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Abstract

Checking the adequacy of a proposed parametric nonlinear regression model is important

in order to obtain useful predictions and reliable parameter inferences. Lack of fit is said to

exist when the regression function does not adequately describe the mean of the response

vector. This dissertation considers asymptotics, implementation and a comparative perfor-

mance for the likelihood ratio tests suggested by Neill and Miller (2003). These tests use

constructed alternative models determined by decomposing the lack of fit space according to

clusterings of the observations. Clusterings are selected by a maximin power strategy and a

sequence of statistical experiments is developed in the sense of Le Cam. L2 differentiability

of the parametric array of probability measures associated with the sequence of experiments

is established in this dissertation, leading to local asymptotic normality. Utilizing contigu-

ity, the limit noncentral chi-square distribution under local parameter alternatives is then

derived. For implementation purposes, standard linear model projection algorithms are

used to approximate the likelihood ratio tests, after using the convexity of a class of fuzzy

clusterings to form a smooth alternative model which is necessarily used to approximate the

corresponding maximin optimal statistical experiment. It is demonstrated empirically that

good power can result by allowing cluster selection to vary according to different points along

the expectation surface of the proposed nonlinear regression model. However, in some cases,

a single maximin clustering suffices, leading to the development of a Bonferroni adjusted

multiple testing procedure. In addition, the maximin clustering based likelihood ratio tests

were observed to possess markedly better simulated power than the generalized likelihood

ratio test with semiparametric alternative model presented by Ciprian and Ruppert (2004).
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Chapter 1

Introduction

Checking model adequacy in parametric nonlinear regression models is important in order

to obtain useful predictions and reliable parameter inferences. In addition, although non-

parametric and semiparametric regression techniques offer flexible approaches to modelling,

experimenters often prefer a parametric model for ease of interpretation. Also, provided

that a specified model is correct, more efficient inference procedures are available for the

parametric case. Consequently, a fundamental problem is that of testing the adequacy of a

proposed parametric model. Such tests are refered to as lack of fit or goodness of fit tests

by statisticians, and as model specification tests by econometricians. Lack of fit is said to

exist when the regression function does not adequately describe the mean of the response

vector. That is, expectation of the response vector is not an element of the expectation

surface corresponding to the proposed model.

More specifically, consider a parametric nonlinear regression model with additive error given

by

yni = f (xni, β) + εni (1.1)

where i = 1, 2, ..., n, n ≥ 1, and f (x, β) is a specified regression function. The xni

are deterministic predictor vectors contained in Rq and the observable random variables,
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{yni : 1 ≤ i ≤ n, n ≥ 1}, form a triangular array of rowwise independent variables. The

random errors εni are assumed to be identically distributed with zero mean and unknown

positive finite variance, σ2. Finally, the unknown parameter β ranges over a subset B ⊆ Rp.

Let yn = (yn1, ..., ynn)T , εn = (εn1, ..., εnn)T , and fn (β) = (f (xn1, β) , ..., f (xnn, β))T .

The expectation surface generated by β is the curved surface in Rn given by

Mn = {m ∈ Rn : m = fn (β) , β ∈ B}.

Lack of fit is said to exist when fn (β) does not adequately describe the mean of yn i.e. E (yn)

is not an element of the expectation surface Mn corresponding to the proposed model.

In case lack of fit exists in model (1.1), suppose that

E (yn) = fn (β) + ξn (β) (1.2)

where ξn (β) denotes a lack of fit vector known only to be in some subspace of the lack of fit

space given by TβM
⊥
n . TβMn represents the tangent vector space to the expectation surface

Mn at β ∈ B, and the superscript ⊥ represents orthogonal complementation. Furthermore,

TβMn is spanned by the vectors ∂fn (β) /∂βj for 1 ≤ j ≤ p.

In analogy with Christensen(1989, 1991), general nonlinear alternative models can be con-

structed by decomposing the lack of fit space according to clusterings of the observations.

In particular, a decomposition of TβM
⊥
n into orthogonal subspaces is given by

C (Zn (β)) ∩ TβM⊥
n ⊕ C (Zn (β))⊥ ∩ TβM⊥

n ⊕ S

where the notation C (A) denotes the column space of a matrix A, and Zn (β) denotes a clus-

tering corresponding to the point fn (β) ∈Mn. In particular, C (Zn (β))∩ TβM⊥
n represents

the nonlinear analogue to so-called between-cluster lack of fit, while C (Zn (β))⊥ ∩ TβM⊥
n
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represents the nonlinear analogue to so-called within-cluster lack of fit. Finally, S represents

the orthogonal complement of the direct sum of the nonlinear between- and within-cluster

lack of fit subspaces with respect to TβM
⊥
n , a relatively low dimensional subspace.

Neill and Miller (2003) presented extensions of Christensen’s methods to the nonlinear case.

In particular, statistical experiments were constructed which generalized Christensen’s or-

thogonal between- and within-cluster lack of fit tests to the nonlinear case, permitting

nonnormal errors as well. Each experiment determine a likelihood ratio test (LRT) and a

decision, based on yn, as to whether or not lack of fit exists in model (1.1). Extensions

of the methods of Miller et al. (1998, 1999) were then presented by Neill and Miller in

order to choose an optimal such experiment from a large class of such. The term statistical

experiment is used in the sense developed by Le Cam (1972), and described by Shiryaev and

Spokoiny (2000) and Le Cam and Yang (2001). The choice of an optimal alternative model,

against which to test the adequacy of a proposed model, involves comparing experiments

and taking limits of experiments using the local asymptotic normality (LAN) of Le Cam.

Chapter two provides a review of the literature which addresses the problem of testing for

lack of fit in parametric nonlinear models. Categories of such tests include those based on

measures of discrepancy between the parametric fits and nonparametric smooths of regres-

sion functions, as well as tests which use empirical processes based on residuals. In addition,

generalized LRTs based on semiparametric alternatives and various generalizations of the

classical regression lack of fit LRT with replication are noted.

Chapter three reviews the construction of statistical experiments as given by Neill and

Miller (2003), which represent nonlinear generalizations of Christensen’s (1989, 1991) linear

models for orthogonal between- and within-cluster lack of fit. In contrast to the linear case,

constructed full models use the convexity of a class of fuzzy clusterings to form smooth alter-
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native models. In particular, cluster selection is allowed to vary according to different points

along the expectation surface in the nonlinear case. The choice of clustering at such points

is based on a maximin power clustering strategy presented by Miller et al. (1998, 1999), and

extended by Neill and Miller (2003) to the nonlinear case. The resulting LRTs for assessing

nonlinear lack of fit are given, and an implementation algorithm is presented in this chapter.

Indeed, a major objective of this dissertation is the implementation of such LRTs for non-

linear lack of fit, and moreover, to empirically investigate the effectiveness of using maximin

power clusterings at different points along the expectation surface, or variations thereof.

Chapter four presents the results of such simulation studies using various data generators

to assess the effectiveness of the maximin cluster based LRTs presented by Neill and Miller.

Included in this chapter is a comparison study with a generalized LRT based on semipara-

metric alternatives, which has been previously discussed in the literature.

Chapter five addresses the necessary asymptotic distributional results associated with the

LRT statistics described in chapter three, and for carrying out such tests in the simulation

studies in chapter four. The derivation of the asymptotic noncentral chi-square distribution

under local parameter alternatives is based in part on the corresponding sequence of sta-

tistical experiments being LAN. A key condition to ensure LAN for regression problems is

that the sequence of experimetns be uniformly differentiable in quadratic mean, as defined

in chapter five.

Another objective of this dissertation is to establish the L2 differentiability of the parametric

array of probability measures associated with the sequence of experiments, as defined by

Rieder (1994). Using uniform q. m. d. and certain regularity conditions, such L2 differen-

tiability is determined in chapter five. The LAN property then follows from Theorem 2.3.9

4



of Rieder. The limit chi-square distribution is then determined by utilizing contiguity and

Le Cam’s third lemma. The method of proof follows van der Vaart (1998), and represents

generalization to the case of triangular arrays. The
√
n−consistency of maximum likelihood

estimates (MLE) under the restricted and unrestricted models is a requirement for the proof.

Such properties of MLEs are established in this chapter as well.
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Chapter 2

Literature Review

In the literature, several approaches for assessing the presence of lack of fit have been sug-

gested. More recent development includes the use of nonparametric regression techniques

to test the adequacy of parametric regression models. For this approach, a nonparametric

method of estimating the underlying regression function is used to provide a smoothed fit

to the observations. Such a smooth can be obtained by kernel and local regression methods

(Schucany(2004) and Loader(1999)), smoothing splines (Eubank(1999)) and expansions in

terms of basis functions using Fourier series or wavelets (Hart(1997), Hastie et al.(2001)).

Additionally, Schimek(2000) provides a comprehensive discussion of univariate and multi-

variate smoothing techniques for regression. A comparison of the fits given by the smooth

and the specified parametric model provides a test for lack of fit. Such testing methodology

is presented by Hardle and Mammen(1993), Zheng(1996), Hart(1997), Lee and Hart(1998),

Dette(1999), Aerts et al.(1999, 2000, 2004), Eubank et al.(2005) and Li(2005), for example.

Lopez and Patilea (2009) consider this approach to testing for lack of fit with censored data.

In addition, an adaptive goodness-of-fit test based on signed ranks for one dimensional pre-

dictors was presented by Rohde(2008). However, nonparametric estimation of a regression

with higher dimensional predictors can suffer from the so-called curse of dimensionality.

Thus, implementation of lack of fit testing methods which rely on nonparametric estimation

for such case can be problematic.
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Other approaches to test for lack of fit include tests which use marked empirical processes

based on residuals, as discussed by Stute(1997), Stute et al.(1998a) and Diebolt and Zu-

ber(1999). Tests based on residuals may be useful when specification of possible alternative

models is not clear. Guo and Koul(2008) suggest a lack of fit test of a parametric regres-

sion model with long memory design and errors based on a marked empirical process, as

well. In addition, asymptotically distribution free tests for lack of fit via martingale trans-

forms of partial sum residual empirical processes are presented by Stute et al.(1998b) and

Khmaladza and Koul(2004). Koul and Song(2008) construct such tests for the Berkson

measurement error regression model. Fan and Huang(2001) employ the adaptive Neyman

test on the Fourier transform of the residual vector to assess the adequacy of a parametric

regression model against nonparametric alternatives. Tests based on certain minimized L2

distances between a nonparametric regression function estimator and the fitted parametric

model are presented by Koul and Ni(2004) for the classical regression model, and by Koul

and Song(2009) for the Berkson measurement error model. A data driven smooth specifica-

tion test using model residuals was presented by Guerre and Lavergne(2005). In addition,

a goodness-of-fit testing procedure based on normalized differences of different estimators

was given by Caouder and Huet(1997). Finally, graphical methods used for checking model

adequacy based on residuals are given by Cook and Weisburg(1997).

In addition to the preceding lack of fit tests, (restricted) likelihood ratio tests (LRTs) with

the proposed parametric regression model embedded into a larger semiparametric family

using spline functions is discussed by Claeskens (2004) and Ciprian and Ruppert(2004).

Fan, Zhang and Zhang(2001) develop generalized LRTs for checking the goodness of fit for

a family of parametric regression models against nonparametric alternatives. Presnell and

Boos(2004) introduced a likelihood based test for assessing model adequacy which was mo-

tivated by cross-validation. When replicate measurements exist at the predictor settings,

then the classical lack of fit LRT introduced by Fisher(1922) may be applied to test the
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adequacy of a specified parametric model. Matsumoto and Wakaki(2005) give an asymp-

totic expansion of the null distribution of the classic test under nonnormality. Akritas and

Papadatos(2004) extend the classic test to accommodate the heteroscedastic case, and in-

vestigate the limiting distributions of the statistics under local alternatives. Using nearest

neighbor weights, Wang et al. (2008) and Akritas and Wang(2009) presented lack of fit tests

based on ANOVA-type test statistics which accommodate heterosecdastic errors. Neill(1988)

presented a generalization of the classical test for nonlinear regression based on near replicate

clusters, which was shown to be consistent whenever the proposed model is the orthogo-

nal projection of the true model. For normal theory linear models, Christensen(1989, 1991)

generalized the classical test by deriving uniformly most powerful invariant LRTs for detect-

ing general types of lack of fit, given a choice of near replicate clusters of the input variables.

The clustering based tests of Christensen(1989, 1991) and Neill(1988) require the selection

of near replicate clusters, the choice of which was left open. Miller et al.(1998, 1999) and

Neill et al. (2002) presented a statistically principled method for choosing a clustering of

the predictors for linear models. Their method is based on using Christensen’s tests and

involves the development of an alternative model using a large class of nonparametric step

functions. The problem of cluster selection in this context parallels the choice of a smooth-

ing parameter in nonparametric function estimation. Neill and Miller(2003) extended these

methods to the fully parametric nonlinear case, presenting likelihood based models and

associated LRTs for detecting general types of nonlinear lack of fit as derived from large

classes of possible clusterings.

The problem of testing model adequacy is historically old and has generated much research.

The preceding articles, and references therein, provide some more recent examples of such

work. This dissertation considers asymptotics, implementation and a comparative perfor-

mance for the LRTs suggested by Neill and Miller. Broader comparisons with other types

8



of lack of fit tests would be of interest in future work.
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Chapter 3

Likelihood-Based Tests for Detecting
General Types of Nonlinear Lack of
Fit

This chapter discusses the construction of general alternative models by decomposing the

lack of fit subspace according to clusterings of the observations, leading to between-cluster

lack of fit experiments.

A maximin power clustering strategy is described for clustering selection. In addition, an

implementation algorithm is presented that can be used to obtain an approximation to the

LRT for testing nonlinear between-cluster lack of fit.

3.1 Lack of Fit Experiments and Decisions

As indicated in Chapter 1, in analogy with Christensen(1989, 1991), general nonlinear al-

ternative models can be constructed by decomposing the lack of fit space according to

clusterings of the observations. A method of constructing such alternative models is given

in this subsection.

To specify a clustering of the n observations into c clusters, let Zn denote a n×c matrix with

Zn = [zij] for 1 ≤ i ≤ n, 1 ≤ j ≤ c, where zij ∈ [0, 1] and
c∑
j=1

zij = 1. Thus, the ijth element

of Zn assigns a measure of membership for the ith observation to the jth cluster. Such a

10



clustering is called a fuzzy clustering. A special case of a fuzzy clustering is obtained when

each observation belongs to exactly one cluster. The matrix Zn then contains only zeros

and ones, and the nonzero values in the jth column of Zn correspond to the observations in

the jth cluster, 1 ≤ j ≤ c . Such a clustering is called a crisp clustering. Fuzzy clusterings

are of interest in the nonlinear case since they can be used to obtain smooth alternative

models for general types of lack of fit.

An alternative model representing nonlinear between-cluster lack of fit is defined by

yn = fn (β) +BZn(β)γ + εn (3.1)

where BZn(β) is a matrix whose columns form a basis for C (Zn (β))∩TβM⊥
n . An experiment

based on model 3.1 is determined by n, the xni for 1 ≤ i ≤ n, and a choice of clustering

matrix Zn (β) for each β ∈ B. The experiment is specified by the parametric family Pn,θ of

probability measures on the Borel sets An in Rn where θ = (β, γ, η) and

dPn,θ (yn) =
n∏
i=1

pni,θ (yni) =
n∏
i=1

p
(
yni − (fn (β))i −

(
BZn(β)γ

)
i
, η
)
. (3.2)

Here p (ε, η) is the common probability density of the errors εni for 1 ≤ i ≤ n with respect

to some measure µ, say, and η is a vector of nuisance parameters in Rs. Hence, testing for

nonlinear between-cluster lack of fit can be carried out by using a LRT to test Ho : γ = 0

versus Ha : γ 6= 0. By symmetry, a test for nonlinear within-cluster lack of fit can be

obtained by replacing C (Zn (β)) with C (Zn (β))⊥ in the previous discussion. However, the

focus of this dissertation concerns the detection of nonlinear between-cluster lack of fit.

A class of clusterings from which Zn (β) , β ∈ B can be selected is discussed next. The con-

struction is based on a method given by Miller et al.(1998, 1999) for testing cluster-based
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lack of fit in the linear case. Let the predictor settings be denoted by Vn = {xni : 1 ≤ i ≤ n}.

To summarize the construction, the set of possible clusterings is given by the collection of

clusterings consistent with a specified cover Cn = {Cn1, ..., Cnm} of the predictors in Vn.

That is (identifying the elements of each Cnj with the indices of the corresponding observa-

tions), this collection consists of all partitions P of the set of observation indices {1, 2, ..., n}

which satisfy the condition: if P = {A1, ..., Aa} then, for each 1 ≤ i ≤ a, there exists a

1 ≤ j ≤ m such that Ai ⊆ Cnj. Further, atoms were defined to be those partitions consis-

tent with the cover Cn that group as many observations together as possible.

In addition, a method to determine a cover can be based on a family Fn = {Fn1, ..., Fnm}

of overlapping subsets in Rq whose union includes the predictors in Vn. The cover elements

are then given by Cnj = Fnj∩Vn for 1 ≤ j ≤ m. Also, a method of selecting the overlapping

subsets Fn consists of dividing the predictor variable space into cells, where any cell indexed

by a q-tuple with all odd components is referred to as an odd cell. The overlapping subsets

in Fn are then determined by taking the union of each nonempty odd cell with all contiguous

cells. Finally, the set of atoms consistent with the cover can be usefully represented as the

product space

κn,o = K1 × ...×Kn

where Ki, 1 ≤ i ≤ n, is the set of indices of the odd cells that contain observations with

which the ith observation can or must be clustered. Note that like coordinates within each

particular n-tuple indicate that the corresponding observations are to be clustered together.

In high dimensional problems, it may be that many of the odd cells are empty. In such case,

all that is required to specify a cover is a minimal set of disjoint cells Sn1, . . . , Snc where

each Snj contains at least one predictor setting and, moreover, every other cell that contains

a predictor setting must be contiguous to one of the Snj, 1 ≤ j ≤ c. A cover can then be

based on the cells Sn1, . . . , Snc analogous to the construction above.
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In the nonlinear case, in order to obtain smooth alternative models representing nonlinear

between-cluster lack of fit, Zn (β), β ∈ B, is chosen from the class of fuzzy clusters given

by the convex hull of the set of atoms κn,o as described below. This class will be denoted

as κn and the elements will be referred to as fuzzy atoms. Similar to the linear case, al-

ternative models for nonlinear between-cluster lack of fit constructed from the fuzzy atoms

lead to (asymptotically) χ2-distributed test statistics with degrees of freedom parameters

that are in concordance with the objective of better power (cf Chapter 5). Under very gen-

eral circumstances, each such Zn (β) is n× c with c constant, corresponding to the number

of nonempty odd cells. For example, if the occupancy pattern of the odd cells and their

neighbors (as far as being empty or not) is the same for each n, then the input data Vn

has the same shape for each n and c = dimC (Zn (β)) for each fuzzy atom Zn (β) ∈ κn.

It is henceforth assumed that the input data has the same shape for each n. Note that a

simplifying assumption is that xmi = xni for 1 ≤ i ≤ m ≤ n but this is not necessary.

A useful representaion of the class of fuzzy atoms is given next. First, the nonempty odd

cells are arbitrarily ordered and labeled 1, ..., c. Thus, each set Ki is a subset of these labels.

In particular, suppose Ki =
{
oi1 , ..., oini

}
where ni is the cardinality of Ki and 1 ≤ oij ≤ c

for 1 ≤ i ≤ n. Next, let co(E) denote the convex hull of a set E in Rd. Then co(Ki)

is formed by identifying oi1 , ..., oini with the standard basis elements e1, ..., eni of Rni , and

taking convex combinations of the ej, 1 ≤ j ≤ ni, in Rni . With the class of fuzzy atoms

defined above as κn = co(κn,o), Neill and Miller(2003) noted that

κn = co(K1)× ...× co(Kn).

This follows by first noting that the extreme points of the set on the right hand side are

the atoms κn,0. The equality then follows by the Krein-Milman theorem (e.g. Rudin (1991)).
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Next let
ni∑
j=1

λijej ∈ co(Ki), 1 ≤ i ≤ n. By the preceding representation of κn and the iden-

tifications made above, the ith row of the corresponding Zn (β) ∈ κn consists of λij as the

entries corresponding to the odd cells oij , 1 ≤ j ≤ ni, and zeros elsewhere. Since
ni∑
j=1

λij = 1

for 1 ≤ i ≤ n, such a Zn (β) does in fact represent a fuzzy clustering as defined above.

For the reasons given above, consideration is given to experiments that assign a fuzzy

clustering Zn (β) to each β ∈ B. As indicated above, each such Zn (β) is an n × c matrix

with c constant, so that the θ parameter space is the same for all experiments

(Rn, An, (Pn,θ : θ ∈ Θ))

where Θ = B × Rc−p × Rs. Recall that the probability measures Pn,θ depend on xni for

1 ≤ i ≤ n and Zn (β), β ∈ B. Therefore, the experiment (Rn, An, Pn,θ) will be denoted by

En (xn1, ..., xnn;Zn (β) ∈ κn, β ∈ B)

and referred to as a between-cluster lack of fit experiment (BCLFE).

3.2 Comparing Between-Cluster Lack of Fit Experi-

ments

For comparison of BCLFEs, the strategy employed by Miller et al.(1998,1999) for the linear

case was extended by Neill and Miller(2003) for use with nonlinear models. The question

to be addressed is, given two experiments which provide a good approximation for a ‘true

model ’, which experiment would give better power in detecting lack of fit? To make this

comparison in the linear case, a positive definite quadratic form τ on C (Gn)⊥ was introduced

and

lZn = inf

{
‖ν‖2

τ (ν)
: ν ∈ C (Zn) ∩ C (Gn)⊥ , ν 6= 0

}
(3.3)
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was maximized over the atoms Zn ∈ κn,0. For this case, f (xni, β) = g (xni)
T β where g is a

continuous vector valued function of the q predictor variables, and Gn is the n × p matrix

with i th row given by g (xni)
T . Also, C (Zn) ∩ C (Gn)⊥ is the linear between-cluster lack

of fit subspace corresponding to Zn as introduced by Christensen (1991). An atom ZM
n ,

say, which maximizes lZn is called a maximin power clustering, and determines an optimum

alternative model for testing linear between-cluster lack of fit. To make the comparison in

the nonlinear case let

lZn(β) = inf

{
‖ν‖2

τ (β) (ν)
: ν ∈ C

(
BZn(β)

)
, ν 6= 0

}
(3.4)

for each BCLFE where τ (β) is a positive definite quadratic form on TβM
⊥
n , and the columns

of BZn(β) form a basis for C (Zn (β))∩TβM⊥
n . Similar to the linear case, τ (β) is constructed

as

τ (β) (ν) =
∑

Zn∈ΞEn

wZn

∥∥∥PBZn(β)
ν
∥∥∥2

(3.5)

where ν ∈ TβM⊥
n with wZn ≥ 0 and

∑
Zn∈ΞEn

wZn = 1. Here ΞEn denotes the crisp clusterings

consistent with a given cover Cn that cluster only two observations, with all other obser-

vations being singleton clusters. In addition, PBZn(β)
represents the orthogonal projection

operator onto the subspace C
(
BZn(β)

)
. Next, let Xn denote the n × q matrix of predictor

settings with the ith row given by xTni. To incorporate nearness as measured by ‖Xn −Xn,o‖2

into the weight wZn , let

wZn = ‖Xn −Xn,o‖2 /
∑

Z∗n∈ΞEn

∥∥Xn −X∗n,o
∥∥2

(3.6)
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where Xn,o = PZnXn and X∗n,o = PZ∗nXn for Z∗n ∈ ΞEn . The notation ‖A‖2 denotes the

squared matrix norm defined by
n∑
i=1

q∑
j=1

a2
ij where aij is the ijth element of an n × q matrix

A.

For the nonlinear case, let ZM
n (β), say, maximize lZn(β) over the fuzzy clusterings κn for each

β ∈ B. Note that ZM
n (β0) can be considered to be an optimal power selection clustering

for testing the approximating linear model around β = β0. An experiment

En
(
xn1, ..., xnn;ZM

n (β) ∈ κn, β ∈ B
)

is called a maximin between-cluster lack of fit experiment (MMBCLFE). As indicated in

Chapter 5, using ZM
n (β) for each β ∈ B provides (asymptotically) an optimum BCLFE for

testing lack of fit in the model yn = fn (β) + εn.

3.3 Asymptotics and the Parameter Space

To determine the role of lZn(β) in the asymptotic limit, lZn(β) is next described in terms of

the parameter space rather than the observed data space Rn. Note that a choice of the basis

vectors BZn(β) for C (Zn (β)) ∩ TβM⊥
n determines a mapping Φn : B ×Rc−p → Rn by

Φn (β, γ) = fn (β) +BZn(β)γ.

The Fisher information metric for the expectation surface parameters is

IEn (ϑ)jl = κ

(
n∑
i=1

∂Φni

∂ϑj

∂Φni

∂ϑl

)

where ϑ = (β, γ) and

κ = κ (η) =

∫
R

(
p
′)2

p
dµ,

which is κΦ∗n (Euclidean metric) with Φ∗n denoting the pull-back operation under Φn. Note

κ is independent of n, the xni for 1 ≤ i ≤ n, and Zn (β). Also, IEn depends on the nuisance
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parameter η only through κ.

Next choose the columns of BZn(β) to be an orthogonal basis of C (Zn (β)) ∩ TβM⊥
n with

respect to the Euclidean metric of length
√
n. It then follows that along the space γ = 0 in

the γ−direction, Φ∗n is the Euclidean metric with respect to the parameter γ. This is the

direction in which lZn(β) is calculated. In fact, lZn(β) is the minimum eignvalue of 1
κ
IEn (β, 0)

in the γ−direction. Scaling does not change the comparison so that the minimum eignvalue

of 1
nκ
IEn (β, 0) in the γ−direction, l̂Zn(β), say, can be used for comparison purposes. The

multiplier 1
n

is included since the convergence 1
n
IEn (β, 0)→ IE (β, 0), say, is required for the

local type of LAN convergence of experiments (cf Chapter 5).

3.4 Implementation Algorithm

In this subsection an algorithm is presented to obtain an approximating sequence of BCLFEs

which will be used in place of the corresponding MMBCLFE sequence for implementation

purposes. In particular, for a given data size n, a reasonable smooth approximation to the

MMBCLFE can be obtained as follows.

1. First, choose a finite set β1, ..., βN from B and at these points take Z∗n (βi) to be the

crisp clustering in κn,o which maximizes lZn(βi) for 1 ≤ i ≤ N .

2. Next, using the fact that the set of fuzzy clusterings κn is convex, an algorithm for

calculating Z∗n (β), say, for the remaining β ∈ B can be determined. Specifically, let

g : R → R be 3-times continuously differentiable with g (x) = 0 for x ≤ 0, g (x) = 1

for x ≥ 1 and g
′
(x) > 0 for 0 < x < 1. Consider first the case where the β parameter

space B is one-dimensional and suppose β1 < β2 < ... < βN with Z∗n (βi) specified

according to step 1. Define

Z∗n (β) = Z∗n (β1) for β ≤ β1,
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Z∗n (β) =
[
1− g

(
β−βi

βi+1−βi

)]
Z∗n (βi) + g

(
β−βi

βi+1−βi

)
Z∗n (βi+1) for βi ≤ β ≤ βi+1 with

i = 1, ..., N − 1,

Z∗n (β) = Z∗n (βN) for β ≥ βN .

It follows that Z∗n (β) is 3-times continuously differentiable. Note that if Z∗n (βi) for

i = 1, ..., N are differentiable functions of some other parameter then Z∗n (β) would be

jointly differentiable, as required in the following generalization.

Next suppose the β parameter space B is two-dimensional and a grid of points(
β

(1)
i , β

(2)
j

)
, 1 ≤ i, j ≤ N , has been selected with corresponding Z∗n

(
β

(1)
i , β

(2)
j

)
speci-

fied according to step 1, and where β
(1)
1 < β

(1)
2 < ... < β

(1)
N and β

(2)
1 < β

(2)
2 < ... < β

(2)
N .

Z∗n
(
β(1), β(2)

)
can then be determined as follows.

First, apply the one-dimensional case with β(1) as the parameter to the lines β(2) = β
(2)
1 ,

β(2) = β
(2)
2 , ... , β(2) = β

(2)
N to obtain Z∗n

(
β(1), β

(2)
1

)
, Z∗n

(
β(1), β

(2)
2

)
, ... , Z∗n

(
β(1), β

(2)
N

)
for
(
β(1), β

(2)
j

)
∈ B.

Next, for each β
(1)
∗ apply the one-dimensional case to the line β(1) = β

(1)
∗ with

Z∗n

(
β

(1)
∗ , β

(2)
1

)
, Z∗n

(
β

(1)
∗ , β

(2)
2

)
, ... , Z∗n

(
β

(1)
∗ , β

(2)
N

)
specified to obtain Z∗n

(
β

(1)
∗ , β(2)

)
for
(
β

(1)
∗ , β(2)

)
∈ B. The preceding construction extends to the case in which the β

parameter space B is p-dimensional as well.

Thus, the preceding algorithm provides an approximating sequence of BCLFEs

En (xn1, ..., xnn;Z∗n (β) ∈ κn, β ∈ B)

which will be used in place of the corresponding sequence of MMBCLFEs

En
(
xn1, ..., xnn;ZM

n (β) ∈ κn, β ∈ B
)
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for implementation purposes.

Note in the linear case, the choices in step 1 always give the same crisp atom so that this

method provides the crisp atom maximin power clustering.

The calculation of the LRT statistic can now be discussed using the approximating sequence

of BCLFEs given above. In particular, computation of least squares estimates for β and

γ in model 3.1 is considered next. Thus, it is a matter of finding the nearest point to the

observed data yn on the expectation surface Mn, and also the nearest point to yn on the

expectation surface

M∗
n =

{
m ∈ Rn : m = fn (β) +BZ∗n(β)γ : (β, γ) ∈ B ×Rc−p}

for the alternative (full) model provided by En (xn1, ..., xnn;Z∗n (β) ∈ κn, β ∈ B). Note that

Mn ⊂ M∗
n. Since fn (β) is a specified algebraic expression, a Gauss-Newton least squares

estimation method can be used to estimate β, and hence solve the nearest point calculation

for Mn (e.g. Seber and Wild(1989)).

The nearest point calculation for M∗
n can be reduced to a β-space calculation since M∗

n is

fibered across Mn by affine varieties. Specifically, for each β ∈ B, let

Vβ =
{
m ∈ Rn : m = fn (β) +BZ∗n(β)γ : γ ∈ Rc−p}.

Now suppose (β0, γ0) gives the nearest point ŷn to yn on M∗
n. Then ŷn ∈ Vβ0 and ŷn is the

nearest point to yn on Vβ0 . In fact, for each β let γ̂ (β) give the nearest point to yn on Vβ

and let

M∗∗
n =

{
m ∈ Rn : m = fn (β) +BZ∗n(β)γ̂ (β) : β ∈ B

}
,

consisting of the nearest points to yn on the fibers Vβ. Since each Vβ is an affine variety,

standard linear model projection algorithms can be used to determine the parameter val-

ues γ̂ (β) for each β (e.g. Christensen(2002)). The preceding provides a computational
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procedure for obtaining any point on M∗∗
n coming from a particular value of β. Finally,

application of a Gauss-Newton method would allow one to find the nearest point to yn on

M∗∗
n , and hence on M∗

n.

The preceding computation provides MLEs for β and γ in the case of Normally distributed

random errors. The more general case of exponential family regression is the subject of

future work.
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Chapter 4

Simulation Results

This chapter presents empirical power results for the cluster based LRTs proposed by Neill

and Miller (2003). Alternative models were constructed using a maximin power clustering

strategy. In particular, the adequacy of proposed exponential, cosine and Michaelis-Menten

nonlinear models was assessed when lack of fit was present due to data generators incor-

porating nonlinear between-cluster lack of fit, and also in cases when functionally different

data generators were used.

The proposed test procedures were also compared empirically with a generalized LRT pre-

sented by Ciprian and Ruppert (2004). This approach uses penalized splines to construct a

semiparametric alternative model.

4.1 Example 1: Exponential Model

The nonlinear regression function considered is given by f(x, β) = β1e
−xβ2 where β1 > 0

and β2 > 0 and is called an exponential decay model. Three examples from ’curvefit.com’

for which exponential decay applies are:

1. When ligands dissociate from receptors, the number of molecules that dissociate in any

short time interval is proportional to the number that were bound at the beginning
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of that interval. Equivalently, each individual molecule of ligand bound to a receptor

has a certain probability of dissociating from the receptor in any small time interval.

That probability does not get higher as the ligand stays on the receptor longer.

2. When radioactive isotopes decay, the number of atoms that decay in any short interval

is proportional to the number of undecayed atoms that were present at the beginning

of the interval. This means that each individual atom has a certain probability of

decaying in a small time interval, and that probability is constant. The probability

that any particular atom will decay does not change over time. The total decay of the

sample decreases with time because there are fewer and fewer undecayed atoms.

3. When drugs are metabolized by the liver or excreted by the kidney, the rate of

metabolism or excretion is often proportional to the concentration of drug in the

blood plasma. Each drug molecule has a certain probability of being metabolized or

secreted in a small time interval. As the drug concentration decreases, the rate of its

metabolism or excretion decreases as well.

In the function f(x, β) = β1e
−xβ2 , β2 and β1 are defined as the rate constant and value of

the function when x is set to zero, respectively.

The power of the proposed LRT for detecting nonlinear between-cluster lack of fit is inves-

tigated in the case of Normal errors. Specifically, Uniformly distributed predictor values for

x on the interval [0, 10] were used to analyze data sizes of 30 and 100. One run of each

such data size was generated in R (cf Appendices A and B). As discussed in Chapter 3, a

cover Cn was specified by dividing [0, 10] into the cells {[0, 2), [2, 4), [4, 6), [6, 8), [8, 10]}, with

associated overlapping subsets given by Fn = {Fn1, Fn2, Fn3} = {[0, 4), [2, 8), [6, 10]}. Since

the cardinality of the set of crisp clusterings κn,o becomes very large with increasing data

size, a subset comprised of ordered partitions from the full collection κn,o was utilized to

facilitate computational feasibility for the simulation. In particular, for the specified cover
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Cn, suppose in the even cells [2, 4) and [6, 8) there are k and l predictor values and denote

their ordered values by {x11, x12, ..., x1k} and {x21, x22, ..., x2l}, respectively. Now group all

predictor values < x1m in even cell [2, 4) with odd cell [0, 2), while all predictor values ≥ x1m

in even cell [2, 4) are grouped with odd cell [4, 6) for m = 1, 2, ..., k. In addition, if m = k

group all predictor values ≤ x1m in even cell [2, 4) with odd cell [0, 2). Similarly, group

all predictor values < x2n in even cell [6, 8) with odd cell [4, 6), while all predictor values

≥ x2n in even cell [6, 8) are grouped with odd cell [8, 10] for n = 1, 2, ..., l. In addition, if

n = l group all predictor values ≤ x2n in even cell [6, 8) with odd cell [4, 6). This leads to

(k + 1)(l + 1) different groupings (crisp clusterings) of the predictor values based on the 5

cells chosen. Based on the specified cover Cn, 49 and 459 such crisp clusterings were pro-

duced for the data sizes 30 and 100, respectively. The maximin power clustering criterion,

as described in Section 3.2, was then used to find the best such crisp atom Z∗n(βi) at each

of N = 5 chosen β values. For illustration purposes, the values of β = (β1, β2) were selected

as {(1, 1), (1, 3), (1, 5), (1, 7), (1, 9)}. This is the first step in the implementation algorithm

as discussed in Section 3.4. The plots for the regression function f(x, β) = β1e
−xβ2 for the

selected (β1, β2, σ) values are depicted in Figures 4.1 and 4.2.

Note that the cover Cn specified above is based on c = 3 nonempty odd cells, and thus

C(Zn(β)) has dimension three for all fuzzy clusterings. Further, the dimension of TβMn

is equal to two so that the dimension of C(BZn(β)) is equal to one for all corresponding

nonlinear between-cluster lack of fit subspaces.

Tables 4.1 and 4.2 give the crisp clusterings Z∗n(βi) for each of the N = 5 selected β values

and for each data size, respectively. These tables indicate that the maximin clusterings do

indeed vary according to different points along the expectation surface as indexed by the

parameters (β1, β2). Considerable difference in selected clusters can be noted especially with

increasing data size.
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Figure 4.1: Plots of yi = β1e
−xiβ2 + εi with n = 100, σ = .05 and the selected β2 values
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Figure 4.2: Plots of yi = β1e
−xiβ2 + εi with n = 100, σ = .5 and the selected β2 values

24



values of β (β1, β2) = (1, 1) (β1, β2) = (1, 3) and (β1, β2) = (1, 7) and
(β1, β2) = (1, 5) (β1, β2) = (1, 9)

Z∗n (β) {x1 : x9} {x1 : x9} {x1 : x9}
{x10 : x17} {x10 : x19} {x10 : x20}
{x18 : x30} {x20 : x30} {x21 : x30}

Table 4.1: Maximin clustering results for exponential model with n = 30 and the selected
(β1, β2) values

values of β (β1, β2) = (1, 1) (β1, β2) = (1, 5) (β1, β2) = (1, 7) (β1, β2) = (1, 9)
(β1, β2) = (1, 3)

Z∗n (β) {x1 : x19} {x1 : x19} {x1 : x36} {x1 : x43}
{x20 : x72} {x20 : x75} {x37 : x75} {x44 : x77}
{x73 : x100} {x76 : x100} {x76 : x100} {x78 : x100}

Table 4.2: Maximin clustering results for exponential model with n = 100 and the selected
(β1, β2) values

In the implementation algorithm described in Section 3.4, the function

g(x) =


0 x ≤ 0

1/32
[
−5 (2x− 1)7 + 21 (2x− 1)5 − 35 (2x− 1)3 + 35 (2x− 1) + 16

]
x ∈ (0, 1)

1 x ≥ 1

was used. Using this function g and the maximin crisp clusterings for the N = 5 chosen

β values, Z∗n(β) can be determined in principle for the remaining β ∈ B according to the

formula given in Section 3.4. A grid of 100 β1 and 100 β2 values each over the interval [0, 10]

was considered for approximation purposes.

As mentioned in Section 3.4, standard linear model projection techniques are used to de-

termine the nearest point to a simulated yn on M∗
n. Accordingly, 10,000 points on M∗∗

n

were considered and the nearest point calculation was approximated by selecting the point
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on M∗∗
n with minimal Euclidean distance to yn. The same approach, rather than a Gauss-

Newton method, was also used to solve the nearest point calculation for Mn. Thus, the

calculation of the log LRT statistic

Λn = 2 log
supΘ dP

n
θ

supΘo dP
n
θ

(yn)

can be approximated for a simulated yn.

4.1.1 Data Generation by Perturbing the Proposed Exponential
Model

The simulated yn is obtained using the model yn = β1e
−xnβ2 + γB0 + εn, where B0 is a basis

vector for the between cluster lack of fit subspace at selected values of β2. The power of the

test was investigated at particular values of (β1, β2, γ, σ) with size α = .05, and the results

for 1000 simulations of each such setting are given in Tables 4.3, 4.4, 4.5 and 4.6.

As noted in Tables 4.1 and 4.2, the maximin clusterings vary according to different points

along the expectation surface. However, for computational purposes, it is of interest to

determine whether comparable power can be obtained by using a single clustering. To in-

vestigate such, the maximin clustering associated with (β1, β2) = (1, 5) was used for all β

values. Simulation results corresponding to the same (β1, β2, γ, σ) settings are summarized

in Tables 4.3, 4.4, 4.5 and 4.6. Notably, the power of the test with the single maximin clus-

tering can be less than the power attained when clusterings are allowed to vary according

to points on the expectation surface, especially with increasing data size.

In addition, the ML estimates of the parameters (β1, β2, γ, σ) via standard linear model

projection techniques were consistent with parameter settings used to generate the data,

especially with the case of multiple maximin clusterings.
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(β1, β2) γ with multiple maximin with a single maximin
clusters cluster

(1, 1) 0 .036 .028
.1 .06 .05
.2 .19 .13
.5 .81 .56
1 1 1

(1, 3) 0 .051 .055
.025 .1 .08
.05 .22 .17
.1 .59 .57
.2 .99 .99
.5 1 1

(1, 5) 0 .056 .052
.025 .07 .08
.05 .21 .16
.1 .63 .59
.2 .98 .97
.5 1 1

(1, 7) 0 .053 .049
.025 .07 .08
.05 .21 .14
.1 .63 .55
.2 .98 .97
.5 1 1

(1, 9) 0 .056 .051
.025 .08 .07
.05 .21 .14
.1 .59 .51
.2 .96 .95
.5 1 1

Table 4.3: Power of the test for exponential model with n = 30, σ = .05, selected (β1, β2),
and γ values
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(β1, β2) γ with multiple maximin with a single maximin
clusters cluster

(1, 1) 0 .043 .044
.025 .07 .1
.05 .2 .15
.1 .48 .36
.2 .96 .83
.5 1 1

(1, 3) 0 .058 .057
.025 .08 .08
.05 .17 .19
.1 .49 .43
.2 .96 .93
.5 1 1

(1, 5) 0 .05 .054
.025 .08 .09
.05 .18 .16
.1 .54 .48
.2 .98 .98
.5 1 1

(1, 7) 0 .052 .059
.025 .19 .16
.05 .22 .13
.1 .47 .43
.2 .96 .92
.5 1 1

(1, 9) 0 .052 .05
.025 .13 .12
.05 .23 .08
.1 .60 .24
.2 .96 .71
.5 1 1

Table 4.4: Power of the test for exponential model with n = 100, σ = .05, selected (β1, β2),
and γ values
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(β1, β2) γ with multiple maximin with a single maximin
clusters cluster

(1, 1) 0 .041 .039
.5 .07 .11
1 .33 .33
2 .9 .9
3 1 1

(1, 3) 0 .058 .053
.2 .06 .07
.5 .23 .19
1 .64 .55
2 .98 .97
3 1 1

(1, 5) 0 .053 .047
.2 .06 .08
.5 .2 .18
1 .61 .52
2 .96 .97
3 1 1

(1, 7) 0 .055 .051
.2 .06 .09
.5 .2 .18
1 .59 .5
2 .96 .95
3 .99 1

(1, 9) 0 .05 .046
.2 .06 .08
.5 .2 .17
1 .58 .51
2 .96 .95
3 .99 1

Table 4.5: Power of the test for exponential model with n = 30, σ = .5, selected (β1, β2),
and γ values

29



(β1, β2) γ with multiple maximin with a single maximin
clusters cluster

(1, 1) 0 .059 .04
.2 .06 .08
.5 .16 .11
1 .37 .37
2 .87 .83
3 .98 .98

(1, 3) 0 .057 .05
.2 .12 .08
.5 .24 .21
1 .49 .42
2 .98 .93
3 1 1

(1, 5) 0 .05 .055
.2 .14 .11
.5 .26 .18
1 .54 .5
2 .98 .96
3 1 1

(1, 7) 0 .052 .049
.1 .13 .09
.2 .25 .19
1 .6 .53
2 .98 .96
3 1 1

(1, 9) 0 .059 .047
.2 .18 .09
.5 .27 .2
1 .61 .39
2 .97 .86
3 1 1

Table 4.6: Power of the test for exponential model with n = 100, σ = .5, selected (β1, β2),
and γ values
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4.1.2 Data Generation using a Functionally Different Model than
the Proposed Exponential Model

The model yn = α
1+xn

+ εn is used to generate the response vector. This data generator is

plotted in Figures 4.4 and 4.3 for selected (α, σ) values when n = 100. Note that, other

than the simulated yn, the simulation parameters are the same as the previous case. The

power of the test was investigated at particular values of (α, σ) with nominal size .05, and

the results for 1000 simulations of each such setting are given in Tables 4.7 and 4.8.

For comparison, the power of the test based on using a single maximin clustering was con-

sidered. In particular, the clustering associated with (β1, β2) = (1, 5) was used. Notably,

for this case, the power of the test with the single clustering is generally better than the

power attained when clusterings are allowed to vary according to points on the expectation

surface. Detecting lack of fit of the proposed model based on multiple maximin clusterings

or a single maximin clustering is also of general interest. For this purpose, a simple Bonfer-

roni adjusted multiple testing procedure is proposed and simulation results are summarized

in the same table. As depicted in the multiple testing column of Tables 4.7 and 4.8, the

multiple test is reasonably successful in detecting departures from the proposed model.

For the case of σ = .05, most of the observations in the above paragraph apply as shown

in Table 4.8. However, the empirical power results for the cases of α = .1 and α = .3 do

not follow the same pattern as indicated for the other α values. When α = .1, the power of

the test with multiple maximin clusterings is better than the corresponding power with a

single maximin cluster. This can be justified by comparing Figure 4.1 with the black color

line in Figure 4.4. When α = .3, the powers of the tests with multiple maximin clusterings

and with a single maximin cluster are very low. One can see that the green color line in

Figure 4.4 does not deviate substantially with plots in Figure 4.1 for all selected β2 values.
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Figure 4.3: Plots of the data generator yi = α
1+xi

+ εi with n = 100, σ = .5 and selected α
values

α with multiple maximin with a single maximin with multiple
clusters cluster testing

1 .07 .08 .05
3 .15 .36 .27
5 .22 .77 .7
7 .34 .98 .93
10 .51 1 1

Table 4.7: Power of the test for exponential model with data generator yi = α
1+xi

+ εi,
n = 100, σ = .5 and selected α values
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Figure 4.4: Plots of the data generator yi = α
1+xi

+ εi with n = 100, σ = .05 and selected
α values

α with multiple maximin with a single maximin with multiple
clusters cluster testing

.1 .33 .19 .31

.2 .07 .43 .33

.3 .04 .09 .07

.4 .29 .63 .73

.5 .21 .56 .43
1 .4 .87 .86
2 .68 1 1

Table 4.8: Power of the test for exponential model with data generator yi = α
1+xi

+ εi,
n = 100, σ = .05 and selected α values
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4.1.3 Comparison with a Non-Maximin Cluster and the Ciprian
and Ruppert (CR) Test

In this section, the tests based on maximin clusterings are compared to a likelihood based

approach suggested by Ciprian and Ruppert(2004). Ciprian and Ruppert proposed a likeli-

hood and restricted likelihood ratio test for lack of fit of a nonlinear regression function. In

their approach, the proposed model under the null hypothesis is approximated by using a

first order Taylor series around the MLEs of the proposed model parameters. The alterna-

tive (full) model is constructed nonparametrically using penalized splines and the linearized

version of the proposed model, which leads to a semiparametric model. In addition, the

error distribution assumed to be Normal with homogeneous variance.

Testing for an exponential regression function (proposed model), yi = γ1 + δ1 exp (δ2xi) + εi,

was one of the examples in the Ciprian and Ruppert(2004) paper. They have studied the

empirical power results with parameter settings γ1 = 1, δ1 = 1, δ2 = −1 and σ = .05 when

n = 100. Uniformly distributed predictor values for x on the interval [0, 1] were used. MLEs

of the parameters of the proposed model are obtained using the Gauss-Newton procedure

in standard software packages. A piecewise constant spline with 15 knots was used when

constructing the alternative model. The simulated yn vector is obtained via the model

yi = γ1 + δ1 exp (δ2xi + dx2
i ) + εi and plotted in Figure 4.5 for selected values of d. The

power of the test was investigated with nominal size .05 and empirical power results with

10,000 simulations are given in Table 4.9. The restricted likelihood ratio test statistic as

given by Ciprian and Ruppert was used for this purpose.

Note that above parameter settings give a shifted version of the exponential decay model,

yi = β1 exp (−β2xi) + εi, when β2 = 1 with corresponding n and σ values. Therefore, the

data generator used by Ciprian and Ruppert gives another different simulated yn vector to

test the lack of fit of the proposed exponential decay model with the proposed test. However,
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maximin cluster selection depends upon the values of the predictor variable x. Previously

we have used Uniformly distributed predictor values for x on the interval [0, 10] but Ciprian

and Ruppert used the interval [0, 1]. Notably, one can use the same maximin clusters that

are given in Table 4.2 for selected points on the expectation surface. However, values of the

predictor variable x are downscaled by .1 for this purpose. Empirical power results with

10,000 simulations and .05 nominal size are summarized in Table 4.9. As Table 4.9 indi-

cates, the power of the Ciprian and Ruppert test can be considerably less than the power of

the proposed test, especially with smaller d values. This observation applies to any of the

cluster based testing procedures (i.e. multiple maximin clusters, single maximin cluster, or

even with the Bonferroni adjusted multiple testing approach), noting Figures 4.5 and 4.6.

It is of interest to compare the power of the proposed lack of fit test with the power

of the Ciprian and Ruppert test for other parameter settings of the data generator, e.g.

δ2 = (−3,−5,−7,−9). This additional information was not available in the Ciprian and

Ruppert paper. In fact, convergence problems were noted when obtaining MLEs of the

parameters of the proposed model with the Gauss-Newton method for the other δ2 settings.

Alternatively, a grid search method via standard linear model projection techniques was

used to obtain MLEs of the parameters of the proposed model. Accordingly, power results

were obtained for the Ciprian and Ruppert test for the other parameter settings. The em-

pirical power results for this test and the proposed lack of fit tests were obtained with 10,000

simulations and .05 nominal size and are recorded in Tables 4.10 and 4.11. As one can note

from these tables, the proposed tests are successful in detecting lack of fit of the proposed

model. In fact, the proposed lack of fit tests are superior to the Ciprian and Ruppert test

across all parameter settings.

Constructing alternative models based on maximin clusterings of observations in predictor

space is the approach taken thus far. Alternatively, one might select a structured but non-
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maximin cluster based on values in predictor space and then construct the alternative model

for use in the proposed test procedure. Since the x values are Uniformly distributed over

the interval [0, 1] it may be reasonable to use the cut off points 1
3

and 2
3

to create 3 clusters

and carryout the proposed test as in previous cases. Simulation results with such a selected

clustering are summarized in Tables 4.9, 4.10 and 4.11. It is evident from these tables that

the empirical power of the proposed test can be considerably less with such a non-maximin

cluster, compared to cluster selection based on the maximin power clustering criterion to

construct alternative models. However, note that the empirical power of the proposed test

with such a non-maximin cluster is still better than power results for CR test.
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Figure 4.5: Plots of the data generator yi = γ1 + δ1 exp (δ2xi + dx2
i ) + εi with n = 100,

σ = .05, (γ1, δ1, δ2) = (1, 1,−1) and selected d values
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Figure 4.6: Plots of yi = β1e
−xiβ2 + εi with X from U (0, 1), n = 100, σ = .05 and selected

β2 values to do maximin clusterings

(δ2, d) with multiple with a single with multiple with a CR test
maximin maximin testing non-maximin
clusters cluster cluster

(−1, 0) .041 .038 .037 .04 .048
(−1, .2) .29 .21 .25 .2 .067
(−1, .3) .67 .7 .79 .8 .072
(−1, .5) .79 .84 .93 .98 .134
(−1, .6) .99 .86 .99 .99 .223
(−1, .8) .99 .99 .99 .96 .872
(−1, 1) 1 1 1 1 1

Table 4.9: Power of the test for exponential model with data generator yi = γ1 +
δ1 exp (δ2xi + dx2

i ) + εi, n = 100, σ = .05, δ2 = −1 and selected d values
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(δ2, d) with multiple with a single with multiple with a CR test
maximin maximin testing non-maximin
clusters cluster cluster

(−3, 0) .04 .05 .03 .05 .047
(−3, .3) .13 .09 .07 .08 .059
(−3, .5) .22 .18 .17 .12 .063
(−3, .6) .32 .22 .23 .15 .09
(−3, .8) .61 .53 .52 .27 .157
(−3, 1) .78 .76 .74 .53 .372
(−3, 2) 1 1 1 1 .761
(−5, 0) .05 .05 .03 .07 .049
(−5, .8) .08 .06 .03 .07 .051
(−5, 1) .07 .06 .05 .07 .065

(−5, 1.5) .2 .17 .15 .08 .089
(−5, 2) .54 .39 .43 .2 .22

(−5, 2.5) .95 .79 .89 .44 .356
(−5, 3) 1 .99 1 .93 .725

Table 4.10: Power of the test for exponential model with data generator yi = γ1 +
δ1 exp (δ2xi + dx2

i ) + εi, n = 100, σ = .05, δ2 = (−3,−5) and selected d values

(δ2, d) with multiple with a single with multiple with a CR test
maximin maximin testing non-maximin
clusters cluster cluster

(−7, 0) .03 .05 .03 .02 .051
(−7, 2) .06 .07 .05 .04 .067
(−7, 3) .21 .2 .16 .13 .098

(−7, 3.5) .37 .37 .27 .29 .124
(−7, 4) .66 .67 .54 .52 .364

(−7, 4.5) .96 .95 .93 .78 .543
(−7, 5) 1 1 1 .98 .739
(−9, 0) .04 .03 .03 .02 .046
(−9, 4) .09 .11 .1 .01 .057
(−9, 5) .18 .27 .21 .03 .076

(−9, 5.5) .23 .39 .33 .07 .097
(−9, 6) .49 .64 .53 .29 .222

(−9, 6.5) .78 .87 .83 .65 .557
(−9, 7) .99 .98 .99 .94 .754

Table 4.11: Power of the test for exponential model with data generator yi = γ1 +
δ1 exp (δ2xi + dx2

i ) + εi, n = 100, σ = .05, δ2 = (−7,−9) and selected d values
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4.2 Example 2: Cosine Model

Sine and cosine functions are useful in studies of general periodic patterns. Those are appli-

cable when modeling recurring phenomena such as sound or light waves. Some important

applications can be found in physics, electrical engineering and biology. In physics, sine

and cosine functions are used to describe the simple harmonic motion, which models many

natural phenomena, such as the movement of a mass attached to a spring and, for small

angles, the pendular motion of a mass hanging by a string. Some biological processes follows

predictable patterns that repeat approximately once every 24 hours which leads to circadian

data/rhythms. For example, pressure against the walls of the blood vessels of a patient,

doppler signals for carotid and femoral arteries etc.

In particular, a cosine regression function is considered and is given by f(x, β) = β1 cos β2x

with the usual notations, β1 for amplitude and β2 for frequency. Uniformly distributed

predictor values for x on the interval [0, 10] were used to analyze a data size of 100. The

error distribution was assumed to be Normal when investigating power of the proposed

LRT for detecting between-cluster lack of fit. The cover, overlapping subsets and ordered

crisp clusterings were created as described in Section 4.1. The maximin power clustering

criterion, as described in Section 3.2, was then used to find the best crisp atom Z∗n(βi) at

each of N = 9 chosen β values. For illustration purposes, the values of β = (β1, β2) were

selected as {(1, .3), (1, .6), (1, .9), (1, 1.2), (1, 1.5), (1, 1.8), (1, 2.1), (1, 2.4), (1, 2.7)}. The plots

of the nonlinear regression function f(x, β) = β1 cos β2x for the selected (β1, β2) values are

depicted in Figure 4.7.

Similar to the exponential model, the dimension of C(BZn(β)) is equal to one for all corre-

sponding nonlinear between-cluster lack of fit subspaces. Table 4.12 gives the crisp cluster-

ings Z∗n(βi) for each of the N = 9 selected β values. This table indicates that the maximin

clusterings do indeed vary according to different points along the expectation surface as in-
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dexed by the parameters (β1, β2). In fact, we get different clusterings for all selected β values.
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Figure 4.7: Plots of yi = β1 cos β2xi + εi with n = 100, σ = .1 and selected β2 values

values of β Z∗n (β)
(β1, β2) = (1, .3) {x1 : x25}, {x26 : x72}, {x73 : x100}
(β1, β2) = (1, .6) {x1 : x21}, {x22 : x72}, {x73 : x100}
(β1, β2) = (1, .9) {x1 : x19}, {x20 : x74}, {x75 : x100}
(β1, β2) = (1, 1.2) {x1 : x44}, {x45 : x76}, {x77 : x100}
(β1, β2) = (1, 1.5) {x1 : x37}, {x38 : x80}, {x81 : x100}
(β1, β2) = (1, 1.8) {x1 : x30}, {x31 : x78}, {x79 : x100}
(β1, β2) = (1, 2.1) {x1 : x37}, {x38 : x88}, {x89 : x100}
(β1, β2) = (1, 2.4) {x1 : x19}, {x20 : x76}, {x77 : x100}
(β1, β2) = (1, 2.7) {x1 : x20}, {x21 : x73}, {x74 : x100}

Table 4.12: Maximin clustering results for cosine model with n = 100 and the selected
(β1, β2) values

Using the g function given in section 4.1 and the maximin crisp clusterings for the N = 9

chosen β values, Z∗n(β) can be obtained for the remaining β ∈ B according to the formula
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given in Section 3.4. A grid of 50 β1 and 50 β2 values each over the interval [0, 3] was

considered for approximation purposes.

The parameter estimation under the proposed model and the constructed full model were

obtained via standard linear model projection techniques and the log LRT statistic was

computed for a simulated yn, similar to the exponential model case.

4.2.1 Data Generation by Perturbing the Proposed Cosine Model

The simulated yn is obtained using the model yn = β1 cos (β2xn) + γB0 + εn, where B0 is a

basis vector for between cluster lack of fit subspace at selected values of β. The power of the

test was investigated at particular values of (β1, β2, γ, σ) with size α = .05, and the results

for 1000 simulations of each such setting are given in Tables 4.13 and 4.14. The empirical

power of the proposed LRT for detecting nonlinear between-cluster lack of fit is presented

for both multiple maximin clusterings and a single maximin cluster i.e. the maximin clus-

tering associated with (β1, β2) = (1, 1.5). Notably, the power of the test with the single

maximin clustering can be considerably less than the power attained when clusterings are

allowed to vary according to points on the expectation surface, especially with the (β1, β2)

settings {(1, .3) , (1, .6) , (1, 2.1) , (1, 2.7)}. However, power results for the (β1, β2) = (1, .9)

case were very low for both multiple maximin clusterings and a single maximin cluster.

Parameter estimates for (β1, β2, γ, σ) under the proposed cosine model and constructed full

model were consistent with parameter settings used to simulate yn, especially for the mul-

tiple maximin clustering case. The proposed cosine model is plotted in Figure 4.8 with the

parameter settings (β1, β2, σ) = {(1, .9, .5) , (1, 1.5, .5)} . The constructed full model is plot-

ted in Figure 4.9 with the parameter settings (β1, β2, σ) = (1, .9, .5) and selected γ values.

By comparing Figures 4.8 and 4.9, the low power for the proposed LRT can be explained

i.e the proposed model and simulated data agree closely with each other.
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(β1, β2) γ σ with multiple maximin with a single maximin
clusters cluster

(1, .3) 0 .5 .03 0
.5 .08 0
1 .33 0
2 .88 .02
3 .93 .02

(1, .6) 0 .1 .08 .08
.025 .12 .1
.25 .58 .24
.5 1 .47
1 1 .78

-.025 .07 .09
-.25 .66 .23
-.5 1 .67
-1 1 .66

(1, .9) 0 .5 .04 .07
1 .3 .08
2 .46 .19
3 .25 .4

-.5 .11 .07
-2 .18 .07
-3 .08 .06

(1, 1.2) 0 .5 .03 .06
1 .48 .34
2 .96 .82

-.5 .17 .11
-1 .5 .38
-2 .99 .84
-3 1 .99

(1, 1.5) 0 .5 .05 .05
1 .5 .5
2 .95 .95

-.5 .13 .13
-1 .43 .43
-2 .95 .95

Table 4.13: Power of the test for cosine model with n = 100 selected σ, (β1, β2), and γ
values
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(β1, β2) γ σ with multiple maximin with a single maximin
clusters cluster

(1, 1.8) 0 .5 .07 .09
1 .47 .38
2 .99 .76

-.5 .1 .12
-1 .5 .36
-2 .96 .8

(1, 2.1) 0 .1 .03 .04
-.025 .03 .05
-.1 .15 .05
-.5 .99 .15
-1 1 .27

(1, 2.4) 0 .5 .07 .03
.5 .22 .14
1 .44 .37
2 .98 .91

(1, 2.7) 0 .5 .05 .07
.5 .16 .14
1 .46 .26
2 .98 .68

Table 4.14: Power of the test for cosine model with n = 100 selected σ, (β1, β2), and γ
values
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Figure 4.8: Plots of yi = β1 cos β2xi + εi with n = 100, σ = .5 and β2 = (.9, 1.5)
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Figure 4.9: Plots of the data generator yi = cos (.9xi) + γB0 + εi with n = 100, σ = .5 and
selected γ values
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4.2.2 Data Generation using a Functionally Different Model than
the Proposed Cosine Model

The model yn = β3xn + cos (β4xn) + εn is used to generate the response vector. One can

note that this model adds a trend component to the proposed model along with different

frequencies. The simulated data is depicted in Figures 4.10 and 4.11 for selected (β3, β4)

values with σ = .1 and n = 100. The power of the test was investigated at chosen values of

(β3, β4) with nominal size .05, and the results for 1000 simulations of each such settings are

given in Tables 4.15 and 4.16.

As described in Section 4.1.2, a simple Bonferroni adjusted multiple testing procedure for

detecting nonlinear between-cluster lack of fit can be useful as well. Note the empirical

power of the proposed LRT when (β3, β4) = (.01, 1.65) was very low (see Table 4.15). The

light blue color curve in Figure 4.10 represents the corresponding generated data and the

same color curve in Figure 4.7 gives one of the proposed models. These two curves agree

closely with each other and thus low power results for the tests using either multiple max-

imin clusterings or a single maximin cluster. Similar arguments can be made to justify the

low power for the tests with cases (β3, β4) = {(.01, .75) , (.01, 2.25) , (.01, 2.55)}.

One can observe that all plots in Figure 4.11 add some trend to the corresponding proposed

model in Figure 4.7. Furthermore, some extra bending or lengthening can be noticed at

the end of the curve. Therefore, as indicated in Table 4.16, excellent power results with the

multiple testing procedure, as can be justified by comparing Figures 4.7 and 4.11.

4.3 Example 3: Michaelis-Menten Model

The Michaelis-Menten equation is widely used in enzyme kinetic assays according to ’curve-

fit.com’. The enzyme velocity (Y ) is proportional to the concentration (X) of enzyme-
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Figure 4.10: Plots of the data generator yi = β3xi + cos (β4xi) + εi with n = 100, σ = .1,
β3 = .01 and selected β4 values

(β3, β4) with multiple maximin with a single maximin with multiple
clusters cluster testing

(.01, .45) .68 .75 .88
(.01, .75) .02 .24 .2
(.01, 1.05) .79 .97 .97
(.01, 1.35) .21 .2 .2
(.01, 1.65) .02 .02 .03
(.01, 1.95) .47 .01 .34
(.01, 2.25) .06 .17 .11
(.01, 2.55) .03 .41 .23

Table 4.15: Power of the test for cosine model with data generator yi = β3xi+cos (β4xi)+εi,
n = 100, σ = .1, β3 = .01 and selected β4 values
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Figure 4.11: Plots of the data generator yi = β3xi + cos (β4xi) + εi with n = 100, σ = .1,
β3 = .1 and selected β4 values

(β3, β4) with multiple maximin with a single maximin with multiple
clusters cluster testing

(.1, .45) 1 .03 1
(.1, .75) 0 1 1
(.1, 1.05) 0 1 1
(.1, 1.35) 1 1 1
(.1, 1.65) 1 1 1
(.1, 1.95) 0 1 1
(.1, 2.25) 0 1 1
(.1, 2.55) .86 1 1

Table 4.16: Power of the test for cosine model with data generator yi = β3xi+cos (β4xi)+εi,
n = 100, σ = .1, β3 = .1 and selected β4 values
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substrate complexes and the relationship is given by yi = γ0xi
γ1+xi

+εi. This model is sometimes

called a rectangular hyperbola or a binding isotherm. Note that this plot on log transformed

concentration values becomes sigmoidal. A similar model is used in determining the rela-

tionship between density of crop planting and crop yield in agriculture.

A scaled version of the Michaelis-Menten equation, yi = xi
β1+β2xi

+εi was used, where β1 = γ1
γ0

and β2 = 1
γ0

. Uniformly distributed predictor values for x on the interval [0, 100] were used

to analyze the data size of 100. Similar to the other two examples, the error distribution

was assumed to be Normal when investigating power of the proposed LRT for detecting

nonlinear between-cluster lack of fit. One run of data size 100 was generated in R (cf Ap-

pendix C). As discussed in Chapter 3, a cover Cn was specified by dividing [0, 100] into the

cells {[0, 20), [20, 40), [40, 60), [60, 80), [80, 100]}, with associated overlapping subsets given

by Fn = {Fn1, Fn2, Fn3} = {[0, 40), [20, 80), [60, 100]}. Again, a subset comprised of ordered

partitions from the full collection κn,o was utilized to facilitate computational feasibility for

the simulation. In particular, for the specified cover Cn, suppose in the even cells [20, 40) and

[60, 80) there are k and l predictor values and denote the ordered values by {x11, x12, ..., x1k}

and {x21, x22, ..., x2l}, respectively. Now group all predictor values < x1m in even cell [20, 40)

with odd cell [0, 20), while all predictor values ≥ x1m in even cell [20, 40) are grouped with

odd cell [40, 60) for m = 1, 2, ..., k. In addition, if m = k group all predictor values ≤ x1m

in even cell [20, 40) with odd cell [0, 20). Similarly, group all predictor values < x2n in even

cell [60, 80) with odd cell [40, 60), while all predictor values ≥ x2n in even cell [60, 80) are

grouped with odd cell [80, 100] for n = 1, 2, ..., l. In addition, if n = l group all predictor

values ≤ x2n in even cell [60, 80) with odd cell [40, 60). This leads to (k+ 1)(l+ 1) different

groupings (crisp clusterings) of the predictor values based on the 5 cells chosen. Based on the

specified cover Cn, 459 such crisp clusterings were produced for the data size 100. The max-

imin power clustering criterion, as described in Section 3.2, was then used to find the best

crisp atom Z∗n(βi) at each of N = 9 chosen β values. For illustration purposes, the values of
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β = (β1, β2) were selected as {(.1, .003) , (.1, .006) , (.1, .009) , (.2, .003) , (.2, .006) , (.2, .009)}

and {(.3, .003) , (.3, .006) , (.3, .009)}. The plots of the nonlinear regression function f(x, β) =

x
β1+β2x

for the selected (β1, β2, σ) values are depicted in Figures 4.12 and 4.13.

Similar to the previous two models, the dimension of C(BZn(β)) is equal to one for all

corresponding nonlinear between-cluster lack of fit subspaces. Table 4.17 gives the crisp

clusterings Z∗n(βi) for each of the N = 9 selected β values. This table indicates that the

maximin clusterings vary according to different points along the expectation surface as in-

dexed by the parameters (β1, β2). However, such clusterings are nearly identical.
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(.3,.009)

Figure 4.12: Plots of yi = xi
β1+β2xi

+ εi with n = 100, σ = .05 and selected (β1, β2) values

Using the g function given in section 4.1 and the maximin crisp clusterings for the N = 9

chosen β values, Z∗n(β) can be obtained for the remaining β ∈ B according to the formula

given in Section 3.4. A grid of 125 β1 values over the interval [0, .4] and 125 β2 values over

the interval [0, .01] were considered for approximation purposes.
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Figure 4.13: Plots of yi = xi
β1+β2xi

+ εi with n = 100, σ = .5 and selected (β1, β2) values

values of β (β1, β2) = {(.1, .003) , (.1, .006)} (β1, β2) = {(2, .003) , (3, .003)}
(β1, β2) = {(.1, .009) , (.2, .006)}
(β1, β2) = {(.2, .009) , (.3, .006)}

(β1, β2) = {(.3, .009)}
Z∗n (β) {x1 : x22} {x1 : x23}

{x23 : x73} {x24 : x72}
{x74 : x100} {x73 : x100}

Table 4.17: Maximin clustering results for Michaelis-Menten model with n = 100 and the
selected (β1, β2) values
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The parameter estimation under the proposed model and the constructed full model were

obtained via standard linear model projection techniques and log LRT statistic was com-

puted for a simulated yn, similar to the exponential and cosine model cases. Note that a two

dimensional grid search is necessary to estimate parameters since the tangent space (hence

the lack of fit subspace) depends on both parameters in the model. Whereas in exponential

and cosine models, the tangent space (hence the lack of fit subspace) depends on only one

parameter in the model i.e. β2.

4.3.1 Data Generation by Perturbing the Proposed Michaelis-
Menten Model

The simulated yn is obtained using the model yn = xn
β1+β2xn

+ γB0 + εn, where B0 is a basis

vector for the between cluster lack of fit subspace at selected values of β. The power of the

test was investigated at particular values of (β1, β2, γ, σ) with size α = .05, and the results

for 1000 simulations of each such setting are given in Table 4.18. The empirical power of the

proposed LRT for detecting nonlinear between-cluster lack of fit is presented for both multi-

ple maximin clusterings and a single maximin cluster i.e. the maximin clustering associated

with (β1, β2) = (.2, .006). Notably, the power of the test with the single maximin clustering

closely agrees with the power attained when clusterings are allowed to vary according to

points on the expectation surface. This observation is consistent with the nearly identical

maximin crisp clusterings for selected β values, as indicated in Table 4.17.

4.3.2 Data Generation using a Functionally Different Model than
the Proposed Michaelis-Menten Model

The model yn = x2
n

β3+β4x2
n

+ εn is used to generate the response vector. The simulated data is

depicted in Figures 4.14 and 4.15 for selected (β3, β4, σ) values when n = 100. The power
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(β1, β2) γ with multiple maximin with a single maximin
clusters cluster

(.1, .003) 0 .04 .04
.5 .11 .11
1 .2 .2
2 .53 .53
3 .78 .78

(.1, .006) 0 .04 .04
.5 .12 .12
1 .24 .24
2 .67 .67
3 .85 .85

(.1, .009) 0 .04 .04
.5 .07 .07
1 .31 .31
2 .87 .87
3 1 1

(.2, .003) 0 .04 .04
.5 .06 .07
1 .21 .23
2 .77 .73
3 .98 .95

(.2, .009) 0 .04 .04
.5 .11 .11
1 .23 .23
2 .76 .76
3 .99 .99

(.3, .003) 0 .04 .04
.5 .05 .07
1 .22 .22
2 .76 .69
3 .98 .93

(.3, .006) 0 .04 .04
.5 .11 .11
1 .21 .21
2 .57 .57
3 .96 .96

Table 4.18: Power of the test for Michaelis-Menten model with n = 100, σ = .5, selected
(β1, β2), and γ values
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of the test was investigated at chosen values of (β3, β4, σ) with nominal size .05, and the re-

sults for 1000 simulations of each such setting are given in Tables 4.19 and 4.20. The power

results in these tables can be justified by comparing Figures 4.14 and 4.15 with Figures 4.12

and 4.13 i.e plots for data generator are subtantially different from plots for the proposed

model for selected parameter settings.
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Figure 4.14: Plots of the data generator yi =
x2
i

β3+β4x2
i

+ εi with n = 100, σ = .05 and

selected (β3, β4) values

(β3, β4) with multiple maximin clusters with a single maximin cluster
(.2, .01) 1 1
(.3, .006) 1 1
(.3, .008) 1 1
(.4, .004) 1 1
(.4, .007) 1 1

Table 4.19: Power of the test for Michaelis-Menten model with data generator yi =
x2
i

β3+β4x2
i

+ εi, n = 100, σ = .05 and selected (β3, β4) values
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Figure 4.15: Plots of the data generator yi =
x2
i

β3+β4x2
i

+ εi with n = 100, σ = .5 and selected

(β3, β4) values

(β3, β4) with multiple maximin clusters with a single maximin cluster
(.2, .01) 1 1
(.3, .006) 1 1
(.3, .008) 1 1
(.4, .004) 1 1
(.4, .007) 1 1

Table 4.20: Power of the test for Michaelis-Menten model with data generator yi =
x2
i

β3+β4x2
i

+ εi, n = 100, σ = .5 and selected (β3, β4) values
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In addition, the model yn = log (β3 + β4xn) + εn was used to generate the response vector.

The simulated data is depicted in Figure 4.16 for selected (β3, β4) values with σ = .5 and

n = 100. The power of the test was investigated at chosen values of (β3, β4) with nominal

size .05, and the results for 1000 simulations of each such setting are given in Table 4.21.

Considering scaling with corresponding parameter setting, the exceptionally low power re-

sults in this table can be justified by comparing Figure 4.16 with Figure 4.13 i.e plots for

data generator closely agree with plots for proposed model for selected parameter settings.
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Figure 4.16: Plots of the data generator yi = log (β3 + β4xi) + εi with n = 100, σ = .5,
β3 = 2 and selected β4 values
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(β3, β4) with multiple maximin clusters with a single maximin cluster
(2, 1) 0 0
(2, 10) 0 0
(2, 20) 0 0
(2, 40) 0 0
(2, 80) 0 0
(2, 160) 0 0
(2, 250) 0 0

Table 4.21: Power of the test for Michaelis-Menten model with data generator yi =
log (β3 + β4xi) + εi, n = 100, σ = .5 and selected (β3, β4) values
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Chapter 5

Asymptotics

This chapter is devoted to proving the asymptotic non-central Chi-square distribution prop-

erty of the log LRT statistic for testing Ho : γ = 0 versus Ha : γ 6= 0 in a sequence of BCLFEs

(i.e. Theorem 1 below). In addition, the use of MMBCLFEs in testing lack of fit is justified

in terms of providing optimal power (i.e. Theorem 2 below).

A proof of Theorem 1 is based in part on the requirement that the sequence of BCLFEs be

locally asymptotic normal (LAN). A key condition to ensure LAN is that the sequence of

BCLFEs satisfy the following definition.

Definition:

A sequence of BCLFEs En (xn1, ..., xnn;Zn (β) ∈ κn, β ∈ B) is uniformly differentiable in

quadratic mean (i.e. uniform q.m.d.) at θ if for each 1 ≤ i ≤ n and n ≥ 1 there exists a

measurable function `
′

ni,θ such that

∫ (√
pni,θ+h̃ −

√
pni,θ −

1

2
h̃T `

′

ni,θ

√
pni,θ

)2

dµ = o

(∥∥∥h̃∥∥∥2
)

independent of n and i as h̃→ 0 in <c+s, where pni,θ denotes the density of yni. ♦

Lemma 1 below gives mild conditions under which uniform q.m.d. obtains. Note that

θ = (ϑ, η) where ϑ = (β, γ) with dimension c and the dimension of η is s. Define
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Φn (ϑ) = fn (β) +BZn(β)γ for n ≥ 1. Under conditions of Lemma 1, `
′

ni,θ =
∂ log pni,θ

∂θ
.

Lemma 1:

Let sni (y, θ) = s (y − Φni (ϑ) , η) for 1 ≤ i ≤ n and n ≥ 1 where s (ε, η) =
√
p (ε, η) and

p (ε, η) is the error density. Fix θ ∈ Θ and δ > 0 and let M > 0 such that for any φ =
(
ϑ̃, η̃
)

with ‖φ− θ‖ < δ,

∣∣∣Φni

(
ϑ̃
)∣∣∣ ≤M,

∣∣∣∣∣∣
∂Φni

(
ϑ̃
)

∂ϑj

∣∣∣∣∣∣ ≤M and

∣∣∣∣∣∣
∂2Φni

(
ϑ̃
)

∂ϑj∂ϑl

∣∣∣∣∣∣ ≤M,

for j, l = 1, ..., c, for all n and i. In addition, let

T (y) = sup
|ξ|<M,‖ζ−η‖<δ

(
|s1 (y − ξ, ζ)|+ |s1,1 (y − ξ, ζ)|

+
s∑

k=1

|s1,k+1 (y − ξ, ζ)|+
s∑

k=1

s∑
m=1

|sk+1,m+1 (y − ξ, ζ)|
)

where sj (z1, ..., zs+1) = ∂s(z1,...,zs+1)
∂zj

and sj,l (z1, ..., zs+1) = ∂2s(z1,...,zs+1)
∂zj∂zl

, and suppose
∫
T 2dµ <

∞. Then the corresponding sequence of BCLFEs is uniformly q.m.d. at θ. ♦

Proof:

Note that

∂sni(y,θ)
∂ϑj

= s1 (y − Φni (ϑ) , η)
(
−∂Φni(ϑ)

∂ϑj

)
, for j = 1, ..., c,

∂sni(y,θ)
∂ηk

= sk+1 (y − Φni (ϑ) , η) , for k = 1, ..., s,

∂2sni(y,θ)
∂ϑj∂ϑl

= s1 (y − Φni (ϑ) , η)
(
−∂Φni(ϑ)
∂ϑj∂ϑl

)
+ s1,1 (y − Φni (ϑ) , η)

(
−∂Φni(ϑ)

∂ϑj

)(
−∂Φni(ϑ)

∂ϑl

)
,

for j, l = 1, ..., c,

∂2sni(y,θ)
∂ϑj∂ηk

= s1,k+1 (y − Φni (ϑ) , η)
(
−∂Φni(ϑ)

∂ϑj

)
, for j = 1, ..., c and k = 1, ..., s,

∂2sni(y,θ)
∂ηk∂ηl

= sk+1,l+1 (y − Φni (ϑ) , η) , for k, l = 1, ..., s.
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Let r (t) = sni (y, θ + th) for t ∈ <, h ∈ <c+s. Then

r
′
(t) =

c+s∑
j=1

∂sni (y, θ + th)

∂θj
hj, and

r
′′

(t) =
c+s∑
j=1

c+s∑
l=1

∂2sni (y, θ + th)

∂θj∂θl
hjhl.

Now r (t) = r (0)+r
′
(0) t+ 1

2
r
′′

(τ) t2 for some 0 ≤ τ ≤ t. Thus, setting t = 1 and rearranging

terms we obtain

sni (y, θ + h)− sni (y, θ)−
c+s∑
j=1

∂sni (y, θ)

∂θj
hj =

1

2

c+s∑
j=1

c+s∑
l=1

∂2sni (y, θ + τh)

∂θj∂θl
hjhl

for some 0 ≤ τ ≤ 1. Next consider the matrix
[
∂2sni(y,φ)
∂θj∂θl

]
as a linear operator Lni (y, φ), say,

from <c+s into <c+s so that

(
c+s∑
j=1

c+s∑
l=1

∂2sni (y, θ + τh)

∂θj∂θl
hjhl

)2

≤ ‖Lni (y, θ + τh)‖2 ‖h‖4 .

Now let Tni (y, θ) = sup
‖φ−θ‖<δ

‖Lni (y, φ)‖ and note for ‖h‖ < δ that we have ‖θ + τh− θ‖ < δ.

Thus,

(
sni (y, θ + h)− sni (y, θ)−

c+s∑
j=1

∂sni (y, θ)

∂θj
hj

)2

≤ 1

4
T 2
ni (y, θ) ‖h‖

4 .

By hypothesis, for ‖φ− θ‖ < δ,

∣∣∣∂2sni(y,φ)
∂θj∂θl

∣∣∣ ≤ ( ∣∣∣s1

(
y − Φni

(
ϑ̃
)
, η̃
)∣∣∣+

∣∣∣s1,1

(
y − Φni

(
ϑ̃
)
, η̃
)∣∣∣+

s∑
k=1

∣∣∣s1,k+1

(
y − Φni

(
ϑ̃
)
, η̃
)∣∣∣+

s∑
k=1

s∑
m=1

∣∣∣sk+1,m+1

(
y − Φni

(
ϑ̃
)
, η̃
)∣∣∣ )M2.

Thus, by the equivalence of norms in finite dimensional vector spaces, there exists a K > 0

such that for ‖φ− θ‖ < δ,
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‖Lni (y, φ)‖ ≤
( ∣∣∣s1

(
y − Φni

(
ϑ̃
)
, η̃
)∣∣∣+

∣∣∣s1,1

(
y − Φni

(
ϑ̃
)
, η̃
)∣∣∣

+
s∑

k=1

∣∣∣s1,k+1

(
y − Φni

(
ϑ̃
)
, η̃
)∣∣∣+

s∑
k=1

s∑
m=1

∣∣∣sk+1,m+1

(
y − Φni

(
ϑ̃
)
, η̃
)∣∣∣ )K.

Hence, by hypothesis for ‖φ− θ‖ < δ, ‖Lni (y, φ)‖ ≤ T (y)K so that Tni (y, θ) ≤ T (y)K

for all n and i. The preceding finally gives

(
sni (y, θ + h)− sni (y, θ)−

c+s∑
j=1

∂sni (y, θ)

∂θj
hj

)2

≤ 1

4
T 2 (y)K2 ‖h‖4

from which we obtain

∫ (
sni (y, θ + h)− sni (y, θ)−

c+s∑
j=1

∂sni (y, θ)

∂θj
hj

)2

µ (dy) ≤ 1

4
‖h‖4K2

∫
T 2 (y)µ (dy)

whenever ‖h‖ < δ for all n and i. ♦

The following lemma gives conditions under which a uniform q.m.d. sequence of BCLFEs

can be shown to be LAN.

Lemma 2:

Assume the conditions of Lemma 1 hold. In addition, suppose that

p2
1/p

2, p1pj+1/p
2, pj+1pk+1/p

2, p4
1/p

4, p3
1pj+1/p

4,

p2
1pj+1pk+1/p

4, p1pj+1pk+1pl+1/p
4 and pj+1pk+1pl+1pm+1/p

4

for j, k, l,m = 1, ..., s are P -integrable (dP = p) where pj (z1, ..., zs+1) = ∂p(z1,...,zs+1)
∂zj

for

j = 1, ..., s+ 1.

Let κ∗ = max
(∣∣∣κ(2)

1

∣∣∣ , ∣∣∣κ(2)
1,j

∣∣∣ , ∣∣∣κ(2)
j,k

∣∣∣) and κ∗∗ = max
(∣∣∣κ(4)

1

∣∣∣ , ∣∣∣κ(4)
1,j

∣∣∣ , ∣∣∣κ(4)
1,j,k

∣∣∣ , ∣∣∣κ(4)
1,j,k,l

∣∣∣ , ∣∣∣κ(4)
j,k,l,m

∣∣∣)
where
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κ
(2)
1 = P

(
p21
p2

)
, κ

(2)
1,j = P

(
p1pj+1

p2

)
, κ

(2)
j,k = P

(
pj+1pk+1

p2

)
,

κ
(4)
1 = P

(
p41
p4

)
, κ

(4)
1,j = P

(
p31pj+1

p4

)
, κ

(4)
1,j,k = P

(
p21pj+1pk+1

p4

)
,

κ
(4)
1,j,k,l = P

(
p1pj+1pk+1pl+1

p4

)
, κ

(4)
j,k,l,m = P

(
pj+1pk+1pl+1pm+1

p4

)
for j, k, l,m = 1, ..., s. Then Pni,θg

2
ni,θ ≤ ‖h‖

2 κ∗M2 and Pni,θg
4
ni,θ ≤ ‖h‖

4 κ∗∗M4 for all n ≥ 1

and 1 ≤ i ≤ n, where gni,θ = hT `
′

ni,θ. ♦

Proof:

Note that

`
′

ni,θ (y) = 1
pni,θ(y−Φni(ϑ),η)

(
p1 (y − Φni (ϑ) , η)

(
−∂Φni(ϑ)

∂ϑ1

)
, . . . ,

p1 (y − Φni (ϑ) , η)
(
−∂Φni(ϑ)

∂ϑc

)
, p2 (y − Φni (ϑ) , η) , . . . , ps+1 (y − Φni (ϑ) , η)

)T
.

Since
∣∣∣∂Φni(ϑ)

∂ϑj

∣∣∣ ≤ M, j = 1, ..., c, for all n and i, and by the Cauchy-Schwarz inequality and

the definitions of κ∗ and κ∗∗ we have that

Pni,θg
2
ni,θ = Pni,θ

c+s∑
j=1

c+s∑
k=1

hjhk

(
`
′

ni,θ

(
`
′

ni,θ

)T)
jk

≤
c+s∑
j=1

c+s∑
k=1

|hj| |hk|κ∗M2 ≤ ‖h‖2 κ∗M2

and

Pni,θg
4
ni,θ = Pni,θ

c+s∑
j=1

c+s∑
k=1

hjhk

(
`
′

ni,θ

(
`
′

ni,θ

)T)
jk

c+s∑
l=1

c+s∑
m=1

hlhm

(
`
′

ni,θ

(
`
′

ni,θ

)T)
lm

≤
c+s∑
j=1

c+s∑
k=1

|hj| |hk|
c+s∑
l=1

c+s∑
m=1

|hl| |hm|κ∗∗M4 ≤ ‖h‖4 κ∗∗M4

for all n and i. ♦
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That a sequence of BCLFEs satisfying the conditions of Lemmas 1 and 2 is LAN follows

from Rieder (1994), Theorem 2.3.9. In particular, it suffices to establish that the following

Lindeberg and differentiability conditions hold for a uniform q.m.d. sequence of BCLFEs

satisfying the integrability conditions specified in Lemma 2. In addition, it is presently only

assumed that
√
nI
− 1

2
n,θ is bounded. Here, In,θ =

n∑
i=1

Ini,θ is a (c+ s)× (c+ s) matrix, assumed

to be positive definite, and Ini,θ = Pni,θ`
′

ni,θ

(
`
′

ni,θ

)T
denotes the Fisher information matrix

with dPni,θ = pni,θ.

Condition 1 (Lindeberg):

For all t ∈ <c+s and for all ε ∈ (0,∞),

lim
n→∞

n∑
i=1

∫
{∣∣∣tT I−1/2

n,θ `
′
ni,θ

∣∣∣>ε}
(
tT I
−1/2
n,θ `

′

ni,θ

)2

dPni,θ = 0

Proof:

Note for a fixed ε > 0 and t ∈ <c+s,

n∑
i=1

∫{∣∣∣∣tT I− 1
2

n,θ `
′
ni,θ

∣∣∣∣>ε}
(
tT I
− 1

2
n,θ `

′

ni,θ

)2

dPni,θ

=
n∑
i=1

∫{∣∣∣∣tT√nI− 1
2

n,θ `
′
ni,θ

∣∣∣∣>√nε}
(
tT 1√

n

√
nI
− 1

2
n,θ `

′

ni,θ

)2

dPni,θ.

Let h =
√
nI
− 1

2
n,θ t and note that h is bounded since

√
nI
− 1

2
n,θ is bounded and t is fixed. Then

the above expression becomes

1

n

n∑
i=1

∫
{|hT `′ni,θ|>

√
nε}

(
hT `

′

ni,θ

)2

dPni,θ.

By Lemma 2 Pni,θg
4
ni,θ, with gni,θ = hT `

′

ni,θ, are uniformly bounded in n and i. Thus, the

collection of random variables g2
ni,θ is uniformly integrable (cf Billingsley (1995), p.338).

Therefore, for sufficiently large n,
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∫
{g2ni,θ>nε2}

g2
ni,θdPni,θ.

is arbitrarily small for all such n and 1 ≤ i ≤ n. Therefore,

lim
n→∞

1

n

n∑
i=1

∫
{g2ni,θ>nε2}

g2
ni,θdPni,θ = 0

for all ε ∈ (0,∞) Thus, the Lindeberg condition holds. ♦

Condition 2 (differentiability):

For all b ∈ (0,∞),

lim
n→∞

sup
‖t‖≤b

n∑
i=1

∫ (
√
pni,θn(t) −

√
pni,θ

(
1 +

1

2
tT I
−1/2
n,θ `

′

ni,θ

))2

dPni,θ = 0

Proof:

The local parameter alternatives θn (t) about θ are given by θn (t) = θ + I
− 1

2
n,θ t. Let h̃ =

1√
n
(
√
nI
− 1

2
n,θ t) so that θn (t) = θ + h̃. Note h̃→ 0 uniformly with ‖t‖ bounded. Note that

sup
‖t‖≤b

n∑
i=1

∫ (
√
pni,θn(t) −

√
pni,θ

(
1 +

1

2
tT I
−1/2
n,θ `

′

ni,θ

))2

dPni,θ

= sup
‖t‖≤b

n∑
i=1

∫ (√
pni,θ+h̃ −

√
pni,θ −

1

2
h̃T `

′

ni,θ

√
pni,θ

)2

dPni,θ = sup
‖t‖≤b

n∑
i=1

o

(∥∥∥h̃∥∥∥2
)
.

Note that the last equality comes from the uniform q.m.d. of the sequence of BCLFEs at

θ ∈ Θ as provided by Lemma 1. Also, note that
∥∥∥h̃∥∥∥2

= O
(

1
n

)
since

√
nI
− 1

2
n,θ is bounded and

t is fixed, and thus the differentiability condition holds. ♦

Conditions 1 and 2 imply the L2 differentiability of the parametric array {Pni,θ : θ ∈ Θ} at

a fixed θ (cf Rieder(1994) Definition 2.3.8), and thus the desired log likelihood expansion
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indicated below.

In particular, we now suppose that 1
n
In,θ → Iθ where Iθ is positive definite, and therefore

√
nI
− 1

2
n,θ → I

− 1
2

θ . Let hn =
√
nI
− 1

2
n,θ tn where tn → t ∈ <c+s. Thus, hn → h ∈ <c+s where

h = I
− 1

2
θ t. Consequently, t = I

1
2
θ h so that ‖t‖2 = hT Iθh and tT I

− 1
2

n,θ = hT I
1
2
θ (
√
nI
− 1

2
n,θ )( 1√

n
).

The local parameter alternatives θn (tn) about θ are given by θn (tn) = θ + I
− 1

2
n,θ tn, and with

the preceding identification for hn, we have θn (tn) = θ+ hn√
n
. Accordingly, by Theorem 2.3.9

of Rieder (1994), a L2 differentiable sequence of BCLFEs is LAN. That is,

log
dPn,θ+hn/

√
n

dPn,θ
= tT I

− 1
2

n,θ

∑
i

`
′

ni,θ (xni)− (1/2) ‖t‖2 + oPn,θ(1)

= hT I
1
2
θ

√
nI
− 1

2
n,θ ∆n,θ − (1/2)hT Iθh+ oPn,θ(1)

where ∆n,θ = 1√
n

∑
i `
′

ni,θ (xni) are random vectors such that ∆n,θ ⇒ Nc+s(0, Iθ) as n → ∞

under Pn,θ.

In the following let In (β, γ, η) denote the Fisher information metric with respect to all of

the parameters, including the nuisance parameter vector η. It is assumed for Theorem 1

below that the nuisance parameters satisfy the orthogonality condition introduced by Cox

and Reid(1987). That is, the nuisance parameter directions are perpendicular to the other

parameter directions with respect to the information metric. For example, this condition

is satisfied when the errors are Normally distributed and the nuisance parameters are the

elements of the covariance matrix, as discussed by Skovgaard(1984). Returning to the gen-

eral case, it follows that at a point θ = (β, 0, η), the γ-direction is orthogonal to the (β, η)-

direction with respect to the information metric In. Theorem 1 can now be stated as follows.

Theorem 1:

Suppose the conditions that were indicated under Lemma 1 and Lemma 2 hold at θ =
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(β, 0, η) for a sequence of BCLFEs

En (xn1, ..., xnn;Zn (β) ∈ κn, β ∈ B)

and that the (1/n) In (β, 0, η) converge to I (β, 0, η), say. In addition, suppose the matri-

ces `
′′

ni,θ of second-order partial derivatives are locally bounded. If the unrestricted and

restricted (by Ho : γ = 0) maximum likelihood estimators (MLEs) θ̂n and θ̂n,o, respectively,

are
√
n-consistent under (β, 0, η), then the sequence of log LRT statistics Λn for testing

Ho : γ = 0 versus Ha : γ 6= 0 converges under (β, γ/
√
n, η) in distribution to a random

variable distributed according to the χ2 (c− p, δ) distribution with noncentrality parameter

δ = (0, γ, 0)T I (β, 0, η) (0, γ, 0).♦

Before giving the proof of Theorem 1, we establish conditions for
√
n-consistency of the

MLE of θ. Recall that pni,θ (y) = p (y − Φni (ϑ) , η) is the density of yni where Φni (ϑ) =

(fn (β))i −
(
BZn(β)γ

)
i
. Also, θ = (ϑ, η)T where ϑ = (β, γ) has dimension c, and η is an s

dimensional nuisance parameter vector. Next we introduce some notation and assumptions

that will be used to establish
√
n− consistency of the MLE of θ under the proposed model

and the constructed full model.

Notation

• `n,θ =
n∑
i=1

`ni,θ where `ni,θ = log p (y − Φni (ϑ) , η).

• `′n,θ =
n∑
i=1

`
′

ni,θ where `
′

ni,θ = ∂
∂θ

log p (y − Φni (ϑ) , η). Specifically, the components of

the (c + s) dimensional vector `
′

ni,θ have the following forms where pj(z1, . . . , zs+1) =

∂
∂zj
p(z1, . . . , zs+1) for j = 1, . . . , s+ 1.

1. ∂
∂ϑj
`ni,θ = −1

p(y−Φni(ϑ),η)
p1 (y − Φni (ϑ) , η) ∂

∂ϑj
Φni (ϑ) for j = 1, . . . , c.

2. ∂
∂ηj
`ni,θ = 1

p(y−Φni(ϑ),η)
pj+1 (y − Φni (ϑ) , η) for j = 1, . . . , s.
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• `′′n,θ =
n∑
i=1

`
′′

ni,θ where `
′′

ni,θ = ∂
∂θ
`
′

ni,θ. Specifically, the components of the (c+s)× (c+s)

matrix `
′′

ni,θ have the following forms where pj,k(z1, . . . , zs+1) = ∂2

∂zj∂zk
p(z1, . . . , zs+1) for

j, k = 1, 2, ..., (s+ 1).

1. ∂2

∂ϑj∂ϑk
`ni,θ = 1

[p(y−Φni(ϑ),η)]2
p2

1 (y − Φni (ϑ) , η)
(
− ∂
∂ϑj

Φni (ϑ) ∂
∂ϑk

Φni (ϑ)
)

− 1
p(y−Φni(ϑ),η)

p1,1 (y − Φni (ϑ) , η)
(
− ∂
∂ϑj

Φni (ϑ) ∂
∂ϑk

Φni (ϑ)
)

− 1
p(y−Φni(ϑ),η)

p1 (y − Φni (ϑ) , η) ∂2

∂ϑj∂ϑk
Φni (ϑ)

= a (y − Φni (ϑ) , η)
(

∂
∂ϑj

Φni (ϑ) ∂
∂ϑk

Φni (ϑ)
)
− b (y − Φni (ϑ) , η) ∂2

∂ϑj∂ϑk
Φni (ϑ)

where a (y − Φni (ϑ) , η) = p1,1(y−Φni(ϑ),η)

p(y−Φni(ϑ),η)
− p21(y−Φni(ϑ),η)

[p(y−Φni(ϑ),η)]2

and b (y − Φni (ϑ) , η) = p1(y−Φni(ϑ),η)
p(y−Φni(ϑ),η)

.

2. ∂2

∂ϑj∂ηk
`ni,θ = 1

[p(y−Φni(ϑ),η)]2
p1 (y − Φni (ϑ) , η) pk+1 (y − Φni (ϑ) , η) ∂

∂ϑj
Φni (ϑ)

− 1
p(y−Φni(ϑ),η)

p1,k+1 (y − Φni (ϑ) , η) ∂
∂ϑj

Φni (ϑ) .

3. ∂2

∂ηj∂ηk
`ni,θ = − 1

[p(y−Φni(ϑ),η)]2
pj+1 (y − Φni (ϑ) , η) pk+1 (y − Φni (ϑ) , η)

+ 1
p(y−Φni(ϑ),η)

pj+1,k+1 (y − Φni (ϑ) , η) .

• In,θ =
n∑
i=1

Ini,θ where Ini,θ = Eθ
[
−`′′ni,θ

]
≈ Eθ

[(
−`′ni,θ

) (
−`′ni,θ

)T]
is the Fisher Infor-

mation matrix.

• Īn,θ = 1
n

n∑
i=1

Ini,θ.

Assumptions(along with the conditions for Lemmas 1 and 2)

1. Īn,θ → Iθ, say, as n→∞ where Iθ is positive definite.
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2. θ̂n
Pn,θ−→ θ where θ̂n is the MLE of θ and thus `

′

n,θ̂n
= 0.

3. 1
n

(
`
′′′

n,θ̃n

)
ghk

= OPn,θ (1) for g, h, k = 1, 2, ..., (c+ s) for all θ̃n in a neighborhood of θ.

Proposition 1:

√
n
(
θ̂n − θ

)
= I−1

θ

1√
n

n∑
i=1

`
′

ni,θ + oPn,θ (1)

under Pn,θ.♦

Proof:

For fixed g = 1, . . . , (c+ s), consider the second order Taylor expansion of
(
`
′

n,θ̂n

)
g

about

the true value (θ)g so that

0 =
(
`
′

n,θ̂n

)
g

=
(
`
′

n,θ

)
g

+
c+s∑
h=1

(
θ̂n − θ

)
h

(
`
′′

n,θ

)
gh

+
1

2

c+s∑
h=1

c+s∑
k=1

(
θ̂n − θ

)
h

(
θ̂n − θ

)
k

(
`
′′′

n,θ∗n

)
ghk

where ‖θ∗n − θ‖ < ‖θ̂n − θ‖. The preceding can be written in matrix form as

1√
n
`
′

n,θ =

[
− 1

n
`
′′

n,θ −
1

2n

(
θ̂n − θ

)T
`
′′′

n,θ∗n

]√
n
(
θ̂n − θ

)
where `

′′′

n,θ∗n
is a (c+ s) dimensional vector of (c+ s) × (c+ s) matrices depending on the

third-order derivatives
(
`
′′′

n,θ

)
ghk

. Given the assumptions above, it suffices to show that

− 1

n
`
′′

n,θ − Īn,θ
Pn,θ−→ 0.

For then, it follows that

1√
n
`
′

n,θ =

[
Iθ + oPn,θ (1) +

1

2

(
θ̂n − θ

)T
OPn,θ (1)

]√
n
(
θ̂n − θ

)
=
[
Iθ + oPn,θ (1)

]√
n
(
θ̂n − θ

)
.

Since the probability that the matrix Iθ + oPn,θ (1) is invertible tends to one, applying[
Iθ + oPn,θ (1)

]−1
left and right, and using the fact that 1√

n
`
′

n,θ converges in law, establishes

the proposition.

67



The convergence − 1
n
`
′′

n,θ − Īn,θ
Pn,θ−→ 0 will be established using a weak law of large numbers

(WLLN) for triangular arrays (cf Billingsley (1995), p. 86).

For fixed g, h = 1, 2, ..., (c+ s), consider the triangular array of random variables(
−`′′n1,θ

)
gh
,
(
−`′′n2,θ

)
gh
, ...,

(
−`′′nn,θ

)
gh

where n = 1, 2, . . . and let Sn =
(
−`′′n,θ

)
gh

=
n∑
i=1

(
−`′′ni,θ

)
gh

. Thus, if V arθ(Sn)
n2 → 0 holds as

n → ∞, then by Chebyshev’s inequality it follows that Sn−Eθ[Sn]
n

Pn,θ−→ 0 where Eθ [Sn] =

(In,θ)gh =
n∑
i=1

(Ini,θ)gh.

In particular, for any ε > 0,

Pn,θ (|Sn − Eθ [Sn]| ≥ nε) ≤ 1

n2ε2
V arθ [Sn] ≤ 1

n2ε2

n∑
i=1

Eθ

[(
−`′′ni,θ

)
gh

]2

.

Next it is shown that Eθ

[(
`
′′

ni,θ

)
gh

]2

is bounded. Let the error density p be defined with

respect to a (translation invariant) measure µ (e.g. Lebesgue measure) and first suppose

`
′′

ni,θ has the form ∂2

∂ϑj∂ϑk
`ni,θ. Then Eθ

[(
`
′′

ni,θ

)
gh

]2

=

∫ [
a (y − Φni (ϑ) , η)

(
∂
∂ϑj

Φni (ϑ) ∂
∂ϑk

Φni (ϑ)
)
− b (y − Φni (ϑ) , η) ∂2

∂ϑj∂ϑk
Φni (ϑ)

]2

×p (y − Φni (ϑ) , η) dµ(y)

=
∫ [

a (y, η)
(

∂
∂ϑj

Φni (ϑ) ∂
∂ϑk

Φni (ϑ)
)
− b (y, η) ∂2

∂ϑj∂ϑk
Φni (ϑ)

]2

p (y, η) dµ(y)

=
[∫

(a (y, η))2 p (y, η) dµ(y)
] (

∂
∂ϑj

Φni (ϑ)
)2 (

∂
∂ϑk

Φni (ϑ)
)2

−

2
[∫
a (y, η) b (y, η) p (y, η) dµ(y)

] (
∂
∂ϑj

Φni (ϑ)
)(

∂
∂ϑk

Φni (ϑ)
)(

∂2

∂ϑj∂ϑk
Φni (ϑ)

)
+

[∫
(b (y, η))2 p (y, η) dµ(y)

] (
∂2

∂ϑj∂ϑk
Φni (ϑ)

)2

.

68



Therefore, 0 ≤ Eθ

[(
`
′′

ni,θ

)
gh

]2

≤

[∫
(a (y, η))2 p (y, η) dµ(y)

] (
∂
∂ϑj

Φni (ϑ)
)2 (

∂
∂ϑk

Φni (ϑ)
)2

+

2
∣∣∫ a (y, η) b (y, η) p (y, η) dµ(y)

∣∣ ∣∣∣ ∂
∂ϑj

Φni (ϑ)
∣∣∣ ∣∣∣ ∂

∂ϑk
Φni (ϑ)

∣∣∣ ∣∣∣ ∂2

∂ϑj∂ϑk
Φni (ϑ)

∣∣∣+
[∫

(b (y, η))2 p (y, η) dµ(y)
] (

∂2

∂ϑj∂ϑk
Φni (ϑ)

)2

.

Now θ is fixed, and the xni take values in a closed and bounded region on which the partial

derivatives of Φni (ϑ) are bounded. Thus, all the partial derivative terms are ≤ M , say, so

that

0 ≤ Eθ

[(
`
′′

ni,θ

)
gh

]2

≤
[ ∫

(a (y, η))2 p (y, η) dµ(y)

+2
∣∣∫ a (y, η) b (y, η) p (y, η) dµ(y)

∣∣+
∫

(b (y, η))2 p (y, η) dµ(y)
]
M

for all n and i. (Note that this bound can be obtained for all n and i and uniformly in θ for

θ in a closed and bounded region.) The remaining forms for `
′′

ni,θ,
∂2

∂ϑj∂ηk
`ni,θ and ∂2

∂ηj∂ηk
`ni,θ,

are similarly bounded.

Thus, Eθ

[(
−`′′ni,θ

)
gh

]2

is bounded for all g, h = 1, 2, ..., (c+ s). This implies V arθ(Sn)
n2 → 0 as

n→∞. Therefore,

Pn,θ (|Sn − Eθ [Sn]| ≥ nε)→ 0

as n→∞. That is,

1

n

(
−`′′n,θ

)
gh
−
(
Īn,θ
)
gh

Pn,θ→ 0

for all g, h = 1, 2, ..., (c+ s).♦
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In the proof of Theorem 1, the log LRT statistic for testing H0 : γ = 0 versus Ha : γ 6= 0 is

given by

Λn = 2 log

sup
θ∈Θ

dPn,θ

sup
θ∈Θ0

dPn,θ
(yn)

where Θ = B×Rc−p×Rs and Θ0 = B×{0}×Rs. The LAN property will be used to derive

the asymptotic distribution of Λn. First, define the local parameter spaces Hn =
√
n (Θ− θ)

and Hn,0 =
√
n (Θ0 − θ) where θ = (β, 0, η), and rewrite Λn as

Λn = 2 sup
h∈Hn

log
dPn,θ+h/√n
dPn,θ

(yn)− 2 sup
h∈Hn,0

log
dPn,θ+h/√n
dPn,θ

(yn) . (5.1)

In addition, the following definition of convergence of sets as indicated in van der Vaart

(1998) will be useful. Write Hn → H if H is the set of all limits of converging sequences

(hn) where hn ∈ Hn for every n, and, moreover, the limit of every converging sequence (hni)

where hni ∈ Hni for every i is contained in H. Similarly, Hn,0 → H0 for some limit set H0. In

particular, with θ = (β, 0, η), the local parameter spaces are such that Hn → Rp×Rc−p×Rs

and Hn,0 → Rp×{0}×Rs. The method of proof for Theorem 1 follows van der Vaart (The-

orem 16.7, 1998), and represents generalization to the case of triangular arrays.

Proof of Theorem 1:

Let h = (0, γ, 0), and consider specific local parameter alternatives θ + h/
√
n. By the LAN

property of BCLFEs, ∆n,θ ⇒ ∆ ∼ Nc+s (0, Iθ) under Pn,θ, and

log
dPn,θ+h/√n
dPn,θ

= hT∆n,θ −
1

2
hT Iθh+ opn,θ (1) ,

so that
(

∆n,θ, log
dPn,θ+h/

√
n

dPn,θ

)T
⇒
(
∆, hT∆− 1

2
hT Iθh

)T
∼ N

((
0

−1
2
hT Iθh

)
,

(
Iθ Iθh
hT Iθ hT Iθh

))
.
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Thus, the sequences Pn,θ+h/√n and Pn,θ are mutually contiguous (cf example 6.5 of van der

Vaart(1998)).

As indicated in Lemma 3 below,

sup
‖h‖≤M

|Zn (h)|
Pn,θ→ 0

for every M where θ = (β, 0, η) is fixed and

Zn (h) = log
dPn,θ+h/√n
dPn,θ

− hT∆n,θ +
1

2
hT Iθh (5.2)

with ∆n,θ = 1√
n

n∑
i=1

`
′

ni,θ. The above convergence holds for every sequence (Mn) where

Mn → ∞ sufficiently slowly (see Remark 1 below). Fix such a sequence so that, us-

ing
√
n−consistency, θ̂n and θ̂n,0 are contained in the ball with radius Mn/

√
n around

θ = (β, 0, η) with Pn,θ probability converging to one. Thus, with contiguity, Λ
′
n and Λn

have the same limit distribution where Λ
′
n is the statistic obtained by replacing Hn and

Hn,0 in the definition of Λn with H
′
n = Hn ∩ ball (0,Mn) and H

′
n,0 = Hn,0 ∩ ball (0,Mn) ,

respectively. Also note that H
′
n → Rp×Rc−p×Rs and H

′
n,0 → Rp×{0}×Rs. Now, by the

uniform convergence of Zn (h) to zero on H
′
n and H

′
n,0,

Λ
′

n = 2 sup
h∈H′n

(
hT∆n,θ −

1

2
hT Iθh

)
− 2 sup

h∈H′n,0

(
hT∆n,θ −

1

2
hT Iθh

)
+ oPn,θ (1)

= inf
h∈H′n,0

(
I−1
θ ∆n,θ − h

)T
Iθ
(
I−1
θ ∆n,θ − h

)
− inf

h∈H′n

(
I−1
θ ∆n,θ − h

)T
Iθ
(
I−1
θ ∆n,θ − h

)
+ oPn,θ (1)

=
∥∥∥I −1

2
θ ∆n,θ − I

1
2
θ H

′
n,0

∥∥∥2

−
∥∥∥I −1

2
θ ∆n,θ − I

1
2
θ H

′
n

∥∥∥2

+ oPn,θ (1)

=
∥∥∥I −1

2
θ ∆n,θ − I

1
2
θ H0

∥∥∥2

−
∥∥∥I −1

2
θ ∆n,θ − I

1
2
θ H
∥∥∥2

+ oPn,θ (1) .

Note that the last equality follows by Lemma 7.13 of van der Vaart(1998) with H0 =

Rp × {0} × Rs and H = Rp × Rc−p × Rs (this lemma is stated as Lemma 4 below for
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completeness).

Thus, by contiguity and Le Cam’s third lemma (cf example 6.7 of van der Vaart(1998)),

∆n,θ ⇒ Nc+s (Iθh, Iθ)

under Pn,θ+h/√n. Hence, by the continuous mapping theorem, Λ
′
n

θ+h/
√
n→ Λ where

Λ =
∥∥∥I 1

2
θ X − I

1
2
θ H0

∥∥∥2

−
∥∥∥I 1

2
θ X − I

1
2
θ H
∥∥∥2

with X distributed as Nc+s

(
h, I−1

θ

)
. Since H is the full space Rc+s, Λ reduces to

Λ =
∥∥∥Z + I

1
2
θ h− I

1
2
θ H0

∥∥∥2

where Z is distributed as a standard normal vector. Thus, Λ is distributed according to the

noncentral chi-square distribution with c−p degrees of freedom and noncentrality parameter

δ, say, given by ∥∥∥I 1
2
θ h− I

1
2
θ H0

∥∥∥2

= (0, γ, 0)T I (β, 0, η) (0, γ, 0) .

Note that the orthogonality of the nuisance parameters is used to establish the preceding

equality. In particular,∥∥∥I 1
2
θ h− I

1
2
θ H0

∥∥∥2

= inf
h0∈H0

∥∥∥I 1
2
θ h− I

1
2
θ h0

∥∥∥2

= inf
h0∈H0

‖h− h0‖2
I =

∥∥h− P I
H0
h
∥∥2

I

where the subscript I refers to the norm calculated using the information metric. Taking

h = (0, γ, 0) we obtain P I
H0
h = 0 using the orthogonality of the γ direction to the (β, η)

direction with respect to the information metric. Thus,∥∥∥I 1
2
θ h− I

1
2
θ H0

∥∥∥2

= ‖h‖2
I = (0, γ, 0)T I (β, 0, η) (0, γ, 0) .

Finally, since Λn and Λ
′
n have the same limit distribution, conclude that

Λn

(β,γ/
√
n,η)
→ χ2

c−p (δ) .♦
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Lemma 3:

Suppose the conditions of Theorem 1 hold at θ = (β, 0, η), and let Eθ = {θ + h/
√
n : h ∈ T}

where T = {h ∈ Rc+s : ‖h‖ ≤ 1}. If
∥∥`′′ni,φ∥∥ ≤ Mni for every φ ∈ Eθ where 1

n

n∑
i=1

Mni =

OPn,θ (1) then

sup
‖h‖≤1

|Zn (h)|
Pn,θ→ 0.♦

Proof:

Consider Zn (h) to be a sequence of stochastic processes indexed by h. As shown first, the

sequence Zn converges weakly in the space l∞ (T ) of bounded functions on T with the uni-

form norm.

Note by LAN the sequence Zn (h) converges marginally in distribution to zero, and for s

and t in T , Zn (s)− Zn (t) =

log dPn,θ+s/√n − log dPn,θ+t/√n + (t− s)T ∆n,θ + 1
2

(
(s− t)T Iθ (s− t) + 2 (s− t)T Iθt

)
.

Since [θ + s/
√
n, θ + t/

√
n] ⊂ Eθ, by the mean value theorem there is a point θ + ri/

√
n ∈

[θ + s/
√
n, θ + r/

√
n] with ri ∈ T such that

logPni,θ+s/√n − logPni,θ+t/√n =
(
`
′

ni,θ+ri/
√
n
T
)(s− t√

n

)
for each i = 1, ..., n. Thus,

log dPn,θ+s/√n − log dPn,θ+t/√n =

(
s− t√
n

)T n∑
i=1

`
′

ni,θ+ri/
√
n

= (s− t)T
(

∆n,θ +
1√
n

n∑
i=1

(
`
′

ni,θ+ri/
√
n − `

′

ni,θ

))
.

Also, ∣∣∣∣∣(s− t)T 1√
n

n∑
i=1

(
`
′

ni,θ+ri/
√
n − `

′

ni,θ

)∣∣∣∣∣
≤ ‖s− t‖ 1√

n

n∑
i=1

∥∥∥`′ni,θ+ri/√n − `′ni,θ∥∥∥ ≤ ‖s− t‖ 1

n

n∑
i=1

Mni
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where 1
n

n∑
i=1

Mni = OPn,θ (1) by hypothesis. Since ∆n,θ = OPn,θ (1) as well, it follows that for

every ε > 0 and δ > 0 there exists a partition of T into finitely many sets T1, T2, ..., Tk such

that

lim sup
n→∞

Pn,θ

(
sup

1≤j≤k
sup
s,t∈Tj

|Zn (s)− Zn (t)| ≥ ε

)
≤ δ.

Hence, by Theorem 18.14 of van der Vaart(1998) (this theorem is stated as Lemma 5 below

for completeness), the sequence Zn converges weakly in the space l∞ (T ). Finally, since

taking a supremum is a continuous operation and the marginal convergence is to zero, the

weak limit is then necessarily zero. ♦

Lemma 4:

(This is lemma 7.13 listed on page 102 in van der Vaart (1998).)

If the sequence of subsets Hn of <k converges to a nonempty set H and the sequence

of random vectors Xn converges in distribution to a random vector X, then

1. ‖Xn −Hn‖ ⇒ ‖X −H‖ .

2. ‖Xn −Hn ∩ F‖ ≥ ‖Xn −H ∩ F‖+ op (1), for every closed set F.

3. ‖Xn −Hn ∩G‖ ≤ ‖Xn −H ∩G‖+ op (1), for every open set G.

♦

Lemma 5:

(This is theorem 18.14 listed on page 261 in van der Vaart (1998).)

A sequence of arbitrary maps Xn : Ωn 7→ l∞ (T ) converges weakly to a tight random

element if and only if both of the following conditions hold:

1. The sequence (Xn,t1 , Xn,t2 , ..., Xn,tk) converges in distribution in <k for every finite set

of points t1, t2, ..., tk in T ;
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2. for every ε, η > 0 there exists a partition of T into finitely many sets T1, T2, ..., Tk such

that

lim sup
n→∞

P

(
sup
i

sup
s,t∈Ti

|Xn,s −Xn,t| ≥ ε

)
≤ η.

♦

Remark 1:

Given a sequence of functions gn : Z+ → R such that gn (m) ≥ 0 for all n,m, and for all

m ∈ Z+, lim
n→∞

gn (m) = 0, there exists a sequence of positive integers M1 ≤ M2 ≤ M3 ≤

...Mk ≤ ... such that lim
k→∞

Mk =∞ and lim
k→∞

gk (Mk) = 0.♦

Proof:

Note that there exists N2 such that n ≥ N2 implies gn (2) < 1
2
, and

there exists N3 > N2 such that n ≥ N3 implies gn (3) < 1
3
, and

there exists N4 > N3 > N2 such that n ≥ N4 implies gn (4) < 1
4
.

Continue to obtain N2 < N3 < N4 < ... < Nk < ... such that n ≥ Nk implies gn (k) < 1
k
.

Now consider the sequence g1 (1) , g2 (1) , ..., gN2−1 (1) , gN2 (2) , gN2+1 (2) , ...,

gN3−1 (2) , gN3 (3) , gN3+1 (3) , ..., gN4−1 (3) , gN4 (4) , gN4+1 (4) , ....

Note that if gm (k) is a term of this sequence, k ≥ 2 gives gm (k) < 1
k
. Thus, the limit of the

sequence is zero.(
Note this remark is used in the proof of Theorem 1 with

gn (m) = Pn,θ

({
w : sup

‖h‖≤m
|Zn (h) (w)| > ε

})
for ε > 0.

)
♦

Based on Theorem 1, an asymptotic size α test of Ho versus Ha rejects Ho whenever Λn >

χ2 (1− α, c− p), the upper α probability point of a χ2 (c− p) distribution. In addition,
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the noncentrality parameter δ depends only on the information metric in the expectation

surface parameter directions. In particular,

(0, γ, 0)T In (β, 0, η) (0, γ, 0) = (0, γ)T IEn (β, 0) (0, γ)

where IEn denotes the Fisher information metric for the expectation surface parameters (β, γ)

at the nth stage.

Since the power of the preceding LRT is an increasing function of the noncentrality param-

eter, Theorem 1 indicates the importance of the l̂Zn(β). In particular, the convergence

(1/n) IEn (β, 0) → IE (β, 0) implies the convergence l̂Zn(β) → l̂ (β), say. Now consider

the MMBCLFE sequence En
(
xn1, ..., xnn;ZM

n (β) ∈ κn, β ∈ B
)

with its information met-

rics (1/n) IE,Mn (β, γ) and l̂ZMn (β). Also, let l̂M (β) = lim inf l̂ZMn (β). The following theorem,

given in Neill and Miller(2003), together with Theorem 1 above, justifies the conclusion that

for any n, the MMBCLFE is a good choice to use in testing for lack of fit in terms of optimal

power.

Theorem 2:

If En (xn1, ..., xnn;Zn (β) ∈ κn, β ∈ B) is any sequence of BCLFEs as described above satis-

fying the hypotheses of Theorem 1, then l̂M (β) ≥ l̂ (β).♦
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Chapter 6

Conclusions and Future Research

Using the exponential, cosine and Michaelis-Menten nonlinear models, it was demonstrated

that maximin clustering can vary substantially across different points along the expectation

surface of a proposed model. Such leads to constructed alternative models, and hence as-

sociated LRTs, which can yield good power for detecting nonlinear between-cluster lack of fit.

However, depending on curvature considerations, certain models did not provide substan-

tially different maximin clusterings across the expectation surface. Accordingly, for com-

putational simplicity, it was of interest to study the case of constructed alternative models

based on a single maximin clustering. This approach was investigated in parallel with the

case in which the clusters were allowed to vary across the expectation surface. The use of a

single clustering was observed to be competitive in certain cases but not all cases.

In practice, it is of course not known which approach to necessarily use due to the unknown

potential lack of fit involved. Thus, a multiple testing approach utilizing multiple and single

maximin clustering strategies was also considered. The Bonferroni adjusted testing proce-

dure was observed to be reasonably successful in detecting between-cluster lack of fit.

The LRTs were based on constructed alternative models which account for between-cluster

lack of fit. Data was generated accordingly and the performance of the proposed tests was
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observed to be reasonably good. However, it was also of interest to subject these tests to

data generators which were functionally different than the proposed models. Such an inves-

tigation was carried out as well, using the multiple and single maximin clustering strategies,

along with the multiple testing approach. The simulated powers were consistent with the

similarity or departure from the proposed models.

In addition to the use of maximin clusterings, it was also of interest to consider cluster-based

LRTs using structured but non-maximin clusterings. The simulated power results indicate

that the use of maximin clusterings in constructing alternative models is generally superior

to that of using non-maximin clusterings.

Finally, the proposed cluster-based LRTs were compared to the generalized LRT with semi-

parametric alternative model as presented by Ciprian and Ruppert (2004). Notably, the

maximin clustering based LRTs were markedly better in simulated power performance. In

fact, the non-maximin cluster-based LRTs were generally observed to possess better simu-

lated power than that associated with the test given by Ciprian and Ruppert. In addition,

Ciprian and Ruppert compared their test with a lack of fit test proposed by Fan and Huang

(2001). For the cases considered in the comparison simulation study, the test presented by

Ciprian and Ruppert performed better then the test given by Fan and Huang. The test

presented by Fan and Huang employs the adaptive Neyman test on the Fourier transform

of the residual vector to assess the adequacy of a parametric regression model against non-

parametric alternatives. Thus, by implication, the proposed maximin cluster-based LRTs

are superior to the test given by Fan and Huang, as well, at least for the simulation cases

considered.

Future research of interest would involve the following broad points.

1. Additional comparison with other nonlinear lack of fit tests in order to investigate more
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fully the effectiveness of the proposed maximin cluster based LRTs. It is of interest in

particular to compare the proposed tests with tests based on nonparametric smoothed

alternatives. Included in such comparisons would be nonlinear models with more than

one predictor.

2. Extend the proposed testing procedure to cover the case of nonlinear within-cluster

lack of fit, as well as mixtures of nonlinear between- and within-cluster lack of fit.

The multiple testing procedures presented by Miller and Neill (2008) may be useful

for such extension.

3. Generalize the testing procedures investigated in this dissertation to accommodate

exponential family regression models (e.g. Kass and Vos (1997)). Such generalization

would include nonlinear models without additive error, parametric regression models

with heterogeneous variance and generalized linear models.
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Appendix A

Generated Data Set 1

0.06524904 0.99421674 1.73514893 2.05203975 2.12335588 2.26580093
2.42592366 2.50049595 3.36624638 4.23561146 4.40980336 5.15355938
5.19080359 5.31842467 5.42894020 5.44499426 5.45463420 6.01582744
6.29080697 6.56368798 7.43721835 7.45316243 7.94172121 8.38902923
8.46787080 8.61031176 9.01535931 9.13918048 9.50638337 9.55264658

Table A.1: Generated and sorted n = 30 Uniform [0,10] values
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Appendix B

Generated Data Set 2

0.1443391 0.1704265 0.1967341 0.3001186 0.3188816 0.3928139 0.5190332
0.7557029 0.8380201 0.8513597 0.9308813 1.0290017 1.1350898 1.1446759
1.6118328 1.6660910 1.6980304 1.7015172 1.9156087 2.0364770 2.0795168
2.1913855 2.2286743 2.2543662 2.2890394 2.3958913 2.4586639 2.4900805
2.4988047 2.5734157 2.6417767 2.7230507 2.7431890 2.7453052 2.7548386
3.0676851 3.5432806 3.5556869 3.5589774 3.5804998 3.7276310 3.8162769
3.9698674 3.9879073 3.9983256 4.0584997 4.2263761 4.2690767 4.2880942
4.2967153 4.4750805 4.5947319 4.6439198 4.6743405 4.6893548 4.7314146
4.8610035 4.8850594 5.0050323 5.0528560 5.0747820 5.1715688 5.2573932
5.3442678 5.3559704 5.4060103 5.4585984 5.6773775 5.7335645 5.8322197
5.9193492 5.9592531 6.1535242 6.1582931 6.2354960 6.4135658 6.5165567
6.8544451 6.9310208 7.0664691 7.1140908 7.2896456 7.4383940 7.4774647
7.6112174 7.7077153 7.7510990 7.9799301 8.0154700 8.2265258 8.3361919
8.3477833 8.3613414 8.3828767 8.6138244 8.6472123 8.9983245 9.3643254
9.5465365 9.6130241

Table B.1: Generated and sorted n = 100 Uniform [0,10] values
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Appendix C

Generated Data Set 3

3.014575 3.780258 5.638315 9.151028 12.348723 12.523909 13.028887
17.026205 17.142021 18.040725 19.867907 20.461216 20.771390 20.981677
21.140856 22.990589 23.569430 24.509259 24.874240 25.339065 25.767250
27.488666 27.772376 28.035384 30.073652 30.708590 30.776611 32.772587
33.052985 33.066053 34.869198 35.752485 35.777378 35.813799 35.947511
37.032054 38.943930 39.848790 41.223704 42.010145 44.514802 44.541398
44.829914 45.573146 45.952549 46.370118 46.854928 48.377074 48.830599
49.123182 51.745975 53.581115 53.834870 54.655860 54.909671 55.232243
57.256477 57.793740 59.132105 59.757529 59.939816 60.332436 62.469772
62.499648 62.939085 64.710119 66.177902 66.902171 67.639817 69.029053
69.435071 69.527414 71.080385 73.331417 73.346670 74.897223 76.255108
77.030161 77.180549 77.477889 77.758444 78.035851 81.240262 82.730345
83.402710 85.665304 86.512055 88.195359 88.216552 88.422703 88.945354
90.642643 90.695438 91.972191 92.850507 95.415771 96.057309 96.699908
98.282408 98.956414

Table C.1: Generated and sorted n = 100 Uniform [0,100] values
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Appendix D

R Code for Implementing Nonlinear
Between-Cluster Lack-of-Fit Tests for
Exponential Model with Additive
Normal Errors

n<-100

k<-0

l<-10

b<-.1

m<-5

#set.seed(1235)# for n=30#

set.seed(10)# for n=100#

x<-runif(n, k,l) #create n unifrom(k,l) random variables#

xs<-sort(x*b) #scaling & sorting x#

cover<-function(n,b,k,l,m,xs)

{

#cover i.e. [k,l] divided into m(=5) cells#

# here we consider cells based on values c1:[0-2), c2:[2-4)... c5:[8-10]#
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c1<-ifelse(xs<((l-k)/m)*(m-4)*b, c1<-1, c1<-0)

c2<-ifelse(xs<((l-k)/m)*(m-3)*b,

ifelse(xs>=((l-k)/m)*(m-4)*b, c2<-1, c2<-0), c2<-0)

c3<-ifelse(xs<((l-k)/m)*(m-2)*b,

ifelse(xs>=((l-k)/m)*(m-3)*b, c3<-1, c3<-0), c3<-0)

c4<-ifelse(xs<((l-k)/m)*(m-1)*b,

ifelse(xs>=((l-k)/m)*(m-2)*b, c4<-1, c4<-0), c4<-0)

c5<-ifelse(xs<((l-k)/m)*m*b,

ifelse(xs>=((l-k)/m)*(m-1)*b, c5<-1, c5<-0), c5<-0)

#getting overlapping subsets based on odd cells created by cover#

#here we have 3 overlapping subsets Fn1:[0-4),Fn2:[2-8), Fn3:[6-10]#

os1<-ifelse(xs<=((l-k)/m)*(m-4)*b, 1, NA)

Fn1<-{if(length(sort(os1))<1) NA else c1+c2}

os2<-ifelse(xs<=((l-k)/m)*(m-2)*b,

ifelse(xs>((l-k)/m)*(m-3)*b, 1, NA),NA)

Fn2<-{if(length(sort(os2))<1) NA else c2+c3+c4}

os3<-ifelse(xs<=((l-k)/m)*m*b,

ifelse(xs>((l-k)/m)*(m-1)*b, 1, NA),NA)

Fn3<-{if(length(sort(os3))<1) NA else c4+c5}

z<-data.matrix(data.frame(Fn1,Fn2,Fn3))

#matrix indicating overlapping subsets based on selected cover#

ca<-(sum(c2)+1)*(sum(c4)+1)#cardinality of Kn,0#

B<-matrix(rep(0, (n*(n-1))), nrow=n) #matrix for the edge sets#

out<-list(z,B,ca,c1,c2,c3,c4,c5)

return(out)
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}

cover.out<-cover(n,1,k,l,5,xs)#

##################################################################

#Finding tangent space to the expectation surface at each x.

#Exponential model f(x, beta1, beta2)=beta1*exp(-x*beta2) is used.

##################################################################

tm<-function(beta1, beta2,xs)

{

b1<-exp(-x*beta2) #partial derivative wrt beta1#

b2<-(-x)*beta1*exp(-x*beta2) #partial derivative wrt beta2#

b1n<-b1/sqrt(sum(b1^2))

b2n<-b2/sqrt(sum(b2^2)) #normalized b1 & b2#

TM<-cbind(b1n,b2n)

TM

}

###############################################################

#Finding perpendicular projection operator for a vector space.

###############################################################

#c=matrix that we want to project onto#

#need to assign the corresponding matrix to c before using this function#

ppo<-function(c)

{

library(MASS) #need for g-inverse function#

PPO<-c%*%ginv(t(c)%*%c)%*%t(c)

PPO
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}

###################################################################

#Finding basis set for the matrix based on output from ppo function.

###################################################################

basis<-function(ppo.out)

{

Ba<-ppo.out%*%t(ppo.out)

m<-nrow(Ba)

e<-eigen(Ba,symmetric=T )#getting eigen values & vectos#

evals<-e$values

evects<-e$vectors

nevals<-evals[abs(evals)>10e-6]

#avoid the problem of decemal places used in R (to get correct d.f.)#

n<-length(nevals)

BASIS<-evects[1:m,1:n] #final basis set#

BASIS

}

#####################################

#####################################

#Selecting maximin power clusterings

#####################################

#####################################

#######################################################################

#New method to create crisp atoms using c(=3) covers and ordered dial
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#setting values corresponds to even cells.

#Let k obs in 1st even cell i.e. {x(11), x(12),... x(1k)} &

#l obs in 2nd even cell i.e. {x(21), x(22),... x(2l)}.

#1st pointer in x(11), 2nd pointer moves from x(21) to x(2l) sequentially

#1st pointer in x(12), 2nd pointer moves from x(21) to x(2l) sequentially

# so on & so forth....

#########################################################################

# z=output for overlapping subsets from cover function#

# beta1 & beta2 are exponential model parameters#

# ca=cardinality of Kn,0 from cover function#

# c1,c2,c3,c4,c5=elements corresponding to the 5 cells,

# {c1,c3,c5}=odd cells, {c2,c4}=even cells#

z<-cover.out[[1]]

ca<-cover.out[[3]]

c1<-cover.out[[4]]

c2<-cover.out[[5]]

c3<-cover.out[[6]]

c4<-cover.out[[7]]

c5<-cover.out[[8]]

atoms<-function(z,ca,c1,c2,c3,c4,c5,beta1,beta2)

{

library(MASS)

ZZ<-matrix(rep(0,((dim(z)[1])*(dim(z)[2]))),nrow=dim(z)[1],ncol=dim(z)[2])

#create an empty crisp atoms matrix#

for (h in 1:ca) #loop goes through each crisp atom#
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{

ZZa<-ZZ

for (i in 1:dim(z)[1]) #fixing elements in odd cells#

{

ZZa[i,1]<-c1[i]

ZZa[i,2]<-c3[i]

ZZa[i,3]<-c5[i]

}

for (j in (sum(c1)):(sum(c1)+sum(c2)))

#consider elements in 1st even cell corresponds to 1st column#

{

ZZa[j,1]<-1

for (k in (j+1):(sum(c1)+sum(c2)))

#consider elements in 1st even cell corresponds to 2nd column#

ZZa[k,2]<-1

if (j>(sum(c1)))

#cleaning up extra 1’s in second column before the required element#

{

for (l in (sum(c1)):j)

ZZa[l,2]<-0

}

for (n in (sum(c1)+sum(c2)+sum(c3)):(sum(c1)+sum(c2)+sum(c3)+sum(c4)))

#consider elements in 2nd even cell corresponds to 2nd column#

{

ZZa[n,2]<-1

for (o in (n+1):(sum(c1)+sum(c2)+sum(c3)+sum(c4)))

#consider elements in 2nd even cell corresponds to 3rd column#
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ZZa[o,3]<-1

if (n>(sum(c1)+sum(c2)+sum(c3)))

#cleaning up extra 1’s in third column before the required element#

{

for (p in (sum(c1)+sum(c2)+sum(c3)):n)

ZZa[p,3]<-0

}

for (q in 1:dim(z)[1])

#cleaning up extra 1’s in second column after the required elements#

{

if (sum(ZZa[q,])>1)

ZZa[q,2]<-0

}

cat(h,file="atoms.txt","\n",append=TRUE)

#assign a label for the atom stored in R#

for (v in 1:(dim(z)[1]))#consider the current atom in stored file in R#

{

cat(ZZa[v,],file="atoms.txt","\n",append=TRUE)

}

PZZ<-ppo(ZZa)-ppo(ppo(ZZa)%*%tm(beta1,beta2,xs))

#gives perpendicular projection of tm(beta1, beta2) onto zza (crisp atoms)#

PZZb<-basis(PZZ)#basis set for pzz, use for calculation of tau#

cat(PZZb,file="Basis.txt","\n",append=TRUE) #stores the basis set in R#

}

}

}

}
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#####################################################################

#Running atoms function for different values for beta2 i.e. 1,3,5,7,9#

atoms(z,ca,c1,c2,c3,c4,c5,1,1)

atoms(z,ca,c1,c2,c3,c4,c5,1,3)

atoms(z,ca,c1,c2,c3,c4,c5,1,5)

atoms(z,ca,c1,c2,c3,c4,c5,1,7)

atoms(z,ca,c1,c2,c3,c4,c5,1,9)

#####################################################################

######################################################

#Function to get w values using correct x values

######################################################

# v=z=output for overlapping subsets from cover function#

# vb=xs=the set of sorted random variables, X,#

# vc=B=the matrix B created by the edges function#

w.values<-function(v,vb ,vc)

{

for (a in 1:(dim(v)[1]-1))

{

if (sum(vc[,a])>1)

break

}

for (ab in 1:dim(v)[1])

{

if (vc[ab,a]==1)
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break

}

for (ac in ab+1:dim(v)[1])

{

if (vc[ac,a]==1)

break

}

w<-(((vb[ab])-(vb[ac]))^2)

#weight for a particular element in edge set#

cat(w,file="weights.txt","\n",append=TRUE)

#need to calculate W_Z_n values later#

}

###########################################################################

#recursive function to create the edge set (w.values function used in here)

###########################################################################

# z=output for overlapping subsets from cover function#

# B=matrix B which is created by cover function#

# f=row identifier for z matrix#

# g=column identifier for z matrix#

# h=column identifier for ’b’ matrix#

# b= matrices which are created by edges function#

z<-cover.out[[1]]

B<-cover.out[[2]]

edges<-function(z,b,f,g,h)

{
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#primary recursion loop for calculation of edge set#

for (j in 1:(dim(z)[1]))

#indices where to start in the rows of Z (lengths of the different columns)#

if (z[j,g]==1)

{

break

}

#identifying the observations which can be clustered into different subsets#

if (g<(dim(z)[2])) #used for stopping criteria#

{

for (ja in 1:(dim(z)[1]))

if (z[ja,g]+z[ja,g+1]==2) #find next contiguous obs consistent with a cover#

{

break

}

}

else ja<-j

if (z[f,g]==1) #find if obs in the same overlapping subset are contiguous#

{

if (z[f+1,g]==1)

{

b[f,h]<-1 #insert 1 into empty edge set#

if (h>1)

{

#takes care of diagonals before the lone clustering#

for (jb in 1:h-1)

{
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b[jb,jb]<-1

}

}

#the main body of the algorithm which supplies the most criteria#

for (i in (f+1):(sum(z[,g])+(j-1)))

{

b[i,h]<-1

if (i==f+1)

{

for (jc in i:(sum(z[,g])+(j-1)))

#ensure edge remain consistent with cover#

b[jc,jc-1]<-1

}

if (i>f+1)

{

b[i-1,i-1]<-1

}

if (i>f+1)#cleaning up extra 1’s in the matrix#

{

for(jd in (f+1):(i-1))

b[jd,h]<-0

}

for (je in (sum(z[,g])+(j-1)):(dim(z)[1]))

{

b[je,je-1]<-1

}
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if (i!=f+1) b[i,i-1]<-0 #cleaning up the edge matrix#

{

w.values(z,xs,b) #find weight component for the edge#

}

}

if (g<=(dim(z)[2]) || f<(dim(z)[1]) || h<(dim(b)[2]))

# instructions about what to do next#

{

if (g<(dim(z)[2]))

# if there is another overlapping subset to investigate do this#

{

for (y in 1:(dim(z)[1])) #create identifier for rows of z#

if (z[y,g+1]==1)

{

break

}

if ((f+1)<y) edges(z,B,f+1,g,h+1) #decision for recursion#

else edges(z,B,y,g+1,y) #decision for recursion#

}

else

{

#Overall stopping criteria#

if (h>=(dim(b)[2]) || f>=(dim(z)[1]-1))

date() #gives date/time group at the stopping point#

else edges(z,B,f+1,g,h+1)# go with next row of z & next col of b if not stopped#

}

}
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}

else

if (g<=(dim(z)[2]) || f>(dim(z)[1]) || h<(dim(b)[2]))

# push to search to the next overlapping subset#

{

for (y in 1:(dim(z)[1]))#next overlapping subset to build edge clusters for#

if (z[y,g+1]==1)

{

break

}

edges(z,B,y,g+1,y)#next recursion#

}

}

}

################################################################################

# function to calculate weights (W_Z_n) for Z_n that belongs to edge set

#using edges function Note: calculates the weights once the recursive algorithm

#’edges’ has stored in the output

################################################################################

weights<-function()

{

edges(z, B, 1,1,1)

#call function that creates the edge set, this changes as f, g, h values changes#

for (ii in 1:dim(as.matrix(read.table("weights.txt")))[1])

{

ww<-(as.matrix(read.table("weights.txt")))[ii,]/
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(sum(as.matrix(read.table("weights.txt"))))

#calculates W_Z_n for each atom in Kn,0#

cat(ww,file="totalweights.txt","\n",append=TRUE)#use to calculate l_Z_n values later#

}

}

#################################

#Runing weights function#

weights()

#################################

weight<-as.matrix(read.table("totalweights.txt"))

#creates a matrix of weights to use later#

basis<-as.matrix(read.table("Basis.txt"))

#creates a matrix of which each row is a basis for corresponding atom#

######################################################

#Function which creates tau (lzn function used in here)

######################################################

# z=output for overlaping subsets from cover function#

# B=matrix B which is created by cover function#

# f=row identifier for z matrix#

# g=column identifier for z matrix#

# h=column identifier for ’B’ matrix#

# vv=index counter for the ’weights’ matrix from weights function#

# vvv=index counter for the basis’s rows from atoms function#

z<-cover.out[[1]]
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B<-cover.out[[2]]

edges_beta<-function(z,b,f,g,h,vv,vvv)

{

if (vv==1)

ZZZ<<-0 #set the starting value of the tau at 0

##############################################################

#Function to calculate the set of l_Z_n values (for each atom)

##############################################################

#d=the matrix Z from cover function

#da=the matrix B which is calculated by the recursive algorithm (edges function)

#db= created as an index counter for edge sets

# ’weight’ W_Z_n values based on edge sets#

lzn<-function(d,da,db)

{

tau_1<-t(as.matrix(vvv))%*%(ppo(da)-ppo(ppo(da)%*%tm(1,1,xs)))%*%(as.matrix(vvv))

#parameters in tm function need to change based on the situation

tau<-weight[db]%*%tau_1

ZZZ<<-ZZZ+tau

#keep the running total of tau while moving through the edge set

if (db>=(length(weight)))

#what to do when the entire edge set has been run #

#(before ’apply’takes this to the next atom)

{

#print((dim(d)[1])*(1/(ZZZ)))

cat(((dim(d)[1])*(1/ZZZ)),file="lzn(1,1).txt","\n",append=TRUE)

103



#store the values of l_Z_n before iterating to next atom in K_n_0

}

}

##primary recursion loop for the calculation of the edge set

{

for (j in 1:(dim(z)[1]))

#indicates where to start searching in the rows of z (lengths of the different cols)

if (z[j,g]==1)

{

break

}

if (g<(dim(z)[2])) #used for stoping criteria (last column if g=column dim of z)

{

for (ja in 1:(dim(z)[1]))

if (z[ja,g]+z[ja,g+1]==2)

#identifies the ’next’ contiguous observations consistent with a cover

{

break

}

}

else ja<-j

if (z[f,g]==1)

#for identifing if the observations in the same overlap subset are contiguous

{

if (z[f+1,g]==1)

#identifies if the observations in the same overlap subset are contiguous

{
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b[f,h]<-1 #inserts a 1 into the empty edge matrix, b

if (h>1)

{

for (jb in 1:h-1)

#places lone observations before the lone clustering

{b[jb,jb]<-1}

}

for (i in (f+1):(sum(z[,g])+(j-1)))

#for 1s at the clustering and observations after (obs are sorted)

{

b[i,h]<-1

if (i==f+1)

{

for (jc in i:(sum(z[,g])+(j-1)))

#for ensuring edge remains consistent with cover

b[jc,jc-1]<-1

}

if ((i-f-1)>0) #for ensuring edge remains consistent with cover

{

b[i-1,i-1]<-1

}

if (i>f+1) #’cleaning up’ the extra 1s in the matrix

{

for(jd in (f+1):(i-1))

b[jd,h]<-0

}

for (je in (sum(z[,g])+(j-1)):(dim(z)[1]))
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{

b[je,je-1]<-1

}

if (i!=f+1) b[i,i-1]<-0 #’cleaning up’ the edge matrix

#print(b)

lzn(z,b,vv) #call to the lz function

vv<-vv+1

#increase the counter which is used to reset the ZZZ

#(running weight value within an edge set)

}

if (g<=(dim(z)[2]) || f<(dim(z)[1]) || h<(dim(b)[2]))

#instructions for the recursion (what to do next)

{

if (g<(dim(z)[2]))

#if there is another overlapping subset to investigate then....

{

for (t in 1:(dim(z)[1])) #create identifier for the rows of z

if (z[t,g+1]==1)

{

break

}

if ((f+1)<t) edges_beta(z,B,f+1,g,h+1,vv,vvv) #decisions for the recursion

else edges_beta(z,B,t,g+1,t,vv,vvv) #decisions for the recursion

}

else

{

if (h>=(dim(b)[2]) || f>=(dim(z)[1]-1)) #stopping criteria for the recursion
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date() #prints date/time group at stopping criteria

else edges_beta(z,B,f+1,g,h+1,vv,vvv)

#keep going with next row of z and next col of B if stopping criteria isn’t reached!

}

}

}

else

if (g<=(dim(z)[2]) || f>(dim(z)[1]) || h<(dim(b)[2]))

#criteria to push the search to the next overlapping subset

{

for (t in 1:(dim(z)[1]))

#identifies the next overlapping subset to build edge clusters for

if (z[t,g+1]==1)

{

break

}

edges_beta(z,B,t,g+1,t,vv,vvv) #instructions to the recursion

}

}

}

}

result<-function(v)

{

edges_beta(z,B,1,1,1,1,v)

}
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#############################################################################

#Runing above 2 functions & finding lzn values#

#’basis’ basis set for crisp atoms (basis changes as beta changes but atoms)#

apply(basis,1,result)

#############################################################################

lzn_beta<-as.matrix(read.table("lzn(1,1).txt"))

print(max(lzn_beta)) #prining max of lzn(beta) values

index<-seq(1:ca)

test<-cbind(index, lzn_beta)

z_n_star_beta<-test[(test[,2])==(max(lzn_beta))]

#finding crisp atom label corresponds to max of lzn(beta) value

basis_z_n_star_beta<-as.matrix(basis[(z_n_star_beta[1]),])

#finding basis corresponds to max of lzn(beta) value

###################################################################

###################################################################

#Simulation study for two dimensional (parameter space) case with

additive Normal errors. Specially for between cluster lack of fit

#using exponential model and g(x) function given in Miller & Neill’s

#technical report

####################################################################

####################################################################

#Note: We have a special situation when we use exponential model.

#Since tangent vector wrt beta2 is a multiple of beta1, we get same

#maximin crisp clusterings & corresponding basis for any beta1 values
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#along with a specific beta2 value. i.e. when beta1={1,3,5,7,9} & beta2=1

#we get same maximin clusters & basises

#########################################################################

#Reading best clusters based on maximin power clustering method for each

#(beta1,beta2) settings#

#for n=100#

zb11<-read.table("zb11100.txt")

zb13<-read.table("zb13100.txt")

zb15<-read.table("zb15100.txt")

zb17<-read.table("zb17100.txt")

zb19<-read.table("zb19100.txt")

#Reading corresponding basis, should change for different betas#

#for n=100#

Bb0<-read.table("Bb11100.txt")

Bb0<-read.table("Bb13100.txt")

Bb0<-read.table("Bb15100.txt")

Bb0<-read.table("Bb17100.txt")

Bb0<-read.table("Bb19100.txt")

#Bb0 <-(sqrt(n)/sqrt(sum(Bb0^2)))* Bb0 #scale to get root(n) length

#for n=100, for a single cluster

zb11<-read.table("zb15100.txt")

zb13<-read.table("zb15100.txt")

zb15<-read.table("zb15100.txt")

zb17<-read.table("zb15100.txt")
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zb19<-read.table("zb15100.txt")

#################################################

# function to create LRT and test the hypothesis

#################################################

##v=soutput matrix created in ’Mn_star’

##h=snull matrix created in ’Mn_star’

##w=sZbasis matrix created in ’Mn_star’

##y=y created in ’Mn_star’ (simulated observed random output)

##xs=vector of x values (xs from ’cover’ function)...the sorted, scaled x values

lrt<-function(v,h,w,y,xs)

{

slrtbasis<-c(rep(0,((dim(w)[2])-2)))

#global call to create a vector of zeros to store the basis corresponding to the

closest’ point to yn on Mn**. Also, find the minimum norm and associated value

#of beta for the alternative model

library(stats) #used for the chi-square quantiles computations

ystar<-as.vector(c(0,0,max(v[,3])))

#starting value for the search of the alternative model

for (i in 1:(dim(v)[1])) #loop which searches through the souput matrix (for Mn**)

{

if (v[i,3]<ystar[3])

{

ystar<-v[i,]

}

else next
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}

cat(ystar,file="alt_result.05.txt","\n",append=TRUE)

#store the minimum norm and beta values for the alternative model

hstar<-as.vector(c(0,0,max(h[,3])))

#starting value for the search in the null model

for (j in 1:(dim(h)[1]))

#loop which searches through the snull matrix (for null model)

{

if (h[j,3]<hstar[3])

{

hstar<-h[j,]

}

else next

}

cat(hstar,file="null_result.05.txt","\n",append=TRUE)

#store the minimum norm and beta values for the null model

for (k in 1:(dim(v)[1]))

#loop which finds the basis associated with the alternative

{

if ((w[k,1]==ystar[1]) & (w[k,2]==ystar[2]))

{

for (l in 3:(dim(w)[2]))

#starts with 3 since the first 2 position has the value of beta assiciated

{

b<-l-2

slrtbasis[b]<-w[k,l]

}
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}

else next

}

yy<-(hstar[1])*(exp(-xs*hstar[2]))

#nonlinear least squares approximation for the null model

yy<-as.vector(yy)

y<-as.vector(y) #simulated yn#

sslrtbasis<-as.matrix(slrtbasis)

ystar_c<-((ystar[1])*(exp(-xs*ystar[2])))+((sslrtbasis%*%t(sslrtbasis))%*%(y-yy))

#nonlinear least square approximation for the alternative model

ystar_c<-as.vector(ystar_c)

est_std_dev1<-(sum((y-ystar_c)^2))/(length(y))

#estimated sd of errors for alt. model#

#print(est_std_dev1)

est_std_dev2<-(sum((y-yy)^2))/(length(y))

#estimated sd of errors for null model#

#print(est_std_dev2)

lrtnum<-prod(dnorm(y-ystar_c,sd=sqrt(est_std_dev1)))

#calculate the numerator of the LRT

lrtden<-prod(dnorm(y-yy,sd=sqrt(est_std_dev2)))

#calculate the denominator of the LRT

if(lrtnum==0)

{

if (lrtden==0) r<-NaN

else r<-FALSE

}

else
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{

lrtstat<-(2*(log(lrtnum/lrtden)))

if(lrtstat>qchisq(.05,1,lower.tail=FALSE)) r<-TRUE

else r<-FALSE

}

cat(r,file="TEST.05.txt","\n",append=TRUE)

#store the value of TRUE if Ho is rejected and FALSE if Ho is NOT rejected

cat(lrtstat, file="lrt.05.txt","\n",append=TRUE) #store the LRT value #

cat(c(est_std_dev2,est_std_dev1), file="sd.05.txt","\n",append=TRUE)

#store the estimated SD values under null & alternative models#

}

N<-100

sZbasis<-matrix(rep(0,((length(xs)+2)*(N*N))),ncol=(length(xs)+2))

#global call to create a matrix which stores associated bases from M_n**

soutput<-matrix(rep(0,((N*N)*4)),ncol=4)

#global call to store the value of beta and associated norm

#for alternative model model

snull<-matrix(rep(0,((N*N)*3)),ncol=3)

#global call to store the value of beta and associated norm for null model

y1<-seq(0,10, by=10/N)

y1<-y1[-(1)]

y2<-rep(y1,N) #beta2 values for the grid

soutput[,2]<-y2

snull[,2]<-y2

sZbasis[,2]<-y2

y5<-read.table("y42.txt")
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#beta1 values for the grid

#Note: need to rearrange values such that it is in a row or column

soutput[,1]<-t(y5)

snull[,1]<-t(y5)

sZbasis[,1]<-t(y5)

##############################################################

##Generated data

#b10,b20,g0,stdev values changes as parameter settings changes

#Bb0 changes as b10, b20 values changes

##############################################################

Data<- function(b10,b20,g0,xs,stdev,T) {

y<-matrix(rep(0,n*T), nrow=n, ncol=T)

for(i in 1:T){

eps<-rnorm(length(xs),mean=0,sd = stdev)

y[,i]<-as.matrix(t((exp(-1*xs+g0*(xs^2))) +eps))

y

}

#Simulated response yn i.e. model with LOF.

#Here, Bb0 is depend on the dimension of beta vector

}

Mn_star<-function(N,xs,Gen_data,T)

{

for (p in 1:T) #loop for the number of hypothesis tests desired

{

sZbasis<-sZbasis
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soutput<-soutput

snull<-snull

library(MASS)

y<-Gen_data[,p] #response data for one simulation run

for (i in 1:(N*N))

#fix the value of beta1 & get N different beta2 vlues on fibers (V_beta) &

#compute corresponding fuzzy atoms

{

b1<-soutput[,1][i] #determine beta1 for V_beta

b2<-soutput[,2][i] #determine beta2 for V_beta

fb<-as.matrix(b1*(exp(-xs*b2))) #create fibers across M_n based on null model

null_norm<-sqrt(sum((((y))-((fb)))^2))

#null_norm<-sqrt(sum(((as.vector(y))-(as.vector(fb)))^2))

#distance between the null and true yn at #beta

snull[i,3]<-null_norm #store null model norm into snull

if (b2<1) {Z<-zb11} else

{

if (b2>=1 & b2<3)

{Z_1<-zb11

Z_2<-zb13

x2<- (b2-1)/2

#g2<-.25*(-1*(((2*x2)-1)^3)+3*((2*x2)-1))+.5

g2<-(1/32)*(-5*(((2*x2)-1)^7)+21*((2*x2-1)^5)-35*((2*x2-1)^3)+35*((2*x2)-1))+.5

#function interpolating the fuzzy cluster for all beta values

#within the corresponding interval

Z<-(1-g2)*Z_1+g2*Z_2} else

{
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if (b2>=3 & b2<5)

{Z_1<-zb13

Z_2<-zb15

x2<- (b2-3)/2

g2<-(1/32)*(-5*(((2*x2)-1)^7)+21*((2*x2-1)^5)-35*((2*x2-1)^3)+35*((2*x2)-1))+.5

Z<-(1-g2)*Z_1+g2*Z_2} else

{

if (b2>=5 & b2<7)

{Z_1<-zb15

Z_2<-zb17

x2<- (b2-5)/2

g2<-(1/32)*(-5*(((2*x2)-1)^7)+21*((2*x2-1)^5)-35*((2*x2-1)^3)+35*((2*x2)-1))+.5

Z<-(1-g2)*Z_1+g2*Z_2} else

{

if (b2>=7 & b2<9)

{Z_1<-zb17

Z_2<-zb19

x2<- (b2-7)/2

g2<-(1/32)*(-5*(((2*x2)-1)^7)+21*((2*x2-1)^5)-35*((2*x2-1)^3)+35*((2*x2)-1))+.5

Z<-(1-g2)*Z_1+g2*Z_2}

else {Z<-zb19}

}

}

}

}

PZ<-ppo(as.matrix(Z))-ppo(ppo(as.matrix(Z))%*%tm(b1,b2,xs))
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#projection associated with the expectation surface and fuzzy

#clusters for beta values on V_beta

Zbasis<-basis(PZ) #basis for V_beta

for (k in 3:(length(Zbasis)+2))

{

sZbasis[i,k]<-Zbasis[(k-2)]

#store this basis (1xn) row-wise into a matrix with each row

#beginning with the beta values the basis corresponds

}

Zbasisnorm<-Zbasis/sqrt(sum(Zbasis^2))

trans<-as.matrix(Zbasisnorm%*%t(Zbasisnorm))

#use of the normalized basis for the projection onto V_beta

test<-((y)-as.matrix(fb)) # shift the y vector to origin

gamma<- t(Zbasisnorm)%*%test #estimated gamma

soutput[i,4]<-gamma #store gamma hat into soutput

transc<-trans%*%test #the translation of V_beta and yn

y_star<-fb+transc #global call to create point on V_beta closest to y

norm<-sqrt(sum((((y))-(as.vector(y_star)))^2))

#distance between y_star and the true yn at beta

soutput[i,3]<-norm #store alternative model norm into soutput

}

lrt(soutput,snull,sZbasis,y,xs)

#call to find the LRT and hypothesis test

#(this must be read before running Mn_star function)

}

}
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#for n=100#

zb11<-read.table("zb11100.txt")

zb13<-read.table("zb13100.txt")

zb15<-read.table("zb15100.txt")

zb17<-read.table("zb17100.txt")

zb19<-read.table("zb19100.txt")

#Bb0<-read.table("Bb11100.txt")

Gen_data<-Data(1,1,.2,xs,.05,1000)

Mn_star(100,xs,Gen_data,1000)

#for n=100# for a single cluster

zb11<-read.table("zb15100.txt")

zb13<-read.table("zb15100.txt")

zb15<-read.table("zb15100.txt")

zb17<-read.table("zb15100.txt")

zb19<-read.table("zb15100.txt")

#Note: Repeat "lrt" & "Mn_star" functions after changing file

#names to store output like "alt_result_sing.05", "null_result_sing.05,

#"TEST_sing.05", "lrt_sing.05" & "sd_sing.05"

Mn_star(100,xs,Gen_data,1000)

#Power with multiple maximin clusterings

count<-read.table("TEST.05.txt")

count<-ifelse((count==TRUE),1,0)
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power<-sum(count)/length(count) #power of the test

power

summary(read.table("alt_result.05.txt"))

#Power with single maximin cluster

count<-read.table("TEST_sing.05.txt")

count<-ifelse((count==TRUE),1,0)

power<-sum(count)/length(count) #power of the test

power

summary(read.table("alt_result_sing.05.txt"))

#Power with multiple testing

lrt1<-as.matrix(read.table("lrt.05.txt"))

lrt2<-as.matrix(read.table("lrt_sing.05.txt"))

lrt<-rep(0,length(lrt1))

for (i in 1:length(lrt1)){

lrt[i]<-max(lrt1[i],lrt2[i])

lrt}

count<-ifelse(lrt>qchisq(.025,1,lower.tail=FALSE),1,0)

power<-sum(count)/length(count) #power of the test

power
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