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ABSTRACT

This work offers two strategies to raise the prediction accuracy of Vector Au-

toregressive (VAR) Models. The first strategy is to improve the Minnesota prior,

which is frequently used for Bayesian VAR models. The improvement is achieved in

two ways. First, the variance-covariance matrix of regression disturbances is treated

as unknown and random to incorporate parameter uncertainty. Second, the prior

variance-covariance matrix of regression coefficients is constructed as a function of

the variance-covariance matrix of disturbances, in order to account for dependencies

between different equations. Since different prior specifications unavoidably lead to

different models, and forecasting capability of any such model is often limited, the

second strategy is to build an optimal prediction pool of models by using the con-

ventional log predictive score function. The effectiveness of the proposed strategies

is examined for one-step-ahead, multi-4-step-ahead, and single-4-step-ahead predic-

tions through two exercises. One exercise is predicting national output, inflation,

and interest rate in the United States, and the other is predicting state tax rev-

enue and personal income in Iowa. The empirical results indicate that a properly

selected prior can improve the prediction performance of a BVAR model, and that

a real-time optimal prediction pool can outperform a single best constituent model

alone.
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CHAPTER 1

INTRODUCTION

Economic forecasting is necessary when decisions have to be made in circum-

stances, where future values of many economic variables are unknown. Forecasting

multivariate time series is virtually ubiquitous in macroeconomics, since policy anal-

ysis often considers all levels of economic activities such as output, investment, and

consumption simultaneously. A milestone in multivariate prediction was achieved

by Sims (1980), who proposed the use of unrestricted vector autoregressive (VAR)

models.

A clean and intelligent way of specifying and estimating VAR models is

through a Bayesian approach. Bayesian VAR (BVAR) models, which originated

from Litterman (1979, 1986) and Doan et al. (1984), overcome the problem of over-

parameterization and gain remarkable empirical success. Currently BVAR models

are combined with Dynamic Stochastic General Equilibrium (DSGE) models to im-

prove macroeconomic forecasting (DeJong et al., 2000; Smets and Wouters, 2005;

Del Negro et al., 2007). In any Bayesian inference, a fundamental yet challenging

step is prior specification, which influences posterior distributions of unknown pa-

rameters and forecasts consequently (Geweke, 2005). Therefore, it is technically

important to specify a sensible BVAR prior, in order to improve a model’s predic-

tion performance. Moreover, since different modeling techniques unavoidably lead

to different models, it is practically desirable to construct an optimal pool of models,

in order to achieve better performance over a single model.
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This chapter provides a literature review of related topics. Section 1.1 presents

the advantages of BVAR models, and discusses the current stage of the integra-

tion of BVARs and DSGEs. Since prior specification plays an important role in

Bayesian inference, Section 1.2 reviews the widely used Minnesota prior with its ex-

tensions. Since there usually exist multiple competing models at the same time due

to forecasts’ different prior beliefs, Section 1.3 discusses the techniques of combining

prediction models. Finally, Section 1.4 lays out the structure of this work.

1.1 Bayesian Prediction

An unrestricted N -variable pth-order VAR model, as suggested by Sims (1980),

can be written as

yt
N×1

=

p
∑

l=1

yt−l Al
N×N

+ εt
N×1

, (1.1)

where yt is a vector of variables being forecasted, Al’s are matrices of unknown

coefficients, and εt is a vector of white-noise disturbances.

A VAR model as specified in (1.1) has N × (N × p) coefficients in total. Since

the number of coefficients to be estimated quickly increases with the number of

variables as well as the number of lags in the system, a moderate sized system

can be highly overparameterized relative to the number of observations. An over-

parameterized unrestricted VAR model can explain data “too well”. It captures

not only important features that are useful for forecasting, but also noisy features

that merely reflect accidental or random relationships. Statistically, overparam-

eterization usually causes multicollinearity and loss of degrees of freedom, which

lead to inefficient estimates and large out-of-sample forecasting errors. To avoid

overparameterization, one approach is to find the maximum lag length in a VAR

model and exclude insignificant lags based on statistical tests (e.g., Akaike, 1974;
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Schwarz, 1979; Hannan and Quinn, 1979). Another approach is to specify unequal

numbers of lags for different equations in a VAR model (e.g., Hsiao, 1981, 1982;

Hendry and Mizon, 1993; Clements and Mizon, 1991). However, these approaches

rely on classical hypothesis testing.

A Bayesian VAR model, however, offers an intelligent way to overcome overpa-

rameterization without relying on classical hypothesis testing. The pioneering work

includes Litterman (1979) and Doan, Litterman, and Sims (1984). Theoretically,

BVARs have three apparent advantages. First, BVARs avoid overparameterization

by imposing general restrictions on coefficients instead of implementing complete

exclusions. Excluding long lags from a VAR model amounts to an overly absolute

belief that their coefficients are zeros. Such exclusions cannot be revised by any

amount of data evidence. By contrast, BVARs impose flexible prior specifications

on these coefficients to shrink them more tightly towards zeros than coefficients

of short lags. Such prior specifications can be easily overridden by data, if long

lags turn out to have strong impact. Second, BVARs enable forecasters to impose

prior specifications through probabilistic terms in a fully transparent way. The

means of prior distributions reflect forecasters’ prior beliefs and best guesses about

the true values of unknown parameters. The variances reflect forecasters’ confi-

dence on the prior means. Small prior variances indicate that forecasters believe

that the true values are not likely to deviate from their guesses (i.e., prior means),

and vice versa. This standard specification procedure allows resulting forecasts to

be reproduced. Third, BVARs generate complete multivariate density forecasts,

by fully incorporating parameter uncertainty instead of simply using point esti-

mates of parameters. A posterior distribution for each parameter can be obtained

from its prior distribution and the likelihood function by using the Bayes rule.
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Empirically, BVARs achieve remarkable success in both national and regional pre-

dictions (e.g., Amirizadeh and Todd, 1984; Litterman, 1986; Dua and Ray, 1995;

Gupta and Sichei, 2006).

The empirical success of Bayesian estimation techniques have motivated re-

searchers to develop advanced models by integrating BVARs with other models,

such as Dynamic Stochastic General Equilibrium (DSGE) models. DSGE mod-

els are micro-founded and optimization-based models that are capable of provid-

ing a complete qualitative analysis of the workings of the economy. However,

DSGEs were rarely used for quantitative analysis due to unsatisfactory calibra-

tion of their structural parameters (e.g., Kydland and Prescott, 1982). On the one

side of the integration from DSGEs to BVARs, Ingram and Whiteman (1994) and

Del Negro and Schorfheide (2004) showed that information derived from DSGEs

can be used to construct priors for BVARs, which can then achieve slightly better

prediction performance than BVARs with the Minnesota prior. On the other side

of the integration from BVARs to DSGEs, Smets and Wouters (2003) showed that

a DSGE model with structural parameters estimated by Bayesian techniques can

deliver acceptable forecasts. Del Negro et al. (2007) explicitly used a BVAR with

four lags to estimate the state-space representation of a DSGE, and obtained bet-

ter forecasts than using traditional DSGEs. The current trend in macroeconomic

forecasting is clearly to formulate DSGE-BVAR models that can take advantage

of economic theories and statistical tools to facilitate policy analysis and produce

more accurate forecasts than either DSGE or BVAR alone.
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1.2 Bayesian Priors

In any Bayesian application, from calibrating structural parameters of theoret-

ical DSGE models to estimating regression coefficients of atheoretical VAR models,

prior specification of unknown parameters is a required and indispensable step.

This section begins with a review of the widely used Minnesota prior1, followed by

a discussion of several available modifications in the literature.

The unknown parameters in a VAR model typically include regression coef-

ficients and variances of regression disturbances. In the Minnesota prior proposed

by Doan et al. (1984) and Litterman (1986), the variances of disturbances are fixed

to estimated residual variances obtained from univariate autoregressions2, and the

coefficients are assumed to have normal distributions with the means and variances

representing forecasters’ prior beliefs about the coefficients. Certainly it is impracti-

cal for forecasters to specify the mean and variance for each coefficient individually,

when hundreds of coefficients can be involved. An advantage of the Minnesota prior

is to generate a full set of prior means and variances for BVAR coefficients auto-

matically. The prior specification proceeds in two steps. For example, a simple

output-inflation VAR model based on (1.1) with two lags of each target variable

1The name is due to its development at the University of Minnesota and the Federal
Reserve Bank of Minneapolis.

2Litterman (1986) specified a full variance-covariance matrix of regression disturbances,
but was unable to follow through on its implications for the likelihood function and for
forecasting, primarily due to computational difficulty in the early 1970s. A compromise
was the equation-by-equation treatment, and consequently the estimated residual vari-
ances obtained from univariate regressions were substituted for the posterior distribution.
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can be written as

Outputt+1 = a11,1Outputt + a11,2Outputt−1

+ a12,1Inflationt + a12,2Inflationt−1 + ε1,t+1, (1.2)

Inflationt+1 = a21,1Outputt + a21,2Outputt−1

+ a22,1Inflationt + a22,2Inflationt−1 + ε2,t+1. (1.3)

The first step is to specify priors for the coefficients of the current and past values

of the dependent variable in any given equation. These variables are known as own

lags, which are Outputt and Outputt−1 in (1.2) and Inflationt and Inflationt−1 in

(1.3). The second step is to specify priors for the coefficients of the current and past

values of all the other variables except the dependent variable in any given equation.

These variables are known as cross lags, which are Inflationt and Inflationt−1 in

(1.2) and Outputt and Outputt−1 in (1.3). In the belief that own lags, particularly

the first own lags, are important explanatory variables, the prior means of their

coefficients are usually set to ones, while the prior means of the coefficients of cross

lags are set to zeros. The prior standard deviations then indicate the likely departure

of coefficient values from their prior means. Specifically, the standard deviation of

the coefficient of lag l of variable j in equation i takes the following form,

s(i, j, l) =























λ

ld
for coefficients of own lags if i = j,

λ

ld
θ
si
sj

for coefficients of cross lags if i 6= j,

(1.4)

where the hyperparameters d, λ, and θ are assigned numerical values by forecasters,

and si and sj are fixed to the estimated standard deviations of the disturbances in

univariate autoregressions. The properties of these parameters are summarized as

follows.



7

• The term λ is called the overall tightness parameter. It is the prior standard

deviation of the coefficient of the first own lag, and essentially controls the

prior standard deviations of all the lag coefficients. In other words, it deter-

mines how all the coefficients are concentrated around their prior means. A

tighter prior can be produced by decreasing λ.

• The term d is a decay factor, and 1/ld controls the tightness on lag l relative

to lag 1. Since coefficients of higher order lags are more likely to be close to

zeros than those of lower order lags, prior standard deviations of coefficients

decrease as lag length l increases.

• The term θ is called the cross-equation tightness parameter, which represents

the tightness of variable j relative to variable i in equation i. Since own lags

usually account for most of variation in a dependent variable, the coefficients

of cross lags are assigned smaller standard deviations than those of own lags

in relative terms by choosing θ between 0 and 1.

• The ratio si/sj is used to account for differences in variability of different

variables due to measurement.

For example, based on (1.4), the prior standard deviations of the coefficients of

the simple output-inflation VAR model defined in (1.2) and (1.3) are given in the

parentheses as follows.

Outputt+1 = a11,1
(λ)

Outputt + a11,2
(λ/2d)

Outputt−1

+ a12,1Inflationt

(λθs1/s2)
+ a12,2Inflationt−1

(λ/2dθs1/s2)

+ ε1,t+1, (1.5)
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Inflationt+1 = a21,1Outputt
(λθs2/s1)

+ a21,2Outputt−1

(λ/2dθs2/s1)

+ a22,1
(λ)

Inflationt + a22,2
(λ/2d)

Inflationt−1 + ε2,t+1. (1.6)

Direct modifications of the Minnesota prior usually focus on alternative spec-

ifications for prior standard deviations of coefficients based on (1.4), because prior

standard deviations determine how far the true values can deviate from the prior

means, which represent forecasters’ prior guesses. An immediate alteration is to

replace the constant cross-equation tightness parameter θ with a weighting func-

tion f(i, j) for variable j in equation i. Doan and Litterman (1986) applied such a

weighting function to a BVAR model for predicting both national and state vari-

ables. They suggested specifying f(i, j) according to a circle-star structure, in which

star (national) variables affect both star and circle (state) variables while circle vari-

ables influence primarily only other circle variables. For example, the value of f(i, j)

is 0.6 for a national variable in either other national equations or state equations, 0.1

for a state variable in other state equations, and 0.01 for a state variable in national

equations. Research along this line of thought includes LeSage and Pan (1995) and

LeSage and Krivelyova (1999), both of which emphasized the distinction between

variables from neighboring states and variables from non-neighboring states. That

is, the value of f(i, j) for a state variable in a neighboring state equation should be

different from the value for a state variable in a non-neighboring state equation.

Although the specification of the weighting function f(i, j) improves the fore-

cast accuracy of BVAR models on state variables, two major limitations of BVAR

models remain untouched. The first limitation is fixing the unknown variances of

disturbances to their estimates obtained from univariate autoregressions. Since the
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variances of disturbances are parameters of the likelihood function, such a specifica-

tion with fixed values is essentially an overly strong restriction on the data likelihood

function, and is rarely supported by practice. The second limitation is ignoring po-

tential dependencies between equations. Basically, parameters in any one equation

are independent of the parameters in any other equations. This is primarily due to

the equation-by-equation prior specification and parameter estimation. Addition-

ally, the prior standard deviations (i.e., λ
ld
θ si

sj
in (1.4)) of the coefficients of cross

lags certainly disregard interaction between equations, because the values of si and

sj are fixed (see, e.g., Kadiyala and Karlsson, 1993; Geweke and Whiteman, 2006,

for a detailed discussion).

To avoid these limitations of the Minnesota prior, there are alternative prior

specifications in literature. One alternative is the “normal-Wishart” prior (e.g.,

Litterman, 1979; Broemeling, 1985). It assumes that regression coefficients are nor-

mally distributed conditional on the variance-covariance matrix of disturbances,

which in turn has an inverted Wishart distribution. This prior does not have

the two limitations of the Minnesota prior. Additionally it is a natural conju-

gate prior, which means that the posterior distribution of parameters can be ob-

tained analytically and has the same functional form as the prior distribution. How-

ever, this prior has a drawback that it does not treat own lags and cross lags in

the same fashion as the Minnesota prior (see, e.g., Geweke and Whiteman, 2006,

for a detailed discussion). Another alternative is the “normal-diffuse” prior (e.g.,

Kadiyala and Karlsson, 1993; Lewis and Whiteman, 2006). It assumes indepen-

dent Minnesota priors for coefficients in each equation and a diffuse prior for the

variance-covariance matrix of disturbances. This prior avoids the disadvantages of

the Minnesota prior and the “normal-Wishart” prior. However, because of the use
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of a diffuse prior, the posterior distributions of parameters are not in recognizable

standard distribution forms. In addition, large differences between the information

contained in the prior and the likelihood function can cause the posterior distribu-

tions to be bimodal. Therefore, it is of interest to form BVAR priors that overcome

the limitations of the Minnesota prior while maintaining its advantages in a fully

Bayesian approach.

Another strain of literature takes a theoretical perspective on the prior spec-

ification of BVAR models. The earliest work includes DeJong et al. (1993) and

Ingram and Whiteman (1994), which used DSGE models to supply additional in-

formation to the BVAR prior specification. That is, the prior means and variances

of regression coefficients, particularly of the first own lags, are derived theoreti-

cally. Most recently, Del Negro and Schorfheide (2004) also used prior information

obtained from DSGE models to introduce shrinkage. Specially, they had a tight-

ness parameter to control the weight placed on the DSGE model prior versus the

unrestricted VAR prior. Although DSGE-based BVAR models showed comparable

forecasting performance to BVAR models by taking advantage of economic theories,

they do not technically improve prior specifications from a statistical perspective.

1.3 Combinations of Prediction Models

Forecasters are likely to build different prediction models even for the same

target variables due to different prior beliefs or modeling approaches. For example,

forecasters can use micro-founded theoretical DSGE and atheoretical time-series

BVAR as two different prediction models, and they can even have different BVAR

models by simply varying prior specifications. With multiple prediction models

available at the same time, there are two options to produce forecasts. The first is
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to identify a single best model through a model selection procedure. The second

is to pool competing models and then obtain a combined forecast. The second

option has become increasingly popular (see, e.g., Timmermann, 2006, for a recent

review) because of superior forecast accuracy in the sense of low root mean square

errors. The success of combined forecasts primarily owes to the combination of

different information sets and the robustness against misspecified models and poor

estimations (see, e.g., Hendry and Clements, 2004).

As far as the form of combining forecasts is concerned, there are combinations

of point forecasts, combinations of interval forecasts, and combinations of density

forecasts. Until recently, most of the work focused on combining point forecasts

(see, e.g., Clemen, 1989; Diebold and Lopez, 1996, for reviews). Certainly point

forecasts can serve as a starting point. Interval forecasts and event probabilities can

be derived from point forecasts, when forecast errors are normally distributed with

a constant variance. However, normality and constant variance may not always

be supported by data. Moreover, optimal point and interval forecasts can vary

under an asymmetric loss function. Therefore, density forecast is more desirable for

decision makings, because it provides a complete description of future uncertainty

(see, e.g., Tay and Wallis, 2000, for a survey). Consequently, research on combining

density forecasts from competing models is of more interest than combining point

forecasts or interval forecasts.

Once a strategy of combing density forecasts is selected, its success depends

largely on how well combination weights can be determined. A simple and inex-

pensive approach is to use equal weights. The experience of combining point fore-

casts suggests that a simple average with equal weights can outperform complicated
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weighting schemes (see, e.g., Clemen, 1989). Wallis (2005), a forerunner of com-

bining density forecasts, adopted the approach of equal weights. However, a more

sophisticated and sensitive approach is to use optimal weights. Hall and Mitchell

(2007) proposed a practical data-driven approach to search the optimal weights,

which minimizes the Kullback-Leibler distance between the combined density fore-

cast and the true but unknown density of variables of interest. Geweke and Amisano

(2010) recommended using a log scoring function to construct linear weighted pools

of prediction models. They provided a detailed theoretical analysis, and focused on

competing models that can provide density forecasts (i.e., predictive distributions)

of variables under consideration. Most importantly, they discussed at least three

advantages of building optimal prediction pools. First, no model is assumed to

coincide with the “true” model (i.e., the underlying data generating process). Sec-

ond, given a data generating process, there exists a unique optimal prediction pool.

Third, an optimal prediction pool can substantially outperform any constituent

model in the pool.

1.4 Organization

Chapter 2 presents a full Bayesian vector autoregressive (BVAR) model with

two major innovations. The first is to treat the unknown variance-covariance matrix

of disturbances as a random matrix. The second is to construct the prior variance-

covariance matrix of coefficients conditional on the variance-covariance matrix of

disturbances. The details regarding the posterior simulation of the unknown pa-

rameters are also provided. Chapter 3 describes the construction of an optimal

prediction pool by using a conventional log predictive score function. A contribu-

tion to the existing research is made by combining multivariate density forecasts in
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multi-H-step-ahead and single-H-step-ahead predictions. Chapters 4 and 5 apply

the proposed BVAR model and optimal pooling techniques to two forecasting exer-

cises. One exercise is predicting national output, inflation, and interest rate in the

United States, and the other is predicting state tax revenue and personal income in

Iowa. Finally, Chapter 6 concludes.
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CHAPTER 2

A BAYESIAN VECTOR AUTOREGRESSIVE MODEL

We develop a full Bayesian vector autoregressive (BVAR) model, which im-

proves Litterman (1986)’s model in four ways. First, the variance-covariance matrix

of regression disturbances is treated as unknown and random to incorporate param-

eter uncertainty. Second, the prior variance-covariance matrix of regression coeffi-

cients is constructed as a function of the variance-covariance matrix of disturbances.

Third, the N equations of the model are estimated simultaneously to account for

possible contemporaneous correlation of disturbances1. Fourth, the model is fully

Bayesian. Since the prior distributions lead to posterior distributions that do not

have analytical closed-form expressions, a state-of-the-art Metropolis-within-Gibbs

sampler is specified to obtain draws from the posterior distributions.

This chapter is organized as follows. Section 2.1 establishes the notation

used throughout the chapter. Section 2.2 specifies the data likelihood function of

the unknown parameters, followed by Section 2.3 on the prior distributions of the

unknown parameters. Finally, Section 2.4 offers a simulation algorithm to obtain

draws from the posterior distributions of the unknown parameters.

1Litterman (1986, page 31) explicitly admitted the efficiency loss due to the single-
equation operation. Geweke and Whiteman (2006, pages 43-45) provided a detailed dis-
cussion on this issue.
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2.1 Basic Notation

An N -dimensional pth-order Gaussian vector autoregressive [VAR(p)] model

can be written as2

yt
N×1

= C
N×1

+ A1
N×N

yt−1 + A2yt−2 + . . . + Apyt−p + εt
N×1

, εt
i.i.d
∼ N (0,Σε), (2.1)

where yt = (y1t, . . . , yNt)
′ is an N ×1 random vector, C = (C1, . . . , CN)′ is an N ×1

vector of intercept terms, Al (l = 1, . . . , p) is an N ×N coefficient matrix of the lth

lag, and εt = (ε1t, . . . , εNt)
′ is an N × 1 vector of disturbances. The disturbances

have mean zero E(εt) = 0 and the same (nonsingular) variance-covariance matrix

Σε = E(εtε
′

t) for all t. Furthermore, εt and εs are uncorrelated for t 6= s.

Assuming that we have T observations (i.e., y1, . . . ,yT ) and p presample values

(i.e., y−p+1, . . . ,y0) for each of the N variables, we define

YT = (y1, . . . ,yT ) N × T,

B = (C, A1, . . . , Ap) N × (1 + Np),

β = vec(B) (N + N2p) × 1,

Xt = (1, y′

t−1, . . . , y
′

t−p) 1 × (1 + Np), (2.2)

XT =













X1

...

XT













T × (1 + Np),

where vec operation is defined by stacking the rows of a matrix into a column vector,

instead of stacking the columns of a matrix into a column vector. Using the above

2For specificity, the model includes only the constant as an exogenous variable. How-
ever, much of the discussion hereafter can be generalized to allow for the presence of other
exogenous variables.
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notation, we can write (2.1) more compactly as

yt = (IN ⊗Xt)β + εt,

= Ztβ + εt, (2.3)

where ⊗ denotes the Kronecker product.

To perform Bayesian inference based on (2.3), we follow two principles, ex-

plicit formulation and relevant conditioning, as suggested in Geweke and Whiteman

(2006). In the rest of this chapter, we specify three necessary components of

Bayesian inference,

• a joint distribution of the observables YT conditional on the unknown param-

eters β and H = Σ−1
ε and model assumptions A, i.e., p (YT |β,H, A),

• prior distributions of the unknown parameters, i.e., p (H |A) and p (β |H, A),

and

• posterior distributions of the unknown parameters, i.e., p (β |H,YT , A) and

p (H |β,YT , A).

2.2 Conditional Distribution of Observables

Since the vector of the disturbances in (2.3) is assumed to have a normal

distribution N (0,H−1), where H is the N × N precision matrix (i.e., H = Σ−1
ε ),

the conditional probability density function (pdf) for the observable YT is

p (YT |β,H, A) =
T
∏

t=1

p (yt |Yt−1,β,H, A)

= (2π)−
TN
2 |H|

T
2 exp

[

−
1

2
tr(SH)

]

, (2.4)
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where the N×N matrix S =
∑T

t=1 εtε
′

t. (The vector εt is defined implicitly in (2.1)

and is a function of the parameter vector C and matrices A1, . . . ,Ap.)

Throughout the work, the vector of the observed values is denoted by Yo
T ,

where the superscript o differs Yo
T from the observable random vector YT . Re-

placing YT with Yo
T in (2.4), we have the expression of the likelihood function,

 L (β,H;Yo
T , A) ∝ p (Yo

T |β,H, A).

2.3 Prior Distributions of Unknown Parameters

In the model of (2.3), the unknown parameters are the vector of coefficients β

and the variance-covariance matrix of disturbances Σε. Assumptions about these

parameters need to reflect empirical regularities and admit uncertainties.

In the work of Litterman (1986), the assumptions about Σε and β are as

follows.

• There was no prior distribution specified for the variance-covariance matrix of

disturbances Σε. Instead, the unknown variances of disturbances were fixed to

the estimated residual variances from unrestricted univariate autoregressions.

• The prior distributions of the unknown regression coefficients (i.e., elements of

β) were independent normal distributions. The prior means of the coefficients

of the first own lags were set to ones, while the prior means of the other

coefficients were set to zeros. The prior standard deviation of the coefficient

of lag l of variable j in equation i, s(i, j, l) was

s(i, j, l) =























λ

l
for coefficients of own lags if i = j,

λ

l
θ
si
sj

for coefficients of cross lags if i 6= j,

(2.5)
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which was in the same fashion as (1.4) by setting the decay factor d equal to 1.

The term si was fixed to the estimated standard deviation of the disturbance

in an univariate autoregression on the dependent variable i. The hyperpa-

rameters λ and θ were called overall tightness and cross-equation tightness,

respectively. They were assigned numerical values by forecasters.

A major limitation of Litterman’s specification is the fixed-value variances of

disturbances, which is an overly strong assumption that ignores parameter uncer-

tainty. Furthermore, given the values of hyperparameters λ and θ, since the values

of si and sj in (2.5) were fixed to their estimates from univariate autoregressions,

the variance-covariance matrix of the coefficients was also fixed. In particular, the

fixed prior standard deviations θ
λ

l

si
sj

did not allow the coefficients of cross lags to be

impacted by the unknown disturbances, and did not take account of dependencies

between the coefficients in the different equations of the VAR model.

Improving from Litterman’s specification and more importantly from a strict

Bayesian perspective, we treat Σε as an unknown and random matrix to incorporate

parameter uncertainty. The precision matrix (i.e., H = Σ−1
ε ) is assumed to follow

a Wishart distribution (see, e.g., Zellner, 1971; Press, 1982, for details),

H |A ∼ W (S−1, ν), (2.6)

where S−1 is a scale matrix and ν is a degrees of freedom parameter. The hyper-

parameters with underscores in (2.6) will be assigned numerical values as a part of

the prior specification. The Wishart density for (2.6) is

p (H |A) ∝ |H|(ν−N−1)/2|S|ν/2 exp{−
1

2
tr(SH)}, H > 0, S > 0, (2.7)

where the matrices H and S are positive definite.
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The vector of coefficients β is then assumed to follow a multivariate normal

distribution in the spirit of the Minnesota prior. Mathematically,

β | (H, A) ∼ N (β, H−1
β (H)), (2.8)

where the prior variance-covariance matrix of the coefficients (i.e., Σβ = H−1
β ) is

a function of the variance-covariance matrix of the disturbances (i.e., Σε = H−1).

Specifically, the prior standard deviations of the coefficients in any given equation

i (i = 1, . . . , N) take the following forms,






















κ for coefficients of intercept terms,
λ

l
for coefficients of own lags if i = j,

λ

l
θ
σi

σj
for coefficients of cross lags if j 6= i,

(2.9)

where σi is an unknown and random variable. Precisely, it is the square root of the

(i, i) element of H−1.

Consequently, the proposed prior specifications in (2.8) and (2.9) improve Lit-

terman’s prior by replacing the fixed-value parameters with unknown random vari-

ables. A resulting advantage is introducing uncertainty into parameter estimation

by admitting the randomness of the unknown parameters.

2.4 Posterior Simulator of Unknown Parameters

Since the proposed priors do not lead to recognizable standard posterior distri-

butions of the unknown parameters, a Metropolis-Hastings algorithm is developed

to handle posterior simulations.

The posterior conditional distribution of β is a multivariate normal (e.g., see

Geweke (2005) for a derivation of the results). That is,

β | (H,Yo
T , A) ∼ N (β, H

−1

β ), (2.10)
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where

Hβ = Hβ(H) + Z ′

T (H⊗ IT )ZT , (2.11)

β = H
−1

β

[

Hβ(H)β + Z ′

T (H⊗ IT )Yo
T

]

, (2.12)

where ZT = IN ⊗XT and Yo
T = vec(Yo

T ).

Since Hβ is a function of H, the posterior distribution of H does not be-

long to a recognizable standard distribution. However, the kernel of the posterior

conditional distribution of H is

p (H |β,Yo
T , A) ∝ p (β|H, A)p (H |A)p (Yo

T |β,H, A). (2.13)

Thus a Metropolis-Hastings algorithm can be developed to obtain draws from this

posterior distribution. Since a part of (2.13), p (H |A)p (Yo
T |β,H, A), is propor-

tional to the kernel of a Wishart distribution in H,

W
(

(S + S)−1, ν + T
)

, (2.14)

it can be used as a candidate generating density. Consequently, the ratio of the

target to the candidate density is proportional to p (β |H, A), and the acceptance

probability has a relatively simple form

α(H∗ |H(m−1)) = min

[

p (β |H∗, A)

p (β |H(m−1), A)
, 1

]

. (2.15)

Specifically, a Metropolis-within-Gibbs algorithm for the posterior simulation

consists of the following steps.

(0) Choose an initial value of H(0).

(1) Compute H−1(m)

β conditional on H−1(m−1)
according to (2.9).
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(2) Draw β(m) from its posterior conditional Gaussian distribution described in

(2.10), (2.11), and (2.12).

(3) Take a candidate draw, H∗, from the candidate generating density described in

(2.14).

(4) Calculate an acceptance probability α described in (2.15).

(5) Set H(m) = H∗ with probability α and set H(m) = H(m−1) with probability

1 − α. That is, generate a random number, u, from a Uniform (0,1), if u < α,

set H(m) = H∗, otherwise set H(m) = H(m−1).

(6) Repeat Steps (1) to (5) M times.
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CHAPTER 3

OPTIMAL COMBINATION OF MULTIVARIATE FORECASTS

We offer a practical approach to combining competing prediction models. The

optimal weights of the models are obtained by maximizing the conventional log

predictive score of the linear prediction pool under consideration. The real-time

predictive probability densities of each model in the optimal pool are then evaluated

to identify the pivotal observations that account for each model having a positive

weight.

This chapter is organized as follows. Section 3.1 presents an analytical closed-

form conditional joint distribution of forecasts, which can be used to evaluate pre-

dictive probability densities of forecasts. Section 3.2 provides an algorithm for

computing conventional log predictive scores of multi-H-step-ahead and single-H-

step-ahead predictions. Section 3.3 explains the computation of optimal weights

of models for constructing a linear prediction pool. Finally, Section 3.4 outlines a

search scheme for pivotal observations that explain why a model is given a positive

weight in an optimal prediction pool.
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3.1 Predictive Probability Densities of Forecasts

To reach the goal of combining prediction models, we first compute predictive

probability densities of forecasts from each competing model. We consider an N -

variable and pth-order autoregressive model described in (2.1). A vector of multi-

H-step-ahead forecasts from an end-of-sample point t is denoted

ωt+1,t+H
NH×1

=



















yt+1

yt+2

...

yt+H



















, (3.1)

for some H > 0.

Given the assumption of normal disturbances, the conditional distribution of

ωt+1,t+H is multivariate normal,

ωt+1,t+H | (Yo
t ,β,Σε, A) ∼ N ( µ

NH×1
, Σω
NH×NH

), (3.2)

where β is the vector of regression coefficients and Σε is the variance-covariance

matrix of regression disturbances, as defined in Chapter 2. The analytical closed-

form expressions for the mean vector µ and the variance-covariance matrix Σω can

be derived as follows.

(a) Mean Vector. The conditional expectation of the vector of the hth-step-

ahead forecasts conditional on the history Yo
t can be denoted

µh =

{

E[yt+h |Y
o
t ] if h > 0,

yo
t+h if h ≤ 0.

(3.3)

Starting with h = 0, we have

µ0 = yo
t .
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Then at h = 1, we have

µ1 = E[yt+1 |Y
o
t ]

= E[C + A1yt + . . . + Apyt+1−p + εt+1 |Y
o
t ]

= C + A1µ0 + . . . + Apµ1−p.

Similarly at h = 2, we have

µ2 = E[yt+2 |Y
o
t ]

= E[C + A1yt+1 + . . . + Apyt+2−p + εt+2 |Y
o
t ]

= C + A1µ1 + . . . + Apµ2−p.

Recursively, we know

µh = C +

p
∑

l=1

Alµh−l, for h = 1, . . . , H, (3.4)

where Al is the coefficient matrix of the lth lag in (2.1).

(b) Variance-Covariance Matrix. The (N×N) conditional variance-covariance

matrix of the ith-step-ahead and jth-step-ahead forecasts can be denoted

Γj,i = cov[yt+j ,yt+i |Y
o
t ] = E[(yt+j − µj)(yt+i − µi)

′ |Yo
t ]. (3.5)

By symmetry, we have Γj,i = Γ′

i,j .

By using (3.4), we know

yt+j − µj =

min(j−1,p)
∑

l=1

Al(yt+j−l − µj−l) + εt+j . (3.6)

(i) For i < j, we postmultiply both sides of (3.6) by (yt+i − µi)
′ and get the
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conditional expectation

Γj,i = E[(yt+j − µj)(yt+i − µi)
′ |Yo

t ]

= E





min(j−1,p)
∑

l=1

Al(yt+j−l − µj−l)(yt+i − µi)
′ + εt+j(yt+i − µi)

′|Yo
t





=

min(j−1,p)
∑

l=1

AlΓj−l,i. (3.7)

Notice that E [εt+j(yt+i − µi)
′|Yo

t ] = 0, because i < j.

(ii) For i = j, we have

Γj,j =

min(j−1,p)
∑

l=1

AlΓj−l,j + Σε. (3.8)

In summary, the vector of the multi-H-step-ahead forecasts ωt+1,t+H defined

in (3.1) has a conditional multivariate normal distribution as stated in (3.2). The

(NH × 1) mean vector µ can be expressed


















µ1

µ2

...

µH



















,

where the conditional expectation of the vector of the single-hth-step-ahead fore-

casts µh (h = 1, . . . , H) is defined in (3.4). The (NH × NH) variance-covariance

matrix Σω can be expressed


















Γ1,1 Γ1,2 . . . Γ1,H

Γ2,1 Γ2,2 . . . Γ2,H

...
...

...
...

ΓH,1 ΓH,2 . . . ΓH,H



















,
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where

(a) for i = j = 1, Γ1,1 = Σε, and

(b) for j = 2, 3, . . . , H ,

(i) Γji and Γij = Γ′

ji are defined in (3.7) successively for i = 1, . . . , j− 1, and

(ii) Γjj is defined in(3.8).

Furthermore, we can use the property of a multivariate normal distribution,

Rωt+1,t+H | (Yo
t ,β,Σε, A) ∼ N (Rµ, RΣωR

′), (3.9)

to have conditional distributions of any linear combinations of forecasts by appro-

priately manipulating the R matrix in (3.9).

For the purpose of illustration, we consider a vector of multi-4-step-ahead

forecasts from a two-variable VAR model, that is,

ωt+1,t+4
8×1

=



















yt+1

yt+2

...

yt+4



















.

We are able to investigate various cases by constructing different R matrices as

follows.

• When multi-4-step-ahead forecasts of the two variables are of interest, we set

R to be an 8 × 8 identity matrix.

• When single-4-step-ahead forecasts of the two variables are of interest, we set

R
2×8

=





0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



 .
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• When multi-4-step-ahead forecasts of the first of the two variables are of in-

terest, we set

R
4×8

=



















1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0



















.

• When the sum of multi-4-step-ahead forecasts of the first of the two variables

is of interest, we set

R
1×8

=
[

1 0 1 0 1 0 1 0

]

.

By manipulating the R matrix as illustrated above, we can have a closed-form

expression of the conditional distribution as described in (3.9). Therefore, it is

straightforward to compute the predictive probability density of interest1,

M−1
M
∑

m=1

p (Rωo
t+1,t+H |Yo

t ,β
(m),Σ(m)

ε , A)
a.s.
→ p (Rωo

t+1,t+H |Yo
t , A), (3.10)

where β(m) and Σ(m)
ε are the draws obtained from the posterior distributions of β

and Σε at the mth iteration of the posterior simulation. The predictive probability

density is computed using the observed values Rωo
t+1,t+H , in order to evaluate the

performance of a prediction model.

3.2 Log Predictive Scores of Models

After obtaining the predictive probability densities, we proceed to compute the

conventional log predictive score, which can be used for evaluating the forecasting

performance of competing models. Specifically, for a prediction model A and a

1Hereafter, the almost sure convergence is in M .
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vector of observed time series Yo
T , the conventional log predictive score function

can be written

LS(Yo
T , A) =

T−H
∑

t=T0

log p (Rωo
t+1,t+H |Yo

t , A). (3.11)

The first predictive density evaluation starts at T0 + 1 conditional on Yo
T0

(for some

T0 < T ). The second predictive density evaluation starts at (T0 + 1) + 1 conditional

on Yo
T0+1. There are T −T0−H +1 predictive probability densities to be evaluated.

A higher log predictive score generally indicates a better forecasting performance

than a lower one.

Two major forecasting scenarios are examined. First, when multi-H-step-

ahead forecasts of N variables are of interest, we set R in (3.11) to be an (NH×NH)

identity matrix. Then (3.11) becomes

LS(Yo
T , A) =

T−H
∑

t=T0

log p (yo
t+1, . . . , y

o
t+H |Yo

t , A). (3.12)

Second, when single-H-step-ahead forecasts of N variables are of interest, we set R

in (3.11) to be an (N ×NH) matrix, i.e., [0, . . . , 0, IN ]. Then (3.11) becomes

LS(Yo
T , A) =

T−H
∑

t=T0

log p (yo
t+H |Yo

t , A). (3.13)

A generalized algorithm for computing the log predictive score of a prediction

model consists of two steps.

(1) Compute a numerical approximation of the predictive probability density

p (Rωo
t+1,t+H |Yo

t , A) at each of t = T0 : (T − H) evaluations, following Steps

(a) through (c) below.

(a) Draw vectors of regression coefficients β(m) (m = 1, . . . ,M) and precision

matrices of disturbances H(m) (m = 1, . . . ,M) from their posterior distri-

butions,
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• p (β |H,Yo
t ,Z, A) ∼ N (β, H

−1

β ) as described in (2.10), and

• p (H |β,Yo
t ,Z, A) ∝ p (β|H, A)p (H |A)p (Yo

t |β,H,Z, A) as described

in (2.13).

(b) Evaluate the conditional predictive probability density

p (Rωo
t+1,t+H |Yo

t ,β
(m),H(m), A),

by using each pair of β(m) and H(m) (for m = 1 : M) according to the closed-

form conditional normal distribution of the forecasts, which is characterized

by (3.4), (3.7), and (3.8).

(c) Compute the numerical approximation

M−1

M
∑

m=1

p (Rωo
t+1,t+H |Yo

t ,β
(m),H(m), A)

a.s.
→ p (Rωo

t+1,t+H |Yo
t , A),

where M is the total number of iterations of the posterior simulator.

In summary, Steps (a) through (c) are repeated for T−T0−H+1 evaluations of

predictive probability densities. Each time the posterior simulator is executed

to obtain M pairs of β(m) and H(m), then a numerical approximation of the

predictive probability density is computed.

(2) Compute a numerical approximation of the log predictive score defined in (3.11).

That is,

T−H
∑

t=T0

log

(

M−1
M
∑

m=1

p (Rωo
t+1,t+H |Yo

t ,β
(m),H(m), A)

)

a.s.
→

T−H
∑

t=T0

log p (Rωo
t+1,t+H |Yo

t , A). (3.14)
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3.3 Optimal Weights of Models

After getting the predictive probability densities from J different models, that

is,

p (Rωo
t+1,t+H |Yo

t , Aj) (j = 1, . . . , J), (3.15)

we consider an optimal linear combination of these predictive probability densities

in the form of

J
∑

j=1

wjp (Rωo
t+1,t+H |Yo

t , Aj);
J
∑

j=1

wj = 1; wj ≥ 0 (j = 1, . . . , J). (3.16)

To get the optimal weight wj for the prediction model Aj (j = 1, . . . , J), we maxi-

mize the log predictive score function,

fT−T0−H+1(w) =

T−H
∑

t=T0

log

[

J
∑

j=1

wjp (Rωo
t+1,t+H |Yo

t , Aj)

]

, (3.17)

which is concave in w2, . . . , wJ . Let w1 = 1 −
∑J

j=2wj , we then have

∂fT−T0−H+1(w)

∂wi

=
T−H
∑

t=T0

p (Rωo
t+1,t+H |Yo

t , Ai) − p (Rωo
t+1,t+H |Yo

t , A1)
∑J

j=1 p (Rωo
t+1,t+H |Yo

t , Aj)
, (3.18)

where i = 2, . . . , J , and

∂2fT−T0−H+1(w)

∂wi∂wk

= −
T−H
∑

t=T0

[(

p (Rωo
t+1,t+H |Yo

t , Ai) − p (Rωo
t+1,t+H |Yo

t , A1)
∑J

j=1 p (Rωo
t+1,t+H |Yo

t , Aj)

)

×

(

p (Rωo
t+1,t+H |Yo

t , Ak) − p (Rωo
t+1,t+H |Yo

t , A1)
∑J

j=1 p (Rωo
t+1,t+H |Yo

t , Aj)

)]

, (3.19)

where i, k = 2, . . . , J . The resulting (J−1)×(J−1) Hessian matrix is negative def-

inite2, and the computation of the maximum is a conventional convex programming

2It is still possible that the Hessian matrix may only be negative semi-definite for some
priors and for nested models.



31

problem. The strategy is using past performance of the pool as a training sample

to find the optimal weights that maximize (3.17). That is, the real-time optimal

weights are determined recursively at each date t based on information through

t− 1. As indicated in (3.17), the first sample consists of data through T0 (T0 < T ),

the second sample consists of data through T0 + 1, and the last sample is through

T −H .

3.4 Real Time Performance of Models

For each model j that has a positive weight in an optimal linear prediction

pool of J models, we are interested in finding a set of time periods such that the

optimal weight of model j will become zero, if the predictive probability densities of

those time periods are removed from the summation in (3.17). A searching scheme

for model j is as follows.

(1) Given a set of T−T0−H+1 predictive probability densities of model j, compute

the ratio of its predictive probability density to that of the optimal prediction

pool, that is,

p (Rωo
t+1,t+H |Yo

t , Aj)
∑J

j=1w
∗

jp (Rωo
t+1,t+H |Yo

t , Aj)
(t = T0, . . . , T −H), (3.20)

where w∗

j ’s (for j = 1, . . . , J) are the optimal weights. Sort the T − T0 −H + 1

ratios in the descending order and identify the time period t of the highest ratio.

(2) Remove the predictive probability density corresponding to the time period

identified in Step (1), and re-compute the optimal weights for the J models

as well as the optimal log predictive score based on the (T − T0 − H + 1) − 1

predictive probability densities.
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(3) Repeat Steps (1) and (2) until the optimal weight of model j is technically zero,

i.e., below a certain small value (e.g., 10−7).

The predictive probability densities, which are identified for model j by going

through the above search scheme, explain why the model j is given a positive weight

in the optimal prediction pool.
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CHAPTER 4

PREDICTING U.S. OUTPUT, INFLATION, AND INTEREST RATE

We apply the full Bayesian autoregressive (BVAR) model developed in Chap-

ter 2 and the optimal pooling techniques described in Chapter 3 to predicting out-

put, inflation, and interest rate in the United States. The predictions are made for

one-step-ahead, multi-4-step-ahead, and single-4-step-ahead. Throughout this exer-

cise and the one in the next chapter, we are interested in two forecasting questions.

First, is it necessary to tailor prior tightness by targets and across forecast horizons

for improving prediction accuracy? Second, how much improvement over a single

best model can be achieved by a linear prediction pool of models? Specifically, such

a linear prediction pool under consideration is constructed in three ways, by using

equal weights, optimal weights based on the full sample, and continuously updated

optimal weights based on only past realizations. An investigation to these questions

helps build better prediction models.

This chapter is organized as follows. Section 4.1 describes the data set. Sec-

tion 4.2 specifies six BVAR models that differ in their prior tightness. Section 4.3

summarizes and interprets the empirical findings.

4.1 Data

The data are from Smets and Wouters (2007), which consist of U.S. time

series of quarterly output, inflation, and interest rate, from 1947.Q1 to 2004.Q4.

The dependent variables in the BVAR models are defined as follows.

(a) Output = LN(GDPC96/LNSindex), where GDPC96 is seasonally adjusted real
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gross domestic product (billions of chained 1996 dollars), and LNSindex is civil-

ian noninstitutional population (age: 16 years and older) index (1992.Q3=1).

(b) Inflationt = LN(GDPDEFt/GDPDEFt−1)×100, where GDPDEFt is seasonally

adjusted implicit price deflator of GDPt, and GDPDEFt−1 is GDPDEF of one-

quarter ago.

(c) Interest Rate = Federal Funds Rate/4, where Federal Funds Rate is expressed

in percentage points.

Figure 4.1 plots four time series. Output displays an almost linear upward

trend. Output growth rate, which is computed using the standard percentage change

formula, i.e., (GDPC96t/GDPC96t−1 − 1)×100, shows fluctuations that appear to

be consistent with the U.S. business cycles overall. Inflation is essentially the first

difference of natural logarithms of GDP deflators. Although it appears to follow

a random walk most of the time, it still shows several substantial jumps around

1951.Q1, 1974.Q4, and 1980.Q4. Interest rate also has several major ups and downs

over the five decades. It is usually higher at the peak of a business cycle (e.g., 3.76

at 1980.Q1 and 4.39 at 1981.Q3) and lower at the trough (e.g., 2.46 at 1980.Q3 and

2.32 at 1982.Q4). To explore the data variation in terms of economic expansions

and contractions, Table 4.1 lists the peaks and troughs of the U.S. business cycles1

over the sample period.

1The data are from the National Bureau of Economic Research.
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Figure 4.1: U.S. Output, Output Growth Rate, Inflation, and Interest Rate

Table 4.1: U.S. Business Cycles (1947-2004)

Peak Trough

1948.Q4 1949.Q4

1953.Q2 1954.Q2

1957.Q3 1958.Q2

1960.Q2 1961.Q1

1969.Q4 1970.Q4

Peak Trough

1973.Q4 1975.Q1

1980.Q1 1980.Q3

1981.Q3 1982.Q4

1990.Q3 1991.Q1

2001.Q1 2001.Q4
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4.2 Model Specification

The prior distribution for the precision matrix of regression disturbances (i.e.,

H) is Wishart as described in (2.6). Since the parameterization of (2.6) implies (see,

e.g., Zellner, 1971; Press, 1982, for details)

E(H) = νS−1, (4.1)

E(Σε) =
S

ν −N − 1
=

S

ν − 3 − 1
, (4.2)

the scale matrix S is set to an estimated residual variance-covariance matrix from

a seemingly unrelated regression using the data through 1965.Q4, and the degrees

of freedom parameter ν is set to 5. On the one hand, this combination of S and

ν makes the expectation of the variance-covariance matrix of disturbances equal to

the estimated residual variance-covariance matrix. On the other hand, the small

value of ν allows large prior variation in H, which admits a lack of information and

incorporates parameter uncertainty.

The prior distribution for the vector of regression coefficients (i.e., β) is mul-

tivariate normal conditional on H as described in (2.8) and (2.9). In line with the

conventional Minnesota prior, the prior means of the coefficients of the first own

lags are set to ones, while the prior means of the other coefficients are set to ze-

ros. The prior standard deviations of the coefficients of the intercept terms (κ)

are loosened to 102 to allow for large variation. As for the overall tightness (λ)

and cross-equation tightness (θ), Doan et al. (1984) and Litterman (1986) recom-

mended to set λ equal to 0.2, and Dua and Ray (1995) recommended to set θ equal

to 0.9, when the prediction targets are correlated macroeconomic variables. In this

exercise, to investigate the relation between prior tightness and prediction accuracy

for different targets across forecast horizons, we consider six combinations of λ and
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θ, which represent typical cases of interest, as follows.

(1) λ = 102 and θ = 10−4.

When large prior standard deviations (λ/l) are set for the coefficients of the

own lags, and small prior standard deviations (λθ
l

σi

σj
) are set for the coefficients

of the cross lags, the equations in the VAR system become similar to univariate

autoregressive equations.

(2) λ = 102 and θ = 1.

When large prior standard deviations are set for all the lag coefficients, the VAR

system becomes unrestricted.

(3) λ = 0.5 and θ = 0.9.

(4) λ = 0.2 and θ = 0.9.

Combinations (3) and (4) fix θ but vary λ. As λ decreases from 0.5 to 0.2,

the prior standard deviations for all the lag coefficients are tightened up, con-

sequently the lag coefficients are shrunk towards their prior means. In other

words, a smaller λ assumes that the “true” values of the lag coefficients are less

likely to deviate far from the prior guesses (i.e., prior means).

(5) λ = 0.2 and θ = 0.6.

(6) λ = 0.2 and θ = 0.1.

Combinations (4), (5), and (6) fix λ but vary θ. As θ decreases from 0.9 to 0.6

to 0.1, only the coefficients of the cross lags are shrunk towards their prior zero

means. In other words, a smaller θ assumes that the variables are less related.
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4.3 Empirical Results

In this exercise, six trivariate BVAR models are constructed by using the

combinations of λ and θ described above. Each model is estimated with four lags

of each of the three variables. The forecast horizons under consideration are one-

step-ahead, multi-4-step-ahead, and single-4-step-ahead. Prediction performance

of a model is evaluated through its log predictive score, which is the sum of the

logarithms of predictive densities. In each prediction, the first predictive density

evaluation always starts from 1966.Q1. There are 156 predictive probability den-

sities in the one-step-ahead prediction, and 153 predictive probability densities in

each case of the multi-4-step-ahead and single-4-step-ahead predictions. Moreover,

there are two scenarios: the target being the vector of the three variables (i.e., out-

put, inflation, and interest rate); and the target being each of the three variables

individually. The analysis focuses on two forecasting concerns as follows.

The first concern relates to the selection of prior tightness for a BVAR model.

Intuitively, prior tightness should be tailored to different target variables and fore-

cast horizons. A looser prior probably works better than a tighter one for a more

volatile target and a longer forecast horizon, because it allows more variation in

parameter estimation. In this exercise, since the data of output, inflation, and in-

terest rate display apparently different patterns over time, and the forecast horizons

considered vary from one-step-ahead to multi-4-step-ahead and single-4-step-ahead,

it is of interest to examine the effect of prior tightness on prediction accuracy in

separate cases.

The second concern relates to the performance of linear prediction pools. A

simple way of constructing a linear prediction pool is to assign equal weights to the

predictive densities of competing models. However, to optimize the performance of
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a linear prediction pool, an effective way is to use the optimal weights that maximize

the log predictive score of the pool under consideration2. From the mathematics

of optimization, the log predictive score of an optimal pool, which is constructed

by using the optimal weights computed based on the full sample3, cannot be lower

than that of its best constituent model. However, such a weighting scheme is not

applicable in practice, because only past data are available for optimization. A

sensible alternative is to continuously re-compute the optimal weights at each time

period by using only past realizations4. Since computational complexity increases

from calculating equal weights to optimal weights, it is of interest to examine how

much improvement over a single best model can be achieved by two different lin-

ear prediction pools, one with equal weights and the other with real-time optimal

weights.

To address the above two concerns, the performance of six individual models

and three linear prediction pools are evaluated in terms of log predictive score. At

the beginning, one of the six models with the highest log predictive score is iden-

tified as the “best” model. Then the contribution of each individual model to an

optimal prediction pool is examined, in terms of its optimal weight and supporting

2Such an optimization can be conveniently done in a general computing software, e.g.,
MATLAB.

3The full-sample optimal weights are computed only once. For example, computa-
tion of the optimal weights for the one-step-ahead prediction uses all the 156 predictive
densities at one time.

4For the first evaluation, the real-time optimal weights are set to 1/6. For the second
evaluation, the real-time optimal weights are computed based on the observations of the
past two periods, and so on.
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observations5. The main purpose is to determine the “best” prior tightness for each

target at each forecast horizon. To investigate the potential advantage of construct-

ing an optimal prediction pool, two comparisons are made. One comparison is to

see whether a real-time optimal prediction pool can outperform a single best model.

The other is to see whether a real-time optimal prediction pool can outperform an

equally-weighted6 prediction pool.

Four major findings are summarized as follows.

• A larger overall tightness (λ) works better than a smaller one for predicting

interest rate. This can be seen through three perspectives. First, it is through

the λ value of the best individual model. For example, in the one-step-ahead

prediction, the best single model for predicting interest rate has its λ value

equal to 102 (Table 4.5a). Second, the relative competitiveness of a model

with a larger λ can be seen through a two-model optimal prediction pool. For

example, two models with (λ = 102) and (λ = 0.2) are paired in the multi-4-

step-ahead prediction of interest rate. Figure 4.3 portrays the log predictive

score of this two-model pool as a function of model weights. It can be seen

that the log predictive score keeps increasing, as the weight of the model

with (λ = 102) increases, and eventually reaches the maximum value when

the weight of the model with (λ = 102) reaches about 0.7. This indicates

that the model with (λ = 102) is more competitive than the model with

(λ = 0.2) for predicting interest rate. Third, the relative competitiveness of a

5The supporting observations account for each model’s admittance to the full-sample
optimal pool. That is, if such supporting observations were removed, then the model
would not have a positive weight in the full-sample optimal pool.

6Note that equal weights are placed on the predictive densities of the competing models,
not on their log predictive scores.
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model with a larger λ can also be seen through a real-time optimal prediction

pool of multiple models. For example, in the multi-4-step-ahead prediction of

interest rate (Table 4.9b), the sum of the average real-time optimal weights of

the two models with (λ = 102) is about 0.8, which is higher than 0.2, the sum

of the average real-time optimal weights of the three models with (λ = 0.2).

By contrast, a smaller λ works better than a larger one for predicting output

and inflation, which can be seen through the same perspectives.

• The advantage of using a larger λ for predicting interest rate becomes more

noticeable in the single-4-step-ahead prediction than in the one-step-ahead

prediction. In the one-step-ahead prediction (Table 4.5b), the sum of the

average real-time optimal weights of the two models with (λ = 102) is about

0.8. In the single-4-step-ahead prediction (Table 4.13b), the sum of the average

real-time optimal weights of these two models is close to 1.0. Correspondingly,

the advantage of using a smaller λ for predicting output and inflation also

becomes more noticeable at a longer forecast horizon. For example, in the

single-4-step-ahead prediction of output (Table 4.11b), the optimal weights of

the models with (λ = 102) and (λ = 0.5) technically become zeros in both

full-sample and real-time optimal pools.

• When the target is the vector of the three variables, a linear prediction pool of

models with different levels of prior tightness outperforms a single best model,

even the prediction pool is simply constructed by using equal weights instead

of optimal weights. This can be seen from Tables 4.2, 4.6, and 4.10 for the

predictions at the three forecast horizons. However, when the target is one of

the three variables, an equally-weighted prediction pool does not necessarily



42

outperform a single best model. This can be seen from the one-step-ahead pre-

diction of inflation (Table 4.4), multi-4-step-ahead predictions of output and

inflation (Tables 4.7 and 4.8), and single-4-step-ahead predictions of output,

inflation, and interest rate (Tables 4.11, 4.12, and 4.13). Moreover, the disad-

vantage of an equally-weighted prediction pool becomes more noticeable at a

longer forecast horizon. For example, in the one-step-ahead prediction of out-

put, the equally-weighted prediction pool outperforms the best single model

by about 1 point (Table 4.3). However, in the single-4-step-ahead prediction

of output, the equally-weighted prediction pool underperforms the best single

model by about 7 points (Table 4.11).

• A real-time optimal prediction pool outperforms its single best constituent

model alone and the equally-weighted prediction pool in all the predictions in

this exercise. Moreover, the log predictive score of a real-time optimal pool

is much higher than that of a single best model, especially when the real-

time optimal weights converge more quickly. For example, in the one-step-

ahead prediction, the real-time optimal weights in the interest rate prediction

appear to converge more quickly than those weights in the inflation prediction

(Figure 4.2). In the interest rate prediction, the log predictive score of the

real-time optimal pool is about 30% higher than that of the single best model

(Table 4.5). By contrast, in the inflation prediction, the log predictive score

of the real-time optimal pool is only 3% higher than that of the single best

model (Table 4.4).

The above findings have two implications on prior specification of BVAR mod-

els and performance of linear prediction pools.
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• When future values of target variables are likely to be volatile and deviate from

their most recent historical values, a larger λ works better than a smaller one,

and vice versa. This is because a larger λ definitely loosens up the prior

standard deviations of all the lag coefficients, which in turn allows the lag

coefficients to deviate far from their prior means.

• When the target is a vector of several variables and a multi-H-step-ahead

prediction is of interest, a linear prediction pool of models with different λ

values can outperform a single best model. This is because a combination of

prior tightness can accommodate various situations more easily than a single

level of prior tightness.

These implications are supported by the data characteristics that also explain

why the findings arise from this exercise.

• Interest rate appears more volatile than the other two variables. For example,

the standard deviation of output is about 0.2 for the predictive density evalua-

tion period from 1966.Q1 to 2004.Q4, while the standard deviation of interest

rate is about 0.8 over the same period. For another example, the values of

output at 1981.Q2 and 1982.Q2 are 8.697 and 8.673 respectively, which are ap-

parently very close; consequently the predictive density of output at 1982.Q2

(i.e., the 4-step-ahead prediction from 1981.Q2) is identified as a supporting

observation for a model with (λ = 0.2), as seen in Table 4.11c. During the

same period, the actual interest rate at 1981.Q2 is 4.45, which is actually the

highest value over the five decades (1947-2004), and then decreases by 18.4%

to 3.63 four quarters later at 1982.Q2; consequently the predictive density

of interest rate at 1982.Q2 (i.e., the 4-step-ahead prediction from 1981.Q2) is
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identified as a supporting observation for a model with (λ = 102), as indicated

in Table 4.13c.

• The advantage of using a combination of prior tightness is so salient for pre-

dicting a vector of variables that even a prediction model with equal weights

can outperform a single best model. For example, in the single-4-step-ahead

prediction of the vector, four models with their λ values ranging from 102 to

0.5 to 0.2 have their average real-time optimal weights greater than 0.01, and

the equally-weighted prediction pool outperforms the single best model (Ta-

ble 4.10). By contrast, in the single-4-step-ahead prediction of output, since

only the two models with (λ = 0.2), out of the six models, contribute more

substantively to the prediction than the other models, the equally-weighted

prediction pool does worse than the single best model (Table 4.11).
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Table 4.2: Log Scores for One-step-ahead Predictions of the Vector

(a) Performance of Single Model

Parameters of Prior Log Scores

λ = 102 θ = 10−4 374.0

λ = 102 θ = 1 370.4

λ = 0.5 θ = 0.9 375.1

λ = 0.2 θ = 0.9 383.0

λ = 0.2 θ = 0.6 383.6

λ = 0.2 θ = 0.1 380.7

(b) Performance of Linear Pools

λ = 102 λ = 102 λ = 0.5 λ = 0.2 λ = 0.2 λ = 0.2 Log

θ = 10−4
θ = 1 θ = 0.9 θ = 0.9 θ = 0.6 θ = 0.1 Score

Equal weights 0.167 0.167 0.167 0.167 0.167 0.167 401.5

Full-sample
0.332 0.316 0.000 0.000 0.224 0.128 404.7

optimal weights

Average real-time
0.446 0.213 0.002 0.093 0.134 0.113 408.8

optimal weights

(c) Reasons of Models Being in the Full-sample Optimal Pool

Model Supporting Observations

λ = 102 θ = 10−4 1969.2 1971.3 1972.1 1975.1 1980.1

λ = 102 θ = 1 1971.1 1972.2 1973.1 1974.4 1980.2

λ = 0.2 θ = 0.6 1968.4 1971.2 1973.4 1981.2

λ = 0.2 θ = 0.1 1981.1
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Table 4.3: Log Scores for One-step-ahead Predictions of Output

(a) Performance of Single Model

Parameters of Prior Log Scores

λ = 102 θ = 10−4 517.8

λ = 102 θ = 1 520.5

λ = 0.5 θ = 0.9 521.9

λ = 0.2 θ = 0.9 520.9

λ = 0.2 θ = 0.6 520.8

λ = 0.2 θ = 0.1 521.1

(b) Performance of Linear Pools

λ = 102 λ = 102 λ = 0.5 λ = 0.2 λ = 0.2 λ = 0.2 Log

θ = 10−4
θ = 1 θ = 0.9 θ = 0.9 θ = 0.6 θ = 0.1 Score

Equal weights 0.167 0.167 0.167 0.167 0.167 0.167 523.0

Full-sample
0.000 0.000 0.620 0.000 0.000 0.380 523.8

optimal weights

Average real-time
0.102 0.001 0.275 0.050 0.248 0.324 525.6

optimal weights

(c) Reasons of Models Being in the Full-sample Optimal Pool

Model Supporting Observations

λ = 0.5 θ = 0.9 1969.4 1972.2 1974.1 1974.3 1975.1 1977.2 1980.2 1981.2 1981.4

λ = 0.2 θ = 0.1 1971.2 1978.2 1981.3
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Table 4.4: Log Scores for One-step-ahead Predictions of Inflation

(a) Performance of Single Model

Parameters of Prior Log Scores

λ = 102 θ = 10−4 -68.8

λ = 102 θ = 1 -78.6

λ = 0.5 θ = 0.9 -72.5

λ = 0.9 θ = 0.2 -66.4

λ = 0.2 θ = 0.6 -65.1

λ = 0.2 θ = 0.1 -65.3

(b) Performance of Linear Pools

λ = 102 λ = 102 λ = 0.5 λ = 0.2 λ = 0.2 λ = 0.2 Log

θ = 10−4
θ = 1 θ = 0.9 θ = 0.9 θ = 0.6 θ = 0.1 Score

Equal weights 0.167 0.167 0.167 0.167 0.167 0.167 -67.7

Full-sample
0.000 0.000 0.000 0.000 0.572 0.428 -64.6

optimal weights

Average real-time
0.001 0.001 0.018 0.134 0.311 0.535 -63.4

optimal weights

(c) Reasons of Models Being in the Full-sample Optimal Pool

Model Supporting Observations

λ = 0.2 θ = 0.6 1974.3 1974.4 1979.2 1991.2

λ = 0.2 θ = 0.1 1981.2
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Table 4.5: Log Scores for One-step-ahead Predictions of Interest Rate

(a) Performance of Single Model

Parameters of Prior Log Scores

λ = 102 θ = 10−4 -72.2

λ = 102 θ = 1 -58.1

λ = 0.5 θ = 0.9 -68.5

λ = 0.2 θ = 0.9 -69.1

λ = 0.2 θ = 0.6 -69.4

λ = 0.2 θ = 0.1 -72.7

(b) Performance of Linear Pools

λ = 102 λ = 102 λ = 0.5 λ = 0.2 λ = 0.2 λ = 0.2 Log

θ = 10−4
θ = 1 θ = 0.9 θ = 0.9 θ = 0.6 θ = 0.1 Score

Equal weights 0.167 0.167 0.167 0.167 0.167 0.167 -49.6

Full-sample
0.228 0.518 0.000 0.254 0.000 0.000 -43.5

optimal weights

Average real-time
0.310 0.449 0.001 0.235 0.004 0.001 -40.6

optimal weights

(c) Reasons of Models Being in the Full-sample Optimal Pool

Model Supporting Observations

λ = 102 θ = 10−4 1969.2 1972.1

λ = 102 θ = 1 1971.1 1971.4 1972.2 1973.1 1974.4 1980.4 1982.3

λ = 0.2 θ = 0.9 1971.2 1973.4 1981.1 1981.2
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Figure 4.2: Evolution of Real-time Optimal Weights: One-step-ahead Predictions
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Table 4.6: Log Scores for Multi-4-step-ahead Predictions of the Vector

(a) Performance of Single Model

Parameters of Prior Log Scores

λ = 102 θ = 10−4 1396.2

λ = 102 θ = 1 1350.0

λ = 0.5 θ = 0.9 1439.4

λ = 0.2 θ = 0.9 1472.9

λ = 0.2 θ = 0.6 1480.6

λ = 0.2 θ = 0.1 1470.2

(b) Performance of Linear Pools

λ = 102 λ = 102 λ = 0.5 λ = 0.2 λ = 0.2 λ = 0.2 Log

θ = 10−4
θ = 1 θ = 0.9 θ = 0.9 θ = 0.6 θ = 0.1 Score

Equal weights 0.167 0.167 0.167 0.167 0.167 0.167 1541.3

Full-sample
0.378 0.185 0.000 0.176 0.136 0.125 1545.7

optimal weights

Average real-time
0.536 0.077 0.001 0.165 0.116 0.106 1550.8

optimal weights

(c) Reasons of Models Being in the Full-sample Optimal Pool

Model Supporting Observations

λ = 102 θ = 10−4 1966.2 1966.3 1968.4 1969.1 1969.2 1971.3

1974.4 1975.1 1979.1 1979.2 1979.3 1979.4

λ = 102 θ = 1 1970.2 1974.1 1974.2

λ = 0.2 θ = 0.9 1970.4 1971.1 1973.1

λ = 0.2 θ = 0.6 1980.2

λ = 0.2 θ = 0.1 1980.3 1980.4 1981.1 1981.2
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Table 4.7: Log Scores for Multi-4-step-ahead Predictions of Output

(a) Performance of Single Model

Parameters of Prior Log Scores

λ = 102 θ = 10−4 2029.3

λ = 102 θ = 1 2022.9

λ = 0.5 θ = 0.9 2034.6

λ = 0.2 θ = 0.9 2037.1

λ = 0.2 θ = 0.6 2036.4

λ = 0.2 θ = 0.1 2039.4

(b) Performance of Linear Pools

λ = 102 λ = 102 λ = 0.5 λ = 0.2 λ = 0.2 λ = 0.2 Log

θ = 10−4
θ = 1 θ = 0.9 θ = 0.9 θ = 0.6 θ = 0.1 Score

Equal weights 0.167 0.167 0.167 0.167 0.167 0.167 2038.1

Full-sample
0.000 0.000 0.197 0.249 0.000 0.554 2041.2

optimal weights

Average real-time
0.008 0.001 0.072 0.106 0.330 0.484 2042.7

optimal weights

(c) Reasons of Models Being in the Full-sample Optimal Pool

Model Supporting Observations

λ = 0.5 θ = 0.9 1983.1 1983.2

λ = 0.2 θ = 0.9 1972.2 1974.1 1981.4

λ = 0.2 θ = 0.1 1970.2 1971.2 1974.4 1980.3 1981.1 1981.3
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Table 4.8: Log Scores for Multi-4-step-ahead Predictions of Inflation

(a) Performance of Single Model

Parameters of Prior Log Scores

λ = 102 θ = 10−4 -271.1

λ = 102 θ = 1 -302.8

λ = 0.5 θ = 0.9 -285.0

λ = 0.2 θ = 0.9 -263.9

λ = 0.2 θ = 0.6 -259.7

λ = 0.2 θ = 0.1 -258.4

(b) Performance of Linear Pools

λ = 102 λ = 102 λ = 0.5 λ = 0.2 λ = 0.2 λ = 0.2 Log

θ = 10−4
θ = 1 θ = 0.9 θ = 0.9 θ = 0.6 θ = 0.1 Score

Equal weights 0.167 0.167 0.167 0.167 0.167 0.167 -267.3

Full-sample
0.000 0.000 0.000 0.000 0.484 0.516 -257.2

optimal weights

Average real-time
0.010 0.001 0.008 0.005 0.313 0.663 -255.6

optimal weights

(c) Reasons of Models Being in the Full-sample Optimal Pool

Model Supporting Observations

λ = 0.2 θ = 0.6 1973.3 1973.4 1974.1 1974.2 1974.3 1979.2

λ = 0.2 θ = 0.1 1981.1 1981.2 1981.3
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Table 4.9: Log Scores for Multi-4-step-ahead Predictions of Interest Rate

(a) Performance of Single Model

Parameters of Prior Log Scores

λ = 102 θ = 10−4 -331.5

λ = 102 θ = 1 -307.9

λ = 0.5 θ = 0.9 -297.1

λ = 0.2 θ = 0.9 -292.4

λ = 0.2 θ = 0.6 -296.6

λ = 0.2 θ = 0.1 -303.0

(b) Performance of Linear Pools

λ = 102 λ = 102 λ = 0.5 λ = 0.2 λ = 0.2 λ = 0.2 Log

θ = 10−4
θ = 1 θ = 0.9 θ = 0.9 θ = 0.6 θ = 0.1 Score

Equal weights 0.167 0.167 0.167 0.167 0.167 0.167 -218.8

Full-sample
0.164 0.617 0.000 0.005 0.148 0.067 -205.9

optimal weights

Average real-time
0.122 0.683 0.005 0.032 0.098 0.059 -202.1

optimal weights

(c) Reasons of Models Being in the Full-sample Optimal Pool

Model Supporting Observations

λ = 102 θ = 10−4 1968.4 1969.1 1969.2

λ = 102 θ = 1 1966.4 1967.3 1970.1 1970.2 1971.2 1971.4

1974.1 1974.2 1974.3 1980.1 1982.2 1982.3

λ = 0.2 θ = 0.9 1981.1

λ = 0.2 θ = 0.6 1980.2 1980.4

λ = 0.2 θ = 0.1 1973.3 1980.3
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Figure 4.3: Log Predictive Score Function of Model Weight:
Multi-4-step-ahead Prediction of Interest Rate
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Figure 4.4: Evolution of Real-time Optimal Weights: Multi-4-step-ahead Predictions
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Table 4.10: Log Scores for Single-4-step-ahead Predictions of the Vector

(a) Performance of Single Model

Parameters of Prior Log Scores

λ = 102 θ = 10−4 41.2

λ = 102 θ = 1 25.3

λ = 0.5 θ = 0.9 22.1

λ = 0.2 θ = 0.9 17.3

λ = 0.2 θ = 0.6 20.8

λ = 0.2 θ = 0.1 32.3

(b) Performance of Linear Pools

λ = 102 λ = 102 λ = 0.5 λ = 0.2 λ = 0.2 λ = 0.2 Log

θ = 10−4
θ = 1 θ = 0.9 θ = 0.9 θ = 0.6 θ = 0.1 Score

Equal weights 0.167 0.167 0.167 0.167 0.167 0.167 47.5

Full-sample
0.378 0.456 0.000 0.000 0.000 0.166 52.4

optimal weights

Average real-time
0.531 0.342 0.052 0.008 0.001 0.066 54.5

optimal weights

(c) Reasons of Models Being in the Full-sample Optimal Pool

Model Supporting Observations

λ = 102 θ = 10−4 1968.3 1969.1 1969.2 1979.1 1979.2 1980.4

λ = 102 θ = 1 1970.1 1970.2 1972.2 1972.3 1973.1 1973.2

1973.4 1974.1 1974.2 1974.3 1978.1 1978.3

λ = 0.2 θ = 0.1 1971.2 1981.1 1981.2
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Table 4.11: Log Scores for Single-4-step-ahead Predictions of Output

(a) Performance of Single Model

Parameters of Prior Log Scores

λ = 102 θ = 10−4 356.2

λ = 102 θ = 1 351.2

λ = 0.5 θ = 0.9 356.3

λ = 0.2 θ = 0.9 361.0

λ = 0.2 θ = 0.6 361.7

λ = 0.2 θ = 0.1 369.2

(b) Performance of Linear Pools

λ = 102 λ = 102 λ = 0.5 λ = 0.2 λ = 0.2 λ = 0.2 Log

θ = 10−4
θ = 1 θ = 0.9 θ = 0.9 θ = 0.6 θ = 0.1 Score

Equal weights 0.167 0.167 0.167 0.167 0.167 0.167 362.6

Full-sample
0.000 0.000 0.000 0.000 0.119 0.881 369.3

optimal weights

Average real-time
0.001 0.001 0.001 0.001 0.295 0.700 370.8

optimal weights

(c) Reasons of Models Being in the Full-sample Optimal Pool

Model Supporting Observations

λ = 0.2 θ = 0.6 1974.1 1981.2

λ = 0.2 θ = 0.1 1970.2 1971.2 1974.4 1980.1 1980.2

1980.3 1981.1 1981.3 1982.2 1982.3
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Table 4.12: Log Scores for Single-4-step-ahead Predictions of Inflation

(a) Performance of Single Model

Parameters of Prior Log Scores

λ = 102 θ = 10−4 -134.2

λ = 102 θ = 1 -141.2

λ = 0.5 θ = 0.9 -138.7

λ = 0.2 θ = 0.9 -131.7

λ = 0.2 θ = 0.6 -129.3

λ = 0.2 θ = 0.1 -128.2

(b) Performance of Linear Pools

λ = 102 λ = 102 λ = 0.5 λ = 0.2 λ = 0.2 λ = 0.2 Log

θ = 10−4
θ = 1 θ = 0.9 θ = 0.9 θ = 0.6 θ = 0.1 Score

Equal weights 0.167 0.167 0.167 0.167 0.167 0.167 -131.0

Full-sample
0.000 0.000 0.000 0.000 0.427 0.573 -127.4

optimal weights

Average real-time
0.021 0.001 0.001 0.001 0.276 0.700 -126.0

optimal weights

(c) Reasons of Models Being in the Full-sample Optimal Pool

Model Supporting Observations

λ = 0.2 θ = 0.6 1973.4 1974.1 1980.1

λ = 0.2 θ = 0.1 1981.1 1981.2 1981.3
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Table 4.13: Log Scores for Single-4-step-ahead Predictions of Interest Rate

(a) Performance of Single Model

Parameters of Prior Log Scores

λ = 102 θ = 10−4 -183.6

λ = 102 θ = 1 -184.1

λ = 0.5 θ = 0.9 -198.3

λ = 0.2 θ = 0.9 -211.5

λ = 0.2 θ = 0.6 -214.9

λ = 0.2 θ = 0.1 -209.9

(b) Performance of Linear Pools

λ = 102 λ = 102 λ = 0.5 λ = 0.2 λ = 0.2 λ = 0.2 Log

θ = 10−4
θ = 1 θ = 0.9 θ = 0.9 θ = 0.6 θ = 0.1 Score

Equal weights 0.167 0.167 0.167 0.167 0.167 0.167 -187.8

Full-sample
0.447 0.554 0.000 0.000 0.000 0.000 -177.2

optimal weights

Average real-time
0.412 0.545 0.040 0.001 0.001 0.001 -175.6

optimal weights

(c) Reasons of Models Being in the Full-sample Optimal Pool

Model Supporting Observations

λ = 102 θ = 10−4 1968.3 1968.4 1969.1 1969.2 1979.2 1980.3

λ = 102 θ = 1 1966.4 1969.3 1969.4 1970.1 1970.2 1972.2

1973.1 1974.3 1974.4 1978.3 1982.2
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Figure 4.5: Evolution of Real-time Optimal Weights: Single-4-step-ahead Predictions
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CHAPTER 5

PREDICTING IOWA TAX REVENUE AND PERSONAL INCOME

We provide a forecasting exercise on tax revenue and personal income in the

state of Iowa, for demonstrating the effectiveness of the proposed full Bayesian au-

toregressive (BVAR) model and the optimal pooling techniques described in Chap-

ters 2 and 3. We are interested in the selection of prior tightness and the performance

of real-time optimal prediction pools.

This chapter is organized as follows. Section 5.1 describes the data set. Sec-

tion 5.2 specifies six BVAR models. Compared with the models used in Chapter 4,

the models in this chapter have extra deterministic predictors including trends and

seasonal dummies in addition to the constants, however, the same levels of prior

tightness in terms of the six combinations of λ and θ are still applied. Section 5.3

summarizes and interprets the empirical results of one-step-ahead predictions as

well as multi-4-step-ahead and single-4-step-ahead predictions.

5.1 Data

The data set consists of quarterly time series of tax revenue and personal

income in the state of Iowa from 1982.Q3 to 2009.Q4. There are 110 observations

for each variable. The definitions of the dependent variables in the BVAR models

are as follows.

(a) Tax Revenue = LN(general tax receipts), where the data of general tax receipts

(in thousands) are not seasonally adjusted. The monthly data are available

from the state, and then converted into quarterly data by taking a three-month
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average1.

(b) Personal Income= LN(SQ5N), where SQ5N is the Iowa personal income (in

billions), which is seasonally adjusted and available quarterly from the Bureau

of Economic Analysis.
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(c) Personal Income

Figure 5.1: Tax Revenue, Tax Revenue Growth, and Personal Income in Iowa

1Before a three-month average is computed, the total racing and gaming receipts and
the one-sixth of sales tax receipts (starting from August 2008) are subtracted from the
general tax receipts in the same way as Otrok and Whiteman (1997).
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Figure 5.1 plots three time series. Since tax revenue is not seasonally adjusted,

it shows a seasonal pattern of wavy fluctuations. Tax revenue growth, which is

computed through the fourth-order differencing (i.e., tax revenuet−tax revenuet−4),

displays several major fluctuations. By contrast, personal income shows an almost

linear upward trend over the entire sample period from 1982 to 2009.

5.2 Model Specification

The two-variable BVAR model uses four lags of each variable and a set of

deterministic predictors, including constants, trends, and seasonal dummies2. The

prior distribution for the precision matrix of regression disturbances (i.e., H) is

Wishart, as described in (2.6). The scale matrix S is set to an estimated residual

variance-covariance matrix from a seemingly unrelated regression using the data

through 1990.Q4, and the degrees of freedom parameter ν is set to 4. The prior

distribution for the vector of regression coefficients (i.e., β) is multivariate normal

conditional on H, as described in (2.8) and (2.9). The prior means of the coef-

ficients of the first own lags are set to ones, while the prior means of the other

coefficients are set to zeros. The prior standard deviations of the coefficients of the

deterministic predictors are set to 102, while the prior standard deviations of the lag

coefficients are set as suggested by the Minnesota prior. As for the overall tightness

(λ) and cross-equation tightness (θ), the six combinations, which are introduced in

Chapter 4, are applied. They are:

2Slightly different from the work of Otrok and Whiteman (1997), the dummy variables
of tax policy changes are not included in the models. This is because the most recent tax
policy change started in 2000.Q3, if policy dummies were included, the first predictive
density evaluation would be only after 2001.Q1, which would result in a smaller sample
of predictive densities.
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(1) λ = 102 and θ = 10−4;

(2) λ = 102 and θ = 1;

(3) λ = 0.5 and θ = 0.9;

(4) λ = 0.2 and θ = 0.9;

(5) λ = 0.2 and θ = 0.6; and

(6) λ = 0.2 and θ = 0.1.

The purpose of using such six combinations is to present typical cases of interest.

Combinations (1) and (2) represent two extreme cases. One makes the equations in

the VAR system close to univariate autoregressions, and the other makes the VAR

system unrestricted. Combinations (4), (5), and (6) fix λ but vary θ, where the

choice of setting λ equal to 0.2 is recommended by Litterman (1986). Combinations

(3) and (4) then fix θ but vary λ. The choice of setting θ equal to 0.9 is recommended

by Dua and Ray (1995).

5.3 Empirical Results

In this exercise, prediction performance is evaluated through the conventional

log predictive score, which is the sum of the logarithms of predictive densities. In

each prediction, the first predictive density evaluation always starts from 1991.Q1.

There are 76 predictive probability densities in the one-step-ahead prediction, and 73

predictive probability densities in each case of the multi-4-step-ahead and single-4-

step-ahead predictions. In addition to the six BVAR models, linear prediction pools

of models are constructed by using equal weights and optimal weights. Specifically,

the full-sample optimal weights are computed only once based on all the predictive
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densities from 1991.Q1 to 2009.Q4, while the real-time optimal weights are updated

at each time period based on only past predictive densities. Weights are then placed

on predictive densities, and log predictive scores are computed.

Four major findings can be summarized from the results.

• A larger overall tightness parameter (λ) works better for predicting tax rev-

enue, while a smaller λ works better for predicting personal income at all the

three forecast horizons. For example, in the one-step-ahead prediction of tax

revenue, the two models with (λ = 102) have their full-sample optimal weights

summed up to 0.868 (Table 5.2b), while in the one-step-ahead prediction of

personal income, the two models with (λ = 0.2) have their full-sample optimal

weights summed up to 0.952 (Table 5.3b).

• The advantage of using a “best” λ becomes more salient at a longer forecast

horizon. For example, in the single-4-step-ahead prediction of tax revenue,

the full-sample optimal weight of the model with (λ = 102) reaches 0.896

(Table 5.8b), while in the single-4-step-ahead prediction of personal income,

the full-sample optimal weights of the two models with (λ = 0.2) reach 1.000

(Table 5.9b).

• For the prediction of the vector of the two variables, the equally-weighted

prediction pool3 outperforms the single best model at all the three forecast

horizons. However, for the prediction of each variable, the equally-weighted

prediction pool does worse than the single best model. For example, in the

3An equally-weighted prediction pool is constructed by placing equal weights on the
predictive densities, not on log predictive scores, of the models under consideration.
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one-step-ahead prediction of the vector, the log predictive score of the equally-

weighted pool is 349.4, which is about 2 points higher than 347.1, the score

of the single best model (Table 5.1). In the one-step-ahead prediction of tax

revenue, the log predictive score of the equally-weighted pool is 141.1, which is

about 2 points lower than 143.0, the score of the single best model (Table 5.2).

Moreover, the difference between the equally-weighted pool and the single

best model also becomes more salient at the multi-step-ahead predictions.

For example, in the multi-4-step-ahead prediction of the vector, the difference

is about 4 points (Table 5.4). In the multi-4-step-ahead prediction of tax

revenue, the difference is about 18 points (Table 5.5).

• The real-time optimal prediction pool does outperform the single best model

and the equally-weighted prediction pool in all the predictions in this exercise.

For example, in the one-step-ahead prediction of tax revenue (Table 5.2), the

log predictive score of the real-time optimal pool is 148.1, which is 7 points

(5.0%) higher than that of the equally-weighted prediction pool, and 5 points

(3.5%) higher than that of the single best model.

The above findings deliver two messages, which are supported by the data

characteristics.

• A larger overall tightness parameter (λ) works better for a volatile target. In

this exercise, a model with (λ = 102) predicts tax revenue better than a model

with (λ = 0.2), because a larger λ can account for extraordinary volatility of

tax revenue. For example, Iowa experienced a historical devastating flood in

1993.Q3, and tax revenue dropped by 16% from 1993.Q2 to 1993.Q3, while

personal income dropped by 0.5% over the same period. Consequently, in
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the one-step-ahead prediction of tax revenue, the model with (λ = 102, θ =

1) is weighted more heavily than the other models in both full-sample and

real-time optimal prediction pools (Table 5.2b). Moreover, the predictive

density at 1993.Q3 is also identified as a supporting observation for the model

with (λ = 102, θ = 1) (Table 5.2c). Since the coming of a major flood is

almost unpredictable a quarter ago, it is encouraging to see that a model

can account for the impact of such a sudden event. Basically, a larger λ

allows regression coefficients to deviate far from their prior means4, which in

turn incorporates larger uncertainty into parameter estimation and therefore

delivers better forecasts than a smaller λ.

• A linear prediction pool of models with different levels of prior tightness can

outperform its single best constituent model alone. Basically, a combination of

different prior tightness is more capable of adapting to various situations over

time than a single level of prior tightness. For example, in the prediction of tax

revenue, although the two models with (λ = 102) have total optimal weights

higher than 0.85, the optimal pools also include a model with (λ = 0.2) at

all the three forecast horizons (Tables 5.2b, 5.5b, and 5.8b). In addition, the

observation that the equally-weighted pool can easily outperform the single

best model for predicting the vector also confirms the advantage of using

different levels of prior tightness.

4The posterior means of coefficients of longer lags (i.e., the third and fourth lags) are
actually greater in absolute value for tax revenue than for personal income.
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Table 5.1: Log Scores for One-Step-Ahead Predictions of the Vector

(a) Performance of Single Model

Parameters of Prior Log Scores

λ = 102 θ = 10−4 347.1

λ = 102 θ = 1 342.6

λ = 0.5 θ = 0.9 345.2

λ = 0.2 θ = 0.9 339.3

λ = 0.2 θ = 0.6 340.2

λ = 0.2 θ = 0.1 340.5

(b) Performance of Linear Pools

λ = 102 λ = 102 λ = 0.5 λ = 0.2 λ = 0.2 λ = 0.2 Log

θ = 10−4
θ = 1 θ = 0.9 θ = 0.9 θ = 0.6 θ = 0.1 Score

Equal weights 0.167 0.167 0.167 0.167 0.167 0.167 349.4

Full-sample
0.335 0.390 0.000 0.000 0.000 0.274 351.6

optimal weights

Average real-time
0.406 0.414 0.002 0.002 0.011 0.164 354.4

optimal weights

(c) Reasons of Models Being in the Full-sample Optimal Pool

Model Supporting Observations

λ = 102 θ = 10−4 1994.1 1994.3 2000.1

λ = 102 θ = 1 1991.3 1993.1 1993.3 1995.3 2003.1 2005.1

λ = 0.2 θ = 0.1 2000.2 2007.4 2009.2
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Table 5.2: Log Scores for One-Step-Ahead Predictions of Tax Revenue

(a) Performance of Single Model

Parameters of Prior Log Scores

λ = 102 θ = 10−4 140.1

λ = 102 θ = 1 143.0

λ = 0.5 θ = 0.9 139.0

λ = 0.2 θ = 0.9 128.6

λ = 0.2 θ = 0.6 128.6

λ = 0.2 θ = 0.1 129.1

(b) Performance of Linear Pools

λ = 102 λ = 102 λ = 0.5 λ = 0.2 λ = 0.2 λ = 0.2 Log

θ = 10−4
θ = 1 θ = 0.9 θ = 0.9 θ = 0.6 θ = 0.1 Score

Equal weights 0.167 0.167 0.167 0.167 0.167 0.167 141.1

Full-sample
0.308 0.560 0.000 0.000 0.000 0.133 145.6

optimal weights

Average real-time
0.350 0.518 0.055 0.015 0.002 0.060 148.1

optimal weights

(c) Reasons of Models Being in the Full-sample Optimal Pool

Model Supporting Observations

λ = 102 θ = 10−4 1994.1 1996.3

λ = 102 θ = 1 1991.3 1993.3 1997.1 1997.3 1998.2 1999.1

λ = 0.2 θ = 0.1 2000.2 2009.2
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Table 5.3: Log Scores for One-Step-Ahead Predictions of Personal Income

(a) Performance of Single Model

Parameters of Prior Log Scores

λ = 102 θ = 10−4 206.6

λ = 102 θ = 1 200.1

λ = 0.5 θ = 0.9 206.2

λ = 0.9 θ = 0.2 210.7

λ = 0.2 θ = 0.6 211.7

λ = 0.2 θ = 0.1 211.5

(b) Performance of Linear Pools

λ = 102 λ = 102 λ = 0.5 λ = 0.2 λ = 0.2 λ = 0.2 Log

θ = 10−4
θ = 1 θ = 0.9 θ = 0.9 θ = 0.6 θ = 0.1 Score

Equal weights 0.167 0.167 0.167 0.167 0.167 0.167 209.9

Full-sample
0.000 0.048 0.000 0.000 0.798 0.154 211.8

optimal weights

Average real-time
0.098 0.167 0.002 0.002 0.152 0.579 213.1

optimal weights

(c) Reasons of Models Being in the Full-sample Optimal Pool

Model Supporting Observations

λ = 102 θ = 1 1993.1

λ = 0.2 θ = 0.6 2003.1 2005.1

λ = 0.2 θ = 0.1 2004.1
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Figure 5.2: Evolution of Real-time Optimal Weights: One-step-ahead Predictions
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Table 5.4: Log Scores for Multi-4-Step-Ahead Predictions of the Vector

(a) Performance of Single Model

Parameters of Prior Log Scores

λ = 102 θ = 10−4 1329.9

λ = 102 θ = 1 1310.3

λ = 0.5 θ = 0.9 1320.7

λ = 0.2 θ = 0.9 1295.8

λ = 0.2 θ = 0.6 1298.8

λ = 0.2 θ = 0.1 1302.1

(b) Performance of Linear Pools

λ = 102 λ = 102 λ = 0.5 λ = 0.2 λ = 0.2 λ = 0.2 Log

θ = 10−4
θ = 1 θ = 0.9 θ = 0.9 θ = 0.6 θ = 0.1 Score

Equal weights 0.167 0.167 0.167 0.167 0.167 0.167 1334.2

Full-sample
0.417 0.369 0.000 0.000 0.000 0.214 1341.3

optimal weights

Average real-time
0.540 0.326 0.003 0.002 0.025 0.104 1343.4

optimal weights

(c) Reasons of Models Being in the Full-sample Optimal Pool

Model Supporting Observations

λ = 102 θ = 10−4 1993.3 1993.4 1994.1 1994.2 1994.3 2000.1 2001.2 2001.3 2001.4

λ = 102 θ = 1 1991.1 1992.4 1994.4 1995.1 1998.4 1999.1

2002.3 2002.4 2003.1 2004.4 2005.1 2008.2

λ = 0.2 θ = 0.6 1996.4

λ = 0.2 θ = 0.1 1997.1 1997.2 2003.4 2009.1
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Table 5.5: Log Scores for Multi-4-Step-Ahead Predictions of Tax Revenue

(a) Performance of Single Model

Parameters of Prior Log Scores

λ = 102 θ = 10−4 534.5

λ = 102 θ = 1 551.5

λ = 0.5 θ = 0.9 531.3

λ = 0.2 θ = 0.9 487.1

λ = 0.2 θ = 0.6 487.1

λ = 0.2 θ = 0.1 487.8

(b) Performance of Linear Pools

λ = 102 λ = 102 λ = 0.5 λ = 0.2 λ = 0.2 λ = 0.2 Log

θ = 10−4
θ = 1 θ = 0.9 θ = 0.9 θ = 0.6 θ = 0.1 Score

Equal weights 0.167 0.167 0.167 0.167 0.167 0.167 533.6

Full-sample
0.172 0.805 0.000 0.000 0.000 0.022 552.9

optimal weights

Average real-time
0.125 0.852 0.016 0.002 0.002 0.003 553.9

optimal weights

(c) Reasons of Models Being in the Full-sample Optimal Pool

Model Supporting Observations

λ = 102 θ = 10−4 1993.4 1994.1

λ = 102 θ = 1 1991.4 1992.1 1992.4 1993.1 1993.2 1993.3 1998.1 1998.2 1998.4

1999.1 2000.3 2000.4 2003.4 2004.1 2006.1 2006.2 2006.4 2008.2

λ = 0.2 θ = 0.1 2009.1



74

Table 5.6: Log Scores for Multi-4-Step-Ahead Predictions of Personal Income

(a) Performance of Single Model

Parameters of Prior Log Scores

λ = 102 θ = 10−4 795.2

λ = 102 θ = 1 774.7

λ = 0.5 θ = 0.9 799.7

λ = 0.2 θ = 0.9 813.5

λ = 0.2 θ = 0.6 815.0

λ = 0.2 θ = 0.1 814.1

(b) Performance of Linear Pools

λ = 102 λ = 102 λ = 0.5 λ = 0.2 λ = 0.2 λ = 0.2 Log

θ = 10−4
θ = 1 θ = 0.9 θ = 0.9 θ = 0.6 θ = 0.1 Score

Equal weights 0.167 0.167 0.167 0.167 0.167 0.167 810.2

Full-sample
0.000 0.039 0.000 0.000 0.654 0.307 815.4

optimal weights

Average real-time
0.106 0.194 0.013 0.002 0.219 0.466 817.6

optimal weights

(c) Reasons of Models Being in the Full-sample Optimal Pool

Model Supporting Observations

λ = 102 θ = 1 1992.3

λ = 0.2 θ = 0.6 2002.3 2002.4 2003.1 2005.1

λ = 0.2 θ = 0.1 1992.4 1993.1
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Figure 5.3: Evolution of Real-time Optimal Weights: Multi-4-step-ahead
Predictions
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Table 5.7: Log Scores for Single-4-Step-Ahead Predictions of the Vector

(a) Performance of Single Model

Parameters of Prior Log Scores

λ = 102 θ = 10−4 246.5

λ = 102 θ = 1 250.2

λ = 0.5 θ = 0.9 249.4

λ = 0.2 θ = 0.9 256.7

λ = 0.2 θ = 0.6 258.1

λ = 0.2 θ = 0.1 257.5

(b) Performance of Linear Pools

λ = 102 λ = 102 λ = 0.5 λ = 0.2 λ = 0.2 λ = 0.2 Log

θ = 10−4
θ = 1 θ = 0.9 θ = 0.9 θ = 0.6 θ = 0.1 Score

Equal weights 0.167 0.167 0.167 0.167 0.167 0.167 259.2

Full-sample
0.210 0.084 0.000 0.000 0.706 0.000 260.2

optimal weights

Average real-time
0.178 0.258 0.057 0.006 0.264 0.238 262.5

optimal weights

(c) Reasons of Models Being in the Full-sample Optimal Pool

Model Supporting Observations

λ = 102 θ = 10−4 2001.2 2001.3

λ = 102 θ = 1 1992.3 2000.2

λ = 0.2 θ = 0.6 1995.3 1996.2 1996.3 1996.4 1997.1 2003.2

2003.4 2004.1 2006.4 2007.1 2008.3 2008.4
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Table 5.8: Log Scores for Single-4-Step-Ahead Predictions of Tax Revenue

(a) Performance of Single Model

Parameters of Prior Log Scores

λ = 102 θ = 10−4 107.3

λ = 102 θ = 1 112.8

λ = 0.5 θ = 0.9 105.1

λ = 0.2 θ = 0.9 102.4

λ = 0.2 θ = 0.6 103.1

λ = 0.2 θ = 0.1 103.8

(b) Performance of Linear Pools

λ = 102 λ = 102 λ = 0.5 λ = 0.2 λ = 0.2 λ = 0.2 Log

θ = 10−4
θ = 1 θ = 0.9 θ = 0.9 θ = 0.6 θ = 0.1 Score

Equal weights 0.167 0.167 0.167 0.167 0.167 0.167 109.4

Full-sample
0.000 0.896 0.000 0.000 0.104 0.000 113.0

optimal weights

Average real-time
0.076 0.834 0.002 0.002 0.009 0.077 114.1

optimal weights

(c) Reasons of Models Being in the Full-sample Optimal Pool

Model Supporting Observations

λ = 102 θ = 1 1993.1 1998.4 1999.4 2000.1 2000.2 2000.3 2000.4

2001.1 2001.2 2001.3 2001.4 2002.1 2002.2 2002.4

λ = 0.2 θ = 0.6 2003.4
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Table 5.9: Log Scores for Single-4-Step-Ahead Predictions of Personal Income

(a) Performance of Single Model

Parameters of Prior Log Scores

λ = 102 θ = 10−4 138.15

λ = 102 θ = 1 139.97

λ = 0.5 θ = 0.9 147.43

λ = 0.2 θ = 0.9 153.90

λ = 0.2 θ = 0.6 153.95

λ = 0.2 θ = 0.1 151.65

(b) Performance of Linear Pools

λ = 102 λ = 102 λ = 0.5 λ = 0.2 λ = 0.2 λ = 0.2 Log

θ = 10−4
θ = 1 θ = 0.9 θ = 0.9 θ = 0.6 θ = 0.1 Score

Equal weights 0.167 0.167 0.167 0.167 0.167 0.167 150.02

Full-sample
0.000 0.000 0.000 0.267 0.733 0.000 153.96

optimal weights

Average real-time
0.042 0.105 0.144 0.038 0.350 0.321 155.13

optimal weights

(c) Reasons of Models Being in the Full-sample Optimal Pool

Model Supporting Observations

λ = 0.2 θ = 0.9 1992.2

λ = 0.2 θ = 0.6 1993.1
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CHAPTER 6

CONCLUSION

This work improves the prediction performance of Vector Autoregressive (VAR)

models in two ways. First, a full Bayesian VAR (BVAR) model is developed to

overcome several major limitations of previous BVAR models. Second, an optimal

prediction pool of competing models is constructed to achieve higher prediction

accuracy over a single best model.

The proposed BVAR model has four desirable features compared with previ-

ous BVAR models. First, the variance-covariance matrix of regression disturbances

is treated as unknown and random to incorporate parameter uncertainty. Second,

the prior variance-covariance matrix of regression coefficients is constructed as a

function of the variance-covariance matrix of the disturbances. Therefore, realiza-

tions of these coefficients are governed by the prior specification of the disturbances,

and dependencies between the coefficients of different equations are effectively taken

into account, since the off-diagonal elements of the variance-covariance matrix of

the disturbances are not necessarily zeros. Third, all the equations of the model are

estimated simultaneously, in order to account for possible contemporaneous corre-

lations of the disturbances. Fourth, the model is fully Bayesian. A state-of-the-art

Metropolis-within-Gibbs algorithm is specified to obtain draws from the posterior

distributions, which are not in standard forms. Consequently, the proposed model

does not have previous BVAR models’ limitations on parameter specification and

estimation.
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The proposed optimal prediction pool offers a sensible alternative to model

selection, when there exist multiple competing models. Since the forecasting capa-

bility of any single best model can be limited, it is desirable to combine competing

models so that they can complement each other. Specifically, it is more desirable

to combine density forecasts from competing models to obtain a complete descrip-

tion of future uncertainty. To simplify the implementation, a practical algorithm

is offered for computing the optimal weights of competing models by maximizing a

conventional log predictive score function. In addition, to further understand why

a certain constituent model is given a positive weight in an optimal prediction pool,

a search scheme is provided for identifying supporting observations of each model.

The effectiveness of the proposed techniques is examined through two fore-

casting exercises. One exercise is predicting national output, inflation, and interest

rate in the United States. The other is predicting state tax revenue and personal in-

come in Iowa. For practical purposes, the investigation goes beyond one-step-ahead

predictions to multi-H-step-ahead and single-H-step-ahead predictions, and focuses

on the selection of BVAR prior tightness and the performance of linear prediction

pools.

The results indicate that a properly selected prior tightness can improve pre-

diction accuracy. Specifically, in the setting of the Minnesota prior, a larger overall

tightness (λ) works better than a smaller one, when future values of the target

variables are likely to deviate far from their most recent historical values, and vice

versa. By definition, a large λ loosens up the prior standard deviations of all the

lag coefficients, which in turn allows the coefficients to deviate far from their prior

means. Since a prior specification with a large λ truly admits large variation in

the target variables and fully incorporates parameter uncertainty, it delivers better
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forecasts than a prior specification with a smaller λ. The advantage of using a

larger λ for a volatile target becomes more salient at a longer forecast horizon (e.g.,

single-4-step-ahead predictions). However, when the target is a vector of different

variables and a multi-H-step-ahead prediction is of interest, it becomes desirable to

consider a prediction pool of models with different levels of prior tightness, in order

to accommodate various situations and achieve higher prediction accuracy over a

single best model.

Since the benefit of using a combination of different prior tightness is so salient

for predicting a vector, even a prediction pool that is simply constructed by using

equal weights can outperform a single best model. However, when the target is a cer-

tain variable of the vector, a prediction pool with equal weights does not necessarily

outperform a single best model. In such a case, it becomes necessary to construct an

optimal prediction pool. Since a prediction pool with the optimal weights computed

based on the entire sample cannot do worse than any best constituent model by the

mathematics of optimization, it would be arbitrary to assert that such an optimal

pool can surely deliver better forecasts over time in practice. A sensible approach

to evaluating an optimal prediction pool is through its real-time performance. That

is, real-time optimal weights are computed using only past data at each time pe-

riod. The empirical results of this work are encouraging, as they indicate that such

a real-time optimal prediction pool works better than any best constituent model

alone in all the predictions under consideration. In addition, the improvement over

a single best constituent model is more noticeable in the circumstances, when the

real-time optimal weights converge more quickly.
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