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ABSTRACT

In many scientific studies, the response variable bears a generalized nonlinear

regression relationship with a certain covariate of interest, which may, however, be

confounded by other covariates with unknown functional form. We propose a new

class of models, the partly parametric generalized additive model (PPGAM) for do-

ing generalized nonlinear regression with the confounding covariate effects adjusted

nonparametrically. To avoid the curse of dimensionality, the PPGAM specifies that,

conditional on the covariates, the response distribution belongs to the exponential

family with the mean linked to an additive predictor comprising a nonlinear para-

metric function that is of main interest, plus additive, smooth functions of other

covariates. The PPGAM extends both the generalized additive model (GAM) and

the generalized nonlinear regression model. We propose to estimate a PPGAM

by the method of penalized likelihood. We derive some asymptotic properties of

the penalized likelihood estimator, including consistency and asymptotic normality

of the parametric estimator of the nonlinear regression component. We propose a

model selection criterion for the PPGAM, which resembles the BIC. We illustrate

the new methodologies by simulations and real applications. We have developed an

R package PPGAM that implements the methodologies expounded herein.
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CHAPTER 1

INTRODUCTION

Parametric nonlinear regression (Bates and Watts, 1988) is widely useful for

studying a complex relationship that can be described by a nonlinear regression

function of known functional form up to some unknown parameters. However, in

many applications, the functional form of the nonlinear relationship may only be

partly specified, because the relationships between the response and some confound-

ing covariates may have unknown functional form. For example, in a study of the

dynamics of pollock larvae in the Gulf of Alaska (GOA) reported in Chapter 3,

while the baseline survival distribution may be assumed to belong to some paramet-

ric family, e.g. Weibull or log-logistic, the baseline hatchdate distribution and the

environmental effects on hatching and/or survival may be best modeled nonpara-

metrically as there is little substantive knowledge about their functional forms. This

motivates us to study the partly parametric generalized additive model (PPGAM).

The proposed PPGAM generalizes the highly popular generalized additive

model (GAM) (Hastie and Tibshirani, 1986, 1990; Wood, 2006) by adding a para-

metric nonlinear component to the additive predictor on the link scale. Such a

model structure has wide applications in scientific studies where some parametric

nonlinear regression relationship is of main interest, but it is confounded by some

confounding covariates whose relationship to the response is of unknown functional

form and hence best estimated nonparametrically. In many cases, the preceding

nonparametric effects may be adequately approximated by an additive model struc-

ture, i.e. as a sum of smooth functions of the confounding covariates, an assumption

embodied in the PPGAM.
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The PPGAM may also be considered as an extension of the generalized nonlin-

ear model (GNLM) (Bates and Watts, 1988), and can accommodate both continuous

and discrete responses, as the response distribution is assumed to conditionally be-

long to the exponential family. By the theory of reproducing kernel Hilbert space,

each additive function of the nonparametric part of the PPGAM is spanned by the

(thin-plate) splines (Duchon, 1977; Wood, 2006), so we propose the method of penal-

ized (quasi-)likelihood for estimating a PPGAM. Under some regularity conditions

and making heavy use of the empirical processes theory, we prove some large-sample

properties of the penalized likelihood estimators of the parameters indexing the

nonlinear component (to be referred as the nonlinear parametric estimator below),

including consistency and asymptotic normality; as well we derive the consistency

of the additive function estimators.

The PPGAM can be further generalized by relaxing the additivity assumption,

which results in the partly parametric generalized nonlinear regression (PPGNR)

model. The PPGNR is a class of semiparametric models. Semiparametric models

have been extensively studied in the literature. Partial linear model (Wahba, 1990) is

a simple semiparametric model with the regression function being the sum of a linear

parametric component and unknown nonparametric functions. Mammen and van de

Geer (1997) derived some asymptotic properties of the penalized quasi-likelihood

estimator for a general partial linear model with sub-exponential error terms. Wang

and Ke (2009) proposed a general semiparametric nonlinear regression model with a

similar mean structure as PPGNR but assuming Gaussian errors. Huang and Chen

(2008) considered a regression model with two additive components in the regression

function, namely parametric nonlinear function and nonparametric smooth function.

Hence, their model shares a similar conditional mean structure as the PPGAM.

However, the main difference between their model and the PPGAM proposed here
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is that their approach makes no distributional assumption for the response and

they simply assume independent and identically distributed (iid) errors with zero

mean and finite variance, whereas the proposed PPGAM explicitly specifies that

the conditional response distribution belongs to the exponential family.

The rest of the thesis is organized as follows. In Chapter 2, we provide an

in-depth study of the PPGAM. We give the formulation of the PPGAM in Section

2.1. The penalized likelihood estimation approach and a proposed model selection

criterion based on the Laplace approximation of the marginal likelihood are intro-

duced in Section 2.2. We use empirical processes theory to derive the asymptotic

properties of the penalized (quasi-)likelihood estimator. Some asymptotic properties

of the functional estimator and the parametric estimator are reported in Section 2.3.

In Section 2.4, we report several simulation studies on the empirical performance

of the method of the penalized likelihood estimation and the empirical effectiveness

of the proposed model selection criterion. We illustrate the PPGAM with a real

dataset from the atomic bomb study in Section 2.5. The proofs of all theorems

are collected in Section 2.6. The approximation of the asymptotic variance and

the Laplace approximation of the marginal likelihood are justified in Sections 2.7

and 2.8, respectively. Chapter 3 contains a relatively complete case study on the

dynamics of pollock larvae. In the application, the PPGAM successfully models the

hatching process of pollock in the Gulf of Alaska (GOA) and the survival process

of pollock larvae, and untangles the human and/or natural intervention effects. In

Chapter 4, we elaborate two forecasting models for pollock recruitment, based on

the threshold generalized additive models. Both Chapters 3 and 4 are based on joint

works with Dr. Kevin Bailey of NOAA, Department of Commerce. The method-

ologies developed in Chapter 2 are implemented in an R package PPGAM, which

is detailed in Chapter 5. We conclude in Chapter 6.
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CHAPTER 2

PARTLY PARAMETRIC GENERALIZED ADDITIVE MODEL

The partly parametric generalized additive model (PPGAM) assumes that

the conditional response distribution belongs to exponential families whose mean is

linked to a predictor function that is a sum of a parametric nonlinear component

and a finite number of smooth functions of the covariates. To avoid overfitting of

the nonparametric functions, we propose to estimate a PPGAM by the method of

penalized likelihood; the penalized log likelihood equals the log likelihood plus a

roughness penalty for each additive function in the model (Hastie and Tibshirani,

1990; Marx and Eilers, 1998). Our theoretic investigation shows that the penalized

likelihood estimator of the parameter in the nonlinear component (simply referred

to as the parametric estimator below) is consistent and follows an asymptotically

normal distribution under some mild regularity conditions. In practice, the covari-

ance matrix of the asymptotic normal distribution for the parametric estimator can

be approximated by the inverse of the observed Fisher information, which can be

justified in some simple case and the approximation is further studied via simulation

study. Moreover, the penalty in the penalized estimation method admits a Bayesian

interpretation as some prior belief on the smoothness of the functions. Based on

the Bayesian approach, we develop a model selection criterion via Laplace approx-

imation of the marginal likelihood. We illustrate the PPGAM with an analysis of

the cancer risk of the survivors from the atomic bomb in Hiroshima and Nagasaki,

Japan; this application concerns a non-Gaussian response, and it demonstrates the
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versatility of the PPGAM for handling non-normal data.

2.1 Model Structure

The PPGAM is similar to the GAM except that the conditional mean has a

parametric nonlinear component. Specifically, consider independent and identical

distributed random vectors (Y1, T1), · · · , (Yn, Tn) which share the same distribution

of (Y, T ). Given the covariate T , the conditional distribution of the response Y

belongs to the exponential family with its probability density (mass) function being

given by fϑ(y) = exp[{yϑ−b(ϑ)}/a(φ)+c(y, φ)] where ϑ is the canonical parameter,

a(φ) = φ/ω, with ω being a known constant that denotes the weight of the datacase

and φ being the known dispersion parameter, and c(y, φ) is the normalizing constant.

The canonical parameter ϑ relates to the conditional mean µ(t) = E(Y |T = t) by

the formula that the first derivative ḃ(ϑ) = µ(t). For the GAM, the conditional mean

is linked to some additive function of the covariate. Here, we consider an extension

of the GAM with the covariate T comprising of a number of random vectors, namely

X and Z = (Zv, ν = 1, · · · , w) and the conditional mean is linked to a sum of ad-

ditive functions of the Zv’s as well as an additive parametric term involving X alone:

µ(x, z) = F (hθ(x) +
w

∑

v=1

sv(zv)), (2.1)

where F is a known smooth monotonic inverse link function, hθ(x) is the para-

metric (possibly) nonlinear component of known functional form up to some un-

known parameter θ, and s(zv)’s are the nonparametric components with each s(·)

being a smooth function to be estimated nonparametrically. Let gθ(x, z) = hθ(x) +
∑w

v=1 sv(zv) , which is referred to as the predictor (function) on the link scale. Often,

F is taken as the cannonical inverse link function ḃ(·), e.g. the exponential function

for the Poisson family. In the absence of the additive nonparametric components,
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the above model is just the generalized nonlinear regression model. In some appli-

cations, the main parametric nonlinear term and its corresponding parameter are of

main interest, and the additive nonparametric effects are of secondary importance.

2.2 Estimation and Model Selection

2.2.1 Estimation Algorithm

For estimating the PPGAM, we adopt the penalized likelihood estimation

approach by imposing a penalty on the roughness of the unknown functions. Here,

the roughness of a smooth function, say s, is defined as follows:

J2(s) =

∫ 1

0

(s(k)(z))2dz,

where k ≥ 1 is a fixed integer and s(k) is the k-th derivative of function s. Unless

stated otherwise, k is taken to be 2. The unknown smooth functions sν and the

parameter θ of the model defined by (2.1) can then be estimated by the argument

maximizing the normalized penalized (log-)likelihood function

l̄p =
1

n

n
∑

i=1

Q(Yi, µ(Ti)) −
w

∑

ν=1

λνJ
2(sν), (2.2)

where Q is the (log-)likelihood function:

Q(y;µ) =

∫ µ

y

(y − u)

V (u)
du, (2.3)

with V being the conditional variance of the response Y , µ(Ti) = F (gθ(Xi, Zi)),

gθ(Xi, Zi) = hθ(Xi)+
∑w

v=1 sv(Ziv), and λν are positive smoothing parameters to be

determined from the data.

First consider the case of known smoothing parameters. Optimization of (2.2)

can be achieved iteratively by alternatively updating the function estimates of sν

and θ as follows. With θ fixed, the model is simply a GAM so the estimation of the

smooth functions can be done via the penalized iteratively re-weighted least squares

(P-IRLS) (Wood, 2006, p.138). Specifically, it can be readily shown that the func-

tion estimates that maximizes (2.2) are natural (thin-plate) smoothing splines; c.f.
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(Wood, 2006, p.154). By the theory of reproducing kernel Hilbert space, the function

estimates can be represented as linear combinations of the spline basis functions.

Consequently, sv(ziv) can be written as B∗
i,νβ

∗
ν , where B∗

i,ν is the ith row of the design

matrix B∗
ν of the spline basis, and β∗

ν is the corresponding parameter vector. Fur-

thermore, the penalties in (2.2), λνJ
2(sν), can be expressed as λνβ

∗T
ν Sνβ

∗
ν/2, where

Sν are known matrices (Gu, 2002; Wood, 2006). The estimation of β∗’s can then

be carried out by the P-IRLS algorithm. Similarly, for fixed smooth fiunctions, the

model becomes a generalized nonlinear regression model and θ can be estimated by

maximum likelihood. The iteration can be stopped when the algorithm converges

according to some stopping criteria.

In practice, the smoothing parameters are unknown and have to be estimated.

We choose the smoothing parameters by minimizing the Generalized Cross Valida-

tion score (GCV); see Craven and Wahba (1979) and Golub et al. (1979). This can

be conveniently done in the step that updates the function estimates of sν via the

GAM fitting.

2.2.2 Observed Information

Below in Section 2.3, we derive the asymptotic normality for the penalized

likelihood estimator θ̂n, under some regularity conditions. However, the covariance

matrix of the asymptotic normal distribution is rather complex and requires the

evaluation of some intractable conditional expectations. Here, we provide an alter-

native approach to assessing the uncertainty of the estimator that is based on the

observed information calculated from the penalized likelihood (2.4). For simplicity,

henceforth in this section, we assume that ν = 1 so that Z has one component,

hence the subscript ν is dropped from the notation; it is straightforward to extend

the formulas to the case of multiple components in Z. Refering to the form of the

density (mass) function of the exponential family, define V ∗(µ) = b̈(ϑ)/ω so that
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V = V ∗(µ)φ in the expression of the function Q. The penalized (log-)likelihood can

be written as:

lp =
n

∑

i=1

∫ µ(Ti)

Yi

y − u

φV ∗(u)
du− nλβ∗TSβ∗/2. (2.4)

Taking the first derivatives of lp, we get

∂lp
∂β∗

j

=
n

∑

i=1

yi − µi

φV ∗(µi)

∂µi

∂β∗
j

− nλ[Sβ∗]j j = 1, . . . , k∗ (2.5)

∂lp
∂θq

=
n

∑

i=1

yi − µi

φV ∗(µi)

∂µi

∂θq

q = 1, . . . , r, (2.6)

where µi = F (gi), gi = B∗
i β

∗ + hθ(xi), and [·]j denotes the j-th component of the

enclosed vector. Define δi = y−µi

φV ∗(µi)ġ(µi)
and δ̇i = ∂δi

∂µi
, where ġ(µi) = ∂gi

∂µi
. The second

derivatives of lp are given as follows:

∂2lp
∂β∗∂β∗T

= B∗TGδB
∗ − nλS

∂2lp
∂β∗∂θT

= B∗TGδḢθ

∂2lp
∂θ∂θT

= Ḣθ
T
GδḢθ + Ḧ

δθ,

(2.7)

where Gδ is an n × n diagonal matrix whose diagonal elements are δ̇i

ġ(µi)
, Ḣθ is an

n× r matrix whose (i, q)th element equals Ḣθiq = ∂h(xi)
∂θq

, and Ḧ
δθ represents an r× r

matrix with its (q, q′)th element equal to Ḧ
δθqq′ =

∑n
i=1 δi

∂2h(xi)
∂θq∂θq′

. Then the observed

Fisher information equals

I =





−B∗TGδB
∗ + nλS −B∗TGδḢθ

−Ḣθ
T
GδB

∗ −Ḣθ
T
GδḢθ − Ḧ

δθ



 , (2.8)

evaluated at β∗ = β̂∗
n, θ = θ̂n.

The covariance matrix of the penalized likelihood estimator can be approxi-

mated by the inverse of the observed Fisher information. This approach yields a

covariance matrix for θ̂n that is asymptotically equivalent to that given by the lim-

iting normal approximation rigorously derived below, at least for a simple case with

conditionally normal responses.
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2.2.3 Model Selection

In practical analysis, there are often several competing models to choose from.

Hence, it is desirable to develop some model selection criteria for choosing a model

appropriate for the data on hand. We adopt a Bayesian approach for using marginal

likelihood for choosing between several competing partly parametric GAMs. Indeed,

the roughness penalty can be regarded as some sort of prior, in which case the

maximum penalized likelihood estimator is equivalent to using the posterior mode

for point estimation. The marginal likelihood of a model, say Mj, equals

P (D|Mj) =

∫

P (D|ζ,Mj)P (ζ|Mj)dζ j = 1, . . . , J, (2.9)

where D denotes the data, ζ the model parameter, P (D|ζ,Mj) the likelihood of ζ

under Mj, and P (ζ|Mj) is the prior probability of ζ under Mj. When the prior

probabilities P (Mj) of all potential models are the same, the marginal likelihoods

are proportional to the posterior model probabilities P (Mj|D), which quantify the

evidence for the models lent by the data.

For the PPGAM, the model parameter ζT equals (β∗T , θT ). β∗T can be further

decomposed into (βT , βT
+), where β consists of the coefficients of the basis functions

of zero roughness, i.e. 1 and z, for k = 2, and β+ are those corresponding to the basis

functions with positive penalty, so that β∗TSβ∗ = βT
+S+β+. Let the dimensions of

β∗, β and β+ be k∗, k and k+ respectively. The prior probability of ζ under Mj,

P (ζ|Mj) can be written as P (β+|β, θ,Mj)P (β, θ|Mj). The quadratic form of the

roughness penalty motivates us to adopt the following prior:

P (ζ|Mj) =
|nλS+|1/2

(2π)k+/2
exp(−1

2
nλβT

+S+β+)P (β, θ|Mj). (2.10)

We shall assume that the smoothing parameters are known. (In practice, the

smoothing parameters will be replaced by the estimates based on GCV.) Substi-

tuting the likelihood function and the prior (2.10) into (2.9) yields

P (D|Mj) =
|nλS+|1/2

(2π)k+/2

∫

exp{lp(ζ)}P (β, θ|Mj)dζ. (2.11)
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The integral in (2.11) has a closed-form solution only for some simple cases, so we

apply Laplace approximation of the integral to obtain

logP (D|Mj) ≈lp(ζ̂n) + log(P (β̂n, θ̂n|Mj)) +
k∗ + r − k+

2
log(2π)

− 1

2
log{det |H|} +

1

2
log |nλS+|. (2.12)

where H is the negative Hessian matrix of the log penalized likelihood lp evaluated

at the penalized likelihood estimator. Since there is no specific prior information on

the parameters β and θ, the improper constant (flat) priors may be used; hence, the

term log(P (β̂n, θ̂n|Mj)) in the above approximation (2.12) can be dropped. Alterna-

tively, the preceding claim can be verified subject to some mild regularity conditions

on the prior of P (β, θ|Mj); c.f. Schwarz (1978) and Liu and Chan (2009). The cri-

terion derived above is similar to the BIC, in that it “does not depend on the prior

distribution” (Schwarz, 1978).

2.3 Asymptotic Properties

In this section, we derive some large-sample properties of the penalized like-

lihood estimator. These properties will be derived under some general regularity

conditions that do not require the conditional distribution of the response variable

to belong to the exponential family. Hence the objective function will be referred to

below as the penalized quasi-(log-)likelihood function. For simplicity, we consider

the case of univariate X and Z with a bounded joint support which, with no loss

of generality, equals [0, 1]2. Thus, the conditional mean function on the link scale

equals

gθ(x, z) = hθ(x) + s(z). (2.13)

It is assumed that

(A1) the function s is k-times differentiable and its k-th derivative s(k) is square



11

integrable, i.e. it belongs to the Sobolev class {s : J(s) <∞}, where

J2(s) =

∫ 1

0

(s(k)(z))2dz, (2.14)

and k ≥ 1 is a fixed positive integer.

In practice, k is generally taken to be 2, corresponding to the use of natural cubic

splines. By the Sobolev-embedding theorem, s can be written as:

s(z) = s1(z) + s2(z), (2.15)

where

s1(z) =
k

∑

j=1

βjz
j−1 = βTφ(z) = (β1, . . . , βk)(φ1(z), . . . , φk(z))

T , (2.16)

with φj(z) = zj−1, j = 1, . . . , k and and |s2(z)| ≤ J(s2) = J(s) < ∞. Thus,

hθ(x) + s1(z) is the parametric part whereas s2(z) is the purely nonparametric part

of the conditional mean function on the link scale.

The quasi-(log-)likelihood for a single datum equals Q(y;µ) =
∫ µ

y
(y−u)
V (u)

du,

where V is the conditional variance of the response Y . Hence, the penalized quasi-

likelihood estimator equals (with the smoothing parameter now denoted as λn indi-

cating its dependence on the sample size)

ĝn = arg max
g∈G

[Q̄n(F (g)) − λnJ
2(s)] (2.17)

= arg max
g∈G

[
1

n

n
∑

i=1

Q(Yi, µ(Ti)) − λnJ
2(s)].

The quasi-likelihood estimator is expressed as ĝn(x, z) = hθ̂n
(x)+ŝn(z), and the esti-

mated conditional mean is denoted by µ̂n = F (ĝn). The following two functions will

be needed below: f(g) = Ḟ (g) and l(g) = f(g)/V (F (g)). For any function a(Y, T ) :

<× [0, 1]2 → <, its empirical L2 norm is defined as ‖a‖n =
√

∑n
i=1 a

2(Yi, Ti)/n.

Besides condition (A1), the following conditions are required for the consis-

tency of the penalized quasi-likelihood estimator:

(A2) The smoothing parameter converges to 0 with the following rate: λn = op(n
−1/2),

1/λn = Op(n
2k/(2k+1)) .

(A3) The error terms W = Y −µ0(T ) is conditionally sub-exponential almost surely,
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i.e. there exists a positive constant C0 such that

E(exp(|W |/C0)|T ) ≤ C0 a.s..

(A4) The parametric component satisfies a Lipschitz condition: there exists a bounded

measurable function w such that |hθ1
(x)−hθ2

(x)| ≤ w(x)‖θ1 − θ2‖,∀ θ1, θ2 ∈ Θ, the

parameter space (a subset of some Euclidean space) and ∀ x.

(A5) The parametric part of the conditional mean function satisfies the following

inequality: ∃ K > 0 such that

‖hθ(X) +
k

∑

j=1

βjZ
j−1‖n = ‖hθ(X) + βTφ(Z)‖n ≥ K(‖θ‖ + ‖β‖),

(2.18)

with probability → 1, as n→ ∞.

(A6) The variance function is bounded below from 0: there exists a constant C1 > 0

such that V (u) ≥ 1/C1 for all u in the range of the inverse link function F .

(A7) The function l is bounded away from 0 and infinity, i.e. there exists a constant

C2 > 0 such that 1/C2 ≤ |l(ξ)| ≤ C2 for all ξ ∈ <.

We remark that, except for (A5), these conditions are generally similar to the

assumptions employed in the literature of semi-parametric regression, e.g. Mammen

and van de Geer (1997). (A5) is akin to the condition of positive-definite design

matrix in the study of partly linear regression models. Now, we can state the con-

sistency result.

Theorem 2.3.1 Under conditions (A1)-(A7), it holds that

‖ĝn − g0‖n = Op(λ
1/2
n ), (2.19)

J(ĝn) = Op(1), (2.20)

where g0 is the true conditional mean function on the link scale.

With the convergence rate assumption on λn in (A2), it follows from the preceding

theorem that ĝn is a consistent estimator of g0 with convergence rate Op(n
−1/4). For
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the parametric estimator θ̂n the convergence rate can be improved to Op(n
−1/2) and,

in fact, asymptotically normal as shown in the theorem below.

Before stating the theorem on the asymptotic distribution of the parametric

estimator θ̂n, we introduce some notations needed below. Let ḣθ(x) be the gradient

vector ḣθ = ∂hθ

∂θ
. Define

e1(z) =
E0(ḣ0(X)f0(T )l0(T )|Z = z)

E0(f0(T )l0(T )|Z = z)
,

where the subscript 0 signifies that all expressions are evaluated at the true model.

Let

e2(x, z) = ḣ0(x) − e1(z).

Theorem 2.3.2 Suppose the assumptions for Theorem 2.3.1 are satisfied. Addi-

tionally, assume

(A8) the functions l and f are Lipschitz continuous in some neighborhood of the

true parameter value θ0.

(A9) For all θ ∈ Θ1 and z, E([ḣθ(X)−E(ḣθ(X)|Z = z)][ḣθ(X)−E(ḣθ(X)|Z = z)]T )

is positive definite.

(A10) The probability density function of Z is bounded away from 0 on its support.

(A11) J(e1) <∞.

(A12) E(f0l0e2e
T
2 ) is positive definite.

(A13) hθ is continuously differentiable up to order two in some neighborhoods of θ0.

Then,
√
n(θ̂n − θ0) = [E(f0l0e2e

T
2 )]−1(1/

√
n

n
∑

i=1

Wil0(Ti)e2(Ti)) + op(1)

 N(0,Σ), (2.21)

where Σ = [E(f0l0e2e
T
2 )]−1.
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2.4 Simulation Study

In this section, we report some simulation studies that address the following is-

sues. First, it is desirable to use simulation for evaluating the empirical performance

of the parametric estimator of a PPGAM. Second, we use simulation to study how

well the inverse of the Fisher information matrix approximates the covariance matrix

of the penalized likelihood estimator. Third, we use simulations to assess the effec-

tiveness of the proposed model selection criterion. Fourth, we apply a simulation

study to assess the loss in estimation using spline method.

Since the mean function of a PPGAM is the sum of a parametric nonlinear

component and some nonparametric functions, we simulated from a number of mod-

els using different combinations of parametric and nonparametric components. For

simplicity, the predictor on the link scale equals the sum of a parametric nonlinear

function and a smooth function that has either a 1-dimensional or 2-dimensional

argument. The parametric nonlinear part has a simple form as αxξ, with the pa-

rameters α and ξ varying over different values for achieving different curvatures. For

the nonparametric component it is one of the following two functions (c.f. Wood

(2006), p. 197):

s1(z1) = z11
1 (10(1 − z1)

6) + 10(10z1)
3(1 − z1)

10 − 1.4, (2.22)

s2(z2, z3) = 0.4 × 0.6π(1.2e−(z2−0.2)2/0.62−(z3−0.3)2 + 0.8e−(z2−0.7)2/0.42−(z3−0.8)2/0.62

),
(2.23)

where z1, z2, z3 ∈ [0, 1]. The smooth functions s1 and s2 are shown in Fig. 2.1 and

2.2, respectively. The response is conditionally Gaussian with variance 0.01. All

simulation results are based on 1000 replications.

Table 2.1 summarizes the results for the method of penalized likelihood in-

troduced in Section 2.2. Data were generated from two PPGAMs with the same

parametric nonlinear component (αxξ = 0.2x0.75), but different smooth functions

(s1(z1) or s2(z2, z3)). For each model, we tried three sample sizes, namely n =
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Figure 2.1: One dimensional smooth curve
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100, 750 and 2000 respectively. The biases and the standard errors (se’s), obtained

by inverting the observed Fisher information, decrease with increasing sample size,

and so do the mean square errors. The biases are generally small except for the

case when the smooth function has a 2-dimensional argument and small sample size

(100). The standard errors and the sample standard deviations of the parametric

estimators (sd’s) are close to each other, especially for large samples.

Table 2.1: Parameter estimation results

s1(z1) s2(z2, z3)

true parameter mean bias×10−3 sd se mean bias×10−3 sd se

n = 100

α = 0.2 0.217 17.0 0.092 0.088 0.212 12.0 0.082 0.088

ξ = 0.75 0.756 6.4 0.152 0.151 0.812 62.0 0.328 0.344

n = 750

α = 0.2 0.201 1.1 0.028 0.029 0.201 0.6 0.022 0.023

ξ = 0.75 0.752 1.7 0.051 0.054 0.758 7.7 0.097 0.103

n = 2000

α = 0.2 0.199 −0.8 0.018 0.017 0.200 −0.03 0.014 0.014

ξ = 0.75 0.753 3.2 0.033 0.033 0.755 5.0 0.063 0.062

According to Theorem 2.3.2, the parametric estimator of a PPGAM is asymp-

totic normal. For each simulated dataset, we construct 95% confidence intervals for

the parameters α and ξ, based on normal assumption and computing the covariance

by inverting the observed Fisher information. Table 2.2 reports the empirical cover-

age rates of the 95% confidence intervals so constructed and they are generally close

to the nominal confidence level of 0.95, with better agreement as the sample size

increases. Therefore, inverting observed Fisher information can provide effective



17

approximation for the variance of the parametric estimator of a PPGAM.

Table 2.2: Confidence interval coverage

Model Structure Nonparametric s1(z1) s1(z1) s1(z1) s2(z2, z3)

Parametric 0.3x0.5 0.2x0.75 0.1x0.9 0.2x0.75

n = 100

95 % CI coverage α 0.905 0.926 0.913 0.941

ξ 0.936 0.955 0.936 0.953

n = 250

95 % CI coverage α 0.920 0.952 0.923 0.950

ξ 0.952 0.949 0.931 0.947

n = 750

95 % CI coverage α 0.937 0.958 0.941 0.960

ξ 0.948 0.959 0.950 0.966

n = 2000

95 % CI coverage α 0.943 0.945 0.937 0.945

ξ 0.957 0.953 0.948 0.947

Table 2.3 reports some simulation results on the empirical performance of the

proposed model selection criterion that compares a true model with an alternative

model. From the simulation results based on 500 samples, the proposed selection

criterion invariably selected the true model except for one case where the parametric

nonlinear component is very close to the alternative model with a linear component.

For that exceptional case, the true and the alternative models have the same smooth

function s1, while the parametric component of the true model is 0.1x0.9 and the

counterpart of its competitor is a linear function. Considering that the curve 0.1x0.9

is very close to a line, it is not unexpected that the alternative model outperforms



18

the true one as it has one less parameter. When the sample size increases to 2000,

the correct selection rate between these two models increases to an acceptable level

of 0.527. Further increasing of the sample size to 5000 leads to the correct selection

rate increasing to a desirable level of 0.816. Overall, the proposed model selection

criterion performs well, especially with large samples.

Table 2.3: Relative frequency of selecting the true model

Alternative Models True Models Alternative Models True Models

s1(z1) s1(z1) s2(z2, z3)

0.2x0.75 0.1x0.9 0.2x0.75

nonparametric parametric nonparametric parametric

n = 500

s(z1) τx 0.964 0.315 s(z2, z3) τx 0.657

s(z1) exp(αxξ) 0.861 0.815 s(z2, z3) exp(αxξ) 0.966

s(z1) + s(z4) αxξ 0.989 s(z2, z3) exp(αx) 0.903

s(z1) + s(z4) τx 0.999 s(z2) + s(z3) αxξ 1.000

s(z1) + s(z4) exp(αxξ) 0.993 s(z2) αxξ 1.000

n = 2000

s(z1) τx 0.527

n = 5000

s(z1) τx 0.816

So far, we consider the case that the main effect of interest admits a parame-

terized nonlinear form, whereas the other confounding covariate effects are modeled

additively and nonparametrically. An interesting question arises regarding the ex-

tent of loss in estimation efficiency due to modeling other covariates nonparametri-

cally. If the functional form of the confounding covariate effects is known and made
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use in the estimation, this should enhance the estimation efficiency of the nonlinear

parametric effects. On the other hand, if the functional form of the confounding

covariate effects is mis-specified, then this may induce loss of estimation efficiency.

For studying these issues, we simulated a data with the conditionally normal

response whose mean equals h(x) + s(z) where,

h(x) = αxξ = 0.2x0.75

s(z) = β sin(z) = 0.8 sin(z),

and suppose z is the confounding variate, with its effects estimated via three ap-

proaches: (1) assuming the true functional form is known up to the parameter β,

(2) assuming a mis-specified functional form obtained from a 13-th order Taylor ap-

proximation, up to the unknown multiplicative coefficient β, i.e. s(z) ≈ βP13(z) =

β(z−z3/3!+z5/5!−z7/7!+z9/9!−z11/11!+z13/13!), and (3) modeling it nonpara-

metrically as a natural cubic spline ŝ(z). Also, h(x) is assumed to be known up to

the parameters α and ξ. Contrasting these three estimation approaches may shed

light on the impact of the functional form of the confounding covariate effects on

the estimation efficiency of the parametric estimator. From Table 2.4, we find that

when employing nonparametric approach in fitting s(z), the biases and mean square

errors (MSEs) of the parameter estimation of h(x) are larger than those when the

true functional form of s(z) is known. However, for large samples (n = 750 and

n = 2000), the nonparametric fitting approach for s(z) results in more accurate

estimation (i.e. with smaller biases and MSEs) of the parameter of h(x) than the

fitting approach based on the polynomial approximation, P13(z). Therefore, while

there is some loss in the estimation efficiency for the parametric estimator when

using the nonparametric approach to model other confounding covariate effects, the

loss may be much smaller than that due to mis-specification of the confounding

covariate effects.
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Table 2.4: Parameter estimation with different fitting approaches for s(z)

βsin(z) βP13(z) ŝ(z)

parameter true value bias×10−3mse×10−4 bias×10−3mse×10−4 bias×10−3 mse×10−4

n = 100

α 0.2 −0.17 1.90 −24.7 9.06 2.85 22.5

ξ 0.75 1.60 12.6 49.9 50.5 6.52 75.9

n = 750

α 0.2 −0.10 0.25 −24.3 6.29 −0.81 2.60

ξ 0.75 0.41 1.67 46.5 25.0 2.84 9.14

n = 2000

α 0.2 0.08 0.10 −23.8 5.80 −0.95 0.98

ξ 0.75 −0.20 0.63 44.8 21.3 2.11 3.43

2.5 Leukemia Cancer Risk Analysis with Data

from the Atomic Bomb Study

We illustrate the PPGAM with an analysis on the effects of radiation on the

propensity of leukemia. Our analysis is based on some data collected by the Atomic

Bomb Casualty Commission (ABCC); see http://www.rerf.jp/index_e.html. The

ABCC was charged by President Turman to conduct investigations of the late ef-

fects of radiation among the atomic bomb survivors in Hiroshima and Nagasaki. We

formulate a PPGAM that extends a power dose-response curve that describes the

relationship between the degree of exposure to radiation from the atomic bomb to

the time of onset of leukemia. The analysis adjusts for possible sex and city effects,

as well as age effect. (Sex was found to be not significant, and hence dropped from

the final fitted model.) Moreover, the age effect is modeled nonparametrically. In

order to remove confounding factors, we restrict the analysis to the atomic bomb
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survivors who died from diseases and hence excluded the survivors who died from

accidents, etc. Furthermore, the analysis is based on the life span data of the atomic

bomb survivors in Hiroshima and Nagasaki from 1950 to 1982. The model specifies

that the probability of leukemia is linked by the logistic function to the predictor as

follows:

logit(pc,k,d) = β0 + β11c=1 + s(k) + αdγ , (2.24)

where c represents the city, with c = 0 for Hiroshima and c = 1 for Nagasaki; k

denotes the survivor’s age on the date of the atomic bomb explosion; and d is the

dose of radiation that the subject received, more specifically the DS86 Kerma dose.

Here, pc,k,d is the (conditional) probability for a survivor to die from leukemia when

his or her death was caused by some diseases, and it is assumed that the number of

the survivors who died from leukemia follows a distribution, binomial(n = mc,k,d, p =

pc,k,d), where mc,k,d equals the number of survivors died from some diseases during

the study period. The nonparametric function s(k) models the age effect on the

risk of dying from leukemia. We adopt the power dosage function αdγ for modeling

the radiation effect on the onset of leukemia (Wijesinha and Piantadosi, 1995).

The coefficient α is constrained to be non-negative for interpretation. To avoid

constrained optimization, we re-parameterize the power dosage function as αdγ to

exp[β + γ log(d)], so that (2.24) becomes:

logit(pc,k,d) = β0 + β11c=1 + s(k) + exp[β + γ log(d)], (2.25)

Fig. 2.3a displays the estimated age effects, which shows the general trend

that younger people exposed to the atomic bomb have a higher probability to die

from leukemia during the study period. The dosage function shown in Fig. 2.3b is

based on the estimated parameters, β̂ = −2.24(0.54) and γ̂ = 0.55(0.09), and the

increasing trend in the curve indicates that higher DS86 Kerma dose is associated

with higher risk of dying from leukemia.
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We consider a simpler case that the dosage is linearly correlated to the logit

of pc,k,d, i.e. γ = 1 in the model defined by Eqn. (2.24). Using the model selection

criterion introduced in Section 2.2.3, the more general model defined by Eqn. (2.25)

has a higher log marginal likelihood (-206.84) than the restricted model (-212.71),

which indicates significant curvature in the dose-response relationship.

Figure 2.3: Estimated age and radiation-dose effects on leukemia risk
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2.6 Proofs of the Theorems

In this section, we gives the proofs of Theorem 2.3.1 and Theorem 2.3.2 respec-

tively. Before giving the proofs, we introduce some further notations. Recall that

for a function a(Y, T ) : <× [0, 1]2 → <, its expected value is denoted as E(a(Y, T )),

the square of L2 norm ‖a‖2 = Ea2(Y, T ), and the square of the empirical L2 norm
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‖a‖2
n = 1

n

∑n
i=1 a

2(Yi, Ti). For a function a(T ) : [0, 1]2 → <, similar norms can be

defined: ‖a‖2 = Ea2(T ), ‖a‖2
n = 1

n

∑n
i=1 a

2(Ti), and |a|∞ = supt∈[0,1]2 |a(t)|. For the

parameter β ∈ <k, ‖β‖2 = βTβ. For hθ(x), its first and second derivatives w.r.t.

θ are denoted as ḣθ = ∂hθ

∂θ
and Ḧθ = ∂2hθ

∂θ∂θT , respectively. Here θ ∈ <r, so ḣθ is a

r × 1 vector and Ḧθ is an r × r matrix. We write ḧT
θq· for the qth row of Ḧθ, hence,

ḧT
θq· = ∂2hθ

∂θq∂θT . The (qth, q′th) entry of Ḧθ then equals ḧθqq′ = ∂2hθ

∂θq∂θq′
. Below, we write

l0 = l(g0), l̂n = l(ĝn), f0 = f(g0), f̂n = f(ĝn), ḣ0 = ∂hθ

∂θ
|θ=θ0

, ˆ̇hn = ∂hθ

∂θ
|θ=θ̂n

, Ḧ0 =

∂2hθ

∂θ∂θT |θ=θ0
, ˆ̈Hn = ∂2hθ

∂θ∂θT |θ=θ̂n
, ḧT

0q· = ∂2hθ

∂θq∂θT |θ=θ0
, ˆ̈hT

nq· = ∂2hθ

∂θq∂θT |θ=θ̂n
, ḧ0qq′ = ∂2hθ

∂θq∂θq′
|θ=θ0

and ˆ̈hnqq′ = ∂2hθ

∂θq∂θq′
|θ=θ̂n

. In the proofs, we write the smoothing parameter λn in

(2.17) as λ2
n, partly because it is positive and partly to match the notation used by

Mammen and van de Geer (1997). Note that this implies that the orders specified

for the smoothing parameter as stated in condition (A2) becomes λn = op(n
−1/4)

and 1/λn = Op(n
k/(2k+1)).

2.6.1 Proof of Theorem 2.3.1

The main part of the proof is to demonstrate the following equation:

(1/n)
∑n

i=1Wi(γ̂n(Ti) − γ0(Ti))

‖ĝn − g0‖1−1/(2k)
n (1 + J(ĝn))1/(2k) ∨ (1 + J(ĝn))n−(2k−1)/(2(2k+1))

= Op(n
−1/2).

(2.26)

It is noticed that (2.26) has the same form as (3.7) in Mammen and van de Geer

(1997). Adapting the proof technique of Lemma 3.1 in Mammen and van de Geer

(1997), it can be shown that ‖ĝn − g0‖ = Op(λn) and J(ĝn) = Op(1), which are the

consistency results shown in Theorem 2.3.1.

The rest of the proof is devoted to proving (2.26) and is rather technical.

Readers willing to accept (2.26) can skip the rest of the proof.

We now present more technical details needed for verifying (2.26). Based on
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the form of the quasi-(log) likelihood in Eqn. (2.3), we define γg for fixed y0

γg =

∫ F (g)

y0

1

V (u)
du, g ∈ G,

and γ̂n = γĝn
=

∫ F (ĝn)

y0

1
V (u)

du, γ0 = γg0
=

∫ F (g0)

y0

1
V (u)

du.

The function γ =
∫ µ

y0

1
V (u)

du has the following properties:

d

dγ

∫ µ

µ0

u− µ0

V (u)
du = µ− µ0

d2

dγ2

∫ µ

µ0

u− µ0

V (u)
du = V (µ), (2.27)

which can be verified as follows. Note that

dγ

dµ
=

d

dµ

∫ µ

y0

V (u)−1du =
1

V (µ)
.

Since γ is monotone in µ, we get dµ
dγ

= V (µ). Then, d
dγ

∫ µ

µ0

u−µ0

V (u)
du = µ−µ0

V (µ)
V (µ) =

µ− µ0 and d2

dγ2

∫ µ

µ0

u−µ0

V (u)
du = d(µ−µ0)

dγ
= V (µ).

Next, we check the uniformly boundedness condition, |γ̂n−γ0|∞
1+J(ĝn)

= Op(1), needed

for applying Theorem 2.2 of Mammen and van de Geer (1997). This is done in the

following steps. Recall from Eqn. (2.3)

Q̄n(µ̂n) − Q̄n(µ0)

=
1

n

n
∑

i=1

(yi − µ0(Ti))

∫ F (ĝn)

F (g0)

1

V (u)
du− 1

n

n
∑

i=1

∫ F (ĝn)

F (g0)

u− µ0(Ti)

V (u)
du

=
1

n

n
∑

i=1

Wi(γ̂n(Ti) − γ0(Ti)) −
1

n

n
∑

i=1

∫ µ̂n

µ0

u− µ0(Ti)

V (u)
du. (2.28)
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The 2nd term in Eqn. (2.28) equals,

1

n

n
∑

i=1

∫ µ̂n

µ0

u− µ0(Ti)

V (u)
du

=
1

n

n
∑

i=1

{(γ̂n − γ0)[
d

dγ

∫ µ

µ0

u− µ0

V (u)
du|γ=γ0

] +
1

2
(γ̂n − γ0)

2[
d2

dγ2

∫ µ

µ0

u− µ0

V (u)
du|γ=γ∗

n
]}

(where γ∗n is between γ0 and γ̂n)

=
1

n

n
∑

i=1

[(γ̂n − γ0)(µ− µ0)|γ=γ0
+

1

2
(γ̂n − γ0)

2V (µ)|γ=γ∗
n
]

=
1

2n

n
∑

i=1

(γ̂n − γ0)
2V (µ∗

n)

and hence it follows from condition (A6) that

≥ 1

2C1

‖γ̂n − γ0‖2
n. (2.29)

So, by the Cauchy-Schwarz inequality and the inequality (2.29),

Q̄n(µ̂n) − Q̄n(µ0) ≤ (
1

n

n
∑

i=1

W 2
i )1/2‖γ̂n − γ0‖n − 1

2C1

‖γ̂n − γ0‖2
n

≤ O(1)‖γ̂n − γ0‖n − 1

2C1

‖γ̂n − γ0‖2
n. (2.30)

Since µ̂n = F (ĝn) maximizes Q̄n(F (g)) − λ2
nJ

2(g), λn = op(n
−1/4) and J(g) <∞

Q̄n(µ̂n) − Q̄n(µ0) ≥ λ2
n(J2(ĝn) − J2(g0))

≥ op(1). (2.31)

Now, we claim that ‖γ̂n − γ0‖n and ‖ĝn‖n are bounded in probability, which can be

verified as follows. From (2.30) and (2.31), we have

op(1) ≤ O(1)‖γ̂n − γ0‖n − 1

2C1

‖γ̂n − γ0‖2
n

⇒ ‖γ̂n − γ0‖n = Op(1). (2.32)

From condition (A7), we get, ∀g and g̃ ∈ G

1

C2

|g(t) − g̃(t)| ≤ |γg(t) − γg̃(t)| ≤ C2|g(t) − g̃(t)|. (2.33)

From (2.32) and (2.33), we have

‖ĝn − g0‖n = Op(1), (2.34)

‖ĝn‖n = Op(1).

We now show that |γ̂n−γ0|∞
1+J(ĝn)

= Op(1). Applying the Sobolev-embedding expression
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for the estimator of s in (2.15), we have

ĝn = hθ̂n
(x) + ŝ1(z) + ŝ2(z)

= ĝ1n(x, z) + ŝ2(z), (2.35)

where |ŝ2(z)| ≤ J(ĝn) <∞.

‖ĝ1n‖n

1 + J(ĝn)
≤ ‖ĝn‖n

1 + J(ĝn)
+

‖ŝ2‖n

1 + J(ĝn)

= Op(1). (2.36)

It follows from the fact that s1(z) = βTφ(z), assumption (A5), and inequality (2.36)

that

Op(1) ≥ ‖ĝ1n‖n ≥ K(‖θ̂n‖ + ‖β̂n‖) as n→ ∞

⇒ ‖θ̂n‖ = Op(1) ⇒ ‖θ̂n − θ0‖ = Op(1)

⇒ ‖β̂n‖ = Op(1)

⇒ ‖β̂n‖
1 + J(ĝn)

= Op(1).

Since T is a bounded set,

|ŝ1n|∞
1 + J(ĝn)

= Op(1). (2.37)

Because ‖θ̂n‖ = Op(1), we may, without loss of generality, assume that the parameter

space of θ is a bounded subset henceforth in the proof. Thus, from assumption (A4),

we have
|hθ̂n

− hθ0
|∞

1 + J(ĝn)
= Op(1). (2.38)

Upon noticing the equality |ŝ2n|∞
1+J(ĝn)

= Op(1), equations (2.37) and (2.38), we get

|ĝn − g0|∞
1 + J(ĝn)

= Op(1), (2.39)

and hence it follows from (2.33) that

|γ̂n − γ0|∞
1 + J(ĝn)

= Op(1), (2.40)

which is the uniformly boundedness condition required for applying Theorem 2.2 of

Mammen and van de Geer (1997) in the proof of convergence rates.

We now verify the bracketing condition to apply Theorem 2.2 of Mammen and

van de Geer (1997) in the proof of the consistency result.
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We first introduce some notations related to entropy and bracketing. Let

A be a subset of a (pseudo-)metric space (L , ρ), with ρ being a metric. The

covering number N(δ,A , ρ) is the minimum number of open balls of ρ-radius δ

needed for covering the subset A . A δ-bracket is a pair of functions [aL, aU ] ⊂ L

with ρ(aL, aU) < δ. The bracketing number NB(δ,A , ρ) is the minimum number of

δ-brackets needed to cover A . Let H(δ,A , ρ) = logN(δ,A , ρ), which denotes the

δ-entropy of subset A , andHB(δ,A , ρ) = logNB(δ,A , ρ) is defined as the δ-entropy

with bracketing of A .

In the derivation of the bracketing condition, we need the following Lemmas

as technical tools:

Lemma 2.6.1 Suppose a1 and a2 belong to two uniformly bounded classes of func-

tions, A1 and A2 respectively, and that for some 0 < ν1, ν2 < 2 and ∀δ1, δ2 > 0,

sup δν1

1 H(δ1,A1, | · |∞) <∞,

sup δν2

2 H(δ2,A2, | · |∞) <∞. (2.41)

where the supremum is taken over all δ1 > 0 (δ2 > 0). Then sup δν1∨ν2H(δ, {a1 ×

a2; a1 ∈ A1, a2 ∈ A2}, | · |∞) <∞

PROOF of Lemma 2.6.1: According to the definition of entropy, ∀ai ∈ Ai, i = 1, 2

and δ1, δ2 > 0,∃ aiji
∈ {aiji

, ji = 1, 2, . . . , Ni} such that |ai − aiji
|∞ < δi. From the

uniform boundedness condition of Ai and |ai − aiji
|∞ < δi, it is easy to see that ∃ a

constant C such that |ai|∞ < C and |aiji
|∞ < C.

Because of (2.41) and the inequality (with δ1 = δ/(2C) and δ2 = δ/(2C))

|a1a2 − a1j1a2j2|∞

≤|a1a2 − a1j1a2|∞ + |a1j1a2 − a1j1a2j2|∞

≤Cδ1 + Cδ2

=δ, (2.42)
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we have ∀δ > 0, ∃ a constant K such that

H(δ, {a1 × a2; a1 ∈ A1, a2 ∈ A2}, | · |∞) ≤ K1(
2C

δ
)ν1 +K2(

2C

δ
)ν2

≤ K(
1

δ
)ν1∨ν2 . (2.43)

This completes the proof of Lemma 2.6.1. �

Lemma 2.6.2 If H = {hθ; θ ∈ Θ∗} is a collection of the functions such that:

(i) Θ∗ is a bounded subset of <r

(ii) there exists a bounded function w such that

|hθ1
(x) − hθ2

(x)| ≤ w(x)‖θ1 − θ2‖ for any θ1 and θ2.

Then there exists a constant K, depending on Θ∗ and r, such that the bracketing

numbers satisfy NB(δ|w|∞, H, | · |∞) < K(diam(Θ∗)
δ

)r, ∀ 0 < δ < diam(Θ∗). Thus,

the entropy of H is of order (1
δ
)1/k.

PROOF of Lemma 2.6.2: We denote diam(Θ∗) as the diameter of Θ∗, which is de-

fined as the least upper bound of ‖θ1−θ2‖ for any θ1 and θ2 in Θ∗. We follow Example

19.7 of van der Vart (1998). Note that any bracket of the form [hθ − εw, hθ + εw] is

of bracketing size 2ε|w(x)|∞, in sup norm. If ‖θ1 − θ2‖ ≤ ε, then hθ1
− εw ≤ hθ2

≤

hθ1
+ εw. Thus, if the collection of open balls B(θj, ε), j = 1, . . . , N∗ cover Θ∗, then

the brackets [hθj
− εw, hθj

+ εw], (j = 1, . . . , N∗) cover {hθ, θ ∈ Θ∗}. Note that Θ∗

can be covered by the open balls with radius 2ε, the number of which is the order

(diamΘ∗

δ
)r. Therefore, NB(δ|w|∞, H, | · |∞) < K(diam(Θ∗)

δ
)r, ∀ 0 < δ < diam(Θ∗), and

Lemma 2.6.2 is proved. �

By Theorem 2.1 of Mammen and van de Geer (1997), for each 0 < C <∞,

sup δ1/kH(δ, {s; |s|∞ ≤ C, J(s) ≤ C}, | · |∞) <∞. (2.44)

Thus, Eqn. (2.44) gives an entropy condition for the metric space ({s; |s|∞ ≤

C, J(s) ≤ C}, | · |∞). In the proof of the convergence rates, we need to verify the
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following bracketing condition for the metric space ({ γθ−γθ0

1+J(gθ)
; gθ ∈ G, θ ∈ Θ1}, ‖ ·‖n),

lim sup
n→∞

sup
δ>0

δ1/kHB(δ, { γg − γg0

1 + J(g)
; g ∈ G , θ ∈ Θ1}, ‖ · ‖n) <∞. (2.45)

The verification is done in the following steps.

We first claim that

sup δ1/kH(δ, { s− s0

1 + J(g)
; |s− s0|∞ ≤ C, J(s) ≤ C}, | · |∞) <∞. (2.46)

Proof of (2.46): By the entropy condition given in (2.44), ∃ a constant K, ∀ δ > 0,

such that the entropy numbers satisfy

logN(δ, {s− s0; |s− s0|∞ ≤ C, J(s) ≤ C}, | · |∞) ≤ K(
1

δ
)1/k.

By the condition 0 ≤ J(s) = J(g) ≤ C, it follows that 1
1+J(g)

∈ [ 1
1+C

, 1]. Consider

the grid of points, { 1
κp
, p = 1, . . . , v} ⊆ [ 1

1+C
, 1] with the property that | 1

κp
− 1

κp−1
| ≤ τ

for each p. Clearly v = O( 1
τ
). Moreover, ∃ a constant K∗ such that ∀ τ > 0, the

entropy

logN(τ, { 1

1 + J(g)
; J(g) ≤ C}, | · |∞) ≤ logK∗ + log(

1

τ
).

When τ decreases to zero, log( 1
τ
) grows slower than ( 1

τ
)1/k, for any fixed k > 0.

Applying Lemma 2.6.1, we get

logN(δ, { s− s0

1 + J(g)
; |s− s0|∞ ≤ C, J(s) ≤ C}, | · |∞) ≤ K(

1

δ
)1/k,

hence the entropy condition in (2.46) is satisfied. �

Next we claim that

sup δ1/kHB(δ, { s− s0

1 + J(g)
; |s− s0|∞ ≤ C, J(s) ≤ C}, | · |∞) <∞. (2.47)

This claim follows from the observation that for any open ball, say, B(
sj−s0

κp
, δ), it

is a subset of the bracket [aL, aU ] where aL =
sj−s0

κ
− δ and aU =

sj−s0

κ
+ δ, and the

bracket is of size 2δ.
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Thirdly, we claim that

sup δ1/kHB(δ, { hθ − hθ0

1 + J(gθ)
; gθ ∈ G , θ ∈ Θ1}, | · |∞) <∞, (2.48)

Proof of (2.48): Applying Lemma 2.6.2, and invoking the boundedness property of

Θ1 and assumption (A4), we get

sup δ1/kHB(δ, {hθ − hθ0
; g ∈ G , θ ∈ Θ1}, | · |∞) <∞. (2.49)

Similar to (2.46), the bracketing condition (2.48) can be derived from (2.49). This

completes the proof of (2.48). �

Combining (2.47) and (2.48), we get:

sup δ1/kHB(δ, { g − g0

1 + J(g)
; g ∈ G , θ ∈ Θ1}, | · |∞) <∞. (2.50)

Since ‖ · ‖n ≤ | · |∞, a δ-brackets in the metric space (A , | · |∞) is also a δ-bracket

in the metric subset (A , ‖ · ‖n), and NB(δ,A , ‖ · ‖n) ≤ NB(δ,A , | · |∞). Therefore,

the following bracketing condition is satisfied:

lim sup
n→∞

sup
δ>0

δ1/kHB(δ, { g − g0

1 + J(g)
; g ∈ G , θ ∈ Θ1}, ‖ · ‖n) <∞. (2.51)

Hence, it follows from (2.33) that (2.45) holds.

It follows from (2.45), (2.40) and (A3) and an application of Theorem 2.2 of

Mammen and van de Geer (1997) that (2.26) holds, which completes the proof of

Theorem 2.3.1. �

2.6.2 Proof of Theorem 2.3.2

The main task of the proof is to demonstrate the following set of equations:

0 =
1

n

n
∑

i=1

Wil0(Ti)e2q(Ti)

− [E(f0l0e2qḣ
T
0 ) + op(1)](θ̂n − θ0) + op(n

−1/2), (2.52)
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where i=1,2,...,r. Note that E(f0l0e2ḣ
T
0 ) = E(f0l0e2e

T
2 ). Putting the r equations in

(2.52) in matrix form and after some algebra, we obtain

[E(f0l0e2e
T
2 ) + op(1)1r×r](θ̂n − θ0) =

1

n

n
∑

i=1

Wil0(Ti)e2(Ti) + op(n
−1/2). (2.53)

Applying (A12) and after some algebra, we obtain the asymptotic normality result

stated in Theorem 2.3.2.

Now, we proceed to rigorously demonstrate (2.52). From Theorem 2.3.1 in

Section 2.3, we get

‖ĝn − g0‖n = Op(n
−1/4) = op(1). (2.54)

Using the same arguments as in the proof of Theorem 2.3.1, we can prove that

|ĝn − g0|∞ = Op(1), and the bracketing condition supδ>0 δ
1/kHB(δ, {g − g0; g ∈

G, θ ∈ Θ1}, ‖ · ‖) < ∞. Theorem 2.3 of Mammen and van de Geer (1997) then

implies that

‖ĝn − g0‖ = op(1). (2.55)

Note that

‖ĝn − g0‖2 = E[(hθ̂n
(X̃) − hθ0

(X̃)) + (ŝn(Z̃) − s0(Z̃))]2,

where (X̃, Z̃) is independent of the data (X1, Z1), . . . , (Xn, Zn), but shares the same

distribution. Because

‖ĝn − g0‖2 = E[(θ̂n − θ0)
T ḣθ∗n + (ŝn − s0)]

2

= E[(θ̂n − θ0)
T (ḣθ∗n − E[ḣθ∗n|Z̃ = z̃]) + (θ̂n − θ0)

TE[ḣθ∗n|Z̃ = z̃]

+ (ŝn − s0)]
2

= (θ̂n − θ0)
TE[(ḣθ∗n − E[ḣθ∗n|Z̃ = z̃])(ḣθ∗n − E[ḣθ∗n|Z̃ = z̃])T ](θ̂n − θ0)

+ E[(θ̂n − θ0)
TE[ḣθ∗n|Z̃ = z̃] + (ŝn − s0)]

2,

(2.55), and assumption (A9), it follows that ‖θ̂n − θ0‖ = op(1).
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Now,

‖ŝn − s0‖ ≤ ‖ĝn − g0‖ + ‖(θ̂n − θ0)
T ḣθ∗n‖

= ‖ĝn − g0‖ + [(θ̂n − θ0)
TE[ḣθ∗nḣ

T
θ∗n

](θ̂n − θ0)]
1

2 , (2.56)

where θ∗n is some vector between θ̂n and θ0. Because of (A13) and the fact that

‖θ̂n − θ0‖ = op(1), E[ḣθ∗nḣ
T
θ∗n

] is bounded, so the second term of the right hand side

of (2.56) is op(1). Therefore, ‖ŝn − s0‖ = op(1). It follows from (A10) and the

reproducing kernel Hilbert space theory (Gu, 2002) that

sup
z∈support(Z)

|ŝn(z) − s0(z)| = op(1).

Then, (A4) and ‖θ̂n − θ0‖ = op(1) entails that |hθ̂n
−hθ0

|∞ = op(1). We may assume

that

|ĝn − g0|∞ ≤ η0, (2.57)

which is needed for using (A8).

With assumption (A11), we consider the following final-dimensional sub-models

passing through ĝn:

ĝnm(x, z) = hθ̂n+m(x) + [ŝ(z) −mT e1(z)], (2.58)

where m = (m1 . . .mq . . .mr)
T . Thus,

d

dm
[Q̄n(F (ĝnm)) − λ2

nJ
2(ĝnm)]|m=0 = 0. (2.59)

Equation (2.59) is a system of r equations:

∂

∂mq

[Q̄n(F (ĝnm)) − λ2
nJ

2(ĝnm)]|m=0 = 0 for q = 1 . . . r. (2.60)
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Consider the first term on the left hand side of (2.60)

∂

∂mq

Q̄n(F (ĝnm))m=0

=
∂

∂mq

[

1

n

n
∑

i=1

Wiγ̂nm(Ti) −
1

n

n
∑

i=1

∫ µ̂nm

µ0

u− µ0(Ti)

V (u)
du

]

m=0

=
1

n

n
∑

i=1

Wi
∂γ̂nm

∂ĝnm

dĝnm

dsq
m=0 −

1

n

n
∑

i=1

(µ̂n − µ0)
∂γ̂nm

∂ĝnm

dĝnm

dsq
m=0

=
1

n

n
∑

i=1

Wil̂n(Ti)[
ˆ̇hnq(Ti) − e1q(Zi)] −

1

n

n
∑

i=1

(µ̂n − µ0)l̂n(Ti)[
ˆ̇hnq(Ti) − e1q(Zi)]

=Iq − IIq.

where µ̂nm = F (ĝnm) and γ̂nm = γĝnm
. We also define e1q as the qth component of

e1, and similar defined are e2q, ḣ0q and ˆ̇hnq. Now,

Iq =
1

n

n
∑

i=1

Wil̂n(Ti)[
ˆ̇hnq(Ti) − e1q(Zi)]

=
1

n

n
∑

i=1

Wil̂n(Ti)[
ˆ̇hnq(Ti) − ḣ0q(Ti)] +

1

n

n
∑

i=1

Wil̂n(Ti)e2q(Ti)

= I1q + I2q.

Consider

I2q =
1

n

n
∑

i=1

Wil̂n(Ti)e2q(Ti)

=
1

n

n
∑

i=1

Wil0(Ti)e2q(Ti) +
1

n

n
∑

i=1

Wi[l̂n(Ti) − l0(Ti)]e2q(Ti)

=
1

n

n
∑

i=1

Wil0(Ti)e2q(Ti) + op(n
− 1

2 ).

That the second term in the preceding equation is op(n
− 1

2 ) can be proved by applying

Theorem 2.4 of Mammen and van de Geer (1997). To apply this theorem, we need

to show the bracketing condition

sup δ1/kHB(δ, {[y − µ0(t)]l(g(t))e2q(t); |g − g0|∞ ≤ η0, g ∈ G , θ ∈ Θ1},

‖ · ‖) <∞.

The above bracketing condition can be derived by noting (i) the bracketing condition
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for the class {l(g(t)); |g − g0|∞ ≤ η0, g ∈ G , θ ∈ Θ1} (from (A8) and Theorem 2.1

in Mammen and van de Geer (1997)), (ii) y − µ0(t) is a fixed P0−square integrable

function, and (iii) e2q(t) is a fixed bounded function. Additionally, A notice that

E[W (l(T ) − l0(T ))e2q(T )] = 0. Next consider

I1q =
1

n

n
∑

i=1

Wil̂n(Ti)[
ˆ̇hnq(Ti) − ḣ0q(Ti)]

=
1

n

n
∑

i=1

Wil0(Ti)[
ˆ̇hnq(Ti) − ḣ0q(Ti)] +

1

n

n
∑

i=1

Wi[l̂n(Ti) − l0(Ti)][
ˆ̇hnq(Ti) − ḣ0q(Ti)]

= I11q + I12q.

It follows from (A13) and Lemma 2.6.2 that the following bracketing condition holds:

sup δ1/kHB(δ, {ḣq(t) − ḣ0q(t); |g − g0|∞ ≤ η0, g ∈ G , θ ∈ Θ1}, ‖ · ‖) <∞.

Assumption (A8) implies that, l0(t) is a fixed bounded function. Therefore, the

following bracketing condition for applying Theorem 2.4 of Mammen and van de

Geer (1997) is satisfied.

sup δ1/kHB(δ, {[y − µ0(t)]l0(g(t))[ḣq(t) − ḣ0q(t)]; |g − g0|∞ ≤ η0, g ∈ G , θ ∈ Θ1},

‖ · ‖) <∞.

Using similar method for bounding the second term in I2q, we get

I11q =
1

n

n
∑

i=1

Wil0(Ti)[
ˆ̇hnq(Ti) − ḣ0q(Ti)]

= op(n
− 1

2 ). (2.61)

Applying Lemma 2.6.1 and noticing that ‖ · ‖ ≤ | · |∞, the following bracketing

condition is obtained:

sup δ1/kHB(δ, {[l(t) − l0(t)][ḣq(t) − ḣ0q(t)]; |g − g0|∞ ≤ η0, g ∈ G, θ ∈ Θ1},

‖ · ‖) <∞.

Following the same argument for bounding I11q, we obtain

I12q = op(n
− 1

2 ).
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Therefore,

Iq =
1

n

n
∑

i=1

Wil0(Ti)e2q(Ti) + op(n
− 1

2 ). (2.62)

Now, consider the decomposition:

IIq =
1

n

n
∑

i=1

(µ̂n − µ0)l̂n(Ti)[
ˆ̇hnq(Ti) − e1q(Zi)]

=
1

n

n
∑

i=1

(µ̂n − µ0)l̂n(Ti)[
ˆ̇hnq(Ti) − ḣ0q(Ti)] +

1

n

n
∑

i=1

(µ̂n − µ0)l̂n(Ti)e2q(Ti)

= II1q + II2q,

where

II1q =
1

n

n
∑

i=1

(µ̂n − µ0)l̂n(Ti)[
ˆ̇hnq(Ti) − ḣ0q(Ti)]

=
1

n

n
∑

i=1

[(ĝn − g0)f0(Ti)]l0(Ti)[
ˆ̇hnq(Ti) − ḣ0q(Ti)]

+
1

n

n
∑

i=1

[(µ̂n − µ0) − (ĝn − g0)f0(Ti)]l0(Ti)[
ˆ̇hnq(Ti) − ḣ0q(Ti)]

+
1

n

n
∑

i=1

(µ̂n − µ0)(l̂n − l0)[
ˆ̇hnq(Ti) − ḣ0q(Ti)]

= II11q + II12q + II13q.

(A13) entails the Lipschitz condition: ∃ constant C∗
1 > 0 such that |ˆ̇hnq(Ti) −

ḣ0q(Ti)| ≤ C∗
11T

r |θ̂n − θ0|. It follows from (A8), (A13) and the Cauchy-Schwarz

inequality that

|II11q| =
1

n

n
∑

i=1

|f0(Ti)||l0(Ti)||ĝn − g0||ˆ̇hnq(Ti) − ḣ0q(Ti)|

≤ C3C4C
∗
1‖(ĝn − g0)‖n1T

r |θ̂n − θ0|

= op(1)|θ̂n − θ0|.
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|II12q| =
1

n

n
∑

i=1

|(µ̂n − µ0) − (ĝn − g0)f0(Ti)||l0(Ti)||ˆ̇hnq(Ti) − ḣ0q(Ti)|

=
1

n

n
∑

i=1

|(ĝn − g0)(fg∗n − f0)||l0(Ti)||ˆ̇hnq(Ti) − ḣ0q(Ti)|

≤ C3C4C
∗
1‖(ĝn − g0)‖2

n1T
r |θ̂n − θ0|

= op(1)|θ̂n − θ0|.

Similarly,

|II13q| ≤ op(1)|θ̂n − θ0|.

Next consider

II2q =
1

n

n
∑

i=1

(µ̂n − µ0)l̂n(Ti)e2q(Ti)

=
1

n

n
∑

i=1

[(ĝn − g0)f0(Ti)]l0(Ti)e2q(Ti)

+
1

n

n
∑

i=1

[(µ̂n − µ0) − (ĝn − g0)f0(Ti)]l0(Ti)e2q(Ti)

+
1

n

n
∑

i=1

(µ̂n − µ0)(l̂n − l0)e2q(Ti)

= II21q + II22q + II23q.

Observe that

ĝn(x, z) − g0(x, z)

=ĥn(x) − h0(x) + ŝn(z) − s0(z)

=ḣT
0 (θ̂n − θ0) + (ḣθ∗n − ḣ0)

T (θ̂n − θ0) + (ŝn(z) − s0(z)).
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Now,

II21q =
1

n

n
∑

i=1

[(ĝn − g0)f0(Ti)]l0(Ti)e2q(Ti)

=
1

n

n
∑

i=1

f0(Ti)l0(Ti)e2q(Ti)ḣ
T
0 (θ̂n − θ0)

+
1

n

n
∑

i=1

f0(Ti)l0(Ti)e2q(Ti)(ḣθ∗n − ḣ0)
T (θ̂n − θ0)

+
1

n

n
∑

i=1

f0(Ti)l0(Ti)e2q(Ti)(ŝn(Zi) − s0(Zi))

= (E(f0l0e2qḣ
T
0 ) + op(1))(θ̂n − θ0) + op(n

1/2).

Similar to the approach for bounding I2q, the op(n
1/2) term above is obtained by

applying Theorem 2.4 of Mammen and van de Geer (1997). Also,

|II22q| ≤ C4
1

n

n
∑

i=1

(ĝn − g0)
2|l0(Ti)e2q(Ti)|

≤ C3C4‖ĝn − g0‖2
n

= op(n
−1/2).

Similarly,

|II23| ≤ op(n
−1/2).

Therefore,

IIq = (E(f0l0e2qḣ
T
0 ) + op(1))(θ̂n − θ0) + op(n

−1/2). (2.63)

The second term in equation(2.59),

d

dsq

λ2
nJ

2(ĝnm)|m=0 ≤ 2λ2
nJ(ĝn)J(e1q) = op(n

−1/2). (2.64)

Taking (2.59), (2.62), (2.63) and (2.64) together yields (2.52). �

2.7 Assessing the Approximation of the Asymp-

totic Covariance

In Theorem 2.3.2, we show the asymptotic normality of the penalized estimator

θ̂n:
√
n(θ̂n − θ0) N(0,Σ),
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where Σ = [E(f0l0e2e
T
2 )]−1, f = Ḟ (g), l = f/V , e2(x, z) = ḣ0(x)−e1(z) and e1(z) =

E(ḣ0(X)f0(T )l0(T )|Z = z)/E(f0(T )l0(T )|Z = z). As Σ depends on intractable

conditional expectations, we provide an alternative approach to approximating the

covariance matrix of the estimator based on the inverse of the observed Fisher

information. The Fisher information matrix has the following form:

I =





−B∗TGδB
∗ + nλS −B∗TGδḢθ

−Ḣθ
T
GδB

∗ −Ḣθ
T
GδḢθ − Ḧ

δθ



 ,

where Gδ = Diag{δ̇i/ġ(µi)} with δi = (y − µi)/[φV
∗(µi)ġ(µi)], δ̇i = ∂δi/∂µi and

the conditional variance function V is reparameterized as φV ∗(µi); B
∗ is the design

matrix of the spline basis for the smooth functions that are part of the conditional

mean function, so the estimator of s(z) can be written as a linear combination of

the columns of B∗; Ḣθ is an n × r matrix whose (i, q)th element equals Ḣθiq =

∂h(xi)/∂θq; and Ḧ
δθ represents an r × r matrix with its (q, q′)th element equal to

Ḧ
δθqq′ =

∑n
i=1 δi[∂

2h(xi)/∂θq∂θq′ ].

By assumption (A1), the smooth function s belongs to the Sobolev class

{s :
∫ 1

0
(s(k)(z))2dz < ∞}, which is a reproducing kernel Hilbert space (Gu, 2002).

Therefore, the function s can be written as:

s(z) = 〈Rz(·), s(·)〉

= s1(z) + s2(z),

where Rz(·) is the reproducing kernel; s1(z) =
∑k

j=1 βjz
j−1 is the projection of s(z)

onto the space of polynomials of degree less than k, i.e. H0 = {s : s(k) = 0} with

an inner product 〈s, t〉0 =
∑k

j=1 s
(j−1)t(j−1); and s2(z) is the projection of s(z) onto

the orthogonal complement of H0, i.e.

H1 = {s : s(j−1)(0) = 0, j = 1, . . . , k,

∫ 1

0

(s(k)(z))2dz <∞}

with an inner product 〈s, t〉1 =
∫ 1

0
s(k)t(k)dz. Further decomposing the s2(z), s(z)
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can be written as

s(z) =
k

∑

j=1

βjz
j−1 +

k∗
∑

j=k+1

βjR1(z, zj) + %(z),

where % ∈ H1 	 {s : s =
∑k∗

j=k+1 βjR1(·, zj)}, the orthogonal complement of

the latter space in H1, and R1 is the reproducing kernel for the space {s : s =
∑k∗

j=k+1 βjR1(·, zj)}. Additionally, we denote the coefficient β = (β1 . . . βk)
T , β+ =

(βk+1 . . . βk∗)T , and β∗ = (β, β+)T . Thus, s can be rewritten as:

s(z) = B∗β∗ + %(z), (2.65)

where the first k columns of B∗ correspond to the design matrix induced by the

polynomial covariates zj−1 for j = 1, . . . , k, and the other columns correspond to

the design matrix induced by the covariates R1(z, zj) for j = (k + 1), . . . , k∗. Thus

B∗ can be decomposed into the block matrix [B,B+], where B and B+ have k and

k+ = k∗ − k columns respectively. The dimension of the space H0 ⊕ {s : s =
∑k∗

j=k+1 βjR1(·, zj)}, k∗, increases with the sample size, n, and k∗ = O(nν), 0 < ν ≤

1. Moreover, 〈zj−1, %〉 = 0, j = 1, . . . , k and 〈R1(·, zj), %〉 = 0, j = (k + 1), . . . , k∗, so

B∗T% = 0, and similarly, BTB+ = 0.

Below, we show the effectiveness of the approximation of the asymptotic

variance-covariance matrix by inverting the Fisher information in a simple Gaussian

case with i.i.d errors of zero mean and constant variance σ2. Because of the identity

link and Gaussian family, f = 1, l = 1/σ2 and e1(z) = E(ḣ0(X)|Z = z). Thus the

asymptotic variance matrix can be simplified as:

Σ = σ2E−1{[ḣ0(x) − E(ḣ0(X)|Z = z)][ḣ0(x) − E(ḣ0(X)|Z = z)]T} (2.66)

= σ2E−1[Cov(ḣ0(X)|Z = z)].

For this simple Gaussian case, δi = (yi − µi)/σ
2 and Gδ = (−1/σ2)I in the Fisher

information expression. Therefore, the observed Fisher information matrix equals:

I =
1

σ2





B∗TB∗ + nλσ2S B∗T Ḣθ

Ḣθ
T
B∗ Ḣθ

T
Ḣθ − σ2Ḧ

δθ



 =
1

σ2





I11 I12

I21 I22



 ,



40

evaluated at β∗ = β̂∗
n and θ = θ̂n.

To derive the covariance approximation of the estimators based on the Fisher

information, we apply the following matrix identities for the Fisher information

matrix:




I11 I12

I21 I22





−1

=





I−1
11 − I−1

11 I12(I22 − I21I−1
11 I12)

−1I21I−1
11 −I−1

11 I12(I22 − I21I−1
11 I12)

−1

−(I22 − I21I−1
11 I12)

−1I21I−1
11 (I22 − I21I−1

11 I12)
−1



 ,

(I1 + auvT )−1 = I−1
1 − aI−1

1 uvTI−1
1 /(1 + avTI−1

1 u), (2.67)

where I11 and I1 are nonsingular matrices, and I22 is possibly singular matrix; a is

a scaler, u and vT are column and row vectors, respectively.

The approximate variance-covariance matrix of θ̂n based on the Fisher infor-

mation is the lower right block of I−1, which can be expressed as

σ2(I22 − I21I−1
11 I12)

−1

=σ2[(ḢT
θ̂n
Ḣθ̂n

− σ2Ḧ
δ θ̂n

) − ḢT
θ̂n
B∗(B∗TB∗ + nλσ2S)−1B∗T Ḣθ̂n

]−1

=σ2{ḢT
θ̂n
Ḣθ̂n

− σ2Ḧ
δ θ̂n

− ḢT
θ̂n
B(BTB)−1BT Ḣθ̂n

−

ḢT
θ̂n
B+n

−1[n−1(BT
+B+) + λσ2S+]−1BT

+Ḣθ̂n
}−1. (2.68)

Note that ḢT
θ̂n
B∗ in the first equality of Eqn. (2.68) can be decomposed into the

block matrix [ḢT
θ̂n
B, ḢT

θ̂n
B+]. Additionally, because of the orthogonality between B

and B+, we find that

B∗TB∗ =





BTB 0

0 BT
+B+



 .

Since β∗TSβ∗ = βT
+S+β+ denotes the positive penalty component in the penalized

likelihood, and in practice, we use

S =





0 0

0 S+



 .

Thus, the last equality in Eqn. (2.68) follows from the above decompositions of
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ḢT
θ̂n
B∗(B∗TB∗ + nλσ2S)−1B∗T Ḣθ̂n

.

We apply a matrix inequality and the asymptotic equivalence of sequences

of matrices to show that certain terms in Eqn. (2.68) are negligible. For matrix

comparison, write A ≥ G if A = G + G+, where A and G are two positive definite

matrices, and G+ is a non-negative definite matrix. By dual conjunctive diagonal-

ization, there exists a matrix P such that P TGP = I and P TG+P = D, where I is

an identity matrix, and D = Diag(di) with non-negative di for i = 1, . . . , the dimen-

sion of G+. It is obvious that P TAP = I + D, and then A−1 = P (I + D)−1P T =

PDiag[1/(1 + di)]P
T . Thus, G−1 − A−1 = PDiag[di/(1 + di)]P

T , which is non-

negative definite, hence A−1 ≤ G−1. We also present the technical details related to

the asymptotic behavior of matrices. Let αi be the eigenvalues of a matrix U and

ηi ≥ 0 be the eigenvalues of the symmetric nonnegative definite matrix UTU . The

strong norm of matrix U is defined by:

‖U‖ = max
z:zT z=1

[zTUTUz]1/2,

and

‖U‖2 = max
i
ηi.

The weak norm of U = [ai,j]n×n is defined by

|U | = (
1

n

n−1
∑

i=0

n−1
∑

i=0

|ai,j|2)1/2

= (
1

n

n−1
∑

i=0

ηi)
1/2.

Two sequences of n × n matrices {Un} and {Vn} are asymptotically equivalent

if Un and Vn are uniformly bounded in strong norm and limn→∞ |Un − Vn| = 0.

The asymptotic equivalence between Un and Vn is denoted as Un ∼ Vn in this

section. Asymptotic equivalence of {Un} and {Vn} implies that for any vector bn of

appropriate dimension,

bTnUnbn = bTnVnbn + o(
√
n|bn|2), (2.69)

by Cauchy-Schwartz inequality. The latter property is made use below to simplify
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(2.68).

In this section, we use [aij]k1×k2
to denote a k1×k2 matrix with the (i, j)th en-

try equal to aij. As defined previously, B+ is a n× k+ matrix [R1(zi, zj)]n×k+
. With

the inner product 〈R1(zi, ·), R1(·, zj)〉1 =
∫ 1

0
R

(k)
1 (zi, z)R

(k)
1 (z, zj)dz = R1(zi, zj), the

term BT
+B+/n equals a k+×k+ matrix [R1(zi, zj)+εij]k+×k+

, where each εij = o(1/n).

Since the penalty
∫ 1

0
(s(k)(z))2dz for the penalized likelihood estimate can be repre-

sented by βT
+S+β+/2, the penalty matrix S+ is a k+ × k+ matrix [R1(zi, zj)]k+×k+

.

Let ε∗ = max|εij|, and ε∗ → 0 as n→ ∞. The term n−1(BT
+B+)+λσ2S+ in the last

equality of Eqn. (2.68) satisfies the following inequality:

n−1(BT
+B+) + λσ2n−1(BT

+B+) − λσ2ε∗1k+
1T

k+
≤ n−1(BT

+B+) + λσ2S+ ≤

n−1(BT
+B+) + λσ2n−1(BT

+B+) + λσ2ε∗1k+
1T

k+
, (2.70)

where 1k+
is a k+×1 vector of 1, so 1k+

1T
k+

is a k+×k+ matrix with all the elements

equal to 1. Inverting (2.70) yields the following inequality:

[n−1(BT
+B+) + λσ2n−1(BT

+B+) − λσ2ε∗1k+
1T

k+
]−1 ≥ [n−1(BT

+B+) + λσ2S+]−1 ≥

[n−1(BT
+B+) + λσ2n−1(BT

+B+) + λσ2ε∗1k+
1T

k+
]−1.

Thus, the last quadratic form in Eqn. (2.68), ḢT
θ̂n
B+n

−1[n−1(BT
+B+)+λσ2S+]−1BT

+Ḣθ̂n
,

has the upper and lower bounds as follows:

ḢT
θ̂n
B+n

−1[n−1(BT
+B+) + λσ2n−1(BT

+B+) ∓ λσ2ε∗1k+
1T

k+
]−1BT

+Ḣθ̂n

=ḢT
θ̂n
B+n

−1{n(BT
+B+)−1

1 + λσ2
±

[
n(BT

+B+)−1

1 + λσ2
λσ2ε∗1k+

1T
k+

n(BT
+B+)−1

1 + λσ2
]/[1 ∓ 1T

k+

λσ2ε∗n(BT
+B+)−1

1 + λσ2
1k+

]}BT
+Ḣθ̂n

=ḢT
θ̂n
B+

(BT
+B+)−1

1 + λσ2
{n−1(BT

+B+) + λσ2n−1(BT
+B+)±

(λσ2ε∗1k+
1T

k+
)/[1 ∓ 1T

k+

λσ2ε∗n(BT
+B+)−1

1 + λσ2
1k+

]}n(BT
+B+)−1

1 + λσ2
BT

+Ḣθ̂n
. (2.71)

The first equality in Eqn. (2.71) is derived by applying the inverting rule in Eqn. (2.67)

to [n−1(BT
+B+) + λσ2n−1(BT

+B+)∓ λσ2ε∗1k+
1T

k+
]−1. According to assumption (A2),

λ = op(n
−1/2), λσ2 is negligible relative to the constant 1, so the term λσ2n−1(BT

+B+)
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in the last equality of Eqn. (2.71) is negligible relative to n−1(BT
+B+). The argument

can be made more rigorous as follows. Recall that n−1(BT
+B+) = [R1(zi, zj)]k+×k+

+

[εij]k+×k+
. We make use of the asymptotic equivalence between [εij]k+×k+

and

ε∗1k+
1T

k+
to drop (λσ2ε∗1k+

1T
k+

)/[1 ∓ 1T
k+

λσ2ε∗n(BT
+

B+)−1

1+λσ2 1k+
] from the last equality

of Eqn. (2.71). Since εij = o(n−1) and k+ < n, the strong norm ‖[εij]k+×k+
‖ < ∞.

The only eigenvalue of ε∗1k+
1T

k+
→ 0 as n → ∞, so the strong norm ‖ε∗1k+

1T
k+
‖ <

∞. Also, the weak norm of the difference satisfies limn→∞|[εij − ε∗]k+×k+
| → 0.

Then [εij]k+×k+
∼ ε∗1k+

1T
k+

. Using the properties of the asymptotic equivalence,

as well as the extra assumption that 1T
k+

λσ2ε∗n(BT
+

B+)−1

1+λσ2 1k+
is bounded away from

1 as n → ∞, (λσ2ε∗1k+
1T

k+
)/[1 ∓ 1T

k+

λσ2ε∗n(BT
+

B+)−1

1+λσ2 1k+
] is negligible relative to

n−1(BT
+B+), because λ = o(n−1/2) and in view of (2.69). Therefore, the quadratic

form ḢT
θ̂n
B+n

−1[n−1(BT
+B+) + λσ2S+]−1BT

+Ḣθ̂n
can be simplified as

ḢT
θ̂n
B+(BT

+B+)−1BT
+Ḣθ̂n

by dropping the negligible terms. Furthermore, by the law

of large number, the term σ2Ḧ
δ θ̂n

in Eqn. (2.68) is also negligible with

E[δ|(x, z)]|β∗
0
,θ0

= E[(y − µ)/σ2|(x, z)]|β∗
0
,θ0

= 0.

After dropping the negligible terms in Eqn. (2.68), the covariance approxima-

tion of θ̂n can be simplified as:

σ2(I22 − I21I−1
11 I12)

−1 = σ2{ḢT
θ̂n
Ḣθ̂n

− ḢT
θ̂n
B∗(B∗TB∗)−1B∗T Ḣθ̂n

}−1. (2.72)

Next, we consider the conditional expectation of Ḣθ̂n
given z. The conditional

expectation E[(∂hθ̂n
(X))/(∂θ)|Z = z] consists of E[(∂hθ̂n

(X))/(∂θq)|Z = z] as its

columns. We assume that E[(∂hθ̂n
(X))/(∂θq)|Z = z] belongs to the Sobolev class,

so this conditional expectation can be written as B∗β∗
hq

+ %hq
in the form of (2.65).

Also, B∗T%hq
= 0. Recalling that Ḣθ̂n

comprises the first derivatives of hθ̂n
, write
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(∂hθ̂n
(X))/(∂θq), q = 1, . . . , r as follows:

(∂hθ̂n
(X))/(∂θq) = E[(∂hθ̂n

(X))/(∂θq)|Z = z]

+ {(∂hθ̂n
(X))/(∂θq) − E[(∂hθ̂n

(X))/(∂θq)|Z = z]}

= (B∗β∗
hq

+ %hq
) + {(∂hθ̂n

(X))/(∂θq) − E[(∂hθ̂n
(X))/(∂θq)|Z = z]}.

The element {(∂hθ̂n
(X))/(∂θq) − E[(∂hθ̂n

(X))/(∂θq)|Z = z]} is orthogonal to the

space spanned by the columns of B∗. Since B∗T%hq
= 0,

B∗(B∗TB∗)−1B∗T (∂hθ̂n
(X))/(∂θq) = B∗β∗

hq
= E[(∂hθ̂n

(X))/(∂θq)|Z = z] − %hq
,

and Eqn.(2.72) can be expressed as

σ2(I22 − I21I−1
11 I12)

−1

= σ2[ḢT
θ̂n
Ḣθ̂n

− {E[(∂hθ̂n
(X))/(∂θ)|Z = z] − %h}T{E[(∂hθ̂n

(X))/(∂θ)|Z = z] − %h}]−1

= σ2{ḢT
θ̂n
Ḣθ̂n

− E[(∂hθ̂n
(X))/(∂θ)|Z = z]T

θ̂n
E[(∂hθ̂n

(X))/(∂θ)|Z = z]θ̂n
+ %T

h%h}−1,

where the matrix %h comprises columns %hq
’s.

Since the dimension of H0⊕{s : s =
∑k∗

j=k+1 βjR1(·, zj)}, k∗, increases with n,

the last term in the previous equation, %T
h%h, is negligible for large samples. Using

the consistency of θ̂n derived in Theorem 2.3.1 and the uniform law of large number,

we find that the covariance matrix of
√
n(θ̂n − θ0) based on the Fisher information

converges to

σ2E−1{[ḣ0(x) − E(ḣ0(X)|z)][ḣ0(x) − E(ḣ0(X)|z)]T}, (2.73)

as n → ∞, which completes the justification of computing the limiting covariance

matrix of θ̂ via inverting the Fisher information.

2.8 Justification of the Laplace Approximation

of the Marginal Likelihood

As discussed in Section 2.2.3, the parameter in the PPGAM, ζT , can be further

decomposed into (βT , βT
+, θ

T ), where β and β+ are the parameters corresponding to

the bases of the s(z) with zero penalty and positive penalty, respectively, and θ is
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the parameter in the parametric nonlinear component. Using the prior

P (ζ|Mj) =
|nλS+|1/2

(2π)k+/2
exp(−1

2
nλβT

+S+β+)P (β, θ|Mj),

the marginal likelihood can be written as

P (D|Mj) =
|nλS+|1/2

(2π)k+/2

∫

exp{nl̄p(ζ)}P (β, θ|Mj)dζ.

We apply Laplace approximation to rewrite the integral in (2.11) for an explicit

marginal likelihood expression, and the approximation approach needs a few steps

for justification.

We assume the well-separated condition for the maximum of exp{l̄p(ζ)}, i.e.

with probability approaching 1 as n → ∞, ∀ ε > 0, ∃0 < % < exp{l̄p(ζ)}, such

that Γ̂ = {ζ; exp{l̄p(ζ)} > %} ⊆ Dε = {ζ; ‖ζ − ζ̂‖ ≤ ε}. Define expΓ̂{l̄p(ζ)} as a

function agreeing with exp{l̄p(ζ)} on the subset Γ̂, and zero’s otherwise. By the

well-separated maximum condition,

exp{nl̄p(ζ)} − expΓ̂{nl̄p(ζ)} ≤ %n.

So, taking the integral
∫

Γ̂

exp{nl̄p(ζ)}P (β, θ|Mj)dζ

≤
∫

exp{nl̄p(ζ)}P (β, θ|Mj)dζ ≤
∫

Γ̂

exp{nl̄p(ζ)}P (β, θ|Mj)dζ + %n

∫

exp{nl̄p(ζ)}P (β, θ|Mj)dζ

≤
∫

Γ̂

exp{nl̄p(ζ)}P (β, θ|Mj)dζ[1 + %n/

∫

Γ̂

exp{nl̄p(ζ)}P (β, θ|Mj)dζ] (2.74)

Since

[

∫

Γ̂

exp{nl̄p(ζ)}P (β, θ|Mj)dζ]
1/n ≥ E

1/n

Γ̂
[exp{nl̄p(ζ)}] → sup

Γ̂

exp{l̄p(ζ)}

= sup exp{l̄p(ζ)}

> %,

we get

[1 + %n/

∫

Γ̂

exp{nl̄p(ζ)}P (β, θ|Mj)dζ] → 1. (2.75)
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Using (2.74) and (2.75), we obtain

log

∫

exp{nl̄p(ζ)}P (β, θ|Mj)dζ = log

∫

Γ̂

exp{nl̄p(ζ)}P (β, θ|Mj)dζ + op(1)

Applying Taylor expansion of l̄p(ζ) overDε around the penalized likelihood estimator

ζ̂, l̄p(ζ) = l̄p(ζ̂)−1/2(ζ− ζ̂)THl̄p(ζ̃)(ζ− ζ̂), where Hl̄p is the negative Hessian matrix

of the normalized penalized likelihood, l̄p; and ζ̃ is between ζ and ζ̂, so ‖ζ̃ − ζ̂‖ ≤ ε.

Since ε is arbitrary, so we can find an ζ̃ to satisfy logHl̄p(ζ̃) = logHl̄p(ζ̂) + op(1).

Using the similar prior assumption for P (β, θ|Mj) as Schwarz (1978), we find that

log

∫

Γ̂

exp{nl̄p(ζ)}P (β, θ|Mj)dζ

=nl̄p(ζ̂) −
1

2
log |Hl̄p(ζ̂)| +

k∗ + r

2
[log(2π) − log(n)] +Op(1).

Thus,

logP (D|Mj) =lp(ζ̂) +
k∗ + r − k+

2
log(2π) − k∗ + r

2
log(n) − 1

2
log{|Hl̄p(ζ̂)|}

+
1

2
log |nλS+| +Op(1)

=lp(ζ̂) +
k∗ + r − k+

2
log(2π) − 1

2
log{|H(ζ̂)|} +

1

2
log |nλS+| +Op(1),

where H is the negative Hessian matrix of the penalized likelihood, lp.
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CHAPTER 3

HATCHDATE ANALYSIS OF POLLOCK LARVAE

3.1 Background

Marine fish populations are generally subject to severe annual fluctuations,

due to strong environmental effects on spawning and survival processes (Bailey and

Macklin, 1994). Marine environmental conditions can be highly variable, with oc-

casional drastic changes brought about by, for example, (climate) regime shifts, as

well as natural and/or man-made interventions such as algae blooms or oil spills

(Chan, 2003). Regime shifts and interventions, however, provide opportunities for

assessing the resilience of fish populations to severe perturbations (Chan, 2003).

Gaining quantitative understanding of environmental effects or intervention effects

on larval fish survival is, moreover, important in stock forecasting with regards to

harvest versus environment effects. Key elements to understanding these effects can

be found in historical records of patterns in birth(hatch)date distributions of fish

larvae collected in fisheries monitoring surveys (Bailey and Macklin, 1994), but lack

of suitable analytical methodologies has left this cache of information largely unex-

plored. The shape and height of the annual hatchdate frequency distribution may be

dynamically altered by events influencing the processes of spawning, hatching and

larval survival, which form the basis for inference on how environmental conditions

shape the early dynamics of larval fish. Here, we demonstrate a general statistical

framework for untangling various environmental effects and intervention effects on

spawning and larval survival using hatchdate data and the PPGAM.

Walleye pollock (Theragra chalcogramma) is a gadid species that is widely

distributed across the North Pacific Ocean; it is currently the world’s second largest

fishery and a key species of the Gulf of Alaska (GOA) and other ecosystems, both as
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prey and predator (Ciannelli et al., 2005). The GOA pollock population experienced

a rapid increase in the 1970s and early 1980s, but recently has been near collapse,

having reached about 22% of its estimated unfished biomass (Dorn et al., 2008a).

In the western GOA pollock spawning is localized at specific spawning grounds

during restricted periods. The majority of spawning occurs in a deep sea valley,

Shelikof Strait, during the first two weeks in April. Eggs take about 2 weeks to

hatch and larvae drift in the Alaska Coastal Current, where they may be retained

by eddies, transported onto the continental shelf, or swept offshore into the swift-

flowing Alaskan Stream. Shelikof Strait is at the center of storm activity in the GOA,

and considerable year-to-year variability of environmental conditions is experienced

there. Larvae have been sampled in surveys commencing in late May since 1981.

Based on counts of daily growth increments on their otoliths (ear stones), the ages

of pollock larvae collected in late May have been determined and are used here to

estimate the annual hatchdate frequency of the population.

The proposed methodology applied to 19 years of annual hatchdate abundance

data enabled us to reveal rich hidden information in these hatchdate data about the

environmental effects on larval dynamics (Fig. 3.1), similar to dendrochronolgy used

in analyzing the role of events and climate in tree and forest dynamics (Abrams et al.,

2000). Some intertwined intervention effects may have influenced pollock in the

GOA in 1989/90, as acoustic survey estimates of the Shelikof spawning population

differed markedly from those of age structured stock assessment analysis models in

those years (Dorn et al., 2008a) and both the Exxon Valdez oil spill and a shift in

the Pacific Decadal Oscillation (PDO) were observed, whose intervention effects are

assessed below.
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Figure 3.1: Log abundance of caught pollock larvae hatched over the hatch dates.
Logarithm of pollock abundances hatched over various hatchdates (in Julian dates),
with the fitted log abundance curves derived from the fitted model defined by (3.1)
(black curves) superimposed on the diagrams. Outliers are marked as x’s. Also
imposed on the diagrams are the fitted values with the SSTB effects omitted (SST
effects on spawning and hatching; red curves) and the fitted values with SSTA
effects omitted (SST effects on larval survival; blue curves). The yearly average
SSTB and SSTA are pictorially represented by two thermometers where the red bar
is proportional to the average annual SSTB whereas the blue bar is proportional to
the yearly average SSTA.
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3.2 Data

Larval pollock abundance and hatchdate data were obtained from annual sur-

veys of Shelikof Strait in late May-early June from 1981 to 2001. Generally sampling

began near Unimak Pass and continued along the southern side of the Alaska Penin-

sula to northeast of Kodiak Island. Sampling was done with bongo frames equipped

with a 500 m mesh plankton netting from 100 m to surface. Otoliths were dissected

out and daily increments counted under a microscope following protocols described

in Yoklavich and Bailey (1990). Age frequencies were determined and used to esti-

mate population hatchdate distribution (hatchdate = survey date-age) (see Hinckley

et al. (1993)). Age frequencies from each sample were standardized to the mean sur-

vey date (Bailey et al., 1996). The log abundances of pollock larvae were plotted

against their hatchdates year by year in Fig. 3.1, with the raw data denoted by open

circles. Several covarites were derived from 4 environmental variables, namely, drift

out of GOA (Transport), (anomalous) sea surface temperature (SST), (anomalous)

surface wind speed in Shelikof Strait (WindS) and the PDO. For untangling the envi-

ronmental effects on spawning/hatching and larval survival, we generally computed

2 auxiliary variables from each of Transport, SST and WindS by averaging each over

(i) thirty days before the hatchdate, and (ii) the period between the hatchdate and

the catchdate. For assessing how large-scale climatic pattern may alter the shape

and/or height of the pollock’s hatchdate frequency distribution, we also computed

the mean anomolous PDO levels from January to March, the three-month period

before the general pollock spawning. The biological factors consisted of the pollock

spawning biomass and its age structure.
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3.3 The Model

The baseline hatchdate distribution (as determined by the underlying spawn-

ing distribution) may be specified as some discrete probability distribution denoted

by exp(s(t)) which equals the probability that a larva is hatched on day t. As the

functional form of s(t) is unknown, it is specified as a nonparametric, smooth func-

tion in t. Assuming a log-logistic distribution for the life-time distribution of a larva,

the baseline probability that a larva survives k or more days equals 1/[1 + (λk)γ] ,

where γ > 0 is the shape parameter of the distribution and the reciprocal of λ > 0 is

the scale parameter, specifically the median life expectancy. An important property

of the log-logistic distribution is its ability to capture non-monotone hazard rate.

Indeed, for the log-logistic distribution with γ > 1, its hazard function, whose value

at k ≥ 0 equals the probability of instantaneous death given survival for at least

k days, is unimodal. On the other hand, for γ ≤ 1, the hazard function is mono-

tone decreasing. Let exp(β0) be the catch probability, assumed constant over the

study period. These baseline probabilities describe the situation in a typical year

in which the probability that a larva, spawned on day t survived for more than k

days and caught on day t + k equals exp(s(t)) exp(β0)/[1 + (λk)γ]. However, both

the hatching and survival processes are influenced by environmental conditions, so

modifications are needed. First, young and older spawners may have different egg

productivity and spawning time distributions resulting in a mixture of hatchdate

distributions. Let αy,a be the proportion of group-a in year y (only 2 groups are

considered with the group-1 consisting of young (4 to 7 years old) spawners and the

group-2 the 8 years or older fish). We assume that, on the log-scale, the baseline

probability that a larva is hatched on day t of year y is (approximately) propor-

tional to exp(αy,1s1(t) + αy,2s2(t)) where the hatchdate distribution of eggs from

the group-a equals sa(t), a = 1, 2 on the log-scale, up to some additive constant.
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Second, environmental effects on spawning and hatching can alter the height uni-

formly and/or the shape of the hatching distribution on the log-scale so that the

probability of hatching on day t of year y is proportional to:

exp[αy,1s1(t) + αy,2s2(t) +

p1
∑

j=1

By,jsBj(t) +

p
∑

j=p1+1

s(Bt,y,j)],

where By,1, . . . , By,p1
are p1 yearly environmental factors that alter the shape (and

height) of the hatching distribution through By,jsBj(t), j = 1, . . . , p1, and

Bt,y,p1+1, . . . , Bt,y,p are p − p1 environmental covariates over a period of thirty days

prior to day t of year y that alter the height of the hatching distribution. The

function sBj(t) can be interpreted as the (additive) change in the (log) hatchdate

frequency distribution per unit increase in the covariate Bj. The functions s, with

distinct arguments, are generally distinct smooth functions. Because the functional

forms of the environmental effects are generally unknown, they are specified as

smooth functions. Similarly, we nonparametrically model the environmental ef-

fects on survival multiplicatively so that the (conditional) probability that a larva,

hatched on day t of year y lived for k or more days equals

exp[

q
∑

l=1

s(At,y,l)]/[1 + (λk)γ],

where At,y,1, . . . , At,y,q are q environmental variables measured over the period be-

tween day t when the larva was hatched and day t+k of year y when it was caught.

The effects of an intervention in year 1989 on the survival of larvae can be modeled

by keeping the shape parameter of the log-logistic distribution fixed but changing

the parameter λ. The parameter λ in the survival function for 1989 may differ

from the baseline by the multiplicative constants (1 + ψ1989). For −1 < ψ1989 ≤ 0,

the hazard rates in 1989 are lower than the baseline, whereas ψ1989 corresponds

to elevated hazard rates in 1989. For ψ1989 = 0, there is no intervention effects.

We postulate that the intervention effect after 1989 may diminish geometrically so

that the λ parameter in the mth year after 1989 is modified by the multiplicative
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coefficient (1 + φmψ1989). Note that for 0 < φ < 1, the intervention effects decay

geometrically, whereas the case φ = 0 implies no after-effects and the case φ = 1 sig-

nifies permanent, constant intervention effects. Altogether, based on the preceding

consideration, we formulate the following model:

lt,y,k =ny + αy,1s1(t) + αy,2s2(t) +

p1
∑

j=1

By,jsBj(t) +

p
∑

j=p1+1

s(Bt,y,j)

− log(1 + [(1 + φy−1989ψ19891(y≥1989))λk]
γ) +

q
∑

l=1

s(At,y,l) + εy,t,k, (3.1)

where lt,y,k is the log abundance of the captured larval pollock that were hatched

in day t of year y, and caught on day t + k, and ny is the log spawning biomass in

year y; 1(·) is the dummy variable for the expression within the parentheses; εy,t,k

are uncorrelated, normally distributed errors of zero mean and identical variance.

Note that the catching probability parameter β0 and the age-specific productivity

factors are absorbed into the hatchdate functions sa. All other smooth functions

without subscripts are centered to have zero mean over the data.

The model defined by Eqn. (3.1) and its variants are instances of the PPGAM

can be fitted by the method of penalized maximum likelihood. Based on marginal

likelihood, the following model is found to be most consistent with the data:

ly,t,k =ny + αy,1s1(t) + αy,2s2(t) + PDOBysPDOB(t) + s(SSTBt,y) + s(WindSBt,y)

− log(1 + [(1 + φy−1989ψ19891(y≥1989))λk]
γ) + s(TransAt,k,y) + s(SSTAt,k,y)

+ s(WindSAt,k,y) + εy,t,k, (3.2)

where PDOBy equals the mean anomalous PDO level from January to March of year

y; SSTB and SSTA are the 30 day average sea surface temperature anomalies before

the hatchdate and the average sea surface temperature anomalies from the hatchdate

to the catchdate respectively. WindSB, WindSA and TransA are defined similarly.

Generally, the last letter B (A) in a variable name stands for before (after) hatching.

Model diagnostics suggest that the fitted model defined by Eqn. (3.2) provides a
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good fit to the data after removing 4 outliers, marked as “x” in Fig. 3.1.

3.4 Model Interpretation and Model Diagnos-

tics

Fig. 3.2 plots the additive effects of the environmental factors on the spawning,

hatching and survival of pollock larvae, whose interpretations are given below:

• Fig. 3.2a shows the baseline hatching distribution (on the log-scale) of eggs

from the older spawners and Fig. 3.2b that of the younger spawners. The mean

(log) hatching abundance of the old spawners (20.4) is significantly higher

than that of the young spawners (19.1) with p-value being equal to 0.001.

The hatchdate distribution for the older group has a peak around (Julian)

day 82 and a secondary peak near day 112 suggesting that spawning from the

older group peaks around days 68 and 98. On the other hand, the hatchdate

distribution for the younger group is rather flat, suggesting a more variable

spawning time distribution of the young spawners than their older counterpart.

• Fig. 3.2c shows the change in the (log) hatchdate frequency distribution per

unit increase in PDO. The curve in Fig. 3.2c is entirely below zero, so higher

PDO tends to be associated with lower spawning and hatching. The unimode

shape and the drop-down on the left tail of the curve in Fig. 3.2c indicate that

higher PDO is associated with more intensive spawning during the middle of

the spawning period.

• Fig. 3.2d portrays the nonlinear “transport effect” on survival. The positive

“transport effect” on larval abundance as the drift out of GOA (transport)

increasing from a low to a moderate level may be explained by some beneficial

effects of moderate transport related to nutrient input and enhanced prey

production. However, when the transport out of GOA is strong, it flushes
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pollock larvae out of the area and reduces larval abundance.

• Fig. 3.2e shows that higher sea surface temperature before hatching is associ-

ated with lower larval abundance, which can be explained as follows: during

the spawning months, SST is strongly correlated with bottom temperature

due to a well-mixed water column. In relatively warm temperatures spawning

occurs earlier and the turnover of eggs is faster and hence larvae have a longer

duration period in the water before capture; they therefore experience a higher

cumulative mortality (although not necessarily a higher instantaneous mortal-

ity) prior to capture. The opposite may hold in colder environments as eggs

would have a longer duration time and spawning occurs later than an average

year, and therefore larvae would have a shorter duration before capture.

• Fig. 3.2f indicates that higher sea surface temperature after spawning results

in higher survival rates for larval pollock. This effect is probably due to lower

instantaneous mortality rates of larvae in warmer conditions (Bailey, 2000).

• Based on the data intensive parts of Figs. 3.2g and 3.2h, it can be inferred that

strong sea surface winds depress pollock’s spawning and reduce larval survival

in the GOA. The data on the right tail of the curve in Fig. 3.2h correspond

mainly to the late hatchdates; the unexpected positive relationship between

the wind speed and survival during the late hatching period may be caused

by the confounding effects of water stratification late in the season. The effect

of winds on spawning is difficult to explain, but may be related to linkages

of winter storminess, currents and termperature and their effects on spawning

location and timing.

Fig. 3.1 provides an alternative approach for visualizing the annual SST anomaly

effects on the hatching and larval survival processes, by comparing the fitted values
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from the final model with those having the SSTB (SSTA) effects suppressed. Be-

fore 1989, SST tended to depress the pollock’s spawning and hatching. However,

SST reversed the trend and instead greatly enhanced the pollock’s spawning and

hatching, for 3 years starting from 1989, while 1989 saw a sharp drop in SST, and

SST remained low until 1991; these climatic changes are consistent with the climate

regime shift discussed by (Ciannelli et al., 2007) and (Hare and Mantua, 2000).

Table 3.1 summarizes the parameter estimates of the final model. The baseline

survival probability for the larval pollock to survive k or more days is estimated to

equal 1/[1 + (0.08k)2.18] (Fig. 3.3). The 1989 intervention depressed the survival

probability function in 1989 to 1/[1 + (0.23k)2.18]. The estimates of ψ1989 and φ

are all significantly different from 0 (2-sided p-values < 0.05), suggesting significant,

depressing changes in the survival rate due to the intervention in 1989. Based on the

estimated φ(0.47), the intervention left a weak memory on the pollock populations,

with the 1989 intervention effects having a half-life of about 11 months (Cryer and

Chan (2008); Box and Tiao (1975)). More specifically, by 1990, the change in hazard

rate is about 47% of the change in 1989 while by 1992, the change is only 10% of the

change in 1989; see Fig. 3.3. Such a quickly decaying rate of the 1989 intervention

effects indicates a relatively quick recovery from the 1989 intervention.

For the fit of the model defined by Eqn. (3.2) using the full dataset, there are

4 outliers, with standardized residuals smaller than -4. Examination of the data

indicates that the outliers correspond to the data on (Julian) day 101 in 1999, on

day 136 in 1991, on days 87 and 88 in 1981. The log abundances of pollock larvae

on these 4 specific days are marked as “x” in Fig. 3.1. Day 101 in 1999 is the earliest

hatching date, and there is no pollock abundance information in the following 11

days. Moreover, the larval abundance estimate on day 101 in 1999 is very low,

suggesting that the abundance estimate was based on relatively few age samples.



57

Day 136 is the last hatching date in 1991 and the larval abundance estimate on this

day is much lower than the other late-hatching larval abundance in the same year.

Upon checking the data in 1981, the larval abundances on days 87 and 88 are found

to be exactly the same as that on day 74, which is the lowest larval abundance

in that year. Consequently, we decide to drop these 4 outlying data cases from

subsequent analyses.

Next, we check whether the fitted model provides a good fit to the data after

dropping the 4 outliers. The upper left quantile-quantile normal score plot and the

bottom left histogram plot in Fig. 3.4 suggest that the errors are approximately

normal. The plot of residuals against fitted values at the upper right diagram in

Fig. 3.4 indicates that the variance of the errors is approximately constant. The

bottom right plot shows that the responses have a positive linear relationship with

the fitted values. Altogether these model diagnostics suggest that the final model

provides good fit to the data

Table 3.1: Parameter estimation on pollock larvae’s survival

Parameter Estiamte Std. Error z value Pr(> z)

λ 0.08 0.019 4.21 < 0.001

γ 2.18 0.351 6.21 < 0.001

ψ1989 1.89 0.679 2.78 0.005

φ 0.47 0.061 7.70 < 0.001

3.5 Model Selection

Above, we consider the situation that the intervention effect began in 1989 and

it might decline geometrically afterwards. Another senario is that the intervention
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Figure 3.2: Smooth function estimates of the covariate effects on hatching and
survival of larval pollock. Solid lines portray the estimated additive covariate effects.
Dashed lines encompass the 95% confidence bands. Dots in the diagrams are the
partial residuals.
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Figure 3.3: Estimates of the survial probability curves of larval pollock (age in days).
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Figure 3.4: Residual diagnostic checks of Model (3.2)
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was only effective in 1989 and left no memory afterwards, i.e.

lt,y,k =ny + αy,1s1(t) + αy,2s2(t) +

p1
∑

j=1

By,jsBj(t) +

p
∑

j=p1+1

s(Bt,y,j)

− log(1 + [(1 + ψ19891(y=1989))λk]
γ) +

q
∑

l=1

s(At,y,l) + εy,t,k. (3.3)

These scenarios with the intervention effects modeled by Eqn. (3.1) and Eqn.

(3.3) were compared to the null case that there is no intervention effects, i.e. ψ1989

in the model defined by Eqn. (3.3) equals zero. For selecting among the various

models, we employ the (Laplace approximation of) log marginal likelihood of a

model as a model selection criterion. Models with higher log marginal likelihoods

are hence preferred. We used the log marginal likelihood to determine (i) which

covariates will be included as environmental factors and (ii) the significance of the

1989 intervention effects on larval survival, and if so, in what manner. Table 3.2

summarizes the model comparison results for a number of models with 3 different

specifications of intervention effects for the intertwining intervention in 1989 and 2

sets of covariates, based on which the model defined by Eqn. (3.2) is selected.

3.6 Conclusion

We applied the PPGAM for extracting the rich ecological information from a

panel of otolith time series, which is useful for revealing the dynamics of fish larvae.

Environmental effects had a significant influence on the timing of spawning and on

survival of pollock larvae in GOA. Cold temperatures prior to spawning tended to

increase later larval abundance, possibly because of delayed spawning and egg dura-

tion, resulting in a shorter period between hatching and capture. Moderate drift out

of GOA benefited larval pollock, while strong drift tended to reduce the larval stock.

Pollock larvae had higher survival in a warm environment during larval life, while

strong winds decreased larval survival. High PDO conditions depressed spawning

and hatching of pollock, and also intensified the spawning process. The fitted model
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Table 3.2: Log marginal likelihood of various models

Environmental Covari-
ates

Intervention Specification Log Marginal
Likelihood

Transport, SST and
Wind Speed

Intervention effects began in 1989 and di-
minished geometrically afterwards

-1122.4

Transport, SST and
Wind Speed

Intervention was only effective in 1989 -1125.5

Transport, SST and
Wind Speed

No intervention effects on larval survival -1127.7

Transport, SST, Wind
Speed and PDO

Intervention effects began in 1989 and di-
minished geometrically afterwards

-1032.7

Transport, SST, Wind
Speed and PDO

Intervention was only effective in 1989 -1075.8

Transport, SST, Wind
Speed and PDO

No intervention effects on larval survival -1065.8

depicts the baseline shape of the spawning time distribution as dome-shaped with a

higher peak for the old spawner group than the young group. Therefore, harvesting

of the older age classes may increase variability in the timing of spawning. Natural

(regime shift) and/or human interventions (e.g. the Exxon Valdez oil spill) reduced

the pollock larvae’s survival rate in 1989. Because these events happened simul-

taneously, it is not possible to distinguish their effects. However, the post-1989

intervention effects on larval survival decayed very fast at a geometric rate after

1989, hence the system has a rather weak memory of the intervention.
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CHAPTER 4

FORECASTING POLLOCK RECRUITMENT

In this chapter, we aim at developing two sets of models for forecasting pol-

lock recruitment based on the abundances of their early life stages, which is either

the late larval abundance or the abundance of 1 year old juvenile pollock. Pollock

are caught as adults beginning at 4 to 5 years of age, so it is essential to fisheries

for studying the recruitment of young pollock into age-4 pollock, which is known

as the recruitment process. Many ecological studies on marine fishes point to the

importance of environmental factors and/or abundances of their early life stages in

predicting recruitment (e.g. Bailey et al., 1986; van der Veer, 1986; Meekan et al.,

1993; Helle et al., 2000; Platt et al., 2003; Axentrot and Hansson, 2003; Svendsen

et al., 2007). During the late 1980s to the early 1990s, the trends between the abun-

dances of young pollock and the recruitment levels of age-4 pollock switched, which

indicates that certain factors involved in pollock’s recruitment changed during that

period. The abundance of arrowtooth flounder (ATF), which is a major predator of

the juvenile pollock, has increased substantially since early 1990s, and there was a

greater overlap between the ATF active areas and the juvenile pollock nursery areas

during the same period. These changes coincided with changes in the recruitment of

pollock, which suggests a threshold structure in the predation effects to be studied

below.

The study of the recruitment of age-4 pollock from their early life stages need

to incorporate the effects of the environmental factors, the predators, and the com-

munity structure changes. The factor effects in the models are estimated nonpara-

metrically, and the threshold generalized additive mixed models (threshold GAMM)

are used to forecast the recruitment of age-4 pollock. With further analyses, some
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factor effects are found to have linear forms. In a specific case, all covariates are

found to affect the recruitment linearly except that the abundance of ATF has a

threshold predation effect on age-1 pollock, resulting in the threshold generalized

linear mixed model (threshold GLMM).

In the following two sections of this chapter, we discuss the age-4 recruit-

ment forecasts from the late larval abundance and the abundance of age-1 juvenile

pollock, respectively. In general, we introduce the background and motivation for

the recruitment forecast of marine fishes, describe the structures and fitting of the

forecast models, and evaluate the forecasting precision. Specifically, we discuss the

selection of the environmental covariates and the forecast based on wild bootstrap.

For the recruitment forecast from age-1 pollock abundance, we demonstrate the

mechanisms for the autocorrelation structures in the fitted models, and present the

likelihood ratio test for the validity of a threshold structure.

4.1 The Recruitment Forecast from Late Larval

Abundance

4.1.1 Background and Methods

Study on the recruitment of marine fish is important for fishery, and recruit-

ment forecast is useful especially for species with a short lag between birth and

recruitment, or stocks where harvests rely on young fish due to depletion of older

age classes. Forecasting the recruitment of young adult pollock (i.e. fish of 4 years

old) from the early larval abundance is challenging, because the early larvae have

not passed a critical period of high mortality. The survival rates of pollock larvae

during this high mortality period vary a lot from year to year, so the relationship

between the amounts of young adult pollock and their early larvae is not consis-

tent. The recruitment forecast from the late larval abundance was applicable when

the methods to estimate late larval abundance with the adjustment for size and
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temperature-dependent mortality were developed.

Pollock spawn in the Shelikof Strait region of the western Gulf of Alaska mostly

from late March to late April. At ambient temperatures eggs take about 2 weeks

to hatch. The larval survey has been conducted from late May to early June each

year in the Strait and downstream waters since 1979. Abundance was calculated

from the mean number per 10 m2 per station within the survey grid, multiplied by

the number of 10 m2 units in the grid. Because the raw abundance does not reflect

the age structure of the population and older larvae have already passed through a

critical period of high mortality, a weighting system for size and variability in the

timing of the survey to give relative value to a larva’s potential for recruitment was

developed. This weighting system is an algorithm to estimate the number of larvae

that will pass through a critical size of 15 mm based on mean historical growth

and mortality rates (Bailey and Spring, 1992). Mean mortalities at different ages

were determined from a regression of mortality against age for accumulated years

in the GOA. Temperature is an important factor in mortality (Bailey et al., 1996)

and hence a mortality schedule was developed to account for potential effect of SST

on recruitment. From information presented in Bailey et al. (1996), we assumed as

a crude adjustment such that for temperatures above the historical median, mor-

tality was 0.5 times the average value, and for temperatures below the median,

the mortality was 1.5 times the average value. Historical average temperatures

for May in the region were obtained from the NCEP Reanalysis data set provided

by A. Macklin (Pacific Marine Environmental Laboratory, NOAA, pers. comm.;

http://www.cdc.noaa.gov/cdc/reanalysis/). Mean SST was interpolated across a

longitude band in the GOA from 155.6◦W to 157.5◦W centered at latitude 56.2◦N .

For 2007 and 2008 CTD casts were taken at each station and the mean SST for late

May was calculated.
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The abundance of age-4 recruits was obtained from Dorn et al. (2006, 2008b

and 2009) which was estimated from age-structured assessment models using catch-

at-age data in the fishery. The age-4 recruits from 1983 to 2006, corresponding to

the year classes from 1979 to 2002, are used to estimate the recruitment forecast

model. The updated recruitment data in the following years from 2007 to 2009 (year

classes from 2003 to 2005) are applied to evaluate the model’s forecasting precision.

The abundance of arrowtooth flounder (ATF), as a main predator of the juvenile

pollock, was obtained from Turnock and Wilderbuer (2007).

Data on pollock larval abundance, pollock and ATF biomass are partly miss-

ing as they are unavailable in 1980 and 1984. We imputed the missing values as

follows. The missing late larval abundances were computed as the product of the

age-1 abundance times the geometric mean ratio of late larval abundance to age-

1 abundance, with the latter estimated with the complete data set from 1982 to

2005. For the missing pollock and ATF biomass data, they were computed by linear

interpolation on the time series data.

Potentially important environmental factors that may affect the survival of a

late larval cohort to age-4, include the drift out of Shelikof Stait (Transport), sea

surface temperature (T), surface wind speed in Shelikof Strait (W), and the Pacific

Decadal Oscillation (PDO) (SST data described above; the wind speed covariates

were computed from sea level pressure data collected twice per day in Shelikof Strait

(56◦N , 156◦W , data source; transport was calculated from “line 8”, a transect

of stations across Shelikof Strait: data provided by A. Macklin and M. Spillane,

Pacific Marine Environmental Laboratory). Sea surface temperature and PDO are

monthly data. Based on values for the daily Transport and daily W, we calculated

their monthly averages respectively. An issue is over which period within a year a

particular environmental covariate affected survival. Thus, for each environmental
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covariate, we computed their twelve monthly means, five seasonal means and yearly

means, thereby creating eighteen variables per environmental factor. Later, we

adopt some model selection criterion to determine which of these mean covariates

enter into the recruitment model. For example, the twelve monthly average sea

surface temperature are denoted by T.Jan to T.Dec; the five seasonal averages

as the mean level from January to March (JFM as the extension to the variable

name), from April to June (AMJ), from July to September (JAS), from January

to April (JFMA) and from May to June (MJ), plus the annual mean (Year). The

environmental data used for the recruitment model estimation and forecasting are

available from 1979 to 2005 except for wind speed. We only had wind speed data

through 2002, which is fine for the phase of model estimation, because the model is

built based on the data from year classes 1979 to 2002. However, wind speed data

from 2003 to 2005 are needed to compute the age-4 recruitment forecast. In this

study, we built a time series regression model to impute the wind speed information

after 2002; see the model subsection.

Abundance data were log-transformed to normalize the distribution and reduce

conditional heteroscedasticity. We compared several different model formulations in-

volving inclusion of different independent variables and thresholds (continuous and

noncontinuous, or abrupt changes in, recruitment patterns) using the varying coeffi-

cient GAMM formulations in the mgcv package of R (Wood, 2001). All models were

fitted by maximizing the penalized likelihood with penalty on the roughness of the

function estimates (Wood, 2006). Although we compared several model structures,

we only report the best model here based on the lowest generalized cross validation

scores (GCV); the GCV of a GAMM is a proxy for the model’s mean squared out-of-

sample prediction error (Wood, 2006). We also used model diagnostic checks such

as a Quantile-Quantile normal score plot of residuals and Shapiro-Wilks normality
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test, as well as checking of constant variance and test for autocorrelation of residuals

(ACF and Ljung-Box tests); see Cryer and Chan (2008, Chapter 8).

In the final model, we consider the wind speed effect, larval abundance effect

and ATF predation effects at different sea surface temperature (SST) levels. Consid-

ering a possible shift of the ATF spatial distribution since late 1980s to early 1990s

(see below), we propose a model with different ATF predation effects before and af-

ter a threshold year during that period. However, the final fitted model shows that

the ATF predation is only effective after a threshold year. The mechanism for this

threshold predation effect assumes that before the ATF increased to the threshold

level in late 1980s or early 1990s, there existed a relatively smaller spatial overlap

between the ATF population and the juvenile pollock. Therefore, the predation

effects from ATF before the early 1990s are trivial in pollock recruitment, and not

considered in the model. Based on the forecasting model, we use a wild bootstrap

method to forecast the number of age-4 recruits in 2007-2009 and point out several

factors that may influence forecasting success.

4.1.2 Models

There is a generally positive relationship between the abundance of the pol-

lock’s late larvae and their recruitment 4 years later (Fig. 4.1). However, their posi-

tive relationship after 1988 is much weaker than that before, suggesting a change in

the recruitment process starting some time from late 1980s to early 1990s. Indeed,

one factor that may have brought about the aforementioned change is the increas-

ing ATF biomass and the accompanied more overlap between the ATF active areas

and the juvenile pollock’s nursery areas since the late 1980s. In turn, the extent of

overlap between the predators (ATF) and their prey (early stage pollock) is likely

associated with temperature. In our case, sea surface temperature was used as a

proxy for the bottom temperature (BT) because BT was not available for all years.
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In the Bering Sea, ATF avoid cold water (Spencer 2008). In the GOA, ATF also

tend to avoid cold water as in colder La Nina years they are found in warmer areas

(Speckman et al. 2005). Therefore in some years ATF may avoid cold water over

the shelf thus influencing their overlap with pollock prey. Additionally, prelimi-

nary analysis also suggests that wind speed is significant for the pollock recruitment

model, while the pollock biomass, Transport and PDO are not.

Figure 4.1: Scatter plot of (log) late larval abundance versus (log) age-4 recruitment.
(◦) observations through 1988; (�) observations after 1988.
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The fitted model includes late larval abundance, wind speed and an interaction

term including ATF biomass and sea surface temperature. Moreover, it is found that

the ATF predation effects took place after a threshold year, probably due to the

fact that the spatial overlap between ATF and early-stage pollock was significant

only starting at some time in late 1980s or early 1990s. Specifically, the recruitment

model is of the following form:

y4,t+4 = β0 + β1lt + β2Wt + s(Tt)at1(t>tc) + ξt+4 (4.1)
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where the subscript t denotes year, y4,t+4 denotes the log recruitment level of age-

4 pollock spawned in year t and observed in year t + 4, lt denotes the late larval

abundance of pollock in logarithm, and y4,t+4 and lt belong to the same spawning

year class. Let Wt denote the wind speed, Tt the sea surface temperature, at the log

ATF biomass, and s(Tt) is a smooth function of Tt. Also, tc is the threshold year

to be estimated from the data, and the variable 1(t>tc) equals 1 in the years after tc,

and zero otherwise. The term s(Tt)at1(t>tc) represents the threshold ATF interaction

with temperature, where s(Tt) can be interpreted as the percent of juvenile pollock

consumed per unit increase in ATF biomass at temperature Tt. The error terms {ξt}

are of zero mean and finite variance, but they may correlated over time with the

auto-correlation structure modeled as some autoregressive (AR) process, e.g. AR(2).

More specifically, ξt = φ1ξt−1 + φ2ξt−2 + εt, where {εt} is a sequence of independent

and identically distributed random variables of zero mean and finite variance, and

φ1 and φ2 are the autoregressive parameters. Furthermore, the structure of Model

(4.1) specifies that the late larval abundance (lt) and wind speed (Wt) are linearly

correlated with the recruitment level (y4,t+4), which is supported by preliminary

data analysis.

The mean structure of Model (4.1) contains a smooth function with unknown

functional form, s(Tt), while the regression errors are autocorrelated. Such a model

structure can be fit within the framework of the generalized additive mixed models

(GAMMs) (Lin and Zhang, 1999; Wood, 2006). Model (4.1) can be estimated

by the method of penalized log-likelihood; the penalized log-likelihood is obtained

by adding to the log-likelihood function a roughness penalty term on the smooth

function so that maximizing the penalized log-likelihood function amounts to finding

a model with good fit to the data and yet the function estimate is smooth. In

practice, the penalty is proportional to the integrated squared second derivative
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of the smooth function, i.e. λ
∫

{s̈(·)}2, where the smoothing parameter λ is a

tuning parameter that controls the trade off between model fit and smoothness of

the function estimate. All models reported herein were fitted in R via the mgcv

package (Wood, 2006).

Model (4.1) contains two environmental covariates, Wt and Tt. For each of

them, there are 18 choices representing the monthly, seasonal and yearly average

levels respectively, as discussed in the data subsection. We employed the Akaike

information criterion (AIC) for selecting the combination of their averages. We

fitted Model (4.1) with each of the combinations of Wt and Tt, with the threshold

year searched from 1978 to 2000, and compared their AIC values. Models with

lower AIC values are preferred as they attain good fit to the data as well as model

parsimony. We would also need to perform model diagnostics check on a selected

model. If that model can pass the diagnostics check, its choice of the environmental

factors and threshold year is accepted; otherwise, we consider the model with the

next best AIC value, etc. The solid curve in Fig. 4.2 shows the profile of the best

AIC among the combinations of Wt and Tt, as a function of the candidate threshold

year, and the dashed curve in Fig. 4.2 represents the second best AIC profile. These

two curves clearly show the best four AIC values obtained from all the choices of the

environmental factors and threshold year, and these four choices comprise the first

pool for the model selection discussed above. Additionally, since the lowest overall

AIC is from a model with threshold year 1988 (Fig. 4.2), we studied the heat map

of AIC for the combinations of environmental factors with that particular threshold

year (Fig. 4.3). The darkest square in Fig. 4.3 suggests that Model (4.1) with the

environmental covariates W.MJt and T.Y eart has the lowest AIC. Since this model

can successfully pass the diagnostics check, it becomes the final fitted model:

y4,t+4 = β0 + β1lt + β2W.MJt + s(T.Y eart)at1(t>tc) + ξt+4 (4.2)
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Figure 4.2: AIC profiles with different threshold years in Model (4.1). Solid curve:
the best AIC among the environmental combinations at each threshold year; dashed
curve: the second best AIC among the environmental combinations at each threshold
year.
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Figure 4.3: AIC heat map of Model (4.2) with various combinations of the environ-
mental factors when the threshold year is 1988. Lower AIC is darker, and higher
AIC is brighter; the white color represents NA value in AIC.
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Furthermore, the five best environmental combinations in Fig. 4.3 are related

to the wind speed in May, June or both. Thus, there is strong evidence that the

wind speed in late spring or early summer is correlated with the age-4 recruitment

from their late larvae.

As discussed in Section 4.1.1, the wind speed data are not available after 2002,

so we develop a regression model for imputing the missing W.MJ , which is the wind

speed covariate in the final fitted Model (4.2). Wind speed may be related to other

environmental factors and their lags. Preliminary analysis suggests the inclusion of

the lag-1 of W.MJ term in the wind speed model. Using an approach similar to the

one used in developing the recruitment model, the following model is found to be

most appropriate for predicting W.MJ :

W.MJt = γ0 + s(T.Junt) + γ1PDO.Jult + γ2W.MJt−1 + ζt, (4.3)

where T.Junt is the sea surface temperature in June, PDO.Jult denotes the PDO

level in July. Greater flexibility is allowed in assessing the association between

W.MJt and T.Junt, by using a nonparametric smooth function s(T.Junt), and

PDO.Jult and the lag-1 term W.MJt−1 are found to be linearly related to wind

speed. The error terms {ζt} are assumed to be independent and identically dis-

tributed with zero mean and constant variance.

4.1.3 Forecast

In this study, the age-4 recruitment forecasts are obtained by bootstrapping.

The forecasts for the age-4 recruitment after 2006 are computed as follows: (i) draw-

ing a “future” realization of W.MJ for 2003-2005 by bootstrapping the residuals,

(ii) drawing a future realization of the age-4 recruitments for 2007-2009 by treating

the W.MJ realization computed in (i) as the true wind speed and bootstrapping the

white noise process, and (iii) repeating (i) and (ii), say 10000 times. The average

k-step ahead future recruitment forecasts, k = 1, 2, 3, are obtained by averaging the
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k-step ahead recruitments computed in step (iii); their associated prediction inter-

vals comprise of the 2.5 and 97.5 percentiles of the k-step ahead future recruitments.

In the bootstrap approach, we simulate the future error terms by resampling the

white noise residuals from the fitted model. Such a bootstrap sampling approach

can provide valid predictions and associated prediction confidence intervals, even

with unknown error distribution.

Since the error terms in Model (4.3) are independent and identically dis-

tributed with zero mean and constant variance, it is straightforward to get a boot-

strap “future” realization of W.MJ by the following formula:

W.M̂J∗
n+k = γ̂0 + ŝ(T.Junn+k) + γ̂1PDO.Juln+k + γ̂2W.M̂J∗

n+k−1 + ζ̂∗n+k,

for k = 1, 2, 3, where n represents the last year with available wind speed data, which

is 2002 in this study; the estimator W.M̂J∗
n = W.MJ∗

n; and ζ̂∗n+k are generated by

sampling with replacement from the residual {ζ̂t} of Model (4.3).

A wild bootstrap method is applied in the recruitment forecast to assure that

the simulated white noise errors are symmetric around zero. Since the error terms

in the recruitment Model (4.2) follow an AR(2) process, the bootstrap realizations

of future recruits are computed by the following equations:

ŷ∗n+4+k = β̂0 + β̂1ln+k + β̂2W.M̂J∗
n+k + ŝ(T.Y earn+k)an+k1(n+k>t̂c) + ξ̂∗n+4+k,

ξ̂∗n+4+k = φ̂1ξ̂
∗
n+3+k + φ̂2ξ̂

∗
n+2+k + ε̂∗n+4+k, for k = 1, 2, 3,

where W.M̂J∗
n+k is the bootstrap wind speed, {ξ̂∗n+4+k}is randomly sampled from

the white noise residuals {ε̂t} in Model (4.2) but with their signs randomly flipped

with probability 1/2. Randomly flipping the signs of the residuals ensures that

the bootstrap white noise has a distribution that is symmetric about zero. The

error term ξ̂∗t are generated dynamically by the above equation for t > n+ 4, while

ξ̂∗t = ξ̂t = ŷt−[β̂0+β̂1lt−4+β̂2W.MJt−4+ŝ(T.Y eart−4)at−41(t−4>t̂c)] are the regression
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residuals from Model (4.2) for t ≤ n+ 4.

The above bootstrap procedure is repeated B times, with B = 10000 in our

applications, to get the replicates of {ŷ∗n+4+k, k = 1, 2, 3}. The mean or median

trajectory of these future realizations provides the point predictions, with their

associated 95% prediction bands enclosed by the 2.5 and 97.5 percentiles of the

bootstrap future realizations.

4.1.4 Results

Since imputing the missing wind speed data after 2002 is a preliminary step

in the recruitment forecast, we will first discuss the estimation and diagnostics of

the wind speed model denoted by Eqn. (4.3).

A nonlinear association between J.Jun and W.MJ is shown by the curve in

Fig. 4.4. When the sea surface temperature in June is at normal level, it is negatively

related to the wind speed in May and June. However, when the temperature is

anomalously low or high, there is a positive association between the wind speed and

sea surface temperature. The positive estimate γ̂1 = 0.24 (with s.e. 0.07) indicates

that stronger wind in May and June is always accompanied by a higher PDO level

in July (Table 4.1). According to the estimate γ̂2 = 0.5 (with s.e. 0.11), the average

wind speed in May and June is positively correlated with its lag-1.

Table 4.1: Parameter estimates of Model (4.3)

Value Std. Error t-value p-value

γ0 2.46 0.59 4.18 <0.001

γ1 0.238 0.066 3.60 0.0025

γ2 0.498 0.11 4.48 <0.001

The residual diagnostics of Model (4.3) suggest that this wind speed model
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Figure 4.4: Association between the wind speed and sea surface temperature in
Model (4.3).
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fits the data well. According to the Shapiro-Wilk normality test result (p-value =

0.497), the residuals of Model (4.3) follow a normal distribution approximately. The

Ljung-Box test results indicate that there is no autocorrelation up to 10 lags among

the residuals, which is also supported by the ACF plot. By checking the scatter

plot of the residuals against the fitted values, we find that the variance of the errors

is approximately constant. Hence, Model (4.3) is expected to provide reasonable

estimates for the late spring wind speed from 2002 to 2005, which will be used in

the recruitment forecast.

As discussed in the methods section, Model (4.2) has a better fit to the data

than the other models in the framework of Model (4.1) with a similar model struc-

ture but different choices of the environmental factors. Additionally, Model (4.2)

also shows its advantage over the other recruitment model structures according to



77

the model selection criterion. First, an AR(2) error process in Model (4.2) pro-

vides a better fit with lower AIC (37.2) than other autoregressive structures in {ξt}

(Table 4.2). Second, through comparing the fitting results from Model (4.2) and

its constrained alternatives (Table 4.3), we found that all terms in Model (4.2) are

“significant”. The first alternative model for comparison does not take into account

the ATF predation effect, and has the following form:

y4,t+4 = β0 + β1lt + β2W.MJt + β3T.Y eart + ξt+4 (4.4)

Table 4.2: Model comparison with various stochastic error processes in Model (4.2)

Autocorrelation
Structure

No autoregres-
sive

AR(1) error
process

AR(2) error
process

AR(3) error
process

AIC 54.4 54.2 37.2 37.6

edf 6 7 8 9

Table 4.3: Comparison of Model (4.2) with its constrained models

Fitted Model AIC Adjusted R2 edf

model (4.2) 37.2 74.3% 8

no ATF predation effect 54.5 41.9% 6

no environmental effects 44.3 59.5% 6

with only late larval abundance 50.6 47.6% 4

simple linear regression on late
larval abundance

61.6 5.8% 2

Strictly speaking, Model (4.4) is not a constrained version of Model (4.2),

since it includes a linear temperature effect denoted by β3T.Y eart. The second

constrained model does not include any environmental factors, i.e. β2 in Model
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(4.2) equals to zero and s(T.Y eart) in the predation effect is restricted to be a slope

parameter. The third constrained model only considers the larval abundance effect,

but retains the AR(2) structure in the error terms. The fourth model is only a

simple linear regression on the (log) late larval abundance. Overall, Model (4.2) has

a much better AIC(37.2) and adjusted R2 (74.3%) than the other four simplified

recruitment models. Furthermore, another model structure assessment concerns the

threshold in Model (4.2). Applying a similar likelihood ratio test for the threshold

structure in a GAMM, which is discussed in Zhang et al. (2010) (see, also, Section

4.2.2 below), the threshold structure in the ATF predation appears to be significant

with p-value being equal to 0.048.

From the estimated β̂1 = 0.076 (with s.e. 0.042) in Table 4.4, the late larval

abundance is positively related to the recruitment of age-4 pollock. The association

between the late larval abundance and age-4 recruitment is weaker than the one

between the age-1 pollock and their age-4 recruits (Zhang et al., 2010). It suggests

that the survival of pollock’s late larvae into the age-1 introduces more uncertainty

in the recruitment process of age-4 pollock. It confirms the expectation that the

recruitment forecast from late larval abundance will be more challenged than the

forecast from age-1 abundance. The slope of the linear wind effect is -0.43 (with s.e.

0.13), which indicates that strong wind impedes the recruitment of pollock. Fig. 4.5

reveals the predation effect on pollock recruitment in two aspects. First, the curve

is mostly below zero, which indicates that higher ATF biomass tends to reduce

the recruitment of age-4 pollock. Second, the decreasing shape of the curve shows

that the ATF predation effect is stronger in warmer environment, which results in

a lower recruitment of age-4 pollock. The found ATF and temperature interaction

is reasonable, because the ATF population tends to shift toward the nursery area of

juvenile pollock in warmer environment.
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Table 4.4: Parameter estimates of Model (4.2)

Value s.e. t-value p-value

β0 19.9 1.6 12.7 <0.001

β1 0.076 0.042 1.82 0.084

β2 −0.428 0.13 −3.32 0.0036

φ1 0.540

φ2 −0.821

Figure 4.5: Temperature interaction with the ATF predation in model (4.2)

5.5 6.0 6.5 7.0

−
0.

15
−

0.
10

−
0.

05
0.

00

Average temperature from May to June (T.MJ)

s(
T

.M
J)

:a

Additionally, more information in the pollock recruitment and their popula-

tion’s dynamics are revealed by the estimated autoregressive parameters, φ̂1 = 0.54

and φ̂2 = −0.82. The error process {ξt} in Model (4.2) is stationary (Cryer and

Chan, 2008) and has a stochastic cycle close to 5 years, which is consistent with

stochastic structure in the age-4 pollock. The inter-group competition and can-

nibalism of the pollock provides a mechanism for the 5-year quasi-periodicity, see
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Zhang et al. (2010).

The normalized residuals equal the standardized residuals pre-multiplied by

the inverse square-root of the estimated error correlation matrix, and are assumed

to follow an independent normal distribution with zero mean and constant variance.

The linear trend in the Q-Q normal plot of the normalized residuals (upper left plot

in Fig. 4.6) suggests that the normal distribution assumption for the errors is satis-

fied, which is also supported by the Shapiro-Wilk normality test result (with p-value

0.89). The scatter plot of the normalized residuals against fitted values (upper right

plot in Fig. 4.6) indicates that the variance of the normalized residuals is approxi-

mately constant. Both the ACF plot and Ljung-Box test suggest no autocorrelation

among the normalized residuals. Therefore, these diagnostics suggest that the fitted

Model (4.2) provides a good fit to the data.

Figure 4.6: Residual checks for Model (4.2)
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Applying the bootstrap forecast discussed in the methods section, 10000 boot-

strap forecast trajectories of the age-4 recruitment has been generated over the

period from 2007 to 2009. The median forecast trajectory gives the point forecasts

for future recruitments (dotted curve in Fig. 4.7). We also constructed the 95%

prediction band (gray shaded area) based on the 2.5% and 97.5% quantiles of the

empirical distribution of the bootstrap forecast paths. It is found that the 95% pre-

diction band successfully covers the actual age-4 recruitment levels in 2007 and 2008,

and just misses the 2009 recruitment observation. Therefore, the out-of-sample fore-

casts from Model (4.2) match well with the actual age-4 recruitment from late larval

abundance, especially for the near-term recruitment forecast. Additionally, the dy-

namic trend of the estimated pollock recruitment levels (dashed curve) is consistent

with the observed values (gray solid curve), so Model (4.2) clearly provides a good

fit to the recruitment data through 2002.

4.1.5 Discussion

We propose a forecasting strategy based on larval surveys that accounts for

several factors: (1) weighting to adjust larval abundance for size composition and

temperature-dependent mortality, (2) accounting for potential predation occurring

during juvenile life and interactions with environmental factors, and (3) recogniz-

ing that shifts have occurred in factors influencing recruitment. There are only a

few forecasting schemes that have used combined monitoring and environmental

statistical models as we have done. One example attained relatively good results

using larval abundance, spawning stock biomass and environmental factors occur-

ring during larval life (Axentrot and Hansson, 2003), however in that study, since

the environmental factors selected overlapped with the larval period they served to

adjust the fit of larval abundance with recruitment. The difference in our strategy

is an approach that incorporates factors that account for variability in survival after
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Figure 4.7: Observed recruitment and predicted recruitment from Model (4.2).
Numbers are abundance of 4 year olds occurring in each year. Gray solid line:
observed recruitment over the study period; dashed line: estimated recruitment;
dotted line: out-of-sample recruitment forecasts; 95% prediction band of the re-
cruitment forecasts is shaded in gray; gray circles: recent observed recruitment in
2007 to 2009.
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the larval monitoring survey. Our results support the forecast model of Zhang et al.

(2010) based on age-1 pollock abundance coupled with ATF biomass, but push back

the forecast to the larval stage.

Recruitment is a complex process, which impacts the strategy to forecast re-

cruitment (Bailey et al., 2005; Houde, 2008). When dynamics are complex due to

nonlinear systems and interactions, predictions become more uncertain as the time

between initial conditions and the prediction target increases. Forecasts are most

difficult to make years in advance strictly from environmental conditions because of

the changes that occur in the relative abundance of a cohort as it develops. For pol-

lock there is a significant trend of abundance with recruitment by the age-1 juvenile

stage (Bailey et al., 2005; Zhang et al., 2010). Because of interannual variability

of mortality during juvenile life, it is expected that larval abundance, taken as a

whole, is not an accurate or precise predictor of recruitment as we found in this

study. In fact, total larval abundance reflected the spawning stock abundance, even

nearly 2 months after peak spawning (Bailey, unpublished data). However, weight-

ing the abundances of larvae for the parameters of size- and temperature-dependent

mortality improved the forecast value during the period when larval survival and

recruitment were coupled. We did not make an attempt to optimize the fit, which

might be useful. We also believe that the larval abundance estimates could be

improved, most significantly by expanding the area surveyed. Areal coverage out-

side of the main grid is inconsistent and in some years relatively large numbers of

larvae have been caught outside the main survey grid. We believe this may have

been the case in the outlier years when the main larval distribution was observed to

extend beyond the boundaries of our truncated grid, and perhaps for the forecast

year 2005, when larval abundance was extremely low, but preliminary indications

of recruitment indicate a weak to moderate year class.
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Changes occurring in the ecosystem structure in the late 1980s to early 90s

had a remarkable effect on recruitment of pollock (Bailey, 2000; Ciannelli et al.,

2005; Zhang et al., 2010). The decoupling of larval abundance and recruitment that

occurred in the 1990s could be explained by the gradual buildup in the abundance

of ATF, finally reaching a threshold level of predation. This threshold occurred

at about the same time that ATF surpassed pollock as the dominant biomass of

groundfish in the GOA. We hypothesize somewhat more complicated mechanism

than a simple buildup of biomass, such that along with the increase of ATF, a slow

shift in their distribution may have also occurred so they have become concentrated

in the juvenile pollock nursery region. The arrowtooth biomass has accumulated

to an extent where it may consume a large portion of the pollock year class; how-

ever, whereas previously it was distributed across the western Gulf, it appears that

in the early 1990s a large portion of the population shifted towards the Shelikof

Strait region nursery area. Such “swarming” is a powerful density-dependent con-

trol mechanism. It is furthermore intriguing that 1999, the one pollock year class

that was relatively strong during this period and where we have information on

arrowtooth distribution, the predator was relatively diminished in the Shelikof re-

gion, possibly blocked from the nursery by a cold water mass. The interaction of

arrowtooth biomasss and ocean temperature with pollock recruitment is supported

by our exploratory threshold GAMM analyses. A better understanding of these

relationships will be difficult to unravel from historical data alone, given that the

trawl surveys are triennial, and the groundfish food habits database is lacking good

information on arrowtooth feeding in autumn and winter, the likely seasons when

they are feeding heavily on age-0 pollock. In summer when most stomachs are

collected for examination, age-0 pollock are mostly pelagic and have limited vulner-

ability to arrowtooth predation. However, these results do stress the importance of
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understanding the complex mechanisms involved in the recruitment process before

expecting an accurate and resilient forecasting capability.

Alternative explanations for the shift in recruitment conditions should be con-

sidered. One potential factor is a shift in the location of spawning or a density-

dependent Allee effect, such that Shelikof recruits are spawning elsewhere (Ciannelli

et al., 2007). By this mechanism recruitment and larval abundance have become

decoupled. Another is a change in physical environment (Hollowed et al., 2001).

Examination of these processes also merits further examination.

There are significant obstacles to making recruitment forecasts from statistical

models incorporating environmental factors; over time, forecasts based on environ-

mental factors fail (Walters and Collie, 1988), and relationships with environmental

factors change in significance. In some cases, especially when a large number of indi-

rect factors are included, the probability of a false positive (Type I error) increases,

contributing to the forecast’s downfall in future years. In other cases, a large-scale

atmospheric effect may be implicated, such as the PDO (Pacific Decadal Oscilla-

tion), but the dominance of these factors over local conditions may shift over time.

For example in the Gulf of Alaska and Bering Sea the PDO’s dominant influence on

oceanic conditions was supplanted by another climate pattern (Bond et al., 2003),

now known as the Victoria pattern (McKinnell, 2004). Shifting environmental con-

ditions have been implicated in complex dynamics of walleye pollock recruitment

in the ocean off Japan as well (Shida et al., 2007) and a changing baseline makes

forecasting from environmental factors very difficult. In such conditions, short term

bases for forecasts might be a better approach rather than attempting to utilize

a longer time series. We also believe that significant advances in utilizing data in

our statistical models are possible, such as improved understanding of processes

influencing larval mortality.
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Better accounting for stock structure in the Gulf of Alaska is another area

where forecasting improvements could be made. Currently the recruitment level is

estimated from the fishery catch-at-age data (VPA) for the whole western Gulf of

Alaska, but forecasting schemes all assume that all recruits are derived from the

Shelikof Strait spawning population. Beginning in the late 1990s the Shumagin

Islands population became a significant component of the western Gulf of Alaska

population and the inclusion of these fish in the recruitment estimate confounds

comparisons of recruitment and larval numbers (and environmental conditions) from

Shelikof. Therefore, knowledge of stock structure relative to the population sampled

by the larval census and that estimated from the age-structured fisheries models is

critical information needed for a meaningful forecast.

We believe that reasonable forecasts of recruitment are possible but should be

tuned each season as new information becomes available. Starting with environmen-

tal conditions, at various abundance checkpoints along the way, observed deviations

may provide valuable information on changing conditions. If the larval rough count

is continued as a recruitment forecasting parameter, we suggest a forecasting scheme

based on the concept that forecasting accuracy will improve as new information be-

comes available during the development of a cohort, using a combined monitoring

and modeling effort. Managers need to decide whether a forecast at a stage earlier

than age-1 is cost effective; but regardless of the management requirements, there

is value in attempting to forecast recruitment from larval abundance as it provides

feedback to our understanding of the recruitment process, and vice versa.
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4.2 The Recruitment Forecast from Age-1 Juve-

nile Pollock

4.2.1 Introduction

Marine scientists searched for ways to forecast the abundance of commercial

fish stocks since the early 1900s (Hjort, 1914, p. 227; NOAA, 2008), especially for

stocks where harvests rely heavily on recruitment of young fish due to depletion

of older age groups. However, forecasting recruitment from environmental condi-

tions (Walters and Collie, 1988), or from abundances of early life stages (Mukhina

et al., 2003) has proven difficult due to the complexity of multiple interacting fac-

tors (Bailey et al., 2005, Houde, 2008). Forecasting the abundance of walleye pollock

Theragra chalcogramma in the Gulf of Alaska (GOA) would be especially useful be-

cause the fishery is largely dependent on the recruitment of strong year classes,

and has recently been near collapse, having declined to about 30% of its estimated

unfished biomass (Dorn et al., 2009).

Walleye pollock is an important component of North Pacific ecosystems, both

as a predator and competitor of other fishes, and as prey to seabirds and marine

mammals, and it is currently the world’s second largest fishery. Walleye pollock

abundance in the GOA increased dramatically in the late 1970s with a series of

strong year classes, and began a long downward trend in the late 1980s; both periods

coincided with changes in ocean conditions. However, community structure in the

GOA has also changed (Anderson and Piatt, 1999; Litzow and Ciannelli, 2007), and

an important source of predation mortality of juvenile pollock, arrowtooth flounder

Atheresthes stomias (ATF), has dramatically increased in abundance over the past

2 decades. In fact, in the 1990s ATF surpassed pollock as the dominant groundfish

species (by biomass) in the GOA.
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Numerous attempts have been made to forecast pollock recruitment from en-

vironmental effects on eggs and larvae (e.g. Lee et al., 2009). In this study we

examine juvenile pollock because, generally speaking, recruitment prediction from

the abundance of older cohorts should be more accurate than that from egg or larval

abundances (Bradford, 1992; Helle et al., 2000) or environmental factors alone (Ax-

entrot and Hansson, 2003). Here we use statistical models to link juvenile survey

data to predictor variables that influence their later survival to forecast the recruit-

ment of pollock to the fishery. By testing and comparing several statistical models

we examine whether (1) an increasing abundance of predators, specifically ATF, in

the GOA strongly affects pollock recruitment, (2) the weight of predictor variables

shift with phase (or regime) shifts in the marine environment, and (3) intercohort

interactions are important. The results presented here indicate that forecasting re-

cruitment of marine fishes needs to account for changes in community structure,

rather than just environmental correlates with egg and larval survival.

4.2.2 Methods

Walleye pollock spawn in Shelikof Strait, Gulf of Alaska from late March to

early May. Echo integration-trawl (EIT) surveys have been conducted annually by

the Alaska Fisheries Science Center since 1981 (except 1982 and 1999) to assess

the biomass of pollock before spawning in the Shelikof Strait area. In early surveys

(1981-91) biomass estimates were obtained with a Biosonics acoustic system and

from 1992 onward data were obtained with a Simrad EK echosounder. An index of

age-1 juveniles was estimated as the abundance of 9 to 16 cm fish in the Shelikof

Strait EIT surveys (McKelvey, 1996) and was reported in Dorn et al. (2007). The

abundance of age-4 recruits was taken from Dorn et al. (2006, 2008b and 2009),

estimated from age-structured population models of catch-at-age data in the fishery.

Pollock are caught as adults beginning at 4 to 5 years of age. The number of age-4
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recruits is from the western GOA; we assume that the number of age-1 juveniles in

the Shelikof region is a relative index of juvenile abundance in the western GOA,

and that variability in their survival reflects larger-scale patterns. In the early years

of the pollock fishery most of the spawning in the GOA occurred in the Shelikof

Strait, but over the years, other spawning areas have varied in their contribution.

The biomass of age 3+ ATF was taken from Turnock and Wilderbuer (2007).

The models proposed in this paper are used to study the recruitment of young

adult pollock of age-4 from early juvenile fish of age-1, incorporating the effects

of predators and environmental factors. Additionally, since the age-4 recruits are

auto-correlated, we depict this autocorrelation using one of the following 2 model

structures:

y4,t+3 = f1(y1,t, at, et) + ξt+3, (4.5)

and

y4,t+3 = f1(y1,t, at, et) +

m2
∑

j=m1

gj(y4,t+j) + εt+3, (4.6)

where t denotes year, m1 and m1 are 2 integers (for example, m1 = 1 and m2 = 2)

yk,t represents the log abundance of the k-year old pollock in Year t, {ξt} are col-

ored noise with zero mean and finite variance, i.e. auto-correlated, whereas {εt}are

independent and identically distributed noises with zero mean and finite variance.

Thus, y1,t denotes the log age-1 abundance index in year t and y4,t+3 is the log

abundance of age-4 pollock 3 years after t; hence, y1,t and y4,t+3 equal the density

of the cohort of the pollock spawned in Year t− 1, when they are 1 and 4 years old,

respectively. Additionally, at denotes the log abundance of ATF, which is the main

predator of the juvenile pollock in the western GOA, and et represents a vector of

environmental factors in year t, which includes the spring sea surface temperature

(SST, i.e. the average SST from April to June), the fall SST (the average SST from

July to September), the spring sea surface wind speed, the fall wind speed, and the
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mean annual wind speed. The SST variables were derived from average monthly

SST interpolated across a longitude band in the GOA from 155.6◦W to 157.5◦W

centered at latitude 56.2◦N (data source: A. Macklin, Pacific Marine Environmen-

tal Laboratory, pers. comm. http://www.cdc.noaa.gov/cdc/reanalysis/), The wind

speed covariates were computed from sea level pressure data collected twice per day

in Shelikof Strait (56◦N , 156◦W , data source: A. Macklin & M. Spillane, Pacific Ma-

rine Environmental Laboratory pers. comm.). The term f1(y1,t, at, et) summarizes

the main effects on the recruitment of age-4 pollock. We tried several systems of

notation and the preceding format was easiest to follow. A notation system formed

around pollock year classes was complicated because of the 2 time sequences for

pollock and ATF, and it was difficult to use pollock year class to indicate the time

subscript of ATF. In the model comparison and selection, we employed Akaike’s in-

formation criterion (AIC) for model comparison and selection. We also used model

diagnostic checks such as the residuals’ normality test, constant variance and auto-

correlation checks among the residuals (ACF and Ljung-Box tests) (see Chapter 8,

Cryer and Chan, 2008), and outlier detection methods.

For Model (4.5), any autocorrelation in the age-4 recruits beyond that induced

by the main regression effects f1(y1,t, at, et) is modeled by the auto-correlated error,

{ξt+3}, which, in practice, is specified as some autoregressive (AR) error process.

On the other hand, Model (4.6) uses the lagged recruitment (y4,t+j, j = 2, 1, 0) to

account for any such autocorrelation in the recruitment data. Below, we refer to

the autocorrelation in the recruitment beyond that induced by the main effects

f1(y1,t, at, et) as the extra autocorrelation. Because the response variable, y4,t+3, is

the recruitment of age-4 pollock in Year t+3, its lag-1 equals y4,t+2. Similarly, y4,t+j

in the term gj(y4,t+j) is the lag-(3 − j) recruitment.
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The autocorrelation pattern in the recruitment models may result from inter-

cohort interactions in the pollock population. Specifically, we demonstrate 3 such

mechanisms in the simple case of linear and noise-free dynamics. One mechanism re-

sults in the AR error process as specified in Model (4.5), and the other 2 mechanisms

introduce different lagged recruitment into Model (4.6).

First, the autocorrelation structure in Model (4.5) can be justified by cannibal-

ism and/or competition from adult pollock, specified as the age-4+ (age-4 and older)

group, in which case the (linear) recruitment dynamics is driven by the following

system of equations:

y4,t+3 = β0 + β1at + β2y1,t + ωy4+,t, (4.7)

y4+,t+1 = γ4y3,t + δy4+,t, (4.8)

y3,t+1 = γ3y2,t + τ3y4+,t. (4.9)

Eqn. (4.7) models the recruitment from age-1 pollock to age-4, with the term

ωy4+,t representing the effects of cannibalism of the age-4+ group on the juvenile

pollock and/or competition effects from the older pollock in the recruitment process.

It is expected that ω is negative. Eqn. (4.8) accounts for the survival of the 4+

group from the previous year and new members from the age-3 group. Eqn. (4.9)

accounts for the survival of age-2 fish to age-3 and competition from age-4+ pollock.

Note that the γ’s are expected to be between 0 and 1 and so is δ. Eqn. (4.7) is

a special case of Eqn. (4.5) where f1 is a linear function and the error term ξt+3

equals ωy4+,t which we now show to be an autoregressive process, hence the error

term in Eqn. (4.5) is autocorrelated. Indeed, Eqs. (4.8-4.9) imply that

y4+,t+1 = δy4+,t + γ4τ3y4+,t−1 + γ4γ3y2,t−1. (4.10)

Since the values for γ’s are expected to be between 0 and 1, the coefficient γ4γ3 is

probably negligible; therefore, the preceding equation can be approximated by

y4+,t+1 = δy4+,t + γ4τ3y4+,t−1 (4.11)
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.

In practice, the preceding relationship holds only on the average, so that a

stochastic error term has to be added to the right side of the equation; hence,

{y4+,t}is approximately an AR(2) process, with δ being the AR(1) coefficient and

γ4τ3 being the AR(2) coefficient. In particular, δ can be interpreted as the survival

rate of the age-4+ pollock. The interpretation of the AR(2) coefficient estimate

is more complex as it equals the product γ4τ3, which is expected to be negative

because of the assumed positivity of γ4 and the negativity of τ3 .

As for Model (4.6), the extra autocorrelation is assumed to be captured by the

lagged recruits. Such an autocorrelation structure can be attributed to interactions

between the young adult pollock (age-4) and the juvenile pollock, in which case the

pollock population dynamics follow the following system of equations:

y4,t+3 = β0,4 + β2,4y3,t+2 + τ ∗4 y4,t+2, (4.12)

y3,t+2 = β0,3 + β1,3at+1 + β2,3y2,t+1 + τ3y4,t+1, (4.13)

y2,t+1 = β0,2 + β1,2at + β2,2y1,t + τ2y4,t, (4.14)

at+1 = ϕat + ϑy1,t. (4.15)

Eqn. (4.12) shows the recruiting process of age-4 pollock from age-3, which includes

the survival of age-3 fish given by β2,4y3,t+2 and the interactions between the age-4

pollock and the age-3 in year t+2 in terms of τ ∗4 y4,t+2. The coefficient τ ∗4 reflects the

intergroup interactions in 2 aspects: (1) it measures the competition and/or can-

nibalism between age-4 and age-3 pollock, and (2) it accounts for misclassification

between the age-4 group and its neighboring age groups, which commonly occurs

when a certain portion of a strong year class are incorrectly aged and overflow into

adjacent year classes. The competition and/or cannibalistic effects tend to reduce

the recruitment of age-4 pollock, and misclassification probably results in positive

association between the age-4 recruitment and its lag-1. Since these 2 interactions



93

are opposite in direction, the sign of τ ∗4 is undetermined in Eqn. (4.12). Eqn. (4.13)

accounts for the survival of age-3 pollock from the previous year’s age-2 fish in the

term β2,3y2,t+1, the predation from ATF represented by β1,3at+1, and the competi-

tion and/or cannibalism between the age-4 and age-2 pollock denoted by τ3y4,t+1. In

Eqn. (4.13), τ3 is expected to be < 0, because it mainly assesses the intergroup com-

petition and/or cannibalism. Similarly, the coefficient τ2 in Eqn. (4.14) is expected

to be negative. Eqn. (4.15) indicates that the abundance of the ATF predators is

related to their last year’s abundance and the corresponding age-1 pollock abun-

dance, as ATF mainly eats age-0 and age-1 pollock, as well as some age-2 fish. The

coefficients ϕ and ϑ are expected to be positive. Substituting Eqns. (4.13-4.15) into

Eqn. (4.12) yields

y4,t+3= [β0,4 + β2,4β0,3 + β2,4β2,3β0,2] + [β2,4β1,3ϕ+ β2,4β2,3β1,2]at

+[β2,4β1,3ϑ+ β2,4β2,3β2,2]y1,t + [τ ∗4 y4,t+2 + β2,4τ3y4,t+1 + β2,4β2,3τ2y4,t]

= β0 + β1at + β2y1,t + [τ ∗4 y4,t+2 + β2,4τ3y4,t+1 + β2,4β2,3τ2y4,t].

(4.16)

The model represented by Eqn. (4.16) contains the lag-1 to lag-3 of the recruitment

that generates the extra autocorrelation in the recruits of age-4 pollock. The pa-

rameters β2,j, j = 2, 3, 4 are survival rates that are likely to fall between 0 and 1. If

we further assume weak competition and/or cannibalism between the age-4 and the

age-1 pollock (small τ2 in magnitude), the coefficient of y4,t in Eqn. (4.16) is negli-

gible compared with the coefficients of y4,t+2 and y4,t+1. Therefore, the recruitment

equation can be simplified as:

y4,t+3 = β0 + β1at + β2y1,t + [τ ∗4 y4,t+2 + β2,4τ3y4,t+1]. (4.17)

The terms within the square brackets of Eqn. (4.17) measures the lagged recruit-

ment effects on the recruitment of age-4 pollock. Since the sign of the parameter τ ∗4

is unclear, we cannot determine the sign of the lag-1 recruitment effect. However,

we expect a negative lag-2 effect in the recruiting model with the negative τ3 and
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positive β2,4. We can further generalize Eqn. (4.17) by replacing the linear lagged

recruitment by nonlinear lag-1 and lag-2 effects in terms of gj(y4,t+j), j = 1,2. Sim-

ilarly, we have constructed a mechanistic model that results in explaining the extra

autocorrelation in terms of the lag-2 and lag-3 recruitment effects. However, as that

model is discredited by the data (see Section 4.2.3); hence, for simplicity, we do not

elaborate on the third model.

Although we mainly assume linear effects in the above derivation, the mod-

els may be rendered more flexible by allowing nonlinear effects in terms of some

unknown smooth functions, and including stochastic errors in the models. Indeed,

these models then fall into the general framework of the generalized additive mixed

models (GAMMs) (Lin and Zhang, 1999; Wood, 2006). The recruitment models in

the form of Eqn. (4.5) and Eqn. (4.6) can be represented as a GAMM. For the

simple case of single covariate and Gaussian errors, the GAMM takes the following

form:

wt = s(ut) + ξt, t = 1, 2, ...n, (4.18)

where the response wt bears a nonlinear relationship with the covariate ut and the

noise terms {ξt} are auto-correlated. For the simple case that {ξt} has a multi-

variate normal distribution with zero mean vector and covariance matrix Λ, the log-

likelihood of Model (4.18) is given by −0.5×log |Λ|−{W−s(U)}T Λ−1{W−s(U)}/2,

up to some additive constant, where W is the vector of response values, s(U) the vec-

tor of the smooth function s evaluated at the covariate values, |Λ| is the determinant

of the covariance matrix Λ. For estimating the unknown smooth function, we use the

penalized likelihood approach, which tries to find the function estimate that provides

good fit to the data and yet assures that the function is not too rough. The penalty

term is a multiple of the integrated squared second derivative of the smooth function,
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i.e.λ
∫

{s̈(u)}2du where the non-negative parameter λ is known as the smoothing pa-

rameter that describes the trade-off between goodness of fit and smoothness of the

function estimate. Altogether, the GAMM can be estimated by maximizing the pe-

nalized log-likelihood: −0.5×log |Λ|−{W−s(U)}T Λ−1{W−s(U)}/2−λ
∫

{s̈(u)}2du.

It should be noted that if the noise terms are uncorrelated over time, then the

GAMM becomes the generalized additive model (GAM); see Wood (2006) for details

and other estimation methods.

Since a threshold structure was introduced for fitting the main effects in

f1(y1,t, at, et), we needed to develop a test for the validity of the proposed threshold

structure. Considering a possible shift of the ATF spatial distribution from the late

1980s to early 1990s and the occurrence of an environmental regime shift about

the same time (see below), we further proposed different ATF predation effects be-

fore and after a threshold year during that period. A threshold year effect in the

models was assessed by testing the null hypothesis (H0) that the ATF predation

effect was present for all years versus the alternative hypothesis (Ha) that it started

to become important to pollock survival after a threshold year. A likelihood ratio

test was employed to justify the threshold structure in ATF predation. Let θ be

the parameter vector, including the threshold year, logL(θ̂0,n) be the log likelihood

function evaluated at the maximum likelihood estimators under the null hypothesis,

and logL(θ̂n) be the maximum log likelihood function under the general hypotheses.

The log likelihood ratio, lr, can be written as lr = logL(θ̂n) − logL(θ̂0,n), which is

used as the test statistic. For Model (4.5) with stochastic error process, the empir-

ical distribution of the test statistic under the null hypothesis is obtained by the

following bootstrap approach. Based on the residual vector (ξ) and the correlation

matrix (Λ) estimated under the null hypothesis, we calculate the normalized resid-

uals, ε̂0 = Λ̂
−1/2
0 ξ̂0. For each k = 1, . . .K, we randomly permute the elements in ε̂0
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to get ε̂
(k)
0 . Using the parameter estimator θ̂0,n and the residuals ξ̂

(k)
0 = Λ̂

1/2
0 ε̂

(k)
0 , we

generate the new recruitment level data ŷ
(k)
4,t+3 = f1,θ̂0,n

(y1,t, at, et)+ ξ̂
(k)
(t+3),0. Based on

the generated data, ŷ
(k)
4,t+3, we calculate lr(k). The empirical distribution of the test

statistic is formed from the lr(k) values. Additionally, to form such an empirical dis-

tribution based on Model (4.6), whose error terms are independent and identically

distributed, we can generate the new data by bootstrapping the residuals directly.

Finally, the p-value of the likelihood ratio test is calculated as the proportion of lr(k)

values that are higher than the observed lr.

4.2.3 Results

There was generally a positive relationship between the age-1 abundance in-

dex and the recruitment of pollock to the fishery 3 years later (Fig. 4.8). However,

the relationship appeared to have shifted downward after 1991, suggesting the pres-

ence of emerging factors on age-1 pollock survival. At around the same time, ATF

abundance was increasing and surpassed pollock to become the dominant groundfish

species in the GOA (Fig. 4.9). We therefore selected these factors (age-1 pollock

abundance, ATF abundance, a threshold effect) and some environmental factors

(e.g. temperature) to test and compare in statistical recruitment prediction models.

In the Methods, we discussed 3 mechanisms to derive the autocorrelation struc-

tures in recruitment models. For each of the 3 autocorrelation structures, we selected

one fitted model based on AIC and performed model diagnostic results. As shown

in Table 4.5, the selected model with the AR(2) error process has slightly better

AIC score (22.5) and adjusted R2 (81.5%) than the model including lag-1 and lag-2

recruitment effects with AIC = 24.0 and adjusted R2 = 80.7%; the model-fitting

results from both models are discussed in detail below. The AIC of the model con-

taining lag-2 and lag-3 recruitment (28.3) is much higher than the AICs from the

other 2 selected models (Table 4.5), which indicates that this model is discredited
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Figure 4.8: Scatter plot of (log) cohortspecific age-1 walleye pollock abundance
versus (log) age-4 recruitment. (◦) observations before 1992; (�) observations since
1992.
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Figure 4.9: Time plot of (log) walleye pollock biomass and (log) arrowtooth flounder
biomass. (◦) (log) biomass of age 3+ pollock; (�) (log) flounder biomass.
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by the data. Temperature was not significant in any of the models and was dropped

from consideration. Including spring SST as an additive covariate results in an in-

crease in the AIC for each of the 3 models reported in Table 4.5, e.g. an increase in

AIC from 22.5 to 24.2 for Model (4.19) with AR(2) error structure; similarly, other

environmental factors, including fall SST and various wind speeds, were found to

be inconsequential. We also fitted Model (4.19) with SST as the threshold variable

but that fitted model was deemed unacceptable based on model diagnostics and

interpretation. Consequently, we shall confine our discussion to the first 2 models.

Table 4.5: Akaikes information criterion (AIC) of the fitted models to predict walleye
pollock recruitment in the Gulf of Alaska

Fitted Model 4.19 4.20 Variant of 4.20

Autocorrelation
Mechanism

(4.7-4.9) (4.12-4.15)

Autocorrelation
Structure

AR(2) error process lag-1 and s(lag-2) lag-2 and monotone
s(lag-3)

AIC 22.5 24.0 28.3

Table 4.6: AIC of the models with various stochastic error process in structure (4.5)

Autocorrelation
Structure

No autoregres-
sive

AR(1) error
process

AR(2) error
process

AR(3) error
process

AIC 35.0 34.8 22.5 23.9

The first fitted model contains an auto-correlated error process {ξt}. Fitting

results with different autoregressive structures in {ξt} suggested that an AR(2) error

process provided the best fit for the data with the lowest AIC values (Table 4.6).
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The mechanism for this AR(2) error process is shown by Eqns. (4.7-4.9). A prelim-

inary analysis indicated that the log age-1 abundance (y1,t) and log ATF abundance

(at) after the threshold year (tc) were linearly correlated with the recruitment level

(y4,t+3). Additionally, no environmental factors enter into the model, probably be-

cause any change in environmental factors that strongly influenced juvenile survival

was incorporated in the threshold shift term. Therefore, the fitted model with AR(2)

error process has the following structure:

y4,t+3 = β0 + β1at1(t>tc) + β2y1,t + ξt+3, (4.19)

where the dummy variable 1(t>tc) equals 1 in the years after the threshold year tc,

and 0 otherwise, so β1at1(t>tc) accounts for the threshold ATF predation effect on

pollock recruitment after year tc. The errors form a stationary Gaussian AR(2)

process: ξt = φ1ξt−1 +φ2ξt−2 +εt where φ1 and φ2 are the autoregressive parameters

and the εt are independent and identically normally distributed errors, so that ξ =

(ξt0+3, ξt0+4, ..., ξtL+3)
T follows a multivariate normal distribution N(0, σ2Λ), where

(t0 +3) and (tL +3) denote the first and last recruiting years of age-4 pollock in the

study period respectively, and Λ is the correlation matrix with an AR(2) structure.

More specifically, ρj = φ1ρj−1 +φ2ρj−2, j ≥ 2, where ρj is the correlation between ξt

and ξt−j, with the initial conditions ρ0 = 1, ρ1 = φ1/(1−φ2) and σ2 is the stationary

variance of ξt.

To check whether the threshold structure of the ATF predation effect in Model

(4.19) was appropriate for the data, we employed the likelihood ratio test discussed

in the Methods. The p-value of the likelihood ratio test for the threshold structure

in Model (4.19) is 0.024. Thus, there is strong evidence that the ATF predation

affected pollock recruitment after a threshold year tc.

According to the profile AIC of the threshold years (Fig. 4.10), 1991 was es-

timated to be the threshold year for Model (4.19). Model (4.19) has 6 parameters,
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namely, 3 β values, 2 autoregressive coefficient parameters and 1 threshold param-

eter. Thus, with a sample size of 22, the residuals have 16 degrees of freedom. As

shown in Table 4.7, The estimated β1 equals -0.052 (with s.e. 9.17 × 10−3), which

indicates that ATF significantly decreases the recruitment of age-4 pollock, such

that a 1% increase in ATF results, on average, in 0.052% decrease in recruitment.

Additionally, the age-1 pollock abundance index is positively related with the re-

cruitment of age-4 pollock (β̂2 = 0.209, with s.e. 0.039), which indicates that age-1

abundance is an important factor explaining the variability in the recruitment of

age-4.

Figure 4.10: Akaikes information criterion (AIC) levels with different threshold years
in Model (4.19)
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Based on the estimated autoregressive parameters, φ̂1 = 0.546 and φ̂2 =

−0.719 (Table 4.7), the error process {ξt} is, indeed, stationary (see Cryer and Chan

2008, p. 72). The average length of the stochastic cycle, 2π/ cos−1[φ1/(2
√
−φ2)], is

approximately 5 years (Fig. 4.11). The competition and cannibalism between the
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cohorts of different ages, especially the cannibalism of the adult pollock on the juve-

niles, as detailed in Eqns. (4.7-4.9), are instrumental for the 5-year quasi-periodicity.

Additionally, according to the discussion of the stochastic mechanism for this model

in the previous section, the AR(1) parameter φ1 can be interpreted as the average

survival rate of pollock of ages 4+, which is estimated to be 0.546 (= 54.6%), al-

though with considerable uncertainty as the 95% confidence interval ranges from

28.5% to 63.5%.

Table 4.7: Estimates of Model (4.19) for predicting walleye pollock recruitment
using 1991 as the threshold year

Value SE t-value p-value

β0 20.0 1.33 × 10−1 149.78 <0.001

β1 −0.0520 9.17 × 10−3 −5.67 <0.001

β2 0.209 3.86 × 10−2 5.41 <0.001

φ1 0.546 1.43 × 10−1 3.82 1.52 × 10−3

φ2 −0.719 1.31 × 10−1 −5.50 <0.001

The normalized residuals equal the standardized residuals pre-multiplied by

the inverse square-root of the estimated error correlation matrix. In the model

assumptions, the normalized errors follow the independent normal distribution with

zero mean and constant variance. The linear trend in the Q-Q normal plot of the

normalized residuals (upper left plot in Fig. 4.12) and the Shapiro-Wilk normality

test result (p-value = 0.58) suggest that the normal distribution assumption in the

errors is satisfied. The scatter plot of the normalized residuals (upper right plot in

Fig. 4.12) shows that the constant variance assumption for the normalized errors

appears appropriate. The normalized residuals appear to be uncorrelated over time,

which is supported by the ACF and Ljung-Box test. Therefore, the assumptions of
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Figure 4.11: Theoretical autocorrelation function (ACF) of the AR(2) error process
from the fitted Model (4.19), showing the quasiperiodicity of the error process.
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the error terms are satisfied approximately for the fitted Model (4.19), suggesting

that it provides a good fit to the data.

Owing to the AR(2) correlation structure in the error term, {ξt} and that

the covariates in Model (4.19) lag the recruitment by three years, we can compute

out-of-sample k years ahead forecasts for k=1,2 and 3 years into the future by the

following formula:

ŷ4,n+k = β̂0 + β̂1an+k−31(n+k−3>t̂c) + β̂2y1,n+k−3 + ξ̂n+k

where n is the last year of the study period, being 2006, and ξ̂n+k are computed

recursively by the formula:

ξ̂n+k = φ̂1ξ̂n+k−1 + φ̂2ξ̂n+k−2

with ξ̂t = y4,t − (β̂0 + β̂1at−31(t−3>t̂c) + β̂2y1,t−3) being the regression residuals from
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Figure 4.12: Residual checks of Model (4.19)
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Model (4.19) for t ≤ n. For formulas for computing 95% prediction intervals see

Chapter 9 of Cryer and Chan (2008). For computing forecasts for 4 years or longer,

we needed to compute out-of-sample forecasts for ATF abundance and that of 1-year

old pollock, which required the development of joint modeling for these covariate

processes with the recruitment. Note that y1,t in year 1999 was a missing value,

and we used the nave scheme of averaging the y1,t’s in 1998 and 2000 to impute this

missing log age-1 abundance index. The fitted recruitment of age-4 pollock in 2002

was calculated based on the imputed age-1 abundance in 1999.

Recruitment estimates and out-of-sample (point) forecasts, i.e. conditional

means of the future values, from Model (4.19) for 3 years are shown in Fig. 4.13. The

dynamic trend shown by the fitted pollock recruitment levels (dashed curve) follows

the observed recruitment trend (gray curve) in the study period, which indicates that

the recruitment Model (4.19) fits the data well. The (log) recruitment forecasts of

the age-4 from 2007 to 2009 are 18.5, 19.5 and 19.0, respectively, resulting in the

forecast errors (forecasts minus observations) being 0.93, 0.67 and -0.68, respectively.

The dotted curve in Fig. 4.13 plots the recruitment forecasts of the age-4 from 2007

to 2009, with the 95% pointwise prediction band shaded in gray; the point forecast

for 2007 is just outside the 95% prediction interval (but still successfully predicting

a weak year class), while the point forecasts for 2008 and 2009 are both inside their

95% prediction intervals.

The second fitted recruitment model uses lag-1 and lag-2 recruitment to ac-

count for the (extra) autocorrelation among the age-4 recruitment. The autocorre-

lation structure can be explained by the population dynamics described by Eqns.

(4.12-4.15), with the greater flexibility in a nonlinear lag-2 effect. The threshold

ATF predation effect and age-1 abundance effect are still found to be linear. The

formulation of this fitted model is shown as follows:
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Figure 4.13: Observed recruitment and predicted recruitment from Model (4.19).
Numbers are abundance of 4 year old fish occurring in each year. Gray solid line:
observed recruitment over the study period; dashed line: estimated recruitment;
dotted line: out-of-sample recruitment forecasts; gray shaded area: 95% point-wise
prediction band of the recruitment forecasts; ◦: recent observed recruitment in 2007
to 2009.
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y4,t+3 = β0 + β1at1(t>tc) + β2y1,t + β3y4,t+2 + s(y4,t+1) + εt+3, (4.20)

where β3y4,t+2 represents a linear lag-1 recruitment effect, and s(y4,t+1)assesses the

lag-2 recruitment effects nonparametrically. The term {εt+3} is a sequence of un-

correlated error terms that are of zero mean and constant variance.

Model (4.20) considers that the strong ATF predation effects take place only af-

ter a threshold year. Before accepting the fit of Model (4.20), we determine whether

the threshold effect is significant in the recruitment model. Using the likelihood

ratio test, we find strong evidence for the threshold structure embodied in Model

(4.20) with p-value being equal to 0.002. Additionally, according to the AIC values

under different threshold choices, the estimated threshold year is 1991.

The estimation results of Model (4.20) are given in Table 4.8. The slope of

the linear ATF predation effect after 1991 is -0.059 (with s.e. 1.14. × 10−2), which

indicates that higher density of ATF tends to reduce the recruitment of age-4 pol-

lock. Meanwhile, the positive slope (β̂2 = 0.179 with s.e. 4.89 × 10−2) of the linear

age-1 abundance effect indicates that the higher age-1 abundance is associated with

the higher recruitment level. The positive estimate β̂3 = 0.252 (with s.e. 0.104)

suggests that the misclassification effect overwhelms the competition and/or canni-

balism from the lag-1 recruitment. The decreasing pattern in the “Lag 2 recruitment

effects” (Fig. 4.14) shows that the age-4 recruitment is negatively correlated with

the lag-2 recruitment, which is consistent with the mechanism underlying Eqns.

(4.12-4.15). The smooth function estimate s(y4,t+1) has 1.64 degrees of freedom, so

Model (4.20) has about 6.64 parameters, slightly more than that of Model (4.19),

and its residuals have 15.36 degrees of freedom.

Through the model diagnostics, we find that the residuals of Model (4.20)

marginally satisfied the Shapiro-Wilk normality test with p-value being equal to
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Table 4.8: Estimates of Model (4.20) for predicting walleye pollock recruitment
using 1991 as the threshold year

Value SE t-value p-value

β0 15.1 2.02 7.49 <0.001

β1 −0.0594 1.14 × 10−2 −5.21 <0.001

β2 0.179 4.89 × 10−2 3.66 0.002

β3 0.252 1.04 × 10−1 2.43 0.028

Figure 4.14: Additive lag-2 recruitment effects of Model (4.20).
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0.07, which was slightly higher than the 0.05 significance level. All the other as-

sumptions of the error terms, such as the constant variance and independence, are

approximately satisfied. Overall, the residual diagnostics of Model (4.20) are not

as quite as good as those of Model (4.19), although they look similar to Fig. 4.12

so they are not shown here. Additionally, the out-of-sample forecasts from Model

(4.20) (dotted curve in Fig. 4.15) are less accurate than those from Model (4.19)
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as all of the forecasts fall outside the 95% prediction intervals (although the gen-

eral predictions of weak or moderate year classes are accurate). The forecast errors

(forecasts minus observations) in 2007, 2008 and 2009 equal 1.52, 0.95 and -0.71,

respectively, which are larger in magnitude than their counterparts from Model

(4.19). However, the within-sample recruitment estimation from Model (4.20) fits

the observed recruitment data well (dashed curve in Fig. 4.15).

Figure 4.15: Observed recruitment and predicted recruitment from Model (4.20).
Gray solid line: observed recruitment over the study period; dashed line: estimated
recruitment; dotted line: out-of-sample recruitment forecasts; gray shaded area:
95% point-wise prediction band of the recruitment forecasts; ◦: recent observed
recruitment (of age-4 pollock) in 2007 to 2009.
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4.2.4 Discussion

The dynamics of marine fish populations respond to many factors, including

commercial harvesting, climate change and shifts in community structure. One of

the world’s largest fisheries, walleye pollock, has experienced sequential and lasting
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declines of populations in Puget Sound, Shelikof Strait, the Aleutian Basin, and

other regions, most probably due to the combined effects of climate change (Cian-

nelli et al., 2005), shifts in community structure (Anderson and Piatt, 1999; Litzow

and Ciannelli, 2007), and possibly harvesting activity. The Gulf of Alaska popula-

tion is about 22% of its pre-fishing biomass. Under such circumstances, forecasting

recruitment to the population is important as the commercial harvest takes increas-

ingly younger members of the population. The traditional methods of forecasting

marine fisheries recruitment from environmental conditions during egg and larval

stages have been marginally successful due to the complexity of interacting biolog-

ical and environmental conditions coupled with the high and variable mortality of

these early life history stages (Bailey et al., 2005; Houde, 2008), although there are

exceptions (Svendsen et al., 2007). Here we demonstrate some novel forecasting

models that are fairly successful. In our forecasting models we start with 1 year-old

juvenile pollock abundance in survey catches and examine factors that may influ-

ence their survival over the next 3 to 4 years until recruitment. We find that a

change in the predator community favoring an increase in the abundance of ATF,

(a voracious predator of juvenile pollock that has come to dominate the groundfish

biomass in the Gulf of Alaska in the past decade; Turnock and Wilderbuer, 2007),

a strong autocorrelation effect probably caused by inter year-class interactions, and

a threshold effect in predation that is linked with a phase shift in environment fac-

tors are closely coupled with recruitment predictability. These findings represent

a new approach in forecasting recruitment success of marine fisheries and further

demonstrate the importance of predation during the juvenile stage influencing the

dynamics of marine populations.

Recruitment of pollock became decoupled from larval mortality in the early

1990s and control shifted to juvenile survival (Bailey, 2000); a shift in community
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structure also occurred around the same time that included a marked increase in the

abundance of flatfishes (Anderson and Piatt, 1999), particularly ATF. In general,

larval dynamics are thought to activate variability in year- class strength, whereas

predation on juveniles is thought to dampen variability (van der Veer, 1986; Bailey

et al., 2005). However, ATF has become an important force in the recruitment of

pollock, as ATF is currently the dominant groundfish species and predator in the

Gulf of Alaska ecosystem. ATF biomass dwarfs that of other potential predators

such as cod, by about an order of magnitude (North Pacific Fisheries Management

Council 2009). Generally about 40-50% of the diet of adult ATF comprises juvenile

pollock although the exact composition and lengths of fish preyed upon depends on

availability (Yang, 1993; Yang et al., 2006; Knoth and Foy, 2008). Shifts in commu-

nity structure resulting in changes in abundance of top predators are recognized to

have major cascading effects on lower trophic levels (Hunt et al., 2002; Frank et al.,

2005). We perceive that if and/or when ATF abundance in the GOA declines, other

predators may become important factors in juvenile survival, leading to a forecasting

strategy that includes adaptable models.

A threshold effect on the importance of ATF predation on pollock seems to

have occurred around the same time that control of pollock recruitment shifted to

juvenile survival. In this sense inclusion of the threshold in the model is conso-

nant with the known biology. We suggest the possibility that an increasing ATF

population may have been conditioned over time to locate predictable hotspots on

age-1 juvenile pollock, resulting in a phase transition, or their distribution other-

wise expanded at that time to overlap more with juvenile pollock. Recent studies

have shown that whereas age-0 pollock distributions are variable from year-to-year,

age-1 (Wilson 2009) and older fish distributions (Shima et al., 2002) are relatively

consistent. Alternatively an environmental phase shift occurring around the same
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time (i.e. 1989; Hollowed et al., 2001) and potentially causing a shift in the over-

lapping distributions of predator and prey, could be a factor (Ciannelli et al., 2005).

An environmental shift that started around 1989 was associated with changes in a

broad array of biological and climate factors, including enhanced summer warming

in the coastal waters of the GOA (Hare and Mantua, 2000). Yet another alternative

is that the acoustic gear changed in 1992, near our threshold year, and this gear

change may have altered the log-transformed data by some additive constant after

1992, resulting in a jump in the intercept term; however this effect cannot produce

the piecewise linear threshold effects described in Models (4.19) and (4.20).

Our initial modeling efforts included an interaction effect of temperature and

ATF abundance on pollock recruitment. Although the final model dropped the

temperature interaction, it is likely to be an important consideration in the overlap

of predators and prey; in our case its precision may have been affected by using SST

as a proxy for bottom temperature (BT). In the Bering Sea ATF avoid cold water

(Spencer, 2008). In the GOA, there is some support that ATF tend to avoid cold

water, for example in colder La Nia years they are found in warmer areas (Speckman

et al., 2005). We suggest that in some years ATF may avoid cold water over the

shelf, influencing their overlap with juvenile pollock prey. More studies, better

understanding of temperature interactions and availability of bottom temperature

data may indicate whether temperature effects should be included in future models.

The autocorrelation among the pollock recruits included in our models reflects

the pollock’s population dynamics, which is difficult to explain, but is biologically

plausible. The sometimes cyclic nature of population dynamics is well-established

(e.g. Kendall et al., 1999; Stenseth et al., 2003). Cyclic variations in recruitment

of marine fishes can occur on many scales, from lunar (Meekan et al., 1993) to

decadal and longer cycles (Southward et al., 1988; Ravier and Fromentin, 2001).
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Marine fish recruitment cycles with a period approximating a generation time (4

to 5 years for pollock) may result from intra-population interactions (Bjornstad

et al., 1999; Bailey et al., 2003). In the fitted models with stochastic error terms,

the dynamic cycle may be due to the competition or cannibalism effects from older

pollock groups (Bjornstad et al., 1999). Walleye pollock in the Bering Sea are highly

cannibalistic and there is a strong seasonality in the process (Dwyer et al., 1987)

with up to 50 to 90% of the diet of adults in autumn and winter comprised of

juveniles, mainly age-0s. There is also a high degree of cannibalism on age-1 pollock

in the eastern Hokkaido Island stock of pollock (Yamamura et al., 2001). In the

GOA there is little published information on seasonal changes in the diet of pollock,

but in summer around 10% of the diet of adults consisted of juvenile pollock (Yang,

1993; Yang et al., 2006). Competition between year classes and between adults and

juveniles is also viable since a large component of the diet of both age-1 pollock and

adults is comprised of copepods and euphausids. Competition between year classes

is also thought to be important in recruitment of pollock off eastern Hokkaido Island

(Shida et al., 2007). Autocorrelation in juvenile survival rates may also be linked

to autocorrelation in environmental variables, such as zooplankton biomass in the

GOA and/or competitor effects on prey (Brodeur et al., 1996; Shiomoto et al., 1997).

Consequently, we believe that the autocorrelation in pollock dynamics is important

to capture in forecasting models, and a better understanding of the phenomenon is

needed.

The models we propose for pollock recruitment forecasting are novel in the

sense that they are based on indices after the complex egg and larval period, start-

ing with survey estimates of age-1 juveniles. The models account for changes in

community structure, such as an increasing trend in the predatory capacity of the

community, and for biological causes of the observed periodicity in recruitment. In
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the hindcast mode, Model (4.19) in particular provides a very close fit to observed

recruitment levels, and the forecasts for 4 year olds recruiting in 2007-09 appear

to be relatively accurate. This model, which has a slightly better fit than Model

(4.20) based on AIC and adjusted R2 as well as model diagnostics, accounts for

the effects of age-1 abundance, the threshold effect of ATF abundance and auto-

correlated error terms due to as yet unidentified covariates on recruitment 3 years

later. Furthermore, Model (4.19) provides a far superior fit (adjusted R2 = 81.5%)

than the simple linear regression with the log age-1 abundance as the only covariate

(adjusted R2 = 31.2%). Model (4.20) is more specific and provided insight to the

possible missing covariates, including potential misclassifying ages of adult pollock

(especially spillover effects of strong year classes) and predation/competition inter-

actions among cohorts. There may be other co-variates involving stock structure

and spawning behavior, or competition and cannibalism (and their representation)

underlying the AR(2) error structure that are not presently recognized.
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CHAPTER 5

AN R PACKAGE FOR FITTING PPGAMS

In this chapter, we illustrate the use of an R package PPGAM which con-

tains some R functions that implement the new methodologies detailed in Chapter 2.

The function ppgam() in the package implements the quasi-likelihood estimation of

a PPGAM. The quasi-likelihood estimation is implemented by an iterative scheme

that alternately updates the nonparametric functions and the parametric estimator

of the nonlinear component of the mean function. With the parametric nonlinear

component fixed, the additive nonparametric function estimates are updated by the

method of penalized iteratively re-weighted least squares (P-IRLS) via the gam()

function of the package mgcv (Wood, 2006). With the additive nonparametric func-

tions fixed, the unknown parameter in the parametric nonlinear component of the

mean function is updated by the method of weighted least square based on some lin-

earization technique. The update of the nonlinear parametric estimates is obtained

by solving the equation that sets zero to the corresponding first derivative of the

penalized (log-)likelihood, as specified by Eqn. (2.6). Numerically, Eqn. (2.6) can be

solved by an approximate weighted least squares problem asa follows. Given the cur-

rent parametric estimate (θ̃〈m−1〉), Eqn. (2.6), in vector form, can be approximated

as follows:

∂lp
∂θ

=
n

∑

i=1

yi − µi

φV ∗(µi)

∂hθ(zi)

∂θ

1

ġ(µi)

≈
n

∑

i=1

{yi − µ̃
〈m−1〉
i − 1

ġ(µ̃
〈m−1〉
i )

∂hθ̃〈m−1〉(zi)

∂θT
(θ − θ̃〈m−1〉)}/[φV ∗(µ̃

〈m−1〉
i )]

∂hθ̃〈m−1〉(zi)

∂θ

1

ġ(µ̃
〈m−1〉
i )

. (5.1)

The approximation denoted by Eqn. (5.1) is obtained by replacing µi in Eqn. (2.6)

with its first order Taylor approximation µ̃
〈m−1〉
i + 1

ġ(µ̃
〈m−1〉
i )

∂h
θ̃〈m−1〉 (zi)

∂θT (θ − θ̃〈m−1〉)
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given the estimates in the 〈m − 1〉th iteration. Thus, the first order condition in

Eqn. (5.1) can be fitted by the method of weighted least square, i.e. regressing y −

µ̃〈m−1〉+ 1

ġ(µ̃
〈m−1〉
i )

∂h
θ̃〈m−1〉 (z)

∂θT θ̃〈m−1〉 on 1
ġ(µ̃〈m−1〉)

∂h
θ̃〈m−1〉 (z)

∂θT with weights 1/[φV ∗(µ̃〈m−1〉)].

The package PPGAM includes several R functions for (i) fitting a PPGAM,

(ii) summarizing a fitted PPGAM, (iii) graphing the fitted functions and (iv) doing

model diagnostics. We use two simulated data and one real analysis to illustrate

the capabilities of the package PPGAM.

5.1 A Conditionally Poisson Model

As the first example, we simulated Poisson distributed counts. We use this

example to illustrate how to (1) fit a PPGAM, (2) summarize and visualize the

model fit and (3) do predictions given new covariate values. Counts were simulated

from the Poisson distribution with a logarithmic link function so that

log(µ(z, x)) = s(z) + hθ(x), (5.2)

s(z) = z11(7(1 − z))6 + 7(7z)3(1 − z)10, (5.3)

hθ(x) = αxγ = 2x0.75 (5.4)

where µ denotes the conditional mean response variable; s(z) is a 1-dimensional

smooth function to be estimated nonparametrically; hθ(x) is a power function in-

dexed by the parameter θ = (α, γ); the covariates (z, x) are assumed to be uniformly

distributed over (0, 1)2. N independent and identically distributed (yi, xi, zi), i =

1, . . . , N were then simulated.

The simulated Poisson data are generated using the function data.genpoisson1(),

and are saved in an R object named data1:

> data.genpoisson1 <- function(N) {

x <- runif(N,0,1)

z <- runif(N,0,1)

s <- h <- mu <- y <- numeric(N)
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out.data <- matrix(0, ncol=3, nrow=N)

s <- z^11*(7*(1-z))^6+7*(7*z)^3*(1-z)^10

h <- 2*x^0.75

mu <- exp(s+h)

y <- rpois(N,mu)

out.data[,1] <- y

out.data[,2] <- x

out.data[,3] <- z

out.data

}

> set.seed(100)

> N.samp <- 1000

> data1 <- data.genpoisson1(N.samp)

> colnames(data1) <- c("y", "x", "z")

> data1 <- data.frame(data1)

We can fit a PPGAM using the ppgam() function. The model formula is

split into two parts, namely the nonparametric additive part and the parametric

(nonlinear) part. The nonparmetric part is specified via the formula.gam argu-

ment by supplying a formula using the same convention used by the R package

mgcv. For example, for this Poisson example, the model formula may be writ-

ten as y~s(z)+alpha*x^gamma. Its nonparametric part is supplied to the ppgam()

function as formula.gam=y~s(z) whereas the parametric part is specified via the

formula.nl argument as formula.nl=h~alpha*x^gamma. Here the symbol h is re-

served for denoting the parametric nonlinear part. Which variables stand for the

unknown parameters in the parametric part (and their initial values) have to be

supplied to the ppgam() function via the start argument. For example, in the
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Poisson example, alpha and gamma are parameters. We can supply their initial

values as follows: start=c(alpha=1,gamma=0.3). Here their initial values are set

to be 1 and 0.3, respectively. Another approach for specifying the initial values is

to do a grid search over a supplied range; this option will be illustrated in second

example below. (Further options available for the ppgam() function are described

later.) Below is the R code for fitting the above PPGAM to the simulated Poisson

data, with the fitted model output saved in the R object “out.poisson1”.

> out.poisson1 <- ppgam(formula.gam = y~s(z),

+ formula.nl = h~alpha*x^gamma, start=c(alpha=1, gamma=0.3),

+ family="poisson", data=data1)

The argument family specifies the distribution and its corresponding link function

to use in the modeling; the default distribution is Gaussian with identity link. Other

available distributions include binomial and gamma. The specification rules for

the family argument of the ppgam() is similar to those of the glm() for fitting a

generalized linear model (GLM). The dataset containing the response variable and

covariates are supplied via the data argument.

The ppgam() function returns a list containing the estimation results as well

as some information concerning the convergence of the iterative estimation scheme.

Applying the function names() to a fitted PPGAM object would display a list of

elements in the object. A direct way to retrieve useful fitting information is to list

the corresponding element in the fitted PPGAM object. However, it is simpler to

summarize the fitted model via the function summary.ppgam():

> summary.ppgam(out.poisson1)

Family: poisson Link function: log
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Formula: y ~ s(z) + alpha * x^gamma

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.14666 0.07222 15.88 <2e-16 ***

alpha 1.97179 0.06708 29.39 <2e-16 ***

gamma 0.76885 0.05272 14.58 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:

edf Est.rank Chi.sq p-value

s(z) 8.672 9 4047 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Scale est. = 1 n = 1000

Log marginal likelihood: -2532.128, AIC: 5007.989

The summary includes information on the distribution family and displays

to the right of “Formula” the conditional mean structure on the link scale. Note

that the model automatically includes an intercept term. If an intercept term is

not needed, this should be specified in the option formula.gam, which, for this ex-

ample, can be done by specifying formula.gam=y~s(z)-1; the -1 in the formula

instructs that an intercept term is not needed. The above summary displays both
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the intercept and other parameters indexing the parametric terms as well as a ta-

ble listing the estimates, their standard errors and p-vlaues of the Wald tests for

testing the null hypotheses that each individual parameter is zero. For the nonpara-

metric function estimates (smooth terms), their effective degrees of freedom (edf)

and significance test results are presented in a table. Furthermore, Scale est.

lists the estimated scale parameter or its true value when the scale parameter is

known. For example, the scale parameter of the Poisson distribution equals 1, if

over-dispersion is not allowed. Finally, values of two model selection criteria, (ap-

proximate) log marginal likelihood and Akaikes information criterion (AIC), are

reported in the summary of the fitted PPGAM. AIC of a fitted PPGAM equals

2(degree of freedom - log likelihood), where the degree of freedom is the

sum of the number of the estimated parameters and the effective degrees of freedom

of the nonparametric function estimates. Generally, the fitted PPGAM with the

highest log marginal likelihood (lowest AIC) value provides the best fit to the data.

The smooth function estimate of s(z) can be plotted by the function plot.ppgam().

> plot.ppgam(out.poisson1, residuals=T)

For the Poisson example, the nonparametric part contains one 1-dimensional smooth

function. The solid black curve in Fig. 5.1 displays the function estimate and the

dashed black curves encompass its (individual) 95% confidence band. Setting the

option residuals=T, partial residuals (black dots) are added to the plot. The par-

tial residuals for a smooth function are obtained by adding the function estimate

to the working residuals. The partial residual plot graphically describes the rela-

tionship between a particular covariate that is the argument of the smooth function

under study and the response variable with other covariates kept fixed. The partial

residuals are helpful for visualizing the validity of the nonparametric fit, the pres-

ence of outliers and/or influential observations. Note that the estimated smooth
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Figure 5.1: Fit of the smooth function for the Poisson example.
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function is generally centered to have zero mean over the data in order to ensure

model identification (Wood, 2006, p. 134). The ticks at the bottom of the plot mark

the observed values of the covariate, which is the default option Rug=TRUE in the

function ppgam(). (Setting Rug=FALSE will not add the ticks.) For comparison, we

superimpose in Fig. 5.1 the true smooth function (red dash-dot curve), which has

been adjusted by subtracting from it the intercept estimate stored in out.poisson1.

Note the solid black curve tracks closely the dash-dot red curve, hence graphically

illustrating the good PPGAM fit to the simulated Poisson data.

> N.p <- 200

> z.p <- seq(0,1,length.out=N.p)

> s.p <- z.p^11*(7*(1-z.p))^6+7*(7*z.p)^3*(1-z.p)^10

> s.p.adj <- s.p - out.poisson1$coefficient[1]

> lines(s.p.adj~z.p, ylab="s(z)", xlab="z", ylim=c(-3,4), lty=3,

+ col="red", lwd=2)

The function predict.ppgam() computes the point predictors of the future re-

sponses (and their prediction standard deviations) given a new set of covariates. Set-

ting the option type="response", predictions on the scale of the response variable

are returned by the predict.ppgam() function. The option type="link" results in

the predictions on the link scale. When type="terms", the predictions, component

by component on the link scale, are listed separately, including any linear parametric

component and smooth function components specified in the formula.gam option, as

well as the parametric nonlinear part. With the option se.fit=TRUE, the prediction

function also returns the prediction standard deviations.

Based on the fitted object out.poisson1, the function predict.ppgam() is

called to make predictions with new sets of covariate values in the dataset newdata1.

In the new dataset for prediction, only the values of the covariates in the fitted model
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are required, but the names of the covariates need to match exactly those in the

fitted model.

> newdata1 <- data.frame(x=c(data1$x[1], 0.2), z=c(data1$z[1], 0.6))

> pred.poisson1 <- predict.ppgam(out.poisson1, newdata=newdata1,

+ type="response", se.fit=TRUE)

> pred.poisson1

fit se

1 4.036799 0.1498030 2 10.714724 0.2812875

Note that, in this example, newdata1 contains the first data case of the simu-

lated Poisson data, data1, so the corresponding point predictor should be same as

the first fitted value in the fitted object out.poisson1, which is, indeed, the case

as shown below.

> out.poisson1$fitted.values[1]

[1] 4.036799

5.2 A Conditionally Gaussian Model

In this section, we illustrate the capabilities of the package PPGAM regarding

(1) an estimation approach using the initial values from a grid search, (2) visualiza-

tion of an estimated two-dimensional smooth function, (3) residuals calculation and

model diagnostics, (4) model selection among several potential models and (5) track-

ing the convergence behavior of the nonlinear parameter estimation. The example in

this section is based on a simulated data set with conditionally Gaussian response,

whose conditional mean is the sum of the following two additive components:

s(z1, z2) = 0.8 × 0.6π(1.2e−(z1−0.2)2/0.62−(z2−0.3)2 + 0.8e−(z1−0.7)2/0.42−(z2−0.8)2/0.62

),
(5.5)

h(x) = − log(1 + αxγ) = − log(1 + 2x0.7). (5.6)
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The identity link is used for the Gaussian data generation, so the conditional

mean µ(z, x) = s(z)+h(x), where z = (z1, z2) and s(z) = s(z1, z2) is a 2-dimensional

smooth function. (The covariates (Z1, Z2) are assumed to be uniformly distributed

over [0, 1]2, and X uniformly distributed over [0, 10].) Independent data were simu-

lated using the function, data.gengaus1():

> data.gengaus1 <- function(N) {

x <- runif(N,0,10)

z1 <- runif(N,0,1)

z2 <- runif(N,0,1)

s <- h <- mu <- y <- numeric(N)

out.data <- matrix(0, ncol=4, nrow=N)

#sigma <- 0.1

sigma <- 0.3

s <- 0.8*0.6*pi*(1.2*exp(-(z1-0.2)^2/0.6^2-(z2-0.3)^2)+

0.8*exp(-(z1-0.7)^2/0.4^2-(z2-0.8)^2/0.6^2))

h <- -log(1+2*x^0.7)

mu <- s+h

y <- rnorm(N,mu,sigma)

out.data[,1] <- y

out.data[,2] <- x

out.data[,3] <- z1

out.data[,4] <- z2

out.data

}

The simulated data contains 500 data cases, and are saved in data2.

> set.seed(200)
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> N.samp <- 500

> data2 <- data.gengaus1(N.samp)

> colnames(data2) <- c("y", "x", "z1", "z2")

> data2 <- data.frame(data2)

The function ppgam() is called to fit the simulated Gaussian data, and the es-

timation results are saved in the object out.gaus1. The nonparametric part of the

model is specified by setting the argument formula.gam = y~s(z1,z2) while the

parametric nonlinear part is given by setting formula.nl=h~-log(1+alpha*x^gamma)

in the function call. Instead of setting fixed initial values for the parameters, we

illustrate a second option to get the initial values for the nonlinear parameters. The

function ppgam() can compute initial values for the nonlinear parameters using a

grid search. The user then has to supply the lower bound and upper bound for each

parameter to do the grid search for more refined initial values. Specifically, the lower

and upper end points for each parameter have to be supplied as a vector via the

lower and upper arguments, respectively. Also, the user has to specify the number

of segments into which each interval is to be equally partitioned via the n.grid

argument. The function ppgam() then fits a GAM with the nonlinear parameters

fixed at each set of values prescribed by the grid, and picks the set of initial nonlinear

parameter values for which the model has the smallest GCV. The following R codes

specify that the initial values are to be determined by a grid search over the rectangle

(0.0001, 5)× (0.0001, 2) with a grid that divides each side of the rectangle into three

equal sub-intervals, so altogether 16 evenly spaced grid points are used in the grid

search for the initial values. (For the simulated Gaussian example, the grid search

yields the more refined initial values of (α, γ) that equal (3.3333,0.6667), which

are saved in the nlpar.ini object of the list returned by the function ppgam().)

Furthermore, with the option family="gaussian", the model is fitted under the
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assumption that the response variable conditionally follows the normal distribution

with default identity link.

> out.gaus1 <- ppgam(formula.gam = y~s(z1,z2),

+ formula.nl = h~-log(1+alpha*x^gamma),

+ lower=c(alpha=0.0001,gamma=0.0001), upper=c(alpha=5,gamma=2),

+ n.grid=c(3,3), family="gaussian", data=data2)

For the simulated Gaussian example, the main estimation results can be sum-

marized by calling the function summary.ppgam(). The lay-out of the summary from

summary.ppgam(out.gaus1) is similar to that from summary.ppgam(out.poisson1)

for the simulated Poisson example.

Family: gaussian Link function: identity

Formula: y ~ s(z1, z2) + -log(1 + alpha * x^gamma)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.63278 0.16941 9.638 < 2e-16 ***

alpha 1.88302 0.50485 3.730 0.000215 ***

gamma 0.70885 0.04689 15.117 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Approximate significance of smooth terms:

edf Est.rank F p-value

s(z1,z2) 16.21 29 21.79 <2e-16 ***

---
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Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Scale est. = 0.095195 n = 500

Log marginal likelihood: -165.0187, AIC: 266.2358

The conditional mean function of the simulated Gaussian example contains

a 2-dimensional smooth function s(z1, z2); the corresponding smooth fit can be

described by either a contour plot or a perspective plot. Before illustrating the

estimated 2-dimensional smooth function for the Gaussian example, we draw the

contour plot of the “centered” true smooth function as defined by (5.5) (the left

diagram in Fig. 5.2) for comparison; the centering was done by subtracting the in-

tercept estimate from the true function. Recall that for model identifiability each

smooth functions is centered. For the simulated Gaussian example, the estimated

intercept is approximately equal to the estimated mean of the only smooth function,

s(z1, z2). Hence, we adjust the true smooth function by subtracting the intercept

estimate from it to ensure that it is comparable to the estimated smooth function

from the PPGAM fit. The right diagram in Fig. 5.2 depicts the estimated smooth

function, which is generated by the following R command.

> plot.ppgam(out.gaus1, xlab=expression(z[1]), ylab=expression(z[2]))

When applying the function plot.ppgam() to draw a 2-dimensional smooth function

estimate, the default is a contour plot, i.e. the default option is plot.2d="contour".

With the default option Rug=TRUE, the covariate values are superimposed on the di-

agram as dots in a contour plot, as shown by the right diagram in Fig. 5.2. Overall,

these contour plots display a close fit of the adjusted true smooth function by the

estimated smooth function (Fig. 5.2). In particular, we find that the PPGAM esti-

mation successfully describes the shape of the true smooth function for the Gaussian
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example.

Figure 5.2: True smooth function and its estimate from the PPGAM fit to the sim-
ulated Gaussian data set. The left panel plots the “centered” true smooth function,
and the right panel depicts the estimated function. The dots on the right panel are
the observed values of (z1, z2).
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With the option plot.2d = "persp", the function plot.ppgam() can gener-

ate a perspective plot. The perspective plot of the smooth function estimate in the

Gaussian example (Fig. 5.3) is drawn by the following R command.

> plot.ppgam(out.gaus1, plot.2d = "persp",

+ xlab=expression(z[1]), ylab=expression(z[2]))

The PPGAM package provides a quick model diagnostic approach based on

some basic residual plots. Various types of residuals in the ppgam fit can be retrieved

by calling the function residuals.ppgam() with different type options, which in-

clude “response”, “Pearson”, “scaled.Pearson”, “working” and “deviance”. The

response residual is the raw residual on the scale of the response variable; the scaled
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Figure 5.3: Perspective plot of the estimated smooth function for the Gaussian
example.

z[1]

z[
2]

pl.fit

Pearson residual is the raw residuals scaled by the standard deviation of the corre-

sponding datum; the Pearson residual equals the scaled Pearson residual multiplied

by the square root of the scale parameter; the working residual is the residual on the

link scale; and the deviance residual is based on the deviance contributed by each

datum. The convention for the type argument is similar to that adopted by the

mgcv package for a GAM fit. The first 5 scaled Pearson residuals of the PPGAM

fit for the Gaussian example are listed by the following R code.

> resgaus1.std <- residuals.ppgam(out.gaus1, type="scaled.pearson")

> resgaus1.std[1:5]

1 2 3 4 5

0.4910554 1.2863246 1.2417204 0.2575857 0.5180664

Model diagnostics can be carried out by the function ppgam.check(). The

model diagnostics are displayed in a panel of four figures, including the normal QQ
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plot, the histogram of the residuals, the scatter plot of the residuals against the

fitted values, and the scatter plot of the observed response values against the fitted

values. The diagnostic checks of the ppgam fit for the Gaussian example as saved

in the object out.gaus1 are performed by the R command reproduced below, and

the diagnostic results are shown in Fig. 5.4. (The default residuals are the deviance

residuals, which are also the raw residuals for normal data.) As shown by Fig. 5.4,

the residuals appear to be uncorrelated and normally distributed, suggesting that

the fitted PPGAM provides a good fit to the data.

> ppgam.check(out.gaus1)

Figure 5.4: Diagnostic checks of the PPGAM fit to the simulated Gaussian data.
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Two model selection criteria, log marginal likelihood and AIC, are provided by

the PPGAM package. We use an example to show the usage of the model selection
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criteria. Based on the simulated Gaussian data, a second model are fitted with the

smooth function s(z1, z2) now approximated as a sum of two additive functions,

s(z1) + s(z2).

> out.gaus2 <- ppgam(formula.gam = y~s(z1)+s(z2),

+formula.nl = h~-log(1+alpha*x^gamma),

+lower=c(alpha=0.0001,gamma=0.0001), upper=c(alpha=5,gamma=2),

+n.grid=c(3,3), family="gaussian", data=data2)

The values of the model selection criteria for the above model fit can be dis-

played using the summary.ppgam() function, or they can be retrieved directly from

the fitted object out.gaus2 using the following R code. The first element is the

log marginal likelihood and the second is the AIC value of the model fit using

s(z1) + s(z2).

> print(c(out.gaus2$lmarglik, out.gaus2$aic))

[1] -188.9215 345.0711

In comparison, the log marginal likelihood and the AIC of the former model which

allows for interactions in z1 and z2, equal

Log marginal likelihood: -165.0187, AIC: 266.2358,

hence modeling the nonparametric part of the mean function additively in terms of

s(z1) + s(z2) results in a lower log marginal likelihood (−188.92) and a higher AIC

(345.07) than the model with s(z1, z2) modeling the possibly interactive covariate

effects of z1 and z2 (log marginal likelihood = −165.02, AIC = 266.24). Thus, among

the models containing the true parametric nonlinear component, the nonparametric

term s(z1, z2) results in a better fit to the simulated data than the term s(z1)+s(z2),

which is expected since the true nonparametric term is of the form s(z1, z2).
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The ppgam() function returns a list one of its object is named nlpar.path

which is a vector obtained by concatenating the parameter vector iterates. Recall

the estimation of a PPGAM is done iteratively by alternately updating the smooth

function estimates and the nonlinear parametric estimates. The following R code

illustrates how to extract the information saved in out.gaus1$nlpar.path, so that

we can examine the convergence paths (Fig. 5.5) of the two nonlinear parameters

for the Gaussian example. Fig. 5.5 shows that the algorithm converged successfully.

> nlpar1.path <- nlpar2.path <- numeric()

> n.rec <- length(out.gaus1$nlpar.path)/out.gaus1$n.nlpar

> for (i in 1:n.rec) {

+ nlpar1.path[i] <- out.gaus1$nlpar.path[(i-1)*out.gaus1$n.nlpar+1]

+ nlpar2.path[i] <- out.gaus1$nlpar.path[(i-1)*out.gaus1$n.nlpar+2]

+ }

> par(mfrow=c(2,1))

> plot(nlpar1.path, ylim=c(1.5,4),

+ xlab="Number of iteration", ylab=expression(alpha))

> plot(nlpar2.path, ylim=c(0.6,0.75),

+ xlab="Number of iteration", ylab=expression(gamma))

5.3 Revisit the Dose-Response Study on the

Leukemia Risk Due to Radiation from the

Atomic Bomb

In Section 2.5, we fit a PPGAM to assess the leukemia risk of the atomic bomb

survivors in Hiroshima and Nagasaki from 1950 to 1982. The data for this study

were obtained from the Atomic Bomb Casualty Commission (ABCC); see refer-

ence http://www.rerf.jp/index_e.html. The response variable (death.dose01)

is a two-column matrix with the first column containing the numbers of death
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Figure 5.5: Convergence paths of the two parameters for the Gaussian example.
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from leukemia and the second containing those from disease other than leukemia

for various age groups. The covariates in the study include the radiation lev-

els (Dose.ds86true.adj101) the survivors were exposed to, city where they were

in at the time of explosion (City.dummy01) and two characteristics of the sur-

vivors, namely sex (Gender01) and age at the time of the atomic bomb explosion

(Age.true01). The following R codes loaded the dataset into R.

> dose.abomb01<- read.delim("dose-abomb01.dat", header=T)

> dose.abomb01 <- data.frame(dose.abomb01)

> attach(dose.abomb01)

> death.dose01 <- cbind(death.leuk01, death.dexcl01)

> dose.abomb01$death.dose01 <- death.dose01

The model is formulated for studying how the propensity of the atomic bomb

survivors to die from the leukemia was affected by their level of exposure to radiation

from the atomic bomb. The model accounts for effects of two confounding factors,

namely the cities where the survivors lived and their ages at the explosion, with

the age effects modeled nonparametrically and the dose-response effects modeled

by a power function. The dose-response relationship is as specified by Eqn. (2.24).

To relax the constraint due to the positive restriction on the parameter α indexing

the power dosage function, the dosage function is re-parameterized as specified by

(2.25). The re-parameterized model can be fitted using the following R command:

> dose.ab13ppgam <- ppgam(formula.gam = death.dose01 ~

+ City.dummy01 + s(Age.true01),

+ formula.nl = h~exp(beta+gamma*log(Dose.ds86true.adj101)),

+ start = c(beta=-1.5, gamma=0.31), family="binomial")

where the argument formula.gam = death.dose01~City.dummy01+s(Age.true01)

specifies the linear and nonparametric terms in Model (2.25); and the argument
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formula.nl = h~exp(beta+gamma*log(Dose.ds86true.adj101)) specifies the para-

metric nonlinear dosage function, which is also the last term in the mean function

stated in (2.25).

The estimation results of Model (2.25) is summarized as follows:

> summary.ppgam(dose.ab13ppgam)

Family: binomial Link function: logit

Formula: death.dose01 ~ City.dummy01 + s(Age.true01) + exp(beta +

gamma * log(Dose.ds86true.adj101))

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.67965 0.13776 -33.970 < 2e-16 ***

City.dummy01 -0.44972 0.16275 -2.763 0.00646 **

beta -2.23675 0.53982 -4.144 5.75e-05 ***

gamma 0.54807 0.09015 6.079 9.89e-09 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:

edf Est.rank F p-value

s(Age.true01) 4.843 9 24.08 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Scale est. = 1 n = 158
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Log marginal likelihood: -206.8401 , AIC: 400.3082

From the PPGAM fit, β̂ = −2.24(0.54) and γ̂ = 0.55(0.09), which demonstrate

a significant positive dosage effect on the risk of dying from leukemia for the atomic

bomb survivors. Additionally, the estimated age effects are depicted by Fig. 2.3a,

using the following R code:

> plot.ppgam(dose.ab13ppgam, xlab="Age at bomb (k)", ylab="s(k)")
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CHAPTER 6

CONCLUSION AND SOME DIRECTIONS OF FUTURE WORK

The PPGAM extends the generalized nonlinear regression model by allowing

the addtive confounding covariate effects to be modeled nonparametrically. On the

other hand the PPGAM can be regarded as a generalization of GAM by incor-

porating a parametric nonlinear term in the mean function. Like the GAM, the

PPGAM allows both discrete and continuous responses from an exponential family,

and the estimation can be performed using the penalized likelihood scheme. We

derived some asymptotic properties of the penalized likelihood estimator, including

consistency and asymptotic normality for the nonlinear parametric estimator. The

derived asymptotic results are valuable for statistical and scientific inference. The

proposed model selection criteria (log marginal likelihood and AIC) are shown to

be effective in the simulations and two real case studies.

The application of the PPGAM for the hatchdate analysis of the pollock larvae

data reveals valuable information about the pollock’s spawning, hatching pattern

and their larvae’s survival process, which are important for understanding the pol-

lock’s population dynamics in their early stage. The dose-response example illus-

trates the use of the PPGAM for non-normal responses.

In the most general form, the partly parametric nonlinear regression model

entertains interaction between the parametric nonlinear component and the non-

parametric components. Thus the partly parametric generalized nonlinear regres-

sion (PPGNR) model provides more flexibility than its simpler additive version,

PPGAM, but also brings more challenges in the model estimation and its theoretical

properties, for example, deriving conditions for the model identifiability. Consider-

ing the complexity of the nonlinear functions, it is generally difficult to develop a
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simple and universal constraint for model identifiability. The further development

of the partly parametric nonlinear regression model and its associated problems are

some interesting future research directions.
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