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Abstract 

The force fields used in computer simulations play an important role in describing a 

particular system. In order to estimate the accuracy of a force field, physical or thermodynamic 

properties are usually compared with simulation results. Recently, we have been developing a 

force field which is called the Kirkwood-Buff Force Field (KBFF). This force field is established 

by transforming experimental data into Kirkwood-Buff (KB) integrals and then attempting to 

reproduce those KBIs with molecular dynamic (MD) simulations. Here we investigate a variety 

of intermolecular interactions in aqueous solutions through KB theory and molecular simulations. 

First, we describe a force field for the simulation of alkali halide aqueous solutions. These 

models are developed specifically to reproduce the experimentally determined Kirkwood-Buff 

integrals and solution activities as a function of molality. Additionally, other experimentally 

known properties including ion diffusion constants, relative permittivities, the densities and heats 

of mixing are reproduced by these models. Second, In an effort to understand the interactions 

which occur between amino acids in solution we have developed new force fields for simple 

amino acids and their analogs including glycine, betaine, β-alanine, dl-alanine, NH4Cl, NH4Br, 

N(CH3)4Cl, N(CH3)4Br, CH3NH3Cl, and CH3COONa. The new force fields reproduce the 

experimental Kirkwood-Buff integrals which describe the relative distribution of all the species 

in a solution mixture. Furthermore, it is shown that these simple amino acids can be understood 

in terms of the interactions of their functional groups and that, to a very good approximation, the 

transferability and additivity usually assumed in the development of biomolecular force fields 

appear to hold true. Third, an analysis of the effect of a cosolvent on the association of a solute in 

solution is presented by using the Kirkwood-Buff theory of solutions. The derived expressions 

provide a foundation for the investigation of cosolvent effects on molecular and biomolecular 



 

equilibria, including protein association, aggregation, and cellular crowding. Finally, in an effort 

to understand peptide aggregation at the atomic level we have performed simulations of 

polyglycine ((gly)n) using our recently developed force fields. Experimentally, the association of 

glycine polypeptides increases with n. Our force fields reproduce this behavior, and we 

investigated the reasons behind this trend. In addition to studying closed ensembles, we also 

simulate these systems in a semi-open ensemble that was designed to mimic cellular 

environments typically open to water, using a simple direct approach. The differences between 

the two ensembles are investigated and compared with our recent theoretical descriptions of 

aggregating systems using Kirkwood-Buff theory. 
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Abstract 

The force fields used in computer simulations play an important role in describing a 

particular system. In order to estimate the accuracy of a force field, physical or thermodynamic 

properties are usually compared with simulation results. Recently, we have been developing a 

force field which is called the Kirkwood-Buff Force Field (KBFF). This force field is established 

by transforming experimental data into Kirkwood-Buff (KB) integrals and then attempting to 

reproduce those KBIs with molecular dynamic (MD) simulations. Here we investigate a variety 

of intermolecular interactions in aqueous solutions through KB theory and molecular simulations. 

First, we describe a force field for the simulation of alkali halide aqueous solutions. These 

models are developed specifically to reproduce the experimentally determined Kirkwood-Buff 

integrals and solution activities as a function of molality. Additionally, other experimentally 

known properties including ion diffusion constants, relative permittivities, the densities and heats 

of mixing are reproduced by these models. Second, In an effort to understand the interactions 

which occur between amino acids in solution we have developed new force fields for simple 

amino acids and their analogs including glycine, betaine, β-alanine, dl-alanine, NH4Cl, NH4Br, 

N(CH3)4Cl, N(CH3)4Br, CH3NH3Cl, and CH3COONa. The new force fields reproduce the 

experimental Kirkwood-Buff integrals which describe the relative distribution of all the species 

in a solution mixture. Furthermore, it is shown that these simple amino acids can be understood 

in terms of the interactions of their functional groups and that, to a very good approximation, the 

transferability and additivity usually assumed in the development of biomolecular force fields 

appear to hold true. Third, an analysis of the effect of a cosolvent on the association of a solute in 

solution is presented by using the Kirkwood-Buff theory of solutions. The derived expressions 

provide a foundation for the investigation of cosolvent effects on molecular and biomolecular 



 

equilibria, including protein association, aggregation, and cellular crowding. Finally, in an effort 

to understand peptide aggregation at the atomic level we have performed simulations of 

polyglycine ((gly)n) using our recently developed force fields. Experimentally, the association of 

glycine polypeptides increases with n. Our force fields reproduce this behavior, and we 

investigated the reasons behind this trend. In addition to studying closed ensembles, we also 

simulate these systems in a semi-open ensemble that was designed to mimic cellular 

environments typically open to water, using a simple direct approach. The differences between 

the two ensembles are investigated and compared with our recent theoretical descriptions of 

aggregating systems using Kirkwood-Buff theory. 
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CHAPTER 1 - Introduction 

General Introduction 

Aqueous solution of proteins and salts are some of the most interesting systems in cell 

biology because salts can affect the thermodynamics and structure of proteins. Small 

perturbations in protein structure may expose hydrophobic surfaces that lead to aggregation 

which can influence the normal functions of proteins in our bodies. Therefore, many scientists 

have tried to understand the roles of salts in aqueous solutions. For example, it has recently been 

revealed that many diseases including Alzheimer’s, Huntington’s, Amyotrophic Lateral Sclerosis 

(ALS), and prion diseases,
1-2

 are related to protein aggregation which is affected by the salt 

concentration or type, temperature, and pH of the cellular environment. Unfortunately, it is 

difficult to describe diseases at the atomic level using typical experimental procedures. We need 

alternative methods to understand the altered physicochemical properties of proteins which lead 

to disease at atomic detail. Molecular dynamics (MD) simulation is one of the great tools which 

can be used to investigate these diseases because it provides information on the physical 

properties and the dynamics of aqueous solutions including proteins and salts. In order to 

develop a bridge between the model system used in MD simulations and the real system, a 

proper theory needs to be employed. Otherwise, the results from MD simulations are 

meaningless. For example, it has been questioned if the mainstream force fields used for MD 

simulation can correctly describe the properties of solution mixtures.
3-5

 Here, the first goal of this 

project is to develop a correct force field for systems including a combination of protein, salts, 

and water molecules. The second is to extend the theory used in the force field development 

(Kirkwood-Buff theory) to describe interesting phenomena of aggregating peptide systems in 
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both closed and semi-open ensembles. Finally, we will present a new model of peptide 

aggregation in both closed and semi-open systems using our new force fields. 

Molecular Simulation 

Computer simulations are increasingly playing a more important role in the investigation of 

complicated biological systems. The development of algorithms and theories, combined with the 

increase in computing power, has made it possible to investigate the properties of complex 

biomolecular systems at different levels of resolution. The resolution should be chosen based 

upon the type of property or process under investigation. Computational techniques are the best 

way to investigate complicated biomolecular system at this stage even though recent progress in 

experimental analysis has also been developed.
6-9

  

There are two types of computer simulations based on statistical mechanics. In Monte Carlo 

(MC) simulation, new coordinates of the particles in the box are generated by small random 

moves, and then the change in total potential energy of the system is calculated.
10

 The 

acceptance of a new configuration is dependent on the Boltzmann distribution. MC has been 

used for the investigation of peptide oligomerization and an advantage of this method is the 

ability to mimic the actual assembly of several peptide chains. A disadvantage is the limited 

sampling.
11

 

Molecular dynamics (MD) is another computer simulation technique based on statistical 

mechanics, in which the net force arising from all atoms and molecules in a system is allowed to 

move the molecules by Newton’s equation of motion via interactions following empirical pair-

additive potentials, for a period of time. This type of simulation is frequently used for the 

investigation of proteins, biomolecules, and materials science, because it provides dynamical 
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properties of the system through statistical ensemble averages which are equal to time averages 

of the system. In Figure 1.1, the relationship between macroscopic and microscopic system 

properties is described. 
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Microscopic b 
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b) 

Molecular Dynamic 
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Figure 1.1 The relationship between macroscopic and microscopic system properties. The 

macroscopic properties can be determined by statistical mechanics calculations from the 

microscopic ensemble averages. 

MD simulation is useful to study protein dynamics and to address peptide self-assembly. In 

the case of all atom approaches, each atom in the system, including the solvent, is described 

explicitly. Hence, MD simulation affords a high degree of resolution for complicated 

environments. Most biomolecular simulations involve non-polarizable force fields, where the 

atoms in a protein are modeled as rigid spheres with a fixed charge that interact through a series 

of bonded and non-bonded potentials. The positions and velocities of the atoms are then obtained 

by numerical integration of the classical equations of motion, and a direct link between the 

atomic descriptions and macroscopic properties is established using statistical mechanics. 
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When a molecular dynamics simulation is designed, the computational costs should be 

considered. The proper time steps, box size for the simulations, and number of particles in the 

box should be selected to provide reasonable computational times, while the simulation time 

should be long enough to sample the time scales of the interesting natural processes under 

investigation. Otherwise, it is difficult to obtain statistically valid results from simulation. These 

days, in order to obtain the lengths of time required for statistically meaningful simulation results, 

people are using parallel algorithms which make use of multiple CPUs.
12

 

Force Field Development 

The quality of a molecular dynamics simulation is determined by the force field used in the 

simulation. Each particle in the system behaves as described by the input parameters of a force 

field, thus it is critical to use accurate simulation parameters for the atomic properties and their 

interactions in order to obtain a correct description of the system. 

Force Field 

A force field involves the functional form and parameter sets used to describe the potential 

energy for a particular system. The basic functional form of a force field includes bonded terms 

and nonbonded terms. The bonded terms are composed of bond, angle, and dihedral angle terms. 

Nonbonded terms describe electrostatic and van der Waals forces. The total energy is given by: 

Etotal = Ebond + Eangle + Eproper + Eimproper + Eelectrostatic + EvanderWaals. 

These functions and parameter sets can be obtained from both experimental work and 

quantum calculations. The bonded terms including bond, angle, improper, and proper dihedral 

functions are well established.
13

 The nonbonded terms are the most computationally intensive 
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because they include many more interactions per atom. A popular way to minimize the 

computational cost is to limit interactions to pairwise energies. The van der Waals terms usually 

follow a Lennard-Jones potential and the electrostatic term is described by Coulomb’s law. 

There are two different types of force fields: all atom, which explicitly describe every atom 

in a system, and united atom, which treat the hydrogen and carbon atoms in methyl groups as a 

single atom. Coarse-grained force fields are a subset of the united atom force fields. They are 

useful for long-time simulations of proteins because they reduce computational cost. However, 

the atomic details are neglected.
14-16

 

The Strategy for the Force Field Development 

The force fields used to describe aqueous solution containing proteins and salts have 

significant flaws.
5
 Hence, we need a new strategy for force field development which will allow 

us to describe those systems with greater accuracy. Relying on the principle of additivity, which 

says that a protein is the sum of its parts, we take the following approach. First, we separate the 

whole system in to a series of salts in water and small peptides in water. Second, small peptides 

are broken down into amino acids. Third, amino acids are broken down into their building blocks 

which are studied in detail to develop the force field parameters. 

Figure 1.2 illustrates the strategy for the study of systems including proteins, salts, and water 

molecules. As a model for salts and water, alkali halide aqueous solutions are not only one of the 

simplest model systems, but these ions also play an important role in many biological systems 

e.g., by influencing the structure and dynamics of biomolecules. They stabilize important 

biomolecules like proteins, nucleic acids, and lipids, and they are important for biological 

catalysis.
17-19

 In the 1880s, Hofmeister and co-workers investigated the relative ability of 
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different salts to precipitate proteins.
19

 His work established the ranking for an anion or cation’s 

ability to precipitate a protein. It is widely held that the Hofmeister series reflects specific ion 

effects on the long-range structure of water. 

 

 

Proteins + Salts + Water 

Salts + Water 

(Alkali halides in water) 

Small Peptide + Water 

(Polyglycine in water) 

Amino Acids + Water 

(Glycine, Alanine, β-Alanine, Betaine in water) 

Building Blocks of Amino Acids + water 

(NH4Cl, NH4Br, (CH3)4NCl, (CH3)4NBr, NaCH3CO2, CH3NH3Cl in water) 

 

Figure 1.2 The strategy for the force field development of aqueous solutions including 

proteins and salts in biological environments. 

As a model of a small peptide in water, we have chosen the polyglycine and water system 

because glycine is the simplest amino acid. Before the investigation of polyglycines, several 

amino acid systems: glycine, dl-alanine, β-alanine, betaine in water were also studied. The 

propensity for different amino acid sequences to induce protein aggregation could then be 

investigated. Different short peptide sequences can self-assemble into different structures of 

nanoscale dimensions.
20

 

Furthermore, the studies of components such as amine groups, carboxylic acid groups, and 

side chains, which are the building blocks of amino acids, are particularly important in the study 
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of proteins because the chemical properties of the amino acids determine the biological activity 

of the protein. The various amino acids differ in which side chain is attached to their α-carbon. 

Therefore, before we can understand the structure and properties of amino acids we need to 

investigate the components of amino acids first. In this project, the building blocks of those 

amino acids namely: NH4Cl, NH4Br, (CH3)4NCl, (CH3)4NBr, NaCH3CO2, CH3NH3Cl in water 

have been studied.  

Polarizability in Force Fields 

Polarization is the changes in a charge distribution around a molecule due to a change in its 

environment. Real systems are polarized when placed in a high-dielectric medium such as water. 

This polarization strongly affects the geometry and energy of molecules in the system. 

Unfortunately, simulations performed using fixed charges cannot describe polarization or 

charge-transfer effects, which may be critical for systems of biopolymers such as protein and 

nucleic acid molecules. In order to overcome limitations with fixed charge models, some models 

that include explicit polarization or charge transfer effects have been proposed.
21-24

 

To introduce explicit polarization is one of the ways to improve force fields. This method 

typically includes the use of induced dipoles, and thereby the effects of changes in environment 

such as the electronic structure of ions and molecules. The advantages of polarizable force fields 

in molecular dynamics simulations are an increase in accuracy due to the inclusion of electronic 

structure changes. However, the disadvantages of polarizability calculations are they are the 

computationally expensive compared to nonpolarizable fixed charge methods. For example, 

complicated biological systems including a large number of molecules will require significant 

computation time.  
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Kirkwood-Buff Theory 

The Kirkwood-Buff (KB) theory of solutions was published in 1951. In the original paper, 

Kirkwood and Buff derived new relationships between thermodynamic quantities and molecular 

distribution functions for multi-component systems in the μVT ensemble.
25

 KB theory can 

provide general expressions for any type of particle over the entire range of compositions. Ben-

Naim developed the useful inversion procedure which makes this theory applied to solutions.
26

 

His approach provides information concerning the interaction between a pair of species in any 

solution mixture. Since then, many chemists and physicists have followed his lead to develop KB 

theory and apply it for the study of various solution mixtures. KB theory has been applied to 

determine molecular osmolyte effects on macromolecules,
27

 to understand structural 

thermodynamics of protein preferential solvation,
28-29

 and to analyze the free energy of 

molecular binding into lipid membranes.
30

 

The radial distribution function (rdf) is an important pair correlation function. It describes 

the density of species as a function of the distance from one particular central species. This is 

useful to describe the particle distribution in liquid systems. For example, it can be derived from 

experimental data such as x-ray or neutron diffraction studies,
31-32

 thus providing a direct 

comparison between experiment and simulation. The physical meaning of radial distribution 

function (rdf) is described in Figure 1.3.  
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Figure 1.3 The physical meaning of the radial distribution function. The Red balls are 

particles. r indicates the distance from the central particle. dr indicates the distance 

between shells. 

The rdf is usually plotted as a function of the distance r between i and j. The probability 

function as a function or r is obtained by dividing the average number of atoms in each shell by 

the volume of the shell, and then normalizing by reference to the bulk density. The rdf indicates 

the local solution structure, including solvation shells. As shown in Figure 1.4, at short distances 

less than the effective width of i and j the rdf has zero value due to a strong repulsive force. 

Several obvious peaks indicate that the neighbor atoms pack around each other. As the distance 

between species i and j, rij, increases, the rdf goes to unity, indicating the distribution becomes 

similar to the bulk distribution. As temperature increases the peaks become broader because of 

thermal motion. In the case of crystals, the peaks are very sharp because atoms are strongly 

bounded in their given positions. 



 10 

 

Figure 1.4 Radial distribution function (rdf) is presented. 

This KB integral corresponding to the rdf can be obtained either by experimental or 

simulated data. For a binary solution, three experimental KBIs can be extracted from solution 

data consisting of chemical potentials, partial molar volumes, and isothermal compressibilities.
26

 

Simulation data also provide three rdfs which can be integrated to yield the three KBIs from a 

binary solution mixture including water and cosolvent at constant pressure and temperature. In 

Figure 1.5 we show an example of a KB integral Gij as a function of integration distance r (nm) 

between species i and j, and corresponding to the rdf in Figure 1.4. The KBIs are obtained from
26

 

   
R

NpT

ijij drrrgG
0

21)(4 . (1.1) 

Here, Gij is the KB integral between species i and j, gij is the corresponding radial 

distribution function (rdf) in the NpT ensemble, and r is the distance between the center of mass 

(i) and the center of mass (j). 
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Figure 1.5 An example of KB integral Gij as a function of integration distance R (nm) 

between species i and j. This KB integral corresponds to the rdf displayed in Figure 1.4. 

The thermodynamic properties of a solution mixture can be expressed using the KB integrals 

between the different solution components. Therefore, KB theory is a nice tool to bridge between 

an interesting real system, and a model system for computer simulation as shown in Figure 1.6. 

Furthermore, KB theory has been applied to a number of biomolecular systems, as well as a 

variety of cosolvent systems.
33-40

 

 

Figure 1.6 The relationship among system, method, and theory used here. 
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Kirkwood-Buff Derived Force Field 

It has been shown that experimental KB integrals can play an important role in the 

parameterization of a new force field because KBIs are more sensitive to the parameter sets than 

most other experimental data.
38-43

 In addition, they can help us quantify the interaction between a 

pair of components in solutions. The quality of a force field used in a simulation can be 

determined by comparing the KBIs and thermodynamic properties obtained from simulations to 

the KBIs and thermodynamic properties obtained from experimental data. Early tests using 

commonly available force fields indicated problems
44-46

 trying to reproduce KB integrals 

suggesting that an improved force field is needed. Consequently, a new force field which is 

specially designed to reproduce experimental KBIs has been developed to describe the delicate 

balance between solute-solute interactions and solute-solvent interactions in solution. 

 

Experiment 

Real Liquid 

Experiment Result 

Modeling 

Compare 

Model Liquid 

Simulation Result 

Simulation 

KBIs 

KB Theory 

Compare KBIs 

KB Theory 

 

Figure 1.7 The connection between experiment and computer simulation. The experimental 

results can be compared with the simulation results directly and the experimental KBIs can 

be compared with the simulated KBIs using KB theory. 
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It is well known that KB integrals are very sensitive to the input parameters of the force field, 

in particular to the charge distributions.
37-39, 41

 Hence, in the development of a new force field 

using KB theory, the charge distribution has been focused, while bonded parameters are typically 

introduced from existing experimental data. The non-bonded van der Waals interactions are also 

well established. In order to improve the charge distributions on atoms, the KB approach adjusts 

the charges on the atoms to reproduce the density and KB integrals for solution mixtures at 

several different compositions.
35-39, 47

 Other approaches typically determine the partial charges 

on atoms by using ab initio calculations of gas phase, which is then followed by scaling in an 

effort to mimic polarization effect in water. Even though a Kirkwood-Buff force field is not a 

polarizable force field, accurate effective charges on atoms can be determined due to the 

sensitivity of the KBIs. It has been shown that the KBFF performs simulation better than many 

other non-polarizable force fields with the same computational cost.
35-40, 47

 

Protein Aggregation 

Protein aggregation is not only related to undesired human diseases like Alzheimer’s disease, 

Creutzfeld-Jakob disease, Gerstmann-Straussler syndrome, Huntington’s disease, Parkinson’s 

disease, Amyotrophic lateral sclerosis (ALS), and type 2 diabete.
1-2

 Figure 1.8 presents the 

several pathways for protein aggregation. The native state is in equilibration with the nonnative 

state, but the aggregation steps are usually irreversible reactions. 

 

Aggregation Denaturation Aggregation 

Native  Nonnative   

Figure 1.8 General schematic presentation of overall pathway for protein aggregation 
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Usually, the denaturation of a protein is followed by protein aggregation because of exposure 

of hydrophobic surfaces which induces favorable protein-protein interactions in aqueous solution. 

The behavior of many protein aggregates have been found to depend on the properties of the 

solution environment i.e., temperature, pH, cosolvents, the protein sequences,
20, 48-52

 and the 

relative thermodynamic stability of its native state.
53-56

 Recently, the interactions of native 

protein self-association are getting more consideration since even small changes in the normal 

interactions between proteins can lead to human diseases.
57-58

  

As an initial step towards the study of protein self-associations, small peptides provide 

excellent models because small peptides are not only easy to be synthesized and modified 

experimentally, but also require reduced computational costs compared to proteins simulations. 

In addition, it has been found that short peptides such as pentapeptides or tetrapeptides can form 

typical fibrils and different short peptide sequences can self-assemble into different structures of 

nanoscale dimensions.
59

 Even dipeptides can form well-ordered assemblies.
60

 The investigation 

of the physical and chemical driving forces of peptide self-assembly is a fundamental step in 

order to understand protein aggregation.  

In order to understand the driving force of peptide aggregation, the intermolecular 

interactions between a protein and its surroundings i.e., protein-protein interactions, protein-

solvent interactions, and protein-cosolvent interactions need to be investigated. Hence, in order 

to understand the thermodynamics, we must investigate the underlying atomic interactions. The 

study of cosolvents in solution is especially helpful in understanding peptide association.
61
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Cosolvent Effects on the Stability of Proteins 

In order to describe the basic thermodynamic effects of cosolvents on chemical equilibrium, 

the concept of binding and linkage has been used.
62-63

 Timasheff has applied this linkage 

function and related theories to the stability of protein conformations, which can then be used to 

describe cosolvent effects.
61

 According to the Wyman linkage function, a greater binding to the 

native state will shift the equilibrium toward the native state.
61

 It can be used to describe how 

weakly interacting cosolvents affect the stability of protein conformation and solubility at 

relatively high concentrations.
61

 

It has been known that high concentrations of cosolvents such as sugars, polyols, and 

ammonium sulfate stabilize the native state of proteins, whereas other cosolvents such as urea 

and guanidine hydrochloride act as protein denaturants.
61, 64-65

 Denaturants prefer binding to the 

unfolded state than to the native state. The surface of a protein molecule excludes protein 

stabilizers, and the exclusion of them increases as its solvent exposed surface area increases.
61, 66-

67
 Preferential exclusion can thus be described as negative binding. During denaturation, the 

protein surface area increases, leading to a greater degree of preferential exclusion. The net effect 

of greater negative binding shifts the equilibrium from the unfolded state to the native state.  

In the case of ions, they can control the strength of both intra- and intermolecular 

electrostatic interactions between the charged groups. At low concentrations, the predominant 

effect of ions in solution involves charge shielding leading to decreased electrostatic interactions. 

However, at high concentrations the preferential binding of ions to the protein surface can lead to 

a decrease in thermodynamic stability of the native conformation.
68

 Other salts that are 

preferentially excluded from protein surfaces show stabilizing effects. In many cases, the effect 

of a salt on protein stability is too complicated to elucidate the dominant mechanism. Hence, it is 
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required that there be a combined effort of experimental and theoretical approaches to 

understand the thermodynamics of these systems. 

Scaled Particle Theory 

In order to investigate the effects of cosolvents on protein folding, association, and 

aggregation, the scaled particle theory (SPT) has been used to calculate the excluded volume 

portion of the solute transfer free energy.
69-72

 This is determined from the difference in free 

energies between two states as a function of the additive volume fraction when hard spheres are 

inserted into solutions of the initial state and final state. These calculations generally suggest that 

the native and any associated states are favored on increasing the additive concentration. These 

trends observed in experiments
69

 and in simulations using simple excluded volume crowders.
73-74

 

The above trends are usually interpreted in terms of a decrease in the free volume, or an increase 

in the excluded volume, within the solution. However, SPT does not interpret attractive 

interactions which undoubtedly occur between proteins in real systems.
69

 Hence, other models 

are still required.  

Preferential Interactions 

Aggregation in a solution mixture involves the balance of intermolecular interactions 

between solute-solute and solvent-solute. If the solute-solute interactions are larger than solute-

solvent interactions, self-association is likely to occur and the tendency for aggregation can be 

predicted using the difference between solute-solute and solute-solvent interactions. Hence, it is 

attractive to quantitatively express the difference between solute-solute and solute-solvent 

interactions. Figure 1.9 indicates that cosolvents will tend to change the chemical potential of a 
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protein in a cosolvent solution, compared to pure solvent, due to either preferential interactions 

with, or exclusions from, the protein interface. 

 

Figure 1.9 The distribution of water molecules (white circles) and cosolvent molecules 

(black circles) in a mixture of protein, cosolvent, and water mixture (a) The protein prefers 

to be surrounded by cosolvent molecules (b) The transfer from pure water to the cosolvent 

solution in unfavourable. The protein prefers to be surrounded by water molecules. 

Smith and coworkers have extended KB theory to the analysis of experimental and computer 

simulation data relating to the interaction of cosolvents with proteins.
38, 75-77

 The preferential 

interaction (PI) of a cosolvent with a protein measures the change in cosolvent (2) molality (m2) 

on changing the biomolecule (3) molality (m3) in a system open to the cosolvent (2) and water 

(1). This is also often referred to as the preferential binding parameter.
78

 In the infinitely dilute 

biomolecule limit an exact expression for Γ23 in terms of KB integrals can be obtained by using 

number density (ρi), Kirkwood-Buff integrals (Gij), and excess coordination number (Nij).
75, 77

 



 18 

 

  21

1

3

2321233

,,2

3

23

31

NNGG
m

m

T





















 

(1.2) 

The concept of preferential interaction (PI) has been introduced previously and KB integrals 

can play an important role in quantifying these PIs.
79

 In cellular systems, it is very difficult to 

estimate the balance of the interactions between solute-solute and solvent-solute. However, it 

would be useful to be able to quantify these interactions. Hence, we will investigate the effects of 

a cosolvent on the equilibrium constant for association of a solute in solution using Kirkwood-

Buff theory in Chapter 4. 
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Summary 

MD simulations have been used to investigate biological systems by providing details at the 

atomic level. Kirkwood-Buff theory is a useful tool to interpret and connect experimental and 

computational data. Here, we apply Kirkwood-Buff theory and computer simulations to various 

interesting biological environments. 

In chapter 2, force fields for the simulation of alkali halide aqueous solutions are developed 

specifically to reproduce the experimentally determined Kirkwood-Buff integrals and solution 

activities as a function of molality. Additionally, experimentally known properties: ion diffusion 

constants, relative permittivities, densities and heats of mixing are also reproduced by these 

models. 

In chapter 3, in an effort to understand the interactions which occur between amino acids in 

solution we describe new force fields for simple amino acids and their analogs including glycine, 

betaine, β-alanine, dl-alanine, NH4Cl, NH4Br, N(CH3)4Cl, N(CH3)4Br, CH3NH3Cl, and 

CH3COONa. The new force fields reproduce the experimental Kirkwood-Buff integrals 

describing the relative distribution of species in the solution mixture. Furthermore, it can be 

shown that these simple amino acids can be understood in terms of the interactions of their 

functional groups and that, to a very good approximation, the transferability and additivity 

usually assumed in the development of biomolecular force fields appears to hold true. 

In chapter 4, the effect of a cosolvent on the association of a solute in solution using the 

Kirkwood-Buff theory of solutions is presented. The derived expressions provide a foundation 

for the investigation of cosolvent effects on molecular and biomolecular equilibria including 

protein association, aggregation, and cellular crowding. 
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In chapter 5, in an effort to understand peptide aggregation at the atomic level we have 

performed simulations of polyglycine ((gly)n) using our recently developed force fields. 

Experimentally, the association of glycine polypeptides increases with n. Our force fields 

reproduce this behavior, and the reasons behind this trend are investigated. In addition, we also 

simulate these systems in a semi-open ensemble, designed to mimic cellular environments 

typically open to water, using a simple approach. The differences between the two ensembles are 

investigated and compared with our recent theoretical descriptions of aggregating systems using 

Kirkwood-Buff theory. 
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CHAPTER 2 - A Kirkwood-Buff Derived Force Field for Alkali 

Halides in Water 

We describe a force field for the simulation of aqueous alkali halide solutions. These models are 

developed specifically to reproduce the experimentally determined Kirkwood-Buff integrals and 

the solution activities as a function of molality. Additionally, we demonstrate that these models 

reproduce other experimental properties including ion diffusion constants, relative permittivity, 

the density and heat of mixing. 

Introduction 

In an effort to develop force fields for the accurate simulation of biologically interesting 

solution mixtures, we have recently been developing a specialized force field, the Kirkwood-

Buff force field (KBFF).
1-7

 The parameters of the KBFF are determined using molecular 

dynamics simulations, the Kirkwood-Buff (KB) theory of solutions, and experimental data for 

activity coefficients and solution densities. This approach has several advantages. First, KB 

theory is exact including no approximations. Second, KB theory can be applied to any solution 

whose activity coefficients and densities are available. Third, the KB integrals, which are the 

main quantities that result from the application of the KB theory, are easily obtainable from the 

radial distribution functions (rdf) through MD simulations and are very sensitive to the force 

field parameters. And fourth, the KB integrals quantify the relative strength between solute-

solute and solute-solvent interactions, and therefore, describe the correct distribution of solutes in 

solution.
2, 8
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Aqueous solutions of alkali metal halides are not only the simplest models for the 

application of the KB theory to aqueous electrolyte solutions, but they also play an important 

role in many biological systems. They stabilize important biomolecules like proteins, nucleic 

acids, and lipids, and they are often involved in biological catalysis.
9-11

 In the case of protein 

stabilization, for instance, the Hofmeister series predicts that as the molar mass of an alkali metal 

ion increases, so does its ability to stabilize native a protein.
11

 

Because of their importance in biological phenomena, several force fields for alkali metal 

and halide ions have been reported in the literature.
12

 Unfortunately, the force fields have been 

shown to be incompatible with each other.
12

 Since 2008 however, there have been two attempts 

to develop force fields that are consistent for all alkali metals and all halide ions. First, in 2008, 

Joung & Cheatham
12

 used the free energy of hydration of individual ions, as well as the lattice 

energies and the lattice constants of alkali metal halides, in order to create force fields for all 

alkali metal and halide ions. Joung & Cheatham
12

 developed parameter sets for the three 

commonly used nonpolarizable water models, SPC/E, TIP3P, and TIP4PEW. Second, in 2009, 

Horinek et al.
13

 used both the free energy and the entropy of hydration of the individual ions in 

order to parameterize their force fields. Horinek et al.
13

 focused on a single nonpolarizable water 

model, SPC/E, and argued that their force field would be more applicable in biomolecular 

simulations where the salt concentrations are low, and that the Joung & Cheatham force fields 

would be more applicable when the salt concentrations are high.
12

 

Although the Joung & Cheatham and the Horinek et al. force fields reproduce a series of 

properties, (including the first peak of the ion-water radial distribution function (rdf), ion-water 

binding energies, interionic distances, diffusion coefficients, solubilities, and association 

constants) they were not designed to be applicable over the entire concentration range. Also, 
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those force fields were parameterized using free energies and entropies of solvation, an approach 

that does not probe ion-ion interactions. The KB approach, on the other hand, provides force 

fields applicable over the entire concentration range, as demonstrated in our previous work.
2
 

Since 2009, two research groups have produced KB-derived force fields for alkali metal halides 

recently. Hess & van der Vegt used the SPC/E water model to develop KB-derived force fields 

for Li
+
 and K

+
 in order to explain the differential binding affinity of alkali metal ions to 

carboxylate ions.
14

 And Klasczyk & Knecht used the SPC water model and our force field for the 

chloride ion to develop KB-derived force fields for Li
+
, K

+
, Rb

+
, and Cs

+
, but not for halide 

ions.
15

 The Klasczyk & Knecht force field is incompatible with ours because we use SPC/E 

water model. In this paper, we present a KB-derived force field for a variety of alkali metal and 

halide ions that is applicable over the whole concentration range. 

Methods 

Kirkwood-Buff Theory 

Kirkwood-Buff theory is an exact theory of solution.
16

 The central properties of interest are 

the Kirkwood-Buff integrals (KBIs) which are defined by, 

  
R

NpT

ijij drrrgG
0

2]1)([4 .  (2.1) 

Here, Gij is the KB integral between species i and j, )(rg NpT

ij  is the corresponding radial 

distribution function (rdf) in the NpT ensemble, r is the distance between the two species, and R 

represents a correlation region within which the solution composition differs from the bulk 

composition. All rdfs are assumed to be unity beyond R. Excess coordination numbers are 

defined as ijjij GN  , where VN jj   is the number density of j particles. A value of Nij 
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greater than zero generally indicates an excess of species j in the vicinity of species i (over a 

random distribution), while a negative value corresponds to a depletion of species j surrounding i. 

For a binary solution consisting of water (w) and a cosolvent (c), a variety of thermodynamic 

quantities can be defined in terms of the KB integrals Gww, Gcc, and Gcw = Gwc, and the number 

densities (or molar concentrations) ρw and ρc. The partial molar volumes of the components ( iV ) 

and the derivative of the cosolvent activity (ac = ycρc) at a pressure (p) and a temperature (T) are 

given by,
2
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There are no approximations made during the derivation of the above equations. Our previous 

simulations and others have indicated that a combination of KB theory and NpT simulations can 

provide quantitative information concerning the thermodynamics of solutions.
2-4, 6-7

 The salt 

solution needs to be treated as a binary system of indistinguishable ions and water when KB 

theory is applied to electrolyte solutions.
2, 5

 Therefore, we distinguish between the cosolvent 

(total ion) concentration, ρc, and the classical salt concentration, Cs. Consequently, for a 1:1 salt 

one has cssc VVC 2 ,2  , and  yyc . In addition, the following relationships are also 

obeyed, 1 wwcc VV   and 0lndlnd  wwcc aa  , at constant p and T. 
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Molecular Dynamics Simulations 

All molecular dynamic simulations of alkali halide solutions were performed using the 

SPC/E water model
17

 in the isothermal isobaric (NpT) ensemble at 300 K and 1 atm as 

implemented in the GROMACS program (v3.3.1).
18-19

 A time-step of 2 fs was used and the 

geometry of the water molecules was constrained using SETTLE.
20

 The weak coupling 

technique was used to modulate the temperature and pressure with relaxation times of 0.1 and 

0.5 ps, respectively.
21

 In order to evaluate electrostatic interactions, the particle mesh Ewald 

technique (PME) was used.
22

 The initial cubic boxes of different solutions have been generated 

by adding water molecules and ions until the required concentration was obtained. 

Configurations were saved every 0.1 ps for analysis. Diffusion constants were determined using 

the mean square fluctuation approach,
23

 and relative permittivities were obtained from the dipole 

moment fluctuations.
24

 The excess enthalpy of mixing ( mH ) was determined by an established 

procedure which uses the average potential energies,
25

 using configurational energies from the 

pure SPC/E water and the alkali halide lattice.  
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Parameter Development 

The force field used in this study corresponds to the Lennard-Jones (LJ) 6-12 potential 

which contains most commonly two adjustable parameters in ionic force developments: the 

Lennard-Jones diameter (ζ) and the interaction strength (ε) plus a Coulomb potential, combined 

with the SPC/E water model.
17

 In this scheme each pair of atoms i and j interact with an 

interaction energy given by 
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Here, all the symbols have their usual meaning.
6
 In order to obtain parameters for the LJ term, 

we have employed the same method we published previously.
2
 Hence, we require three pieces of 

experimental data, i.e the ionic radii of alkali and halide ions which are consistent with the 

crystal lattice dimension, the crystal lattice unit cell dimension, and the ion to water oxygen 

contact distances. 

Table 2.1 Experimental data for parameter development: r, the ionic radii of alkali halide 

ions which are consistent with the crystal lattice dimension; a, the crystal lattice unit cell 

dimension; d, the ion to water oxygen contact distances 

 Li
+
 K

+
 Rb

+
 Cs

+
 F

-
 Cl

-
 Br

-
 I

-
 

 Cl
-
 Na

+
 

r (nm) 0.115 0.138 0.149 0.170 0.133 0.181 0.196 0.220 

a (nm) 0.257 0.319 0.332 0.412 0.239 0.282 0.299 0.324 

d (nm) 0.213 0.280 0.289 0.314 0.263 0.319 0.338 0.365 

Reference 
26-27

 
26-27

 
26-27

 
26-27

 
26-27

 
2
 

26-27
 

26-27
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The final parameters have been developed by systemically increasing or decreasing the 

parameters of each ion, in accordance with the ionic scaling factors used.
2
 First, we 

parameterized the anions (F
-
, Br

-
, I

-
) by studying NaF, NaBr, and NaI. We have used the same 

values of Na
+
 in terms of ζ and ε. After the values of ζ-- were determined by scaling the ionic 

radii of each ion with the scaling factor (2.43), which was used for the parameter-development of 

Cl
-
,
2
 the values of ε-- were determined by increasing or decreasing the values of ε-- of X

- 
until the 

experimental lattice dimensions of the sodium halide were reproduced by simulation. The values 

determined for each ion were then applied to study the experimental KBIs in aqueous solutions. 

Unfortunately, in the case of F
-
, ζFF and εFF did not reproduce experimental KBIs in aqueous 

solutions. Hence, we decided to develop the values of ζFF and εFF in solution which are different 

from those in crystal structure. Second, we developed the parameters of cations (K
+
, Rb

+
, Cs

+
) 

using the properties of KCl, RbCl, and CsCl. After the values of ζ++ were determined by scaling 

the ionic radii of each ion, the values of ε++ for each cation were determined in the same way as 

they were determined for anions. Unfortunately, we could not reproduce experimental KBIs in 

aqueous solution by using standard combination rules with these ζ++ and ε++ in aqueous solutions. 

Hence, we needed to break combination rules for the determination of the values of ε+O for each 

cation, as was also required for NaCl solutions. Finally, as a test we applied these parameters to 

study the cation-anion exchanged solution systems of CsBr and KI in order to demonstrate the 

transferability of our parameters. 

Table 2.2 shows the Lennard-Jones parameters used in our simulations. The LJ parameters 

for Na
+
 and Cl

-
 were taken from Weerasinghe and Smith,

2
 and those for Li

+
 from Hess & van der 

Vegt.
14

 As the size of the cation increased, the value of ζ decreased and that of ε decreased. A 

similar trend is observed for the anions, which is expected. This trend in the values of ζ was also 
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observed by both Joung & Cheatham,
12

 as well by Horinek et al.
13

 However the trend in the 

values of ε was absent from the work of both research groups. 
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Table 2.2 Final force field parameters for the KBFF model 

Model Atom ζii (nm) εii (kJ/mol) εiO (kJ/mol) q (e) 

KBFF 

Li 0.182 0.7000 0.2700
a
 +1.0 

Na
2
 0.2450 0.3200 0.3420

b
 +1.0 

K 0.3340 0.1300 0.2327
c
 +1.0 

Rb 0.3620 0.1500 0.2655
d
 +1.0 

Cs 0.4130 0.0065 0.1954
e
 +1.0 

F 0.3700 1.0000  -1.0 

Cl
2
 0.4400 0.4700  -1.0 

Br 0.4760 0.3000  -1.0 

-1.0 I 0.535 0.2000  

SPC/E 

O
17

 0.3166 0.6506  -0.8476 

+0.4238 H
17

 0.0000 0.0000  

The combination rules used were the following: jjiiij   , jjiiij   ,  

a: LiLiOOOLi   4.0 , b: NaNaOOONa   75.0 , c: KKOOOK   8.0 , 

d: RbRbOOORb   85.0 , e: CsCsOOOCs   95.0  
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Results 

A series of molecular dynamics simulations of alkali halide solutions were performed to 

validate the models and are summarized in Table 2.3. 
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Table 2.3 Summary of the MD simulations of alkali halide water mixtures: All simulations 

were performed at 300 K and 1atm in the NpT ensemble. Symbols are Nw, number of water 

molecules; Nc, number of alkali-halide ions; Ns (= N+ = N- = 1/2Nc), number of alkali-halide 

pairs; V, average simulation volume; ms, salt molality; Cs, salt molarity; ρ, mass density; 

Epot, average total potential energy per molecule (Ns + Nw); and Tsim, total simulation time. 

   ms V Cs ρ Epot Tsim 

 Ns Nw (mol/Kg) (nm
3
) (mol/l) (g/cm

3
) (kJ/mol) (ns) 

H2O 0 2170 0.00 65.265 0.00 0.995 -46.45 2 

NaF 
20 2150 0.52 64.531 0.52 1.018 -54.94 6 

38 2079 1.01 64.519 1.03 1.040 -63.05 6 

NaCl 

38 2079 1.01 63.595 0.99 1.036 -60.07 6 

77 2048 2.09 63.829 2.00 1.077 -73.99 4 

115 1987 3.21 63.354 3.01 1.114 -88.00 4 

154 1950 4.38 63.783 4.01 1.149 -102.02 4 

NaBr 

38 2079 1.01 64.089 0.98 1.072 -59.62 5 

77 2048 2.09 64.810 1.97 1.148 -73.05 5 

115 1987 3.21 64.730 2.95 1.222 -86.59 9 

154 1950 4.38 65.584 3.90 1.291 -100.08 5 

231 1730 7.41 63.426 6.05 1.438 -132.53 9 

308 1600 10.69 64.350 7.95 1.562 -163.90 9 

NaI 

38 2079 1.01 65.051 0.97 1.101 -58.86 5 

77 2048 2.09 66.683 1.92 1.206 -71.52 5 

115 1987 3.21 67.458 2.83 1.305 -84.27 5 

154 1950 4.38 69.151 3.70 1.398 -96.97 5 

231 1730 7.41 68.599 5.59 1.593 -127.35 5 

308 1600 10.69 71.253 7.18 1.748 -156.79 5 

LiCl 

127 7065 1.00 216.903 0.97 1.016 -62.37 6 

367 6796 3.00 217.842 2.80 1.052 -92.29 6 

589 6541 5.00 219.083 4.47 1.082 -120.13 6 

KCl 126 7002 1.00 216.178 0.97 1.041 -58.36 6 
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357 6603 3.00 215.924 2.75 1.120 -80.74 6 

561 6228 5.00 216.204 4.31 1.183 -101.56 6 

RbCl 

125 6963 1.00 216.055 0.96 1.080 -57.79 6 

352 6512 3.00 215.995 2.71 1.229 -79.14 6 

549 6093 5.00 216.324 4.22 1.352 -99.03 6 

CsCl 

125 6915 1.00 216.032 0.96 1.119 -57.38 6 

345 6385 3.00 215.737 2.66 1.333 -77.74 6 

533 5920 5.00 216.025 4.10 1.510 -96.76 6 

KI 

124 6880 1.00 217.183 0.95 1.105 -57.18 6 

340 6300 3.00 218.381 2.59 1.292 -77.20 6 

522 5796 5.00 219.331 3.95 1.447 -95.97 6 

CsBr 

124 6870 1.00 216.248 0.95 1.153 -56.93 6 

339 6275 3.00 216.377 2.60 1.422 -76.47 6 

519 5761 5.00 216.598 3.98 1.640 -94.77 6 

Table 2.4 shows the potential energy, density and lattice constants for the salt crystals 

studied in this work. For all salts but the iodides, the simulated values exhibit a maximum 

percent error of 4%. On the other hand, the simulations overestimate the density of NaI by 6% 

and that of KI by 9%, while they underestimate the lattice constant of NaI by 6%. These effects 

are due to a slight overestimation of attraction between the iodide anion and the sodium and 

potassium cations. 
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Table 2.4 Summary of lattice parameters obtained from crystal simulation: Symbols are 

Epot, average total potential energy per molecule (Ns + Nw); ρsim, mass density from 

simulation; ρexp, mass density from experiment. 

 Epot (kJ/mol) ρsim (g/cm
3
) ρexp (g/cm

3
)
26

 asim (nm) aexp (nm)
26

 

NaF -969.64 2.646 2.558 0.236 0.235 

NaCl -808.24 2.108 2.165 0.285 0.282 

NaBr -776.08 3.326 3.203 0.295 0.299 

NaI -750.94 3.878 3.667 0.303 0.324 

LiCl -1178.03 1.776 2.068 0.261 0.257 

KCl -725.29 1.980 1.984 0.315 0.315 

RbCl -692.73 2.800 2.800 0.330 0.332 

CsCl -650.12 3.990 3.990 0.419 0.412 

KI -663.23 3.406 3.123 0.343 0.353 

CsBr -628.80 4.580 4.440 0.424 0.429 

The radial distribution functions (rdfs) obtained from 1 M simulations are shown in Figure 

2.1 for the sodium halides and in Figure 2.2 for the alkali metal chlorides. The sodium to halide 

rdfs displayed a large first and a significant second peak, in agreement with experiment,
28

 and all 

rdfs approach unity beyond 1 nm. 
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Figure 2.1 Radial distribution functions of 1 M solutions obtained from the NaF (black 

lines), NaCl (red lines), NaBr (green lines), and NaI (blue lines) simulations. Cations, 

anions, and the water oxygen are denoted by the symbols +, -, and O, respectively. 
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Figure 2.2 Radial distribution functions of 1 M solutions obtained from the LiCl (black 

lines), NaCl (red lines), KCl (green lines), RbCl (blue lines), and CsCl (brown lines) 

simulations. Cations, anions, and the water oxygen are denoted by the symbols +, -, and O, 

respectively. 

The first shell coordination numbers, nij, as well as the distances to the first rdf maximum, 

Rmax, and the first rdf minimum, Rmin, were calculated from the corresponding rdfs as a function 

of the solution molarity and are presented in Table 2.5. According to Table 2.5, the radii of the 

first hydration shell of Na
+
, K

+
, Rb

+
, Cs

+
, F

-
, Cl

-
, Br

-
, and I

-
 are 0.23, 0.26, 0.28, 0.29, 0.27, 0.32, 

0.33 and 0.35 nm, respectively. As the size of the cation increases, so does the radius of the first 

hydration shell; the same trend is exhibited by the anions. The predicted values agree with 

experimental values
27

 (0.24, 0.28, 0.29, 0.31, 0.26, 0.32, 0.34, and 0.36, respectively) within a 

0.1 nm root mean square (rms) deviation, a deviation that is also exhibited by the force field 

published by Joung & Cheatham.
12

 The first water shell coordination numbers of Na
+
, K

+
, Rb

+
, 

and Cs
+
 in 4 M aqueous solutions are 4.9, 5.9, 6.2, and 6.4 respectively. Similarly to the trend in 



 41 

the radii of the first hydration shell, the hydration numbers increase as the size of the cation 

increases. The predicted hydration numbers agree with those those determined by X-ray and 

neutron scattering
28

 (4.9, 5.3, 6.9, and 7.5, respectively) within a 0.2 rms deviation. Table 2.5 

shows that the coordination numbers are not only sensitive to the size of the alkali metal ion, but 

also to concentration. Also, for the 1 M solutions of NaCl, NaBr, NaI, KCl, RbCl, CsCl, KI, and 

CsBr, the solvation numbers for the ions (refered to as +/o for cations and -/o for the anions in 

Table 2.5) are higher than those for water, indicating a high solvation of the ions. This trend does 

not hold for any of the 1M NaF solution, nor for higher concentrations of NaBr.  
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Table 2.5 First shell coordination numbers (nij) of as a function of concentration (m) alkali 

halide aqueous solutions. Rmax and Rmin are the distances (nm) to the first maximum and 

minimum of the radial distribution functions. Cations, anions, and the water oxygen are 

denoted by the symbols +, -, and o, respectively. 

  m +/- +/o -/o o/o 

NaF 

Rmax  0.23 0.23 0.27 0.28 

Rmin  0.285 0.315 0.335 0.355 

nij 
0.51 0.03 5.62 6.54 4.77 

0.98 0.03 5.65 6.59 6.35 

NaCl 

Rmax  0.27 0.23 0.32 0.28 

Rmin  0.355 0.315 0.405 0.345 

nij 

0.99 0.09 5.52 8.11 5.12 

2.00 0.20 5.39 8.22 5.11 

3.01 0.42 5.11 8.38 5.06 

4.01 0.57 4.93 8.45 5.00 

NaBr 

Rmax  0.28 0.23 0.33 0.28 

Rmin  0.365 0.315 0.415 0.405 

nij 

0.98 0.10 5.49 7.54 5.09 

1.97 0.22 5.34 7.62 6.57 

2.95 0.35 5.17 8.11 7.06 

3.90 0.50 4.97 8.61 8.11 

6.05 0.96 4.33 9.66 8.72 

7.95 1.45 3.67 10.31 8.03 

NaI 

Rmax  0.29 0.23 0.35 0.28 

Rmin  0.375 0.315 0.425 0.395 

nij 

0.97 0.07 5.48 7.91 5.04 

1.92 0.16 5.40 7.98 6.42 

2.83 0.26 5.24 8.04 6.83 

3.70 0.39 5.05 8.59 7.18 
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5.59 0.84 4.37 9.60 7.56 

7.18 1.31 3.66 10.80 6.79 

LiCl 

Rmax  0.23 0.19 0.32 0.28 

Rmin  0.315 0.265 0.398 0.360 

nij 1 0.04 3.96 7.67 5.51 

 3 0.12 3.88 7.80 5.40 

 5 0.22 3.78 7.91 5.25 

KCl 

Rmax  0.31 0.26 0.32 0.28 

Rmin  0.389 0.342 0.384 0.334 

nij 1 0.20 6.11 7.03 4.32 

 3 0.54 5.77 6.79 4.03 

 5 0.89 5.39 6.48 3.74 

RbCl 

Rmax  0.32 0.28 0.32 0.27 

Rmin  0.404 0.361 0.385 0.332 

nij 1 0.24 6.75 7.03 4.23 

 3 0.60 6.35 6.72 3.89 

 5 0.95 5.95 6.32 3.57 

CsCl 

Rmax  0.34 0.29 0.32 0.27 

Rmin  0.428 0.376 0.385 0.334 

nij 1 0.34 7.15 6.91 4.28 

 3 0.78 6.63 6.48 3.92 

 5 1.18 6.15 6.06 3.59 

KI 

Rmax  0.33 0.26 0.34 0.27 

Rmin  0.418 0.342 0.412 0.332 

nij 1 0.24 6.02 7.34 4.20 

 3 0.68 5.47 7.00 3.83 

 5 1.10 4.96 6.61 3.51 

CsBr 

Rmax  0.34 0.29 0.33 0.27 

Rmin  0.438 0.380 0.394 0.332 

nij 1 0.39 7.18 6.90 4.19 
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 3 0.93 6.47 6.34 3.81 

 5 1.38 5.88 5.85 3.49 

The simulated and experimental excess coordination numbers, Nij, are shown in Figure 2.3 

for the sodium halides and in Figure 2.4 for the alkali metal chlorides as a function of the salt 

molality. The KBFF model quantitatively reproduces the experimental data, although the 

simulated values are not as accurate for NaI and CsCl. The water-water excess coordination 

number, Nww, represented by green lines and symbols, remains relatively constant at 

approximately -0.95, independent of the molality of the various salts. The ion-ion excess 

coordination numbers (black lines) also do not vary significantly from salt to salt, at least 

compared to the variation in the ion-water excess coordination numbers (red lines). This 

indicates that the ion-water interactions determine the solution behavior. This suggests that the 

large activity derivative for Na
+
 is due to its strong interaction with water, compared to that of 

the other halides, and not due to its size. For anions there is not a clear trend in the values of the 

activity derivatives, shown in Figure 2.5, presumably because of the competing effects of the 

anion sizes and of their interaction with water, indicated with red lines in Figure 2.3.  
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Figure 2.3 Excess coordination numbers as a function of salt molality. The Ncc (black lines), 

Ncw (red dotted lines), and Nww (green dash lines) are obtained from a KB analysis using 

experimental activity coefficient and density.
29-30

 The Ncc (black ●), Ncw (red ○), and Nww 

(green x) are obtained from simulation. 
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Figure 2.4 Excess coordination numbers as a function of salt molality. The Ncc (black lines), 

Ncw (red dot lines), and Nww (green dash lines) are obtained from a KB analysis using 

experimental activity coefficient and density.
29-30

 The Ncc (black ●), Ncw (red ○), and Nww 

(green x) are obtained from simulations. 

In Figure 2.5 and Figure 2.6 the simulated activity derivatives acc as a function of molality 

are compared to the experimental values.
29

 The KBFF model reproduced the correct increase in 

acc with concentration as displayed by the experimental data. An expression for the molar 

activity coefficient (yc = y±) was obtained by extending the fitting equations described in 

Robinson and Stokes
29

. We note that acc play an important role for describing the accurate force 

field.
2
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Figure 2.5 Activity derivatives as a function of salt molality. Lines are obtained from a KB 

analysis using experimental activity coefficient experimental data
29

 and dots correspond to 

the KBFF model. 

 

Figure 2.6 Activity derivatives as a function of salt molality. Lines are obtained from a KB 

analysis using experimental activity coefficient experimental data
29

 and dots correspond to 

the KBFF model 
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Figure 2.7 and Figure 2.8 show the partial molar volumes of water and of the salts. The 

partial molar volume of the salts increases monotonically, and that of water decreases 

monotonically, as the salt concentration increases. Also, as the size of the ions increases the 

partial molar volume of the salt increases. The KBFF reproduces the experimental data 

quantitatively apart from the case of NaI, presumably due to an overestimation of ion size. 

 

Figure 2.7 Partial molar volumes as a function of salt molality. Lines are obtained from a 

KB analysis using experimental activity coefficient and experimental density data,
29-30

 and 

dots correspond to the KBFF model. The black lines represent the partial molar volume of 

salts and the red dotted lines indicate partial molar volume of water. The dots (●) represent 

partial molar volume of salts and the dots (red ○) indicate partial molar volume of water 

obtained from simulation. 
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Figure 2.8 Partial molar volumes as a function of salt molality. Lines are obtained from a 

KB analysis using experimental activity coefficient and experimental density data
29-30

 and 

dots correspond to the KBFF model. The black lines represent the partial molar volume of 

salts and the red dotted lines indicate partial molar volume of water. The dots (●) represent 

partial molar volume of salts and the dots (red ○) indicate partial molar volume of water 

obtained from simulation. 

The self-diffusion constants, calculated using the mean square fluctuation approach,
23

 are 

displayed in Figure 2.9 and Figure 2.10 as a function of molality of the alkali halide. They all 

exhibit an essentially linear decrease with molality. The self-diffusion constants of alkali ions 

increase even though the mass of the ions increases. It suggests that the solvation of the cation is 

a more important effect on the diffusion constant. On the contrary, the self-diffusion constants of 

halide ions do not display any correlation with the size of the ion. This suggests that the effect of 

solvation is compensated by the increasing mass of the ion. 
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Figure 2.9 Diffusion constants as a function of salt molality. The D+ (black lines), D- (red 

dotted lines), and Dw (green dash lines) are obtained from experimental diffusion constant 

data
31-34

 and the D+ (black ●), D- (red ○), and Dw (green x) are obtained from simulation. 

 

Figure 2.10 Diffusion constants as a function of salt molality. The D+ (black lines), D- (red 

dotted lines), and Dw (green dash lines) are obtained from experimental diffusion constant 

data
35

 and the D+ (black ●), D- (red ○), and Dw (green x) are obtained from simulation. 
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The relative permittivity of alkali halides, calculated from the dipole moment fluctuations,
24

 

are displayed in Figure 2.11. They all exhibit an essentially linear decrease with salt 

concentration. The relative permittivity for all solutions decreases as a function of molarity. The 

KBFF models reproduce the experimental data well, partly because of the SPC/E model used for 

water. Here, ε0 indicates the dielectric constants of pure water. Smith and van Gunsteren have 

determined the dielectric constant of the SPC/E model of liquid water which has been used this 

study
36

. However, the value of SPC/E models (62.7) is low compared to the experimental value 

(78).
37

 Hence, we have applied 62.7 to calculate ε - ε0 for the relative permittivity of simulations 

and 78 to calculate ε - ε0 for the relative permittivity of experiments. 

 

Figure 2.11 Relative permittivities as a function of salt molality. Lines are obtained from 

experimental dielectric constant data
38-40

 and dots obtained from simulation. 
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The excess enthalpy of mixing, determined from the average potential energies,
25

 as a 

function of salt molality of the sodium halides are displayed in Figure 2.12. The excess enthalpy 

of mixing for each sodium halide solution is calculated by the difference between the molar 

potential energy in the solution phase and in the crystal phase. The data indicate that the model is 

reproducing experimental data concerning interaction energies in solution very well. 

 

Figure 2.12 Excess enthalpy of mixing
 
as a function of salt molality. Lines are obtained 

from experimental data
41

 and dots obtained from simulations. 

In the previous sections we have developed parameters for a series of sodium halides and 

alkali metal chlorides by using Kirkwood-Buff theory. In order to demonstrate the transferability 

of the parameters for the alkali halides, we used the same parameters to the study two other 

systems, KI and CsBr, which were not included in the previous parameterization and for which 

there are no free parameters. Figure 2.13 and Figure 2.14 clearly suggest that, to a high degree of 

accuracy, the parameters developed here for the sodium and chloride salts are transferable to 

other alkali halide salts. 
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Figure 2.13 Excess coordination numbers as a function of salt molality (top): The Ncc (black 

lines), Ncw (red dot lines), and Nww (green dash lines) are obtained from a KB analysis using 

experimental activity coefficient and density. The Ncc (black ●), Ncw (red ○), and Nww (green 

x) are obtained from simulations. Activity derivatives as a function of salt molality (bottom): 

Lines are obtained from a KB analysis using experimental activity coefficient experimental 

data and dots correspond to the KBFF models. 
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Figure 2.14 Partial molar volumes as a function of salt molality (top): Lines are obtained 

from a KB analysis using experimental activity coefficient experimental data
29

 and dots 

correspond to the KBFF model. The black lines represent the partial molar volume of salts 

and the red dot lines indicate partial molar volume of water. The dots (●) represent partial 

molar volume of salts and the dots (red ○) indicate partial molar volume of water obtained 

from simulation. Diffusion constants as a function of salt molality (bottom): The D+ (black 

lines), D- (red dot lines), and Dw (green dash lines) are obtained from experimental 

diffusion constant data and the D+ (black ●), D- (red ○), and Dw (green x) are obtained from 

simulation. 
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Conclusions 

A model for alkali halide aqueous solutions has been developed by reproducing the 

experimentally derived Kirkwood-Buff integrals using molecular dynamic simulations thereby 

providing a reasonably accurate representation of the balance between solute-solute and solute-

solvent interactions. Other physical and thermodynamic properties such as ion diffusion 

constants, relative permittivity, the density and heat of mixing have been also reproduced as well. 

Finally, it has been demonstrated that the parameters developed for sodium and chloride salts are 

transferable to other type of alkali halide salts by examining the results obtained for KI and CsBr 

aqueous solutions. 
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CHAPTER 3 - Understanding Amino Acid Interactions in Aqueous 

Solutions 

In an effort to understand the interactions which occur between amino acids in aqueous solutions 

we have developed new force fields for simple amino acids and their analogs including glycine, 

dl-alanine, betaine, β-alanine, and simple salts: NH4Cl, NH4Br, N(CH3)4Cl, N(CH3)4Br, 

CH3NH3Cl, and CH3COONa. The new force fields reproduce the experimental Kirkwood-Buff 

integrals describing the relative distribution of species in the solution mixture. Furthermore, it 

can be shown that these simple amino acids can be understood in terms of the interactions of 

their constituent functional groups and that, to a very good approximation, the transferability and 

additivity usually assumed in the development of biomolecular force fields appears to hold true. 

Introduction 

Amino acids are critical to life. Particularly, the most important function of amino acids is 

their role as the building blocks of proteins, which are linear chains of amino acids. Every 

protein is chemically defined by this primary structure, i.e. its unique sequence of amino acid 

residues. Amino acids can be linked together to form various proteins. 

The development of accurate force field for amino acids plays an important role in 

understanding the interactions between amino acids in aqueous solution as provided by 

molecular dynamic simulations. One of the most important terms in the force field is the 

electrostatic term, because electrostatic force exists even over very long ranges and constitutes a 

major part of any intermolecular interactions. The majority of standard molecular simulations 

use a simple effective point charge model for the electrostatic term. In these models, fixed partial 

charges are assumed for each component atom. For example, the AMBER
1
 force field assigns 
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fixed partial charges defined by a restricted electrostatic potential fit to the molecular 

electrostatic potential.
2
 

However, the atomic charges should vary depending on the environment and the geometry of 

the molecule. Thus a simulation with fixed charges describes an average effective polarization 

and charge-transfer effect, which are involved in the system. This includes biopolymer 

simulations of proteins and nucleic acid molecules. Attempts have been made to overcome 

limitations in the fixed charge model by including explicit polarization or charge transfer 

effects.
3-6

 However, these efforts have often provided less satisfying results, and require lots of 

computational costs as well.  

Rappe and Goddard have proposed an approach based on a density functional for estimating 

the atomic partial charges according to the molecular geometry called the charge equilibration 

method
3
. Based on this approach, Ogawa and coworkers have developed the consistent charge 

equilibration method,
7
 which uses an identical energy expression for the calculations of both 

partial charges and the electrostatic energy gradient. The consistent charge equilibration energy 

term is then combined with a generic force field, the universal force field,
8
 to develop the 

consistent charge equilibration with universal force field.  

Typically, other force fields for amino acids have been developed by reproducing small 

molecule solvation free energies.
9-10

 However, by focusing only on solute-solvent interactions, 

the model may fail to represent the correct distribution of solutes in solutions. These studies 

cannot guarantee the complicated balance between solute-solute and solute-solvent interactions 

is reproduced. The description of this delicate balance can play an important role in determining 

the charge distributions which are the most commonly adjusted parameters during the 

development of amino acid force fields.
11
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In order to improve the effective charge distributions for molecules, Smith and coworkers 

have developed new force field which is specially designed to reproduce experimental 

Kirkwood-Buff integrals.
11-22

 It has been designed to accurately describe the delicate balance 

between solute-solute interactions and solute-solvent interactions. The charges on the atoms are 

typically adjusted to reproduce the density and KB integrals for solution mixtures at several 

different compositions using the Kirkwood-Buff theory of solutions as a guide. Even though a 

Kirkwood-Buff derived force field is not a polarizable force field the best effective charge on 

each atom can be determined by using the sensitivity of KBIs to the molecular charge 

distribution.
11, 20-21

 It has been shown that KBFF perform simulation better than many other non-

polarizable force fields with the same computational cost. 

The KB integrals can play an important role in the parameterization of a new force field 

because KBIs are more sensitive to the parameter sets than many other experimental data.
11, 22-24

 

In addition, it can help us quantify the interaction between a pair of components in solution. The 

quality of a force field used in simulation can be determined by comparing the KBIs or 

thermodynamic properties obtained from simulations to the KBIs or thermodynamic properties 

obtained from experimental data. Here, a KB analysis of the properties of several amino acids 

and electrolytes. Typical building blocks of proteins in aqueous solutions as a function of 

molality is used to develop a force field for the description of amino acid solutions using the 

extended simple point charge (SPC/E) water model.
25
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Methods 

Kirkwood-Buff Theory 

The application of Kirkwood-Buff theory follows the same outline as presented in Chapter 2. 

Molecular dynamics simulations 

All molecular dynamic simulations of ammonium salts, sodium acetate, and amino acid 

aqueous solutions were performed using the SPC/E water model
25

 in the isothermal isobaric 

(NpT) ensemble at 300 K and 1 atm as implemented in the GROMACS program (v3.3.1).
26-27

 A 

time-step of 2 fs was used and the geometry of the water molecules was constrained using 

SETTLE.
28

 All bonds were constrained using SHAKE
29

 for the salts and LINCS
30

 for the amino 

acids. A twin range cut-off of 0.8 nm/1.5 nm was employed with a nonbonded pair list update of 

every 10 steps. The weak coupling technique was used to modulate the temperature and pressure 

with relaxation times of 0.1 and 0.5 ps, respectively.
31

 In order to evaluate electrostatic 

interactions, the particle mesh Ewald technique (PME) was used.
32

 The initial cubic boxes of 

different solutions have been generated by adding water molecules and molecules/ions until the 

required concentration was obtained. Configurations were saved every 0.1 ps for analysis. 

Diffusion constants were determined using the mean square fluctuation approach,
33

 and relative 

permittivities were obtained from the dipole moment fluctuations.
34
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Parameter Development 

We need to develop parameters for the N-terminal, C-terminal, and peptide bond groups in 

their zwitterionic form. For the development of parameter we need models for each group. Our 

strategy is shown in Figure 3.1. For the peptide bonds, Smith and his coworker have released the 

parameters of acetamide.
16

 

 

Figure 3.1 The strategy for the development of force field parameters. NH4Cl, NH4Br, and 

CH3NH3Cl are analogues for the N-terminus, while CH3COONa corresponds to a model 

for the C-terminus. The CH3CONHCH3 molecule describes the peptide group and has been 

developed previously by Smith and Kang.
16

 

The nonbonding force field used in this study corresponds to the Lennard-Jones (LJ) 6-12 

potential which contains most commonly two adjustable parameters: the Lennard-Jones diameter 

and the interaction strength plus Coulomb potential with the SPC/E water model.
25

 In this 

scheme each pair of atoms i and j interact with an interaction energy given by 
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Here, all the symbols have their usual meaning.
6
 Hence, we need three parameters for each atom; 

ζ, ε, and q. The ζ and ε have been obtained elsewhere.
26-27

 However, the charge distribution (q) 

for each molecule has to be determined. Hence, we have focused on the charge distribution of 

each atom for our molecules during the parameterization. 

Table 3.1 and table 3.2 show the final Lennard-Jones parameters used in our simulations. 

The LJ parameters for ions; Na
+
, Cl

-
, and Br

-
 were taken from Weerasinghe and Smith,

22
 and our 

previous research (Chapter 2). The charge distribution was optimized by initial charge 

distribution for each atom in the molecule based on the polarity and the electro negativity. Then 

the final parameters have been refined by increasing or decreasing the charge of each atom until 

the simulated value of KBIs reproduced the experimental KBIs for each molecule in aqueous 

solution. 

The best charge distribution for some of the salts gave us unexpected results. For the 

tetrahedral ions, NH4
+
 and (CH3)4N

+
 the total charge (+1) is distributed to five component atoms 

evenly, while the charge for CH3NH3
+
 is very different. We believe this is due to the different 

solvent environments around these ions, which gives rise to different polarization effects. For the 

charge distribution of CH3CO2
-
, we found the best agreement with a zero charge on the CH3 

group. 

We then attempted to combine the charge distributions of methyl ammonium and acetate 

ions to determine the charge distribution for amino acids. Unfortunately, this did not work. It 

appears we cannot apply the same charge of these salts to amino acids because the charge of CH3 

in CH3CO2 is not zero, and the methyl ammonium CH3 charge is 0.5. In the case of betaine and 
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β-alanine, the charge of the original salts can be used for amino acid without any modification 

combining, while the C-terminal charge of glycine and dl-alanine needed to be made more polar. 

It is reasonable to expect some charge transfer from neighbor atoms, i.e. CH3 (H3NCH3) to C 

(CO2). The bonding force field used in this study corresponds to GROMOS96 data, and is 

included in Table 3.3 to Table 3.7.  
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Table 3.1 Final nonbonded parameters for ammonium salt and sodium acetate aqueous 

solutions for the KBFF model 

Model Salts Atom ζ (nm) ε (kJ/mol) q (e) 

KBFF 

NH4Cl 

N 0.3370 0.5620 +0.2 

H 0.1580 0.0880 +0.2 

Cl 0.4400 0.4700 -1.0 

NH4Br 

N 0.3370 0.5620 +0.2 

H 0.1580 0.0880 +0.2 

Br 0.4760 0.3000 -1.0 

(CH3)4NCl 

N 0.3370 0.5620 +0.2 

CH3 0.3748 0.8672 +0.2 

Cl 0.4400 0.4700 -1.0 

(CH3)4NBr 

N 0.3370 0.5620 +0.2 

CH3 0.3748 0.8672 +0.2 

Br 0.4760 0.3000 -1.0 

CH3NH3Cl 

N 0.3370 0.5620 +0.5 

CH3 0.3748 0.8672 +0.5 

H 0.1580 0.0880 0.0 

Cl 0.4400 0.4700 -1.0 

CH3CO2Na 

CH3 0.3748 0.8672 0.0 

C 0.3360 0.3300 +0.3 

O 0.3500 0.6047 -0.65 

Na 0.2450 0.3200 +1.0 

SPC/E H2O 
O

25
 0.3166 0.6506 -0.8476 

H
25

 0.0000 0.0000 +0.4238 
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Table 3.2 Final nonbonded parameters for amino acid aqueous solutions for the KBFF 

model 

Model Molecules Atom ζ (nm) ε (kJ/mol) q (e) 

KBFF Glycine H 0.1580 0.0880 0.0 

N 0.3370 0.5620 +0.5 

CH2 0.4070 0.4105 +0.5 

C 0.3360 0.3300 +1.0 

O 0.3500 0.6047 -1.0 

dl-Alanine H 0.1580 0.0880 0.0 

N 0.3370 0.5620 +0.5 

CH1 0.5019 0.09489 +0.5 

CH3 0.3748 0.8672 0.0 

C 0.3360 0.3300 +1.0 

O 0.3500 0.6047 -1.0 

Betaine CH3 0.3748 0.8672 +0.2 

N 0.3370 0.5620 +0.2 

CH2 0.4070 0.4105 +0.2 

C 0.3360 0.3300 +0.3 

O 0.3500 0.6047 -0.65 

β-Alanine H 0.1580 0.0880 0.0 

N 0.3370 0.5620 +0.5 

CH2 0.4070 0.4105 +0.5 

CH2 0.4070 0.4105 +0.0 

C 0.3360 0.3300 +0.3 

O 0.3500 0.6047 -0.65 

SPC/E H2O O
25

 0.3166 0.6506 -0.8476 

H
25

 0.0000 0.0000 +0.4238 
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Table 3.3 Final bonded parameters for ammonium salt and sodium acetate aqueous 

solutions for the KBFF model: Potential functions are: angles, Vθ=1/2 kθ(θ - θ0)
2
; dihedrals, 

Vφ =kφ [1 + cos(nφ - δ)]; and impropers, Vω=1/2 kω(ω - ω0)
2
. 

Model Salts Atom ζ (nm) ε (kJ/mol) q (e) 

KBFF 

NH4Cl 

N 0.3370 0.5620 +0.2 

H 0.1580 0.0880 +0.2 

Cl 0.4400 0.4700 -1.0 

NH4Br 

N 0.3370 0.5620 +0.2 

H 0.1580 0.0880 +0.2 

Br 0.4760 0.3000 -1.0 

(CH3)4NCl 

N 0.3370 0.5620 +0.2 

CH3 0.3748 0.8672 +0.2 

Cl 0.4400 0.4700 -1.0 

(CH3)4NBr 

N 0.3370 0.5620 +0.2 

CH3 0.3748 0.8672 +0.2 

Br 0.4760 0.3000 -1.0 

CH3NH3Cl 

N 0.3370 0.5620 +0.5 

CH3 0.3748 0.8672 +0.5 

H 0.1580 0.0880 0.0 

Cl 0.4400 0.4700 -1.0 

CH3CO2Na 

CH3 0.3748 0.8672 0.0 

C 0.3360 0.3300 +0.3 

O 0.3500 0.6047 -0.65 

Na 0.2450 0.3200 +1.0 

SPC/E H2O 
O

25
 0.3166 0.6506 -0.8476 

H
25

 0.0000 0.0000 +0.4238 
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Table 3.4 Final bonded parameters for aqueous glycine solutions for the KBFF model: 

Potential functions are: angles, Vθ=1/2 kθ(θ - θ0)
2
; dihedrals, Vφ =kφ [1 + cos(nφ - δ)]; and 

impropers, Vω=1/2 kω(ω - ω0)
2
. 

Model Bonds bo (nm) kb (kJ mol
-1

 nm
-2

) 

Glycine 

H-N 0.1000 

Constraint 
N-CH2 0.1468 

CH2-C 0.1520 

C-O 0.1250 

Angles θo (deg) kθ (kJ mol
-1

 rad
-2

) 

H-N-H 109.5 334.72 

H-N-CH2 109.5 376.56 

N-CH2-C 114.1 502.10 

CH2-C-O 117.0 502.08 

O-C-O 126.0 502.08 

Proper Dihedrals ϕs (deg) kϕ (kJ mol
-1

) multiplicity 

H-N-CH2-C 0.0 4.0002 3 

N-CH2-C-O 0.0 1.0002 6 

Improper Dihedrals ω0 (deg) kω (kJ mol
-1

 rad
-2

) 

C-CH2-O-O 0.0 167.36 
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Table 3.5 Final bonded parameters for aqueous dl-alanine solutions for the KBFF model: 

Potential functions are: angles, Vθ=1/2 kθ(θ - θ0)
2
; dihedrals, Vφ =kφ [1 + cos(nφ - δ)]; and 

impropers, Vω=1/2 kω(ω - ω0)
2
. 

Model Bonds bo (nm) kb (kJ mol
-1

 nm
-2

) 

dl-Alanine 

H-N 0.1000 

Constraint 

N-CH1 0.1468 

CH1-CH3 0.1530 

CH1-C 0.1520 

C-O 0.1250 

Angles θo (deg) kθ (kJ mol
-1

 rad
-2

) 

H-N-H 109.5 334.72 

H-N-CH1 109.5 376.56 

N-CH1-C 114.1 502.10 

N-CH1-CH3 109.5 376.56 

CH3-CH1-C 109.5 376.56 

CH1-C-O 117.0 502.08 

O-C-O 126.0 502.08 

Proper Dihedrals ϕs (deg) kϕ (kJ mol
-1

) multiplicity 

H-N-CH2-C 0.0 4.0002 3 

N-CH2-C-O 0.0 1.0002 6 

Improper Dihedrals ω0 (deg) kω (kJ mol
-1

 rad
-2

) 

C-CH1-O-O 0.0 167.36 

CH1-N-CH3-C 35.26439 334.72 
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Table 3.6 Final bonded parameters for aqueous betaine solutions for the KBFF model: 

Potential functions are: angles, Vθ=1/2 kθ(θ - θ0)
2
; dihedrals, Vφ =kφ [1 + cos(nφ - δ)]; and 

impropers, Vω=1/2 kω(ω - ω0)
2
. 

Model Bonds bo (nm) kb (kJ mol
-1

 nm
-2

) 

Betaine 

CH3-N 0.1470 

Constraint 
N-CH2 0.1468 

CH2-C 0.1520 

C-O 0.1250 

Angles θo (deg) kθ (kJ mol
-1

 rad
-2

) 

CH3-N- CH3 109.5 334.72 

CH3-N-CH2 109.5 376.56 

N-CH2-C 114.1 502.10 

CH2-C-O 117.0 502.08 

O-C-O 126.0 502.08 

Proper Dihedrals ϕs (deg) kϕ (kJ mol
-1

) multiplicity 

CH3-N-CH2-C 0.0 4.0002 3 

N-CH2-C-O 0.0 1.0002 6 

Improper Dihedrals ω0 (deg) kω (kJ mol
-1

 rad
-2

) 

C-CH2-O-O 0.0 167.36 
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Table 3.7 Final bonded parameters for aqueous β-Alanine solutions for the KBFF model: 

Potential functions are: angles, Vθ=1/2 kθ(θ - θ0)
2
; dihedrals, Vφ =kφ [1 + cos(nφ - δ)]; and 

impropers, Vω=1/2 kω(ω - ω0)
2
. 

Model Bonds bo (nm) kb (kJ mol
-1

 nm
-2

) 

β-Alanine 

H-N 0.1000 

Constraint 

N-CH2 0.1468 

CH2-CH2 0.1530 

CH2-C 0.1520 

C-O 0.1250 

Angles θo (deg) kθ (kJ mol
-1

 rad
-2

) 

H-N-H 109.5 334.72 

H-N-CH2 109.5 376.56 

N-CH2-CH2 111.0 460.24 

CH2-CH2-C 111.0 460.24 

CH2-C-O 117.0 502.08 

O-C-O 126.0 502.08 

Proper Dihedrals δ (deg) kφ (kJ mol
-1

) n 

H-N-CH2-CH2 0.0 4.0000 3 

N-CH2-CH2-C 0.0 6.0000 3 

CH2-CH2-C-O 0.0 6.0000 6 

Improper Dihedrals ω0 (deg) kω (kJ mol
-1

 rad
-2

) 

C-CH2-O-O 0.0 167.36 
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Results 

Table 3.8 and Table 3.9 describe the number of ions or solutes and the number of water 

molecules used in our solution simulations, as well as the molality, and molality of the resulting 

solutions. Also in the same table, the simulation time, volume, density, and potential energy are 

shown. For all solutions, the density increases and the potential energy decreases as the molality 

increases, as expected. 
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Table 3.8 Summary of the MD simulations of aqueous salt solutions: All simulations were 

performed at 300 K and 1 atm in the NpT ensemble. Symbols are Nw, number of water 

molecules; Ns (= N+ = N- = 1/2Nc), number of salts pairs; V, average simulation volume; ms, 

salt molality; Cs, salt molarity; ρ, mass density; Epot, average total potential energy per 

molecule (Ns + Nw); and Tsim, total simulation time. 

   ms V Cs ρ Epot Tsim 

 Ns Nw (mol/Kg) (nm
3
) (mol/l) (g/cm

3
) (kJ/mol) (ns) 

H2O 0 2170 0.00 65.265 0.00 0.995 -46.45 2 

NH4Cl 

125 6936 1 215.270 0.96 1.015 -57.80 11 

349 6458 3 214.703 2.70 1.044 -79.06 11 

630 5832 6 215.317 4.86 1.070 -108.32 11 

NH4Br 

125 6924 1 216.547 0.96 1.050 -57.37 11 

347 6421 3 217.725 2.65 1.141 -77.74 11 

621 5749 6 219.365 4.70 1.244 -105.82 11 

(CH3)4NCl 

125 6924 1 214.072 0.97 1.008 -53.01 11 

349 6458 3 211.468 2.74 1.026 -63.56 11 

424 4706 5 210.126 3.35 1.037 -92.66 11 

(CH3)4NBr 

116 6457 1 214.165 0.90 1.041 -55.99 11 

290 5358 3 211.475 2.28 1.109 -73.94 11 

413 4578 5 209.831 3.27 1.156 -90.56 11 

CH3NH3Cl 

122 6790 1 214.929 0.94 1.009 -56.77 11 

328 6069 3 212.751 2.56 1.026 -76.14 11 

495 5494 5 212.360 3.87 1.035 -94.17 11 

CH3COONa 

124 6907 1 215.345 0.96 1.038 -59.85 11 

344 6368 3 215.117 2.66 1.103 -84.86 11 

530 5888 5 216.025 4.08 1.150 -108.12 11 
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Table 3.9 Summary of the MD simulations of amino acid water mixtures. All simulations 

were performed at 300 K and 1atm in the NpT ensemble. Symbols are Nw, number of water 

molecules; Ns, number of amino acids; V, average simulation volume; ms, amino acid 

molality; Cs, amino acid molarity; ρ, mass density; Epot, average total potential energy per 

molecule (Ns + Nw); and Tsim, total simulation time 

   ms V Cs ρ Epot Tsim 

 Ns Nw (mol/Kg) (nm
3
) (mol/l) (g/cm

3
) (kJ/mol) (ns) 

H2O 0 2170 0.00 65.265 0.00 0.995 -46.45 2 

Glycine 

124 6898 1 215.793 0.95 1.028 -58.22 11 

238 6611 2 215.177 1.84 1.057 -69.50 11 

343 6341 3 214.817 2.65 1.082 -80.45 11 

dl-Alanine 

62 6988 0.5 216.245 0.48 1.009 -52.12 16 

122 6795 1.0 216.469 0.94 1.022 -57.68 16 

178 6592 1.5 216.061 1.37 1.035 -63.13 16 

Betaine 

118 6553 1 215.589 0.91 1.016 -54.59 16 

300 5556 3 214.520 2.32 1.047 -69.78 16 

435 4830 5 214.368 3.37 1.069 -84.00 16 

β-Alanine 

122 6795 1 217.462 0.93 1.018 -57.57 11 

329 6096 3 219.458 2.49 1.052 -78.54 11 

496 5505 5 220.758 3.73 1.078 -98.20 11 
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The radial distribution functions (rdfs) obtained from the simulations are shown on Figure 

3.2 ~ 3.7 for the salts in water. Figure 3.8 and 3.9 represent rdfs for the amino acid aqueous 

solutions. All rdfs approach unity beyond 1.5 nm. 

 

Figure 3.2 Radial distribution functions of NH4Cl obtained from the 1 m (black lines), 3 m 

(red lines), and 6 m (green lines) simulations. Nitrogen of NH4
+
, Cl

-
, and the water oxygen 

are denoted by the symbols N, Cl, and OW, respectively. 
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Figure 3.3 Radial distribution functions of NH4Br obtained from the 1 m (black lines), 3 m 

(red lines), and 6 m (green lines) simulations. Nitrogen of NH4
+
, Br

-
, and the water oxygen 

are denoted by the symbols N, Br, and OW, respectively. 

 

Figure 3.4 Radial distribution functions of (CH3)4NCl obtained from the 1 m (black lines), 

3 m (red lines), and 5 m (green lines) simulations. Nitrogen of (CH3)4N
+
, Cl

-
, and the water 

oxygen are denoted by the symbols N, Cl, and OW, respectively. 
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Figure 3.5 Radial distribution functions of (CH3)4NBr obtained from the 1 m (black lines), 

3 m (red lines), and 5 m (green lines) simulations. Nitrogen of (CH3)4N
+
, Br

-
, and the water 

oxygen are denoted by the symbols N, Br, and OW, respectively 

 

Figure 3.6 Radial distribution functions of CH3NH3Cl obtained from the 1 m (black lines), 

3 m (red lines), and 5 m (green lines) simulations. Nitrogen of CH3NH3
+
, Cl

-
, and the water 

oxygen are denoted by the symbols N, Cl, and OW, respectively. 
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Figure 3.7 Radial distribution functions of CH3COONa obtained from the 1 m (black lines), 

3 m (red lines), and 5 m (green lines) simulations. Carbon of CH3COO
-
, Na

+
, and the water 

oxygen are denoted by the symbols C, Na, and OW, respectively. 
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Figure 3.8 Radial distribution functions for aqueous glycine (top) obtained from the 1 m 

(black lines), 2 m (red lines), and 3 m (green lines) simulations, and aqueous dl-alanine 

(bottom) obtained from the 0.5 m (black lines), 1.0 m (red lines), and 1.5 m (green lines) 

simulations: Center of mass for glycine and dl-alanine are denoted by Gly and dlAla. 

Water oxygens are denoted by the symbols OW. 
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Figure 3.9 Radial distribution functions for aqueous betaine (top) obtained from the 1 m 

(black lines), 3 m (red lines), and 5 m (green lines) simulations, and aqueous β-alanine 

(bottom) obtained from the 1 m (black lines), 2 m (red lines), and 3 m (green lines) 

simulations: Center of mass for betaine and β-alanine are denoted by BET and βALA. 

Water oxygens are denoted by the symbols OW. 

The first shell coordination numbers, nij, as well as the distances to the first rdf maximum, 

Rmax, and the first rdf minimum, Rmin, were calculated from the corresponding rdfs as a function 

of the solution molality and are presented in Table 3.10. As the size of the cation increases, so 

does the radius of the first hydration shell; the same trend is exhibited by the anions which have 

been shown in the previous chapter (chapter 2). Similar to the trend in the radii of the first 

hydration shell, the hydration numbers increase as the size of the cation increases. Table 3.10 

shows that coordination numbers are not only sensitive to the size of the salt ion, but also the salt 

concentration.  
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Table 3.10 First shell coordination numbers (nij) for aqueous salt solutions. Rmax and Rmin 

are the distances (nm) to the first maximum and minimum of the radial distribution 

functions. Cations, anions, and the water oxygen are denoted by the symbols +, -, and o, 

respectively. 

  ms +/- +/o -/o o/o 

NH4Cl 

Rmax  0.33 0.29 0.32 0.27 

Rmin  0.42 0.37 0.38 0.33 

nij 1 0.36 7.29 6.76 4.16 

 3 0.85 6.72 6.32 3.84 

 6 1.48 5.96 5.69 3.42 

NH4Br 

Rmax  0.33 0.29 0.33 0.27 

Rmin  0.42 0.37 0.39 0.33 

nij 1 0.37 7.22 6.83 4.14 

 3 0.88 6.56 6.35 3.80 

 6 1.55 5.67 5.64 3.38 

(CH3)4NCl 

Rmax  0.49 0.45 0.32 0.27 

Rmin  0.69 0.62 0.38 0.33 

nij 1 0.95 28.67 6.76 4.07 

 3 2.22 26.49 6.32 3.60 

 5 3.20 24.08 5.90 3.18 

(CH3)4NBr 

Rmax  0.49 0.45 0.33 0.27 

Rmin  0.69 0.62 0.39 0.33 

nij 1 0.91 28.48 6.83 4.06 

 3 2.20 26.05 6.34 3.57 

 5 3.15 23.54 5.89 3.14 

CH3NH3Cl 

Rmax  0.35 0.31 0.32 0.27 

Rmin  0.44 0.40 0.38 0.33 

nij 1 0.29 7.48 6.77 4.12 

 3 0.65 7.01 6.38 3.72 
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 5 0.97 6.58 6.00 3.34 

CH3COONa 

Rmax  0.27 0.22 0.35 0.27 

Rmin  0.40 0.31 0.43 0.33 

nij 1 0.16 5.36 8.20 4.25 

 3 0.45 4.94 8.12 4.05 

 5 0.75 4.51 7.90 3.84 

The simulated and experimental excess coordination numbers, Nij, are shown in Figure 3.10 

for salt solution and in Figure 3.11 for amino acids aqueous solution as a function of the molality. 

Figure 3.12 and Figure 3.13 show the simulated and experimental activity derivatives, acc, as a 

function of molality. The KBFF models quantitatively reproduce the experimental data, although 

the simulated values are not as accurate for tetramethyl ammonium chloride (CH3)4NCl and 

tetramethyl ammonium bromide (CH3)4NBr systems. The water-water excess coordination 

number, Nww, represented by green lines and symbols on Figure 3.10 and Figure 3.11, remains 

relatively constant at approximately -0.95 and is independent of the molality of the various 

solutes, except for (CH3)4NCl and (CH3)4NBr, suggesting that ion aggregation is small at the 

molecular level. Figures 3.12 and Figure 3.13 show that the solute-solute excess coordination 

numbers (black lines) also do not vary significantly, at least compared to the variation of the 

solute-water excess coordination numbers (red lines). This indicates that the solute-water 

interactions again determine the solution behavior. This suggests that in diluted solution, the 

small activity derivative for the solutes such as (CH3)4NCl, (CH3)4NBr, and betaine which 

include the (CH3)4N group, shown in Figure 3.12 and Figure 3.13, is due to the presence of more 

hydrophobic groups, compared to that of the other solutes. In concentrated solution, the 

simulation data of activity derivatives are slightly overestimated compared to other solution 

composition for (CH3)4NCl, (CH3)4NBr, and betaine which include the (CH3)4N group. Figure 
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3.9 and Figure 3.10 also indicate that CH3NH3Cl and β-alanine solutions display smaller solute-

water interaction in dilute solutions due to the additional hydrophobicity, compared to NH4Cl, 

NH4Br, glycine and dl-alanine, and a larger solute-water interaction in dilute solutions compared 

to (CH3)4NCl, (CH3)4NBr, and betaine, which is as expected. For CH3COONa solutions, 

simulation results reproduce the experimental data well. Figure 3.10 show that the Nijs of 

CH3COONa display similar trends to NH4Cl and NH4Br. 

 

Figure 3.10 Excess coordination numbers as a function of salt molality. The Ncc (black 

lines), Ncw (red dot lines), and Nww (green dash lines) are obtained from a KB analysis using 

experimental activity coefficient and density.
35-37

 The Ncc (black ●), Ncw (red ○), and Nww 

(green x) are obtained from simulations. 



 85 

 

Figure 3.11 Excess coordination numbers as a function of solute molality. The Ncc (black 

lines), Ncw (red dot lines), and Nww (green dash lines) are obtained from a KB analysis using 

experimental activity coefficient and density.
38-39

 The Ncc (black ●), Ncw (red ○), and Nww 

(green x) are obtained from simulations. 

In Figure 3.12 and Figure 3.13 the simulated activity derivatives acc as a function of molality 

are compared to the experimental values. The KBFF model reproduced the correct increase in acc 

with concentration as displayed by the experimental data. 
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Figure 3.12 Activity derivatives as a function of salt molality. Lines are obtained from a KB 

analysis using experimental activity coefficient experimental data,
35, 37

 and dots correspond 

to the KBFF model. 

 

Figure 3.13 Activity derivatives as a function of solute molality. Lines are obtained from a 

KB analysis using experimental activity coefficient experimental data,
38-39

 and dots 

correspond to the KBFF model. 
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Figure 3.14 and Figure 3.15 show the partial molar volumes of water and of the salts. The 

partial molar volume of the salts increases monotonically, and that of water decreases 

monotonically as the salt concentration increases. Also, as the size of the salts increases the 

partial molar volume of the salt concentration increases. The KBFF models reproduce the 

experimental data quantitatively apart from the case of (CH3)4NBr, presumably due to an 

overestimation of the cation/anion attraction. 

 

Figure 3.14 Partial molar volumes as a function of salt molality. Lines are obtained from a 

KB analysis using experimental activity coefficient and experimental density data,
35, 40

 and 

dots correspond to the KBFF model. The black lines represent the partial molar volume of 

salts and the red dotted lines indicate partial molar volume of water. The dots (●) represent 

partial molar volume of salts and the dots (red ○) indicate partial molar volume of water. 
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Figure 3.15 Partial molar volumes as a function of solute molality. Lines are obtained from 

a KB analysis using experimental activity coefficient and experimental density data,
35, 40

 

and dots correspond to the KBFF model. The black lines represent the partial molar 

volume of solutes and the red dotted lines indicate partial molar volume of water. The dots 

(●) represent partial molar volume of solutes and the dots (red ○) indicate partial molar 

volume of water. 

The self-diffusion constants, calculated using the mean square fluctuation approach,
33

 are 

displayed in Figure 3.16 and Figure3.17 as a function of salt or solute molality. They all exhibit 

an essentially linear decrease with molality. The KBFF appears to reproduce the experimental 

data very well. 
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Figure 3.16 Diffusion constants as a function of salt molality. The Dc (black lines) is 

obtained from experimental diffusion constant data
41

 and the D+ (black ●), D- (red ○), and 

Dw (green x) are obtained from simulations. 

 

Figure 3.17 Diffusion constants as a function of solute molality. The Dc (black lines) is 

obtained from experimental diffusion constant data
41

 and the Dc (black ●) and Dw (red ○) 

are obtained from simulations. 
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The relative permittivity of the salts and amino acids, calculated from the dipole moment 

fluctuations,
34

 are displayed in Figure 3.18 and Figure 3.19. They all exhibit an essentially linear 

variation. The relative permittivities for salt solutions decrease as a function of molality, but for 

amino acid aqueous solutions they increase as a function of molality. Unfortunately, we could 

not find experimental data for the salt and betaine aqueous solution. The KBFF model 

reproduces the experimental data well. 

 

Figure 3.18 Simulated relative permittivities as a function of salt molality. 
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Figure 3.19 Relative permittivities as a function of solute molality. Lines are obtained from 

experimental dielectric constant data,
42-43

 and dots obtained from simulations. 
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Conclusions 

The KBFF models developed here have reproduced the majority of the experimentally 

derived Kirkwood-Buff integrals for amino acid solutions and small molecules which mimic 

amino acid fragments in water. The force field parameters for amino acids have been developed 

from parameters of small molecules which mimic each amino acid fragments. In other words, 

fragment additivity appears to be observed. 
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CHAPTER 4 - Kirkwood-Buff Theory of Molecular and Protein 

Association, Aggregation and Cellular Crowding
*
 

An analysis of the effect of a cosolvent on the association of a solute in solution using the 

Kirkwood-Buff theory of solutions is presented. The approach builds on the previous results of 

Ben-Naim by extending the range of applicability to include any number of components at finite 

concentrations in both closed and semi-open systems. The derived expressions, which are exact, 

provide a foundation for the analysis and rationalization of cosolvent effects on molecular and 

biomolecular equilibria including protein association, aggregation, and cellular crowding. A 

slightly different view of cellular crowding is subsequently obtained. In particular, it is observed 

that the addition of large cosolvents still favors the associated form even when traditional 

excluded volume effects are absent. 

Introduction 

Protein association, protein unfolding, protein aggregation, and cellular crowding are known 

to affect the normal function of cellular systems.
1-7

 In many cases, the resulting small changes in 

normal protein-protein intra and intermolecular interactions are thought to lead to a variety of 

human diseases.
8,9

 Consequently, it is important to study these processes, at both the 

thermodynamic and atomic levels, in an effort to understand and eventually manipulate the 

behavior of such systems. One way to affect and help understand peptide and protein association 

is through the use of additives, or cosolvents.
10

 A general theory describing these types of effects 

                                                 

* “Reprinted with permission from Moon Bae Gee and Paul E. Smith, Journal of Chemical Physics, 131, 

165101-165110, 2009. Copyright 2009, American Institute of Physics.” 
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which relates their thermodynamic properties to the interactions between species in solution is 

therefore desired. This is a major aim of the present work. 

The basic thermodynamic effects of additives on chemical equilibria were outlined some 

time ago using the concepts of binding and linkage.
11-13

 Binding polynomials are then typically 

used to help illustrate the resulting thermodynamic relationships. While binding polynomials can 

be used to provide an accurate representation of real experimental data, the physical 

interpretation of the binding constants requires some care for systems involving only weakly 

binding cosolvents.
14

 This is immediately apparent when attempting to define corresponding 

binding sites, occupation numbers, and equilibrium constants using coordinate data provided by 

computer simulations. The transient nature of the interactions between the cosolvent and 

biomolecule render such a comparison of the experimental and simulation data essentially 

impossible. Other thermodynamic approaches have been outlined,
15-21

 but it remains difficult to 

relate these to realistic distributions between the various species in solution. 

The most common approach used to understand the effects of an additive on protein folding, 

association, and aggregation has involved scaled particle theory (SPT).
6,19,22,23

 Here, the change 

in free energy for association, denaturation, etc, is determined from the change in the free energy 

for insertion of the initial and final states into a system of hard spheres as a function of the 

additive volume fraction. These calculations generally suggest that the native and any associated 

states are favored on increasing the additive concentration. These are exactly the trends observed 

experimentally,
6
 and for simulations using simple excluded volume crowders.

3,24
 As SPT is 

dominated by repulsive excluded volume effects, the above trends are usually interpreted in 

terms of a decrease in the free volume, or increase in the excluded volume, within the solution. 

Unfortunately, it is difficult to extend SPT to include attractive interactions which undoubtedly 
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occur between proteins in real systems.
6
 Hence, other models are still required which 

complement existing approaches. 

The application of the Kirkwood-Buff (KB) theory of solutions to biological systems has 

recently attracted some interest.
14

 KB theory provides a rigorous link between intermolecular 

distributions in solution and the thermodynamic characteristics of that solution.
25,26

 In particular, 

it has been used to understand the preferential interactions of cosolvents with proteins and small 

molecules,
27-34

 to study changes in the hydration of solutes,
35-38

 to investigate a variety of 

solution properties,
39-41

 and for hard sphere models of cellular crowding.
42

 Previously, Ben-Naim 

has used KB theory to understand the effects of cosolvents on the association equilibrium of a 

solute in solution.
43

 The current approach is based on the previous work of Ben-Naim, and is 

similar to the approach of Hall for studying micelles.
44

 Here, we extend the Ben-Naim approach 

to describe the effects of a cosolvent on the equilibrium constant for association to include semi-

open and not just closed systems, and for systems with any number of components all of which 

can appear at finite concentrations. To achieve this we adopt a recent approach which avoids the 

usual matrices used for closed systems.
45

 The resulting expressions are then used to illustrate 

some of the differences between open and closed systems, and between real and ideal solutions. 

Kirkwood-Buff Theory 

Kirkwood-Buff theory is an exact theory of solutions.
46

 The principle quantities of interest 

are the Kirkwood-Buff integrals (KBIs) defined by, 

 




0

2]1)([4 drrrgGG VT

ijjiij


 

(4.1) 

where gij is the radial distribution function (rdf) between the center of mass of species i and j. 

These integrals can be used to relate thermodynamic properties of a solution to the molecular 
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distributions in that solution. This is achieved by starting with the Grand Canonical ensemble 

expression,
25
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where R is the gas constant, T is the absolute temperature, ρi = Ni/V is the number density of 

species i, µ is the chemical potential, and δij is the Kroenecker delta function. The Nij = ρjGij 

values describe the change in the number of j particles on introduction of a central i particle, 

from the number of j particles found in an equivalent volume of bulk solution at the same 

composition. More details concerning the application of KB theory to understand a variety of 

solution properties can be found elsewhere.
14,26,39

 

The major aim of this work is to develop expressions for cosolvent effects on biomolecular 

equilibria in both closed and semi-open ensembles. Traditionally, KB theory starts from 

Equation 4.2 and uses a series of thermodynamic transformations to provide expressions for 

similar derivatives in closed ensembles.
25,46

 A general matrix formulation is available for 

chemical potential derivatives in closed systems – the most common system of interest.
46

 

However, we will avoid this approach as the corresponding expressions are difficult to 

manipulate for large numbers of components. Furthermore, it is also difficult to transform from 

the closed ensemble results back to expressions valid for semi-open systems.
29

 

Chemical Equilibria 

Let us consider a formal nc component system containing a primary solvent (1), a 

biomolecule (2), and a series of cosolvents (3, 4, . . .). The cosolvents can be small molecules 

such as urea, a salt, a proton, or larger molecules such as different proteins. We will refer to 
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species 2 as a biomolecule, but it can easily refer to any associating species. Furthermore, the 

biomolecule can exist in two forms, one being a monomer (M) and the other an aggregate (A) of 

any shape formed from n monomers. Any counterions associated with the biomolecule will be 

assumed to have no effect on the equilibrium, and to be different from any of the cosolvents if 

the latter are salts (no Donnan effect). Hence, we have the equilibrium process, 

AnM            (4.3) 

which can be described by an equilibrium constant K. Formally, the equilibrium constant 

involves the activities of the various species. In the majority of thermodynamic approaches it is 

then assumed that the activities of the biomolecule species can be replaced by their 

concentrations as the biomolecules usually appear at low concentrations, and concentrations are 

relatively easy to determine experimentally. Here, we do not assume ideal behavior of any 

species, but simply define our equilibrium constant in terms of concentrations to match the usual 

experimental representation of the data. Consequently, the equilibrium constant can be defined in 

several ways using a variety of concentration scales. We chose, 

n

M

AK



           (4.4) 

in terms of number densities or molarities. Other choices will be discussed later. The number of 

each form of the biomolecule present in solution are related by, 

2NnNN AM    2dNndNdN AM       (4.5) 

and, 

2N

N
f M

M     
2N

nN
f A

A     1 AM ff   (4.6) 

where fi is the fraction of either A or M at equilibrium. The material equilibrium condition 

indicates that, 
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MA n     2 ndndd MA       (4.7) 

as long as we remain at equilibrium. From Equation 4.4 a general change in the equilibrium 

constant can be written as, 

MA nddKd  lnlnln          (4.8) 

We note that all the above expressions can be applied to any chemical equilibrium that 

follows Equation 4.3 in any thermodynamically reasonable ensemble. Our main aim is to express 

the changes in the number densities of A and M in terms of the KB integrals and thereby provide 

a simple physical picture of the effect of a cosolvent on the equilibrium constant. 

General Kirkwood-Buff Theory of Chemical Equilibria 

Our system corresponds to a pseudo nc+1 component system with thermodynamic 

constraints between two of the components (M and A). Before proceeding we note that the 

application of KB theory to this type of problem involves some subtle issues. First, N2 is a true 

independent thermodynamic variable. However, NM and NA are not as they are related through 

Equation 4.5. Hence, we will avoid taking derivatives with respect to the chemical potentials or 

concentrations of M and A, although derivatives involving either one (M or A) can be used in 

place of the chemical potential or concentration of 2. The application of KB theory implies that 

the KB integrals used here for semi-open or closed systems correspond to an equivalent system 

at the same composition but open to all species (including M and A). This issue has been 

discussed by Ben-Naim.
26

 One can apply KB theory to understand such a system as long as one 

does not treat M and A as independent thermodynamic variables.
47

  

The traditional approach to this type of problem starts with the matrix formulation of KB 

theory for closed systems. However, the evaluation of the matrix determinants for a large number 
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of components where all components are present at finite concentrations is rather cumbersome. 

In addition, transforming back to an open or semi-open system from the closed system results is 

also difficult. Hence, we use a different approach which avoids the direct evaluation of any 

matrices for small nc values, thereby greatly simplifying the problem.
45

 Let us consider the 

number density of each species to be functions of T and all the chemical potentials. The 

differential of the number densities at constant T is then provided by, 
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for any i, and where the summation is over all j components. The partial derivatives can be 

expressed in terms of KBIs through Equation 4.2 to give, 

 
j

jijiji dNRTd  )(ln         (4.10) 

for any constant T ensemble. To our knowledge the above equation was first derived by Hall,
48

 

but using a different route. The general Gibbs-Duhem (GD) relation at constant temperature can 

be written, 


j

jjddP           (4.11) 

where P is the pressure. Equations 4.10 and 4.11 can be applied to any number of components in 

any ensemble with T constant. 

Hence, for our nc+1 component system of species 1, M, A, 3, 4, . . ., one can use Equation 

4.7 to eliminate dµA from the relationships provided in Equation 4.10 for i = A and M to give, 







1

,

)(ln
cn

MAj

jAjMAMAAA dNdNnNnRTd   



 103 







1

,

)1(ln
cn

MAj

jMjMMAMMM dNdnNNRTd   (4.12) 

One could have focused on species A instead of M, but the results will be the same. However, 

we cannot retain both dµM and dµA terms for the remainder of the analysis as this implies they 

are thermodynamically independent. To generate a relationship for changes in the equilibrium 

constant we use Equation 4.8 and the relationships in Equation 4.12 to provide, 
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However, the above expressions can be simplified further. 

A series of relationships between KBIs involving the biomolecule can be established. These 

can be written as,  

iAiMi nNNN 2

 

AiAMiMi NfNfN 2          (4.14) 

for i ≠ A, M, or 2 and, 

MAMMM nNNN 12

 

AMAAA NnNnN 2   

2222 )()1(1 AAMMAMAAAMAMMM NfNfNnNnfnNNfN    (4.15) 

The above expressions were obtained from the general fluctuation formula in the Grand 

Canonical (µVT) ensemble,  


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by suitable substitutions of N2 = NM + nNA. We note that the above relationships do not assume 

N2 is constant. They merely reflect a change of index for the M, A, and 2 species as illustrated in 
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Figure 1. Their meaning will be discussed later. Application of the above relationships to 

Equations 4.10 – 4.13 provides, 
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cn
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where d ln mi = d ln ρi – d ln ρ1, and mi is the dimensionless molality (ρi/ρ1). The above 

equations represent the basic expressions required for this study. The summations over the 

formal nc components only involve indices 1, 2, 3, etc, and not M or A. They can be applied to 

any constant T ensemble and are valid for any concentration of solvent, biomolecule, and 

cosolvents. We note that Equations 4.18-4.20 could have been written directly for nc component 

systems. However, Equation 4.17 is not so obvious. 

Results 

We will apply Equations 4.17-4.20 to a variety of thermodynamic ensembles to develop 

expressions for the effect of a cosolvent on the chemical equilibrium in terms of KB integrals. 

During the following analysis several combinations of KBIs appear repeatedly. Hence, in an 

effort to simplify the results we will define the following, 
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which should be read as the preference or affinity of j over k for species i. For example, AP31  

quantifies the preference of 3 over 1 for the biomolecule in form A. This notation will only be 

used when it applies to specific differences between affinities of the various components for the 

two biomolecule forms. A simple physical interpretation of the sign associated with the above 

expression is that when Pjk
i
 > 0 the local ratio of j to k molecules around a central i molecule is 

larger than the bulk ratio of j to k molecules, and vice versa. We will also make use of the 

notation, 

)1( 1111 jijijij NNNmNN 
       (4.22) 

originally introduced by Hall,
48

 to help simplify many of the results. 

General Expressions for any Number of Components in a Closed System 

Our initial focus will be on fully closed systems at constant pressure. Eliminating dµ 1 from 

Equation 4.17 using Equation 4.20 and then taking derivatives with respect to one of the 

cosolvent molalities one obtains the expression, 
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or alternatively, 
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where the sum involves species 2 (not M and A), aj is the activity of j, and we have defined, 
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The molality derivative has been chosen here as there is a general recursion relationship for 

these derivatives in any closed multicomponent solution.
45

 Reference to the stability 

requirements for solutions indicates that µ ii ≥ 0 and µij < 0.
49

 Consequently, on increasing the 

concentration of j the association process is favored when M

i

A

i nPP 11   is positive for i = j and 

negative for i ≠ j. A change of concentration scales can be performed using the following 

thermodynamic relationships, 
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where φi is the volume fraction and xi the mole fraction. It should be noticed these derivatives are 

positive and so a change in cosolvent concentration variable does not affect the sign of the 

previous effects. 

In a closed system the affinity of all species for the M and A forms contribute to the overall 

effect. These contributions are expressed relative to species 1 (usually taken as the primary 

solvent). This is a direct consequence of our choice to eliminate dµ 1 from Equation 4.17 using 

the GD equation, and not due to the use of molality based derivatives. Clearly, one could 

eliminate any dµ i to obtain a set of equivalent expressions. Finally, one could obtain an 

expression for a closed system at constant volume (T, ρj≠i) from Equations 4.17-4.20. However, 

we have not pursued this further as the resulting expressions are rather complicated and this 

ensemble is not relevant for most biological systems, although it is the ensemble adopted in SPT. 

Constant T, P, and m2 Ensemble 

The most common situation involves a closed system with nc = 3 at constant T and P, where 

one is interested in the effect of a single cosolvent (3) on the biomolecular equilibrium when the 
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biomolecule (2) and primary solvent (1) concentrations are constant. To develop expressions for 

the effect of a cosolvent on the equilibrium in this situation we eliminate dμ1 from Equations 

4.17-4.19 using Equation 4.20. Then, noting that m2 is constant we have from Equation 4.19 with 

i = 2 that,  

323222)1(0  dNdN           (4.27) 

This can then be used to eliminate dµ2 from Equation 4.17 to give, 
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To relate this to the cosolvent concentration one can eliminate dμ1 from Equation 4.18 with i = 3 

using Equation 4.20, and then combine with Equation 4.27 to provide, 
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Alternatively, if one is interested in the effect of cosolvent molality one can eliminate dμ1 from 

Equation 4.19 using Equation 4.20 with i = 3, and then combine with Equation 4.27 to generate,  
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which can then be combined with Equation 4.28 if desired. Equation 4.30 is in agreement with 

previous results.
45

 We note that the final terms in Equations 4.28-4.30 all disappear as the 

biomolecule concentration tends to zero, a common situation, and are then consistent with 

previous published expressions.
27,29,47

 

In some cases the cosolvent concentration might be constant and the biomolecule 

concentration may vary. The correct expressions for this situation can be obtained from 

Equations 4.28-4.30 via a simple 2 ↔ 3 index change, or by the same approach that led to 
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Equations 4.28-4.30 but where m3 is constant. In principle, Equation 4.18 can be used to obtain 

expressions for d ln xi and thereby chemical potential derivatives with respect to mole fractions. 

These expressions are rather cumbersome and, as mole fractions are rarely the concentration 

scale of choice for biological systems, we have not pursued this further here. 

General Expressions for any Number of Components in Semi-Open Systems 

If the system corresponds to that of a real cell, or some approximation to a real cell, then it 

may be open to one or more components. Furthermore, the addition of the cosolvent can occur 

with volume or pressure held constant. Let us consider a system which contains a set of species 

at fixed concentrations (ρ), together with a set of species with fixed chemical potentials (µ). 

Taking derivatives of Equation 4.17 with respect to one of the cosolvent molarities with volume 

fixed one obtains the expression, 
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where the sum is over the restricted set of components for which the system is closed (ncʹ). 

Alternatively, with pressure constant one finds, 
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The corresponding chemical potential derivatives are defined, 
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Expressions for the required derivatives can be obtained after solving the set of simultaneous 

equations provided by Equations 4.18-4.20. This is illustrated in the following two sections.  

Constant T, µ1, and ρ2 Ensemble 

A common osmotic system involves a closed system with nc = 3 at constant T, V and µ1, 

where one is interested in the effect of a single cosolvent (3) on a biomolecular equilibrium when 

the biomolecule concentration is constant and the system is closed to the cosolvent. To develop 

expressions for the effect of a cosolvent on the equilibrium in this situation we note that ρ2 is 

constant and hence from Equation 4.18 with i = 2 one has,  

323222)1(0  dNdN          (4.34) 

This can then be used to eliminate dµ2 from Equation 4.17 to give, 
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To relate this to the cosolvent concentration one can eliminate dμ2 from Equation 4.18 with i = 3, 

and then use Equation 4.34 to provide, 
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Alternatively, if one is interested in the effect of cosolvent molality one can eliminate dμ2 from 

Equation 4.19 with i = 3, and then use Equation 4.34 to generate,  
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which can then be combined with Equation 4.35 if desired. We note that the final terms in 

Equations 4.35-4.37 all disappear as the biomolecule concentration tends to zero. 
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Constant T, P, µ1, and N2 Ensemble 

A second common osmotic system involves a closed system with nc = 3 at constant T, P and 

µ1, where one is interested in the effect of a single cosolvent (3) on a biomolecular equilibrium 

when the number of biomolecules is constant, and the system is also closed with respect to the 

cosolvent. To develop expressions for the effect of a cosolvent on the equilibrium in this 

situation we note that P is constant and hence from Equation 4.20 one has,  
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This can then be used to eliminate dµ2 from Equation 4.17 to give, 
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To relate this to the cosolvent concentration one can eliminate dμ2 from Equation 4.18 with i = 3, 

and then use Equation 4.38 to provide, 
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Alternatively, if one is interested in the effect of cosolvent molality one can eliminate dμ2 from 

Equation 4.19 with i = 3, and then use Equation 4.38 to generate,  
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which can then be combined with Equation 4.39 if desired. 
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Symmetric Ideal Solutions 

Ideal behavior occurs when the right hand side of Equations 4.29, 4.30, 4.36, 4.37, etc, is 

unity. Clearly, the corresponding relationships between the KBIs depend on the concentration 

scale and the ensemble. Symmetric ideal (SI) solutions provide a useful reference point for 

understanding the properties of real solution mixtures in closed ensembles at constant 

temperature and pressure.
26

 SI solutions are defined by the fact that the mole fraction scale 

activity coefficients are unity for all components over all compositions, i.e. dµ i = RT d ln xi. In 

terms of the KBIs this requirement is fulfilled when ΔGij = Gii + Gjj – 2 Gij = 0 for all i,j pairs.
26

 

Recently, we provided a general expression for the KB integrals in SI solutions of any number of 

components,
50
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where the sum is over all nc components of the mixture, κT is the isothermal compressibility, and 

Vi is the molar volume of pure component i at the same T and P. For our pseudo nc+1 

component system one can write, 
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In developing the above expressions we have made the very reasonable assumption that, 

2nVnVV MA           (4.44) 

For instance, estimated differences in volume between native and denatured proteins are 

typically small compared to their total volumes.
27,51,52

 The value of <V2> is the average molar 
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volume of the biomolecule at that particular composition and varies between VM = V2 for fM = 1 

and VA = nV2 for fA = 1. 

Using Equation 4.42 one can develop expressions for the various combinations of KB integrals 

that appeared in the previous sections. Hence, one finds, 
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jij mN 
           

for any i and j = 1, 2, etc. For KB integrals involving specific forms of the biomolecule we have, 
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for any i and j = 1, 2, etc after using Equation 4.44. In both cases the mean value of the molar 

volume <V2> should be used when i or j = 2.  

For symmetric ideal solutions one finds that µ ij = δij – xj and therefore insertion of the SI 

expressions into Equation 4.23 and performing the summation leads to a general result for SI 

solutions, 

))(1()()1(
ln

ln

,,

jjmjj

SI

mPTj

xnVVn
m

K

jk






















     (4.47) 

valid for any number of components. Here, Vm = V/(N1 + N2 + · · ·) is the molar volume, or the 

average volume per molecule of the solution, and φi = ρiVi is the volume fraction. Hence, an 

increase in the concentration of the biomolecule or an additive has no affect on the equilibrium in 

SI solutions when n = 1, while they increase the equilibrium constant for n > 1 when their molar 

volume is larger than the average volume of the solution components. This appears to follow the 
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result expected for a simple excluded volume effect where the excluded volume is smaller for the 

aggregate compared to an equivalent number of monomers. However, this is incorrect as we 

have not assumed anything concerning the character (size or shape) of either the M or A species. 

The real origin of the result is discussed later. SI solution results for other concentration scales 

are given by, 
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where we have used the previous relationships between the concentration derivatives. 

Alternative Definitions of the Equilibrium Constant 

Our choice of an equilibrium constant utilizing number densities was motivated by the 

pseudo chemical potential (pcp) approach pioneered by Ben-Naim.
46

 The pcp (µ*) is related to 

the total chemical potential by the equation, 

)ln( 3*

iiii RT           (4.49) 

where Λ is the thermal deBroglie wavelength. The equilibrium condition then provides, 
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The pcp approach helps to simplify the resulting expressions for the same reasons as outlined 

previously.
26

 Other definitions of the equilibrium constant are possible, but typically generate 

extra terms which complicate the analysis. This can be seen from the following expressions 

which relate various definitions of the equilibrium constant to the one used here. For instance, 



 115 

1ln)1(lnln dnKdKd m     









n

M

A
m

m

m
K    (4.51a) 

ln)1(lnln dnKdKd x     









n

M

A
x

x

x
K    (4.51b)  

2ln)1(lnln dnKdKd f     









n

M

A
f

f

f
K    (4.51c)  

MdnKdKd  ln)1(lnln     









M

AK



    (4.51d) 

where ρ is the total number density. The final terms in Equations 4.51a-d represent additional 

contributions which depend on the ensemble. They are properties of the solution mixture itself, 

and not directly related to the affinity of any of the species to the different forms of the 

biomolecule (see later). Also, we note that defining an equilibrium constant by Kʹ = nρA/ρM
n
 does 

not affect any of the results presented here as d ln Kʹ = d ln K. The final expression (Equation 

4.51d) does not include the factor of n for the equilibrium constant. Hence, this does not 

correctly reflect the stoichiometry of the association reaction. However, it may relate more 

meaningfully to the experimental data which are typically indirect measures of biomolecular 

concentrations obtained through spectroscopic or activity measurements, or for solutions where a 

unique value of n might not be known. Clearly, different results are obtained with different 

definitions of the equilibrium constant, and therefore comparisons with experimental data should 

be performed with care. 
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Approximate Free Energy Curves 

KB theory provides expressions for derivatives of the equilibrium constant (or free energy) 

for a particular process in terms of the intermolecular distributions observed in solution. To 

obtain changes in the equilibrium constant one has to then integrate. Unfortunately, the general 

dependence of the Nij’s on composition is unknown. However, one can make some reasonable 

approximations and investigate the results. First, most studies involve the solute (2) at low 

concentrations. Second, if the Gij’s are assumed to be relatively constant then one can obtain 

approximate free energy curves. Therefore, for two of the main ternary systems (Equations 4.28 

and 4.29, and Equations 4.31 and 4.32) one finds, 
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which may be compared to the corresponding exact SI result,  
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where ΔΔG = ΔG(ρ3) – ΔG(0), β = 1/RT, and K0 is the equilibrium constant in the absence of 

cosolvent. A similarity to denaturation binding models is clearly apparent.
53-55

 For small ρ3 the 

right hand side reduces to P31
A 

– nP31
M

 and NA3 – nNM3 for the closed and open systems, 

respectively. Hence, using these approximations the cosolvent effect is predicted to be linear in 

cosolvent molarity for low cosolvent concentrations – a result observed experimentally.
56

 We 
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note that the infinitely dilute biomolecule limit applied to Equation 4.38 results in dµ3 = 0 for the 

T, P, µ1 ensemble.  

There are additional relationships relating the various KBIs which can be related to the 

properties of solution mixtures. For instance, taking derivatives of Equation 4.17 with respect to 

P and keeping T and all Ni constant provides, 

 
cn

i

iMiAiT VnNNRTn )()1(         (4.55) 

where iV  is the partial molar volume (pmv). The above expression assumes that NA and NM are 

reasonably independent of pressure. Equation 4.55 can be developed further for the case of nc = 3 

and an infinitely dilute biomolecule, by assuming that the left hand side of Equation 4.55 is small 

and may be neglected. This is true for n = 1 and should be reasonable for n < 10 for all but small 

cosolvent concentrations. In this case one can relate the preference of 3 over 1 for the 

biomolecule to just the affinity of 3 for both forms, 
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This is a generalization of a previous result.
27,57

 The relationship exists because, under these 

approximations, an increase in the local density of one species around the biomolecule should be 

accompanied by some degree of depletion of another species in the same region. Using Equation 

4.56 in Equation 4.52 and comparing with Equation 4.53 one can predict the relative effects of 

the addition of a cosolvent in both open and closed systems. The result is,  

GG 1          (4.57) 

for low biomolecule and cosolvent concentrations. This also assumes that the KBIs are 

reasonably independent of the osmotic pressure, i.e. Gij(T,N,P) ≈ Gij(T,N,P+Π). Therefore, the 
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cosolvent effect should be larger in magnitude in a closed system compared to a similar 

corresponding semi-open system. 

Relationship to the Ben-Naim Result for Closed Systems 

Previously, Ben-Naim studied the effects of cosolvents on molecular association using KB 

theory.
43

 In particular, the effect of a cosolvent on an equilibrium involving an infinitely dilute 

solute expressed in terms of the quantity  
0,,3

2
/


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mPTA NN  in closed systems. The results 

presented here are different from the Ben-Naim expression for several reasons. First, we have 

used an equilibrium constant in terms of numbers densities instead of just NA. Second, the 

cosolvent concentration has been expressed in terms of molarity or molality rather than N3. This 

does not change the general conclusions obtained from the respective expressions, although it 

does change the expressions themselves. To illustrate further we will transform our result 

(Equations 3.28 and 3.30) into the corresponding Ben-Naim expression. To do this we note that 

one can define an equilibrium constant using the molecule numbers (KN). This is related to the 

equilibrium constant used here by, 
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Taking the appropriate derivative in the required ensemble one obtains, 
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Finally, the relationship between changes in the equilibrium constant and changes in NA can be 

obtained from Equation 4.5 with N2 constant, 
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Combining these relationships with Equations 4.28 and 4.30 one obtains the Ben-Naim result in 

our notation, 
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where we have used the KB expression for the pmv of 3 in a binary solution of 1 and 3.
46

 Clearly, 

the expression presented here is simpler and easier to interpret. This is a direct consequence of 

investigating the changes in an equilibrium constant defined using number densities, i.e. the 

pseudo chemical potential approach. 

Discussion 

In the above sections we have provided an analysis, using KB theory, of the effects of 

increasing biomolecule and cosolvent concentrations on molecular association in solution. KBIs 

involving species 2, M, and A appear in these expressions, even though they are different 

representations of the same species. This was done deliberately. The use of N22 in the above 

expressions serves to indicate that this corresponds to a KBI between all forms of the 

biomolecule where one does not distinguish between monomer and aggregate. Alternatively, the 

use of NM3 (or NA3) indicates a correlation between M and 3 (or A and 3) which is specific for 

one particular form of the biomolecule. In addition, the use of NM2 (or NA2) signifies a 

correlation between the monomer (or aggregate) form and any other form of the biomolecule, 

both monomer and aggregate. Hence, we have nonspecific effects involving the KBIs for species 

2, together with specific effects involving the KBIs for species M or A. 

The resulting expressions for closed systems involve terms of the form M

i

A

i nPP 11  . These 

terms quantify the excess (or depletion) of i over 1 in the vicinity of an aggregate over the same 
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excess (or depletion) of i in the vicinity of n monomers. Therefore, if a species i displays a higher 

affinity for the aggregate than n individual monomers, then 011  M

i

A

i nPP

 

and an increase in the 

concentration of i leads to an increase in equilibrium constant and a shift in the equilibrium 

towards the associated form. The cosolvent urea serves as a reasonable example. Urea is well 

known to denature proteins.
56

 Hence, when n = 1 the preference of urea (over water) for the 

denatured state must be larger, on average, than that for the native state. Assuming this is related 

to the corresponding increase in exposed surface area upon denaturation,
58

 this suggests that urea 

should stabilize the monomer over the aggregate as an aggregate typically possesses less surface 

area than n monomers. Hence, urea is a denaturant of proteins but should help prevent protein 

aggregation. This behavior has been observed experimentally.
59,60

 The opposite effects will be 

observed for classic osmolytes. 

Some general trends are observed in the results. From Equation 4.17 it is clear that the effect 

on the equilibrium does not involve any KBIs between the biomolecule and any species that is 

kept at a constant chemical potential. Any species at constant N will contribute to changes in the 

equilibrium as quantified through the KBIs. Hence, all the species contribute in closed systems 

(see Equation 4.23). The main reason for this is quite simple. When a cosolvent displaces a 

solvent molecule in the vicinity of the biomolecule both the addition of cosolvent and the 

removal of a solvent (or other) molecule from the biomolecule affect the Gibbs free energy of the 

system. On the other hand, when a cosolvent displaces a solvent molecule in a system open to 

the solvent, only the addition of the cosolvent affects the free energy of the system. A change in 

concentration scale (µ → m → ρ) typically results in a scaling effect (Equation 4.26), but this 

does not alter the sign of the effects contributing to the change in equilibrium constant. 
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The expression provided in Equation 4.47 for closed SI solutions indicates that the 

association equilibrium is increased by the addition of additives with a larger molar volume than 

the average molecular volume of the solution at that composition. The same expression can be 

obtained from Equation 4.51b noting that d ln Kx = 0 for SI solutions (see Equation 4.7). Hence, 

we have two contributions to changes in the equilibrium constant for SI solutions. First, on 

addition of a cosolvent the volume of the solution increases. This affects the number densities of 

M and A, and directly increases the equilibrium constant when n > 1. Second, the addition of 

another particle to the system changes the total number of species present and therefore the mole 

fraction of each species. This causes an increase in the monomer form to maintain the 

equilibrium condition. Finally, we note that dilution, i.e. the addition of solvent, will favor 

dissociation as long as the solvent has a low molar volume. These effects dominate in the 

absence of a particular affinity between any of the pairs of species in solution. There is no effect 

on a simple denaturation equilibrium in SI solutions. 

It is well known that cellular crowding, as described by the addition of rather large 

cosolvents, will tend to favor association.
6
 The usual explanation for this observation is that 

aggregates display less surface area, and therefore less excluded volume, compared to a 

collection of their monomers. Excluded volume effects also favor the native state over the 

denatured state for the n = 1 case. In contrast, the SI result discussed above indicates that any 

excluded volume contributions are balanced by other (favorable) contributions so that ΔGij = 0 

for all i,j pairs. In a hard sphere fluid model, as adopted in SPT, the SI condition does not hold 

and excluded volume contributions are dominant. These also favor the associated or native forms. 

However, we emphasize that even for ideal (mole fraction scale) solutions the addition of a large 
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cosolvent favors association when the equilibrium constant is defined using molarities, and this 

effect is not related to any change in excluded volume.  

The results predicted by Equation 4.54 for closed ternary SI solutions are illustrated in 

Figure 4.2. A variety of cosolvents are considered with different molar volumes relative to the 

primary solvent. The effects are linear in volume fraction at low cosolvent concentrations but 

display deviation from linear behavior at higher concentrations. All the results scale with n-1 and 

are independent of the size or shape of the monomer or aggregate, although Equation 4.44 was 

used during the derivation. The magnitude of the effects obtained from Equation 4.54 for closed 

SI solutions is similar to that predicted by SPT depending on the biomolecule shapes used (see 

Figure 3 from reference 6, for instance). Clearly, we have two solution models which display 

similar results in qualitative agreement with experiment. Both are approximations to real solution 

conditions of biological interest. The SI approach represents a thermodynamic model, while SPT 

presents a physical model for solutions. It is unclear at present which, if any, is more reasonable.  

The analysis of cosolvent effects on a chemical equilibrium using KB theory is exact. The 

KBIs quantify the local composition of the solution surrounding the various species 

corresponding to a four component system for the case of a single cosolvent. There is no 

problem extracting all the required KBIs from computer simulations as long as one can define 

the aggregate in a consistent manner. From a thermodynamic point of view, however, this is 

formally a three component system. Consequently, it is difficult to extract the individual KBIs 

from an analysis of the thermodynamic data alone. For instance, a general nc component system 

has nc(nc+1)/2 unique Gij integrals. To determine the integrals from experimental data using the 

KB inversion approach requires 1 compressibility, nc-1 independent pmvs, and therefore nc(nc-

1)/2 independent chemical potential derivatives (μij) as a function of composition. However, for 
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our pseudo four component system one can use the relationships in Equation 4.28-4.30 as long as 

one knows K and n for a particular system as a function of composition. Hence, one still has only 

six (nc = 3) unique KBIs as many of the ten (nc = 4) KBIs are related through Equations 4.14 and 

4.15 and therefore are not unique. 

Conclusions 

In this study we have applied KB theory to investigate the effects of cosolvents on molecular 

equilibria in solution. This is an extension of the previous approach of Ben-Naim to include any 

number of components at finite concentrations in both closed and semi-open systems. No 

assumption concerning the character, specifically the size and/or shape, of the molecules has 

been made. Hence, the results are totally general and can be applied to a variety of processes 

such as protein denaturation, protein aggregation, and cellular crowding, where the cosolvent can 

be either small (H
+
, urea) or large (another protein). In addition, the extension to include semi-

open systems also allows one to consider systems under typical biological (cellular) conditions. 

Here, the effect of a cosolvent appears to be reduced compared to closed systems. 

The results obtained here depend on the definition of the equilibrium constant. We advocate 

the use of molarities in accord with the pseudo chemical potential approach of Ben-Naim. In this 

case, even SI solutions, where significant excluded volume effects are absent, indicate an 

increase in association on the addition of a cosolvent crowder. This does not mean that excluded 

volume effects are not important in these systems. Merely that at least some of the typical effect 

can be explained without invoking excluded volume. Significant deviations from SI behavior 

will be observed when the cosolvent displays a preference for either form of the biomolecule. 
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A particular advantage of the KB approach is that one has exact expressions for the 

cosolvent effects in terms of KBIs which are directly related to molecular distributions. Hence, 

one can develop a series of models, each providing different approximations to the real KBIs, 

and thereby determine the resulting thermodynamic effects of various approaches. We are 

currently using this type of approach to compare in more detail the KB based results for hard 

sphere crowders to those obtained from the traditional SPT approach. 
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Figure Captions 

 

 

Figure 4.1 The two representations of the same system used in this study. The system 

contains a solvent (1, shaded spheres), a solute (2), and a cosolvent (3, open spheres). In this 

case the solute can exist in two forms - one being the monomer (M) and the other being an 

aggregate (A) of n = 6 monomers. The monomer can adopt different shapes in the 

associated and free forms. 
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Figure 4.2 SI results for the effects of a single crowder (3) on the association equilibrium 

(nM → A) of an infinitely dilute solute (2) in a primary solvent (1) in a closed system. The 

data was obtained using Equation 4.54 for different molar volume ratios (r) of the crowder 

and solvent such that V3 = r V1. The results are plotted as a function of cosolvent volume 

fraction (φ3 = ρ3V3), cosolvent mole fraction (x3), and cosolvent molality (m3) with water as 

the solvent. In this case x3 = φ3/[φ3+r(1-φ3)] and m3 = 1000φ3/r(1-φ3)/18.015. For reference, 

the molar volume of pure water is V1 = 18 cm
3
/mol and so r = 1000 would correspond to a 

25 kDa protein of approximately 225 residues. All curves are truncated at a cosolvent 

volume fraction of 0.5. 
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CHAPTER 5 - Molecular Dynamics Simulations of Peptide 

Aggregation in Closed and Semi-Open Systems 

In an effort to develop an understanding of peptide aggregation at the atomic level we have 

performed simulations of polyglycine ((gly)n) peptides using our recently developed force fields. 

Experimentally, the association of glycine polypeptides increases with n. Our force fields 

reproduce this behavior, and the reasons behind this trend are investigated. In addition, we also 

simulate these systems in a semi-open ensemble, designed to mimic cellular environments 

typically open to water, using a simple direct approach. The differences between the two 

ensembles are investigated and compared with our recent theoretical descriptions of aggregating 

systems using Kirkwood-Buff theory. 

Introduction 

Peptide aggregation is one of the most interesting issues arising in several pharmaceutical 

and scientific areas. Many diseases including Alzheimer’s, Huntington’s, Amyotrophic Lateral 

Sclerosis (ALS), and prion diseases,
1-2

 are related to peptide aggregation which is affected by 

among other things, the salt concentration or type, temperature, and pH of the cellular 

environment.
3-8

 Potentially, understanding the connections between peptide aggregation and the 

aggregation environment could help to elucidate the dominant factors which lead to aggregation. 

Therefore, intensive experimental, theoretical, and computational research has been tried to 

describe changes in solution distributions, including peptide aggregation, at the atomic level.
9
 

Unfortunately, it is difficult to describe diseases at atomic level using typical experimental 

approaches because the cellular environment is too complicated to be assigned. Furthermore, 

from the point of view of the atomistic computer simulation, peptide aggregation requires 
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prohibitive amounts of computer time. Therefore, several approaches focus on studies of small 

peptide fragments,
3, 10

 which hopefully represent the behavior of large proteins, because the 

small peptide fragments are computationally easy to handle.  

Recently, N-methylacetamide (NMA) has been proposed as an attractive model for the 

investigation of peptide aggregation.
11-13

 This is because NMA is one of the simplest molecules 

containing the peptide linkage and has the advantage of being small enough to be accessible by 

both current experimental and computational techniques. According to the these studies, it is 

found that as the NMA concentration is increased the water molecules become increasingly 

isolated into short linear clusters, while the NMA molecules show significant self-association 

even at the lowest concentrations explored.
11

 Alternatively, Smith and coworkers have used 

another approach, based on KB integrals, to help quantify the NMA self interaction in dilute 

solution.
14

 In relatively dilute solutions their analysis suggests that the molecules are highly 

solvated and there are no apparent strong hydrogen bonds between NMA molecules.  

Another nice candidate model system may be the small polyglycine peptides, which are 

zwitterionic in aqueous solution, giving rise to hydrophilic functional groups in the CO2
-
 and 

NH3
+
 groups. In addition, the trend of self-association for the peptide backbone can be 

investigated as the peptide bonding should increase in diglycine and triglycine which have one or 

two peptide bonds, respectively. Recently, the aggregation of Gly-l-Ala dipeptide molecules in 

water was investigated by using molecular dynamics simulation.
15

 This work suggested that the 

zwitterionic N-termial and C-termial are responsible for driving peptide association in aqueous 

solution. 

Aggregation is sensitive to environmental conditions. Typical cellular environments involve 

a system open to water. In an effort to develop the use of computer simulations for semi-open 
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systems, as a model for cellular systems, several simulations of osmotic pressure have been 

performed. The simulations have not only been performed to test the force fields used in 

computer simulations, but they also provide a route to study a wide range of conditions. Murad 

and coworkers has introduced a novel technique for studying fluids in confined geometries, such 

as semi-permeable membranes, based on the conventional microcanonical molecular dynamics 

methods.
16-18

 Rowley and coworkers have also proposed osmotic molecular dynamics (OMD) for 

obtaining chemical potential of Lennard-Jones (LJ) fluids and their mixtures.
19-22

 Recently, Luo 

and Roux described a simple method to compute the osmotic pressure directly from molecular 

dynamics (MD) simulation of concentrated aqueous solutions by introducing an idealized semi-

permeable membrane.
23

 This approach was then used for developing force fields of Na
+
, K

+
, and 

Cl
-
 ions. The approach used semi-permeable walls to mimic cell membranes which are open to 

water molecules, followed by a calculation of the pressure on the walls. The pressure is the 

osmotic pressure. Even though previous work has reproduced the obtained experimental osmotic 

pressure well for many systems, the simulations involving more complicated solutions including 

amino acids and polypeptides have not yet been explored. In the previous chapter we presented a 

theory for the effects of a cosolvent, pH, or osmotic pressure on a biomolecular equilibrium. 

Here, we start to explore these types of effects by simulation. 

In a previous chapter (chapter 3) we present the force field parameters for the polyglycines, 

as unprotected N-terminal and C-terminal zwitterionic peptides, which are applicable over the 

whole concentration range. In order to elucidate the local structure of aqueous polyglycine 

peptide solutions, the relationships between solvent and solute structure and the relationship to 

peptide aggregation is investigated using Kirkwood-Buff theory.
24

 In addition, in order to mimic 

real cellular environments we employ a membrane mimic composed of simple frozen particles 
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and attempt to reproduce the experimentally observed osmotic pressure changes for these simple 

peptide systems. 

Methods 

Preferential Interactions 

In order to quantify peptide aggregation we need to develop a method to analyze the 

experimental data. The preferential interaction plays an important role in quantifying solution 

distributions. Smith and coworkers have presented an analysis of preferential interactions based 

on Kirkwood-Buff integrals.
25-28

 The preferential interaction is defined by 
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This should be read as the preference or affinity of j over k for species i. This notation will only 

be used when it applies to specific differences between affinities of the various components for a 

biomolecule found in different forms (native or denatured, monomer or aggregate, etc). A simple 

physical interpretation of the sign associated with the above expression is that when 0i

jkP  the 

local ratio of j to k molecules around a central i molecule is larger than the bulk ratio of j to k 

molecules. In binary systems, the preferential interaction is defined by 
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where water molecules and cosolvent are described by w and c, respectively. In both of the above 

equations Gij is the KB integral between species i and j. Excess coordination numbers are then 
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defined as ijjij GN  . 

Chemical Equilibrium 

In a binary system, there will be a primary solvent (w) and then a cosolvent (c) such as 

glycine, diglycine, or triglycine. At the same time, the polyglycine molecules can be described in 

terms of aggregates. Hence, we have an equilibrium process which can be described by an 

equilibrium constant K. 
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The equilibrium constant can be defined in several ways using a variety of concentration scales. 

We chose K in terms of number densities or molarities. This equilibrium can be affected by a 

variety of factors, as outlined in chapter 4, all of which can be described using KB integrals. 

Closed System  

Our initial focus will be on fully closed systems at constant pressure. One obtains the 

following expression for changes in K, 
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due to the addition of more peptide (c). Reference to the stability requirements for solutions 

indicates that μcc ≥ 0.
29

 Consequently, on increasing the concentration of the peptide the 

association process is favored when M

cw

A

cw nPP   is positive. In a closed system the affinity of all 
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species (c and w) for the M and A forms contribute to the overall effect. These contributions are 

expressed relative to the primary solvent (w).  

Semi-open System 

If the system corresponds to that of a real cell, or some approximation to a real cell, then it 

may be open to water molecules. Considering a change in the concentration of a aggregating 

peptide (c) in a system open to water we find,
28
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where the corresponding chemical potential derivative is defined, 
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The different expressions obtained for open and closed systems (Equations 5.3 and 5.4) suggest 

that the changes in aggregation behavior may also be different. Here, we would like to 

investigate this issue. 
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Kirkwood-Buff force fields 

In this work we use our previously developed force fields described in chapter 3 as described 

in Figure 5.1. For instance, diglycine is composed of three different group; the N-terminal, C-

terminal, and peptide bonds. The force field for each part has been developed separately. The 

parameters for the N-terminus were based on several amine salts; NH4Cl, NH4Br, and 

CH3NH3Cl. The C-terminal parameters were obtained by using a model for CH3COONa. For the 

peptide bond, Kang and Smith have already published the required parameters for amides.
14

 

 

Figure 5.1 The strategy for the development of force field parameters. NH4Cl, NH4Br, and 

CH3NH3Cl are model for the N-terminus, and CH3COONa corresponds to the C-terminus. 

The CH3CONHCH3 molecule describes the peptide group which has been developed 

previously by Smith and Kang
14

. 

Table 5.1 shows the Lennard-Jones parameters and charge distributions used in our 

simulations using the approach outlined in Figure 5.1. 



 139 

Table 5.1 Nonbonded force field parameters for the KBFF model 

 Atom ζ (nm) ε (kJ/mol) q (e) 

N-terminal 

N 0.3370 0.5620 +0.5 

H 0.8672 0.3748 0.0 

CH2 0.4170 0.3770 +0.5 

Amide 

C 0.3360 0.3300 +0.62 

O 0.3100 0.5600 -0.62 

N 0.3110 0.500 -0.7 

H 0.1580 0.0880 +0.36 

CH2 0.4170 0.3770 +0.34 

C-terminal 
C 0.3360 0.3300 +1.0 

O 0.3500 0.6047 -1.0 

Walls LJB 0.3 0.01 0.0 

Table 5.2, Table 5.3, and Table 5.4 presents the bonded parameters used for the glycine, 

diglycine, and triglycine aqueous solutions by the KBFF model, respectively. The parameters for 

the bonds, angles, and improper dihedrals have been obtained from the GROMOS force fields.
30-

31
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Table 5.2 Bonded parameters for aqueous glycine solution according to the KBFF models. 

Potential functions are: angles, Vθ=1/2 kθ(θ - θ0)
2
; dihedrals, Vφ =kφ [1 + cos(nφ - δ)]; and 

impropers, Vω=1/2 kω(ω - ω0)
2
. 

Bonds bo (nm) kb (kJ mol
-1

 nm
-2

) 

H-N 0.1 

Constraint 
N-CH2 0.1468 

CH2-C 0.1520 

C-O 0.1250 

Angles θo (deg) kθ (kJ mol
-1

 rad
-2

) 

H-N-H 109.5 334.72 

H-N-CH2 109.5 376.56 

N-CH2-C 114.1 502.10 

CH2-C-O 117.0 502.08 

O-C-O 126.0 502.08 

Proper Dihedrals ϕs (deg) kϕ (kJ mol
-1

) multiplicity 

H-N-CH2-C 0.0 4.0002 3 

N-CH2-C-O 0.0 1.0002 6 

Improper Dihedrals ω0 (deg) kω (kJ mol
-1

 rad
-2

) 

C-CH2-O-O 0.0 167.36 
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Table 5.3 Bonded parameters for aqueous diglycine solution according to the KBFF models. 

Potential functions are: angles, Vθ=1/2 kθ(θ - θ0)
2
; dihedrals, Vφ =kφ [1 + cos(nφ - δ)]; and 

impropers, Vω=1/2 kω(ω - ω0)
2
. 

Bonds bo (nm) kb (kJ mol
-1

 nm
-2

) 

H-N 0.1000 

Constraint 

N-CH2 0.1468 

CH2-C 1.5300 

C=O 1.2300 

C-N 1.3300 

N-H 1.0000 

N-CH2 1.4700 

CH2-C 0.1520 

C-O 0.1250 

Angles θo (deg) kθ (kJ mol
-1

 rad
-2

) 

H-N-H 109.5 334.72 

H-N-CH2 109.5 376.56 

N-CH2-C 109.5 376.56 

CH2-C=O 121.0 502.10 

O=C-N 124.0 502.10 

C-N-H 123.4 292.90 

C-N-CH2 122.0 502.10 

H-N-CH2 115.0 376.60 

N-CH2-C 109.5 376.56 

CH2-C-O 117.0 502.08 

O-C-O 126.0 502.08 

Proper Dihedrals ϕs (deg) kϕ (kJ mol
-1

) multiplicity 

H-N-CH2-C 0.0 3.77 3 

N-CH2-C-N 0.0 1.00 6 

CH2-C-N-CH2 180 33.5 2 
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C-N-CH2-C 180 1.00 6 

N-CH2-C-O 0.0 1.00 6 

Improper Dihedrals ω0 (deg) kω (kJ mol
-1

 rad
-2

) 

C-CH2-N-O 0.0 167.36 

N-C-CH2-H 0.0 167.36 

C-CH2-O-O 0.0 167.36 

Table 5.4 Bonded parameters for aqueous triglycine solution according to the KBFF 

models. Potential functions are: angles, Vθ=1/2 kθ(θ - θ0)
2
; dihedrals, Vφ =kφ [1 + cos(nφ - δ)]; 

and impropers, Vω=1/2 kω(ω - ω0)
2
. 

Bonds bo (nm) kb (kJ mol
-1

 nm
-2

) 

H-N 0.1000 

Constraint 

N-CH2 0.1468 

CH2-C 1.5300 

C=O 1.2300 

C-N 1.3300 

N-H 1.0000 

N-CH2 1.4700 

CH2-C 1.5300 

C=O 1.2300 

C-N 1.3300 

N-H 1.0000 

N-CH2 1.4700 

CH2-C 0.1520 

C-O 0.1250 

Angles θo (deg) kθ (kJ mol
-1

 rad
-2

) 

H-N-H 109.5 334.72 

H-N-CH2 109.5 376.56 

N-CH2-C 109.5 376.56 

CH2-C=O 121.0 502.10 
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O=C-N 124.0 502.10 

C-N-H 123.4 292.90 

C-N-CH2 122.0 502.10 

H-N-CH2 115.0 376.60 

N-CH2-C 109.5 376.56 

CH2-C=O 121.0 502.10 

O=C-N 124.0 502.10 

C-N-H 123.4 292.90 

C-N-CH2 122.0 502.10 

H-N-CH2 115.0 376.60 

N-CH2-C 109.5 376.56 

CH2-C-O 117.0 502.08 

O-C-O 126.0 502.08 

Proper Dihedrals ϕs (deg) kϕ (kJ mol
-1

) multiplicity 

H-N-CH2-C 0.0 3.77 3 

N-CH2-C-N 0.0 1.00 6 

CH2-C-N-CH2 180 33.5 2 

C-N-CH2-C 180 1.00 6 

N-CH2-C-N 0.0 1.00 6 

CH2-C-N-CH2 180 33.5 2 

C-N-CH2-C 180 1.00 6 

N-CH2-C-O 0.0 1.00 6 

Improper Dihedrals ω0 (deg) kω (kJ mol
-1

 rad
-2

) 

C-CH2-N-O 0.0 167.36 

N-C-CH2-H 0.0 167.36 

C-CH2-N-O 0.0 167.36 

N-C-CH2-H 0.0 167.36 

C-CH2-O-O 0.0 167.36 
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Semi-open System Model 

In order to study a model of a semi-permeable membrane, which acts as a mimic of a real 

cellular environment, we employ a wall of simple frozen particles which is permeable to water 

only. Then we attempt to reproduce the experimentally observed osmotic pressure changes in 

this system. 

 

Figure 5.2 The simulation box used for the semi-open systems. The green balls indicate the 

semipermeable membranes for the water molecule which mimic a cell environment. Each 

wall has 400 particles. 

The green wall “particles” carry no charge and are frozen in a fixed position. They do not 

interact with water molecules. However, they interact with solute molecules, but only through a 

simple repulsive LJ potential. Hence, water molecules move freely in and out of the central 

region, while the peptide molecules are constrained to remain within the central region. 
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Molecular dynamics simulations 

All molecular dynamic simulations of polyglycine aqueous solutions were performed using 

the with the SPC/E water model
32

 in the isothermal isobaric (NpT) ensemble at 300 K and 1 atm 

as implemented in the GROMACS program (v3.3.1).
30-31

 A time-step of 2 fs was used and the 

geometry of the water molecules was constrained using SETTLE.
33

 All bonds were constrained 

using LINCS.
34

 A twin range cut-off of 0.8 nm/1.5 nm was employed with a nonbonded pair list 

update of every 10 steps. The weak coupling technique was used to modulate the temperature 

and pressure with relaxation times of 0.1 and 0.5 ps, respectively.
35

 In order to evaluate 

electrostatic interactions, the particle mesh Ewald technique (PME) was used.
36

 The initial cubic 

boxes of different solutions have been generated by adding water molecules and polyglycine 

molecules until the required concentration was obtained. Configurations were saved every 0.1 ps 

for analysis.  
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Results 

A summary of the set of simulations and some preliminary results are summarized in Table 

5.5 for the closed systems. 

Table 5.5 Summary of the MD simulations of polyglycine aqueous solution in closed 

systems. All simulations were performed at 300 K and 1atm in the NpT ensemble. Symbols 

are Nw, number of water molecules; Ns, number of solutes; V, average simulation volume; 

ms, solute molality; Cs, solute molarity; ρ, mass density; Epot, average total potential energy 

per molecule (Ns + Nw); and Tsim, total simulation time. 

   ms V Cs ρ Epot Tsim 

 Ns Nw (mol/Kg) (nm
3
) (mol/l) (g/cm

3
) (kJ/mol) (ns) 

GLY 

90 16520 1.0 215.809 0.95 124 -49.04 11 

124 6898 1.0 215.809 0.95 124 -59.42 11 

238 6611 2.0 215.209 1.84 238 -65.45 11 

343 6341 3.0 214.840 2.65 343 -71.32 11 

GLYGLY 

90 16520 0.3 507.799 0.29 1.005 -49.04 11 

290 16040 1.0 518.764 0.93 1.048 -59.49 11 

420 15560 1.5 521.235 1.43 1.070 -65.70 11 

GLYGLYGLY 90 16520 0.3 513.630 0.29 1.017 -51.62 11 

The corresponding simulation results for the semi-open systems are summarized in Table 5.6. 

Because semi-permeable membranes allow the water molecules to freely move through the 

membrane the molality of the central region between the membranes is not constant. Therefore, 

the solute molarities have been used as a measure of concentration, instead of molalities, when 

determining the osmotic pressure of polyglycine aqueous solution in the semi-open systems. 
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Table 5.6 Summary of the MD simulations of polyglycine aqueous solution in semi-open 

system. All simulations were performed at 300 K and 1 atm in the μwpT ensemble. Symbols 

are Nw, number of water molecules; Ns, number of solutes; V, average simulation volume of 

the box between membranes; ms, approximate solute molality of the box between 

membranes; Cs, solute molarity of the box between membranes; and Tsim, total simulation 

time. 

   ms V Cs π Tsim 

 Ns Nw (mol/Kg) (nm
3
) (mol/l) (atm) (ns) 

NaCl 

500 28314 2.0 454 1.83 72 6 

960 27184 4.0 454 3.52 150 6 

1380 26051 6.0 454 5.05 226 6 

GLY 

76 28648 0.3 454 0.28 7.9 11 

248 28236 1.0 454 0.91 19.6 11 

476 27062 2.0 454 1.84 52.2 11 

686 25956 3.0 454 2.65 60.2 11 

GLYGLY 

76 28510 0.3 454 0.28 6.2 11 

240 27796 1.0 454 0.88 17.6 11 

384 27324 1.5 454 1.27 27.3 11 

GLYGLYGLY 76 28364 0.3 454 0.28 7.3 11 

The radial distribution functions (rdfs) obtained from the 0.3 m simulations in closed 

systems are shown on Figure 5.3 for the polyglycines with n = 1 - 3. The glycine to glycine rdf 

displayed a large first and a significant second peak but the diglycine to diglycine and triglycine 

to triglycine rdfs present broad peaks, which do not distinguish between the first peak and the 

second peak. The gcc rdfs indicate that the interaction between glycine and glycine is stronger 

than those between di or triglycine and di or triglycine, because the distance between the center 

of mass and center of mass for the glycine is the closest and the first peak is the highest. 
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However, the gcw rdfs indicate the interaction between glycine and water is stronger than those 

between di or triglycine and water, because the distance between the center of mass and center of 

mass for the glycine is the closest and the first peak is the highest. Therefore, glycine appears to 

have the largest interactions for both. This indicates that the larger polyglycine molecules do not 

allow other solute molecules to approach closely. All rdfs approach unity beyond 1.5 nm. 

 

Figure 5.3 Radial distribution functions from 0.3 m solutions obtained from the closed 

glycine (black lines), diglycine (red lines), triglycine (green lines) simulations. 

The simulated and experimental excess coordination numbers, Nij, are shown in Figure 5.4 

for the polyglycine as a function of molality as obtained for the closed systems. The KBFF 

model quantitatively reproduces the experimental data. The water-water excess coordination 

numbers, Nww, are represented by green lines and symbols on Figure 5.4 and increase with solute 

concentration and solute size. Figure 5.4 also shows that the solute-solute excess coordination 

numbers (black lines) also do not vary significantly from solute to solute, at least compared to 

the variation of the solute-water excess coordination numbers (red lines). This indicates that 
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polyglycine molecules exclude water molecules from their vicinity area and this effect increases 

with n. 

 

Figure 5.4 Excess coordination numbers as a function of molar salt concentration: The 

glycine (black lines), diglycine (red dot lines), and triglycine (green dash lines) are obtained 

from a KB analysis using experimental activity coefficient
37

 and density. The glycine (black 

●), diglycine (red ○), and triglycine (green x) are obtained from simulations. 

In Figure 5.5, the simulated activity derivatives acc as a function of molality are compared to 

the experimental values. The KBFF model reproduced the correct increase in acc with 

concentration as displayed by the experimental data. The values of acc play an important role for 

describing the accurate force field because KBIs are more sensitive to activity coefficients than 

other physical properties such as the compressibility and the density.
38

 Hence, the most accurate 

simulations require parameters that yield accurate activity derivatives. 
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Figure 5.5 Activity derivatives as a function of molality for closed systems. Lines are 

obtained from a KB analysis using experimental activity coefficient experimental data
37

 

and dots correspond to the KBFF model 

Figure 5.6 shows the partial molar volumes of water and of the polyglycines. The partial 

molar volume of the solute increases, while that of water is almost constant, as the concentration 

increases. Also, as the size of the glycine peptide increases the partial molar volume of the 

peptide increases, while the partial molar volumes of water in three different systems are 

essentially constant. The KBFF reproduces the experimental data quantitatively. 
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Figure 5.6 Partial molar volumes as a function of molality. Lines are obtained from a KB 

analysis using experimental activity coefficient
37

 and experimental density data,
39

 and dots 

correspond to the KBFF model. The black lines represent the partial molar volume of salts 

and the red dotted lines indicate partial molar volume of water. The dots (●) represent 

partial molar volume of salts and the dots (red ○) indicate partial molar volume of water. 

In order to quantify the polyglycine self interaction in dilute solutions, the preferential 

interaction based on the KB integrals can be used. The quantity Gcc-Gcw describes the preferential 

interaction of polyglycine with other polyglycine molecules as function of composition.
25-27

 A 

positive preferential interaction indicates that the ratio of polyglycine to water in the vicinity of a 

polyglycine molecule exceeds the ratio of polyglycine to water in the bulk solution, while a 

negative number indicates that the ratio of polyglycine to water in the bulk exceeds the ratio of 

polyglycine to water in the vicinity of polyglycine. The preferential interaction at infinite dilution 

(Gcc
∞
-Gcw

∞
) is potentially very informative and describes the preferential interaction between 

two polyglycine molecules in pure water. Experimentally, the preferential interaction of 

polyglycine increase as n increase. The values of Gcw for all polyglycine molecules observed in 
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the simulations reproduce the experimental trend of peptide increase well. Unfortunately, the 

simulated value of Gcc is overestimated for glycine molecules, underestimated for the diglycine 

molecules, and yet correct for the triglycine molecules compared to the experimental data. 

Because the low concentration (0.3 m) simulations involve a low number of solutes, there is not 

enough statistics to obtain reliable simulation data for Gcc (as indicated by the large error bars in 

Figure 5.7). This results in the simulated preferential interactions (Gcc – Gcw) of polyglycine 

molecules having a slight mismatch with the experimental data. 

 

Figure 5.7 Preferential interaction (Gcc - Gcw) and Kirkwood-Buff integrals (Gcc and Gcw) 

as a function of molar salt concentration in closed system. The glycine (black lines), 

diglycine (red dot lines), and triglycine (green dash lines) are obtained from a KB analysis 

using experimental activity coefficient and density.
37, 39

 The glycine (black ●), diglycine (red 

○), and triglycine (green x) are obtained from simulations. 
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The radial distribution functions (rdfs) obtained from the 0.3 m simulations for the 

polyglycine peptides are shown on Figure 5.8 for closed systems, and in Figure 5.9 for the semi-

open systems. The labels NT, OT, and OW correspond to the nitrogen atoms of the N-terminus, 

the oxygen atoms of the C-terminus, and the oxygen atoms of water molecules, respectively. The 

rdf (NT to OT) in glycine displays a large first and a significant second peak, but the rdf (NT to 

OT) in diglycine and triglycine present as broad peaks which are overlapped by the first peak and 

the second peak in both systems. The results suggest that the interactions between the N-terminal 

and C-terminal groups increase as n increases. 

 

Figure 5.8 Radial distribution functions of 0.3 m solutions obtained from the glycine (black 

lines), diglycine (red lines), triglycine (green lines) simulations in closed system. Nitrogen of 

N-terminal, oxygen of C-terminal, oxygen of water is denoted by the symbols NT, OT, and 

OW, respectively. 
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Figure 5.9 Radial distribution functions of 0.3 m solutions obtained from the glycine (black 

lines), diglycine (red lines), triglycine (green lines) simulations in semi-open system. 

Nitrogen of N-terminal, oxygen of C-terminal, oxygen of water are denoted by the symbols 

NT, OT, and OW, respectively. 

The first shell coordination numbers, nij, as well as the distances to the first rdf maximum, 

Rmax, and the first rdf minimum, Rmin, were calculated from the corresponding rdfs as a function 

of the solution molarity and are presented in Table 5.7 for the closed systems, and in Table 5.8 

for the semi-open systems. As n increases the values of Rmin (+/-) for the polyglycines also 

increases, while the interactions involved with water molecules display similar values. In 

addition, the coordination numbers (nij) of the polyglycines to the given position, Rmin (+/-) at 

same composition (0.3m) also increase with n in both open and semi-open systems. This 

suggests that the self-association of polyglycine increases with n, and that the interaction 

between the N-terminal and C-terminal groups is the dominant interaction leading to the self-

association. 
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Table 5.7 First shell coordination number (nij) of polyglycine aqueous solutions in closed 

systems: Rmax and Rmin are the distances (nm) to the first maximum and minimum of the 

radial distribution functions. N-terminal, C-terminal, and the water oxygen are denoted by 

the symbols +, -, and o, respectively 

  ms +/- +/o -/o o/o 

GLY 

Rmax  0.32 0.31 0.28 0.27 

Rmin  0.42 0.39 0.33 0.33 

nij 0.3 0.15 6.21 3.05 4.29 

 1.0 0.39 6.10 2.97 4.20 

 2.0 0.63 5.98 2.89 4.07 

 3.0 0.86 5.89 2.83 3.95 

GLYGLY 

Rmax  0.32 0.31 0.28 0.27 

Rmin  0.75 0.39 0.33 0.33 

nij 0.3 2.69 6.34 3.31 4.27 

 1.0 4.04 6.18 3.22 4.14 

 1.5 4.79 6.08 3.17 4.05 

GLYGLYGLY 

Rmax  0.32 0.31 0.28 0.28 

Rmin  1.09 0.39 0.34 0.34 

nij 0.3 4.04 6.25 3.41 4.62 
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Table 5.8 First shell coordination number (nij) of polyglycine aqueous solutions in open 

system. Rmax and Rmin are the distances (nm) to the first maximum and minimum of the 

radial distribution functions. N-terminal, C-terminal, and the water oxygen are denoted by 

the symbols +, -, and o, respectively. 

  ms +/- +/o -/o o/o 

GLY 

Rmax  0.32 0.31 0.28 0.28 

Rmin  0.42 0.39 0.34 0.34 

nij 0.3 0.13 6.13 3.29 4.67 

 1.0 0.41 5.90 3.25 4.64 

 2.0 0.66 5.80 3.17 4.58 

 3.0 0.89 5.89 2.83 3.95 

GLYGLY 

Rmax  0.32 0.31 0.28 0.28 

Rmin  0.75 0.39 0.34 0.34 

nij 0.3 2.79 6.25 3.60 4.67 

 1.0 4.17 6.10 3.48 4.61 

 1.5 4.92 6.04 3.42 4.57 

GLYGLYGLY 

Rmax  0.32 0.31 0.28 0.28 

Rmin  1.10 0.39 0.33 0.34 

nij 0.3 4.24 6.20 3.39 4.66 

Figure 5.10 and Figure 5.11 present snapshots of 0.3 m (a) glycine, (b) diglycine, and (c) 

triglycine aqueous solution in closed and in open systems after 11 ns MD simulation, shown 

without water molecules for clarity. Both figures indicate that the self-association of polyglycine 

in water increases as n increases. These figures appear to agree with the experimental data. 
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Figure 5.10 Snapshots of 0.3 m (a) glycine, (b) diglycine, and (c) triglycine aqueous solution 

in closed system after 11 ns MD simulation without water molecules for clarity: White, blue, 

red, and green balls indicate hydrogen, nitrogen, oxygen, and carbon atom, respectively. 

 



 158 

XZ plane YZ plane 
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(b) 

  

(c) 

Figure 5.11 Snapshots of 0.3 m (a) glycine, (b) diglycine, and (c) triglycine aqueous solution 

in open system after 11 ns MD simulation without water molecules for clarity: White, blue, 

red, and green balls indicate hydrogen, nitrogen, oxygen, and carbon atom, respectively.  
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In order to obtain the pressure profile through the semi-open systems we employed the 

technique used by Alejandre and Tildesley.
40

 Figure 5.12 represents our initial studies of NaCl 

aqueous solutions used as a test case. The semi-permeable membrane approach composed of 

simple frozen particles reproduces the experimentally observed osmotic pressure changes as 

indicated below. 

 

Figure 5.12 Snapshots of 6 m NaCl aqueous solution in closed system after 6 ns MD 

simulation (top). Water molecules are described by red balls (oxygen) and white balls 

(hydrogen). Blue, green, and pink balls indicate Cl
-
, Na

+
, frozen particle in the walls, 

respectively. The pressure profile of 6 m NaCl aqueous solutions along z-axis (bottom). 

Black line indicates the pressure profile and red lines describe the difference between the 

pressures of inside walls and of outside walls.  
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Figure 5.13 represents the osmotic pressures for the NaCl aqueous solution as the function of 

molarity. The osmotic pressures of KBFF models reproduce the experimental value well.  

 

Figure 5.13 Osmotic pressure (bar) of NaCl aqueous solutions as function of salt molarity 

in semi-open systems. Lines are obtained from a experimental data,
41

 dots correspond to 

the KBFF model. 

For the polyglycine aqueous solutions in semi-open systems we used a different method to 

obtain the osmotic pressures, which is much simpler to implement. In this approach, the osmotic 

pressures for the polyglycines in water have been obtained by determining the sum of the forces 

acting on the walls.
16-18

 Figure 5.14 represents the osmotic pressures for a series of polyglycine 

peptides in water as a function of peptide molarity. As the concentration increased the osmotic 

pressure of the solutions increased. The osmotic pressures exhibited by the KBFF models 

reproduce the experimental values very well.  
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Figure 5.14 Osmotic pressure (bar) of polyglycine aqueous solutions as function of molarity. 

Lines are obtained from a experimental data,
42

 dots correspond to the KBFF model. 
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Conclusions 

A Kirkwood-Buff (KB) analysis of the experimental data indicates that self-association of 

glycine polypeptides increases with n. A Kirkwood-Buff (KB) model of polyglycine reproduced 

experimental KBIs well as n increase. Our studies of NaCl aqueous solutions using a semi-

permeable membrane composed of simple frozen particles reproduced the experimentally 

observed osmotic pressure changes, while the studies of polyglycine aqueous solutions using the 

same approach also reproduced the experimentally observed osmotic pressure changes. This not 

only provides an approach to compare and contrast peptide aggregation in open and closed 

systems, but may also help to elucidate the dominant factors for the self-association of 

polyglycines. 
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