25 strain db._aureusvas run on ABySS and Velvet assembly programs under
different kmer parameter. Both ABySS and Velvet are baseddenBauijn graph theory.
The sequence reads are divided into short kmers, all of the instdrecespeat collapse
into single set of vertices. They then represent each remevalk on the de bruijn graph,
and search for a super walk that contains all the reads.

Table 17:S. aureugMM25 strain)

Assemble| Read kmer contig Max Contig Bases B20
r Length size N50 Length Assembled 00
75 50 9k 39k 2.9Mb 88%
ABYSS 90 60 21k 79k 3.4Mb 83%
Velvet 75 31 1k 9k 3.2Mb 319
90 N/A

Using ABYSS assemblers definitely generated better qualggnasies when
compared to VELVET. Also couple of key points to be mentioned here is that, 1)at has t
be pointed that ABySS is a parallelized and we ran it on En¢a®tper computer); 2)
the VELVET assembly version used and it could accept only a miaxikmer size of 31
(newer versions can now do higher kmer values), but the reads astevebde75 base

pairs and 90 base pairs.
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Inference

In the process of assembling tBe aureusgenome it has been demonstrated how
different read types, various read lengths, depth of genome covarabggw and high
guality sequences help in resolving the proper layout of the gendrnsesdction has a
summary of the analyses.

1. Paired end reads, also called mate pairs, come from oppositelsstad an

approximate known distance from the source genome. By allowing fonisga
of repeats or regions of low coverage or high polymorphism, tlaite mpair
information allows the assembler to join together longer genorgiong From
the assembly results it clearly indicates that having paretireads definitely
improved assembly and we were able to get good results.

2. Longer sequences in our case 90 base pair long reads helped inggevbles

compared to shorter sequences, 75 base pair long reads, deslote dgoality of
the nts from 76 to 90.

3. Higher coverage sequences tended to assemble better than lowesgeove

sequences.

4. AByYSS assembler outperformed VELVET in terms of computing tim&mnory

resources and consensus sequence statistics.

5. Removing low quality sequences did not lead to improvement in assemkys |

case we would like to use more effectual quality pre filtard see if it leads to

improvement of assembly.



103

Assembly Parameter Optimization

To get better results out of the assembly programs the diffeassembly

parameters have to be optimized.

Kmer selection

The size of the kmer which is used in the construction of the graghs entire
de Bruijn graph based assembler plays a very crucial role. Tacpeedioptimal kmer
value to begin with is hard to determine because it depends on thengtd coverage
and other factors. By selecting small and large kmer value tBea balance between
sensitivity and specificity determined by k. The best appraacperforming several
assemblies over a range of kmers and selecting the one tieatigs the best contigs.
Also sometimes assembling all the contigs generated bysdembler different kmer

values tends to yield a good assembly.

Genome Coverage

From the above experiments it can be concluded that high coverageved
assembly. The caveat here is, for bacterial sequencingpasble to sequence higher
than 100-fold, but sequencing deeper than 50-fold for higher organisms begemyes

expensive.
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Assembly Post Processing

Mutation Analysis of MM66 and MM66-4 Strains

Resultant assemblies of MM66 and MM66-4 strains were alignddetdCOL
strain (NCBI ID: NC_002951) using BLAST (Altschul et al, 1990) to identify MM66 and
MM66-4 alleles at specific locations. The COL strain wagoreedly isolated as a
penicillinase-negative strain in the early 1960s from the opgrtmatre in a hospital in
Colindale, England [Gill, S. R. et al, 2005]. The COL strain genome segu&as
downloaded from NCBI and was blasted against the MM66-4 contigs geshdnatthe
assembler. Nucleotide blast (blastn) program was used to blasth wbkarches a
nucleotide database (Reference) using a nucleotide query. Theat@GOL(NC_002951)
was used as the reference and the MM66-4 contigs was used asrthd-opra the blast
results known SNP positions where mutations occurred in the COh $tederence)
were identified and it is corresponding nucleotide position on the MM@6ntigs
(query) was checked to see if it was mutated. All the nastiwere verified and
confirmed in MM66-4 strain. Similarly the COL strain was k@dasagainst the MM66

contigs to check if they were wild type and confirmed mutations in this strarelhs

Validation and Correction for High Quality Assembly

From the analysis of the assembly contigs from different pgsojeacannot be
concluded that the assembly programs that were used are perdectconstructed good
consensus sequences. The occurrences of assembly errommanerncdue to several

reasons, incomplete or incorrect sequences provided to the assengpnpror due to
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the limitations of the algorithm used in the assembly progr&osa downstream post
assembly analysis of the assembly data will help in calilgrahe accuracy of the
assembly. Most of the assembly validation was primarily lapkinthe statistics related
to the number of contigs, contig N50, bases assembled and comparingpeat itdle

genome, and maximum contig length which are very preliminaiglatain. In order to

get a broader validation, the reconstructed assembly could bedatigriee reference
sequences using alignment programs like BLAST, GMAP. This akghrould also be
used for identifying structural variants. Also aligning readthe assembled contigs will
help determine insert sizes which are different from the eageche and to detect

misassemblies.

Discussion

The assembly of genomes of different organisms using curreniribusequence
reads can be performed using a number of publicly available assproghams such as
VELVET, ABYSS, or SOAPdenovo. This study presents a comparison angsianal
assembly results from different assemblers (ABySS, VELV&T solexa sequence data
for different organisms. The goal was not to identify the besgnalsly program but to
try different assemblers that would produce good consensus sequiencesir
sequencing projects and help learn more about what data it takesorupaitational
resources required for a successful assembly that would alltovliss some guidelines
for generating more efficient assemblies. For all the afonéored sequencing projects,
de novo assembly was used. With an accelerated rise in the numdeueinces, for

many organisms the organism itself or their closely relspeties have been sequenced.
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For these organisms, by using the comparative genome assemblymso@OS
project) assembly can be reconstructed by mapping the sequence oefieresmce
genome. FoiS. aureusa comparative genome assembly can be done and this can be
compared to the de novo assembly and the comparison between ehwlaess might
provide an in depth understanding of the genome assembly results.

The assembly results presented in the above sections have sepdications in
terms of assessing the best read length to maximize agcainad minimize sequencing
cost, how many reads are needed before accuracy is no longer ithfremesents the
genome coverage required), and how mate-pair information can be uséertoirtk the
relative placement of the contigs along a genome (calledosdiaff, to link two contigs
in order to reduce the impact of experimental errors). Alsasésaguestions in terms of

assembly validation.

Future Directions

The recent advances in genome sequencing technology have proeides tm sequence
increasingly large and complex genomes. Data generation isnoolenger limiting
complex genome sequencing. The ability to assemble this dataréently limited by a
lack of dedicated bioinformatics tools that are designed to copetiaet nature of the
sequence reads (Short Reads, Short Insert paired End Reads (8tPEpng Insert
Paired End Reads (LIPE)) and genomes especially for higher organisms.

With the release of each new and improved assembly algorithms k@ been

improvement in terms of assembly such as increase in comig donger contigs), a
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decrease in the total number of contigs and a decrease in the mafralseembly errors

and improvement the overall quality of assemblies.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

Studying and understanding antibody — antigen interactions and epitope
predictions has receiving much attention using both experimental ek as
computational methods in porteomics. Also in addition, studying antibodmptigen
interaction is of crucial importance for drug discovery and dinitagnostics. Antibody
epitope mapping allows for the revalation of structural informatiogarceng the
conformation of a protein that an antibody recognizes. Often struatframation
provides insight into the functional properties of a protein. We waetlighis in our
research work described in Chapter 2; a data set compriséeé 8Dt structures of 62
non-redundant Ag-Ab complexes, from the Protein Data Bank (PDB), was asdeantl
used to determine the general physical as well as biochere@mirés of the Ag-Ab
interfaces.

Given the large number of proteins of unknown structure, developing non
traditional methods for generating structural information reggrgimoteins that are not
amenable to traditional structure determination methods such as AMRXx-ray
crystallography is likely to have very broad impact in the aofastructural
genomics/proteomics. To address and overcome the short comings dibioried
structural determination methods, we present in Chapter 3, MSWAHPan improved
version of the epitope prediction program called EPIMAP, whicHititeis antibody
epitope mapping in Chapter 3. Our improved algorithmic approach useshehe

substitution matrix derived in Chapter 2 and produces promising reSMiswould like
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to apply this MSA — EPIMAP approach to number of additional antibodytigem
complexes whose 3D structures are known.

Lastly in Chapter 4, we looked into the problem of de novo genommblsstr
short reads generated using lllumina Genome Analyzer. Thenlalgsef genomes of
different organisms are assembled using a number of publicly aeaikdembly
programs such as VELVET, and ABySS. We present results of seleenalvo assembly
experiments. We explored the connections between the read lengttypeacoverage,
data quality, sort inserts paired end reads, long insert pairediregdaome assembly.
This study helps us understand the parametric complexity ofgjeheme assembly
problem. Improvements in assembly parameters discussed, quatlity séquence data,

guantity, and coverage will of course also assist in producing better assembli
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Table Al: Data set of Antigen — Antibody Complexes
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# of Complexes in this group (Group I- Peptides) = 15

Antigen Antibody
Code Name References
Chain(s) Size Chain(s Size
1CFT anti-p24 (HIV-1)/ Protein (Antigen Bound c 5 AB | 214, 213| 427 Keitel et al. (1999)
Peptide)
ANTI-TGFALPHA ANTIBODY FAB-
1E4W FRAGMENT / Cyclic Peptide P 7 L,H 214, 213 427 Hahn et al. (2000)
1CE1 CAMPATH-1H / Peptide Antigen P 8 LH 211, 22 431 Jaghab (1999)
IGG2A 26/9 FAB / Influenza Hemagglutinin Ghurchill & Wilson
1FRG HAL (STRAIN X47) (Residues 101-108) P 8 LH 217, 220 437 (1994)
IGG2A-KAPPA 17/9 FAB / Influenza
1HIN Hemagglutinin HA1 (STRAIN X47) (RESIDUES P 8 L,H 217, 220 437 Rini & Wilson (1992)
100-107)
FAB Fragment of Monoclonal / Antigenic .
1F90 Nonapeptide E 9 LH 219, 220 439 Afonin et al. (2000)
H-2 Class | histocompatibility Antigen, K-D .
2FWO Alpha Chain / Beta-2-microglobulin / P 9 AB | 283 100| 383 M"aks?z"of)‘GF)remom
TYQRTRALV Peptide From Nucleoprotein
1ceN | GG1-KAPPA Antibody CB41/ Protein (Bound 10 AB 214, 213| 427 Keitel et al. (1999)
Peptide)
MN20B9.34 Anti-P1.4 Antibody, FAB Light &
2BRR Heavy Chain / Class 1 Outer Membrane Prote P 11 HY,LX 225, 215 880 Oomen et al. (2005)|
Variable Region 2
13F6-1-2 FAB Fragment Heavy Chain. V lambda
2QHR x Light Chain / Envelope Glycoprotein Peptide P u HL 218, 222 440 Lee etal. (2007)
Antibody Variable Light & Heavy Chain /
1P4B GCNA(7p-14P) Peptide P 12 LH 135, 124 259 Zahnd et al. (2003)
FV Light & Heavy Chain Variable Domain VL &| .
20TW VH / Poly-Gn Peptide Antigen E,F 12 A,C,B,D 115, 118 466 Li (2007)
1a3R | 'GG2ABFS5 FAB/ Human Rhinovirus Capsid| 15 LH 220, 218| 438 Tormo et al. (1998)
protein VP2
Anti-HIV Antibody 2F5 Light & Heavy Chain /
1TJl Envelope Glycoprotein GPA1 P 17 LH 214, 237 451 Ofek et al. (2004)
IGG1 ANTIBODY 58.2 / Protein (Exterior )
1F58 Membrane Glycoprotein (GP 120) P 23 LH 216, 228 444 Stanfield et al. (1998




Table Al: (continued)
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a1
-~

# of Complexes in this group (Group Il - Small Antigen)6
Antigen Antibody
Code Name References
Chain(s) Size Chain(s Size
1FCC IGG1 MOS1 FC / Steptococcal Protein G (C2 cD 56 AB 206 Sauer-Eriksson et al. (199
Fragment)
1HEZ KAPPA LIGHT CHAIN OF IG / PROTEIN L E 61 ACB,D 214, 224 Graille et al. (2000)
1IMHH FAB / PROTEIN L DOMAIN C EF 63 A.C,B,D 220, 217 rglle & Stura (2002)
2BDN Smaal Inducible Cytokine A2 / Antibody Light & A 76 LH 214, 217 | Boriack-Sjodin et al. (2005
Heavy Chain 11K2
1E08 [FE]-Hydrogenase / Cytochrome E 7 AD 371, 48 Mazedi. (2000)
2JEL JEL42 FAB Fragment / Histidine-Containing Proteip P 85 HL 217, 218 Parasad et al. (1998)
2R69 Major Envelope ProtlelAnlg_/leght & Heavy Chain of| A 97 LH 212, 214 Lok et al. (2007)
1BJ1 FAB Fragment / Vascular Endothelial Growth Factor V,W 102 L,J,H,K 214, 231 Muller et al. (1998)
1IRH Antibody A6 / INTERFERON-GAMMA RECEPTOR| | 108 LH 213219 Winkler & Sogabe (1997)
177X Envelope Protein / Heavy & Light Chain of E16 E 108 LH 212, 219 Nybakken et al. (2005)
Antibody
2P4A Ribonuclease Pancreatic / Antibody CAB-RNO5 AQ 1p4 B,[ 121 Tereshko et al. (2007)
1BZQ (RNASE A) / Antibody CAB-RNO5) AB,CD 124 K,L,M,N 124 ebanniere et al. (1998)
1BQL HYHEL-5 FAB / BOBWHITE QUAIL LYSOZYME Y 129 LH 212, 215 Chacko & Davies (1995)
1cog | Ant-Hen Egg White Lysozyme Antibody (HYHEL -| 129 AB 107, 114 Shiroishi et al. (1999)
10) / Lysozyme
1DQJ Anti-Lysozyme Antibody HYHEL-63 / Lysozyme C 129 AB 214, 210 Li & Mariuzza (2000)
1FDL IGG1-KAPPA D1.3 FAB / Hen Egg White Lysozymg 129 HL, 214, 218 Fischmann & Poljak (199
IGG1-KAPPA D11.15 FV / PHEASANT EGG .
1JHL WHITE LYSOZYME A 129 LH 108, 116 Chitarra et al. (1993)
1RJC Camelid Heavy Chain / Lysozyme B 129 A 137 De Geradt (2003)
1yqy | HYHEL-5 Antibody Light & Heavy Chain / Hen Egg| 129 LH 211, 215 Cohen et al. (2005)
White Lysozyme
Lysozyme Binding Ig Kappa Chain V23-J2 Region / |g N
2DQJ VH, Anti-Lysozyme / Lysozyme C Y 129 LH 107, 114 Shiroishi et al. (2006)
1BVK HULYS11/LYSOZYME C,F 129 A,D,B,E 108, 117 Holmesagt(1998)
1FBI IGG1 F9.13.7 FAB / Guinea Fowl Lysozyme XY 12p L,P,HJQ 21221 Lescar & Alzari (1995)
1JTO Vh Single-Domain Antibody / Lysozyme LM 12 AB 148 Bamgiere et al. (2001)
IGG1-KAPPA D44.1 / HEN EGG WHITE
IMLC LYSOZYME EF 129 ACB,D 214, 218 Braden et al. (1995)
LIGHT CHAIN ANTI-LYSOZYME ANTIBODY
1P2C F10.6.6 / HEAVY CHAIN VH+CH1 ANTI- CF 129 AD,B,E 212, 218 Cauerhff et al. (2003)
LYSOZYME ANTIBODY F10.6.6 / LYSOZYME C
1ZMY Antibody cabbcll-10:lys3 / Lysozyme C LM 129 A 142 Saerenal. (2005)

=



Table Al: (continued)

122

# of Complexes in this group (Group Il - Large Antigers)1
Antigen Antibody
Code Name - - - - References
Chain(s) Size Chain(s) Size
1LK3 Interlukin-10 / 9D7 AB 160 L,M,H,I 210, 219 Josephsbale(2002)
ANTI-RAS FV Heavy & Light Chain
2Uz1 | GTPASE HRAS R 166 L,H 114, 104 Tanaka et al. (2007)
T-Cell Surface Glycoprotein CD3
1XIW Epsilon Chain, Delta Chain/ | e g £ | 105 79 C.G,D.H 108, 122 Arnett et al. (2004)
Immunoglobulin Light & Heavy
Chain Variable Region
Antibody 7D11 Light & Heavy Chain
219L / Virion Membrane Protein M25 1,J,K,L 184 ACEG,BD,FH| 219, 21 Su et al. (2006)
IGG Heavy & Light Chain / Spike
2DD8 Glycoprotein S 202 H,L 245, 213 Prabakaran et al. (2006)
1ADQ | 'GG4REA F%'EX'E;LAMBDA RE-1 A 206 LH 213, 225 Corper et al. (1997)
Immunoglobulin / CAPSID .
1E6J PROTEIN P24 P 210 L,H 210, 219| Berthet_Colominas et al. (20!
Integrin Alpha-1 / Antibody AQC2
2B2X FAB Heavy & Light Chain AB 223 H.IL,L,M 226, 213 Clark et al. (2005)
Carbonic Anhydrase / Antibody
1G6V Heavy Chain (CAB-CAO05, Variable A 260 K 126 Desmyter et al. (2000)
Domain)
2R0OK Poly(A)-Specific Ribonuclease A 283 L,H 214, 225 Nagatal. (2008)
Exterior Membrane
Glycoprotein(GP120) / Antibody 17h
1YYM Light & Heavy Chain / CD4M33, G,P 313 LQ 214 Huang et al. (2005)
scorpion-toxin mimic of CD4
Envelope Glycoprotein GP120 / T-
2NY7 Cell Surface Glycoprotein CD4 / G 317 L,H 215, 230 Zhou et al. (2006)
Antibody 17B Light & heavy Chain
Apical Membrane Antigen 1/ 1F9
2Q8B Light & Heavy Chain A 336 LH 214, 210 Gupta et al. (2007)
1A14 Neuraminidase/NC 10 FV N 388 L,H 104, 120 Malpy €t1897)
NEURAMINIDASE / SINGLE
1INMC CHAIN ANTIBODY AN 388 B,H,C,L 122, 190 Malpy et al. (1997)
2AEQ Ne”ram'“'das‘z’h;’?]B Light & Heavyl  , 395 LH 214, 217 Venkatramani et al. (2005)
Apical Membrane Antigen 1/ FAB
2J4W Fragment of Monoclonal Antibody D 445 L,H 213, 225 Igonet et al. (2006)
F8.12.19
2NXY Beta-Lactamase TEM AB 317,184 C,D 214,229 Wang et al. (2003)
Protein (HEMAGGLUTININ (HA1
CHAIN)) / Protein (Immunoglublin
1QFU IGG1-KAPPA Antibody Light & A,B 328, 184 LH 217, 223 Fleury et al. (1999)
Heavy Chain)
Envelope Glucoprotein / T-Cell
Surface Glycoprotein CD4 / Anti-
2B4C HIV-1 GP120 Immunoglobulin X5 G, C 344. 181 L, H 215, 235 Huang et al. (2005)
Light & Heavy Chain
Envelope Glycoprotein GP120 / T-
Cell Surface Glycoprotein CD4 /
2QAD Anti-HIV-1 Antibody 412d Light & AE,B,F | 388, 181 C,G,DH 214, 231 Huang et al. (2007)
Heavy Chain
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Table A2
Protein Antigen Data - Group | (Peptides) # of Complexes = 15
Epitope Surface Entire Surface
Ami_no Occurrence
AFId Raw Average_MoIar Raw Average_MoIar Propensity
Residues | Occurrence Fraction Occurrence Fraction

ALA 8 0.057 10 0.068 0.847
ARG 8 0.054 8 0.052 1.036
ASN 8 0.058 8 0.055 1.050
ASP 10 0.071 10 0.070 1.011
CYS 0 0.000 0 0.000 0.000
GLN 15 0.091 15 0.091 1.009
GLU 12 0.082 12 0.074 1.107
GLY 4 0.034 5 0.043 0.804
HIS 6 0.044 6 0.042 1.044
ILE 2 0.015 2 0.015 1.000
LEU 13 0.099 16 0.111 0.887
LYS 6 0.046 7 0.048 0.959
MET 0 0.000 0 0.000 0.000
PHE 2 0.017 2 0.017 1.000
PRO 9 0.070 9 0.069 1.013
SER 6 0.051 7 0.056 0.915
THR 9 0.060 9 0.060 1.000
TRP 2 0.011 2 0.010 1.167
TYR 3 0.024 6 0.049 0.488
VAL 10 0.073 10 0.070 1.040




Table A2: (Continued)
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Protein Antigen Data - Group Il (Small Proteins) # of Complexes = 26

Epitope Surface Entire Surface
Amino
Acid Raw Average Raw Average OccurrerTce
Residues Occurrence Mol'ar Occurrence Mol_ar Propensity
Fraction Fraction

ALA 8 0.020 35 0.028 0.728
ARG 38 0.109 171 0.117 0.930
ASN 46 0.132 164 0.112 1.179
ASP 30 0.085 106 0.078 1.095
CYS 1 0.002 2 0.001 1.338
GLN 22 0.068 64 0.045 1.510
GLU 20 0.059 85 0.069 0.854
GLY 28 0.079 98 0.069 1.152
HIS 4 0.012 26 0.018 0.681
ILE 3 0.009 16 0.012 0.708
LEU 14 0.036 53 0.039 0.932
LYS 38 0.108 157 0.117 0.924
MET 4 0.010 11 0.008 1.298
PHE 3 0.008 24 0.018 0.450
PRO 8 0.025 51 0.034 0.737
SER 16 0.049 93 0.063 0.772
THR 28 0.085 103 0.076 1.106
TRP 10 0.079 32 0.023 3.506
TYR 18 0.050 42 0.031 1.612
VAL 8 0.024 58 0.041 0.576




Table A2: (Continued)
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Protein Antigen Data - Group lll (Large Proteins) # of Complexes = 21

Epitope Surface Entire Surface
Amino
Acid Raw Average Raw Average Occurrer!ce
Residues Occurrence Mol_ar Occurrence Mol_ar Propensity
Fraction Fraction

ALA 10 0.037 64 0.021 1.744
ARG 22 0.075 220 0.073 1.017
ASN 22 0.072 307 0.099 0.733
ASP 22 0.076 231 0.077 0.987
CYS 2 0.087 23 0.012 0.359
GLN 15 0.052 280 0.066 0.785
GLU 26 0.093 321 0.108 0.866
GLY 7 0.022 85 0.030 0.736
HIS 11 0.037 77 0.026 1.403
ILE 20 0.066 102 0.035 1.884
LEU 9 0.034 128 0.039 0.859
LYS 31 0.114 437 0.124 0.923
MET 8 0.026 21 0.009 2.836
PHE 3 0.008 51 0.019 0.437
PRO 20 0.069 170 0.057 1.194
SER 10 0.035 182 0.057 0.618
THR 19 0.073 251 0.073 1.013
TRP 5 0.027 33 0.013 2.060
TYR 11 0.047 62 0.027 1.719
VAL 10 0.033 102 0.036 0.900




Table A2: (Continued)
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Group Il & Il (Small & Large ProteinsCombined) # of Complexes = 47

Epitope Surface

Entire Surface

Amino
Acid Raw Average Raw Average Occurren'ce
Residues Occurrence Mol'a ' Occurrence MoI?r Propensity
Fraction Fraction
ALA 18 0.028 99 0.025 1.162
ARG 60 0.092 391 0.095 0.964
ASN 68 0.102 471 0.105 0.970
ASP 52 0.081 337 0.077 1.041
CYS 3 0.045 25 0.007 0.468
GLN 37 0.060 344 0.056 1.080
GLU 46 0.076 406 0.088 0.861
GLY 35 0.051 183 0.049 1.026
HIS 15 0.025 103 0.022 1.111
ILE 23 0.037 118 0.024 1.575
LEU 23 0.035 181 0.039 0.895
LYS 69 0.111 594 0.120 0.924
MET 12 0.018 32 0.009 2.127
PHE 6 0.008 75 0.018 0.443
PRO 28 0.047 221 0.046 1.022
SER 26 0.042 275 0.060 0.698
THR 47 0.079 354 0.075 1.060
TRP 15 0.053 65 0.018 2.977
TYR 29 0.049 104 0.029 1.662
VAL 18 0.028 160 0.039 0.727




Table A2: (Continued)
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Group | & Il & lll (Peptides & Small & Large ProteinsCombined) # of Complexes = 62

Epitope Surface

Entire Surface

Amino
Acid Raw Average Raw Average Occurrence Propensity
Residues | Occurrence Mol_ar Occurrence Mol_ar
Fraction Fraction

ALA 26 0.038 109 0.039 0.980
ARG 68 0.079 399 0.081 0.979
ASN 76 0.087 479 0.089 0.987
ASP 62 0.077 347 0.075 1.032
CYS 3 0.030 25 0.004 0.468
GLN 52 0.071 359 0.067 1.048
GLU 58 0.078 418 0.084 0.934
GLY 39 0.045 188 0.047 0.959
HIS 21 0.031 109 0.029 1.079
ILE 25 0.030 120 0.021 1.437
LEU 36 0.056 197 0.063 0.890
LYS 75 0.090 601 0.096 0.930
MET 12 0.012 32 0.006 2.127
PHE 8 0.011 77 0.018 0.619
PRO 37 0.055 230 0.054 1.019
SER 32 0.045 282 0.059 0.767
THR 56 0.073 363 0.070 1.043
TRP 17 0.039 67 0.015 2.596
TYR 32 0.040 110 0.036 1.125
VAL 28 0.043 170 0.049 0.875
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Table A3
Antibody Data # of Complexes = 62
Paratope Surface Entire Surface
Amino
Acid Raw Average Raw Average OccurrerTce
Residues Occurrence Mol_ar Occurrence Mol'ar Propensity
Fraction Fraction

ALA 11 0.013 317 0.031 0.415
ARG 53 0.068 673 0.057 1.190
ASN 55 0.066 473 0.047 1.417
ASP 66 0.077 716 0.067 1.143
CYS 1 0.001 39 0.004 0.261
GLN 23 0.035 683 0.067 0.522
GLU 53 0.045 770 0.069 0.651
GLY 40 0.048 531 0.054 0.883
HIS 20 0.028 113 0.010 2.651
ILE 26 0.034 105 0.012 2.763
LEU 18 0.017 299 0.029 0.570
LYS 23 0.037 1209 0.107 0.347
MET 6 0.007 41 0.005 1.511
PHE 19 0.025 58 0.006 3.810
PRO 20 0.021 687 0.064 0.324
SER 69 0.086 1714 0.167 0.515
THR 66 0.085 1152 0.111 0.764
TRP 54 0.059 112 0.011 5.527
TYR 169 0.213 417 0.041 5.134
VAL 18 0.019 244 0.023 0.824
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Table A5: Average distance in Angstroms (A) from the epitope/paratofaes centers
and the standard deviation of each distance (values listed in descending order).

Amino Epitope Surface Amino Paratope Surface
Aqid Raw Aqid Raw

Residueg Average | Std. Dev.| Residues Average| Std. Dev

Freq. Freq.

GLY 40 9.99 3.44 GLN 23 12.31 4.47
TRP 17 9.81 2.95 GLU 53 11.85 2.81
THR 56 9.76 3.26 ILE 32 11.69 3.74
SER 32 9.74 3.91 PRO 21 11.6] 4.63
ARG 68 9.67 3.5 ALA 11 11.57 5.28
VAL 28 9.47 4.31 SER 71 11.41 3.23
ASN 76 8.93 2.73 ASP 67 11.32 4.46
GLU 62 8.86 2.84 LYS 24 11.28 2.5
HIS 21 8.84 3.1 MET 7 10.78 4.15
LYS 75 8.79 3.28 GLY 43 10.67 3.49
GLN 52 8.77 3.45 CYS 1 10.56 10.56
LEU 37 8.76 2.77 THR 73 10.46 2.68
ASP 62 8.63 2.28 ASN 55 10.09 2.9
PRO 37 8.54 3.91 ARG 62 9.88 2.47
TYR 37 8.04 2.98 VAL 18 9.69 3.21
PHE 8 8.01 3.07 HIS 24 8.88 2.62
ALA 29 7.95 3.36 TYR 194 8.8 2.72
MET 12 7.36 3.28 LEU 19 8.66 2.3
ILE 25 6.61 3.55 TRP 54 8.41 4.55
CYS 2 4.95 1.73 PHE 19 8.3 2.55
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Table A6: Average Epitope Occurrence Fraction

Amino Average Epitope Occurrence Fraction
Re?iﬂﬂes Group | Group Il Group Il G::Zl:blilnge‘dl" Grocuopn::icl:lejt i

ALA 0.533 0.033 0.030 0.032 0.153
ARG 0.333 0.227 0.133 0.185 0.221
ASN 0.467 0.204 0.083 0.150 0.227
ASP 0.400 0.198 0.067 0.139 0.202
CYS 0.000 0.000 0.010 0.004 0.003
GLN 0.400 0.295 0.058 0.189 0.240
GLU 0.400 0.146 0.111 0.130 0.196
GLY 0.300 0.142 0.020 0.087 0.139
HIS 0.333 0.058 0.089 0.072 0.135
ILE 0.067 0.024 0.052 0.037 0.044
LEU 0.494 0.088 0.019 0.057 0.163
LYS 0.367 0.211 0.127 0.174 0.220
MET 0.000 0.042 0.057 0.049 0.037
PHE 0.133 0.032 0.012 0.023 0.050
PRO 0.533 0.134 0.101 0.119 0.219
SER 0.267 0.076 0.033 0.057 0.108
THR 0.400 0.150 0.039 0.100 0.173
TRP 0.067 0.141 0.030 0.091 0.085
TYR 0.333 0.179 0.062 0.127 0.177
VAL 0.533 0.056 0.042 0.050 0.167




131

Table A7: Comparison of amino acid composition in percent area contributions to the
interface area of our data set to the Lo Conte et. al. data set

B
Amino Acid Residues Our Data . Lo Conte et.al Data
(All Interface regions)

ALA (A) 2.8 1.8
CYS (C) 0.4 0
ASP (D) 7.0 7.3
GLU (E) 5.5 4
PHE (F) 2.2 3
GLY (G) 5.3 5.9
HIS (H) 2.5 1.4

ILE (1) 3.2 3.1
LYS (K) 6.8 6.8
LEU (L) 5.0 3
MET (M) 1.2 0.8
ASN (N) 7.1 9.2
PRO (P) 2.9 2.6
GLN (Q) 5.2 3.8
ARG (R) 8.6 9.2
SER (S) 6.5 7.4
THR (T) 6.5 6.4
VAL (V) 4.0 1.5
TRP (W) 5.3 5.7
TYR (Y) 12.2 16.6

B - Percent Area Contributions to the Interface



Table A8: Substitution matrix before finding the Lograthmic Values

Antibody Paratope Surface (Ab)

A R N D c Q E G H | L K M F P S T w Y \'}
A | 0.101 | 0.106 | 0.105 | 0.127 | 0.135 | 0.115 | 0.110 | 0.109 | 0.117 | 0.109 | 0.091 | 0.111 | 0.086 | 0.092 | 0.114 | 0.102 | 0.096 | 0.092 | 0.086 | 0.141 | A
R | 0.106 | 0.145 | 0.130 | 0.148 | 0.162 | 0.144 | 0.131 | 0.131 | 0.152 | 0.135 | 0.110 | 0.143 | 0.100 | 0.102 | 0.136 | 0.122 | 0.121 | 0.108 | 0.105 | 0.160 | R
N | 0.105 | 0.130 | 0.138 | 0.164 | 0.190 | 0.150 | 0.141 | 0.145 | 0.158 | 0.145 | 0.114 | 0.145 | 0.113 | 0.118 | 0.158 | 0.132 | 0.115 | 0.118 | 0.095 | 0.180 | N
D | 0.127 | 0.148 | 0.164 | 0.216 | 0.263 | 0.188 | 0.181 | 0.177 | 0.189 | 0.175 | 0.136 | 0.166 | 0.129 | 0.150 | 0.195 | 0.159 | 0.130 | 0.133 | 0.110 | 0.236 | D
C | 0135 | 0.162 | 0.190 | 0.263 | 0.429 | 0.236 | 0.219 | 0.233 | 0.239 | 0.203 | 0.159 | 0.199 | 0.143 | 0.185 | 0.251 | 0.215 | 0.132 | 0.126 | 0.089 | 0.292 | C
S Q | 0.115 | 0.144 | 0.150 | 0.188 | 0.236 | 0.178 | 0.166 | 0.168 | 0.179 | 0.161 | 0.126 | 0.164 | 0.115 | 0.125 | 0.178 | 0.152 | 0.122 | 0.113 | 0.095 | 0.211 | Q
% E | 0.110 | 0.131 | 0.141 | 0.181 | 0.219 | 0.166 | 0.166 | 0.156 | 0.166 | 0.149 | 0.124 | 0.146 | 0.109 | 0.128 | 0.169 | 0.140 | 0.116 | 0.107 | 0.098 | 0.202 | E
§ G | 0.109 | 0.131 | 0.145 | 0.177 | 0.233 | 0.168 | 0.156 | 0.177 | 0.174 | 0.150 | 0.118 | 0.156 | 0.109 | 0.126 | 0.179 | 0.154 | 0.113 | 0.107 | 0.083 | 0.202 | G
;,5) H | 0117 | 0.152 | 0.158 | 0.189 | 0.239 | 0.179 | 0.166 | 0.174 | 0.193 | 0.167 | 0.130 | 0.169 | 0.123 | 0.135 | 0.187 | 0.157 | 0.128 | 0.120 | 0.097 | 0.214 | H
Q | 0.109 | 0.135 | 0.145 | 0.175 | 0.203 | 0.161 | 0.149 | 0.150 | 0.167 | 0.161 | 0.122 | 0.155 | 0.128 | 0.123 | 0.171 | 0.137 | 0.117 | 0.117 | 0.092 | 0.198 |
% L | 0.091 | 0.110 | 0.114 | 0.136 | 0.159 | 0.126 | 0.124 | 0.118 | 0.130 | 0.122 | 0.109 | 0.120 | 0.101 | 0.108 | 0.136 | 0.108 | 0.100 | 0.091 | 0.084 | 0.149 | L
Lé] K | 0.111 | 0.143 | 0.145 | 0.166 | 0.199 | 0.164 | 0.146 | 0.156 | 0.169 | 0.155 | 0.120 | 0.165 | 0.116 | 0.106 | 0.168 | 0.142 | 0.121 | 0.113 | 0.089 | 0.192 | K
8-, M | 0.086 | 0.100 | 0.113 | 0.129 | 0.143 | 0.115 | 0.109 | 0.109 | 0.123 | 0.128 | 0.101 | 0.116 | 0.143 | 0.113 | 0.144 | 0.100 | 0.090 | 0.092 | 0.077 | 0.147 | M
:(é F | 0092 | 0.102 | 0.118 | 0.150 | 0.185 | 0.125 | 0.128 | 0.126 | 0.135 | 0.123 | 0.108 | 0.106 | 0.113 | 0.145 | 0.148 | 0.113 | 0.094 | 0.096 | 0.090 | 0.153 | F
P | 0.114 | 0.136 | 0.158 | 0.195 | 0.251 | 0.178 | 0.169 | 0.179 | 0.187 | 0.171 | 0.136 | 0.168 | 0.144 | 0.148 | 0.208 | 0.157 | 0.117 | 0.116 | 0.086 | 0.224 | P
S | 0102 | 0.122 | 0.132 | 0.159 | 0.215 | 0.152 | 0.140 | 0.154 | 0.157 | 0.137 | 0.108 | 0.142 | 0.100 | 0.113 | 0.157 | 0.143 | 0.105 | 0.103 | 0.080 | 0.179 | S
T | 0096 | 0.121 | 0.115 | 0.130 | 0.132 | 0.122 | 0.116 | 0.113 | 0.128 | 0.117 | 0.100 | 0.121 | 0.090 | 0.094 | 0.117 | 0.105 | 0.112 | 0.109 | 0.100 | 0.139 | T
W | 0.092 | 0.108 | 0.118 | 0.133 | 0.126 | 0.113 | 0.107 | 0.107 | 0.120 | 0.117 | 0.091 | 0.113 | 0.092 | 0.096 | 0.116 | 0.103 | 0.109 | 0.146 | 0.104 | 0.131 | W
Y | 0.086 | 0.105 | 0.095 | 0.110 | 0.089 | 0.095 | 0.098 | 0.083 | 0.097 | 0.092 | 0.084 | 0.089 | 0.077 | 0.090 | 0.086 | 0.080 | 0.100 | 0.104 | 0.115 | 0.103 | Y
V | 0.141 | 0.160 | 0.180 | 0.236 | 0.292 | 0.211 | 0.202 | 0.202 | 0.214 | 0.198 | 0.149 | 0.192 | 0.147 | 0.153 | 0.224 | 0.179 | 0.139 | 0.131 | 0.103 | 0.277 | V
A R N D c Q E G H | L K M F P S T w Y v

AN}



