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Abstract 

The United States grain handling infrastructure is facing major challenges to meet 

worldwide customer demands for wholesome, quality, and safe grains and oilseeds for food and 

feed. Several challenges are maintaining grain quality during handling; reducing dust emissions 

for safety and health issues; growing shift from commodity-based to specialty (trait-specific) 

markets; proliferation of genetically modified crops for food, feed, fuel, pharmaceutical, and 

industrial uses; and threats from biological and chemical attacks. This study was conducted to 

characterize the quality of grain and feed during bucket elevator handling to meet customer 

demand for high quality and safe products. Specific objectives were to (1) determine the effect of 

repeated handling on the quality of feed pellets and corn; (2) characterize the dust generated 

during corn and wheat handling; (3) develop and evaluate particle models for simulating the flow 

of grain during elevator handling; and (4) accurately simulate grain commingling in elevator 

boots with discrete element method (DEM).  

Experiments were conducted at the research elevator of the USDA-ARS Center for Grain 

and Animal Health Research (CGAHR) to determine the effect of repeated handling on the 

quality of corn-based feed pellets and corn.  Repeated handling did not significantly influence 

the durability indices of feed pellets and corn. The feed pellets, however, had significantly 

greater breakage (3.83% per transfer) than the corn (0.382% per transfer). The mass of 

particulate matter < 125 µm was less for feed pellets than for corn. These corn-based feed pellets 

can be an alternative to corn in view of their handling characteristics. 

Another series of experiments was conducted in the same elevator to characterize the dust 

generated during corn and wheat handling. Dust samples were collected from the lower and 

upper ducts upstream of the cyclones in the elevator. Handling corn produced more than twice as 

much total dust than handling wheat (185 g/t vs. 64.6 g/t). Analysis of dust samples with a laser 

diffraction analyzer showed that the corn samples produced smaller dust particles, and a greater 

proportion of small particles, than the wheat samples.    

Published data on material and interaction properties of selected grains and oilseeds that 

are relevant to DEM modeling were reviewed.  Using these material and interaction properties 

and soybeans as the test material, the DEM fundamentals were validated by modeling the flow of 



 

soybean during handling with a commercial software package (EDEM).  Soybean kernels were 

simulated with single- and multi-sphere particle shapes. A single-sphere particle model best 

simulated soybean kernels in the bulk property tests. The best particle model had a particle 

coefficient of restitution of 0.6; particle static friction of 0.45 for soybean-soybean contact (0.30 

for soybean-steel interaction); particle rolling friction of 0.05; normal particle size distribution 

with standard deviation factor of 0.4; and particle shear modulus of 1.04 MPa. 

The single-sphere particle model for soybeans was implemented in EDEM to simulate 

grain commingling in a pilot-scale bucket elevator boot using 3D and quasi-2D models. Pilot-

scale boot experiments of soybean commingling were performed to validate these models. 

Commingling was initially simulated with a full 3D model. Of the four quasi-2D boot models 

with reduced control volumes (4d, 5d, 6d, and 7d; i.e., control volume widths from 4 to 7 times 

the mean particle diameter) considered, the quasi-2D (6d) model predictions best matched those 

of the initial 3D model. Introduction of realistic vibration motion during the onset of clear 

soybeans improved the prediction capability of the quasi-2D (6d) model.  

The physics of the model was refined by accounting for the initial surge of particles and 

reducing the gap between the bucket cups and the boot wall. Inclusion of the particle surge flow 

and reduced gap gave the best predictions of commingling of all the tested models. This study 

showed that grain commingling in a bucket elevator boot system can be simulated in 3D and 

quasi-2D DEM models and gave results that generally agreed with experimental data. The quasi-

2D (6d) models reduced simulation run time by 29% compared to the 3D model. Results of this 

study will be used to accurately predict impurity levels and improve grain handling, which can 

help farmers and grain handlers reduce costs during transport and export of grains and make the 

U.S. grain more competitive in the world market. 
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Abstract 

The United States grain handling infrastructure is facing major challenges to meet 

worldwide customer demands for wholesome, quality, and safe grains and oilseeds for food and 

feed. Several challenges are maintaining grain quality during handling; reducing dust emissions 

for safety and health issues; growing shift from commodity-based to specialty (trait-specific) 

markets; proliferation of genetically modified crops for food, feed, fuel, pharmaceutical, and 

industrial uses; and threats from biological and chemical attacks. This study was conducted to 

characterize the quality of grain and feed during bucket elevator handling to meet customer 

demand for high quality and safe products. Specific objectives were to (1) determine the effect of 

repeated handling on the quality of feed pellets and corn; (2) characterize the dust generated 

during corn and wheat handling; (3) develop and evaluate particle models for simulating the flow 

of grain during elevator handling; and (4) accurately simulate grain commingling in elevator 

boots with discrete element method (DEM).  

Experiments were conducted at the research elevator of the USDA-ARS Center for Grain 

and Animal Health Research (CGAHR) to determine the effect of repeated handling on the 

quality of corn-based feed pellets and corn.  Repeated handling did not significantly influence 

the durability indices of feed pellets and corn. The feed pellets, however, had significantly 

greater breakage (3.83% per transfer) than the corn (0.382% per transfer). The mass of 

particulate matter < 125 µm was less for feed pellets than for corn. These corn-based feed pellets 

can be an alternative to corn in view of their handling characteristics. 

Another series of experiments was conducted in the same elevator to characterize the dust 

generated during corn and wheat handling. Dust samples were collected from the lower and 

upper ducts upstream of the cyclones in the elevator. Handling corn produced more than twice as 

much total dust than handling wheat (185 g/t vs. 64.6 g/t). Analysis of dust samples with a laser 

diffraction analyzer showed that the corn samples produced smaller dust particles, and a greater 

proportion of small particles, than the wheat samples.    

Published data on material and interaction properties of selected grains and oilseeds that 

are relevant to DEM modeling were reviewed.  Using these material and interaction properties 

and soybeans as the test material, the DEM fundamentals were validated by modeling the flow of 



 

soybean during handling with a commercial software package (EDEM).  Soybean kernels were 

simulated with single- and multi-sphere particle shapes. A single-sphere particle model best 

simulated soybean kernels in the bulk property tests. The best particle model had a particle 

coefficient of restitution of 0.6; particle static friction of 0.45 for soybean-soybean contact (0.30 

for soybean-steel interaction); particle rolling friction of 0.05; normal particle size distribution 

with standard deviation factor of 0.4; and particle shear modulus of 1.04 MPa. 

The single-sphere particle model for soybeans was implemented in EDEM to simulate 

grain commingling in a pilot-scale bucket elevator boot using 3D and quasi-2D models. Pilot-

scale boot experiments of soybean commingling were performed to validate these models. 

Commingling was initially simulated with a full 3D model. Of the four quasi-2D boot models 

with reduced control volumes (4d, 5d, 6d, and 7d; i.e., control volume widths from 4 to 7 times 

the mean particle diameter) considered, the quasi-2D (6d) model predictions best matched those 

of the initial 3D model. Introduction of realistic vibration motion during the onset of clear 

soybeans improved the prediction capability of the quasi-2D (6d) model.  

The physics of the model was refined by accounting for the initial surge of particles and 

reducing the gap between the bucket cups and the boot wall. Inclusion of the particle surge flow 

and reduced gap gave the best predictions of commingling of all the tested models. This study 

showed that grain commingling in a bucket elevator boot system can be simulated in 3D and 

quasi-2D DEM models and gave results that generally agreed with experimental data. The quasi-

2D (6d) models reduced simulation run time by 29% compared to the 3D model. Results of this 

study will be used to accurately predict impurity levels and improve grain handling, which can 

help farmers and grain handlers reduce costs during transport and export of grains and make the 

U.S. grain more competitive in the world market. 
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CHAPTER 1 - INTRODUCTION 

1.1 Background 

The United States (U.S.) agricultural infrastructure is one of the most efficient and 

productive systems in the world. It allows Americans to spend less than 11% of their disposable 

income on food, which is considerably less than the global average of 20 to 30% (Cupp et al., 

2004). It also allows the U.S. to play a major role in the global agricultural market. The 

agricultural sector alone accounts for 13% of the current Gross Domestic Product (GDP) (Cupp 

et al., 2004; Allan and Leitner, 2006). In 2008, the agriculture sector generated $115 billion in 

exports (USDA ERS, 2009). 

The U.S. grain handling infrastructure, however, is facing a major challenge to meet 

worldwide customer demands for wholesome, quality, and safe grains and oilseeds for food and 

feed.  Maintaining grain quality and reducing dust emissions for safety and health issues are 

familiar concerns during handling, especially in grain elevators. Grain quality traits can be 

described in terms of physical, sanitary, and intrinsic quality characteristics (Maier, 1995). 

Physical quality traits include moisture content, test weight, kernel size, total damaged kernels, 

heat damage, broken kernels, stress cracking, and breakage susceptibility. Sanitary 

characteristics include fungi and mycotoxins count, insects and insect fragments, rodent 

excrements, foreign material, toxic seeds, pesticide residue, odor, and dust.  Intrinsic grain 

quality characteristics include milling yield, oil content, protein content, hardness, density, starch 

content, feed value, viability, and storability. Transporting grain and feed from the farm to the 

end user through the grain handling systems can affect their quality, particularly their physical 

quality. Dust generated during transport and handling also poses safety and health hazards. 

Challenges continue to increase with the growing shift from commodity-based to 

specialty (trait-specific) markets; proliferation of genetically modified (GM) crops for food, feed, 

fuel, pharmaceutical, and industrial uses; and threats from biological and chemical attacks. 

Specialty markets target specific needs of end users. For corn, value-adding traits leading to 

differentiated product marketing are waxy, nutritionally dense, and high oil. For each trait there 

can be multiple components such as increased protein levels, altered level of amino acids, and 

high oil content (Boland et al., 1999). High protein content is preferred by livestock feeders, 
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while high oil and starch contents are desired by corn wet millers. Processors, on the other hand, 

want high protein, low linolenic acid, and high stearic acid contents in soybeans (Hurburgh, 

1997).  

In 2008, the global area planted to GM or biotech crops has increased to 125 million 

hectares and amounted to $7.5 billion (James, 2008). Fifty percent of this crop area is located in 

the U.S. The GM crops planted are not only for food, feed, and fuel, but also include those for 

pharmaceutical and industrial purposes (Maier, 2002). 

Intentional threats to grain purity through introduction of contaminants are also a major 

concern in grain handling. Grain elevator and storage facilities are among post-harvest sites that 

are critical nodes for assessment because of vulnerability to terrorist attack with biological (US 

FDA, 2006) or chemical weapons.  

1.2 Effect of Handling on Quality and Dust Generation of Grain and Feed 

Repeated handling of grain and feed products in an elevator affects their physical quality, 

including breakage. Martin and Stephens (1977) repeatedly transferred corn alternately between 

two bins in the USDA-ARS, Center for Grain and Animal Health Research (CGAHR), formerly 

Grain Marketing and Production Research Center (GMPRC) research elevator at Manhattan, 

Kansas. Percentage of breakage of corn kernels increased linearly during the repeated-handling 

tests. Converse and Eckhoff (1989) observed increases in broken corn and fine materials during 

repeated handling of corn, depending on drying temperatures. Baker et al. (1986) found that 

breakage susceptibility of shelled corn increased significantly during handling in pneumatic 

conveying systems. Foster and Holman (1973) noted that free-fall height, impact surface, and 

corn moisture content and temperature were involved in corn breakage during commercial 

handling. Aarseth (2004) studied the susceptibility of feed pellets for livestock to attrition during 

pneumatic conveying.  

Corn-based feed pellets can be an alternative to shelled corn. Pelleting of feed is 

important for improved efficiency in animal feeding and for convenience in feed handling.  

Research has shown that animals fed with good quality pellets have better growth performance 

and feed conversion than those fed with mash, reground pellets, or pellets with more fines 

(Jensen et al., 1962; Jensen and Becker, 1965; Kertz et al., 1981; Brewer et al., 1989; Zatari et 
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al., 1990). Repeated handling data for feed pellets in an elevator will be valuable for feed 

handlers in evaluating and improving their feed handling and transportation procedures.  

Moreover, handling of grain generates dust, which can be a safety and health hazard as 

well as an air pollutant. Grain dust is composed of approximately 70% organic matter, which 

may include particles of grain kernels, spores of smuts and molds, insect debris (fragments), 

pollens, and field dust (US EPA, 2003). Due to high organic content and a substantial 

suspendible fraction, concentrations of grain dust above the minimum explosive concentration 

(MEC) pose an explosion hazard (US EPA, 2003). Published MEC values ranged from 45 to 150 

g·m-3 (Jacobsen et al., 1961; Palmer, 1973; Noyes, 1998).  

In addition to being a safety hazard to grain elevator workers, grain dust is also a health 

hazard (NIOSH, 1983). Prolonged exposure to grain dust can cause respiratory symptoms in 

grain-handling workers and in some cases affect workers’ performance and sense of well-being. 

The American Conference of Governmental Industrial Hygienists (ACGIH, 1997) has defined 

three particulate mass fractions in relation to potential health effects: (1) inhalable fraction 

(particulate matter (PM) with a median cut point aerodynamic diameter of 100 µm that enters the 

airways region), (2) thoracic fraction (PM with a median cut point aerodynamic diameter of 10 

µm that deposits in the tracheobronchial regions), and (3) respirable fraction (PM with a median 

cut point aerodynamic diameter of 4 µm that enters in the gas-exchange regions), herein referred 

to as PM-4. The U.S. EPA (2007), on the other hand, regulates PM-2.5 or fine PM (i.e., PM with 

equivalent aerodynamic diameter of 2.5 µm or less) and PM-10 (i.e., PM with equivalent 

aerodynamic diameter of 10 µm or less).  

Several studies have determined the amount of dust emitted from external and process 

emission sources in grain elevators and measured particle size distributions (PSD) for dust 

collected from grain elevators. Martin and Lai (1978) reported values of 0.080%, 0.037%, and 

0.028% for dust < 125 µm generated per transfer for corn, sorghum, and wheat, respectively, 

with a similar handling system. Converse and Eckhoff (1989) found that the total dust emission 

per transfer varied from 0.084% to 0.21% of the total mass with the greater emission associated 

with corn dried at higher temperatures. Parnell et al. (1986) reported mass median diameters 

(geometric standard deviation) of grain dust < 100 µm for corn and wheat of 13.2 µm (1.80) and 

13.4 µm (2.08), respectively. Martin and Lai (1978) cited average mass median diameters of 

residual dust (that sticks to grain) of 13 and 14 µm for wheat and sorghum, respectively.  



 4 

However, data on the PSD of dust generated during grain handling in a bucket-elevator 

system and the fraction that might be health hazards are limited (Wallace, 2000).  Published 

studies either did not consider the PSD (Martin and Sauer, 1976) or were limited to dust <100 

µm, the most explosive fraction (Parnell et al., 1986). Thus, limited data exist on the complete 

range of particle sizes generated during bucket elevator handling even though this system is the 

primary grain and feed handling system used in the U.S.  

1.3 Impact of Undesirable Grain Commingling During Commercial Handling 

Aside from improving the physical quality of grain and feed and reducing dust emissions 

during elevator handling, maintaining safety and purity of the grain is also important. Identity 

preservation programs are aimed at maintaining the genetic and physical purity of the grain. 

Segregation of grain with specific traits has been increasing in the grain industry in recent years 

and is anticipated to continue growing. Introduction of genetically modified (also called 

transgenic or biotech) crops into the U.S. grain handling system has shown that the infrastructure 

is often unable to preserve the identity of specialty grains that enter the system to the desired 

level of purity (Ingles et al., 2006). For example, the Aventis’ StarlinkTM incident (Bucchini and 

Goldman, 2002) resulted in a massive, tedious, and expensive sampling and buyback program to 

gradually remove this corn from the grain system.  Another example is the case of Monsanto’s 

GT200-containing canola seed, which contained a protein not approved for any end use that 

found its way into the grain production system (Kilman and Carroll, 2002).  

Grain commingling, an unintentional introduction of a different grain type during typical 

handling operations, directly reduces the level of purity maintained in grain that enters an 

elevator facility. There are three approaches for addressing commingling during grain handling. 

The traditional approach is to largely ignore commingling. This approach, however, is not useful 

for identity-preserved (IP) grain handling or for segregation of specialty grains. The second 

approach involves attempting to eliminate all possibility of grain commingling by containerizing 

the IP grain or handling it only in dedicated facilities. Effective, but expensive, programs have 

been developed using the second approach. Animal feed, soybeans, corn, wheat, barley, 

sorghum, oats, and pulses are examples of products being exported in IP containers to other 

countries (Vachal and Reichert, 2003; Reichert and Vachal, 2003). The customers’ preferences 

for specific variety (e.g., non-biotech or organic grain) and quality attributes (e.g., high protein) 
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have increased the demand for IP containerization (Prentice, 1998). A third approach is to 

segregate or handle the IP grain in non-dedicated facilities. Due to limited scientific data on grain 

commingling in normal handling operations, it is not currently possible to predict the level of 

purity that could be achieved with the third, less expensive approach. 

In addition to unintentional and natural threats to grain purity, intentional introduction of 

contaminants is also possible. The Strategic Partnership Program Agroterrorism (SPPA) 

Initiative, a joint effort of various federal agencies to help secure the nation’s food supply, listed 

corn farms, grain elevator and storage facilities, grain export facilities, rice mills, and soybean 

farms as five of the 14 pre- and post-harvest sites that are critical nodes for assessment because 

of vulnerability to terrorist attack with biological weapons (US FDA, 2006). As with 

unintentional commingling, current lack of data on commingling during grain handling makes it 

difficult to predict the levels of intentionally introduced contaminants that would propagate 

through the grain handling system. Because full-scale tests of contaminant mixing in the grain 

handling system are unrealistic, the inability to make useful predictions seriously hampers any 

efforts to conduct a scientific study of the fate of contaminants introduced into the system. 

Obtaining sufficient field data would require numerous resource-intensive experiments in grain 

elevators. A validated mechanistic model for predicting grain commingling in various types of 

elevator equipment will be valuable for extending the knowledge of grain commingling beyond 

the few current experimental studies.  

Continuum models, kinetic theory-based models, and discrete element models (DEM) 

(Wightman et al., 1998) have potential to simulate grain commingling in elevators. Due to the 

need to track individual particles, DEM is a proven way to simulate discrete objects like grain 

kernels and to predict the movement and commingling of grains in bucket-elevator equipment. 

DEM is an explicit numerical scheme in which particle interaction is monitored contact 

by contact, and the particle motion is modeled particle by particle. First introduced by Cundall 

(1971) and Cundall and Strack (1979) to model soil and rock mechanics, this method has been 

successfully applied to modeling of similar processes such as particle mixing in a rotating 

cylinder (Wightman et al., 1998); three-dimensional, horizontal- and vertical-type screw 

conveyors (Shimizu and Cundall, 2001); and filling and discharge of a plane rectangular silo 

(Masson and Martinez, 2000).  
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In DEM modeling, particle interaction is treated as a dynamic process, which assumes 

that equilibrium states develop whenever internal forces in the system balance (Theuerkauf et al., 

2007). Contact forces and displacement of a stressed particle assembly are found by tracking the 

motion of individual particles. Motion results from disturbances that propagate through the 

assembly. Mechanical behavior of the system is described by motion of each particle and force 

and moment acting at each contact.  

Newton’s law of motion gives the relationship between particle motion and the forces 

acting on each particle, and particles are assumed to interact only at contact points. Thus, their 

motion is independent of the other particles. The soft-sphere approach commonly used in DEM 

models allows the particles to overlap each other, giving realistic contact areas. Overlaps, 

however, are assumed to be small in relation to particle size. Force-displacement laws at the 

contacts can be represented by a Hertz-Mindlin no-slip contact model (Mindlin, 1949; Mindlin 

and Deresiewicz, 1953; Tsuji et al., 1992; Di Renzo and Di Maio, 2004, 2005). Normal and 

tangential forces, velocities, and related parameters are described by appropriate equations from 

the mechanics of particles (Tsuji et al., 1992; DEM Solutions, 2009; Remy et al., 2009).  

 With demand for high-quality grain and feed, research to ensure safety and purity of the 

grain and minimize dust emissions during elevator handling is vital. Repeated handling data on 

quality and durability of corn-based alternative feed pellets compared with data for shelled corn 

is valuable to improve feed handling and transportation procedures. A dust study to fill the gap 

where no complete PSD is available for wheat and corn dusts and provide more specific data, 

particularly on small particle sizes, is needed. A validated mechanistic model to accurately 

predict grain commingling in grain elevators is important for extending the knowledge of grain 

commingling beyond the few current experimental studies.  

1.4 Research Objectives 

The overall objective of this research was to characterize the quality of grain and feed 

during handling in a bucket elevator in terms of durability, purity, and safety to improve 

transportation and handling practices for grain and feed handlers.  Specific objectives were to 

(1) determine the effects of repeated handling on the quality of feed pellets and shelled 

corn; 

(2) characterize the dust generated during corn and wheat handling;  
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(3)  develop and evaluate particle models for simulating the flow of grain during elevator 

handling; and  

(4)  accurately simulate grain commingling in bucket elevator boot systems with discrete 

element method (DEM).  

Findings from this research are useful to feed and grain handlers and grain elevator 

operators for evaluating and improving their handling, transportation, and sanitation procedures 

in order to reduce their safety and health hazards and air pollution problems. In addition, results 

of this research will be used for grain commingling simulation of major crops to accurately 

predict impurity levels in the grain handling system, which can help farmers and grain handlers 

reduce costs during transport and export of grains and make the U.S. grain more competitive in 

the world market.  

1.5 Organization of the Dissertation 

This dissertation has seven chapters and an Appendix section. Chapter 1 presents the 

significance and objectives of the research. Chapter 2 is an overview of existing literature related 

to the research topic and is divided into two major topics regarding (1) handling quality related to 

damage, breakage, and dust generated during elevator handling of grain and feed; and (2) 

handling quality related to purity and commingling, and its simulation modeling. The first 

section discusses literature as it relates to Chapters 3 and 4 of this research. The second section is 

about previous studies related to Chapters 5 and 6 of this dissertation. Chapter 3 summarizes 

results of the study on the effect of repeated handling on the quality of corn-based feed pellets 

and shelled corn. Chapter 4 characterizes size distribution, size fraction, and dust generated 

during handling of shelled corn and wheat. Chapter 5 discusses physical properties relevant to 

modeling different grains and oilseeds, and presents an appropriate particle model for soybeans 

in DEM. Chapter 6 presents three-dimensional and quasi-two-dimensional DEM models of grain 

commingling in a pilot-scale bucket elevator boot system. Chapter 7 provides a summary of 

conclusions and recommendations for additional research. The Appendices contain supporting 

data and figures of experiments. 
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CHAPTER 2 - REVIEW OF LITERATURE 

2.1 Effect of Handling on Quality and Dust Generation in Grain and Feed 

2.1.1 Handling of Grain 

Repeated handling in an elevator affects quality of grains. Previous studies have been 

conducted on the durability of corn during handling. Baker et al. (1986) found that breakage 

susceptibility of shelled corn increased significantly during handling in pneumatic conveying 

systems with approximately 100-mm-diameter pipe. Tests involved total lengths of 31 to 60 m, 

with two to four 90-degree elbows with a 1.22-m radius of curvature. 

Foster and Holman (1973) studied physical damage (breakage) to corn, wheat, soybeans, 

and dry edible peas by commercial handling methods. Commercial handling methods included in 

their study were dropping products by free fall (simulating bin filling), dropping products 

through a spout (simulating railcar filling), grain throwing (simulating the loading of barges and 

ship holds), and handling products in a bucket elevator. Variables involved in corn breakage 

caused by commercial handling were free-fall height, impact surface, and corn moisture content, 

and temperature. Corn dropped from a height of 12 m onto corn in the commercial handling 

study caused 4.3% breakage with 12.6% moisture content at -3.8°C, and 0.25% breakage with 

15.2% moisture content at -5.0°C. Breakage of corn handled decreased at higher grain 

temperatures. 

Data on repeated handling of shelled corn in the USDA-ARS-CGAHR research elevator 

at Manhattan, Kansas, have been reported. Martin and Stephens (1977) repeatedly transferred 

corn alternately between two bins. Percentage of breakage of corn kernels increased linearly 

during the repeated handling tests. They observed breakage within the range reported by Foster 

and Holman (1973). The corn had an average free fall of 16 m in the two bins. It had a moisture 

content of about 13% and a temperature of 11°C. A constant increase in breakage during 20 

repeated transfers was also observed similar to the observations of Foster and Holman (1973). 

Converse and Eckhoff (1989) observed linear increases in broken corn and fine materials 

during repeated handling of six lots of corn that had been subjected to different drying 

treatments. Rates of increase were generally higher for corn dried at higher temperatures.  
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Fiscus et al. (1971) found that corn had the highest breakage during various handling 

techniques compared with wheat and soybeans because of the structurally weak kernel of corn 

that fragmentized into random particle sizes during the breakage process. Wheat, on the other 

hand, had the lowest breakage and generated dust and small kernel particles mainly by abrasion. 

2.1.2 Handling of Feed 

Studies on feed pellets showed the effect of handling on the quality of the pellets. Aarseth 

(2004) studied the susceptibility of feed pellets for livestock to attrition during pneumatic 

conveying. He investigated the effects of air velocity, bend radius, and number of repeated 

impacts for three commercially available feeds in a 100-mm-diameter pipeline. The three 

commercial feeds were produced by Felleskjøpet (Kambo, Norway). Feeds 'Formel Favør 30' 

(FF30) and 'Formel Elite' (FE) had pellet diameters of 6 mm and were formulated for ruminants, 

whereas, 'Kombi Norm' (KN) had a smaller pellet diameter (3 mm) that was formulated for pigs. 

The author found that particle attrition differed between feeds, but product damage increased 

exponentially with conveying air velocity. Shorter radius bends caused more product damage 

than bends of longer radius for all conveying air velocities.  

Aarseth (2004) used Weibull analysis to assess the quality of the three commercial pellets 

mentioned earlier. This analysis incorporates fracture mechanics with statistics in order to 

describe the strength of brittle materials. Brittle materials show high scatter in strength due to 

variations in crack or flaw sizes, called Griffith cracks. Weibull analysis considers a relationship 

between the scatter in fracture strength and the size distribution of Griffith cracks. Aarseth and 

Prestløkken (2003) also demonstrated that Weibull analysis can be applied to feed pellets for 

ruminants and swine. 

2.1.3 Importance of Feed Pelleting 

Pelleting of animal feed is important for improved efficiency in animal feeding and for 

convenience in feed handling. Research has shown that animals fed with good quality pellets 

have better growth performance and feed conversion than those fed with mash, reground pellets, 

or pellets with more fines (Jensen et al., 1962; Jensen and Becker, 1965; Kertz et al., 1981; 

Brewer et al., 1989; Zatari et al., 1990).  

Zatari et al. (1990) indicated that broilers fed 75% whole pellets and 25% broken pellets 

had better feed efficiency and higher body weight than those fed 25% whole and 75% broken. 
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Amornthewaphat et al. (1999) found a linear decrease in efficiency of growth of finishing pigs as 

the percentage of broken pellets was increased from 0% (7% greater gain/feed ratio than meal 

control) to 50% (2% greater gain/feed ratio than meal control).  

Dozier (2001) reported that minimum acceptable Pellet Durability Index (PDI) values 

differed for different meat birds: 96% for ducks, 90% for turkeys, and 80% for broilers. 

Hanrahan (1984) reported no difference in finishing pig performance between pigs restrictedly 

fed pellets with PDI of 69% or 62%.  

Behnke (1994) indicated that the observed improvements in animal performance have 

been attributed to decreased feed wastage, reduced selective feeding, decreased ingredient 

segregation, less time and energy expended for eating, destruction of pathogens, thermal 

modification of starch and protein, and improved palatability. A significant part of the 

improvement is related to the quality of the pellet. Good quality pellets are needed to withstand 

repeated handling processes and reduce the formation of fines by mechanical action during 

transport.  

The quality of the pellets may be described by their durability and resistance to attrition 

and/or breakage during handling. Gustafson (1959) classified the forces acting on the pellets as 

impact, compression, and shear. Impact forces shatter the pellet surface and any natural cleavage 

planes in the pellet. Compression forces crush the pellet and also cause failure along cleavage 

planes. Shear forces cause abrasion of the edges and surface of the pellet.  

2.1.4 Pellet Durability Measurement 

Several laboratory methods have been developed to measure the durability of pellets. The 

tumbling box, which is popular in North America (Winowiski, 1998) and is the basis for ASAE 

Standard S269.4 (ASAE Standards, 2003), uses 500 g of prescreened pellets placed in a box that 

revolves for 10 min at 50 rpm (Young, 1962). 

The Holmen durability tester is the most common method in Europe because it simulates 

the pneumatic conveyors in European feed mills (Winowiski, 1998). In this method, a sample 

size of 100 g of pellets is transported through tubes with high-velocity air for 30 to 120 s, 

simulating the handling process. Pellets are subjected to impact and shear forces. Fracture occurs 

when pellets strike the right-angle corners of the tester.  
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The Lignotester uses a sample of 100 g of pellets and blows them around a perforated 

chamber for 30 s (Winowiski, 1998). Pellets come out at the end of the cycle because the fines 

are removed as they are generated.  

The DURAL tester, which was developed for hard alfalfa pellets, subjects 100 g of 

pellets to impact and shear forces for 30 s at 1600 rpm (Larsen et al., 1996; Sokhansanj and 

Crerar, 1999; Adapa et al., 2004). In all of the abovementioned methods, PDI was calculated as 

the percentage of the mass of remaining whole pellets after the PDI test over the total mass of 

whole pellets before the test. 

2.1.5 Grain Dust: Health and Safety Hazard and Air Pollutant 

Handling of grain generates dust, which can be a safety and health hazard as well as an 

air pollutant. Grain dust is composed of approximately 70% organic matter, which may include 

particles of grain kernels, spores of smuts and molds, insect debris (fragments), pollens, and field 

dust (US EPA, 2003).  

Concentrations of grain dust above the minimum explosive concentration (MEC) pose an 

explosion hazard (US EPA, 2003) due to the high organic content and a substantial suspendible 

fraction. Published MEC values ranged from 45 to 150 g·m-3 (Jacobsen et al., 1961; Palmer, 

1973; Noyes, 1998).  

Moreover, grain dust is not only a safety hazard but also a health hazard (NIOSH, 1983). 

Prolonged exposure to grain dust can cause respiratory symptoms in grain-handling workers and 

in some cases affect workers’ performance and sense of well-being. The American Conference 

of Governmental Industrial Hygienists (ACGIH, 1997) has defined three particulate mass 

fractions in relation to potential health effects: (1) inhalable fraction (PM with a median cut point 

aerodynamic diameter of 100 µm that enters the airways region), (2) thoracic fraction (PM with a 

median cut point aerodynamic diameter of 10 µm that deposits in the tracheobronchial regions), 

and (3) respirable fraction (PM with a median cut point aerodynamic diameter of 4 µm that 

enters in the gas-exchange regions), herein referred to as PM-4.  

The US EPA (2007), on the other hand, regulates PM-2.5 or fine PM (i.e., PM with 

equivalent aerodynamic diameter of 2.5 µm or less) and PM-10 (i.e., PM with equivalent 

aerodynamic diameter of 10 µm or less). PM-2.5 has been linked to serious health problems 

ranging from increased symptoms to premature death in people with lung and heart disease (US 
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EPA, 2007). PM-2.5, PM-4, and PM-10 are more dangerous in terms of grain dust explosions 

because MEC generally decreases with decreasing particle sizes and increasing surface area 

(Garrett et al., 1982). 

2.1.6 Grain Dust in Elevators 

Under the 1990 Clean Air Act, state environmental agencies are required to regulate 

emission of airborne dust from the grain elevator industry (US EPA, 1990). The US EPA AP-42 

document cited recent research on dust emission from grain handling operations indicating the 

mean PM-10 value was approximately 25% of total PM or total dust and the fraction of PM-2.5 

averaged about 17% of PM-10 (US EPA, 2003). Mean PM-10 values for country and export 

elevators were 20% and 26%, respectively, of total dust (Midwest Research Institute, 1998). 

Elevators primarily handling wheat had mean PM-10 of about 30% of total dust, whereas those 

primarily handling corn and soybeans had an average PM-10 of slightly less than 20% of total 

dust.  

Several studies have been conducted to determine the amount of dust generated from 

external and process emission sources in grain elevators. Kenkel and Noyes (1995) found the 

amount of airborne dust generated from grain receiving of wheat from a straight truck was 19.5 

g·t-1, receiving from a hopper-bottom truck was 9.5 g·t-1, and loading out or grain shipping was 

4.0 g·t-1. Shaw et al. (1998) measured a mean dust emission rate of 8.5 g·t-1 during corn receiving 

operations at three feed mills in cattle feedyards. Emission tests conducted by Midwest Research 

Institute (1998) during grain receiving and shipping operations in both country and terminal 

elevators yielded mean dust emission rates of 90 g·t-1 (29.5 g·t-1 of PM-10) for straight truck 

receiving, 17.5 g·t-1 (3.9 g·t-1, PM-10) for hopper truck receiving, 43 g·t-1 (14.5 g·t-1, PM-10) for 

truck shipping, and 13.5 g·t-1 (1.1  g·t-1, PM-10) for railcar shipping. Billate et al. (2004) 

measured dust emission rates during grain receiving operations from simulated hopper-bottom 

trucks. They found that emission rates of total suspended particulate (TSP) (8.3 - 52.1 g·t-1 of 

corn received) and those of PM-10 (0.6 - 6.1 g·t-1) decreased with increasing grain flow rate and 

decreasing drop height. Dust generated from process emission sources in the grain elevator were 

reported to be 37.5 g·t-1 for grain cleaning using cyclones, 110 g·t-1 for column grain drying, 30.5 

g·t-1 for headhouse and internal handling operations, and 12.5 g·t-1 for storage bin vents (US 

EPA, 2003). 
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2.1.7 Particle Size Distribution of Grain Dust 

Particle size distributions (PSD) for dust collected from grain elevators have been 

reported in several studies. Martin and Sauer (1976) found that particles <125 µm accounted for 

an average of 80% of the mass of total corn dust collected at the cyclone tail, and with an 

average of 43.5% for total wheat dust. Dust particles <8 µm averaged 7.5% for corn dust and 

3.5% for wheat dust.  

Likewise, Martin and Stephens (1977) reported the amount of dust <125 µm was 70% of 

the mass of the dust. They observed an initial increase in the amount of corn dust <125 µm 

emitted in the first eight transfers, while the amount of dust <125 µm became constant during 

subsequent transfers.  

Martin and Lai (1978) cited mean mass median diameters of residual dust (that sticks to 

grain) of 13 and 14 µm for wheat and sorghum, respectively. In the same study, mean 

percentages of residual dust with a diameter ≤10 µm were about 34%, 33%, and 45% for 

sorghum, corn, and wheat, respectively. They reported the percentage of dust <125 µm was 85%, 

78%, and 60% of the total dust collected for corn, wheat, and sorghum, respectively.  

Martin (1981) studied the particle size distribution of grain dusts from both cyclone 

separators and baghouses.  The fraction of the dust particles less than 10 µm represented about 

20% of dust from the baghouse and about 9% of dust from a cyclone.  

Lai et al. (1984) reported the weight percentages of grain dust particles with diameters 

less than 105 µm (sieve aperture) were > 84%, 100% and >70% for corn, wheat, and grain 

sorghum, respectively. The weight percentages of dust particles with a geometric mean diameter 

of 114 µm (sieve aperture = 105 µm lower) were 34%, 32%, and 72% for corn, wheat, and grain 

sorghum, respectively.  

Baker et al. (1986) reported similar size distribution of dust collected during pneumatic 

conveying of shelled corn with that collected from grain handling by a bucket-elevator system 

(Martin and Lai, 1978; Martin, 1981). The percentage of mass of dust <100 µm was around 80%; 

<10 µm, around 10%; <4 µm, around 2%; and <2.5 µm, around 0.6%.  

Parnell et al. (1986) measured the weight percentage of grain dust <100 µm collected by 

baghouses of terminal elevators and obtained 54.1%, 34.3%, 34.3%, 44.2%, and 50.6% for corn, 

wheat, sorghum, rice, and soybeans, respectively. They reported the mass mean diameter 
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(geometric standard deviation) of corn, wheat, sorghum, rice, and soybean dusts < 100 µm to be 

13.2 (1.80), 13.4 (2.08), 14.0 (2.16), 10.7 (2.24), and 13.6 µm (1.87 µm), respectively.  

Converse and Eckhoff (1989) found that total dust emission per transfer, during repeated 

handling of six lots of corn that had been subjected to different drying treatments, varied from 

0.084% to 0.21% of the total mass, with greater emissions associated with corn dried at higher 

temperatures.  

Piacitelli and Jones (1992) studied the size distribution of sorghum dust collected by 

impactors during on-farm handling (harvesting, on-farm storage, delivery truck). Their results 

indicated that about 2% of the particles had ≤ 3.5 µm aerodynamic diameter; 10% were ≤ 10 µm, 

24% were ≤ 15 µm, 48% were ≤ 21 µm, and 52% were > 21 µm. 

2.1.8 Summary 

Repeated handling in grain elevator affects the quality of grain and feed. Previous studies 

investigated the effect of commercial (i.e., bins, railcars, barges, ships, and bucket elevators), 

pneumatic, and repeated elevator handling on the quality of shelled corn, wheat, soybeans, and 

dry edible peas. Other studies dealt with the effect of pneumatic conveying on the quality of feed 

pellets. The effect of repeated handling in an elevator, however, on the quality of feed pellets has 

not been investigated. Corn-based feed pellets incorporated with other feed ingredients to 

improve nutritive value can be an alternative to shelled corn. Repeated handling data for feed 

pellets compared with data for shelled corn in an elevator will be valuable for feed handlers in 

evaluating and improving their feed handling and transportation procedures.  

Likewise, data on the particle size distribution (PSD) of dust generated during grain 

handling in a bucket-elevator system and the fraction that might be health hazards are limited 

(Wallace, 2000). Published studies either did not consider the PSD (Martin and Sauer, 1976) or 

were limited to dust < 100µm, the most explosive fraction (Parnell et al., 1986). Thus, limited 

data exist on the complete range of particle sizes generated during bucket elevator handling, even 

though this system is the primary grain and feed handling system used in the U.S. A study is 

needed that fills the gap where no complete PSD is available for wheat and corn and that 

provides more detailed data than previous studies, particularly on small particle sizes, PM-2.5 

and PM-4. 
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2.2 Impact of Undesirable Grain Commingling During Commercial Handling 

2.2.1 Trends in Biotech Crops  

In 2008, the global value of approved genetically modified (GM) or biotech crops has 

reached $7.5 billion, with an accumulated historical milestone value of $50 billion from the 

period 1996 to 2008 (James, 2008). GM crops are planted by 13.3 million farmers globally in 25 

countries, 90% of which are small and resource-poor farmers in developing countries. The top 

eight countries each growing more than 1 million hectares were USA, Argentina, Brazil, India, 

Canada, China, Paraguay, and South Africa (Table 2.1). Among GM crops planted worldwide 

were soybeans, corn, cotton, canola, squash, papaya, alfalfa, sugar beets, tomatoes, poplars, 

petunias, sweet peppers, and carnations. Advantages cited from using GM crops were more 

affordable food, feed, and fiber; less pesticide usage (Falck-Zepeda et al., 2000; Marra et al., 

2002; James, 2004); reduced production cost; increased yield; reduced dockage (i.e., for 

Roundup Ready wheat); and increased profitability (Fernandez-Cornejo and McBride, 2000; 

Price et al., 2003; Wilson et al., 2003).  

 

Table 2.1 Global area planted with genetically modified crops.[a] 

Country Planted Area (million ha) Global Percentage 
United States 62.5 50.0 

Argentina 21.0 16.8 
Brazil 15.8 12.7 
India 7.6 6.1 

Canada 7.6 6.1 
China 3.8 3.0 

Paraguay 2.7 2.2 
South Africa 1.8 1.4 

Other countries 2.1 1.7 
TOTAL 124.9 100.0 

[a] James, 2008 
 

Uncertainty about genetically modified foods and products, however, has led customers 

worldwide to demand grains that are purer, safer, more wholesome, and either containing no GM 

grain or strictly controlled levels of GM grain. The 2000 incident on the accidental mixing of an 

unapproved variety of GM corn in human food, specifically Aventis’ StarlinkTM corn, and the 

massive recall of food containing its traces (Taylor and Tick, 2001), added to the customers’ 
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demand for safer identity-preserved (IP) grains and grain products. Another example is the case 

of Monsanto’s GT200-containing canola seed, which contained a protein not approved for any 

end use that found its way into the grain production system (Kilman and Carroll, 2002). 

Consequently, countries around the world introduced rules for labeling the presence of GM 

ingredients. 

2.2.2 Legal Issues and Customers’ Preferences 

Different countries have specified threshold or tolerance levels for accidental GM 

material in their labeling schemes (Table 2.2). European Commission (EC) Regulation 49/2000 

set the minimum GM threshold of 1% for adventitious contamination of non-GM material for 

labeling requirements (Food Standards Agency, 2001). If the GM material is less than 1%, 

however, there is no need to label it. If it is more than 1%, there is a need to prove that the 

material is of non-GM origin that has been contaminated by GM material. Since then, the EU 

adopted Regulation (EC) No. 1829/2003 on “genetically modified food and feed,” and 

Regulation (EC) No. 1830/2003 on “the traceability and labeling of genetically modified 

organisms,” which were more stringent than the former resolution. These regulations include a 

0.9% threshold for the “adventitious” or accidental and technically unavoidable presence of 

authorized GM event in a non-GM food or feed, above of which should be labeled; and a 0.5% 

threshold for GM material unavoidably present and not yet authorized by the EU but declared 

safe (Joy, 2003; Wilson et al., 2003; USDA FAS, 2008). 

In addition, the Bioterrorism Act in the U.S. and the General Law of 2005 in the 

European Union have required producers and processors to have a traceability program. These 

laws commanded producers, processors, distributors and all involved in the supply chain to 

create reliable systems to track and trace ingredients and products (Pehanich, 2005).  Moreover, 

the declining domestic demand on soybean meal and the increasing demand on soybean oil for 

use in bio-diesel production (Good, 2006) would eventually require identity preservation and 

segregation of specialty grains. Furthermore, international institutions such as the Codex 

Alimentarius, the Biosafety Protocol, and the World Trade Organization are directly involved in 

discussions over labeling of GM food (Gruere and Rao, 2007), which may eventually need 

identity preservation or segregation. 
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Table 2.2 Threshold or tolerance levels used by selected countries for labeling requirements.[a] 

Country Labeling Scheme Threshold Level 

European Union 
Mandatory and national 

voluntary guidelines 
0.9% 

Brazil Mandatory 1% 

China Mandatory None (0%) 

Australia-New Zealand Mandatory and voluntary 1% 

Japan Mandatory and voluntary 5% [b] 

Indonesia Mandatory 5% [b] 

Russia Mandatory 0.9% 

Ukraine Mandatory 0.9% 

Saudi Arabia Mandatory 1% 

South Korea Mandatory and voluntary 3% [c] 

Taiwan Mandatory and voluntary 5% 

Thailand Mandatory 5% [b] 

Chile Mandatory 1.0% 

Norway Mandatory 2.0% 

Argentina Voluntary Not specified 

South Africa Voluntary Not specified 

Philippines Voluntary 5.0% 

Canada Voluntary 5.0% 

United States Voluntary None available 
[a] Phillips and McNeill, 2000; Sheldon, 2002; Carter and Gruere, 2003; Wilson et al., 
2003; Cevallos, 2006; Gruere and Rao, 2007; USDA FAS, 2009. 
[b] On three main ingredients in each product. 
[c] On top five major ingredients in each product. 
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2.2.3 Identity Preservation, Segregation, Labeling, and Traceability 

The introduction of GM crops into the U.S. grain handling system and the demand for 

specialty grains have shown that the infrastructure is largely unable to preserve the identity of 

these grains to the desired level of purity. Identity preservation and segregation would be vital in 

the grain handling systems. The EU Committee (2001) issued a position paper that clarified the 

concepts of labeling, traceability, and identity preservation. Labeling is about fulfilling the needs 

of the end customers and imposes one set of ethical values and associated costs on all consumers. 

It is encouraged to be done voluntarily, but is mandatory in certain countries. Traceability is the 

ability to track down the identity, history, and source of a raw material, ingredient, or foodstuff. 

This depends on record keeping and is an important food safety concept for all food supplies. 

Identity preservation is when farmers have an advance contract to grow and to preserve the 

identity of the crop for a specific customer or market, and when an added value is placed on the 

commodity.  

Identity preservation is the process of segregating crops that involve separate storage and 

handling, and documentation of separation (Wilcke, 1999).  It is also defined as a traceable chain 

of custody that starts with the farmer’s choice of seed and ends through the shipping and 

handling system (Dye, 2000). It includes a coordinated transportation and identification system 

to transfer product and information that make a product more valuable (Sonka et al., 2000). It is 

also referred to as a closed-loop channel that facilitates the production and delivery of an assured 

quality by allowing traceability of a commodity from the germplasm or breeding stock to the 

processed product on a retail shelf (Buckwell et al., 1998; Lin et al., 2000). It is a system of 

production, handling, and marketing practices that segregates and maintains the integrity and 

purity of the agricultural commodity in order to enhance the value of the final product 

(Sundstrom et al., 2002). Figure 2.1 shows an example of an identity preservation process and 

factors that need to be considered at each step of the process. 

According to USDA ERS (2001), identity preservation is a more stringent and expensive 

process of differentiating commodities that require strict separation be maintained at all times. It 

usually involves containerized shipping and testing for GM and non-GM status just prior to 

containerization. It is often used for marketing commodities like food-grade corn and soybeans. 

This handling process might be required in order to meet the threshold level of 0.9% as per EU  
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Figure 2.1 Identity preservation process and factors to consider at each step, including testing 

and auditing points (Sundstrom et al., 2002). 
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labeling regulations. On the other hand, segregation refers to a process that keep crops separate 

to avoid commingling during harvesting, loading and unloading, storing, and transporting. It 

requires cleaning of equipment, such as combines and augers, and transportation and storage 

facilities. It is a handling process that has been placed for some time for specialty grains (e.g., 

high-oil corn). However, containerization is generally not involved, thus testing for presence of 

GM content is more critical (USDA ERS, 2001). This process is usually for meeting a biotech-

content threshold level of about 5%, as in the case of Japan’s 2000 labeling regulations. These 

two methods are the ones referred to as the second approach to grain commingling in Chapter 1, 

which attempts to eliminate all possibility of grain commingling by containerizing the identity-

preserved grain or handling it only in dedicated facilities. 

2.2.4 Economics of Identity Preservation and Segregation 

Several studies have dealt with the cost of identity preservation and segregation of 

various grains. Wilson et al. (2003) summarized previous studies on the costs of these processes, 

which ranged from 1.0 to 72 cents per bushel (¢·bu-1) (Table 2.3).  

The EU Committee (2001) reported potential consequences of legislation on the 

traceability and labeling of genetically modified organisms (GMOs). The EU is dependent on 

imported raw material from countries adopting GMOs. According to the EU Committee, GM 

labeling could increase retail food prices by up to 10%. 

2.2.5 Prevention and Detection of GM Crop Contamination and Other Threats 

Several practices to protect GM and non-GM crops from contaminating each other are 

summarized by Wilcke (1999) and Nielsen (2000). Practical management strategies are as 

follows: 

• Develop the proper attitude of separating GM crops from non-GM crops. 

• Know what the buyer wants and deliver according to specifications. 

• Make sure that seeds are pure, or at least know what the seed company’s purity standards are. 

• Develop a plan for segregating the crop. To some extent, it is possible to manipulate planting 

date and crop maturity to minimize for pollen drift or cross-pollination between adjacent 

fields of GM and non-GM crops.  

• Consider growing and storing non-GM crops in separate locations. If this cannot be done, 

plant buffer rows so as to separate the GM crops from non-GM. 
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• Keep detailed records. 

• Plan to harvest the non-GM crops before the GM crops to minimize the risk of commingling.  

• Clean equipment between crops. 

• Keep an eye on custom operations and make sure they understand the concept of identity 

preservation. 

• Keep samples until the final buyer is satisfied with the crop. 

 

Table 2.3 Previous studies on costs of identity preservation and segregation. [a] 

Researcher Methodology/ scope of 
analysis 

Estimated cost of 
segregation/identity 

preservation 

Askin (1988) 
Econometric model of costs for 
primary elevators 

Increase of 2 grades handled 
increased costs <0.5¢·bu-1 

Jirik (1994) 
Survey of elevator managers 
and processors 

11-15¢·bu-1 

Hurburgh et al. (1994) 
Cost-accounting model for 
high-oil soybeans 

3.7¢·bu-1 
 

McPhee and Bourget (1995) 
Econometric model of costs for 
terminal elevators 

Increasing grades handled 
increased operating costs 2.6% 

Herrman et al. (1999) Stochastic simulation model 1.9-6.5¢·bu-1 

Maltsbarger and Kalaitzandonakes (2000) 
Simulation model for high-oil 
corn 

1.6-3.7¢·bu-1 

Nelson et al. (1999) Survey of grain handlers 
6¢·bu-1 (corn) 
18¢·bu-1 (soybeans) 

Bullock et al. (2000) Cost accounting 30-40¢·bu-1 (soybeans) 

Dahl and Wilson (2002) Survey 
25-50¢·bu-1 
 

Wilson and Dahl (2001) 
Survey of elevator managers 
for wheat 

15¢·bu-1 

USDA ERS (Lin et al., 2000) 
Cost-accounting adjustments to 
survey results for specialty 
grain handlers 

22¢·bu-1 (corn) 
54¢·bu-1 (soybeans) 

Smyth and Phillips (2001) 
Analysis of GM identity 
preservation system for canola 
in Canada, 1995-96 

21-27¢·bu-1 

Gosnell (2001) 
Added transportation and 
segregation costs for dedicated 
GM elevators 

15-42¢·bu-1  (high throughput) 
23-28¢·bu-1  (wooden elevators) 

Sparks Company (2000)  
38-45¢·bu-1  (non-GM canola) 
63-72¢·bu-1  (non-GM soybeans) 

[a] Wilson et al., 2003 
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USDA ERS (2001) enumerated several methods for detecting the presence of biotech 

content in grains and oilseeds and their processed products. These include: 1) pre-emergence 

treatment and germination test that determine the presence of the Roundup Ready gene in 

soybean seeds; 2) the polymerase chain reaction (PCR) that detects specific foreign genetic 

material inserted into the plant’s DNA; 3) the protein-based, enzyme-linked immunosorbent 

assay (ELISA) that analyzes a specific antibody reaction marking the presence of the new protein 

produced in biotech crops; and 4) the near-infrared (NIR) spectroscopy that detects the presence 

of input-trait biotech material through its pattern of absorption or reflection of NIRS light. 

In addition to preventing GM crop contamination, the Strategic Partnership Program 

Agroterrorism (SPPA) Initiative, a joint effort of various federal agencies to help secure the 

nation’s food supply, also worked to prevent intentional threats to the grain and food handling 

system (US FDA, 2006). This initiative listed corn farms, grain elevator and storage facilities, 

grain export facilities, rice mills, and soybean farms as five of the 14 pre- and post-harvest sites 

that are critical nodes for assessment because of vulnerability to terrorist attack with biological 

weapons. 

2.2.6 Grain Handling 

Grain handling is the process of transporting grain from the field after harvest, to on-farm 

storage, and then to country elevators, before the grain is transferred to terminal elevators for 

export, or to mill elevators for domestic processing. Grains are usually moved from field to 

country elevators by means of trucks and box cars, and to export elevators by means of barges 

and rail cars. 

Herrman et al. (2002) reported that a typical country elevator consists of a main receiving 

station elevator structure and an annex storage structure, large steel storage bins, or both annex 

storage and steel bins. A platform scale for weighing trucks containing grains is usually located 

at the receiving area. During truck arrival, the grains are weighed and sampled for quality 

determination. The main elevator has a driveway that may run through grates under which is one 

or more receiving pits, where grain is dumped. The bottom of the receiving pit is connected to a 

conveyor and a spouting leading to the boot of the bucket elevator or elevator leg. The grain is 

elevated by the bucket elevator and conveyed through the distributor to the storage bins. The 

grain that is not directly conveyed to the storage bin can be spouted to the upper garner of the 
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scale for weighing, or the grain scalper for cleaning. Grain samples may also be collected from 

the elevated grain flow using a diverter-type sampler. After passing from the sampler or scale, 

grain may be cleaned in an aspirated cleaner before it is distributed and spouted to storage bins. 

Figure 2.2 illustrates different flow paths that the grain can follow in the elevator. 

Bouland (1964) analyzed for the best capacity of truck-receiving facilities of country 

elevators. He reported that 20% of the total grain received at country elevators usually arrived in 

only one day out of the average 10-day harvest season. He also observed that although the 

elevator was open for 16 hours a day, more than 10% of the day’s receipt arrived in one hour, 

typically late in the afternoon. The time to dump a truck ranged from 1 to 6 min. At high arrival 

rates, say 80% of the daily potential service capacities, trucks’ waiting time can be as long as 1 

hour and 20 min. From the distribution curves and using the Monte Carlo approach, the waiting 

times prior to weighing were determined and the truck movement was simulated. 

Baker et al. (1997) characterized the potential of country elevators to segregate wheat 

during harvest rush based upon an analysis of grain-receiving systems of 20 country elevators in 

north central, central, and south central crop reporting districts of Kansas. They reported that 

approximately 2 min were necessary to sample and evaluate wheat quality parameters including 

moisture content, dockage, and test weight. Most country elevators had two receiving pits per 

bucket elevator, which greatly enhanced the ability to segregate wheat. Less than 45% of the 

grain-receiving systems were operated at or above 70% of their capacity. The percentage of 

operating hours during harvest versus the percent of burden showed a skewed distribution with 

10% burden as the most frequent. A normal distribution centered on 40% burden was observed 

between the percentages of bushels received during harvest versus percent burden. Observations 

led to the conclusions that there is an opportunity to improve the operating efficiency of 

receiving systems at country elevators and that it is possible to segregate. 

Herrman et al. (2001) made a follow-up study of 50 Kansas grain elevators to assess the 

capability of country elevators to segregate wheat. They found that approximately 8% of Kansas 

country elevators have one leg and one pit, which prohibits segregation. On the other hand, 74% 

of Kansas elevators possessed two or more bucket elevators, which is suitable for segregating 

wheat during the harvest rush. Larger grain elevators received fewer small trucks (29%) than 

small grain elevators (66%). Receiving wheat from the same field in larger trucks enhances 

segregation.  
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Figure 2.2 Grain flow paths in different elevator equipment (Ingles et al., 2003). 
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The time study data showed that at large elevators, 28 s less time was spent in sampling 

and evaluating wheat samples for moisture, dockage, and test weight than at small elevators. The 

time study data also revealed that operators spent 2.5 min sampling and evaluating grain quality. 

Incorporation of the most rapid detection equipment that requires less than 1.5 min to evaluate 

samples would appear feasible (Herrman et al., 2001). The authors concluded that the 

equipment-receiving capacity of most country grain elevators did not appear to hinder 

segregation activities. 

Herrman et al. (2002) developed a simulation model using SIMAN and ARENA 

(Systems Modeling Corp., Sewickley, Pa.) software packages. They simulated the segregation 

operations for typical elevator configurations based on statistical analysis of the operations of 

existing elevators. Three different country elevator configurations (i.e., small, medium, and 

large), representing approximately 75% of the traffic flow configurations of Kansas grain 

elevators, were input into the model. These configurations were created to assess the impact on 

queue length and time in the system of segregating wheat into two different quality-category 

(65% of the wheat in one category and 35% of the wheat in a second category) strategies 

compared with a no-segregation strategy. An infrastructure study of the grain receiving systems 

and the scale-ticket-summary reports were the basis of the three configurations. Variables in the 

model configurations included sampling location, number of drives and receiving pits, number 

and capacity of bucket elevators, truck sizes, and storage capacity. Time study data revealed that 

locating the sampling station ahead of, rather than at, the scale had greater benefit on the total 

time the trucks spend in the facility when segregation was performed. An elevator configuration 

with two legs (bucket elevators) and two drives was superior to a single-drive system. The 

number of trucks arriving per hour affected delay time, independent of the percent utilization of 

the grain-receiving system. 

Berruto and Maier (2001) worked under the assumption that no two elevators have 

identical receiving capacities. Unlike Herrman et al. (2002), who tackled the segregation 

problem of incoming grains using statistical averages of numerous existing elevators, Berruto 

and Maier (2001) addressed segregation issues for individual elevator configurations. They 

developed a simulation model using EXTEND (ImagineThat, Inc., San Jose, Cal.) that can track 

the waiting and service times of each truck that enters a country elevator (Berruto and Maier, 

2000). The model investigated two queuing methods: the segregated BATCH versus the FIFO 
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(first-in, first-out) queue service method in receiving multiple grain streams in a single-

unloading-pit country elevator. Results revealed that the BATCH queue service method reduced 

average waiting times per customer by up to 27%, compared with the traditional FIFO queue 

strategy when the daily grain received in the elevator was near maximum receiving capacity. The 

traditional FIFO service had shorter average waiting times per customer when the receiving rates 

fell below 72% (Berruto and Maier, 2001).  

The EXTEND simulation model was also applied to investigate the option of enlarging 

the receiving pit holding capacity and dimensions to increase the throughput of the unloading 

operation for a country elevator (Berruto and Maier, 2002). Enlarging the pit size in order for the 

two hoppers of a trailer to unload simultaneously without moving the semi-truck back and forth 

reduced the average unloading time by 1.1 min·truck-1. This also reduced the average service 

time for each customer by about 2.8, 7.0, and 18.8 min·truck-1 for the average, busy, and peak 

days, respectively. During peak days, enlargement of the two existing receiving pits resulted in 

service times of about 32 min·load-1 for the proposed configuration versus 59 min·load-1 for the 

present configuration. Enlarging the receiving pit was also envisioned to reduce the truck cycle 

time per load for farmers, which would increase their daily crop-harvesting capacities without 

having to add additional transportation equipment (Berruto and Maier, 2002).  

Berruto et al. (2003) developed a network simulation model by means of EXTEND to 

evaluate transportation efficiency of delivery trucks from fields to elevators. The transportation 

capacity in the model was based on a Class VII combine harvesting 1,036 ha (2,560 acres). 

When three, 30-m3 (850-bu) grain carts were available, maximum predicted field efficiency was 

92% compared with 82% with only two, 30-m3 (850-bu) grain carts. Another comparison was 

made for use of 31 trucks versus 22 trucks to serve 11 combines. Total delivery time of 225 

load·d-1 decreased by 25% (948 vs. 1189 min) when 40% more trucks were deployed. Average 

service time at the elevator for each truck was 12.7 min (31 trucks) versus 11.8 min (22 trucks).  

The EXTEND network model also simulated the effect of improved logistic and 

management strategies of the unloading operation on the performance of a commercial inland 

terminal elevator (Berruto and Maier, 2004). In this case, the terminal elevator was considered as 

part of the harvest-transport grain supply chain of the network model. The indicator of elevator 

performance chosen was average service time expressed as the difference between the time the 

truck enters and leaves the facility, including all unit operation times and waiting times incurred 



 32 

while delivering the truckload. The effects of four logistics and management strategies, which 

included 1) baseline, 2) enlargement of one pit, 3) enlargement of two pits, and 4) traffic pattern 

change, on unloading operations were explored. Enlargement of two pits appeared to be the best 

strategy compared with the baseline, since it allowed the elevator to collect up to 16.7% more 

grain per day and reduced service times by about 34.7 min·truck-1. Traffic pattern change was the 

strategy less sensitive to cleaning operations and provided, in most cases, the same performance 

as enlargement of one pit, but with more flexibility and less capital expenditure for elevator 

using IP. 

Rosentrater and Bern (2002) developed the Grain Elevator Simulation System (GRELSS) 

to model operations of a typical terminal grain elevator. The model was programmed in an 

electronic spreadsheet for easy operation by the end user. There were 17 separate tables 

comprising the electronic spreadsheets. Each table carried out one of three tasks: (1) define 

operational and logistical inputs, (2) conduct model calculations, or (3) display simulation 

outputs. A simple simulation was done using a single-commodity scenario. The timeline was one 

calendar year and the scenario was based on a constant grain-receiving rate of 176 m3·h-1 (5000 

bu·h-1) throughout the year. The harvest season, during which receiving was at maximum levels, 

was incorporated into the simulation. Based on a 9-h work day at the elevator, no grains were 

received between 5pm and 8am. When the facility reached full capacity, the grain was loaded 

onto a train to empty the facility and to receive more grain again. During the course of the year, a 

train was required approximately every 10 days; however, during peak harvest season; a train 

was required every three days. 

2.2.7 Grain Commingling 

2.2.7.1 Commingling Studies in Grain Combines 

Greenlees and Shouse (2000) estimated grain contamination from a combine using two 

cleaning methods: farmyard cleanout and field cleanout. Farmyard cleanout includes removing 

the grain by gravity, hand cleaning, and vacuum cleaning; field cleanout excludes vacuum 

cleaning. Yellow corn (as the offending color) and dark red ornamental corn (as the trace color) 

were used. Results showed that nearly 27 kg of yellow corn residue was removed from a John 

Deere 4420 combine after the farmyard cleanout. The effect of farmyard cleaning was not 

different from that of field cleaning due to the small amount of red corn harvested during the 
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experiment. Data suggested that contamination levels were near 2% or less after one minute of 

unloading and near 0.2% or less after 1500-1800 kg of grain had been unloaded from the 

combine. 

Hanna et al. (2006) studied the amount of grain residuals and time requirements for 

combine cleaning. They found the greatest amounts of corn and soybean materials (8 to 34 kg) 

were in the grain tank and rock trap. Total grain residual in the combine ranged from 38 to 84 kg, 

61% of which were whole grain. Time spent to clean the combine ranged from about two to 

seven hours, in which the head, grain tank, threshing rotor/cylinder, and cleaning shoe required 

the most cleaning time. Immediately after cleaning, approximately 0.5 to 1.1 kg of previous 

residual grains and foreign materials were found in the first 7 to 23 kg of subsequent crop 

harvested. After cleanouts, commingled grain levels dropped below 0.5% after 9 kg had been 

harvested, but did not always uniformly decrease below this level. Over 6 kg of wheat were 

found during the first cleanout of a combine after 20 ha of oats had been harvested; this was 

without physical cleanout prior to oat harvest. 

Hirai et al. (2006) developed a system for delivering tracing caplets into the grain on a 

combine as part of a grain traceability system. Tracing caplets were added into the wheat grain 

stream close to the unloading auger to attain uniform distribution. The number of caplets in the 

samples was reasonably consistent at unloading times of 20 and 30 s when the grain unloading 

rate was stable. The caplet concentration increased as grain flow subsided at the beginning and 

end of each unloading event. 

2.2.7.2 Commingling Studies in Grain Elevators 

Hurburgh (1999) enumerated the following sources of adventitious commingling at the 

elevator/handling function: (1) handling, 10-100 bu can remain depending on the size of 

components; (2) shipping, 10-50 bu often remain in railcars and barges; and (3) accidental 

mixing, one 80-bu truck in error can contaminate 80,000 bu if the limit is 1%. Other 

commingling points were: (1) planting system cleanout, 500 seeds in planter box can have 1%; 

(2) cross pollination, mostly for corn and should have at least 1000-ft isolation distance; (3) 

combine cleanout, 3-5 bu can remain; (4) wagons and farm handling systems; (5) storage bins; 

(6) export elevator handling; (7) ship hold; and (8) cleanup operations. 

Ingles et al. (2003) studied the effects of handling equipment on commingling and 

residual grain in an elevator by first handling white corn in various elevator equipment followed 
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by yellow corn without any special cleanout. Commingling was calculated as the percentage of 

white corn mixed in with yellow corn. They found that commingling was greater than 1% during 

the first 38 s and declined to less than 0.5% after the first metric ton of grain transfer in all tested 

equipment. The grain cleaner had the highest cumulative commingling value of 0.24%. Mean 

cumulative commingling values for weighing scale, combined pit and boot, and grain scalper 

were, respectively, 0.22%, 0.18%, and 0.01%. The largest amount of residual grain was from the 

elevator boot (120 kg, 1.4% of the total load) followed by the receiving pit (20 kg). Amounts of 

residual grain from the grain cleaner, weighing scale, and grain scalper were negligible (< 1 kg) 

by comparison. 

Ingles et al. (2006) also conducted three types of tests on (1) combined leg and gravity 

pit, (2) combined leg and pit with drag conveyor, and (3) bucket elevator to determine the effect 

of facility configuration on commingling.  Tests involved handling soybeans through one of 

three receiving pits followed by corn without any special cleanout. Commingling was calculated 

as the percentage of soybean kernels mixed in with the corn samples.  It was found that 

commingling was greater than 1% only during the first 75 to 135 s (1 to 2 t of grain received), 

except for the gravity-type dump pit configuration. Commingling in the gravity-type 

configuration remained more than 1% for the duration of the test (840 s or 7.3 t of grain). The 

mean cumulative commingling percentages were measured to be 1.31% for the combined leg and 

gravity-type pit effect, 0.3% for the combined leg and pit with drag conveyor effect, and 0.23% 

for the bucket elevator alone. The ARENA simulation model predicted a total commingling of at 

least 0.28%, of which 0.27% was generated at the bucket elevator, for a 10-t load handled in a 

facility equipped with bucket elevator and receiving pit with a drag conveyor. The model also 

predicted that handling different grain types at a 50:50-load ratio generated the most 

commingling compared with other load combinations. 

2.2.8 Grain Mixing 

Mixing or commingling of grains in a grain elevator is an example of solids mixing or 

more specifically, bulk-solids mixing. Solids mixing is the operation by which two or more solid 

particulates are dispersed by random or chaotic movement among themselves in a container, i.e., 

mixer (Fan et al., 1970; Fan et al., 1979; Too et al., 1980). Uhl and Gray (1986) generally 

defined mixing as any operation that tends to reduce non-uniformities or gradients in 
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compositions, properties, or temperatures of a material in bulk. Mixing results in the exchange of 

positions of the material in various parts of the mixer. It can be carried out simultaneously with 

other processes, or operations or can be a stand-alone operation in different processes and 

technologies. Solids mixing is an essential operation in plastic processing, pharmaceutical 

preparation, ore smelting, fertilizer production, food and feed manufacture, chemical synthesis, 

and other processes (Lacey, 1954; Fan et al., 1970; Too et al., 1980; Fan et al., 1990; Fan, 2001). 

2.2.8.1 Classification of Mixtures 

Mixtures are generally classified in two categories: (1) free-flowing mixtures, and (2) 

cohesive or interactive mixtures. Free-flowing mixtures generally permit individual particles 

freedom to move independently. In contrast, cohesive mixtures are endowed with inter-

particulate bonding mechanisms that prevent particles from moving independently; instead, they 

move only with other particles in an associated cluster (Fan et al., 1990). The dichotomy between 

these two classes of mixtures, however, is not distinct but “fuzzy” (Fan et al., 1970; Geldhart et 

al., 1984; Harnby et al., 1985).  

2.2.8.2 Characteristics of Mixtures 

Described herein are major properties of a mixture of particulate materials that 

characterize it: uniformity and homogeneity, degree of mixedness, and mixing indices. 

2.2.8.2.1 Uniformity and Homogeneity 

Fan et al. (1970) defined a homogeneous mixture to be a particulate system in which 

concentrations of all constituents are uniform throughout the whole mixture. Ideally, spatial 

distribution of constitutive particles in a mixture of two components, i.e., a binary mixture, can 

be characterized such that all particles of a component are regularly or evenly distributed among 

the particles of the other component in any part or direction of the mixture. The homogeneity of 

a solids mixture or the distribution of its composition is usually quantified by a mixing index 

(Fan et al., 1979; Fan et al., 1990). 

A mixture with regularly arranged components, i.e., an ordered mixture, however, can be 

formed even if sizes and numbers of the component particles are different. An ideally ordered 

mixture is one in which individual particles of a given component are evenly dispersed, filling up 

the intervening spaces, in the matrix of the other component. The number of particles of the 
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former is equal or less than that of the latter. Moreover, the distance between the particles of the 

former is identical in all directions (Lacey, 1943; Fan, 2001). Particles of either component in 

this mixture must be arranged according to a regular spatial pattern. Not all regular spatial 

patterns can form an ideally ordered mixture: a striated arrangement represents a regular pattern 

but cannot always be regarded as ideally mixed.  

For an ideally ordered mixture, the degree of homogeneity must be highest when 

measured in terms of any mixing index (Fan et al., 1990; Fan, 2001). The standard deviation or 

variance of the sample concentrations must be zero or nearly zero in such a mixture (Lacey, 

1943; Fan, 2001). Nevertheless, in practice, it is almost impossible to create a perfectly or ideally 

ordered mixture of freely moving particles by ordinary mixing processes. Any disturbance can 

cause a relative displacement of the particles, thereby rendering the mixture non-homogenous. 

An almost ideally ordered and stable mixture can be generated by resorting to one or more 

unique methods such as agglomeration, coating, and micro-encapsulation (Hersey, 1974, 1976; 

Fan et al., 1990; Fan, 2001).  

Unlike an ideally ordered mixture, a completely random mixture is one in which 

arrangement of particles of one component is totally randomly dispersed among the particles of 

the other component(s) (Fan et al., 1970; Akao et al., 1976; Too et al., 1979; Fan, 2001). The 

probability of finding a particle of any given component in the completely random mixture is 

identical in every location and is equal to the global, volumetric ratio of this component. The 

concentration of any component can be measured in terms of either weight or volume fraction in 

evaluating the randomness of a solids mixture (Kaye, 1989, 1997). The particles compete for 

space and are distributed along spatial coordinates in the bulk of the mixture; thus, it is more 

significant to measure the volume fraction than the weight fraction. 

The geometry of particles, e.g., differences in size, and possible surface interactions, e.g. 

adhesion and electric static attraction, are two obstacles to the total randomization of particles 

(Fan et al., 1970; Fan et al., 1990; Fan, 2001). Smaller particles can be concentrated in the 

interstices of the larger ones, which can cause segregation and prevent the particles from being 

completely randomly distributed. Profound surface interactions among particles of different 

components can lead to the formation of partially ordered arrangements, which can also hinder 

complete random mixing. In addition, density or weight differences can lead to segregation. 
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2.2.8.2.2 Degree of Mixedness 

Weidenbaum and Bonilla (1955) defined the degree of mixedness or mixing as the ratio 

of a theoretically calculated standard deviation for a completely random mixture to the 

experimentally determined standard deviation among spot samples of an incomplete mixture. An 

incomplete mixture is defined as any mixture that is at an intermediate state between the totally 

segregated and completely random states (Akao et al., 1976; Shindo et al., 1978; Fan et al., 1990; 

Fan, 2001). It can be the consequence of mixing initially separated components or spontaneously 

segregating a completely random mixture. The degree of mixedness measured by various mixing 

indices characterizes the actual state between the two extremes. 

A partially segregated mixture is defined as a mixture yet to be fully homogenized; it can 

be a mixture homogenized once but then experienced subsequent segregation (Shindo et al., 

1978; Too et al., 1979; Fan, 2001). The scale of segregation and the intensity of segregation 

serve to measure the actual state between totally segregated and completely random states.  

As described previously, in a completely random state, the arrangement of individual 

particles of one component is totally randomly dispersed among the particles of the other 

components. In contrast, components in a totally segregated mixture are clearly separated from 

each other in different and distinct regions in a batch of particles, the usual situation prior to 

mixing. To form a mixture, e.g., a stratified one, a given component is fed into the mixer in the 

form of layers separated by other components. The relative positions, sizes, and numbers of these 

layers and the distances between them affect the attainable rate of mixing. The configuration of 

the layers can be described by the scale of segregation. 

The degree of homogeneity of a mixture expressing the extent of approach to perfectness 

has often been predicted by the uniformity of sample concentrations. This is illustrated by the 

standard deviation of the concentrations of a key component in a mixture in the following 

equation (Fan, 2001). 
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where σ is the standard deviation of the sample concentrations; xi, the concentration in the ith 

sample; x , the average of xi’s; and N, the number of samples yielded by dividing the entire 

batch of the mixture. In a perfectly homogeneous fluid mixture, σ is zero; in a totally segregated 

mixture, the value of σ is maximal (Fan et al., 1970; Too et al., 1979; Fan, 2001). 
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The maximum achievable degree of mixedness corresponds to a completely random 

arrangement of different particles in conventional mixing. Based on the assumption that the 

particle size of an individual component is identical, Lacey (1943, 1954) demonstrated that the 

minimal possible standard deviation of sample concentrations for a binary mixture can be 

expressed as (Fan, 2001): 

( ) ( )
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xx

n
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where p is the overall proportion of the particles of a given component in the whole mixture, 

which is equal to the average concentration, x , and np is the number of particles in each sample. 

In principle, the values of the σ even less than σr can be achieved by forming an ideally ordered 

mixture, which can be accomplished by regularly arranging the particles. In practice, this can 

only be implemented by means of unique processes, e.g., surface adhesion or agglomeration, as 

mentioned earlier. The ideally ordered arrangement, however, is unstable when the particles can 

move relative to each other without appreciable hindrance.  

Logically, the value of σ for an incomplete mixture is greater than σr. The closer the 

mixture to the totally segregated state, the greater the value of the σ. The standard deviation of 

the totally segregated mixture, denoted by σo, is maximal, which depends on the average 

concentration of the key component of interest as given by the following equation (Fan, 2001). 

( )xxo −= 1σ        (2.3) 

In mixing, the σ value of an incomplete mixture must be in the range between the two 

extremes; one of the extremes is the standard deviation of the completely random mixture given 

by equation 2.2, and the other is that of the totally segregated mixture given by equation 2.3 

(Akao et al., 1976; Fan, 2001). It is not always the case, however, for an ordered mixture. This is 

due to the fact that the lower bound, as defined by the standard deviation of the completely 

random mixture, can be exceeded by the standard deviation of the ideally ordered mixture. Thus, 

measuring the quality of the incomplete mixture in mixing is crucial in controlling and 

optimizing the process. It is frequently impossible, however, to determine the standard deviation 

from the entire sample. This implies that uncertainties exist in estimating the standard deviation 

due to the finiteness of the number spot samples, ns. The sample standard deviation, ss, is defined 

as follows (Fan, 2001): 
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Compared with a fluid mixture, the quality of a solids mixture is difficult to determine 

because of the discrete nature of any particulate system, and the finiteness of particles and 

sample sizes. Sample concentrations and their standard deviations can be affected by the error 

caused by the tendency of any component’s particle or particle cluster to straddle the boundaries 

of the sample containing it. It follows that the measured standard deviation depends on the 

average concentration of the given key component’s particles and on the relative size of the 

sample. For a completely random mixture whose component particles are identical in size and 

density, such uncertainty is minimized and can be determined mathematically; this uncertainty is 

magnified for other mixtures. To account for the effects of the sample number and size, the 

general rule is to take a sufficient number of samples from well-distributed points in 

representative regions of the mixture. Each sample must also contain a sufficient number of 

particles; such a number can be determined from practical points of view (Fan et al., 1970; Fan, 

2001). 

2.2.8.2.3 Mixing Indices 

Fan et al. (1970) and Poux et al. (1991) reviewed more than 30 different mixing indices 

in solids mixing, whereas Boss (1987) collected nearly 40 mixing indices. They determined the 

interrelations among these mixing indices, which are based on the notion of sample variance or 

standard deviation.  

Fan and Wang (1975) and Boss (1987) compared some mixing indices and derived 

conversion formulae among them. Table 2.4 lists some of the frequently adopted mixing indices 

in terms of statistical analysis of sample concentrations. Some of the mixing indices are affected 

by the sample size. A value of unity or zero for the completely random and totally segregated 

mixtures, respectively, can be achieved only when there is a sufficiently large sample size. For 

multi-component mixtures, it is imperative that their quality be evaluated and controlled because 

the components may behave differently at specific periods of mixing. This implies that at a given 

stage, one of the components may be well homogenized, while other components may still be 

partially segregated. The mixture as a whole, therefore, does not meet the necessary homogeneity 
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specification. Too et al. (1978) summarized the majority of mixing indices defined for multi-

component mixtures based on the concentration variance. 

 

Table 2.4 Important mixing indices based on the variance or standard deviation of sample 

concentrations. [a] 
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[a] Fan and Wang, 1975; Boss, 1987; Fan, 2001 

 
  

2.2.8.3 Mechanisms of Solids Mixing 

The fact that the particulate materials in solids mixtures are small but finite in size, i.e., 

discrete renders mixing to be complex. Conventionally, it has been postulated that the three 

mechanisms mainly involved in solids mixing are (1) convective mixing, involving the transfer 
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of groups or clusters of adjacent particles from one location in the mass to another; (2) diffusive 

mixing, portraying the distribution of particles over a freshly developed surface; and (3) shear 

mixing, portraying the establishment of slipping planes within the mass of particles (Lacey, 

1954; Fan et al., 1970; Wang and Fan, 1974; Weinekotter and Gericke, 2000). All three 

mechanisms always occur simultaneously in varying degrees in the mixing process, depending 

on the mixer in use. 

Another mechanism of solids mixing is chaos. Chaotic mixing contributes substantially to 

the mixing of particles and powders (Ottino et al., 1988; Ottino, 1989, 1990; Fan, 2001). It 

exhibits highly complex patterns of mixing. Nevertheless, chaos is a deterministic phenomenon; 

chaotic mixing results in convective and shear mixing, which are irregularly interwoven and 

interacting. 

Mixing of solids mixtures is frequently accompanied by demixing or segregation. It does 

not occur when the mixing components have identical physical properties and geometrical 

characteristics but differ only in chemical composition. Williams (1986) indicated that among 

the physical properties and geometrical characteristics, the particle size influences segregation 

most.  

Four mechanisms of segregation have been mentioned by Weinekotter and Gericke 

(2000). These are elaborated in what follows. 

One of the mechanisms is induced through the agglomeration of one component in a 

binary or two-ingredient mixture. Agglomeration occurs when strong inter-particle forces exist 

between particles in close contact with each other. Particles of one component adhere to each 

other as a consequence of one or more factors, including (i) the presence of a small quantity of 

liquid forming liquid bridges in the solid particles; (ii) electrostatic forces causing cohesion of 

particles; and (iii) Van der Waals forces operating upon finer grains (<30µm) and binding them 

together. Adhesion of the particles of one component would give rise to their agglomeration, 

which, in turn, would cause them to segregate from the particles of the other component. 

Another mechanism of segregation is floating due to vibration. When a solids mixture 

undergoes vibration, coarser or larger particles climb up or float over the smaller ones. Smaller 

particles flow into the resultant vacant space, which prevents larger particles from reclaiming 

their original position. Thus, larger particles collect at the surface, thereby causing segregation 

(Fan et al., 1970; Staniforth, 1982; Fan et al., 1990; Weinekotter and Gericke, 2000).   
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Percolation of a particulate component among the interstices of the remaining 

component(s) is another mechanism of segregation; it is by far the most important segregating 

effect (Staniforth, 1982; Fan et al., 1990; Weinekotter and Gericke, 2000). If size of the voids is 

sufficiently large or enlarged by mechanical vibration or aeration, smaller particles drop or 

trickle down through the voids or gaps between the larger ones.  Segregation tends to magnify 

when density of the smaller particles increases over the large particles. This trend is also affected 

by differences in shape and surface characteristics (Roseman and Donald, 1962; Campbell and 

Bauer, 1966; Fan et al., 1970; Fan, 2001). 

Trajectory segregation is another mechanism that is activated when two particles of 

different sizes and densities are blown horizontally into a confined space, e.g., silo, at a given 

speed. Differences in size and density affect the velocities of the particles, thus causing their 

separation (Weinekotter and Gericke, 2000).  

2.2.8.4 Simulation Models of Solids Mixing 

Monte Carlo techniques are numerical methods involving sampling from statistical 

distributions, either theoretical or empirical, to approximate the real physical phenomena without 

reference to the actual physical systems (Fan et al., 1970). A random walk is the simplest 

subclass of the Markov processes, which constitute a class of stochastic processes. In a random 

walk, the random variable is the position of a particle moving on a straight line in such a manner 

that the particle either remains where it is or moves one step to the left or to the right at each step 

(Parzen, 1962). The Markov processes can be defined mathematically as shown (Parzen, 1962): 

[ ] [ ]111111 )()()(,...,)()( −−−− =≤===≤ nnnnnnnn xtXxtXPxtXxtXxtXP  (2.5) 

where P with a bar separating random variables is the conditional probability and random 

variables (X) on the right of the bar are those that have given values of x. This expression implies 

that given the “present” of the process, the “future” is independent of its “past” (Parzen, 1962). 

The conditional probability is often termed a transition probability in a Markov process. It 

describes the transition from the state X(tn-1) to the state X(tn). 

2.2.9 Discrete Element Method 

Grains are considered finite and discrete materials. Williams et al. (1985) described a 

method of solving problems involving discrete elements like grains, called the discrete element 

method (DEM). DEM belongs to a family of numerical modeling techniques designed to solve 
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problems in engineering and applied science that display gross discontinuous behavior (Hustrulid 

and Mustoe, 1996; Hustrulid, 1998; Dewicki, 2003). Problems exhibiting discontinuous behavior 

cannot be simulated with conventional continuum-based computer modeling such as finite-

element or finite-difference methods. Examples of engineering problems dominated by 

discontinuum behavior include stability of underground mine openings; stability of rock slopes; 

micro-mechanical behavior of particular media; mineral processing; and flow of bulk solids in 

hoppers, feeders, chutes, screens, crushers, ball mills, mixers, and all types of conveyor systems 

(Dewicki, 2003). 

The DEM can analyze multiple, interacting, deformable, discontinuous, or fractured 

bodies undergoing rotations and large displacements.  The basic assumption is that every discrete 

element has distinct boundaries which physically separate it from every other element in the 

analysis. Basic equations of elasticity are written under an inertial frame, and then transferred to 

a non-inertial frame, which is translating and rotating. This is performed so that to an observer in 

the non-inertial frame, i.e., the new frame, the object exhibits no mean translation or rotation. 

The deformation can then be decoupled from the mean motion and is written as the sum of the 

bodies’ normal modes, which in turn gives a newly derived set of decoupled modal equations. 

These equations are applied on an element-by-element basis. The elements communicate through 

boundary forces. The decoupled equations may be solved by an explicit central difference 

scheme. The final solution is obtained by means of modal superposition (Williams et al., 1985). 

Cundall and Strack (1979) also defined DEM as a numerical model capable of describing 

the mechanical behavior of assemblies of discs and spheres. It is based on an explicitly numerical 

scheme in which the particle interaction is monitored contact by contact and the particle motion 

is modeled particle by particle. In DEM modeling, particle interaction is treated as a dynamic 

process, which assumes that equilibrium states develop whenever internal forces in the system 

balance (Theuerkauf et al., 2007). Contact forces and displacements of a stressed particle 

assembly are found by tracking the motion of individual particles. Motion results from 

disturbances that propagate through the assembly. The mechanical behavior of the system is 

described by the motion of each particle and the force and moment acting at each contact.  
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2.2.9.1 Theoretical Basis of DEM 

In DEM, contact forces and displacements of the particle assembly are computed by 

tracking the motion of each individual particle using explicit numerical scheme with very small 

time step discussed in detail3 by Cundall and Strack (1979). The process uses Newton’s Law of 

Motion that gives the relationship between the particle motion and forces acting on each particle. 

Translational and rotational motions of particle i are defined as (Remy et al., 2009): 
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where mi, Ri, vi, ωi, and Ii are the mass, radius, linear velocity, angular velocity, and moment of 

inertia of particle i; 
ijnF , 

ijtF , and ijτ  are, respectively, normal force, tangential force, and torque 

acting on particles i and j at contact points; g is the acceleration due to gravity; and t is the time. 

Particles interact only at contact points with their motion independent of other particles. 

Forces on the particles at contact points include contact force and viscous contact damping force 

(Zhou et al., 2001). These forces have normal and tangential components. The soft-sphere 

approach commonly used in DEM models allows particles to overlap each other, giving realistic 

contact areas. Overlaps of particles are allowed but are small in comparison to particle size.  

Force-displacement laws at the contacts can be represented by different contact models. 

The simplest contact model is the linear contact law, in which the spring stiffness is assumed to 

be constant (e.g., linear-spring dashpot model for spherical particles at contact) (Mishra, 2003). 

Another model, which is an improvement over the linear law, employs the Hertz theory to obtain 

the force deformation relation for the contact (e.g., nonlinear-spring dashpot model). Unlike the 

linear contact model, the Hertzian contact law considers that normal stiffness varies with the 

amount of overlap. This approach has been extended to cases in which colliding bodies tend to 

deform (constrained plastic deformation). Numerical models of interaction at the contact involve 

the force-deformation equation which is augmented with a damping term to reflect dissipation in 

the contact area.  

Specific for this study, force-displacement laws at the contacts are represented by the 

Hertz-Mindlin no-slip contact model (Mindlin, 1949; Mindlin and Deresiewicz, 1953; Tsuji et 
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al., 1992; Di Renzo and Di Maio, 2004, 2005). This non-linear model features both the accuracy 

and simplicity derived from combining Hertz theory in the normal direction and Mindlin no-slip 

model in the tangential direction (Tsuji et al., 1992; Remy et al., 2009).  

The normal force, Fn, is given as follows (Tsuji et al., 1992; Remy et al., 2009): 
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where Kn is the normal stiffness coefficient; δn is the normal overlap or displacement; nδ& is the 

normal velocity; and ηn is the normal damping coefficient. Normal stiffness and normal damping 

coefficients are given, respectively, by (Tsuji et al., 1992; DEM Solutions, 2009; Remy et al., 

2009): 
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where E* is the equivalent Young’s modulus, R* is the equivalent radius, m*  is the equivalent 

mass, and e as the coefficient of restitution. Equivalent properties (R*, m*, and E*) during 

collision of particles with different materials such as particles i and j are defined as (Di Renzo 

and Di Maio, 2004; DEM Solutions, 2009): 
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where ν  is the Poisson’s ratio (Di Renzo and Di Maio, 2004; DEM Solutions, 2009). Similarly, 

for a collision of a sphere i with a wall j, the same relations apply for Young’s modulus E*, 

whereas iRR =∗  and imm =∗ . 

The tangential force, Ft, is governed by the following equation (Tsuji et al., 1992; Remy 

et al., 2009): 

4
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where Kt is the tangential stiffness coefficient; δt is the tangential overlap; tδ& is the tangential 

velocity; and ηt is the tangential damping coefficient. Tangential stiffness and tangential damping 

coefficients, are defined, respectively, as follows (Tsuji et al., 1992; DEM Solutions, 2009; 

Remy et al., 2009): 
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where G* is the equivalent shear modulus defined by (Li et al, 2005):  
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Gi and Gj are shear moduli of particles i and j, respectively. The tangential overlap is calculated 

by (Remy et al, 2009): 

∫= dtvt
reltδ         (2.18) 

where t
relv  is the relative tangential velocity of colliding particles and is defined by (Remy et al., 

2009):  
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t
rel RRsvvv ωω ++⋅−=       (2.19) 

where s is the tangential decomposition of the unit vector connecting the center of the particle. 

Additionally there is a tangential force limited by Coulomb friction µsFn, where µs is the 

coefficient of static friction. When necessary, rolling friction can be accounted for by applying a 

torque to contacting surfaces. The rolling friction torque, τi, is given by (DEM Solutions, 2009; 

Remy et al., 2009): 

00ωµτ RFnri −=        (2.20) 

where µr is the coefficient of rolling friction, R0 is the distance of the contact point from the 

center of the mass, and ω0 is the unit angular velocity vector of the object at the contact point 

(Tsuji et al., 1992; Di Renzo and Di Maio, 2004; Li et al., 2005; DEM Solutions, 2009; Remy et 

al., 2009). 

For dynamic processes, important factors to consider are the propagation of elastic waves 

across the particles, the time for load transfer from one particle to adjacent contacting particles, 

and the need not to transmit energy across a system that is faster than nature (Li et al., 2005). In 
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the non-linear contact model (e.g., Hertzian), the critical time increment or critical time step 

cannot be calculated beforehand, unlike with the linear contact model in which the critical time 

step is related to the ratio of contact stiffness to particle density. Miller and Pursey (1955), 

however, showed that Rayleigh waves or surface waves account for 67% of the radiated energy, 

whereas dilational or pressure waves and distortional or shear waves, respectively, are 7% and 

26% of the radiated energy. Thus, it is assumed that all of the energy is transferred by the 

Rayleigh waves since the difference between the speeds of the Rayleigh wave and the 

distortional wave is small and the energy transferred by the dilational wave is negligible (Li et 

al., 2005). Moreover, the average time of arrival of the Rayleigh wave at any contact is the same 

irrespective of the location of the contact point. For simplicity, the critical time step is based on 

the average particle size and a fraction of this is used in the simulations (Li et al., 2005; DEM 

Solutions, 2009). The critical time step is given by the following equation (Li et al., 2005; DEM 

Solutions, 2009): 

G

R
t p
c

ρ
β

π=         (2.21) 

where R is the average particle radius, ρp is the particle density, G is the particle shear modulus, 

and β can be approximated by (Li et al., 2005): 

νβ 163.08766.0 +=        (2.22) 

2.2.9.2 History and Applications of DEM 

The DEM was first introduced by Cundall (1971) when he employed a computer model 

for simulating progressive large-scale movements in blocky rock systems. In the model, realistic 

friction laws and simple stiffness parameters governed interaction between the blocks. The 

computer program allowed individual study of the effects of joint geometry, joint parameters, 

loading conditions, and excavation procedures. Its application was more fitted in rock situations 

in which general stresses were small (i.e., in near-surface excavations in heavily jointed rock) 

compared to when they were large (i.e., deep underground mines). 

From then on, the DEM has been widely implemented to solve different engineering 

problems such as simulation of soil deformation and resistance at bar penetration (Tanaka et al., 

2000), full-scale vehicle-soil interaction (Horner et al., 2001), green sand molding (Maeda et al., 

2003), ore breakage in a semi-autogenous mill (Morrison and Cleary, 2004), large-scale 
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industries (Cleary, 2004), effect of lifter heights (Djordjevic, 2003) and vertical and horizontal 

shaft impact crushers (Djordjevic et al., 2003) on power consumption, and organic fertilizer land 

application (Landry et al., 2006a, b). A complete description of the DEM can be found in 

Williams et al. (1985), Cundall (1988), Hart et al. (1988), and Cundall and Hart (1989).  

DEM applications that may be related to mixing or commingling of grains in bucket 

elevators were as follows. Hustrulid and Mustoe (1996) applied DEM to simulate bulk solids 

movement through transfer point in large industrial conveyor system in mining operations. The 

information obtained included the velocity distribution of the bulk solids and the stresses within 

them, and the impact forces acting on the transfer structure and the conveyor belts from the bulk 

solids flow. Hustrulid (1998) successfully simulated the position, velocity, and applied forces for 

every particle and boundary at increments of 10-5 seconds. Dewicki (2003) also modeled transfer 

points in conveyor systems using DEM and simulated the performance of a belt conveyor to 

improve its design.  

Shimizu and Cundall (2001) examined the performance of horizontal- and vertical-type 

screw conveyors to transport spherical materials (instead of sand) by means of three-dimensional 

(3D) DEM. Simulation results were in good agreement with empirical equations and previous 

work on both screw conveyors. 

Masson and Martinez (2000) performed a set of DEM simulations of the filling and the 

discharge of grains represented as circular particles (mean diameter = 10 mm, and particle 

density = 1190 kg·m-3) in a plane rectangular silo. Computed wall pressures at the end of filling 

were compared with analytical and finite-element results, and the influence of friction and 

stiffness on contacts was analyzed. Results showed these parameters play a major role in flow 

kinematics and in the stress field during filling and discharge processes. 

Cleary (1998) simulated the filling of draglines buckets in open-cut coal mining by 

means of DEM. The DEM assisted in differentiating between the flow patterns for two 

competing bucket designs, evaluating the effect of rigging and variations in material properties, 

calculating fill times, estimating wear and its distribution, and determining regions of high 

compaction. The design of the buckets in the simulation model could be compared in terms of 

filling pattern and drag coefficient. Stability and motion of the buckets were found to be 

dependent upon the density and size distribution of the particles. It was concluded that such a 

discrete element model could become a tool to optimize bucket design.  
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Wightman et al. (1998) applied DEM to characterize particle mixing in a rotating 

cylinder. They compared rotational motion augmented with rocking to purely rotational motion 

via linear density profiles, velocity fields, and axial concentration profiles. The rocking motion 

dramatically enhanced mixing in laboratory studies and the simulation results agreed well with 

experimental results and observations. 

Gyenis et al. (1999) investigated gravity flow of particles through a vertical tube 

containing a static mixer element through DEM, also called discrete particle simulation (DPS). 

In applying DPS, the authors were able to reproduce and explain theoretically the main 

characteristics of the flow regimes that they usually observed experimentally. They also obtained 

vast information that is hardly measurable by experiments. Some important features of the gas-

solids two-phase flows were revealed regarding the re-dispersing effect of the static mixer 

elements, their potential to improve axial mixing, or the efficiency of other transport processes 

during pneumatic conveying. 

Raji and Favier (2004a, b) used DEM to model the deformation of agricultural and food 

particulate materials under bulk compressive loading. They concluded that DEM was a useful 

tool in the study of the behavior of deformable soft particulates and the provision of data 

necessary in the design of appropriate machinery for agricultural processes. 

Ketterhagen et al. (2008) investigated the causes and extent of segregation of granular 

materials during discharge from a hopper using DEM. They modeled a quasi-3D, wedge-shaped 

hopper using two parallel periodic boundary conditions. They found key factors affecting 

segregation during hopper discharge were particle diameter ratio, mass fraction, ratio of hopper 

outlet to mean particle diameter, sliding friction coefficient, and hopper wall angle and its 

roughness. The method used to fill the hopper also plays a significant role in determining 

segregation upon discharge.  

Some of the most recent developments in DEM included representations of various 

particle shapes and configurations: (1) ellipse-based particles (Ting et al., 1993; Vu-Quoc et al., 

2000; Ng, 2001); (2) axi-symmetrical and non-spherical particles (Favier et al., 1999, 2001); (3) 

arbitrary-shaped models and fully kinematic boundaries (Kremmer and Favier, 2000, 2001a, b); 

(4) noncircular-shaped granular media (Mustoe and Miyata, 2001); and (5) non-uniform-sized 

circular or spherical particles bonded together (Potyondy and Cundall, 2004). 
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2.2.10 Grain Material and Interaction Properties Relevant for DEM Modeling 

Different DEM models have used varying parameters for simulation modeling. The most 

widely used parameters can be divided into two categories: material properties and interaction 

properties (Mohsenin, 1986; Vu-Quoc et al., 2000; Raji and Favier, 2004a, b). Material 

properties may be defined as intrinsic characteristics of the particle (i.e., grain kernels) being 

modeled. Material properties critical as inputs in DEM modeling are shape, size distribution, 

density, Poisson’s ratio, and shear modulus. Interaction properties are characteristics exhibited 

by the particle in relation to its contact with boundaries, surfaces, and other (or same) particles.  

Interaction properties, vital in DEM modeling, are coefficients of restitution, and static and 

rolling friction (LoCurto et al., 1997; Chung et al., 2004).  

2.2.10.1 Particle Shape and Particle Size  

Shape and size are inseparable physical properties in a grain kernel. In defining shape, 

some dimensional parameters of the grain must be measured. Mohsenin (1986) and Nelson 

(2002) reported measuring three orthogonally oriented dimensions of 50 kernels randomly 

selected from a grain lot to determine kernel shape and size. Volume was taken as one of the 

parameters defining kernel shape, and the three mutually perpendicular axes were taken as a 

measure of kernel size. 

2.2.10.2 Particle Density 

Particle density (ρp) of the grain is determined by measuring the volume occupied by the 

kernels in a known sample weight randomly taken from each grain lot. Nelson (2002) measured 

the volume of an approximately 20- to 25-g sample with a Beckman model 930 air-comparison 

pycnometer. Kernel density was calculated by dividing the weighed mass by the measured 

volume. The number of kernels in the sample weighed for pycnometer measurements was 

manually counted to determine mean kernel weight and volume.  

2.2.10.3 Particle Poisson’s Ratio and Particle Shear Modulus 

Poisson’s ratio (ν ) is the absolute value of the ratio of transverse strain (perpendicular to 

the axis) to the corresponding axial strain (parallel to the longitudinal axis) resulting from 

uniformly distributed axial stress below the proportional limit of the material (Mohsenin, 1986). 

Based on Hooke’s law and together with Poisson’s ratio, shear modulus or modulus of rigidity 
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(G) for an elastic, homogenous, and isotropic material is the ratio of the stress component 

tangential to the plane on which the forces acts (i.e., shear stress) over its strain. Shear modulus 

defined in terms of Poisson’s ratio and Young’s modulus or modulus of elasticity (E) is given by 

(Mohsenin, 1986): 

ν22 +
= E

G         (2.23) 

Several values of Poisson’s ratio and elastic or Young’s modulus for different grains and 

oilseeds were cited in the literature (Misra and Young, 1981; Mohsenin, 1986; Bilanski et al., 

1994; Vu-Quoc et al., 2000; Chung et al., 2004; Raji and Favier, 2004a, b; Molenda and 

Horabik, 2005; Chung and Ooi, 2008). ASAE Standards S368.4 (2006b) enumerated values of 

Poisson’s ratio and apparent modulus of elasticity for soybeans, corn, and wheat. The equations 

for apparent modulus of elasticity are based on Hertz equations for contact stresses used in solid 

mechanics, which assume that deformations are small and the material being compressed is 

elastic. They are, however, useful for making comparisons of the deformation behavior of 

viscoelastic materials, like grains, when the deformations and loading rates are similar for all 

samples tested. 

For soybeans (Misra and Young, 1981) and wheat (Arnold and Roberts, 1969), apparent 

moduli of elasticity were calculated based on the parallel-plate contact method. For corn (Shelef 

and Mohsenin, 1969), the elastic modulus was obtained with a method using a spherical indenter 

on a curved surface. 

2.2.10.4 Particle Coefficient of Restitution 

Different methods have been used to determine the coefficient of restitution, e (Sharma 

and Bilanski, 1971; Smith and Liu, 1992; Yang and Schrock, 1994; LoCurto et al., 1997). Smith 

and Liu (1992) obtained e in three ways leading to the same value, as the (1) ratio of the normal 

component of impulse during compression and during restitution, (2) ratio of the normal 

component of approach (or impact) and separation (or rebound) velocities (Sharma and Bilanski, 

1971; Yang and Schrock, 1994), and (3) ratio of work of normal components of reaction forces 

at the contact point during the compression phase and the work for the restitution phase (LoCurto 

et al., 1997).  

LoCurto et al. (1997) described e as the square root of the total kinetic energy before 

(KEi) and after (KEr) collisions that did not involve tangential frictional losses. They measured 
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the e of soybeans impacting aluminum, glass, and acrylic at drop heights of 151, 292, and 511 

mm and at moisture contents of 10.7% and 15.5%, dry basis (db). The e value decreased with 

increased moisture content and drop height, and contact with aluminum gave the highest value. 

Drop and rebound heights were measured only from those soybeans that fell with minimal 

rotation and whose rebound trajectories were almost vertical (90 ± 1.6% to the plate). This was 

different from the results of Yang and Schrock (1994), which involved cases of grain kernels 

with and without rotation. Assuming no loss of energy except during contact, the e value was 

computed as the ratio of the square root of the initial height of drop (Hi) and the height of 

rebound (Hr) (LoCurto et al., 1997; Zhang and Vu-Quoc, 2002): 
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2.2.10.5 Particle Coefficient of Static Friction 

The coefficient of friction (µ) is the ratio of the force of friction (F) to the force normal to 

the surface of contact (W) (Mohsenin, 1986): 

W

F=µ         (2.25) 

Frictional forces acting between surfaces at rest with respect to each other and those existing 

between the surfaces in relative motion are, respectively, called forces of static and kinetic 

friction. Static and kinetic coefficients of friction can be denoted by µs and µk, respectively 

(Mohsenin, 1986).  

Several coefficients of static friction of grain-on-grain (Stahl, 1950; Mohsenin, 1986; 

Raji and Favier, 2004a, b) and grain-on-surfaces such as sheet metal, stainless steel, acrylic, 

aluminum, and glass (Brubaker and Pos, 1965; Mohsenin, 1986; Gupta and Das, 1997; Chung et 

al., 2004; Calisir et al., 2005; Molenda and Horabik, 2005; Chung and Ooi, 2008) were published 

in the literature. Static friction of soybean-steel contact is 67% of that of soybean on itself (Stahl, 

1950). 

2.2.10.6 Particle Coefficient of Rolling Friction 

The coefficient of rolling friction (µr) is defined as the ratio of the force of friction to the 

force normal to the surface of contact that prevents a particle from rolling. Rolling friction or 

resistance can be a couple (or pure moment) that may be transferred between the grains via the 
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contacts, and this couple resists particle rotations (Jiang et al., 2005) without affecting 

translation. It may exist even at contacts between cylindrical grains (Bardet and Huang, 1993). 

The concept of taking into account rolling resistance at particle contacts is an alternative 

approach in DEM modeling to establish contact laws related to particle rotation (Jiang et al., 

2005), instead of using non-spherical particles to inhibit particle rolling and produce a realistic 

rolling behavior (Rothenburg and Bathurst, 1992; Sawada and Pradhan, 1994; Ting et al., 1995; 

Ullidtz, 1997; Thomas and Bray, 1999; Ng, 2001; Mirghasemi et al., 2002; Mustoe and Miyata, 

2001). In Jiang et al.’s (2005) micro-mechanical model, only the normal basic element, 

composed of a spring and dashpot in parallel with a divider series, contributes to rolling 

resistance at grain contact. Rolling resistance directly affects only the angular motion and not the 

translational motion of grains.  

Zhou et al. (2002) investigated the effect of rolling friction on the angle of repose of 

coarse glass beads. They included coefficients of rolling friction with a base value of 0.05 

(range: 0 - 0.1) on particle-to-particle contact and twice that value for particle-wall contact in 

their simulations. The authors found that increasing both rolling frictions increased the angle of 

repose. This is due to a large resistance force to the rotational motion of spheres providing an 

effective mechanism to consume the kinetic energy, stop the rotational motion, and lead to the 

formation of a “sand pile” with high potential energy (Zhou et al., 1999). 

2.2.10.7 Bulk Density 

Bulk density (ρb) is the ratio of the mass to a given volume of a grain sample including 

the interstitial voids between the particles (Hoseney and Faubion, 1992; Gupta and Das, 1997). 

In the U.S., bulk density or test weight per bushel is the weight (in lb) per Winchester bushel 

(2,150.42 in.3) as determined using an approved device (USDA GIPSA, 2004). The USDA 

GIPSA (2004) method involves allowing a sufficient amount of grain from a hopper, suspended 

two inches above, to overflow the test weight kettle, leveling the kettle by three full-length, 

zigzag motions with a stroker, and weighing the grain from the kettle with an appropriate scale.  

Bulk densities of most of the grain and seed lots from Nelson (2002) were tested for 

standard test weight using a Fairbanks Morse grain tester weight-per-bushel apparatus equipped 

with a one-quart measure. In Poland, Molenda and Horabik (2005) determined bulk density 

based on measurement of the mass of a granular material poured freely into a cylindrical 

container of constant volume, typically 0.25 or 1.0 L. In India, Gupta and Das (1997) measured 
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bulk density of sunflower seeds and kernels by filling a 500-mL container with grain from a 

height of 15 cm, striking the top level, and then weighing the contents. Several experimental ρb 

values for grains and oilseeds were found in the literature (Henderson and Perry, 1976; 

Mohsenin, 1986; Hoseney and Faubion, 1992; Shroyer et al., 1996; Gupta and Das, 1997; 

LoCurto et al., 1997; Nelson, 2002; Molenda and Horabik, 2005; ASAE Standards, 2006a). 

2.2.10.8 Bulk Angle of Repose 

Angle of repose (θ) is defined as the angle with the horizontal at which the granular 

material will stand when piled (Mohsenin, 1986; Hoseney and Faubion, 1992). The angle of 

repose of grains is determined by numerous factors which include frictional forces generated by 

the grain flowing against itself, distribution of weight throughout the grain mass, and moisture 

content of the grain (Hoseney and Faubion, 1992). At least two angles of repose are commonly 

defined, namely the static angle of repose and the dynamic angle of repose. The dynamic angle 

of repose is generally smaller than the static angle of repose by at least 3 - 10º (Fowler and 

Wyatt, 1960).  

It is generally believed that the angle of repose and the angle of internal friction are 

approximately the same (Mohsenin, 1986; Walton, 1994). Fowler and Chodziesner (1959) 

derived an empirical equation for the coefficient of angle of friction using the tilting-box method. 

Fowler and Wyatt (1960) used a similar form to define the coefficient of the angle of repose. 

Fowler and Chodziesner’s (1959) equation is of the form: 

dSc
D

bna
avg

f +−+== εθµ 2tan      (2.26) 

where µ is the coefficient of angle of friction, θ is the angle of friction, fn is the specific surface 

of the solid relative to a sphere, ε is roughness of the sliding surface, Davg is the average screen 

particle diameter, S is specific gravity of the granular material, and a, b, c, and d are constants. 

The term 
avgD

ε
 is replaced by 

avgD

M
by Fowler and Wyatt (1960) to define the 

coefficient of the angle of repose, with M as the added percentage moisture content. Fowler and 

Chodziesner (1959) noted that when the term, 
avgD

ε
, also called “relative roughness factor,” is 

equal to unity (i.e., materials are sliding over themselves), the angle of repose is equal to the 
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angle of friction and is independent of the diameter of the granular material. The same holds true 

when 
avgD

ε
is zero (i.e., smooth surface). Stewart (1968), however, showed that for at least one 

seed (i.e., grain sorghum), the angle of repose and internal friction are different.  

There are several methods for measuring the angle of repose. The method to measure 

static angle includes (1) the fixed funnel and the free-standing cone, (2) the fixed-diameter cone 

and the funnel, and (3) the tilting box (Train, 1958). Fraczek et al. (2007) also referred to the first 

two methods, respectively, as “emptying,” in which the material pours through the outlet in the 

container bottom (or fixed funnel) to form a free-standing cone, and “piling,” in which the 

material flows onto a circular plate with a fixed diameter from an established height through a 

funnel and mounds up into a cone prism. The tilting-box or inclined-plane method has been used 

for rough rice (Kramer, 1944) and cereal grains (Burmistrova et al., 1963). In this method, the 

grain sample is placed inside a special box (i.e., wooden box with top side open) and placed on 

the upper part of an inclined plane, which has a base connected to a lifting mechanism. It is then 

tilted or lifted to a point at which the sample begins to move. The angle of the inclined surface 

when the sample begins to move is measured as the angle of repose of the particular sample. 

For dynamic angle, the methods include (1) the revolving cylinder (Train, 1958) and (2) 

that of Brown and Richards (1959). In the revolving-cylinder method, a sealed hollow cylinder 

with one end transparent is half-filled with granular material and is made to revolve horizontally. 

The free surface of the granular material forms a diametrical plane. The angle of repose is the 

maximum angle that this plane makes with the horizontal on rotation of the container before the 

sample begins to cascade. Brown and Richards’ (1959) method consists of a platform of fixed 

diameter immersed in a container of granular materials. The materials are allowed to escape from 

the box, leaving a free-standing cone of material on the platform. Fraczek et al. (2007) also 

named this method “submerging.” Fowler and Wyatt (1960) employed this method to measure 

the effect of moisture content on the angle of repose of rape seed, wheat, sand, basalt chips, 

polythene chips, and canary seed.  

Fraczek et al. (2007) also cited a fourth method in addition to “emptying,” “piling,” and 

“submerging.” The method is called “pouring,” where the grain is poured into a cylinder that is 

then slowly lifted up to allow the grain to mound up on the base and form a characteristic cone. 

The angle of repose is calculated based on cone height and diameter of the repose base measured 
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at four points on the cone’s perimeter. The “pouring” method is another way of determining the 

angle of repose that minimizes inertial effects existing when the material is dropped from a 

height, gains sufficient kinetic energy and inertia near the mound peak, and then flattens 

considerably after the fill stream is stopped (Walton and Braun, 1993).  

The four abovementioned methods are based on the assumption that the mounted 

granular slope acquires a cone shape, but results of experimental measurements often 

contradicted this assumption (Fraczek et al., 2007). In only a few cases did the authors witness 

the forming of a cone shape. Usually, depending on the properties of the granular materials, the 

following deviations from the cone shape were observed: truncation of the top, and convexity 

and concavity of slope. The authors recommended using digital-image analysis for a more 

precise measurement of angle of repose. Deviations from the cone shape increased with 

increasing moisture content of the material as was also noted by other authors (Horabik and 

Lukaszuk, 2000). However, the more spherical-like the materials, the more regular the cone that 

forms.  

Zhou et al. (2002) found that the angle of repose of mono-sized coarse glass spheres is 

significantly affected by sliding and rolling frictions, particle size, and container thickness, but 

not density, Poisson’s ratio, damping coefficient, or Young’s modulus. The authors observed that 

the angle of repose increases with increasing rolling or sliding friction coefficients, and with 

decreasing particle size or container thickness. However, container thickness larger than a critical 

value (about a 20-particle diameter) gives a constant angle of repose corresponding to a situation 

without any wall effects. This was shown by simulation results with periodic boundaries applied 

to opposite walls of the container. Periodic boundary conditions enable any particle leaving the 

domain in that direction to instantly re-enter on the opposite side (DEM Solutions, 2009), 

simulating infinite length in that direction and, thereby eliminating wall friction. In addition, the 

effect of particle size was mainly the result of its effect on rolling friction and not on sliding 

friction. 

Published angles of repose of grains and oilseeds for filling or piling and for emptying or 

funneling were found in the literature (Mohsenin, 1986; Gupta and Das, 1997; Molenda and 

Horabik, 2005; Boyles et al., 2006). 
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2.2.11 Summary 

Customers around the globe demand for high quality and safe grains and their by-

products. Challenges have increased with growth of the trait-specific market, proliferation of GM 

crops, and threats from biological and chemical attacks. Several researchers have recommended 

ways to identity preserve, segregate, label, and trace the grain to maintain its purity and 

determine its origin. Studies have also dealt with the economics of identity preserved handling 

and segregation, and specific measures to assess and prevent threats from genetically modified 

crop contamination and from biological and chemical weapons. Grain handling studies have 

examined the potential to segregate grains in different elevator sizes, the logistics and 

management strategies of grain receiving and loading operations, and grain commingling in 

various farm and elevator equipment.  

However, studies on grain commingling (i.e., introduction of contaminants) in bucket 

elevators, even though it is identified as a critical node vulnerable to terrorist attack, are limited 

to two types of grain elevators (Ingles et al., 2003; 2006). Problems arise since full-scale tests of 

viable contaminant mixing in the actual grain handling system are unrealistic; and obtaining 

sufficient field data requires numerous resource-intensive experiments in grain elevators. Thus, a 

validated mechanistic model for predicting grain commingling in various types of elevator 

equipment is valuable for extending the knowledge of grain commingling beyond the few current 

experimental studies. The discrete element method with its capability to track individual particles 

is a proven way to simulate discrete objects like grain kernels, and to predict the movement and 

commingling of grains in bucket-elevator equipment. 
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CHAPTER 3 - Feed Pellet and Corn Durability and Breakage 

During Repeated Elevator Handling1 

3.1 Introduction 

Pelleting of animal feed is important for improved efficiency in animal feeding and for 

convenience in feed handling. Research has shown that animals fed with good quality pellets 

have better growth performance and feed conversion than those fed with mash, reground pellets, 

or pellets with more fines (Jensen et al., 1962; Jensen and Becker, 1965; Kertz et al., 1981; 

Brewer et al., 1989; Zatari et al., 1990). Behnke (1994) indicated that improvements in animal 

performance have been attributed to decreased feed wastage, reduced selective feeding, 

decreased ingredient segregation, less time and energy expended for eating, destruction of 

pathogens, thermal modification of starch and protein, and improved palatability. A significant 

part of the improvement is related to the quality of the pellet. Good quality pellets are needed to 

withstand repeated handling processes and reduce the formation of fines by mechanical action 

during transport.  

The quality of the pellets may be described by their durability and resistance to attrition 

and/or breakage during handling. Gustafson (1959) classified the forces acting on the pellets as 

impact, compression, and shear. Impact forces shatter the pellet surface and any natural cleavage 

planes in the pellet. Compression forces crush the pellet and also cause failure along cleavage 

planes. Shear forces cause abrasion of the edges and surface of the pellet.  

Several laboratory methods have been developed to measure the durability of pellets. The 

tumbling box, which is popular in North America and is the basis for ASAE Standard S269.4 

(ASAE Standards, 2003a), uses 500 g of prescreened pellets placed in a box that revolves for 10 

min at 50 rpm (Young, 1962). The DURAL tester, which was developed for hard alfalfa pellets, 

subjects 100 g of pellets to impact and shear forces for 30 s at 1600 rpm (Larsen et al., 1996; 

Sokhansanj and Crerar, 1999; Adapa et al., 2004). The Lignotester uses a sample of 100 g of 

pellets and blows them around a perforated chamber for 30 s (Winowiski, 1998). In all of these 

                                                 
1 Boac, J. M., M. E. Casada, and R. G. Maghirang. 2008. Feed pellet and corn durability and breakage 

during repeated elevator handling. Applied Engineering in Agriculture 24(5): 637-643. 
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methods, the Pellet Durability Index (PDI) was calculated as the percentage of the mass of 

surviving pellets over the total mass of pellets. 

Aarseth (2004) studied the susceptibility of feed pellets for livestock to attrition during 

pneumatic conveying. He investigated the effects of air velocity, bend radius, and number of 

repeated impacts for three commercially available feeds in a 100-mm-diameter pipeline. The 

three commercial feeds were produced by Felleskjøpet (Kambo, Norway). Feeds 'Formel Favør 

30' (FF30) and 'Formel Elite' (FE) had pellet diameters of 6 mm and were formulated for 

ruminants, whereas, 'Kombi Norm' (KN) had a smaller pellet diameter (3 mm) that was 

formulated for pigs. He used Weibull analysis to assess pellet quality. This analysis incorporates 

fracture mechanics with statistics in order to describe the strength of brittle materials. Brittle 

materials show high scatter in strength due to variation in crack or flaw sizes, called Griffith 

cracks. Weibull analysis considers a relationship between the scatter in fracture strength and the 

size distribution of Griffith cracks. Aarseth and Prestløkken (2003) demonstrated that this 

method can be applied to feed pellets for ruminants and swine. Aarseth (2004) used the same 

method to analyze the three commercial pellets mentioned earlier. 

Repeated handling in an elevator affects pellet breakage and quality. Repeated handling 

data for feed pellets in an elevator will be valuable for feed handlers in evaluating and improving 

their feed handling and transportation procedures. Corn-based feed pellet incorporated with other 

feed ingredients to improve its nutritive value can be an alternative to shelled corn.  

Previous studies have been conducted on the durability of corn during handling. Baker et 

al. (1986) found that breakage susceptibility of shelled corn increased significantly during 

handling in pneumatic conveying systems with approximately 100-mm-diameter pipe. Tests 

involved using total lengths of 31 to 60 m, with two to four 90-degree elbows with a 1.22-m 

radius of curvature. 

Foster and Holman (1973) studied physical damage (breakage) to corn, wheat, soybeans, 

and dry edible peas by commercial handling methods. Commercial handling methods included in 

their study were dropping products by free fall (simulating bin filling), dropping products 

through a spout (simulating railcar filling), grain-throwing (simulating the loading of barges and 

ship holds), and handling products in a bucket elevator. They enumerated the variables involved 

in corn breakage caused by commercial handling, namely: free fall height, impact surface, and 

corn moisture content and temperature. Corn that dropped from a height of 12 m onto corn in the 
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commercial handling study caused 4.3% breakage for corn with 12.6% moisture at -3.8°C, and 

0.25% breakage for corn with 15.2% moisture at -5.0°C. It was also observed that breakage of 

corn handled decreased at higher grain temperatures. 

Data on repeated handling of shelled corn in the USDA-ARS, Center for Grain and 

Animal Health Research (CGAHR), formerly Grain Marketing and Production Research Center 

(GMPRC) research elevator at Manhattan, Kansas have been reported. Martin and Stephens 

(1977) repeatedly transferred corn alternately between two bins. Percentage of breakage of corn 

kernels increased linearly during the repeated-handling tests. They observed breakage within the 

range reported by Foster and Holman (1973). The corn had a fall similar to the average 16-m free 

fall in bins 1 and 2. It had a moisture content of about 13% and a temperature of 11°C. A 

constant increase in breakage during 20 repeated transfers was also observed, in line with the 

observation of Foster and Holman (1973). 

Martin and Lai (1978) reported values of 0.080%, 0.037%, and 0.028% for dust < 125 

µm generated per transfer for corn, sorghum, and wheat, respectively, with a similar handling 

system. Converse and Eckhoff (1989) observed linear increases in broken corn and fine materials 

during repeated handling of six lots of corn that had been subjected to different drying 

treatments. The rates of increase were generally higher for corn dried at higher temperatures. 

Total dust emission per transfer varied from 0.084% to 0.21% of the total mass with the greater 

emission associated with corn dried at higher temperatures. 

The objective of this study was to compare the effect of repeated handling in an elevator 

on the quality of feed pellets and shelled corn. The measures of quality included percentage of 

broken materials, PDI, and dust generated. The feed pellets in this study was compared to shelled 

corn due to the manufacturer's interest in making this pellet as a direct alternative to corn.  

3.2 Materials and Methods 

3.2.1 Test Facility and Materials 

Tests were performed in the research grain elevator at the USDA-ARS, CGAHR 

(Manhattan, Kansas), which has a storage capacity of 1,400 t (55,000 bu). The elevator has one 

receiving pit and two bucket elevator legs, each with a maximum feed rate of 81.6 t·h-1 (3,000 

bu·h-1). It is equipped with a pneumatic dust-control system, including cyclone separators (Figure 

3.1). In this research, the system was operated so that the airflow rate through the upper cyclone  
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Figure 3.1 Schematic diagram of USDA-ARS-CGAHR research elevator, showing the flow of 

handled materials and location of equipment (not drawn to scale): 1-storage bin 1; 2-storage 

bin 2; 3-elevator boot; 4-elevator legs; 5-diverter-type (DT) sampler; 6-hopper; 7-distributor; 

8-receiving area; 9-upper cyclone separator; 10-lower cyclone separators; and 11-dust bin. 
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separators was 5.0 m3·s-1 and that through the lower cyclone separators was 6.4 m3·s-1. These 

settings were the typical operating conditions for the elevator.    

Tests were conducted with 22.6 t of feed pellets and 25.3 t of shelled corn. The mass of 

pellets and corn was determined by weighing the delivery truck containing the material before 

and after unloading in the elevator receiving area. During unloading, samples were taken every 

2.5 min with a pelican sampler. These initial samples were labeled as Transfer 0.  The materials 

were then moved from the receiving pit by belt conveyor and were bucket elevated and dropped 

into bin 1 for storage before testing (Figure 3.1). 

The feed pellets were made of corn meal, with a moisture content of 13.2% wet basis 

(wb) after pelleting. The crude fat/oil, protein, and starch contents were 1.53%, 8.55%, and 

65.6%, respectively. The pellets had an initial bulk density of 643 kg·m-3, nominal diameter of 

6.40 mm, average pellet length of 10.5 mm (standard deviation (SD) = 1.2 mm), and initial 

moisture content of 10.5% wb [with mean moisture content of 10.3% (SD = 0.321%) wb for 

eight transfers]. The shelled corn was U.S. Grade No. 2, with the following initial properties: test 

weight, 752 kg·m-3; broken corn and foreign materials (BCFM), 3.13%; geometric mean 

diameter (GMD), 6.91 mm; and initial moisture content, 12.6% wb [with mean moisture content 

of 12.6% (SD = 0.302%) wb for eight transfers].  

3.2.2 Test Procedure 

3.2.2.1 Elevator Transfers and Sampling 

Figure 3.1 shows a schematic diagram of the material flow during the test. The material 

was transferred alternately between storage bin 1 (with a volume of approximately 85 m3 and a 

depth of 20 m) and bin 2 (with a volume of approximately 411 m3 and depth of 26 m). From 

storage bin 1, the material descended by gravity through spouts and entered the boot on the 

descending side of the bucket elevator. The bucket elevator raised it 54.9 m, where it was 

discharged through a spout. It descended 3.0 m to pass through an automatic diverter-type (DT) 

sampler (Carter-Day Co., Minneapolis, Minn.). The material then descended 1.5 m to a hopper, 

and then another 3.0 m to the distributor, before it descended 4.6 m to enter storage bin 2 and 

then fell to the bottom of the bin. Transfer from bin 1 to bin 2 constituted one transfer and one-

half of a cycle. 
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From storage bin 2, the material was spouted by gravity to the belt conveyor, descended 

3.0 m to enter the boot, elevated 54.9 m before it descended and passed through the DT sampler, 

descended again to the hopper, and then to the distributor, and finally back to storage bin 1. This 

second transfer completed one cycle. A total of six transfers, or three cycles, at an average 

material flow rate of 62.2 t·h-1 (range: 52.7 to 68.6 t·h-1) for feed pellets and 56.6 t·h-1 (range: 

51.4 to 65.1 t·h-1) for shelled corn, were done initially. In both cases the material was left in bin 1 

for one week before it was again transferred to bin 2. It was left for one more week in bin 2 

before the eighth and final transfer back to bin 1. This scenario was selected because it simulated 

the number and type of transfers in a typical handling process for the feed pellets. 

Each transfer was designated serially from Transfer 1 to Transfer 8. Samples were taken 

every 2.5 min during each transfer with the DT sampler. An average of nine samples were taken 

during each transfer, with a mean sample mass of 642 g (SD = 51.9 g) for the feed pellets. An 

average of 10 samples were obtained from shelled corn per transfer, with a mean sample mass of 

679 g (SD = 42.5 g). 

Material samples during receiving (Transfer 0) and those from Transfers 1 to 8 were 

divided appropriately with a Boerner divider for particle sizing (100 g), durability measurement 

(500 g), and moisture-content determination (25 g for pellet; 15 g for corn). A 250-g portion of 

each shelled corn sample was also separated for BCFM determination. Samples were placed in 

sealed plastic bags and stored inside sealed plastic buckets at 4°C in a refrigerated room for 

subsequent analyses for particle size distribution, durability index, and moisture content. 

3.2.2.2 Particle Sizing 

The 100-g portions of each material sample were sieved in accordance with ASAE 

Standard S319.3 (ASAE Standards, 2003b) by using a Ro-Tap RX-29 sieve shaker (W.S. Tyler, 

Mentor, Ohio). The screen sizes were U.S. Standard sieve screen size openings: 8.00, 6.70, 6.30, 

5.60, 3.35, 1.70, 1.00 mm, and pan (0.850 mm), which was adjusted from the screen sizes in 

ASAE Standard S319.3 to accommodate larger pellet sizes. Samples were initially sieved and 

shaken until they reached endpoint (ASAE Standards, 2003b). Endpoint was determined by 

comparing the mass on each sieve at 1-min intervals after an initial sieving time of 10 min. If the 

mass on the smallest sieve containing any of the pellets changed by 0.1% or less of the material 

mass during a 1-min period, then sieving was considered complete. In accordance with ASAE 
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Standard S269.4 (ASAE Standards, 2003a), feed pellet samples passing through the 5.60-mm-

mesh sieves were considered broken pellets. Pellets that were retained on sieve sizes 8.00, 6.70, 

6.30, and 5.60 mm were considered whole pellets. Shelled corn samples passing through the 

4.76-mm round-hole sieve (12/64-in.) were considered broken corn and those that were retained 

on the 4.76-mm round hole sieve were considered whole corn (USDA GIPSA, 2004). Samples 

were weighed on a digital balance (O-Haus Adventurer Pro AV 4101, O-Haus Corp., Pine 

Brook, N.J.) with a resolution of 0.1 g. 

From the particle size distribution data, the GMD of particles by mass, geometric 

standard deviation (GSD), and geometric standard deviation of the particle diameter by mass 

(GSDw) were calculated (ASAE Standards, 2003b). 

3.2.2.3 Durability Measurement 

The durability of the pellets was evaluated by using a durability tester in accordance with 

ASAE Standard S269.4 (ASAE Standards, 2003a). Samples from Transfers 0 (initial), 1 (first), 4 

(middle), and 7 (second to last) were selected for the durability test. The durability tester 

consisted of four 130-mm wide tumbling boxes. The device was rotated about an axis 

perpendicular to, and centered in, the 300-mm sides. A 230-mm-long baffle was affixed 

symmetrical to a diagonal of one 300- × 300-mm side inside the box.  

With four tumbling boxes, four samples were tested simultaneously. Four 500-g samples 

from each of Transfers 0, 1, 4, and 7 were selected as specified by ASAE Standard S269.4 

(ASAE Standards, 2003a) for pellets with a nominal diameter of 6.40 mm. The samples (i.e., 

pellets greater than 5.60 mm) were tumbled for 10 min at 50 rpm. Immediately after tumbling the 

samples were removed and sieved with the 5.60-mm screen for approximately 30 s to remove the 

fines and broken pellets.  The pellets that were retained on the sieve were weighed.  A similar 

procedure was used for shelled corn from Transfers 0, 1, 4, and 7, using the standard 4.76-mm 

round-hole sieve to screen the whole kernels and determine broken kernels before and after 

tumbling. The durability index was computed by using the following equation: 

 

tumblingbeforematerialofmass

tumblingaftersievetheonretainedmaterialofmass
IndexDurability =   (3.1) 
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Durability index (DI) was calculated for both pellets and shelled corn. For pellets the 

durability index is commonly known as PDI, a term retained in this article.  

Moisture content of the feed pellet samples was determined by oven-drying at 60°C for 

72 h according to ASAE Standard S358.2 (ASAE Standards, 2003c) as indicated in ASAE 

Standard S269.4 (ASAE Standards, 2003a). Moisture content of shelled corn was determined by 

oven-drying at 103°C for 72 h according to ASAE Standard S352.2 (ASAE Standards, 2003d). 

3.2.2.4 Dust Sampling 

Handling of the materials generated dust. The pneumatic dust control system collected 

the dust through the cyclone separators and into the dust bin (Figure 3.1). After each transfer, the 

dust collected in the dust bin was emptied into a plastic bag, weighed, labeled, and stored at 4°C 

in a refrigerated room for later analysis. Representative dust samples from the plastic bag were 

obtained in accordance with ASTM Standard E-300 (ASTM Standards, 2000). Nine samples 

from the plastic bag from each transfer were obtained by using a grain sampling probe. The 

samples were sieved with a U.S. Sieve No. 120 (125 µm). Particles collected by the cyclones that 

passed through the 125-µm sieve aperture (ca. 10 to 125 µm) (Martin and Sauer 1976; Martin 

and Stephens, 1977; Martin and Lai, 1978) were weighed. 

3.2.2.5 Data Analyses 

The experiment was designed with repeated handling (transfers) and materials as the 

class variables. The experimental units were the feed pellets and the corn. This design was 

devised to control the cost involved in conducting this large-scale experiment.  

Comparisons of results between materials (feed pellets and shelled corn) and between 

transfers (Transfer 1 to 8) were done by using Analysis of Variance (ANOVA) in SAS (SAS 

Institute Inc., Cary, N.C.). The percentage of dust for the eight transfers in this study was 

compared with published data on corn (Martin and Stephens, 1977) by using the ANOVA 

procedure in SAS.  
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3.3 Results and Discussion 

3.3.1 Particle Size Distribution 

The initial GMD of the pellets was 5.62 mm (Table 3.1). The apparent GMD decreased 

as the number of transfers increased. From Transfers 0 to 4, GMD decreased by approximately 

1.9 mm; from Transfers 4 to 8, the GMD remained relatively constant. For shelled corn, the 

initial GMD was 6.91 mm (Table 3.1). The apparent GMD for shelled corn did not differ among 

transfers, except with Transfer 0. The apparent GMD, GSD, and GSDw of the pellets were 

significantly different (p < 0.01) from that of shelled corn.  

 

Table 3.1 Apparent geometric mean diameter (GMD), geometric standard deviation (GSD), 

apparent geometric standard deviation of the particle diameter by mass (GSDw), and change 

in percent breakage of feed pellets and shelled corn during repeated handling.[a] 

 Apparent GMD (mm)  GSD  Apparent GSDw (mm)  Change in % Breakage 
Transfer Feed Pellet Corn  Feed Pellet Corn  Feed Pellet Corn  Feed Pellet Corn 

0 5.62 6.91  1.69 1.28  3.09 1.74    
1 5.01 6.69  1.88 1.35  3.38 2.02             7.42              1.72 
2 4.55 6.75  2.00 1.31  3.42 1.83             7.29 0.315 
3 4.54 6.67  1.99 1.37  3.38 2.11  0.543             -0.066 
4 3.71 6.70  2.19 1.32  3.22 1.90           12.9             -0.308 
5 3.90 6.62  2.10 1.38  3.16 2.14            -0.992 0.401 
6 3.87 6.68  2.12 1.34  3.19 1.97            -0.048 0.051 
7 3.60 6.58  2.14 1.37  3.02 2.12             5.58              1.02 
8 3.81 6.56  2.09 1.37  3.06 2.08            -2.02             -0.079 

Mean (SD) 4.29 (0.688) 6.69 (0.104)  2.02 (0.156) 1.34 (0.033)  3.21 (0.147) 1.99 (0.142)  3.83 (5.26) 0.382 (0.676) 
[a] Feed pellets and shelled corn differed significantly in GMD, GSD, GSDw, and change in % breakage at the 5% level of significance. Negative values 

of change in % breakage are due to inherent variability in the materials. 

 

3.3.2 Whole and Broken Materials 

No pellets were retained on the 8.00-mm sieve. The mass percentage of whole pellets (≥ 

5.60 mm) decreased with subsequent transfers, from 82.5% to 49.8% (Figure 3.2). This was due 

to pellet breakage occurring during transfers. As expected, the mass of broken pellets (< 5.60 

mm) increased with subsequent transfers. The mass percentage of broken pellets increased from 

an initial value of 17.5% to 50.2%, equivalent to an average of 3.83% increase with each transfer 

(Table 3.1). The nonlinear increase in breakage differed from the linear increase observed by 

Foster and Holman (1973) and Martin and Stephens (1977) for shelled corn.  
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For the shelled corn in this study, the mass percentage of whole corn (≥ 4.76 mm) from 

Transfer 0 differed from all the other transfers. The mass percentage of whole corn decreased 

from 96.9% to 93.8% and the mass percentage of broken corn (<4.76 mm) increased from 3.13% 

to 6.18% for the eight transfers. The mass percentage of broken corn increased by an average 

value of 0.382%, which was significantly less (p < 0.05) than that of the pellets (Table 3.1). This 

difference indicated that this corn was relatively durable, which is typical for corn that did not 

undergo high temperature drying.   

The least-squares best-fit line showed a second-order polynomial relationship between 

number of transfers and broken pellets or whole pellets, with a coefficient of determination, R2 = 

0.96 (Figure 3.2). This relationship was expected because the weaker pellets break easily and 

faster during the earlier transfers. 

 

 

 

% Whole Pellet = 0.518x2 - 8.06x + 82.6

R2 = 0.96
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Figure 3.2 Whole and broken feed pellets and shelled corn (in percentage of total mass during 

repeated handling. 
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Zatari et al. (1990) indicated that broilers fed 75% whole pellets and 25% broken pellets, 

as compared with 25% whole and 75% broken, had better feed efficiency and higher body 

weight. For this study, a percentage of whole pellets of 75% or better was attained up to Transfer 

1 only; the percentage of whole pellets decreased to approximately 50% as the final transfer was 

reached. Amornthewaphat et al. (1999) found a linear decrease in efficiency of growth of 

finishing pigs as broken pellets was increased from 0% (7% greater gain/feed than meal control) 

to 50% (2% greater gain/feed than meal control). In this study, 50% broken pellets occurred after 

Transfer 8.  

3.3.3 Durability Index 

The initial PDI value (Transfer 0) for the feed pellets was 92.8% (SD = 1.2%). For 

Transfers 1, 4, and 7, the mean PDI values were 92.0% (SD = 1.5%), 93.3% (SD = 0.2%), and 

93.4% (SD = 2.0%), respectively. The PDI values increased only slightly and transfers were not 

significantly different (p > 0.05). Shelled corn had mean DI values of 99.8% for Transfers 0, 

99.7% for Transfer 1, and 99.6% for both Transfers 4 and 7. The corn DI values for the transfers 

were not significantly different (p > 0.05) (Table 3.2). The PDI and corn DI, however, were 

significantly different from each other (p < 0.05). 

 

Table 3.2 Durability indices of feed pellets and shelled corn during repeated handling.[a] 

Durability Index (%) 

Transfer Feed Pellet  Corn 
0 92.8 (1.22)  99.8 (0.059) 
1 92.0 (1.51)  99.7 (0.080) 
4    93.3 (0.200)  99.6 (0.079) 
7 93.4 (1.97)  99.6 (0.064) 

Mean (SD)   92.9 (0.633)   99.7 (0.081) 
[a] Mean durability index of feed pellets was significantly different from that of shelled corn at the 5% level of significance. 

 

 

Dozier (2001) reported that minimum PDI values differ for different meat birds: 96% for 

ducks, 90% for turkeys, and 80% for broilers. Hanrahan (1984) reported no difference in 

finishing pig performance between pigs restrictedly fed pellets with PDI of 69% or 62%. The 

feed pellets in this study have nominal size suitable for pigs.  This pellet has a higher measured 
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PDI and, based on that PDI, can be expected to give similar or better performance in swine 

compared to the pellet reported by Hanrahan (1984). 

Aarseth (2004), who compared three types of feed pellets: FF30, FE, and KN, indicated 

that the pellet with highest bulk density (BD) was also the least susceptible to attrition in the 

Holmen pellet tester. The BDs of the FE and FF30 tested for 120 s in the Holmen tester were 641 

and 664 kg·m-3 and the PDIs were 92% and 96%, respectively. The KN pellet, which was tested 

for 30 s, had BD = 623 kg·m-3 and PDI = 94%. The feed pellets in this study had a BD of 643 

kg·m-3 and initial PDI of 92.8%, which is comparable to FE in Aarseth's study. It should be 

noted, however, that the Holmen tester seemed to be harsher than the tumbling box method, and 

therefore would yield lower PDI values (Winowiski, 1998). The feed pellets in this study may 

have a lower PDI value if tested with the Holmen tester.  

3.3.4 Dust 

The mean pellet dust collected by the cyclones was 0.694 kg·t-1 of pellet mass. Shelled 

corn had mean collected dust of 0.614 kg·t-1 of corn mass, which was not significantly different 

from that of the feed pellets (p > 0.05) (Table 3.3).  

The mean mass of dust <125 µm per unit mass of pellets (0.337 kg·t-1 of pellet mass) was 

significantly different (p < 0.05) from that of shelled corn (0.403 kg·t-1 of corn mass) (Table 3.3). 

Overall, the mass of dust <125 µm for the feed pellets was 50% of the total dust collected, which 

was significantly different from that of corn (66% of the total dust) in this study.  

Compared with published values, the mean percentages of dust of both feed pellets 

(0.069% of pellet mass) and shelled corn (0.061% of corn mass) were significantly different 

from that of Martin and Stephens (1977) (0.082% of corn mass) for the eight transfers (p < 0.05). 

The percentages of dust of both materials in this study were also less than that from Martin and 

Lai (1978), which was 0.095% of the corn mass. The shelled corn from this study was relatively 

cleaner than that of Martin and Stephens (1977) and Martin and Lai (1978). 

The amounts of dust <125 µm in Martin and Stephens' (1977) shelled corn (70% of the 

mass of the dust)  and in Martin and Lai's (1978) shelled corn (85% of the mass of dust) were 

greater than that from the pellets (50%) and shelled corn (66%) from this study. The percentage 

of dust <125 µm of the pellet was significantly different (p < 0.01) from that of Martin and 

Stephens' (1977) shelled corn. 
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Table 3.3 Mean total collected dust and calculated amount of dust <125 µm of feed pellets and 

shelled corn during repeated handling. 

Total Collected Dust 
(kg·t-1 of materials handled)  

Collected Dust < 125 µm (SD) 
(kg·t-1 of materials handled) 

Transfer 
Feed Pellet Corn  Feed Pellet 

Corn 

1 
0.629 0.529  0.312 (0.022) 0.374 (0.024) 

2 
0.718 0.816  0.341 (0.004) 0.477 (0.017) 

3 
0.681 0.593  0.332 (0.003) 0.397 (0.023) 

4 
0.706 0.710  0.329 (0.006) 0.452 (0.014) 

5 
0.674 0.522  0.325 (0.002) 0.392 (0.012) 

6 
0.838 0.666  0.413 (0.017) 0.453 (0.028) 

7 
0.516 0.541  0.237 (0.003) 0.370 (0.021) 

8 
0.793 0.532  0.406 (0.013) 0.309 (0.020) 

Mean[a] (SD) 
0.694 b (0.099) 0.614 b  (0.108)  0.337 c  (0.056) 0.403 d (0.055) 

[a] Means (within the same parameter) with the same letter were not significantly different at the 5% level of significance. 

 

3.4 Summary 

Pelleting of animal feeds is important for improved feeding efficiency and for 

convenience of handling. Pellet quality impacts the feeding benefits for the animals and pellet 

integrity during handling. To compare the effect of repeated handling on the quality of feed 

pellets and corn, a 22.6-t (1000-bu) lot of feed pellets made from corn meal and a 25.3-t (1000-

bu) lot of shelled corn, were each transferred alternately between two storage bins in the USDA-

ARS, Center for Grain and Animal Health Research (CGAHR) research elevator at Manhattan, 

Kansas, at an average flow rate of 59.4 t·h-1. Samples from a diverter-type sampler were 

analyzed for particle size distribution (by sieving) and durability (by the tumbling box method).  

The apparent geometric mean diameter of pellet samples decreased with repeated 

transfers, whereas the mass of accumulated broken pellets increased with repeated transfers. The 

percentage of broken pellets (< 5.60 mm) increased from an initial value of 17.5% to 50.2% after 

eight transfers, an average percentage increase in breakage of 3.83%. The percentage of broken 

corn, which was significantly different from that of broken pellets (p < 0.05), increased from 

3.13% to 6.18%; the average percentage increase was 0.382%. Repeated handling did not 

significantly affect the durability index of the feed pellets, which ranged from 92.0% to 93.4%, 

nor that of shelled corn, which ranged from 99.6% to 99.8%.   
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Analysis of dust removed by the cyclone separators showed that the average mass of dust 

removed per transfer was 0.069% of the mass of pellets, which was not significantly different 

from that of shelled corn (0.061%) but was significantly different from that reported by Martin 

and Stephens (1977) for a different lot of corn. Overall, 50% of pellet dust collected in the 

cyclones were <125 µm in diameter, which was a smaller percentage than that collected with 

shelled corn (66%). The mean mass of dust < 125 µm was significantly less for feed pellets 

(0.337 kg·t-1 of pellet mass) than for shelled corn (0.403 kg·t-1 of corn mass), indicating that these 

pellets produced less dust in the range of 10 to 125 µm during handling than did shelled corn.   
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CHAPTER 4 - Size Distribution and Rate of Dust Generated During 

Grain Elevator Handling 1 

4.1 Introduction 

Dust emitted during grain handling is a safety and health hazard as well as an air 

pollutant. Grain dust is composed of approximately 70% organic matter, which may include 

particles of grain kernels, spores of smuts and molds, insect debris (fragments), pollens, and field 

dust (US EPA, 2003) that become airborne during grain handling (Aldis and Lai, 1979). Due to 

the high organic content and a substantial suspendible fraction, concentrations of grain dust 

above the minimum explosive concentration (MEC) pose an explosion hazard (US EPA, 2003). 

Published MEC values range from 45 to 150 g·m-3 (Jacobsen et al., 1961; Palmer, 1973; Noyes, 

1998).  

In addition to being a safety hazard to grain elevator workers, grain dust is also a health 

hazard (NIOSH, 1983). Prolonged exposure to grain dust can cause respiratory symptoms in 

grain-handling workers and in some cases affect workers’ performance and sense of well-being 

(NIOSH, 1983). The American Conference of Governmental Industrial Hygienists (ACGIH, 

1997) has defined three particulate mass fractions in relation to potential health effects: (1) 

inhalable fraction (particulate matter (PM) with a median cut point aerodynamic diameter of 100 

µm that enters the airways region), (2) thoracic fraction (PM with a median cut point 

aerodynamic diameter of 10 µm that deposits in the tracheobronchial regions), and (3) respirable 

fraction (PM with a median cut point aerodynamic diameter of 4 µm that enters in the gas-

exchange regions), herein referred to as PM-4. The US EPA (2007), on the other hand, regulates 

PM-2.5 or fine PM (i.e., PM with equivalent aerodynamic diameter of 2.5 µm or less) and PM-

10 (i.e., PM with equivalent aerodynamic diameter of 10 µm or less). PM-2.5 has been linked to 

serious health problems ranging from increased symptoms to premature death in people with 

lung and heart disease. Fine particulates such as PM-2.5, PM-4, and PM-10 are more dangerous 
                                                 
1 Boac, J. M., R. G. Maghirang, M. E. Casada, J. D. Wilson, and Y. S. Jung. 2009. Size distribution and 

rate of dust generated during grain elevator handling. Applied Engineering in Agriculture 25(4): 533-541. 
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in terms of grain dust explosions because MEC generally decreases with decreasing particle sizes 

and increasing surface area (Garrett et al., 1982).  

Under the 1990 Clean Air Act, the state environmental agencies are required to regulate 

the grain elevator industry’s emission of airborne dust (US EPA, 1990). The US EPA AP-42 

document has listed emission factors for grain elevators (US EPA, 2003). The document cites 

recent research on dust emission from grain handling operations indicating the mean PM-10 

value was approximately 25% of total PM or total dust, and the fraction of PM-2.5 averaged at 

about 17% of PM-10. Mean PM-10 values for country and export elevators were 20% and 26%, 

respectively, of total dust (Midwest Research Institute, 1998). The elevators primarily handling 

wheat had mean PM-10 of about 30% of total dust, whereas those primarily handling corn and 

soybean had an average PM-10 of slightly less than 20% of total dust.  

Several studies have been conducted to determine the amount of dust emitted from 

external and process emission sources in grain elevators (Table 4.1) and measure the particle size 

distributions (PSD) for dust collected from the same system (Table 4.2). Parnell et al. (1986) 

reported mass median diameter (geometric standard deviation) of grain dust < 100 µm for corn 

and wheat of 13.2 and 13.4 µm (1.80 and 2.08), respectively. Martin and Lai (1978) cited mean 

mass median diameters of residual dust (that sticks to grain) of 13 and 14 µm for wheat and 

sorghum, respectively. In the same study, the mean percentages of residual dust with diameter ≤ 

10 µm were about 34%, 33%, and 45% for sorghum, corn, and wheat, respectively. 

Piacitelli and Jones (1992) studied the size distribution of sorghum dust collected by 

impactors during on-farm handling (harvesting, on-farm storage, delivery truck). Their results 

indicated that about 2% of the particles had ≤ 3.5 µm aerodynamic diameter; 10% were ≤ 10 µm, 

24% were ≤ 15 µm, 48% were ≤ 21 µm, and 52% were > 21 µm. 

However, data on the PSD of dust generated during grain handling in a bucket-elevator 

system and the fraction that might be health hazards are limited (Wallace, 2000). Martin and 

Sauer (1976) studied the dust fraction that was contaminated by mold spores and fungal 

metabolites, which can be health hazards to grain elevator workers; however, they did not 

consider PSD. The most comprehensive PSD study was conducted by Parnell et al. (1986), but 

their study was limited to dust < 100 µm, the most explosive fraction. Thus, limited data exists 

on the complete range of particle sizes generated during bucket elevator handling even though 

this system is the primary grain and feed handling system used in the United States. This study 
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fills the gap where no complete PSD is available for wheat and corn and provides more specific 

data than previous studies particularly on small particle sizes, PM-2.5 and PM-4. 

The objective of this study was to characterize the PSD and dust generated (i.e., mass 

flow rate) in a bucket-elevator system collected upstream of the cyclone separator. The fractions 

of interest were particles with aerodynamic diameters ≤ 2.5 and ≤ 10 µm for regulatory purposes 

and ≤ 4 µm for health reasons. Specific objectives were to determine the effects of grain lots 

(part 1), repeated transfers (part 2), and grain types on PSD of the dust.  

 

Table 4.1 Published particulate emission factors for grain handling. 

Emission Factor (g·t-1 of grain) Emission Source 
Total PM  PM-10 PM-2.5 

Grain Receiving 
(hopper and straight truck, railcar, 

barge, ships) 

 
8.30 – 90.0 [a] [b] [c] [d] [e] 

 
0.600 – 29.5 [b] [d] [e] 

 
0.650 – 5.00 [d] 

Grain Cleaning 
(internal vibrating - with cyclone) 

 
37.5 [b] [d] 

 
9.50 [d] 

 
1.60 [d] 

Headhouse and Internal Handling 
(legs, belts, distributor, scale, etc.) 

 
30.5 [b] [d] 

 
17.0 [b] [d] 

 
2.90 [d] 

Storage Vents 12.5 [b] [d] 3.15 [d] 0.550 [d] 
Grain Drying 

(column and rack dryers) 
 

110 – 1500 [b] [d] 
 

27.5 – 375 [d] 
 

4.70– 65.0 [d] 
Grain Shipping 

(truck, railcar, barge, ships) 
4.00 – 43.0 [a] [b] [d] 1.10 – 14.5 [b] [d] 0.185 – 2.45 [d] 

[a] Kenkel and Noyes, 1995) 
[b] Midwest Research Institute, 1998 
[c] Shaw et al., 1998 
[d] US EPA, 2003 
[e] Billate et al., 2004 

 

Table 4.2 Published size distribution of grain dust from grain elevators. 

Percentage PM Dust of the Total Dust Collected (%) Grain Type 
< 125 µm < 100 µm < 10 µm < 8 µm < 4 µm < 2.5 µm 

Corn 62.0 - 86.0 [a] [b] [c] 54.1 [d] 5.00 - 12.0 [e] [f]  5.00 - 12.0 [a] 0.600 - 3.00 [f]  0.200 - 1.00 [f]  
Wheat 33.0 - 78.0 [a] [c] 34.3 [d] - 3.00 - 4.00 [a] - - 
Sorghum 60.0 [c] 34.3 [d] - - - - 
Rice - 44.2 [d] - - - - 
Soybean - 50.6 [d] - - - - 
Cyclone dust - - 9.00 [g] - - - 
Baghouse 
dust 

- - 
20.0 [g] - - - 

[a] Martin and Sauer, 1976 (from table 2) 

[b] Martin and Stephens, 1977 (from table 1) 

[c] Martin and Lai, 1978 (from table 3) 

[d] Parnell et al., 1986 (from table 3, paper also gave PSD graphs of dust < 100 µm) 
[e] Lai et al., 1984 (interpolated from PSD graph, figure 5) 
[f]  Baker et al., 1986 (interpolated from PSD graph, figure 2) 
[g] Martin, 1981 (interpolated from PSD graph, figure 5) 
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4.2 Materials and Methods 

4.2.1 Test Facility 

Dust samples from handling of wheat and shelled corn were collected upstream of the 

cyclone separators in the research grain elevator at the USDA-ARS, Center for Grain and 

Animal Health Research (CGAHR) (Manhattan, Kans.). The grain elevator has a storage 

capacity of 1400 t (55,000 bu). It has one receiving pit and two bucket elevator legs, each with a 

maximum feed rate of 81.6 t·h-1 (3,000 bu·h-1). It is equipped with a pneumatic dust-control 

system, which includes a 2.74 m diameter low pressure upper cyclone separator and twin 2.24 m 

diameter low pressure lower cyclone separators (Figure 4.1). In this research, the system was 

operated so that the airflow rate through the upper cyclone separators—serving the upper 

spouting, distributors, and storage bin headspace—was 5.0 m3·s-1 and the rate through the lower 

cyclone separators—collecting dust from the ground level area, particularly the elevator boot—

was 6.4 m3·s-1. These settings were the typical operating conditions for the elevator.  

4.2.2 Test Materials and Grain Handling 

4.2.2.1 Part 1: Wheat 

The initial study determined the effect of grain lot on the PSD of the grain dust. The test 

material, Hard Red Winter wheat from a 2005 crop, was purchased from a local elevator on July 

19-21, 2005, and stored under aeration in small metal bins for two years. The wheat was then 

unloaded in the CGAHR research elevator receiving area, moved from the receiving pit by belt 

conveyor, bucket elevated, and then dropped into the storage bin before testing (Figure 4.1). It 

was weighed on the inline weighing scale. There were four lots of wheat. Each of the four lots, 

with a mean mass of 28.3 t (1000 bu), was transferred each time at an average material flow rate 

of 52.2 t·h-1 (range: 44.3 to 56.9 t·h-1). Transfer 1 was a transfer from storage bin 2 (with a 

volume of approximately 411 m3 and depth of 26 m) to storage bin 3 (with the same volume and 

depth as storage bin 2) (Figure 4.1) on August 27, 2007 with mean temperature (T) and mean 

relative humidity (RH) of 30.4 °C and 56.0 %, respectively, during transfer. Transfer 2 was 

performed from storage bin 3 to storage bin 2 on August 28, 2007 (T = 34.5 °C, RH = 36.4 %) 

and August 29, 2007 (T = 22.9 °C, RH = 84.2 %). The initial grain drop height for each transfer 
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Figure 4.1 Schematic diagram of USDA-ARS-CGAHR research elevator showing flow of the 

handled grain and location of equipment (not drawn to scale): 1 - storage bin 1; 2 - storage 

bin 2; 3 - elevator boot; 4 - elevator legs; 5 - diverter-type sampler; 6 - hopper; 7 - distributor; 

8 - receiving area; 9 - upper cyclone separator; 10 - lower cyclone separators; 11 - dust bin; A 

– lower duct sample collection point; and B – upper duct sample collection point. 

 - Dust sample collection points 

4 

10 

11 

8 

2 1 

7 

6 

4 

  3 

5 

9 

B 

A 



 100 

was 26 m. During each of the two transfers for each of the four lots, dust was sampled upstream 

of the lower and upper collection ducts (Figure 4.1) 

4.2.2.2 Part 2: Shelled Corn 

The second part of the study was conducted to determine the effect of repeated transfers 

on the PSD of the dust particles. The test material was shelled yellow-dent corn from 2006 crop, 

air-dried, and also purchased from the same local elevator on April 4, 2007. The shelled corn 

was weighed while in the truck, unloaded, and bucket elevated into the storage bin before testing. 

Shelled corn, with a mean mass of 25.3 t (1000 bu), was transferred at an average material flow 

rate of 56.6 t·h-1 (range: 51.4 to 65.1 t·h-1). Transfer 1 was a transfer from storage bin 1 (with a 

volume of approximately 85 m3 and a depth of 20 m) to storage bin 2. The shelled corn lot was 

transferred alternately between storage bin 1 and storage bin 2 six times (Transfers 1 to 6) on 

April 24, 2007 (T = 22.2 °C, RH = 76.8 %). It was left in storage bin 1 for a week before it was 

again transferred to storage bin 2 (Transfer 7) on May 1, 2007 (T = 19.7 °C, RH = 89.3 %). It 

was left for one more week in storage bin 2 before the final transfer (Transfer 8) on May 8, 2007 

(T = 18.2 °C, RH = 73.5 %). The initial grain drop height to storage bin 1 was 20 m and to 

storage bin 2 was 26 m. During each of the eight transfers, dust samples were collected upstream 

of the lower and upper collection ducts (Figure 4.1). 

4.2.3 Dust Sampling 

Prior to dust sampling, velocity traverses were conducted inside the lower and upper 

collection ducts in accordance with US EPA Method 1 (US EPA, 2000) to establish the 

isokinetic collection velocity in the sampling duct. The mean measured velocities for the lower 

and upper collection ducts were 17.8 and 19.2 m·s-1, respectively. The cross-sectional areas of 

the lower and upper ducts were 0.36 and 0.26 m2, respectively. Based on the mean velocities and 

cross-sectional areas, the volumetric flow rates of air through the lower and upper collection 

ducts were 6.4 and 5.0 m3·s-1, respectively. 

Dust samples were then collected isokinetically upstream of the cyclones every 5 minutes 

during each grain transfer. A total of three samples per grain transfer were collected from each 

sampling point (Figure 4.1). Each dust sample was extracted on a 0.20- × 0.25-m glass fiber filter 

by using a high volume sampling train in accordance with ASTM D4536-96 and US EPA CTM-

003 (US EPA, 1989; ASTM Standards, 2000). The high volume sampling train consisted of a 35-
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mm diameter sampling probe, a 0.20- × 0.25-m filter holder, a differential pressure gauge, and a 

variable-speed vacuum motor. To achieve isokinetic sampling conditions, the sampling 

volumetric flow rates for the lower and upper ducts were set at 0.017 and 0.018 m3·s-1, 

respectively. 

To minimize the effect of humidity on filter mass, the glass fiber filters were conditioned 

in a constant humidity chamber (25°C, 50% relative humidity) for at least 24 h prior to weighing 

both before and after sampling. All filters were weighed on an electronic scale (model PC 440, 

Mettler Instrument Corp., Hightstown, N.J.) with a sensitivity of 0.001 g. The change in mass 

before and after sampling represented the mass of dust collected on the filter (dm ). 

From the measured data, the dust mass flow rate, dm&  (g·s-1), was calculated using:  

s

cd
d Qt

Qm
m =&         (4.1) 

where Qc is the volumetric flow rate through the collection duct (m3·s-1), t is the sampling time 

(s), and Qs is the sampling volumetric flow rate (m3·s-1).   

The dust mass flow rate was converted to a mass flow rate equivalent, em&  (g·t-1) by the 

following equation:  

g

d
e m

m
m

&

&
& =         (4.2) 

where gm& is the grain (i.e., wheat or shelled corn) mass flow rate (t·s-1). 

4.2.4 Particle Sizing 

The PSD of the collected dust was measured with a laser diffraction particle size analyzer 

(model LS 13 320, Beckman Coulter, Inc., Fullerton, Cal.). Laser diffraction particle sizing uses 

a light source that generates a monochromatic beam, which passes through several optical 

components that condition it to create an expanded, collimated beam (Beckman-Coulter, Inc., 

2006). The beam illuminates the particles in the scattering volume usually in the sample module. 

The particles then scatter the light, creating unique angular scattering patterns, which are then 

Fourier transformed into a spatial intensity pattern detected by a multi-element photodetector 

array. The photocurrent from the detectors is then processed and digitized into an intensity flux 

pattern. Computer software that utilizes appropriate scattering theories, such as the Mie theory or 

Fraunhofer theory, then converts the set of flux values into PSD values. The analyzer could 
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measure a particle size range from 0.4 to 2000 µm. Laser diffraction reduces the analysis time to 

minutes per sample with results tabulated into number, surface area, and volume percentage 

(Pearson et al., 2007). 

The measurement procedure was as follows. First, a quarter of each collection filter was 

cut and separated for laser diffraction particle sizing. The quarter filter was then washed with 

isopropyl alcohol to extract the dust on the filter. Isopropyl alcohol was used for the suspension 

solution to minimize clumping/aggregation of the dust particles. The suspension was placed into 

plastic centrifuge tubes and centrifuged for 5 min at 4000 rpm setting inside the Durafuge (model 

Precision Durafuge 300, Thermo-Fisher Scientific, Inc., Waltham, Mass.). The excess isopropyl 

alcohol was discarded, and the dust suspension was collected into one 50-mL plastic centrifuge 

tube. The dust suspension was agitated on a vortex mixer (model Sybron Thermolyne Maxi Mix, 

Thermolyne Corp., Dubuque, Iowa) just prior to analysis.   

A subsample consisting of drops of the dust suspension was added into the wet module of 

the laser diffraction analyzer until the manufacturer-recommended obscuration value of between 

8% and 12% was reached. Sonication of the subsample was done for 90 s just prior to analysis to 

minimize aggregation of the subsample. The instrument duplicated the 60-s analysis time for 

each subsample (Pearson et al., 2007). There were at least two subsamples analyzed for every 

sample.  

Particle size distribution and statistics data on the dust samples were extracted from the 

instrument’s computer software. The geometric mean diameter (GMD) and geometric standard 

deviation (GSD) of the equivalent sphere particles were determined from each of the data set.  

The equivalent sphere diameter (dp) of the dust particles from laser diffraction was 

converted into equivalent aerodynamic diameter (da) by:  

0ρ
ρ p

pa dd =         (4.3) 

where ρp is the particle density and ρ0 is the unit density (i.e., 1.0 g·cm-3). A multi-pycnometer 

(model MVP-1, Quantachrome Corp., Syosset, N.Y.) was used to measure ρp of the wheat and 

shelled corn dust from at least three replicates. The measured ρp values for wheat and shelled 

corn dust were 1.48 and 1.51 g·cm-3 (standard deviation (SD) = 0.022 and 0.014 g·cm-3), 

respectively. The percentages of PM-2.5, PM-10 and PM-4 were interpolated from the 

cumulative volume percentages of the dust PSD based on their aerodynamic diameters.  
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4.2.5 Data Analysis 

The four wheat grain lots were the experimental units in the first part of the study. The 

class variables were the four grain lots (Lots 1 to 4), two transfers (T1, T2), and two ducts 

(upper, lower). The null hypothesis was there were no mean differences in GMD, GSD, and 

mass flow rates among the four grain lots, between the two transfers, and between the two ducts. 

Analysis of Variance (ANOVA) and Bonferroni Multiple Comparison Test in SAS (version 

9.1.3, SAS Institute Inc., Cary, N.C.) were used for analysis at the 5% level of significance. 

Differences between grain lots were not expected so we used Bonferroni because of its strict 

requirements prior to rejecting the null hypotheses, which minimizes Type I errors. The 

differences in results between the lower and upper ducts were compared to determine the 

necessity of sampling from both ducts.  

The shelled corn lot was the experimental unit in the second part of the study. The eight 

transfers (T1 to T8) and the two ducts (upper, lower) were the class variables. The null 

hypothesis was there were no mean differences in the parameters among the eight transfers and 

between the two ducts. Similar to the first part of the study, data were analyzed by using 

ANOVA and Bonferroni.  

Comparisons of results between wheat and shelled corn dust were also performed by 

using ANOVA and Bonferroni. The differential volume percentages of the PSD of wheat and 

shelled corn dust were analyzed by using the Kruskal-Wallis test, a non-parametric method for 

testing equality of sample medians among groups (Hollander and Wolfe, 1973; SAS, 1990). 

Combinations of variables were also analyzed by using ANOVA and Bonferroni (Table 4.3).  

4.3 Results and Discussion 

GMS, GSD, and mass flow rate values were analyzed on the basis of the combination of 

statistical variables in Table 4.3. Results of data analysis for wheat dust were narrowed down to 

differences among the four grain lots, between the two transfers, and between the two ducts 

because the results of the variable combinations closely followed general trends. For corn dust, 

presentation of results followed that indicated in Table 4.3. 
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Table 4.3 Combination of variables for the wheat and shelled corn dust data analysis for 

GMD, GSD, and mass flow rate. 

Wheat Dust 

Variable Grain Lot (Lots 1 to 4) Transfer (T1, T2) Duct (Upper, Lower) 

Grain Lot (Lots 1 to 4) - compare ducts compare transfers 

Transfer (T1, T2) compare ducts - compare grain lots 

Duct (Upper, Lower) compare transfers compare grain lots - 

Shelled Corn Dust 

Variable Transfer (T1 to T8) Duct (Upper, Lower) 

Transfer (T1 to T8) - compare ducts within each transfer 

Duct (Upper, Lower) compare transfers within each duct - 

 

4.3.1 Mass Flow Rate 

The dust mass flow rates of wheat did not differ significantly (p > 0.05) among the four 

grain lots or between the two transfers (p > 0.05). The dust mass flow rate for the upper duct 

(39.4 g·t-1) was significantly greater (p < 0.05) than that for the lower duct (25.2 g·t-1) (Table 

4.4). The total dust mass flow rate for wheat (64.6 g/t) collected upstream of the cyclone 

separators was within the range of published emission factors for grain receiving (8.30 to 90.0 

g·t-1; Table 4.1). 

Similar to wheat, for shelled corn, the dust mass flow rates were not significantly 

different (p > 0.05) among the eight transfers but differed significantly (p < 0.05) between the 

two ducts. Again, the dust mass flow rate for the upper duct (119.6 g·t-1) was significantly greater 

than that of the lower duct (65.5 g·t-1) (Table 4.4). The total dust mass flow rate for shelled corn 

(185.1 g·t-1) collected upstream of the cyclone separators was greater than the published emission 

factors for grain receiving (8.30 to 90.0 g·t-1) but within the emission factors for grain drying 

(110 to 1500 g·t-1; Table 4.1). For both wheat and shelled corn in the elevator in this study, more 

dust was generated and then collected by the pneumatic dust control system from the upper duct 

(elevator head and the storage bin headspace) than from the lower duct (elevator boot). 
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Table 4.4 Mean dust mass flow rates for wheat and shelled corn collected from the upper and 

lower ducts, upstream of the cyclones.[a] 

Mean Dust Mass Flow Rate (SD) Source 
(g·s-1)  (g·t-1 of grain handled) 

Wheat      

Upper Duct (storage bin and elevator head) 0.571 A a (0.113)  39.4  A a (7.78) 

Lower Duct (elevator boot) 0.365 B b (0.159)  25.2  B b (10.9) 

Total 0.937 (0.271)  64.6 (18.7) 

Shelled Corn      

Upper Duct (storage bin and elevator head) 1.88   A c (0.270)  119.6 A c (17.2) 

Lower Duct (elevator boot) 1.03   B d (0.169)  65.5   B d (10.8) 

Total 2.91 (0.440)  185.1 (28.0) 
[a]   For the same type of grain, mean values with the same upper case letters within a column are not significantly different at the 

5% level of significance in Bonferroni. For comparison among both location and grain, mean values with the same lower case 
letters within a column are not significantly different at the 5% level of significance in Bonferroni. Values in parentheses 
represent standard deviation (SD). 

 
  

 

Of the two grain types, shelled corn (185.1 g·t-1) had significantly greater dust generated, 

as given by the mass flow rates, than wheat (64.6 g·t-1), likely because of the tendency of corn to 

generate more dust than wheat during handling (Martin and Sauer, 1976; Martin and Lai, 1978; 

Parnell et al., 1986). Fiscus et al. (1971) found that corn had the highest breakage during various 

handling techniques compared with wheat and soybean because of the structurally weak kernel 

of corn that fragmentized into random particles sizes during the breakage process. Wheat, on the 

other hand, had the lowest breakage and generated dust (Martin et al., 1985) and small kernel 

particles mainly by abrasion (Fiscus et al., 1971). The values of dust mass flow rates for both 

wheat and shelled corn in this study were relatively high compared with other published values 

because both collection points were upstream of the cyclone separators.  

4.3.2 Particle Size Distribution and Size Fractions 

4.3.2.1 Wheat – Effect of Grain Lot 

In general, the GMD and GSD values were not significantly different (p > 0.05) among 

the four grain lots and between the two transfers (Table 4.5). The GMD values from the upper 

duct (10.5 to 13.7 µm) were significantly smaller (p < 0.05) than those from the lower duct (12.9 
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to 16.9 µm). However, the GSD values from the upper duct (2.60 to 2.98) were not significantly 

different (p > 0.05) than those from the lower duct (2.74 to 2.99).  

The mean GMD from the upper duct (12.3 µm), which had a corresponding mass median 

diameter (MMD) of 12.2 µm, was smaller than the MMD reported by Parnell et al. (1986) (i.e., 

13.4 µm for dust fraction of wheat < 100 µm) and Martin and Lai (1978) (i.e., 13 µm for residual 

wheat dust). The mean GMD from the lower duct (14.9 µm), which had the same MMD value 

(14.9 µm), was greater than both of these published MMD values.  

The mean GSD values from the upper (2.81) and lower (2.86) ducts were greater than the 

GSD from Parnell et al. (1986), which was 2.08. This is characteristic of wheat dust PSD from a 

wider range of particle sizes than the wheat dust of Parnell et al. (1986), which was limited to the 

dust fraction < 100 µm. These differences in the GMD and GSD could possibly be due to 

variation in grain properties, grain elevator operation and characteristics, and sampling methods 

and measurement.  

 

Table 4.5 Geometric mean diameter (GMD) and geometric standard deviation (GSD) of 

wheat dust collected from the upper and lower ducts, upstream of the cyclones.[a] 

GMD, µm (SD, µm)  GSD (SD) Transfer (T) – 

Grain Lot (W)  Upper Duct  Lower Duct  Upper Duct  Lower Duct 

T1 – W1 12.6 a (3.63)   12.9 b (1.69)  2.75 a (0.283)  2.76 a (0.264) 

T1 – W2 10.5 a (2.03)  13.6 bc (1.26)  2.60 a (0.350)  2.74 a (0.209) 

T1 – W3 12.8 a (2.65)  14.4 bc  (0.323)  2.94 a (0.321)  2.84 a (0.077) 

T1 – W4 11.7 a (1.56)   15.7 cd (2.03)  2.75 a (0.243)  2.87 a (0.132) 

T2 – W1 12.8 a (1.76)   13.9 b (1.76)  2.98 a (0.333)  2.79 a (0.145) 

T2 – W2 11.8 a (1.35)   15.5 b (1.87)  2.83 a (0.289)   2.93 ab (0.122) 

T2 – W3 12.5 a  (0.676)   16.0 b  (0.825)  2.80 a (0.100)  2.99 a (0.128) 

T2 – W4 13.7 a  (0.933)   16.9 bd (2.70)  2.86 a (0.138)  2.99 a (0.300) 

Mean (SD) 12.3  (0.975)  14.9 (1.37)  2.81 (0.120)  2.86 (0.097) 
[a] Means with the same letter are not significantly different at the 5% level of significance in Bonferroni. Values in parentheses represent 

standard deviations (SD). 

 

The dust in this study would also be different from that of Parnell et al. (1986) because of 

the disparity in the dust generation mechanisms. The dust from this study came mainly from the 

elevator boot, elevator head, and storage bin headspace, whereas Parnell et al.'s (1986) dust was 

taken from all the operations in the terminal elevators. Although similar sets of equipment were 

also probably involved, the drop height, speed of impact, and other mechanisms were likely quite 
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different. The sampling methods were also different. Dust in the Parnell et al. (1986) study was 

collected from baghouse filters, whereas the dust in this study was collected by a high volume 

sampler upstream of the cyclone separators. 

The mechanisms of dust generation from the upper duct were different than those from 

the lower duct. There were two sources for the dust generated and collected in the upper duct, the 

elevator head and filling of the storage bin. Dust generated for the lower duct was from a single 

source, the elevator boot. The various sources of generated dust have disparate mechanisms for 

damaging the grain and thus might be expected to generate dust with diverse characteristics. 

Apparently, these disparate mechanisms for dust generation led to the differences in dust particle 

sizes from the upper and lower ducts.  

Figure 4.2 shows a representative plot of the cumulative and differential volume 

percentages of PSD of wheat dust. The Kruskal-Wallis test showed that the PSD among the four 

grain lots from upper and lower ducts and from the two transfers were not significantly different 

(p > 0.05), which is in agreement with the results of GMD and GSD. It appears that differences 

in grain lots did not affect the PSD of the wheat dust. 
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Figure 4.2 Representative plot of mean cumulative and differential volume percentages for 

the particle size distribution of wheat dust. 

 

With significant difference in GMD (or PSD) between the upper and lower ducts, there 

were corresponding differences in the three size fractions of interest (i.e., PM-10, PM-2.5, PM-

4). The percentage of PM-10 of the dust sample collected upstream of the upper duct (37.3%) 
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was significantly greater (p < 0.05) than that of the sample from the lower duct (27.8%), which 

was consistent with the findings on mass flow rate. The mean percentage of PM-10 for wheat 

dust was 33.6% (Table 4.6). This percentage of PM-10 was greater than the values reported by 

Martin (1981) for dust < 10µm from cyclones (9%) and baghouses (20%) (mean for corn, wheat, 

sorghum, and soybean dusts) and was smaller than that from the residual wheat dust ≤ 10 µm 

(45%) obtained by Martin and Lai (1978). This value was also slightly greater than the average 

percentage of PM-10 emissions (30%) from elevators primarily handling wheat (Midwest 

Research Institute, 1998). The wheat dust generated, as given by the mass flow rate equivalent of 

mean PM-10 (21.7 g·t-1 of wheat handled), was comparable to the published emission value for 

grain receiving (0.60 to 29.5 g·t-1) (Table 4.1).  

The percentage of PM-2.5 for the samples collected from the upper duct (5.42%) was not 

significantly different (p > 0.05) than that from the lower duct (4.73%) (Table 4.6). The mean 

percentage of PM-2.5 (3.33 g·t-1 of wheat handled) was also within the range of published 

emission values for grain receiving (0.65 to 5.0 g·t-1) (Table 4.1).  

The percentage of PM-4 for the samples collected from the upper duct (10.7%) was 

significantly greater (p < 0.05) than that from the lower duct (8.0%). The mean of PM-4 was 

9.65% (equivalent to 6.24 g·t-1 of wheat handled) (Table 4.6). Literature contained no data with 

which to compare the percentage of PM-4 for wheat dust. 

 

Table 4.6 Percentage of particulate matter of the total dust (% PM) and its mass flow rate 

equivalent (MFRE). [a] 

Lower Duct  Upper Duct  Mean for Lower and Upper Ducts Aero- 
dynamic 
Diameter 

(µm) % PM (SD)  

MFRE (SD), 
g/t of grain 

handled  % PM (SD)  

MFRE (SD), 
g/t of grain 

handled  Mean % PM 

 Mean MFRE 
(g/t of grain 

handled) 
Wheat  
Dust 

                 

2.5 4.73 A a (0.886)  1.19 (0.223)  5.42 A a (0.586)  2.14 (0.231)  5.15 a (0.703)  3.33 (0.454) 
4 8.00 A b (0.888)  2.02 (0.224)  10.7 B b (0.897)  4.22 (0.353)  9.65 b (0.893)  6.24 (0.577) 
10 27.8 A c (1.61)  7.01 (0.406)  37.3 B c (3.25)  14.7 (1.28)  33.6 c (2.61)  21.7 (1.69) 

Corn 
Dust 

                 

2.5 7.21 A d (0.275)  4.72 (0.180)  7.59 B d (0.240)  9.08 (0.287)  7.46 d (0.252)  13.8 (0.467) 
4 9.57 A b (0.257)  6.27 (0.168)  10.2 B e (0.287)  12.2 (0.343)  9.99 b (0.277)  18.5 (0.512) 
10 25.5 A e (1.60)  16.7 (1.05)  30.8 B f (1.93)  36.8 (2.30)  28.9 e (1.81)  53.5 (3.35) 

[a] For the same type of grain and aerodynamic diameter, mean values for upper and lower ducts with the same upper case letters 
within a row are not significantly different at the 5% level of significance in Bonferroni. For comparison among both location 
and grain, mean values with the same lower case letters within a column are not significantly different at the 5% level of 
significance in Bonferroni. Values in parentheses represent standard deviation (SD). 
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4.3.2.2 Shelled Corn – Effect of Repeated Transfers 

The eight transfers did not significantly differ (p > 0.05) in GMD and GSD values (Table 

4.7). The GMD values from the upper duct (10.0 to 11.1 µm) were significantly less (p < 0.05) 

than the values from the lower duct (11.2 to 14.4 µm) because of the smaller particles generated 

and collected by the pneumatic dust collection system from the elevator head and storage bin 

headspace. The GSD values from the upper duct (2.27 to 2.36) were also significantly different 

(p < 0.05) from those of the lower duct (2.31 to 2.77).  

The mean GMD from the upper duct (10.5 µm), with a corresponding MMD of 12.2 µm, 

was smaller than the MMD obtained by Parnell et al. (1986) (i.e., 13.2 µm for dust fraction of 

corn < 100 µm). The mean GMD from the lower duct (12.1 µm), with an MMD of 13.5 µm, was 

greater than the MMD of Parnell et al. (1986) (i.e., 13.2 µm for dust fraction of corn < 100 µm). 

The mean GSD values from the upper (2.32) and lower (2.44) ducts were also greater than the 

GSD from Parnell et al. (1986), which was 1.80. The differences in the GMD and GSD between 

the upper and lower ducts and the differences in MMD of the shelled corn dust in this study and 

that of Parnell et al. (1986) are likely due to the same factors as explained previously for wheat—

differences in grain properties, grain elevator operation and characteristics, and sampling 

methods and measurement. 

 

Table 4.7 Geometric mean diameter (GMD) and geometric standard deviation (GSD) of 

shelled corn dust collected from the upper and lower ducts, upstream of the cyclones. [a] 

GMD, µm (SD, µm)  GSD (SD) 
Transfer (T) 

Upper Duct  Lower Duct  Upper Duct  Lower Duct 

T1 10.3 a (0.157)  14.4 b (4.70)  2.35 a (0.084)  2.77 b (0.774) 

T2 10.7 a (0.412)  12.1 b (0.883)  2.34 a (0.047)  2.52 b (0.275) 

T3 10.7 a (0.404)  11.9 b (0.496)  2.36 a (0.055)  2.37 b (0.010) 

T4 10.4 a (0.311)  11.2 b (0.743)  2.31 a (0.054)  2.31 b (0.036) 

T5 11.1 a (0.580)  11.9 b (0.606)  2.31 a (0.024)  2.36 b (0.036) 

T6 11.0 a (0.178)  11.7 b  (0.232)  2.33 a (0.048)  2.35 b (0.010) 

T7 10.1 a (0.491)  12.3 b (1.59)  2.32 a (0.038)  2.48 b (0.201) 

T8 10.0 a (0.484)  11.2 b (0.720)  2.27 a (0.024)  2.33 b (0.103) 

Mean (SD) 10.5  (0.393)  12.1  (1.01)  2.32  (0.028)  2.44  (0.153) 
[a] Means with the same letter are not significantly different at the 5% level of significance in Bonferroni. Values in parentheses represent 

standard deviations (SD). 

 



 110 

Figure 4.3 shows a representative plot of the cumulative and differential volume 

percentage of PSD of shelled corn dust. The Kruskal-Wallis test showed that the PSD among the 

eight transfers from the upper and lower ducts were not significantly different (p > 0.05), which 

is in agreement with the results of GMD and GSD. Apparently, repeated transfers of corn did not 

affect the PSD of the generated dust. 

Similar to wheat, difference in GMD or PSD between the upper and the lower ducts 

resulted in a significant difference in PM-10, PM-2.5, and PM-4 in terms of percentages or flow 

rates. The percentage of PM-10 from the upper duct (30.8%) was significantly greater (p < 0.05) 

than that from the lower duct (25.5%) (Table 4.6). The resulting mean percentage of PM-10 was 

28.9%, slightly greater than that reported for elevators primarily handling corn and soybean (< 

20%) (Midwest Research Institute, 1998). This percentage of PM-10 was greater than the values 

reported by Martin (1981) from cyclones (9%) and from baghouses (20%) (mean for corn, 

wheat, sorghum, and soybean dusts), Lai et al. (1984) and Baker et al. (1986) (5% to 12% for 

corn, wheat, sorghum, and corn starch) and smaller than those from the residual corn dust ≤ 10 

µm (33%) obtained by Martin and Lai (1978). The corn dust generated, as given by the mass 

flow rate equivalent of mean PM-10 (53.5 g·t-1 of shelled corn handled), was greater than the 

published PM-10 for grain receiving (0.60 to 29.5 g·t-1) and within the range of published PM-10 

for grain drying (27.5 to 375 g·t-1) (Table 4.1). 
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Figure 4.3 Representative plot of mean cumulative and differential volume percentages for 

the particle size distribution of shelled corn dust. 
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The percentage of PM-2.5 from the upper duct (7.59%) was significantly greater (p < 

0.05) than that from the lower duct (7.21%). The weighted mean PM-2.5 in this study (7.46%) 

(Table 4.6) was greater than the value reported by Baker et al. (1986) (0.2% to 1.0%) for 

pneumatic conveying of corn (Table 4.2). The difference in values may be explained by the use 

of velocity compensators to minimize grain damage and dust generation in a pneumatic handling 

system where grain flow rates and conveying distances were drastically reduced (Baker et al., 

1986). The corn dust generated, as given by mass flow rate equivalent (13.8 g·t-1 of shelled corn 

handled), was greater than the published PM-2.5 for grain receiving (0.65 to 5.0 g·t-1) and within 

the range of published PM-2.5 for grain drying (4.7 to 65.0 g·t-1) (Table 4.1). This implies that 

without the pneumatic dust collection system, the PM-2.5 of the elevator handling corn would be 

similar to that of grain drying.  

The percentage of PM-4 from the lower duct (9.57%) was significantly smaller (p < 0.05) 

than that from the upper duct (10.2%) (Table 4.6). The weighted mean PM-4 was 9.99% 

(equivalent to 18.5 g·t-1 of shelled corn handled). Literature contained no data with which to 

compare the percentage of PM-4 from corn dust. 

4.3.2.3 Comparison of Wheat and Shelled Corn – Effect of Grain Type 

The GMD values of wheat dust (10.5 to 16.9 µm) were significantly greater (p < 0.05) 

than those of shelled corn dust (10.0 to 14.4 µm). The same was true when comparing the GSD 

values of wheat dust (2.60 to 2.99) with those of corn (2.27 to 2.77). This implies that handling 

shelled corn generated dust particles that were generally smaller in diameter than those from 

wheat.    

Comparisons of GMD and GSD values within each duct (upper vs. lower) showed that 

wheat and corn dust were significantly different (p < 0.05). However, GMD and GSD values of 

wheat dust were not significantly different (p > 0.05) from that of shelled corn dust within 

Transfer 1 but significantly differ (p < 0.05) within Transfer 2. This may be due to inherent 

variability between the transfers and the test materials. 

It must be emphasized that the dust collected from the ducts in this study was upstream of 

the cyclone collectors; thus, most of it was not emitted to the atmosphere. The relationship of this 

dust (from upstream the cyclone) and the dust that would be emitted without a pneumatic dust 

collection system is not known. However, it could be speculated that the measurement results for 

dust taken upstream of the cyclone (or any similar control devices) would likely be greater than 
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those taken from sources with no pneumatic dust control system.   The relative difference would 

depend on the air velocities and design of the pneumatic dust control system among others. 

Establishing the relationship between the two measurements could be considered for future 

work. Another issue for future work includes the effect of air velocities or volumetric flow rate 

on the measurements.  

4.4 Summary 

Grain dust generated during handling can pose a safety and health hazard and is an air 

pollutant. This study was conducted to characterize the particle size distribution (PSD) of grain 

dusts generated during handling in the research elevator of the USDA Center for Grain and 

Animal Health Research. The percentages of PM-2.5 and PM-10 (which are regulatory 

concerns), PM-4 (a health concern), and the mass of generated dust (mass flow rate equivalent) 

were measured. The effects of different grain lots and repeated transfers on the dust size 

distribution were studied by using wheat and shelled corn dusts, respectively. The effect of grain 

types on particle size distribution was also studied. The dust samples were collected on glass 

fiber filters with high volume samplers from the lower and upper ducts upstream of the cyclone 

dust collectors. A laser diffraction analyzer was used to measure the PSD of the collected dust.  

Shelled corn produced significantly smaller dust particles, and a greater proportion of 

small particles, than wheat. GMD of shelled corn dust ranged from 10.0 to 14.4 µm; GSD ranged 

from 2.27 to 2.77. For wheat, GMD ranged from 10.5 to 16.9 µm, and GSD ranged from 2.60 to 

2.99. The percentage of PM-2.5, PM-4, and PM-10 generated during the transfer operation were 

7.46%, 9.99%, and 28.9%, respectively, of total shelled corn dust and 5.15%, 9.65%, and 33.6%, 

respectively, of total wheat dust.  

Handling shelled corn generated more than twice as much total dust than handling wheat 

(185 g·t-1 of corn handled vs. 64.6 g·t-1 of wheat handled).  For both wheat and shelled corn, at an 

average grain flow rate of 54.4 t·h-1, the size distribution of dust from the upper and lower ducts 

showed similar trends among grain lots and repeated transfers but differed between the two grain 

types and also between the two ducts. Overall, the corn and wheat differed significantly in the 

dust size distribution and the rate of total dust generated and there were significant differences 

between the lower and upper ducts, confirming the necessity of sampling from both ducts.  
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CHAPTER 5 - Material and Interaction Properties of Selected 

Grains and Oilseeds for Modeling Discrete Particles 

5.1 Introduction 

Physical characteristics are important in analyzing the behavior of grains in handling 

operations (Mohsenin, 1986). Bulk handling behavior of the grains can be studied 

experimentally, but large-scale investigations of grain flow can be expensive and time 

consuming. On the other hand, computer simulations can reduce the large effort required to 

evaluate the flow of grain in handling operations.  

Recently, grain segregation and identity preservation operations have become important 

as grain handlers respond to an increased use of specialty grain (Berruto and Maier, 2001; 

Herrman et al., 2001, 2002). However, limited studies have been conducted to quantify the 

commingling that may occur during grain handling in grain elevators (Hurburgh, 1999; Ingles et 

al., 2003, 2006) and with farm equipment (Greenlees and Shouse, 2000; Hirai et al., 2006; Hanna 

et al., 2006). Limited data on grain commingling during handling in grain elevators (Ingles et al., 

2003, 2006) make it difficult to accurately predict levels of impurities that would propagate 

through grain handling systems. Thus, a validated mechanistic model for predicting grain 

commingling in various types of elevator equipment will be valuable for extending the 

knowledge of grain commingling beyond current experimental studies. 

Different modeling techniques such as continuum models and discrete element models 

(Wightman et al., 1998) have potential to simulate grain commingling in elevator equipment. 

The discrete element method (DEM) is considered one of the most promising techniques to 

simulate motion of individual grain kernels (Wightman et al., 1998) in bucket-elevator 

equipment. The discrete element method is an explicit numerical scheme in which particle 

interaction is monitored contact by contact and the motion of individual particles is modeled 

(LoCurto et al., 1997). This explicit scheme requires small time steps, resulting in potential 

problems with developing realistic models that can run in a reasonable time on current 

computers. The model must use a critical time increment that achieves stability and simulates the 
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true physics with a manageable number of iterations or calculations (O’Sullivan and Bray, 2004; 

Li et al., 2005). 

Relevant grain physical properties must be known to accurately simulate grain handling 

operations. The objectives of this study were (1) to review the published physical properties of 

grains and oilseeds needed to model grain commingling in DEM, and (2) to develop and evaluate 

an appropriate particle model for one test seed based on these physical properties. Soybeans were 

chosen as the test seed due to their almost spherical shape for simplicity of modeling. 

Additionally, other major seeds with non-spherical shapes (e.g., corn, wheat) were also reviewed 

in this study. Their physical properties can be used for future DEM modeling. 

5.2 Physical Properties of Grains and Oilseeds 

Different DEM models have used varying parameters for simulation modeling. The most 

widely used parameters can be divided into two categories: material properties and interaction 

properties (Mohsenin, 1986; Vu-Quoc et al., 2000; Raji and Favier, 2004a, b). Material 

properties may be defined as intrinsic characteristics of the particle (i.e., grain kernels) that is 

being modeled. Among material properties critical as inputs in DEM modeling are shape, size 

distribution, density, Poisson’s ratio, and shear modulus. Interaction properties are characteristics 

exhibited by the particle in relation to its contact with boundaries, surfaces, and other (or same) 

particles.  Interaction properties, vital in DEM modeling, are coefficients of restitution, and static 

and rolling friction (LoCurto et al., 1997; Chung et al., 2004). Grain material and interaction 

properties available in the literature are summarized in Table 5.1. 

5.2.1 Particle Shape and Particle Size 

Shape and size are inseparable physical properties in a grain kernel. In defining shape, 

some dimensional parameters of the grain must be measured. Mohsenin (1986) and Nelson 

(2002) reported measuring three orthogonally oriented dimensions of 50 kernels randomly 

selected from a grain lot to determine kernel shape and size. The volume was taken as one of the 

parameters defining kernel shape and the three mutually perpendicular axes were taken as a 

measure of kernel size.   
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Table 5.1 Range of published physical properties of grains and oilseeds. 

6.9 - 16.7 b, j, k, p, s, t, y, z 6.7 - 25.0 e, f, h, k, s, y, z, aa 6.2 - 20.0 e, f, g, k, s, y, z, aa

7.0 - 8.2 q, s, t, y 9.4 - 20.3 k, s, u, y, ac 5.5 - 7.3 k, s, y

6.1 - 6.7 q, s, t, y 8.0 - 16.4 k, s, u, y, ac 2.6 - 3.8 k, s, y

5.5 - 5.9 q, s, t, y 4.0 - 12.8 k, s, u, y, ac 2.4 - 3.5 k, s, y

6.0 k, w 8.0 k 3.6 - 4.1 k 

3.0 k, w 4.0 k 1.8 - 2.1 k

100 - 200 q, r, s, t, y 250 - 349.7
e, k, l , s, u, y, 

26 - 51
k, l , r, s, y 

134.1 - 152.8 s 274 s 18.5 - 28.6 s

1130 - 1325.2 s, w, y, z 1270 - 1396.5 k, s, y, z, ac 1290 - 1430 k, s, y, z

705 - 876 i, p, s, y, z 661 - 810
i, k, l , s, y, z

690 - 823.2
i, k, l , s, y, z

0.08 - 0.4134 j, q, t, w, y 0.17 - 0.4 h, k, v, y, aa, ac 0.16 - 0.42 g, y, aa

31.2 - 176.9 j, t, w, y 10.9 - 2320 h, v, y, aa, ac 10 - 2834 g, y 

13.3 - 63.2 j, t, w, y 4.5 - 828.6 h, v, y, aa, ac 4.2 - 997.9 g, y

generic 0.5, 0.7 w, q - -
with aluminum 0.6, 0.7 p - -
with acrylic - 0.59 aa -
with self (grain) 0.267, 0.55 q, d, k 0.52, 0.51 a, d, k 0.47, 0.53 a, b, d, k

with galvanized sheet (or 
sheet metal) 0.18 - 0.27 f, k, y 0.20 - 0.34 f, k, y, 0.10 - 0.44 f, k, y

with steel (or stainless  steel) 0.223 - 0.247, 0.37 y, d, k 0.235 - 0.76 a, d, e, k, v, y 0.248 - 0.55 a, b, d, e, k, y

with transparent perspex 0.30 w - -
with aluminum - 0.226 - 0.276 v -
with acrylic - 0.34 t -
with glass 0.328 q

for filling or piling 16
d, k

16 d, k 16 d, k

for emptying or funneling 29 - 33
d, k, y

23.1 - 34.7 d, k, y 23.8 - 38.1 d, k, y

29.2 - 31 y 26.1 - 35.1 y 25.4 - 36.0 y

WheatCornSoybean

Bulk Density (kg/m3), ρ b

Particle Poisson Ratio, v

Grain/ Oilseed Kernels

Particle Length (mm), l

Particle Volume (mm3), V
Particle Density (kg/m3), ρ p

Parameters

Particle Thickness (mm), h

Particle Static 
Friction 

Coefficient, µ s

Bulk Static Angle 
of Repose 
(degree)

Bulk Angle of Internal Friction (degree)

Particle Elastic Modulus (MPa), E

Particle Shear Modulus (MPa), G

Particle 
Restitution 
Coefficient, e

Particle Mass (mg), m

Equivalent Particle Diameter (mm), d e

Equivalent Particle Radius (mm), r e

Moisture Content (%) wb

Particle Width (mm), w

 
* Unhulled seed or paddy a Airy (1898) k Mohsenin (1986) u Watson (2003) 
**  Dehulled kernel b Jamieson (1903) l Hoseney and Faubion (1992) v Chung et al. (2004) 
+ Oil type c Kramer (1944) m Bilanski et al. (1994)  w Raji and Favier (2004a, b) 
++ Non-oil type d Stahl (1950) n Shroyer et al. (1996) x Calisir et al. (2005) 
 e Lorenzen (1957) o Gupta and Das (1997) y Molenda and Horabik (2005) 

 f Brubaker and Pos (1965) p LoCurto et al. (1997) z ASABE Standards (2006a) - D241.4  
 g Arnold and Roberts (1969) q Vu-Quoc et al. (2000) aa ASAE Standards (2006b) - S368.4  
 h Shelef and Mohsenin (1969) r McLelland and Miller (2001) ab Boyles et al. (2006) 
 i Henderson and Perry (1976) s Nelson (2002) ac Chung and Ooi (2008) 
 j Misra and Young (1981) t Zhang and Vu-Quoc (2002)  
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Table 5.1 Range of published physical properties of grains and oilseeds. (cont.) 

9.2 - 11.2 k, s, z 8.6 - 15.7 c, d, k, s, z 7.5 - 20.0 e, f, k, s, y, z

4.3, 4.5 k, s 5.3 - 8.9** , 7.6 - 9.8 k, s 7.9 - 10.9 k, s, y

4.1 k, s 2.1 - 2.9** , 2.5 - 3.6 k, s 2.9 - 3.8 k, s, y

2.8, 3.4 k, s 1.7 - 2.0** , 2.1 - 2.5 k, s 2.2 - 3.0 k, s, y

3.5 k 3.3 - 3.5 k 3.7 - 4.2 k 

1.8 k 1.7 - 1.8 k 1.9 - 2.1 k

28 - 33.2 k, l , s 17.5 - 24.9** , 25 - 29.1 k, l , s 25.1 - 53.9 k, s, y, z

24.7 s 12 - 18** s 19.7 - 25.9 s

1220 - 1344 k, s, z 1382-1462** , 1110-1120*, 1360-1390 k, s, z 1130 - 1420 k, s, y, z

643.5 - 775
i, k, l , s, z 641-851** , 579*, 573.2-579 i, k, l , s, z

566 - 691
i, k, l , s, y, z

- - 0.14 - 0.20 y

- - 8.0 - 15.8 y

- - 3.3 - 6.87 y

generic - - -
with aluminum - - -
with acrylic - - -
with self (grain) 0.65 d, k 0.68*, 0.73* c, d, k 0.51, 0.53 a, d, k

with galvanized sheet (or 
sheet metal) - 0.40 - 0.45* c, k 0.17 - 0.352 f, k, y

with steel (or stainless  steel) 0.37 d, k 0.48* d, k 0.226 - 0.40 a, d, e, k, y

with transparent perspex - - -
with aluminum - - -
with acrylic - - -
with glass
for filling or piling 20 d, k 20* d, k 16 d, k

for emptying or funneling 33 d, k 36* d, k 26.1 - 32.9 d, k, y

- - 27.4 - 33.7 y

Particle Thickness (mm), h
Equivalent Particle Diameter (mm), d e

Equivalent Particle Radius (mm), r e

Moisture Content (%) wb

Particle Width (mm), w

Particle Static 
Friction 

Coefficient, µ s

Bulk Static Angle 
of Repose 
(degree)

Bulk Angle of Internal Friction (degree)

Particle 
Restitution 
Coefficient, e

Grain Sorghum

Particle Volume (mm3), V
Particle Density (kg/m3), ρ p

Bulk Density (kg/m3), ρ b

Particle Poisson Ratio, v
Particle Elastic Modulus (MPa), E

Particle Shear Modulus (MPa), G

Particle Mass (mg), m

Parameters
Rice BarleyGrain/ Oilseed Kernels

Particle Length (mm), l

 
* Unhulled seed or paddy a Airy (1898) k Mohsenin (1986) u Watson (2003) 
**  Dehulled kernel b Jamieson (1903) l Hoseney and Faubion (1992) v Chung et al. (2004) 
+ Oil type c Kramer (1944) m Bilanski et al. (1994)  w Raji and Favier (2004a, b) 
++ Non-oil type d Stahl (1950) n Shroyer et al. (1996) x Calisir et al. (2005) 
 e Lorenzen (1957) o Gupta and Das (1997) y Molenda and Horabik (2005) 

 f Brubaker and Pos (1965) p LoCurto et al. (1997) z ASABE Standards (2006a) - D241.4  
 g Arnold and Roberts (1969) q Vu-Quoc et al. (2000) aa ASAE Standards (2006b) - S368.4  
 h Shelef and Mohsenin (1969) r McLelland and Miller (2001) ab Boyles et al. (2006) 
 i Henderson and Perry (1976) s Nelson (2002) ac Chung and Ooi (2008) 
 j Misra and Young (1981) t Zhang and Vu-Quoc (2002)  
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Table 5.1 Range of published physical properties of grains and oilseeds. (cont.) 

8.5 -20.0 f, k, s, y, z 3.9 - 16.7 o, s 4.5 - 19.3 m, s, x, y, z

10.2 - 14.9 k, s, y 9.5*, 8.3** , 10.7+, 14.4++ o, s 1.6 - 2.305 s, x, y

2.7 - 3.1 k, s, y 5.1*, 4.1** , 5.2+, 8.1++ o, s 1.4, 1.7 s, y

2.1 - 2.6 k, s, y 3.3*, 2.4** , 3.1+, 4.6++ o, s 1.7 y

3.5 - 3.8 k 5.4*, 4.3** o 1.824 - 2.0 m, w, x

1.8 - 1.9 k 2.7*, 2.15** o 0.9 - 1.0 m, w, x

28.1 - 39.5
k, l , s, y 49*, 34** , 59.5-126+, 115.8++ o, r, s 2.9 - 6.6 r, s, x, y

21.4, 26.8 s 58.2+, 105.4++ s 2.7 - 5.225 s, x 

950 - 1397 k, s, y, z 706-765*, 1050-1250** , 1023+, 1099++ o, s 1053 - 1150 w, s, y, z

412 - 576
k, l , s, y, z 434-462*, 574-628** , 386-412+, 309-339++, 361.2 n, o, s, z 640 - 671 s, y, z

0.14 - 0.21 y - 0.09 - 0.4 m, w, y

8.3 - 20.6 y - 5.7 - 50.1 m, w, y

3.52 - 8.80 y - 2.57 - 17.9 m, w, y

generic - - 0.6 w 

with aluminum - - -
with acrylic - - -
with self (grain) 0.53, 0.62 a, d, k - 0.5 w

with galvanized sheet (or 
sheet metal) 0.18 - 0.41 f, k, y 0.40 - 0.58*, 0.43 - 0.81** o 0.211 - 0.322 x, y

with steel (or stainless  steel) 0.233 - 0.45 a, d, k, y - 0.234 - 0.301 y

with transparent perspex - - 0.30 w

with aluminum - - -
with acrylic - - -
with glass
for filling or piling 18 d, k - -

for emptying or funneling 27.7 - 35.1 d, k, y 34 - 41*, 27 - 38** o 22 - 29.8 y, ab

21.0 - 28.1 y - 24.2 - 35.5 y 

Particle Thickness (mm), h
Equivalent Particle Diameter (mm), d e

Equivalent Particle Radius (mm), r e

Moisture Content (%) wb

Particle Width (mm), w

Particle Static 
Friction 

Coefficient, µ s

Bulk Static Angle 
of Repose 
(degree)

Bulk Angle of Internal Friction (degree)

Particle 
Restitution 
Coefficient, e

Sunflower

Particle Volume (mm3), V
Particle Density (kg/m3), ρ p

Bulk Density (kg/m3), ρ b

Particle Poisson Ratio, v
Particle Elastic Modulus (MPa), E

Particle Shear Modulus (MPa), G

Particle Mass (mg), m

Parameters
CanolaOatsGrain/ Oilseed Kernels

Particle Length (mm), l

 
* Unhulled seed or paddy a Airy (1898) k Mohsenin (1986) u Watson (2003) 
**  Dehulled kernel b Jamieson (1903) l Hoseney and Faubion (1992) v Chung et al. (2004) 
+ Oil type c Kramer (1944) m Bilanski et al. (1994)  w Raji and Favier (2004a, b) 
++ Non-oil type d Stahl (1950) n Shroyer et al. (1996) x Calisir et al. (2005) 
 e Lorenzen (1957) o Gupta and Das (1997) y Molenda and Horabik (2005) 

 f Brubaker and Pos (1965) p LoCurto et al. (1997) z ASABE Standards (2006a) - D241.4  
 g Arnold and Roberts (1969) q Vu-Quoc et al. (2000) aa ASAE Standards (2006b) - S368.4  
 h Shelef and Mohsenin (1969) r McLelland and Miller (2001) ab Boyles et al. (2006) 
 i Henderson and Perry (1976) s Nelson (2002) ac Chung and Ooi (2008) 
 j Misra and Young (1981) t Zhang and Vu-Quoc (2002)  
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5.2.2 Particle Density 

Particle density (ρp) of the grain is determined by measuring the volume occupied by the 

kernels in a known sample weight, randomly taken from each grain lot. Nelson (2002) measured 

the volume of an approximately 20- to 25-g sample with a Beckman model 930 air-comparison 

pycnometer. Kernel density was calculated by dividing the weighed mass by the measured 

volume.  

5.2.3 Particle Poisson’s Ratio and Particle Shear Modulus 

Poisson’s ratio (ν ) is the absolute value of the ratio of transverse strain (perpendicular to 

the axis) to the corresponding axial strain (parallel to the longitudinal axis) resulting from 

uniformly distributed axial stress below the proportional limit of the material (Mohsenin, 1986). 

Based on Hooke’s law and together with Poisson’s ratio, shear modulus or modulus of rigidity 

(G) for an elastic, homogenous, and isotropic material is the ratio of the stress component 

tangential to the plane on which the forces acts (i.e., shear stress) over its strain. Shear modulus 

defined in terms of Poisson’s ratio and Young’s modulus or modulus of elasticity (E) is given by 

(Mohsenin, 1986):  

ν22 +
= E

G          (5.1) 

Several values of Poisson’s ratio and elastic or Young’s modulus for different grains and oilseeds 

were cited in the literature (Table 5.1).  

5.2.4 Particle Coefficient of Restitution 

Different methods have been used to determine the coefficient of restitution, e (Sharma 

and Bilanski, 1971; Smith and Liu, 1992; Yang and Schrock, 1994; LoCurto et al., 1997). 

LoCurto et al. (1997) described the e as the square root of the total kinetic energy before (KEi) 

and after (KEr) collisions that did not involve tangential frictional losses. They measured e values 

of soybeans impacting different surfaces at varying drop heights and moisture contents. The e 

values decreased with increased moisture content and drop height, and contact with aluminum 

gave the highest value. Drop and rebound heights were measured only from those soybeans that 

fell with minimal rotation and whose rebound trajectories were almost vertical (90 ± 1.6% to the 

plate). This was different from the results of Yang and Schrock (1994) which involved cases of 
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grain kernels with and without rotation. Assuming no loss of energy except during contact, the e 

value was computed as the ratio of the square root of the initial height of drop (Hi) and the height 

of rebound (Hr) (LoCurto et al., 1997; Zhang and Vu-Quoc, 2002): 

 
2

1









≡

i

r

H

H
e         (5.2) 

5.2.5 Particle Coefficient of Static Friction 

The coefficient of friction (µ) is the ratio of the force of friction (F) to the force normal to 

the surface of contact (W) (Mohsenin, 1986): 

 
W

F=µ         (5.3) 

Frictional forces acting between surfaces at rest with respect to each other and those existing 

between the surfaces in relative motion are, respectively, called forces of static and kinetic 

friction and denoted by µs and µk, respectively (Mohsenin, 1986).  

Published coefficients of static friction of grain-on-grain and grain-on-surfaces such as 

sheet metal, stainless steel, acrylic, aluminum, and glass are listed in Table 5.1. Static friction of 

soybean-steel contact is 67% of that of soybean on itself (Stahl, 1950). 

5.2.6 Particle Coefficient of Rolling Friction 

The coefficient of rolling friction (µr) is defined as the ratio of the force of friction to the 

force normal to the surface of contact that prevents a particle from rolling. Rolling friction or 

resistance can be a couple (or pure moment) that may be transferred between the grains via the 

contacts, and this couple resists particle rotations (Jiang et al., 2005) without affecting 

translation. It may exist even at contacts between cylindrical grains (Bardet and Huang, 1993). In 

Jiang et al.’s (2005) micro-mechanical model, only the normal basic element, composed of a 

spring and dashpot in parallel with a divider series, contributes to rolling resistance at grain 

contact. Rolling resistance directly affects only the angular motion and not the translational 

motion of grains.  

Zhou et al. (2002) investigated the effect of rolling friction on the angle of repose of 

coarse glass beads. They included coefficients of rolling friction with a base value of 0.05 

(range: 0 - 0.1) on particle-to-particle contact and twice that value for particle-wall contact in 
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their simulations. The authors found that increasing both rolling frictions increased the angle of 

repose. This is due to a large resistance force to the rotational motion of spheres providing an 

effective mechanism to consume the kinetic energy, stop the rotational motion, and lead to the 

formation of a “sand pile” with high potential energy (Zhou et al., 1999). 

5.2.7 Bulk Density 

Bulk density (ρb) is the ratio of the mass to a given volume of a grain sample including 

the interstitial voids between the particles (Hoseney and Faubion, 1992; Gupta and Das, 1997). 

In the U. S., bulk density or test weight per bushel is the weight (in lb) per Winchester bushel 

(2,150.42 in.3) as determined using an approved device (USDA GIPSA, 2004). The USDA 

GIPSA (2004) method involves allowing a sufficient amount of grain from a hopper, suspended 

two inches above, to overflow the test weight kettle, leveling the kettle by three full-length, 

zigzag motions with a stroker, and weighing the grain from the kettle with an appropriate scale. 

Several ρb values for grains and oilseeds were found in the literature (Table 5.1). 

5.2.8 Angle of Repose 

Angle of repose (θ) is defined as the angle with the horizontal at which the granular 

material will stand when piled (Mohsenin, 1986; Hoseney and Faubion, 1992). The angle of 

repose of grains is determined by numerous factors which include frictional forces generated by 

the grain flowing against itself, distribution of weight throughout the grain mass, and moisture 

content of the grain (Hoseney and Faubion, 1992). At least two angles of repose are commonly 

defined, namely the static angle of repose and the dynamic angle of repose. The dynamic angle 

of repose is generally smaller than the static angle of repose by at least 3 - 10º (Fowler and 

Wyatt, 1960).  

It is generally believed that the angle of repose and the angle of internal friction are 

approximately the same (Mohsenin, 1986; Walton, 1994). Fowler and Chodziesner (1959) noted 

that when the “relative roughness factor” is equal to unity (i.e., materials are sliding over 

themselves) and is zero (i.e., smooth surface), the angle of repose is equal to the angle of friction 

and is independent of the diameter of the granular material. Stewart (1968), however, showed 

that for at least one seed (i.e., grain sorghum), the angle of repose and internal friction are 

different. 



 

 124 

There are several methods for measuring the angle of repose. The method to measure 

static angle includes (1) the fixed funnel and the free-standing cone, (2) the fixed-diameter cone 

and the funnel, and (3) the tilting box (Kramer, 1944; Train, 1958; Burmistrova et al., 1963; 

Fraczek et al., 2007). For dynamic angle, the methods include (1) the revolving cylinder (Train, 

1958) and (2) that of Brown and Richards (1959) (Fowler and Wyatt, 1960; Fraczek et al., 2007).  

Fraczek et al. (2007) recommended using digital-image analysis for a more precise 

measurement of angle of repose. Deviations from the cone shape increased with increasing 

moisture content of the material as was also noted by other authors (Horabik and Lukaszuk, 

2000). However, the more spherical-like the materials, the more regular the cone that forms.  

Zhou et al. (2002) found that the angle of repose of mono-sized coarse glass spheres is 

significantly affected by sliding and rolling frictions, particle size, and container thickness, but 

not density, Poisson’s ratio, damping coefficient, or Young’s modulus. The authors observed that 

the angle of repose increases with increasing rolling or sliding friction coefficients and with 

decreasing particle size or container thickness. However, container thickness larger than a critical 

value (about a 20-particle diameter) gives a constant angle of repose corresponding to a situation 

without any wall effects.  

Published angles of repose of grains and oilseeds for filling or piling and for emptying or 

funneling are summarized in Table 5.1. 

5.3 Modeling with DEM 

Table 5.1 lists published values on the physical properties for soybeans, corn, wheat, 

grain sorghum, rice, barley, oats, sunflower, and canola seeds. Table 5.2 lists the moisture-

dependent characteristics of soybean and Table 5.3 is a summary of published and representative 

values of material and interaction properties of soybeans. Selected representative values of 

material properties (i.e., particle density, particle Poisson’s ratio, and particle shear modulus) and 

interaction properties (i.e., particle coefficient of restitution and particle coefficient of static 

friction) were used as base values in DEM modeling. DEM modeling software package was 

EDEM 2.1.2 (DEM Solutions, Lebanon, N.H.). A range of each of these five physical properties 

was investigated in DEM simulations of basic physical property tests, using four particle shapes.
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Table 5.2 Moisture-dependent properties of soybean kernel.  

8.2 F 7.3 E 7.0 D 7.1 D 7.3 D

6.6 F 6.1 E 6.6 D 6.6 D 6.7 D

5.6 F 5.5 E 5.7 D 5.7 D 5.9 D

185.0F 149.0E 167.6D 173.9D 189.5D

134.1D 139.1D 152.8D

1180G 1130G 1325.2F 1250D 1250D 1243D

739 ± 3F 723 D 876 C 712 D 850 C 705 D

0.15 ± 0.02F 0.4134E 0.4 A 0.4 A

32.6 ± 1.4F 128.8E 176.9A 112.7A

13.33 - 15.04F 45.56E 63.18A 40.25A

Particle 
Restitution 
Coefficient with aluminum 0.7 C 0.6 C

with galvanized sheet metal 0.21B 0.23 - 0.27F 0.21 B 0.18 B 0.20 B

with stainless steel 0.223 - 0.247F

Bulk Static 
Angle of 
Repose (deg) for emptying or funneling 32.5 ± 0.5F

30.1 ± 0.9F

Particle Mass (mg), m

Particle Volume (mm3), V

Bulk Density (kg/m3), ρb

Particle Density (kg/m3), ρp

Particle Static 
Friction 
Coefficient

Bulk Angle of Internal Friction (deg)

Particle Shear Modulus (MPa), G = E / (2 + 2v)

Particle Poisson Ratio, v

Particle Elastic Modulus (MPa), E

Particle Length (mm), l

Particle Width (mm), w

Particle Thickness (mm), h

13.412.2 13.06.9 8.0 10.09.7 15.5 16.7Parameters
Moisture Content (% wb)

7.0 7.1 8.1 9.8 10.7

 
A Misra and Young (1981) 
B Mohsenin (1986, p. 801); Brubaker and Pos (1965) 
C LoCurto et al. (1997)  

D Nelson (2002) 
E Zhang and Vu-Quoc (2002) 
F Molenda and Horabik (2005)  

G ASABE Standards (2006a) - D241.4 
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Table 5.3 Published properties of soybeans and their representative values.[a] 

6.9 - 16.7 B, D, E, F, I, J, L, M

7.0 - 8.2 G, I, J, L 7.6 G, I, J, L

6.1 - 6.7 G, I, J, L 6.4 G, I, J, L

5.5 - 5.9 G, I, J, L 5.7 G, I, J, L

Equivalent Particle Diameter (mm), de 6 E, K 6 E, K

Equivalent Particle Radius (mm), re 3 E, K 3 E, K

100 - 200 G, H, I, J, L 150 G, H, I, J, L

134.1 - 152.8 I 143.5 I

1130.0 - 1325.2 I, K, L, M 1228 I, K, L, M

705.0 - 876.0 C, F, I, L, M 790.5 C, F, I, L, M

0.08 - 0.4134 D, G, J, K, L 0.25 D, G, J, K, L

31.2 - 176.9 D, J, K, L 104.1 D, J, K, L

13.8 - 63.2 D, J, K, L 41.7 D, J, K, L

with self (grain) - 0.60 F, G, K

generic 0.5, 0.7 K, G

with aluminum 0.6, 0.7 F

with steel - 0.60 F, G, K

with self (grain) 0.267, 0.55 A, E, G 0.55 A, E

with galvanized sheet metal 0.18 - 0.27 B, E, L

with steel 0.223 - 0.247, 0.37A, E, L 0.37 A, E

with transparent perspex 0.30 K 

with glass 0.328 G

with self (grain) - 0.10 assume

with steel - 0.10 assume

for filling or piling 16 A, E 16 A, E

for emptying or funneling 29 - 33 A, E, L 31 A, E, L

29.2 - 31 L 30 L

Parameters Range Representative Value
Soybean

Moisture Content (%) wb
Particle Length (mm), l

Particle Width (mm), w

Particle Thickness (mm), h

Particle Mass (mg), m

Particle Volume (mm3), V

Bulk Static Angle 
of Repose 
(degree)

Bulk Angle of Internal Friction (degree)

Particle Density (kg·m-3), ρ p

Bulk Density (kg·m-3), ρ b

Particle Poisson Ratio, v

Particle Elastic Modulus (MPa), E

Particle Shear Modulus (MPa), G = E / (2 + 2v)

Particle 
Restitution 
Coefficient, e

Particle Static 
Friction 
Coefficient, µ s

Particle Rolling 
Friction 
Coefficient

[a] Base values in bold letters were used in simulation. 
A Stahl (1950)    H McLelland and Miller (2001) 
B Brubaker and Pos (1965)   I Nelson (2002) 
C Henderson and Perry (1976)  J Zhang and Vu-Quoc (2002) 
D Misra and Young (1981)   K Raji and Favier (2004a, 2004b) 
E Mohsenin (1986)   L Molenda and Horabik (2005) 
F LoCurto et al. (1997)   M ASAE Standards (2006a) - D241.4 
G Vu-Quoc et al. (2000) 
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DEM is a numerical modeling technique that simulates dynamic motion and mechanical 

interactions of each particle using Newton’s Second Law of Motion and the force-displacement 

law. The calculation cycle involves explicit numerical scheme with very small time step as 

discussed in detail by Cundall and Strack (1979). In DEM modeling, particle interaction is 

treated as a dynamic process, which assumes that equilibrium states develop whenever internal 

forces in the system balance (Theuerkauf et al., 2007). Contact forces and displacements of a 

stressed particle assembly are found by tracking the motion of individual particles. Newton’s 

Law of Motion gives the relationship between particle motion and the forces acting on each 

particle. Translational and rotational motions of particle i are defined by the following equations 

(Remy et al., 2009): 

( ) gmFF
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where mi, Ri, vi, ωi, and Ii are the mass, radius, linear velocity, angular velocity, and moment of 

inertia of particle i; 
ijnF , 

ijtF , and ijτ  are, respectively, normal force, tangential force, and torque 

acting on particles i and j at contact points; g is the acceleration due to gravity; and t is the time. 

Particles interact only at contact points with their motion independent of other particles. 

The soft-sphere approach commonly used in DEM models allows particles to overlap each other, 

giving realistic contact areas. The force-displacement law at the contact point is represented by 

Hertz-Mindlin no-slip contact model (Mindlin, 1949; Mindlin and Deresiewicz, 1953; Tsuji et 

al., 1992; Di Renzo and Di Maio, 2004, 2005). Forces on the particles at contact points include 

contact force and viscous contact damping force (Zhou et al., 2001). These forces have normal 

and tangential components. The normal force, Fn, is given as follows (Tsuji et al., 1992; Remy et 

al., 2009): 

4
1

2
3

nnnnnn KF δδηδ &−−=       (5.6) 

where Kn is the normal stiffness coefficient; δn is the normal overlap or displacement; nδ& is the 

normal velocity; and ηn is the normal damping coefficient. The tangential force, Ft, is governed 

by the following equation (Tsuji et al., 1992; Remy et al., 2009): 

4
1

nttttt KF δδηδ &−−=        (5.7) 
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where Kt is the tangential stiffness coefficient; δt is the tangential overlap; tδ& is the tangential 

velocity; and ηt is the tangential damping coefficient.  

In addition, there is a tangential force limited by Coulomb friction µsFn, where µs is the 

coefficient of static friction. When necessary, rolling friction can be accounted for by applying a 

torque to contacting surfaces. The rolling friction torque, τi, is given by (DEM Solutions, 2009; 

Remy et al., 2009): 

00ωµτ RFnri −=        (5.8) 

where µr is the coefficient of rolling friction, R0 is the distance of the contact point from the 

center of the mass, and ω0 is the unit angular velocity vector of the object at the contact point 

(Tsuji et al., 1992; Di Renzo and Di Maio, 2004; Li et al., 2005; DEM Solutions, 2009; Remy et 

al., 2009). 

In this study, DEM simulations were conducted with varying physical properties of 

soybean kernels, based on values in the literature, to find property combinations that gave 

simulation results that correlate well with measured bulk properties of soybeans while 

maintaining or improving computational speed. Thus, an appropriate particle model was 

established for DEM simulations of soybean handling operations. The following input 

parameters were included: (1) coefficient of restitution, (2) particle coefficient of static friction, 

(3) particle coefficient of rolling friction, (4) particle size distribution (PSD), (5) particle shear 

modulus, and (6) particle shape (i.e., from one to four overlapping spheres). Table 5.4 lists the 

variations in input parameters and includes test combination codes for the parameters: (1st digit) 

particle coefficient of restitution, (2nd digit) particle coefficient of static friction, (3rd digit) 

particle coefficient of rolling friction, (4th digit) particle size distribution (PSD), and (5th digit) 

particle shear modulus.    

The base value (represented by 1 in the test combination codes) of the particle coefficient 

of restitution was 0.6, which is the mean of published values. The second (0.3) and third (0.9) 

values for coefficients of restitution were chosen as extreme values inclusive of the published 

range (from 0.5 to 0.7). The base value of the particle coefficient of static friction on soybean-

soybean contact was 0.55. The coefficient of static friction for soybean-steel interaction was 

computed to be 67% of the base value for soybean-soybean contact from Stahl (1950) and 

Mohsenin (1986).  
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Table 5.4 Variations of each model parameter. 

Parameter Symbol Base Value 
(1) 

Second Value 
(2) 

Third Value 
(3) 

1. Particle Restitution Coefficient 

 
e 0.60 0.30 0.90 

2. Particle Static Friction Coefficient 
 (soybean-soybean)  

 

 
µs (so-so) 

 
0.55 

 
0.35 

 
0.75 

       (soybean-steel) 

 
µs (so-st) 0.37 0.23 0.50 

3. Particle Rolling Friction Coefficient 
 (soybean-soybean is assumed same as 

soybean-steel) 

 

µr  0.10 0.05 0.20 

4. Particle Size Distribution  PSD fixed or uniform normal normal 
Mean factor MF 1.0 1.0 1.0 

Standard deviation factor 

  
SDF 0.0 0.20 0.40 

5. Particle Shear Modulus (MPa) G 41.7 13.8 1.04 

 

 

For particle rolling friction, the base value assumed in the simulation was 0.1, which was 

twice that of Zhou et al.’s (2002) for coarse glass beads, since grain surface is rougher than that 

of glass beads. For PSD, fixed or uniform size distribution was used as the base value; normal 

PSD with a standard deviation factor (SDF) of 0.2 was second; and normal PSD with SDF of 0.4 

was third. SDF was obtained from the coefficient of variation of single-kernel mass from 10 

soybean lots (Table 5.5).  

For particle shear modulus, the base value was the mean of the published values (41.7 

MPa). Typically, shear modulus values do not greatly affect results, but smaller values of shear 

modulus are known to reduce computational time (Chung and Ooi, 2008; Remy et al., 2009); 

thus, the variation of shear modulus was towards lower values. The second value chosen was the 

lowest limit of the range of published shear modulus for soybeans (13.8 MPa). The very low 

third value (1.04 MPa), computed from Remy et al.’s (2009) particle Young’s modulus (2.6 

MPa) and the base value of the particle Poisson’s ratio for soybeans (0.25), was selected for the 

potential to significantly reduce computation times. Table 5.6 shows the test combinations of the 

five parameters used with the 1-sphere particle shape. Simulations using test combination 11111 

were performed with the 2-, 3-, and 4-sphere particle shapes. 
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Four particle shapes were evaluated to represent soybean kernels (Figure 5.1). Particle 

shape was defined using one to four overlapping spheres. Overlapping spheres allow the creation 

of complex particle shapes but require increased computation times because each sphere in the 

shape requires individual calculation at each time step (LoCurto et al., 1997; Raji and Favier, 

2004b). Thus, a 1-sphere geometry is desirable based on computation time if particle physics can 

be adequately addressed without a more complex shape. Geometry and dimension (length, width, 

and thickness) of the 4-sphere model were based on the soybean model of LoCurto et al. (1997) 

and Vu-Quoc et al. (2000), with slight differences in dimension to fit soybeans’ published base 

values for particle density and particle volume (Table 5.3). Table 5.7 shows basic physical 

properties of the four particle shapes and positions of their spheres employed in the simulation. 

The position of each sphere in the x-, y-, and z-direction composing a particle shape is needed to 

define the particle shape in the simulation. Positions of the 1-, 2-, and 3-sphere particle shapes 

were modified to match the volume and particle density of the 4-sphere particle shape. 

 

 

Table 5.5 Experimental data for standard deviation factor (SDF) for particle size 

distribution. [a] 

Mean
Standard 

Deviation (SD)
1 9A411NRR Kaufman Seeds Reno County, Kansas 2008 55 144.24 25.41 17.62
2 9A385NRS Kaufman Seeds Reno County, Kansas 2007 50 112.85 20.14 17.85
3 KS-5005sp KSU Agronomy Farm Riley County, Kansas 2007 51 221.40 40.00 18.06
4 KS-3406RR KSU Agronomy Farm Riley County, Kansas 2007 55 132.97 26.14 19.66
5 KS-4607 KSU Agronomy Farm Riley County, Kansas 2007 51 157.34 31.16 19.80
6 KS-4702sp KSU Agronomy Farm Riley County, Kansas 2007 56 122.64 26.12 21.29
7 Mixed (100-lb) Manhattan Farmers COOP Northeastern Kansas 2007 53 149.48 32.07 21.46
8 Mixed (7080-lb) Manhattan Farmers COOP Northeastern Kansas 2007 53 149.91 32.35 21.58
9 KS-5002N (4RL9542) KSU Agronomy Farm Riley County, Kansas 2004 55 157.42 34.39 21.84
10 KS-4103sp (4RL4976) KSU Agronomy Farm Riley County, Kansas 2004 56 124.19 28.46 22.91

Mean 53.50 147.24 29.62 20.21
SD 2.22 30.27 5.57 1.88

Location PlantedSourceVarietyNo.

Single Kernel Mass, mg
Coefficient 
of Variation 

(CV), %

No. of 
Kernels 
WeighedCrop Year

 
[a] SDF value of 0.2 was taken from the mean CV of individually weighing soybean kernels. 
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Table 5.6 Combinations of model parameters. [a] 

Test Combinations 

Test No. Coefficient of 

Restitution 

Coefficient of 

Static Friction 

Coefficient of 

Rolling Friction 
Size Distribution 

Shear Modulus 

(MPa) 

1-sphere      

11111 0.6 0.55 0.1 uniform, SDF=0 41.7 

21111 0.3 0.55 0.1 uniform, SDF=0 41.7 

31111 0.9 0.55 0.1 uniform, SDF=0 41.7 

12111 0.6 0.35 0.1 uniform, SDF=0 41.7 

13111 0.6 0.75 0.1 uniform, SDF=0 41.7 

11211 0.6 0.55 0.05 uniform, SDF=0 41.7 

11311 0.6 0.55 0.2 uniform, SDF=0 41.7 

11121 0.6 0.55 0.1 normal, SDF=0.2 41.7 

11131 0.6 0.55 0.1 normal, SDF=0.4 41.7 

11112 0.6 0.55 0.1 uniform, SDF=0 13.8 

11113 0.6 0.55 0.1 uniform, SDF=0 1.04 

2-sphere      

11111 0.6 0.55 0.1 uniform, SDF=0 41.7 

3-sphere      

11111 0.6 0.55 0.1 uniform, SDF=0 41.7 

4-sphere      

11111 0.6 0.55 0.1 uniform, SDF=0 41.7 

[a] Refer to Table 5.4 for complete interpretation. 
   Coefficient of restitution (1 stands for e = 0.6, 2 for e = 0.3, 3 for e = 0.9). 
   Coefficient of static friction (1 for µs(so-so) = 0.55, µs(so-st) = 0.37; 2 for µs(so-so) = 0.35, µs(so-st) = 0.23; 3 for µs(so-

so) = 0.75, µs(so-st) = 0.50). 
   Coefficient of rolling friction (1 for µr = 0.1, 2 for µr = 0.05, 3 for µr = 0.2). 
   Particle size distribution (PSD) (1 for uniform particle size, 2 for normal PSD with standard deviation factor 

(SDF) = 0.2, 3 for normal PSD with SDF = 0.4). 
   Shear modulus (1 stands for G = 41.7 MPa, 2 for G = 13.8 MPa, 3 for G = 1.04 MPa). 
   For bulk density and bulk angle of repose tests, three and seven replications, respectively, were performed 

for each test combination. 
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(a) (b) 

 

 

            (c) (d) 

Figure 5.1 Particle shapes of soybean in the simulation: (a) 1-sphere model; (b) 2-sphere 

model; (c) 3-sphere model; and (d) 4-sphere model (drawn in EDEM software). 



 

133 

Table 5.7 Properties of the four particle models and positions (x, y, z) of each sphere in 

EDEM. 

Particle Model 

Parameter 1-Sphere 2-Sphere 3-Sphere 4-Sphere 

Length of soybean (mm) lb 6.496 7.59550 7.47559 7.62495 

Width of soybean (mm) wb 6.496 5.70175 6.69106 6.19774 

Height of soybean (mm) hb  6.496 5.69847 5.50168 5.51348 

Radius of sphere (mm) R 3.248 2.85 2.75 2.75 

Particle Volume (m3) V 1.4350E-07 1.4350E-07 1.4350E-07 1.4350E-07 

Particle Mass (kg) m 0.0001763 0.0001762 0.0001762 0.0001762 

Particle Density (kg·m-3) ρb 1228.0 1228.0 1228.0 1228.0 

  Particle Model 

Position   1-Sphere 2-Sphere 3-Sphere 4-Sphere 

Surface 1 (X, Y, Z)  (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, -0.35, 0) 

Surface 2 (X, Y, Z)  - (0, 0, 1.89) (0, 0, 1.975) (0, 0.35, 0) 

Surface 3 (X, Y, Z)  - - (0, 0.8, 0.9875) (0, 0, 1.062) 

Surface 4 (X, Y, Z)  - - - (0, 0, -1.062) 

 

Accuracy tests for the particle coefficient of restitution was performed for all test 

combinations by simulating the dropping of 50 soybean particles from a height of 151 mm on a 

flat steel surface. The height was based on the drop tests of LoCurto et al. (1997) for soybeans. 

Drop and rebound heights were extracted from the simulation only from those particles with 

rebound trajectories that were vertical (LoCurto et al., 1997). The simulated rebound heights 

were used to calculate particle restitution coefficients using equation 5.2. The calculated 

restitution coefficients were compared with the input restitution coefficients, which gave an 

indication of the simulation accuracy. 

5.3.1 Bulk Density Test 

The bulk density test was based on the USDA GIPSA’s (2004) procedure for test-weight-

per-bushel apparatus (Figure 5.2). Dimensions of the inside diameter and height of the kettle 

were 117.475 mm (4.625 in.) and 101.60 mm (4.0 in.), respectively.  The test weight kettle was 

drawn in a computer-aided design (CAD) software package (DS SolidWorks Corp., Concord, 

Mass.) and imported to establish model geometries in EDEM. The hopper above the kettle was  
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(a) 

 

(b) 

Figure 5.2 Bulk density test in simulation: (a) empty test weight (TW) kettle and (b) full 

TW kettle. 
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also drawn with the standard 31.75-mm (1.25 in.) opening and standard distance from the kettle 

of 50.8 mm (2.0 in.) (USDA-GIPSA, 1996). 

Particles coming from the hopper dropped to fill the kettle. Excess particles were allowed 

to overflow. Simulation time for each test combination was between 20 to 120 s, depending on 

the time the kettle was filled and the particles stopped flowing. Simulation time was determined 

by the particles stabilizing on top of the kettle and the kinetic energy of the whole system 

approaching zero. To get the bulk density (ρb) in kg·m-3, only the total mass of particles filling 

the kettle (mp) in kg was computed from the simulation. The mass of piled particles on top and 

outside of the kettle was excluded in the calculation. The computed mass of particles inside the 

kettle was divided by the volume of the kettle (Vk) in m3 in the following equation. The mean 

bulk density for three replications for each test combination was computed.  

k

p
b V

m
=ρ         (5.9) 

5.3.2 Bulk Angle of Repose Test 

The tilting box method was employed to simulate the angle of repose test of soybean 

particles in DEM (Figure 5.3). A box measuring 240 x 120 x 40 mm was drawn and filled with 

soybean particles in the simulation. Train (1958) recommended that the width of the box be at 

least one-third of its length to reduce wall effects. In this simulation, the width was one-half of 

the length, which satisfied Train’s (1958) recommendation.  

Moreover, periodic boundaries were used on opposite sides of the simulation box (in the 

direction of the width = 120 mm).  Periodic boundary conditions enable any particle leaving the 

domain in that direction to instantly re-enter on the opposite side, simulating infinite length in 

that direction and, thereby eliminating wall friction. Base friction was also removed by ensuring 

the base of the box had the same frictional coefficients as that of the particles.   

After 0.15 s of filling the box up to the rim, the box was then tilted at a constant angular 

velocity, ωb, of 90 deg·s-1 until particles begin to move, and then the simulation was stopped 

after 0.65 to 0.85 s depending on the test combinations being evaluated. The time when the 

particles began to move was recorded, tθ, which allowed calculation of the angle of repose, θ, of 

the soybeans based on the angular velocity of the tilting box. The equation is given by: 

bt ωθ θ ×=         (5.10) 
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(a) 

 

 (b)  

Figure 5.3 Angle of repose test in simulation at tθ = 0.498 s: (a) particle mode and (b) vector 

mode. 
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Both the actual particle motions and the vectors of the particle motions were evaluated to 

determine the start of particle movement. The mean angle of repose for seven replications for 

each test combination was calculated. 

5.3.3 Data Analysis 

Results were analyzed using the generalized linear model (GLM) procedure of SAS 

statistical software (version 9.2, SAS Institute, Inc., Cary, NC). Mean, standard deviation, and 

percentage difference from expected input and published values were determined for the 

coefficient of restitution, angle of repose, and bulk density tests. The simulation results were 

compared with the literature values based on their percentage differences. Differences among 

test combinations within the coefficient of restitution, angle of repose, and bulk density tests 

were compared using the Bonferroni Multiple Comparison Test in SAS at the 5% level of 

significance. Bonferroni uses strict requirements prior to rejecting the null hypotheses, which 

minimizes Type I errors. Test combinations having simulation results best correlating with the 

literature values were chosen to simulate soybeans in succeeding simulation of grain 

commingling. 

5.4 Results and Discussion 

In choosing the best particle model for soybeans, tradeoffs between the three criteria (i.e., 

bulk density, angle of repose, and computation time) were required. The particle model was also 

revised by combining and refining input parameters that performed well in the initial tests. 

In the accuracy tests, the input parameter was the particle coefficient of restitution and 

the output calculated from the rebound height had the same particle restitution values (Table 

5.8). All test combinations with the base particle restitution value of 0.6 had percent deviations 

ranging from 0.68% to 1.77% and were not significantly different (p > 0.05) from each other. 

When the restitution coefficient was varied (cases 21111 and 31111), the percent deviation from 

the input value ranged from 0.25% to 7.56%. The 0.25% deviation was obtained from the test 

combination with the highest particle restitution value (0.9) and the 7.56% deviation was from 

that with the lowest particle restitution (0.3). Thus, only the artificially low value of the 

restitution coefficient caused excessive accuracy issues, and this low value was not pursued 

further for the particle models.  
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Table 5.8 Accuracy test using particle coefficient of restitution. [a] 

Expected 
Value % Diff

Restitution
1s_11111 (e=0.6) 0.61 a (0.0064) 0.6 1.73
1s_21111 (e=0.3) 0.32 b (0.0058) 0.3 7.56
1s_31111 (e=0.9) 0.90 c (0.0009) 0.9 0.25

Static Friction
1s_11111 (µ s=0.55) 0.61 a (0.0064) 0.6 1.73

1s_12111 (µ s=0.35) 0.61 a d (0.0041) 0.6 1.27

1s_13111 (µ s=0.75) 0.61 a (0.0060) 0.6 1.54

Rolling Friction
1s_11111 (µ r =0.1) 0.61 a (0.0064) 0.6 1.73

1s_11211 (µ r =0.05) 0.61 a d (0.0057) 0.6 1.40

1s_11311 (µ r =0.2) 0.61 a d (0.0038) 0.6 1.03

Size Distribution
1s_11111 (SDF=0) 0.61 a (0.0064) 0.6 1.73
1s_11121 (SDF=0.2) 0.61 a d (0.0046) 0.6 1.12
1s_11131 (SDF=0.4) 0.61 a (0.0061) 0.6 1.53

Shear Modulus
1s_11111 (G=41.7MPa) 0.61 a (0.0064) 0.6 1.73
1s_11112 (G=13.8 MPa) 0.60 d (0.0119) 0.6 0.68
1s_11113 (G=1.04 MPa) 0.61 a d (0.0093) 0.6 1.04

Particle Model
1s_11111 0.61 a (0.0064) 0.6 1.73
2s_11111 0.61 a (0.0057) 0.6 1.50
3s_11111 0.61 a d (0.0070) 0.6 1.08
4s_11111 0.61 a (0.0060) 0.6 1.77

Combination No.

Coefficient of Restitution

Simulation Value

 
[a] Mean values with the same lower case letters within a column are not significantly different at the 

5% level of significance in Bonferroni.  Values in parentheses represent standard deviation (SD). 
Particle shape (1s = 1-sphere; 2s = 2-sphere; 3s = 3-sphere; 4s = 4-sphere). 
Coefficient of restitution (1 stands for e = 0.6; 2 for e = 0.3; 3 for e = 0.9). 
Coefficient of static friction (1 for µs(so-so) = 0.55, µs(so-st) = 0.37; 2 for µs(so-so) = 0.35, µs(so-st) = 0.23; 3 

for µs(so-so) = 0.75, µs(so-st) = 0.50). 
Coefficient of rolling friction (1 for µr = 0.1; 2 for µr = 0.05; 3 for µr = 0.2). 
Particle size distribution (PSD) (1 for uniform particle size; 2 for normal PSD with standard deviation 

factor (SDF) = 0.2; 3 for normal PSD with SDF = 0.4). 
Shear modulus (1 stands for G = 41.7 MPa, 2 for G = 13.8 MPa, 3 for G = 1.04 MPa). 
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5.4.1 Bulk Density Test 

Bulk density increased with the coefficient of restitution but decreased with coefficients 

of static and rolling friction (Table 5.9). Wider size distributions increased bulk density as 

observed from test combinations 11121 to 11131. This may be explained by the increasing 

standard deviation factor (from 0.2 to 0.4) in the particle size distribution, which increases the 

smaller particles in the normal size distribution. These small particles were filling the void in 

between large particles, thereby increasing the bulk density.  

Simulations involved fixed particle size within each particle shape. Particle density and 

mass were constant among particle shapes. Results showed that bulk density decreased as the 

number of spheres in a particle shape increased, except for the case of 1-sphere particle shape. 

This can be explained by a 4-sphere particle shape occupying a slightly higher volume than a 2-

sphere particle shape, thus, slightly decreasing the bulk density. Bulk densities from 2- to 4-

sphere particle shapes, however, were not significantly different (p > 0.05) from each other. Bulk 

densities of the 1- and 4-sphere particle shapes were also not significantly different (p > 0.05). 

In general, the simulations resulted in lower bulk densities than the published values. Test 

combinations 31111, 12111, 11211, 11131, and 11113 for 1-sphere particle shape and 11111 for 

2-sphere particle shape gave bulk densities closer to the literature value of 720.72 kg·m-3. Test 

combination 31111 was significantly different (p < 0.05) from all other test combinations. Test 

combinations 12111, 11211, and 11113 were significantly different (p < 0.05) from 11131 for 

the 1-sphere particle shape, but did not differ (p > 0.05) from test combination 11111 for the 2-

sphere particle shape.  

5.4.2 Bulk Angle of Repose Test 

Static and rolling friction coefficients affect the angle of repose. In general, as the static 

and rolling friction coefficients increased so did the angle of repose in the simulation (Table 5.9). 

This observation was similar to those of Zhou et al. (2002) and Walton (1994).  

The greater the number of spheres in a particle model, the higher the angle of repose. 

Walton and Braun (1993) and Walton (1994) found increasing values of dynamic angle of repose 

as spheres increased from mono to cubic (8-sphere). Simulation results of static angle of repose, 

however, did not exactly agree with those authors’ findings. This was likely due to the volume of 

the particle models always being the same during simulation so particles did not increase in size  
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Table 5.9 Results of bulk density and bulk angle of repose tests for each test combination.[a] 

Published 
Value % Diff 

Published 
Value % Diff 

1st Iteration

Restitution
1s_11111 (e=0.6) 669.00 a h (1.60) 720.72 -7.18 31.50 a e (0.35) 31.0 1.61
1s_21111 (e=0.3) 660.39 b (0.77) 720.72 -8.37 32.31 a (0.82) 31.0 4.23
1s_31111 (e=0.9) 687.12 c (0.93) 720.72 -4.66 37.17 b (0.47) 31.0 19.91

Static Friction
1s_11111 (µ s =0.55) 669.00 a h (1.60) 720.72 -7.18 31.50 a e (0.35) 31.0 1.61

1s_12111 (µ s =0.35) 678.30 d g (2.00) 720.72 -5.89 31.50 a e (1.25) 31.0 1.62

1s_13111 (µ s =0.75) 665.67 a   (3.03) 720.72 -7.64 37.35 b (1.47) 31.0 20.49

Rolling Friction
1s_11111 (µ r =0.1) 669.00 a h (1.60) 720.72 -7.18 31.50 a e (0.35) 31.0 1.61

1s_11211 (µ r =0.05) 680.08 d (0.33) 720.72 -5.64 30.52 c e (0.50) 31.0 -1.54

1s_11311 (µ r =0.2) 656.61 b (0.72) 720.72 -8.89 35.28 d (0.98) 31.0 13.81

Size Distribution
1s_11111 (SDF=0) 669.00 a h (1.60) 720.72 -7.18 31.50 a e (0.35) 31.0 1.61
1s_11121 (SDF=0.2) 668.51 a h (0.28) 720.72 -7.24 29.30 c (0.48) 31.0 -5.48
1s_11131 (SDF=0.4) 670.60 e h (2.89) 720.72 -6.95 32.64 a (1.10) 31.0 5.31

Shear Modulus
1s_11111 (G=41.7MPa) 669.00 a h (1.60) 720.72 -7.18 31.50 a e (0.35) 31.0 1.61
1s_11112 (G=13.8 MPa) 671.44 e f h (2.25) 720.72 -6.84 31.45 a e (0.50) 31.0 1.45
1s_11113 (G=1.04 MPa) 679.93 d (0.28) 720.72 -5.66 32.75 a (0.66) 31.0 5.65

Particle Model
1s_11111 669.00 a h (1.60) 720.72 -7.18 31.50 a e (0.35) 31.0 1.61
2s_11111 675.55 d g f (0.95) 720.72 -6.27 29.28 c (0.29) 31.0 -5.56
3s_11111 673.89 e f g (1.05) 720.72 -6.50 29.12 c (0.55) 31.0 -6.06
4s_11111 672.53 e f h (0.59) 720.72 -6.69 29.42 c (1.18) 31.0 -5.10

Combination No.

Bulk Angle of Repose, deg.Bulk Density, kg·m-3

Simulation Value Simulation Value

[a] Mean values with the same lower case letters within a column are not significantly different at the 5% level of 
significance in Bonferroni.  Values in parentheses represent standard deviation (SD). 
Particle shape (1s = 1-sphere; 2s = 2-sphere; 3s = 3-sphere; 4s = 4-sphere). 
Coefficient of restitution (1 stands for e = 0.6, 2 for e = 0.3, 3 for e = 0.9). 
Coefficient of static friction (1 for µs(so-so) = 0.55, µs(so-st) = 0.37; 2 for µs(so-so) = 0.35, µs(so-st) = 0.23; 3 for µs(so-so) = 

0.75, µs(so-st) = 0.50). 
Coefficient of rolling friction (1 for µr = 0.1, 2 for µr = 0.05, 3 for µr = 0.2). 
Particle size distribution (PSD) (1 for uniform particle size, 2 for normal PSD with standard deviation factor (SDF) 

= 0.2, 3 for normal PSD with SDF = 0.4). 
Shear modulus (1 stands for G = 41.7 MPa, 2 for G = 13.8 MPa, 3 for G = 1.04 MPa). 
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as the number of spheres in a particle model increased, unlike the previous authors observed. The 

1-sphere particle shape showed the highest angle of repose, whereas the 3-sphere particle shape 

gave the lowest angle. The 4-sphere particle shape had a higher angle of repose than the 2-sphere 

shape, which agreed with the published trend of Walton’s group.  

Angle of repose increased for wider size distribution (i.e., from PSD with SDF = 0.2 to 

that with SDF = 0.4). This result for static angle agreed with Zenz’s (1957) experimental 

findings for dynamic angle of repose.  

For 1-sphere particle models, test combinations 11111, 12111, 11211, 11131, and 11112 

gave closer values to the published angle of repose (31°) and were not significantly different (p > 

0.05) from each other.  

For multi-sphere particle models, results of test combination 11111 for the 4-sphere 

shape were closest to the published angles of repose. This test combination, however, did not 

significantly differ (p > 0.05) from test combination 11111 for 2- and 3-sphere shapes. 

5.4.3 Best-Correlated Particle Models 

In general, multi-sphere particle shapes did not give promising results in the bulk 

property tests. During initial testing (Table 5.9), combination 31111 with the highest particle 

coefficient of restitution (0.9) resulted in the closest bulk density (687.12 kg·m-3) to published 

values (720.72 kg·m-3). The angle of repose of the bulk materials from this test combination 

(37.17°), however, was considerably higher than the literature value (31°). The high bulk density 

and angle of repose may be explained by the high coefficient of restitution of the particle in the 

parameter mix of that test combination. In a second iteration, modified testing was performed to 

determine whether lowering the particle restitution (to 0.7 or 0.8) would result in a more 

desirable bulk angle of repose, yet still maintain bulk density close to the literature value. Bulk 

density tests, including coefficients of restitution of 0.7 (test combination 4111) and 0.8 (test 

combination 5111), resulted in values of 671.77 and 679.45 kg·m-3, respectively (Table 5.10). 

These values, however, were lower than the bulk density values of test combinations 11211 

(680.08 kg·m-3) and 11113 (679.93 kg·m-3) from the initial testing (Table 5.9); thus, they were 

not tested for angle of repose. For bulk angle of repose, test combinations 11112 (31.45°) and 

11211 (30.52°) yielded values closest to the published one with percent deviations of 1.45% and 

-1.54%, respectively. 
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Table 5.10 Results of bulk density and bulk angle of repose tests for possible best test 

combination. 

Expected 
Value % Diff 

Expected 
Value % Diff 

1s_12233 (µ s=0.35) 697.90a (1.76) 720.7 -3.17 28.54a (0.58) 31.0 -7.94

1s_11231 (µ s=0.55, G=41.7MPa) 682.37 b (1.50) 720.7 -5.32 31.54 b (0.53) 31.0 1.74
1s_11232 (µ s=0.55, G=13.8MPa) 682.47 b (1.58) 720.7 -5.31 32.15 b c (0.72) 31.0 3.70
1s_11233 (µ s=0.55, G=1.04MPa) 685.09 b c (5.65) 720.7 -4.94 31.90 b (0.68) 31.0 2.90

1s_14231 (µ s=0.58, G=41.7MPa) 680.74 b (1.64) 720.7 -5.55 33.14 c d (0.40) 31.0 6.90
1s_14232 (µ s=0.58, G=13.8MPa) 681.77 b (1.27) 720.7 -5.40 31.03 b (0.48) 31.0 0.11
1s_14233 (µ s=0.58, G=1.04MPa) 690.47 c (0.60) 720.7 -4.20 33.45 d (1.01) 31.0 7.90

1s_41111 (e=0.7) 671.77 d (1.36) 720.7 -6.79
1s_51111 (e=0.8) 679.45 b (0.68) 720.7 -5.73

1s_12233 (µ s=0.35) 697.90 a (1.76) 720.7 -3.17 28.54 a (0.58) 31.0 -7.94

1s_17233 (µ s=0.40) 695.39 a (0.83) 720.7 -3.51 29.01 a (0.36) 31.0 -6.42

1s_16233 (µ s=0.45) 693.73 a (1.15) 720.7 -3.74 30.89 b (0.53) 31.0 -0.36

1s_15233 (µ s=0.50) 693.58 a (1.82) 720.7 -3.77 31.20 b (0.45) 31.0 0.66

1s_11233 (µ s=0.55) 685.09 b (5.65) 720.7 -4.94 31.90 b (0.68) 31.0 2.90

1s_14233 (µ s=0.58) 690.47 a b (0.60) 720.7 -4.20 33.45 c (1.01) 31.0 7.90

Simulation Value

2nd Iteration

3rd Iteration

Simulation ValueCombination No.

Bulk Density, kg·m-3 Bulk Angle of Repose, deg.

 
[a] Mean values with the same lower case letters within a column are not significantly different at the 5% level of 
significance in Bonferroni.     

    Values in parentheses represent standard deviation (SD). 
Particle shape (1s = 1-sphere). 
Coefficient of restitution (1 stands for e = 0.6; 4 for e = 0.7; 5 for e = 0.8). 
Coefficient of static friction (1 for µs(so-so) = 0.55, µs(so-st) = 0.37; 2 for µs(so-so) = 0.35, µs(so-st) = 0.23; 4 for µs(so-so) 

= 0.58, µs(so-st) = 0.39; 5 for µs(so-so) = 0.50, µs(so-st) = 0.34; 6 for µs(so-so) = 0.45, µs(so-st) = 0.30; 7 for µs(so-so) = 
0.40, µs(so-st) = 0.27). 

Coefficient of rolling friction (1 for µr = 0.1; 2 for µr = 0.05). 
Particle size distribution (PSD) (1 for uniform particle size; 3 for normal PSD with SDF = 0.4). 
Shear modulus (1 stands for G = 41.7 MPa, 2 for G = 13.8 MPa, 3 for G = 1.04 MPa). 
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With tradeoffs between bulk density and bulk angle of repose, test combination 11211 

gave the best correlated coefficients of restitution, static friction, and rolling friction, which were 

0.6, 0.55 (for soybean-soybean; 0.37 for soybean-steel), and 0.05, respectively (Table 5.9). 

However, test combination 11211 did not include size distribution of the particles because it only 

represented uniform or fixed particle sizes. Thus, the normal PSD with SDF of 0.4 was chosen 

because test combination 11131 performed better in the bulk density and bulk angle of repose 

tests than 11121. For particle shear modulus, test combination 11113 (G = 1.04 MPa) did better 

in the bulk density test while test combination 11112 (G = 13.8 MPa), did best in the angle of 

repose test (Table 5.9). Both particle shear moduli were included in the second iteration, together 

with the highest shear modulus (G = 41.7 MPa), to determine how these shear moduli performed 

when combined with the other parameters (i.e., coefficients of restitution, rolling and static 

friction, and PSD). The second iteration also included the second particle coefficient of static 

friction of 0.35 (for soybean-soybean; 0.23 for soybean-steel), which was in 12111 due to the test 

combination’s bulk density being higher than that of 11112. 

In the second iteration, test combinations 12233 and 14233, with particle static friction of 

0.35 and 0.58, respectively, produced the best values for bulk density. The bulk angles of repose 

results, however, were poor for those combinations (Table 5.10). A third iteration was performed 

using test combinations with particle static friction between 0.35 and 0.58. This iteration 

determined which particle static friction would give the highest bulk density while maintaining 

the best possible value for bulk angle of repose.  

The third iteration revealed that the best parameter mix was test combination 16233, 

which included particle coefficients of restitution static friction for soybean-soybean (soybean-

steel) and rolling friction of 0.6, 0.45 (0.30), and 0.05, respectively; PSD with SDF of 0.4; and 

particle shear modulus of 1.04 MPa (Table 5.10). In addition, test combination 16233 made the 

computational time faster (Chung and Ooi, 2008; Remy et al., 2009) due to the low particle shear 

modulus (G=1.04MPa). 
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5.5 Summary 

Material and interaction properties of various grains and oilseeds relevant to discrete 

element modeling (DEM) were reviewed. Material properties were particle shape and size, 

Poisson’s ratio, shear modulus, and density. Interaction properties included coefficients of 

restitution, static friction, and rolling friction. Published values were used to establish base 

values for simulation modeling. Single- and multi-sphere soybean particle models, comprised of 

one to four overlapping spheres, were compared based on DEM simulations of the bulk 

properties: bulk density and angle of repose.  

A single-sphere particle model best simulated soybean kernels in the bulk property tests. 

The best particle model included a particle coefficient of restitution of 0.6, particle static friction 

of 0.45 for soybean-soybean contact (0.30 for soybean-steel interaction), particle rolling friction 

of 0.05, normal particle size distribution with a standard deviation factor of 0.4, and particle 

shear modulus of 1.04 MPa. To optimize the simulated bulk properties, most parameters in this 

particle model varied only a small amount from the base values obtained from the literature. 

However, the particle shear modulus was set artificially low since that helped speed up the 

simulations without negatively impacting the simulation of bulk properties. This particle model 

will be used to simulate soybeans in grain handling and enhance the prediction of grain 

commingling in bucket-elevator equipment. 
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CHAPTER 6 - 3D and Quasi-2D DEM Modeling of Grain 

Commingling in a Bucket Elevator Boot System 

6.1 Introduction 

Identity preservation programs are aimed at maintaining the genetic and physical purity 

of the grain. Segregation of grain with specific attributes has been increasing in the grain 

industry in recent years and is anticipated to continue growing. The introduction of genetically 

modified (also called transgenic or biotech) crops for feed, pharmaceutical, and industrial uses 

into the U.S. grain handling system has shown that the infrastructure is often unable to identity-

preserve the grains to the desired level of purity (Ingles et al., 2006). This was exemplified by the 

incidents of Starlink corn (Bucchini and Goldman, 2002) and GT200-containing canola seed 

(Kilman and Carroll, 2002).  

Grain commingling involves unintentional introduction of other grains or impurities that 

directly reduces the level of purity in grain entering an elevator facility. There are three 

approaches for addressing commingling during grain handling: (1) ignore it; (2) containerize the 

identity-preserved grain or handle it only in dedicated facilities and transportation equipment; or 

(3) segregate in non-dedicated facilities. The first two are the most common and the latter 

method has limited scientific data for evaluating its effectiveness. The latter method is the 

subject of this study. 

In addition to unintentional and natural threats to grain purity, intentional introduction of 

contaminants is also possible. The Strategic Partnership Program Agroterrorism (SPPA) 

Initiative listed grain elevator and storage facilities as sites that are critical nodes for assessment 

because of vulnerability to terrorist attack with biological weapons (US FDA, 2006).  

For both intentional and unintentional commingling, previous research in commercial 

elevator equipment (Ingles, et al., 2003; 2006; Ingles, 2005) showed large variations between 

and within facilities for commingling of grain. These large variations can greatly increase the 

number of experiments necessary to make widely-applicable inferences. However, the inference 

space can also be greatly increased by using theoretical modeling, generally known as 

mechanistic modeling, to add extensive additional information from established laws of motion 
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from physics. A mechanistic model of the particle movement in the bucket elevator leg could 

enhance prediction capabilities on grain commingling.   

Both continuum models and the discrete element method (DEM) (Wightman et al., 1998) 

have been used to model the motion of particles such as grain in bucket elevator legs. Because of 

its ability to track individual particles, the DEM is a proven way to simulate discrete objects like 

grain kernels and to predict their movement and commingling in a bucket elevator equipment. 

Simulations with DEM could involve two-dimensional (2D) (Fillot et al., 2004; Fazekas et al., 

2005; Sykut et al., 2008); three-dimensional (3D) (Hart et al., 1988; Sudah et al., 2005; Goda and 

Ebert, 2005; Takeuchi et al., 2008); or quasi-2D (Kawaguchi et al., 2000; Samadani and 

Kudrolli, 2001; Li et al., 2005; Kamrin et al., 2007; Ketterhagen et al., 2008) modeling 

depending on the object of interest. Quasi-2D modeling uses 2D system but with added depth or 

width usually equivalent to a given number of particle diameters. It can also be referred to as 

quasi-3D with reference to 3D system but with reduced depth or width. 

The objectives of this study were to: (1) simulate grain commingling in a pilot-scale boot 

using DEM models and evaluate the tradeoffs of computational speed versus accuracy for 3D 

and quasi-2D boot models, and (2) validate the models using soybeans as the test grain. 

6.2 Simulation of Grain Commingling 

6.2.1 Discrete Element Method 

DEM is a numerical modeling technique that simulates the dynamic motion and 

mechanical interaction of each particle using Newton’s Second Law of Motion and the force-

displacement law. It was first introduced by Cundall (1971) and Cundall and Strack (1979) to 

model soil and rock mechanics. The calculation cycle involves explicit numerical scheme with 

very small time step as discussed in detail by Cundall and Strack (1979). This method has been 

successfully applied to processes such as particle mixing in a rotating cylinder (Wightman et al., 

1998), 3D, horizontal- and vertical-type screw conveyors (Shimizu and Cundall, 2001), filling 

and discharge of a plane rectangular silo (Masson and Martinez, 2000), and deformation in 

agricultural and food particulate materials under bulk compressive loading (Raji and Favier, 

2004a, b).  
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In DEM modeling, particle interaction is treated as a dynamic process, which assumes 

that equilibrium states develop whenever internal forces in the system balance (Theuerkauf et al., 

2007). Contact forces and displacement of a stressed particle assembly are found by tracking the 

motion of individual particles. Motion results from disturbances that propagate through the 

assembly. Mechanical behavior of the system is described by the motion of each particle and 

force and moment acting at each contact. Newton’s Law of Motion gives the relationship 

between the particle motion and forces acting on each particle. Translational and rotational 

motions of particle i are defined as (Remy et al., 2009): 
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where mi, Ri, vi, ωi, and Ii are the mass, radius, linear velocity, angular velocity, and moment of 

inertia of particle i; 
ijnF , 

ijtF , and ijτ  are, respectively, normal force, tangential force, and torque 

acting on particles i and j at contact points; g is the acceleration due to gravity; and t is the time. 

Particles interact only at contact points with their motion independent of other particles. 

Forces on the particles at contact points include contact force and viscous contact damping force 

(Zhou et al., 2001). These forces have normal and tangential components. The soft-sphere 

approach commonly used in DEM models allows particles to overlap each other, giving realistic 

contact areas.  

The force-displacement law at the contact point is represented by Hertz-Mindlin no-slip 

contact model (Mindlin, 1949; Mindlin and Deresiewicz, 1953; Tsuji et al., 1992; Di Renzo and 

Di Maio, 2004, 2005). This non-linear model features both the accuracy and simplicity derived 

from combining Hertz’s theory in the normal direction and Mindlin no-slip model in the 

tangential direction (Tsuji et al., 1992; Remy et al. 2009).  

The normal force, Fn, is given as follows (Tsuji et al., 1992; Remy et al., 2009): 

4
1

2
3

nnnnnn KF δδηδ &−−=       (6.3) 

where Kn is the normal stiffness coefficient; δn is the normal overlap or displacement; nδ& is the 

normal velocity; and ηn is the normal damping coefficient. Normal stiffness and normal damping 
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coefficients are given, respectively, by (Tsuji et al., 1992; DEM Solutions, 2009; Remy et al., 

2009): 

∗∗= REKn 3
4
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where E* is the equivalent Young’s modulus, R* is the equivalent radius, m*  is the equivalent 

mass, and e as the coefficient of restitution. Equivalent properties (R*, m*, and E*) during 

collision of particles with different materials such as particles i and j are defined as (Di Renzo 

and Di Maio, 2004; DEM Solutions, 2009): 
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where ν  is the Poisson’s ratio (Di Renzo and Di Maio, 2004; DEM Solutions, 2009). Similarly, 

for a collision of a sphere i with a wall j, the same relations apply for Young’s modulus E*, 

whereas iRR =∗  and imm =∗ . 

The tangential force, Ft, is governed by the following equation (Tsuji et al., 1992; Remy 

et al., 2009): 

4
1

nttttt KF δδηδ &−−=        (6.9) 

where Kt is the tangential stiffness coefficient; δt is the tangential overlap; tδ& is the tangential 

velocity; and ηt is the tangential damping coefficient. Tangential stiffness and tangential damping 

coefficients, are defined, respectively, as follows (Tsuji et al., 1992; DEM Solutions, 2009; 

Remy et al., 2009): 
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where G* is the equivalent shear modulus defined by (Li et al, 2005):  
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Gi and Gj are shear moduli of particles i and j, respectively. The tangential overlap is calculated 

by (Remy et al, 2009): 

∫= dtvt
reltδ         (6.13) 

where t
relv  is the relative tangential velocity of colliding particles and is defined by (Remy et al., 

2009):  

( ) jjiiji
t
rel RRsvvv ωω ++⋅−=       (6.14) 

where s is the tangential decomposition of the unit vector connecting the center of the particle. 

Additionally there is a tangential force limited by Coulomb friction µsFn, where µs is the 

coefficient of static friction. When necessary, rolling friction can be accounted for by applying a 

torque to contacting surfaces. The rolling friction torque, τi, is given by (DEM Solutions, 2009; 

Remy et al., 2009): 

00ωµτ RFnri −=        (6.15) 

where µr is the coefficient of rolling friction, R0 is the distance of the contact point from the 

center of the mass, and ω0 is the unit angular velocity vector of the object at the contact point 

(Tsuji et al., 1992; Di Renzo and Di Maio, 2004; Li et al., 2005; DEM Solutions, 2009; Remy et 

al., 2009). 

For dynamic processes, important factors to consider are the propagation of elastic waves 

across the particles, the time for load transfer from one particle to adjacent contacting particles, 

and the need not to transmit energy across a system that is faster than nature (Li et al., 2005). In 

the non-linear contact model (e.g., Hertzian), the critical time increment or critical time step 

cannot be calculated beforehand, unlike with the linear contact model in which the critical time 

step is related to the ratio of contact stiffness to particle density. Miller and Pursey (1955), 

however, showed that Rayleigh waves or surface waves account for 67% of the radiated energy, 

whereas dilational or pressure waves and distortional or shear waves, respectively, are 7% and 
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26% of the radiated energy. Thus, it is assumed that all of the energy is transferred by the 

Rayleigh waves since the difference between the speeds of the Rayleigh wave and the 

distortional wave is small and the energy transferred by the dilational wave is negligible (Li et 

al., 2005). Moreover, the average time of arrival of the Rayleigh wave at any contact is the same 

irrespective of the location of the contact point. For simplicity, the critical time step is based on 

the average particle size and a fraction of this is used in the simulations (Li et al., 2005; DEM 

Solutions, 2009). The critical time step is given by the following equation (Li et al., 2005; DEM 

Solutions, 2009): 

G

R
tc

ρ
β

π=         (6.16) 

where R is the average particle radius, ρ is the particle density, and β can be approximated by (Li 

et al., 2005): 

νβ 163.08766.0 +=        (6.17) 

Simulations were performed at 20% Rayleigh time steps as listed in Table 6.1. 

6.2.2 Particle Model 

The DEM modeling software used was EDEM 2.2 (DEM Solutions, Lebanon, N.H.). A 

single-sphere particle model that best simulated soybean kernels was chosen (see Chapter 5), 

which conform to known geometric properties of kernels as well as published experimental 

values of particle and bulk densities, coefficients of restitution and friction, and angle of repose. 

From Chapter 5, the best particle model found for predicting angle of repose and bulk density of 

soybeans has a particle coefficient of restitution of 0.6, particle static friction of 0.45 for 

soybean-soybean contact (0.30 for soybean-steel interaction), particle rolling friction of 0.05, 

normal particle size distribution with standard deviation factor of 0.4, and particle shear modulus 

of 1.04 MPa. Table 6.1 lists the physical properties of the soybeans and the surfaces used in the 

simulation.  
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Table 6.1 Input parameters for DEM modeling. 

Variable Symbol

Particle coefficient of restitution e 0.60 a 0.60 a 0.60 a 0.60 a

Particle coefficient of static friction (soybean on) µ s 0.45 a 0.45 a 0.30 a 0.50 a

Particle coefficient of rolling friction µ r 0.05 a 0.05 a 0.05 a 0.05 a

Particle size distribution PSD normala normala

Mean factor MF 1.0 a 1.0 a

Standard deviation factor SDF 0.4 a 0.4 a

Particle shear modulus, MPa G 1.04 a 1.04 a 70,000        b, c, e 1.00 b, d

Particle Poisson's ratio ν 0.25 a 0.25 a 0.30 b, c, e 0.45 b, d

Particle Young's modulus, MPa E 2.60 a 2.60 a 182,000      b, c, e 2.90 b, d

Particle density, kg·m-3 ρ 1243 f 1247 f 7800b, c, e 9100b, d

Particle mass, g m 0.1597f 0.1389f

Particle radius, mm R 3.13 g 2.985g

Number of particles N 5,000-35,000 800,000-1,365,000

Calculated Rayleigh time step, s t R 3.71E-01 3.54E-01

Simulation time step, s t S 7.08E-02 7.08E-02

Red Soybean Clear Soybean Steel Rubber

a Boac et al., 2009 
b DEM Solutions, 2009 
c Boresi and Schmidt, 2003  
d Ciesielski, 1999 
e Baumeister et al., 1978 
f Measured values 
g Calculated values 



 

 159 

6.2.3 Three-Dimensional (3D) Modeling in Pilot-Scale Bucket Elevator Boot 

A 3D model of a pilot-scale B3 bucket elevator leg (Universal Industries, Inc., Cedar 

Falls, Iowa) was simulated to determine grain commingling. The pilot-scale B3 leg is a back-

feeding bucket elevator with one hopper and a discharge spout at the end of the elevator head. 

The elevator boot is the enclosed base of an elevator leg casing, where static grain, called 

residual grain, accumulates after material loading.  

Geometries of the pilot-scale B3 bucket elevator boot were drawn in a computer-aided 

design (CAD) software package (DS SolidWorks Corp., Concord, Mass.) and imported to 

establish model geometries in EDEM. The material for bucket cups and enclosure of the B3 leg 

was specified as steel and the belt was rubber (Table 6.1). The input parameters for a single-

sphere particle model for the soybean kernel (Boac et al., 2009) are listed in Table 6.1. 

In the simulation, red soybean particles were handled first in the 3D pilot-scale B3 leg 

geometries (Figure 6.1a). The leg was allowed to run until the residual grain stabilized after a run 

time of 11 s. After handling red soybeans, the mass of residual grain was determined by 

extracting the particle mass remaining in the boot geometry. With red soybean particles as the 

residual grain in the 3D leg geometry, clear soybean particles were run next for 287 s or 

approximately 5 min (Figure 6.1b). The total particle mass of red and clear soybeans were 

determined from each bucket cup leaving the control volume. The instantaneous commingling 

(Ci) from each cup was computed based on the following equation:  

cr

r
i mm

m
C

+
=  (6.18) 

where mr is mass of red soybeans (kg) and mc is mass of clear soybeans (kg). Average 

commingling per given load mass (Ca) was computed as given by: 

( )
( )∑

∑
×

××
=

is

iis
a tm

Ctm
C

&

&
 (6.19) 

where sm& is mass flow rate of soybeans (kg·s-1) and ti is sampling time interval (s). The 

simulation data with one replication were calculated from three bucket cups, representing a 

sample from the experiments. The mean sample mass from the experiments was divided by the 

computed mass of soybeans in a bucket cup (i.e., mean bucket cup filling (mcf)) to determine the 

three bucket cups.  
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Figure 6.1 Initial 3D simulation during handling of (a) red and (b) clear soybeans. 

The start time was also calculated based on the best estimated initial time simulating the 

experiments. The time it took for the soybeans to be scooped by bucket cups to the time they 

were collected in the Gamet DT sampler was measured to be 5.0 s. Simulation data time were 

adjusted accordingly. The trends of instantaneous and average commingling from simulation 

were compared with experimental data. 

6.2.4 Quasi-Two-Dimensional (Quasi-2D) Modeling in Pilot-scale Bucket Elevator 

Boot 

To further reduce computational time and implementation complexities, a quasi-2D 

model for the pilot-scale B3 bucket elevator boot was implemented.  This made the boot 

modeling simpler than its 3D counterpart by reducing most geometry consideration to essentially 

2D. The same geometries of the pilot-scale B3 bucket elevator boot drawn in a CAD software 

(DS SolidWorks Corp., Concord, Mass.) were imported to establish model geometries in 

simulation. 

To model a quasi-2D pilot-scale boot, dimension in the z-direction (i.e., width) of the 

boot was reduced by using periodic boundaries on both front and back walls. Periodic boundary 

conditions enable any particle leaving the domain in that direction to instantly re-enter on the 

opposite side (DEM Solutions, 2009), simulating infinite length in that direction, thereby 

eliminating wall friction and reducing the total number of particles inside the control volume.  

Four quasi-2D models were tested to determine which best simulates the initial 3D boot 

model and the experimental data. The quasi-2D models had widths of four to seven times the 

diameter of red soybean particle (4d, 5d, 6d, 7d) (Table 6.2). The reduction factor, ζn, for each 

quasi-2D model is defined as 

DQ

bc
n w

w

2

=ζ   (n = 4, 5, 6, 7)     (6.20) 

where wbc is the original width of the bucket cup and wQ2D is the width of the quasi-2D model 

(i.e., 4d, 5d, 6d, or 7d). A single-sphere particle model with the same material and interaction 

properties of soybean used in the initial 3D model was employed in the quasi-2D pilot-scale boot 

simulations. The total number of particles created was also reduced based on the reduction 

factor.  
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Red soybean particles were handled first in the quasi-2D pilot-scale leg until the residual 

grain stabilized after a run time of 10 s (Figure 6.2a). Red soybeans were left as residual grain in 

the quasi-2D pilot-scale boot geometry and clear soybean particles were introduced next for 35 s 

in the initial trials (Figure 6.2b). Instantaneous and average commingling for one replication 

were computed based on equations 6.18 and 6.19, respectively, and at start time where clear 

soybeans was introduced in the model. The trends of the instantaneous and average commingling 

results from the four quasi-2D boot models were compared with those of the initial 3D boot 

model. The quasi-2D model that best simulated the initial 3D model was chosen.  

 

Table 6.2 Input parameters for the quasi-2D boot models with reduced control volume. 

4d 5d 6d 7d
Particle diameter, mm d 6.26            6.26          6.26         6.26          
Width of bucket cup of B3 leg, mm wbc 95.25          95.25        95.25       95.25        
Width of the quasi-2D model, mm wQ2D 25.04          31.30        37.56       43.82        

Reduction factor, dimensionless ζ n 3.80            3.04          2.54         2.17          

Original mass flowrate, kg·s-1 0.95            0.95          0.95         0.95          

Reduced mass flowrate, kg·s-1 0.25            0.31          0.37         0.44          

Original particle rate, particles·s-1

red soybeans 5,931          5,931        5,931       5,931        
clear soybeans 6,819          6,819        6,819       6,819        

Reduced particle rate, particles·s-1

red soybeans 1,559          1,949        2,339       2,729        
clear soybeans 1,793          2,241        2,689       3,137        

SymbolVariable
Quasi-2D Boot Model

0m&

0n&

nn&

nm&

 

 

6.3 Pilot-Scale Boot Experiment 

6.3.1 Grain Materials 

Two types of soybeans were used for the grain commingling tests in the pilot-scale B3 

leg. Test material 1 was red colored soybeans with clear-hilum from a 2008 crop variety 

KS4702.  Five bags of these red soybeans were purchased from Kansas State University (KSU) 

Agronomy Farm on January 30, 2009. Each bag had a mean mass of 25.7 kg (standard deviation 

(SD) = 0.14 kg). Test material 2 was clear or uncolored soybeans with brown- and black-hilum 

from 2008 crop. The clear soybeans were purchased from a local elevator on December 4, 2008,  
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(a) 

 

(b) 

Figure 6.2 Quasi-2D simulation during handling of (a) red and (b) clear soybeans. 
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and were cleaned through a fanning mill at KSU Agronomy Farm on December 5, 2008. After 

cleaning, the clear soybeans were then transferred in five grain tote bags with a mean mass of 

563.9 kg (SD = 84.07 kg) for each bag. 

Representative samples from both test materials were collected using a grain probe 

(USDA GIPSA, 1995) and graded (USDA GIPSA, 2004). Initial moisture content, test weight, 

foreign materials, splits, damaged kernels, 1000-kernel weight, particle density, and purity based 

on the amount of soybean of different color mixed in the whole lot were measured. The initial 

quality and characteristics of red and clear soybeans are shown in Table 6.3. 

 

Table 6.3 Initial quality and characteristics of soybeans before transfers.[a] 

Red U.S. No. 1 0.337 a (0.131) 0.030 a (0.013) 1.114 a (0.167)
Clear U.S. No. 1 1.207 b (0.486) 0.013 b (0.008) 0.329 b (0.103)

Red 700.72 a (3.21) 9.75 a (0.23) 138.90 a (4.46) 1.244 a (0.003)
Clear 728.75 b (1.48) 10.09 b (0.34) 159.73 b (5.15) 1.247 b (0.004)

Moisture Content

(g)

Test Weight

(kg·m-3)

Splits

(%)

Foreign Material

(%)

Damaged Kernels

(%)

(% wet basis)

Particle Density

(g·cm-3)Soybeans

Impurity [b] 

(%)
0
0

Soybeans Grade

Mass of 1000 
Kernels

[a] Mean values with the same lower case letters within a column are not significantly different at the 5% level of  
    significance in Bonferroni. Values in parenthesis represent standard deviation (SD). 
[b] Impurity = red soybeans in clear, or clear soybeans in red 

 

6.3.2 Test Facility 

Five tests were performed in the pilot-scale B3 bucket elevator leg (Universal Industries, 

Inc., Cedar Falls, Iowa) at the USDA-ARS, CGAHR, Manhattan, Kansas. The B3 leg is a back-

feeding bucket elevator with one hopper and a discharge spout at the end of the elevator head 

(Figure 6.3). The metal covers of the right hand side (RHS) and boot openings were replaced by 

plexi-glass to allow visual observation of the behavior of the grain inside the boot. The B3 leg 

has a handling capacity of 6 t·h-1 at 75% bucket filling (manufacturer’s data). In this research, the 

B3 leg was operated at a mean soybean mass flow rate of 3.41 t·h-1 (range: 3.20 to 3.65 t·h-1), 

which is 41.2% of the leg’s full-cup capacity and corresponding to the same percent of capacity  
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Figure 6.3 Pilot-scale B3 bucket elevator leg. 
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for the full-scale CGAHR research elevator at an average grain mass flow rate of 47 t·h-1 (Ingles 

et al., 2003). 

 6.3.3 Test Procedure 

Figure 6.4 shows a schematic diagram of the grain flow during each grain transfer. The 

grain transfers simulated the receiving operation of two consecutive grain types without 

additional (separate) cleaning of equipment between operations. Two types of soybeans of 

different color and hilum were used to easily identify grain commingling between grain loads. 

6.3.3.1 Before the Transfers 

Prior to each test, the B3 leg was allowed to self-clean by letting the leg to run on empty 

for 10 min to self-clean. Compressed air was used through the RHS opening of the leg (Figure 

6.3) to clean the bucket cups while it is running. Grain residuals and impurities were vacuumed 

from the boot and other parts of the B3 leg. Before each transfer operation, the ambient and grain 

temperatures and ambient relative humidity were measured using a mercury thermometer and 

psychrometer (model 3312-40, Cole-Parmer Instrument Co., Vernon Hills, Ill.), respectively. 

The stop of the hopper’s slide gate was checked and tightened for proper position giving a 

specific opening (width = 32.54 mm). 

6.3.3.2 Transfer of First Grain — Red Soybeans 

The first soybean lot handled in the B3 leg was the red soybeans. One bag of red 

soybeans was poured into the hopper of the leg. A 125-L plastic container was placed at the end 

of the spout connected to the head of the B3 leg to catch the red soybeans after being handled. 

The B3 leg was switched on and the slide gate was opened to run the red soybeans. After 

the transfer of red soybeans, the B3 leg was allowed to continuously run for 5 min for self-

cleaning. Then, the B3 leg was switched off.  

After the red soybean handling, the residual grain heights were measured in the left hand 

side (LHS) (i.e., from the top of the LHS opening to the grain) and in the RHS (i.e., from the 

boot floor to the height of the grain) of the B3 leg. The mean residual grain heights of red 

soybeans in the LHS and RHS from five tests were 123.19 (standard deviation, SD = 2.78) mm 

and 95.66 (SD = 0.91) mm, respectively. 
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Figure 6.4 Schematic diagram of the grain flow as represented by arrows.   
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The end of the spout connected to the head was transferred from the plastic container to 

the Gamet diverter-type (DT) sampler (Seedburo Equipment Co., Chicago, Ill.) to collect grain 

samples from the next soybean flow. The Gamet DT sampler was placed on top of a plastic 

hopper (1.07 x 1.37 x 1.59 m) that collected that rest of the flow.  

Split-core AC current sensors (0-20 Amp model CTV-A, Onset HOBO, Bourne, Mass.) 

plugged directly into a 4-channel external input data logger (model HOBO H8) was attached to 

the control panel of the Gamet DT sampler. The clock on a laptop computer (model Sony Vaio 

PCG-Z505R, Sony Electronics, Inc., New York, N.Y.) was synchronized with the HOBO time. 

6.3.3.3 Transfer of Second Grain — Clear Soybeans 

The second soybean lot handled on the B3 leg was the clear soybeans. The clear soybean 

lot in a tote bag was weighed on a platform scale with digital weight indicator (IQ Plus 310A, 

Rice Lake Weighing System, Inc., Rice Lake, Wisc.). After weighing, the tote bag was placed 

directly over the hopper of the B3 leg. The protective guard of the tote bag was put in place. The 

tote bag was opened by reaching under the protective guard and letting the soybeans fill the 

hopper of the B3 leg. The tube at the bottom of the tote bag was choked preventing overflow. 

The height of the tote bag was then adjusted to maintain the flow of clear soybeans at a 

consistent level.  

The B3 leg was switched on. The slide gate of the hopper was opened to the same 

opening width each time using the stop on the slide gate. The control panel of the Gamet DT 

sampler was turned on. The stopwatch was started when the clear soybeans entered the boot. The 

real time for this start as displayed by the laptop clock (in seconds) was recorded. The RPM of 

the boot pulley shaft was measured with a digital tachometer (model 1726, AMETEK, Largo, 

Fla.).  

6.3.4 Grain Sampling, Sorting, and Analysis 

The grain samples were diverted from the flow by the Gamet DT sampler every 15 s for 

the first 2 min, every 30 s for the next 3 min, and every 60 s for the rest of the handling time. The 

stopwatch was stopped when the last normal bucket cup scooping was seen through the plexi-

glass cover. The real time for this stop was recorded as displayed by the laptop clock. The total 

handling time from the stopwatch was also recorded.  
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After the clear soybean handling, the B3 leg was allowed to self-clean for another 5 min. 

The residual grain heights were measured in the LHS and RHS. The mean residual grain heights 

of clear soybeans in the LHS and RHS from five tests were 127.0 (SD = 0) mm and 96.09 (SD = 

1.38) mm, respectively. The mean residual grain that was vacuumed from the boot and weighed 

from the five tests was 2.48 (SD = 0.02) kg. 

The test simulating the receiving operation of two consecutive grain types (red and clear 

soybeans) with only self-cleaning between operations was replicated five times. The grain 

samples collected by the Gamet DT sampler were weighed. The red soybeans were manually 

sorted from the clear soybeans.  

The mass of grain in a bucket cup or mean bucket cup filling (mcf) in g·cup-1 was 

computed based on the following equation: 

 
c

s
cf f

m
m

&
=         (6.21) 

where sm& is the mean mass flow rate of soybeans in t·h-1 and fc is the measured bucket cup rate in 

cup·s-1 defined by: 

c

b
c s

v
f =         (6.22) 

where vb is the boot belt speed in m·s-1 and sc is the bucket cup spacing in m·cup-1. The boot belt 

speed was computed as: 

bbb Nrv π2=          (6.23)  

where rb is the radius of the boot pulley (and the belt thickness) in m and Nb is the boot pulley 

rpm.  

From the experiments, the mean mass flow rate for soybeans ( sm& ) was measured as 3.41 

t·h-1 (0.95 kg·s-1). The mean boot pulley rpm (Nb) and radius of the boot pulley including belt 

thickness (rb) were 203.7 rpm and 0.0535 m, respectively. These values gave a boot belt speed 

(vb) of 1.141 m·s-1. The bucket cup spacing (sc) and frequency (fc) were 0.08255 m·cup-1 and 

13.82 cups·s-1, respectively, resulting in mean bucket cup filling (mcf) of 68.54 g·cup-1. These 

data were verified in the initial 3D pilot-scale boot model simulations.  
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6.3.5 Data Analysis 

Grain commingling of red and clear soybeans was simulated in 3D and quasi-2D pilot-

scale B3 boot models. Experiments on grain commingling involving red and clear soybeans were 

conducted with five replications. Instantaneous commingling was defined as the amount of red 

soybeans in the collected samples and computed based on equation 6.18. Average commingling 

was the amount of red soybeans mixed with the soybean lot that accumulated at a given time and 

computed based on equation 6.19. Since the clear soybeans used were sieved and cleaned before 

the experiments, the calculated values of average commingling do not need to be adjusted based 

on initial purity of the clear soybean load. Statistical analysis was performed using the General 

Linear Model (GLM) procedure of SAS statistical software (ver. 9.2, SAS Institute, Inc., Cary, 

N.C.). Basic descriptive statistics (i.e., mean and standard deviation) were determined for the 

parameters evaluated. Predicted results were compared with the mean, and lower and upper 

limits of the 95% confidence interval of the experimental data.  

6.5 Results and Discussion 

6.5.1 Grain Commingling in 3D Boot Model 

6.5.1.1 Instantaneous Commingling 

Experimental instantaneous commingling started at 4.25% during the first 5 s, decreased 

to 0.85% after 21 s, went to 0.02% after 3.2 min, and reached 0% after 6.7 min (Figure 6.5). 

Instantaneous commingling from the 3D simulation agreed well with experimental data after the 

first 7 s (Figure 6.6). During the first 7 s, simulation data from this initial 3D simulation were 

higher than experimental data. 

Instantaneous commingling data from the 3D simulation were computed from three 

bucket cups, representing the mass of soybeans in one sampling in the experiments. One 

advantage of the simulation was that it can predict commingling from individual bucket cups, 

which may be difficult to obtain through experiments. Figure 6.7 shows the instantaneous 

commingling computed from individual bucket cups, which was compared with the smoothing 

effect from the data based on three bucket cups. 
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Figure 6.5 Instantaneous commingling from five experiments. 
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Figure 6.6 Instantaneous commingling from the initial 3D simulation and experiments 

showing 95% confidence limits. 
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Figure 6.7 Instantaneous commingling from one- and three-bucket cup initial 3D 

simulation. 

6.5.1.2 Average Commingling 

Figure 6.8 also shows an over prediction of commingling for this initial 3D model as in 

the instantaneous commingling data. The values of average commingling (in discrete time) in 

this graph was computed based on the same discrete time periods as in the experiments, 

neglecting the simulation values in between those discrete times even if those values can be 

computed from the simulation. The average commingling accentuated the high predicted values 

further as the over predictions accumulated.  

Mean experimental data from five tests showed that average commingling started at 

4.25% during the first 5 s, decreased to 2.52% after 21 s, went to 0.89% after 1.7 min, and 

reached 0.41% after 4.3 min. Simulation data started at 7.37% during the first 5 s, decreased to 

4.61% after 21 s, went to 1.66% after 1.7 min and reached 1.02% after 4.3 min. Experimental 

data decreased at a rate of 41%, 79%, and 90% from the initial value at times 21 s, 1.7 min, and 

4.3 min, respectively. Simulation data had slower decreasing rate of 38%, 78%, and 86% from 

the initial value at the same given times, respectively, which caused the average commingling to 

lag behind.  
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Figure 6.8 Average commingling from the initial 3D simulation compared at the same 

discrete time with experiments. 

6.5.2 Quasi-2D Boot Model  

The best quasi-2D model was chosen based on average plots that best represented the 3D 

model. Quasi-2D model with 4d reduced control volume did not perform well in the simulation 

due to instability of the system in the reduced domain. Figure 6.9 shows that quasi-2D with 6d 

reduced control volume closely mimicked the initial 3D model. The average commingling in this 

plot was computed based on complete simulation time period as opposed to discrete time periods 

similar to the experiment. The quasi-2D (6d) boot model was chosen as a faster alternative to the 

initial 3D boot model in predicting grain commingling. 

In the initial 3D model, it was evident that the predicted average grain commingling was 

high. Further simulation tests were conducted to improve the quasi-2D (6d) boot model to more 

closely simulate the experimental data.  

Vibration of the boot geometry with frequency of 37 Hz and amplitude of 0.4 mm was 

introduced into the quasi-2d (6d) model during the onset of the clear soybeans. Preliminary 3D 

simulations using published vibration frequency and amplitude values (Jones and Block, 1996; 

Ge et al., 2000) showed that this combination gave best results in terms of residual grain layout.  
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Figure 6.10 shows the instantaneous commingling from the quasi-2D (6d_vib0) and 

initial 3D simulations.  The two models was compared with experimental data using average 

commingling computed based on discrete time periods similar to that in the experiments (Figure 

6.11). Introduction of vibration during the onset of clear soybeans enabled the quasi-2D 

(6d_vib0) model to do a slightly better job of predicting commingling than the initial 3D boot 

model. Vibration increased the bucket cup uptake. However, as higher amount of red soybeans 

was picked up in the quasi-2D (6d_vib0) model than in the initial 3D model, the amount of clear 

soybeans picked up was also higher, leading to slightly lower average commingling in discrete 

time than in the initial 3D simulation. Vibration should have the same effect on 3D models as it 

was in the quasi-2D, but it was not attempted. 
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Figure 6.9 Average commingling from four quasi-2D models with reduced control volume. 
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Figure 6.10 Instantaneous commingling from Quasi-2D (6d_vib0) and the initial 3D 

simulations compared at the same discrete time with experiments. 
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Figure 6.11 Average commingling from Quasi-2D (6d_vib0) and the initial 3D simulations 

compared at the same discrete time with experiments. 
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The difficulty of matching the initial time in the experiments to that in the simulations 

was an important issue for the accuracy in time of predicted commingling. The time of initial 

particle uptake in the experiments was carefully timed with a stopwatch and then carefully 

matched to the initial uptake of particles in the simulations. 

Refining of the physics of the quasi-2D (6d_vib0) model was performed. One possible 

improvement in the model was the accounting for the sudden surge of particles from the hopper 

when the slide gate was opened in the actual experiment that stirs up more particles initially than 

is being simulated in the model.  

The sudden surge of particles during the opening of the slide gate was investigated using 

the quasi-2D (6d_vib0_gate) model with one replication. Instead of simulating the open slide 

gate as were in previous simulations, a closed slide gate was modeled and the hopper was filled 

first with clear soybeans before opening the slide gate (Figure 6.12a). When the gate was opened, 

a sudden surge of particles was observed (Figure 6.12b). 

Accounting for the particle surge (i.e., quasi-2D (6d_vib0_gate) model) better predicted 

grain commingling than did the quasi-2D (6d_vib0) model (Figure 6.13). The average 

commingling in discrete times from this model was closer to that in the experiments than the 

previous ones (Figure 6.14).  

The sudden surge of clear soybean particles pushed the red soybeans from the LHS 

towards the RHS. The action increased the bucket cup uptake of the red soybeans (Figure 6.15). 

This led to two processes eventually resulting in less grain commingling: (1) a high amount of 

red soybeans was picked up early in the simulation and less was left for commingling later; and 

(2) as high amounts of red soybeans was picked up, higher amounts of clear soybeans went with 

them in the same cup due to the repositioning of the particles from the surge. It is assumed that 

the effect of particle surge flow on the grain commingling that occurred in the quasi-2D model 

would also be demonstrated in the 3D model. 
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(a) 

 

(b) 

Figure 6.12 Quasi-2D (6d_vib0_gate) model with particles: (a) accumulating at the gate and 

(b) with surge flow. 
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Figure 6.13 Instantaneous commingling from Quasi-2D (6d_vib0_gate) model accounting 

for particle surge. 
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Figure 6.14 Average commingling from Quasi-2D (6d_vib0_gate), Quasi-2D (6d_vib0) and 

the initial 3D simulations compared at the same discrete time with experiments. 
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Figure 6.15 Quasi-2D (6d_vib0_gate) model with surge flow increasing the uptake of red 

and clear soybeans. 
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Another possible improvement in the model was the reduction of the large gap between 

the bucket cups and the boot wall. In the actual experiment, the belt of the bucket elevator leg is 

not rigid and sways away from the boot pulley making the gap between the bucket cups and the 

boot wall smaller. The smaller gap between bucket cups and boot wall may contribute to a higher 

bucket cup uptake and grain commingling in the actual experiment.  

In the simulation, the belt is rigid thus making this gap wider, enabling some soybeans to 

slip back to towards the boot bottom without the bucket cup collecting them. This gap, together 

with the sudden surge of particles after the slide gate was open, was considered in the following 

simulation (quasi-2D_6d_vib0_gate_gap) with one replication. The original gap in the 

simulation with rigid belt was reduced to half its size (14.75 mm), which was the measured gap 

while the bucket cups were moving in the experiment (14.29 – 22.23 mm). Figure 6.16 shows the 

quasi-2D (6d_vib0_gate) model with reduced gap between bucket cups and boot wall as 

compared with the original gap. 

Accounting for the particle surge and reducing the gap between bucket cups and boot 

wall better predicted commingling than not including them as in the case of the quasi-2D 

(6d_vib0) model (Figure 6.17). Including both surge flow and reduced gap (i.e., the quasi-2D 

(6d_vib0_gate_gap) model) was better in predicting high values of initial commingling than just 

accounting for surge flow alone (i.e., the quasi-2D (6d_vib0_gate) model) as shown by the 

average commingling based on the complete simulation time (Figure 6.18). The inclusion of 

particle surge flow and reduced gap predicted the closest value of average commingling in 

discrete time with experimental data (Figure 6.19).  

Further improvements in the model might be achieved by predicting the effect of 

different vibration motions in the residual grain mass and height and investigating different 

particle properties (i.e., soybean material and interaction properties as well as its particle size 

distribution) in the system. It is expected that the same improvements seen in the quasi-2D model 

by accounting for the initial particle surge and reducing the gap between the buckets and wall 

would also occur in the 3D model with these changes, but that has not been attempted. 

In general, the quasi-2D (6d) models reduced simulation run time by 29% compared to 

the 3D model of the pilot-scale boot. It is postulated that a higher reduction in time will be 

achieved in the full-scale boot using a quasi-2D (6d) model. 



 

 181 

 

 

 

(a) 

 

 

(b) 

Figure 6.16 Quasi-2D (6d_vib0_gate_gap) model with (a) reduced gap and (b) original gap 

between bucket cups and boot wall. 
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Figure 6.17 Instantaneous commingling from Quasi-2D (6d_vib0_gate) model accounting 

for particle surge and gap reduction. 

 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0 5 10 15 20 25 30 35 40 45 50 55 60

Time (s)

A
ve

ra
g

e 
C

o
m

m
in

g
lin

g
 (

%
)

Quasi-2D (6d_vib0_gate_gap)

Quasi-2D (6d_vib0_gate)

Quasi-2D (6d_vib0)

3D Simulation

 

Figure 6.18 Average commingling from Quasi-2D (6d_vib0), Quasi-2D (6d_vib0_gate) with 

and without reduced gap, and the initial 3D models. 
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Figure 6.19 Average commingling from Quasi-2D (6d_vib0_gate) with and without reduced 

gap, and the initial 3D simulations compared at the same discrete time with experiment. 
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6.6 Summary 

Unwanted grain commingling impedes new quality-based grain handling systems and has 

proven to be an expensive and time consuming issue to study experimentally. To provide a more 

economical method to study the problem, grain commingling in a pilot-scale bucket elevator 

boot was modeled in three-dimensional (3D) and quasi-two-dimensional (quasi-2D) discrete 

element method (DEM) simulations. Experiments on grain commingling were performed to 

validate the 3D DEM model on a pilot-scale boot.  

Experimental data showed that mean instantaneous commingling started at 4.25% during 

the first 5 s, decreased to 0.85% after 21 s, went to 0.02% after 3.2 min, and reached 0% after 6.7 

min. Results from DEM modeling with the initial 3D pilot-scale boot model generally agreed 

with experimental data after the first 7 s. In the simulation, instantaneous commingling reached 

4% later than in the experiments and gradually decreased later than in the experiment. 

 Comparison of predicted average commingling of four quasi-2D boot models with 

reduced control volumes (i.e., 4d, 5d, 6d, and 7d) showed the quasi-2D (6d) model provided the 

best match to the 3D model. Introduction of vibration during the onset of clear soybeans 

improved the prediction capability of the quasi-2D (6d) model.  

The physics of the quasi-2D (6d) model was refined by accounting for the sudden surge 

of particles during the entrance and reducing the gap between the bucket cups and the boot wall. 

Inclusion of the particle surge flow and reduced gap better predicted commingling than did the 

models without those refinements included. Further improvements in the model might be 

achieved by predicting the effect of different vibration motions in the residual grain mass and 

height and investigating different particle properties. However, the average commingling in 

discrete time of the quasi-2D (6d_vib0_gate_gap) model shows that there is little room for 

additional improvement. This study showed that grain commingling in a bucket elevator boot 

system can be simulated in 3D and quasi-2D DEM models and gave results that generally agreed 

with experimental data. The quasi-2D (6d) models reduced simulation run time by 29% 

compared to the 3D model of the pilot-scale boot. It is postulated that a higher reduction in time 

will be achieved in the full-scale boot using a quasi-2D (6d) model. Results of this study will be 

used to accurately predict impurity levels and improve grain handling, which can help farmers 
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and grain handlers reduce costs during transport and export of grains and make the U.S. grain 

more competitive in the world market. 
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CHAPTER 7 - CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

Experiments were conducted at the research elevator of the USDA-ARS Center for Grain 

and Animal Health Research to characterize the quality of grain and feed during bucket elevator 

handling to meet customer demand for high quality and safe products. The following conclusions 

were drawn from the research: 

• Repeated handling did not significantly affect the durability index of the feed pellets, 

which ranged from 92.0% to 93.4%, nor that of shelled corn, which ranged from 99.6% 

to 99.8%.  

• The feed pellets had significantly greater breakage (3.83% per transfer) than the shelled 

corn (0.382% per transfer).  

• The average mass of dust removed per transfer was 0.069% of the mass of pellets, which 

was not significantly different from that of shelled corn (0.061%). 

• The mass of particulate matter <125 µm was less for feed pellets (50% of pellet dust) 

than for shelled corn (66% of corn dust).  

• The mean mass of dust <125 µm of the pellets (0.337 kg·t-1 of pellet mass) was 

significantly less (p < 0.05) than that of shelled corn (0.403 kg·t-1 of corn mass), 

indicating that these pellets produced less dust in the range of 10 to 125 µm during 

handling than did shelled corn. 

• Shelled corn produced significantly smaller dust particles, and a greater proportion of 

small particles, than wheat. The geometric mean diameter (GMD) of shelled corn dust 

ranged from 10.0 to 14.4 µm; the geometric standard deviation (GSD) ranged from 2.27 

to 2.77. For wheat, GMD ranged from 10.5 to 16.9 µm, and GSD ranged from 2.60 to 

2.99. The percentage of PM-2.5, PM-4, and PM-10 generated during the transfer 

operation were 7.46%, 9.99%, and 28.9%, respectively, of total shelled corn dust and 

5.15%, 9.65%, and 33.6%, respectively, of total wheat dust.  

• Handling shelled corn produced more than twice as much total generated dust than 

handling wheat (185 g·t-1 of corn handled vs. 64.6 g·t-1 of wheat handled).  
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• For both wheat and shelled corn, at an average grain flow rate of 54.4 t·h-1, the size 

distribution of dust from the upper and lower ducts showed similar trends among grain 

lots and repeated transfers but differed between the two grain types and also between the 

two ducts.  

• The corn and wheat differed significantly in the dust size distribution and the rate of total 

dust generated and there were significant differences between the lower and upper ducts, 

confirming the necessity of sampling from both ducts.  

• With discrete element method, a single-sphere particle model best simulated soybean 

kernels in the bulk property tests. The best particle model included a particle coefficient 

of restitution of 0.6, particle static friction of 0.45 for soybean-soybean contact (0.30 for 

soybean-steel interaction), particle rolling friction of 0.05, normal particle size 

distribution with a standard deviation factor of 0.4, and particle shear modulus of 1.04 

MPa.  

• Experimental data on soybeans in a pilot-scale boot showed that mean instantaneous 

commingling started at 4.25% during the first 5 s, decreased to 0.85% after 21 s, went to 

0.02% after 3.2 min, and reached 0% after 6.7 min. 

• Predicted results from the 3D boot model generally agreed with experimental data after 

the first 7 s. Instantaneous commingling reached 4% later than in the experiments and 

also gradually decreased later than in the experiment.  

• Comparison of predicted average commingling of four quasi-2D boot models with 

reduced control volumes (i.e., 4d, 5d, 6d, and 7d) showed the quasi-2D (6d) model 

provided the best match to the 3D model.  

• Introduction of vibration motion during the onset of clear soybeans improved the 

prediction capability of the quasi-2D (6d) model. Further refinements of the physics of 

the quasi-2D (6d) model by accounting for the sudden surge of particles during the 

entrance and reducing the gap between the bucket cups and the boot wall better predicted 

commingling than did the models without those refinements. 

• This study showed that grain commingling in a bucket elevator boot system can be 

simulated in 3D and quasi-2D DEM models and gave results that generally agreed with 

experimental data. The quasi-2D (6d) models reduced simulation run time by 29% 

compared to the 3D model of the pilot-scale boot. Results of this study can be used to 
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predict impurity levels in grain handling, which can help farmers and grain handlers 

reduce costs during transport and export of grains and make the U.S. grain more 

competitive in the world market. 

7.2 Recommendations for Further Study 

The following are recommended for future studies: 

1. Measure and compare dust emitted in grain elevators with and without pneumatic dust 

control system; 

2. Predict the effect of different vibration motions in the residual grain mass and height; 

3. Investigate different particle properties (i.e., soybean material and interaction properties 

as well as its particle size distribution);  

4. Develop particle models for other major grains and oilseeds as well as infested grains and 

insects in stored grains;  

5. Model grain commingling in various bucket elevator boot geometries and other bucket 

elevator equipment; and  

6. Apply simulation results to design better elevator boot systems  
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Appendix A - Supporting Data 

Data for Chapter 3 

 

Table A.1 Material flow rate of feed pellets from repeated handling. 

Transfer  Bins Time, min

 Initial Mass on 
Bin Before 

Transfer, kg 
 Mass of 

Samples, kg 
 Mass of Dust, 

kg 

Material Flow 

Rate, t·h-1

0 truck hopper to bin 8 22579.8 10.8 11.3
1 bin 8 to bin 2 23.7 22557.7 5.1 14.2 57.2
2 bin 2 to bin 8 19.7 22538.4 4.8 16.2 68.6
3 bin 8 to bin 2 20.9 22517.4 5.1 15.3 64.7
4 bin 2 to bin 8 21.1 22496.9 5.7 15.9 64.0
5 bin 8 to bin 2 20.0 22475.3 5.6 15.1 67.4
6 bin 2 to bin 8 22.7 22454.6 5.7 18.8 59.5
7 bin 8 to bin 2 21.2 22430.0 6.2 11.6 63.4
8 bin 2 to bin 8 25.5 22412.2 5.8 17.8 52.7

Mean 21.8 22495.8 6.1 15.1 62.2
SD 2.0 57.7 1.8 2.5 5.4  

 

Table A.2 Initial mass of feed pellet samples from repeated handling. 

Transfer 0 Transfer 1 Transfer 2 Transfer 3 Transfer 4 Transfer 5 Transfer 6 Transfer 7 Transfer 8
1 795.0 479.6 655.6 596.5 229.4 645.6 768.2 619.5 502.8
2 590.2 571.7 655.1 605.7 549.3 670.1 568.6 666.1 519.0
3 607.5 565.6 488.9 660.1 775.9 702.4 776.8 717.9 599.7
4 612.7 586.1 764.3 660.6 776.8 704.8 816.5 693.3 589.7
5 591.5 589.1 701.1 677.9 777.7 761.3 556.0 732.0 607.9
6 575.6 542.9 726.1 609.3 770.8 742.6 532.1 739.9 646.3
7 575.6 837.6 697.7 528.9 727.9 552.4 691.1 576.4
8 588.6 637.9 604.4 680.4 542.9 640.9 550.8
9 533.6 680.4 611.6 691.5 595.2
10 630.0
11
12

Mean 628.8 559.2 689.8 643.2 632.6 704.4 636.1 688.0 581.8
SD 82.5 35.7 109.2 36.9 181.9 38.7 116.1 40.3 45.8

Initial Mass, g
Sample No.

 

 

Table A.3 Feed pellet length before durability test. 

Transfer
 No. of Pellets per 20-g 

Sample 
No. of Pellets 

per gram
 Mean Pellet 
Length, mm 

 1-1 56 2.8 11.8
 1-2 62 3.1 11.2
1-3 85 4.3 9.0
 2-1 74 3.7 9.0
 2-2 62 3.1 11.0
2-3 65 3.3 10.7

Mean 67.3 3.4 10.5
SD 10.5 0.5 1.2  
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Table A.4 Test weight of feed pellets from selected transfers. 

Transfer 0 Transfer 4 Transfer 8
1 653.8 661.0 658.9
2 633.2 670.5 664.1
3 638.4 663.4 684.7
4 658.9 669.6 684.7
5 674.4 658.6 710.4
6 633.2 662.3 695.0
7 638.4 684.7
8 628.1 669.2
9 628.1 689.8
10 700.1

Mean 642.9 664.2 684.2
SD 16.0 4.8 16.2

Sample No.
Test Weight, kg·m-3

 

 

Table A.5 Moisture content (%) of feed pellet samples from repeated handling. 

Transfer 0 Transfer 1 Transfer 2 Transfer 3 Transfer 4 Transfer 5 Transfer 6 Transfer 7 Transfer 8
1 10.4 10.4 10.0 10.0 10.0 10.4 10.4 10.4 9.6
2 10.4 10.4 10.0 10.0 10.8 10.4 10.4 10.4 9.7
3 10.0 10.0 10.4 10.0 10.4 10.4 10.8 10.4 9.7
4 10.4 10.4 10.4 10.0 10.4 10.8 10.8 10.4 9.8
5 10.8 10.0 10.0 13.6 10.8 10.4 10.4 10.4 9.5
6 10.8 10.0 10.0 7.6 9.6 10.4 10.4 10.4 9.6
7 10.4 10.4 10.4 10.4 10.8 10.8 10.4 9.4
8 10.4 10.8 10.8 10.4 10.4 10.8 9.5
9 10.4 10.4 10.8 10.8 9.4
10
11
12

Mean 10.5 10.3 10.2 10.3 10.4 10.5 10.6 10.5 9.6
SD 0.3 0.2 0.2 1.6 0.4 0.2 0.2 0.2 0.2

Sample No.
Moisture Content, %

 

 

Table A.6 Percentage of whole and broken feed pellets from sieving through 5.60-mm sieve. 

Transfers
Whole Pellet (> 5.60 mm), 

%
Broken Pellet  (< 5.60 mm), 

%
Change in % 

Breakage

0 82.47 17.53
1 75.05 24.95 7.42
2 67.76 32.24 7.29
3 67.22 32.78 0.543
4 54.32 45.68 12.90
5 55.32 44.68 -0.992
6 55.36 44.64 -0.048
7 49.78 50.22 5.58
8 51.80 48.20 -2.02

Mean 62.12 37.88 3.83
SD 11.46 11.46 5.26  
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Table A.7 Pellet durability index (PDI) of feed pellet samples from selected transfers. 

Transfer 0 Transfer 1 Transfer 4 Transfer 7
1 92.42 92.09 93.28 96.24
2 92.46 92.22 93.20 91.82
3 94.92 90.09 93.16 92.39
4 93.24 93.78 93.60 93.28
5 91.41
6 92.08

Mean 92.8 92.0 93.3 93.4
SD 1.22 1.51 0.20 1.97

Sample No.
Durability Index, %

 

 

Table A.8 Apparent geometric mean diameter (GMD), geometric standard deviation (GSD), and apparent 

geometric standard deviation of the particle diameter by mass (GSDw) of feed pellets from repeated 

handling. 

Transfer Apparent GMD, mm GSD Apparent GSDw, mm
0 5.621 1.691 3.092
1 5.011 1.880 3.376
2 4.547 2.004 3.420
3 4.542 1.990 3.380
4 3.709 2.191 3.217
5 3.904 2.098 3.164
6 3.871 2.119 3.188
7 3.603 2.145 3.024
8 3.807 2.087 3.061

Mean 4.291 2.023 3.213
SD 0.688 0.156 0.147  

 

Table A.9 Total collected dust from repeated handling of feed pellets. 

Transfer
Total Tailing Dust, 

kg Pellets Handled, t
Total Collected Dust, kg/t 

of pellets
1 14.2 22.6 0.629
2 16.2 22.5 0.718
3 15.3 22.5 0.681
4 15.9 22.5 0.706
5 15.1 22.5 0.674
6 18.8 22.5 0.838
7 11.6 22.4 0.516
8 17.8 22.4 0.793

Mean 15.6 22.5 0.694
SD 2.2 0.1 0.099   
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Table A.10 Percentage of feed pellet dust <125µm from repeated handling. 

Transfer 1 Transfer 2 Transfer 3 Transfer 4 Transfer 5 Transfer 6 Transfer 7 Transfer 8
1 43.225 48.103 49.083 47.703 48.264 47.625 45.833 48.495
2 45.981 47.951 49.048 48.043 48.411 51.571 45.562 51.765
3 46.076 47.395 48.969 46.526 48.099 51.055 46.104 51.419
4 51.815 47.826 49.573 46.093 48.633 48.172 46.958 49.638
5 51.855 47.348 48.744 46.348 47.702 45.743 45.928 51.843
6 51.051 48.017 47.770 46.932 48.559 48.380 45.185 51.436
7 51.867 47.045 48.751 45.912 47.892 49.436 45.638 53.341
8 52.385 47.463 48.341 45.562 48.366 51.701 45.518 53.447
9 51.686 46.409 48.556 46.484 48.559 50.224 46.071 49.585

Mean 49.549 47.506 48.759 46.623 48.276 49.323 45.866 51.219
SD 3.455 0.545 0.511 0.814 0.321 2.014 0.503 1.689

Sample No.
Percentage of Feed Pellet Dust  <125µm, %

 

Table A.11 Mass of feed pellet dust <125µm from repeated handling. 

Transfer 1 Transfer 2 Transfer 3 Transfer 4 Transfer 5 Transfer 6 Transfer 7 Transfer 8
1 6.137 7.789 7.525 7.573 7.312 8.965 5.301 8.623
2 6.528 7.765 7.520 7.627 7.334 9.708 5.270 9.204
3 6.542 7.675 7.508 7.386 7.287 9.611 5.333 9.143
4 7.356 7.745 7.600 7.318 7.368 9.068 5.431 8.826
5 7.362 7.667 7.473 7.358 7.227 8.611 5.312 9.218
6 7.248 7.776 7.324 7.451 7.357 9.107 5.226 9.146
7 7.364 7.618 7.474 7.289 7.256 9.306 5.279 9.485
8 7.437 7.686 7.411 7.233 7.327 9.732 5.265 9.503
9 7.338 7.515 7.444 7.380 7.357 9.454 5.329 8.817

Mean 7.035 7.693 7.476 7.402 7.314 9.285 5.305 9.107
SD 0.490 0.088 0.078 0.129 0.049 0.379 0.058 0.300

Sample No.
Mass of Feed Pellet Dust  <125µm, kg

 

Table A.12 Collected feed pellet dust <125µm from repeated handling. 

Transfer 1 Transfer 2 Transfer 3 Transfer 4 Transfer 5 Transfer 6 Transfer 7 Transfer 8
1 0.272 0.346 0.334 0.337 0.325 0.399 0.236 0.385
2 0.289 0.345 0.334 0.339 0.326 0.432 0.235 0.411
3 0.290 0.341 0.333 0.328 0.324 0.428 0.238 0.408
4 0.326 0.344 0.338 0.325 0.328 0.404 0.242 0.394
5 0.326 0.340 0.332 0.327 0.322 0.383 0.237 0.411
6 0.321 0.345 0.325 0.331 0.327 0.406 0.233 0.408
7 0.326 0.338 0.332 0.324 0.323 0.414 0.235 0.423
8 0.330 0.341 0.329 0.322 0.326 0.433 0.235 0.424
9 0.325 0.333 0.331 0.328 0.327 0.421 0.238 0.393

Mean 0.312 0.341 0.332 0.329 0.325 0.413 0.237 0.406
SD 0.022 0.004 0.003 0.006 0.002 0.017 0.003 0.013

Sample No.
Collected Dust  <125µm, kg·t-1 of pellets handled

 

Table A.13 Material flow rate of corn from repeated handling. 

Transfer  Bins Time, min

 Initial Mass on 
Bin Before 

Transfer, kg 
 Mass of 

Samples, kg 
 Mass of Dust, 

kg 

Material Flow 

Rate, t·h-1

0 to bin 9 25306.7 8.0
1 bin 9 to bin 2 29.2 25298.7 7.7 13.4 52.0
2 bin 2 to bin 9 25.1 25277.7 6.6 20.6 60.5
3 bin 9 to bin 2 28.8 25250.4 7.1 15.0 52.7
4 bin 2 to bin 9 24.2 25228.4 6.6 17.9 62.5
5 bin 9 to bin 2 28.0 25203.9 7.4 13.2 54.1
6 bin 2 to bin 9 23.2 25183.3 6.6 16.8 65.1
7 bin 9 to bin 2 27.8 25159.9 7.2 13.6 54.2
8 bin 2 to bin 9 29.4 25139.2 7.1 13.4 51.4

Mean 26.9 25227.6 7.1 15.5 56.6
SD 2.4 60.5 0.5 2.7 5.3  
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Table A.14 Initial mass of corn samples from repeated handling. 

Transfer 0 Transfer 1 Transfer 2 Transfer 3 Transfer 4 Transfer 5 Transfer 6 Transfer 7 Transfer 8
1 731.4 553.0 738.0 641.6 730.7 679.6 757.4 662.7 630.6
2 633.3 638.8 722.5 666.5 741.9 691.4 794.4 633.9 690.7
3 741.1 640.3 737.1 642.4 749.6 593.9 776.5 696.8 660.2
4 633.3 602.9 684.9 627.3 784.8 652.3 798.6 706.4 711.1
5 671.0 653.8 705.8 624.6 692.9 700.8 651.0 703.0 610.6
6 630.8 666.4 703.8 644.3 755.6 647.4 668.1 628.6 660.1
7 617.0 635.3 748.0 632.1 707.1 643.9 726.8 647.2 600.6
8 615.9 584.9 677.2 680.1 712.3 685.6 711.1 653.1 638.2
9 623.2 691.8 740.8 665.4 720.2 670.2 732.9 614.5 652.7
10 714.1 695.7 626.5 693.9 602.4 620.6
11 656.6 680.9 618.5 704.9 614.6 599.6
12 707.9 614.3

Mean 664.6 638.2 717.6 642.7 732.8 669.4 735.2 651.2 643.2
SD 46.90 43.66 25.77 20.02 28.34 32.90 52.41 37.20 36.06

Initial Mass, g
Sample No.

 

 

Table A.15 Test weight of corn samples from repeated handling. 

Transfer 0 Transfer 1 Transfer 2 Transfer 3 Transfer 4 Transfer 5 Transfer 6 Transfer 7 Transfer 8
1 752.12 746.97 735.65 746.97 754.70 759.33 744.40 762.93 741.31
2 759.33 744.40 742.86 756.24 750.58 745.43 752.12 748.52 752.64
3 760.36 751.09 746.46 751.09 745.43 748.52 758.82 750.58 743.89
4 750.58 750.58 748.52 751.09 748.52 745.43 742.86 749.55 741.31
5 751.09 761.90 749.55 746.46 750.58 743.89 740.28 744.40 750.58
6 744.40 757.79 734.62 749.55 742.34 752.64 742.34 742.86 748.00
7 749.55 758.82 748.00 745.43 743.89 748.52 741.31 742.34 741.31
8 751.09 736.16 748.52 745.43 748.52 742.86 754.70 744.40 750.58
9 750.58 742.86 751.09 745.43 748.52 744.40 760.87 750.58 742.34
10 751.09 742.86 742.86 751.09 748.52 751.09
11 746.97 742.86 749.55 743.89 744.40 752.64
12 752.12 729.99

Mean 751.61 747.19 745.03 748.19 748.12 747.82 748.63 748.10 746.88
SD 4.44 9.40 6.06 3.76 3.78 4.96 8.04 5.80 4.85

Sample No.
Test Weight, kg·m-3

 

 

Table A.16 Broken corn and foreign material (BCFM) of corn samples from repeated handling. 

Transfer 0 Transfer 1 Transfer 2 Transfer 3 Transfer 4 Transfer 5 Transfer 6 Transfer 7 Transfer 8
1 2.72 2.80 4.18 2.88 5.44 4.18 4.20 6.82 3.87
2 2.61 3.33 4.04 5.37 3.78 5.08 4.61 6.20 4.73
3 2.99 4.02 5.50 5.71 4.52 5.14 3.88 7.43 4.08
4 2.83 3.07 6.69 4.13 4.06 5.64 7.28 5.84 4.28
5 3.46 3.86 4.60 5.97 4.22 4.95 4.68 5.89 5.57
6 2.79 4.69 3.95 5.39 3.03 4.43 4.02 5.89 6.14
7 3.08 11.74 6.45 5.76 5.38 5.33 4.48 6.40 6.22
8 3.78 5.39 4.97 4.92 5.64 5.12 6.77 5.94 4.98
9 3.14 4.65 6.09 5.64 7.05 4.74 7.25 4.81 7.91
10 3.55 5.28 5.40 7.91 6.52 9.42
11 3.37 4.38 4.91 4.57 7.14 10.80
12 3.22 4.95

Mean 3.13 4.85 5.16 5.10 4.79 5.19 5.24 6.26 6.18
SD 0.36 2.33 1.06 0.90 1.21 1.00 1.43 0.72 2.28

Sample No.
Broken Corn and Foreign Material (BCFM), %
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Table A.17 Moisture content (%) of corn samples from repeated handling. 

Transfer 0 Transfer 1 Transfer 2 Transfer 3 Transfer 4 Transfer 5 Transfer 6 Transfer 7 Transfer 8
1 12.7 12.9 12.7 12.8 12.8 12.8 12.3 12.1 12.2
2 12.6 12.6 12.7 12.8 12.8 12.8 12.3 12.1 12.2
3 12.6 12.8 12.6 12.6 12.8 12.8 12.2 12.0 12.4
4 12.7 12.8 12.6 12.7 12.8 13.0 12.0 12.1 12.3
5 12.7 12.5 12.7 12.8 12.8 12.9 12.1 12.0 12.3
6 12.7 12.9 12.7 12.8 12.8 12.8 12.1 12.1 12.3
7 12.7 12.7 12.7 12.8 12.9 12.9 12.2 12.2 12.2
8 12.6 12.9 12.7 12.8 12.9 12.8 12.2 12.2 12.3
9 12.6 12.8 12.7 12.8 12.8 12.8 12.1 12.3 12.4
10 12.7 12.7 12.8 12.8 12.3 12.3
11 12.6 12.6 12.8 12.7 12.2 12.2
12 12.7 12.7

Mean 12.6 12.7 12.7 12.8 12.8 12.8 12.2 12.2 12.3
SD 0.045 0.125 0.040 0.058 0.040 0.065 0.100 0.107 0.061

Sample No.
Moisture Content, %

 

 

Table A.18 Percentage of broken corn that passed through 4.76-mm (12/64-in.) round-hole sieve. 

Transfer 0 Transfer 1 Transfer 2 Transfer 3 Transfer 4 Transfer 5 Transfer 6 Transfer 7 Transfer 8
1 2.72 2.80 4.18 2.88 5.44 4.18 4.20 6.82 3.87
2 2.61 3.33 4.04 5.37 3.78 5.08 4.61 6.20 4.73
3 2.99 4.02 5.50 5.71 4.52 5.14 3.88 7.43 4.08
4 2.83 3.07 6.69 4.13 4.06 5.64 7.28 5.84 4.28
5 3.46 3.86 4.60 5.97 4.22 4.95 4.68 5.89 5.57
6 2.79 4.69 3.95 5.39 3.03 4.43 4.02 5.89 6.14
7 3.08 11.74 6.45 5.76 5.38 5.33 4.48 6.40 6.22
8 3.78 5.39 4.97 4.92 5.64 5.12 6.77 5.94 4.98
9 3.14 4.65 6.09 5.64 7.05 4.74 7.25 4.81 7.91
10 3.55 5.28 5.40 7.91 6.52 9.42
11 3.37 4.38 4.91 4.57 7.14 10.80
12 3.22 4.95

Mean 3.13 4.85 5.16 5.10 4.79 5.19 5.24 6.26 6.18
SD 0.36 2.33 1.06 0.90 1.21 1.00 1.43 0.72 2.28

Sample No.
Broken Corn (< 4.76-mm), %

 

 

Table A.19 Percentage of whole corn on top of the 4.76-mm (12/64-in.) round-hole sieve. 

Transfer 0 Transfer 1 Transfer 2 Transfer 3 Transfer 4 Transfer 5 Transfer 6 Transfer 7 Transfer 8
1 97.28 97.20 95.82 97.12 94.56 95.82 95.80 93.18 96.13
2 97.39 96.67 95.96 94.63 96.22 94.92 95.39 93.80 95.27
3 97.01 95.98 94.50 94.29 95.48 94.86 96.12 92.57 95.92
4 97.17 96.93 93.31 95.87 95.94 94.36 92.72 94.16 95.72
5 96.54 96.14 95.40 94.03 95.78 95.05 95.32 94.11 94.43
6 97.21 95.31 96.05 94.61 96.97 95.57 95.98 94.11 93.86
7 96.92 88.26 93.55 94.24 94.62 94.67 95.52 93.60 93.78
8 96.22 94.61 95.03 95.08 94.36 94.88 93.23 94.06 95.02
9 96.86 95.35 93.91 94.36 92.95 95.26 92.75 95.19 92.09
10 96.45 94.72 94.60 92.09 93.48 90.58
11 96.63 95.62 95.09 95.43 92.86 89.20
12 96.78 95.05

Mean 96.87 95.15 94.84 94.90 95.21 94.81 94.76 93.74 93.82
SD 0.36 2.33 1.06 0.90 1.21 1.00 1.43 0.72 2.28

Sample No.
Whole Corn  (> 4.76-mm), %

 



 

 199 

 

Table A.20 Percentage of whole and broken corn. 

Transfers

Whole Corn  
(> 4.76-mm), 

%
Broken Corn 

(< 4.76-mm), %
Change in % 

Breakage
0 96.87 3.13
1 95.15 4.85 1.72
2 94.84 5.16 0.315
3 94.90 5.10 -0.066
4 95.21 4.79 -0.308
5 94.81 5.19 0.401
6 94.76 5.24 0.051
7 93.74 6.26 1.02
8 93.82 6.18 -0.079

Mean 94.90 5.10 0.382
SD 0.91 0.91 0.676  

 

Table A.21 Durability index of corn samples from selected transfers. 

Transfer 0 Transfer 1 Transfer 4 Transfer 7
1 99.72 99.62 99.58 99.52
2 99.80 99.68 99.76 99.62
3 99.70 99.64 99.64 99.50
4 99.82 99.80 99.60 99.62

Mean 99.8 99.7 99.6 99.6
SD 0.059 0.080 0.079 0.064

Sample No.
Durability Index, %

 

 

Table A.22 Apparent geometric mean diameter (GMD) of corn samples from repeated handling. 

Transfer 0 Transfer 1 Transfer 2 Transfer 3 Transfer 4 Transfer 5 Transfer 6 Transfer 7 Transfer 8
1 6.97 6.82 6.59 6.84 6.62 6.99 6.79 6.71 6.67
2 6.95 6.96 6.74 6.64 6.71 6.25 6.76 6.37 6.64
3 6.99 6.83 6.87 6.58 6.75 6.74 6.82 6.35 6.74
4 6.93 6.88 6.68 6.88 6.68 6.68 6.63 6.72 6.73
5 6.80 6.92 6.61 6.86 6.80 6.60 6.52 6.60 6.63
6 6.87 6.86 6.87 6.55 6.65 6.69 6.76 6.74 6.64
7 6.95 6.21 6.88 6.77 6.66 6.73 6.46 6.63 6.64
8 6.81 6.64 6.82 6.54 6.81 6.53 6.75 6.70 6.43
9 6.88 6.69 6.74 6.76 6.58 6.55 6.63 6.61 6.35
10 6.93 6.44 6.44 6.45 6.53 6.43
11 6.90 6.61 6.56 6.59 6.48 6.29
12 6.98 6.48

Mean 6.91 6.69 6.75 6.67 6.70 6.62 6.68 6.58 6.56
SD 0.06 0.23 0.11 0.15 0.08 0.19 0.13 0.14 0.16

Sample No.
Apparent GMD, mm
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Table A.23 Geometric standard deviation (GSD) of corn samples from repeated handling. 

Transfer 0 Transfer 1 Transfer 2 Transfer 3 Transfer 4 Transfer 5 Transfer 6 Transfer 7 Transfer 8
1 1.26 1.31 1.33 1.33 1.32 1.32 1.31 1.37 1.37
2 1.26 1.30 1.30 1.44 1.32 1.57 1.28 1.53 1.32
3 1.24 1.27 1.25 1.45 1.28 1.34 1.30 1.48 1.28
4 1.26 1.34 1.31 1.31 1.30 1.35 1.33 1.33 1.31
5 1.30 1.28 1.35 1.35 1.32 1.41 1.38 1.37 1.33
6 1.30 1.32 1.28 1.41 1.35 1.33 1.29 1.32 1.35
7 1.29 1.58 1.27 1.32 1.34 1.34 1.40 1.32 1.33
8 1.34 1.34 1.31 1.37 1.31 1.36 1.34 1.30 1.41
9 1.31 1.35 1.35 1.31 1.38 1.38 1.42 1.35 1.45
10 1.27 1.38 1.40 1.37 1.34 1.43
11 1.29 1.34 1.33 1.34 1.40 1.48
12 1.29 1.41

Mean 1.28 1.35 1.31 1.37 1.32 1.38 1.34 1.37 1.37
SD 0.03 0.08 0.03 0.05 0.03 0.07 0.05 0.07 0.06

Sample No.
GSD

 

 

Table A.24 Apparent geometric standard deviation (GSDw) of corn samples from repeated handling. 

Transfer 0 Transfer 1 Transfer 2 Transfer 3 Transfer 4 Transfer 5 Transfer 6 Transfer 7 Transfer 8
1 1.61 1.84 1.90 1.97 1.85 1.96 1.86 2.15 2.14
2 1.62 1.82 1.80 2.48 1.91 2.94 1.71 2.78 1.88
3 1.51 1.62 1.57 2.50 1.70 2.01 1.81 2.55 1.68
4 1.60 2.02 1.85 1.90 1.78 2.06 1.93 1.96 1.83
5 1.80 1.75 1.99 2.07 1.89 2.31 2.15 2.09 1.89
6 1.83 1.94 1.72 2.28 2.01 1.95 1.73 1.88 2.01
7 1.77 2.96 1.67 1.88 1.98 2.00 2.20 1.89 1.92
8 2.01 1.95 1.87 2.08 1.84 2.06 1.99 1.78 2.23
9 1.88 2.02 2.05 1.87 2.13 2.16 2.37 2.02 2.41
10 1.67 2.11 2.23 2.08 1.94 2.34
11 1.75 1.96 1.91 1.98 2.24 2.54
12 1.78 2.26

Mean 1.74 2.02 1.83 2.11 1.90 2.14 1.97 2.12 2.08
SD 0.14 0.34 0.15 0.23 0.13 0.29 0.23 0.30 0.27

Sample No.
Apparent GSD, mm

 

 

Table A.25 Total collected dust from repeated handling of corn. 

Transfer
Total Tailing Dust, 

kg Corn Handled, t
Total Collected Dust, kg·t-1 

of corn handled
1 13.4 25.3 0.529
2 20.6 25.3 0.816
3 15.0 25.3 0.593
4 17.9 25.2 0.710
5 13.2 25.2 0.522
6 16.8 25.2 0.666
7 13.6 25.2 0.541
8 13.4 25.1 0.532

Mean 15.5 25.2 0.614
SD 2.7 0.1 0.108  
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Table A.26 Percentage of corn dust <125µm from repeated handling. 

Transfer 1 Transfer 2 Transfer 3 Transfer 4 Transfer 5 Transfer 6 Transfer 7 Transfer 8
1 73.626 59.703 67.994 65.466 78.326 68.024 72.042 56.239
2 77.264 57.860 62.322 65.274 71.177 62.290 67.476 60.210
3 68.939 60.331 68.007 60.993 71.962 71.670 62.477 59.557
4 69.960 60.603 69.932 63.728 74.406 67.904 65.213 57.358
5 66.267 57.414 63.350 65.109 77.045 68.436 71.220 54.716
6 78.093 59.279 68.803 64.693 74.503 66.576 69.130 50.846
7 66.097 53.659 60.436 64.972 76.560 61.905 70.211 59.853
8 68.168 58.941 71.145 61.657 75.304 69.003 64.226 60.952
9 68.391 58.308 70.059 60.627 76.023 75.554 73.699 63.193

Mean 70.756 58.455 66.894 63.613 75.034 67.929 68.411 58.103
SD 4.507 2.094 3.850 1.970 2.325 4.235 3.818 3.738

Sample No.
Percent Corn Dust  <125µm, %

 

 

Table A.27 Mass of corn dust <125µm from repeated handling. 

Transfer 1 Transfer 2 Transfer 3 Transfer 4 Transfer 5 Transfer 6 Transfer 7 Transfer 8
1 9.852 12.322 10.178 11.729 10.303 11.416 9.803 7.525
2 10.339 11.941 9.329 11.695 9.363 10.454 9.182 8.057
3 9.225 12.451 10.180 10.928 9.466 12.028 8.502 7.969
4 9.361 12.508 10.468 11.418 9.787 11.396 8.874 7.675
5 8.867 11.849 9.483 11.666 10.135 11.486 9.691 7.322
6 10.450 12.234 10.299 11.591 9.800 11.173 9.407 6.804
7 8.844 11.074 9.046 11.641 10.071 10.389 9.554 8.009
8 9.122 12.165 10.649 11.047 9.906 11.581 8.740 8.156
9 9.151 12.034 10.487 10.863 10.000 12.680 10.029 8.456

Mean 9.468 12.064 10.013 11.398 9.870 11.400 9.309 7.775
SD 0.603 0.432 0.576 0.353 0.306 0.711 0.520 0.500

Sample No.
Mass of Corn Dust  <125µm, kg

 

 

Table A.28 Collected corn dust <125µm during repeated handling. 

Transfer 1 Transfer 2 Transfer 3 Transfer 4 Transfer 5 Transfer 6 Transfer 7 Transfer 8
1 0.389 0.487 0.403 0.465 0.409 0.453 0.390 0.299
2 0.409 0.472 0.369 0.464 0.371 0.415 0.365 0.320
3 0.365 0.493 0.403 0.433 0.376 0.478 0.338 0.317
4 0.370 0.495 0.415 0.453 0.388 0.453 0.353 0.305
5 0.350 0.469 0.376 0.462 0.402 0.456 0.385 0.291
6 0.413 0.484 0.408 0.459 0.389 0.444 0.374 0.271
7 0.350 0.438 0.358 0.461 0.400 0.413 0.380 0.319
8 0.361 0.481 0.422 0.438 0.393 0.460 0.347 0.324
9 0.362 0.476 0.415 0.431 0.397 0.504 0.399 0.336

Mean 0.374 0.477 0.397 0.452 0.392 0.453 0.370 0.309
SD 0.024 0.017 0.023 0.014 0.012 0.028 0.021 0.020

Sample No.
Collected Dust  <125µm, kg·t-1 of corn handled
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Data for Chapter 4 

 

Table A.29 Material flow rate of wheat during handling.[a] 

Transfer  Grain Lot Time, min
 Initial Mass on Bin 
Before Transfer, kg 

 Mass of 
Dust, kg 

Material Flow 

Rate, t·h-1

1 1 38.2 28217.7 2.5 44.3

1 2 36.0 28217.7 1.5 47.0

1 3 31.5 28638.8 2.5 54.6

1 4 30.2 28638.8 1.1 56.9

2 1 30.0 28217.7 3.6 56.4

2 2 30.3 28217.7 2.2 55.9

2 3 30.3 27796.5 0.6 55.1

2 4 35.7 28217.7 1.9 47.4

Mean 32.8 28270.3 2.0 52.2

SD 3.3 269.9 0.9 5.1  
[a] Material mass was measured using in-line weighing scale. 

 

Table A.30 Mass concentration of wheat dust collected from lower duct (set A). 

Sample 1 Sample 2 Sample 3 Mean SD
1 1 169.0 44.3 37.5 83.6 74.1
1 2 24.1 32.9 39.8 32.3 7.9
1 3 25.1 61.6 56.7 47.8 19.8
1 4 49.2 70.8 55.3 58.4 11.1
2 1 171.2 79.2 64.3 104.9 57.9
2 2 33.5 68.0 42.2 47.9 18.0
2 3 44.3 47.8 39.2 43.8 4.3
2 4 37.1 31.2 39.4 35.9 4.2

Transfer  Grain Lot 
Mass Concentration, mg·m-3

 

 

Table A.31 Mass concentration of wheat dust collected from upper duct (set B). 

Sample 1 Sample 2 Sample 3 Mean SD
1 1 145.6 108.7 92.2 115.5 27.3
1 2 50.2 97.0 67.4 71.5 23.7
1 3 85.9 109.4 115.0 103.5 15.4
1 4 99.4 108.9 100.4 102.9 5.2
2 1 233.5 139.1 152.4 175.0 51.1
2 2 88.9 146.5 129.4 121.6 29.6
2 3 102.2 109.4 137.4 116.4 18.6
2 4 98.0 116.9 108.7 107.8 9.5

Mass Concentration, mg·m-3

Transfer  Grain Lot 
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Table A.32 Mass flow rate of wheat dust – lower duct (set A). 

Sample 1 Sample 2 Sample 3 Mean SD
1 1 1.09 0.28 0.24 0.54 0.48
1 2 0.16 0.21 0.26 0.21 0.05
1 3 0.16 0.40 0.36 0.31 0.13
1 4 0.32 0.46 0.36 0.38 0.07
2 1 1.10 0.51 0.41 0.67 0.37
2 2 0.22 0.44 0.27 0.31 0.12
2 3 0.28 0.31 0.25 0.28 0.03
2 4 0.24 0.20 0.25 0.23 0.03

Transfer  Grain Lot 
Dust Mass Flowrate, g·s-1

 

 

Table A.33 Mass flow rate of wheat dust – from upper duct (set B). 

Sample 1 Sample 2 Sample 3 Mean SD
1 1 0.73 0.54 0.46 0.58 0.14
1 2 0.25 0.49 0.34 0.36 0.12
1 3 0.43 0.55 0.58 0.52 0.08
1 4 0.50 0.54 0.50 0.51 0.03
2 1 1.17 0.70 0.76 0.88 0.26
2 2 0.44 0.73 0.65 0.61 0.15
2 3 0.51 0.55 0.69 0.58 0.09
2 4 0.49 0.58 0.54 0.54 0.05

Transfer  Grain Lot 
Dust Mass Flowrate, g·s-1

 

 

Table A.34 Geometric mean diameter (GMD) of wheat dust collected from lower duct (set A). 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Mean SD
1 1 10.7 10.8 13.6 13.6 14.6 14.0 12.9 1.7
1 2 12.2 12.7 13.3 13.1 15.4 15.0 13.6 1.3
1 3 14.3 15.0 14.2 14.1 14.2 14.4 14.4 0.3
1 4 14.2 14.9 14.1 14.5 18.4 18.3 15.7 2.0
2 1 11.9 12.1 13.8 13.7 15.6 16.2 13.9 1.8
2 2 17.2 17.8 13.4 13.3 15.8 15.6 15.5 1.9
2 3 15.9 15.6 16.7 15.4 15.0 17.3 16.0 0.8
2 4 15.8 15.6 21.9 17.9 15.1 14.8 16.9 2.7

Geometric Mean Diameter, µm
Transfer  Grain Lot 

 

 

Table A.35 Geometric mean diameter (GMD) of wheat dust collected from upper duct (set B). 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Mean SD
1 1 17.1 17.3 11.4 11.2 8.7 10.3 12.7 3.6
1 2 12.3 12.9 11.5 11.5 8.4 8.3 8.3 10.5 2.0
1 3 13.1 13.2 16.4 14.7 10.0 9.6 12.8 2.6
1 4 13.2 13.2 12.2 12.0 10.1 9.6 11.7 1.6
2 1 13.1 13.4 14.3 14.8 10.6 10.8 12.8 1.8
2 2 13.0 14.0 10.7 10.9 11.0 11.4 11.8 1.4
2 3 13.2 13.0 12.7 12.5 11.5 11.9 12.5 0.7
2 4 14.7 15.0 13.0 12.8 13.0 13.6 13.7 0.9

Transfer  Grain Lot 
Geometric Mean Diameter, µm
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Table A.36 Geometric standard deviation (GSD) of wheat dust collected from lower duct (set A). 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Mean SD
1 1 2.43 2.44 2.79 2.93 3.05 2.92 2.76 0.26
1 2 2.45 2.50 2.90 2.86 2.90 2.83 2.74 0.21
1 3 2.85 2.98 2.86 2.84 2.76 2.79 2.84 0.08
1 4 2.73 2.86 2.75 2.82 3.01 3.05 2.87 0.13
2 1 2.61 2.65 2.81 2.81 2.88 3.00 2.79 0.14
2 2 3.03 3.09 2.80 2.79 2.96 2.94 2.93 0.12
2 3 2.99 2.94 3.12 2.90 2.82 3.15 2.99 0.13
2 4 2.91 2.87 3.57 2.99 2.83 2.74 2.99 0.30

Geometric Standard Deviation
Transfer  Grain Lot 

 

 

Table A.37 Geometric standard deviation (GSD) of wheat dust collected from upper duct (set B). 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Mean SD
1 1 3.00 3.07 2.67 2.65 2.29 2.83 2.75 0.28
1 2 2.82 2.97 2.85 2.85 2.23 2.22 2.22 2.60 0.35
1 3 3.04 3.07 3.37 3.05 2.62 2.50 2.94 0.32
1 4 2.99 3.00 2.78 2.78 2.54 2.39 2.75 0.24
2 1 3.21 3.25 3.09 3.22 2.56 2.55 2.98 0.33
2 2 3.05 3.31 2.67 2.72 2.58 2.63 2.83 0.29
2 3 2.92 2.84 2.86 2.82 2.64 2.72 2.80 0.10
2 4 3.00 3.07 2.84 2.78 2.71 2.80 2.86 0.14

Transfer  Grain Lot 
Geometric Standard Deviation
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Figure A.1 Mean cumulative and mean differential volume percentages for the particle size distribution of 

wheat dust collected from the lower duct (set A) during Transfers 1 and 2 (T1, T2) on Grain Lots 1 to 4 (GL1 

to GL4). 
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Figure A.2 Mean cumulative and mean differential volume percentages for the particle size distribution of 

wheat dust collected from the upper duct (set B) during Transfers 1 and 2 (T1, T2)  on Grain Lots 1 to 4 (GL1 

to GL4). 

 

 

Table A.38 Percentage of particulate matter of the total wheat dust (% PM) from the lower duct (set A). 

Transfer Grain Lot % PM 2.5 % PM 4.0 % PM 10
1 1 6.25 9.51 29.7
1 2 4.75 8.51 30.0
1 3 4.54 8.13 29.2
1 4 4.14 7.37 26.6
2 1 5.91 8.71 27.2
2 2 4.38 7.64 27.6
2 3 4.05 7.32 26.9
2 4 3.82 6.79 25.5

Mean 4.73 8.00 27.8
SD 0.89 0.89 1.6  
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Table A.39 Percentage of particulate matter of the total wheat dust (% PM) from the upper duct (set B). 

Transfer Grain Lot % PM 2.5 % PM 4.0 % PM 10
1 1 6.18 10.7 35.2
1 2 5.84 12.2 43.6
1 3 5.27 10.6 37.3
1 4 5.11 10.7 39.0
2 1 6.02 10.9 35.4
2 2 5.56 11.3 38.8
2 3 4.95 10.2 36.1
2 4 4.46 9.0 32.8

Mean 5.42 10.7 37.3
SD 0.59 0.9 3.3  

 

Table A.40 Material flow rate of corn during handling. [a] 

Transfer  Bins Time, min

 Initial Mass on 
Bin Before 

Transfer, kg 
 Mass of 

Samples, kg 
 Mass of Dust, 

kg 

Material Flow 

Rate, t·h-1

0 to bin 9 25306.7 8.0
1 bin 9 to bin 2 29.2 25298.7 7.7 13.4 52.0
2 bin 2 to bin 9 25.1 25277.7 6.6 20.6 60.5
3 bin 9 to bin 2 28.8 25250.4 7.1 15.0 52.7
4 bin 2 to bin 9 24.2 25228.4 6.6 17.9 62.5
5 bin 9 to bin 2 28.0 25203.9 7.4 13.2 54.1
6 bin 2 to bin 9 23.2 25183.3 6.6 16.8 65.1
7 bin 9 to bin 2 27.8 25159.9 7.2 13.6 54.2
8 bin 2 to bin 9 29.4 25139.2 7.1 13.4 51.4

Mean 26.9 25227.6 7.1 15.5 56.6
SD 2.4 60.5 0.5 2.7 5.3  

[a] Material mass was measured while in the truck during receiving operation. 
 

Table A.41 Mass concentration of corn dust collected from lower duct (set A). 

Sample 1 Sample 2 Sample 3 Mean SD
1 131.0 112.9 226.1 156.7 60.8
2 145.9 147.5 217.3 170.2 40.8
3 143.9 150.6 125.3 139.9 13.1
4 129.6 176.7 149.8 152.0 23.6
5 168.2 172.0 135.5 158.6 20.1
6 140.2 178.2 148.2 155.6 20.0
7 180.6 194.1 177.3 184.0 8.9
8 137.8 170.2 183.3 163.8 23.4

Transfer
Mass Concentration, mg·m-3
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Table A.42 Mass concentration of corn dust collected from upper duct (set B). 

Sample 1 Sample 2 Sample 3 Mean SD
1 275.7 282.2 445.9 334.6 96.4
2 390.0 380.9 383.5 384.8 4.7
3 260.0 321.3 441.9 341.0 92.5
4 243.1 348.0 354.1 315.1 62.4
5 270.6 309.6 361.9 314.0 45.8
6 318.7 373.7 418.0 370.1 49.7
7 527.8 481.7 482.2 497.2 26.5
8 389.1 491.1 472.8 451.0 54.4

Transfer
Mass Concentration, mg·m-3

 

 

Table A.43 Mass flow rate of corn dust – from lower duct (set A). 

Sample 1 Sample 2 Sample 3 Mean SD
1 0.84 0.73 1.45 1.01 0.39
2 0.94 0.95 1.40 1.09 0.26
3 0.93 0.97 0.81 0.90 0.08
4 0.83 1.14 0.96 0.98 0.15
5 1.08 1.11 0.87 1.02 0.13
6 0.90 1.15 0.95 1.00 0.13
7 1.16 1.25 1.14 1.18 0.06
8 0.89 1.09 1.18 1.05 0.15

Transfer
Dust Mass Flowrate, g·s-1

 

 

Table A.44 Mass flow rate of corn dust – from upper duct (set B). 

Sample 1 Sample 2 Sample 3 Mean SD
1 1.38 1.41 2.23 1.67 0.48
2 1.95 1.90 1.92 1.92 0.02
3 1.30 1.61 2.21 1.71 0.46
4 1.22 1.74 1.77 1.58 0.31
5 1.35 1.55 1.81 1.57 0.23
6 1.59 1.87 2.09 1.85 0.25
7 2.64 2.41 2.41 2.49 0.13
8 1.95 2.46 2.36 2.25 0.27

Transfer
Dust Mass Flowrate, g·s-1

 

 

Table A.45 Geometric mean diameter (GMD) of corn dust collected from lower duct (set A). 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Mean SD
1 24.0 15.5 15.6 11.9 11.8 10.8 11.1 14.4 4.7
2 11.5 11.9 11.2 11.5 11.9 11.9 12.8 13.9 12.1 0.9
3 11.4 11.4 11.5 12.3 12.4 12.3 11.9 0.5
4 10.2 10.3 11.6 11.7 11.8 11.6 11.2 0.7
5 11.5 11.8 11.3 11.6 12.8 12.5 11.9 0.6
6 11.5 11.6 11.9 12.0 11.6 11.5 11.7 0.2
7 13.8 14.8 11.6 11.6 11.1 11.1 12.3 1.6
8 10.4 10.3 10.9 10.9 12.1 12.3 11.3 11.4 11.2 0.7

Transfer
Geometric Mean Diameter, µm
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Table A.46 Geometric mean diameter (GMD) of corn dust collected from upper duct (set B). 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Mean SD
1 10.3 10.1 10.4 10.5 10.4 10.4 10.3 0.2
2 11.0 10.9 10.1 10.2 10.9 10.7 10.6 0.4
3 10.0 10.6 11.0 10.8 11.0 10.7 10.7 0.4
4 10.0 10.0 10.6 10.4 10.4 10.8 10.4 0.3
5 10.3 10.5 11.3 11.4 11.6 11.7 11.1 0.6
6 11.0 11.2 10.7 10.9 10.8 11.1 11.1 11.0 0.2
7 10.7 10.4 10.3 10.2 9.7 9.4 10.1 0.5
8 9.3 9.6 10.1 10.0 10.7 10.4 10.0 0.5

Transfer
Geometric Mean Diameter, µm

 

 

Table A.47 Geometric standard deviation (GSD) of corn dust collected from lower duct (set A). 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Mean SD
1 4.45 2.78 2.79 2.35 2.34 2.31 2.34 2.77 0.77
2 2.37 2.39 2.35 2.37 2.40 2.41 2.70 3.14 2.52 0.27
3 2.37 2.36 2.36 2.38 2.38 2.38 2.37 0.01
4 2.26 2.27 2.33 2.34 2.33 2.32 2.31 0.04
5 2.35 2.36 2.31 2.33 2.42 2.37 2.36 0.04
6 2.35 2.35 2.34 2.35 2.33 2.33 2.35 0.01
7 2.55 2.87 2.39 2.40 2.35 2.35 2.48 0.20
8 2.26 2.25 2.27 2.26 2.48 2.51 2.33 2.33 2.33 0.10

Transfer
Geometric Standard Deviation

 

 

Table A.48 Geometric standard deviation (GSD) of corn dust collected from upper duct (set B). 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Mean SD
1 2.23 2.26 2.37 2.38 2.43 2.43 2.35 0.08
2 2.32 2.31 2.39 2.40 2.30 2.30 2.34 0.05
3 2.43 2.33 2.33 2.31 2.33 2.43 2.36 0.05
4 2.28 2.27 2.31 2.28 2.41 2.31 2.31 0.05
5 2.28 2.30 2.32 2.34 2.33 2.33 2.31 0.02
6 2.30 2.32 2.42 2.29 2.28 2.34 2.34 2.33 0.05
7 2.34 2.30 2.29 2.28 2.32 2.38 2.32 0.04
8 2.30 2.24 2.25 2.25 2.29 2.27 2.27 0.02

Transfer
Geometric Standard Deviation
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Figure A.3 Mean cumulative and mean differential volume percentages for the particle size distribution of 

corn dust collected from the lower duct (set A) during Transfers 1 to 8. 
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Figure A.4 Mean cumulative and mean differential volume percentages for the particle size distribution of 

corn dust collected from the upper duct (set B) during Transfers 1 to 8. 

 

 

Table A.49 Percentage of particulate matter of the total corn dust (% PM) from the lower duct (set A). 

Transfer % PM 2.5 % PM 4.0 % PM 10
1 6.810 9.083 24.164
2 7.376 9.641 26.162
3 7.281 9.670 24.971
4 7.193 9.742 27.334
5 7.025 9.400 24.630
6 7.042 9.415 25.590
7 7.733 9.896 23.320
8 7.252 9.717 28.060

Mean 7.214 9.571 25.529
SD 0.275 0.257 1.601  
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Table A.50 Percentage of particulate matter of the total corn dust (% PM) from the upper duct (set B). 

Transfer % PM 2.5 % PM 4.0 % PM 10
1 7.68 10.1 32.1
2 7.52 10.2 30.1
3 7.72 10.2 29.9
4 7.56 10.3 31.8
5 7.25 9.8 27.9
6 7.29 9.9 28.8
7 7.98 10.7 32.6
8 7.72 10.5 33.3

Mean 7.59 10.2 30.8
SD 0.24 0.3 1.9  

 

 

Table A.51 Particle densities of wheat and corn dusts. 

Wheat Dust Corn Dust
1 1.46 1.52
2 1.47 1.49
3 1.50 1.50
4 1.52
5 1.51

Mean 1.48 1.51
SD 0.022 0.014

Sample
Particle Density, g·cm-3
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Data for Chapter 5 

 

Table A.52 Published physical properties of soybeans without moisture content. 

7.3 D

6.1 D

5.5 D

6.0 B, F

149.0D 100.0 - 200.0E

1180.0F

772 A, G

0.08 D 0.4 F

100.0F

35.71F

Restitution 
Coefficient, e generic 0.7D 0.5 F

with self (or grain) 0.55B, C 0.267D

with steel 0.37B, C

with transparent perspex 0.3F

with glass 0.328D

for filling or piling 16.0 B, C

for emptying or funneling 29.0 B, C

Published value

Shear Modulus (MPa), G = E / (2 + 2v)

Seed Density (kg·m-3), ρ p

Bulk Density (kg·m-3), ρ b

Poisson Ratio, v

Elastic Modulus (MPa), E

Parameters

Static Angle of 
Repose (deg)

Static Friction 
Coefficient, µ s

Length (mm), l

Width (mm), w

Thickness (mm), h

Equivalent Diameter (mm), d e

Seed Mass (mg), m

Seed Volume (mm3), V

 
A Henderson and Perry (1976) 
B Mohsenin (1986) 
C Stahl (1950) 
D Vu-Quoc et al. (2000) 
E McLelland and Miller (2001) 
F Raji and Favier (2004a, 2004b) 
G ASABE Standards (2006a) - D241.4 
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Table A.53 Published physical properties of corn with moisture content. 

16.4 D 9.4 F 12.6 E

20.3 D 8.2 F 8.3 E

12.8 D 5.1 F 4.5 E

8.0 D

349.7 D 295.0F 348.8 E 349.7A, D

274.0 E

1290 D 1396.5F 1273 E 1300 G 1270 G

747.7 D 742 ± 3F 810.0 E 728 ± 3F 698 ± 3F 672 ± 2F 663 ± 2F

0.32, 0.20 ± 0.01D, F 0.20 ± 0.01F 0.4 C, H 0.20 ± 0.02F 0.19 ± 0.02F 0.20 ± 0.02F

26.2 ± 3.2F 19.3 ± 2.7F 2030 C, H 15.9 ± 0.9F 15.5 ± 2.6F 12.3 ± 1.4F

9.50 - 12.35F 6.86 - 9.24F 725.0C, H 6.15 - 7.12F 5.33 - 7.74F 4.47 - 5.81F

with sheet metal 0.2B, D 0.24 B, D 0.232 - 0.273F 0.25 B, D 0.249 - 0.290F 0.34 B, D 0.238 - 0.248F 0.251 - 0.266F 0.254 - 0.284F

with steel 0.53A, D 0.246 - 0.294F 0.249 - 0.262F 0.47 A, D 0.242 - 0.267F 0.48 A, D 0.235 - 0.268F 0.59 A, D 0.253 - 0.303F 0.76 A, D

Static Angle of 
Repose (deg)

for emptying or 
funneling 23.5 ± 0.4F 33.8 ± 0.2F

30.6 ± 0.3
F

34.2 ± 0.5
F

31.9 ± 0.6
F

26.7 ± 0.6F 31.7 ± 0.5F 32.0 ± 1.4F 33.4 ± 0.8F 33.6 ± 1.5F

Moisture Content (% wb)

Equivalent Diameter (mm), d e

19.5 20.0 23.1Parameters 6.7 12.2 12.57.3 25.0

Seed Mass (mg), m

16.2 17.5
Length (mm), l
Width (mm), w

13.0 13.9 14.4 15.0

Thickness (mm), h

10.610.07.5 9.9

Elastic Modulus (MPa), E

Shear Modulus (MPa),                       
G = E / (2 + 2v)

Angle of Internal Friction (deg)

Seed Volume (mm3), V

Seed Density (kg·m-3), ρ p

Bulk Density (kg·m-3), ρ b

Poisson Ratio, v

Static Friction 
Coefficient, µ s

 
A Lorenzen (1957)  
B Brubaker and Pos (1965)  
C Shelef and Mohsenin (1969)  
D Mohsenin (1986)  
E Nelson (2002)  
F Molenda and Horabik (2005)  
G ASABE Standards (2006a) - D241.4  
H ASAE Standards (2006b) - S368.4 
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Table A.54 Published physical properties of corn without moisture content. 

12.0 F 10.1 I

8.0 F 9.1 I

4.0 F 6.7 I

285 E 250.0 - 300.1F

1280 I

721 C, E, H

0.4 G, I

1660 I 1041 - 2320G

592.86I 371.43 - 828.58G

Restitution 
Coefficient, e

with acrylic
0.59 I

with self (or grain) 0.52A, D 0.51 B

with steel 0.37A, D 0.45 B 0.476 - 0.597G

with acrylic 0.34I

with aluminum 0.226 - 0.277G

for filling or piling 16.0B, D

for emptying or funneling 27.0
B, D

Shear Modulus (MPa), G = E / (2 + 2v)

Seed Density (kg·m-3), ρ p

Bulk Density (kg·m-3), ρ b

Poisson Ratio, v

Elastic Modulus (MPa), E

Published value

Static Friction 
Coefficient, µ s

Static Angle of 
Repose (deg)

Length (mm), l

Width (mm), w

Parameters

Thickness (mm), h

Equivalent Diameter (mm), d e

Seed Mass (mg), m

Seed Volume (mm3), V

 
A Stahl (1950)  
B Henderson and Perry (1976)  
C Mohsenin (1986)  
D Hoseney and Faubion (1992)  
E Watson (2003)  
F Chung et al (2004)  
G ASABE Standards (2006a) - D241.4   
H Chung and Ooi (2008) 
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Table A.55 Published physical properties of wheat with moisture content. 

6.4 D 6.9 D 6.6, 5.7D 6.7 D 6.4 D 5.8 E 7.3 D 6.7 F 6.9 E 5.6 E

3.0 D 3.8 D 3.3, 3.1D 3.2 D 3.1 D 2.6 E 3.0 D 3.2 F 2.8 E 3.2 E

3.0 D 3.5 D 3.0, 3.3D 3.1 D 3.0 D 2.4 E 2.8 D 2.9 F 2.8 E 2.9 E

4.0 D 4.1 D 3.8, 3.6D 3.9 D 3.6 D 4.0 D

48.2 D 51.0 D 41.7, 35.2D 45.0 D 33.7 D 26.0 E 47.3 D 40.5 F 36.8 E 35.7 E

18.5 E 26.1 E 26.4 E

1420 D 1430 D 1430, 1420D 1420 D 1410 D 1409 E 1410 D 1290, 1300, 1320G 1407 F 1411 E 1345 E

805.5D 813.4D 794.1, 823.2D 799.2D 796.7D 772 E 801.8D 773 ± 3F 788 E 756 E

0.22 ± 0.01F 0.42 C, H

22.4 ± 4.6F 1544 C

7.24 - 11.16F 543.66C

with sheet metal 0.23 - 0.32F 0.10 B, D

with steel 0.37A 0.249 -0.282F 0.39 A, D

Static Angle of 
Repose (deg) for emptying or funneling 24.3 ± 0.5F

25.7 ± 0.3FAngle of Internal Friction (deg)

Seed Volume (mm3), V

Seed Density (kg·m-3), ρ p

Bulk Density (kg·m-3), ρ b

Poisson Ratio, v

Static Friction 
Coefficient, µ s

7.5 8.0

Elastic Modulus (MPa), E
Shear Modulus (MPa), G = E / (2 + 2v)

7.3 7.8

Seed Mass (mg), m

Moisture Content (% wb)

Equivalent Diameter (mm), d e

Parameters 6.2 8.6 8.8

Thickness (mm), h

11.8
Length (mm), l
Width (mm), w

8.3 11.511.29.8 10.0 10.9 11.0

 
A Lorenzen (1957) 
B Brubaker and Pos (1965) 
C Arnold and Roberts (1969) 
D Mohsenin (1986) 
E Nelson (2002) 
F Molenda and Horabik (2005) 
G ASABE Standards (2006a) - D241.4  
H ASAE Standards (2006b) - S368.4 
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Table A.55 Published physical properties of wheat with moisture content. (cont.) 

5.5 E 6.4 E 5.9 E

2.9 E 3.4 E 2.8 E

2.6 E 2.9 E 2.6 E

29.2 E 39.7 E 27.7 E

21.0 E 28.6 E 20.2 E

1388 E 1385 E 1373 E

763 E 765 ± 3F 694 ± 4F 722 705 ± 4F 713 ± 5F

0.42,  0.18 ± 0.02C, F, H 0.42 C, H 0.20 ± 0.03F 0.20 ± 0.01F 0.19 ± 0.01F

1413 - 2372,  22.2 ± 4.4C, F 2834 C 19.3 ± 2.5F 17.2 ± 3.6F 11.1 ± 1.1F

497.54 - 835.21,  7.42 - 11.47C, F 997.89C 6.83 - 9.32F 5.62 - 8.74F 4.17 - 5.17F

with sheet metal 0.26 - 0.34F 0.14 B, D 0.27, 0.26 - 0.34B, D, F 0.33 B, D 0.35 - 0.42F 0.34 - 0.44F

with steel 0.248 - 0.269F 0.43 A, D 0.280 - 0.335F 0.44 A, D 0.313 - 0.383F 0.55 A, D 0.335 - 0.414F

Static Angle of 
Repose (deg) for emptying or funneling 29.0 ± 0.7

F
33.3 ± 0.6

F
37.6 ± 0.5

F
35.4 ± 0.4

F

26.2 ± 0.4F 27.0 ± 0.5F 33.0 ± 1.0F 35.5 ± 0.5FAngle of Internal Friction (deg)

Seed Volume (mm3), V

Seed Density (kg·m-3), ρ p

Bulk Density (kg·m-3), ρ b

Poisson Ratio, v

Static Friction 
Coefficient, µ s

Elastic Modulus (MPa), E
Shear Modulus (MPa), G = E / (2 + 2v)

Seed Mass (mg), m

12.1
Length (mm), l
Width (mm), w
Thickness (mm), h

Equivalent Diameter (mm), d e

Parameters
Moisture Content (% wb)

13.8 20.017.1 17.5 19.312.5 13.0 14.1 15.0 15.7 16.9

A Lorenzen (1957) 
B Brubaker and Pos (1965) 
C Arnold and Roberts (1969) 
D Mohsenin (1986) 
E Nelson (2002) 
F Molenda and Horabik (2005) 
G ASABE Standards (2006a) - D241.4  
H ASAE Standards (2006b) - S368.4 
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Table A.56 Published physical properties of wheat without moisture content. 

37.0 F 31.0 - 38.0G

772 D, F, H

with self (or grain) 0.47A, E 0.53 B, C, E

with steel 0.41A, E 0.37 C, E 0.37 - 0.47B, E

for filling or piling 16.0C, E

for emptying or funneling 27.0 C, E

Bulk Density (kg·m-3), ρ b

Static Friction Coefficient, 
µ s

Published value

Static Angle of Repose (deg)

Length (mm), l

Width (mm), w

Parameters

Thickness (mm), h

Equivalent Diameter (mm), d e

Seed Mass (mg), m

Seed Volume (mm3), V

Seed Density (kg·m-3), ρ p

 
A Airy (1898) 
B Jamieson (1903) 
C Stahl (1950) 
D Henderson and Perry (1976) 
E Mohsenin (1986) 
F Hoseney and Faubion (1992) 
G McLelland and Miller (2001) 
H ASABE Standards (2006a) - D241.4 
 

 
 
 
 
 
Table A.57 Published physical properties of grain sorghum with moisture content. 

4.3 A 4.5 B

4.1 A 4.1 B

2.8 A 3.4 B

3.5 A

28.8 A 33.2 B

24.7 B

1320 A 1220 C 1260 C 1344 B

774.3A 775.0B

9.9 11.2

Equivalent Diameter (mm), d e

Parameters 9.2
Length (mm), l
Width (mm), w
Thickness (mm), h

9.5
Moisture Content (% wb)

Seed Volume (mm3), V

Seed Density (kg·m-3), ρ p

Bulk Density (kg·m-3), ρ b

Seed Mass (mg), m

 
A Mohsenin (1986) 
B Nelson (2002) 
C ASABE Standards (2006a) - D241.4 
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Table A.58 Published physical properties of grain sorghum without moisture content. 

28.0 D

643.5,  720.72B 733 D 721 E

with self (or grain) 0.65A, C

with steel 0.37 A, C

for filling or piling 20 A, C

for emptying or funneling 33 A, C

Published valueParameters

Thickness (mm), h

Equivalent Diameter (mm), d e

Seed Mass (mg), m

Static Friction 
Coefficient, µ s

Static Angle of 
Repose (deg)

Length (mm), l
Width (mm), w

Bulk Density (kg·m-3), ρ b

 
A Stahl (1950) 
B Henderson and Perry (1976) 
C Mohsenin (1986) 
D Hoseney and Faubion (1992) 
E ASABE Standards (2006a) - D241.4 

 

 

 

Table A.59 Published physical properties of rice without moisture content. 

27.0 D

579 * B, E 579 D

with self (or grain) 0.73* A, C

with steel 0.48* A, C

for filling or piling 20 * A, C

for emptying or funneling 36 * A, C

Length (mm), l
Width (mm), w

Published value

Seed Mass (mg), m

Parameters

Thickness (mm), h

Equivalent Diameter (mm), d e

Static Friction 
Coefficient, µ s

Static Angle of 
Repose (deg)

Seed Volume (mm3), V

Seed Density (kg·m-3), ρ p

Bulk Density (kg·m-3), ρ b

 
* Rough rice or paddy  

A Stahl (1950) 
B Henderson and Perry (1976) 
C Mohsenin (1986) 
D Hoseney and Faubion (1992) 
E ASABE Standards (2006a) - D241.4 
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Table A.60 Published physical properties of rice with moisture content. 

7.6 C 9.8 C 8.0 C 7.4, 6.5** D 5.6, 5.3*** D 7.8 *** D 8.9 *** D

3.6 C 2.5 C 3.2 C 2.1 ** D 2.5 *** D 2.9 *** D 2.3 *** D

2.5 C 2.1 C 2.3 C 1.7 ** D 1.8, 1.7*** D 2.0 *** D 2.0 *** D

3.5 C 3.3 C 3.4 C

29.1 C 25.0 C 26.9 C 20.9, 18.9** D 21.5, 17.5*** D 24.9 *** D 23.6 *** D

14.6, 12.7** D 14.9. 12.0*** D 18 *** D 17 *** D

1360 C 1390 C 1360 C 1432, 1460** D 1110.0* E 1434, 1462*** D 1120 * E 1382 *** D 1388 *** D

573.5C 593.8C 573.2C 716, 773** D 802, 851*** D 641 *** D 660 *** D

with self (or grain) 0.73, 0.68* A, C

with sheet metal 0.40 - 0.41, 0.45* A, C

Bulk Density (kg·m-3), ρ b

Seed Mass (mg), m

15.411.9
Length (mm), l
Width (mm), w

11.5

Static Friction 
Coefficient, µ s

Equivalent Diameter (mm), d e

Parameters 8.6
Moisture Content (% wb)

Seed Volume (mm3), V

Seed Density (kg·m-3), ρ p

Thickness (mm), h

8.8 9.2 15.712.0 12.4 14.0

 
* Rough rice or paddy  

**  Long grain 
***  Medium grain 
A Kramer (1944) 
B Stahl (1950) 
C Mohsenin (1986) 
D Nelson (2002) 
E ASABE Standards (2006a) - D241.4 
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Table A.61 Published physical properties of barley with moisture content. 

10.9, 10.6C 10.0 C 10.0, 10.6C 10.5 C 8.4 E

3.8, 3.5C 3.6 C 3.2, 3.3C 3.5 C 3.6 E

3.0, 2.9C 2.9 C 2.5, 2.6C 2.6 C 2.8 E

4.2, 4.0C 4.0 C 3.8, 3.7C 4.0 C

53.9, 48.0C 48.9 C 38.5, 36.4C 45.5 C 45.2 E

1400, 1420C 1400 C 1380 C 1380 C 1260.0F 1210F 1346 E 1130 F 1330 F 1240 F

620.0, 653.6C 628.4C 567.2, 588.8C 589.4C 686 ± 3E

0.19 ± 0.01E

14.2 ± 1.6E

5.25 - 6.69E

with sheet metal 0.225 - 0.252E 0.2 B, C

with steel 0.4 A, C 0.226 - 0.257E 0.4 A, C

Static Angle of 
Repose (deg)

for emptying or 
funneling 26.8 ± 0.7E

27.8 ± 0.4E

Shear Modulus (MPa), G = E / (2 + 2v)

Angle of Internal Friction (deg)

Seed Volume (mm3), V

Seed Density (kg·m-3), ρ p

Bulk Density (kg·m-3), ρ b

Poisson Ratio, v

Static Friction 
Coefficient, µ s

10.89.8
Moisture Content (% wb)

Elastic Modulus (MPa), E

Seed Mass (mg), m

Length (mm), l
10.0

Width (mm), w

10.4 10.7

Equivalent Diameter (mm), d e

Parameters 7.5 10.3

Thickness (mm), h

7.6 7.9 8.2 9.7

 
A Lorenzen (1957) 
B Brubaker and Pos (1965) 
C Mohsenin (1986) 
D Nelson (2002) 
E Molenda and Horabik (2005) 
F ASABE Standards (2006a) - D241.4  
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Table A.61 Published physical properties of barley with moisture content. (cont.) 

9.5, 7.9D

3.1, 2.9D

2.4, 2.2D

25.1, 26.6D

25.9, 19.7D

1356, 1352D

566, 615D 689 ± 2E 680 ± 5E 675 ± 4E 667 ± 3E

0.16 ± 0.01E 0.15 ± 0.01E 0.17 ± 0.01E 0.19 ± 0.01E

14.0 ± 1.8E 13.8 ± 1.1E 12.3 ± 0.8E 10.4 ± 2.4E

5.21 - 6.87E 5.47 - 6.54E 4.87 - 5.65E 3.33 - 5.42E

with sheet metal 0.17B, C 0.233 -0.269E 0.2 B, C 0.246 - 0.273E 0.34 B, C 0.240 - 0.325E 0.273 - 0.352E

with steel 0.239 -0.280E 0.4 A, C 0.232 - 0.258E 0.38 A, C 0.238 - 0.278E 0.39 A, C 0.245 - 0.279E

Static Angle of 
Repose (deg)

for emptying or 
funneling 28.9 ± 0.7

E
29.5 ± 0.7

E
30.5 ± 0.8

E
32.1 ± 0.8

E

28.5 ± 0.5E 31.2 ± 0.3E 30.6 ± 1.0E 33.2 ± 0.5E

Elastic Modulus (MPa), E
Shear Modulus (MPa), G = E / (2 + 2v)

Angle of Internal Friction (deg)

Seed Volume (mm3), V

Seed Density (kg·m-3), ρ p

Bulk Density (kg·m-3), ρ b

Poisson Ratio, v

Static Friction 
Coefficient, µ s

Seed Mass (mg), m

12.3 12.5
Length (mm), l
Width (mm), w

11.2

Equivalent Diameter (mm), d e

Thickness (mm), h

13.3 14.3 15.0Parameters
Moisture Content (% wb)

16.6 17.5 19.5 20.016.4

 
A Lorenzen (1957) 
B Brubaker and Pos (1965) 
C Mohsenin (1986) 
D Nelson (2002) 
E Molenda and Horabik (2005) 
F ASABE Standards (2006a) - D241.4  
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Table A.62 Published physical properties of barley without moisture content. 

37 F

616 C 605.0E 618 F

with self (or grain) 0.51A, D 0.53 B, D

with steel 0.38A, D 0.38 - 0.40B, D

for filling or piling 16 B, D

for emptying or funneling 28 B, D

Seed Mass (mg), m

Static Friction 
Coefficient, µ s

Static Angle of Repose 
(deg)

Seed Volume (mm3), V

Seed Density (kg·m-3), ρ p

Bulk Density (kg·m-3), ρ b

Published valueParameters

Thickness (mm), h

Equivalent Diameter (mm), d e

Length (mm), l
Width (mm), w

 
A Airy (1898) 
B Stahl (1950) 
C Henderson and Perry (1976) 
D Mohsenin (1986) 
E Hoseney and Faubion (1992) 
F ASABE Standards (2006a) - D241.4 
 

 

 

Table A.63 Published physical properties of oats without moisture content. 

32.0 D

438 D 412 E

with self (or grain) 0.53A, C 0.62 B, C

with steel 0.41A, C 0.45 B, C

for filling or piling 18 B, C

for emptying or funneling 32 B, C

Length (mm), l
Width (mm), w

Published value

Seed Mass (mg), m

Parameters

Thickness (mm), h

Equivalent Diameter (mm), d e

Static Friction Coefficient, µ s

Static Angle of Repose (deg)

Seed Volume (mm3), V

Seed Density (kg·m-3), ρ p

Bulk Density (kg·m-3), ρ b

 
A Airy (1898) 
B Stahl (1950) 
C Mohsenin (1986) 
D Hoseney and Faubion (1992) 
E ASABE Standards (2006a) – D241.4 
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Table A.64 Published physical properties of oats with moisture content. 

14.9 B 11.4, 13.0B 11.0, 14.2B 11.5 D 10.2 C 10.9 C

3.1 B 2.7, 2.9B 2.8, 2.9B 3.1 D 2.8 C 2.8 C

2.4 B 2.1, 2.2B 2.3, 2.4B 2.6 D 2.2 C 2.1 C

3.8 B 3.5, 3.6B 3.6 B

39.5 B 30.5, 33.7B 33.9, 32.9B 35.6 D 28.1 C 34.8 C

21.4 C 26.8 C

1380 B 1360, 1380B 1370, 1350B 1060 E 950 E 1050 E 1397D 990 E 1314C 1295 C

472.01B 513, 485B 502, 360B 557 ± 2D 454 C 419 C

0.18 ± 0.01D

17.8 ± 2.8D

6.30 - 8.80D

with sheet metal 0.237 - 0.271D 0.22 A, B

with steel 0.237 - 0.268D

Static Angle of 
Repose (deg)

for emptying or 
funneling 28.4 ± 0.4D

22.1 ± 1.1DAngle of Internal Friction (deg)

Seed Volume (mm3), V

Seed Density (kg·m-3), ρ p

Bulk Density (kg·m-3), ρ b

Poisson Ratio, v

Static Friction 
Coefficient, µ s

Elastic Modulus (MPa), E

10.0 10.3 10.6

Shear Modulus (MPa), G = E / (2 + 2v)

Seed Mass (mg), m

Length (mm), l
Width (mm), w

Equivalent Diameter (mm), d e

10.79.8

Thickness (mm), h

8.6 8.8 9.48.5 9.7Parameters
Moisture Content (% wb)

 
A Brubaker and Pos (1965) 
B Mohsenin (1986) 
C Nelson (2002) 
D Molenda and Horabik (2005) 
E ASABE Standards (2006a) - D241.4  
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Table A.64 Published physical properties of oats with moisture content. (cont.) 

574 ± 2D 547 ± 2D 528 ± 2D 527 ± 2D

0.20 ± 0.01D 0.17 ± 0.01D 0.17 ± 0.01D 0.15 ± 0.01D

16.0 ± 3.2D 13.2 ± 3.1D 10.7 ± 2.4D 10.4 ± 1.9D

5.29 - 8.07D 4.28 - 7.03D 3.52 - 5.65D 3.66 - 5.39D

with sheet metal 0.236 - 0.262D 0.24 A, B 0.18 A, B 0.231 - 0.260D 0.41 A, B 0.32 A, B 0.230 - 0.265D 0.229 - 0.269D

with steel 0.245 - 0.257D 0.235 - 0.264D 0.235 - 0.267D 0.233 - 0.276D

Static Angle of 
Repose (deg)

for emptying or 
funneling 28.7 ± 1.0

D
31.3 ± 0.5

D
32.8 ± 0.5

D
34.7 ± 0.4

D

22.4 ± 0.9D 24.0 ± 0.5D 23.9 ± 1.0D 26.4 ± 1.7D

Seed Mass (mg), m

Elastic Modulus (MPa), E
Shear Modulus (MPa), G = E / (2 + 2v)

Angle of Internal Friction (deg)

Seed Volume (mm3), V

Seed Density (kg·m-3), ρ p

Bulk Density (kg·m-3), ρ b

Poisson Ratio, v

Static Friction 
Coefficient, µ s

12.5 13.0
Moisture Content (% wb)

20.0

Equivalent Diameter (mm), d e

16.0 17.3 17.5Parameters

Thickness (mm), h

14.0 15.0
Length (mm), l
Width (mm), w

 
A Brubaker and Pos (1965) 
B Mohsenin (1986) 
C Nelson (2002) 
D Molenda and Horabik (2005) 
E ASABE Standards (2006a) - D241.4  
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Table A.65 Published physical properties of sunflower seed and kernel with moisture content. 

9.5 +, 8.3 ++ A 10.7 * B 14.4 ** B

5.1 +, 4.1 ++ A 5.2 * B 8.1 ** B

3.3 +, 2.4 ++ A 3.1 * B 4.6 ** B

5.4 +, 4.3 ++ A

49 +, 34 ++ A 59.5 * B 115.8 ** B

58.2 * B 105.4 ** B

1023 * B 1099 ** B 706 - 765 +, 1050 - 1250 ++ A

386 * B 339 ** B 434 - 462 +, 574 - 628 ++ A

Static Friction 
Coefficient, µ s with sheet metal 0.40 - 0.58 +, 0.43 - 0.81 ++ A

Static Angle of Repose 
(deg) for emptying or funneling 34 - 41 +, 27 - 38 ++ A

Moisture Content (% wb)

Equivalent Diameter (mm), d e

Parameters 5.8

Thickness (mm), h

7.6 8.7 3.9 - 16.7

Seed Density (kg·m-3), ρ p

Bulk Density (kg·m-3), ρ b

Seed Mass (mg), m

Length (mm), l
Width (mm), w

Seed Volume (mm3), V

 
* Oil type 
**  Non-oil type 
+ Sunflower seed (unhulled) 
++ Sunflower kernel (dehulled) 
A Gupta and Das (1997) 
B Nelson (2002) 

 

 

 

 

Table A.66 Published physical properties of sunflower seed and kernel without moisture content. 

126 * B

361.2A 412.0 * C 309 ** C

Seed Mass (mg), m
Seed Volume (mm3), V

Seed Density (kg·m-3), ρ p

Bulk Density (kg·m-3), ρ b

Published valueParameters

Thickness (mm), h

Equivalent Diameter (mm), d e

Length (mm), l
Width (mm), w

 
* Oil type 
**  Non-oil type 
A Shroyer et al. (1996) 
B McLelland and Miller (2001) 
C ASABE Standards (2006a) - D241.4 
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Table A.67 Published physical properties of canola with moisture content. 

2.07 ± 0.016C 1.8 D 1.6 B 2.19 ± 0.014C 2.29 ± 0.015C

1.7 D 1.4 B

1.7 D

1.84 ± 0.016C 2.0 A 1.90 ± 0.013C 1.99 ± 0.010C

4.0 ± 0.1C 3.5 D 2.9 B 5.8 ± 0.1C 6.5 ± 0.1C

3.96 ± 0.085C 2.7 B 5.04 ± 0.075C 5.15 ± 0.075C

1131 D 1111 B 1150 E 1100 E

645 ± 5D 671 B 661 ± 2D 655 ± 3D 644 ± 2D

0.24 ± 0.03D 0.4 A 0.17 ± 0.02D 0.16 ± 0.01D 0.10 ± 0.01D

9.0 ± 0.6D 29.2, 50.1A 8.7 ± 0.8D 7.1 ± 0.6D 6.6 ± 0.9D

3.31 - 3.97D 10.43, 17.90A 3.32 - 4.13D 2.78 - 3.35D 2.57 - 3.44D

with sheet metal 0.27C 0.220 - 0.245D 0.211 - 0.245D 0.29 C 0.217 - 0.243D 0.215 - 0.240D 0.32 C

with steel 0.234 - 0.279D 0.254 - 0.279D 0.287 - 0.301D 0.264 - 0.292D

Static Angle of 
Repose (deg) for emptying or funneling 25.3 ± 0.8D 23.2 ± 0.9D

25.5 ± 0.9
D

24.5 ± 0.9
D

29.1 ± 0.7
D

24.7 ± 0.5D 30.6 ± 0.4D 31.7 ± 0.7D 34.8 ± 0.7D 33.2 ± 0.9D

Seed Mass (mg), m

Length (mm), l
Width (mm), w

12.06.7

Equivalent Diameter (mm), d e

Parameters 4.5

Thickness (mm), h

6.0

Angle of Internal Friction (deg)

Seed Volume (mm3), V

Seed Density (kg·m-3), ρ p

Bulk Density (kg·m-3), ρ b

Poisson Ratio, v

Static Friction 
Coefficient, µ s

Elastic Modulus (MPa), E

Shear Modulus (MPa), G = E / (2 + 2v)

6.2 6.5
Moisture Content (% wb)

19.37.0 9.0 11.6 14.0 16.0

 
A Bilanski et al. (1994) 
B Nelson (2002) 
C Calisir et al. (2005) 
D Molenda and Horabik (2005) 
E ASABE Standards (2006a) - D241.4  
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Table A.68 Published physical properties of canola without moisture content. 

2.0 B

3.0 - 4.0 A

1053 B

669 D

0.4 B

30.0 B

10.7 B

Restitution Coefficient, e generic 0.6 B

with self (or grain) 0.5 B

with transparent perspex 0.3 B

Static Angle of Repose (deg) for emptying or funneling 22 C

Seed Mass (mg), m

Static Friction Coefficient, µ s

Shear Modulus (MPa), G = E / (2 + 2v)

Seed Density (kg·m-3), ρ p

Bulk Density (kg·m-3), ρ b

Poisson Ratio, v
Elastic Modulus (MPa), E

Parameters

Equivalent Diameter (mm), d e

Published value
Length (mm), l
Width (mm), w
Thickness (mm), h

 
A McLelland and Miller (2001) 
B Raji and Favier (2004a, 2004b) 
C Boyles et al. (2006) 
D ASABE Standards (2006a) - D241.4  
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Table A.69 Data of single-kernel mass from 10 soybean lots used for standard deviation factor (SDF) for particle size distribution. 

9A411NRR 9A385NRS KS-5005sp KS-3406RR KS-4607 KS-4702sp Mixed (100-lb) Mixed (7080-lb) KS-5002N (4RL9542) KS-4103sp (4RL4976)
1 114.793 147.106 214.333 146.56 185.204 163.043 144.944 117.393 87.279 125.523
2 110.892 120.015 277.781 204.984 179.311 147.652 149.107 119.763 141.636 228.693
3 121.208 107.583 201.882 209.601 192.675 175.428 100.361 120.372 128.418 171.566
4 135.559 120.988 262.118 154.869 177.065 155.677 154.166 159.149 164.166 186.928
5 88.924 131.581 219.58 207.796 127.627 127.864 84.899 117.606 125.772 147.688
6 96.088 115.751 228.968 154.479 206.418 109.313 124.754 169.292 146.586 172.652
7 105.021 114.783 199.664 174.381 181.207 189.872 111.467 206.069 151.955 199.252
8 103.863 155.458 212.368 114.126 182.118 159.905 142.335 141.256 171.776 184.242
9 69.085 119.821 273.844 161.121 200.492 161.182 108.978 160.226 140.504 169.584
10 82.966 105.862 240.351 163.219 166.211 194.052 120.803 121.932 113.276 156.975
11 131.86 93.083 274.591 129.845 167.546 136.476 158.821 136.026 146.569 158.421
12 86.636 141.964 236.971 200.771 169.245 180.529 128.747 189.019 117.902 141.065
13 63.203 155.114 198.074 174.328 148.756 151.993 133.988 132.212 130.389 170.814
14 104.507 76.285 188.374 139.56 134.017 123.568 123.256 145.151 152.67 171.899
15 132.351 112.822 176.878 159.957 177.807 206.33 136.73 176.212 105.043 104.116
16 90.77 137.224 267.713 153.297 142.818 145.004 150.573 147.491 143.923 175.889
17 123.314 125.889 241.004 124.65 178.317 188.295 168.022 142.436 162.64 198.681
18 139.952 124.971 222.929 187.329 111.802 126.394 120.242 170.949 168.473 203.825
19 109.783 119.365 209.122 124.729 186.944 146.242 118.363 167.079 136.006 153.413
20 155.207 94.351 206.137 152.387 138.46 146.736 159.791 137.171 102.278 160.516
21 118.521 111.463 260.022 123.605 79.455 189.534 147.418 122.349 138.317 232.946
22 87.69 152.314 237.486 178.91 128.563 161.934 88.532 122.28 132.622 112.779
23 110.83 157.41 209.906 172.951 190.769 185.039 148.113 128.563 75.197 168.512
24 147.419 141.534 193.477 128.635 137.28 152.855 188.814 135.769 138.05 151.645
25 101.503 137.463 244.272 95.708 135.558 136.36 81.795 165.636 189.707 132.006
26 129.602 77.817 287.763 146.749 198.502 177.993 125.782 146.593 141.311 202.837
27 118.61 125.253 241.846 154.998 178.408 185.682 112.077 119.584 149.383 217.599
28 116.444 137.128 238.119 117.47 236.376 229.006 166.882 156.291 147.111 151.657
29 128.245 137.99 257.734 136.888 175.134 156.754 127.667 178.502 113.708 172.114
30 141.564 141.506 195.573 121.678 165.229 147.238 151.285 141.522 144.113 167.634
31 91.15 145.078 237.614 143.201 205.471 140.385 135.778 199.387 96.502 226.115
32 116.128 110.009 188.477 165.132 185.586 172.129 141.949 110.574 68.294 117.639
33 94.964 115.164 199.159 179.872 162.174 146.009 159.244 126.899 116.686 162.531
34 94.336 168.557 172.203 131.877 144.017 146.363 138.99 132.281 120.648 150.882
35 124.903 93.115 150.751 155.451 180.702 180.089 172.405 144.437 106.545 107.772
36 124.289 82.3 129.028 80.38 143.751 116.072 95.226 144.489 75.085 169.182
37 131.558 138.168 185.944 171.521 138.388 142.548 141.397 172.309 143.368 146.339
38 121.468 155.73 250.393 178.856 137.085 148.061 180.261 171.59 115.333 174.241
39 104.815 183.176 196.806 116.527 145.066 175.043 171.788 119.781 125.095 196.714
40 123.314 152.371 138.119 156.528 140.138 190.322 98.315 148.637 106.002 172.912
41 110.364 123.508 258.744 131.075 160.342 139.853 143.148 90.346 141.889 125.366
42 113.481 104.014 225.207 105.051 150.789 145.078 128.269 87.793 103.939 134.145
43 81.201 156.183 245.082 180.761 164.476 166.361 99.453 158.228 59.017 112.646
44 151.59 113.424 231.081 166.807 111.418 101.692 112.789 147.548 123.275 134.025
45 108.182 108.918 270.369 113.189 137.458 137.314 141.036 183.588 108.835 136.412
46 123.294 145.515 257.269 172.426 134.744 103.6 113.677 146.109 73.259 166.255
47 106.622 157.706 232.749 202.219 141.785 115.774 177.609 119.197 89.664 92.881
48 128.668 120.16 274.946 187.516 135.944 118.289 135.702 164.957 126.533 137.127
49 107.67 100.127 202.588 92.058 104.479 120.304 143.571 175.519 61.52 113.882
50 118.225 113.856 225.256 104.675 103.472 99.99 112.144 144.165 105.017 171.512
51 97.928 100.68 170.187 117.823 88.518 91.858 128.154 124.432 96.06
52 77.138 88.231 101.494 154.076 151.816 149.185 161.799
53 129.506 135.986 69.417 114.173 126.593 117.106 93.708
54 75.19 140.534 136.213 125.817 133.216
55 72.824 90.973 108.515 117.589 133.311
56 88.47 147.447

Single Kernel Mass, mg
Kernel No.
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Table A.70 Coefficient of restitution from test combination 11111 for 1-sphere particle model. 

Particle No. Initial Height, mm Rebound Height, mm Restitution Coefficient
1 150.61 55.89 0.61
2 151.13 56.61 0.61
3 151.41 58.64 0.62
4 154.58 59.64 0.62
5 159.28 58.14 0.60
6 151.90 55.90 0.61
7 153.82 59.45 0.62
8 151.62 55.57 0.61
9 157.90 58.60 0.61
10 155.61 56.86 0.60
11 155.87 57.10 0.61
12 151.68 55.59 0.61
13 159.91 61.40 0.62
14 157.18 57.41 0.60
15 154.28 56.78 0.61
16 157.34 57.89 0.61
17 157.11 59.37 0.61
18 159.97 58.84 0.61
19 157.83 57.60 0.60
20 155.91 57.92 0.61
21 157.80 57.82 0.61
22 152.28 58.88 0.62
23 154.43 57.81 0.61
24 156.68 60.34 0.62
25 154.30 56.74 0.61
26 153.45 56.26 0.61
27 154.74 57.90 0.61
28 153.69 56.39 0.61
29 156.48 60.26 0.62
30 154.04 56.48 0.61
31 153.08 56.55 0.61
32 153.01 56.03 0.61
33 150.70 55.35 0.61
34 155.38 58.00 0.61
35 158.29 60.88 0.62
36 154.25 57.04 0.61
37 154.41 56.74 0.61
38 154.66 59.67 0.62
39 151.29 55.48 0.61
40 158.00 58.10 0.61
41 157.01 60.47 0.62
42 155.85 57.66 0.61
43 157.51 57.96 0.61
44 154.96 57.31 0.61
45 156.09 60.12 0.62
46 160.16 58.40 0.60
47 154.36 57.04 0.61
48 159.18 61.16 0.62
49 154.48 56.68 0.61
50 152.45 55.85 0.61  
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Table A.71 Coefficient of restitution from test combination 21111 for 1-sphere particle model. 

Particle No. Initial Height, mm Rebound Height, mm Restitution Coefficient
1 150.61 55.89 0.61
2 151.13 56.61 0.61
3 151.41 58.64 0.62
4 154.58 59.64 0.62
5 159.28 58.14 0.60
6 151.90 55.90 0.61
7 153.82 59.45 0.62
8 151.62 55.57 0.61
9 157.90 58.60 0.61
10 155.61 56.86 0.60
11 155.87 57.10 0.61
12 151.68 55.59 0.61
13 159.91 61.40 0.62
14 157.18 57.41 0.60
15 154.28 56.78 0.61
16 157.34 57.89 0.61
17 157.11 59.37 0.61
18 159.97 58.84 0.61
19 157.83 57.60 0.60
20 155.91 57.92 0.61
21 157.80 57.82 0.61
22 152.28 58.88 0.62
23 154.43 57.81 0.61
24 156.68 60.34 0.62
25 154.30 56.74 0.61
26 153.45 56.26 0.61
27 154.74 57.90 0.61
28 153.69 56.39 0.61
29 156.48 60.26 0.62
30 154.04 56.48 0.61
31 153.08 56.55 0.61
32 153.01 56.03 0.61
33 150.70 55.35 0.61
34 155.38 58.00 0.61
35 158.29 60.88 0.62
36 154.25 57.04 0.61
37 154.41 56.74 0.61
38 154.66 59.67 0.62
39 151.29 55.48 0.61
40 158.00 58.10 0.61
41 157.01 60.47 0.62
42 155.85 57.66 0.61
43 157.51 57.96 0.61
44 154.96 57.31 0.61
45 156.09 60.12 0.62
46 160.16 58.40 0.60
47 154.36 57.04 0.61
48 159.18 61.16 0.62
49 154.48 56.68 0.61
50 152.45 55.85 0.61
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Table A.72 Coefficient of restitution from test combination 31111 for 1-sphere particle model. 

Particle No. Initial Height, mm Rebound Height, mm Restitution Coefficient
1 158.54 128.91 0.90
2 160.02 130.38 0.90
3 160.72 130.63 0.90
4 159.80 129.97 0.90
5 153.71 125.13 0.90
6 155.62 126.63 0.90
7 155.43 126.46 0.90
8 157.84 128.47 0.90
9 155.21 126.28 0.90
10 159.64 130.00 0.90
11 158.25 129.08 0.90
12 152.98 124.73 0.90
13 152.33 124.07 0.90
14 155.72 126.81 0.90
15 157.96 128.45 0.90
16 152.24 124.17 0.90
17 155.25 126.64 0.90
18 158.68 129.27 0.90
19 154.10 125.40 0.90
20 153.69 125.34 0.90
21 152.71 124.49 0.90
22 156.11 127.08 0.90
23 158.92 129.35 0.90
24 151.69 122.91 0.90
25 160.56 130.57 0.90
26 152.80 124.64 0.90
27 155.08 126.23 0.90
28 156.67 127.43 0.90
29 157.92 127.91 0.90
30 154.11 125.73 0.90
31 159.63 129.93 0.90
32 155.03 126.33 0.90
33 151.26 123.39 0.90
34 160.84 131.21 0.90
35 158.68 129.44 0.90
36 151.48 123.32 0.90
37 153.91 124.63 0.90
38 152.29 124.07 0.90
39 154.61 125.17 0.90
40 157.27 128.24 0.90
41 159.50 130.08 0.90
42 159.38 129.92 0.90
43 157.60 128.39 0.90
44 158.59 129.02 0.90
45 157.75 128.29 0.90
46 156.41 127.54 0.90
47 156.06 126.95 0.90
48 155.20 126.47 0.90
49 156.78 127.75 0.90
50 151.16 123.16 0.90
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Table A.73 Coefficient of restitution from test combination 12111 for 1-sphere particle model. 

Particle No. Initial Height, mm Rebound Height, mm Restitution Coefficient
1 150.61 55.89 0.61
2 151.13 56.61 0.61
3 151.41 58.64 0.62
4 154.58 59.64 0.62
5 159.28 58.14 0.60
6 151.90 55.90 0.61
7 153.82 59.45 0.62
8 151.62 55.57 0.61
9 157.90 58.60 0.61
10 155.61 56.86 0.60
11 155.87 57.10 0.61
12 151.68 55.59 0.61
13 159.91 61.40 0.62
14 157.18 57.41 0.60
15 154.28 56.78 0.61
16 157.34 57.89 0.61
17 157.11 59.37 0.61
18 159.97 58.84 0.61
19 157.83 57.60 0.60
20 155.91 57.92 0.61
21 157.80 57.82 0.61
22 152.28 58.88 0.62
23 154.43 57.81 0.61
24 156.68 60.34 0.62
25 154.30 56.74 0.61
26 153.45 56.26 0.61
27 154.74 57.90 0.61
28 153.69 56.39 0.61
29 156.48 60.26 0.62
30 154.04 56.48 0.61
31 153.08 56.55 0.61
32 153.01 56.03 0.61
33 150.70 55.35 0.61
34 155.38 58.00 0.61
35 158.29 60.88 0.62
36 154.25 57.04 0.61
37 154.41 56.74 0.61
38 154.66 59.67 0.62
39 151.29 55.48 0.61
40 158.00 58.10 0.61
41 157.01 60.47 0.62
42 155.85 57.66 0.61
43 157.51 57.96 0.61
44 154.96 57.31 0.61
45 156.09 60.12 0.62
46 160.16 58.40 0.60
47 154.36 57.04 0.61
48 159.18 61.16 0.62
49 154.48 56.68 0.61
50 152.45 55.85 0.61
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Table A.74 Coefficient of restitution from test combination 13111 for 1-sphere particle model. 

Particle No. Initial Height, mm Rebound Height, mm Restitution Coefficient
1 155.69 60.01 0.62
2 153.75 56.29 0.61
3 152.59 56.36 0.61
4 160.05 58.55 0.60
5 159.86 59.72 0.61
6 157.61 60.72 0.62
7 152.72 55.94 0.61
8 160.35 59.01 0.61
9 150.77 55.51 0.61
10 152.91 56.00 0.61
11 156.99 57.87 0.61
12 160.23 58.36 0.60
13 150.55 55.84 0.61
14 159.35 59.85 0.61
15 155.61 59.98 0.62
16 152.89 56.03 0.61
17 154.03 59.53 0.62
18 152.50 56.20 0.61
19 152.77 55.94 0.61
20 158.01 58.92 0.61
21 158.55 57.81 0.60
22 152.65 59.04 0.62
23 156.04 57.48 0.61
24 158.78 58.16 0.61
25 152.86 56.28 0.61
26 152.65 56.54 0.61
27 153.29 56.27 0.61
28 151.29 55.52 0.61
29 155.91 57.50 0.61
30 155.59 57.37 0.61
31 155.02 56.73 0.60
32 157.95 57.84 0.61
33 154.19 57.99 0.61
34 153.26 56.16 0.61
35 155.97 56.97 0.60
36 155.38 59.99 0.62
37 159.38 59.02 0.61
38 158.09 57.66 0.60
39 154.37 56.69 0.61
40 159.94 58.42 0.60
41 158.52 57.80 0.60
42 156.60 60.29 0.62
43 154.37 57.09 0.61
44 151.64 58.71 0.62
45 151.40 55.75 0.61
46 158.77 58.28 0.61
47 158.71 58.40 0.61
48 157.19 60.51 0.62
49 157.76 57.56 0.60
50 151.55 56.17 0.61
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Table A.75 Coefficient of restitution from test combination 11211 for 1-sphere particle model. 

Particle No. Initial Height, mm Rebound Height, mm Restitution Coefficient
1 153.91 56.48 0.61
2 153.68 59.19 0.62
3 160.61 58.74 0.60
4 153.55 56.61 0.61
5 156.65 58.13 0.61
6 155.43 56.69 0.60
7 159.58 57.98 0.60
8 157.89 58.03 0.61
9 159.16 57.94 0.60
10 158.57 58.79 0.61
11 152.12 55.61 0.60
12 151.82 55.66 0.61
13 154.12 56.34 0.60
14 155.92 56.80 0.60
15 156.07 56.96 0.60
16 154.17 56.86 0.61
17 155.68 59.25 0.62
18 152.28 55.90 0.61
19 153.37 56.04 0.60
20 156.54 57.53 0.61
21 158.78 60.94 0.62
22 154.75 56.47 0.60
23 154.12 56.50 0.61
24 160.28 61.41 0.62
25 152.64 56.30 0.61
26 151.59 55.41 0.60
27 158.87 60.88 0.62
28 151.67 55.46 0.60
29 153.71 57.12 0.61
30 152.67 56.42 0.61
31 157.40 57.57 0.60
32 156.18 60.02 0.62
33 151.80 55.86 0.61
34 151.96 58.67 0.62
35 158.91 59.05 0.61
36 155.71 59.92 0.62
37 157.46 57.30 0.60
38 154.34 56.29 0.60
39 155.92 57.35 0.61
40 157.24 57.40 0.60
41 154.67 56.42 0.60
42 151.15 58.38 0.62
43 151.03 56.13 0.61
44 155.71 57.08 0.61
45 157.77 58.75 0.61
46 159.68 58.77 0.61
47 152.60 55.81 0.60
48 153.33 56.56 0.61
49 154.88 57.04 0.61
50 158.49 58.33 0.61
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Table A.76 Coefficient of restitution from test combination 11311 for 1-sphere particle model. 

Particle No. Initial Height, mm Rebound Height, mm Restitution Coefficient
1 155.63 58.07 0.61
2 155.76 56.80 0.60
3 154.69 57.22 0.61
4 160.04 58.17 0.60
5 160.20 58.18 0.60
6 160.37 58.29 0.60
7 155.77 57.91 0.61
8 153.83 56.15 0.60
9 152.02 55.59 0.60
10 154.64 57.27 0.61
11 156.46 57.26 0.60
12 157.07 57.40 0.60
13 159.67 58.01 0.60
14 153.22 56.25 0.61
15 156.45 57.66 0.61
16 152.82 55.84 0.60
17 158.26 57.68 0.60
18 155.81 56.91 0.60
19 158.49 57.73 0.60
20 160.37 58.25 0.60
21 155.89 56.87 0.60
22 159.39 59.05 0.61
23 160.65 58.59 0.60
24 154.92 57.29 0.61
25 160.68 59.00 0.61
26 159.29 58.12 0.60
27 154.64 56.83 0.61
28 160.25 58.72 0.61
29 156.18 57.33 0.61
30 155.46 57.17 0.61
31 159.18 58.52 0.61
32 154.14 57.01 0.61
33 158.64 57.85 0.60
34 158.27 59.88 0.62
35 152.24 56.08 0.61
36 151.16 55.55 0.61
37 151.61 55.59 0.61
38 157.66 57.91 0.61
39 160.35 58.24 0.60
40 158.57 58.44 0.61
41 158.41 57.63 0.60
42 157.68 57.49 0.60
43 153.42 56.14 0.60
44 153.47 56.07 0.60
45 156.68 60.18 0.62
46 152.37 55.74 0.60
47 158.38 58.05 0.61
48 159.29 58.04 0.60
49 158.27 58.67 0.61
50 151.90 58.61 0.62
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Table A.77 Coefficient of restitution from test combination 11121 for 1-sphere particle model. 

Particle No. Initial Height, mm Rebound Height, mm Restitution Coefficient
1 159.73 57.36 0.60
2 151.15 56.19 0.61
3 151.54 55.20 0.60
4 155.72 56.97 0.60
5 156.14 56.41 0.60
6 159.84 58.66 0.61
7 160.59 58.24 0.60
8 152.49 56.35 0.61
9 156.50 57.67 0.61
10 155.18 58.58 0.61
11 160.92 58.38 0.60
12 155.71 57.02 0.61
13 151.09 55.03 0.60
14 157.29 58.56 0.61
15 158.20 57.04 0.60
16 154.87 57.56 0.61
17 158.05 58.27 0.61
18 153.34 56.66 0.61
19 153.99 58.03 0.61
20 153.96 56.90 0.61
21 157.24 56.75 0.60
22 154.30 58.78 0.62
23 157.02 58.18 0.61
24 153.53 56.12 0.60
25 153.52 56.39 0.61
26 153.40 57.72 0.61
27 154.76 58.39 0.61
28 154.65 56.77 0.61
29 152.30 56.32 0.61
30 158.46 57.09 0.60
31 158.14 57.90 0.61
32 152.62 55.79 0.60
33 154.91 57.33 0.61
34 154.96 57.87 0.61
35 157.53 59.20 0.61
36 160.06 57.59 0.60
37 151.31 55.24 0.60
38 157.66 56.72 0.60
39 153.61 56.53 0.61
40 156.23 57.27 0.61
41 152.64 56.33 0.61
42 154.11 56.02 0.60
43 158.87 59.14 0.61
44 155.51 58.83 0.62
45 160.43 59.36 0.61
46 159.26 58.74 0.61
47 156.28 56.66 0.60
48 159.29 60.43 0.62
49 153.77 55.77 0.60
50 159.76 58.20 0.60
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Table A.78 Coefficient of restitution from test combination 11131 for 1-sphere particle model. 

Particle No. Initial Height, mm Rebound Height, mm Restitution Coefficient
1 159.68 59.43 0.61
2 159.78 61.26 0.62
3 154.44 55.83 0.60
4 153.90 56.32 0.60
5 160.93 58.95 0.61
6 152.53 56.48 0.61
7 160.53 58.35 0.60
8 153.17 56.52 0.61
9 158.13 59.19 0.61
10 152.22 57.70 0.62
11 157.14 58.54 0.61
12 153.60 54.57 0.60
13 153.21 57.59 0.61
14 160.58 59.46 0.61
15 160.23 60.74 0.62
16 157.91 57.80 0.61
17 157.46 59.56 0.61
18 158.22 56.97 0.60
19 155.13 57.74 0.61
20 160.60 57.45 0.60
21 160.89 59.08 0.61
22 151.39 56.93 0.61
23 159.04 59.49 0.61
24 153.80 55.36 0.60
25 160.93 60.76 0.61
26 157.71 56.97 0.60
27 160.11 59.48 0.61
28 156.39 58.54 0.61
29 158.91 57.30 0.60
30 160.07 58.92 0.61
31 155.80 57.37 0.61
32 158.50 60.06 0.62
33 157.73 58.86 0.61
34 153.43 56.40 0.61
35 153.54 58.30 0.62
36 151.36 57.97 0.62
37 158.34 57.46 0.60
38 154.35 58.28 0.61
39 151.98 57.39 0.61
40 157.19 59.47 0.62
41 151.35 57.56 0.62
42 156.63 56.15 0.60
43 159.28 59.35 0.61
44 157.57 59.25 0.61
45 156.63 58.41 0.61
46 158.32 60.20 0.62
47 158.40 57.93 0.60
48 158.34 58.87 0.61
49 158.41 60.75 0.62
50 160.71 58.80 0.60
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Table A.79 Coefficient of restitution from test combination 11112 for 1-sphere particle model. 

Particle No. Initial Height, mm Rebound Height, mm Restitution Coefficient
1 159.22 60.00 0.61
2 160.47 60.38 0.61
3 158.87 55.22 0.59
4 159.16 55.64 0.59
5 159.61 55.71 0.59
6 152.11 57.80 0.62
7 156.17 59.02 0.61
8 155.88 55.70 0.60
9 155.69 54.09 0.59
10 156.16 59.17 0.62
11 158.13 59.69 0.61
12 154.86 54.84 0.60
13 158.26 59.67 0.61
14 159.58 60.43 0.62
15 151.21 57.46 0.62
16 158.05 56.83 0.60
17 160.65 60.48 0.61
18 151.59 52.62 0.59
19 156.08 58.98 0.61
20 156.40 56.98 0.60
21 155.39 58.76 0.61
22 151.41 52.48 0.59
23 152.49 54.17 0.60
24 157.79 55.31 0.59
25 151.11 57.87 0.62
26 155.40 58.76 0.61
27 152.42 57.84 0.62
28 151.08 57.47 0.62
29 151.61 57.54 0.62
30 153.52 53.23 0.59
31 152.75 53.23 0.59
32 152.48 52.86 0.59
33 157.05 54.67 0.59
34 156.51 55.73 0.60
35 157.22 59.38 0.61
36 155.13 55.60 0.60
37 160.72 55.45 0.59
38 160.65 60.53 0.61
39 151.50 53.44 0.59
40 154.72 58.54 0.62
41 153.17 58.37 0.62
42 158.55 55.94 0.59
43 157.77 59.68 0.62
44 157.83 54.67 0.59
45 154.07 58.99 0.62
46 153.74 53.30 0.59
47 156.58 59.30 0.62
48 155.03 58.64 0.62
49 152.88 55.07 0.60
50 151.04 52.42 0.59  
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Table A.80 Coefficient of restitution from test combination 11113 for 1-sphere particle model. 

Particle No. Initial Height, mm Rebound Height, mm Restitution Coefficient
1 155.44 59.28 0.62
2 160.26 55.09 0.59
3 156.54 58.12 0.61
4 153.96 58.69 0.62
5 157.22 58.93 0.61
6 156.60 55.20 0.59
7 156.37 57.82 0.61
8 156.27 59.53 0.62
9 152.97 52.92 0.59
10 160.78 60.13 0.61
11 158.18 57.95 0.61
12 160.75 54.27 0.58
13 151.09 55.59 0.61
14 156.62 58.21 0.61
15 153.15 57.19 0.61
16 153.80 58.10 0.61
17 151.28 56.17 0.61
18 159.19 58.40 0.61
19 156.56 58.65 0.61
20 160.61 61.14 0.62
21 155.76 52.72 0.58
22 153.70 56.35 0.61
23 151.69 56.45 0.61
24 155.85 57.08 0.61
25 153.24 56.70 0.61
26 152.56 56.12 0.61
27 152.85 56.22 0.61
28 157.48 57.53 0.60
29 155.88 57.96 0.61
30 151.50 51.84 0.58
31 159.10 60.08 0.61
32 160.47 58.93 0.61
33 152.37 55.95 0.61
34 156.60 59.66 0.62
35 151.28 56.20 0.61
36 153.03 56.13 0.61
37 156.75 53.35 0.58
38 157.85 57.92 0.61
39 157.64 57.64 0.60
40 157.78 58.44 0.61
41 156.54 58.05 0.61
42 156.28 58.54 0.61
43 153.20 56.18 0.61
44 151.94 56.56 0.61
45 159.87 58.96 0.61
46 158.95 59.01 0.61
47 159.21 58.93 0.61
48 158.94 59.41 0.61
49 153.15 57.58 0.61
50 157.54 58.44 0.61  
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Table A.81 Coefficient of restitution from test combination 11111 for 2-sphere particle model. 

Particle No. Initial Height, mm Rebound Height, mm Restitution Coefficient
1 154.04 55.96 0.60
2 153.12 57.93 0.62
3 159.14 57.72 0.60
4 158.47 57.76 0.60
5 152.36 55.67 0.60
6 160.51 58.05 0.60
7 151.58 57.47 0.62
8 154.91 58.63 0.62
9 152.11 55.26 0.60
10 154.70 56.36 0.60
11 152.89 56.22 0.61
12 154.16 55.95 0.60
13 154.35 56.09 0.60
14 158.94 59.79 0.61
15 156.50 59.03 0.61
16 157.87 59.44 0.61
17 157.81 59.42 0.61
18 153.63 58.13 0.62
19 154.35 58.33 0.61
20 159.16 59.93 0.61
21 155.14 57.08 0.61
22 155.41 58.65 0.61
23 160.77 60.40 0.61
24 151.04 55.03 0.60
25 158.52 57.94 0.60
26 160.40 60.46 0.61
27 155.42 56.41 0.60
28 160.53 60.61 0.61
29 156.34 56.94 0.60
30 153.25 57.98 0.62
31 159.93 60.14 0.61
32 151.63 57.48 0.62
33 153.74 58.14 0.61
34 151.08 55.23 0.60
35 151.54 55.27 0.60
36 157.82 57.30 0.60
37 156.53 59.01 0.61
38 154.21 55.95 0.60
39 160.69 60.45 0.61
40 155.81 56.51 0.60
41 160.30 58.10 0.60
42 152.11 55.28 0.60
43 157.81 58.98 0.61
44 159.78 57.95 0.60
45 152.07 57.80 0.62
46 152.29 57.63 0.62
47 152.92 55.67 0.60
48 152.62 57.87 0.62
49 159.21 59.87 0.61
50 159.52 60.05 0.61  
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Table A.82 Coefficient of restitution from test combination 11111 for 3-sphere particle model. 

Particle No. Initial Height, mm Rebound Height, mm Restitution Coefficient
1 156.64 56.83 0.60
2 158.59 59.80 0.61
3 159.58 60.12 0.61
4 152.59 55.34 0.60
5 158.08 58.13 0.61
6 156.94 57.82 0.61
7 153.22 55.53 0.60
8 154.35 56.01 0.60
9 152.29 57.87 0.62
10 159.16 57.99 0.60
11 157.74 57.78 0.61
12 155.96 58.96 0.61
13 154.29 55.86 0.60
14 160.76 58.54 0.60
15 152.78 57.97 0.62
16 158.49 59.85 0.61
17 152.32 55.93 0.61
18 156.24 57.77 0.61
19 160.31 58.04 0.60
20 157.19 57.36 0.60
21 152.60 57.89 0.62
22 158.06 55.33 0.59
23 158.62 57.45 0.60
24 158.53 57.49 0.60
25 159.02 60.07 0.61
26 154.53 58.46 0.62
27 157.64 57.22 0.60
28 154.08 52.41 0.58
29 153.28 55.69 0.60
30 160.07 58.22 0.60
31 152.15 57.70 0.62
32 152.95 55.44 0.60
33 151.20 56.03 0.61
34 157.38 59.39 0.61
35 156.25 56.56 0.60
36 158.99 59.96 0.61
37 156.29 56.55 0.60
38 155.91 56.59 0.60
39 158.17 57.43 0.60
40 155.65 58.87 0.61
41 155.69 56.36 0.60
42 156.99 56.86 0.60
43 157.02 59.27 0.61
44 159.15 58.10 0.60
45 157.14 56.79 0.60
46 153.64 56.33 0.61
47 160.53 57.91 0.60
48 158.98 58.20 0.61
49 154.84 58.64 0.62
50 151.99 57.64 0.62
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Table A.83 Coefficient of restitution from test combination 11111 for 4-sphere particle model. 

Particle No. Initial Height, mm Rebound Height, mm Restitution Coefficient
1 158.48 57.62 0.60
2 157.70 59.82 0.62
3 159.72 58.57 0.61
4 157.35 57.34 0.60
5 158.54 60.12 0.62
6 156.28 59.43 0.62
7 157.35 59.72 0.62
8 159.75 60.51 0.62
9 160.46 60.73 0.62
10 160.26 60.87 0.62
11 159.86 58.10 0.60
12 154.26 56.28 0.60
13 152.95 58.27 0.62
14 153.70 56.00 0.60
15 158.12 60.14 0.62
16 156.54 57.77 0.61
17 156.71 57.88 0.61
18 155.53 56.58 0.60
19 158.29 58.05 0.61
20 153.55 56.40 0.61
21 158.28 60.18 0.62
22 156.34 56.84 0.60
23 159.85 60.54 0.62
24 158.01 60.03 0.62
25 160.86 60.86 0.62
26 159.62 60.45 0.62
27 158.04 57.62 0.60
28 160.43 58.36 0.60
29 159.18 57.79 0.60
30 153.44 57.05 0.61
31 160.05 58.08 0.60
32 152.87 56.60 0.61
33 155.84 57.96 0.61
34 155.18 56.56 0.60
35 160.43 58.29 0.60
36 156.44 59.48 0.62
37 154.20 58.69 0.62
38 151.03 57.81 0.62
39 152.77 56.50 0.61
40 153.74 58.61 0.62
41 160.17 60.62 0.62
42 159.81 60.51 0.62
43 154.11 56.39 0.60
44 151.19 57.71 0.62
45 151.33 55.25 0.60
46 154.44 56.24 0.60
47 158.74 60.16 0.62
48 160.03 60.58 0.62
49 152.06 58.09 0.62
50 160.13 60.74 0.62
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Table A.84 Bulk density results from all test combinations. 

Test Combination Run No. Total Mass, kg Bulk Density, kg·m-3

1 0.737 668.03
2 0.740 670.84
3 0.737 668.12
1 0.729 660.69
2 0.730 660.96
3 0.728 659.51
1 0.759 687.51
2 0.757 686.06
3 0.759 687.78
1 0.746 676.18
2 0.749 678.54
3 0.751 680.17
1 0.732 663.41
2 0.739 669.12
3 0.733 664.50
1 0.751 680.44
2 0.751 679.99
3 0.750 679.81
1 0.724 655.89
2 0.725 656.61
3 0.726 657.34
1 0.738 668.57
2 0.738 668.21
3 0.738 668.75
1 0.737 667.30
2 0.743 672.74
3 0.741 671.74
1 0.743 673.28
2 0.738 668.94
3 0.742 672.11
1 0.751 679.99
2 0.751 680.17
3 0.750 679.63
1 0.746 676.00
2 0.746 676.18
3 0.744 674.46
1 0.744 673.74
2 0.745 675.01
3 0.743 672.92
1 0.742 671.93
2 0.742 672.56
3 0.743 673.10

3s_11111

1s_12111

1s_13111

1s_11211

1s_11111

1s_21111

1s_31111

4s_11111

1s_11311

1s_11121

1s_11131

2s_11111

1s_11112

1s_11113
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Table A.84 Bulk density results from all test combinations. (cont.) 

Test Combination Run No. Total Mass, kg Bulk Density, kg·m-3

1 0.740 670.38
2 0.743 673.10
3 0.742 671.83
1 0.751 680.17
2 0.749 678.81
3 0.750 679.35
1 0.755 683.88
2 0.753 682.34
3 0.752 680.90
1 0.751 680.71
2 0.755 683.79
3 0.754 682.89
1 0.763 691.50
2 0.751 680.80
3 0.754 682.98
1 0.773 699.92
2 0.769 696.75
3 0.769 697.02
1 0.750 679.54
2 0.753 682.62
3 0.751 680.08
1 0.751 680.35
2 0.754 682.80
3 0.753 682.16
1 0.763 690.86
2 0.762 690.77
3 0.761 689.77
1 0.765 692.76
2 0.768 695.66
3 0.764 692.31
1 0.764 692.40
2 0.767 694.49
3 0.766 694.30
1 0.767 695.21
2 0.767 694.67
3 0.769 696.30

1s_17233

1s_12233

1s_14232

1s_14233

1s_15233

1s_16233

1s_11231

1s_11232

1s_11233

1s_14231

1s_51111

1s_41111
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Table A.85 Angle of repose results from all test combinations. 

Test Combination Run No.
Start Time of Particle 

Falling, s
Angle of 

Repose, deg
1 0.355 31.95
2 0.347 31.23
3 0.356 32.04
4 0.350 31.50
5 0.347 31.23
6 0.347 31.23
7 0.348 31.32
1 0.342 30.78
2 0.352 31.68
3 0.368 33.12
4 0.362 32.58
5 0.365 32.85
6 0.365 32.85
7 0.359 32.31
1 0.404 36.36
2 0.418 37.62
3 0.416 37.44
4 0.415 37.35
5 0.418 37.62
6 0.410 36.90
7 0.410 36.90
1 0.361 32.49
2 0.359 32.31
3 0.331 29.79
4 0.347 31.23
5 0.368 33.12
6 0.334 30.06
7 0.350 31.50
1 0.390 35.10
2 0.440 39.60
3 0.405 36.45
4 0.420 37.80
5 0.405 36.45
6 0.425 38.25
7 0.420 37.80

1 0.343 30.87
2 0.346 31.14
3 0.334 30.06
4 0.335 30.15
5 0.335 30.15
6 0.335 30.15
7 0.346 31.14
1 0.379 34.11
2 0.389 35.01
3 0.386 34.74
4 0.404 36.36
5 0.397 35.73
6 0.382 34.38
7 0.407 36.63

1s_11111

1s_21111

1s_31111

1s_12111

1s_13111

1s_11211

1s_11311
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Table A.85 Angle of repose results from all test combinations. (cont.) 

Test Combination Run No.
Start Time of Particle 

Falling, s
Angle of 

Repose, deg
1 0.316 28.44
2 0.328 29.52
3 0.323 29.07
4 0.327 29.43
5 0.330 29.70
6 0.332 29.88
7 0.323 29.07
1 0.347 31.23
2 0.361 32.49
3 0.361 32.49
4 0.379 34.11
5 0.379 34.11
6 0.353 31.77
7 0.359 32.31
1 0.354 31.86
2 0.354 31.82
3 0.340 30.56
4 0.346 31.14
5 0.351 31.59
6 0.355 31.92
7 0.347 31.26
1 0.369 33.21
2 0.356 32.04
3 0.352 31.68
4 0.371 33.39
5 0.369 33.21
6 0.363 32.66
7 0.367 33.05
1 0.323 29.07
2 0.321 28.89
3 0.328 29.52
4 0.322 28.98
5 0.328 29.52
6 0.326 29.34
7 0.329 29.61
1 0.313 28.17
2 0.319 28.71
3 0.325 29.25
4 0.322 28.98
5 0.331 29.79
6 0.329 29.61
7 0.326 29.34
1 0.317 28.53
2 0.316 28.44
3 0.355 31.95
4 0.325 29.25
5 0.325 29.25
6 0.322 28.98
7 0.328 29.52

1s_11121

1s_11131

2s_11111

3s_11111

4s_11111

1s_11112

1s_11113
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Table A.85 Angle of repose results from all test combinations. (cont.) 

Test Combination Run No.
Start Time of Particle 

Falling, s
Angle of 

Repose, deg
1 0.349 31.44
2 0.345 31.08
3 0.340 30.63
4 0.351 31.62
5 0.355 31.92
6 0.356 32.01
7 0.356 32.07
1 0.373 33.54
2 0.363 32.64
3 0.351 31.62
4 0.356 32.04
5 0.354 31.89
6 0.354 31.83
7 0.350 31.47
1 0.362 32.55
2 0.360 32.40
3 0.355 31.96
4 0.341 30.69
5 0.347 31.26
6 0.357 32.13
7 0.359 32.28
1 0.309 27.82
2 0.312 28.05
3 0.322 29.01
4 0.323 29.05
5 0.326 29.32
6 0.315 28.35
7 0.313 28.17
1 0.365 32.85
2 0.375 33.78
3 0.370 33.33
4 0.367 33.00
5 0.368 33.12
6 0.371 33.36
7 0.361 32.52
1 0.343 30.84
2 0.351 31.56
3 0.334 30.09
4 0.344 30.99
5 0.349 31.38
6 0.346 31.17
7 0.347 31.20
1 0.355 31.98
2 0.363 32.70
3 0.380 34.23
4 0.364 32.80
5 0.378 33.99
6 0.373 33.54
7 0.388 34.89

1s_11231

1s_11232

1s_11233

1s_12233

1s_14231

1s_14232

1s_14233
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Table A.85 Angle of repose results from all test combinations. (cont.) 

Test Combination Run No.
Start Time of Particle 

Falling, s
Angle of 

Repose, deg
1 0.349 31.44
2 0.352 31.69
3 0.345 31.09
4 0.344 30.99
5 0.337 30.33
6 0.349 31.44
7 0.349 31.44
1 0.347 31.27
2 0.330 29.74
3 0.345 31.08
4 0.344 30.96
5 0.342 30.81
6 0.347 31.26
7 0.345 31.09
1 0.323 29.10
2 0.315 28.38
3 0.321 28.92
4 0.319 28.74
5 0.327 29.43
6 0.325 29.22
7 0.325 29.25

1s_16233

1s_17233

1s_15233
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Data for Chapter 6 

 

 

Table A.86 Test weights of red and clear soybean samples used in the experiment. 

Test Weight, lb·bu-1 Test Weight, kg·m-3 Test Weight, lb·bu-1 Test Weight, kg·m-3

1 1 54.53 701.80 56.51 727.28
1 2 54.66 703.47 56.61 728.57
1 3 54.88 706.31 56.77 730.63
2 1 54.18 697.30 56.51 727.28
2 2 54.27 698.45 56.48 726.90
2 3 54.27 698.45 56.48 726.90
3 1 54.21 697.68 56.58 728.18
3 2 54.27 698.45 56.74 730.24
3 3 54.43 700.51 56.58 728.18
4 1 54.78 705.02 56.83 731.40
4 2 54.72 704.25 56.58 728.18
4 3 54.72 704.25 56.80 731.02
5 1 54.05 695.62 56.61 728.57
5 2 54.34 699.36 56.61 728.57
5 3 54.27 698.45 56.67 729.34
5 4 54.56 702.19

Red Soybeans Clear Soybeans

Bag No. Test No.
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Table A.87 Moisture content of red and clear soybean samples used in the experiment. 

Initial Mass, g Final Mass, g Moisture Content, % wb Initial Mass, g Final Mass, g Moisture Content, % wb

1 1 16.815 15.183 9.706 16.563 14.951 9.733

1 2 16.633 15.028 9.649 16.556 14.945 9.731

1 3 15.078 13.612 9.723 15.291 13.793 9.797

2 1 15.923 14.331 9.998 15.034 13.435 10.636

2 2 16.298 14.661 10.044 16.298 14.564 10.639

2 3 16.120 14.495 10.081 15.224 13.597 10.687

3 1 16.296 14.753 9.469 16.217 14.573 10.138

3 2 15.507 14.036 9.486 15.170 13.631 10.145

3 3 15.252 13.810 9.454 15.046 13.520 10.142

4 1 15.945 14.418 9.577 15.591 14.001 10.198

4 2 18.389 16.629 9.571 16.321 14.655 10.208

4 3 15.753 14.238 9.617 17.383 15.711 9.619

5 1 14.997 13.500 9.982 16.544 14.904 9.913

5 2 16.340 14.721 9.908 15.266 13.752 9.917

5 3 16.888 15.194 10.031 17.587 15.847 9.894

Bag No. Test No.

Red Soybeans Clear Soybeans

 

 

Table A.88 Percentages of foreign materials, splits, and damaged kernels of red and clear soybean samples used in the experiment. 

1 2 3 4 5 1 2 3 4 5
Initial Mass, g 1000.5 1002.0 1006.5 1000.5 1000.5 1000.5 1013.5 1004.0 1001.5 1010.5
Mass of Coarse FM, g 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.11 0.00 0.00
Coarse FM, % 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.00

Initial Mass, g 124.85 129.23 128.71 129.07 124.31 123.38 128.23 125.25 129.54 128.12
Mass of Fine FM, g 0.05 0.05 0.01 0.04 0.02 0.02 0.02 0.01 0 0.02
Fine FM, % 0.04 0.04 0.01 0.03 0.02 0.02 0.02 0.01 0.00 0.02

Initial Mass, g 124.8 129.18 128.7 129.03 124.29 123.36 128.21 125.24 129.54 128.1
Mass of Splits, g 1.45 1.72 1.51 1.16 1.25 0.49 0.35 0.57 0.25 0.42
Splits, % 1.16 1.33 1.17 0.90 1.01 0.40 0.27 0.46 0.19 0.33

Initial Mass, g 124.8 129.18 128.7 129.03 124.29 123.36 128.21 125.24 129.54 128.1
Mass of Damaged Kernels, g 0.69 0.48 0.34 0.3 0.33 1.01 1.73 1.41 2.55 0.99
Damaged Kernels, % 1.16 1.33 1.17 0.90 1.01 0.40 0.27 0.46 0.19 0.33

Damaged 
Kernels

Coarse Foreign 
Material (FM)

Fine Foreign 
Material (FM)

Splits

Clear Soybeans
Test No.

Red SoybeansMaterial
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Table A.89  Thousand-kernel-weight (TKW) of red and clear soybean samples used in the experiment. 

Mass of Whole 
Soybean, g

Seed Count 
per Sample

Seed Count 
Per Gram

Seed Count per 
1000-Gram

TKW, g per 
1000 kernels

Mass of Whole 
Soybean, g

Seed Count 
per Sample

Seed Count 
Per Gram

Seed Count per 
1000-Gram

TKW, g per 
1000 kernels

1 25.24 156.0 6.2 6181 161.8 25.16 175.0 7.0 6955 143.8
2 25.21 156.0 6.2 6188 161.6 25.96 193.0 7.4 7435 134.5
3 25.58 155.0 6.1 6059 165.0 28.95 210.0 7.3 7254 137.9
4 27.00 170.0 6.3 6296 158.8 25.09 175.0 7.0 6975 143.4
5 25.74 170.0 6.6 6605 151.4 25.24 187.0 7.4 7409 135.0

Test No.

Red Soybeans Clear Soybeans

 

 

 

 

Table A.90 Summary of soybean grading for red and clear soybean samples used in the experiment. 

Mean SD Grade Mean SD Grade

Test Weight, lb·bu-1 54.446 0.250 US Grade 1 56.624 0.115 US Grade 1

Test Weight, kg·m-3 700.723 3.212 US Grade 1 728.751 1.476 US Grade 1
Damaged Kernels, % 0.337 0.131 US Grade 1 1.207 0.486 US Grade 1
Foreign Material, % 0.030 0.013 US Grade 1 0.013 0.008 US Grade 1

Splits, % 1.114 0.167 US Grade 1 0.329 0.103 US Grade 1
Soybeans of other colors, % 0.000 0.000 US Grade 1 0.000 0.000 US Grade 1

Grading Test
Clear SoybeansRed Soybeans
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Table A.91 Particle density of red soybean samples used in the experiment. 

Bag No. Test No. Mass, g

Volume, 

cm3

Particle 
Density, 

g·cm-3

1 11.40 9.16 1.24
2 11.39 9.14 1.25
3 10.92 8.78 1.24
1 10.32 8.31 1.24
2 11.13 8.94 1.25
3 11.31 9.09 1.24
1 11.03 8.90 1.24
2 11.02 8.84 1.25
3 11.24 9.06 1.24
1 11.45 9.23 1.24
2 11.29 9.04 1.25
3 11.66 9.37 1.24
1 11.28 9.09 1.24
2 11.01 8.85 1.24
3 10.81 8.68 1.25

5

1

2

3

4

 
 

 

 

Table A.92 Particle density of clear soybean samples used in the experiment. 

Bag No. Test No. Mass, g

Volume, 

cm3

Particle 
Density, 

g·cm-3

1 11.40 9.16 1.24
2 11.39 9.14 1.25
3 10.92 8.78 1.24
1 10.32 8.31 1.24
2 11.13 8.94 1.25
3 11.31 9.09 1.24
1 11.03 8.90 1.24
2 11.02 8.84 1.25
3 11.24 9.06 1.24
1 11.45 9.23 1.24
2 11.29 9.04 1.25
3 11.66 9.37 1.24
1 11.28 9.09 1.24
2 11.01 8.85 1.24
3 10.81 8.68 1.25

5

1

2

3

4
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Table A.93 Material flow rate of clear soybeans during experiment.[a] 

Test No.  Initial Mass, kg  Total Handling Time, min Material Flow Rate, t·h-1

1 539.26 8.86 3.65
2 492.00 9.23 3.20
3 535.40 9.28 3.46
4 543.35 10.16 3.21
5 709.70 12.15 3.51

Mean 563.94 9.93 3.41
SD 84.07 1.33 0.20  

[a] Material mass was measured using platform weighing scale. 
 

 

Table A.94 Residual grain height and mass of clear soybeans after handling tests. 

LHS RHS
Clear Soybeans 

1 127.00 95.25 2.45
2 127.00 95.25 2.45
3 127.00 95.25 2.50
4 127.00 98.43 2.50
5 127.00 96.27 2.50

Mean 127.00 96.09 2.48
SD 0.00 1.38 0.02

Test No.
Residual Grain Height, mm Residual Grain 

Mass (kg)

 

 

Table A.95 Mean, minimum, and maximum mass of red and total soybean samples from five experiments. 

Mean Min Max Mean Min Max
1 192.86 127.38 214.35 0.91 0.00 9.17
2 184.50 167.85 200.40 0.70 0.00 7.49
3 181.33 169.82 195.92 0.28 0.00 1.61
4 174.94 159.59 201.04 0.17 0.00 0.69
5 185.67 170.88 199.07 0.09 0.00 0.38

Mean 183.86 159.10 202.16 0.43 0.00 3.87
SD 6.53 18.28 7.10 0.36 0.00 4.14

Red Soybean Mass in Total 
Sample, gTest Run 

No.

Total Sample Mass, g

 

 



 

 253 

 

Table A.96 Instantaneous commingling during test run no. 1. 

Sample 
No.

Actual 
Sampling 

Time 
Interval, s

Actual 
Sampling Time, 

min
Sample Mass, 

g
Red Soybean 

Mass, g

Instantaneous 
Commingling 

(%)
1 4 0.07 196.45 9.17 4.67
2 17 0.35 190.69 1.57 0.82
3 17 0.63 192.16 1.19 0.62
4 17 0.92 201.70 0.69 0.34
5 17 1.20 206.50 0.48 0.23
6 16 1.47 200.65 0.49 0.24
7 17 1.75 204.96 0.31 0.15
8 32 2.28 187.40 0.00 0.00
9 32 2.82 189.92 0.00 0.00
10 32 3.35 199.61 0.00 0.00
11 32 3.88 214.35 0.15 0.07
12 33 4.43 186.55 0.00 0.00
13 58 5.40 193.52 0.10 0.05
14 63 6.45 127.38 0.18 0.14
15 63 7.50 192.14 0.00 0.00
16 62 8.53 201.79 0.15 0.07  

 

Table A.97 Instantaneous commingling during test run no. 2. 

Sample 
No.

Actual 
Sampling 

Time 
Interval, s

Actual 
Sampling Time, 

min
Sample Mass, 

g
Red Soybean 

Mass, g

Instantaneous 
Commingling 

(%)
1 4 0.07 180.70 7.49 4.14
2 16 0.33 185.04 1.35 0.73
3 17 0.62 167.85 0.93 0.55
4 16 0.88 197.09 0.41 0.21
5 17 1.17 182.44 0.16 0.09
6 16 1.43 200.40 0.16 0.08
7 17 1.72 186.42 0.32 0.17
8 33 2.27 177.86 0.00 0.00
9 31 2.78 188.33 0.00 0.00
10 32 3.32 189.26 0.00 0.00
11 31 3.83 173.45 0.00 0.00
12 32 4.37 190.95 0.30 0.16
13 61 5.38 178.29 0.14 0.08
14 63 6.43 186.40 0.00 0.00
15 62 7.47 178.26 0.00 0.00
16 63 8.52 189.30 0.00 0.00  

 



 

 254 

Table A.98 Instantaneous commingling during test run no. 3. 

Sample 
No.

Actual 
Sampling 

Time 
Interval, s

Actual 
Sampling Time, 

min
Sample Mass, 

g
Red Soybean 

Mass, g

Instantaneous 
Commingling 

(%)
1 5 0.08 177.07 7.02 3.96
2 16 0.35 171.98 1.61 0.94
3 16 0.62 182.65 1.01 0.55
4 17 0.90 173.97 0.61 0.35
5 17 1.18 169.82 0.20 0.12
6 16 1.45 170.76 0.27 0.16
7 17 1.73 188.14 0.00 0.00
8 17 2.02 191.29 0.16 0.08
9 32 2.55 195.18 0.22 0.11
10 32 3.08 175.11 0.00 0.00
11 39 3.73 179.18 0.05 0.03
12 32 4.27 184.18 0.17 0.09
13 32 4.80 174.76 0.00 0.00
14 31 5.32 173.75 0.12 0.07
15 61 6.33 182.96 0.00 0.00
16 62 7.37 195.92 0.00 0.00
17 63 8.42 191.56 0.00 0.00  

 

Table A.99 Instantaneous commingling during test run no. 4. 

Sample 
No.

Actual 
Sampling 

Time 
Interval, s

Actual 
Sampling Time, 

min
Sample Mass, 

g
Red Soybean 

Mass, g

Instantaneous 
Commingling 

(%)
1 6 0.10 187.15 8.71 4.65
2 16 0.37 170.95 1.23 0.72
3 16 0.63 162.85 0.25 0.15
4 16 0.90 182.48 0.69 0.38
5 16 1.17 171.85 0.24 0.14
6 16 1.43 163.66 0.42 0.26
7 16 1.70 168.54 0.26 0.15
8 16 1.97 181.60 0.40 0.22
9 32 2.50 167.41 0.00 0.00
10 32 3.03 174.50 0.10 0.06
11 31 3.55 161.53 0.00 0.00
12 32 4.08 175.89 0.11 0.06
13 32 4.62 179.74 0.24 0.13
14 32 5.15 178.43 0.18 0.10
15 31 5.67 174.44 0.00 0.00
16 59 6.65 201.04 0.00 0.00
17 63 7.70 159.59 0.00 0.00
18 62 8.73 176.46 0.00 0.00
19 63 9.78 181.95 0.00 0.00  
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Table A.100 Instantaneous commingling during test run no. 5. 

Sample 
No.

Actual 
Sampling 

Time 
Interval, s

Actual 
Sampling Time, 

min
Sample Mass, 

g
Red Soybean 

Mass, g

Instantaneous 
Commingling 

(%)
1 4 0.20 189.70 7.20 3.80
2 17 0.40 187.44 1.96 1.05
3 17 0.60 188.18 1.52 0.81
4 17 0.80 182.18 0.49 0.27
5 17 1.00 170.88 0.15 0.09
6 17 1.20 192.79 0.26 0.13
7 16 1.38 184.45 0.00 0.00
8 17 1.58 199.07 0.19 0.10
9 32 2.03 181.57 0.19 0.10
10 32 2.48 184.63 0.09 0.05
11 32 2.93 186.05 0.12 0.06
12 32 3.38 185.05 0.38 0.21
13 36 3.90 187.03 0.00 0.00
14 32 4.35 192.42 0.00 0.00
15 61 5.28 191.73 0.00 0.00
16 62 6.23 180.96 0.00 0.00
17 63 7.20 175.15 0.00 0.00
18 63 8.17 189.82 0.00 0.00
19 62 9.12 181.56 0.00 0.00
20 63 10.08 187.54 0.00 0.00  
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Table A.101 Mean instantaneous commingling for five experimental test runs. 

Sample 
No.

Mean Actual 
Sampling Time 

Interval, s

Mean Actual 
Sampling Time, 

min
Mean Sample 

Mass, g

Mean Red 
Soybean 
Mass, g

Mean 
Instantaneous 
Commingling 

(%)
1 5 0.08 186.21 7.92 4.25
2 16 0.35 181.22 1.54 0.85
3 17 0.63 178.74 0.98 0.54
4 17 0.90 187.48 0.58 0.31
5 17 1.18 180.30 0.25 0.13
6 16 1.45 185.65 0.32 0.17
7 17 1.73 186.50 0.18 0.10
8 23 2.11 187.44 0.15 0.08
9 32 2.64 184.48 0.08 0.04
10 32 3.18 184.62 0.04 0.02
11 33 3.73 182.91 0.06 0.03
12 32 4.26 184.52 0.19 0.10
13 44 4.99 182.67 0.10 0.05
14 44 5.73 171.68 0.10 0.06
15 56 6.66 183.91 0.00 0.00
16 62 7.68 193.80 0.03 0.01
17 63 8.73 175.43 0.00 0.00
18 63 9.78 183.14 0.00 0.00
19 63 10.82 181.76 0.00 0.00
20 63 11.87 187.54 0.00 0.00  
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Table A.102 Average commingling during test run no. 1. 

Sample 
No.

Actual 
Sampling Time 

Interval, s

Actual 
Sampling 
Time, min

Instantaneous 
Commingling, 

%

Red Soybeans 
on Load Mass, 

g
Load Mass[a], 

g

Running Total of 
Red Soybeans on 

Load Mass, g
Running Total 

of Load Mass, g
Average 

Commingling, % 
1 4 0.07 4.67 710.47 15220.55 710.47 15220.55 4.67
2 17 0.35 0.82 142.02 17249.96 852.50 32470.52 2.63
3 17 0.63 0.62 106.82 17249.96 959.32 49720.48 1.93
4 17 0.92 0.34 59.01 17249.96 1018.33 66970.44 1.52
5 17 1.20 0.23 40.10 17249.96 1058.43 84220.40 1.26
6 16 1.47 0.24 39.65 16235.26 1098.08 100455.66 1.09
7 17 1.75 0.15 26.09 17249.96 1124.17 117705.62 0.96
8 32 2.28 0.00 0.00 32470.52 1124.17 150176.14 0.75
9 32 2.82 0.00 0.00 32470.52 1124.17 182646.66 0.62
10 32 3.35 0.00 0.00 32470.52 1124.17 215117.17 0.52
11 32 3.88 0.07 22.72 32470.52 1146.89 247587.69 0.46
12 33 4.43 0.00 0.00 33485.22 1146.89 281072.91 0.41
13 58 5.40 0.05 30.41 58852.81 1177.30 339925.72 0.35
14 63 6.45 0.14 90.33 63926.33 1267.64 403852.05 0.31
15 63 7.50 0.00 0.00 63926.33 1267.64 467778.38 0.27
16 62 8.53 0.07 46.77 62911.63 1314.40 530690.00 0.25  

 [a] Mass flow rate of clear soybeans for test 1 is 1.01 kg·s-1. 
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Table A.103 Average commingling during test run no. 2. 

Sample 
No.

Actual 
Sampling Time 

Interval, s

Actual 
Sampling 
Time, min

Instantaneous 
Commingling, 

%

Red Soybeans 
on Load Mass, 

g
Load Mass[a], 

g

Running Total of 
Red Soybeans on 

Load Mass, g
Running Total 

of Load Mass, g
Average 

Commingling, % 
1 4 0.07 4.14 672.95 16235.26 672.95 16235.26 4.14
2 16 0.33 0.73 118.45 16235.26 791.40 32470.52 2.44
3 17 0.62 0.55 95.58 17249.96 886.97 49720.48 1.78
4 16 0.88 0.21 33.77 16235.26 920.75 65955.74 1.40
5 17 1.17 0.09 15.13 17249.96 935.88 83205.70 1.12
6 16 1.43 0.08 12.96 16235.26 948.84 99440.96 0.95
7 17 1.72 0.17 29.61 17249.96 978.45 116690.92 0.84
8 33 2.27 0.00 0.00 33485.22 978.45 150176.14 0.65
9 31 2.78 0.00 0.00 31455.81 978.45 181631.95 0.54
10 32 3.32 0.00 0.00 32470.52 978.45 214102.47 0.46
11 31 3.83 0.00 0.00 31455.81 978.45 245558.28 0.40
12 32 4.37 0.16 51.01 32470.52 1029.46 278028.80 0.37
13 61 5.38 0.08 48.60 61896.92 1078.07 339925.72 0.32
14 63 6.43 0.00 0.00 63926.33 1078.07 403852.05 0.27
15 62 7.47 0.00 0.00 62911.63 1078.07 466763.67 0.23
16 63 8.52 0.00 0.00 63926.33 1078.07 530690.00 0.20  

 [a] Mass flow rate of clear soybeans for test 2 is 0.89 kg·s-1. 
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Table A.104 Average commingling during test run no. 3. 

Sample 
No.

Actual 
Sampling Time 

Interval, s

Actual 
Sampling 
Time, min

Instantaneous 
Commingling, 

%

Red Soybeans 
on Load Mass, 

g
Load Mass[a], 

g

Running Total of 
Red Soybeans on 

Load Mass, g
Running Total 

of Load Mass, g
Average 

Commingling, % 
1 5 0.08 3.96 643.65 16235.26 643.65 16235.26 3.96
2 16 0.35 0.94 151.99 16235.26 795.64 32470.52 2.45
3 16 0.62 0.55 89.78 16235.26 885.42 48705.77 1.82
4 17 0.90 0.35 60.48 17249.96 945.90 65955.74 1.43
5 17 1.18 0.12 20.32 17249.96 966.22 83205.70 1.16
6 16 1.45 0.16 25.67 16235.26 991.89 99440.96 1.00
7 17 1.73 0.00 0.00 17249.96 991.89 116690.92 0.85
8 17 2.02 0.08 14.43 17249.96 1006.31 133940.88 0.75
9 32 2.55 0.11 36.60 32470.52 1042.91 166411.40 0.63
10 32 3.08 0.00 0.00 32470.52 1042.91 198881.91 0.52
11 39 3.73 0.03 11.04 39573.44 1053.96 238455.36 0.44
12 32 4.27 0.09 29.97 32470.52 1083.93 270925.87 0.40
13 32 4.80 0.00 0.00 32470.52 1083.93 303396.39 0.36
14 31 5.32 0.07 21.72 31455.81 1105.65 334852.20 0.33
15 61 6.33 0.00 0.00 61896.92 1105.65 396749.12 0.28
16 62 7.37 0.00 0.00 62911.63 1105.65 459660.75 0.24
17 63 8.42 0.00 0.00 63926.33 1105.65 523587.08 0.21  

 [a] Mass flow rate of clear soybeans for test 3 is 0.96 kg·s-1. 
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Table A.105 Average commingling during test run no. 4. 

Sample 
No.

Actual 
Sampling Time 

Interval, s

Actual 
Sampling 
Time, min

Instantaneous 
Commingling, 

%

Red Soybeans 
on Load Mass, 

g
Load Mass[a], 

g

Running Total of 
Red Soybeans on 

Load Mass, g
Running Total 

of Load Mass, g
Average 

Commingling, % 
1 6 0.10 4.65 755.59 16235.26 755.59 16235.26 4.65
2 16 0.37 0.72 116.81 16235.26 872.41 32470.52 2.69
3 16 0.63 0.15 24.92 16235.26 897.33 48705.77 1.84
4 16 0.90 0.38 61.39 16235.26 958.72 64941.03 1.48
5 16 1.17 0.14 22.67 16235.26 981.39 81176.29 1.21
6 16 1.43 0.26 41.66 16235.26 1023.06 97411.55 1.05
7 16 1.70 0.15 25.05 16235.26 1048.10 113646.81 0.92
8 16 1.97 0.22 35.76 16235.26 1083.86 129882.07 0.83
9 32 2.50 0.00 0.00 32470.52 1083.86 162352.58 0.67
10 32 3.03 0.06 18.61 32470.52 1102.47 194823.10 0.57
11 31 3.55 0.00 0.00 31455.81 1102.47 226278.91 0.49
12 32 4.08 0.06 20.31 32470.52 1122.78 258749.43 0.43
13 32 4.62 0.13 43.36 32470.52 1166.13 291219.94 0.40
14 32 5.15 0.10 32.76 32470.52 1198.89 323690.46 0.37
15 31 5.67 0.00 0.00 31455.81 1198.89 355146.27 0.34
16 59 6.65 0.00 0.00 59867.51 1198.89 415013.79 0.29
17 63 7.70 0.00 0.00 63926.33 1198.89 478940.12 0.25
18 62 8.73 0.00 0.00 62911.63 1198.89 541851.74 0.22
19 63 9.78 0.00 0.00 63926.33 1198.89 605778.07 0.20  

 [a] Mass flow rate of clear soybeans for test 4 is 0.89 kg·s-1. 
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Table A.106 Average commingling during test run no. 5. 

Sample 
No.

Actual 
Sampling Time 

Interval, s

Actual 
Sampling 
Time, min

Instantaneous 
Commingling, 

%

Red Soybeans 
on Load Mass, 

g
Load Mass[a], 

g

Running Total of 
Red Soybeans on 

Load Mass, g
Running Total 

of Load Mass, g
Average 

Commingling, % 
1 4 0.07 3.80 654.72 17249.96 654.72 17249.96 3.80
2 17 0.35 1.05 180.38 17249.96 835.09 34499.92 2.42
3 17 0.63 0.81 139.33 17249.96 974.43 51749.89 1.88
4 17 0.92 0.27 46.40 17249.96 1020.82 68999.85 1.48
5 17 1.20 0.09 15.14 17249.96 1035.97 86249.81 1.20
6 17 1.48 0.13 23.26 17249.96 1059.23 103499.77 1.02
7 16 1.75 0.00 0.00 16235.26 1059.23 119735.03 0.88
8 17 2.03 0.10 16.46 17249.96 1075.69 136984.99 0.79
9 32 2.57 0.10 33.98 32470.52 1109.67 169455.51 0.65
10 32 3.10 0.05 15.83 32470.52 1125.50 201926.02 0.56
11 32 3.63 0.06 20.94 32470.52 1146.44 234396.54 0.49
12 32 4.17 0.21 66.68 32470.52 1213.12 266867.06 0.45
13 36 4.77 0.00 0.00 36529.33 1213.12 303396.39 0.40
14 32 5.30 0.00 0.00 32470.52 1213.12 335866.91 0.36
15 61 6.32 0.00 0.00 61896.92 1213.12 397763.83 0.30
16 62 7.35 0.00 0.00 62911.63 1213.12 460675.45 0.26
17 63 8.40 0.00 0.00 63926.33 1213.12 524601.78 0.23
18 63 9.45 0.00 0.00 63926.33 1213.12 588528.11 0.21
19 62 10.48 0.00 0.00 62911.63 1213.12 651439.74 0.19
20 63 11.53 0.00 0.00 63926.33 1213.12 715366.07 0.17  

 [a] Mass flow rate of clear soybeans for test 5 is 0.97 kg·s-1. 
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Table A.107 Mean average commingling for five experimental test runs. 

Sample 
No.

Mean Actual 
Sampling Time 

Interval, s

Mean Actual 
Sampling 
Time, min

Mean 
Instantaneous 
Commingling, 

%

Mean Red 
Soybeans on 
Load Mass, g

Mean Load 

Mass[a], g

Mean Running 
Total of Red 
Soybeans on 
Load Mass, g

Mean Running 
Total of Load 

Mass, g
Mean Average 

Commingling, % 
1 5 0.08 4.25 687.48 16235.26 687.48 16235.26 4.25
2 16 0.35 0.85 141.93 16641.14 829.41 32876.40 2.52
3 17 0.63 0.54 91.29 16844.08 920.69 49720.48 1.85
4 17 0.90 0.31 52.21 16844.08 972.90 66564.56 1.46
5 17 1.18 0.13 22.67 17047.02 995.58 83611.58 1.19
6 16 1.45 0.17 28.64 16438.20 1024.22 100049.78 1.02
7 17 1.73 0.10 16.15 16844.08 1040.37 116893.86 0.89
8 23 2.11 0.08 13.33 23338.18 1053.70 140232.04 0.75
9 32 2.64 0.04 14.12 32267.58 1067.81 172499.62 0.62
10 32 3.18 0.02 6.89 32470.52 1074.70 204970.14 0.53
11 33 3.73 0.03 10.94 33485.22 1085.64 238455.36 0.46
12 32 4.26 0.10 33.59 32673.46 1119.24 271128.81 0.41
13 44 4.99 0.05 24.47 44444.02 1143.71 315572.83 0.36
14 44 5.73 0.06 28.96 44849.90 1172.67 360422.73 0.33
15 56 6.66 0.00 0.00 56417.52 1172.67 416840.26 0.28
16 62 7.68 0.01 9.35 62505.74 1182.03 479346.00 0.25
17 63 8.73 0.00 0.00 63926.33 1172.56 509042.99 0.23
18 63 9.78 0.00 0.00 63418.98 1206.01 565189.93 0.21
19 63 10.82 0.00 0.00 63418.98 1206.01 628608.91 0.19
20 63 11.87 0.00 0.00 63926.33 1213.12 715366.07 0.17  
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Figure A.5 Instantaneous commingling for five experimental test runs. 
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Figure A.6 Average commingling for five experimental test runs. 
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Appendix B - Summary of Calibration Data 

Calibration Data for Chapter 4 

 

Table B.1 Calibration data for isokinetic sampling from velocity traverse. 

Parameter A - Lower Duct B - Upper Duct A - Lower Probe B - Upper Probe
Diameter (d), ft 2.23 1.89 0.115 0.115
Diameter (d), m 0.68 0.58 0.035 0.035
Cross-Sect. Area (A), ft2 3.89 2.81 0.010 0.010
Cross-Sect. Area (A), m2 0.36 0.26 0.000958 0.000958

Root Mean Square of Velocity 
Pressure Readings (VPrms), in. 0.79 0.89 0.79 0.89

Velocity (V), ft·min-1 3498.41 3776.91 3498.41 3776.91
Velocity (V), m·s-1 17.78 19.19 17.78 19.19
Volumetric Air Flowrate (Q), ft3·min-1 13624.10 10617.21 36.07 38.95
Volumetric Air Flowrate (Q), m3·s-1 6.43 5.01 0.017 0.018
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Figure B.1 Calibration graph for Magnehelic pressure gauge for lower duct (set A).  

[With a given volumetric flowrate for the sampling probe, calculate the pressure drop (in. water) from the 

graph to use in maintaining pressure in the Magnehelic gauge.] 
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Figure B.2 Calibration graph for Magnehelic pressure gauge for upper duct (set B). 

[With a given volumetric flow rate for the sampling probe, calculate the pressure drop (in. water) from the 

graph to use in maintaining pressure in the Magnehelic gauge.] 

 

 


