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ABSTRACT

In this thesis, we study the Euclidean Steiner tree problem (ESTP) which

arises in the field of combinatorial optimization. The ESTP asks for a network of

minimal total edge length spanning a set of given terminal points in <d with the

ability to add auxiliary connecting points (Steiner points) to decrease the overall

length of the network. The graph theory literature contains extensive studies of

exact, approximation, and heuristic algorithms for ESTP in the plane, but less is

known in higher dimensions. The contributions of this thesis include a heuristic

algorithm and enhancements to an exact algorithm for solving the ESTP.

We present a local search heuristic for the ESTP in <d for d ≥ 2. The

algorithm utilizes the Delaunay triangulation to generate candidate Steiner points

for insertion, the minimum spanning tree to create a network on the inserted points,

and second order cone programming to optimize the locations of Steiner points.

Unlike other ESTP heuristics relying on the Delaunay triangulation, the algorithm

inserts Steiner points probabilistically into Delaunay triangles to achieve different

subtrees on subsets of terminal points. The algorithm extends effectively into higher

dimensions, and we present computational results on benchmark test problems in

<d for 2 ≤ d ≤ 5.

We develop new geometric conditions derived from properties of Steiner trees

which bound below the number of Steiner points on paths between terminals in

the Steiner minimal tree. We describe conditions for trees with a Steiner topology

and show how these conditions relate to the Voronoi diagram. We describe more

restrictive conditions for trees with a full Steiner topology and their implementation

into the algorithm of Smith (1992). We present computational results on benchmark

test problems in <d for 2 ≤ d ≤ 5.
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ABSTRACT

In this thesis, we study the Euclidean Steiner tree problem (ESTP) which

arises in the field of combinatorial optimization. The ESTP asks for a network of

minimal total edge length spanning a set of given terminal points in <d with the

ability to add auxiliary connecting points (Steiner points) to decrease the overall

length of the network. The graph theory literature contains extensive studies of

exact, approximation, and heuristic algorithms for ESTP in the plane, but less is

known in higher dimensions. The contributions of this thesis include a heuristic

algorithm and enhancements to an exact algorithm for solving the ESTP.

We present a local search heuristic for the ESTP in <d for d ≥ 2. The

algorithm utilizes the Delaunay triangulation to generate candidate Steiner points

for insertion, the minimum spanning tree to create a network on the inserted points,

and second order cone programming to optimize the locations of Steiner points.

Unlike other ESTP heuristics relying on the Delaunay triangulation, the algorithm

inserts Steiner points probabilistically into Delaunay triangles to achieve different

subtrees on subsets of terminal points. The algorithm extends effectively into higher

dimensions, and we present computational results on benchmark test problems in

<d for 2 ≤ d ≤ 5.

We develop new geometric conditions derived from properties of Steiner trees

which bound below the number of Steiner points on paths between terminals in

the Steiner minimal tree. We describe conditions for trees with a Steiner topology

and show how these conditions relate to the Voronoi diagram. We describe more

restrictive conditions for trees with a full Steiner topology and their implementation

into the algorithm of Smith (1992). We present computational results on benchmark

test problems in <d for 2 ≤ d ≤ 5.
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CHAPTER 1

INTRODUCTION

The Euclidean Steiner tree problem (ESTP) arises in the field of combinatorial

optimization; the problem and its variations find vast applications in the study of

networks (Du and Hu, 2008). The ESTP is simple to state, difficult to solve, and

unlike many other combinatorial optimization problems, has an additional geometric

component. This chapter provides historical context, definitions, and a discussion

of the computational intractability of the ESTP and a few variant problems.

1.1 Historical background

The root of the Euclidean Steiner tree problem (ESTP) dates back to Fermat

(1601-1665) who proposed the following problem in a letter: “Given three points in

the plane, find a fourth point such that the sum of its distances to the three points is

a minimum.” This problem is often called the Fermat problem, and it captured the

interest of prominent mathematicians including Torricelli, Cavalieri, and Simpson.

Torricelli proposed a geometric solution to this problem as follows: place equilateral

triangles on the sides of and outside of 4pqr, and construct circles circumscribing

each of the three equilateral triangles. Torricelli claimed that the three circles

intersect at the point s which minimizes the sum of distances. This point is often

called the Torricelli point, see Figure 1.1. However, in the case that 4pqr contains

an angle greater than 120 ◦, the Torricelli point lies outside the triangle and is no

longer the minimizing point. In this case, the minimizing point is the vertex at the

obtuse angle (Kuhn, 1974).

In his Exercitations Geometricae, Cavalieri showed that the line segments

from the three points to the Torricelli point create three equal angles of 120 ◦.

Simpson in his Application of Fluxions showed that the three line segments created

by connecting the vertices of the equilateral triangles previously described to the
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Figure 1.1: The three circumcircles of the constructed equilateral triangles intersect
at the Torricelli point.

Figure 1.2: The Simpson lines intersect at the Torricelli point.

opposite vertex of 4pqr intersected in the Torricelli point, see Figure 1.2. Courant

and Robbins (1941) popularized the generalized version of the problem (n > 3) in

their book “What is Mathematics.” They dubbed the problem, the “the Steiner

problem” after the mathematician Jacob Steiner (1796-1863) who considered the

generalized version of the Fermat problem.
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1.2 Definitions and properties

The objective of the Euclidean Steiner tree problem (ESTP) is to determine

the minimal length tree (with respect to the Euclidean metric) spanning a set of

terminal points, X, while permitting the introduction of extra points (composing a

set S of Steiner points) into the network to reduce its overall length.

A topology is a configuration of terminal points and Steiner points where the

connections are specified, but the locations of the Steiner points are not. A topology

is said to be a Steiner topology if every Steiner point has degree three and every

terminal point has degree at most three. A Steiner topology where all terminal

points are degree one is a full Steiner topology (FST). A full Steiner topology on n

terminal points has n − 2 Steiner points (Gilbert and Pollak, 1968). Any non-full

Steiner topology can be identified with a FST where some edges have zero length

(Gilbert and Pollak, 1968); such a FST is called degenerate. A solution to the ESTP

is called a Steiner minimal tree (SMT). Gilbert and Pollak (1968) show that the

SMT has a Steiner topology. In the search for minimal trees, we restrict our search

to trees with a Steiner topology.

The algorithms we describe rely on properties of SMTs. Proofs of these and

other properties can be found in Gilbert and Pollak (1968). The angle condition

states that each pair of edges in a SMT meets at an angle of no less than 120◦. The

degree condition states that the degree of each terminal point is at most three and

the degree of each Steiner point is exactly three. Together, these conditions imply

that the three edges incident to a Steiner point meet at exactly 120◦. Additional

properties of Steiner trees are covered in Chapter 5.

1.3 The Steiner ratio

The minimum spanning tree (MST) is the shortest network spanning a set of

points without the use of additional points (i.e., Steiner points). The MST serves

as an efficient approximation algorithm for the SMT, i.e., the length of the MST
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is within a known bound of the length of the SMT. Let X be a set of points in a

metric space, and let MST (X) and SMT (X) denote the minimum spanning tree

and Steiner minimal tree of the set X, respectively. Let `(T ) be the length of the

network T . The Steiner ratio, ρ, is the minimum value of the ratio

`(SMT (X))

`(MST (X))

taken over all sets X. Clearly ρ ≤ 1 since the MST can be regarded as a fully-

degenerate SMT (S = ∅). Cieslik (2001), in his treatment of the Steiner ratio,

proves that for any metric space ρ ≥ 1/2. Beardwood et al. (1959) provided the

first lower bound on the Steiner ratio for the planar ESTP, ρ > 1/2. Du and Hwang

(1992) prove that for the planar ESTP, ρ =
√

3/2 ≈ 0.866, and equality is obtained

for a network of terminal points located at the vertices of an equilateral triangle. In

higher dimensions, the the Steiner ratio less than
√

3/2 but is not known. Du and

Smith (1994) disprove the conjecture of Gilbert and Pollak (1968) that the Steiner

ratio is obtained for terminals at the vertices of a d-dimensional regular simplex, for

d ≥ 3. Toppur and Smith (2005) conjecture the optimal Steiner ratio in <3 is not

achieved by a single simplex, but rather by placing terminal points at the vertices of

a <-sausage, an object created by linking an infinite number of regular tetrahedral

simplices. Toppur and Smith (2005) empirically calculate the Steiner ratio in <3 to

be approximately 0.784190.

1.4 Computational intractability

In order to discuss the difficulty of the ESTP, we first quantify what it means

for an optimization problem to be “difficult.” Computational complexity theory

classifies problems based on measurements of difficulty in computing solutions. A

problem can be solved in polynomial time if, given an input of size s, there is a

polynomial function, p, such that the number of operations required to solve the

problem is on the order of p(s). The class of all such problems is denoted by P . If
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we are able to verify a proposed solution to a problem in polynomial time we say the

problem is in NP , short for non-deterministic polynomial time. A problem which

is solvable in polynomial time allows verification of solutions in polynomial time, so

P ⊂ NP . A famous and long-standing problem is to determine whether P = NP .

A (yes/no) decision problem X is NP-complete if i) X ∈ NP and ii) all problems

Y ∈ NP polynomially reduce to X (roughly speaking, X is at least as difficult as

the problems in NP ). A problem is said to be NP-hard if condition ii) holds.

The ESTP is a difficult combinatorial optimization problem; Garey et al.

(1977) show that decision version of the ESTP is NP -hard, but the ESTP itself is

not known to be in NP . Garey et al. (1977) construct a polynomial transformation

T which converts an instance of “exact cover by 3-sets” (X3C) into a planar instance

of the ESTP. The transformation converts (yes/no) instances of X3C to (yes/no)

instances of a Steiner tree decision problem, respectively. By exploiting geometric

properties of Steiner trees and use of a tool called a “probe” (based on the angle

property), it is shown this constructed Steiner instance has a very constrained

structure, and accordingly, its length can be bounded depending on the satisfiability

of the X3C instance. Since X3C is known to be NP -complete, this means the Steiner

problem is at least as difficult as X3C, i.e. it is NP -hard.

The difficulty in solving the ESTP can be partially attributed to the tremen-

dous number of FSTs that must be checked in the search for the optimal solution.

The number of FSTs grows super-exponentially with respect to the the number of

terminal points (Gilbert and Pollak, 1968); see Table 1.1 which illustrates how the

number of FSTs grows compared against the exponential function 2n.

1.5 Variant problems

We mention several ESTP variants which can arise from application of ESTP

under different “real world” constraints. Computer chip layout design may utilize

the L1 or “taxi-cab” metric in lieu of the standard L2 metric giving the rectilinear
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Table 1.1: The number of FSTs grows super-exponentially with respect to instance
size.

n 2n FST (n)

1 2 0

2 4 0

3 8 1

4 16 3

5 32 15

6 64 105

7 128 945

8 256 10,395

9 512 135,135

10 1,024 2,027,025

11 2,048 34,459,425

12 4,096 654,729,075

13 8,192 13,749,310,575

14 16,384 316,234,143,225

15 32,768 7,905,853,580,625

16 65,536 213,458,046,676,875
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Steiner tree problem (RSTP). Hanan (1966) was one of the first to address the

RSTP. It is known that all Steiner points lie in what is called the underlying grid

(also called the planar grid or Hanan grid) which is the set of points created by

the intersections of horizontal and vertical lines through all terminal points points

(Hanan, 1966). Garey and Johnson (1977) show that RSTP is NP -hard.

Considering connecting facilities located far apart on the earth gives rise to the

Steiner tree problem on the sphere. The geodesic minimum spanning tree problem

(GMST) and geodesic Steiner minimal tree problem (GSMT) are analogues of the

MST and SMT on the sphere, respectively. The metric adopted on the sphere is

typically the “great circle” distance, where a circle on the surface of the sphere is

a great circle if it lies in a plane containing the center of the sphere. The distance

between points xi and xj on the sphere is the length of the arc of the great circle

containing them. Cockayne (1972) provides analogues (as in Section 1.1) for locating

a single Steiner point connected to three terminals on the unit sphere. Zhang (2003)

considers the problem of n terminals and one Steiner point on the sphere. Dolan

et al. (1991) provide algorithms for computing the Delaunay triangulation, Voronoi

diagram, MST, and sub-optimal SMTs on the sphere.

A constrained engineering problem may require a pre-specified set of potential

Steiner points and connections; this is the Steiner tree problem in networks (NSTP)

also called the Steiner tree problem in graphs (Koch and Martin, 1998). The NSTP

consists of an edge-weighted graph G = (V,E,w) where a list of vertices V and a

subset of required vertices (terminals) R ⊂ V are specified; edge weights may be

negative. The goal is to find a subtree of V which spans all points in R and is

of minimal weight. On the one hand, the NSTP appears more tractable than the

ESTP as the locations of all potential Steiner points are pre-specified. On the other

hand, edge weights in the NSTP may be negative and there is no underlying metric

space. The RSTP can be considered a special case of NSTP, as all potential Steiner
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points lie in the Hanan grid. The NSTP is shown to be NP -hard (Karp, 1972).

The prize collecting Steiner tree problem (PCSTP) (a variation of the NSTP)

occurs in fiber-optic network design where including customers into the network

generates a reward (Ljubić et al., 2005). In the PCSTP, a set of potential vertices

V is specified (R = ∅), each with an associated profit. As in the NSTP, edge weights

can be negative. The objective is to minimize the sum of the total cost of all edges

in the subtree plus the total profit of all vertices not contained in the subtree.

The NSTP is a particular case of PCSTP, where terminals have infinite profit and

optional points have no associated profit. As a result, the PCSTP is also NP -hard.

Other variants of the NSTP include the node-weighted Steiner tree problem and

prize collecting node-weighted Steiner tree problem (Du and Hu, 2008).
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CHAPTER 2

MATHEMATICAL PRELIMINARIES

This chapter presents concepts from computational geometry, conic optimization,

and implicit enumeration which we utilize in the thesis. The algorithms in Chap-

ters 4 and 5 utilize the minimum spanning tree, Delaunay triangulation, and Voronoi

diagram in their search for Steiner trees. Algorithms for solving the ESTP rely on

a method of optimizing the location of Steiner points under a specified topology, we

describe these methods. We discuss a general branch-and-bound framework which

governs exact algorithms for solving the ESTP.

2.1 The minimum spanning tree

The Steiner minimal tree is closely related to the minimum spanning tree

(MST): the shortest network connecting a set of points without the addition of

Steiner points. Many heuristic and exact algorithms, including the algorithms we

develop in Chapters 4 and 5, utilize the MST in the search for the SMT. For a set

of points, X, with the set of Steiner points, S, inserted at the proper location, the

SMT is found by forming the MST on the set (X ∪ S).

Prim’s algorithm, Kruskal’s algorithm, and the reverse-edge delete algorithm

(essentially Kruskal’s in reverse) are all polynomial time algorithms for computing

the MST (Kleinberg and Tardos, 2005). The algorithms in Chapters 4 and 5 utilize

Prim’s algorithm for computing the MST, see pseudo-code in Algorithm 2.1. Prim’s

algorithm on n points and m edges runs in O(n2) time when searching an adjacency

matrix. The run-time can be improved to O(m log n) time by using a heap-based

priority queue, and even faster MST implementations exist (Kleinberg and Tardos,

2005).

The MST provides upper bounds on lengths of edges present in the SMT. The

bottleneck distance denoted by b, is the length of the longest edge in the MST. Given
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Algorithm 2.1 Prim’s algorithm for computing the MST

1: Input: A set of points, X, and edge weights, A.
2: Output: A tree, T , on X.
3: Initialization: Vnew = xi where xi ∈ X, Enew = {}.
4: while Vnew 6= X do
5: Choose edge (xi, xj) with minimal weight s.t. xi ∈ Vnew and xj ∈ X−Vnew
6: Set Vnew = Vnew ∪ xj and Enew = Enew ∪ (xi, xj).
7: end while
8: Output Enew, a minimum spanning tree.

two points xi and xj connected in the MST, the bottleneck distance between xi and

xj, denoted bij, is the length of the longest edge on the (unique) path between xi

and xj in the MST.

Lemma 2.1. A SMT contains no edge of length greater than b.

Proof. Assume to the contrary that some edge, e, in a SMT, T , is longer than b.

Remove edge e separating T into two connected components, each containing at

least one terminal. These two components may reconnected with a terminal-to-

terminal edge from a MST with length at most b, which shortens T and contradicts

the assumption that T is a SMT.

We sharpen the result by considering bottleneck distances between pairs of

points.

Lemma 2.2. A SMT contains no edge of length greater than bij on the unique path

between xi and xj.

Proof. Assume to the contrary that some edge, e, on the path between xi and

xj in a SMT, T , is longer than bij. Remove e, separating T into two connected

components one with terminal xi (call this component C1), one with terminal xj

(call this component C2). Consider the path connecting terminals xi and xj in the

MST. Beginning at terminal xi, follow edges in the MST along the path to xj and

stop before leaving terminals in the component C1. The next terminal-to-terminal
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edge, ẽ, may be added to T , reconnecting components C1 and C2. The length of ẽ

is less than or equal to bij, which is also less than the length of e by assumption.

Adding ẽ will only shorten the length of T , contradicting the assumption that T is

a SMT.

In order to decrease upper bounds on lengths of edges, we ask if another

spanning tree can decrease the bottleneck distance between pairs of points. In fact,

a MST minimizes all pairwise bottleneck distances.

Lemma 2.3. A MST minimizes the bottleneck distance between all pairs of points

xi and xj.

Proof. By way of contradiction, assume there is a tree T ∗ so that the bottleneck

distance between points xi and xj in T ∗ (call this value b∗ij) is less than bij. Find

the edge in a MST, T , between xi and xj which is longer than b∗ij and remove it,

separating the tree into two connected components. These two components may

be re-connected with an edge on the unique path between xi and xj in T ∗, thereby

shortening T . This contradicts the assumption that T is a MST.

This proof is illustrated in the construction of a MST in Algorithm 2.1, and in

particular on line 5. The algorithm always adds the shortest edge possible, provided

cycles are not created. Thus if T ∗ had a shorter edge, the MST algorithm would

add it unless a cycle was created. If a cycle was created, there already exists a path

between xi and xj, all of whose edges are shorter than b∗ij.

2.2 The Delaunay triangulation
and Voronoi diagram

Both the heuristic approach and exact algorithm we discuss in Chapters 4

and 5 rely on a notion of “closeness” between terminal points. Structures from

computational geometry quantify this notion.

For Z, a set of points in <d, the Voronoi diagram of Z is determined by

partitioning Euclidean space into convex polyhedra (called Voronoi regions) with
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Figure 2.1: Voronoi diagram (dashed) and Delaunay triangulation (solid) in the
plane.

one point in each region. For every point z ∈ Z, the Voronoi region about z

denoted vor(z) consists of all points closer to z than to any other point in Z. That

is vor(z) = {u : ||u− z|| < ||u− y|| ∀y ∈ Z}.

The Delaunay triangulation is the straight-line dual graph of the Voronoi dia-

gram, constructed by connecting two points with an edge if and only if they share a

face in the Voronoi diagram. For Z, a set of points in <d, the Delaunay triangulation,

DT (Z), is a subdivision of the convex hull of Z into d-dimensional simplices such

that: (i) any two simplices in DT (Z) intersect in a common face or not at all, (ii) Z

corresponds to the set of points that are vertices of the subdividing simplices, and

(iii) no z ∈ Z is inside the circum-hypersphere of any simplex in DT (Z) (De Berg

et al., 2008). Figure 2.1 illustrates a Voronoi diagram and Delaunay triangulation

for a set of points in the plane.

The edges of the Delaunay triangulation for a set of vertices contain the MST;

there are other triangulations (Gabriel graph, relative neighborhood graph) that

also contain the MST (De Berg et al., 2008).
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2.3 Conic optimization

For a given topology, the location of Steiner points must be determined in

order to compute the length of the tree. The algorithm for doing so can be called

a relatively minimal tree (RMT) algorithm. The constructions highlighted in Sec-

tion 1.1 allow the optimization of one Steiner point connected to three terminals.

Extending the idea to multiple Steiner points, one option for a RMT algorithm is

to iteratively optimize the locations of Steiner points, treating neighbors as fixed.

Smith (1992) shows that this process converges to the globally optimal locations for

a given topology.

A more direct method of optimizing Steiner point locations than iterative

optimization comes from the idea of optimization over cones. To explain conic

optimization’s relation to ESTP, we begin by stating a linear optimization problem

over a naturally-arising cone: the non-negative orthant. This gives the standard

representation of a linear program:

min cTx

s.t. Ax = b

x ≥ 0

where x ∈ <n represents a variable to be determined, b, c ∈ <n represent vectors of

coefficients, and A is a matrix of coefficients. The set of x ≥ 0 for which Ax = b

represents the feasible region, and is known to be a convex polytope.

If we allow a convex, non-linear objective function, we can formulate the

problem optimizing the location of one Steiner point incident to three terminals as

the following minimum-sum-of-norms problem (a single-facility location problem):

min ||s1||+ ||s2||+ ||s3||

s.t. si = xi − y, i = 1, 2, 3
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where y is the coordinates of the Steiner point, and xi are the coordinates of each

terminal. The variables si represent the edges of the tree, translated with one

endpoint at the origin.

It is possible to formulate the ESTP as a minimum sum-of-norms problem

(Dreyer and Overton, 1998), and solve this formulation via interior point methods

(Andersen et al., 2001). Consider an instance of m Steiner points and m+2 terminal

points in <d. The resulting FST has n = (2m + 1) edges. Let Yd×m be the matrix

of Steiner point coordinates. Define matrices Am×n and Cd×n as follows: if edge i

is connected to a Steiner point j and a terminal point, then column ci contains the

coordinates of the adjacent terminal point and column ai = ej, where ej ∈ <m is

the jth elementary column vector. If edge i is adjacent to two Steiner points j and

k with j < k, then ci = 0 and ai = ek − ej. We can then express the problem of

locating the Steiner points for a given full Steiner topology as a minimum sum of

norms problem:

min
n∑
i=1

||si|| (2.1)

s.t. S = C − Y A (2.2)

where Sd×n is a matrix whose ith column, si, represents edge i in the tree translated

to the origin.

The minimum sum-of-norms problem has a convex but non-differentiable ob-

jective function which presents computational challenges for interior point methods.

Second order cone programming (SOCP), a generalization of linear programming

based on the idea of optimizing a linear function over the intersection of an affine

set and the product of second-order (quadratic) cones, overcomes this difficulty by

embedding the non-differentiable objective function into the constraints. Formu-

lating the minimum sum-of-norms problem as an SOCP allows the use of interior

point methods (Nesterov and Nemirovsky, 1994) or even more powerful primal-dual
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methods (Nesterov and Todd, 1998).

We introduce some definitions to develop the SOCP formulation. Given a real

variable x and a d-dimensional vector v, we say
[x
v

]
is in a d+ 1 dimensional second

order (quadratic) cone if x ≥ ||v||, denoted
[x
v

]
≥Q 0. The cones correspond to

the non-negative orthant in linear programming, and so linear programming is a

special case of SOCP. We re-formulate the problem of optimizing one Steiner point

incident to three terminals from a minimum sum-of-norms problem into an SOCP

by introducing a d+ 1 dimensional cone for each edge:

min σ1 + σ2 + σ3

s.t. σi ≥ ||xi − y||, i = 1, 2, 3

which we expand to delineate SOCP’s relation to a linear program:

min σ1 + σ2 + σ3

s.t. si = xi − y, i = 1, 2, 3[σi
si

]
≥Q 0, i = 1, 2, 3

where y is the coordinates of the Steiner point, and xi are the coordinates of each

terminal. If each xi or y is a vector in <d, each edge of the tree generates a (d+ 1)-

dimensional cone. For each value of σi, the cone is defined by the set of all y for

which σi ≥ ||xi − y||.

Lastly, we reformulate the problem of optimizing Steiner points for a given

FST into an SOCP as follows, where ci and y are defined as in the minimum sum-

of-norms problem in equation 2.2:

min

n∑
i=1

σi

s.t. si = ci − ATi y, i = 1, ..., n[σi
si

]
≥Q 0, i = 1, ..., n

where ATi = aTi ⊗ Id, Id is a d-by-d identity matrix, and ⊗ denotes the Kronecker

product of two matrices. For a 1-by-n matrix aTi and a d-by-d matrix Id, a
T
i ⊗ Id
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denotes the d-by-(dn) block matrix:(
a1Id · · · anId

)
.

2.4 Branch-and-bound enumeration

Algorithms which solve the ESTP to optimality must verify that the proposed

solution is truly optimal; to do so, all potential solutions must be checked. As

highlighted in Table 1.1, it would require a significant amount of time to consider all

the FSTs by brute-force; a more organized method of enumerating FSTs is needed.

This motivates the concept of implicit enumeration where the entire solution space

S is considered, but many elements of S are not explicitly computed. In a 0-1 integer

program, for example, if it is known that the mth entry of the solution vector must

be 1, then the size of the search space is halved by omitting from consideration any

solution with 0 in the mth entry.

The exact algorithms for ESTP described in Section 3.3 operate within a

branch-and-bound framework. Branch-and-bound (BB) is an implicit enumeration

technique which excludes portions of the solution space based on values of best-

found solutions. A branch-and-bound algorithm has three main components: a

bounding function, a strategy for selecting the next node (element of the search

space), and a branching rule. For a minimization problem, the bounding function,

B, provides a lower bound for the best obtainable solution in a subspace, P . If

P is a leaf of the branch-and-bound tree, then B(P ) = v(P ) where v(P ) denotes

the correct solution value for the problem P . The node selection strategy decides

the next node to be processed. A “depth-first” selection strategy chooses nodes to

be processed which are deeper in the enumeration tree. Upon reaching a leaf of

the tree, the algorithm backtracks. A “breadth-first” selection strategy explores all

nodes at a given level before processing any nodes at the next level. A breadth-first

strategy may require too many nodes to be stored in memory, so depth-first search

is often used in practice. The branching rule applies if the current node cannot
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be removed from consideration. The subspace is divided into further subspaces

(children) which are added to a list to be explored in later iterations. We include

basic branch-and-bound pseudo code in Algorithm 2.4, and we incorporate a “lazy”

node selection strategy whereby the active nodes are stored with the bound of their

parent.

As an example, consider an optimization problem with n binary variables,

xi = {0, 1}, for i = 1, ..., n. When a node is processed and not fathomed, the

typical branching rule creates two children by setting xj = 0 for one child, and

xj = 1 for the other child (for some 1 ≤ j ≤ n). The bounding function, B, often

allows the remaining binary variables to be continuous on [0,1], and possibly allows

additional constraints that are known to be valid for binary values of those variables.

The complete enumeration tree has 2n leaves, but hopefully far fewer problems are

considered when using the branch-and-bound framework. For further reading on

branch-and-bound enumeration, see Clausen (1997).

Algorithm 2.2 Lazy branch and bound for a minimization problem

1: Initialization: Best =∞, List = {(RootNode,∞)}.
2: Repeat until List = ∅:
3: Remove a node P from List to be made active;
4: Can P be fathomed from parent bound? If yes, fathom P and Go to line 3;
5: Determine bound B(P ) for P . If B(P ) >= UB, fathom P and Go to line 3;
6: If P is a leaf of the tree, update UB = B(P ); Go to line 3;
7: If P is not a leaf of the tree, create children of P , add to List along with

bound B(P ). Go to line 3.
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CHAPTER 3

SOLUTION METHODS FOR THE ESTP

In solving the ESTP, a choice must be made between solution quality versus compu-

tational effort. An exact algorithm can be used to completely explore the solution

space and return the provably optimal solution. An approximation algorithm may

be used if a solution within a fixed percent of optimal is required. If computational

effort is important, a heuristic may be used to return a (hopefully good quality)

solution in a reasonable computational time. This chapter overviews these three

solution methods in the context of the ESTP.

3.1 Approximation algorithms

An approximation algorithm produces solutions within a guaranteed percent-

age of the optimal solution; such an algorithm which runs in polynomial time (with

respect to instance size) is called a polynomial time approximation scheme (PTAS).

For example, a MST-producing algorithm (such as Prim’s algorithm) can be viewed

as a PTAS for ESTP due to the Steiner ratio. The strongest approximation al-

gorithms produce solutions within a factor of (1 + 1/c) ∗ optimal, c > 0 so that

solutions of arbitrarily high quality may be obtained (although at the cost of in-

creased computation time). Arora (1998) shows that many NP-hard geometric

optimization problems (ESTP, rectilinear Steiner tree problem, traveling salesman

problem) all have a (1 + 1/c)-PTAS. Using recursive partitioning, “portals” to con-

nect created subproblems, and dynamic programming, Arora (1998) develops a

(1 + 1/c)-PTAS that runs in n(log n)O(c
√
d)d−1

time on instances with n terminal

points in <d. Rao and Smith (1998) utilize “spanners” and “banyans” in lieu of

portals to develop a faster PTAS for ESTP. They describe a (1+1/c)-PTAS which

runs in 2(cd)O(d)

n+ (cd)O(d)n log n time on instances with n terminal points in <d.
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3.2 Heuristic algorithms

Section 1.4 outlines the computational intractability of the ESTP: solving

the problem to optimality requires significant computational effort, particularly on

large instances. This motivates the use of a heuristic algorithm which finds a good

solution with moderate computational effort. This section gives definitions related

to local search heuristics and reviews the literature on heuristic search for the ESTP.

3.2.1 Local search

A local search heuristic produces an optimal or near-optimal solution by mak-

ing iterative changes to an initial solution. Local search algorithms have three pri-

mary features: solution representation, solution evaluation, and neighbor solution

generation. Recall that the objective of the ESTP is to find a minimal length Steiner

tree spanning the set of specified terminal points. Evaluating a solution for the

ESTP requires a relatively minimal tree (RMT) algorithm (which may vary across

heuristics) to optimize the locations of Steiner points in the solution’s pre-specified

topology. The solution representation and neighbor generation mechanisms vary

across heuristics, and we use these differences as a classification scheme for ESTP

heuristics.

3.2.2 Planar heuristics

The literature abounds with heuristics for ESTP in the plane, which we outline

based on solution representation and neighbor generation schemes. Most planar

heuristics operate by either i) inserting a candidate set of Steiner points into the

network and forming a Steiner topology on this augmented set of points or ii) finding

good FSTs on subsets of terminal points and concatenating these partial FSTs into

a Steiner tree.
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3.2.2.1 Insertion heuristics

We first discuss Steiner point insertion heuristics, as the heuristic algorithm

we develop in Chapter 4 can be classified as such an approach. Given the optimal

number and location of all Steiner points, the SMT can be formed by constructing

the MST of X ∪ S, the union of the set of terminal points and Steiner points. This

relationship between the MST and SMT motivates ESTP heuristics which generate

candidate solutions by inserting a set S of Steiner points into a topology and then

form the MST of X ∪ S. To identify candidate Steiner points, heuristics utilize

well-known properties of SMTs. The angle condition states that each pair of edges

in a SMT meet at an angle of no less than 120◦. The degree condition states that

the degree of each terminal point is at most three and the degree of each Steiner

point is exactly three.

In one of the first heuristic approaches for the planar ESTP, Thompson (1973)

describes a local search heuristic that utilizes the MST to generate candidate Steiner

points. Beginning with S = ∅, Thompson’s algorithm iteratively inserts Steiner

points to correct violations of the angle condition. Each insertion involves the

identification of a 4uvw for which the edges (u, v) and (u,w) violate the angle

condition and have the largest dot product of all such violating pairs of edges.

Thompson’s algorithm executes an insertion by removing the edges (u, v) and (u,w),

inserting a Steiner point s at its optimal location relative to the three neighboring

points, and adding edges (u, s), (v, s), and (w, s). After executing up to n − 2

insertions (an SMT on n terminal points has at most n−2 Steiner points (Gilbert and

Pollak, 1968)), the positions of the Steiner points are iteratively optimized (treating

neighboring points as fixed) until improvement drops below a specified threshold;

this step can be viewed as an early relatively minimal tree (RMT) algorithm. Dreyer

and Overton (1998) present an extension of Thompson (1973) which capitalizes on

improved RMT algorithms by placing the inserted Steiner points on top of one of
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Figure 3.1: The MST for the nine-point instance, which provides the initial solution
for Steiner insertion heuristics.

the terminal points and determining the optimal location of all Steiner points in a

single call to the interior point method of Andersen and Andersen (1996).

The simple edge insertion heuristics of Thompson (1973) or Dreyer and Over-

ton (1998) essentially perform “local Steinerizations” and are generally oblivious

to any global structure. This approach fairs moderately well on random instances,

but can suffer severe shortcomings on clustered instances. Figure 3.1 illustrates the

MST for a nine-point triangle instance in which these edge insertion heuristics miss

the optimal solution. The edge insertion heuristic only positions the Steiner points

in the three smaller triangles as in Figure 3.2, but is unable to detect the Steiner

point needed in the middle for the optimal solution as shown in Figure 3.3.

Chang (1972) develops a generalized Steiner insertion heuristic which begins

with the MST and constructs a sub-optimal FST in n−2 iterations. Each iteration

involves the insertion of a Steiner point, its connection to three terminals (creating

two cycles), and the removal of two edges to eliminate the cycles. With each itera-

tion, partial FSTs on subsets of terminal points are enlarged. Finally, the locations

of all Steiner points are iteratively optimized as in Thompson (1973).
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Figure 3.2: Edge insertion achieves a sub-optimal solution to the nine-point in-
stance.

Figure 3.3: The optimal solution for the nine-point instance contains a centrally-
located Steiner point.
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Beasley and Goffinet (1994) present a more elaborate algorithm which gener-

ates candidate Steiner points for the planar ESTP using computational geometry,

specifically, the Delaunay triangulation (see Section 2.2). The Delaunay triangula-

tion possesses important properties that explain its use as a mechanism for generat-

ing candidate Steiner points in ESTP heuristics. First, the Delaunay triangulation

generates simplices such that the smallest angle in any simplex is maximized, i.e, the

simplices are approximately equilateral. This is a desirable trait as the maximum

length reduction resulting from a Steiner point insertion in the plane occurs in an

equilateral triangle. A second property is that the edges of the Delaunay triangu-

lation of a set of points, Z, contain the MST of Z (De Berg et al., 2008). Thus, an

algorithm considering Steiner point insertion in Delaunay simplices is more general

than an insertion mechanism targeting non-degenerate simplices which have two

edges in the MST, as in Smith et al. (1981).

Additionally, the Delaunay triangulation encodes information about the global

structure of the set of points. As Zachariasen (1999) notes, connection via Steiner

point is largely a local property. As Figures 3.1, 3.2, and 3.3 illustrate, focusing

Steiner insertion only for adjacent edges in the MST can be myopic. To avoid

this myopic behavior, a type of generalized Steiner insertion is required (Chung and

Graham, 1978). From the
(
n
d+1

)
sets of simplices for potential Steiner point insertion

(in <d), the Delaunay triangulation narrows down the candidates for insertion to

those corresponding to the sets of vertices that are “close” in the sense that they

share a face in the Voronoi diagram. Thus, the Delaunay triangulation provides an

intuitive mechanism to consider broader set of candidate Steiner points than the

edge insertion approach of Thompson (1973) which considers only those Delaunay

simplices containing two MST edges which meet at less than 120◦. In Figure 3.4, an

insertion in the center Delaunay triangle is sufficient for finding the global solution,

as the other three Steiner points can be found via an edge insertion algorithm.
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Figure 3.4: The Delaunay triangulation for the nine-point instance identifies the
central Steiner point location requisite for the SMT.

To generate a neighbor solution in their heuristic approach, Beasley and

Goffinet (1994) iterate between an expansion phase and a reduction phase. The

expansion phase augments S, the set of Steiner points, (initially S = ∅) by plac-

ing a Steiner point in each Delaunay triangle of DT (X ∪ S) containing no angle

greater than or equal to 120◦. The subsequent reduction phase forms the MST of

X ∪ S and applies the degree condition to reduce the number of potential Steiner

vertices. This reduction step, referred to as a “cleanup” operation, results in a tree

with a Steiner topology, i.e., the degree of each terminal point is at most three and

the degree of each Steiner point is exactly three. Following the reduction phase, a

re-expansion akin to the edge insertion algorithm of Thompson (1973) is performed

to correct any violation of the angle condition. To avoid becoming easily trapped

in a local minima, Beasley and Goffinet (1994) base the acceptance or rejection of

the neighbor solution upon the simulated annealing metaheuristic (Laarhoven and

Aarts, 1987; Ingber, 1993)which allows worse solutions (in terms of tree length) to

be accepted to enable the discovery of better solutions at later iterations.
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3.2.2.2 Concatenation heuristics

Motivated by the observation that the SMT can be viewed of as a concatena-

tion of FSTs on subsets of terminal points (Gilbert and Pollak, 1968), concatenation

heuristics attempt to find quality FSTs on subsets of terminals (partial FSTs) and

concatenate them into the shortest possible tree.

Smith et al. (1981) present a FST concatenation algorithm based on the De-

launay triangulation and MST. In the first phase, the algorithm decomposes the

instance into Delaunay triangles and generates partial FSTs by considering Delau-

nay triangles in which a Steiner point insertion appears promising. All partial FSTs

on three terminals are added to the priority queue in the order of increasing value

of `(SMT )/`(MST ) for the SMT and MST on the three corresponding points. The

next step considers all adjacent pairs of Delaunay triangles which have three com-

bined edges in the MST, and performs a Steiner point insertion to create a FST on

four terminals for each set of three such edges. These partial FSTs on four termi-

nals are added to the priority queue in increasing value of `(SMT )/`(MST ). In the

second phase, the algorithm greedily concatenates the partial FSTs in the queue

with priority based on their reduction in length over the MST. The algorithm of

Smith et al. (1981) runs in O(n log n) time and generates solutions of equal quality

to the O(n4) run-time algorithm of Smith and Liebman (1979).

In a similar fashion, Zachariasen (1999) constructs a restricted candidate list,

F , of FSTs on subsets of terminal points and then creates a sub-optimal SMT by

concatenating elements of this list. Zachariasen (1999) utilizes the Gabriel graph of

the set of terminal points to select candidate FSTs. The Gabriel graph (GG) is a

subset of the Delaunay triangulation (DT) that is found by removing edges between

vertices if, in the Voronoi diagram, the edge between them does not intersect the

Voronoi face separating them. A known result is that MST ⊂ GG ⊂ DT (De Berg

et al., 2008).
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In order to form the restricted candidate list, F , Zachariasen (1999) considers

all connected components of the Gabriel graph up to degree K (K ≤ 5). If the

set of terminal points is in “Steiner configuration” (that is, all terminals lie on the

convex hull), Zachariasen forms all FSTs on that subset and add the shortest to F .

Zachariasen shows that the number of FSTs for points in Steiner configuration is

drastically reduced from the number of FSTs on terminals in general position. In

addition, Zachariasen does not consider those FSTs which violate the bottleneck

distance (see Section 2.1).

The partial FST concatenation phase of Zachariasen (1999) removes the geo-

metric problem of locating Steiner points and so converts the ESTP into a purely

combinatorial problem. The solution spaces consists of all 0-1 vectors of size m′,

where m′ is the number of full topologies on three or more terminals, S = {0, 1}m′ .

Zachariasen tests three neighbor generation schemes: a simple flip neighborhood

(NF ), a global insertion neighborhood (NI), and a local insertion neighborhood

(NL). In NF , a neighbor is generated by removing a partial FST from the incum-

bent solution, inserting another (previously non-included) partial FST, and subse-

quently inserting appropriate edges of the MST to regain the tree structure. To

create a neighbor solution from NI , an empty solution is originated with a selected

candidate partial FST and compatible FSTs of the incumbent solution are inserted

so long as no cycles are created. In this way, a new solution is created by adding

a new element and “pushing out” old elements. The NL neighbor creation scheme

consists of inserting partial FSTs in local time by removing all currently conflicting

elements and reconnecting with the minimal spanning tree. The first two neigh-

borhoods NF and NL possess the attractive feature of being strongly connected :

any solution is reachable from any other by a sequence of neighbor generations.

Each of the neighborhoods is tested with 3 local search methods: repeated descent

(RD), simulated annealing (SA) (Laarhoven and Aarts, 1987; Ingber, 1993), and
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tabu search (TS) (Glover, 1990). The NI neighborhood outperforms both the NL

and NF neighborhoods; under this neighborhood Zachariasen (1999) obtains solu-

tions of better quality than Beasley and Goffinet (1994) across the RD, SA, and TS

metaheuristic frameworks (RD and SA significantly outperform TS).

Zachariasen and Winter (1999) present a class of O(n log n) greedy concate-

nation heuristics which identify candidate SMTs on subsets of k terminal points

(k = 3, 4, 5) using subgraphs of the Delaunay triangulation and the MST. Zachari-

asen and Winter (1999) select partial FSTs based on structures from computational

geometry including the relative neighborhood graph, Gabriel graph, and Delaunay

triangulation. Zachariasen and Winter (1999) sort the selected partial FSTs ac-

cording to their reduction over the MST on the given subset of terminal points as

in Smith et al. (1981). Zachariasen and Winter (1999) test a greedy concatenation

neighbor generation as in Smith et al. (1981) and the global insertion neighbor gen-

eration as in Zachariasen (1999). The values of solutions exceed those found by the

previous O(n log n) algorithm of Smith et al. (1981).

The methods of Zachariasen (1999) and Zachariasen and Winter (1999) pos-

sess several attractive features. The Steiner point insertion heuristics described in

Section 3.2.2.1 repeatedly locate Steiner points in order to evaluate the length of the

current solution. The algorithms of Zachariasen (1999) and Zachariasen and Winter

(1999) avoid this problem by locating Steiner points only once for each partial FST,

which are kept small. After locating Steiner points, the length of the partial FST

is stored along with the tree. In determining the cost of a candidate tree, it only

remains to sum the stored lengths of its partial FSTs. This scheme also has the

advantage of avoiding cleanup operations by ensuring every resulting tree possesses

a Steiner topology.

The difficulty faced by concatenation heuristics is the construction of F , the

candidate list of FSTs. A possible drawback of this approach is that the candidate
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list, F , established by an algorithm may not contain all FSTs needed to create

the SMT. An omitted partial FST can never appear in the generated solution. On

randomized instances with k = 5, the algorithm of Zachariasen and Winter (1999)

typically omits less than 0.12 partial FSTs which are necessary to construct the

SMT. By restricting the size of partial FSTs considered to 5 or fewer terminals, the

algorithm could perform poorly on non-degenerate ESTP instances with greater

than five terminals.

3.2.2.3 Other heuristic methods

We detail several heuristics which are neither Steiner point insertion heuristics

or concatenation methods; rather, these heuristics consider only FSTs. Smith (1992)

proves that every degenerate Steiner topology is equivalent to one (or more) FSTs

with zero length edges. Such a solution can be obtained by concatenating partial

FSTs as in Section 3.2.2.2 or by considering only FSTs (realizing there will be

zero length edges after calling a RMT algorithm). Heuristics which consider FSTs

need only store the topology of the FST and so convert the ESTP into a purely

combinatorial problem. An initial solution is a full Steiner topology, and a neighbor

is generated by modifying the current FST into another FST. Smith (1992) shows

that all FSTs on n terminals are represented by the set of vectors of length n − 3

where the ith entry, xi, is a natural number 1 ≤ xi ≤ 2 ∗ i− 1.

Lundy (1985) places a full Steiner topology perturbation approach into a sim-

ulated annealing framework. The initial solution is a random full Steiner topology

with n− 2 randomly located Steiner points. The neighbor generation is a topology

perturbation followed by a Steiner point relocation scheme which can be viewed as

an early RMT algorithm. The topology perturbation consists of: 1) removing an

“external branch” (i.e., one terminal point and one Steiner point) and repairing the

tree to create a full topology on n− 1 terminal points (and one lone terminal), and

2) selecting a new edge to which to connect the terminal point via a Steiner point.
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A FST on n terminals has 2n− 3 edges, so there are 2n− 4 potential neighbors for

each choice of external branch (of which there are n choices). This quadratic-sized

neighborhood also has the attractive feature of being strongly connected.

Dreyer and Overton (1998) present a constructive “incremental optimization”

(IO) heuristic, which is a greedy variant of the exact branch-and-bound algorithm

of Xue et al. (1999) and Smith (1992). The algorithm begins with a FST on three

of the terminal points, referred to as level k = 1. At each level k, an incumbent

solution is a partial FST with k Steiner points and k + 2 terminals. To generate a

candidate solution for level k+ 1, one of the (n− k− 2) unselected terminal points

is chosen and connected via Steiner point to an existing edge, creating a partial

FST with k + 1 Steiner points on k + 3 terminals. For a selected terminal point,

2k+ 1 candidate solutions are generated for level k+ 1 since there are 2k+ 1 edges

in the incumbent solution at level k. An interior point algorithm (Andersen and

Andersen, 1996) for the minimum-sum-of-norms problem optimizes the location of

Steiner points to determine the length of the candidate partial FSTs created. The

shortest of the created partial FSTs becomes the new incumbent, and the process

repeats a total of n−2 times to construct a FST on the n terminals. The algorithm

produces solutions of better quality than an edge insertion heuristic (Dreyer and

Overton, 1998), but requires significantly more computational time.

3.2.3 Heuristics in Rd

Relative to the planar ESTP, the literature on heuristics for the ESTP in

<d for d > 2 is limited. The planar FST concatenation heuristics, for example,

heavily utilize planar geometry to vastly reduce the size of the candidate list F and

these conditions do not easily generalize to higher dimensions. The algorithms of

Zachariasen (1999) and Zachariasen and Winter (1999) utilize fathoming criteria

based on “equilateral points” to restrict the size of the list F , thus do not extend

to higher dimensions.
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Ravada and Sherman (1994) apply a partitioning technique for the problem

in <d, d = 2, 3. A parameter t governs the size of the subproblems created in

the partition, and each of these subproblems is solved by the exact algorithm of

Smith (1992). Smith et al. (1995) utilize the Delaunay triangulation and MST to

decompose specially-structured sausage-shaped instances into smaller subproblems

that are solved with an exact algorithm. Smith et al. (1995) then link these partial

solutions to form a sub-optimal SMT. Toppur and Smith (2005) extend the heuristic

to random instances in <3 using decomposition by Delaunay tetrahedrons.

3.3 Exact algorithms

We review background information for exact ESTP algorithms and contrast

the planar algorithm and the algorithm for higher dimensions.

3.3.1 Planar algorithms

Exact algorithms for the planar ESTP use “equilateral points” to accelerate

the search for the SMT, but this mechanism also prevents these algorithms from

generalizing to higher dimensions. Given two points xi and xj, there are two equi-

lateral points a and b: the vertices of equilateral triangles 4axixj and 4bxixj.

Utilizing equilateral points, Melzak (1961) proposed the first finite-time algorithm

for the ESTP in the plane. The proposed algorithm i) enumerates all FSTs on the

n terminals and ii) optimizes the locations of Steiner points for each FST using

equilateral points. Optimizing the location Steiner points via equilateral points is

done with a reduction operation, where two terminals are replaced by an equilateral

point (which is then treated as a terminal, and the reduction is repeated). When

the reduction is completely, the equilateral points are iterative replaced by the ter-

minals they encode. For each pair of terminals, there are two choices for equilateral

point so the algorithm for optimizing the location of Steiner points runs in O(2k)

time. Hwang (1986) improves the algorithm by eliminating one of the equilateral

points, resulting in an O(k) time algorithm.
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Winter (1985) develops an exact approach for the planar ESTP by enumerat-

ing equilateral points rather than FSTs. The GeoSteiner algorithm (Warme et al.,

2001) i) generates all FSTs on subsets of terminals which may appear in the SMT

and ii) exhaustively concatenates the list of partial FSTs to create the SMT. Enu-

meration via equilateral points has the attractive feature that many partial FSTs

do not survive the generation process, and further geometric conditions are checked

for those partial FSTs which do survive. Advances in the fathoming criteria have

lead to increases in the size of ESTP instances which can be solved to optimality by

the GeoSteiner algorithm (Warme et al., 2001), which can optimally solve planar

ESTP instances with up to 1000 terminal points.

The finite cardinality of the set of equilateral points is a critical feature used

by the algorithms of Melzak (1961), Winter (1985), and Winter and Zachariasen

(1997). In higher dimensions, equilateral points become equilateral-arcs. Rather

than checking one or two equilateral points for each pair of terminals, an entire arc

of equilateral points would need to be checked. It is then impossible to enumerate

FSTs via the now uncountable set of equilateral points.

3.3.2 Smith’s algorithm in Rd

The algorithm of Smith (1992) enumerates only full topologies on all n termi-

nal points, and it does so by “growing” a partial FST. Let a set of n terminal points

in Rd be given. Smith’s enumeration begins with a full Steiner topology on three

of the terminal points (recall there is only one such FST). At each subsequent level

of the branch-and-bound tree, a terminal point is “sprouted” or “merged” from the

existing tree by connecting it via a Steiner point to an existing edge (see Figure 3.5).

In the first level (k = 1), there will be 2k+1 = 3 children of this parent node. Smith

demonstrates that performing this merge operation n − 2 times generates all full

Steiner topologies (FST) on the n terminal points. He also shows that the merge

operation can not decrease the length of the tree. Thus, if an existing full Steiner
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tree on a subset of terminal points is longer than a known Steiner tree on the set of n

terminals, this partial FST and its descendants may be removed from consideration

(fathomed).

Figure 3.5: The “merge” operation used in Smith’s enumeration scheme.

The state-of-the-art exact algorithm for the ESTP in <d for d > 2 is the

Smith+ algorithm (Fampa and Anstreicher, 2008) which enhances the algorithm

of Smith (1992) by implementing second-order cone programming (see Section 2.3)

to locate the Steiner points and “strong branching” to accelerate the fathoming

process in the branch-and-bound enumeration scheme. Strong branching merges

terminal points so that that the FST grows in length as quickly as possibly, allowing

fathoming higher in the branch-and-bound tree. At each level of the branch-and-

bound tree, the Smith+ algorithm solves a sub-problem to choose which terminal

to merge next. It chooses the terminal so that the most children possible will be

fathomed at the next level. The Smith+ algorithm is capable of optimally solving

instances with up to 16 terminal points in <d for 2 ≤ d ≤ 5.

The algorithms in <d, d > 2 have several drawbacks. A major deficiency of

Smith’s enumeration scheme is that the length-based fathoming criteria is quite

weak and can not be expected to remove nodes from consideration until deep in

the branch-and-bound tree. Neither Smith’s original algorithm nor the Smith+



33

algorithm use initial upper bounds to fathom nodes; the only bounds used are those

achieved by the algorithm itself. Another interesting feature is that the algorithms

make no use of geometry whatsoever, a feature we incorporate in Chapter 5.
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CHAPTER 4

DELAUNAY TRIANGULATION HEURISTIC

This section describes the heuristic algorithm for the ESTP in <d, 2 ≤ d ≤ 5. We

utilize the Delaunay triangulation to generate candidate Steiner points for insertion,

the MST to identify Steiner points to be removed, second-order cone programming

to optimize the location of the remaining Steiner points, and an edge insertion

similar to Dreyer and Overton (1998) as an attempt to correct any violations of

the angle condition. We govern the neighbor generation procedure with a first-

improvement local search framework, as outlined in Algorithm 4.1.

4.1 Description of the heuristic

Recall that X denotes the set of terminal points in Euclidean space, and S

is a set of Steiner points. We initialize S = ∅, and then construct the Delaunay

triangulation of X ∪ S. In each Delaunay simplex, we insert a Steiner point at the

simplex centroid with probability p; where we randomly select the value of p from

the range [l, u] for 0 ≤ l ≤ u ≤ 1. We generate a candidate tree, T ′, by forming the

MST on X and the newly augmented set of Steiner points.

After forming the MST on X ∪ S ′, T ′ may have a non-Steiner topology and

warrant cleanup operations. Therefore, via Algorithm 4.2, we iteratively remove all

Steiner points of degree one or two (and appropriately repair the tree) until there

are no Steiner points of degree less than three. Then we (locally) optimize the

location of each Steiner point of degree three; we determine these optimal locations

analytically in the plane and computationally via SeDuMi’s second-order cone solver

(Sturm and Polik, 2006) for d > 2. After the removal of the low-degree Steiner

points and the subsequent repair, the tree may contain ill-suited Steiner connections

between distant terminal points. We form the MST on the terminal points and the

current set of Steiner points which serves an intermediate check on the validity of the
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topology. This reformation of the MST will eliminate unnecessarily long edges, but

may re-introduce Steiner points of degree one or two, requiring removal operations

to be repeated.

Before exiting the cleanup subroutine, we check the tree for the existence of

Steiner point to Steiner point edges. If such edges exist, then the local optimization

of degree three Steiner points in the previous steps may not be the globally optimally

configuration for the tree. In such a case, we invoke the second-order cone solver

of SeDuMi (Sturm and Polik, 2006) to optimize the locations of all Steiner points

(global optimization). For details regarding formulating the problem of locating the

Steiner points for a given full Steiner topology as a conic optimization problem, see

Section 2.3. The optimization of the Steiner point locations can result in Steiner

points coalescing with neighboring Steiner or terminal points, and in such a case we

remove degenerate Steiner points and appropriately reattach the tree.

After completing the cleanup operations of Algorithm 4.2, we perform an edge

insertion as outlined in Algorithm 4.3 as a final adjustment to the candidate tree.

The steps of this edge insertion procedure are the same as in Dreyer and Overton

(1998), but differ in the edge selection criteria. We select violating edges based on

largest dot product, while Dreyer and Overton (1998) prioritize via smallest vio-

lating angle. See Section 3.2.2.1 for a detailed description of Dreyer and Overton

(1998). Following the edge insertion, we compute the length of the candidate tree,

`(T ′), and if it is within χ percent of the current tree’s length, we execute Algo-

rithm 4.4 to ensure the candidate tree possesses a Steiner topology. An iteration

concludes with comparing the lengths of the candidate tree and current tree to ex-

ecute the first-improvement local search. If the current solution is not improved in

trial limit iterations, the algorithm terminates.



36

Algorithm 4.1 Local Search

Input: Set of terminal points, X, in <d
Output: A tree, T , with Steiner topology on X ∪S, where S is a set of Steiner
points.
Initialization:

Set counter = 1 and S = ∅.
Set T = MST (X).

while counter ≤ trial limit do
Construct DT (X ∪ S).
Randomly generate the insertion probability, p, from the range [l, u].
for each Delaunay simplex do

With probability p, insert a Steiner point s and let S ′ = S ∪ s.
end for
Set T ′ = MST (X ∪ S ′).
T ′ ← Clean(T ′) via Algorithm 4.2.
T ′ ← EdgeInsertion(T ′) via Algorithm 4.3.
if `(T ′)− `(T ) < χ`(T ) then

T ′ ← Recover(T ′) via Algorithm 4.4.
end if
if `(T ′)− `(T ) < 0 then

Set S = S ′, T = T ′, and counter = 1.
else

counter ← counter + 1.
end if

end while
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Algorithm 4.2 Cleanup Procedure

Input: A tree, T ′, on a union of terminal points and Steiner points, X ∪ S ′.
Output: A tree, T ′′, on a union of terminal points and Steiner points, X ∪ S ′′.
Initialization:

Set S ′′ = S ′ and T ′′ = T ′.
repeat

for each Steiner point s ∈ S ′′ do
if degree(s) = 1 then

Delete the edge adjacent to s from T ′′.
S ′′ ← S ′′ − s.

else
if degree(s) = 2 then

Delete the two edges, (s, x) and (s, y), adjacent to s from T ′′.
Insert a new edge, (x, y), into T ′′.
S ′′ ← S ′′ − s.

end if
end if

end for
for each Steiner point s ∈ S ′′ do

if degree(s) = 3 then
Optimize the location of s.

end if
end for
Set T ′′ = MST(X ∪ S ′′)

until each Steiner point s ∈ S ′′ has degree ≥ 3
if there exists at least one edge between Steiner points in T ′′ then

Optimize location of the Steiner points in S ′′ via SeDuMi (Sturm and Polik,
2006).

end if
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Algorithm 4.3 Edge Insertion (Dreyer and Overton, 1998)

Input: A tree, T , on a union of terminal points and Steiner points, X ∪ S.
Output: A tree, T ′, on a union of terminal points and Steiner points, X ∪ S ′.
Initialization:

Let E be the set of edges in T .
Set T ′ = T , S ′ = S, and edge list = ∅.

for i = 1, . . . , |X ∪ S| do
for j such that (xi, xj) ∈ E do

for l such that (xj, xl) ∈ E do
if (xj, xl) meets (xi, xj) at angle less than 120◦ then

edge list ← edge list ∪ (xj, xl).
end if

end for
if edge list 6= ∅ then

From edge list, select (xj, xk) which maximizes dot product with
(xi, xj).
Let s = xj, let S ′ = S ∪ s.
Remove edges (xi, xj) and (xj, xk) from T ′.
Add edges (xi, s), (xj, s), and (xk, s) to T ′.
Set edge list= ∅.

end if
end for

end for
Optimize location of the Steiner points in S ′ via SeDuMi (Sturm and Polik,
2006).
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Algorithm 4.4 Steiner Topology Recovery

Input: A tree, T , on a union of terminal points and Steiner points, X ∪ S.
Output: A tree, T ′, with a Steiner topology on X ∪ S ′.
Initialization:

Let E be the set of edges in T .
Set T ′ = T , S ′ = S, and edge list = ∅.

for i = 1, . . . , |X ∪ S| do
if degree(xi) > 3 then

Set edge list = ∅
for j such that (xi, xj) ∈ E do

edge list ← edge list ∪ (xi, xj).
end for
for j = 1, . . . , degree(xi)− 3 do

Select edges, (xi, xk) and (xi, xl), from edge list with largest dot
product.
Let s = xi, let S ′ = S ∪ s.
Remove edges (xi, xk) and (xi, xl) from T ′ and from edge list.
Add edges (xi, s), (xk, s), and (xl, s) to T ′.

end for
end if

end for
Optimize location of the Steiner points in S ′ via SeDuMi (Sturm and Polik,
2006).



40

4.2 Algorithm features

The algorithm maintains many features of other ESTP heuristics relying upon

the Delaunay triangulation but with several important differences. One key differ-

ence is that we probabilistically insert Steiner points into each Delaunay triangle

(including the degenerate Delaunay triangles) rather than deterministically insert-

ing Steiner points into all non-degenerate Delaunay triangles (Beasley and Goffinet,

1994) or only inserting Steiner points into Delaunay triangles with two edges in the

MST (Smith et al., 1981). The difference in insertion strategy allows our algorithm

to achieve different FSTs on subsets of terminal points.

Figures 4.1, 4.2, 4.3, and 4.4 demonstrate how a probabilistic Steiner inser-

tion can quickly achieve FSTs that a deterministic procedure may not. Figure 4.1

illustrates the minimal spanning tree and corresponding Delaunay triangulation for

the sixth of the size-10 ESTP instances from the OR-Library (Beasley, 1990). This

is an instance for which the approaches of Smith et al. (1981) and Beasley and

Goffinet (1994) struggle to achieve a SMT. Our local search heuristic finds the op-

timal solution in Figure 4.2. The key region is the two lower left-hand Delaunay

triangles. Figure 4.3 shows that deterministic insertion in all non-degenerate De-

launay triangles results in a pair of degree-two Steiner points in this lower left-hand

region that will be removed after cleanup. Performing six iterations of expansion /

reduction phase as prescribed by Beasley and Goffinet (1994) fails to uncover the

lower FST existing in the SMT of Figure 4.2. While this empirical observation

does not unequivocally guarantee that Beasley and Goffinet (1994) cannot achieve

a SMT for this instance (a SMT may be reachable from another solution visited in

the simulated annealing run), it reveals insight on the effectiveness of probabilistic

Steiner point insertion. In this example, Figure 4.4 shows how probabilistically in-

serting in the left Delaunay triangle in the lower left-hand region, but not the right

Delaunay triangle, quickly results in the key FST being formed in the lower left
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corner, eventually leading to the SMT of Figure 4.2.

While Beasley and Goffinet (1994) do not consider randomization in the gen-

eration of their candidate solutions, they accept non-improving solutions probabilis-

tically depending on the current temperature of the simulated annealing scheme.

That is, Beasley and Goffinet (1994) generate neighbor solutions deterministically

and accept them probabilistically, while we generate neighbor solutions probabilis-

tically and accept them deterministically. That is, the probabilistic mechanism

in the acceptance function of simulated annealing has been removed in lieu of a

probabilistic neighbor generation procedure. As computational results in §4.3 at-

test, the probabilistic neighbor generation scheme quickly generates a diverse set of

topologies to allow an effective sampling of the search space.

In addition to a difference in insertion criteria, we simplify the method for

initially locating the inserted Steiner points. We insert Steiner points via centroid

rather than optimally locating the Steiner point relative to its neighbors. This

location is more efficient to calculate than the floating point arithmetic operations

to analytically locate a Steiner point or to solve a second-order cone program via

SeDuMi (Sturm and Polik, 2006). Furthermore, it is unclear how to optimally place

a single Steiner point in Delaunay simplices for d > 2 as a Delaunay simplex in

dimension d is defined by d + 1 points which requires d − 1 Steiner points to form

a FST. The issue is addressed by simply inserting a single point at the simplex

centroid and allowing later iterations of the algorithm to insert additional Steiner

points in this simplex.

We simplify the post-processing procedures applied to the candidate tree af-

ter the trial insertion of Steiner points relative to those of Beasley and Goffinet

(1994). Beasley and Goffinet (1994) run an optimization subroutine on Steiner

points of degree four in order to determine the best FST on those four points, and

delete all Steiner points of degree greater than or equal to five. In contrast, the



42

Figure 4.1: As demonstrated by the sixth instance of the size-10 ESTP instances
from the OR-Library, the Delaunay triangulation contains the edges of the MST
(highlighted in bold).

Figure 4.2: A SMT for the sixth instance of the size-10 ESTP instances from the
OR-Library contains a FST on three terminal points in the lower left-hand region
of the network.
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Figure 4.3: Deterministic Steiner point insertion in all nine non-degenerate Delau-
nay triangles results in a pair of degree-two Steiner points in the lower left-hand
region which will be removed by a cleanup operation.

Figure 4.4: Probabilistic Steiner point insertion identifies the lower left FST in the
SMT.
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cleanup procedure (Algorithm 4.2) addresses only Steiner points of degree less than

three and attempts to address the remaining untenable Steiner points by inserting

edges via Algorithm 4.3. The applications of Algorithms 4.2 and 4.3 may result

in a candidate tree that still lacks a Steiner topology (and thus could possibly be

shortened). Rather than attain a Steiner topology for all candidate solutions, we

utilize Algorithm 4.4 to directly address points with degree larger than three only in

candidate trees within χ percent of the current solution. The computational work,

e.g., Table 4.6 in §4.3, suggests that addressing high-degree points via Algorithm 4.4

typically does not result in a large improvement. Thus, setting χ to be a small value

will reduce computational effort by only confirming a Steiner topology for candidate

trees with a strong potential to improve the current solution.

4.3 Computational results

We implement the algorithm in Matlab and run computational experiments on

a dual core 2.4 GHz Pentium processor with 2 GB of RAM and a Windows operating

system. We compare the algorithm to Beasley and Goffinet (1994) and Zachariasen

(1999) on 195 planar ESTP instances from the OR-Library (Beasley, 1990). We

also test the algorithm on 20 random instances in <d, 3 ≤ d ≤ 5 from Fampa and

Anstreicher (2008) for which the exact solution is known. To determine the quality

of solutions computed over highly structured sets in <3, we test the algorithm on 10

R-sausage instances of varying size as well as 16 sausage-type instances appearing

in Smith et al. (1995) and Toppur and Smith (2005). We compute solution quality

using percent reduction over the MST. That is, if T is a candidate Steiner tree for a

set of points X, define σ = 100∗(`(MST )−`(T ))/`(MST ) as the percent reduction

over the MST. The ratio ρ = `(T )/`(MST ) is also commonly used as a measure

of quality, and this is adopted for comparison to Smith et al. (1995) and Toppur

and Smith (2005). One converts easily between these two measures of quality as

σ = 100 ∗ (1− ρ).
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Due to its stochastic nature, we run the algorithm twenty times on each in-

stance and report statistics regarding the best solution, average solution, and per-

formance variability. Tables 4.2 and 4.3 present results by aggregating individual

instances by problem size. Each entry in Table 4.2 is computed over 15 instances.

Each entry of Table 4.3 is calculated over ten instances for d = 3 and over five

instances for d = 4 and 5. Specifically, let σnij denote the percent reduction obtained

on run j of instance i of problem size n. For an individual instance i of size n, let

the best percent reduction be σni,best = max{σni1, ..., σni,20} and let the average percent

reduction be σ̄ni· = (σni1+ . . .+σni,20)/20. For a problem class of m instances of size n,

we report the overall best percent reduction as σnbest = (σn1,best + . . .+σnm,best)/m and

the overall average percent reduction as σ̄n = (σ̄n1· + . . . + σ̄nm·)/m. The variability

of solution quality for the aggregated results is measured by calculating a pooled

estimate of the common variance for each of the instances in the problem class.

The pooled estimate is given by
√
SSE/(19m), where m is the number of differ-

ent instances within the problem class, and SSE =
∑m

i=1

∑20
j=1 (σij − σ̄i·)2 is the

sum of the squares due to error within instances (Montgomery, 2001). We report

computation time (in CPU seconds) as the average time per run.

We report the performance for individual instances from Smith et al. (1995)

and Toppur and Smith (2005) for the benchmarks in Tables 4.4 and 4.5 in terms

of ρ. Specifically, ρbest = min{ρ1, ..., ρ20} represents the best solution obtained out

of twenty runs on a specified instance. Similarly, average solution quality is given

by ρ̄ = (ρ1 + . . . + ρ20)/20 and performance variability is given by the standard

deviation of ρ1, . . . , ρ20.

To demonstrate the role of the insertion probability, p, we first perform com-

putational experiments in which p is fixed at various values ranging from 0 to 1 and

execute Algorithm 4.1 on the planar ESTP instances from the OR-Library (Beasley,
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1990). Each entry of Table 4.1 represents σ̄n corresponding to a value of p on in-

stances of size n. As values of p between 0.3 and 0.6 consistently achieve the best

average percent reductions, we set l = 0.3 and u = 0.6 in the remainder of our

computational testing.

We perform computational tests to establish a value for trial limit to control

the loop iterations for the local search. Figure 4.5 illustrates the effectiveness of our

algorithm, in terms of average percent reduction, when trial limit = k
√
n for various

values of k. In the remainder of the computational experiments, we set k = 3, i.e.,

trial limit = 3
√
n. In addition, we set χ = 0 so that we only confirm the Steiner

topology of candidate trees that are shorter than the current solution.
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Figure 4.5: For instances of size 10, 40, and 80 from the OR-Library, this graph
of average percent reduction versus k, where trial limit = k

√
n, demonstrates that

a value of k = 3 results in an iteration count that provides an acceptable tradeoff
between solution quality and solution time.
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Table 4.2 compares the performance of our randomized Delaunay triangula-

tion heuristic to two leading heuristics for the planar ESTP instances from the

OR-Library (Beasley, 1990). The problem size ranges from 10 terminal points to

100 terminal points, with 15 instances at each problem size. As Table 4.2 shows,

the heuristic typically dominates the simulated annealing approach of Beasley and

Goffinet (1994). Based on average performance, our approach does not achieve as

large of percent reduction as the FST-local search approach of Zachariasen (1999),

which utilizes planar-specific rules to generate a good, short list of FST candidates

for concatenation. Our general approach does not take advantage of problem di-

mension, but we note that the best percent reductions are competitive with the

average results of Zachariasen (1999) and that our performance variability is small,

suggesting that these best percent reductions are not sampling anomalies (Zachari-

asen (1999) does not report results analogous to our σnbest calculations). Comparing

computation time across platforms is precarious, but taking into account machine

speeds, the running time of our approach is longer than either Beasley and Goffinet

(1994) or Zachariasen (1999). We attribute much of this discrepancy to the ineffi-

ciency of our Matlab implementation relative to the FORTRAN and C++ imple-

mentations of Beasley and Goffinet (1994) and Zachariasen (1999), respectively. We

note that a comparison of our termination criteria and the termination criteria of

the FST-local search in Zachariasen (1999), which limits the number of descents to

10
√
n and the maximum total iterations to 50

√
n, suggests that our termination

criteria results in significantly fewer iterations.

We demonstrate our heuristic’s robustness by considering the randomized in-

stances from Fampa and Anstreicher (2008) in <d for 3 ≤ d ≤ 5. Fampa and

Anstreicher (2008) use the Smith+ algorithm to determine optimal solutions for

ten instances in <3 and five instances each in <4 and <5. Fampa and Anstreicher

(2008) create these instances by randomly generating ten points in the [0, 10]d cube.
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As Table 4.3 illustrates, our approach produces optimal or near-optimal solutions.

For <d for 3 ≤ d ≤ 5, our average solutions are within 1.4 percent, 3.4 percent,

and 3.3 percent of optimality, respectively. Our best solutions are optimal for all

instances. In addition to the best and average percent reduction calculations, we

also provide the number of times our algorithm finds the optimal solution in Ta-

ble 4.3 to demonstrate that our approach consistently achieves the optimal solution.

While exact comparisons of computation time are difficult due to varying machine

speeds and software implementations (Fampa and Anstreicher (2008) implement

the Smith+ algorithm in C, while we implement our approach in MATLAB), we

can safely claim that our approach achieves comparable results in the fraction of

the time.

We also test the heuristic on 10 <-sausage and 16 sausage-type networks in

<3 appearing in Smith et al. (1995) and Toppur and Smith (2005). The <-sausage

is a chain of regular tetrahedra joined together face-to-face, and the sausage-type

network instances are concatenations of small sausages meeting at a common face.

Toppur and Smith (2005) establish the optimal Steiner topology for the specially-

structured <-sausage instances in Table 4.4, and provide the optimal solutions.

As Table 4.4 shows, our heuristic consistently achieves optimal solutions on the

<-sausage instances. Although these instances are specially structured to accom-

modate the sausage heuristic of Toppur and Smith (2005), our heuristic approach

is very competitive.

Table 4.5 contains multiple types of the sausage-type network instances in

<3. The naming convention for these instances is listed as an acronym. The first

letter is either “S” or “L” referring to short or long chains. The second letter is

either “S” or “A” referring to symmetric or asymmetric configurations. The final

character in the instance name refers to the cardinality of the junctions at which

sausage chains intersect (“M” stands for “multiway” junction in which more than
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four chains intersect). We refer to Smith et al. (1995) for more details on these

constructions.

Table 4.3: Our heuristic achieves results comparable with the exact approach of
Fampa and Anstreicher with a fraction of the computational effort.

Smith+ Algorithm Randomized Delaunay Triangulation

Opt. % CPU Optimal CPU

d n Reduction (sec) σnbest σ̄n ±
√
SSE Runs (sec)

3 10 5.584 754 5.584 5.506± 0.178 171/200 3.9

4 10 8.301 5736 8.301 8.019± 0.366 57/100 5.4

5 10 8.229 4681 8.229 7.957± 0.371 47/100 6.8

Table 4.4: Our heuristic consistently obtains optimal or near-optimal solutions on
the <-sausage instances in <3.

Toppur and Smith (2005) Randomized Delaunay Triangulation

n ρ? ρbest ρ̄ ± st. dev. CPU (min)

6 0.80807 0.80807 0.80807± 0 0.03

7 0.80286 0.80286 0.80286± 0 0.04

8 0.80090 0.80090 0.80090± 0 0.05

9 0.79870 0.79870 0.79888± 0.0008 0.07

10 0.79701 0.79701 0.79759± 0.0014 0.07

11 0.79579 0.79579 0.79603± 0.0011 0.09

12 0.79472 0.79472 0.79495± 0.0010 0.10

31 0.78805 0.78805 0.78841± 0.0009 0.71

66 0.78597 0.78597 0.78639± 0.0005 3.95

96 0.78541 0.78541 0.78596± 0.0005 10.74
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On the 16 sausage-type networks, Smith et al. (1995) and Toppur and Smith

(2005) decompose the instance into subproblems and then compute a suboptimal

tree on each of these sets. They report a value of ρ (which we call “composite

ρ”) that is actually the average of the ρ values over all the subproblems. Their

reporting is not directly commensurable with ours as we report ρ for the entire tree

which our heuristic obtains. Therefore, we present the results here not to make

direct comparisons, but to demonstrate our approach’s ability to handle highly

structured instances. While the optimal solution for the sausage-network instances

is not known, relative to the conjectured optimal Steiner ratio is 0.78149 (achieved

by the infinite-length <-sausage), Table 4.5 attests that our approach performs well

as the average solution obtained is never more than seven percent above this lower

bound.

As a final remark, we note that our algorithm typically generates improving

candidate trees which have a Steiner topology (and therefore do not require recovery

via Algorithm 4.4). For the implemented value of χ = 0, we report in Table 4.6

the percentage of improving candidate trees that require Algorithm 4.4 to recover

a Steiner topology (over twenty runs per instance). In addition, we also compute

the average percent improvement resulting from recoveries by Algorithm 4.4, where

percent improvement for a modification of tree T to tree T ′ is defined by (`(T ) −

`(T ′))/`(T ).

Table 4.6 shows that for the OR-Library instances (Beasley, 1990), fewer than

one percent of improving candidate trees do not possess a Steiner topology and Al-

gorithm 4.4 improves these trees by less than 0.5 percent. For the higher-dimension

instances of Fampa and Anstreicher (2008), Algorithm 4.4 is required for 4.77, 8.48,

and 3.07 percent of the improving candidate trees in <3,<4, and <5, respectively,

with corresponding average percent improvements of 1.28, 1.13, and 1.04 percent.

For the two sets of <3 instances of Smith et al. (1995) and Toppur and Smith (2005),
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Table 4.6: We report the percentage of improving candidate trees which require a
Steiner topology recovery and the resulting percent improvement in the tree length.

Problem Class % Recoveries % Improvement

Beasley (1990) n

10 0.00 0

20 0.00 0

30 0.00 0

40 0.00 0

50 0.31 0.48

60 0.74 0.36

70 0.35 0.31

80 0.30 0.25

90 0.16 0.21

100 0.20 0.26

Fampa and Anstreicher (2008) d

<3 4.77 1.28

<4 8.48 1.13

<5 3.07 1.04

Toppur and Smith (2005) 26.23 0.29

Smith et al. (1995) 21.03 0.54

Algorithm 4.4 is required more often (over 20 percent of the improving candidate

trees), but the average percent improvement is only 0.54 percent on the sausage

instances and 0.29 percent on the network instances. These results indicate our

approach is more likely to need Algorithm 4.4 to attain a Steiner topology for a

candidate tree in a non-planar instance, but there does not appear to be much

improvement to candidate trees with non-Steiner topologies in any dimension.
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4.4 Conclusion

We present a heuristic algorithm for the ESTP in <d which utilizes proba-

bilistic insertion of Steiner points in Delaunay simplices. Using a small example, we

provide insight on how probabilistic insertion can obtain FSTs on subsets of termi-

nal points that deterministic Steiner insertion schemes may be unable to find. Due

to its generality and lack of reliance on dimension-dependent criteria, our approach

is agnostic with respect to problem dimension and effectively extends into higher di-

mensions. Relying on simple mechanisms and second-order cone programming, our

algorithm produces competitive solutions within reasonable computational times on

both randomized and highly structured instances.
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CHAPTER 5

GEOMETRIC CONDITIONS AND SMITH’S ALGORITHM

In this final section, we develop geometric conditions for Steiner minimal trees and

describe their implementation into the exact algorithm of Smith (1992). We develop

conditions for trees with a Steiner topology, and then more restrictive conditions for

trees with a FST. We present computational results on benchmark test problems in

<d for 2 ≤ d ≤ 5 in Section 5.4.

5.1 Geometric conditions for
Steiner minimal trees

Let X be a set of terminal points {x0, ..., xn−1}, and assume without loss of

generality that x0 is the origin in <d. Denote a set S of Steiner points by {s1, ..., sk}.

The Voronoi diagram of X is obtained by partitioning Euclidean space into polyhe-

dra with one node xi in each polyhedra. For every point x ∈ X the Voronoi region

about x, denoted vor(x) consists of all points closer to x than any other point in

X; that is vor(x) = {u ∈ <d : ||u − x|| ≤ ||u − y|| ∀ y ∈ X}. Since the Voronoi

regions are polyhedra they have extreme points, which are called Voronoi points .

Let V = {v1, .., vm} be the set of Voronoi points. The Voronoi diagram is a natural

candidate for developing geometric criteria for SMTs since it exists for X ⊂ <d for

any d, and is itself defined by a condition involving minimal Euclidean norms. The

straight line dual of the Voronoi diagram is called the Delaunay triangulation. See

Section 2.2 for more information on Voronoi diagrams and Delaunay triangulations,

which are also shown in Figure 2.1.

Let Bδ(x) denote the closed ball of radius δ centered at x. The lune between

two points u and v, denoted l(u, v) is defined as B‖u−v‖(u)∩B‖u−v‖(v). Lunes are the

basis for the following well-known geometric criterion for SMTs, the lune condition.
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Figure 5.1: A typical lune

Proposition 5.1. [The Lune Condition] Gilbert and Pollak (1968) If points u and

v are connected in the SMT then the interior of l(u, v) contains no other points.

Proof. If l(u, v) contained another point w we could break the connection between

u and v and instead form the connection between w and either u or v, whichever

one of these does not disconnect the tree. Either connection will shorten the SMT

if w is in the interior of l(u, v).

The lune condition is an example of a geometric condition that can be used

to exclude connections between points in the SMT. The condition is also related to

the Delaunay triangulation, as shown in the next lemma.

Lemma 5.2. If two terminals xi and xj are not adjacent in the Delaunay triangu-

lation, then the lune between them contains another terminal point.

Proof. Let p denote the midpoint of the line segment between xi and xj. First note

that p is neither in the interior of vor(xi) or vor(xj). To see this, assume that p
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was in the interior of vor(xi). Then there would be some q also in the interior of

vor(xi) such that q was on the line segment between q and xj. But recall that p

was the midpoint of the segment between xi and xj, so this means q is closer to xj

than it is to xi and so could not be in vor(xi), a contradiction. Similarly p is not

in the interior of vor(xj). Therefore there is another terminal z so that p ∈ vor(z),

z 6= xi, z 6= xj. (If there were no such z then p would be on a boundary face of both

vor(xi) and vor(xj), which is impossible since xi and xj are nonadjacent.) We can

now show z ∈ l(xi, xj). For example,

‖xi − z‖ ≤ ‖xi − p‖+ ‖z − p‖ ≤ 2‖xi − p‖ = ‖xi − xj‖,

where the first inequality follows from the triangle inequality and the second follows

from p ∈ vor(z). Likewise, we can show ‖xj − z‖ ≤ ‖xi − xj‖, and these two

inequalities combined give z ∈ l(xi, xj).

Note: If points X are in general position then midpoint p cannot be on bound-

ary of either vor(xi) or vor(xj), which makes the second inequality strict, and there-

fore z is in the interior of the lune.

Lemma 5.2 immediately implies the following well-known property of SMTs.

Corollary 5.3. If an optimal Steiner tree contains an edge between terminal points

xi and xj, then xi and xj are adjacent in the Delaunay triangulation.

5.1.1 Clover regions

Corollary 5.3, which concerns connections between terminal points in an SMT,

can also be used to prove a property regarding connections between terminal points

and Steiner points.

Lemma 5.4. Assume that a Steiner point s is connected to a terminal point x in

a SMT. Let vor(x) denote the Voronoi region of x in the Voronoi diagram of X.

Form the Voronoi diagram of s ∪X treating s as an additional terminal point, and

denote the resulting Voronoi region of s by v̂or(s). Then v̂or(s) ∩ vor(x) 6= ∅.
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Proof. The proof follows from Corollary 5.3 and the fact that a SMT is a minimal

spanning tree of S ∪X where the locations of the Steiner points are fixed.

Note that the condition v̂or(s) ∩ vor(x) 6= ∅ in Lemma 5.4 is equivalent to

the hyperplane {u : ||u − s|| = ||u − x||} cutting into vor(x), and since vor(x) is

a polyhedra this hyperplane intersects vor(x) if and only if ||v − s|| ≤ ||v − x|| for

one of the Voronoi points v of vor(x). This leads us to the concept of a clover

region associated with x, denoted clover(x). For convenience take x = x0 = 0,

and let the Voronoi points in vor(0) be {v1, . . . , vk}. We consider connecting x0

to a Steiner point s and ask where s may lie so that Lemma 5.4 is satisfied. The

perpendicular bisector between 0 and s can be written {u | sTu = sT
(
s
2

)
= ||s||2

2
}.

This perpendicular bisector will “cut off” a particular vi if sTvi >
||s||2
2

. Then define

Ci = {s | ||s||2 ≤ 2sTvi}

= {s | (sT s− 2sTvi + vTi vi)− vTi vi ≤ 0}

= {s | ||s− vi||2 ≤ ||vi||2}

= B‖vi‖(vi).

Thus for each Voronoi point vi of vor(x0), there is an associated ball that describes

where a Steiner point can lie to cut off that Voronoi point. We define clover(x0)

to be the union of these balls over the Voronoi points {v1, . . . , vk}. We similarly

construct clover(xj) for each terminal point xj, j = 1, . . . , n − 1. Note that by

construction each sphere Ci has the property that it intersects the terminal points

xj such that vi ∈ vor(xj); in other words, each Ci is the circumsphere of a Delaunay

simplex. Thus for each xj, clover(xj) is the union of the circumspheres of the

Delaunay simplices that have xj as a vertex.

The clover region represents a first attempt at using geometry to eliminate

topologies that involve Steiner points. In particular, note that if xi and xj are

connected to the same Steiner point, then their clover regions must intersect. See
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Figure 5.2: A clover region

Figure 5.2 for a picture of a clover region.

5.1.2 Lunar regions

Lemma 5.4, which leads to the definition of a clover region, itself can be

viewed as a consequence of the lune condition. A natural question is then if the lune

condition can be directly used to give a more restrictive condition for connections

between a terminal point and a Steiner point in a SMT. To answer this question, we

consider a terminal x0 = 0 connected to a Steiner point s, and determine where the

lune property allows s to be. The Steiner point s is allowed to be anywhere such

that l(0, s) does not contain any other terminal point x. Considering a particular

terminal point x, in order for x /∈ l(0, s) we need

• ||x− s|| > ‖s‖ ⇔ sT s < xTx− 2sTx+ sT s⇔ sTx ≤ ||x||2
2

, or

• ‖x‖ > ‖s‖.
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Figure 5.3: A lunar region

The feasible set corresponding to these two regions is the union of a halfspace and a

halfsphere, where the hyperplane bounding the halfspace bisects the sphere. There

is such a region for each terminal point xi ∈ X/{0}, and taking the intersection of all

such regions we arrive at the lunar region–a sharper estimate of possible locations

for a Steiner point to be connected to a given terminal. Denote the lunar region

about a terminal point x as lunar(x). See Figure 5.3 for a an example of a lunar

region.

The lunar region–though significantly sharper than the clover region– could be

made sharper by considering extended Delaunay neighbors as well. Figure 5.4 shows

lunar(p) is made sharper by intersecting with the half plane constraint imposed by

q, even though p and q are distance two apart in the Delaunay triangulation.

As with clover regions, lunar regions can be used to exclude possible Steiner

topologies; if lunar(xi) does not overlap lunar(xj), then one need not consider any

topology in which xi and xj connect to the same Steiner point. Because lunar regions
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Figure 5.4: Extended Delaunay neighbor q can sharpen lunar(p).

Figure 5.5: Delaunay distances–no matter how large–do not imply disjoint lunar
regions.
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Figure 5.6: A doubled Voronoi cell

are nonconvex, determining whether or not two such regions overlap requires case

checking. We next show that there is an easily-computed convex relaxation of the

lunar regions.

5.1.3 Doubled Voronoi cells

The doubled Voronoi cell about x, denoted dvor(x), is simply vor(x) dilated

by a factor of two (see Figure 5.6). Note that each semi-spherical portion of the

lunar region is tangent to the corresponding bounding hyperplane of the doubled

Voronoi cell, as shown in Figure 5.7. As an immediate consequence of this fact we

have the following relationship between lunar regions and doubled Voronoi cells.

Lemma 5.5. For any terminal point x, vor(x) ⊂ lunar(x) ⊂ dvor(x).

Proof. Assume without loss of generality that x = x0 = 0. Let xi, i = 1, . . . , k be

the neighboring terminal points in the Delaunay triangulation. Then

dvor(x0) = {x |xTi x ≤ ‖xi‖
2, i = 1, . . . , k}.

The lunar region, lunar(x0), is the set of x such that for i = 1, . . . , k either xTi x ≤

‖xi‖2/2 or ‖x‖ ≤ ‖xi‖. Note that for each i, the first constraint defines the face
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Figure 5.7: The lunar region is contained in the doubled Voronoi cell.

of vor(0) corresponding to xi, and therefore vor(x0) ⊂ lunar(x0). Moreover if x

satisfies the second condition for a given i, then

xTi x ≤ ‖xi‖‖x‖ ≤ ‖x‖
2.

It follows immediately that x ∈ dvor(x0) for any x ∈ lunar(x0).

See Figure 5.8 for motivation of the following theorem, whose proof is due

to De la Mora (2007). Theorem 5.6 and Lemma 5.5 together imply the appealing

hierarchy

vor(x) ⊂ lunar(x) ⊂ dvor(x) ⊂ clover(x)

for any terminal point x.

Theorem 5.6. For any terminal point x, dvor(x) ⊂ clover(x)

Proof. For simplicity we take x = x0 = 0. Each Delaunay simplex that has x0 as

a vertex has an additional d vertices, each of which is a terminal point. The cones

generated by these simplices partition <d, so any u ∈ vor(0) must be in one such

cone. Assume that u is in the cone generated by xi, i = 1, . . . , d, so there are λi ≥ 0,
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Figure 5.8: The doubled Voronoi region is contained in the clover region.

i = 1, . . . , d such that
d∑
i=1

λixi = u.

Let v be the Voronoi point that is the center of the hypersphere that cir-

cumscribes the simplex with extreme points xi, i = 0, 1, . . . , d. It follows that

‖xi − v‖ = ‖v‖, i = 1, . . . , d, which is equivalent to

‖xi‖2 = 2xTi v, i = 1, . . . , d. (5.1)

Our goal is to show that 2u ∈ clover(0). To do this it suffices to show that

||2u− v|| ≤ ||v||,

which is equivalent to uTu ≤ uTv. Since u ∈ vor(0) we have xTi u ≤ ‖xi‖
2/2,

i = 1, . . . , d, which combined with (5.1) implies that xTi u ≤ xTi v, i = 1, . . . , d.

Therefore

uTu =
∑
i

λix
T
i u ≤

∑
i

λix
T
i v = uTv,

as required.
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Figure 5.9: Proving the doubled Voronoi region is contained in the clover region

A small counterexample demonstrates that a right handed inclusion in Theo-

rem 5.6 is impossible. That is, there does not exist an α ∈ < such that clover(p) ⊂

α ·vor(p). The construction of a counterexample is shown in the sequence of figures

in Table 5.1.3. As point q moves toward point p, the Voronoi face separating p and

q moves arbitrarily close to p while the circumsphere at v approaches some fixed

radius. Thus, for any α > 0 it is possible to move q close enough to p to ensure the

circumsphere at v is not contained in the region defined by α ·vor(p). The quadruple

Voronoi region has been shown in the right hand figures for illustrative purposes.

5.2 Geometric conditions for
SMTs with a FST

In this section, we provide more restrictive conditions for SMTs with a FST.

In Section 5.3, we incorporate these conditions in the scheme of Smith (1992).

5.2.1 Smallest spheres

Clover regions, doubled Voronoi cells, and lunar regions provide an increas-

ingly sharp restriction on the location of a Steiner point connected to a given ter-

minal. In Smith’s scheme all generated trees have a FST, and so all terminal points
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Table 5.1: The clover region is not contained in any multiple of the Voronoi cell:
as the two points move closer together, the circumspheres approach a fixed radius
while α · vor(p) is made arbitrarily close to vor(p).
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are leaves of the tree. This allows the feasible locations of Steiner points to be

further restricted to the “smallest sphere” (which is contained in the lunar region).

A simple edge exchange argument proves the result:

Lemma 5.7. In an SMT with a FST, an edge between a Steiner point and terminal

point, xi, in the SMT is of length at most di, where di is the distance from xi to the

nearest other terminal point.

Proof. If an edge longer than di where connected to terminal xi, remove it and break

the SMT into two connected components: xi and the rest of the tree. Connect xi

to the nearest terminal with an edge of length di and shorten the tree.

Call Bdi(xi) the “smallest sphere” about xi. We conclude from Lemma 5.7

that two terminals xi and xj may be connected to a common Steiner point if

||xi − xj|| ≤ di + dj.

We strengthen this condition by incorporating the angle condition.

Lemma 5.8. Consider terminals xi and xj with smallest spheres of radii di and dj,

respectively. Then xi and xj may be connected to a common Steiner point, s, if

||xi − xj|| ≤
√
d2i + d2j + didj.

Proof. Consider the angle, ∠xisxj. By the law of cosines:

||xi − xj||2 = ||xi − s||2 + ||s− xj||2 − 2||xi − s|| · ||s− xj|| cos θ.

Since we have a SMT with a FST, θ = 120◦:

||xi − xj||2 = ||xi − s||2 + ||s− xj||2 + ||xi − s|| · ||s− xj||.

Apply Lemma 5.7 which gives ||xi − s|| ≤ di and ||xj − s|| ≤ dj.

We extend this result to more than one Steiner point; recall the upper bound

on lengths of edges developed in Section 2.1. Given two terminals xi and xj, let bij

denote the length of the longest edge on the unique path between xi and xj in the

MST (the bottleneck distance. The bottleneck distance is an upper bound on the
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(a) The lunar region contains the possible locations
for a Steiner point connected to the given terminal

point to not violate the lune property.

(b) For Smith’s algorithm, the feasible region for the
location of a Steiner point attached to a terminal

point shrinks to the “smallest sphere”.

Figure 5.10: The lunar region 5.10(a) and the “smallest sphere” 5.10(b) restrict the
locations for Steiner points attached to a terminal point for an arbitrary SMT and
an SMT with a FST, respectively.
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length of edges on the path between xi and xj in the SMT (see Lemma 2.2. Note

that b ≥ di for all terminals, xi. We conclude from Lemma 2.2 that xi and xj may

be connected by two or fewer Steiner points if

||xi − xj|| ≤ di + dj + bij.

Once again, we strengthen this condition by applying the angle condition.

Lemma 5.9. Two terminals xi and xj may be connected by two or fewer Steiner

points if

||xi − xj|| ≤
√

(di + dj)2 + b2ij + (di + dj)bij.

Proof. Consider a configuration on points (xi, s1, s2, xj), where the edges obey the

angle condition and length restrictions in Lemma 5.7. Note that increasing the

length of any edge only increases the inter-terminal distance. Without loss of gen-

erality, assume all edge lengths are at their upper bounds.

Let (xi, s1, s2, x̃j) denote the configuration where the last point has been ro-

tated into the plane defined by the first three points, maintaining ∠s1s2x̃j. There

are two choices for point x̃j which satisfy the angle condition. Choose x̃j on the

opposite side of edge (s1, s2) from xi, see Figure 5.11. Since b ≥ di and b ≥ dj, the

line segment between (xi, x̃j) must intersect edge (s1, s2). Let m be this point of

intersection. Then:

||xi − x̃j|| = ||xi −m||+ ||m− x̃j||

= ||xi −m||+ ||m− xj||

≥ ||xi − xj||

where the second equality follows since x̃j and xj are the same distance from any

point on the line between (s1, s2). We have shown the planar configuration does not

decrease the inter-terminal distance.

The inter-terminal distance of the planar configuration is easily found since

alternating edges are parallel. Translate and apply the law of cosines with θ = 120◦:
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Figure 5.11: The configuration with two Steiner points which maximizes the inter-
terminal distance lies in a plane and has alternating edges.

||xi − xj|| ≤
√

(di + dj)2 + b2ij + (di + dj)bij.

We have shown that if two terminals are “too far” apart, they must be con-

nected by one or more Steiner points. We conjecture an extension of this result to

k points (k − 2 Steiner points). The conjecture follows if the configuration which

maximizes the inter-terminal distance can be proved to lie in a plane.

Conjecture 5.10. The minimum number of Steiner points on the path between

terminals xi and xj in the SMT is given by the minimum integer k ≥ 1 such that

d(xi, xj) ≤


√

(di + k−1
2
bij)2 + (dj + k−1

2
bij)2 + (di + k−1

2
bij)(dj + k−1

2
bij) for k odd,

√
(di + dj + k−2

2
bij)2 + (k

2
bij)2 + (di + dj + k−2

2
bij)(

k
2
bij) for k even.

5.3 Implementation of geometric
conditions

We have presented geometric criteria for SMTs and SMTs with an FST, and we

now implement the criteria into Smith’s scheme. One of the difficulties with Smith’s

scheme is that parent topologies with a “bad” configuration can have “good” de-

scendants due to the constructive nature of the merge operation (see Section 3.3.2).

We quantify the ability of the merge operation to correct violated criteria: each
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(a) The configuration which is conjectured to maximize the inter-terminal distance

(b) Alternate edges are parallel, which allows easy computation of the inter-terminal
distance

Figure 5.12: The conjecture for many Steiner points

merge operation increases the number of Steiner points on the path between ter-

minals by one. If two terminals are connected by fewer than the required number

of Steiner points, (e.g. they are connected by one Steiner point, but three Steiner

points are required by Lemma 5.9), then more merges are needed to correct this

violated geometric condition (e.g. 3-1=2 more merges are needed). If there are not

enough merges remaining in the branch-and-bound scheme to correct all violations,

this node may be removed from consideration.

Lemmas 5.7 and 5.9 are used to create a matrix Dn,n in a pre-processing step

whose entries are limited to the set {1, 2, 3}, indicating the minimum number of

Steiner points on the path from terminals xi to xj in the SMT. We tabulate the

deficit for a partial FST encountered at level k of Smith’s scheme as follows. If

two terminals xi and xj are connected by m Steiner points and m < D(i, j), then

we add D(i, j)−m to the deficit count for the topology. We sum the deficits over

all disjoint paths in the partial FST. If the number of deficits is greater than the

number of merges remaining, this topology and all its descendants may be removed

from consideration (with no need to compute its length).
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Note that the deficit tabulation is additive over disjoint paths. If P1 and P2

are disjoint paths between two pairs of terminals, each one requiring m1 and m2

more merges, respectively, then m1 +m2 merges are required in total to correct this

violation. This follows since each merge can add one Steiner point to either (but

not both) of the paths. A sub-routine for packing of disjoint paths is needed since

one merge can correct multiple violations on paths which share an edge.

We perform a greedy set-packing of disjoint paths. Sort all paths by their

deficit value, D(i, j)−m, from highest to lowest (currently, the values are 1 and 2).

We would like to pack as many short paths as possible, so first choose all paths of

length two (that is, paths with two edges) with deficit 2. Then choose all paths of

length two with deficit 1. Finally, pack the paths of length three which have deficit

1. Note there are no paths of length three with deficit two, since the entries of the

matrix D range from 1 to 3. Calculate the deficit count for the FST by summing

deficits over the disjoint paths.

We incorporate this new fathoming code immediately following the initial

bound check on Line 4 in Algorithm 2.4. We do so after checking the parent bound,

since computing deficit information requires more computation than checking the

bound. If the deficit count is greater than than the merges remaining in Smith’s

scheme, this FST may be fathomed with no need to compute its length.

We illustrate the entries of the matrix D across randomized instances of size

N = 10, 15, 20, 25 in <3, the results are shown in Figure 5.2.1. When the number

of terminals is small (N = 10), there are many 1’s and fewer 2’s or 3’s. As N

increases, the number of 1’s decreases and the number of 2’s and 3’s increases. This

is promising for integrating the results into Smith’s scheme, since two terminals

will always be connected by at least one Steiner point. Only entries larger than 1

provide additional criteria for fathoming FSTs.

We make another note on Conjecture 5.10. Let us assume the conjecture is
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Figure 5.13: The distribution of the minimum number of Steiner points connecting
terminal points in <3 as the number of terminals, N , increases. The number of 3’s
increases with N .

true and create the matrix D(i, j). Across all instances appearing in Fampa and

Anstreicher (2008) (N = 10 in <d, d = 2, ..., 5) no new entries appeared. No new D

matrix entries appeared in the instances of size 12 in <3. Three of the ten instances

of size 14 in <3 contained one or more 4’s. Two of these three instances contained

only one 4 in the D matrix. Four of the five instances of size 16 in <3 contained

one or more 4’s.

5.4 Computational results

In this section, we present computational results for our geometric enhancements

of the scheme of Smith (1992). The nodes in the branch-and-bound (B&B) tree

are full Steiner topologies on subsets of terminal points, and children are created

by merging a new terminal point to each edge in the existing tree. We refer to

nodes processed as the number of full Steiner topologies in the B&B tree which are

pulled from the list and not immediately fathomed based on length or geometric

conditions. That is, they will require a call to Mosek (Andersen and Andersen, 2010)
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to optimize the location of Steiner points and determine the length of the FST. We

denote by CPU-time the CPU seconds taken to solve an instance. All values in

tables represent averages taken over the number of instances solved. The instances

of Fampa and Anstreicher (2008) are randomized instances in the hypercube [0, 10]d

with N = 10 terminals. For d = 2, 4, 5 there are 5 instances each, and for d = 3 there

are 10 instances. We generate randomized instances in <3 each with ten instances

distributed in the unit hypercube, with N = 12, 14, 16. All computational results

in this section are variations of the C implementation of Smith’s algorithm; the

code for the original Smith algorithm is provided by Marcia Fampa. All runs are

performed on a dual core Pentium 3.20GHz processor with 2 GB of ram, operating

a Linux platform.

5.4.1 The effect of sorting the instance

Fampa and Anstreicher (2008) utilize a “strong branching” scheme to vary

the order in which terminals are merged to the existing partial FST. The next ter-

minal merged is chosen in such a way that the maximum number of children will be

fathomed at the next level. The advantage of the strong branching scheme is that

the created children FSTs are more likely to be fathomed, resulting in reduced com-

putational effort and number of nodes processed. The disadvantage of the strong

branching scheme is the computation required to decide the next terminal to merge.

We investigate the role of sorting the input instance as a way of accelerating fath-

oming without the computational effort associated with a sophisticated branching

scheme. We sort the terminals via distance from their centroid, with the first ter-

minal being the farthest away and the final terminal being the closest. The hope

is that by first merging terminals which are “far apart” we grow the length of the

tree as fast as possible. We compare our results on the same instances as presented

in Fampa and Anstreicher (2008).

As Table 5.2 demonstrates, sorting the terminal points significantly reduces
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the nodes processed and CPU-time required. Nodes-factor refers to the factor of

reduction in nodes processed in the original Smith algorithm compared with the

sorting or the strong-branching; the calculation is analogous for time-factor. Sorting

the terminals via centroid results in average nodes factors of between 3.5 and 15.9

compared with factors ranging from 26.9 to 160.2 for the strong branching scheme

of Fampa and Anstreicher (2008). As expected, the more sophisticated strong-

branching scheme reduces the nodes processed by a much larger factor. The CPU-

time required by the algorithm is vastly reduced by sorting, with factors comparable

to Fampa and Anstreicher (2008). Sorting causes more nodes to be processed, but it

avoids the additional computational effort from solving the sub-problems associated

with choosing the next terminal to merge. The sorting (done in a pre-processing

step) does not require any additional time to solve created sub-problems as in Fampa

and Anstreicher (2008). Sorting via centroid presents an economical way to reduce

both nodes process and computational time; the results presented throughout the

rest of this thesis are sorted via centroid.

5.4.2 The effect of initial upper bounds

The branch-and-bound algorithm must be initialized with some value for the

upper bound (UB). For ease,∞ may be used. For the ESTP, the length of the MST

or any other spanning tree may also be used. Smith (1992) comments that “the

backtracking algorithm itself soon generates a very good upper bound.” We test this

by initializing the BB algorithm with an upper bound equal to the best value found

by the heuristic algorithm in Chapter 4. We do not include the computation time

taken to produce the heuristic solution. We modify line 1 of Algorithm 2.4 by setting

UB equal to the best found value of the heuristic. As Table 5.3 demonstrates, the

improvement is marginal and comes at the cost of the extra run-time of the heuristic

algorithm in Chapter 4.
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5.4.3 The effect of geometry

We report the effect of adding fathoming by geometry to the algorithm of

Smith (1992). As Table 5.4 demonstrates, geometric conditions have a significant

impact on fathoming of nodes and computation time. All instances in <d, d > 2,

show a significant decrease in nodes processed and time required. We note that these

two factors are typically equal, due to the minor computational effort in checking

geometric criteria (compared to calling Mosek). The instances in <5, for example,

averaged 167 CPU-seconds per instance with 165.9 seconds in calls to Mosek.

The performance in <3 appears to be monotone decreasing with values of n.

It is unclear whether this is the limit of the geometric conditions or the unresolved

Conjecture 5.10. We test this by assuming the truth of the Conjecture 5.10 and

running the instances of size 14 and 16 and <3, the results are shown in Table 5.6.

The instances of size 14 demonstrate a small improvement in nodes processed, but

the improvement is unobservable when rounding Nodes Factor and Time Factor to

two decimal places. The instances of size 16 demonstrate a small improvement in

the nodes processed and computation time.

5.4.4 The effect of geometry and initial upper bounds

In this section, we combine the geometric conditions and initial upper bounds

to determine the marginal improvement to the exact algorithm. These two combined

effects will improve the algorithmic performance, but it is unclear how many nodes

fathomed by geometry would also be fathomed by length. FSTs which violate

geometric criteria are also likely to be “long,” and thus fathomable by length. As

Table 5.5 shows, there is only a marginal improvement by also including the initial

upper bounds. The performance of the algorithm is no longer monotone decreasing

with respect to instance size in <3. This could be attributed to good quality heuristic
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values for instances of size 16, as a similar trend is observed when utilizing just the

upper bound. Due to the significant running time of the heuristic (which we do

not include), the geometric criteria provide the most improvement to the algorithm

with the least computational effort.

We further illustrate the performance of the algorithm on the instances of

size 10 in <3 as seen in Table 5.7. Note that instance number 6, the geometric

conditions increased the number of nodes processed. In this instance, geometric

conditions caused a node to fathom which would have otherwise improved the upper

bound value. Without improving this upper bound, additional nodes that could

not be fathomed by geometry continued to be processed. When combined with the

initial upper bounds, we see a reduction in the number of nodes processed. These

results indicate that a reasonable bound should be obtained before fathoming by

geometry. Note also that the effect of geometry is most noticeable on the most

difficult instances 1 and 10.

5.5 Conclusion

We have presented geometric criteria which can be used to eliminate candi-

date topologies in implicit enumeration algorithms. We first presented criteria for

SMTs with an arbitrary topology, then for SMTs with an FST. Empirical evidence

indicates that such criteria are useful in an exact algorithm to promote fathoming.

The use of initial upper bounds in the algorithm was found to have a marginal effect,

confirming Smith’s comment that the algorithm quickly produces good solutions.

Fathoming was only marginally improved by combining the geometric conditions

and initial upper bounds. Merging the terminals via distance from centroid was

shown to reduce computation time on the order of a more sophisticated strong

branching scheme. Future work includes incorporating branching based on geomet-

ric conditions, i.e., merging in such a way to create the most violations to promote

fathoming higher in the branch-and-bound tree.
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Table 5.6: We assume the truth of the Conjecture 5.10 and test instances of size 14
and 16 in <3.

∗ =conjecture assumed

With geometry With geometry∗

Nodes Time Nodes Time

Factor Factor Factor Factor

Randomized in <3 n

14 1.34 1.33 1.34 1.33

16 1.33 1.34 1.37 1.37

Table 5.7: We investigate further the instance of size n = 10 in <3 of Fampa and
Anstreicher (2008).

Smith IUB Geometry IUB & Geom

Nodes Nodes Factor Nodes Factor Nodes Factor

Instance

1 58866 39436 1.49 29557 1.99 23187 2.54

2 4066 4066 1.00 2544 1.60 2535 1.60

3 1870 1825 1.02 1702 1.10 1550 1.21

4 3087 2420 1.28 2786 1.11 2237 1.38

5 20101 18801 1.07 16609 1.21 15620 1.29

6 838 482 1.74 1037 0.81 475 1.76

7 3450 3305 1.04 3372 1.02 3119 1.11

8 52390 45810 1.14 37839 1.38 34417 1.52

9 14707 10928 1.35 13822 1.06 10138 1.45

10 236333 148173 1.59 118389 2.00 87626 2.70



84

APPENDIX

COUNTING TYPES OF STEINER POINTS

In this section, we classify the types of Steiner points based on the adjacent point

(terminal or Steiner) in the tree. We determine the number of type two, one, and

zero Steiner points at each level of Smith’s enumeration scheme (adjacent to two

terminals, one terminal, and zero terminals, respectively). We first count the Steiner

points descendant of one partial full Steiner topology at level k. We then sum over

all partial FSTs at level k and divide by the number of FSTs at level k+1 to obtain

an average per tree count of varying type Steiner points at any level in the scheme.

For level k > 1 of Smith’s scheme, there are no type three Steiner points so they

are omitted from the discussion.

A.1 The descendants of a parent
topology

Consider a partial FST at level k > 1 of Smith’s enumeration scheme. Given

the number of each type of Steiner point in the tree, we count the number of each

type of Steiner points among all of its children. Consider a merge operation applied

to each of the 2k + 1 edges of this parent.

Consider first merging to any Steiner-Steiner edge of the parent topology.

Every such merge increases the number of type one Steiner points by one, while

preserving the numbers of all other types of Steiner points. See Figure A.1. Consider

merging to the Steiner-terminal edge adjacent to a type one Steiner point. Such a

merge increases the number of type two and type zero Steiner points by one and

decreases the number of type one Steiner points by one, see Figure A.2. Consider

next merges applied to Steiner-terminal edges adjacent to type two Steiner points,

which preserves the number of type zero and type two Steiner points and increases

the number of type one Steiner points by one, see Figure A.3.
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Figure A.1: Merging to a Steiner-Steiner edge always increases the number of type
one Steiner points by one. (Steiner points are shown in white, terminal node in
black.)

Table A.1: The result of merging to Steiner-Steiner and Steiner-terminal edges.

Steiner-Steiner Type One S-T Type Two S-T

nk+1
2 ← nk2 nk+1

2 ← nk2 + 1 nk+1
2 ← nk2

nk+1
1 ← nk1 + 1 nk+1

1 ← nk1 − 1 nk+1
1 ← nk1 + 1

nk+1
0 ← nk0 nk+1

0 ← nk0 + 1 nk+1
0 ← nk0

At level k the partial FSTs all contain k Steiner points, k > 1. Let nk0, n
k
1, n

k
2

be the number of type zero, one, two Steiner points of a particular parent partial

FST at level k. There are 2k + 1 edges in the parent partial FST, from Table A.1

we have:

nk+1
0 = (2k + 1)nk0 + nk1 (A.2)

nk+1
1 = (2k + 1)(nk1 + 1)− 2nk1 = (2k − 1)nk1 + 2k + 1 (A.3)

nk+1
2 = (2k + 1)nk2 + nk1 (A.4)
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Figure A.2: Merging to a Steiner-terminal edge adjacent to a type one Steiner point
increases the number of type two and type zero Steiner points by one and decreases
the number of type one Steiner points by one. (Steiner points are shown in white,
terminal nodes in black.)

Figure A.3: Merging to a Steiner-terminal edge adjacent to a type two Steiner point
increases the number of type one Steiner points by one. (Steiner points are shown
in white, terminal nodes in black.)
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A.2 The descendants over all
parent topologies

In the previous section we computed the number of different type Steiner

points at level k + 1 per parent at level k. We now sum over all parents at level k

to obtain the number of Steiner points of each type on level k + 1.

Let Nk
2 , N

k
1 , and Nk

0 denote the total number of type two, one and zero Steiner

points among all partial FSTs at level k in Smith’s enumeration scheme. Let

nk2,j, n
k
1,j, and nk0,j be the number of type two, one and zero Steiner points in

topology j at level k. Letting Tk be the number of topologies at level k, then

Nk
i =

Tk∑
j=1

nki,j for i = 0, 1, 2.

We expand this sum for i = 0, 1, 2, using the identities established in equations

(A.2), (A.3), and (A.4) for nk0, nk1, and nk2. For type two Steiner points (i = 2),

Nk+1
2 =

Tk+1∑
j=1

nk+1
2,j

=

Tk∑
j=1

(2k + 1)nk2,j + nk1,j

= (2k + 1)

Tk∑
j=1

nk2,j +

Tk∑
j=1

nk1,j

= (2k + 1)Nk
2 +Nk

1 (A.5)

where the second equality uses (A.4). For type one Steiner points, (i = 1):

Nk+1
1 =

Tk+1∑
j=1

nk+1
1,j

=

Tk∑
j=1

(
(2k − 1)nk1,j + 2k + 1

)
= (2k − 1)

Tk∑
j=1

nk1,j +

Tk∑
j=1

(2k + 1)

= (2k − 1)Nk
1 + Tk(2k + 1)

=
(k + 2)(k − 2)

2k − 1
(A.6)



88

where the second equality uses (A.3). For type zero Steiner points, (i = 0):

Nk+1
0 =

Tk+1∑
j=1

nk+1
0,j

=

Tk∑
j=1

(
(2k + 1)nk0,j + nk1,j

)
= (2k + 1)

Tk∑
j=1

nk0,j +

Tk∑
j=1

nk1,j

= (2k + 1)Nk
0 +Nk

1 (A.7)

where the second equality uses (A.2).

A.3 The number of different
type Steiner points

Because Tk grows exponentially, it is convenient to normalize the values of Nk
i

by dividing by Tk. Let Ñk
2 , Ñk

1 , and Ñk
0 denote the average number of type two,

one and zero Steiner points respectively per topology at level k. We have

Ñk
i =

Nk
i

Tk
for i = 0, 1, 2.

Further we note that Tk+1 is the number of edges in the parent topologies in level

k times the number of topologies in level k. That is,

Tk+1 = (2k + 1)Tk. (A.8)

We also note that the number of terminal points at level k is the sum of Nk
1 and

2NK
2 and is also the number of topologies Tk times the number of terminals per

topology, (k + 2), resulting in the identity

Nk
1 + 2Nk

2 = Tk(k + 2). (A.9)

Finally, note that the number of Steiner points at level k is the sum of Nk
2 , N

k
1 , and

NK
0 , and is also the number of topologies Tk times the number of Steiner points per

topology, k, resulting in the identity

Nk
2 +Nk

1 +NK
0 = Tkk. (A.10)

Dividing (A.5) by Tk+1 we obtain a recursion for Ñk
2 :
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Ñk+1
2 =

(2k + 1)Nk
2 +Nk

1

Tk+1

=
Nk

2

Tk
+

Nk
1

Tk+1

=
Nk

2

Tk
+
Tk(k + 2)− 2Nk

2

Tk+1

=
Nk

2

Tk
+

k + 2

2k + 1
− 2

Nk
2

Tk+1

=
Nk

2

Tk
+

k + 2

2k + 1
− 2

2k + 1

Nk
2

Tk

= Ñk
2 −

2

2k + 1
Ñk

2 +
k + 2

2k + 1

=
2k − 1

2k + 1
Ñk

2 +
k + 2

2k + 1

where the second, fourth and fifth equalities use (A.8) and the third uses (A.9).

The formula:

Ñk
2 =

(k + 1)(k + 2)

2(2k − 1)
(A.11)

satisfies the above recursion as follows,

Ñk+1
2 =

(k + 2)(k + 3)

2(2k + 1)

=
(k + 1)(k + 2) + 2k + 4

2(2k + 1)

=
(k + 1)(k + 2)

2(2k + 1)
+

k + 2

2k + 1

=
2k − 1

2k − 1

(k + 1)(k + 2)

2(2k + 1)
+

k + 2

2k + 1

=
2k − 1

2k + 1

(k + 1)(k + 1)

2(2k − 1)
+

k + 2

2k + 1

=
2k − 1

2k + 1
Ñk

2 +
k + 2

2k + 1
.

Further, the closed form for Ñk
2 satisfies Ñ2

2 = 2 in (A.11) and so is the correct

formula for the average number of Steiner points incident to two terminal points at

level k, k ≥ 2.
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It is now easy to find closed form expressions for the average number of the

other type Steiner points at each level. Dividing the identity (A.9) by Tk, we obtain:

Ñk
1 = (k + 2)− 2(̃N)k2

= (k + 2)− (k + 1)(k + 2)

2k − 1

= (k + 2)

(
1− k + 1

2k − 1

)
= (k + 2)

(
k − 2

2k − 1

)
.

Finally, dividing the the identity (A.10) by Tk we obtain:

Ñk
0 = k − Ñk

1 − Ñk
2

= k − (k + 2)(k − 2)

2k − 1
− (k + 1)(k + 2)

2(2k − 1)

=
2k(2k − 1)− 2(k + 2)(k − 2)− (k + 1)(k + 2)

2(2k − 1)

=
(k − 2)(k − 3)

2(2k − 1)
.

Dividing the above expressions for Ñk
i by the number of Steiner points k per topol-

ogy, we see the fraction of type two Steiner points is asymptotic to 1/4. The deriva-

tive of the Ñk
2 /k function is negative for k > 1, so the function is asymptotic down

to 1/4. The average fractions of type one and two Steiner points are asymptotic to

1/2 and 1/4, respectively. This indicates that on average more than one fourth of

Steiner points are type two, so an exclusion criteria based on them could be useful.

See Figure A.4 for the graph of the average fraction of different type Steiner points

Ñk
i /k, i = 0, 1, 2 as the number of Steiner points increases.
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