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ABSTRACT

Heterocyclic amines (HCAs) are produced in meats cooked at high temperature, which

are potent mutagens and a risk factor for human cancers. Occurrence of HCAs in ready-to-eat

(RTE) meat products and cooked meat products based on prevalence of various cooking methods

that are preferred among U.S. meat consumers were investigated. The primary HCAs detected in

samples were PhIP (2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine), MeIQx (2-amino-3,8-

dimethylimidazo [4,5-f]quinoxaline), and DiMeIQx (2-amino-3,4,8-trimethyl-imidazo [4,5-

f]quinoxaline). RTE meat products were ranked in the following order of increasing total HCA

content: pepperoni (0.05 ng/g) < hot dogs and deli meat products (0.5 ng/g) < fully cooked bacon

(1.1 ng/) < rotisserie chicken meat (1.9 ng/g) < rotisserie chicken skin (16.3 ng/g). In cooked

meat products, high levels of total HCAs were found in  fried pork (13.91 ng/g), fried fish (14.91

ng/g), and fried bacon (17.91 ng/g).   

Inhibition of HCAs by rosemary extracts, which were extracted with different solvents,

were evaluated in cooked beef patties. Five rosemary extracts were 100W (100% water), 10E

(10% ethanol), 20E (20% ethanol), 30E (30% ethanol), and 40E (40% ethanol). Rosemary extract

20E containing a mixture of rosmarinic acid (27.3 mg/g), carnosol (72.9 mg/g), and carnosic acid

(4.2 mg/g) showed the greatest inhibition of MeIQx (up to 91.7%) and PhIP (up to 85.3%).

 The effect of enhancement and marination on HCA formation in meat products was

investigated. The addition of salt and phosphate greatly improved the water-holding capacity and

decreased HCA formation (up to 58%) in enhanced fresh meat products. An greater reduction of

HCAs (up to 79%) was found in marinated fresh meat; the enhancement solution for this meat

contained ingredients that exhibited good antioxidant properties. 
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PART I. REVIEW OF LITERATURE

INTRODUCTION

Since the late 1970s when Japanese scientists associated potent mutagenic activity with

Salmonella typhimurium T98 in the charred surface of broiled fish, the number of studies

examining cooking-induced mutagens and carcinogens has dramatically increased. Cooking-

derived mutagens and carcinogens were later isolated and characterized as heterocyclic amines

(HCAs). Further studies showed that HCAs are mainly formed in muscle foods, mainly meat and

fish, via the Maillard reaction with creati(ni)ne, amino acids, and sugars as the precursors

(Sugimura and others 2004). More than 25 HCAs have been isolated from different cooked

muscle foods. These HCAs contain two to five of the condensed aromatic cycles with one or

more nitrogen atoms coupled with one exocyclic amino group in their ring systems (Alaejos and

others 2008). HCAs can be classified into two groups, non-polar and polar HCAs, based on their

chemical structure. Non-polar HCAs occur infrequently and are detected at low levels in normal

cooked foods because they only form above normal cooking temperatures. On the other hand,

polar HCAs can be easily formed at normal cooking temperature; therefore, they have received

much more attention than non-polar HCAs (Knize and Felton 2005). 

The common HCAs found in cooked muscle foods are 2-amino-3-methyl-imidazo [4,5-

f]quinoline (IQ), 2-amino-3-methylimidazo [4,5-f]quinoxaline (IQx), 2-amino-3,4-

dimethylimidazo [4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo [4,5-f]quinoxaline

(MeIQx), and 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP) (Knize and others

1994). Four of these HCAs (IQ, MeIQ, MeIQx and PhIP) are listed in the U.S. Department of
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Health and Human Services’s 11th Report of Carcinogens (2005) as compounds “reasonably

anticipated to be a human carcinogen”. The International Agency for Research on Cancer [IARC]

(1993) categorize MeIQ, MeIQx, and PhIP as “reasonably anticipated to be human carcinogens”

and IQ as a “probable human carcinogen”. The presence of HCAs in foods ranges from 0 to 100

part per billion (nanogram per gram). Cooking methods that use temperature above 150 °C, such

as frying, grilling, and roasting, contained high amount of HCAs. The HCA levels in foods

depend on the cooking time and temperature, cooking method, and concentration of the

precursors in raw meat (Knize and Felton 2005).   

As with many chemical mutagens and carcinogens, HCAs have the capability to form

DNA adducts. Some of them have been demonstrated to exhibit strong mutagenicity based on the

Ames Salmonella/mutagenicity test (Sugimura and others 2004). The epidemiological studies

over the past 25 years have shown that the high intake of well-done meat and high exposure to

meat carcinogens, particularly HCAs, increase the risk of human cancers: colon, pancreas,

prostate, and breast (Zheng and Lee 2009). The public considers cancer a potential life-

threatening disease affecting people of all ages (Lynch and others 1995), and after cardiovascular

diseases, cancer has been the main cause of death worldwide (Oliveira and others 2007). The

total HCA-induced cancer risk mainly depends on the amount of HCAs present in the diet and

the frequency of consumption.

Consequently, finding strategies for decreasing HCA formation in foods is necessary. It

has been reported that the level of HCAs in meat products can be reduced by cooking at lower

temperature and time. The addition of compounds with antioxidant potential (Vitaglione and

Foglino 2004) is another effective method for reducing HCAs in foods, because HCAs are
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formed through the free radicals in the Maillard reaction (Vitagline and Fogliano 2004). Because

of concerns about the toxicological safety of synthetic antioxidants, consumers prefer to use

natural antioxidants (Pokorný 2007). Therefore, the search for natural sources of antioxidants has

greatly intensified in recent years.

 Over the past 30 years, extensive studies regarding HCAs have been conducted. They

can be broadly classified into three categories: (1) those examining the kinetics and mechanism

of HCA formation and possible mechanisms of their mutagenic/carcinogenic activities, (2) those

isolating, characterizating, and quantifying the HCAs in foods, and (3) those developing the

strategies to inhibit HCA formation in foods (Cheng and others 2006). This literature review will

cover all aspects of HCAs, including the formation mechanism of HCAs, HCAs and human

health, the occurrence of HCA in foods, the human intake of HCAs, the factors affecting HCA

formation, and the inhibition of HCA formation.  

CLASSIFICATION AND FORMATION OF HETEROCYCLIC AMINES

To date, more than 20 HCAs have been isolated and characterized from both various

cooked meat products and meat model systems. All the HCAs have at least one aromatic and one

heterocylic structure (Cheng and others 2006). Based on their chemical structure, HCAs can be

classified into two groups: non-polar and polar HCAs. The chemical names and abbreviations of

these HCAs are given in Table 1. 
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Table 1. Chemical names and abbreviations of the non-polar and polar heterocyclic amines

(Sugimura and others 2004)

Non-Polar (Amino-carbolines)

á-amino-carbolines AáC 2-Amino-9H-dipyrido[2,3-b]indole

MeAáC 2-Amino-3-methyl-9H-dipyrido[2,3-b]indole

â-amino-carbolines NorHarman 9H-pyrido[3,4-b]indole

Harman 1-methyl-9H-pyrido[3,4-b]indole

ã-amino-carbolines Trp-P-1 3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole

Trp-P-2 3-Amino-1-methyl-5H-pyrido[4,3-b]indole

ä-amino-carbolines Glu-P-1 2-Amino-6-methyl-dipyrido[1,2-a:3',2'-d]imidazole

Glu-P-2 2-Amino-dipyrido[1,2-a:3',2'-d]imidazole

Polar (Amino-imidazo-azaarenes)

Quinolines IQ 2-Amino-3-methylimidazo[4,5-f]quinoline

MeIQ 2-Amino-3,4-dimethylimidazo[4,5-f]quinoline

Quinoxalines IQx 2-Amino-3-methylimidazo[4,5-f]quinaxalines

MeIQx 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline

4,8-DiMeIQx 2-Amino-3,4,8-trimethylimidazo[4,5-f]quinaxaline

7,8- DiMeIQx 2-Amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline

4,7,8- TriMeIQx 2-Amino-3,4,7,8-tettramethylimidazo

[4,5-f]quinoxaline

Pyridines PhIP 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine

DMIP Dimethylimidazopyridine

TMIP Trimethylimidazopyridine
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Non-polar heterocyclic amines

The structure of non-polar HCAs (also known as amino-carboline HCAs) include the

five-membered heterocyclic aromatic ring sandwiched between two-six membered aromatic rings

(Cheng and others 2006) (Figure 1). Non-polar HCAs can be further divided into á-subgroup

(e.g. AáC and MeAáC) , â-subgroup (e.g. norharman, harman), ã-subgroup (e.g. Trp-P-1, Trp-P-

2), and ä-subgroup (e.g. Glu-P-1, Glu-P-2). Unlike other HCAs, â-amino-carbolines (e.g.

norharman and harman) lack the exocyclic amino group that cause them to be nonmutagenic in

the Ames Salmonella mutagenicity test (Cheng and others 2006).      

The main precursors of non-polar HCA formation are amino acids or protein, with

formation independent on the presence of creati(ni)ne (Murkovic 2004, Cheng and others 2006).

These HCAs form only at temperatures above 300 °C via amino acids or protein pyrolysis,

sometimes referred to as pyrolytic HCAs (Jägerstad and others 1998). The amino acids and

proteins that are involved in this reaction are tryptophan, glutamic acid, lysine, phenylalanine,

ornithine, creatine, or pyrolysed proteins (e.g. casein, albumin, gluten or soybean globulin)

(Jägerstad and others 1998). Since they are formed under such extremely high temperatures, they

are not detectable or occur infrequently in normal cooked foods. The possible mechanisms of

amino-carbolines formation postulated by Skog and others (2000) is via free radical reactions,

which produce many reactive fragments and then condense to form amino-carboline HCAs. 

  



6

Figure 1. Chemical structure of non-polar heterocyclic amines (Murkovic 2004).
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Polar heterocyclic amines

The structure of polar amines (also known as amino-imidazo-azaarenes) have 2-amino-

imidazo moiety and a methyl group attached to one of the nitrogens in the imidazo ring (Figure

2). They all have molecular weights in the range of 180-250, and boiling points below 200-300

°C (Murkovic 2004). Polar HCAs can be divided into three subgroups depending on the groups

that are attached to the 2-amino-imidazo. These subgroups are quinolines, quinoxalines, and

pyridines. Quinolines are called IQ-type (e.g. IQ and MeIQ) while quinoxalines are called IQx-

type (e.g. IQx, MeIQx and DiMeIQx). The important HCAs in the pyridine subgroup are PhIP,

DMIP, and TMIP (Cheng and others 2006). 

Figure 2. Chemical structure of polar heterocyclic amines (Murkovic 2004).
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Polar HCAs can be easily formed at the temperature used for normal cooking, such as

frying, broiling and baking, which is below 300 °C. Therefore, they have received much more

attention than non-polar HCAs. The three main precursors leading to the formation of polar

HCAs are creatine/creatinine, sugars, and amino acids originally found in muscle foods (Knize

and Felton 2005). Experiments using C-labeled glucose in a model system with threonine and14

creatinine showed that the C-labeled glucose was incorporated to IQ- and IQx- type HCAs; it14

has been suggested that the carbon atoms of pyridine/pyrazine moiety of HCAs originate from

the glucose molecule. In addition, the C-4 of IQ- and the IQx-type HCAs are derived from the C-

2 of the amino acid (Figure 3). 

 

Figure 3. Origin of carbon atom of IQ and IQx type heterocyclic amines (Murkovic 2004).

Pearson and others (1992), Jägerstad and others (1998), and Skog and others (1998)

postulated that the IQ-type and IQx-type HCAs form through the Maillard reaction as shown in

Figure 4. The mechanism, glycol-aldehyde alkylimine (enol type) being produced by a reverse-

aldol reaction from sugar and amino acid. Then the Maillard reaction may follow to yield the

different types of HCAs. The first pathway produces IQx-type amine through the biomolecular 
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Figure 4. Formation of IQ-type and IQx-type heterocyclic amines involving pyridine and 

pyrazine intermediates (Vitaglione and Fogliano 2004).
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ring formation of glycol-aldehyde alkylimine to produce the dialkyldihydropyrazine, and then

later after the loss of one electron, and the dialkyl-pyrazine radicals formed. The second pathway 

producing IQ-type amines begins with the formation of glycol-aldehyde alkylimine followed by

oxidation to produce glyoxal monoalkylimine, which can be reduced to glyoxal. The molecules

of glyoxal and glyoxal monoalkylimine may condense and form pyridine radicals. The free

radicals, dialkyl-pyrazine and pyridine, produced in both pathways then react with the aldehyde

and creatinine originally found in muscle foods, and form HCAs as final products. The type of

HCA that is formed depends on the radicals and aldehyde involved in the reaction. 

It has been reported that the formation of the dialkylpyrazine radical occur much more

rapidly than the formation of the pyridine radical. This helps to explain why the levels of IQx-

type amines in cooked meat products are higher than the levels of IQ-type amines (Murkovic

2004). The formation of the glyoxal monoalkylamine is readily reversed under acidic conditions

to yield glycol aldehyde alkylimine, and this is why an acidic pH can inhibit the IQ-type HCA

formation (Cheng and others 2006).

The mechanism of PhIP formation (Figure 5) is different from the mechanism that forms

of other polar HCAs. The PhIP mechanism starts with the reaction of two precursors,

phenylalanine and creatinine, which forms phenylacetaldehyde. Then, the aldol condensation of

phenylacetaldehyde with creatinine occurs and PhIP is produced as a final product. The nitrogen-

forming pyridine moiety in the PhIP molecule is originally derived from either an amino group of

creatinine, or an amino group of phenylalanine or free ammonia. Experiments using C-labeled13

phenylalanine in a model system with glucose and creatinine showed that C-labeled13

phenylalanine was incorporated to C-5, C-6, and C-7 of the PhIP molecule (Figure 5).
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Figure 5. Formation of PhIP with identified intermediate reaction products (Murkovic 2004).
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HETEROCYCLIC AMINES AND HUMAN HEALTH

Cancer is a leading cause of death in human populations. Approximately 13% or 7.5

million of the world’s deaths are attributed to cancer every year. A total of 1,529,560 new cancer

cases and 569,420 deaths from cancer are projected to occur in the U.S. in 2010 (Jemal and

others 2010). Several studies have shown that consuming meat increased the incidence of

cancers. HCAs are carcinogenic compounds occurring in foods consumed under normal lifestyle

conditions are believed to increase the risk of human cancers (Sugimura 2002).

Epidemiological studies 

Epidemiological studies provide the most direct link between HCA genotoxicity and

human health risks in the long term. Several epidemiological studies have evaluated the evidence

for a potential role of cooked meat intake and dietary exposure to HCAs in the etiology of human

cancers (Sinha and Rothman 1997). The epidemiological studies over the past 10 years have

shown that high intake of well-done meat and high exposure to meat carcinogens, particularly

HCAs, may increase the risk of human cancers (Zheng and Lee 2009). Table 2 summarized the

epidemiological studies evaluating the association of each HCA exposure with cancer risk in

1996-2008. Among the HCAs identified to date, PhIP, which is the most abundant of the HCAs

found in human diets, has been shown to have the most positive association with cancer risk in a

dose-response relationship (Zheng and Lee 2009). Four major cancers that have been reported to

be associated with meat intake are colorectal, breast, prostate, and pancreatic cancers.
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Table 2. Summary of epidemiological studies evaluating the association of HCA exposure with

cancer risk in 1996-2008 (Zheng and Lee 2009)

Exposure No. of studies evaluated No. of studies reporting

positive associations (%)

Mutagenicity or total HCAs 10 7 (70.0%)

PhIP 13 8 (61.5%)

MeIQx 12 6 (50.0%)

DiMeIQx 11 6 (54.5%)

Colorectal cancer

Colorectal cancer (cancer of the colon and rectum) is the fourth leading cancer killer in

the U.S. In 2006, 139,127 people were diagnosed with colorectal cancer, and 53,196 people died

from it (Centers for Disease Control and Prevention [CDC]  2006). Kampman and others (1999)

and Butler and others (2003) conducted population-based case-control studies in the U.S. and

reported the positive associations of colorectal polyps with the intake of well-done meat and/or

exposure to HCAs. Nowell and others (2002) reported that higher exposure to HCAs was

strongly associated with colorectal cancer risk. The increased consumption of meats cooked well

done or very well done produced comparable odds ratios (OR) for colorectal cancer risk (OR =

4.36, 95% confidence interval 2.08–9.60) for the highest quartile of exposure. Merchand and

others (2002) also found a dose-dependent association between the HCA intake and colorectal

cancer, with a two- to three-fold increase in risk and this association was strongest for MeIQx.
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Breast cancer

 Breast cancer is the second leading cancer killer in the U.S. among women. In 2006,

191,410 women were diagnosed with breast cancer, and 40,820 women died from the disease

(CDC 2006). DeStefani and others (1997) and Delfino and others (2000) conducted hospital-

based case-control studies in Uruguay and the U.S. and reported the positive associations of

breast cancer with well-done meat intake and HCA exposure. The increase in the risk of breast

cancers was statistically significant for PhIP, but not for MeIQx and DiMeIQx (Zheng and others

2002). Furthermore, it has been suggested that the association between the risk of breast cancer

incidence and well-done meat intake may be modified by genetic polymorphisms in some genes

that encode metabolizing enzymes for HCA activation or detoxification (Zheng and others 1999

and 2002). 

Prostate cancer

Prostate cancer is the most common cancer among men. In 2006, 203,415 men were

diagnosed with prostate cancer, and 28,372 men died from this disease (CDC 2006). Koutros and

others (2008) conducted a cohort study in the U.S. and found a positive association between

prostate cancer incidence and the intake of well or very well-done meat. Norrish and others

(1999) reported that higher exposure to HCAs through consuming well-done beef steak was

strongly associated with the prostate cancer risk (relative risk = 1.68; 95% confidence interval =

1.02-2.77). 
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Pancreatic cancer

Approximately, 33,730 people developed pancreatic cancer, and 32,300 people died from

the disease in 2006 (CDC, 2006). Pancreatic cancer has a median survival period of less than 6

months and a dismal 5-year survival rate of 4.6% (Sarkar and others 2007). Positive associations

between the pancreatic cancer risk and the intake of grilled or barbequed red meat (Anderson and

others 2002) and the high exposure of HCAs have also been observed (Li and others 2007).

Stolzenberg-Solomon and others (2007) reported that high intakes of red meat, high temperature

cooked meat, well-done meat, and very well-done meat were found to be associated with an

increased risk of pancreatic cancer among men but not among women. At the ages 50 to 70, men

showed a significant 50% increased risk from consuming grilled, barbecued, and broiled meat.

The reported incidence of pancreatic cancer is higher among men than women and higher among

African-Americans than Whites. The last observation is attributed to the African-Americans

preference for cooking meat products by grilling, which produces high levels of HCAs. On the

other hand, Whites prefer to fry meats (Keating and Bogen 2004).  

Uncertainties associated to epidemiological results

Numerous studies have clearly demonstrated that the risk of cancer increases with HCA

exposure; however, several studies used small sample sizes, which limited the statistical power

of the studies in a way that could lead to the data being misinterpreted. Therefore, additional

research is needed to improve exposure assessment and quantity in testing the association

between HCA exposure and cancer risk (Zheng and Lee 2009).     
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Bioavailability of heterocyclic amines in humans

Several studies have been reported on the bioavailability of HCAs in humans. Lynch and

others (1992) measured the excretion of unchanged forms of PhIP, MeIQx, and DiMeIQx in the

urine of volunteers within 12 h after ingestion of fried beef containing known amount of HCAs.

The percentage of ingested HCAs excreted in the unchanged form were 1.1% of PhIP, 2.1% of

MeIQx, and non-quantifiable level of DiMeIQx. Their results agreed with another study of

humans by Reistad and others (1997), which showed that about 0.5-2% of ingested PhIP and 1-

6% of ingested MeIQx were recovered in unchanged forms from the urine 0-24 h post-meal. In

contrast, studies at higher dose in rodents and monkeys reported 50-70% excretion of unchanged

PhIP and MeIQx in the urine (Turesky and others 1991, Watkins and others 1991). It is possible

that the dramatically increased amount of excretion of unchanged HCAs at the higher doses was

caused by the saturation of the metabolism pathways. According to these bioavailability studies

of HCAs, when low doses are applied, very small amounts of unchanged HCAs are excreted in

the urine, which means approximate 98% of the ingested HCAs are likely to be extensively

metabolized in the human body (Gooderham and others 2001).      

                                

Metabolic bioactivation of heterocyclic amines

Most HCAs in their native forms are not mutagenic or carcinogenic, but after metabolic

activation, they have the ability to form DNA adducts (Gooderham and others 2001 ). The major

metabolic activation pathway of HCAs consists of phase I and phase II bioactivations. For phase

I bioactivation, HCAs are activated via N-hydroxylation catalyzed at the exocyclic amino group

by means of hepatic cytochrome CYP1A2 and form N-hydroxy-HCA derivatives (Gooderham
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and others 2001). Apart from CYP1A2, other cytochrome P450s, including CYP1A1, CYP3A4,

CYP2C9/10, CYP2A3 and CYP1B1, are capable of metabolizing HCAs, but they have much

lower capacity than CYP1A2 (Gooderham and others 2001). Although these metabolites could

directly react with DNA, they do so infrequently. Most of these N-hydroxy-HCA derivatives 

usually follow phase II bioactivation when four cytosolic enzymes including  N-acetyltransferase

(NAT) produce N-acetoxy ester derivatives, when sulfotransferase produces sulfonyloxy ester

derivatives, when prolyl tRNA synthetase produces N-prolyloxy ester derivatives, and when

phosphorylase produces N-phosphatyl ester derivatives at the exocyclic amino groups (Alaejos

and others 2008). These reactive esters then undergo heterolytic cleavage to produce the reactive

nitrenium ion-acetate anion pair, which is able to react with DNA to form DNA adduct, or with

proteins and other cellular constituents (Turesky and Vouros 2004). Figure 6 shows the

metabolic activation of MeIQx by CYP1A2 followed by NAT to form N-acetoxy-MeIQx, which

then generates the nitrenium ion-acetate anion with a positive charge delocalized at the exocyclic

amino group and the C-5 atom of MeIQx. This reactive nitrinium ion intermediate is then able to

bind to DNA base and form DNA adducts (Turesky and Vouros 2004). Many studies confirm

that HCA-DNA formation is greatly enhanced by phase II bioactivation of the N-hydroxy-HCA

derivatives. For example, Synderwine and others (1988) reported that NAT-mediated metabolism

of N-hydroxy-IQ to N-acetoxy-IQ produced a 30-fold increase in IQ-DNA adducts levels.  

Among four cytosolic enzymes in phase II bioactivation, NAT appears to play the most

important role. NAT is found predominantly in the liver and is expressed both in humans and

rodents (Alaejos and others 2008). Although the liver is the largest organ in which HCA 
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Figure 6. Metabolic activation of MeIQx (Turesky and Vouros 2004).
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metabolisms occurs, the other organs, including the lung, kidney, mammary gland, colon, and

pancreas have been also reported to have a role in HCAs metabolic activation (Cheng and others

2006). For example, when PhIP was given to rats, PhIP-DNA adducts were detected in the blood,

mammary glands, and colon, all of which lack those cytosolic enzymes (Kaderlik and others

1994).     

It is important to note that not every reactive nitrenium ion-acetate anion pair that is

generated from metabolic activation process can form DNA adducts. Some metabolites can be

conjugated by sulphation by means of glutathione S-transferase and by glucuronidation by means

of UDP-glucurosyltransferase and produce the polar compounds, which are excreted through the

bile or urine (Turesky and Vouros 2004).  

DNA adduct formation

DNA-adduct formation is considered a biomarker for assessing the mutagenic and

carcinogenic potential of genotoxic chemicals (Schut and Synderwine 1999). The measurement of

HCA-DNA adducts in human tissues can be achieved by the use of a P-postlabeling method,32

ultraviolet/visible spectrophotometry (UV/VIS), mass spectrometry (MS), or nuclear magnetic

resonance (NMR) (Turesky and Vouros 2004). The in vivo and in vitro studies have confirmed

that HCAs are capable of forming DNA adducts. The chemical structures of IQ-, MeIQx-, and

PhIP-adducts are shown in Figure 7. The mechanism is believed to be mediated through on

electrophillic attack at the C-8 position of guanine base of the DNA molecules by the reactive

HCA nitrenium ions (dG-C8-HCA), and the damage to the DNA depends on the parent HCAs

(Schut and Snyderwine 1999). In the case of IQ and MeIQx, adducts can be formed at the N-2 
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Figure 7. Chemical structures of HCA-DNA guanine adducts (Turesky and Vouros 2004).
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position of the guanine base as well; however, the amounts of adducts are lower than those that

occur at the C-8 position by approximately 5-10 folds (Schut and Snyderwine 1999). Lynch and

others (1995) reported that the C8-guanine adduct is the major adduct formed by IQ, MeIQx and

PhIP and accounts for 35-45% of the total DNA adducts in the colon, pancreas, heart, lung and

liver in rats and accounts 47-68% of the total DNA adducts in the liver of non-human primates. 

In addition, once DNA adducts are formed, they can undergo DNA repair; the 3' cutting

step of nucleotide excision repair appears to play an important role in repair of DNA damaged by

HCAs (Felton and others 2007). The activity of DNA repair depends greatly on the rate of cell

cycling. If cell cycling is enhanced, as it is often as a result of cell damage from the action of

exogenous toxicants such as carcinogens, mutagens, or of organ-specific promotors, DNA damage

can not be repaired. The mutated DNA is a likely precursor of tumor formation. On the other

hand, if cell cycling is decreased, as is observed with some phytochemicals like the tea

polyphenols, raspberry polyphenols or carotenoids, DNA damage can be repaired (Weisburger

2002). 

Carcinogenicity

The carcinogenicity of HCAs has been well documented in a wide range of organs/tissues

in long-term animal studies. Sugimura and others (2004) collected studies involved in the

carcinogenicity of HCAs in rats and mice and their results are shown in Table 3. The International

Agency for Research on Cancer (1993) classifies HCAs into 2 groups based on carcinogenicity

studies: MeIQ, MeIQx, PhIP, AáC, MeAáC, Trp-P-1, Trp-P-2, and Glu-P-2 as possible human

carcinogens (group 2B), and IQ as a probable human carcinogen (group 2A). IQ is classified as
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Table 3. Carcinogenicity of heterocyclic amines in rats and mice (Sugimura and others 2004)

HCA Animal Strain Concen-

tration in

diet (ppm)

Experimen-

tal period

(weeks)

Target organs

Trp-P-1 Rat F344 150 52 Liver

1Mouse CDF 200 89 Liver

Trp-P-2 Rat F344 100 112 Liver, Urinary bladder

1Mouse CDF 200 89 Liver

Glu-P-1 Rat F344 500 64 Liver, small/large intestine,

zymbal gland

1Mouse CDF 500 57 Liver, blood vessels

Glu-P-2 Rat F344 500 104 Liver, small/large intestine,

zymbal gland

1Mouse CDF 500 84 Liver, blood vessels

AáC Rat F344 800 104 No tumors

1Mouse CDF 800 98 Liver, blood vessels

MeAáC Rat F344 100 100 Liver

1Mouse CDF 800 84 Liver, blood vessels

IQ Rat F344 300 55-72 Liver, small/large intestine,

zymbal gland, skin

1Mouse CDF 300 96 Liver, forestomach, lung

MeIQ Rat F344 300 40 Large intestine, zymbal gland,

skin, oral cavity, mammary gland

1Mouse CDF 400, 100 91 Liver, forestomach

MeIQx Rat F344 400 61 Liver, zymbal gland, skin

1Mouse CDF 600 84 Liver, lung

PhIP Rat F344 400 52 Large intestine, mammary gland,

prostate, lymphoid tissue

1Mouse CDF 400 82 Lymphoid tissue
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probable human carcinogen due to its capability to induce hepatocellularcarcinoma in 55% of

nonhuman primates at the low dose (10 mg/kg of IQ) and in 95% at the high dose (20 mg/kg of

IQ) (Adamson and others 1994). 

The liver has been shown to be susceptible to carcinogenesis induced by many HCAs due

to its predominant role in the metabolic activation of HCAs (Schut and Snyderwine 1999). This is

support by evidence that shows the carcinogenicity is correlated with HCA levels of metabolites

and/or DNA-adducts in corresponding organs/tissues (Cheng and others 2006). However, other

organs and tissues that have been reported to have tumors induced by HCAs are the small and

large intestine, zymbal gland, skin, forestomach, lung, mammary gland, prostate, and lymphoid

tissue (Sugimura and others 2004). 

Mutagenicity

The Ames mutagenicity assay developed in the 1970s was usually used to assess the

mutagenicity of genotoxic compounds. In this assay, if a mutagen is present, the number of

relevant colonies found increase in a dose-respondent manner in the absence of an external

histidine source (Maron and Ames 1983). Thirty years ago the discovery that cooked fish and beef

showed highly mutagenic potency was detected by the Ames mutagencity assay and has drawn the

attention of scientists around the world to search for the mutagens present in these foods. To date,

the assay has already confirmed that HCAs are promutagens that require metabolic activation for

DNA adduct formation (Sugimura and others 2004). Table 4 also shows the mutagenicity level of

different HCAs in Salmonella enteritica sv. Typhimurium TA98 and TA 100 with S9 mix. The

mutagenicity of the polar HCAs in Salmonella TA98 and TA1538 are in the following order: 
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Table 4. Mutagenicity of heterocyclic amines in Salmonella enteritica sv. TyphimuriumTA98 and

TA 100  with S9 mix (Sugimura and others 2004).

HCA

Revertants/ìg

TA98 TA100

MeIQ 661,000 30,000

IQ 433,000 7000

4,8-DiMeIQx 183,300 8000

7,8-DiMeIQx 163,300 9900

MeIQx 145,000 14,000

Trp-P-2 104,200 1800

IQx 75,400 1500

Glu-P-1 49,000 3200

Trp-P-1 39,000 1700

Glu-P-2 1900 1200

PhIP 1800 120

AáC 300 20

MeAáC 200 120

MeIQ > IQ > DiMeIQx > MeIQx > PhIP (Felton and Knize 1991). The level of potential

mutagenicity of HCAs is directly related to their chemical structure, e.g. the number of fused

aromatic rings, the number of nitrogen atoms in the ring, the presence of methyl substituent group

on a nitrogen within an imidazo ring, and the number and location of the exocyclic amino group

(Hatch and others 1991). Also, a linear relationship between the levels of DNA adducts and

mutagenicity exists for several HCAs, meaning that when the level of DNA adducts is higher, the
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mutagen is more potent (Kerdar and others 1993).     

It has been reported that HCA-DNA adducts can drive mutations in different ways, e.g. by

single base deletion, base substitution or base transversion. For example, in their bacterial assays,

Fuscoe and others (1988) reported that IQ, MeIQ, and PhIP showed a single GC deletion in the

hisD gene of Salmonella TA1538. Koch and others (1998) found that PhIP induced predominantly

GC 6TA tranversion, which was believed to involve the dG-C8-phIP adduct. In addition, in

mammalian cells, PhIP- and IQ- DNA adducts induced G 6T transversion mutations in guanine

nucleotides adjacent to either guanine or adenine nucleotide, and also induced base substitution at

guanine and deletion of a guanine base adjacent to guanine and/or adenine (Wu and others 1995,

Yadollahi-Fardani and others 1996).       

  

Chemopreventive of heterocyclic amines in human 

Many compounds, mainly from plant sources, have been reported as being able to reduce

the mutagenicity and carcinogenicity of HCAs in human. Chlorophyllin and fibers from sorghum,

wheat bran, cabbages, burdock, radish, carrots, and green pepper have all been shown to have

strong binding affinities for HCAs by Van der Waals or electrostatic interactions which result in

reduced HCA uptake from the gut and increased elimination of parent compounds in the urine and

feces (Dashwood 1992, Dashwood 2002, Vikse and others 1992). Indole-3-carbinol, a compound

in cabbage, cauliflower and broccoli, and tea polyphenols have been shown to serve as

chemopreventive agents by inhibiting the activation steps of HCAs mediated by cytochrome P450

1A2 and other cytochromes (Stavric and others 1996, Xu and others 1997, Dashwood 2002). Tea

polyphenols have been shown to have the capability to interact with the reactive nitrenium ion-
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acetate anion pair, which is able to react with DNA forming DNA adducts (Hernaez and others

1997). Vanillin, coumarin, and caffeine have been shown to act as bioantimutagens in that they

repair the damaged DNA, leading to decrease in mutation frequency (Sanyal and others 1997,

Dashwood 2002). 

Occurrence of heterocyclic amines in foods

HCAs found in cooked meat and fish products mainly contribute to HCA intake, since the

levels of HCA found in other foods or in the environment are extremely low. The amount of

HCAs formed depends on the type of meat, cooking method, and cooking time and temperature.

Table 5 summarizes the levels of major HCAs found in cooked meat and fish products. The PhIP

levels in cooked muscle foods are normally higher than MeIQx and DiMeIQx. The large amounts

of PhIP may occur because PhIP is formed by a different mechanism, which allows them to form

more easily than other polar HCAs (Knize and Felton 1995). IQ and MeIQ are seldom detected in

meat samples (Knize and Felton 1995).

 Cooked offal products, such as chicken liver, beef liver, beef tongue, and lamb kidney

contain very low or non-detectable levels of HCAs (Solyakov and Skog 2002, Khan and others

2009); this may be due to the low levels of creatine and creatinine present in these raw products

(Khan and others 2009). The creatine level detected in raw chicken liver was 2 µmol/g wet

weight, which was approximately 10-fold less than the amount in chicken muscle (Solyakov and

Skog 2002). 

Processed food flavors are commercially simulated meat flavors frequently added to many

processed foods as flavor enhancers. These processed food flavors are produced by exposing raw
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Table 5. Estimated MeIQx, DiMeIQx, and PhIP concentrations in cooked meat products by meat

type and cooking method (Skog and others 1997, Knize and others 1999, Solyakov and Skog

2002, Busquets and others 2004, Ni and others 2008, Iwasaki and others 2010)

Muscle type Cooking Method HCA concentration (ng/g)

MeIQx DiMeIQx PhIP

Beef Fried nd-3.17 nd-2.06 nd-10.0

Grilled/BBQ nd-5.41 nd-2.35 nd-16.27

Broiled nd-1.80 nd-0.1 nd-18.40

Pork Fried nd-5.43 nd-3.30 nd-13.40

Roasted nd nd 0.5-2.3

Stewed nd-0.7 nd-0.08 nd-0.1

Smoked nd nd 0.7-7.4

Chicken Fried nd-2.34 nd-2.58 nd-48.54

Grilled/BBQ nd-7.70 nd-5.52 nd-304.71

Roast/Broiled nd-2.81 nd-1.98 nd-71.96

Fish Fried nd-6.44 nd-3.0 nd-17.0

Grilled/BBQ nd-4.00 nd-2.00 nd-50.3

Steamed/Boiled nd nd nd

nd = not detected

meat (e.g., beef, chicken, pork) to prolonged heating at higher than normal cooking temperatures

(Starvic and others 1997). Although most have undetectable levels of HCAs, some samples

contain as much as 5 to 20 ng/g of total HCAs, especially IQ (Starvic and others 1997, Knize and
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Felton 2005). However, since processed food flavors are not used as such for direct consumption,

only tiny amounts are added to foods; therefore, they should not play a significant role in the

human intake of HCAs (Knize and Felton 2005).      

Pan residues seem to be an important source of HCAs and make a significant contribution

to the intake of HCAs. Gravies prepared from pan residues are very common (Johansson and

Jägerstad 1994). The amounts of HCAs in gravies have been reported to be comparable or higher

than the amounts in the corresponding beef, chicken, turkey, pork and fish that produced the pan

residues (Janoszka and others 2009, Sinha and others 1998). Janoszka and others (2009) estimated

that the consumption of gravy that is formed when meat is fried in 100 g portions may increase the

exposure by 1.02-1.51 µg/day/person, which corresponds to an increase by 82 to 142%. Also, grill

scrapings from grilling of the meat have been reported to have higher amounts of MeIQx,

DiMeIQx, and PhIP compared with the meat that was grilled, however, grill scrapings are not

commonly consumed (Gross and others 1993).

HUMAN INTAKE OF HETEROCYCLIC AMINES

Generally, the HCA intake for meat is estimated by taking into account the frequency of

consumption, cooking method, degree of doneness, and HCA content in the foods (Sinha and

others 2005). The estimates of daily intake for the U.S. population have been reported at 6.3 ng/kg

per day (Bryne and others 1998), 20.1 ng/kg per day (Layton and others 1995), and 2.3-6.6 ng/kg

per day (Keating and Bogen 2004), while the estimates for European populations have been

reported at 2.3 ng/kg per day (Augustsson and others 1997) and 6.6 ng/kg per day (Zimmerli and

others 2001). The daily consumption of meat was estimated to range from 80 to 160 g/day in the
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United States, Sweden, New Zealand, and Japan (Augustsson and others 1997,  Kobayashi and

others 2002,  Layton and others 1995). 

Keating and Bogen (2004) studied the effect of race-ethnicity on HCA intake for the U.S.

population. Table 6, shows little difference in the HCA daily intake based on age (child vs adult)

or gender (male and female); however, race had great effect on HCA intake. African-American

males were estimated to consume almost twice as much HCA as White males. PhIP was the most

predominant HCA in the diets of both groups (70% of total HCAs), especially in pan-fried and

grilled chickens. This may be due to the different cooking methods used by African-Americans

and Whites; for example, African-Americans prefer to cook their hamburgers by grilling which

yields a higher rate of formation of HCAs than deep frying or pan frying, cooking methods which

are preferred by Whites (Keating and Bogen 2004).     

The estimates of HCA daily intake for the Chinese population has been reported as 50.0

ng/day; however, the range was very wide, with the 90  percentile of intake at 95.8 ng/day and theth

10  percentile of the intake at 14.0 ng/day (Wong and others 2005), which is comparable to theth

HCA intake for the Japanese population (in Okinawa) reported at 52.8 ng/day in men (91.2g meat

intake/day) and 50.6 ng/day in women (82.6 g meat intake/day) (Kobayashi and others 2002).

Wong and others (2005) show that the younger age group (20-39 years) had a 1.5 fold greater

dietary intake of HCAs compared to the older age group (40-59 years). Deep-fried chicken, pan-

fried pork and grilled beef contributed the most to the HCA intake in the younger age group. 
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Table 6. Estimated heterocyclic amine intake of African-American and White males and females

in the U.S. (Keating and Bogen 2004)

Age Race Gender n HCA concentration (ng/g)

PhIP MeIQx DiMeIQx Total

Child

(15 years)

White Male 2478 7.7 1.3 0.27 11.0

Female 2233 8.1 1.2 0.28 11.4

African-American Male 520 14.7 1.8 0.67 19.9

Female 608 10.8 1.5 0.42 14.8

Adult

(> 30 years)

White Male 4734 9.2 1.4 0.28 13.4

Female 4955 9.2 1.4 0.28 13.6

African-American Male 546 12.6 2.1 0.47 18.4

Female 858 12.7 1.6 0.41 18.4

The different cooking methods may play a role in dietary HCA intake of each country. In

the U.S., pan frying was the most common method for cooking chicken (56%) and fish (54%)

while broiling and grilling was common for cooking steak (34%) and hamburgers (63%) (Keating

and Bogen 2004). In the Sweden, the common cooking methods for meat were frying (61%),

baking or roasting (20%), boiling (15%), and grilling (4%) (Augustsson and others 1997). In the

China and Singapore, the most common cooking methods were boiling and steaming, whereas

grilling and roasting were used less often (Koh and others 2005).   

 It must be emphasized that considerable uncertainties are related to the estimation of HCA

intake. Some challenges in estimating human exposure to HCAs are due to there being limited

data on the HCA concentration in meats cooked at home, in commercial meat products, and in
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meats cooked at fast-food restaurants. Absent more completed information, experimentally

derived HCA concentrations provide the best available data with which to estimate HCA intake in

most studies (Skog 2002).         

FACTORS AFFECTING HETEROCYCLIC AMINE FORMATION

To study the factors affecting HCA formation, a model system may be used. A model

system was recently developed and applied to kinetic studies investigating and confirming the

mechanism for HCA formation (Knize and Felton 2005). The most common chemicals used in the

model system are the main precursors for HCA formation, including creat(in)ine, amino acids,

and carbohydrates. A mixture of these compounds may be heated in a dry powder form or a

dissolved form in diethylene glycol/water. Lyophilized meat or meat juice are used for the model

systems to simulate the chemical environment in the meat, which gives more relevant results than

using the chemicals; however, the meanings of the results can be complicated due to the presence

of impurities (Knize and Felton 2005). 

Temperature and time of cooking

Cooking time and temperature are the most important factors in the formation of HCAs. 

Both time and temperature were found to have a strong impact on the formation of HCAs (Knize

and Felton 2005). Each HCA in a complex meat system is formed differently at certain

temperature and time points. Activation enthalpy (ÄH ) is approximately equal to the activation�

aenergy (E ) which means the amount of energy that must be supplied in order to initiate reactions.

The activation enthalpy of each HCA is shown in Table 7. IQx and 7,8-DiMeIQx had activation 
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aTable 7. The calculated activation enthalpy ÄH  (.E ) of heterocyclic amines (Arvidsson and�

others 1997)

HCA activation enthalpy (KJ/mol)

IQx -110.1

MeIQx -54.8

7,8-DiMeIQx -131.5

4,8-DiMeIQx -67.2

PhIP 19.8

enthalpies that were less than those for MeIQx and 4,8-DiMeIQx while PhIP had the highest

activation enthalpy. This is why the formation of PhIP has so often been reported at low

temperature. Bordas and others (2004) examined the way heating time affected the formation of

HCAs by heating the lyophilized meat extract with water at temperature 175 °C. When heating

times increased from 1 h to 2 h, the amounts of HCAs increased, especially for PhIP, which

increased from 9.3 ng/g to 19.5 ng/g. Figure 8 shows the relation between cooking temperature

and levels of total HCAs (ng/g) in fried beef patties cooked at different cooking temperatures until

they reached the same internal temperature at 70 °C. Fried beef patties cooked at 140 °C had very

low amounts of HCAs, and the levels of HCAs increased gradually when cooking temperature

rose higher from 140 to 250 °C (Knize and Felton 2005).    
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Figure 8. Formation of heterocyclic amines in beef patties after cooking to an internal temperature

of 70 °C at different frying pan temperatures (Knize and others 2005).

Arvidsson and others (1997) examined the effect of heating time and temperature on HCA

formations by heating a mixture of creatine, glucose, and amino acids at 150 to 225 °C for 0.5-120

min, and the results showed that HCA formation was a time and temperature fucntion (Figure 9).

At 200 °C, the yield of HCAs increased very rapidly and reached a maximum level after only 5 to

10 min of heating. However, at 225 °C, some HCA yields (e.g., MeIQx and 7,8-DiMeIQx)

decreased after they reached their maximum. This suggests that an excess of temperature and time

may cause the degradation of the HCA, which agrees with the results obtained by other authors of

model system studies (Jackson and Hargraves 1995, Bordas and others 2004). Chiu and Chen

(2000) reported that the degradation of HCAs during heating increases as both heating

temperature and time increase, and the degradation of HCAs fits a first-order model. PhIP is the

least stable, while IQx is the most stable. Their finding agrees with Arvidsson and others (1997),  
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Figure 9. Formation of HCAs at 150, 175, 200, and 225 °C (Arvidsson and others 1997).
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whose studies reported that PhIP was the most susceptible to being degraded at 225 °C followed

by 7,8-DiMeIQx, 4,8-DiMeIQx, and IQx. The instability of PhIP during heating may be a

consequence of PhIP containing more conjugated carbon-carbon double bonds or perhaps PhIP

containing a benezene ring attached to a single bond of a side chain, which make it free to rotate

(Chiu and Chen 2000). 

Cooking methods

The cooking method is believed to affect HCA formation and involves heat transfer and

water loss (Skog and others 1995). Pan-frying, grilling, and broiling are high-temperature cooking

methods, in which food is heated by radiative and conductive processes. These methods have been

reported to produce high concentrations of HCAs (Chen and Chiu 1998). Oven-roasting and

baking use medium or medium-high heat levels to cook foods by indirect convection. These

methods have been reported to produce low or intermediate levels of HCAs (Skog and others

2003). Skog and others (2003) demonstrated that the mutagenicity activity of chicken fillets

cooked in convection ovens depended on air temperature, air velocity, and the presence of steam.

The mutagenicity activity was higher when air temperature and air velocity were increased; the

presence of steam; however, reduced the mutagenicity activity, probably due to the surface

temperature being lower. Boiling and steaming are normally achieved at temperature below 100

°C (212 °F) and usually produce low or undetectable level of HCAs (Chen and Chiu 1998). 

At the same internal temperature of 88 °C, total HCAs in pan-fried pork patties (17.2 ng/g)

were significantly higher than those in oven-broiled pork patties (5.0 ng/g) and boiled pork patties

(1.0 ng/g) (Shin 2005). When chicken breasts were cooked in various ways at a temperature of
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180 °C, charcoal-grilled chicken had the highest total HCAs (35.77 ng/g), followed with pan-fried

chicken (22.97 ng/g) and deep-fried chicken (3.31 ng/g) (Liao and others 2010). When fish,

rainbow trout, were cooked in various ways to a well-done level, cooking by microwave for 9 min

(8.19 ng/g) had the highest total HCA levels, followed by barbecuing for 9 min (5.22 ng/g), pan-

frying at 200 °C for 15 min (3.77 ng/g), cooking on a hot-plate at 200 °C for 15 min (1.59 ng/g),

and cooking in the oven at 200 °C for 15 min (1.44 ng/g) (Oz and others 2010). Brazillian-

barbecuing, also called churrasco, is cooking meat or fish using indirect heat or low-level direct

radiant heat from charcoals or embers, at lower temperatures and over longer cooking times than

those for normal barbecue. Iwasaki and others (2010) reported that the total HCAs in chicken

cooked by Brazillian-barbecueing (50.82 ng/g) was much higher than chicken cooked by normal

barbecueing (32.22 ng/g) and pan-frying (3.78 ng/g) to the same doneness level (internal

temperature of 90 °C).           

Smoking has been reported to produce significant amounts of HCAs. Knize and Felton

(2005) used smoking process for 4-6 hours at 80 to 85 °C and noted that the water activity in the

surface of product decreased during the smoking process. The formation of HCAs may have been

favored during the smoking process because of combination of an optimum low level of water

activity (0.4-0.6) for the Maillard reaction and a moderately high temperature for several hours.

Concentration of precursors

HCAs are formed through complex chemical reactions that depend on the amounts of

main precursors (creatine or creatinine, sugar, and amino acids), as well as intermediates (e.g.

Amadori compounds, Strecker dehydration, pyridine and pyrazine) that are present in a meat
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system.

Creatine and creatinine

The addition of a 5-fold increase in glucose to a lyophilized bovine meat juice at 200 °C

for 30 min enhanced the formation of MeIQx but inhibited the formation of PhIP (Skog and others

2000). This contrasted with a study by Bordas and others (2004), which reported that the addition

of 5-fold increase in creatinine led to the generation of IQ, MeIQx, and PhIP in relatively high

amounts. However, when creatinine is increased up to a 25-fold, the amount of PhIP increased but

the amounts of IQ and MeIQx decreased, showing that excess creatinine was not favorable for

generating IQ- and IQx-type compounds.

Sugar

The addition of a 2.5-fold increase in glucose to a dry lyophilized meat extract at 200 °C

for 30 min did not increase the formation of HCAs. However, when glucose was increased 5-fold

in this model system, IQ was not detected and the amounts of MeIQx, DiMeIQx, and PhIP

decreased. This suggests that glucose at high concentration has an inhibitory effect on the

formation of HCAs (Skog and Jägerstad 1990, Skog and others 1998, Skog and others 2000).

When sugar was added in different concentrations (9%, 14%, and 19% w/w); the HCA formation

in fried fish fiber increased when the sugar levels increased up to 14%; however when a 19%

sugar concentration was added, the HCA levels declined by 43% (Tai and others 2001).  

By heating creatinine, glucose and amino acids in proportions similar to those in bovine

meat, Arvidson and others (1997) measured the decay of these precursors. Figure 10 shows that 
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Figure 10. Decay of creatine, amino acids, and glucose during heating at 200 °C for 15 min

(Arvidsson and others 1997).

after 15 min creatinine and amino acids remained at more than 20% in the system while all

glucose had been depleted after only 2.5 min, meaning that glucose was the limiting precursor;

however, adding glucose did not increase the production of HCAs.    

Amino acids

The addition of glycine, alanine, and phenylalanine in 50-fold amounts to lyophilized meat

extract, increased the formation of MeIQx and PhIP (Skog and others 1998). Phenylalanine,

leucine, isoleucine, and tyrosine have been reported to be precursor amino acids for the formation

of PhIP (Pais and others 1999).   

 

Moisture contents

In a meat system, water is very important for the transport of water-soluble precursors
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from the center to the high temperature surface of meat during cooking, where HCAs are formed

(Persson and others 2008). It has been shown that the formation of IQx compounds in a model

system was promoted at a water activity of 0.44  (Jägerstad and others 1998). The presence of

water clearly affects the type and amount of HCAs. The formation of pyridine amines (PhIP,

TMIP, IFP) are favored by dry conditions while the formation of IQ- and IQx-type amines are

favored by wet conditions (Skog and others 2000). 

PhIP formation that increased dramatically in the dry model system is usually found in the

surface of meat (crust) during cooking. Cooking conditions that generate a high rate of drip loss

are most favorable for the formation for PhIP (Messner and Murkovic 2004). PhIP has been

detected at very high levels (up to 480 ng/g) at the surface of pan-fried, oven-broiled or

grilled/barbecued chicken breast (Sinha and others 2005).

Lipid 

The effect of lipids is not well understood because they have been shown to have both

inhibitory and enhancement effects on HCA formation. The inhibition effect of lipids on HCA

formation may be due to the dilution of the precursors in the meat (Hwang and Ngadi 2003). In

contrast, the enhancement effects on HCA formation may be due to lipids conduct heat more

efficiently into the food (Johansson and Jägerstad 1994, Hwang and Ngadi 2002). Lipids may be

involved chemically in the formation of HCAs by their generation of free radicals via lipid

oxidation, which enhances the formation of certain Maillard reaction products (pyridines,

pyrazines, and strecker aldehydes) in the Maillard reaction (Barnes and others 1983). It is also

possible that a higher lipid content might inhibit thermal degradation of HCA once it has been
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formed (Johansson and Jägerstad 1994). Johansson and Jägerstad (1993) studied the effects of

oxidized lipids on the HCA formation using a model system. Even though they found that the

degree of oxidation of the lipid (created by adding oxygen and hydrogen peroxide) slightly

increased the formation of MeIQx in the model system, they did not observe a consistent trend;

therefore, they did not reach a conclusion on the effect of lipid oxidation on HCA formation.    

Meat characteristics

Meat characteristics, including animal species, muscle type, aging, and meat quality, have

been reported to play a significant role on the endogenous concentrations of precursors in the

muscle affecting the formation of HCAs in cooked meat products. 

Meat portions from different species, cooked in the same way, exhibit large variations in

the formation of HCAs. The RN  allele of pig is a major gene that has been shown to significantly-

influence production and pork meat quality (Johansson and others 2002). The meat of the carrier

of the RN  allele exhibits a lower level of pH, has less intramuscular fat and fewer free amino-

acids, and has considerably greater amounts of reducing sugars and residual glycogen (e.g.,

glycogen, glucose, and glucose-6-phosphate) compared to the pork of non-carriers of the gene

(Johansson and others 2002, Olsson and others 2002). Fried-pork from carriers of the RN  allele-

obtain darker crust color than meat from noncarriers, and contain lower levels of HCAs than fried-

pork from non-carriers (Olsson and others 2002 and 2005). Since previous studies have shown

that high concentrations of reducing sugars in relation to other precursors (creatine and fatty acid)

can reduce the formation of HCAs in both the meat and model system, the high residual glycogen

content of the meat of the carrier of the RN  allele most probably explains the reduced HCA levels-



41

(Olsson and others 2005). 

In pan-roasted mackerel, the HCA levels in ordinary muscle were higher than those in dark

muscle and skin (Gu and others 2002). This may due to higher levels of moisture and creatine in

ordinary muscle than what exists in dark muscle. These higher moisture levels promote the

formation of HCAs. No creatine is present in the skin; skin contains mucus that is composed

mostly of glycoproteins (Gu and others 2002).  

  Aging (conditioning) of meat, especially beef, is a normal procedure that increases in the

tenderness and flavor due to the protein proteolysis stages (protein breakdown and peptide

formation) (Polak and others 2008 and 2009). The levels of HCAs (MeIQx and PhIP) have been

observed to increase in cooked beef when the beef has been aged longer (Polak and others 2008),

but not significantly increase in cooked pork that has been aged longer (Polak and others 2009).

The HCA levels of cooked aged beef are believed to increase because aging over a period of 1 to

10 days was shown to increase the creatinine, total free amino acids and glucose (Polak and others

2008).

Compared to normal meat quality, PSE (pale, soft and exudative) pork muscles have a low

pH (pH < 6.0), which favors the denaturation of muscle proteins, particularly myosin. Polak and

others (2009) reported that the MeIQx contents of grilled PSE pork was 22% higher than that for

the normal pork; this is probably due to the differences in the microstructure of normal and PSE

pork.
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Presence of other compounds

The addition of iron (Fe ) at 5-fold levels to aqueous lyophilized meat extract, which was2+

heated at 175 °C for 10 min, was shown to enhance the formation of MeIQx but inhibited the

formation of PhIP (Skog and others 2000). Murkovic and others (1998) found that MeIQx and

PhIP levels doubled when myoglobin containing iron (Fe ) was applied to the surface of meat2+

before it was fried, but the addition of copper (Cu ) did not affect the HCA yield. It has been2+

suggested that the catalytic effect of iron ions is related to their capacity to accelerate free radical

reactions via the Fenton reaction (Johansson and Jägerstad 1993). During the cooking of meat,

there are two possible iron sources: heme-iron that is released through the denaturation of

myoglobin present in animal muscle and iron that is leaching from the cooking equipment

(Johansson and Jägerstad 1993). 

The total amount of HCAs in cooked fried-fish fiber increased when the level of

monosodium glutamate increased from 0 to 1.5% (Tai and others 2001). In contrast, the addition

of sodium nitrite (150 ppm) in ground pork reduced the total HCA formation by 47% during

cooking compared to a control; this appears to be due to the antioxidant effect of nitrite (Shin

2005). 

INHIBITION OF HETEROCYCLIC AMINE FORMATION

Epidemiological studies have shown that the dietary intake of HCAs through the

consumption of cooked meat products increases the risk of human cancers. Consequently, finding

ways to decrease HCA formation in foods is desirable.
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Modifying cooking methods

As mentioned earlier, cooking time and temperature are the most important factors in the

HCA formation. HCA concentrations increase as both cooking time and temperature increase.

Therefore, cooking at lower temperatures for less time, and/or changing the cooking methods are

the most practical ways to reduce HCA formation (Chen and Chiu 1998, Skog and others 2003).

Flipping foods over during cooking every minute until they reach the desired internal temperature

has also been reported to reduce HCA levels (Knize and Felton 2005).  

Microwave pretreatment is one practical way to reduce the HCA level in meat products.

Felton and others (1994) investigated the effect of microwave pretreatment on the reduction of

HCAs in fried beef patties. In their experiment, beef patties were microwaved for 0 to 3 min

before being fried at 250 °C for 6 min on each side. Their results showed that fried beef patties

that were microwaved for 3 min before being fried resulted in 3- to 9-fold decrease of MeIQx, IQ,

DiMeIQx, and PhIP compared to non-microwaved beef patties, and also a decrease in

mutagenicity of up to 95%. The reduction effect was believed to be due to the elimination of the

water soluble precursors of HCA (creatine, sugar, and amino acids) by approximate 30%, during

the microwaving process (Felton and others 1994).     

Improving water-holding capacity

As mentioned earlier, water plays a significant role on the transport of water-soluble

precursors in the formation of HCAs at the surface of meat during cooking. Therefore, the

addition of water-binding compounds may restrict the transport of precursors from the inner parts

of the food to the surface, leading to a decrease in HCA formation at the surface (Knize and
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Felton 2005). 

Enhancement can be defined as an application in which adding a mixture solution, mainly

containing water, salt, and sodium phosphates, to the meat usually adds 8-12% of original weight

to improve the cooked meat’s eating quality (juiciness, tenderness, and flavor) (Baczwaski and

Mandigo 2003). Persson and others (2003) demonstrated that the addition of a solution of 1.5%

sodium chloride and 0.3% sodium tripolyphosphate to beef burgers improved their water-holding

capacity and was an effective way of reducing cooking loss, which also resulted in the reduction

of the formation of HCAs in fried beef burgers by 38% compared to controls.

Carbohydrates (e.g., starch, gum, fiber) are increasingly being used to improve the textural

characteristics such as tenderness, juiciness, and cooking loss as well as taste and aroma of meat

products, especially low-fat products (Desmond and others 1998). The addition of some

carbohydrates have been reported to reduce HCA formation in foods (Knize and Felton 2005).

Persson and others (2004) demonstrated that adding 1.5% NaCl and 0.3% tripolyphosphate with

1.5% of certain carbohydrates (potato starch, potato fiber, and wheat bran) to beef burgers affected

both weight loss and the formation of HCAs during cooking; raw potato starch inhibited the

formation of HCAs by 70% compared to control.

   

Marination

Marination is the process of immersing foods in a liquid marinade before cooking to allow

the penetration of the meat by the marinade through diffusion over a period that may last a few

hours or even days (Alvarado and Mckee 2007). Marination has been recognized as a means of

enhancing the quality and palatability of meats in terms of tenderization and flavor enhancement
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and also increases the water-binding capacity of meats, thus reducing cooking losses and

improving the meat’s juiciness (Baczwaski and Mandigo 2003, Alvarado and McKee 2007). At

home, people marinade their meats by using simple ingredients: e.g. spices, vinegars, lemon juice,

wine, soy sauce, salt, and sugar. Nowadays people also can buy marinade in ready-to-use forms

(e.g. powders, liquid marinades) which require simple preparation at home (Yusop and others

2010). Most commercial liquid-based marinades consist of water, oil, phosphate, salt, spices,

functional additives (e.g. xanthan gum or guar gum), antimicrobial agents (e.g. sorbate or

benzoate), and organic acids (acetic, lactic, or citric acid) (Miller 1998).

Several studies have been performed on the effect of marination on HCA formation in

meat products. Tikkanen and others (1996) found a reduction in PhIP formation and the

mutagenic activity of grilled chicken marinated with mixture of spices and flavonoids compared

to unmarinated chicken. Nerurkar and others (1999) showed that barbecued beef steaks marinated

with commercial teriyaki sauce and turmeric-garlic sauce had 40-60% lower PhIP and MeIQx

levels than unmarinated samples; however, marinating with barbecue sauce caused up to a 5-fold

increase in PhIP and MeIQx levels, which could be due to their use of high fructose corn syrup

and honey in the sauce. Red wine marinades were found to reduce the formation of the PhIP up to

88% in fried chicken breast (Busquets and others 2006). In another study, the application of oil

marinades with optimum amounts of garlic, onion, and lemon juice achieved a reduction of

MeIQx and PhIP formation in fried beef patties, and garlic was found to be the most active

ingredient to have HCA inhibitory effect (Gibis 2007). Recently, marinating beef in green tea has

been shown to significantly decrease levels of PhIP up to 74% in pan-fried beef, but decreases for

MeIQx and DiMeIQx were not observed (Quelhas and others 2010). Marinating meats with
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hibiscus extracts (Hibicus sabdariffa) have been shown to reduce PhIP and MeIQx levels by 40-

50% in fried beef patties without negatively impacting the product’s sensory characteristics (Gibis

and Weiss 2010). 

Addition of Antioxidants

The addition of antioxidants is considered a promising and consistently effective treatment

for limiting the formation of HCAs through radical quenchers and free radical scavengers because

of the hypothetical free radical pathway (pyridine and pyrazine radicals) leading to HCA

formation (Pearson and others 1992, Vitaglione and Fogliano 2004).  

Synthetic Antioxidants

The synthetic antioxidants that have been reported to inhibit the HCA formation are

butylated hydroxyanisole (BHA), propyl gallate (PG), tert-butylhydroquinone (TBHQ), and 1-O-

hexyl-2,3,5-trimethylhydroquinone (HTHQ) (Hirose and others 1999, Vitaglione and Fogliano

2004). Barnes and others (1983) showed that IQ can be reduced by 40% in fried beef patties, when

50 mmol of BHA is added to 100 g meat. The amount of MeIQx in a fried beef patty was reported

to decrease by 56% when BHA was added, 71% when PG was added, and 76% when TBHQ was

added (as cited in Johansson and Jägerstad 1996). These synthetic antioxidants contain quinone-

like compounds acting as potent free-radical scavengers blocking the reaction with the HCA

precursors, thus preventing HCA formation (Pearson and others 1992, Vitaglione and Fogliano

2004). In contrast, butylated hydroxytoluene (BHT) has been shown to increase the formation of

MeIQx and DiMeIQx in a heated mixture containing HCA chemical precursors; perhaps become



47

the methyl group at the para position of the BHT molecule may react with the dialkylpyrazine

radical and creatinine and thus form MeIQx and DimeIQx (Pearson and others 1992). Even

though synthetic antioxidants have been shown to have the HCA formation, some synthetic

antioxidants are believed to have cytotoxic and carcinogenic activity (Ito and others 1983). Due to

concerns about the toxicological safety of synthetic antioxidants, consumers prefer to use natural

antioxidants (Pokorný 2007). 

Natural Antioxidants

Natural antioxidants, such as phenolic, polyphenol, and flavonoids from plants, have been

studied extensively for their inhibitory effects on HCAs (Vitaglione and Fogliano 2004). Based on

previous studies, the natural antioxidants that affect HCAs can be divided into three groups: pure

compounds, food extracts, and whole food.

Many studies have been performed to investigate the effect of pure antioxidant compounds

on the inhibition of HCAs both in model meat systems and meat systems. For example, in meat

model systems, the addition of  green tea polyphenols (catechins and epigallocatechin gallate),

flavonoids (quercetin and luteolin), and caffeic acid (0.2 mmol each) were found to clearly

suppress the formation of both MeIQx and PhIP up to 75% of the level found in the controls

(Oguri and others 1998). The addition of 0.67 mmol of diallyl disulfide and dipropyl disulfide,

organosulfur compounds found mostly in garlic and onion, in a meat model system inhibited the

formation of IQx, MeIQx, and PhIP in the range of 20 to 84 % compared to the control. In a meat

system, Balogh and others (2000) reported that the reduction of the levels of IQ, MeIQ, MeIQx,

DiMeIQx and PhIP in fried beef patties was achieved when vitamin E at the 1% level (fat basis)
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was added to the patties before frying. Lan and others (2004) also reported that the addition of á-

tocopherol at a concentration of 0.2% to ground pork (cooked at 98 °C for 32 hours in a closed

pan in the presence of water, soy sauce, and sugar) produced a reduction of HCAs of up to 30%

compared to the control. The addition of naringenin, a flavonoid found in many citrus fruits, at the

level of 0.1% to ground beef before frying reduced the amounts of MeIQx, DiMeIQx, and PhIP

found after cooking in the range of 63-74% (Cheng and others 2007). 

Food extracts, especially from fruit and vegetables, have been reported to inhibit HCA

formation in cooked meat products. Using tomato extracts contained carotenoids (lycopene, ß-

carotene, phytoene, and phytofluene) at a concentration of 1,000 ppm inhibited the formation of

MeIQx by 12% and DiMeIQx by 5% in a meat juice model system (Vitaglione and others 2002).

Rosemary extracts were found to effectively decrease the formation of HCAs in beef patties by up

to 69% (Tsen and others 2006). Four fruit extracts (apple, elderberry, grape seed, and pineapple)

rich in polyphenols were found to significantly reduce the amount of MeIQx, DiMeIQx, and PhIP

formed in fried beef patties in a range from 15 to 71% (Cheng and others 2007).  

The use of antioxidants in the form of whole food to inhibit HCA formation has also been

studied. Britt and others (1998) reported that the formation of the HCAs was reduced by 79% by

the addition of tart cherry tissue at an 11.5% level. Frying beef patties in virgin olive oil, which

naturally contains strong antioxidant polyphenols named secoiridoids (approximately 1,200 mg/kg

oil), reduced the formation of MeIQx and PhIP up to 40% compared to the use of refined olive oil

(Persson and others 2003). Many herbs and spices, usually used to flavor dishes, are an excellent

source of phenolic compounds, which have been reported to show high antioxidant activity. The

application of dried rosemary, thyme, sage, and garlic on the surface of ground beef patties before
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cooking significantly reduced HCA levels to below 60% of the amount found in control

(Murkovic and others 1998).  

ANALYSIS OF HETEROCYCLIC AMINES IN FOODS

The analysis of HCAs in foods is a challenge for the scientists due to their being present at

low levels (0.1-50 ng/g) in a complex sample matrix; the challenge has been to develop an

effective purification method and a sensitive and selective analytical method. 

Extraction and clean-up

The most common extraction and clean-up method was developed by Gröss and Grüter

(1992) and became widely accepted. In this method, the sample is first saponified with sodium

hydroxide and mixed with inert solid e.g. diatomaceous earth to avoid formation of a very stable

emulsion during the extraction of the saponified liquid (Murkovic 2007), and macromolecules,

e.g. proteins and carbohydrates, remain adsorbed on the inert material (Melo and others 2008).

Then the subsequent extraction and two-step solid-phase extraction are performed. The solvents

used in the extraction step are ethyl acetate, dichloromethane, or diethylether (Alaejos and others

2008). Of these solvents, ethyl acetate has been shown to slightly improve the recoveries of some

HCAs in meat samples (Alaejos and others 2008). The two-step solid phase extraction is

conducted by means of a strong cation exchanger (e.g. propylsulfonyl sillica gel, PRS) and an

octadecylsilane (C18) (Meester 1998, Toriobio and others 2000a). In the normal-phase elution

mode of PRS, HCA molecules are retained through non-specific adsorption on the polar sodium

propylsulfonate residues as well as on the residual silanol groups. After that, the normal-phase
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elution is switched to a reversed-phase elution by rinsing PRS with hydrochloric acid to allow

interaction with the ion-exchange sites on PRS (Gross 1990). After that, the interferences are

removed by using a large volume of methanol-hydrochloric acid at a high flow rate while HCA

molecules remain attached in the PRS cartridge. This clean-up step is a crucial step to rid

interferences that may overlap with the HCA peaks (Gross 1990). After that, the HCA molecules

in the PRS cartridge are eluted to C18 cartridge by using an alkaline aqueous buffer solution, e.g.

ammonium acetate pH 8.0, to concentrate the HCAs and remove the buffer salt (Gross 1990). The

HCA molecules are then eluted from C18 cartridge by a MeOH-ammonium hydroxide solution

(Gross 1990). This method produces recoveries of HCAs are in range of 50-80% (Gross 1990,

Toribio and others 1999). Instead of two-step solid phase extraction, a single step solid phase

extraction has also been developed by using an Oasis MCX LP SPE cartridge whose active

surface is a copolymer of N-divinylbenzene and N-vinylpyrrolidone with sulfonic acid

substituents on the phenyl groups (Turesky and others 2005).

A solid-phase microextraction (SPME) was also developed by Cárdenes and others (2004)

to extract HCAs from the food matrix. Carbowax-templated resin fiber was recommended due to

its high efficiency. The fiber was directly immersed in the meat extract to extract HCAs; then the

HCAs were eluted from the fiber with methanol and separated on HPLC column coupled with

fluorescence and UV diode array detections. This method produced recoveries of HCAs ranging

between 57.4 and 82.4%. This method also allows to the clean-up steps to be simplified and the

amounts of time and organic solvents needed to be reduced. Other methods that have been used

for the extraction and purification of HCAs are extraction with blue cotton, blue rayon, and blue

chitin (Bang and others 2002; Skog 2004) and immunoaffinity purification (Vanderlaan and
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others 1993).        

Identification and quantitation

The identification and quantitation of HCAs has been commonly carried out with

chromatographic or related techniques in different detection systems. Frequently, high pressure

liquid chromatography (HPLC) is used for the determination of HCAs because they consist of the

highly polar, non-volatile, and thermal unstable compounds (Alaejos and others 2008). Each HCA

compound is separated on the column with a base-inactivated reversed phase containing the

aminoimidazo moiety (Murkovic 2007). The TSK Gel ODS-80TS column is most commonly

used due to its ability to detect low limits, its high injection volume, short equilibration time

(Murkovic 2007), peak symmetry, and separation efficiency (Melo and others 2008). A better

separation has been achieved by using a ternary mobile phase composed of triethylamine at pH

3.2, triethylamine at pH 3.6, and acetonitrile. Less polar HCAs and PhIP are typically identified

with fluorescence detection whose high sensitivity provides clean chromatograms (Ristic and

others 2004). In contrast, the IQ- and IQx-type amines have no fluorescence characteristics,

therefore they can be measured with ultraviolet (UV) detection. Although the sensitivity of UV

detection is not high, around 100-400 times lower than that of fluorescence, it allows the

confirmations of the chromatographic peaks of samples with the reference, which is a very crucial

step in HCAs analysis at the low concentrations present in samples, and for this reason, the

detection method most commonly used is diode array detection (DAD) recording at a wavelength

of 264 and 273 nm. Enhanced selectivity and sensitivity of the detection of HPLC have been

reported using the following: electrochemical detection (HPLC-ED) (Van Dyck and others 1995);
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ion-exchange chromatography (Van Dyck and others 1995); tandem mass spectrometry (HPLC-

ESI-MS-MS) (Richling and others 1997); atmospheric pressure chemical ionisation (HPLC-

APCI) (Guy and others 2000, Toribio and others 2000b); mass spectrometry (LC-MS) (Santos and

others 2004); electrospray (LC-ESP) (Barceló-Barrachina and others 2004b, Ni and others 2008);

thermospray (LC-TSP); coulometric electrode array (Krach and Sontag 2000, Gerbl and others

2004); time-of-flight mass spectrometry (LC-TOF-MS) (Barceló-Barrachina and others 2004a);

and electrophoresis, either with mass spectrometry (CE-MS), ultra-violet (CE-UV), or

electrochemical (CE-ED) with high detection limits having been obtained (Puignou and others

1997).

Other methods of detection that have been used are gas chromatography (GC) coupled a

with nitrogen-phosphorus selective detector (NPD), which has the advantage of a high sensitivity

to HCAs because of the presence of the nitrogen atoms in the structure of the HCAs. Gas

chromatography-mass spectrometry (GC-MS) has very high selectivity and a relatively high

sensitivity of MS for HCAs (Casal and others 2004, Warzecha and others 2004). However, HCAs

are polar and non-volatile compounds; therefore, a derivatization step is required. The derivatizing

agents that have been tested for the analysis of HCAs are acetic, trifluoroacetic, pentafluoro-

propionic and heptafluoro-butyric anhydrides; pentafluoro-benzyl bromide; 3,5-bistrifluoro-

methylbenzyl bromide; and 3,5-bistrifluoro methylbenzoyl chloride (Casal and others 2004,

Barceló-Barrachina and others 2005). Also, ELISA (enzyme-linked immunosorbent assay)

methods have been proposed for HCAs analysis because of their high sensitivity, high selectivity,

and low sample preparation requirements (Vanderlaan and others 1993). 
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PART II. HETEROCYCLIC AMINE CONTENT IN 

COMMERCIAL READY TO EAT MEAT PRODUCTS  1

    

ABSTRACT

Heterocyclic amines (HCAs) are produced in meats cooked at high temperature, which are

potent mutagens and a risk factor for human cancers. The aim of this study was to estimate the

amount of HCAs in some commonly consumed ready-to-eat (RTE) meat products. The RTE

products were purchased from a local grocery store, and HCA were analyzed using an analytical

method based on solid-phase extraction followed by HPLC. The primary HCAs in these samples

were PhIP (2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine) (not detected-7.9 ng/g) and

MeIQx (2-amino-3,8-dimethylimidazo [4,5-f]quinoxaline) (not detected-3.6 ng/g). Products

ranked in order of increasing total HCA content: pepperoni (0.05 ng/g) < hot dogs and deli meat

products (0.5 ng/g) < fully cooked bacon (1.1 ng/) < rotisserie chicken meat (1.9 ng/g) < rotisserie

chicken skin (16.3 ng/g).  We believed that cooking conditions and ingredients influenced the

level of HCAs in these RTE products and concluded that consumption of RTE meat products

contributes very little to HCA intake. Results from this study can be used in risk assessment study

to estimate human exposure to HCAs due to food consumption.

 Priyadarshini Gadgil, Kanithaporn Puangsombat, J. Scott Smith, Heterocyclic amines in selected1.

ready to eat type meat products. Institute of Food Technologists Annual Meeting & Food Expo. 

Anaheim, CA. June 06-10, 2009. # 09-A-2704.
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INTRODUCTION

Ready-to-eat (RTE) products are defined in CFR Title 9 Part 430 (2005a) as “A meat or

poultry that is in a form that is edible without additional preparation to achieve food safety and

may receive additional preparation for palatability or aesthetic, epicuream, gastronomic, or

culinary purposes. RTE product is not required to bear a safe-handling instruction (as required for

non-RTE products by 9 CFR 317.2(I) and 381.125(b)) or other labeling that directs that the

product must be cooked or otherwise treated for safety, and can include frozen and poultry

products”. Demand for RTE meat products has increased over the years and these are widely

consumed in modern society because of their convenience and variety. 

Evaluating the risk of HCAs in terms of human cancer development requires determining

exposure levels from specific amounts of HCAs in food and frequencies of exposure to HCAs

from food (Sinha 2002). Most studies have concentrated on investigating the influence of different

cooking conditions on HCA formation and finding strategies to limit HCA formation in cooked

meat products. Few studies have reported the HCA content in foods from restaurants, fast-food

outlets, and RTE meat products.

The objective of this study was to estimate the amount of HCAs in commonly consumed

RTE meat products including hot dogs, deli meat products, fully-cooked bacon, pepperoni, and

rotisserie chicken. Hot dogs are comminuted, semisolid sausages prepared from one or more kinds

of raw skeletal muscle meat or raw skeletal muscle meat and raw or cooked poultry meat, and

seasoned and cured, and they may or may not be smoked (CFR Title 9 part 319.180 2005b). Deli

meat (cold cut) products are sliced, either in an official establishment or after distribution from an
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official establishment, and typically assembled in a sandwich for consumption (CFR Title 9 part

430 2005a). Sliced deli meat is available in vacuum packs and also can be purchased at a deli

counter. The most popular deli meats are deli turkey, deli ham and deli beef (Xiong and Mikel

2001). Thermal processing of hot dogs and deli meat is usually carried out by cooking at 74 to 80

°C to obtain on internal temperature of 70 to 72 °C (Fiener 2006). Fully cooked bacon was

developed and introduced about 10 years ago (Xiong and Mikel 2001). This product is an

alternative for consumers who want to prepare bacon without messy preparation and clean up.

Pepperoni is a fermented sausage made from beef and pork or pork only. The final pH of

pepperoni typically ranges from 4.8 to 5.2. Smoke is applied for 1 to 3 hr at 30 to 35 °C, and

thermal treatment of pepperoni is typically conducted at 74 to 78 °C with steam or dry heat until

an internal temperature of 70 °C is obtained (Xiong and Mikel 2001).

       

MATERIALS AND METHODS

Materials

Eight types of RTE meat products were purchased from a local grocery store: hot dogs

(beef and beef-pork-turkey), deli meat (roast beef, ham and turkey), fully cooked bacon, pepperoni

as removed from a frozen pizza, and rotisserie chicken (Table 8).

Chemicals

The HCA standards IQ (2-amino-3-methyl-imidazo [4,5-f]quinoline), IQx (2-amino-3-

methyl-imidazo [4,5-f]quinoxaline), MeIQ (2-amino-3,4-dimethyl-imidazo [4,5-f]quinoline),

MeIQx (2-amino-3,8-dimthylimidazo [4,5-f]quinoxaline), 4,8-DiMeIQx (2-amino-3,4,8-
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 Table 8. Description and ingredients in selected ready-to-eat meat products

Sample Description Ingredients

Hot dog beef N/A beef, water, corn syrup, contain 2% or less of salt, potassium lactate, partially
hydrolyzed beef stock, sodium phosphate, flavorings, sodium diacetate,
ascorbic acid, sodium nitrate, extractives of paprika

Hot dog turkey-pork-beef N/A turkey, pork, water, beef, corn syrup, contain 2% or less of salt, potassium
lactate, sodium phosphate, flavorings, partially hydrolyzed beef stock, sodium
diacetate, ascorbic acid, sodium nitrite, extractives of paprika

Deli roast beef Top round roast beef
coated with seasonings and
caramel color added

beef, water, less than 2% sodium lactate, sodium phosphate, sodium diacetate,
salt, hydrolyzed corn protein, flavorings

Deli ham Ham with natural juices
and naturally smoked 

pork, water, salt, sugar, dextrose, sodium phosphate, honey, sodium
erythorbate, sodium nitrite

Deli turkey Turkey breast with broth
browned with caramel
color and oven roasted

turkey breast meat, turkey broth, 2% or less of dextrose, modified food starch,
salt, sodium phosphate, acidified calcium sulfate 

Pepperoni Original pork and beef, salt, water, dextrose, spices, lactic acid and starter culture,
oleoresin of paprika, flavoring, sodium nitrite, BHA, BHT, citric acid

Fully cooked bacon Fully cooked bacon with
naturally smoked

pork, water , salt, sugar, sodium phosphate, sodium erythorbate, sodium
nitrite

Rotisserie chicken Slow-roasted, traditional
style

N/A

N/A - not available.
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trimethyl-imidazo [4,5-f]quinoxaline), TriMeIQx (2-amino-3,4,7,8-tetramethyl-imidazo [4,5-

f]quinoxaline), and PhIP (2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine) were obtained

from Toronto Research Chemicals (Toronto, Canada). Ammonium acetate and triethylamine were

purchased from Aldrich Chemicals (Milwaukee, WI, USA). Phosphoric acid was obtained from

Sigma Chemicals (St. Louis, MO, USA). Deionized water was processed by a Sybron/Branstead

PCS unit (Barnstead/Thermolyne, Dubuque, IA, USA). The solid-phase extraction Extrelut NT 20 

columns and diatomaceous earth refill material were purchased from VWR International (Bristol,

CT, USA). Bond Elut propyl-sulfonic acid (PRS) cartridges, C-18 cartridges, and the coupling 

adaptors were purchased from Varian Sample Preparation (Harbor City, CA, USA).

Trichloroacetic acid, diacetyl, 1-napthol, and sodium hydroxide were obtained from Sigma

Aldrich (St. Louis, MO, USA). Solvents and chemicals such as acetonitrile (HPLC grade),

methanol (HPLC grade), and sodium hydroxide (ACS-grade) were purchased from Fisher

Scientific (Fairlawn, NJ, USA).  

Sample preparation methods

Two hot dogs of each kind were heated in a microwave (1000 W) on high power

according to package directions (35 s wrapped in a paper towel). The fully-cooked bacon was

heated in a microwave (1000 W) on high for 30 and 60 s as per package directions. Pepperoni

taken from the top of the frozen pizza was analyzed as unheated pepperoni. Oven-cooked

pepperoni was taken from pizzas that had been cooked for approximately 23 min in an oven at

204 °C (400 EF). Microwave-cooked pepperoni was taken from pizzas cooked in a microwave

(1000 W) on high for approximately 4 min per package directions. For the rotisserie chicken, skin
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and meat were separated before analysis. Deli roast beef, deli ham, and deli turkey were used as

obtained. All samples were chopped before analysis. Figure 11 shows the pictures of RTE meat

products in this present study.

Chemical analyses

 The samples pH was measured according to method by Jang and others (2008). Five grams

of chopped sample was added to 45 mL of distilled water and blended for 30 s at medium speed in

a Waring blender (Waring Laboratory, Torrington, CT, USA). The pH of each sample was

measured with an Accumet AP115 portable pH meter (Fisher, Pittsburgh, PA, USA).

Fat and moisture for each sample were determined by rapid microwave drying and nuclear

magnetic resonance using the CEM Smart Trac system (CEM Corporation, Matthews, NC, USA).

Crude protein was determined with a LECO FP-2000 protein analyzer (Leco Corp, St Joseph, MI,

USA).

Creatine content was determined according to the method described by Polak and others

(2009) with modifications. A 0.25-g finely ground sample was homogenized for 5 min at 9500

rpm (IKA, Ultra-Turrax T18) (Wilmington, NC., USA) in 100 mL trichoroacetic acid (30 g/L in

distilled water), and then the samples were filtered through Whatman #4 filter paper. Twenty

milliliters of the filtrate was defatted with 10 mL diethylether, and then samples were shaken

vigorously and allowed to stand 10 min to separate the phases. After the phases were separated, 4

mL of defatted extract (bottom layer) was mixed with 2 mL of diacetyl (0.2 g/L in distilled water)

and 2 mL of 1-napthol (25 g/L in 20 g/L of sodium hydroxide solution). 
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d

Figure 11. RTE meat products: hot dog beef heated in microwave for 35 s  (a), hot dog turkey-
pork-beef heated in microwave for 35 s  (b), deli roast beef (c), deli ham (d), deli turkey (e),
pepperoni heated in an oven for 23 min at 204 °C (f), and bacon heated in microwave for 30 s (g),
and rotisserie chicken (h).
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The mixture heated for 5 min at 40 °C. Each sample’s absorbance was measured at 520 nm

against a reagent blank. The creatine content was expressed as milligram per gram of meat

sample. 

Extraction and analysis of HCAs    

The HCAs were extracted and purified from meat using the method described by Gross

and Grüter (1992) except that ethyl acetate was used as the extraction solvent (Santos and others

2004, Smith and others 2008). Each chopped RTE meat sample (3 g) was homogenized with 12

mL of 1 M NaOH in a commercial Waring blender (Fisher, Pittsburgh, PA, USA). The

homogenate was then mixed with 24 g of Extrelut refill material (Merck, Darmstadt, Germany)

and poured into an empty Extrelut 20 column. For determination of recovery, selected

homogenate samples were spiked with 50 ng of each of the HCA standards. The HCAs were

eluted from the Extrelut columns with 60 mL ethyl acetate into a PRS cartridge conditioned with

7 mL of ethyl acetae. The PRS cartridge was then rinsed with 6 mL of 0.1 M HCl, 15 mL of

methanol/0.1 M HCl (45:55 v/v), and 2 mL of distilled water to wash out the nonpolar HCAs and

other impurities. The HCAs were eluted from the PRS cartridge with 20 mL of 0.5 M ammonium

acetate pH 8.5 into 100-mg C-18 cartridges preconditioned with 5 mL of methanol followed by 5

mL of distilled water. The HCAs were then eluted from the C-18 cartridge with 1 mL of

methanol/ammonium hydroxide (9:1, v/v) into the vial. The HCA extract was concentrated until

dry under a stream of nitrogen and dissolved in 25 µl of methanol before it was injected into the

HPLC. The HCAs were analyzed on a HP1090A Series II HPLC (Agilent Technologies) coupled

with a photodiode array UV-visible detector (HP 1040) and an HP 1046A programmable
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fluorescence detector. The HCAs separation was performed on a reversed-phase TSK gel ODS-80

TM column (25 cm × 4.6 mm, 5 µm, 80 Å, Tosohass, Montgomeryville, PA, USA) with a mobile

phase of 0.01 M triethylamine pH 3.6 (A) and acetonitrile (B). The HCAs separation was

achieved using a linear gradient that started with 95% A, and 5% B, and changed to 75% A and

25% B in 30 min at a flow rate of 1 mL/min and a column temperature of 40 ºC. After 30 min, the

mobile phase returned to its original ratio (95% A, 5 % B) for 10 min to allow the column to

reequilibrate before the next injection. The UV detector was set at 252 nm for IQ, IQx, MeIQ,

MeIQx, and DimeIQx, and the fluorescence detector was programmed accordingly to the

excitation/emission wavelengths of 229 and 437 for PhIP. Data were analyzed with an HP 9000

series 300 Chemstation. The identities of HCAs peaks were confirmed by comparing the retention

times and the UV absorbance spectrum of each peak with library spectra acquired from standard

solutions.

Quantitation, recovery, and spectral matching

The HCA concentrations were quantitated by the internal standard method (Lindsay 1992).

A known amount of TriMeIQx (used as internal standard) was added to samples before they were

injected into the HPLC. The relative responses (R) of HCA standards were calculated using the

following equation:

s sR = (C/A)/(C /A )

where C = Concentration of HCA standards

A = Peak area for HCA standards

sC = Concentration of internal standard
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sA = Peak area of internal standard

The HCA concentrations in samples were calculated using the following equation:

u u s sC = A  × R × (C N/A N)

uwhere C = Concentration of HCAs in sample

uA = Peak area of HCAs in sample

sC N = Concentration of internal standard in sample

sA N = Peak area of internal standard in sample

The limits of detection (LOD) and limits of quantification (LOQ) for the HCAs were 0.15

ng/g and 0.45 ng/g for IQ, IQx, MeIQ, MeIQx, DiMeIQx and PhIP. HCA The HCA identities

were verified in the cooked meat extracts by online UV spectral matching to a spectral library

made from pure standards. Match factors typically were observed at 95% or greater (Abdulkarim

and Smith 1998). Average recoveries for the HCAs were 72% for IQx, 61% for IQ, 63% for

MeIQ, 68% for MeIQx, 60% for DiMeIQx, and 65% for PhIP. The recoveries of MeIQx and PhIP

are in agreement with previous reports from this laboratory (Tsen and others 2006, Smith and

others 2008) and from Persson and others (2003) and Cheng and others (2007).     

Statistical analyses

The experimental design was a randomized complete block with repeated measurements,

and each experiment was replicated three times. Duplicate measurements taken on the same

experimental unit were averaged for statistical analysis. All statistical significance tests were

analyzed using SAS version 9.1 (SAS Institute Inc., Cary, NC, USA, 2002). Data were examined

by analysis of variance (ANOVA) followed by Tukey’s multiple comparison test, and means were

considered significant at p < 0.05.   
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RESULTS AND DISCUSSION

The pH and composition of each RTE sample are shown in Table 9. The pH of most RTE

samples ranged from 5.0 to 6.5; pepperoni, which is a fermented meat product had a low pH level

(pH 4.78). Both types of hot dogs had a low amount of creatine (less than 1 mg/g). Creatine in the

deli meat ranged from 1.9 to 2.3 mg/g, and pepperoni contained 1.37 mg/g creatine. Bacon 

had the highest amount of creatine at 3 mg/g. The creatine values of some RTE samples in our

study agreed with values reported by Campo and others (1998) who showed creatine levels of

2.31 to 3.25 mg/g in ham and 0.81 to 2.74 mg/g in frankfurters. Deli meat products had high

moisture levels (69 to 76 %) followed by hot dogs (47 to 50%). Pepperoni and bacon had low

moisture levels (24.4% for pepperoni and 15.3% for bacon). Deli meat contained low levels of fat

(less than 10 %), and hot dogs contained approximately 30% fat. Bacon and pepperoni had high

fat contents (37.9 % for bacon and 44.5% for pepperoni). Protein content was lowest for hot dogs

(10 %), intermediate for deli meat products (20 %), and highest for bacon (42.8 %).

There was considerable variation in moisture, protein, and fat levels among four

replications of rotisserie chicken (Table 10). This was the reason that the standard deviations of

moisture, fat and protein levels in chickens were very high, especially in the chicken skin. These

four chickens were bought on different visits to the same store. Factors that may have affected the

amount of heat absorbed into the chicken include weight of chicken, placement of chicken in the

oven, cooking time and temperature, and the number of chickens in the oven during each cooking

cycle. The chickens weighed between 850 and 1,040 g. Chicken in replication 1 had the lowest

weight (850 g) and the most brown color and shrinkage among the four chickens (Figure 12). The

lighter weight chicken tends to absorb heat more than a heavier weight chicken, leading to a 
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Table 9. pH and composition of  ready-to-eat meat products

Sample pH creatine (mg/g) moisture (%) fat (%) protein (%)

Hot dog beef 6.17 ± 0.03  0.75 ± 0.08  47.40 ± 0.44   30.78 ± 0.17    10.53 ± 0.17   

Hot dog turkey-beef-pork 6.39 ± 0.11  0.57 ± 0.06  49.86 ± 0.71   28.54 ± 0.61 10.61 ± 0.15   

Deli roast beef 5.47 ± 0.04  2.23 ± 0.13  69.41 ± 0.65  5.67 ± 1.09  21.33 ± 0.68  

Deli ham 6.40 ± 0.04  2.02 ± 0.28  71.63 ± 1.69  4.24 ± 0.61  19.20 ± 1.41  

Deli turkey 6.32 ± 0.02  1.95 ± 0.12  75.18 ± 0.48  1.74 ± 0.21  18.28 ± 1.92  

Pepperoni (unheated) 4.78 ± 0.20  1.37 ± 0.10  24.40 ± 0.42  44.52 ± 1.17  21.15 ± 1.05  

Bacon (unheated) 6.44 ± 0.73  3.00 ± 0.61  15.31 ± 0.82  37.86 ± 1.37  42.79 ± 1.69  

Each value is expressed as mean ± standard deviation (n = 3).
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Table 10. The contents of moisture, fat, protein, and heterocyclic amines (IQ, IQx. MeIQx, DiMeIQx, PhIP and total) of rotisserie

chicken meat and skin in each replication

replication moisture
(%)

fat 
(%)

protein
(%)

HCAs (ng/g)

IQ    IQx    MeIQx    DiMeIQx        PhIP Total

Meat 1 64.46 2.43 31.88 2.91 0.09 0.21 0.06 1.31 4.58

  2 67.49 2.39 29.43 0.01 0.25 0.08 nd 0.08 0.42

3 70.89 2.78 26.03 0.04 0.41 0.23 nd 0.07 0.75

4 70.00 2.80 27.45 0.03 0.22 0.15 nd 0.09 0.49

mean 68.21 2.60 28.70 0.75 0.24 0.17 0.02 0.39 1.56

SD 2.88 0.22 2.54 1.44 0.13 0.07 0.03 0.62 2.02

Skin 1 21.80 42.42 33.80 1.11 0.34 9.98 2.30 27.24 40.97

2 30.37 40.20 25.37 0.05 0.49 1.56 0.63 2.33 5.06

3 39.60 31.21 24.27 0.07 0.38 1.42 0.15 0.73 2.74

4 38.20 38.49 23.59 0.04 0.34 1.50 0.36 1.25 3.53

mean 32.49 38.08 26.76 0.32 0.39 3.62 0.86 7.89 13.07

SD 8.20 4.85 4.75 0.53 0.07 4.24 0.98 12.92 18.63

nd = not detected 
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Figure 12. Physical appearances of rotisserie chicken for replication 1, 2, 3, and 4.

greater loss of moisture (Murkovic 2004). Chicken replication 1 had the lowest moisture content,

followed by chicken replication 2, replication 3, and replication 4. Chicken replication 1 also had

more fat and protein than the other three replications. 

Table 11 summarizes the result of HCA quantitative determinations in the eight selected

RTE products. The amount of HCAs was calculated as nanogram per gram (ng/g) of sample;

reported value are the average of four sample determinations. Total contents of the five determine

HCAs (IQ, IQx, MeIQx, DiMeIQx, and PhIP) of RTE products ranged from 0.05 to 13.07 ng/g.

Hot dogs, deli meat products, and pepperoni generally had relatively low levels of total HCAs.

Bacon and rotisserie chicken, especially the skin, had high HCA levels. The dominating HCAs in

these RTE samples were PhIP (not detected to 7.89 ng/g) and MeIQx (not detected to 3.62 ng/g).

The other HCAs were present at low concentrations: less than 0.8 ng/g for IQ, less than 0.4 ng/g

for IQx, and less than 1.0 ng/g for DiMeIQx. IQx was found only in bacon and chicken, and

DiMeIQx was found only in chicken. IQ and MeIQx were found in all RTE samples except

pepperoni. PhIP was found in all RTE samples. Except for rotisserie chicken, the HCA levels of

most RTE samples did not vary much between replications.  
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Table 11. Heterocyclic amine contents (IQ, IQx. MeIQx, DiMeIQx, PhIP, and total) of ready-to-eat meat products

Sample

                                              HCAs (ng/g)

IQ IQx MeIQX Di MeIQX PhIP Total

Hot dog beef 0.31 ± 0.09 nd 0.07 ± 0.02 nd 0.06 ± 0.01 0.44 ± 0.08 a    b    b   b

Hot dog turkey-beef-pork 0.28 ± 0.10 nd 0.07 ± 0.03 nd 0.07 ± 0.03 0.42 ± 0.10 a   b    b   b

Deli roast beef 0.20 ± 0.09 nd 0.08 ± 0.03 nd  0.15 ± 0.15 0.44 ± 0.19  a   b  ab  b

Deli ham 0.29 ± 0.13 nd 0.03 ± 0.01 nd  0.14 ± 0.08  0.46 ± 0.06 a   b   ab   b

Deli turkey 0.22 ± 0.10 nd 0.13 ± 0.07 nd  0.09 ± 0.01 0.44 ± 0.11 a  b  ab  b

Pepperoni nd nd nd nd 0.05 ± 0.01 0.05 ± 0.01  b  b

Bacon, microwaved 30 s. 0.60 ± 0.05 0.04 ± 0.03 0.14 ± 0.02 nd 0.14 ± 0.03 0.91 ± 0.06 a  a  a  a   a

Rotisserie chicken meat 0.75 ± 1.44 0.24 ± 0.13 0.17 ± 0.07 0.02 ± 0.03  0.39 ± 0.62 1.56 ± 2.02 a  a  b   b   ab   ab

Rotisserie chicken skin 0.32 ± 0.53 0.39 ± 0.07 3.62 ± 4.24 0.86 ± 0.98  7.89 ± 12.92   13.07 ± 18.63  a  a  a   a a a

Each value is represented as mean ± standard deviation (n = 4). Means with different superscript letters within the same column are

significantly different at p < 0.05.

nd = not detected
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The measured HCAs in hot dog samples were IQ < 0.3 ng/g, MeIQx < 0.07 ng/g, and PhIP

< 0.07 ng/g. There was no statistical difference (p < 0.05) between beef and turkey-beef-pork hot

dogs. Sinha and others (1998) reported no MeIQx and PhIP in pan-fried, oven-broiled,

grilled/barbecued, and boiled hot dog samples. For the deli meat products, the detected HCAs 

were present at low levels  (IQ < 0.3 ng/g, MeIQx < 0.13 ng/g, and PhIP < 0.15 ng/g) (Table 11).

Abdulkarim and Smith (1998) reported no detectable MeIQx and PhIP in precooked meat

products including ham and bologna. In the present study, IQ was the HCA found at the highest

levels in both hot dogs and deli meat products, but previous studies did not report IQ in hot dogs

and deli meat products (Abdulkarim and Smith 1998, Sinha and others 1998). It is possible that

the IQ detected in hot dogs and deli meat products were a result of smoking process. Kataoka and

others (1998) tested nine HCAs and showed that IQ was detected most in combustion smoked of

wood chips, black pepper, and semi-dried fish, whereas MeIQx and DiMeIQx were not detectable. 

Overall, hot dogs and deli meat products had low levels of HCAs. This may be due to the

low-temperature manufacturing process of these products, which require heating at a temperature

of 74 to 80 °C (Fiener 2006). The low HCA amounts found in hot dogs and deli meat products

also could be due to the presence of ingredients and additives that inhibit HCA formations during

the cooking process. Most of these RTE products contain salt and sodium phosphate (Table 8),

which are believed to confer better water-holding capacity which reduces the transport of HCA

precursors toward the surface during cooking and results in less HCA formation (Persson and

others 2003). Sodium chloride and sodium phosphate are often added to meat products to improve

water-holding capacity and sensory quality. These RTE meat products also contained modified

starch that has been reported to improve water-holding capacity of meat products by providing
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starch-water systems as a polymer matrix during gelatinization when meat products are cooked

(Aktas and others 2006). However, a decrease of HCA formation by adding modified starch to the

meat products has not yet been reported. Ascorbic acid and sodium nitrite, which are ingredients

in hot dogs, may have a role in HCA inhibition because of their antioxidant properties. Murkovic

and others (1998) reported that sodium nitrite, which is used as a curing agent in cured meat

products, showed inhibited MeIQx by 15%, IQ by 14%, MeIQ by 51%, and PhIP by 34% in fried

beef patties. Ascorbic acid is known to exert antioxidant or prooxidant effects depending on the

concentration, therefore it may decrease or increase HCA formation. Lan and others (2004)

reported that although incorporation of ascorbic acid inhibited HCA in marinated food, the effect

was very minor. Johansson and Jägerstad (1996) found that a high concentration of ascorbic acid

(1000 ppm) reduced MeIQx formation by 84%, but low concentrations (10 and 100 ppm) had no

effect.  

Among the RTE products in this study, only chicken skin and breast meat contained all

five HCAs. PhIP in chicken skin was very high, especially in replication 1 (27.27 ng/g total

HCAs) (Table 10). This agrees with results of Liao and others (2010) who found that PhIP can

form easily in cooked chicken. As mentioned previously, the skin of chicken replication 1 had

more fat and protein and less moisture than other replications. Consequently, the total amount of

HCAs in the skin of chicken replication 1 (41 ng/g) was much higher than that in the other

replications (2 to 5 ng/g); PhIP and MeIQx were most abundant (Table 10). This result agrees

with other research that showed an increase in HCA levels as moisture content decreased

(Murkovic 2004). The amount of HCAs in rotisserie chickens in the present study are in the same

range as amounts reported by Knize and others (1998), who showed 0.45 ng/g of MeIQx and 0.75
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ng/g of PhIP in white chicken meat and 0.40 ng/g of MeIQx and 0.59 ng/g of PhIP in dark chicken

meat; however, they did not report HCAs in rotisserie chicken skin. In this study, total HCAs were

1.56 ng/g in rotisserie chicken meat and 13.08 ng/g in the skin. This findings indicate that HCA

exposure can be reduced by not eating chicken skin.

Frozen pepperoni pizzas were used in this study to investigate the effect of cooking

method on HCA formation in pepperoni. The HCAs in uncooked, microwave-cooked, and oven-

cooked pepperoni are shown in Table 12. Cooking loss was higher for microwave-cooked

pepperoni (39.1%) than for oven-cooked pepperoni (37.4%). All three pepperoni sample types had

very low levels of total HCAs, and there were no statistically significant differences in HCAs

among types. PhIP was the only HCA found in the pepperoni samples. The pepperoni contained

spices, oleoresin of paprika, sodium nitrite, lactic acid starter culture, BHA, and BHT, which can

act as antioxidants (Johansson and Jägerstad 1994, Shin and others 2002, Perucka and Materska

2003, Lan and others 2004, Fiener 2006, Gibis 2007, Janoszka 2010). This may explain why the

pepperoni had low levels of HCAs (0.02 to 0.05 ng/g) relative to the other products. Some of

these components, alone or in combination, may inhibit HCA formation. Common spices used for

pepperoni are cayenne, anise seeds, garlic, mustard seeds, and black peppers (Fiener 2006). Garlic

(fresh, dried powder, and extract) contains organosulfur compounds such as diallyl disulfide,

dipropyl disulfide, cysteine, and cystine which have been reported to have inhibitory effects on

HCA formation in meat model systems and meat products (Shin and others 2002, Gibis 2007,

Janoszka, 2010). Paprika, which is commonly added to give a touch of red color to  the pepperoni,

is a spice made from ground, dried fruits of Capsicum annuum (e.g., bell peppers and chilli

peppers) (Feiner 2006). Paprika has been reported to have an antioxidant property that is due to
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the presence of total phenolics and carotenoids (e.g., â-carotene and â-cryptoxanthine) (Perucka

and Materska 2003). BHA and BHT are synthetic antioxidants and also have been reported to

have an inhibitory effect on HCA formation in meat model systems and meat products (Johansson

and Jägerstad, 1996, Lan and others 2004). 

The package directions recommended heating the fully-cooked bacon for 30 s in the

microwave, but some consumers may heat the product for a longer time to produce crispier bacon.

Therefore, we investigated the effect of heating time on HCA formation. The HCAs in unheated

bacon, and bacon heated for 30 and 60 s are shown in Table 13. As expected, the cooking loss of

bacon heated for 60 s (24.2%) was higher than that of bacon heated for 30 s (20.9%), and the

bacon heated for 60 s was crispier and darker than the bacon heated for 30 s. The physical

appearance of unheated bacon and bacon heated for 30 and 60 s is shown in Figure 16. Bacon

heated for 30 or 60 s had significantly higher levels of IQ, MeIQx, and PhIP than unheated bacon.

The increased amount of HCAs after microwave heating may be due to the loss of water during

heating, which could lead to more concentrated HCAs or formation of more HCAs. The amount

of HCAs in bacon heated for 30 s was not statistically different from that in bacon heated for 60 s.

Therefore, we conclude that microwave heating time of precooked bacon did not affect the

amount of HCAs in heated bacon. It was interesting that the total amount of HCAs in fully cooked

bacon in our study was less than that in cooked fresh bacon in other studies. We believed that the

low amount of HCAs in fully cooked bacon is due to the precooking process. Industrial fully

cooked bacon is cooked at low temperature (162 °C) in presence of steam induced high humidity

either by using a continuous microwave oven or a continuous linear circulating air oven. Sinha

and others (1998) detected 1.5 ng/g of MeIQx and 3.1 ng/g of PhIP in microwave-cooked fresh
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Table 12. Heterocyclic amines (IQ, IQx, MeIQx, DiMeIQx, PhIP, and total) in unheated pepperoni, oven-cooked pepperoni, and
microwave-cooked pepperoni

Sample Cooking loss
(%)

                                              HCAs (ng/g)

IQ IQx MeIQX Di MeIQX PhIP Total

Unheated pepperoni nd nd nd nd 0.03 ± 0.02 0.03 ± 0.02  a  a

Oven-cooked pepperoni 37.41 ± 2.63 nd nd nd nd 0.05 ± 0.01 0.05 ± 0.01  a  a

Microwave-cooked pepperoni 39.06 ± 1.86 nd nd nd nd 0.01 ± 0.01 0.01 ± 0.01  a  a

Each value is represented as mean ± standard deviation (n = 4). Means with different superscript letters within the same column are
significantly different at p < 0.05.
nd = not detected

Table 13. Cooking loss and heterocyclic amines (IQ, IQx, MeIQx, DiMeIQx, PhIP, and total) in fully cooked bacon heated for 0
(unheated), 30 and 60 s

Sample Cooking
loss (%)

                                                              HCAs (ng/g)

IQ IQx MeIQX Di MeIQX PhIP Total

Unheated bacon 0.33 ± 0.07 0.00 ± 0.00 0.09 ± 0.06 nd 0.10 ± 0.02 0.53 ± 0.11  b  a  b  b  b

Bacon heated for 30 s 20.91 ± 0.68 0.60 ± 0.05 0.04 ± 0.03 0.14 ± 0.02 nd 0.14 ± 0.03 0.91 ± 0.06 a  a  a  a   a

Bacon heated for 60 s 24.23 ± 0.32 0.52 ± 0.03 0.03 ± 0.02 0.36 ± 0.15 nd 0.18 ± 0.00 1.10 ± 0.14  a  a  a  a  a

Each value is represented as mean ± standard deviation (n = 4). Means with different superscript letters within the same column are
significantly different at p < 0.05.
nd = not detected
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Figure 13. Physical appearances of fully cooked bacon heated for 0 (unheated) (a), 30 (b), and 60 s

(c).

bacon and 4.3 ng/g of MeIQx and 4.8 ng/g of PhIP in pan-fried fresh bacon. Johansson and

Jägerstad (1994) detected 10.2 ng/g of total HCAs (3.8 ng/g IQ, 2.8 mg/g MeIQx, 3.4 ng/g

DiMeIQx, and 0.2 ng/g PhIP) in bacon fried at 150 °C for 2.5 min per side and 16.7 ng/g of total

HCAs (10.5 ng/g IQ, 1.7 ng/g MeIQ, 2.5 ng/g MeIQx, and 1 ng/g DiMeIQx and PhIP) in bacon

fried at 150 °C for 5 min per side.  

Overall, the amounts of HCAs in RTE products in our study were much lower than those

in cooked meat products in other studies. Other studies have shown the concentrations up to 35

ng/g in cooked beef, 330 ng/g in cooked poultry, and 15 ng/g in cooked pork and fish (Busquets

and others 2004, Keating and Bogen 2004, Murkovic 2004, Iwasaki and others 2010).   
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CONCLUSIONS

Our results indicate that HCA levels in RTE meat products are generally low, but some

items (e.g. rotisserie chicken) may contain elevated amounts of HCAs. Thus, we conclude that

consumption of RTE meat products contributes very little to HCA intake. Taken together, our

results show that cooking conditions and ingredients influence HCA levels in RTE meat products.

These results can be used along with dietary assessments to estimate HCA exposure due to

consumption of RTE meat products.
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PART III. OCCURRENCE OF HETEROCYCLIC AMINES 

IN COOKED MEAT PRODUCTS  1

ABSTRACT

Heterocyclic amines (HCAs), which are potent mutagens and a risk factor for human

cancers, are produced in meats cooked at high temperature. The aim of this study was to

determine the HCA content in cooked meat products (beef, chicken, pork, fish) prepared by

various cooking methods (pan frying, oven broiling, and oven baking at 170 to 230 °C) that are

preferred by U.S. meat consumers. HCAs were analyzed using an analytical method based on

solid-phase extraction followed by HPLC. The primary HCAs in these samples were PhIP (2-

amino-1-methyl-6-phenylimidazo [4,5-b]pyridine) (1.49-10.89 ng/g), MeIQx (2-amino-3,8-

dimethylimidazo [4,5-f]quinoxaline) (not detected-4.0 ng/g), and DiMeIQx (2-amino-3,4,8-

trimethyl-imidazo [4,5-f]quinoxaline) (not detected-3.57 ng/g). High levels of total HCAs were

found in  fried pork (13.91 ng/g), fried fish (14.91 ng/g), and fried bacon (17.91 ng/g). These data

can be along used with food consumption survey data to estimate human exposure to HCAs due to

meat consumption.

 Kanithaporn Puangsombat, Terry A. Houser, Melvin C. Hunt, J. Scott Smith.  Occurrence of1.

heterocyclic amines in fresh meat products. Institute of Food Technologists Annual Meeting &

Food Expo. Chicago, IL, CA. July 17-21, 2010 # 289-03. 
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INTRODUCTION

The major HCAs formed in cooked meat and fish are PhIP, MeIQx and DiMeIQx  (2-

amino-3,4,8-trimethyl-imidazo [4,5-f]quinoxaline) (Pais and others 1999, Janoszka and others

2009). The concentration and type of HCAs formed in thermally treated meat and fish depend on

many factors including cooking method, cooking time and temperature, the concentration of

precursors, and presence of water and fat in the raw product (Janoszka and others 2009). The

amount of HCAs formed increases with increasing temperature and time (Knize and others 

1994). High cooking loss is related to the formation of large amounts of HCAs (Knize and others

1994, Skog and others 1995), and the amount of cooking loss during cooking depends on several

factors including the muscle tension and direction of muscle fibers (Pais and others 1999). Many

cooking methods, including frying, roasting, smoking, broiling, and baking have been reported to

induce HCA formation, and the type HCAs formed can be different for various cooking methods

(Chen and Chiu 1998). For example, IQ, MeIQx, PhIP were detected in broiled beef, whereas

MeIQx and DiMeIQx were detected in fried ground beef (Starvic 1994).  

The studies on HCA levels in cooked meat products have yielded inconsistent results, and

there are gaps in the available HCA data. It is difficult to directly compare results between studies

because of the differences in food items, cooking procedures, and food preparation. In some

previous studies, samples were cooked at high temperature or for a long time; these cooking

conditions exceed those needed to produce acceptable cooked meat products (Murkovic and

others 1997, Pais and others 1999). Reports from some previous studies did not include the

information on internal temperature of the cooked samples (Murkovic and others 1997, Oz and

others 2007, Jo and others 2008, Janoszka and others 2009). Internal temperature is usually used

to evaluate the safety of cooked meat products. Collecting this type of data would allow
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researchers to better monitor HCA levels in meat products cooked under normal household

conditions and develop more accurate estimates of human HCA exposure. The main objective of

the study was to determine HCA contents of the major categories of cooked meat products

prepared with various cooking methods that are preferred by U.S. meat consumers. These data can

be combined with food consumption survey data to estimate exposure to HCAs due to meat

consumption.

       

MATERIALS AND METHODS

Chemicals

The HCA standards IQ (2-amino-3-methyl-imidazo [4,5-f]quinoline), IQx (2-amino-3-

methyl-imidazo [4,5-f]quinoxaline), MeIQ (2-amino-3,4-dimethyl-imidazo [4,5-f]quinoline),

MeIQx (2-amino-3,8-dimthylimidazo [4,5-f]quinoxaline), 4,8-DiMeIQx (2-amino-3,4,8-trimethyl-

imidazo [4,5-f]quinoxaline), TriMeIQx (2-amino-3,4,7,8-tetramethyl-imidazo [4,5-f]quinoxaline),

and PhIP (2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine were obtained from Toronto

Research Chemicals (Toronto, Canada). Ammonium acetate and triethylamine were purchased

from Aldrich Chemicals (Milwaukee, WI, USA). Phosphoric acid was obtained from Sigma

Chemicals (St. Louis, MO, USA). Deionized water was processed by a Sybron/Branstead PCS

unit (Barnstead/Thermolyne, Dubuque, IA, USA). The solid-phase extraction Extrelut NT 20 

columns and diatomaceous earth refill material were purchased from VWR International (Bristol,

CT, USA). Bond Elut propyl-sulfonic acid (PRS) cartridges, C-18 cartridges, and coupling 

adaptors were purchased from Varian Sample Preparation (Harbor City, CA, USA).

Trichloroacetic acid, diacetyl, 1-napthol, and NaOH were obtained from Sigma Aldrich (St. Louis,

MO, USA). Solvents and chemicals such as acetonitrile (HPLC grade), methanol (HPLC grade),
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and sodium hydroxide (ACS-grade) were purchased from Fisher Scientific (Fairlawn, NJ, USA).  

Fresh meat samples

The following fresh meat samples were purchased from local grocery stores: consisting of

beef (top loin, round tip, and ground beef), pork (top loin, ground pork, and bacon), chicken

(breast without skin, breast with skin, thigh without skin, and thigh with skin), and fish (catfish,

salmon, and tilapia).

  

Chemical analyses

 The pH was measured according to the method of Jang and others (2008). Five grams of

fine ground sample was added to 45 mL of distilled water and blended for 30 s at medium speed

in a Waring blender (Waring Laboratory, Torrington, CT, USA). The pH of each sample was

measured with an Accumet AP115 portable pH meter (Fisher, Pittsburgh, PA, USA).

Fat and moisture for each sample were determined by rapid microwave drying and nuclear

magnetic resonance using the CEM Smart Trac system (CEM Corporation, Matthews, NC, USA).

Crude protein was determined with a LECO FP-2000 protein analyzer (Leco Corp, St Joseph, MI,

USA).

Creatine content was determined according to the method described by Polak and others

(2009) with modifications. A 0.25-g finely ground sample was homogenized for 5 min at 9500

rpm  (IKA, Ultra-Turrax T18, Wilmington, NC, USA) in 100 mL trichoroacetic acid (30 g/L in

distilled water), and then the samples were filtered through Whatman #4 filter paper. Twenty

milliliters of the filtrate was defatted with 10 mL diethylether, and then samples were shaken
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vigorously and allowed to stand for 10 min to separate the phases. After the phases were

separated, 4 mL of defatted extract (bottom layer) was mixed with 2 mL of diacetyl (0.2 g/L in

distilled water) and 2 mL of 1-napthol (25 g/L in 20 g/L of sodium hydroxide solution). The

mixture heated for 5 min at 40 °C. Each sample’s absorbance was measured at 520 nm against a

reagent blank. The creatine content was expressed as milligrams per gram of meat sample. The

chemical analyses of raw meat samples are summarized in Table 14.    

Cooking procedure and cooking loss 

Fresh meat products were removed from refrigerator and allowed to approach room

temperature before they were cooked (Infrared thermometer model ST20XE, Raytek, Santa Cruz,

CA, USA). Spear-point thermocouple temperature probes were inserted horizontally to the

midpoint of samples, and temperature was monitored with a data logger (USB-TC model,

Measurement Computing, Norton, MA, USA). Each meat sample was cooked as described in

Table 15. All meats were cooked one sample at a time, except for fried bacon, which was cooked

three slices at a time. No salt, spice, food additive, or oil were used in the cooking procedures.

Cooked samples were allowed to cool at room temperature for approximately 30 min, and then

cooking loss was determined using the following equation:

% cooking loss    =    [(before cook weight - after cook weight)/before cook weight] × 100
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Table 14. Chemical analyses of pH, moisture, fat, protein, and creatine in uncooked meat samples

Sample                          pH                  Moisture (%)     Fat (%)       Protein (%)     Creatine (mg/g)

Beef Top loin  5.62 ± 0.05  69.32 ± 0.83 7.25 ± 0.01  21.29 ± 0.18 2.93 ± 0.06 

Round tip 5.47 ± 0.04  71.21 ± 1.22  4.61 ± 2.27  22.50 ± 0.64 2.95 ± 0.23  

Ground beef 5.89 ± 0.04  69.79 ± 0.79   9.22 ± 1.46  19.66 ± 0.54 2.53 ± 0.09  

Pork Top loin 6.01 ± 0.36 75.07 ± 0.45  7.73 ± 0.32 20.90 ± 1.01  1.88 ± 0.69 

Ground pork 6.23 ± 0.08 60.12 ± 1.15  21.42 ± 0.59 15.48 ± 0.10 1.79 ± 0.14  

Bacon 6.71 ± 0.05 37.74 ± 2.14  47.99 ± 0.16 11.83 ± 1.15 1.23 ± 0.33  

Chicken Breast meat 6.19 ± 0.16 74.63 ± 0.62  4.87 ± 0.71 23.37 ± 0.25 2.21 ± 0.17  

Breast skin 6.35 ± 0.07 37.06 ± 3.56  53.67 ± 4.36 11.04 ± 1.56 1.02 ± 0.16   

Thigh meat 6.70 ± 0.10 74.44 ± 1.47  4.58 ± 0.64 19.85 ± 0.54 2.51 ± 0.07 

Thigh skin 6.64 ± 0.04 37.36 ± 2.47  52.98 ± 3.80 9.04 ± 1.29 1.18 ± 0.22  

Fish Catfish 6.94 ± 0.11 77.98 ± 0.39  4.99 ± 0.13  15.49 ± 0.13 2.81 ± 0.15 

Salmon 6.80 ± 0.05 78.66 ± 2.91 1.12 ± 1.11 18.21 ± 2.71 2.66 ± 0.23 

Tilapia 7.91 ± 0.14 82.03 ± 2.64 1.07 ± 1.02 15.72 ± 1.01 1.80 ± 0.12 

Each value is represented as mean ± standard deviation (n = 3).
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Table 15. Cooking description 

Cooking

Method

Food item Description

Frying Beef, pork,
chicken, fish

Meat was fried in a Teflon-coated frying pan without
adding oil at a surface temperature of 204 °C. Meat was
fried, turned once, and removed from the pan when the
desired temperature was reached.

Broiling Beef Oven was preheated to 232 °C (monitored with oven
thermometer). The meat was placed on a broiler pan to
keep the broiled beef out of the drippings. The meat was
removed when a final internal temperature was achieved. 

Baking Beef, Pork, Fish Oven was preheated to 177 °C (monitored with oven
thermometer). The meat was placed on a baking pan. The
meat was removed when a final internal temperature was
achieved. 

 The cooking information for each type of meat consists of the data for uncooked meat

(weight of raw meat, thickness of raw meat), and cooking data (desired cooking internal

temperature, cooking temperature, surface cooking time, and cooking loss); this information is

summarized in Table 16. After samples were cooled at room temperature, they were refrigerated

overnight. For the samples of chicken with skin, the skin was removed from the muscle.

Approximately 2 mm of the surface was removed from chilled meats with a commercial-grade

meat slicer (Cebela’s commercial grade slicer, 1/3 hp, Sidney, NE, USA). The meat surface was

ground and homogenized with a food processor (KitchenAid, model KFP 750), and refrigerated at

4 °C, and extraction of HCAs in meat samples was performed on the next day.  
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Table 16. Cooking conditions and cooking loss in cooked meat samples

Meat
type

Types/cuts of meat Type of
cooking

Raw meat
(g)

Thickness,
raw meat

(cm)

Desired
internal

temperature
(°C)

Surface
cooking

temperature
(°C)

Cooking
time (min
per side)

Cooking loss
(%)

Beef Top loin Frying 
(medium rare)

350-400 3.8 57 204 6 17.50 ± 1.84 

Top loin Frying 
(well done)

350-400 3.8 71 204 12 31.86 ± 1.66 

Top loin Broiling 
(medium rare)

350-400 3.8 57 232 5 23.57 ± 1.66 

Top Loin Broiling
(well done)

350-400 3.8 71 232 10 33.81 ± 2.19 

Round tip Baking
(well done)

650-680 9.0 71 177 80 (total) 30.75 ± 3.75 

Ground beef Frying 140-160 2.3 71 204 6 35.30 ± 2.35 

Pork Top loin Frying 230-250 2.3 71 204 8 26.12 ± 1.70 

Top loin Baking 650-680 9.0 71 177 70 (total) 26.48 ± 2.24 

Ground pork Frying 130-135 2.3 71 204 6 22.20 ± 1.93 

Bacon Frying 18-25 0.3 - 172 3 71.94 ± 1.26 



99

Table 16. Continued

Meat
type

Types/cuts of meat Type of
cooking

Raw meat
(g)

Thickness,
raw meat

(cm)

Desired
internal

temperature
(°C)

Surface
cooking

temperature
(°C)

Cooking
time (min
per side)

Cooking loss
(%)

Chicken Breast without skin Frying 250-280 2.5 74 204 10 27.88 ± 1.26 

Breast with skin Frying 280-310 2.5 74 204 10 24.39 ± 4.71 

Thigh without skin
(bone-in)

Frying 140-180 2.5 74 204 7 24.96 ± 3.09 

Thigh with skin
(bone-in)

Frying 150-200 2.5 74 204 7 26.74 ± 2.99 

Fish Catfish Frying 170-190 1.8 63 204 6 27.28 ± 2.46 

Salmon Frying 180-200 1.8 63 204 6 21.60 ± 2.39 

Tilapia Frying 140-160 1.5 63 204 6 23.65 ± 1.84 

Catfish Baking 170-190 1.8 63 177 15 (total) 20.68 ± 2.45 

Salmon Baking 180-200 1.8 63 177 14 (total) 18.41 ± 2.24 

Tilapia Baking 140-160 1.5 63 177 12 (total) 18.55 ± 3.73 
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Extraction and analysis of HCAs    

The HCAs were extracted from meat samples and purified using the method described by

Gross and Grüter (1992) except that ethyl acetate was used as the extraction solvent (Santos and

others 2004, Smith and others 2008). Each sample (3 g) was homogenized with 12 mL of 1 M

NaOH in a commercial Waring blender (Fisher, Pittsburgh, PA, USA). The homogenate was then

mixed with 24 g of Extrelut refill material (Merck, Darmstadt, Germany) and poured into an

empty Extrelut 20 column. For determination of recovery, selected homogenate samples were

spiked with 50 ng of each of the HCA standards. The HCAs were eluted from the Extrelut

columns with 60 mL ethyl acetate into a PRS cartridge conditioned with 7 mL of ethyl acetae. The

PRS cartridge was then rinsed with 6 mL of 0.1 M HCl, 15 mL of methanol/0.1 M HCl (45:55

v/v), and 2 mL of distilled water to wash out the nonpolar HCAs and other impurities. The HCAs

were eluted from the PRS cartridge with 20 mL of 0.5 M ammonium acetate pH 8.5 into 100-mg

C-18 cartridges preconditioned with 5 mL of methanol followed by 5 mL of distilled water. The

HCAs were then eluted from the C-18 cartridge with 1 mL of methanol/ammonium hydroxide

(9:1, v/v) into the vial. The HCA extract was concentrated until dry under a stream of nitrogen and

dissolved in 25 µL of methanol before it was injected into the HPLC. The HCAs were analyzed

on an HP1090A Series II HPLC (Agilent Technologies, Santa Clara, CA, USA) coupled with a

photodiode array UV-visible detector (HP 1040) and an HP 1046A programmable fluorescence

detector. The HCA separation was performed on a reversed-phase TSK gel ODS-80 TM column

(25 cm × 4.6 mm, 5 µm, 80 Å, Tosohass, Montgomeryville, PA, USA) with a mobile phase of

0.01 M triethylamine pH 3.6 (A) and acetonitrile (B). The HCA separation was achieved using a

linear gradient that started with 95% A and 5% B and changed to 75% A and 25% B in 30 min at
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a flow rate of 1 mL/min and a column temperature of 40 ºC. After 30 min, the mobile phase

returned to its original ratio (95 % A, 5 % B) for 10 min to allow the column to reequilibrate

before the next injection. The UV detector was set at 252 nm for IQ, IQx, MeIQ, MeIQx, and

DiMeIQx, and the fluorescence detector was programmed accordingly to the excitation/emission

wavelengths of 229 and 437 for PhIP. Data were analyzed with an HP 9000 series 300

Chemstation. The identities of HCA peaks were confirmed by comparing the retention times and

the UV absorbance spectrum of each peak with library spectra acquired from standard solutions.

Quantitation, recovery, and spectral matching

The HCA concentrations were quantitated by the internal standard method (Lindsay 1992).

A known amount of TriMeIQx (used as internal standard) was added to samples before they were

injected into the HPLC. The relative responses (R) of HCA standards were calculated using the

following equation:

s sR = (C/A)/(C /A )

where C = Concentration of HCA standards

A = Peak area for HCA standards

sC = Concentration of internal standard

sA = Peak area of internal standard

The HCA concentrations in samples were calculated using the following equation:

u u s sC = A  × R × (C N/A N)

uwhere C = Concentration of HCAs in sample

uA = Peak area of HCAs in sample

sC N = Concentration of internal standard in sample
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sA N = Peak area of internal standard in sample

The limits of detection (LOD) and limits of quantification (LOQ) for the HCAs were 0.15

ng/g and 0.45 ng/g for IQ, IQx, MeIQ, MeIQx, DiMeIQx and PhIP. The HCA identities were

verified in the cooked meat extracts by online UV spectral matching to a spectral library made

from pure standards. Match factors typically were observed at 95% or greater (Puangsombat and

Smith 2010). Average recoveries for the HCAs were 72% for IQx, 61% for IQ, 63% for MeIQ,

68% for MeIQx, 60% for DiMeIQx, and 65% for PhIP. The recoveries of MeIQx and PhIP are in

agreement with previous reports from this laboratory (Tsen and others 2006, Smith and others

2008) and from Cheng and others (2007).     

Statistical analyses

The experimental design was a randomized complete block with repeated measurements,

and each experiment was replicated four times. Duplicate measurements taken on the same

experimental unit were averaged for statistical analysis. All statistical significance tests were

analyzed using SAS version 9.1 (SAS Institute Inc., Cary, NC, USA). Data were examined by

analysis of variance (ANOVA) followed by Tukey’s multiple comparison test (Tukey 1993), and

means were considered significant at p < 0.05.

RESULTS AND DISCUSSION

The choice of meat samples in our study was based on a previous internet-based survey of

U.S. consumers’ preference for method of cooking and degree of doneness of meat and fish. The

survey was conducted by Exponent, Inc. developed to assess customer’s HCA intake (unpublished

data). Meat samples selected for the present study included beef (fried beef and broiled beef
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cooked to medium-rare and well-done, baked beef, and fried beef patty), pork (fried pork, baked

pork, fried pork patty, and fried bacon), chicken (fried-chicken breast and fried-chicken thigh with

skin and without skin), and fish (fried and baked catfish, salmon, and tilapia).

 

Chemical analyses

Table 14 summarizes the results of chemical analyses in the selected fresh meat products.

The pH of beef samples (5.47 to 5.89) was lower than that of pork samples (6.01 to 6.71) and

chicken samples (6.19 to 6.70); fish samples had the highest pH (6.94 to 7.91). The moisture level

of fresh meat products ranged between 60 to 82%, except in the high fat parts (bacon, breast skin,

and thigh skin), which contained low moisture levels (approximately 37%). The fat levels of raw

meat samples ranged from 1.07 to 53.67%; tilapia contained the lowest amount of fat and skin of

chicken breast contained the highest amounts of fat. The protein levels of raw meat samples

ranged from 9.04 to 23.37%; chicken thigh skin contained the lowest amount of protein, and skin

of chicken breast contained the highest amount of protein. Creatine in the uncooked meat samples

ranged from 1.02 to 2.95 mg/g. There was not much difference in creatine level among these

samples. 

Identification and quantification of HCAs

Because consumption of undercooked meat and fish has been linked epidemiologically to

foodborne outbreaks, the U.S. Department of Agriculture Food Safety and Inspection Service

(USDA-FSIS 1998) has established guidelines for both consumers and the food service industry

for safe handling and preparation of cooked meat and fish. USDA-FSIS recommends a minimum
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instantaneous internal cooking temperature of 63 °C (145 °F) for beef steak and fish, 71 °C (160

°F) for pork and ground beef, and 74 °C (165 °F) for chicken. According to the survey by

Exponent Inc. (unpublished data), people mostly consume meat and fish that are cooked until their

internal temperatures reach the minimum temperature recommended by USDA-FSIS, except for

steak and bacon. Two doneness levels of steak, medium-rare and well-done, are most often

consumed. In our study, all samples except beef steak and bacon were cooked until their internal

temperature reached the temperatures recommeded by USDA-FSIS. Fried and broiled beef steak

samples were cooked until their internal temperature reached 57 °C (135 °F) for medium-rare and

71 °C (160 °F) for well-done. Fried bacon was cooked at 172 °C for 3 min on each side (three

slices at a time) as recommended to minimize carcinogenic nitrosamine level (Ikins and others

1986). We investigated the presence of six HCAs (IQ, IQx, MeIQ, MeIQx, DiMeIQx and PhIP)

that can be found in cooked meat products and have been commonly studied and reported in many

papers. Level of HCAs in each sample was analyzed the outer layer (2 mm) of meat samples to

increase analysis sensitivity because HCAs are mainly present on the outer surface (Busquets and

others 2004). The amount of HCAs on the surface was then used to calculate the amount of HCAs

in the whole cooked meat samples (Busquets and others 2004). The values were corrected for

incomplete recovery. To our knowledge, this is the first report of HCA contents in food samples

commonly consumed in the U.S. and prepared by domestic cooking procedures to internal

temperatures recommended by USDA-FSIS to eliminate foodborne illness. 

All cooked meat products in the present study are shown in Figures 14 to 17. The

quantitative analyses of HCAs in cooked meat products are summarized in Tables 17 to 21. The

total amount of HCAs ranged from 1.72 ng/g (medium-rare broiled beef) to 17.59 ng/g (fried
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bacon). In all meat samples, PhIP was found at the highest level (1.49 to 10.89 ng/g), followed by

MeIQx (not detected to 4.00 ng/g), DiMeIQx (not detected to 3.57 ng/g), and IQx (not detected to

3.11 ng/g); neither IQ nor MeIQ was found in any sample. The highest level of PhIP was found in

fried tilapia (10.89 ng/g), followed by fried pork (9.20 ng/g). IQx was not found except in fried

bacon (3.11 ng/g) and baked fish (0.38 to 0.85 ng/g).

We investigated the effect of HCA formation for three types of fried meat (beef, pork,

chicken) and the results of the HCA quantitative determinations are summarized in Table 17. All

of these samples contained MeIQx, DiMeIQx, and PhIP. Although the target internal temperatures

of the meat samples fried at 204 °C were slightly different, total HCAs in fried pork (13.91 ng/g,

PhIP accounting for 9.20 ng/g) were significantly higher than those in fried beef (8.92 ng/g, PhIP

accounting for 5.27 ng/g) and fried chicken (7.06 ng/g, PhIP accounting for 6.06 ng/g). There was

no significant differences in total HCAs between fried beef and fried chicken (p > 0.05). This is in

agreement with results of Skog and others (1997) who reported higher amounts of total HCAs in

fried pork (21.3 ng/g) than fried chicken breast (10.7 ng/g) when cooked at 225 °C. However, our

result is not in agreement with data from Pais and others (1999), who reported that total HCAs

were higher for chicken (38.2 ng/g) than for pork (8.6 ng/g) and beef (2.83 ng/g) when cooked at

275 °C for 30 min. In contrast, Iwasaki and others (2010) reported a lower amount of total HCAs

in fried chicken (1.01 ng/g), fried pork (0.5 ng/g), and fried beef (0.1 ng/g) when cooked to well-

done (internal temperature 75 °C for chicken, 88 °C for pork, and 78 °C for beef). The

inconsistent results could be due to different cooking methods, different weight/thickness of meat 
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Figure 14. Fried breast without skin (a), fried breast with skin (b), fried thigh without skin (c), and

fried thigh with skin (d). 

Figure 15. Medium-rare fried beef (a), well-done fried beef (b), medium-rare broiled beef (c), and

well-done broiled beef (d).
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Figure 16. Oven baked beef (a), oven baked pork (b), fried pork (c), fried beef patty (d), fried pork

patty (e), and fried bacon (f).

Figure 17. Fried catfish (a), fried salmon (b), fried tilapia (c), baked catfish (d), baked salmon (e),

and baked tilapia (f).
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Table 17. Heterocyclic amine content (MeIQx, DiMeIQx, PhIP, and total) of fried meat samples

Cooked itmes Internal
temperature

 (EC)

Heterocyclic amines (ng/g)

   MeIQx         DiMeIQx       PhIP                Total

Fried beef (well done)           71 3.33 ± 0.38 0.33 ± 0.38 5.27 ± 0.81 8.92 ± 1.08 b

Fried pork           71 2.39 ± 0.50 2.33 ± 0.52 9.20 ± 1.20 13.91 ± 1.81 a 

Fried chicken (breast without skin)           74 0.46 ± 0.34 0.54 ± 0.19 6.06 ± 0.10 7.06 ± 0.56  b

Each value is represented as mean ± standard deviation (n = 4). Means with different superscript letters within the same column are
significantly different at p < 0.05.
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Table 18. Heterocyclic amine content (MeIQx, DiMeIQx, PhIP, and total) of fried chicken samples

Cooked items Heterocyclic Amines (ng/g)

   MeIQx                   DiMeIQx                  PhIP                      Total

Breast without skin meat 0.46 ± 0.34 0.54 ± 0.19 6.06 ± 0.10 7.06 ± 0.56 a

with skin meat 0.23 ± 0.15 0.05 ± 0.01 2.61 ± 0.63 2.89 ± 0.72  b

skin 1.61 ± 0.72 0.93 ± 0.50 4.52 ± 0.37 7.06 ± 1.43  a

meat and skin 0.31 ± 0.15 0.10 ± 0.02 2.72 ± 0.60 3.13 ± 0.67 b 

Thigh without skin meat 0.09 ± 0.05 0.06 ± 0.04 5.43 ± 0.43 5.58 ± 0.38 a

with skin meat nd nd 2.06 ± 0.04 2.06 ± 0.04  b

skin 0.47 ± 0.18 0.24 ± 0.14 4.16 ± 0.42 4.87 ± 0.65 a 

meat and skin 0.05 ± 0.03 0.02 ± 0.02 2.25 ± 0.10 2.32 ± 0.14  b

Each value is represented as mean ± standard deviation (n = 4). Means with different superscript letters within the same column are
significantly different at p < 0.05.
nd = not detected
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Table 19. Heterocyclic amine content (MeIQx, DiMeIQx, PhIP, and total) of fried beef and broiled beef 

Cooked items Heterocyclic amines (ng/g)

MeIQx DiMeIQx PhIP Total

Fried beef Medium rare 1.75 ± 1.43 0.04 ± 0.07 0.94 ± 0.70 2.73 ± 2.01 c

Well done 3.33 ± 0.38 0.33 ± 0.38 5.27 ± 0.81 8.92 ± 1.08  a

Broiled beef Medium rare 0.08 ± 0.07 0.06 ± 0.04 1.58 ± 0.36 1.72 ± 0.43  c

Well done 0.12 ± 0.07 0.11 ± 0.02 5.63 ± 0.95 6.04 ± 0.97  b

Each value is represented as mean ± standard deviation (n = 4). Means with different superscript letters within the same column are
significantly different at p < 0.05.
nd = not detected
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Table 20. Heterocyclic amine content (IQx, MeIQx, DiMeIQx, PhIP, and total) of fried beef and

pork patties, baked beef and pork, and fried bacon

Cooked items Heterocyclic amines (ng/g)

IQx MeIQx DiMeIQx PhIP Total

Fried beef patty nd 3.11 ± 0.69 nd 2.35 ± 0.30 5.46 ± 0.78 

Fried pork patty nd 1.09 ± 0.16 1.24 ± 0.75 1.80 ± 0.10 4.12 ± 0.72 

Baked beef nd 0.33 ± 0.05 0.53 ± 0.12 1.49 ± 0.10 2.34 ± 0.11 

Baked pork nd 0.23 ± 0.06 0.86 ± 0.24 2.20 ± 0.12 3.29 ± 0.36 

Fried bacon   3.11± 1.38 4.00 ± 1.46 3.57 ± 1.12 6.91 ± 2.06 17.59 ± 5.18 

Each value is represented as mean ± standard deviation (n = 4). Means with different superscript
letters within the same column are significantly different at p < 0.05.
nd = not detected

samples, and different ways of preparing meat before cooking, as well as the efficiencies of heat

transfer. The high level of HCAs in the fried pork in the present study is an important finding

because of the three meats studied, the consumption of pork is growing the fastest (1.6 %

annually) (FAPRI 2010 U.S. and world agricultural outlook 2010).

Table 18 shows the HCA levels of cooked chicken samples. MeIQx, DiMeIQx, and PhIP

were detected in all chicken samples and the values were in agreement with the HCA found in

fried chicken reported by Solyakov and Skog (2002) and Liao and others (2010). All chicken

samples had more PhIP than MeIQx and DiMeIQx. For the chicken samples without skin, total

HCA levels in the chicken breasts (7.06 ng/g) were higher than those in the chicken thighs (5.58

ng/g); this may be because the weight of raw chicken breast (250 to 280 g) was higher than 
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Table 21. Heterocyclic amine content (IQx, MeIQx, DiMeIQx, PhIP, and total) of fried and baked

fish

Cooked items Heterocyclic amines (ng/g)

IQx MeIQx DiMeIQx PhIP Total

Fried Catfish nd 2.31 ± 0.10 2.72 ± 0.08 10.31 ± 0.83 15.35 ± 0.78 a

Salmon nd 2.05 ± 0.50 1.93 ± 0.12 9.11 ± 1.25 13.09 ± 0.90 a

Tilapia nd 3.11 ± 0.42 2.29 ± 0.35 10.89 ± 1.35 16.29 ± 1.98 a

Baked Catfish 0.85 ± 0.45 2.95 ± 0.70 0.51 ± 0.03 4.40 ± 0.64 8.70 ± 1.61 b

Salmon 0.38 ± 0.19 2.03 ± 0.85 1.66 ± 0.77 4.34 ± 0.48 8.41 ± 1.09  b

Tilapia 0.52 ± 0.21 1.27 ± 0.16 0.29 ± 0.23 5.67 ± 0.44 7.85 ± 0.65  b

Each value is represented as mean ± standard deviation (n = 4). Means with different superscript
letters within the same column are significantly different at p < 0.05.
nd = not detected

that of raw chicken thigh (140 to 180 g), therefore, a longer cooking time was needed for chicken

breast to reach the same internal temperature of 74 °C, leading to higher cooking loss (Table 16)

and increasing the level of HCAs. This result is in agreement with data by Pais and others (1999),

who reported that chicken breast had more total HCAs (38.2 ng/g) than chicken thigh (8.07 ng/g).

For the chicken samples with skin (both breasts and thighs), the meat and skin were analyzed

separately. MeIQx, DiMeIQx, and PhIP levels in the skin were much higher than the levels

detected in the muscle (p < 0.05). Total HCAs were 7.07 ng/g for skin and 2.89 ng/g for meat in

chicken breast and 4.87 ng/g for skin and 2.07 ng/g for meat in chicken thigh. The cooking loss of

chicken breast with skin (24.39%) was lower than that of chicken breast without skin (27.88%);

the cooking loss of chicken thigh with skin (26.74%) was lower than that of chicken thigh without

skin (24.96%) (Table 16). This suggests that the skin present at the surface acts as an insulating
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layer for the meat and can help retain moisture during frying, thus decreasing HCA formation.

This is in agreement with results of Chiu and others (1998) and Solyakov and Skog (2002). The

high level of HCAs in the skin can be explained by the direct exposure to the cooking surface. In

addition, the higher fat content in skin might affect HCA formation. Lipids are known to conduct

heat more efficiently into the product, which favors the formation of HCAs (Johansson and

Jägerstad 1994). It is possible that lipids, and perhaps lipid oxidation, form products that may

enhance the formation of certain Maillard reation products and lead to an increased amount of

HCA formation (Barnes and others 1983, Johansson and Jägerstad 1994). Removing the skin

portion before consumption could significantly reduce total HCA levels from 7.06 to 2.89 ng/g in

chicken breast (p < 0.05), and from 5.58 to 2.07 ng/g in chicken thigh (p < 0.05). Although

chicken skin contains a high level of HCAs, the weight of skin portion is much less than meat

portion. The total HCA levels in meat cooked with skin (3.13 ng/g in breast and 2.33 ng/g in

thigh) were still significantly lower than the levels in meat cooked without skin (7.06 ng/g in

breast and 5.58 ng/g in thigh) (p <0.05). These results agree with studies by Gašperlin and others

(2009), who reported a lower amount of total HCAs in chicken with skin (3.49 ng/g) than in

chicken without skin (4.75 ng/g) grilled at a temperature of 220 °C to an internal temperature of

82 °C, and Chiu et al. (1998), who reported a lower amount of total HCAs in chicken with skin

(6.67 ng/g) than in chicken without skin (12.71 ng/g) fried at 200 °C for 15 min. Taken together,

these results indicated that presence of skin reduces HCA formation. However, it is still best to

remove skin before consuming chicken to minimize HCA intake.    

Table 19 shows the HCA levels of fried beef and broiled beef cooked to medium-rare

(internal temperature 57 °C) and well-done (internal temperature 71 °C). MeIQx, DiMeIQx, and
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PhIP were detected in fried and broiled beef. There was a dramatic increase in total HCAs

(approximately 3.5-fold) for both fried beef and broiled beef with the increase in cooking time

(degree of doneness) from medium-rare to well-done (from 2.73 ng/g to 8.92 ng/g for fried beef

and from 1.72 ng/g to 6.04 ng/g for broiled beef) (p < 0.05). We observed approximate increases

of 2-fold for MeIQx level, 8-fold for DiMeIQx, and 6-fold for PhIP when comparing medium-rare

with well-done fried beef. This result is in agreement with studies by Skog and others (1997) and

Janoszka and others (2009). When cooking time increases, more proteins are denatured, pressing

more water, which contains water-soluble HCA precursors, out of the protein network to the meat

surface. Thus more of these precursors are transferred to the surface for HCA formation (Skog and

others 1997, Persson and others 2008). Different cooking methods affected total HCA formation. 

Total HCAs in fried beef (2.73 ng/g) were slightly higher than those in broiled beef (1.72

ng/g) for medium-rare samples, but the difference was not significant (p > 0.05). Total HCAs of

fried beef (8.92 ng/g) were significantly higher than those of broiled beef (6.04 ng/g) for well-

done samples (p < 0.05). Cooking time may have more influence on HCA formation than cooking

temperature because the cooking temperature used for broiling (232 °C) was higher than that used

for frying (204 °C); however, the cooking time used for broiling was less than that used for frying.

Also, in oven broiling, the heat is transferred to the meat by air, this produces fewer HCAs than

frying, in which the meat is in direct contact with a heated pan (Skog and others 1997). This result

clearly indicates that controlling cooking temperature is a way to minimize HCA formation.

The HCA quantitative determination in fried beef and pork patties, baked beef and pork,

and fried bacon is summarized in Table 20. The level of total HCAs did not differ much between

fried beef patty and fried pork patty, and between baked beef and baked pork. Baked beef had a
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lower amount of HCAs than fried and broiled beef because baking is done at a lower temperature

and because a higher weight of raw beef was used for baking. The level of HCAs in fried bacon

was the highest of all meat samples in the present study. The total amount of HCAs in fried bacon

was 17.59 ng/g (6.91 ng/g PhIP, 4.00 ng/g MeIQx, 3.57 ng/g DiMeIQx, and 3.11 ng/g IQx). The

amount of HCAs in fried bacon in the present study was much higher than that of fully cooked

bacon, ready-to-eat meat product included in our previous studies. Fully cooked bacon (heated in

a microwave for 30 s according to package direction) had only 0.91 ng/g HCAs (0.14 ng/g PhIP,

0.14 ng/g MeIQx, 0.60 ng/g IQ, and 0.04 ng/g IQx). Cooking loss of fried bacon in the present

study (71.94%) was much higher than that of fully cooked bacon (20.91%). This may explain the

high level of HCAs, especially PhIP, in fried bacon compared with fully cooked bacon. PhIP

formation increases dramatically in the cooking conditions that generate high cooking loss

(Messner and Murkovic 2004). The amount of cooking loss and total HCAs of fried bacon in the

present study agree with results of a study by Johansson and Jägerstad (1994), who reported 50.3

to 71.4% cooking loss and 16.7 ng/g total HCAs of bacon fried at 150 °C for 5 min per side.   

Table 21 summarizes the results of HCA quantitative determination in fried and baked fish

(catfish, salmon, and tilapia). There was no significant difference in amount of HCAs among the

three fish species (p > 0.05). Concentrations of MeIQx, DiMeIQx, and PhIP in fried fish (catfish,

salmon, and tilapia) were similar to those reported earlier for fried mackerel (Gu and others 2002)

and fried salmon (Iwasaki and others 2010). For all three fish species, total HCAs in fried fish

(13.09 to 16.29 ng/g) were significantly higher than those in baked fish (7.85 to 8.70 ng/g) (p <

0.05); however, the small amounts of IQx (0.38 to 0.85 ng/g) were detected only in baked fish

samples.
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The total amount of HCAs can be used to order these cooked meat products from low to

high. Low levels of total HCAs (less than 5 ng/g) were found in baked beef (2.34 ng/g), fried

chicken thigh with skin (2.33 ng/g), medium-rare fried beef (2.73 ng/g), fried chicken breast with

skin (3.13 ng/g), baked pork (3.29 ng/g), and fried pork patty (4.12 ng/g). Intermediate levels of

total HCAs (5 to 10 ng/g) were found in fried beef patty (5.46 ng/g), fried chicken thigh without

skin (5.58 ng/g), well-done broiled beef (6.04 ng/g), fried chicken breast without skin (7.06 ng/g),

baked fish (8.32 ng/g), and well-done fried beef (8.92 ng/g). High levels of total HCAs (higher

than 10 ng/g) were found in fried pork (13.91 ng/g), fried fish (14.91 ng/g), and fried bacon (17.59

ng/g). The high levels of HCAs in some cooked meat products in the present study raises several

interesting issues related to HCA intake and cancer aetiology. Data from the National Health and

Nutrition Examination Survey 2003-2006 (unpublished data), which estimated meat consumption

of U.S. populations, indicated that chicken breast without skin was the most frequently consumed

meat item in the U.S. (9.57 g/day), followed by beef steak (8.52 g/day), pork chops (2.89 g/day),

and bacon (1.39 g/day). Thus, according to our study, the high levels of HCAs found in fried

bacon and fried pork and the intermediate levels of HCAs found in fried chicken breast without

skin and well-done fried beef steak indicate that people consuming these products frequently have

a high exposure to HCAs that could lead to the possibility of an increased risk of cancers.  
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CONCLUSIONS

The HCA content in cooked meat depends on type of meat, cooking methods, and cooking

time and temperature. Controlling cooking temperature can minimize the HCA formation. Our

data can help food safety professionals recommend cooking methods to be used at home or in the

food industry to reduce HCA formation in cooked meat products, will provide important

information for use in estimating HCA exposure, and will facilitate investigation of the role of

HCAs in the etiology of cancer of population in the U.S.
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PART IV. INHIBITION OF HETEROCYCLIC AMINE FORMATION IN BEEF

PATTIES BY ETHANOLIC EXTRACTS OF ROSEMARY 1,2

ABSTRACT

 Heterocyclic amines (HCAs) are mutagenic compounds formed during cooking muscle

foods at high temperature. Inhibition of HCAs by rosemary extracts were evaluated with beef

patties cooked at 191 ºC (375 ºF) for 6 min each side and 204 ºC (400 ºF) for 5 min each side.

Five rosemary extracts extracted with different solvents were used in this study: extract 100W

(100% water), 10E (10% ethanol), 20E (20% ethanol), 30E (30% ethanol), and 40E (40%

ethanol). The five extracts were directly added to beef patties at three levels (0.05%, 0.2%, and

0.5%) before cooking and HCA contents were extracted and quantified. All of the patties

contained MeIQx and PhIP. There was no statistical difference in the inhibition of HCAs in the

0.05%, 0.2%, and 0.5% rosemary extracts. All rosemary extracts significantly decreased the levels

of MeIQx and PhIP at both cooking conditions. When cooking at 204 ºC (400 ºF) for 5 min each

side, rosemary extracts 10E and 20E were superior to rosemary extracts 100W, 30E, and 40E in

inhibiting HCA formation. Rosemary extract 20E showed the greatest inhibition of MeIQx (up to

91.7%) and PhIP (up to 85.3%). The inhibiting effect of rosemary extracts on HCA formation

corresponded to their antioxidant activity based on a DPPH scavenging assay. Rosemary extract

10E and 20E contain a mixture of rosmarinic acid, carnosol, and carnosic acid. It is possible that

these compounds might act synergistically in inhibiting the formation of HCAs.

1. Reproduced with permission from Puangsombat K, Smith JS. 2010. Inhibition of heterocyclic amine formation in beef patties by ethanolic

extracts of rosemary. J Food Sci 75(2): T40-T47.

2. K. Puangsombat, F. Ameri, and J. S. Smith. Effect of Rosemary Extracts on Inhibition of Heterocyclic Amines Formation in Cooked Beef

Patties. Institute of Food Technologists Annual Meeting & Food Expo. 2007. Chicago, IL. July 28-31.  #193-22
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 INTRODUCTION

Numerous strategies have been used to limit the formation of HCAs, including lowering

cooking times, lowering temperatures, and precooking food in the microwave. However, the most

promising and consistently effective treatments involve the use of various antioxidants, which

serve as free-radical scavengers because the HCAs are formed in the Maillard reaction through the

free radicals pyridine or pyrazine (Knize and others 1994). The precursors of this reaction are

creatine or creatinine, free amino acids, and reducing sugars, which are commonly compounds of

animal origin. Several synthetic antioxidants have been used to prevent the formation of HCAs as

a result of their methoxyl group, which can change into quinone-like compounds acting as free-

radical scavengers (Vitaglione and Fogliano 2004); however, some synthetic antioxidants are

believed to possess cytotoxic and carcinogenic activity (Ito and others 1983). Due to concerns

about toxicological safety of synthetic antioxidants, consumers prefer to use natural antioxidants

(Pokorný 2007). In order to inhibit the formation of HCAs in cooked beef patties, the addition of

spices (Murkovic and others 1998), spice extracts (Tsen and others, 2006), and plant

extracts/tissues (Britt and others 1998; Balogh and others 2000; Vitaglione and others 2002;

Cheng and others 2007) have effectively reduced the amount of total HCAs in the range between

50-93% relative to control. 

Rosemary (Rosmarinus officinalis Labiatae) is commonly used as a spice and a flavoring

agent in food processing for its desirable flavor and high antioxidant activity. The main

antioxidant compounds in rosemary are phenolic diterpenes, such as carnosol, rosmanol,

rosmaridiphenol, carnosic acid, and other phenolic acids, such as rosmarinic acid and caffeic acid

(Madsen and Bertelsen 1995, Cuvelier and others 1994). Among the antioxidant compounds in
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rosemary, carnosol and carnosic acid provide the most powerful antioxidant activities (Lo and

others 2002), which are similar to that of BHA and BHT (Chen and others 1992). However, the

use of rosemary as an additive is limited by the characteristic aroma; therefore, commercial

rosemary extracts are produced in order to extract the components with high antioxidant activity

while also eliminating the essential oils that give rosemary its distinctive aroma.

Rosemary extracts are commercially available in both water-soluble and oil-soluble

products as well as in liquid and powder forms. The use of rosemary extracts and oleoresin as

antioxidants in meat and meat products has been extensively studied, especially the way in which

they inhibit oxidation of both lipid and myoglobin and improve desirable sensory characteristics

and shelf-life of beef patties (Sánchez-Escalante, 2001). It has been shown that applying dried

rosemary (Murkovic and others 1998) or oleoresin rosemary (Balogh and others 2000) on beef

patties before cooking reduced 60% of the total HCAs relative to control. Tsen and others (2006)

showed that adding rosemary extracts reduced the formation of MeIQx up to 69% and PhIP up to

66% in beef patties with the effects more dramatic when cooking temperature and time increased.  

Solvent extraction is the method frequently used for preparing rosemary extracts. Selection

of solvents or solvent mixtures is an important factor and can affect the antioxidant activities of

rosemary due to the different potentials of antioxidant compounds with different polarity.  While

the antioxidant properties of rosemary are well known there is little information characterizing the

effects of the ratios of the major phenolic compounds on the inhibition of HCA formation.  The

objective of this work was to compare five rosemary extracts formulated using different ratios of

water and ethanol (100% water, 10% ethanol, 20% ethanol, 30% ethanol, and 40% ethanol) in

inhibiting HCAs formation in cooked beef patties.
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MATERIAL AND METHODS

Materials

Five rosemary extracts obtained from Mitsubishi-Kagaku Foods Corporation that were

prepared by extracting rosemary leaves with 100% water (100W), 10% ethanol (10E), 20%

ethanol (20E), 30% ethanol (30E), and 40% ethanol (40E). Dried rosemary leaves were purchased

from a local supermarket. 

The HCA standards IQ (2-amino-3-methylimidazo [4,5-f]quinoline), IQx (2-amino-3-

methylimidazo [4,5-f]quinoxaline), MeIQ (2-amino-3,4-dimethylimidazo [4,5-f]quinoline),

MeIQx (2-amino-3,8-dimthylimidazo [4,5-f]quinoxaline), and PhIP (2-amino-1-methyl-6-

phenylimidazo [4,5-b]pyridine) were obtained from Toronto Research Chemicals (Toronto,

Canada). Rosmarinic acid (97%) and carnosic acid (91%) were purchased from Sigma Aldrich

(St. Louis, MO, USA). Carnosol (96%) was purchased from A.G. Scientific (San Diego, CA,

USA).  

Ammonium acetate and triethylamine were purchased from Aldrich Chemicals

(Milwaukee, WI, USA). Phosphoric acid was obtained from Sigma Chemicals (St. Louis, MO,

USA). Deionized water was processed by a Sybron/Branstead PCS unit (Barnstead/Thermolyne,

Inc.; Dubuque, IA, USA). The solid-phase extraction Extrelut NT 20 columns and diatomaceous 

earth refill material were purchased from VWR International (Bristol Conn., USA). Bond Elut

propyl-sulfonic acid (PRS) cartridges, C-18 cartridges, and the coupling adaptors were purchased

from Varian Sample Preparation (Harbor City, Calif, USA). Solid phase microextraction (SPME)

fibers coated with 75 µm carboxen-polydimethylsiloxane (CAR-PDMS) were obtained from

Supelco (Bellefonte, PA, USA). In addition, 1,1-diphenyl-2-picrylhydrazyl (DPPH), Folin-
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Ciocalteu’s reagent, sodium carbonate, and gallic acid were obtained from Sigma (St. Louis, MO,

USA). Solvents and chemicals such as acetonitrile (HPLC grade), methanol (HPLC grade), and

sodium hydroxide (ACS-grade) were purchased from Fisher Scientific (Fairlawn, NJ, USA).

Preparation of Ground Beef Patty Samples

Fresh ground beef (10% fat) was obtained from a local supermarket in Manhattan, KS.

The five types of rosemary extract samples were added directly to 100 g ground beef at levels of

0.05%, 0.2%, and 0.5%. Control samples contained no added rosemary extracts. Each patty was

formed using a Petri dish (10 cm x 1 cm) to ensure uniformity. The patties were covered with

aluminum foil in plastic freezer bags and refrigerated overnight at 4 °C before frying. The patties

were fried in a Teflon-coated frying pan with a temperature controller (Bernant, Barrington, IL,

USA) at surface temperatures of 191 °C (375 °F) for 6 min on each side or 204 °C (400 °F) for 5

min on each side. The cooked patties were cooled at room temperature, homogenized with a food

processor (KitchenAid, model KFP 750), and refrigerated at 4 °C.  The extraction step was

performed within 24 hours after cooking. 

Comparison of Volatile Compounds in Dried Rosemary Leaves and Rosemary Extracts by

SPME-GC-MS

An amount of 0.1 g of rosemary extracts and crushed dried rosemary leaves were placed in

5 mL sealed vials. Each vial was incubated in a 60 °C water bath for 5 min. The extraction was

carried out with a CAR-PDMS fiber. The fiber was immersed in the headspace vial for 15 min at

the same temperature. After each extraction, the fiber was removed and inserted into the injection
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port of the GC-MS for 15 min. 

The GC-MS was performed with a HP 5890 GC (Agilent Technologies, Palo Alto, CA,

USA) fitted with a HP-5 MS column (cross-linked 5% Ph Me siloxane, 30 m x 0.22 mm x 0.25

µm film thickness), and a HP MSD 5070 detector. GC-MS conditions were as follows: oven

temperature was programmed at an initial temperature of 70 °C for 3 min, followed by an increase

in temperature at a rate of 7 °C/min to 180 °C and maintained for 5 min. Injector and detector

temperatures were 260 and 300 °C. The carrier gas was helium at a flow rate of 1 mL/min.

Headspace-SPME injections were carried out in the splitless mode. Volatile compounds were

identified by comparing the spectra with those in a NIST98/Wiley spectral library (7  ed).th

Extraction, Identification, and Quantification of Phenolic Antioxidants in Rosemary

Extracts

The phenolic antioxidants were extracted following the procedure described by Wellwood

and Cole (2004) using ethanol. All the solutions passed through a 0.45 µm, 25 mm, nylon syringe

filter (Alltech, Seerfield, IL, USA) before being injected into the high-performance liquid

chromatograph (HPLC). For HPLC analysis of antioxidants, a method adapted from Cuvelier and

others (1996) was performed on a reversed-phase analytical C18 column (25cm x 4.6 mm x 5 µm)

(Alltima, Alltech Assoc., Deerfield, IL, USA) using a C18 guard column. The separation was

monitored by a UV diode-array detector at 284 nm. Three mobile phases were used: solvent A

was 1% (v/v) acetic acid in deionized water; solvent B was methanol; and solvent C was

acetonitrile. The total run time was 40 min. A gradient profile was used with a program that

started with 90% A, 10% B, which were changed to 30% A, 55% B and 15% C at 20 min, and
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changed to 100% B at 40 min. A 25 min post-run was used  to equilibrate the column. The flow

rate was 1 mL/min and the column temperature was 40 °C.  The compounds were identified by

comparison with the retention time and spectral matching with a UV spectral library generated

from standards. The range of concentrations used for standard curves of antioxidants was between

5 to 100 ppm. Triplicate analyses were performed for each extract.

Determination of Total Phenolic Content in Rosemary Extracts

The total phenolic content of the rosemary extracts was determined using Folin-

Ciocalteu’s reagent according to the method described by Chang and others (2006) with slight

modifications. Each rosemary extract (1 g) was mixed with 10 mL of 95% ethanol and shaken on

a wrist action shaker (Burrell Shaker model 75, Burrell Corp., Pittsburgh, PA, USA) for 2 hours at

room temperature. The samples were filtered through Whatman #4 filter paper, then the extract

was diluted 1:5 (v/v) with 95% ethanol. Each 100 ìL of the diluted extract was mixed with 2 mL

of DI water in a test tube followed by addition of 200 ìL of Folin-Ciocalteu reagent and allowed

to stand for 6 min at room temperature. Then, 1 mL of 7.5% sodium carbonate solution was

added, mixed thoroughly, and stored in the dark for 2 hours at room temperature. Each sample’s

absorbance was measured at 765 nm using an UV/VIS spectrophotometer. The linear reading of

the standard curve was from 0 to 300 ìg of gallic acid per mL. The total phenolic content was

expressed as mg gallic acid equivalents per 1 g of dried sample material. Triplicate analyses were

performed for each extract.
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DPPH Radical Scavenging Activity Assay

The DPPH radical scavenging activity of the rosemary extracts was determined according

to the method described by Singh and others (2002) with slight modifications. Each rosemary

extract (0.2 g) was mixed with 100 mL of 95% ethanol and shaken on a wrist action shaker

(Burrell Shaker model 75, Burrell Corp., Pittsburgh, PA, USA) for 2 hours at room temperature.

The samples were filtered through Whatman #4 filter paper, then the extract was diluted to 0.1,

0.25, 0.50, and 1mg/mL with ethanol. Each 0.1 mL of the diluted extract was mixed with 2.9 mL

of 0.1 mM freshly prepared DPPH methanolic solution and stored in the dark for 30 min at room

temperature before the absorbance was measured at 517 nm. Ethanol (95%) was used as a blank.

The control solution consisted of 0.1 mL of 95% ethanol and 2.9 mL of DPPH solution. The

radical scavenging activity (%) was expressed as the inhibition percentage and calculated using

the following equations:

 control sample controlRadical scavenging activity (%) = [(Abs  - Abs )/Abs ] x 100 

50IC  of the extract was determined from the graph of radical scavenging activity (%)

50against the concentration of extract (mg/mL). The IC  was defined as the concentration of an

extract that was required to provide a 50% decrease of the absorbance from the blank solution.

Triplicate analyses were performed for each extract. 

Extraction and Analysis of HCAs    

HCAs were extracted and purified from meat using the method described by Gross and

Grûter (1992) except that ethyl acetate was used as the extraction solvent (Borgen and others

2001; Santos and others 2004; Smith and others 2008).  The cooked beef patty sample (3 g) was
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homogenized with 12 mL of 1 M NaOH using a commercial Waring blender (ThermoFisher

Scientific Co., Pittsburgh, PA, USA). The homogenate was then mixed with 24 g of Extrelut refill

material (Merck, Darmstadt, Germany) and poured into an empty Extrelut 20 column. For

determination of recovery, selected homogenate samples were spiked with 50 ng of each of the

HCA standards. The HCAs were eluted from the Extrelut columns with 60 mL ethyl acetate into a

PRS cartridge conditioned with 7 mL of ethyl acetate. The PRS cartridge was then dried under a

stream of nitrogen and rinsed with 6 mL of 0.1 M HCl, 15 mL of methanol/0.1 M HCl (45:55 v/v)

and 2 mL of distilled water to wash out the non-polar HCAs. The HCAs was eluted from PRS

cartridge with 20 mL of 0.5 M ammonium acetate pH 8.0 into 100 mg C-18 cartridges

preconditioned with 2 mL of water. The HCAs were then eluted from the C-18 cartridge with 1

mL of methanol/ammonium hydroxide (9:1, v/v) into the vial. The HCA extract was concentrated

until dry under a stream of nitrogen and dissolved in 25 µL of methanol before injected into the

HPLC.  The HCAs were analyzed on a HP1090A Series II HPLC (Agilent Technologies, Palo

Alto, CA, USA) coupled with a photodiode array UV-visible detector (HP 1040) and an HP

1046A programmable fluorescence detector. The HCAs separation was performed on a reversed-

phase TSK gel ODS-80 TM column (25 cm x 4.6 mm, 5 µm, 80 Å, Tosohass, Montgomeryville,

PA, USA) with a mobile phase of 0.01 M triethylamine pH 3.6 (A) and acetonitrile (B). The

HCAs separation was achieved by using a linear gradient starting with 95% A, 5% B, changing to

75% A, 25% B in 30 min, flow rate of 1 mL/min at a column temperature of 40 ºC. After 30 min,

the mobile phase returned to its original ratio (95% A, 5 % B) for 10 min to allow the column to

re-equilibrate before the next injection. The UV detector was set at 252 nm for IQ, IQx, MeIQ,

and MeIQx, while the fluorescence detector was programmed accordingly to the
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excitation/emission wavelengths of 229 and 437 nm for PhIP. The data were analyzed with an HP

9000 series 300 ChemStation. The identities of HCAs peaks were confirmed by comparing the

retention times and the UV absorbance spectrum of each peak with library spectra acquired from

standard solutions. Triplicate analyses were performed for each extract.

Standard Curves, Recovery, and Spectral Matching

HCAs standards were dissolved in 100% methanol to make a solution of 1000 ng/mL (1

ppm). These stock solutions were used for making serial dilutions of each HCA to yield standards

of 250 ng/mL, 100 ng/mL, 50 ng/mL, 25 ng/mL, and 5 ng/mL. Peak area from the HPLC runs was

used to establish standard curves for each HCA. All standard curves were evaluated by linear

regression and had a coefficient of determination (R ) greater than 0.97. The limits of detection2

(LOD) and limits of quantification (LOQ) for the HCAs were 0.15 ng/g and 0.45 ng/g for IQ, IQx,

MeIQ, MeIQx and PhIP.  HCA identity was verified in the cooked meat extracts by online UV

spectral matching to a spectral library made from pure standards with a match factor typically

observed of 95% or greater (Abdulkarim and Smith 1998). The average recoveries for the HCAs

were 72% for IQx, 61% for IQ, 62 % for MeIQ, and 65% for MeIQx and PhIP. The recoveries of

MeIQx and PhIP are in agreement with previous reports from this laboratory (Tsen and others

2006; Smith and others 2008) and the study of Persson and others (2003) and Cheng and others

(2007).     

Statistical Analyses

The experimental design was a randomized complete block with repeated measurements,
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and each experiment was replicated three times. Duplicate measurements taken on the same

experimental unit were averaged for statistical analysis. All statistical significance tests were

analyzed using SAS version 9.1 (SAS Institute Inc., Cary, NC, USA, 2002). Data were examined

by analysis of variance (ANOVA) followed by Tukey’s multiple comparison test, and means were

considered significant at p < 0.05.

RESULTS AND DISCUSSION

Characterization of Phenolic Antioxidants in Rosemary Extracts

The five rosemary extracts, 100% water (100W), 10% ethanol (10E), 20% ethanol (20E),

30% ethanol (30E) and 40% ethanol (40E), were obtained from Mitsubishi-Kagaku Foods

Corporation. The composition of the phenolic antioxidants in the extract was dependent on the

ratio of water and ethanol in the solvent, as shown in Table 22, and their chromatograms are

shown in Figure 18. Rosmarinic acid (RA), carnosol (CL), and carnosic acid (CA) were identified

and quantified in different rosemary extract samples because these phenolics are major

antioxidants present in rosemary, and it might be expected that HCAs inhibition would have some

relationship. The limits of detection were 0.5 mg/g for RA, and 1 mg/g for CL and CA. The

rosemary extract 100W contained 51.5 mg/g RA while CL and CA were not detected; 10E

contained 34.7 mg/g RA, 31.8 mg/g CL, and 6.3 mg/g CA; 20E contained 27.2 mg/g RA, 72.9

mg/g CL, and 4.2 mg/g CA; 30E contained 13.5 mg/g RA, 96.5 mg/g CL, and 5.9 mg/g CA; and

40E contained 1.7 mg/g RA, 114.6 mg/g CL, and 6.0 mg/g CA.  These results indicated that water

exhibited the highest extraction capacity for rosmarinic acid, which is a water soluble compound,

whereas 40% ethanol extract had the strongest extraction capacity for carnosol, a non-water  
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50Table 22. Polyphenolic antioxidants levels, total phenolic and IC  on DPPH radicals present in the water/ethanol rosemary extracts as

determined by HPLC analysis of the extracts.

Treatment Polyphenolic antioxidant compounds (mg/g) Total Phenolic

(mg gallic acid equivalents/g dry

weight)

50 IC on DPPH radicals

(mg/mL)
Rosmarinic Acid Carnosol Carnosic

Acid

100 W 51.51 ± 0.61  0.00 ± 0.00  0.00 ± 0.00 33.45 ± 1.29  0.57 ± 0.00  a e b b b

10 E 34.67 ± 0.18  31.82 ± 0.21  6.30 ± 0.48  34.21 ± 1.82  0.52 ± 0.01  b d a b d

20 E 27.25 ± 0.12  72.87 ± 0.29  4.19 ± 0.74  38.93 ± 1.25  0.54 ± 0.01  c c a a c

30 E 13.45 ± 0.13  96.49 ± 0.97  5.92 ± 0.82  38.06 ± 1.32  0.58 ± 0.01  d b a a b

40 E 1.70 ± 0.09  114.59 ± 0.25  5.91 ± 0.18  34.11 ± 0.88  0.69 ± 0.01  e a a b a

Each value is represented as mean ± standard deviation (n = 3). Means with different superscript letters within the same column are

significantly different at p < 0.05.
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F

Figure 18. Chromatogram of polyphenolic antioxidants (rosmarinic acid, carnosol, and carnosic

acid) present in the rosemary extracts.
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soluble compound. Once the ratio of ethanol in the extraction process was increased from 10% to

40%, the level of rosmarinic acid decreased while the level of carnosol concomitantly increased.

These results agree with those reported by Wada and others (2004) which showed that the water-

soluble extract rosemary contained primarily a large amount of rosmarinic acid while the ethanol

rosemary extract contained carnosol, carnosic acid, and other lipid-soluble phenolic diterpenes,

but rarely contained rosmarinic acid. Carnosic acid was found only in rosemary extracts that used

a mixture of water and ethanol as an extraction solvent, rosemary extract 10E-40E; however, the

amounts are quite low and there is not a significant difference among them. This may due to the

degradation of carnosic acid during extraction process, which is the major phenolic in fresh

rosemary, as it forms other phenolic diterpenes with lactone structure, such as carnosol, rosmanol,

epirosmanol, and 7-methyl-epirosmanol (Schwarz and others 1992).

      

Total Phenolic Content and Antioxidant Activity

The total phenolic content and antioxidant activity of the five rosemary extracts are

presented in Table 22. Total phenolic contents are expressed as mg/gallic acid equivalent/g dry

weight (dw). The total phenolic in the extracts were dependent on the extraction solvent used in

the extraction. The rosemary extracts 20E and 30E contained the highest total phenolic contents

(38-39 mg gallic acid equivalents/g dw), which were significantly higher than those in rosemary

extract 10E, 40E, and 100 W (33-35 mg gallic acid equivalents/g dw). The antioxidant activity,

50 50expressed as IC  value (mg/mL), was estimated by DPPH scavenging assay. A lower IC  value

corresponds with a higher antioxidant activity. Statistically significant differences were found

among the five rosemary extracts. The rosemary extract 10E (0.52 mg/mL) showed the highest
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antioxidant activity, followed by rosemary extract 20E (0.54 mg/mL), rosemary extract 100W

(0.57 mg/mL), rosemary extract 30E (0.58 mg/mL), and rosemary extract 40E (0.69 mg/mL). 

Many studies have reported a correlation between phenolic content and antioxidant

activity (Erkan and others 2008; Ling and others 2009); however, according to a regression

analysis of our study, there was no significant relationship between total phenolic content and

antioxidant activity of five rosemary extracts (data not shown), which agreed with those reported

by Kamilo�lu and others (2009). This may be explained due to the fact that each phenolic

compound has different responses in the Folin-Ciocalteu method. Not only do phenolic

compounds  respond to the antioxidant activity in the assay, but some flavonoids in rosemary

extract, luteolin and luteolin-7-glucoside, for example, may also contribute to the antioxidant

activity value in the assay (Li and others 2005). Furthermore, the presence of synergistic effects

among phenolics or other compounds may increase the value of antioxidant activity (Li and others

2005). Therefore, the same amount of phenolic compounds does not necessarily give the same

value of antioxidant activity.           

Comparison of Volatile Compounds in Dried Rosemary Leaves and Rosemary Extracts by

SPME-GC-MS

The most desirable rosemary extract to use as a natural antioxidant possesses high

antioxidant activity and low aroma. In the extraction process, however, it is very difficult to

completely remove all aroma compounds in rosemary. Due to a possibility that the residual

volatile compounds in the extracts might have antioxidant activity and play a role in HCAs

inhibition as well, it was necessary to characterize residual volatile compounds in the extracts. In
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our study, the volatile compounds of five rosemary extracts along with dried rosemary leaves were

analyzed by using SPME GC-MS. The CAR-PDMS fiber was used in our experiment because it

has been reported to provide the best sensitivity to characterize rosemary fragrances (Carrillo and

Tena 2006). There were 16 compounds found in dried rosemary (Figure 19); the major

compounds found were ñ-cymene, eucalyptol, camphor, á-terpineol, and caryophyllene. On the

other hand, only 4 volatile compounds were found in rosemary extracts, namely camphor,

borneol, verbenone, and bornyl acetate (Figure 20). Thus, it was confirmed that treatment of

rosemary extracts obtained by water and/or ethanol extraction was effective since all of the major

compounds found in dried rosemary leaves disappeared. Our result is similar to studies of López-

Sebastián and others (1998) and Carillo and Tena (2006), who investigated  the volatile

compounds in solid rosemary extract by using SPME GC-MS. Camphor, borneol, and bornyl

acetate are oxygenated monoterpenes, whereas verbenone is a monoterpene bicyclic ketone

(Bozin and others 2008). It has been reported that these compounds are found in essential oils

extracted from herbal plants, for example, from the genus Asteraceae (Compositae), and they

expressed similar antioxidant capacities compared to BHT, which is dose-dependent (Amiri 2007;

Bozin and others 2008).  

Among the five rosemary extracts, the 40% ethanolic rosemary extract (40E) contained the

highest amount of these compounds. Interestingly, when the ratio of ethanol as an extraction

media in the extraction step was decreased to 30%, 20%, and 10%, the amount of these 4

compounds were proportionally decreased. The water extract contained only a small amount of

verbenone, bornyl acetate, and camphor, while borneol was not found. In conclusion, the 
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Figure 19. Chromatogram for dried rosemary leaves determined by SPME GC-MS. 
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Figure 20. Chromatograms for rosemary extracts determined by headspace SPME GC-MS. 
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different quantities of these volatile compounds, which serve as antioxidants of each extract, may

inhibit the formation of HCAs.

Effects of Rosemary Extracts on HCAs Formation in Cooked Beef Patties

In our experiment, we used two cooking conditions: 191 ºC (375 ºF) for 6 min each side

(375 ºF/6min) and 204 ºC (400 ºF) for 5 min each side (400 ºF/5min). At 375 ºF/6 min, patties

cooked to a final temperature of 74 to 77 ºC (165 to 170 ºF) produced medium done products

with lightly pink internal color. At 400 ºF/5min, patties cooked to a final temperature of 82 to 85

ºC (180 to 185 ºF) produced medium-well products with no pink internal color remaining. The

internal temperature of patties at both cooking conditions was greater than 71 ºC (160 ºF), which

is the temperature recommended by the FDA for cooking beef patties to ensure safety. Five

rosemary extracts were added to the ground beef at different concentrations to evaluate their

abilities to inhibit HCAs forming in the cooked beef patties. HCAs were extracted and

quantitated by HPLC; the results are shown in Table 23. A typical HPLC chromatogram of

HCAs obtained by UV and fluorescent detection from cooked beef patties is shown in Figure 21.

All of the patties including those without rosemary extracts (control) contained MeIQx

and PhIP, while IQx, IQ, and MeIQ were not detectable in any samples. The HCA contents of

control beef patties cooked at 375 ºF/6 min were 4.96 ng/g MeIQx and 3.14 ng/g PhIP, while

control patties cooked at 400 ºF/5 min were 6.93 ng/g MeIQx and 4.89 ng/g PhIP. These results

were comparable to those reported by Balogh and others 2000, Persson and others 2003, and

Cheng and others 2007. As expected, the formation of HCAs was highly dependent on the

cooking time and temperature. The HCA contents were increased from 4.96 to 6.93 ng/g MeIQx, 
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Table 23. Effect of rosemary extracts on total HCA concentrations (ng/g)  and percent inhibition in cooked beef patties at 191 °C (375
°F) for 6 min each side and 204 °C (400 °F) for 5 min each side.

Treatment Level 375 °F for 6 min each side 400 °F for 5 min each side

   MeIQx      PhIP Total % inhibition      MeIQx       PhIP Total %
inhibition

control 4.96 ± 0.51  3.14 ± 0.33  8.10    6.93 ± 0.52  4.89 ± 0.23  11.82a a a a

100 W 0.05 % 1.86 ± 0.10  1.69 ± 0.28  3.55 56.2  % 2.43 ± 0.07 2.43 ± 0.07 5.36 54.7 %b bc bcd bcd

0.20 % 1.41 ± 0.29  0.75 ± 0.10  2.16 73.3  % 2.56 ± 0.14 2.32 ± 0.13 4.89 58.7 %bcde ef bc bcde

0.50 % 0.96 ± 0.19  0.80 ± 0.13  1.76 78.3  % 1.81 ± 0.21 1.63 ± 0.12 3.43 70.9 %cdef def cde def

10 E 0.05 % 1.18 ± 0.11  1.48 ± 0.12  2.66 67.2  % 1.01 ± 0.10 1.40 ± 0.38 2.41 79.6 %bcdef bcd efg ef

0.20 % 0.84 ± 0.12  1.29 ± 0.06  2.13 73.7  % 0.95 ± 0.14 1.40 ± 0.03 2.36 80.1 %def bcdef efg ef

0.50 % 0.64 ± 0.03  0.85 ± 0.14  1.49 81.6  % 0.88 ± 0.31 1.76 ± 0.42 2.64 77.6 %ef def fg cdef

20 E 0.05 % 1.70 ± 0.06  1.16 ± 0.12  2.86 64.7  % 1.14 ± 0.06 0.72 ± 0.06 1.86 84.3 %bc cdef efg f

0.20 % 1.10 ± 0.04  1.96 ± 0.43  3.07 62.1  % 0.92 ± 0.13 1.41 ± 0.97 2.33 80.3 %cdef b efg def

0.50 % 1.00 ± 0.18  1.40 ± 0.18  2.40 70.4  % 0.61 ± 0.07 1.33 ± 0.26 1.94 83.6 %cdef bcde g ef

30 E 0.05 % 1.24 ± 0.47  0.89 ± 0.24  2.13 73.8  % 2.31 ± 0.46 2.42 ± 0.15 4.73 60.0 %bcdef def bcd bcde

0.20 % 0.61 ± 0.51  0.60 ± 0.25  1.12 86.2  % 1.56 ± 0.23 2.42 ± 0.04 3.98 66.3 %ef f def bcde

0.50 % 0.46 ± 0.40  0.81 ± 0.42  1.27 84.3  % 1.70 ± 0.33 1.96 ± 0.14 3.66 69.0 %f def cdef cde

40 E 0.05 % 1.23 ± 0.20  1.40 ± 0.13  2.63 67.6  % 3.13 ± 0.32 3.38 ± 0.42 6.51 44.9 %bcdef bcde b b

0.20 % 1.21 ± 0.03  1.10 ± 0.07  2.31 71.5  % 2.96 ± 0.50 2.24 ± 0.14 5.20 56.0 %bcdef cdef b bcde

0.50 % 1.45 ± 0.10  1.76 ± 0.31  3.21 60.4  % 2.79 ± 0.43 2.60 ± 0.36 5.39 54.4 %bcd bc b bcde

Each value is represented as mean ± standard deviation (n = 3). Means with different superscript letters within the same column are significantly
different at p < 0.05.
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Figure 21.  Typical HPLC chromatogram of heterocyclic amines detected with a UV detector

(252 nm) for MeIQx, and a fluorescence detector for PhIP from cooked beef patty (excitation

229 nm, emission 437 nm). 

and 3.14 to 4.89 ng/g PhIP when the cooking condition was changed from 375 ºF/6min to 400

ºF/5min. Similar studies by Balogh and others (2000) reported that the total amount of  HCAs

formed at 200 ºC (392 ºF)/6 min was three times greater than the total amount of HCAs formed

at 175 ºC (347 ºF)/10 min while Tsen and others (2006) reported the amount of total HCAs

formed at 204 ºC (400 ºF)/7.5 min were three times greater than the total HCAs formed at 191

ºC (375 ºF)/5 min. The high quantity of HCAs measured in beef patties grilled at higher

temperatures might be explained by the mass-transport controlled phenomenon (Kovácsné and
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others 2006). Using higher temperatures during cooking increases the rate of mass transfer of

water containing precursors moving from the center to the high temperature surface of the

patties, causing higher HCAs formation in cooked beef patties (Persson and others 2008).  

Table 23 summarizes the HCAs content (MeIQx, PhIP, and total) in cooked beef patties

with the addition of different types and levels of rosemary extract along with their percentage of

inhibition relative to controls. All the extracts showed an inhibiting effect by significantly

decreasing HCAs formation (p < 0.05) at both cooking conditions. In our experiment, three

levels of rosemary extracts were added: 0.05%, 0.2%, and 0.5%. The addition of rosemary

extracts to patties at the lowest level (0.05%) seems to effectively inhibit HCAs formation; most

of the results presented here statistically reveal that there is no difference in effect on the

inhibition of HCAs between different concentrations. Balogh and others (2000) reported a

similar reduction of HCAs formation after the addition of vitamin E at two levels, 1% and 10%

level (fat basis), to beef patties before cooking; the greatest inhibition of HCAs formation in

fried beef patties was observed when a 1% level of vitamin E was added. 

When cooking at 375 ºF/6min, all rosemary extracts significantly (p < 0.05) decreased

the levels of MeIQx and PhIP as compared to the controls. It seems that the rosemary extract

30E was responsible for the highest decrease in the total HCAs, but according to statistical

analysis, most of the results showed no significant difference among them in HCAs reduction.

On the other hand, when cooking at a higher temperature 400 ºF/5min not only did all the

extracts show a significant (p < 0.05) decrease in the levels of MeIQx and PhIP as compared to

control, but there were also significant differences among them. Apparently, rosemary extracts

10E and 20E were superior to rosemary extracts 100W, 30E, and 40E in the inhibition of HCAs
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(both MeIQx and PhIP) at all three extract concentrations. Rosemary extract 20E showed the

greatest inhibition of MeIQx (up to 91.7%), PhIP (up to 85.3%), and total (up to 84.3%). The

variability in how much the HCAs were inhibited at different temperature levels may be due to

the fact that the rise in temperature may induce changes in some antioxidant molecules,

affecting a change in the mechanism of initiation and/or propagation properties, and thus

improving their effectiveness as antioxidants (Chen and Ho 1997).

50The rosemary extracts 10E and 20E possessed high antioxidant activity (low IC  value)

and showed the highest inhibition of HCAs formation among the five extracts. Interestingly,

rosemary extracts 10E and 20E contain a mixture of three polyphenolic compounds (rosmarinic

acid, carnosol, and carnosic acid), but rosemary extracts 100W and 40E contain only one major

polyphenolic compound (rosmarinic acid for rosemary extract 100W and carnosol for rosemary

extract 40E). Our results are supported by the study of Wada and others (2004), which reported

that the non-water soluble rosemary extracts rich in carnosol along with the presence of a small

amount of carnosic acid and other phenolic antioxidants had a greater quenching effect than the

water soluble rosemary extract containing only rosmarinic acid on superoxide anion, singlet

oxygen, hypochlorite anion, and linolenic acid peroxide. This phenomenon may be due to the

presence of a combination of different antioxidants, which might act additively and even

synergistically. Although no study regarding a synergistic antioxidant effect between the

presence of single phenolic compounds in rosemary extracts have been done so far, there have

been several studies reporting a synergistic effect between phenolic compounds in rosemary and

other compounds. Fuhrman and others (2000) reported that the combination of rosmarinic acid

and carnosic acid with lycopene, vitamin E, and glabridin effectively produced a synergistic
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antioxidant effect on LDL oxidation. Romano and others (2009) reported that rosemary extract

containing 30% carnosic acid, 16% carnosol, and 5% rosmarinic acid enhances the antioxidant

efficiency of BHA and BHT, allowing a decrease in the amounts of the synthetic compounds

used up to 17 fold.

The use of phenolic antioxidants to inhibit HCAs in cooked beef patties is well

documented. The inhibitory effect of rosemary extracts on HCAs in our experiment was as good

or better than that achieved by other phenolic antioxidants. Britt and others (1998) reported that

total HCAs were reduced by 79% by adding tart cherry tissue at an 11.5% level. Four spices

(rosemary, thyme, sage, and garlic) were already shown to effectively inhibit the content of

HCAs below 60% of the amount found in the control (Murkovic and others 1998). The direct

addition of vitamin E (1% based on fat content) to the surface of beef patties before frying

reduced HCAs by up to 75% (Balogh and others 2000). Persson and others (2004) showed that

adding small amounts of carbohydrate such as potato starch or potato fiber significantly reduced

the amount of HCAs. Rosmarinic acid and rosemary extract were found to effectively decrease

the formation of HCAs in beef patties by up to 69% (Tsen and others 2006). Recently, four fruit

extracts (apple, elderberry, grape seed, and pineapple) rich in polyphenols were found to be

significantly effective at reducing the amount of HCAs formed (Cheng and others 2007). Data

showing the inhibition of HCA formation in the presence of phenolic antioxidants strongly

support the hypothesis that the mechanism responsible for the formation of HCAs involves the

unstable free radical Maillard intermediates reactions. This is supported by the fact that the

phenolic antioxidants act as antioxidants by trapping or quenching the unstable free radicals.
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CONCLUSIONS

This study demonstrated that the use of rosemary extract as an additive can effectively

inhibit the formation of HCAs in beef patties cooked at 191 ºC (375 ºF) for 6 min each side and

204 ºC (400 ºF) for 5 min each side. The inhibiting effect of the extract was affected by the

extraction solvent used in the extraction process. Among five rosemary extracts, which included

100W (100% water extract), 10E (10% ethanol extract), 20E (20% ethanol extract), 30E (30%

ethanol extract), and 40E (40% ethanol extract), rosemary extracts 10E and 20E showed the

greatest inhibition of the  formation of HCAs, which corresponded to their containing the

highest level of antioxidant activity based on a DPPH scavenging assay. A synergistic

antioxidant effect between phenolic compounds in rosemary may play an important role in

HCAs inhibition.  

The data obtained in this study suggest that the addition of rosemary extracts is an

important factor in decreasing carcinogenic compounds in cooked beef patties. The use of

rosemary extracts, which have less volatile compounds than natural rosemary, provides the

additional advantage of not affecting the flavor or odor of meat products.
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PART V. HETEROCYCLIC AMINE CONTENT 

IN ENHANCED AND MARINATED MEAT PRODUCTS

ABSTRACT

Heterocyclic amines (HCAs) which are produced in meats cooked at high temperature

are potent mutagens and a risk factor for human cancers. This study evaluated the effect of

enhancement and marination on HCA formation in meat products. Three HCAs were identified

in all samples: PhIP (2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine), MeIQx (2-amino-

3,8-dimethylimidazo [4,5-f]quinoxaline), and DiMeIQx (2-amino-3,4,8-trimethylimidazo [4,5-

f]quinoxaline). Addition of salt and phosphate greatly improved water-holding capacity and

decreased HCA formation up to 58% in enhanced fresh meat products. More reduction of HCAs

(up to 79%) was found in marinated fresh meat; the enhancement solution for this meat

contained ingredients that exhibit good antioxidant properties. These results can be used by

consumers as a guideline for making a purchase decision and by the meat industry to modify 

formulation processes to minimize HCA levels in meat products.
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INTRODUCTION

A high cooking loss has been found to be related to the formation of large amounts of

HCAs (Knize and others 1994, Skog and others 1995); thus, reducing the cooking loss is likely

to reduce HCA formation in meat products. Persson and others (2003) showed that addition of

water-binding ingredients (1.5% sodium chloride and 0.3% sodium tripolyphosphate) to beef

burgers improved the cooking loss and also decreased the formation of PhIP, MeIQx, and

DiMeIQx when beefburgers were fried at 180 °C and 220 °C. Another treatment to inhibit HCA

formation involves the use of various antioxidants, which serve as free-radical scavengers; this

treatment is effective because the HCAs are formed in the Maillard reaction through the free

radicals pyridine or pyrazine (Knize and others 1994).

Case-ready fresh meat products are defined as products that come in a packaged state

from the supplier and are not repackaged at the store (Belcher 2006). The prevalence of case

ready products has grown at a tremendous rate, increasing from 50% in 2002 to 64% of total

fresh meat packages in 2007 (Baczwaski and Mandigo 2003, Belcher 2006), and the number is

expected to rise above 70% by 2010 (Young 2009). Two technologies that are commonly used

in case-ready meat products are enhancement and marination. Enhancement is the process of

injecting a solution of water, salt, and sodium phosphates that typically adds 7 to 15% addition

to the beginning weight of fresh meat to improve the eating quality (juiciness, tenderness, and

flavor) of the final product (Baczwaski and Mandigo 2003, Sheard and Tali 2004, Knock and

others 2006). Marination expands the solution by using ingredients with additional flavor and

texture profiles. A marinade typically contains the same ingredients as an enhancement solution

plus color and flavor components such as caramel coloring and dressings with spices



152

(Baczwaski and Mandigo 2003). The Sealed Air Corporation, the National Cattlemen’s Beef

Association, and the National Pork Board assessed case-ready meat products across the country.

Within enhanced meat products, pork had the greatest number of products (35%), followed by

chicken (19%), beef (13%), and turkey (6%); within marinated meat products, pork also had the

greatest number of products (42%), followed by beef (30%), chicken (16%), and turkey (12%)

(“Today’s Retail Meat Case” 2007) 

Non-meat ingredients used in enhanced and marinated meat products play various roles.

Water is used mainly to dissolve other non-meat ingredients and increase yield; it also

contribute juiciness and tenderness (Miller 1998). Salt and phosphate are sometimes used alone

but often are used in combination to provide a synergistic action (Sheard and Tali 2004). Salt is

added at low levels (0.1 to 3.0%) to increase water-holding capacity, improve texture by

solubilizing of meat myofibrillar proteins, and improve flavor (Miller 1998, Baczwaski and

Mandigo 2003). Salt concentration is not a regulated ingredient but is self-limiting because high

concentrations will negatively affect palatability of the products (Alvarado and Mckee 2007).

Sodium phosphates increase water-holding capacity by increasing meat pH and also by

interacting with meat myofibrillar proteins to increase their ability to hold water inside the meat

during cooking, resulting in increased juiciness and tenderness of cooked meat products (Miller

1998, Baczwaski and Mandigo 2003, Dušek and others 2003). There are different forms of

sodium phosphates available, such as sodium hexametaphosphate, sodium tripolyphosphate, and

tetrasodium pyrophosphate. Sodium tripolyphosphate was reported to have the best effect in

retaining the additional water associated with solution enhancement in meat products (Baublits

and others 2006). When phosphates are used to increase water-holding capacity properties of
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meat, USDA requires that phosphate concentrations are no higher than 0.5% of the finished

product weight (Alvarado and Mckee 2007).

Although some research has been conducted regarding methods to minimize HCA

formation in cooked meat products, details of the effects of increasing water-holding capacity of

fresh meats by means of enhancement and marination on HCA formation are still lacking. The

aim of this study was to study the effect of enhancement and marination on HCA formation in

cooked meat products. In the first experiment, commercially available enhanced and marinated

products were selected and HCA levels were analyzed after the products were cooked. In second

experiment, pork loin samples were manufactured in our meat laboratory to study the effect of

the addition of salt/phosphate and rosemary extract on HCA formation. Results from our study

can help consumers make a purchase decision that will minimize their exposure to HCAs. These

results also can be used as guidelines for the meat industry on how to modify a formulation

process to minimize HCA formation in cooked meat products.   

       

MATERIALS AND METHODS

Chemicals

The HCA standards IQ (2-amino-3-methyl-imidazo [4,5-f]quinoline), IQx (2-amino-3-

methyl-imidazo [4,5-f]quinoxaline), MeIQ (2-amino-3,4-dimethyl-imidazo [4,5-f]quinoline),

MeIQx (2-amino-3,8-dimthylimidazo [4,5-f]quinoxaline), 4,8-DiMeIQx (2-amino-3,4,8-

trimethyl-imidazo [4,5-f]quinoxaline), TriMeIQx (2-amino-3,4,7,8-tetramethyl-imidazo [4,5-

f]quinoxaline), and PhIP (2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine were obtained

from Toronto Research Chemicals (Toronto, Canada). Ammonium acetate and triethylamine



154

were purchased from Aldrich Chemicals (Milwaukee, WI, USA). Phosphoric acid was obtained

from Sigma Chemicals (St. Louis, MO, USA). Deionized water was processed by a

Sybron/Branstead PCS unit (Barnstead/Thermolyne, Dubuque, IA, USA). The solid-phase

extraction Extrelut NT 20 columns and diatomaceous earth refill material were purchased from 

VWR International (Bristol, CT, USA). Bond Elut propyl-sulfonic acid (PRS) cartridges, C-18 

cartridges, and the coupling adaptors were purchased from Varian Sample Preparation (Harbor

City, CA, USA). Trichloroacetic acid, diacetyl, 1-napthol, Folin-Ciocalteau’s reagent, 1,1-

Diphenyl-2-picryl-hydrazyl (DPPH), sodium carbonate, gallic acid , and sodium hydroxide were

obtained from Sigma Aldrich (St. Louis, MO). Solvents and chemicals such as acetonitrile

(high-performance liquid chromatography [HPLC] grade), methanol (HPLC grade), and sodium

hydroxide (ACS-grade) were purchased from Fisher Scientific (Fairlawn, NJ, USA). Rosemary

extract (FORTIUM R-WS10 LIQUID) was obtained from Kemin Industries, Inc (Des Moines,® 

IA, USA).

Commercial meat products

Three types of commercial products (non-enhanced/marinated products, enhanced

products, and marinated products) in each meat species (beef, chicken, and pork) were

purchased from local grocery stores. Selected beef products consisted of non-

enhanced/marinated beef (control), 12% enhanced beef, and peppercorn-marinated beef.

Selected pork products consisted of non-enhanced/marinated pork (control), 12% and 30%

enhanced pork, peppercorn-marinated pork, and apple bourbon-marinated pork. Selected

chicken products consisted of non enhanced/marinated chicken breast without skin (control),
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15% enhanced chicken breast without skin, and BBQ-marinated chicken breast without skin.

The description and ingredients of each product are shown in Table 24.   

Experimental enhanced pork samples

Enhanced pork samples were prepared at the Kansas State University meat laboratory by

using a multi-needle brine injector. Two individual loins were selected, and each was divided

into four sections. Each of section was randomly assigned to one of four treatments: (1) no

injection, (2) injection with 12% water, (3) injection with 12% enhancement brine (0.4%

sodium chloride and 0.35% sodium tripolyphosphate), or (4) injection with 12% enhancement

brine (0.075% rosemary extract). After pumping, loins were vacuum packed and held for 72 h at

4 °C to allow of the injected solution to equilibrate throughout the loins. The experiment was

replicated three times. 

Sample preparation 

The following commercial products were used as obtained: control and 12% enhanced

beef, control and 12% enhanced pork, and control, 15% enhanced, and BBQ-marinated chicken.

Peppercorn-marinated beef, 30% enhanced pork, peppercorn-marinated pork, and apple

bourbon-marinated pork were manually sliced at a thickness of 2 cm and then stored at 4 °C.

For the enhanced pork that was prepared in our meat laboratory, after the equilibration, loins

were sliced at a thickness of 2 cm with a meat slicer (Cabela’s commercial grade slicer, 1/3 hp,

Sidney, NE, USA) and then stored at 4 °C before cooking. The samples used for chemical

analyses were further chopped and ground with a food processor (KitchenAid, model KFP 750) 
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Table 24. Description and ingredients in selected non-enhanced, enhanced, and marinated meat products.

Product Description Ingredients

Non-enhanced beef Beef loin steak boneless -

12% enhanced beef Beef loin New York
strip steak

Water, sodium chloride, sodium phosphates

Peppercorn-marinated beef
(30% enhancement)

Extra beef shoulder
filets

Water, potassium lactate, partially hydrogenated soybean oil, salt,
butter flavoring (maltodextrin, butter flavor, annatto and turmeric
color), sugar, spice, sodium phosphates, dehydrated parsley, sodium
diacetate, flavoring

Non-enhanced pork Pork center cut loin filet -

12% enhanced pork Pork tenderloin Water, potassium lactate, sodium phosphates, salt, sodium diaceate

Solution ingredients: pork broth, potassium lactate, partially30% enhanced pork Pork center cut loin filet

hydrogenated soybean oil, cornstarch, sodium phosphates, sodium
bicarbonate, salt, autolyzed yeast, sodium diacetate
Sauce ingredients: water, corn starch, xanthan gum 

Peppercorn-marinated pork
(30% enhanced)

Extra lean pork
tenderloin

Solution ingredients: water, potassium lactate, partially
hydrogenated soybean oil, black pepper, sodium phosphates, caramel
color, flavoring, white vinegar, sodium diacetate
Sauce ingredients: water, cornstarch, xanthan gum 
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Table 24. Continued

Product Description Ingredients

Apple bourbon-marinated pork
(30% enhanced)

Extra lean pork
tenderloin

Solution ingredients: water, seasoning (brown sugar, tomato powder,
dextrose, salt, sugar, maltodextrin, vinegar, onion powder, garlic
powder, natural and artificial flavor spices, modified food starch,
sodium diacetate, malic acid, muster seed, partially hydrogenated
soybean oil, turmeric), potassium lactate, sodium phosphates,
applewood smoke flavoring, sodium diacetate, partially hydrogenated
soybean oil, bourbon flavor (natural flavors, glycerin, propylene
glycol, ethyl alcohol)
Sauce ingredients: water, cornstarch, xanthan gum 

Non-enhanced chicken Boneless skinless
chicken breast

-

15% enhanced chicken Boneless skinless
chicken breast

Natural chicken broth

BBQ-marinated chicken Boneless skinless
chicken breast

Sugar, salt, paprika and other spices, monosodium glutamate,
dehydrated garlic and onion, wheat flour, natural flavor, dehydrated
orange peel, dehydrated bell pepper, caramel color, hydrolyzed
vegetable protein, citric acid, dehydrated molasses, extractive of
paprika and other spices, tamarinds 
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and refrigerated at 4 °C before analysis.

Chemical analyses

pH measurement

 The pH of sample was measured according to the method of Jang and others (2008) with

slight modifications. Five grams of fine ground sample was added to 45 mL of distilled water

and blended for 30 s at medium speed in a Waring blender (Waring Laboratory, Torrington, CT,

USA). The pH of each sample was measured with an Accumet AP115 portable pH meter

(Fisher, Pittsburgh, PA, USA).

Creatine determination

Creatine content was determined according to the method described by Polak and others

(2009) with slight modifications. A 0.25-g finely ground sample was homogenized for 5 min at

9500 rpm  (IKA, Ultra-Turrax T18) (Wilmington, NC, USA) in 100 mL trichoroacetic acid (30

g/L in distilled water), and then the samples were filtered through Whatman #4 filter paper.

Twenty milliliters of the filtrate was defatted with 10 mL diethylether, and then samples were

shaken vigorously and allowed to stand for 10 min to separate the phases. After the phases were

separated, 4 mL of defatted extract (bottom layer) was mixed with 2 mL of diacetyl (0.2 g/L in

distilled water) and 2 mL of 1-napthol (25 g/L in 20 g/L of sodium hydroxide solution). The

mixture heated for 5 min at 40 °C. Each sample’s absorbance was measured at 520 nm against a

reagent blank. The creatine content was expressed as milligram per gram of meat sample.   
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Total phenolic content determination

The total phenolic content was determined using Folin-Ciocalteau’s reagent according to

the method described by Jang and others (2008) with modifications. A 5-g sample of finely

ground meat in 80% ethanol (100 mL) was homogenized for 2 min at 9500 rpm (IKA, Ultra-

Turrax T18) (Wilmington, NC, USA). The samples were filtered through Whatman #1 filter

paper. Two hundred milliliters of filtrate was mixed with 2 mL of deionized water in a test tube,

200 ìL of Folin-Ciocalteu reagent was added, and the tubes were allowed to stand for 6 min at

room temperature. Then 1 mL of 7.5% sodium carbonate solution was added and mixed

thoroughly. The mixture was stored in the dark for 2 h at room temperature. Each sample’s

absorbance was measured at 765 nm with a UV/VIS spectrophotometer. A standard curve was

evaluated from 0 to 100 ìg of gallic acid per milliliter. The total phenolic content was expressed

as milligram gallic acid equivalents per one gram of meat sample.

DPPH radical scavenging activity

DPPH scavenging activity was determined using the method of Jang and others (2008)

with modifications. A 5-g sample of finely ground meat in 80% ethanol (100 mL) was

homogenized for 2 min at 9500 rpm (IKA, Ultra-Turrax T18) (Wilmington, NC, USA). The

samples were filtered through Whatman #1 filter paper. Each 500 ìL of filtrate was mixed with

2.5 mL of 0.1 mM freshly prepared DPPH methanolic solution and stored in the dark for 30 min

at room temperature before absorbance was measured at 517 nm. Ethanol (95%) was used as a

blank. The control solution consisted of 0.1 mL of 95% ethanol and 2.9 mL of DPPH solution.

The radical scavenging activity was expressed as the inhibition percentage and calculated using
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the following equation:  

 control sample controlDPPH scavenging activity (%) = [(Abs  - Abs )/Abs ] × 100   

Cooking procedure and cooking loss

Sliced commercial meat products and manufactured pork loins were removed from

refrigerator and allowed to approach room temperature before they were cooked (Infrared

thermometer model ST20XE, Raytek, Santa Cruz, CA, USA). Spear point thermocouple

temperature probes were inserted horizontally to the midpoint of samples, and temperature was

monitored with a data logger (USB-TC model, Measurement Computing, Norton, MA, USA).

Each meat sample was cooked in a Teflon-coated frying pan at surface temperature 204 °C (400

°F) to an internal core temperature of 77 °C (170 °F). The cooked sample was allowed to cool at

room temperature for approximately 30 min, and then cooking loss was determined using the

following equation:

% cooking loss    =    [(before cook weight - after cook weight)/before cook weight] × 100 

Extraction and analysis of HCAs    

The HCAs were extracted from meat samples and purified using the method described

by Gross and Grüter (1992) except that ethyl acetate was used as the extraction solvent (Santos

and others 2004, Smith and others 2008). Each sample (3 g) was homogenized with 12 mL of 1

M NaOH in a commercial Waring blender (Fisher, Pittsburgh, PA, USA). The homogenate was

then mixed with 24 g of Extrelut refill material (Merck, Darmstadt, Germany) and poured into

an empty Extrelut 20 column. For determination of recovery, selected homogenate samples were
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spiked with 50 ng of each of the HCA standards. The HCAs were eluted from the Extrelut

columns with 60 mL ethyl acetate into a PRS cartridge conditioned with 7 mL of ethyl acetae.

The PRS cartridge was then rinsed with 6 mL of 0.1 M HCl, 15 mL of methanol/0.1 M HCl

(45:55 v/v), and 2 mL of distilled water to wash out the nonpolar HCAs and other impurities.

The HCAs were eluted from the PRS cartridge with 20 mL of 0.5 M ammonium acetate pH 8.5

into 100-mg C-18 cartridges preconditioned with 5 mL of methanol followed by 5 mL of

distilled water. The HCAs were then eluted from the C-18 cartridge with 1 mL of

methanol/ammonium hydroxide (9:1, v/v) into the vial. The HCA extract was concentrated until

dry under a stream of nitrogen and dissolved in 25 µL of methanol before it was injected into

the HPLC. The HCAs were analyzed on an HP1090A Series II HPLC (Agilent Technologies)

coupled with a photodiode array UV-visible detector (HP 1040) and an HP 1046A

programmable fluorescence detector. The HCA separation was performed on a reversed-phase

TSK gel ODS-80 TM column (25 cm × 4.6 mm, 5 µm, 80 Å, Tosohass, Montgomeryville, PA.,

USA) with a mobile phase of 0.01 M triethylamine pH 3.6 (A) and acetonitrile (B). The HCA

separation was achieved using a linear gradient that started with 95% A and 5% B and changed

to 75% A and 25% B in 30 min at a flow rate of 1 mL/min and a column temperature of 40 ºC.

After 30 min, the mobile phase returned to its original ratio (95% A, 5 % B) for 10 min to allow

the column to reequilibrate before the next injection. The UV detector was set at 252 nm for IQ,

IQx, MeIQ, MeIQx, and DiMeIQx, and the fluorescence detector was programmed accordingly

to the excitation/emission wavelengths of 229 and 437 for PhIP. Data were analyzed with an HP

9000 series 300 Chemstation. The identities of HCA peaks were confirmed by comparing the



162

retention times and the UV absorbance spectrum of each peak with library spectra acquired from

standard solutions.

Quantitation, recovery, and spectral matching

The HCA concentrations were quantitated by the internal standard method (Lindsay

1992). A known amount of TriMeIQx (used as internal standard) was added to samples before

they were injected into the HPLC. The relative responses (R) of HCA standards were calculated

using the following equation:

s sR = (C/A)/(C /A )

where C = Concentration of HCA standards

A = Peak area for HCA standards

sC = Concentration of internal standard

sA = Peak area of internal standard

The HCA concentrations in samples were calculated using the following equation:

u u s sC = A  × R × (C N/A N)

uwhere C = Concentration of HCAs in sample

uA = Peak area of HCAs in sample

sC N = Concentration of internal standard in sample

sA N = Peak area of internal standard in sample

The limits of detection (LOD) and limits of quantification (LOQ) for the HCAs were

0.15 ng/g and 0.45 ng/g for IQ, IQx, MeIQ, MeIQx, DiMeIQx and PhIP. The HCA identities

were verified in the cooked meat extracts by online UV spectral matching to a spectral library
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made from pure standards. Match factors typically were observed at 95% or greater (Tsen and

others 2006). Average recoveries for the HCAs were 72% for IQx, 61% for IQ, 63% for MeIQ,

68% for MeIQx, 60% for DiMeIQx, and 65% for PhIP. The recoveries of MeIQx and PhIP are

in agreement with previous reports from this laboratory (Tsen and others 2006, Smith and others

2008) and from Cheng and others (2007).     

Statistical analyses

The experimental design was a randomized complete block with repeated measurements,

and each experiment was replicated three times. Duplicate measurements taken on the same

experimental unit were averaged for statistical analysis. All statistical significance tests were

analyzed using SAS version 9.1 (SAS Institute Inc., Cary, NC, USA, 2002). Data were

examined by analysis of variance (ANOVA) followed by Tukey’s multiple comparison test, and

means were considered significant at p < 0.05.

 

RESULTS AND DISCUSSION

Commercial meat products

Beef products

There were many enhanced fresh beef products available at the local grocery stores;

however, only a few marinated beef products were available (e.g., peppercorn-marinated beef

filet and teriyaki-marinated beef filet). The commercial non-enhanced/marinated (control), 12%

enhanced, and peppercorn-marinated (30% enhancement) beef products were selected for this
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study. Salt and sodium phosphate are ingredients in both the 12% enhanced and marinated beef

products. Table 25 summarizes the results of chemical analyses and HCA quantitative

determinations in the selected beef products. The pH of peppercorn-marinated beef was higher

than that of control and 12% enhanced beef. The higher pH of peppercorn marinated beef may

be due to the presence of potassium lactate, sodium diacetate, or other ingredients (Table 25).

Cooking loss in peppercorn-marinated beef, which was injected with a 30% solution, was the

highest among the three products, and cooking loss of 12% enhanced beef was higher than that

of the control. There was small but significant difference (p < 0.05) in total phenolic content of

the peppercorn-marinated beef in compared with the control and 12% enhanced beef. In

contrast, DPPH radical scavenging activity was slightly higher for peppercorn-marinated beef

than for control and 12% enhanced beef. Levels of HCAs in control, 12% enhanced, and

peppercorn-marinated beef products are shown in Table 25.  Total HCAs were higher for

control than for 12% enhanced beef and peppercorn-marinated beef, and there were no

statistically significant differences between 12% enhanced and peppercorn-marinated beef

products. In all three products, PhIP was found at the highest levels, followed by MeIQx and

DiMeIQx. There were no statistically differences in MeIQx and PhIP among these three

products; DiMeIQx was higher in control than in 12% enhanced beef and was not detected in

peppercorn-marinated beef. 

Taken together the results for beef products indicate that enhancement and marination of

beef could reduce HCA formation in cooked products up to 20% compared with control

products. In the present study, adding spices (peppercorn) did not help reduce HCA formation.    
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Table 25. Chemical analyses (pH, total phenolic, and antioxidant activity), cooking loss, and HCA contents in non-enhanced,

enhanced, and marinated commercial beef products.

Product pH Cooking 
loss (%)

 Total
phenolic
(mg GAE/g
sample)

DPPH
radical
scavenging
activity (%)

Heteocyclic amines (ng/g)

MeIQx DiMeIQx PhIP Total

Non-enhanced beef Mean 5.52 32.53 1.33 11.27 3.87 1.28 6.60 11.74 b c a  b a a a a

SD 0.04 0.95 0.02 0.60 0.31 0.25 0.27 0.51

12% enhanced beef Mean 5.70 36.37 1.35 7.68 2.59 0.67 6.03 9.30 b b a  c a b a b

SD 0.07 1.17 0.01 0.40 1.15 0.11 0.72 0.37

Peppercorn-
marinated beef
(30% enhancement)

Mean 6.15 42.98 1.22 13.33 3.13 0.00 6.16 9.29 a a b  a a c a b

SD 0.28 2.15 0.01 0.19 0.33 0.00 0.28 0.07

Each value is represented as mean ± standard deviation (n = 3). Means with different superscript letters within the same column are
significantly different at p < 0.05.  
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Pork products

At local grocery stores that we visited, there were more enhanced fresh pork products

available than non-enhanced fresh pork products. Within meat species, enhanced pork products

are more available in the market than enhanced beef and chicken products. Most of the major

pork manufacturers offer case-ready enhanced pork products that are available in modified-

atmosphere packaging and vacuum packaged; typical enhancement levels are 12 to 30%. Loin

and tenderloin are used the most for manufacturing marinated pork products with high

enhancement level (up to 30%) because they contain less fat and are very easy to dry out during

cooking. Many types of marinated pork products are available in the market (e.g., peppercorn,

teriyaki, lemon garlic, apple bourbon, masquite barbecue, honey mustard, teriyaki, and onion

and garlic roast), which allows retailers to satisfy unique customer requests and meet demand

from ethnic populations. Interestingly, for high-enhancement-level products (30%), cornstarch

and xanthan gum were added to these products as sauce ingredients; which are believed to

improve cooking loss and retain the flavor solution inside the products during cooking

(Baczwaski and Mandigo 2003, Somboonpanyakul and others 2007). Potassium lactate and

sodium diaceate, which increase shelf life, were also found in these products (Blom and others

1997, Baczwaski and Mandigo 2003). 

The non-enhanced (control), 15% and 30% enhanced, and peppercorn- and apple

bourbon-marinated pork products were selected for this study. The 12% and 30% enhanced pork

products were selected to determine the effect of enhancement level on HCA formation. The

two marinated pork products, peppercorn and apple bourbon, were selected because of their

different ingredients. Apple bourbon-marinated pork contains more types of ingredients than
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peppercorn-marinated pork, so we expected to see the different effects of these ingredients on

HCA formation when the products were cooked. Table 26 summarizes the results of chemical

analyses and HCA quantitative determinations in the selected pork products. The pH was lower

for apple bourbon-marinated pork than for other products; this may be due to the presence of

vinegar, tomato powder, and malic acid (Table 26). There was no significant difference in

cooking loss (p > 0.05) between 30% enhanced pork and the two marinated porks, which also

were enhanced at the level of 30%. However, the cooking loss of these three products was

higher than that of control and 12% enhanced pork. There was not much difference in total

phenolic content among the five pork products. The DPPH radical scavenging activity was

higher for both marinated pork products than for control and 12% and 30% enhanced porks.

Surprisingly, apple bourbon-marinated pork had a very high level of DPPH radical scavenging

activity (58.8%) compared with other products (6.2 to 13.7%). Apple bourbon-marinated pork

contained several ingredients that have been reported to have antioxidative effects, including

tomato powder (George and others 2004, Toor and Savage 2005), onion powder (Nuutila and

others 2003, Roldán and others 2008), garlic powder (Bozin and others 2008, Queiroz and

others 2009), and turmeric (Kumar and others 2006, Cousins and others 2007). The level of

HCAs in control, 12% and 30% enhanced, and marinated pork products are shown in Table 26.

There was no significance difference in total HCA levels between 12% and 30% enhanced

porks. Both marinated pork products had significantly lower total HCA levels than control and

both enhanced pork products (p < 0.05); total HCAs were lowest for apple bourbon-marinated

pork. Antioxidant compounds in some ingredients (e.g., tomato powder, onion powder, garlic   
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Table 26. Chemical analyses (pH, total phenolic, and antioxidant activity), cooking loss, and HCA contents in non-enhanced,

enhanced, and marinated commercial pork products 

Product
pH cooking 

loss (%)
  total
phenolic
(mg GAE/g
sample)

DPPH     
radical
scavenging
activity (%)

Heterocyclic amines (ng/g)

MeIQx DiMeIQx PhIP Total

Non-enhanced pork Mean 6.07 33.54 1.50 10.44 3.20 1.07 13.31 17.58 a d a  c a b a a

SD 0.09 0.18 0.02 0.82 1.74 0.27 0.94 2.94

12% enhanced pork Mean 6.11 34.92 1.45 11.21 1.71 0.75 9.60 12.06 a cd a  c a b b b

SD 0.14 2.96 0.02 0.76 0.80 0.38 1.19 0.46

30% enhanced pork Mean 6.21 40.47 1.52 6.23 2.89 1.80 9.85 14.54 a ab a d a a b b

SD 0.22 0.81 0.03 0.38 0.46 0.34 0.83 1.34

Peppercorn-
marinated pork 
(30% enhancement)

Mean 5.84 42.78 1.30 13.67 0.88 0.60 5.83 7.32 a a b b a b c c

SD 0.18 0.11 0.02 0.49 0.39 0.03 0.27 0.57

Apple-bourbon
marinated pork 
(30% enhancement)

Mean 5.39 40.75 1.45 58.78 0.90 0.61 0.46 1.96 b ab a a a b d d

SD 0.04 0.57 0.04 1.53 0.20 0.14 0.15 0.07

Each value is represented as mean ± standard deviation (n = 3). Means with different superscript letters within the same column are
significantly different at p < 0.05.  



169

 powder, turmeric, and mustard seed) of apple bourbon marinated pork are believed to play a

role in inhibiting HCAs (Shishu and Kaur 2008, Janoszka 2010).  

Taken together the results for pork products indicate that enhancement and marination of

pork could reduce HCA formation in cooked products up to 30% compared with control

products. Increasing the level of enhancement from 12% to 30% was unable to reduce HCA

formation. Perhaps the meat could not retain all of the solution that was introduced into product;

it is possible that most of the injected solution may be lost in the package or during the cooking

process. Cooked marinaded porks, in particular apple bourbon-marinated pork, contained the

lowest levels of HCAs. We believe that these effects are caused by the presence of antioxidant

compounds in the ingredients of these products. Many studies have reported that antioxidants

successfully reduce the formation of HCAs in meat products because of their superior radical

scavenging capability. Antioxidants that inhibit HCAs are formed through the condensation of

creatinine and the Strecker degradation radicals (pyridines and pyrazines) generated from the

reaction of glucose and amino acids during the Maillard reaction (Vitaglione and Fogliano

2004).

Chicken products

At local grocery stores that we visited, enhanced fresh chicken products were more

common than non-enhanced fresh chicken products. Chicken products marinaded with different

ingredients are available in case-ready packages, and also can be purchased at a deli counter.

The commercial non-enhanced/marinated (control), 15% enhanced, and BBQ-marinated

boneless/skinless chicken breasts were selected for this study. Interestingly, most of the
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enhanced chicken products were injected with only natural chicken broth; salt and phosphate

were not used as ingredients in the enhancement process. As indicated on the label, BBQ-

marinated chicken was prepared with a dry rub method; however, we do not know if non-

enhanced chicken or enhanced chicken was used in the preparation process. Table 27

summarizes the results of chemical analyses and HCA quantitative determinations in the

selected chicken products. The pH of marinated chicken was higher than that of control and

15% enhanced chicken; this might be due to the presence of ingredients such as monosodium

glutamate. The cooking loss of 15% enhanced chicken was higher than that of the control;

however, there was no significance difference (p > 0.05) between 15% enhanced and marinated

chickens. Total phenolic content and DPPH radical scavenging activity were higher for

marinated chicken than for control and 15% enhanced chicken. The high level of DPPH radical

scavenging activity may caused by the presence of paprika and its extract, dehydrated garlic and

onion, and other spices in marinated chicken, which have been reported to have antioxidant

capacities  (Nuutila and others 2003, Materska and Perucka 2005, Bozin and others 2008,

Roldán and others 2008, Queiroz and others 2009). The HCAs in control, 15% enhanced, and

marinated chicken are shown in Table 27. There were no statistically significant differences in

MeIQx, DiMeIQx, and PhIP levels among the three chicken products. There was no difference

(p > 0.05) in total HCAs between control and 15% enhanced chickens or between control and

marinated chicken.  
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Table 27. Chemical analyses (pH, total phenolic, and antioxidant activity), cooking loss, and HCA contents in non-enhanced,

enhanced, and marinated commercial chicken products.

Product

pH cooking 

loss (%)

total phenolic

(mg GAE/g

sample)

DPPH radical

scavenging

activity (%)

Heterocyclic amines (ng/g)

MeIQx DiMeIQx PhIP Total

non-enhanced chicken mean 5.77 27.08 1.35 12.88 1.20 0.64 5.35 7.20 c b b   b a a a ab

SD 0.01 1.35 0.02 0.84 0.25 0.11 0.76 0.86

15% enhanced chicken mean 5.92 33.74 1.36 12.95 2.65 1.13 5.01 8.80 b a b   b a a a a

SD 0.01 3.27 0.06 1.42 1.01 0.35 0.54 0.71

BBQ-marinated
chicken 

mean 6.00 28.47 1.48 17.06 1.87 0.96 4.14 6.97 a ab a   a a a a b

SD 0.04 2.64 0.02 1.85 0.22 0.47 0.51 0.20

Each value is represented as mean ± standard deviation (n = 3). Means with different superscript letters within the same column are
significantly different at p < 0.05.  
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Taken together the results for chicken products suggest that enhancement of chicken

with only water (natural chicken broth) could not reduce HCA formation compared with control

products. The higher level of DPPH radical scavenging activity of marinated chicken had no

effect on HCA reduction compared with control and enhanced chicken; this may be because

only a small amount of paprika and spices were put on the marinated products or because the

dry rub method did not allow spices to penetrate into the meat. Injecting the solution and spices

into marinated chicken may be more effective than the dry rub method.

 The results for these commercial products indicate that enhancing meat products with

water, salt, and phosphate can help meat retain water which results in a lower amount of HCA

formation (as seen in enhanced beef and pork). Meat enhanced with only water without the

addition of salt and phosphate (as seen in enhanced chicken) could not hold water very well; this

increased the cooking loss and led to an increase in the amount of HCAs. However, this

conclusion is based on the meat species represented in commercial products; meat type and

other ingredients may influence HCA formation. Therefore, to gain a better understanding of the

effect of the enhancement process on HCA formation, we decided to prepare and test enhanced

pork loin product in our meat laboratory. We prepared three treatments: (1) no injection

(control), (2) injection with water alone, (3) injection with a combination of water, salt, and

phosphate, and (4) injection with a combination of water and rosemary extract.

Experimental enhanced products

Chemical analyses
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The pH was significantly (p < 0.05) higher for salt/phosphate-injected loin (pH 6.07)

than for water-injected loin (pH 5.67), rosemary extract-injected loin (pH 5.71), and the control

(pH 5.70) (Table 28). Creatine content of loins injected with water (4.60 mg/g), salt/phosphate

(4.28 mg/g) and rosemary extract (4.30 mg/g) was slightly lower than that of the control (5.0

mg/g) (Table 28); perhaps the injected solution caused little dilution of the creatine level

originally present in the loins.

Table 28. The pH and creatine levels in manufactured pork loins

Treatment pH Creatine 

Control (no injection) 5.70 ± 0.12 5.00 ± 0.29 b a

Water injection 5.67 ± 0.20 4.60 ± 0.34 b b

Salt/phosphate injection 6.07 ± 0.17 4.28 ± 0.25 a b

Rosemary extract injection 5.71 ± 0.13 4.30 ± 0.43 b b

Each value is represented as mean ± standard deviation (n = 3). Means with different superscript
letters within the same column are significantly different at p < 0.05.  

Cooking loss

Cooking loss was defined as the weight difference of the loins before and after cooking.

There was no significance difference (p > 0.05) in cooking loss between salt/phosphate-injected

loin (26.4%) and the control (25.2%). This is in agreement with studies by Sheard and others

(1999) and Hayes and others (2006). In contrast, cooking loss of water-injected loin (34.7%) and

rosemary extract-injected loin (33.4%) was much higher than that of the control (p < 0.05). We
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concluded that salt and phosphate had a significant effect on cooking loss by helping meat retain

water that was introduced into the product and, therefore, improving the cooking loss. 

Heterocyclic amine formation in cooked manufactured products

Table 29 summarizes the results of HCA quantitative determinations in control, water-

injected loin, salt/phosphate-injected loin, and rosemary extract-injected loin, and their HPLC

chromatograms are shown in Figures 22 and 23. All of the cooked pork loins contained MeIQx,

DiMeIQx, and PhIP, but IQ, IQx and MeIQ were not detectable in any samples. Total content of

the three HCAs (MeIQx, DiMeIQx, and PhIP) present in all loins ranged from 9.50 to 22.34

ng/g. The predominant HCA in these loins was PhIP (7.54 to 15.05 ng/g), followed by MeIQx

(1.57 to 8.21 ng/g) and DiMeIQx (0.40 to 2.71 ng/g). The amounts of PhIP, MeIQx, and

DiMeIQx in water-injected loin were slightly higher than those in the control, but the

differences were not statistically significant (p > 0.05). In contrast, the amounts of PhIP, MeIQx,

and DiMeIQx in salt/phosphate-injected loin were significantly lower than those in the control

and water-injected loin (p < 0.05). Injection of water with a combination of water and rosemary

extract had lower HCA contents than injection of water alone (p < 0.05). This is due to the

presence of polyphenol compounds in rosemary extract that have been reported to have strong

antioxidant effects, e.g. rosmarinic acid, carnosol and carnosic acid (Tsen and others 2006).

Although amounts of total phenolic were not different among treatments, but the scavenging

effect on DPPH radicals of rosemary extract-injected loin was significantly higher than that
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Table 29. Heterocyclic amines (MeIQx, DiMeIQx, PhIP, and total) in manufactured pork loins

Treatment Cooking loss 1

(%)

Heterocyclic amines (ng/g)

MeIQx DiMeIQx PhIP Total

control (no injection) 25.23 ± 1.02 7.59 ± 0.77 1.64 ± 0.31 13.12 ± 0.68 22.34 ± 1.33 b a a a ab 

water injection 34.69 ± 4.24  8.21 ± 1.61  2.71 ± 1.62  15.05 ± 1.35  25.98 ± 4.09  a a a a a

salt/phosphate injection 26.39 ± 2.63  1.57 ± 0.44  0.40 ± 0.06  7.54 ± 2.67  9.50 ± 2.48  b c b b c

rosemary injection 33.42 ± 3.11  5.33 ± 1.24  0.88 ± 0.32  12.15 ± 1.98  18.35 ± 3.08  a b b a b

Each value is represented as mean ± standard deviation (n = 3). Means with different superscript letters within the same column are
significantly different at p < 0.05.  
 Cooking loss of samples was calculated based on weight of sample after the solution was injected and before cooking.1
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Figure 22. UV chromatogram of HCAs (MeIQx, DiMeIQx) in control, water-injected loin, and

salt/phosphate-injected loin. TriMeIQx used as internal standard.
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Figure 23. FLD chromatogram of HCAs (MeIQx, DiMeIQx) in control, water-injected loin, and

salt/phosphate-injected loin. TriMeIQx used as internal standard.
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in control, water-injected loin, and salt/phosphate-injected loin (p < 0.05) (Table 30). Injection

of water with salt and phosphate showed more reduction of HCA formation than injection of

water with rosemary extract  (p < 0.05). This may be due to rosemary-extract injected loin was

not able to hold injected water inside the product very well, thus some of water-soluble

antioxidant compounds present in rosemary extract may be lost along with water during storage

and cooking. 

Table 30. Total phenolic and antioxidant activity in manufactured pork loins

Treatment Total phenolic 

(mg GAE/g sample)

DPPH radical scavenging activity

(%) 

Control (no injection) 1.23 ± 0.05 9.12 ± 1.88 a b

Water injection 1.13 ± 0.08 7.70 ± 0.91 ab b

Salt/phosphate injection 1.10 ± 0.07 8.38 ± 1.21 b b

Rosemary extract injection 1.11 ± 0.06 12.12 ± 1.83 b a

Each value is represented as mean ± standard deviation (n = 3). Means with different superscript
letters within the same column are significantly different at p < 0.05.  

Injection of salt/phosphate reduced the level of PhIP by 42.5% (reduce from 13.12 to

7.54 ng/g), MeIQx by 79.0% (reduce from 7.59 to 1.57 ng/g), and DiMeIQx by 75.6% (reduce

from 1.64 to 0.40 ng/g) compared with the control. This is in agreement with a study by Persson

and others (2003) who reported that addition of 1.5% sodium chloride and 0.3% sodium

tripolyphosphate to beefburgers decreased the formation of PhIP (up to 38%), MeIQx (up to

38%), and DiMeIQx (up to 12.5%) when beefburgers were fried at 180 °C and 220 °C. In
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addition, Persson and others (2003) stated that addition of salt and phosphate may inhibit the

conversion of creatine to creatinine during cooking, resulting in reduced HCA formation.

Because creatine is less water soluble than creatinine, inhibiting the conversion of creatine to

creatinine means that fewer HCA precursors are transported to the meat surface during cooking.

Therefore, addition of salt and phosphate has a great impact on improving water-holding

capacity and reducing HCA formation in pork loins. It may be that injected salt and phosphate

can hold the water in the sample, thus decreasing the transport of water and water-soluble

precursors (creatine/creatinine, glucose, and amino acids) to the surface. Salt (sodium chloride)

is added to meat products to improve their binding and water-holding properties. Chloride ions

tend to penetrate into the myofilaments filaments in the meat, causing them to swell by

increasing the electrostatic repulsive force between similarly charged groups, which decreases

cohesion between filament proteins of muscle. Decreased cohesion produces an enlarged

myofibrillar volume that can retain more water (Offer and Trinick 1983, Alvarado and Mckee

2007, Puolanne and Halonen, 2010). Phosphates improve water-holding capacity by shifting the

pH further away from the isoelectric point of the myofibrillar proteins by unfolding muscle

proteins, thus exposing more charged sites for water binding. In addition, phosphates have the

capability to cleave the bonds between myofilaments, allowing more space for water to enter the

network and bind to charged groups on proteins (Aberle and others 2001).
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CONCLUSIONS

 Overall, the results of this study show that enhancing fresh meat products by adding salt

and phosphate improves the water-holding capacity, reduces cooking loss, and is an effective

strategy to reduce HCA formation in cooked products. Enhancement with water alone did not

reduce HCA formation because the meat did not retain injected water. Although enhancement

with a combination of water and rosemary extract could reduce amounts of HCA compared with

enhancement with water alone; however, it did not produce a different result than control. We

believed that salt and phosphate may need to be added to the rosemary extract injected-loin.

Additional reduction of HCA levels was observed in marinated product that was prepared by

adding additional ingredients, such as spices and spice/plant extracts, that exhibit good

antioxidant properties in the enhancement solution.
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SUMMARY 

Heterocyclic amines (HCAs), potent mutagenic and carcinogenic compounds, are

formed during the cooking of meat and fish. The major HCAs found in cooked meat and fish are

PhIP, MeIQx, and DiMeIQx. Most RTE meat products contain very low HCA levels, except for

rottisserie chicken that contain elevated amounts of HCAs. We concluded that consumption of

RTE meat products contributes very little to HCA intake. In cooked meat products (beef,

chicken and fish) prepared by various cooking methods (pan frying, oven broiling, and oven

baking), high levels of total HCAs were found in fried pork, fried fish, and fried bacon. The

formation of HCAs in cooked samples is highly dependent on the method and level of cooking,

and the content of HCAs in cooked meat and fish will be low if an appropriate cooking

procedure is selected.

Because of the increasing evidence of the risk of cancers, it is necessary to reduce the

exposure to HCAs. Although, it is impossible to prevent the HCA formation completely, a

reduction of the HCA levels in cooked meat and fish can be achieved by several methods. The

addition of rosemary extracts in ground beef inhibited the formation of HCAs. The capabilities

of rosemary extracts on the HCA inhibition depends on the ratio of water and ethanol used in

the extraction process. Enhancement and marination were found to reduced the amount of

HCAs formed in cooked meat products. Addition of salt and phosphate greatly improved water-

holding capacity and decreased HCA formation in enhanced fresh meat products. An even

greater reduction of HCAs was found in marinated fresh meat; the enhancement solution for this

meat contained ingredients that exhibited food antioxidant properties. 

These data can be used to recommend cooking methods to be used at home or in the
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food industry, or used as guidelines for meat industry on how to modify a formulation process to

minimize HCA formation in cooked meat products. Also these data will provide important

information for use in estimating HCA exposure, and will facilitate investigation of the role of

HCAs in the etiology of cancer of population in the U.S.   
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Figure A-1. Standard curves obtained by UV detection for IQ and IQx at 252 nm.
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Figure A-2. Standard curves obtained by UV detection for MeIQ and MeIQx at 252 nm.
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Figure A-3. Standard curves obtained by UV detection for DiMeIQx at 252 nm and by FLD

detection for PhIP.
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Figure A-4. UV spectra recorded for IQ, IQx, MeIQ, MeIQx, and DiMeIQx standards. 
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Figure A-5. Chromatogram of HCA standards at 250 ppb (20 ìL injection) using UV and FLD

detection. The UV detector was set at 252 nm for IQ, IQx, MeIQ, MeIQx, and DiMeIQx

detections, and The fluorescence detector was programmed accordingly to the

excitation/emission wavelengths of 229 and 437 for PhIP. TriMeIQx (250 ppb) was used as

internal standard.   
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Figure A-6. UV chromatogram of HCA standards (250 ppb each), sample, and spiked sample at

concentration 25 ppb of each HCA.
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Figure A-7. FLD chromatogram of HCA standards (250 ppb each), sample, and spiked sample

at concentration 25 ppb of each HCA.
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Figure A-8. Standard curves obtained by UV detection (284 nm) for rosmarinic acid, carnosol,

and carnosic acid at concentration 5 to 100 ppm.
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Figure A-9. UV spectra recorded for rosmarinic acid, caronosol, and carnosic acid standards.
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Figure A-10. Chromatogram of rosmarinic acid (25 ppm), carnosol (100 ppm), and carnosic acid

(100 ppm) standards (20 ìL injection) using UV detection at 284 nm.
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Figure A-11. Standard curves obtained by UV detection (520 nm) for creatine standards at

concentration 0.5 to 20 ppm for creatine determination.
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Figure A-12. Standard curves obtained by UV detection (765 nm) for gallic acid standards at

concentration 2.5 to 300 ppm for total phenolic determination.
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Figure A-13. Scavenging activity on DPPH radicals on rosemary extract 100W and 10E at

50concentration 0.1 to 1.0 mg/mL for IC  of antioxidant activity determination. 
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Figure A-14. Scavenging activity on DPPH radicals on rosemary extract 20E and 30E at

50concentration 0.1 to 1.0 mg/mL for IC  of antioxidant activity determination. 
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Figure A-15. Scavenging activity on DPPH radicals on rosemary extract 40E at concentration

500.1 to 1.0 mg/mL for IC  of antioxidant activity determination. 
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