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ABSTRACT

The analysis of joint distribution function with bivariate event time data is a chal-

lenging problem both theoretically and numerically. This thesis develops a tensor spline-

based nonparametric maximum likelihood estimation method to estimate the joint distribu-

tion function with bivariate current status data.

Tensor I-splines are developed to replace the traditional tensor B-splines in approx-

imating joint distribution function in order to simplify the restricted maximum likelihood

estimation problem in computing. The generalized gradient projection algorithm is used

to compute the restricted optimization problem. We show that the proposed tensor spline-

based nonparametric estimator is consistent and that the rate of convergence can be as

good as n1/4. Simulation studies with moderate sample sizes show that the finite-sample

performance of the proposed estimator is generally satisfactory.
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CHAPTER 1
INTRODUCTION

1.1 Background of Bivariate Current Status Data

In some survival analysis applications, observation of the random event time T is

restricted to the knowledge of whether or not T exceeds a random monitoring time C. This

type of data is known as current status data, and sometimes referred to as interval censored

data case I (Groenoboom and Wellner (1992)). Current status data arise naturally in many

applications, see for example, in animal tumorigenicity experiments (Hoel and Walburg

(1972), Finkelstein and Wolfe (1985), and Finkelstein (1986)). In these examples, for each

experimental animal, T is the time from exposure to a potential carcinogen until occur-

rence of the tumor, and C is the time, on the same scale, of sacrifice. Upon sacrifice, the

presence or absence of the tumor can be determined providing current status information

on T . Another example of current status data arises in studies of the distribution of the age

at weaning (Diamond et al. (1986), Diamond and McDonald (1991), and Grummer-Strawn

(1993)). Here T represents the age of a child at weaning and C the age at observation. It

also arises in studies of human immunodeficiency virus (HIV) and acquired immunodefi-

ciency syndrome (AIDS) ( Shiboski and Jewell (1992), and Jewell et al. (1994)).

The univariate current status data have been thoroughly studied in recent years.

Groenoboom and Wellner (1992) studied the asymptotic properties of the nonparametric

maximum likelihood estimator of the distribution function with current status data. Huang

(1996) considered Cox’s proportional hazards model with current status data and showed
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that the MLE of the regression parameter is asymptotically normal with
√

n convergence

rate, even through the MLE of the baseline cumulative hazard function only converges at

n1/3 rate. For a review of regression models for interval censored data, see Huang and

Wellner (1997).

Bivariate event time data occur in many applications. For example, in an Australian

twin study (Duffy et al. (1990)) the researchers were interested in times to a certain event

such as disease or disease-related symptoms in both twins. As in univariate case, both

failure times can be censored.

Some work has addressed the estimation of the joint distribution function of the

correlated event times with bivariate right censored data. Analogous to the well-known

Kaplan-Meier estimator for survival function, the bivariate Kaplan-Meier estimation on

plane was proposed by Dabrowska (1988). Kooperberg (1998) discussed a tensor-spline

estimation of the logarithm of joint density function with bivariate right censored data with-

out studying the asymptotic properties of the estimator. For bivariate interval censored data

case 2, a nonparametric two-stage method was proposed to estimate the joint distribution

function in the literature. In this method, first the non-zero mass intersection rectangles are

found, and then EM algorithm is applied to find the MLE of the joint distribution (Beten-

sky and Finkelstein (1999) and Yu, et al. (2000)). In the second stage the EM algorithm

could be replaced by the more efficient Iterative Convex Minarant method proposed by

Groenoboom and Wellner (1992). But this nonparametric estimation is not uniquely de-

fined (Yu, Wong and He (2000)) because the non-zero mass rectangles can not be uniquely

determined. Moreover, the asymptotic properties of this type of nonparametric estimators
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are difficulty to study.

This thesis focuses on bivariate current status data. Let (T1, T2) be the two event

times of interest and (C1, C2) the two corresponding random monitoring times. In this

setting, bivariate current status data consist of

(C1, C2, ∆1 = I(T1 ≤ C1), ∆2 = I(T1 ≤ C1)),

where I(·) is the indicator function. This data structure arises in the studies of two dis-

eases in same patients or some common disease for two correlated subjects. For example,

Wang and Ding (2000) studied whether or not the onsets of hypertension and diabetes are

correlated for people in two towns in Taiwan. By assuming a bivariate copula model Wang

and Ding (2000) proposed a two-stage estimation of the association parameter of two event

times, in which the joint distribution of the failure time variables is assumed to follow a

bivariate copula model (Nelsen (2006)). First the nonparametric estimates of the marginal

distributions are obtained, and then the association parameter is estimated by the maximum

pseudo-likelihood method. This two-stage method facilitates an easy estimator of the joint

distribution function through copula model, and is the only available method in the litera-

ture to estimate the joint distribution function with bivariate current status data. But if the

copula model is not correctly specified, this estimator could be seriously biased. Jewell et

al. (2005) studied the relationship between the time to HIV infection to the partner and the

time to diagnosis of AIDS for the index case by estimating smooth functionals of marginal

distribution functions. In both examples, the bivariate event times have the same monitor-

ing time, that is C1 = C2 = C. Hence the joint distribution function can be only studied on

the diagonal, that is, only F (c, c) is identifiable. However, the common censoring assump-
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tion may not be true. For example, suppose a study is conducted to explore the times to first

use of marijuana between siblings. Although the interview may be conducted at same times

for both siblings, the ages at interview (monitoring times) of the siblings are different and

these give arise to the bivariate current status data with possibly different C1 and C2. Ding

and Wang (2004) proposed a nonparametric procedure for testing marginal dependence in

the general scenario when two censoring times for two events could be different. But their

goal was not the estimation of joint distribution function. This thesis is concerned about

the estimation of joint distribution function in the general scenario when C1 and C2 may or

may not be equal.

1.2 Thesis Objective and Proposed Method

In this thesis we propose to estimate the joint distribution function with current

status data, using the tensor spline-based sieve maximum likelihood method. Convention-

ally, the estimate can be defined using the method similar to Betensky and Finkelstein

(1999), and Yu et al. (2000). For these methods, the non-zero masses are determined for

the intersection rectangles made by the collection of monitoring times. In addition to the

uniqueness problem, as sample size increases, this problem is a high dimensional problem

which is hard to deal with. To overcome these difficulties, we proposed a partially mono-

tone tensor spline-based sieve estimation method for the the general bivariate current status

data described in Section 1.1. Under some regularity conditions, we show the tensor spline

estimator is consistent and we derive the convergence rate of this estimator. Our simulation

studies indicate that the proposed tensor spline estimation method performs very well and
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better than a three-stage pseudo likelihood method extended from Wang and Ding’ method

(2000).

The rest of thesis is organized as follows.

In Chapter 2, Some technical backgrounds are introduced. First, we introduce the

B-splines and the I-splines. We study the equivalency between the B-spines and the I-

splines. The partially monotone tensor B-splines are used in studying the asymptotic prop-

erties of the proposed estimator. The partially monotone tensor I-splines are used in com-

puting the restricted maximum likelihood estimate, since the constraints of the problem

using the tensor I-splines is much simpler than that using the tensor B-splines. Second

we introduce some basic concepts and results on empirical process theory, which will be

heavily used in consistency proof and the derivation of convergence rate. Finally, we derive

some useful technical results on the B-splines and the tensor B-splines.

In Chapter 3, the tensor spline-based sieve nonparametric maximum likelihood es-

timation method of joint distribution function with bivariate current status data is proposed.

First, we derive the likelihood of bivariate current status data. Second we derive the likeli-

hood with the B-splines, in which the partially monotone tensor B-spline function is used

for the joint distribution function and the monotone B-spline functions are used for the

two marginal distribution functions and we represent the spline-based sieve nonparametric

maximum likelihood estimation problem as a constrained optimization problem with re-

spect to the coefficients of the B-splines. Finally we similarly derive the likelihood with

the I-splines and represent the problem in terms of the I-splines in order to have a set of

constraints that are easily dealt with in computation.
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In Chapter 4, the asymptotic properties of the proposed estimator are studied us-

ing the technical results on the B-splines. Some regularity conditions are provided for the

theoretical development regarding the joint distribution function, the censoring time distri-

bution functions and the B-splines. First, we show that the proposed estimator is consistent.

Second, we derive the convergence rate of the proposed estimator, which can be as good as

n1/4.

In Chapter 5, the numerical studies are carried out. First, the generalized gradient

projection method is introduced to compute the estimate. Then, extensive simulation stud-

ies are conducted to examine the finite sample performance of the proposed method. We

also compare the proposed method with the Wang and Ding’s method (2000).

In Chapter 6, we describe the further applications of the proposed method are dis-

cussed.
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CHAPTER 2
TECHNICAL BACKGROUNDS

In this chapter, we describe three versions of spline functions and their relationships.

We also summarize some results on modern empirical process theory that will be heavily

used in studying the asymptotic properties of the spline-based nonparametric estimator of

the joint distribution function with bivariate current status data.

2.1 Splines

In this section, we introduce three types of splines, the B-splines, the M-splines,

and the I-splines. We describe the constructions of these splines and their relationships.

2.1.1 The B-splines

The normalized B-splines or simply the B-splines for brevity in this thesis, can be

evaluated by the de Boor algorithm (de Boor, 2001) as follows. For a partition or a knot

sequence, that is, a nondecreasing sequence {ui}, the B-splines of order 1 with this knot

sequence are the characteristic functions given by

N1
i (s) =





1, ui ≤ s < ui+1,

0, otherwise.

(2.1)

If ui = ui+1, N1
i (s) = 0.

The key characteristics of these functions are

(i) N1
i (s) for i = 1, 2, · · · are right continuous;

(ii)
∑

i N
1
i (s) = 1.
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From the B-splines of order 1 (2.1) the B-splines of higher order can be obtained

recursively by

Nk
i (s) = ωk

i (s)Nk−1
i (s) + (1− ωk

i+1(s))N
k−1
i+1 (s),

with

ωk
i (s) =





s−ui

ui+k−1−ui
, ui+k−1 6= ui,

0, otherwise.

If ui+k−1 6= ui and ui+k 6= ui+1, we have

Nk
i (s) =

s− ui

ui+k−1 − ui

Nk−1
i (s) +

ui+k − s

ui+k − ui+1

Nk−1
i+1 (s). (2.2)

There are some important properties for the B-splines which will be used through-

out the rest of thesis and are summarized below.

(B1) (Theorem 4.18, Schumaker (1981)) The B-splines have support on several knot inter-

vals. Specifically, for the B-splines of order l, if uj ≤ s < uj+1, then

N l
i (s)





6= 0, j − l + 1 ≤ i ≤ j,

= 0, else.

(B2) (Theorem 4.20, Schumaker (1981)) We already mentioned that the B-splines of order

1 form a partition of unity. Actually, this property is true for the B-splines of any

order. Specifically, for the B-splines of order l N l
i (s)’s we have

∑
i

N l
i (s) = 1.
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(B3) (Theorem 5.9, Schumaker (1981)) The derivatives of the B-splines can be calculated

by:

∂N l
i (s)

∂s
=

l − 1

ui+l−1 − ui

N l−1
i (s)− l − 1

ui+l − ui+1

N l−1
i+1 (s).

2.1.2 The M-splines

In numerical analysis the M-splines are non-negative spline functions. In this thesis

the M-splines are used to construct the I-splines. Curry and Schoenberg (1966) proposed

the construction of the M-splines as follows. Suppose a knot sequence is given by {ui},

the M-splines of order 1 for this knot sequence are defined as

M1
i (s) =





1
ui+1−ui

, ui ≤ s < ui+1,

0, otherwise.

(2.3)

From the M-splines of order 1 (2.3) the M-splines of higher order can be obtained

recursively by

M l
i (s) =

l[(s− ui)M
l−1
i (s) + (ui+l − s)M l−1

i+1 (s)]

(l − 1)(ui+l − ui)
. (2.4)

Lemma 2.1. Suppose the M-splines given by (2.4) and the B-splines given by (2.2) are

associated with the same knot sequence, then they are closely related by

M l
i (s) =

l

ui+l − ui

N l
i (s). (2.5)

Proof. (i) Note that M1
i (s) = 1

ui+1−ui
N1

i (s), so the relationship is true for l = 1.

(ii) Suppose the relation holds for l = k − 1, then

Mk
i (s) =

k[(s− ui)M
k−1
i (s) + (ui+k − s)Mk−1

i+1 (s)]

(k − 1)(ui+k − ui)
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=
k[(s− ui)

k−1
ui+k−1−ui

Nk−1
i (s) + (ui+k − s) k−1

ui+k−ui+1
Nk−1

i+1 (s)]

(k − 1)(ui+k − ui)

=
k

ui+k − ui

[
s− ui

ui+k−1 − ui

Nk−1
i (s) +

ui+k − s

ui+k − ui+1

Nk−1
i+1 (s)]

=
k

ui+k − ui

Nk
i (s),

which implies (2.5) holds for l = k.

By induction (2.5) holds for any positive integer l, which completes the proof.

2.1.3 The I-splines

Ramsay (1988) proposed the I-splines, which are monotone functions constrained

between 0 and 1. The I-splines can be used as spline basis functions for regression anal-

ysis and data transformation when monotonicity is desired. The I-splines are constructed

through the M-splines as follows.

Suppose the M-splines M l
i ’s have the knot sequence {ui}p+l+1

1 satisfying

u1 = · · · = ul+1 < ul+2 < · · · < up < up+1 = · · · = up+l+1, (2.6)

where the first and the last l + 1 knots are equal because the M-splines are of order l.

The I-splines are defined as

I l
i(s) =





1, i = 1,

∫ s

L
M l

i (t)dt, 1 < i ≤ p,

(2.7)

with L ≤ s ≤ U , where L and U are the left and the right end point of the knot sequence

{ui}p+l+1
1 , respectively.

Since M l
i (s)’s given by (2.4) are piecewise polynomials of degree l−1, then I l

i(s)’s

given by (2.7) are piecewise polynomials of degree l. De Boor (2001) showed
∫ U

L
M l

i (t) =
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1 for positive integers i and l, which, along with the fact that M l
i (t) are nonnegative, implies

that the I-splines in (2.7) are monotone non-decreasing function constrained between 0 and

1.

Suppose the knot sequence {ui}p+l+1
1 of the M-splines M l+1

i ’s satisfies (2.6), a more

convenient expression of the I-splines was given by Ramsay (1988) as the following:

I l
i(s) =





0, i > j,

∑j
m=i(um+l+1 − um)M l+1

m (s)/(l + 1), j − l + 1 ≤ i ≤ j,

1, i < j − l + 1,

(2.8)

for uj ≤ s < uj+1 and 1 ≤ i ≤ p.

The following Lemma 2.2 and Lemma 2.3 together indicate that the I-splines given

by (2.7) are equivalent to the I-splines given by (2.8).

Lemma 2.2. Suppose M l+1
i ’s in (2.8) and N l+1

i ’s are associated with the same knot se-

quence, then the I-splines given by (2.8) can be expressed by

I l
i(s) =

p∑
m=i

N l+1
m (s), (2.9)

for 1 ≤ i ≤ p.

Proof. By Lemma 2.1, (2.8) can be further expressed in terms of the B-splines:

I l
i(s) =





0, i > j,

∑j
m=i N

l+1
m (s), j − l + 1 ≤ i ≤ j,

1, i < j − l + 1,

(2.10)
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for uj ≤ s < uj+1 and 1 ≤ i ≤ p.

By the B-splines property (B1) in Section 2.1.1. for the B-spline of order l + 1, if

uj ≤ s < uj+1,

N l+1
m (s)





6= 0, j − (l + 1) + 1 ≤ m ≤ j,

= 0, else.

So the expression of the I-splines given by (2.10) can be rewritten as

I l
i(s) =

p∑
m=i

N l+1
m (s).

Lemma 2.3. Suppose M l+1
i ’s in (2.8) and N l+1

i ’s in (2.9) are associated with the same

knot sequence, the I-splines given by (2.9) are equivalent to the I-splines given by (2.7).

Proof. (i) We show
∑p

m=i N
l+1
m (s) =

∫ s

L
M l

i (t)dt for i = 2, . . . , p. We shall demonstrate

this by the following two steps:

(a) Prove ∂(
∑p

m=i N l+1
m (s))

∂s
=

∂(
∫ s

L M l
i (t)dt)

∂s
as follows.

∂(
∑p

m=i N
l+1
m (s))

∂s
=

p∑
m=i

{ l

um+l − um

N l
m(s)− l

um+l+1 − um+1

N l
m+1(s)}

=
l

ui+l − ui

N l
i (s) +

p−1∑
m=i

l − l

um+l+1 − um+1

N l
m+1(s)

=
l

ui+l − ui

N l
i (s) = M l

i (s)

=
∂(

∫ s

L
M l

i (t)dt)

∂s

(b)
p∑

m=i

N l+1
m (L) = 0 =

∫ L

L

M l
i (t)dt.
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(a) and (b) imply for i = 2, . . . , p,
∑p

m=i N
l+1
m (s) and

∫ s

L
M l

i (t)dt have same deriva-

tive and they both are zero at the left end point of the knot sequence. Therefore

∑p
m=i N

l+1
m (s) =

∫ s

L
M l

i (t)dt, for i = 2, . . . , p.

(ii) For i = 1, it is trivial because of property (B2) in Section 2.1.1.

Remark 2.1. (2.9) provides a much easier way to compute the I-splines than using defini-

tion (2.7) due to the available softwares for the B-splines. In Appendix the explicit form of

the I-spline with order 3 is given, along with the steps to to construct the I-splines through

the B-splines in statistics package R.

2.1.4 Monotone Spline Functions

In the literature, {N l
i : i = 1, 2, · · · , l = 1, 2, · · · } are referred to as the B-spline

basis functions. In this thesis, we denote the B-spline functions as the linear combinations

of the B-spline basis functions. Suppose we have the lth-order B-spline basis functions

N l
i (s) with knot sequence {ui}p+l

1 satisfying u1 = · · · = ul < ul+1 · · · < up < up+1 =

· · · = up+l. A B-spline function of order l is given by

f(s) =

p∑
i=1

βiN
l
i (s). (2.11)

It is obvious by (B1) that

f(s) =

j∑

i=j−l+1

βiN
l
i (s)

for uj ≤ s < uj+1.
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According to (B3) and (2.11), the derivative of f(s) is given by

∂f

∂s
=

p∑
i=1

βi
∂N l

i (s)

∂s

=

p∑
i=1

βi{ l − 1

ui+l−1 − ui

N l−1
i (s)− l − 1

ui+l − ui+1

N l−1
i+1 (s)}

=

p−1∑
i=1

(l − 1)(βi+1 − βi)

ui+l − ui+1

N l−1
i+1 (s),

(2.12)

the last equality due to the fact that N l−1
1 (u) ≡ 0 and N l−1

p+1(u) ≡ 0.

Lemma 2.4. If 0 ≤ β1 ≤ β2 ≤ · · · ≤ βp, the B-spline function f(s) given by (2.11) is a

nonnegative and nondecreasing function.

Proof. It is obvious that f(s) is nonnegative. By (2.12), the derivative of f(s) is nonnega-

tive as well.

Similarly the I-spline functions in the thesis are denoted by linear combinations

of the I-spline basis functions {I l
i : i = 1, 2, · · · , l = 1, 2, · · · }. Specifically, a I-spline

function of (l − 1)th-order is given by

f(s) =

p∑
i=1

γiI
l−1
i (s). (2.13)

Lemma 2.5. If γi ≥ 0 for i = 1, · · · , p, f(s) given by (2.13) is nonnegative and nonde-

creasing.

Proof. Because the I-spline basis functions are nonnegative and nondecreasing, γi ≥ 0 for

i = 1, · · · , p are sufficient to guarantee f(s) for being nonnegative and nondecreasing.

Lemma 2.6. f(s) =
∑p

i=1 βiN
l
i (s) with 0 ≤ β1 ≤ β2 ≤ · · · ≤ βp and f(s) =

∑p
i=1 γiI

l−1
i (s)

with γi ≥ 0 for i = 1, · · · , p are equivalent to each other.
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Proof. For a monotone spline function expressed in the I-splines by (2.13), substitute

I l−1
i (s) =

∑p
j=i N

l
j(s), it follows that

f(s) =

p∑
i=1

{
i∑

j=1

γj}N l
i (s).

By γi ≥ 0, i = 1, · · · , p, we can rewrite the spline function (2.13) as

f(s) =

p∑
i=1

βiN
l
i (s),

where βi =
∑i

j=1 γj, i = 1, . . . , p. Then 0 ≤ β1 ≤ β2 ≤ · · · ≤ βp.

Remark 2.2. Lemma 2.6 implies that a nonnegative and nondecreasing spline function can

be equivalently expressed by either the B-splines or the I-splines.

2.1.5 Partially Monotone Tensor Spline Functions

Suppose we have the lth-order B-splines N
(1),l
i (s) with knot sequence {ui}p+l

1 sat-

isfying u1 = · · · = ul < ul+1 · · · < up < up+1 = · · · = up+l and the lth-order B-splines

N
(2),l
j (t) with knot sequence {vi}q+l

1 satisfying v1 = · · · = vl < vl+1 · · · < vq < vq+1 =

· · · = vq+l. The tensor B-spline functions are given by

f(s, t) =

p∑
i=1

q∑
j=1

αi,jN
(1),l
i (s)N

(2),l
j (t). (2.14)

By (B3) the partial derivatives of the tensor B-spline function can be expressed by

∂f(s, t)

∂s
=

p−1∑
i=1

q∑
j=1

(l − 1)(αi+1,j − αi,j)

ui+l − ui+1

N
(1),l−1
i+1 (s)N

(2),l
j (t), (2.15)

and

∂f(s, t)

∂t
=

p∑
i=1

q−1∑
j=1

(l − 1)(αi,j+1 − αi,j)

vj+l − vj+1

N
(1),l
i (s)N

(2),l−1
j+1 (t). (2.16)
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Lemma 2.7. If 0 ≤ α1,j ≤ α2,j ≤ · · · ≤ αp,j for j = 1, 2, · · · , q and 0 ≤ αi,1 ≤

αi,2 ≤ · · · ≤ αi,q for i = 1, 2, · · · , p, the tensor B-spline function f(s, t) given by (2.14) is

nonnegative and nondecreasing in both s and t directions.

Proof. It is obvious that f(s, t) is nonnegative. By (2.15) and (2.16), both partial deriva-

tives of f(s, t) are nonnegative.

Similarly the tensor I-spline functions are given by

f(s, t) =

p∑
i=1

q∑
i=1

ηi,jI
(1),l−1
i (s)I

(2),l−1
j (t). (2.17)

Lemma 2.8. If ηi,j ≥ 0 for i = 1, · · · , p and j = 1, · · · , q, f(s, t) given by (2.17) is

nonnegative and nondecreasing in both s and t directions.

Proof. Because the I-spline basis functions are nonnegative and nondecreasing, ηi,j ≥ 0

for i = 1, . . . , p and j = 1, . . . , q are sufficient to guarantee f(s, t) for being nonnegative

and nondecreasing in both s and t directions.

Let

SI = {f(s, t) =

p∑
i=1

q∑
j=1

ηi,jI
(1),l−1
i (s)I

(2),l−1
j (t) : ηi,j ≥ 0 for i = 1, . . . , p and j = 1, . . . , q},

and

SB = {f(s, t) =

p∑
i=1

q∑
j=1

αi,jN
(1),l
i (s)N

(2),l
j (t) : α′i,js satisfy (2.18)},

0 ≤ α1,j ≤ α2,j ≤ · · · ≤ αp,j, for j = 1, 2, · · · , q,

0 ≤ αi,1 ≤ αi,2 ≤ · · · ≤ αi,q, for i = 1, 2, · · · , p,

(αi+1,j+1 − αi+1,j)− (αi,j+1 − αi,j) ≥ 0,

for i = 1, 2, · · · , p− 1 and j = 1, 2, · · · , q − 1.

(2.18)
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Lemma 2.9. Set SB is equivalent to set SI .

Proof. Substitute I
(1),l−1
i =

∑p
x=i N

(1),l
x and I

(2),l−1
j =

∑q
y=j N

(2),l
y in (2.17), then

f(s, t) =

p∑
i=1

q∑
j=1

{
i∑

x=1

j∑
y=1

ηx,y}N (1),l
i (s)N

(2),l
j (t). (2.19)

Let αi,j =
∑i

x=1

∑j
y=1 ηx,y, then (2.19) can be written as

f(s, t) =

p∑
i=1

q∑
j=1

αi,jN
(1),l
i (s)N

(2),l
j (t).

Then the following results (i), (ii), (iii) and (iv) can be easily obtained.

(i)

α1,1 = η1,1 ≥ 0.

(ii) For i = 1, . . . , p and j = 1, . . . , q − 1,

αi,j+1 − αi,j =
i∑

x=1

j+1∑
y=1

ηx,y −
i∑

x=1

j∑
y=1

ηx,y

=
i∑

x=1

ηx,j+1 ≥ 0.

(iii) For i = 1, . . . , p− 1 and j = 1, . . . , q, we have

αi+1,j − αi,j =
i+1∑
x=1

j∑
y=1

ηx,y −
i∑

x=1

j∑
y=1

ηx,y

=

j∑
y=1

ηi+1,y ≥ 0.
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(iv) For i = 1, . . . , p− 1 and j = 1, . . . , q − 1,

(αi+1,j+1 − αi+1,j)− (αi,j+1 − αi,j) =(
i+1∑
x=1

j+1∑
y=1

ηx,y −
i+1∑
x=1

j∑
y=1

ηx,y)

− (
i∑

x=1

j+1∑
y=1

ηx,y −
i∑

x=1

j∑
y=1

ηx,y)

=
i+1∑
x=1

ηx,j+1 −
i∑

x=1

ηx,j+1

=ηi+1,j+1 ≥ 0.

(2.20)

By (i), (ii), (iii) and (iv), SI and SB are equivalent.

Remark 2.3. Lemma 2.9 implies the partially monotone tensor I-spline functions are not

equivalent to the partially monotone tensor B-spline functions, since there must be an extra

condition (2.20) for the partially monotone tensor B-spline function to make them equiva-

lent. However this condition is very necessary for estimating the joint distribution function,

because it corresponds to the fact that the mass of the joint distribution on any rectangle

region of its domain is nonnegative.

2.2 Results on Empirical Process Theory

Empirical process theory is a very powerful tool in studying the asymptotic proper-

ties of nonparametric or semiparametric estimator in Statistics. In this section we introduce

some basic concepts and results which will be used in our theoretical development.

Definition 2.1. (Covering number, van der Vaart and Wellner (1996), P. 83) The covering

number N(ε,F , ‖ · ‖) is the minimal number of balls {g : ‖g− f‖ < ε} of radius ε needed

to cover the set F . The entropy with covering H(ε,F , ‖ ·‖) is the logarithm of the covering

number.



19

Definition 2.2. (Bracketing number, van der Vaart and Wellner (1996), P. 83) Given two

functions l and u, the bracket [l, u] is the set of all functions f with l ≤ f ≤ u. An ε-bracket

is a bracket [l, u] with ‖u− l‖ < ε. The bracketing number N[ ](ε,F , ‖ · ‖) is the minimum

number of ε-brackets needed to cover F . The entropy with bracketing H[ ](ε,F , ‖ · ‖) is the

logarithm of the bracketing number.

Definition 2.3. (VC-index and VC-class of sets, van der Vaart and Wellner (1996), P. 134-

135) Let C a collection of subsets of a set X . An arbitrary set of n points {x1, . . . , xn}

possesses 2n subsets. Say that C picks out a certain subset from {x1, . . . , xn} if this can be

formed as a set of the form C∩{x1, . . . , xn} for a C in C. The collection C is said to shatter

{x1, . . . , xn} if each of its 2n subsets can be picked out in this manner. The VC-index V (C)

of the class C is the smallest n for which no set of size n is shattered by C. A collection of

measurable sets C is called a VC-class of sets if its VC-index is finite.

Definition 2.4. (Symmetric convex hull, van der Vaart and Wellner (1996), P. 142) The

symmetric convex hull sconv(F) of a class of functions is defined as the set of functions

∑m
i=1 αifi, with

∑m
i=1 |αi| ≤ 1 and each fi contained in F .

Definition 2.5. (VC-class of functions, van der Vaart and Wellner (1996), P. 141) The

subgraph of a function f : X 7→ R is the subset of X × R given by {(x, t) : t < f(x)}. A

collection F of measurable functions on a sample space is called a VC-class of functions,

if the collection of all subgraphs of the functions in F forms a VC-classes of sets in X ×R.

Definition 2.6. (Envelop function, van der Vaart and Wellner (1996), P. 84) An envelop

function of a class F is any function x 7→ F (x) such that |f(x)| ≤ F (x), for every x and
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f ∈ F .

In the following lemmas, the Lr(Q) norm associated with probability measure Q is

defined by

‖f‖Lr(Q) = (Q|f |r)1/r = (

∫
|f |rdQ)1/r,

for r > 0, the empirical measure Pn of a sample of random elements x1, . . . , xn is defined

by

Pnf =
1

n

n∑
i=1

f(xi),

and accordingly Gn is denoted as
√

n(Pn − P ).

Lemma 2.10. (Theorem 5.7 in van der Vaart (1998)) Let Mn be random functions and let

M be a fixed function of θ such that for every ε > 0

sup
θ∈Θ

|Mn(θ)−M(θ)| →P 0,

sup
θ:d(θ,θ0)≥ε

M(θ) < M(θ0).

Then any sequence of estimators θ̂n with Mn(θ̂n) ≥ Mn(θ0) − oP (1) converges in proba-

bility to θ0.

Lemma 2.11. (Theorem 2.6.7 in van der Vaart and Wellner (1996)) For a VC-class of

functions with measurable envelop function F and r ≥ 1, one has for any probability

measure Q with ‖F‖Lr(Q) > 0,

N(ε‖F‖Lr(Q),F , Lr(Q)) ≤ KV (F)(16e)V (F)(
1

ε
)r(V (F)−1),

for a universal constant K and 0 < ε < 1.
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Lemma 2.12. (Theorem 2.6.9 in van der Vaart and Wellner (1996)) Let Q be a probability

measure, and let F be a class of measurable functions with measurable square integrable

envelop F such that QF 2 < ∞ and N(ε‖F‖L2(Q),F , L2(Q)) ≤ C(1
ε
)V for 0 < ε < 1.

Then there exists a constant K that depends on C and V only such that

N(ε‖F‖L2(Q), sconv(F), L2(Q)) ≤ K(
1

ε
)2V/(V +2).

Lemma 2.13. (Theorem 2.5.2 in van der Vaart and Wellner (1996)) LetF be a class of mea-

surable functions that satisfies
∫∞
0

supQ

√
log N(ε‖F‖L2(Q),F , L2(Q))dε < ∞, where the

envelop function F of F is square integrable and the supremum is taken over all finitely

discrete probability measures Q with ‖F‖2
L2(Q) > 0. Let the classes Fδ = {f − g : f, g ∈

F , ‖f − g‖L2(P ) < δ} and F2
δ be P -measurable for every δ > 0. If PF 2 < ∞, then F is

P -Donsker .

Lemma 2.14. (Example 2.10.7 in van der Vaart and Wellner (1996)) If F and G are P -

Donsker Classes with supf∈F∪G |Pf | < ∞, then the pairwise infima F ∧ G, the pairwise

suprema F ∨ G, and pairwise sums F + G are P -Donsker classes.

Lemma 2.15. (Corollary 2.3.12 in van der Vaart and Wellner (1996)) Let F be a class of

measurable functions and the semi-norm ρP onF be defined as ρP (f) = {P (f−Pf)2}1/2.

Then F being P -Donsker class implies that, if fn → f as n →∞ in semi-norm ρP for all

fn and f in F , then (Pn − P )(fn − f) = oP (n−1/2).

Lemma 2.16. (Lemma 3.4.2 in van der Vaart and Wellner (1996)) Let F be the class of

measurable functions such that Pf 2 < δ2 and ‖f‖∞ ≤ M for every f in F . Then there
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exists K > 0, which is related to M , such that

EP‖Gn‖F ≤ KJ̃[ ]{δ,F , L2(P )}[1 +
J̃[ ]{δ,F , L2(P )}

δ2
√

n
],

where J̃[ ]{δ,F , L2(P )} =
∫ δ

0

√
1 + log N[ ]{ε,F , L2(P )}dε and ‖Gn‖F = supf∈F |Gnf‖.

Lemma 2.17. (Theorem 3.4.1 in van der Vaart and Wellner (1996)) For each n, letMn and

Mn be stochastic processes indexed by a set Θ Let θn ∈ Θ and 0 ≤ δn < η be arbitrary.

Suppose that, for every n and δn < δ ≤ η

sup
δ/2<dn(θ,θn)≤δ,θ∈Θn

Mn(θ)−Mn(θn) ≤ −δ2,

E sup
δ/2<dn(θ,θn)≤δ,θ∈Θn

√
n[(Mn −Mn)(θ)− (Mn −Mn)(θn)]+ ≤ Cφ(δ),

for functions φ such that δ 7→ φ(δ)/δα is decreasing on (δn, η), for some α < 2. Let

rn ≤ Cδ−1
n satisfy

r2
nφ(

1

rn

) ≤ √
n, for every n.

If the sequence θ̂n takes its values in Θn and satisfies Mn(θ̂n) ≥ Mn(θn) − OP (r−2
n ) and

dn(θ̂n, θn) converges to zero in probability, then rndn(θ̂n, θn) = OP (1).

2.3 Some Useful Results on B-splines

Lemma 2.18. (Jackson type Theorem, De boor (2001), P. 149) Suppose g(x) is a function

with the continuous derivative dwg(x)
dxw . Then there exists a B-spline function

Ag(x) =
∑p

i=1 βiN
l
i (x) with order l of the B-spline basis functions satisfying l ≥ w + 2

and have knot sequence {ui}p
1 with L1 = u1 = · · · = ul < ul+1 < · · · < up < up+1 =

· · · = up+l = U1, such that

‖g − Ag‖∞ ≤ c|T |w‖dwg

dxw
‖∞
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for some constant c > 0 depending on l only, where

|T | = max
l≤i≤p

(ui+1 − ui).

The result of Lemma 2.18 can be generalized to bivariate function and is given in

Lemma 2.19.

Lemma 2.19. Suppose g(x, y) is a bivariate function with the continuous mixed derivatives

of order w, ∇w
mg = ∂wg(x,y)

∂xmyw−m for m = 1, 2, . . . , w. Then there exists a bivariate tensor B-

spline function

Ag(x, y) =
∑p

i=1

∑q
j=1 αi,jN

(1),l
i (x)N

(2),l
j (y) with order l in both directions satisfying

l ≥ w + 2 and have knot sequences {ui}p+l
1 with L1 = u1 = · · · = ul < ul+1 < · · · <

up < up+1 = · · · = up+l = U1, {vi}q+l
1 with L2 = v1 = · · · = vl < vl+1 < · · · < vq <

vq+1 = · · · = vq+l = U2, such that

‖g − Ag‖∞ ≤ c|T |w(‖g‖w,∞),

for some constant c > 0 depending on l only, where

|T | = max{max
l≤i≤p

(ui+1 − ui), max
l≤j≤q

(vj+1 − vj)},

and

‖g‖w,∞ = max
0≤m≤w

‖ ∂wg

∂xm∂yw−m
‖∞.

Proof. We define ω(g; h) = max{|g(x1, y1) − g(x2, y2)| : |x1 − x2| ≤ h, |y1 − y2| ≤

h, x1, x2 ∈ [L1, U1], y1, y2 ∈ [L2, U2]}. Then ω(g; h) is a monotone and subadditivity

function of h, that is, ω(g; h1) ≤ ω(g; h1 + h2) ≤ ω(g; h1) + ω(g; h2) for nonnegative h1
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and h2. The monotonicity of ω(g; h) is obvious by the definition. The proof of subadditivity

is as follows.

For any (x1, y1) and (x2, y2) with |x1 − x2| ≤ h1 + h2 and |y1 − y2| ≤ h1 + h2, we

can find (x3, y3) such that |x1−x3| ≤ h1, |y1−y3| ≤ h1 and |x2−x3| ≤ h2, |y2−y3| ≤ h2.

Therefore, for any |x1 − x2| ≤ h1 + h2 and |y1 − y2| ≤ h1 + h2, we have

|g(x1, y1)− g(x2, y2)| ≤|g(x1, y1)− g(x3, y3)|+ |g(x3, y3)− g(x2, y2)|

≤ max
|x1−x3|≤h1

|y1−y3|≤h1

|g(x1, y1)− g(x3, y3)|

+ max
|x2−x3|≤h2

|y2−y3|≤h2

|g(x3, y3)− g(x2, y2)|

=ω(g; h1) + ω(g; h2).

(2.21)

By (2.21), ω(g; h1 + h2) ≤ ω(g; h1) + ω(g; h2) for nonnegative h1 and h2, that is, subaddi-

tivity of ω(g; h) holds.

By choosing τ1 < τ2 < · · · < τp in [L1, U1] and ξ1 < ξ2 < · · · < ξq in [L2, U2], we

can construct a partially monotone tensor B-spline function Ag to approximate the smooth

function g on [L1, U1]× [L2, U2] as follows.

Ag(x, y) =

p∑
i=1

q∑
j=1

g(τi, ξj)N
(1),l
i (x)N

(2),l
j (y) =

p∑
i=1

{
q∑

j=1

N
(2),l
j (y)g(τi, ξj)}N (1),l

i (x).

For (x̂, ŷ) in [uj1 , uj1+1]× [vj2 , vj2+1] ∈ [L1, U1]× [L2, U2],

Ag(x̂, ŷ) =

j1∑

i=j1+1−l

j2∑

j=j2+1−l

g(τi, ξj)N
(1),l
i (x̂)N

(2),l
j (ŷ), (2.22)
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by property (B1) in Section 2.1.1. Also by property (B2) in Section 2.1.1, we have

g(x̂, ŷ) = g(x̂, ŷ)

j1∑

i=j1+1−l

N
(1),l
i (x̂)

= g(x̂, ŷ)

j1∑

i=j1+1−l

{
j2∑

j=j2+1−l

N
(2),l
j (ŷ)}N (1),l

i (x̂)

= g(x̂, ŷ)

j1∑

i=j1+1−l

j2∑

j=j2+1−l

N
(1),l
i (x̂)N

(2),l
j (ŷ).

(2.23)

By (2.22) and (2.23),

g(x̂, ŷ)− Ag(x̂, ŷ) =

j1∑

i=j1+1−l

j2∑

j=j2+1−l

{g(x̂, ŷ)− g(τi, ξj)}N (1),l
i (x̂)N

(2),l
j (ŷ).

Then we have

|g(x̂, ŷ)− Ag(x̂, ŷ)| ≤
j1∑

i=j1+1−l

j2∑

j=j2+1−l

|g(x̂, ŷ)− g(τi, ξj)|N (1),l
i (x̂)N

(2),l
j (ŷ)

≤ max
j1+1−l≤i≤j1
j2+1−l≤j≤j2

|g(x̂, ŷ)− g(τi, ξj)|.

Now choose the τi’s and ξj appropriately. since the number of τi’s is greater than

the number of subintervals made from knot sequence {ui}p+l
1 , in order to guarantee that

τi+1 − τi > 0 for i = 1, · · · , p− 1, we might choose

τi =





u1 + (i−1)(ul+1−ul)

l
, i = 1, . . . , l,

ui, i = l + 1, . . . , p.

(2.24)

Similarly, we might choose

ξj =





v1 + (j−1)(vl+1−vl)

l
, j = 1, . . . , l,

vj, j = l + 1, . . . , q,

(2.25)
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(2.24) and (2.25) imply |τi − ui| ≤ |T | and |ξj − vj| ≤ |T | for i = 1, . . . , p and

j = 1, . . . , q. We also know |ui − x̂| ≤ uj1+1 − uj1−l+1 ≤ l|T | for j1 − l < i ≤ j1

and x̂ ∈ [uj1 , uj1+1] and |vj − ŷ| ≤ vj2+1 − vj2−l+1 ≤ l|T | for j2 − l < j ≤ j2 and

ŷ ∈ [vj2 , vj2+1].

So we have for j1 − l < i ≤ j1 and x̂ ∈ [uj1 , uj1+1]

|τi − x̂| ≤ (l + 1)|T |,

and for j2 − l < j ≤ j2 and ŷ ∈ [vj2 , vj2+1]

|ξj − ŷ| ≤ (l + 1)|T |.

Therefore we have

max
j1+1−l≤i≤j1
j2+1−l≤j≤j2

|g(x̂, ŷ)− g(τi, ξj)| ≤max{|g(x1, y1)− g(x2, y2)| :

|x1 − x2| ≤ (l + 1)|T |, |y1 − y2| ≤ (l + 1)|T |}

=ω(g; (l + 1)|T |)

=(l + 1)ω(g; |T |),

(2.26)

the last inequality is by subadditivity of ω(g; h).

By (2.26) we have

‖g − Ag‖∞ = sup
L1≤x≤U1
L2≤y≤U2

|g(x, y)− Ag(x, y)| ≤ (l + 1)ω(g; |T |),

which means the distance between g and ψl,l

d(g, ψl,l) = inf
s∈ψl,l

‖g − s‖ ≤ (l + 1)ω(g; |T |), (2.27)
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where ψl,l denotes the set of all tensor B-splines with order l in both directions. Because

the distance of function g from ψl,l is the same as the distance of the function g − s from

ψl,l for s ∈ ψl,l, by (2.27) we have

d(g, ψl,l) = d(g − s, ψl,l) ≤ (l + 1)ω(g − s, |T |). (2.28)

Furthermore, since g has bounded partial derivatives, we have

ω(g − s, |T |) = max
|x1−x2|≤|T |
|y1−y2|≤|T |

|(g − s)(x1, y1)− (g − s)(x2, y2)|

≤ max
|y1−y2|≤|T |

|(g − s)(x1, y1)− (g − s)(x1, y2)|

+ max
|x1−x2|≤|T |

|(g − s)(x1, y2)− (g − s)(x1, y2)|

≤‖∂(g − s)

∂y
‖∞|T |+ ‖∂(g − s)

∂x
‖∞|T |

Then by (2.28),

d(g, ψl,l) ≤ (l + 1)|T |(‖∂(g − s)

∂y
‖∞ + ‖∂(g − s)

∂x
‖∞). (2.29)

Since we know ψl,l−1 = { ∂s
∂y

: s ∈ ψl,l} and ψl−1,l = { ∂s
∂x

: s ∈ ψl,l}, (2.29) implies

d(g, ψl,l) ≤ (l + 1)|T |{d(
∂g

∂x
, ψl−1,l) + d(

∂g

∂y
, ψl,l−1)}. (2.30)

Proceeding in this way as we derive (2.30), finally we get

d(g, ψl,l)

≤c|T |w−1{d(
∂w−1g

∂xw−1
, ψl−w+1,l) + d(

∂w−1g

∂xw−2∂y
, ψl−w+2,l−1) + · · ·+ d(

∂w−1g

∂yw−1
, ψl,l−w+1)}

≤c|T |w−1{ω(
∂w−1g

∂xw−1
, |T |) + ω(

∂w−1g

∂xw−2∂y
, |T |) + · · ·+ ω(

∂w−1g

∂yw−1
, |T |)}
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≤c|T |w{‖∂wg

∂xw
‖∞ + ‖ ∂wg

∂xw−1∂y
‖∞ + · · ·+ ‖∂wg

∂yw
‖∞}

≤c|T |w max
0≤m≤w

‖ ∂wg

∂xm∂yw−m
‖∞.

In the following Lemma 2.21 and Lemma 2.22, we derive the bounds of the brack-

eting numbers of the set of monotone B-spline functions and the set of partially monotone

tensor B-spline functions. We only give the proof for Lemma 2.22. The proof for Lemma

2.21 is similar to that for Lemma 2.22 but much simpler. Lemma 2.20 is applied in the

proof of Lemma 2.22.

Lemma 2.20. (Lemma 5, Shen and Wong (1994)) Let S be a (n1/2σ)-sphere in Rn, that is,

S = {x = (x1, . . . , xn) ∈ Rn :
∑n

i=1 x2
i ≤ nσ2}. Let ‖ · ‖∞ be the usual L∞-norm in Rn.

Then H(ε, S, ‖ · ‖∞) ≤ cn log(σ
ε
), for some constant c > 0 and ε < σ.

Lemma 2.21. Θ = {φ : φ(s) =
∑p

i=1 βiN
l
i (s), ‖φ‖∞ < δ}, where each βi ≥ 0 and βi+1 ≥

βi for i = 1, . . . , p − 1, N l
i (u)’s are the B-spline basis functions with the knot sequence

{ui}p+l
1 satisfying L = u1 = · · · = ul < ul+1 < · · · < up < up+1 = · · · = up+l = U . Then

H[ ](ε, Θ, ‖ · ‖∞) ≤ cp log(δ/ε), for some constant c > 0 and ε < δ.

Lemma 2.22. Θ = {φ : φ(s, t) =
∑p

i=1

∑q
j=1 αi,jN

(1),l
i (s)N

(2),l
j (t), ‖φ‖∞ < δ}, where

0 ≤ α1,j ≤ α2,j ≤ · · · ≤ αp,j for j = 1, . . . , q and 0 ≤ αi,1 ≤ αi,2 ≤ · · · ≤ αi,q for i =

1, . . . , p, N
(1),l
i (u)’s and N

(2),l
j (t)’s are the B-spline basis functions with the knot sequence

{ui}p+l
1 satisfying L1 = u1 = · · · = ul < ul+1 < · · · < up < up+1 = · · · = up+l = U1

and the knot sequence {vi}q+l
1 satisfying L2 = v1 = · · · = vl < vl+1 < · · · < vq < vq+1 =
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· · · = vq+l = U2, respectively. Then H[ ](ε, Θ, ‖ · ‖∞) ≤ cpq log(δ/ε), for some constant

c > 0 and ε < δ.

Proof. The basic idea of the proof is using the bracket number of a set in Euclidean space

Rpq to bound the bracket number of Θ. The detailed proof is given as follows.

For any φ ∈ Θ, by Lemma 2.7

‖φ‖2
∞ = (φ(U1, U2))

2.

By property (B1) and property (B2) in Section 2.1.1

(φ(U1, U2))
2 = (αp,qN

(1),l
p (U1)N

(2),l
q (U2))

2 = α2
p,q.

Since ‖φ‖2
∞ = α2

p,q ≥ 1
pq

∑p
i=1

∑q
j=1 a2

i,j and ‖φ‖2
∞ ≤ δ2, we have for the coeffi-

cients (α1,1, · · · , αp,q) of φ,

p∑
i=1

q∑
j=1

α2
i,j ≤ pq‖φ‖2

∞ ≤ pqδ2. (2.31)

Let

S = {α = (α1,1, · · · , αpq) :

p∑
i=1

q∑
j=1

α2
ij ≤ pqδ2}.

Lemma 2.20 indicates that there exist ε-balls B1, B2, · · · , B[( δ
ε
)cpq] centered at α(1) =

(α
(1)
1,1, · · · , α

(1)
p,q), α(2) = (α

(2)
1,1, · · · , α

(2)
p,q), · · · , α([( δ

ε
)cpq]) = (α

([( δ
ε
)cpq])

1,1 , · · · , α
([( δ

ε
)cpq])

p,q ), re-

spectively, which cover S.

Let

ψ(k)(s, t) =

p∑
i=1

q∑
j=1

α
(k)
i,j N

(1),l
i (s)N

(2),l
j (t)

and

Ψ
(k)
1 = {ψ : ‖ψ − ψ(k)‖ ≤ ε and ψ ∈ Ψ}
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for k = 1, · · · , [( δ
ε
)cpq], where Ψ = {ψ : ψ(s, t) =

∑p
i=1

∑q
j=1 αi,jN

(1),l
i (s)N

(2),l
j (t)}.

Then {Ψ(k)
1 : k = 1, · · · , [( δ

ε
)cpq]} constitute a set of ε-balls for Ψ.

In what follows, we show {Ψ(k)
1 : k = 1, · · · , [( δ

ε
)cpq]} cover Θ.

For any ψ(s, t) =
∑p

i=1

∑q
j=1 αi,jN

(1),l
i (s)N

(2),l
j (t) ∈ Θ, its coefficients α =

(α1,1, · · · , αp,q) ∈ S by (2.31).

By the fact that ε-balls B1, B2, · · · , B[( δ
ε
)cpq ] cover S, there exists m with 1 ≤ m ≤

[( δ
ε
)cpq], such that

‖α− α(m)‖∞ = max
i=1,··· ,p
j=1,··· ,q

|αi,j − α
(m)
i,j | ≤ ε.

Then

|ψ(m)(s, t)− ψ(s, t)| = |
p∑

i=1

q∑
j=1

(α
(m)
i,j − αi,j)N

(1),k
i (u)N

(2),k
j (t)|

≤ max
i=1,··· ,p
j=1,··· ,q

|(α(m)
i,j − αi,j)|

p∑
i=1

q∑
j=1

N
(1),4
i (u)N

(2),4
j (t)

= max
i=1,··· ,p
j=1,··· ,q

|(α(m)
i,j − αi,j)|

≤ ε.

Hence,

‖ψ(m) − ψ‖ ≤ ε.

In a word, for any ψ ∈ Θ, there exist Ψ
(m)
1 with 1 ≤ m ≤ [( δ

ε
)cpq], such that ψ ∈ Ψ

(m)
1 ,

which means {Ψ(k)
1 : k = 1, · · · , [( δ

ε
)cpq]} cover Θ.

So the ε-covering number of Θ is bounded by [( δ
ε
)cpq], or

H(ε, Θ, ‖ · ‖∞) ≤ cpq log(δ/ε), (2.32)
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where ‖ · ‖∞ is the usual L∞-norm in the tensor spline space Ψ.

We also know

H[ ](2ε, Θ, ‖ · ‖∞) ≤ H(ε, Θ, ‖ · ‖∞). (2.33)

(2.32) and (2.33) result in

H[ ](ε, Θ, ‖ · ‖∞) ≤ cpq log(δ/ε).

Remark 2.4. In the proof of Theorem 4.2 (convergence rate), we use the fact that δ ≤ 1,

then it is obvious that H[ ](ε, Θ, ‖ · ‖∞) ≤ cpq log(1/ε) by both Lemma 2.21 and Lemma

2.22.
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CHAPTER 3
TENSOR SPLINE-BASED SIEVE NONPARAMETRIC MAXIMUM

LIKELIHOOD ESTIMATION METHOD

3.1 Likelihood of Bivariate Current Status Data

Suppose we have n independent bivariate current status data {(c1,k, δ1,k, c2,k, δ2,k) :

k = 1, 2, · · · , n}, where δj,k = 1[tj,k≤cj,k], j = 1, 2.

Assume (c1,k, c2,k)’s constitute of a sample of n from the bivariate random censor-

ing times (C1, C2) and (t1,k, t2,k)’s constitute of a sample of n from the bivariate random

event times (T1, T2). Hence (δ1,k, δ2,k)’s constitute of a sample of n from the bivariate ran-

dom indicator variables (∆1, ∆2) with ∆j = 1[Tj≤Cj ], j = 1, 2. We also assume (T1, T2)

and (C1, C2) are independent.

The joint distribution of (C1, ∆1, C2, ∆2) is generally given by P (C1 ≤ c1, C2 ≤

c2, ∆1 = δ1, ∆2 = δ2).

If δ1 = 1 and δ2 = 1, by the independence between (T1, T2) and (C1, C2), we have

P (C1 ≤ c1, C2 ≤ c2, ∆1 = 1, ∆2 = 1)

=P (C1 ≤ c1, C2 ≤ c2, T1 ≤ C1, T2 ≤ C2)

=

∫ c1

0

∫ c2

0

∫ C1

0

∫ C2

0

f(T1, T2, C1, C2)dT2dT1dC2dC1

=

∫ c1

0

∫ c2

0

{f(C1, C2)

∫ C1

0

∫ C2

0

f(T1, T2)dT2dT1}dC2dC1

=

∫ c1

0

∫ c2

0

f(C1, C2)P (T1 ≤ C1, T2 ≤ C2)dC2dC1.

By taking the mixture derivative with respect to c1 and c2, we obtain the joint density



33

function as

f(c1, c2, δ1 = 1, δ2 = 1) = fC1,C2(c1, c2)P (T1 ≤ c1, T2 ≤ c2),

where fC1,C2(c1, c2) is the bivariate density function of (C1, C2). Similarly, if δ1 = 1 and

δ2 = 0, then f(c1, c2, δ1 = 1, δ2 = 0) = fC1,C2(c1, c2)P (T1 ≤ c1, T2 > c2); if δ1 = 0 and

δ2 = 1, then f(c1, c2, δ1 = 0, δ2 = 1) = fC1,C2(c1, c2)P (T1 > c1, T2 ≤ c2); if δ1 = 0 and

δ2 = 0, then f(c1, c2, δ1 = 1, δ2 = 0) = fC1,C2(c1, c2)P (T1 > c1, T2 > c2).

Suppose the censoring times (C1, C2) are noninformative to the event times (T1, T2),

then the joint density function of censoring times fC1,C2(x1, x2) can be ignored for com-

puting the maximum likelihood estimate of the joint distribution function of the bivariate

event times (T1, T2) with bivariate current status data. So

ln(·; data) =
n∑

k=1

{δ1,kδ2,k log P (T1 ≤ c1,k, T2 ≤ c2,k)

+ δ1,k(1− δ2,k) log P (T1 ≤ c1,k, T2 > c2,k)

+ (1− δ1,k)δ2,k log P (T1 > c1,k, T2 ≤ c2,k)

+ (1− δ1,k)(1− δ2,k) log P (T1 > c1,k, T2 > c2,k)}.

(3.1)

If we denote F as the joint distribution function of event time (T1, T2) and F1 and

F2 as the marginal distribution functions of F , the log-likelihood (3.1) can be rewritten as
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ln(F, F1, F2; data) =
n∑

k=1

{δ1,kδ2,k log F (c1,k, c2,k)

+ δ1,k(1− δ2,k) log(F1(c1,k)− F (c1,k, c2,k))

+ (1− δ1,k)δ2,k log(F2(c2,k)− F (c1,k, c2,k))

+ (1− δ1,k)(1− δ2,k) log(1− F1(c1,k)− F2(c2,k)

+ F (c1,k, c2,k))}.

(3.2)

3.2 Spline-based Maximum Likelihood Estimation

Suppose the observation times C1 and C2 are within intervals [l1, u1] and [l2, u2],

respectively. For L1 < l1, L2 < l2, u1 < U1 and u2 < U2, we define a class

F = {(F (s, t), F1(s), F2(t)) : for (s, t) ∈ [L1, U1]× [L2, U2]},

where F , F1 and F2 satisfy the following conditions:

0 ≤ F (s, t),

F (s
′
, t) ≤ F (s

′′
, t),

F (s, t
′
) ≤ F (s, t

′′
),

[F (s
′′
, t
′′
)− F (s

′
, t
′′
)]− [(F (s

′′
, t
′
)− F (s

′
, t
′
)] ≥ 0,

F1(s)− F (s, t) ≥ 0

F2(t)− F (s, t) ≥ 0,

[F1(s
′′
)− F1(s

′
)]− [F (s

′′
, t)− F (s

′
, t)] ≥ 0,

[F2(t
′′
)− F2(t

′
)]− [F (s, t

′′
)− F (s, t

′
)] ≥ 0,

[1− F1(s)]− [F2(t)− F (s, t)] ≥ 0,

(3.3)
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for s
′ ≤ s

′′ with s
′ and s

′′ on [L1, U1], and t
′ ≤ t

′′ with t
′ and t

′′ on [L2, U2].

Lemma 3.1. F is the class of all joint distribution functions and their marginal distribution

functions in the closed region [L1, U1] × [L2, U2]. In other words, each element of F is

a vector-valued function, which corresponds to a joint distribution function and its two

marginal distribution functions.

Proof. (i) For any random variable (S, T ), let F (s, t) = Pr(S ≤ s, T ≤ t), F1(s) =

Pr(S ≤ s) and F2(s) = Pr(T ≤ t), then F , F1 and F2 satisfy (3.3) in [L1, U1] ×

[L2, U2] by the following arguments.

(a) The first three conditions given in (3.3) are obvious.

(b) [F (s
′′
, t
′′
) − F (s

′
, t
′′
)] − [F (s

′′
, t
′
) − F (s

′
, t
′
)] = Pr(s

′ ≤ S ≤ s
′′
, t
′ ≤ T ≤

t
′′
) ≥ 0.

(c) F1(s)− F (s, t) = Pr(S ≤ s, T ≥ t) ≥ 0.

(d) F2(t)− F (s, t) = Pr(S ≥ s, T ≤ t) ≥ 0.

(e) [F1(s
′′
)− F1(s

′
)]− [F (s

′′
, t)− F (s

′
, t)] = Pr(s

′ ≤ S ≤ s
′′
, T ≥ t) ≥ 0.

(f) [F2(t
′′
)− F2(t

′
)]− [F (s, t

′′
)− F (s, t

′
)] = Pr(S ≥ s, t

′ ≤ T ≤ t
′′
) ≥ 0.

(g) [1− F1(s)]− [F2(t)− F (s, t)] = Pr(S ≥ s, T ≥ t) ≥ 0.

(ii) On the other hand, for any (F, F1, F2) ∈ Ω, conditions given in (3.3) guarantee that F

is a joint distribution in the closed region [L1, U1]× [L2, U2], and F1 and F2 are both

possible marginal distribution functions of F on [L1, U1] and [L2, U2], respectively.
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Lemma 3.1 indicates that (F0, F0,1, F0,2) ∈ F , when F0 is the true joint distribution

function of event times (T1, T2), and F0,1 and F0,1 are marginal distribution functions of F0.

Based on Lemma 3.1, the nonparametric maximum likelihood estimate of

(F0, F0,1, F0,2) is defined as

(F̂ , F̂1, F̂2) = arg max(F,F1,F2)∈F ln(F, F1, F2; data). (3.4)

This means the nonparametric maximum likelihood estimator is sought by maxi-

mizing (3.2) over F with respect to F (c1,k, c2,k), F1(c1,k) and F2(c2,k) for i = 1, . . . , n.

This estimator is the extension of the nonparametric maximum likelihood estimator of uni-

variate distribution function with univariate current status data. The univariate nonparamet-

ric maximum likelihood estimation problem has been thoroughly studied by Groenoboom

and Wellner (1992). They studied the asymptotic properties of the nonparametric maxi-

mum likelihood estimator of the distribution function. They also showed that the NPMLE

can be easily computed using convex minorant algorithm.

Problem (3.4) is much more complicated in view of number of unknown quantities

needed to be estimated and the nature of the constraints. Theoretically, consistency of this

estimator will be much more difficult to study, the convergence rate is even more difficult

to be established due to the fact that computing the bracket number of the set of bounded

partially monotone bivariate functions is still an open question (Song and Wellner (2002)).

Numerically, the only available method for this problem in the literate is the nonparametric

likelihood estimation procedure proposed by Betensky and Finkelstein (1999) if current sta-

tus data are treated as interval-censored data case 2. For the Betensky-Finkelstein method,

first the nonzero mass rectangles (or points) are determined, second the estimated mass for
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selected rectangles (or points) are computed through maximizing the likelihood. However,

this method has some disadvantages. First, this method is designed for interval censored

data case 2, and the estimation will be much worse when the method is applied for the cur-

rent status data which contains less information about the event time distribution. Second,

this procedure is not theoretically justified for consistency and convergence rate. Third,

Yu et al. (2000) pointed out that the estimation through this procedure is not necessarily

unique. Finally, if the sample size is large, the first stage of this procedure can be very

time-consuming.

To overcome the theoretical and numerical difficulties in the nonparametric esti-

mation problem, a spline-based sieve maximum likelihood estimation procedure is applied

to estimate the unknown bivariate distribution function. For this procedure the unknown

function in the log likelihood is approximated by a linear combination of tensor spline

basis functions to form a sieve log likelihood. Then maximizing the log likelihood with

respect to the unknown function converts to maximizing the spline-based sieve log like-

lihood with respect to the unknown coefficients of the tensor spline basis functions. The

success of spline-based sieve nonparametric maximum likelihood estimation is given by Lu

et al. (2007), who studied nonparametric likelihood-based estimators of the mean function

of counting processes with panel count data by using monotone splines to approximate the

mean function. Other applications of spline-based sieve maximum likelihood estimation

can be found in Shen (1998), Zhang et al. (2009), Lu et al. (2009).
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3.2.1 B-spline-based Estimation

In this section, the spline-based sieve nonparametric maximum likelihood estima-

tion problem is represented as a constrained optimization problem with respect to the coef-

ficients of the tensor B-splines.

B-spline basis functions {N (1),l
i (s) : i = 1, . . . , pn} and {N (2),l

j (t) : j = 1, . . . , qn}

are constructed in [L1, U1]× [L2, U2] with the knot sequence {upn+l
i } satisfying L1 = u1 =

· · · = ul < ul+1 < · · · < upn < upn+1 = upn+l = U1 and knot sequence {vqn+l
j } satisfying

L2 = v1 = · · · = vl < vl+1 < · · · < vqn < vqn+1 = vqn+l = U2, where pn = O(nv) and

qn = O(nv) for some 0 < v < 1.

Let

Ωn = {τ = (F, F1, F2) : F (s, t) =

pn∑
i=1

qn∑
j=1

αi,jN
(1),l
i (s)N

(2),l
j (t)},

F1(s) =

pn∑
i=1

βiN
(1),l
i (s),

F2(t) =

qn∑
j=1

γjN
(2),l
j (t),

with α = (α1,1, · · · , αpn,qn), β = (β1, · · · , βpn), and γ = (γ1, · · · , γqn)

subject to the following conditions in (3.5)},
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α1,1 ≥ 0,

α1,j+1 − α1,j ≥ 0 for j = 1, . . . , qn − 1,

αi+1,1 − αi,1 ≥ 0 for i = 1, . . . , pn − 1,

(αi+1,j+1 − αi+1,j)− (αi,j+1 − αi,j) ≥ 0 for i = 1, . . . , pn − 1, j = 1, . . . , qn − 1,

β1 − α1,qn ≥ 0,

(βi+1 − βi)− (αi+1,qn − αi,qn) ≥ 0 for i = 1, . . . , pn − 1,

γ1 − αpn,1 ≥ 0,

(γj+1 − γj)− (αpn,j+1 − αpn,j) ≥ 0 for j = 1, . . . , qn − 1,

βpn + γqn − αpn,qn ≤ 1.

(3.5)

The following Lemma implies the conditions given in (3.5) are closely related to

those given in (3.3).

Lemma 3.2. Ωn ⊆ F .

Proof. (i) By α1,1 ≥ 0, it is obvious that 0 ≤ F (s, t).

(ii) By Property (B3) in Section 2.1.1,

∂F (s, t)

∂s
=

pn−1∑
i=1

qn∑
j=1

(l − 1)(αi+1,j − αi,j)

ui+l − ui+1

N
(1),l−1
i+1 (s)N

(2),l
j (t),

and by the properties αi+1,1 − αi,1 ≥ 0 and (αi+1,j+1 − αi+1,j)− (αi,j+1 − αi,j) ≥ 0,

we have

αi+1,j − αi,j ≥ 0.

It is then followed by

∂F (s, t)

∂s
≥ 0, or F (s

′
, t) ≤ F (s

′′
, t).
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(iii) By the similar arguments as in (ii), it can be shown that F (s, t
′
) ≤ F (s, t

′′
).

(iv) By Property (B3) in Section 2.1.1,

∂2F (s, t)

∂s∂t
=

pn−1∑
i=1

qn−1∑
j=1

(l− 1)2αi+1,j+1 − αi,j+1 − αi+1,j + αi,j

(si+l − si+1)(tj+l − tj+1)
N

(1),l−1
i+1 (s)N

(2),l−1
j+1 (t).

Then by the property (αi+1,j+1 − αi+1,j)− (αi,j+1 − αi,j) ≥ 0,

∂2F (s, t)

∂s∂t
≥ 0, or F (s

′′
, t
′
)− F (s

′
, t
′
) ≤ F (s

′′
, t
′′
)− F (s

′
, t
′′
).

(v) By β1 − α1,qn ≥ 0 and (βi+1 − βi) − (αi+1,qn − αi,qn) ≥ 0, βi − αi,qn ≥ 0. Then

F (s, t) ≤ F1(s).

(vi) By the similar arguments as in (v), it can be shown that F (s, t) ≤ F2(t).

(vii) By Property (B3) in Section 2.1.1,

dF1(s)

ds
=

pn−1∑
i=1

(l − 1)(βi+1 − βi)

ui+l − ui+1

N
(1),l−1
i+1 (s).

Then by the property (βi+1 − βi)− (αi+1,qn − αi,qn) ≥ 0,

∂(F1(s)− F (s, t))

∂s
≥ 0, or F (s

′′
, t)− F (s

′
, t) ≤ F1(s

′′
)− F1(s

′
).

(viii) By the similar arguments as in (vii), it can be shown that F (s, t
′′
) − F (s, t

′
) ≤

F2(t
′′
)− F2(t

′
).

(ix) Since F1(U1) = βpnN
(1),l
pn (U1) = βpn , F2(U2) = γqnN

(2),l
qn (U2) = γqn , and F (U1, U2) =

αpn,qnN
(1),l
pn (U1)N

(2),l
qn (U2) = αpn,qn , then

F2(U2)− F (U1, U2) = γqn − αpn,qn

≤ 1− βpn

= 1− F1(U1).
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Moreover, dF1(s)
ds

≥ ∂F (s,t)
∂s

and dF2(t)
dt

≥ ∂F (s,t)
∂t

guarantee F1(U1)−F1(s) ≥ F (U1, U2)−

F (s, U2) and F2(U2)− F2(t) ≥ F (U1, U2)− F (U1, t), respectively.

Then

1− F1(s)− F2(t) + F (s, t)

={1− F1(U1) + F1(U1)− F1(s)}

− {F2(t)− F (U1, t) + F (U1, t)− F (s, t)}

≥{F2(U2)− F (U1, U2) + F (U1, U2)− F (s, U2)}

− {F2(t)− F (U1, t) + F (U1, t)− F (s, t)}

={F2(U2)− F2(t)− F (U1, U2) + F (U1, t)}

+ {F (U1, U2)− F (s, U2)− F (U1, t) + F (s, t)}

≥ 0.

To obtain the tensor B-spline-based sieve likelihood with bivariate current status

data, τ = (F, F1, F2) ∈ Ωn is substituted into (3.2) which results in
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l̃n(α, β, γ; ·) =
n∑

k=1

{δ1,kδ2,k log

pn∑
i=1

qn∑
j=2

αi,jN
(1),l
i (c1,k)N

(2),l
j (c2,k)

+ δ1,k(1− δ2,k) log{
pn∑
i=1

βiN
(1),l
i (c1,k)

−
pn∑
i=1

qn∑
j=1

αi,jN
(1),l
i (c1,k)N

(2),l
j (c2,k)}

+ (1− δ1,k)δ2,k log{
qn∑

j=1

γjN
(2),l
j (c2,k)

−
pn∑
i=1

qn∑
j=1

αi,jN
(1),l
i (c1,k)N

(2),l
j (c2,k)}

+ (1− δ1,k)(1− δ2,k) log{1−
pn∑
i=1

βiN
(1),l
i (c1,k)

−
qn∑

j=1

γjN
(2),l
j (c2,k) +

pn∑
i=1

qn∑
j=1

αi,jN
(1),l
i (c1,k)N

(2),l
j (c2,k)}}.

(3.6)

Hence, for the partially monotone tensor B-spline-based sieve nonparametric maxi-

mum likelihood estimation problem, we look for τ̂ = (F̂ , F̂1, F̂2) that maximizes l̃n(α, β, γ; ·)

given by (3.6) over Ωn.

3.2.2 I-spline-based Estimation

According to Lemma 2.3, the I-splines can be expressed by the sum of the B-splines

as follows.

I
(1),l−1
i (s) =

pn∑
m=i

N (1),l
m (s), (3.7)

and

I
(2),l−1
i (t) =

qn∑
m=i

N (2),l
m (t). (3.8)
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Let

Θn = {τ = (F, F1, F2) : F (s, t) =

pn∑
i=1

qn∑
j=1

ηi,jI
(1),l−1
i (s)I

(2),l−1
j (t)},

F1(s) =

pn∑
i=1

{
qn∑

j=1

ηi,j + ωi}I(1),l−1
i (s),

F2(t) =

qn∑
j=1

{
pn∑
i=1

ηi,j + πj}I(2),l−1
j (t)

with η = (η1,1, · · · , ηpn,qn), ω = (ω1, · · · , ωpn), and π = (π1, · · · , πqn)

subject to the following conditions (3.9)},

ηi,j ≥ 0 for i = 1, · · · , pn, j = 1, · · · , qn,

ωi ≥ 0, i = 1, . . . , pn,

πj ≥ 0, j = 1, . . . , qn,

pn∑
i=1

qn∑
j=1

ηi,j +

pn∑
i=1

ωi +

qn∑
j=1

πj ≤ 1.

(3.9)

The relationship between the constraints given in (3.9) and those given in (3.5) is

summarized in the following lemma.

Lemma 3.3. Set Ωn is equivalent to set Θn.

Proof. Let

αi,j =
i∑

m=1

j∑
n=1

ηm,n,

βi =
i∑

m=1

{
qn∑

j=1

ηm,j + ωm},

and

γj =

j∑
n=1

{
pn∑
i=1

ηi,n + πn}.
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By (3.7) and (3.8) (the relationships between the B-splines and the I-splines), it follows

that
pn∑
i=1

qn∑
j=1

αi,jN
(1),l
i (s)N

(2),l
j (t) =

pn∑
i=1

qn∑
j=1

ηi,jI
(1),l−1
i (s)I

(2),l−1
j (t)},

pn∑
i=1

βiN
(1),l
i (s) =

pn∑
i=1

{
qn∑

j=1

ηi,j + ωi}I(1),l−1
i (s),

and
qn∑

j=1

γjN
(2),l
j (t) =

qn∑
j=1

{
pn∑
i=1

ηi,j + πj}I(2),l−1
j (t).

In what follows, we verify that condition (3.5) and (3.9) are equivalent.

(i) α1,1 = η1,1, then η1,1 ≥ 0 is equivalent to α1,1 ≥ 0.

(ii) α1,j+1−α1,j = η1,j+1, then η1,j ≥ 0 for j = 2, . . . , qn is equivalent to α1,j+1−α1,j ≥ 0

for j = 1, . . . , qn − 1.

(iii) αi+1,1−αi,1 = ηi+1,1, then ηi,1 ≥ 0 for i = 2, . . . , pn is equivalent to αi+1,1−αi,1 ≥ 0

for i = 1, . . . , pn − 1.

(iv) (αi+1,j+1 − αi+1,j) − (αi,j+1 − αi,j) = ηi+1,j+1, then ηi,j ≥ 0 for i = 2, . . . , pn

and j = 2, . . . , qn, is equivalent to (αi+1,j+1 − αi+1,j) − (αi,j+1 − αi,j) ≥ 0 for

i = 1, . . . , pn − 1 and j = 1, . . . , qn − 1.

(v) β1 − α1,qn = (
∑qn

j=1 η1,j + ω1) − (
∑qn

j=1 η1,j) = ω1, then ω1 ≥ 0 is equivalent to

β1 − α1,qn ≥ 0.
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(vi)

(βi+1 − βi)− (αi+1,qn − αi,qn) = (
i+1∑
m=1

{
qn∑

j=1

ηm,j + ωm})−
i∑

m=1

{
qn∑

j=1

ηm,j + ωm})

− (
i+1∑
m=1

qn∑
j=1

ηm,j −
i∑

m=1

qn∑
j=1

ηm,j)

= ωi+1 ≥ 0,

then ωi ≥ 0 for i = 2, . . . , pn is equivalent to (βi+1 − βi)− (αi+1,qn − αi,qn) ≥ 0 for

i = 1, . . . , pn − 1.

(vii) γ1 − αpn,1 = (
∑pn

i=1 ηi,1 + π1) − (
∑pn

i=1 ηi,1) = π1, then π1 ≥ 0 is equivalent to

γ1 − αpn,1 ≥ 0.

(viii)

(γj+1 − γj)− (αpn,j+1 − αpn,j) = (

j+1∑
n=1

{
pn∑
i=1

ηi,n + πn})−
j∑

n=1

{
pn∑
i=1

ηi,n + πn})

− (

j+1∑
n=1

pn∑
i=1

ηi,n −
j∑

n=1

pn∑
i=1

ηi,n)

= πj+1 ≥ 0.

then πj ≥ 0 for j = 2, . . . , qn is equivalent to (γj+1− γj)− (αpn,j+1−αpn,j) ≥ 0 for

j = 1, . . . , qn − 1.

(ix)

βpn + γqn − αpn,qn =

pn∑
i=1

{
qn∑

j=1

ηi,j + ωi}+

qn∑
j=1

{
pn∑
i=1

ηi,j + πj}

−
pn∑
i=1

qn∑
j=1

ηi,j
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=

pn∑
i=1

qn∑
j=1

ηi,j +

pn∑
i=1

ωi +

qn∑
j=1

πj,

which implies
∑pn

i=1

∑qn

j=1 ηi,j +
∑pn

i=1 ωi +
∑qn

j=1 πj ≤ 1 is equivalent to βpn + γqn −

αpn,qn ≤ 1.

The proof is complete.

Lemma 3.3 indicates that the tensor spline-based sieve nonparametric maximum

likelihood estimation problem can be equivalently represented as a constrained optimiza-

tion problem with respect to the coefficients of the tensor B-splines or the tensor I-splines,

with the constraints given by (3.5) and (3.9), respectively. Numerically, the constrained op-

timization problem with the tensor I-splines apparently has the advantage of simplicity in

the constraints. Hence, we compute the tensor spline-based nonparametric estimate using

the partially monotone tensor I-splines.

Similar to obtaining the likelihood in terms of the B-splines, τ = (F, F1, F2) ∈ Θn

is substituted into (3.2) to result in the tensor I-spline-based sieve likelihood of bivariate

current status data as
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l̃n(η, ω, π; ·) =
n∑

k=1

{δ1,kδ2,k log

pn∑
i=1

qn∑
j=1

ηi,jI
(1),l−1
i (c1,k)I

(2),l−1
j (c2,k)

+ δ1,k(1− δ2,k) log{
pn∑
i=1

{
qn∑

j=1

ηi,j + ωi}I(1),l−1
i (C1,k)

−
pn∑
i=1

qn∑
j=1

ηi,jI
(1),l−1
i (c1,k)I

(2),l−1
j (c2,k)}

+ (1− δ1,k)δ2,k log{
qn∑

j=1

{
pn∑
i=1

ηi,j + πj}I(2),l−1
j (c2,k)

−
pn∑
i=1

qn∑
j=1

ηi,jI
(1),l−1
i (c1,k)I

(2),l−1
j (c2,k)}

+ (1− δ1,k)(1− δ2,k) log{1−
pn∑
i=1

{
qn∑

j=1

ηi,j + ωi}I(1),l−1
i (c1,k)

−
qn∑

j=1

{
pn∑
i=1

ηi,j + πj}I(2),l−1
j (c2,k)

+

pn∑
i=1

qn∑
j=1

ηi,jI
(1),l−1
i (c1,k)I

(2),l−1
j (c2,k)}}.

(3.10)

Hence, for the partially monotone tensor I-spline-based sieve nonparametric maxi-

mum likelihood estimation problem, we look for τ̂ = (F̂ , F̂1, F̂2) that maximizes l̃n(η, ω, π; ·)

given by (3.10) over Θn.
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CHAPTER 4
ASYMPTOTIC PROPERTIES

In this chapter, we describe and prove the asymptotic results of the proposed tensor

spline-based sieve nonparametric maximum likelihood estimator of the joint distribution

function with bivariate current status data. The study of asymptotic properties of the tensor

spline-based maximum likelihood estimator requires some regularity conditions for the

event times and censoring times. Suppose the bivariate event times have joint distribution

function F0(s, t) and marginal distribution functions F0,1(s) and F0,2(t). The following

conditions sufficiently guarantee the results in the forthcoming theorems.

4.1 Regularity Conditions

(C1) ∂F0(s,t)
∂s

, ∂F0(s,t)
∂t

, dF0,1(s)

ds
and dF0,2(t)

dt
all have positive lower and upper bound in [L1, U1]×

[L2, U2].

(C2) ∂2F0(s,t)
∂s∂t

has positive lower bound b0 in [L1, U1]× [L2, U2].

(C3) F0(s, t) has continuous mixed derivatives of order p, ∇p
mg = ∂pF0(s,t)

∂smtp−m for m =

1, 2, . . . , p, in the bounded region [L1, U1] × [L2, U2]; F0,1(s) has continuous deriva-

tive dpF0,1(s)

dsp on [L1, U1]; and F0,2(t) has continuous derivative dpF0,2(t)

dtp
on [L2, U2].

(C4) Censoring times (C1, C2) are bivariate random variable taking values in [l1, u1] ×

[l2, u2], with l1 > L1, u1 < U1, l2 > L2, and u2 < U2.

(C5) The density of (C1, C2) has positive lower bound at every point in [l1, u1]× [l2, u2].
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Let

Ωn,1 = {τ = (F, F1, F2) :F (s, t) =

pn∑
i=1

qn∑
j=1

αi,jN
(1),l
i (s)N

(2),l
j (t)},

F1(s) =

pn∑
i=1

βiN
(1),l
i (s),

F2(t) =

qn∑
j=1

γjN
(2),l
j (t),

with α = (α1,1, · · · , αpn,qn), β = (β1, · · · , βpn),

and γ = (γ1, · · · , γqn)

subject to the following conditions in (4.1),

and the following condition (Sp1) holds},

α1,1 ≥ 0,

α1,j+1 − α1,j ≥ 0 for j = 1, . . . , qn − 1,

αi+1,1 − αi,1 ≥ 0 for i = 1, . . . , pn − 1,

(αi+1,j+1 − αi+1,j)− (αi,j+1 − αi,j) ≥
b0 mini1 ∆

(u)
i1

minj1 ∆
(v)
j1

l2

for i = 1, . . . , pn − 1, j = 1, . . . , qn − 1,

β1 − α1,qn ≥ 0,

(βi+1 − βi)− (αi+1,qn − αi,qn) ≥ 0 for i = 1, . . . , pn − 1,

γ1 − αpn,1 ≥ 0,

(γj+1 − γj)− (αpn,j+1 − αpn,j) ≥ 0 for j = 1, . . . , qn − 1,

βpn + γqn − αpn,qn ≤ 1.

(4.1)

(Sp1) Knot sequences {ui}pn+l
1 and {vj}qn+l

1 of the B-spline basis functions {N (1),l
i }pn

1 and
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{N (2),l
j }qn

1 , respectively, satisfy that both
mini1

∆
(u)
i1

maxi1
∆

(u)
i1

and
minj1

∆
(v)
j1

maxj1
∆

(v)
j1

have positive lower

bounds which are not greater than 1, where ∆
(u)
i = ui+1 − ui for i = l, . . . , pn and

∆
(v)
j = vj+1 − vj for j = l, . . . , qn.

In this chapter, the constraints set Ωn,1 is a subset of the constraints set Ωn discussed

in Chapter 3. We only discuss the asymptotic properties in [l1, u1] × [l2, u2] and let Ω
′
n =

{τ(s, t) : τ ∈ Ωn,1, for (s, t) ∈ [l1, u1]× [l2, u2]}.

Under (C4), the maximization of l̃n(α, β, γ; ·) over Ωn,1 is actually the maximiza-

tion of l̃n(α, β, γ; ·) over Ω
′
n , where l̃n(α, β, γ; ·) is defined by (3.6). Let τ̂n maximizes

l̃n(α, β, γ; ·) over Ω
′
n. Then the asymptotic properties of τ̂n in terms of consistency and

convergence rate are stated in the theorems given in the next sections.

In this chapter, the Lr(Q)-norm associated with probability measure Q is defined

by

‖f‖Lr(Q) = (Q|f |r)1/r = (

∫
|f |rdQ)1/r. (4.2)

Then according to (4.2), Lr(PC1,C2)-norm, Lr(PC1)-norm and Lr(PC2)-norm are denoted

as Lr-norm associated with the joint and marginal probability measures of observation

times (C1, C2), and Lr(P )-norm is denoted as Lr-norm associated with the joint probability

measure P of observation and event times (T1, T2, C1, C2).

Based on L2-norm, the distance between τn = (Fn, Fn,1, Fn,2) with τn ∈ Ω
′
n and

τ0(s, t) = (F0(s, t), F0,1(s), F0,2(t)) with (s, t) ∈ [l1, u1]× [l2, u2] can be defined by

d(τ0, τn) = (‖F0−Fn‖2
L2(PC1,C2

) + ‖F0,1−Fn,1‖2
L2(PC1

) + ‖F0,2−Fn,2‖2
L2(PC2

))
1/2. (4.3)
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In this chapter, Empirical measure Pn of a sample of random elements x1, . . . , xn

is defined by

Pnf =
1

n

n∑
i=1

f(xi). (4.4)

Throughout the technical proofs of Chapter 4, K is denoted as a universal positive

constant that may be different from place to place.

4.2 Consistency

Theorem 4.1. Suppose (C2), (C3) and (C4) hold, and pn = qn = nv for v < 1, that is,

the numbers of subintervals made from knot sequences {ui}pn+l
1 and {vj}qn+l

1 , respectively,

are both equal to O(nv) for v < 1. Then

d(τ̂n, τ0) →p 0, as n →∞.

Proof. We will show τ̂n is consistent estimator by verifying the conditions of Lemma 2.10.

Before verifying the three conditions of Lemma 2.10, we define Ω which contains

both τ0 and Ω
′
n as follows.

Ω = {τ = (F, F1, F2) : τ satisfies the following properties (a) and (b) }.

(a) F (s, t) is nondecreasing in both s and t directions, F1(s)−F (s, t) is nondecreasing in s

and nonincreasing in t direction, F2(t)−F (s, t) is nondecreasing in t and nonincreasing

in s direction, and 1−F1(s)−F2(t)+F (s, t) is nonincreasing in both s and t directions.

(b) F (s, t) ≥ b1, F1(s) − F (s, t) ≥ b2, F2(t) − F (s, t) ≥ b3, and 1 − F1(s) − F2(t) +

F (s, t) ≥ b4, with b1 > 0, b2 > 0, b3 > 0 and b4 > 0 small enough, such that
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τ0 = (F0, F0,1, F0,2) ∈ Ω and Ω
′
n ⊆ Ω.

Remark 4.1. For the true distribution functions τ0 = (F0, F0,1, F0,2), under (C2), Lemma

4.1 given in section 4.3 guarantee that τ0 ∈ Ω and that for any τn ∈ Ω
′
n, τn ∈ Ω.

The class of functions made by the log of density for single observation (s, t) is

defined as

L = {l(τ) : τ ∈ Ω},

where

l(τ)|(s,t) =δ1δ2 log F (s, t) + δ1(1− δ2) log[F1(s)− F (s, t)]

+ (1− δ1)δ2 log[F2(t)− F (s, t)]

+ (1− δ1)(1− δ2) log[1− F1(s)− F2(t) + F (s, t)],

(4.5)

with δ1 = 1[T1≤s], δ2 = 1[T2≤t].

For the rest of Chapter 4, let

M(τ) = Pl(τ) andMn(τ) = Pn(l(τ)), (4.6)

where Pl(τ) and Pn(l(τ)) are given according to (4.2), (4.4) and (4.5).

(i) First, we verify the condition:

sup
τ∈Ω

|Mn(τ)−M(τ)| →p 0.

It suffices to show that L is a P -Clivenko-Cantelli, by the fact

sup
l(τ)∈L

|(Pn − P )l(τ)| = sup
τ∈Ω

|Mn(τ)−M(τ)| →p 0.
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Let A1 = { log F (s,t)
log b1

: τ = (F, F1, F2) ∈ Ω}, and G1 = {1[s1,t1]×[s2,t2], s1 ≤ t1 ≤

m1, s2 ≤ t2 ≤ m2}. By Property (a) and (b), we know 0 ≤ log F (s,t)
log b1

≤ 1 and log F (s,t)
log b1

is monotone nonincreasing in both s and t directions. Therefore A1 ⊆ sconv(G1).

Then Lemma 2.11 implies

N(ε,G1, L2(QC1,C2)) ≤ K(
1

ε
)4, (4.7)

for any probability measure QC1,C2 , by the fact that V (G1) = 3 and the envelop

function of G1 is 1. Furthermore (4.7) is followed by

log N(ε, sconv(G1), L2(QC1,C2) ≤ K(
1

ε
)4/3,

using the result of Lemma 2.12. Hence

log N(ε, A1, L2(QC1,C2) ≤ K(
1

ε
)4/3. (4.8)

Let

A
′
1 = {δ1δ2 log F (s, t) : τ = (F, F1, F2) ∈ Ω

′
n}.

suppose the centers of ε-balls of A1 are fi, i = 1, 2, . . . , [K(1
ε
)4/3], then for any joint

probability measure Q for (T1, T2, C1, C2)

‖δ1δ2 log F − δ1δ2 log b1fi‖2
L2(Q)

= Q[δ1δ2 log b1(
log F

log b1

− fi)]
2

= E[1[T1<C1,T2<C2] log b1(
log F (C1, C2)

log b1

− fi(C1, C2))]
2

= E{E{[1[T1<C1,T2<C2] log b1(
log F (C1, C2)

log b1

− fi(C1, C2)]
2|C1, C2}}

= E[F0(C1, C2) log b1(
log F (C1, C2)

log b1

− fi(C1, C2))]
2
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= EC1,C2 [F0(C1, C2) log b1(
log F (C1, C2)

log b1

− fi(C1, C2))]
2

≤ EC1,C2 [log b1(
log F (C1, C2)

log b1

− fi(C1, C2))]
2

= QC1,C2 [log b1(
log F

log b1

− fi)]
2

= log2 b1‖ log F

log b1

− fi‖2
L2(QC1,C2

),

let b̂1 = − log b1 then δ1δ2 log b1fi, i = 1, 2, . . . , [K(1
ε
)4/3] are the centers of εb̂1-balls

of A
′
1 and by (4.8)

log N(εb̂1, A
′
1, L2(Q)) ≤ K(

1

ε
)4/3, (4.9)

and it follows that

∫ 1

0

sup
Q

√
log N(εb̂1, A

′
1, L2(Q))dε ≤

∫ 1

0

√
K(

1

ε
)2/3dε < ∞. (4.10)

It is obvious that the envelop function of A
′
1 is b̂1, therefore A

′
1 is a P-Donsker, by

Lemma 2.13.

Let A2 = { log(F1(s)−F (s,t))
log b2

: τ = (F, F1, F2) ∈ Ω}, and G2 = {1[s1,t1]×[t2,m2], s1 ≤

t1 ≤ m1, s2 ≤ t2 ≤ m2}, and A
′
2 = {δ1(1 − δ2) log(F1(s) − F (s, t)) : τ =

(F, F1, F2) ∈ Ω
′
n}. By the similar arguments in showing A

′
1 to be a P-Donsker, it

can be shown that A
′
2 is P-Donsker.

Similarly, it can be shown that A′
3 = {(1−δ1)δ2 log(F2(t)−F (s, t)) : τ = (F, F1, F2) ∈

Ω} and A
′
4 = {(1−δ1)(1−δ2) log(1−F1(s)−F2(t)−F (s, t)) : τ = (F, F1, F2) ∈ Ω}

are P-Donsker classes as well.

By Lemma 2.14, pairwise sums A
′
1 + A

′
2 and A

′
3 + A

′
4 are both P-Donsker classes.

Then the pairwise sum (A
′
1+A

′
2)+(A

′
3+A

′
4) is also P-Donsker. It is obvious thatL ⊂
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(A
′
1+A

′
2)+(A

′
3+A

′
4), hence L is P-Donsker. By Slusky’s Theorem, it can be showed

that a P-Donsker is a P-Clivenko-Cantelli and hence supl(τ)∈L |(Pn − P )l(τ)| →p 0.

(ii) Second, we verify

M(τ0)−M(τ) ≥ Kd(τ0, τ)2,

for any τ ∈ Ω.

By (4.6) and E(E(X|Y )) = E(X),

M(τ0)−M(τ) =P{l(τ0)− l(τ)}

=P{δ1δ2 log
F0

F
+ δ1(1− δ2) log

F0,1 − F0

F1 − F

+(1− δ1)δ2 log
F0,2 − F0

F2 − F

+(1− δ1)(1− δ2) log
1− F0,1 − F0,2 + F0

1− F1 − F2 + F
},

=PC1,C2{F0 log
F0

F
+ (F0,1 − F0) log

F0,1 − F0

F1 − F

+(F0,2 − F0) log
F0,2 − F0

F2 − F

+(1− F0,1 − F0,2 + F0) log
1− F0,1 − F0,2 + F0

1− F1 − F2 + F
}.

It follows that

M(τ0)−M(τ) =PC1,C2{Fm(
F0

F
) + (F1 − F )m(

F0,1 − F0

F1 − F
)

+ (F2 − F )m(
F0,2 − F0

F2 − F
)

+ (1− F1 − F2 + F )m(
1− F0,1 − F0,2 + F0

1− F1 − F2 + F
)},

(4.11)

where m(x) = x log(x)− x + 1 ≥ (x− 1)2/4 for 0 ≤ x ≤ 5.
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By F has positive upper bound,

PC1,C2{Fm(
F0

F
)} ≥PC1,C2{

F 2

K
(
F0

F
− 1)2/4}

=KPC1,C2(F0 − F )2

=K‖F0 − F‖2
L2(PC1,C2

).

(4.12)

Also, since F1 − F has positive upper bound,

PC1,C2{(F1 − F )m(
F0,1 − F0

F1 − F
)}

≥PC1,C2{
(F1 − F )2

K
(
F0,1 − F0

F1 − F
− 1)2/4}

≥K‖(F0,1 − F0)− (F1 − F )‖2
L2(PC1,C2

)

=K‖(F0,1 − F1)− (F0 − F )‖2
L2(PC1,C2

).

(4.13)

Similarly,

PC1,C2{(F2 − F )m(
F0,2 − F0

F2 − F
)}

≥K‖(F0,2 − F0)− (F2 − F )‖2
L2(PC1,C2

)

=K‖(F0,2 − F2)− (F0 − F )‖2
L2(PC1,C2

),

(4.14)

and

PC1,C2{(1− F1 − F2 + F )m(
1− F0,1 − F0,2 + F0

1− F1 − F2 + F
)}

≥K‖(1− F0,1 − F0,2 + F0)− (1− F1 − F2 + F )‖2
L2(PC1,C2

).

(4.15)

By (4.12), (4.13), (4.14) and (4.15), (4.11) results in

M(τ0)−M(τ) ≥K(‖F0 − F‖2
L2(PC1,C2

) + ‖(F0,1 − F1)− (F0 − F )‖2
L2(PC1,C2

)

+ ‖(F0,2 − F2)− (F0 − F )‖2
L2(PC1,C2

))

Let f1 = ‖F0 − F‖2
L2(PC1,C2

), f2 = ‖F0,1 − F1‖2
L2(PC1

), and f3 = ‖F0,2 − F2‖2
L2(PC2

).
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If f1 is the largest among f1, f2, f3, then

M(τ0)−M(τ) ≥ Kf1 ≥ (K/3)(f1 + f2 + f3), (4.16)

if f2 is the largest, then

M(τ0)−M(τ) ≥ K[f1 + (f2 − f1)] ≥ Kf2 ≥ (K/3)(f1 + f2 + f3), (4.17)

if f3 is the largest, then

M(τ0)−M(τ) ≥ K[f1 + (f3 − f1)] ≥ Kf3 ≥ (K/3)(f1 + f2 + f3). (4.18)

Hence

M(τ0)−M(τ) ≥ Kd(τ0, τ)2,

by (4.16), (4.17) and (4.18).

(iii) Finally, we verify

Mn(τ̂n)−Mn(τ0) ≥ −op(1).

Since τ̂n maximizesMn(τn) in Ω
′
n,Mn(τ̂n)−Mn(τn) > 0. Hence,

Mn(τ̂n)−Mn(τ0) =Mn(τ̂n)−Mn(τn) +Mn(τn)−Mn(τ0)

≥Mn(τn)−Mn(τ0)

=Pn(l(τn))− Pn(l(τ0))

=(Pn − P ){l(τn)− l(τ0)}+ P{l(τn)− l(τ0)}.

(4.19)

Under (C3) and suppose pn and qn are both equal to O(nv), then Lemma 4.2 guaran-

tees that there exists τn = (Fn, Fn,1, Fn,2) in Ω
′
n such that for τ0 = (F0, F0,1, F0,2),

‖Fn−F0‖∞ ≤ K(n−pv), ‖Fn,1−F0,1‖∞ ≤ K(n−pv), and ‖Fn,2−F0,2‖∞ ≤ K(n−pv).
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Define

Ln ={l(τn) : τn = (Fn, Fn,1, Fn,2) ∈ Ω
′
n, ‖Fn − F0‖∞ ≤ K(n−pv),

‖Fn,1 − F0,1‖∞ ≤ K(n−pv), ‖Fn,2 − F0,2‖∞ ≤ K(n−pv)}

Since (a + b + c + d)2 ≤ 4(a2 + b2 + c2 + d2), then in Ln

P{l(τn)− l(τ0)}2 ≤4P (δ1δ2 log
Fn

F0

)2 + 4P (δ1(1− δ2) log
Fn,1 − Fn

F0,1 − F0

)2

+ 4P ((1− δ1)δ2 log
Fn,2 − Fn

F0,2 − F0

)2

+ 4P ((1− δ1)(1− δ2) log
1− Fn,1 − Fn,2 + Fn

1− F0,1 − F0,2 + F0

)2

≤4PC1,C2(log
Fn

F0

)2 + 4PC1,C2(log
Fn,1 − Fn

F0,1 − F0

)2

+ 4PC1,C2(log
Fn,2 − Fn

F0,2 − F0

)2

+ 4PC1,C2(log
1− Fn,1 − Fn,2 + Fn

1− F0,1 − F0,2 + F0

)2

(4.20)

The fact that ‖Fn − F0‖L2(PC1,C2
) ≤ K(n−pv) and that F0 has a positive lower bound

results in 1/2 < Fn

F0
< 2 for large n.

Since it can be easily showed that if 1/2 ≤ x ≤ 2, | log(x)| ≤ K|x − 1|. It follows

that | log Fn

F0
| ≤ K|Fn

F0
− 1|, then

PC1,C2| log
Fn

F0

|2 ≤KPC1,C2|
Fn

F0

− 1|2

≤KPC1,C2(
F 2

0

K
|Fn

F0

− 1|2)

=KPC1,C2|Fn − F0|2

≤K(n−pv)2 → 0.

(4.21)
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Similarly, since ‖Fn,1 − F0,1‖∞ ≤ K(n−pv), then Fn,1 − Fn and F0,1 − F0 are very

close at every point in their domain. By the fact that F0,1 − F0 has a positive lower

bound, 1/2 < Fn,1−Fn

F0,1−F0
< 2 and | log Fn,1−Fn

F0,1−F0
| ≤ K|Fn,1−Fn

F0,1−F0
− 1|. Therefore

PC1,C2| log
Fn,1 − Fn

F0,1 − F0

|2 ≤KPC1,C2|
Fn,1 − Fn

F0,1 − F0

− 1|2

≤KPC1,C2((F0,1 − F0)
2|Fn,1 − Fn

F0,1 − F0

− 1|2)

≤KPC1,C2|(Fn,1 − Fn)− (F0,1 − F0)|2

≤K(n−pv)2 → 0.

(4.22)

Similarly,

PC1,C2| log
Fn,2 − Fn

F0,2 − F0

|2 → 0, (4.23)

and

PC1,C2| log
1− Fn,1 − Fn,2 + Fn

1− F0,1 − F0,2 + F0

|2 → 0. (4.24)

By (4.20), (4.21), (4.22), (4.23) and (4.24),

P |l(τn)− l(τ0)|2 → 0, as n →∞. (4.25)

By the similar arguments,

P |l(τn)− l(τ0)| → 0, as n →∞. (4.26)

Hence, by (4.25) and (4.26),

ρP{l(τn)− l(τ0)} = {P{[l(τn)− l(τ0)]− P [l(τn)− l(τ0)]}2}1/2 → 0, as n →∞.
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Since under (C2) Lemma 4.1 indicates Ω
′
n ⊂ Ω and τ0 ∈ Ω, then Ln ⊂ L and

l(τ0) ∈ L. So both l(τn) and l(τ0) are in L. In addition, L is a P -Donsker.

Hence

(Pn − P ){l(τn)− l(τ0)} = op(n
−1/2), (4.27)

by Lemma 2.15.

And

P{l(τn)− l(τ0)} ≤ P |l(τn)− l(τ0)| → 0, as n →∞.

So P (l(τn)− l(τ0)) ≥ −o(1) as n →∞. Then by (4.19),

Mn(τ̂n)−Mn(τ0) ≥ op(n
−1/2)− o(1) ≥ −op(1).

This completes the proof of d(τ̂n, τ0) → 0 in probability.

4.3 Convergence Rate

Theorem 4.2. Suppose (C1)-(C5) hold, and pn = qn = nv for v ≤ 1
4p

, that is, the numbers

of subintervals made from knot sequences {ui}pn+l
1 and {vj}qn+l

1 , respectively, are both

equal to O(nv) for v ≤ 1
4p

. Then

d(τ̂n, τ0) = Op(n
−min{pv,(1−2v)/3}).

Proof. By (4.19), Mn(τ̂n)−Mn(τ0) ≥ I1,n + I2,n, where I1,n = (Pn − P ){l(τn)− l(τ0)}

and I2,n = M(τn)−M(τ0) for any l(τn) ∈ Ln. Given by (4.27), I1,n = op(n
−1/2). Then if

v ≤ 1
4p

I1,n = op(n
−2pv). (4.28)
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In what follows, it is showed that

M(τ0)−M(τn) ≤ O(n−2pv). (4.29)

Let τ = τn in (4.11), then

M(τ0)−M(τn) =PC1,C2{Fnm(
F0

Fn

) + (Fn,1 − Fn)m(
F0,1 − F0

Fn,1 − Fn

)

+ (Fn,2 − Fn)m(
F0,2 − F0

Fn,2 − Fn

)

+ (1− Fn,1 − Fn,2 + Fn)m(
1− F0,1 − F0,2 + F0

1− Fn,1 − Fn,2 + Fn

)}.

(4.30)

By the fact that m(x) = x log−x + 1 ≤ (x − 1)2 in the neighborhood of x = 1 and the

definition of Ln,

PC1,C2{Fnm(
F0

Fn

)} ≤KPC1,C2{F 2
n(

F0

Fn

− 1)2}

=KPC1,C2(F0 − Fn)2

≤K‖F0 − Fn‖2
∞

=O(n−2pv).

(4.31)

similarly,

PC1,C2{(Fn,1 − Fn)m(
F0,1 − F0

Fn,1 − Fn

)} ≤K‖F0 − Fn‖2
∞ + K‖F0,1 − Fn,1‖2

∞

=O(n−2pv),

(4.32)

PC1,C2{(Fn,2 − Fn)m(
F0,2 − F0

Fn,2 − Fn

)} ≤K‖F0 − Fn‖2
∞ + K‖F0,2 − Fn,2‖2

∞

=O(n−2pv),

(4.33)



62

and

PC1,C2{(1− Fn,1 − Fn,2 + Fn)m(
1− F0,1 − F0,2 + F0

1− Fn,1 − Fn,2 + Fn

)} ≤K‖F0 − Fn‖2
∞

+ K‖F0,2 − Fn,2‖2
∞

+ K‖F0,1 − Fn,1‖2
∞

=O(n−2pv).

(4.34)

So (4.30), (4.31), (4.32), (4.33) and (4.34) result inM(τ0)−M(τn) ≤ O(n−2pv). Then

I2,n = M(τn)−M(τ0) ≥ −O(n−2pv). (4.35)

Hence

M(τ̂n)−M(τ0) ≥ −O(n−2pv) + op(n
−2pv) = −Op(n

−2pv),

by (4.28) and (4.35).

Let

Ln,η = {l(τn)− l(τ0) : τn ∈ Ω
′
n and d(τn, τ0) ≤ η}.

In what follows, the bracket number of Ln,η is evaluated.

Let Ln,1 = {l(τn) : τn ∈ Ω
′
n}, Fn = {Fn : τn = (Fn, Fn,1, Fn,2) ∈ Ω

′
n}, Fn,1 =

{Fn,1 : τn = (Fn, Fn,1, Fn,2) ∈ Ω
′
n}, and Fn,2 = {Fn,2 : τn = (Fn, Fn,1, Fn,2) ∈ Ω

′
n}.

By Lemma 2.22, there exist ε-brackets [FL
i , FU

i ], i = 1, 2, . . . , [(1/ε)Kpnqn ] to cover

Fn. By Lemma 2.21, there exist ε-brackets [F
(1),L
j , F

(1),U
j ], j = 1, 2, . . . , [(1/ε)Kpn ] to

cover Fn,1, and there exist ε-brackets [F
(2),L
k , F

(2),U
k ], k = 1, 2, . . . , [(1/ε)Kqn ] to cover

Fn,2.
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Let

lUi,j,k = δ1δ2 log FU
i + δ1(1− δ2) log(F

(1),U
j − FL

i )

+ (1− δ1)δ2 log(F
(2),U
k − FL

i )

+ (1− δ1)(1− δ2) log(1− F
(1),L
j − F

(2),L
k + FU

i ),

and

lLi,j,k = δ1δ2 log FL
i + δ1(1− δ2) log(F

(1),L
j − FU

i )

+ (1− δ1)δ2 log(F
(2),L
k − FU

i )

+ (1− δ1)(1− δ2) log(1− F
(1),U
j − F

(2),U
k + FL

i ).

Then for any l(τn) ∈ Ln,1 ,there exist i, j, k, for i = 1, 2, . . . , [(1/ε)Kpnqn ],

j = 1, 2, . . . , [(1/ε)Kpn ] and k = 1, 2, . . . , [(1/ε)Kqn ], such that lLi,j,k ≤ l(τn) ≤ lUi,j,k and

the number of brackets [lLi,j,k, l
U
i,j,k]

′
s is bounded by (1/ε)Kpnqn · (1/ε)Kpn · (1/ε)Kqn .

It is left to show that any bracket [lLi,j,k, l
U
i,j,k] is a Kε-bracket.

‖ lUi,j,k − lLi,j,k ‖∞

≤ ‖ δ1δ2 log
FU

i

FL
i

‖∞ + ‖ δ1(1− δ2) log
F

(1),U
j − FL

i

F
(1),L
j − FU

i

‖∞

+ ‖ (1− δ1)δ2 log
F

(2),U
k − FL

i

F
(2),L
k − FU

i

‖∞

+ ‖ (1− δ1)(1− δ2) log
1− F

(1),L
j − F

(2),L
j + FU

i

1− F
(1),U
j − F

(2),U
j + FL

i

‖∞

≤ ‖ log
FU

i

FL
i

‖∞ + ‖ log
F

(1),U
j − FL

i

F
(1),L
j − FU

i

‖∞ + ‖ log
F

(2),U
k − FL

i

F
(2),L
k − FU

i

‖∞
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+ ‖ log
1− F

(1),L
j − F

(2),L
j + FU

i

1− F
(1),U
j − F

(2),U
j + FL

i

‖∞

Since Fn has positive lower bound, then for small ε, FL
i has positive lower bound.

That FL
i has positive lower bound and FU

i (s, t) is close to FL
i (s, t) guarantee that 0 ≤

F U
i

F L
i
− 1 ≤ 1 for i = 1, 2, . . . , [(1/ε)Kpnqn ]. Then by log x ≤ (x− 1) for 0 ≤ (x− 1) ≤ 1,

log
F U

i

F L
i
≤ F U

i

F L
i
− 1.

So

‖ log
FU

i

FL
i

‖∞≤‖ FU
i

FL
i

− 1 ‖∞≤‖ 1

FL
i

(FU
i − FL

i ) ‖∞≤ K ‖ FU
i − FL

i ‖∞≤ Kε. (4.36)

Since Fn,1−Fn has positive lower bound, then for small ε, F
(1),L
j −FU

i has positive

lower bound. F
(1),U
j is close to F

(1),L
j and FU

i is close to FL
i result in F

(1),U
j − FL

i is

close to F
(1),L
j − FU

i . That F
(1),L
j − FU

i has positive lower bound and F
(1),U
j − FL

i is

close to F
(1),L
j − FU

i , result in 0 ≤ F
(1),U
j −F L

i

F
(1),L
j −F U

i

− 1 ≤ 1 for i = 1, 2, . . . , [(1/ε)Kpnqn ] and

j = 1, 2, . . . , [(1/ε)Kpn ].

So

‖ log
F

(1),U
j − FL

i

F
(1),L
j − FU

i

‖∞≤ ‖ F
(1),U
j − FL

i

F
(1),L
j − FU

i

− 1 ‖∞

≤K ‖ (F
(1),U
j − FL

i )− (F
(1),L
j − FU

i ) ‖∞

≤K(‖ F
(1),U
j − F

(1),L
j ‖∞ + ‖ FU

i − FL
i ‖∞)

≤Kε.

(4.37)

It can be similarly shown that

‖ log
F

(2),U
k − FL

i

F
(2),L
k − FU

i

‖∞≤ Kε, (4.38)



65

and

‖ log
1− F

(1),L
j − F

(2),L
j + FU

i

1− F
(1),U
j − F

(2),U
j + FL

i

‖∞≤ Kε. (4.39)

Then ‖ lUi,j,k − lLi,j,k ‖∞≤ Kε, by (4.36), (4.37), (4.38) and (4.39). Hence it follows

that

N[ ]{ε,Ln,1, ‖ ‖∞} ≤ (1/ε)Kpnqn+Kpn+Kqn ≤ (1/ε)Kpnqn .

So N[ ]{ε,Ln,1, L2(P )} ≤ (1/ε)Kpnqn , by the fact that L2-norm is bounded by L∞-norm.

Hence

N[ ]{ε,Ln,η, L2(P )} ≤ (1/ε)Kpnqn , (4.40)

by (Ln,η + l(τ0)) ⊂ Ln,1.

In Theorem 1, it has been showed that if ‖τn − τ0‖L2(P ) ≤ Kn−pv then P{L(τn)−

L(τ0)}2 ≤ K(n−pv)2. In what follows, we show that P{L(τn) − L(τ0)}2 ≤ Kη2 for any

L(τn)− L(τ0) ∈ Ln,η by similar arguments.

Since ‖Fn − F0‖L2(PC1,C2
) ≤ d(Fn, F0) ≤ η, then under (C1) and (C5), Lemma 4.3

indicates that for large n, Fn and F0 are very close at every point in [l1, u1]× [l2, u2]. Then

the fact that F0 has a positive lower bound results in 1/2 < Fn

F0
< 2.

Since it can be easily showed that if 1/2 ≤ x ≤ 2, | log(x)| ≤ K|x− 1|. It follows

that | log Fn

F0
| ≤ K|Fn

F0
− 1|, then

PC1,C2| log
Fn

F0

|2 ≤KPC1,C2|
Fn

F0

− 1|2

≤KPC1,C2(
F 2

0

K
|Fn

F0

− 1|2)

=KPC1,C2|Fn − F0|2

≤Kη2.

(4.41)
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Similarly, since ‖Fn,1 − F0,1‖L2(PC1
) ≤ η, then under (C1) and (C5), Lemma 4.4

indicates that for large n, Fn,1 and F0,1 are very close at every point on [l1, u1], then Fn,1−Fn

and F0,1−F0 are very close at every point in their domain. By the fact that F0,1−F0 has a

positive lower bound, 1/2 < Fn,1−Fn

F0,1−F0
< 2 and | log Fn,1−Fn

F0,1−F0
| ≤ K|Fn,1−Fn

F0,1−F0
− 1|. Therefore

PC1,C2| log
Fn,1 − Fn

F0,1 − F0

|2 ≤KPC1,C2|
Fn,1 − Fn

F0,1 − F0

− 1|2

≤KPC1,C2((F0,1 − F0)
2|Fn,1 − Fn

F0,1 − F0

− 1|2)

≤KPC1,C2|(Fn,1 − Fn)− (F0,1 − F0)|2

≤Kη2.

(4.42)

Similarly,

PC1,C2| log
Fn,2 − Fn

F0,2 − F0

|2 ≤ Kη2, (4.43)

and

PC1,C2| log
1− Fn,1 − Fn,2 + Fn

1− F0,1 − F0,2 + F0

|2 ≤ Kη2. (4.44)

By (4.20), (4.41), (4.42), (4.43) and (4.44),

P{l(τn)− l(τ0)}2 ≤ Kη2. (4.45)

Also it is obvious that Ln,η is uniformly bounded. Hence by Lemma 2.16,

E∗
P ‖ Gn ‖Ln,η≤ KJ̃[ ]{η,Ln,η, L2(P )}[1 +

J̃[ ]{η,Ln,η, L2(P )}
η2
√

n
].
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By (4.40),

J̃[ ]{η,Ln,η, L2(P )} =

∫ η

0

√
1 + log N[ ]{ε,Ln,η, L2(P )}dε

=

∫ η

0

√
1 + Kpnqn log(1/ε)dε

≤
∫ η

0

{K(pnqn)1/2(1/ε)1/2}dε

= K(pnqn)1/2η1/2

Let ψ(η) = (pnqn)1/2η1/2 +(pnqn)/(ηn1/2), then it is easy to see that ψ(η)/η is decreasing

function of η. Note that for pn = qn = nv,

n2pvψ(1/npv) = n2pvnvn(−1pv)/2 + n2pvn2vn−1/2n1pv

= n1/2{n(3pv)/2−(1−2v)/2 + n3pv−(1−2v)}.

Therefore, if pv ≤ (1− 2v)/3, then n2pvψ(1/npv) ≤ n1/2. Also

n2(1−2v)/3ψ(1/n(1−2v)/3) = n2(1−2v)/3nvn−(1−2v)/6 + n2(1−2v)/3n2vn−1/2n(1−2v)/3

= 2n1/2.

This implies if rn = nmin{pv,(1−2v)/3}, then

r2
nψ(1/rn) ≤ Kn1/2,

and

M(τ̂n)−M(τ0) ≥ −Op(n
−2pv) ≥ −Op(n

−2min{pv,(1−2v)/3}) = −Op(r
−2
n ).

Hence it follows by Lemma 2.17 that

rnd(τ̂n, τ0) = Op(1).
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4.4 Technical Lemmas

Lemma 4.1. Suppose τ = τ0 or τ ∈ Ω
′
n, then under (C2), the following two properties

hold for F (s, t), F1(s) and F2(t) with τ(s, t) = (F (s, t), F1(s), F2(t)).

(1) F (s, t) is nondecreasing in both s and t directions. F1(s) − F (s, t) is nondecreasing

in s direction and nonincreasing in t direction. F2(t) − F (s, t) is nondecreasing in t

direction and nonincreasing in s direction. 1−F1(s)−F2(t)+F (s, t) is nonincreasing

in both s and t directions.

(2) F (s, t), F1(s)−F (s, t), F2(t)−F (s, t) and 1−F1(s)−F2(t)+F (s, t) all have positive

lower bounds.

Proof. (i) First, we verify the two properties for τ = τ0.

Since (F, F1, F2) = (F0, F0,1, F0,2) is a vector-valued function, corresponding to the

joint distribution function of (T1, T2) and their two marginal distribution functions,

then by Lemma 3.1

F (s
′
, t) ≤ F (s

′′
, t), (4.46)

F (s, t
′
) ≤ F (s, t

′′
), (4.47)

[F1(s
′′
)− F (s

′′
, t)]− [F1(s

′
)− F (s

′
, t)] ≥ 0, (4.48)

[F2(t
′′
)− F (s, t

′′
)]− [F2(t

′
)− F (s, t

′
)] ≥ 0. (4.49)

By (4.46) and (4.47), F (s, t) is nondecreasing in both s and t directions. By (4.48)

and (4.47), F1(s) − F (s, t) is nondecreasing in s direction, and nonincreasing in t

direction. By (4.49) and (4.46), F2(t) − F (s, t) is nondecreasing in t direction, and
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nonincreasing in s direction. By (4.48) and (4.49), 1 − F1(s) − F2(t) − F (s, t) is

nonincreasing in both s and t directions.

Under (C2) and (s, t) ∈ [l1, u1]× [l2, u2],

F (s, t) = F0(s, t) ≥ (s− L1)(t− L2) min
s,t

∂2F0(s, t)

∂s∂t
≥ (l1 − L1)(l2 − L2)b0,

F1(s)− F (s, t) = F0,1(s)− F0(s, t) ≥ (s− L1)(U2 − t) min
s,t

∂2F0(s, t)

∂s∂t

≥ (l1 − L1)(U2 − u2)b0,

F2(t)− F (s, t) = F0,2(t)− F0(s, t) ≥ (t− L2)(U1 − s) min
s,t

∂2F0(s, t)

∂s∂t

≥ (l2 − L2)(U1 − u1)b0,

and

1− F1(s)− F2(t) + F (s, t) = 1− F0,1(s)− F0,2(t) + F0(s, t)

≥ (U1 − s)(U2 − t) min
s,t

∂2F0(s, t)

∂s∂t

≥ (U1 − u1)(U2 − u2)b0.

(ii) Second, we verify the two properties for τ ∈ Ω
′
n.

By Lemma 3.2, Ω
′
n ⊂ F in [l1, u1] × [l2, u2], where F is defined in Section 3.2.

Then for τ = (F, F1, F2) ∈ Ω
′
n, (4.46), (4.47), (4.48) and (4.49) hold. Hence, τ =

(F, F1, F2) ∈ Ω
′
n satisfy property (1).

By Property (B3) in section 2.1.1,

∂2F (s, t)

∂s∂t
=

pn−1∑
i=1

qn−1∑
j=1

(l− 1)2αi+1,j+1 − αi,j+1 − αi+1,j + αi,j

(si+l − si+1)(tj+l − tj+1)
N

(1),l−1
i+1 (s)N

(2),l−1
j+1 (t).
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Then by (Sp1) and 4th condition given in (4.1)

∂2F (s, t)

∂s∂t
≥min

i,j

αi+1,j+1 − αi,j+1 − αi+1,j + αi,j

maxi1 ∆
(u)
i1

maxj1 ∆
(v)
j1

≥min
i,j

αi+1,j+1 − αi,j+1 − αi+1,j + αi,j

mini1
∆

(u)
i1

l

minj1
∆

(v)
j1

l

mini1
∆

(u)
i1

l

minj1
∆

(v)
j1

l

maxi1 ∆
(u)
i1

maxj1 ∆
(v)
j1

≥K.

(4.50)

Then for (s, t) ∈ [l1, u1]× [l2, u2] by (4.50)

F (s, t) ≥ F (s, t)− F (s, L2)− F (L1, t) + F (L1, L2)

≥ (s− L1)(t− L2) min
s,t

∂2F (s, t)

∂s∂t

≥ (s− L1)(t− L2)K

≥ (l1 − L1)(l2 − L2)K

By Property (B2) and αi,j ≤ βi, we have

F (s, U2) =

pn∑
i=1

qn∑
j=1

αi,jN
(1),l
i (s)N

(2),l
j (U2)

≤
pn∑
i=1

qn∑
j=1

βiN
(1),l
i (s)N

(2),l
j (U2)

=(

pn∑
i=1

βiN
(1),l
i (s))(

qn∑
j=1

N
(2),l
j (U2))

=

pn∑
i=1

βiN
(1),l
i (s) = F1(s),

(4.51)

then it follows that

F1(s)− F (s, t) ≥F (s, U2)− F (s, t)

≥F (s, U2)− F (s, t)− F (L1, U2) + F (L1, t)
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≥(s− L1)(U2 − t)K

≥(l1 − L1)(U2 − u2)K.

Similar to (4.51), it can be showed that

F (U1, t) ≤ F2(t), (4.52)

then by (4.52)

F2(t)− F (s, t) ≥F (U1, t)− F (s, t)

≥F (U1, t)− F (s, t)− F (U1, S2) + F (s, L2)

≥(U1 − s)(t− L2)K

≥(U1 − u1)(l2 − L2)K.

By Property (B1) in section 2.1.1,

F1(U1) = βpnN (1),l
pn

(U1) = βpn ,

F2(U2) = γqnN (2),l
qn

(U2) = γqn ,

and

F (U1, U2) = αpn,qnN (1),l
pn

(U1)N
(2),l
qn

(U2) = αpn,qn .

Then under the last condition given in (4.1)

F2(U2)− F (U1, U2) = γqn − αpn,qn ≤ 1− βpn = 1− F1(U1). (4.53)

In the proof of Lemma 3.2, it is showed that dF1(s)
ds

≥ ∂F (s,t)
∂s

and dF2(t)
dt

≥ ∂F (s,t)
∂t

, then

F1(U1)− F1(s) ≥ F (U1, U2)− F (s, U2), (4.54)
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and

F2(U2)− F2(t) ≥ F (U1, U2)− F (U1, t). (4.55)

Hence by (4.53), (4.54) and (4.55)

1− F1(s)− F2(t) + F (s, t)

={1− F1(U1) + F1(U1)− F1(s)}

− {F2(t)− F (U1, t) + F (U1, t)− F (s, t)}

≥{F2(U2)− F (U1, U2) + F (U1, U2)− F (s, U2)}

− {F2(t)− F (U1, t) + F (U1, t)− F (s, t)}

={F2(U2)− F2(t)− F (U1, U2) + F (U1, t)}

+ {F (U1, U2)− F (s, U2)− F (U1, t) + F (s, t)}

≥F (U1, U2)− F (s, U2)− F (U1, t) + F (s, t)

≥(U1 − s)(U2 − t)K

≥(U1 − u1)(U2 − u1)K.

Lemma 4.2. Suppose (C3) holds and pn = qn = nv. Then there exists τn = (Fn, Fn,1, Fn,2) ∈

Ω
′
n, such that

‖Fn − F0‖∞ ≤ K(n−pv),

‖Fn,1 − F0,1‖∞ ≤ K(n−pv),

and

‖Fn,2 − F0,2‖∞ ≤ K(n−pv).
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Proof. Actually if the spline coefficients of Fn, Fn,1 and Fn,2 are chosen as αi,j = F0(τi, ξj),

βi = F0,1(τi) and γj = F0,2(ξj), where τi, i = 1, . . . , pn and ξj, j = 1, . . . , qn are defined

by (2.24) and (2.25) in the proof of Lemma 2.19 . Then under (C3) and (Sp1), Lemma 2.18

and Lemma 2.19 indicate that ‖Fn − F0‖∞ ≤ C(n−pv), ‖Fn,1 − F0,1‖∞ ≤ C(n−pv), and

‖Fn,2 − F0,2‖∞ ≤ C(n−pv).

To complete the proof, in what follows αi,j , βi and γj are showed to satisfy the

conditions given by (4.1).

(i) α1,1 = F0(τ1, ξ1) ≥ 0;

(ii) α1,j+1 − α1,j = F0(τ1, ξj+1)− F0(τ1, ξj) ≥ 0;

(iii) αi+1,1 − αi,1 = F0(τi+1, ξ1)− F0(τi, ξ1) ≥ 0;

(iv) (αi+1,j+1−αi+1,j)−(αi,j+1−αi,j)

mini1
∆

(u)
i1

l

minj1
∆

(v)
j1

l

≥ αi+1,j+1−αi,j+1−αi+1,j+αi,j

(τi+1−τi)(ξj+1−ξi)

=
F0(τi+1,ξj+1)−F0(τi,ξj+1)−F0(τi+1,ξj)+F0(τi,ξj)

(τi+1−τi)(ξj+1−ξi)
≥ mins∈[L1,U1]

t∈[L2,U2]

∂2F0(s,t)
∂s∂t

= b0,

then (αi+1,j+1 − αi+1,j) − (αi,j+1 − αi,j) ≥ b0 mini1
∆

(u)
i1

minj1
∆

(v)
j1

l2
, here l is necessary

due to the definitions (2.24) and (2.25) of τi’s and ξj’s, respectively;

(v) β1 − α1,qn = F0,1(τ1)− F0(τ1, ξqn) ≥ 0;

(vi) βi+1−βi−(αi+1,qn−αi,qn) = F0,1(τi+1)−F0,1(τi)−(F0(τi+1, ξqn−F0(τi, ξqn)) ≥ 0;

(vii) γ1 − αpn,1 = F0,2(ξ1)− F0(τpn , ξ1) ≥ 0;

(viii) γj+1−γj−(αpn,j+1−αpn,j) = F0,2(ξj+1)−F0,1(ξj)−(F0(τpn , ξj+1−F0(τpn , ξj)) ≥ 0;

(ix) 1− βpn − γqn + αpn,qn = 1− F0,1(τpn)− F0,2(ξqn) + F0(τpn , ξqn) ≥ 0.
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The proof is complete.

Lemma 4.3. Λ0(s, t) and Λ(s, t) are both partially nondecreasing functions with domain

[L1, U1]× [L2, U2] and they satisfy ‖Λ− Λ0‖L2(µ) ≤ η. If the following conditions (1) and

(2) hold, then there exists constant K independent of Λ such that

sup
(s,t)∈[L1,U1]×[L2,U2]

|Λ(s, t)− Λ0(s, t)| ≤ (η/c)1/K .

(1) Λ0(s, t) is differentiable in both s and t directions and there exists a constant 0 <

f0 < ∞ such that 1/f0 ≤ ∂Λ0(s, t)/∂s ≤ f0 and 1/f0 ≤ ∂Λ0(s, t)/∂t ≤ f0 for

∀(s, t) ∈ [L1, U1]× [L2, U2].

(2) The probability measure µ associated with L2-norm has mixed derivative ∂2µ(s,t)
∂s∂t

sat-

isfying ∂2µ(s,t)
∂s∂t

≥ c0 for some positive c0.

Proof. Suppose that (s
′
, t
′
) ∈ [L1, U1]× [L2, U2] satisfies

|Λ(s
′
, t
′
)− Λ0(s

′
, t
′
)| ≥ (1/2) sup

(s,t)∈[L1,U1]×[L2,U2]

|Λ(s, t)− Λ0(s, t)| ≡ ξ/2.

Then either Λ(s
′
, t
′
) ≥ Λ0(s

′
, t
′
) + ξ/2 or Λ0(s

′
, t
′
) ≥ Λ(s

′
, t
′
) + ξ/2.

In the first case, there exist h satisfying (s
′
+ h, t

′
+ h) ≡ (s

′′
, t
′′
), such that

Λ0(s
′′
, t
′′
) = Λ0(s

′
, t
′
) + ξ/2, then

η2 ≥
∫
{Λ(s, t)− Λ(s, t)}2dµ(s, t)

=

∫ ∫

(s,t)∈[L1,U1]×[L2,U2]

{Λ(s, t)− Λ0(s, t)}2∂2µ(s, t)

∂s∂t
dsdt

≥
∫ t

′′

t
′

∫ s
′′

s
′
{Λ(s, t)− Λ0(s, t)}2∂2µ(s, t)

∂s∂t
dsdt

≥
∫ t

′′

t′

∫ s
′′

s′
{Λ0(s

′′
, t
′′
)− Λ0(s, t)}2∂2µ(s, t)

∂s∂t
dsdt
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≥ c0

∫ t
′′

t′

∫ s
′′

s′
{Λ0(s

′′
, t
′′
)− Λ0(s, t)}2dsdt

= c0

∫ t
′′

t′

∫ Λ0(s
′′

,t)

Λ0(s′ ,t)
{Λ0(s

′′
, t
′′
)− x)}2 1

∂Λ0(Λ
−1
0 (x)|t, t)/∂s

dxdt

≥ (c0/f0)

∫ t
′′

t′

∫ Λ0(s
′′

,t)

Λ0(s′ ,t)
{Λ0(s

′′
, t
′′
)− x)}2dxdt

= (c0/f0)

∫ t
′′

t′
{(Λ0(s

′′
, t
′′
)− Λ0(s

′
, t))3/3− (Λ0(s

′′
, t
′′
)− Λ0(s

′′
, t))3/3}dt.

Then by x3 − y3 = (x− y)(x2 + xy + y2),

η2 ≥ c0

3f0

∫ t
′′

t
′

(Λ0(s
′′
, t)− Λ0(s

′
, t))

[(Λ0(s
′′
, t
′′
)− Λ0(s

′
, t))2 + (Λ0(s

′′
, t
′′
)− Λ0(s

′′
, t))2]dt.

(4.56)

Using Taylor expansion, there exists a w ∈ (s
′
, s

′′
), such that

Λ0(s
′′
, t)− Λ0(s

′
, t) = (∂Λ0(w, t)/∂s)h ≥ h/f0. (4.57)

Using Taylor expansion along s and t directions, respectively, we have

ξ/2 = Λ0(s
′′
, t
′′
)− Λ0(s

′
, t
′
)

= Λ0(s
′′
, t
′′
)− Λ0(s

′′
, t
′
) + Λ0(s

′′
, t
′
)− Λ0(s

′
, t
′
)

≤ 2hf0.

(4.58)

Combining (4.57) and (4.58) yields,

Λ0(s
′′
, t)− Λ0(s

′
, t) ≥ ξ

4f 2
0

. (4.59)
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Finally, substituting (4.59) into (4.56), we obtain

η2 ≥ c0ξ

12f 3
0

∫ t
′′

t
′

[(Λ0(s
′′
, t
′′
)− Λ0(s

′
, t))2 + (Λ0(s

′′
, t
′′
)− Λ0(s

′′
, t))2]dt

≥ c0ξ

12f 3
0

∫ t
′′

t′
(Λ0(s

′′
, t
′′
)− Λ0(s

′′
, t))2dt

=
c0ξ

12f 3
0

∫ Λ0(s
′′

,t
′′
)

Λ0(s′′ ,t′ )
(Λ0(s

′′
, t
′′
)− x)2 1

∂Λ0(Λ
−1
0 (x)|s′′ , s′′)/∂t

dx

≥ c0ξ

12f 4
0

∫ Λ0(s
′′

,t
′′
)

Λ0(s′′ ,t′ )
(Λ0(s

′′
, t
′′
)− x)2dx

=
c0ξ

12f 4
0

(Λ0(s
′′
, t
′′
)− Λ0(s

′′
, t
′
))3/3

≥ c0ξ
4

2304f 10
0

.

This yields the stated conclusion with K ≡
√

c0/(2304f 10
0 ).

In the second case the same conclusion holds by a similar argument.

Lemma 4.4. (Lemma 7.1 in Wellner and Zhang (2007)) Λ0(s) and Λ(s) are both nonde-

creasing functions with domain [L1, U1] and they satisfy ‖Λ−Λ0‖L2(µ) ≤ η. If the following

conditions (1) and (2) hold, then there exists constant K independent of Λ such that

sup
s∈[L1,U1]

|Λ(s)− Λ0(s)| ≤ (η/K)2/3.

(1) Λ0(s) is differentiable and there exists a constant 0 < f0 < ∞ such that 1/f0 ≤
dΛ0(s)

ds
≤ f0 for any s ∈ [L1, U1].

(2) The probability measure µ associated with L2-norm has derivative µ̇ satisfying µ̇(s) ≥

c0 for some positive c0.
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CHAPTER 5
NUMERICAL STUDIES

In this chapter the finite sample performance of the proposed sieve maximum likeli-

hood estimation method is justified. It has been mentioned in Chapter 3 that the constrained

optimization problem with the I-splines has the advantage of simplicity in the constraints.

Hence, the partially monotone tensor I-splines are used to compute the spline-based non-

parametric estimate in the numerical studies.

5.1 Computing Algorithm

Given pn and qn, the partially monotone tensor I-splines-based nonparametric max-

imum likelihood estimation problem described in Section 3.2.2 is actually a restricted

parametric maximum likelihood estimation problem for the coefficients of the I-splines

or the tensor I-splines. For restricted parametric maximum likelihood estimation problems,

Jamshidian (2004) generalized the gradient projection algorithm originally proposed by

Rosen (1960) using the generalized Euclidean metric ‖x‖ = xT Wx, where W is a pos-

itive definite matrix and possibly varies from iteration to iteration. Zhang et al. (2009)

implemented the generalized gradient projection algorithm for the spline-based maximum

likelihood estimation for the Cox model with interval-censored data. In the following, we

extend the algorithm steps adopted by Zhang et al. (2009) to compute the proposed tensor

I-splines-based sieve nonparametric estimate.

Let ∂l̃n(θ;·)
∂θ

and H(θ; ·) be the gradient and Hessian matrix of the log likelihood

given by (3.10) with respect to θ = (θ1, θ2, · · · , θpn·qn+pn+qn) = (η, ω, π), respectively.
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Since H(θ; ·) could be singular, we let W = −H(θ; ·) + γI , where I is identity matrix

and γ > 0 is chosen sufficiently large so that W is positive definite. During the numerical

computation, the index set of active constraints is denoted as A = {i1, i2, · · · , ir}, that is,

during the numerical computation, for j = 1, 2, · · · , r,

(i) if ij ≤ pn · qn + pn + qn, then θij = 0,

(ii) if ij = pn · qn + pn + qn + 1, then
∑pn·qn+pn+qn

i=1 θi = 1.

Suppose the indexes in A are in ascending order and ir = pn · qn + pn + qn + 1, then the

working matrix corresponding to set A has the following form,

A =




0 · · · 0 −1 0 · · · · · · · · · 0

...
...

...
...

...
...

...
...

...

0 · · · · · · 0 −1 0 · · · · · · 0

...
...

...
...

...
...

...
...

...

0 · · · · · · · · · 0 −1 0 · · · 0

...
...

...
...

...
...

...
...

...

1 1 · · · · · · · · · · · · · · · 1 1




r×(pn·qn+pn+qn)

.

The generalized gradient projection method is implemented in the following steps:

Step 1: (Computing the feasible search direction) Compute

d = (d1, d2, · · · , dpn·qn+pn+qn) = {I −W−1AT (AW−1AT )−1A}W−1∂l̃n(θ; ·)
∂θ

.
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Step 2: (Forcing the updated θ fulfills the constraints) Compute

γ =





min{mini:di<0{− θi

di
}, 1−∑pn·qn+pn+qn

i=1 θi∑pn·qn+pn+qn
i=1 di

}, if
∑pn·qn+pn+qn

i=1 di > 0,

mini:di<0{− θi

di
}, else.

Doing so guarantees that θi + γdi ≥ 0 for i = 1, 2, · · · , pn · qn + pn + qn, and

∑pn·qn+pn+qn

i=1 (θi + γdi) ≤ 1.

Step 3: (Updating the solution by Step-Halving line search) Find the smallest integer k

starting from 0 such that

l̃n(θ + (1/2)kγd; ·) ≥ l̃n(θ; ·).

Replace θ by θ̃ = θ + min{(1/2)kγ, 0.5}d.

Step 4: (Updating the active constraint set and working matrix) If k = 0 and γ ≤ 0.5,

modify A by add indexes of all the newly active constraints to A and accordingly

modify the working matrix A.

Step 5: (Checking the stopping criterion) If ‖d‖ ≥ ε, for small ε, go to Step1. otherwise

compute λ = (AW−1AT )−1AW−1 ∂l̃n(θ;·)
∂θ

.

(i) If λj ≥ 0 for all j, set θ̂ = θ and stop.

(ii) If there is at least one j such that λj < 0, let j∗ = arg minj:λj<0{λj}, then

remove the index ij∗ fromA and remove the j∗th row from A and go to Step1.
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5.2 Simulation Studies

5.2.1 Design of the Studies

Copula functions are developed to model the joint distribution function through

marginal distribution functions and associations among the individual event times. Re-

cently, the Copula models have become very popular in bivariate survival analysis (Wang

and Ding (2000), Jewell et al. (2005), Zhang (2008)). Nelson (2006) gave an extensive

review of Copula functions. We consider two bivariate Copula functions in the simulation

studies. One is the bivariate Gumbel Copula function

Cα(u, v) = exp{−[(− log u)α + (− log v)α]1/α}

with α ≥ 1, the other is the bivariate Clayton Copula function

Cα(u, v) = (u(1−α) + v(1−α) − 1)
1

1−α

with α > 1. For both Copula functions, a larger α corresponds to stronger positive associ-

ation between two marginal distributions and α = 1 corresponds to independence between

the two event times. The association parameter α and Kendall’s τ for Gumbel Copula and

Clayton Copula, are related by τ = α−1
α

and τ = α−1
α+1

, respectively.

Suppose the joint distribution of the bivariate data (T1, T2) is Cα(F1, F2), with F1

and F2 being the marginal distribution functions of T1 and T2, respectively. Then a sample

of (T1, T2) can be generated based on the conditional distribution function by the following

steps.

(i) Generate a random sample t1 from distribution F1;
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(ii) Generate a random sample z1 from uniform-[0, 1] distribution;

(iii) Solve equation Cα(F1(t1),F2(t2)
F1(t1)

= z1 for t2 (Usually the equation is solved numeri-

cally), then (t1, t2) is a sample of (T1, T2).

In simulation studies, we compare the performance of the proposed sieve maximum

likelihood estimation to that of a three-stage semiparametric maximum pseudo likelihood

estimation. The maximum pseudo likelihood estimation of the joint distribution function

follows the idea of the semiparametric method proposed by Wang and Ding (2000) in which

the main goal is to estimate the association parameter. However, Wang and Ding (2000)

only discussed the case when censoring times are common for two event times. Their

method is described as follows.

(i) Use the nonparametric method proposed by Groenoboom and Wellner (1992) to esti-

mate the two marginal distribution functions.

(ii) Compute the maximum pseudo likelihood estimate of the association parameter based

on the specified bivariate Copula function.

(iii) Estimate the bivariate distribution function by the specified bivariate Copula function

with the unknown parameters estimated in (i) and (ii).

To justify the finite sample performance of the proposed sieve maximum likelihood

estimation, two simulation studies are carried out. They are described as follows.

Study 1 The bivariate random event times are generated from bivariate Clayton Copula

model. The proposed sieve maximum likelihood estimate is computed. The max-
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imum pseudo likelihood estimate is also computed with the correctly specified

Clayton Copula model.

Study 2 The bivariate random event times are generated from bivariate Gumbel Copula

model. The proposed sieve maximum likelihood estimate is computed. The max-

imum pseudo likelihood estimate is also computed with the incorrectly specified

Clayton Copula model.

In both studies, the performances of the proposed sieve maximum likelihood esti-

mate and the maximum pseudo likelihood estimate are evaluated with various combinations

of Kendall’s τ (τ = 0.25, 0.5, 0.75) and sample size (n = 100, 200). Under each of the

six settings, the Monte-Carlo simulation study with 500 repetitions is conducted and the

cubic I-splines are applied in the proposed sieve maximum likelihood. In what follows, the

specifications of marginal distributions of event times T1, T2 and censoring times C1, C2,

and the knots selection of cubic I-splines are described.

(i) (Event times) T1 and T2 in the each study are both chosen to be exponentially dis-

tributed with the rate parameter equal to 0.5. Since Pr(Ti ≥ 5) < 0.1 for i = 1, 2, in

the studies our interest is only the estimation inside the closed region [0, 5]× [0, 5].

(ii) (Censoring times) C1 and C2 in each study are both chosen to be independent and

uniformly distributed on [0.0201, 4.7698] in order to ensure that the bivariate samples

of C1 and C2 are contained in [0, 5]× [0, 5].

(iii) (Knots selection) Theorem 2 in Chapter 4 implies that the proposed tensor spline-

based estimator converges at a rate not faster than n1/4, and convergence rate reaches
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n1/4 for p ≥ 2 and v = 1
4p

. If p = 2, then v = 1/8 and the number of subintervals

made of the knot sequence could be chosen as n1/8. This choice of the knot sequences

is mainly of interest in asymptotic properties when n is assumed very large. However,

in practice the sample size is usually not very large. For example if the sample size

is 100 and hence 1001/8 < 2, which makes the spline-based method infeasible. Our

experiments show that n1/3 is a reasonable choice for the number of subintervals made

of the knot sequence when sample size is 100 and 200. In other words, we choose 5

and 6 as the numbers of subintervals made of the knot sequence for sample size 100

and 200, respectively. Using the percentile of the distribution of T1 or T2 inside [0, 5],

the knots of cubic I-spline basis functions are chosen as [0, 0.41, 0.91, 1.60, 2.65, 5]

for sample size 100 and chosen as [0, 0.33, 0.73, 1.23, 1.89, 2.90, 5] for sample size

200.

5.2.2 Results of the Studies

The estimation bias of the joint distribution function with the Monte-Carlo studies

of 500 repetitions is graphically presented through all odd-numbered figures (Figure 5.1,

Figure 5.3, · · · , Figure 5.23) for various cases in two studies. And these figures indicate

that the bias of the proposed sieve maximum likelihood estimation is noticeably smaller

than that of the maximum pseudo likelihood estimation near the boundary of closed region

[0.1, 4.7] × [0.1, 4.7], the bias of the proposed sieve maximum likelihood estimation near

the origin increases as Kendall’s τ increases, and the bias of the proposed sieve maximum

likelihood estimation decreases as sample size increases from 100 to 200.
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Moreover, the mean estimate of the marginal distribution function of T1 from the

same Monte-Carlo studies is plotted in all even-numbered figures (Figure 5.2, Figure 5.4,

· · · , Figure 2.24). And these figures indicate that the bias of the proposed sieve maximum

likelihood estimation for the marginal distribution function of T1 is much smaller than that

of the maximum pseudo likelihood estimation near two end points of interval [0.1, 4.7], and

in general, the bias of the proposed sieve maximum likelihood estimation for the marginal

distribution function of T1 increases as Kendall’s τ increases or sample size decreases from

200 to 100.

Table 5.1-Table 5.12 display the squared estimation bias (Bias2) and mean square

error (MSE) based on 500 repetitions for both proposed sieve maximum likelihood esti-

mation (Sieve) and the maximum pseudo likelihood estimation (Pseudo) at the 12 pairs of

time points (T1, T2) for different sample sizes, different kendall’s τ in two simulation stud-

ies. At the bottom of each table Average Bias2 calculates the average of squared estimation

bias at 2209 values of (T1, T2) with both T1 and T2 uniformly taking 47 values from 0.1

to 4.7. Average MSE gives the average of mean square error at the same 2209 points. It

appears that in terms of both Average Bias2 and Average MSE, the performance of the sieve

maximum likelihood estimation is better than the maximum pseudo likelihood estimation

on different settings on the sample size and the association level in both simulation stud-

ies. The bias of the proposed sieve maximum likelihood estimation may be a little larger

far from boundary of region [0, 1, 4.7] × [0.1, 4.7] than the maximum pseudo likelihood

estimation. The mean square error of the proposed sieve maximum likelihood estimation

may be a little larger near the origin than the maximum pseudo likelihood estimation. Both
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overall bias and overall mean square error of the proposed sieve maximum likelihood esti-

mation are smaller compared to its counterpart. Both estimation bias and mean square error

of the proposed sieve maximum likelihood estimation are noticeably decreased as sample

size increases from 100 to 200.



86

Figure 5.1: Comparison of the proposed sieve maximum likelihood estimation ((a), (c)) and
the maximum pseudo likelihood estimation ((b), (d)) for the joint distribution function of
bivariate Clayton Copula model with the underlying distribution being correctly specified
when sample size n = 100, Kendall’s τ = 0.25 (the association parameter α = 5/3)
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Figure 5.2: Comparison of the proposed sieve maximum likelihood estimation (Sieve) and
the nonparametric maximum likelihood estimation (Pseudo) for the marginal distribution
function of T1 when (T1, T2) is distributed according to Clayton Copula model and n =
100, Kendall’s τ = 0.25 (the association parameter α = 5/3)
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Figure 5.3: Comparison of the proposed sieve maximum likelihood estimation ((a), (c)) and
the maximum pseudo likelihood estimation ((b), (d)) for the joint distribution function of
bivariate Clayton Copula model with the underlying distribution being correctly specified
when sample size n = 200, Kendall’s τ = 0.25 (the association parameter α = 5/3)
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Figure 5.4: Comparison of the proposed sieve maximum likelihood estimation (Sieve) and
the nonparametric maximum likelihood estimation (Pseudo) for the marginal distribution
function of T1 when (T1, T2) is distributed according to Clayton Copula model and n =
200, Kendall’s τ = 0.25 (the association parameter α = 5/3)
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Figure 5.5: Comparison of the proposed sieve maximum likelihood estimation ((a), (c)) and
the maximum pseudo likelihood estimation ((b), (d)) for the joint distribution function of
bivariate Clayton Copula model with the underlying distribution being correctly specified
when sample size n = 100, Kendall’s τ = 0.50 (the association parameter α = 3)
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Figure 5.6: Comparison of the proposed sieve maximum likelihood estimation (Sieve) and
the nonparametric maximum likelihood estimation (Pseudo) for the marginal distribution
function of T1 when (T1, T2) is distributed according to Clayton Copula model and n =
100, Kendall’s τ = 0.50 (the association parameter α = 3)
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Figure 5.7: Comparison of the proposed sieve maximum likelihood estimation ((a), (c)) and
the maximum pseudo likelihood estimation ((b), (d)) for the joint distribution function of
bivariate Clayton Copula model with the underlying distribution being correctly specified
when sample size n = 200, Kendall’s τ = 0.50 (the association parameter α = 3)

1
2

3
41

2

3

4

0.0

0.2

0.4

0.6

0.8

1.0

T1

T2

(a) Estimation of the sieve method

1
2

3
41

2

3

4

0.0

0.2

0.4

0.6

0.8

1.0

T1

T2

(b) Estimation of the pseudo method

1

2

3

4

1

2

3

4

−0.10

−0.05

0.00

0.05

0.10

T1
T2

(c) Bias of the sieve method

1

2

3

4

1

2

3

4

−0.10

−0.05

0.00

0.05

0.10

T1
T2

(d) Bias of the pseudo method



93

Figure 5.8: Comparison of the proposed sieve maximum likelihood estimation (Sieve) and
the nonparametric maximum likelihood estimation (Pseudo) for the marginal distribution
function of T1 when (T1, T2) is distributed according to Clayton Copula model and n =
200, Kendall’s τ = 0.50 (the association parameter α = 3)
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Figure 5.9: Comparison of the proposed sieve maximum likelihood estimation ((a), (c)) and
the maximum pseudo likelihood estimation ((b), (d)) for the joint distribution function of
bivariate Clayton Copula model with the underlying distribution being correctly specified
when sample size n = 100, Kendall’s τ = 0.75 (the association parameter α = 7)
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Figure 5.10: Comparison of the proposed sieve maximum likelihood estimation (Sieve) and
the nonparametric maximum likelihood estimation (Pseudo) for the marginal distribution
function of T1 when (T1, T2) is distributed according to Clayton Copula model and n =
100, Kendall’s τ = 0.75 (the association parameter α = 7)
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Figure 5.11: Comparison of the proposed sieve maximum likelihood estimation ((a), (c))
and the maximum pseudo likelihood estimation ((b), (d)) for the joint distribution func-
tion of bivariate Clayton Copula model with the underlying distribution being correctly
specified when sample size n = 100, Kendall’s τ = 0.75 (the association parameter α = 7)
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Figure 5.12: Comparison of the proposed sieve maximum likelihood estimation (Sieve) and
the nonparametric maximum likelihood estimation (Pseudo) for the marginal distribution
function of T1 when (T1, T2) is distributed according to Clayton Copula model and n =
200, Kendall’s τ = 0.75 (the association parameter α = 7)
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Figure 5.13: Comparison of the proposed sieve maximum likelihood estimation ((a), (c))
and the maximum pseudo likelihood estimation ((b), (d)) for the joint distribution function
of bivariate Clayton Copula model with the underlying distribution being correctly speci-
fied when sample size n = 100, Kendall’s τ = 0.25 (the association parameter α = 4/3)
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Figure 5.14: Comparison of the proposed sieve maximum likelihood estimation (Sieve) and
the nonparametric maximum likelihood estimation (Pseudo) for the marginal distribution
function of T1 when (T1, T2) is distributed according to Gumbel Copula model and n =
100, Kendall’s τ = 0.25 (the association parameter α = 4/3)
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Figure 5.15: Comparison of the proposed sieve maximum likelihood estimation ((a), (c))
and the maximum pseudo likelihood estimation ((b), (d)) for the joint distribution function
of bivariate Gumbel Copula model with the underlying distribution being incorrectly spec-
ified as bivariate Clayton Copula model when sample size n = 200, Kendall’s τ = 0.25
(the association parameter α = 4/3)
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Figure 5.16: Comparison of the proposed sieve maximum likelihood estimation (Sieve) and
the nonparametric maximum likelihood estimation (Pseudo) for the marginal distribution
function of T1 when (T1, T2) is distributed according to Gumbel Copula model and n =
200, Kendall’s τ = 0.25 (the association parameter α = 4/3)
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Figure 5.17: Comparison of the proposed sieve maximum likelihood estimation ((a), (c))
and the maximum pseudo likelihood estimation ((b), (d)) for the joint distribution function
of bivariate Gumbel Copula model with the underlying distribution being incorrectly spec-
ified as bivariate Clayton Copula model when sample size n = 100, Kendall’s τ = 0.50
(the association parameter α = 2)
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Figure 5.18: Comparison of the proposed sieve maximum likelihood estimation (Sieve) and
the nonparametric maximum likelihood estimation (Pseudo) for the marginal distribution
function of T1 when (T1, T2) is distributed according to Gumbel Copula model and n =
100, Kendall’s τ = 0.50 (the association parameter α = 2)
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Figure 5.19: Comparison of the proposed sieve maximum likelihood estimation ((a), (c))
and the maximum pseudo likelihood estimation ((b), (d)) for the joint distribution function
of bivariate Gumbel Copula model with the underlying distribution being incorrectly spec-
ified as bivariate Clayton Copula model when sample size n = 200, Kendall’s τ = 0.50
(the association parameter α = 2)
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Figure 5.20: Comparison of the proposed sieve maximum likelihood estimation (Sieve) and
the nonparametric maximum likelihood estimation (Pseudo) for the marginal distribution
function of T1 when (T1, T2) is distributed according to Gumbel Copula model and n =
200, Kendall’s τ = 0.50 (the association parameter α = 2)
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Figure 5.21: Comparison of the proposed sieve maximum likelihood estimation ((a), (c))
and the maximum pseudo likelihood estimation ((b), (d)) for the joint distribution function
of bivariate Gumbel Copula model with the underlying distribution being incorrectly spec-
ified as bivariate Clayton Copula model when sample size n = 100, Kendall’s τ = 0.75
(the association parameter α = 4)
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Figure 5.22: Comparison of the proposed sieve maximum likelihood estimation (Sieve) and
the nonparametric maximum likelihood estimation (Pseudo) for the marginal distribution
function of T1 when (T1, T2) is distributed according to Gumbel Copula model and n =
100, Kendall’s τ = 0.75 (the association parameter α = 4)
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Figure 5.23: Comparison of the proposed sieve maximum likelihood estimation ((a), (c))
and the maximum pseudo likelihood estimation ((b), (d)) for the joint distribution function
of bivariate Gumbel Copula model with the underlying distribution being incorrectly spec-
ified as bivariate Clayton Copula model when sample size n = 200, Kendall’s τ = 0.75
(the association parameter α = 4)
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Figure 5.24: Comparison of the proposed sieve maximum likelihood estimation (Sieve) and
the nonparametric maximum likelihood estimation (Pseudo) for the marginal distribution
function of T1 when (T1, T2) is distributed according to Gumbel Copula model and n =
200, Kendall’s τ = 0.75 (the association parameter α = 4)
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Table 5.1: Comparison of Bias2 and MSE of the proposed sieve maximum likelihood es-
timation and the maximum pseudo likelihood estimation of bivariate Clayton Copula dis-
tributed event times when the underlying distribution is correctly specified with sample size
n = 100, Kendall’s τ = 0.25 (the association parameter α = 5/3)

(T1, T2) Sieve Pseudo

Bias2 MSE Bias2 MSE

(0.1, 0.1) 7.63e-05 7.58e-04 3.66e-04 3.66e-04

(0.1, 1.6) 3.36e-05 4.84e-03 1.65e-03 2.03e-03

(0.1, 4.6) 1.46e-04 5.88e-03 1.90e-03 2.47e-03

(1.6, 0.1) 5.50e-06 3.26e-03 1.41e-03 2.40e-03

(1.6, 1.6) 1.63e-05 6.32e-03 6.83e-07 8.65e-03

(1.6, 4.6) 8.09e-05 7.17e-03 1.37e-04 1.22e-02

(4.6, 0.1) 6.95e-05 3.94e-03 1.61e-03 2.99e-03

(4.6, 1.6) 8.09e-05 6.62e-03 2.45e-04 1.46e-02

(4.6, 4.6) 7.04e-04 5.83e-03 1.09e-02 1.76e-02

Average 6.13e-05 6.48e-03 1.22e-03 1.09e-02
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Table 5.2: Comparison of Bias2 and MSE of the proposed sieve maximum likelihood es-
timation and the maximum pseudo likelihood estimation of bivariate Clayton Copula dis-
tributed event times when the underlying distribution is correctly specified with sample size
n = 200, Kendall’s τ = 0.25 (the association parameter α = 5/3)

(T1, T2) Sieve Pseudo

Bias2 MSE Bias2 MSE

(0.1, 0.1) 1.17e-04 4.54e-04 3.56e-04 3.65e-04

(0.1, 1.6) 1.63e-08 2.18e-03 1.26e-03 2.11e-03

(0.1, 4.6) 2.99e-05 2.75e-03 1.43e-03 2.58e-03

(1.6, 0.1) 2.16e-08 2.20e-03 1.28e-03 2.16e-03

(1.6, 1.6) 4.68e-05 4.31e-03 1.42e-05 4.89e-03

(1.6, 4.6) 9.73e-05 3.91e-03 9.97e-05 8.08e-03

(4.6, 0.1) 1.27e-05 2.49e-03 1.41e-03 2.74e-03

(4.6, 1.6) 3.02e-05 3.79e-03 1.72e-04 7.90e-03

(4.6, 4.6) 3.31e-04 3.41e-03 6.16e-03 1.15e-02

Average 5.64e-05 3.70e-03 5.71e-04 6.32e-03
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Table 5.3: Comparison of Bias2 and MSE of the proposed sieve maximum likelihood es-
timation and the maximum pseudo likelihood estimation of bivariate Clayton Copula dis-
tributed event times when the underlying distribution is correctly specified with sample size
n = 100, Kendall’s τ = 0.50 (the association parameter α = 3))

(T1, T2) Sieve Pseudo

Bias2 MSE Bias2 MSE

(0.1, 0.1) 3.49e-04 1.55e-03 1.18e-03 1.19e-03

(0.1, 1.6) 8.56e-05 4.99e-03 1.78e-03 3.08e-03

(0.1, 4.6) 1.42e-04 5.35e-03 1.74e-03 3.28e-03

(1.6, 0.1) 8.99e-05 4.71e-03 1.93e-03 2.63e-03

(1.6, 1.6) 2.17e-06 5.01e-03 2.30e-04 8.66e-03

(1.6, 4.6) 6.16e-06 5.88e-03 4.27e-06 1.29e-02

(4.6, 0.1) 1.26e-04 4.82e-03 1.93e-03 2.68e-03

(4.6, 1.6) 5.56e-05 5.64e-03 8.11e-06 1.34e-02

(4.6, 4.6) 3.95e-04 4.91e-03 7.96e-03 1.44e-02

Average 5.83e-05 5.93e-03 1.54e-03 1.18e-02
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Table 5.4: The comparison of Bias2 and MSE of the proposed sieve maximum likelihood
estimation and the maximum pseudo likelihood estimation of bivariate Clayton Copula
distributed event times when the underlying distribution is correctly specified with sample
size n = 200, Kendall’s τ = 0.50 (the association parameter α = 3)

(T1, T2) Sieve Pseudo

Bias2 MSE Bias2 MSE

(0.1, 0.1) 5.06e-04 9.71e-04 1.15e-03 1.19e-03

(0.1, 1.6) 2.49e-05 2.79e-03 1.37e-03 2.66e-03

(0.1, 4.6) 4.99e-05 2.90e-03 1.35e-03 2.75e-03

(1.6, 0.1) 1.57e-05 2.81e-03 1.33e-03 2.62e-03

(1.6, 1.6) 8.89e-08 3.82e-03 9.61e-05 5.33e-03

(1.6, 4.6) 2.28e-05 4.24e-03 2.73e-06 7.72e-03

(4.6, 0.1) 3.69e-05 2.92e-03 1.32e-03 2.70e-03

(4.6, 1.6) 2.66e-06 3.84e-03 1.55e-06 8.58e-03

(4.6, 4.6) 3.01e-04 2.97e-03 5.01e-03 9.75e-03

Average 6.25e-05 3.71e-03 6.92e-04 6.76e-03
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Table 5.5: Comparison of Bias2 and MSE of the proposed sieve maximum likelihood es-
timation and the maximum pseudo likelihood estimation of bivariate Clayton Copula dis-
tributed event times when the underlying distribution is correctly specified with sample size
n = 100, Kendall’s τ = 0.75 (the association parameter α = 7)

(T1, T2) Sieve Pseudo

Bias2 MSE Bias2 MSE

(0.1, 0.1) 6.63e-04 2.02e-03 1.85e-03 1.89e-03

(0.1, 1.6) 2.30e-04 6.19e-03 1.73e-03 2.97e-03

(0.1, 4.6) 2.65e-04 6.38e-03 1.73e-03 2.99e-03

(1.6, 0.1) 1.55e-04 5.40e-03 1.90e-03 2.76e-03

(1.6, 1.6) 1.02e-04 4.83e-03 1.56e-03 1.03e-02

(1.6, 4.6) 1.50e-04 5.11e-03 1.39e-04 1.37e-02

(4.6, 0.1) 1.89e-04 5.56e-03 1.89e-03 2.76e-03

(4.6, 1.6) 5.61e-05 5.49e-03 3.83e-05 1.39e-02

(4.6, 4.6) 9.97e-05 3.90e-03 5.55e-03 1.15e-02

Average 1.33e-04 6.05e-03 1.71e-03 1.25e-02
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Table 5.6: Comparison of Bias2 and MSE of the proposed sieve maximum likelihood es-
timation and the pseudo maximum likelihood estimation of bivariate Clayton Copula dis-
tributed event times when the underlying distribution is correctly specified with sample size
n = 200, Kendall’s τ = 0.75 (the association parameter α = 7)

(T1, T2) Sieve Pseudo

Bias2 MSE Bias2 MSE

(0.1, 0.1) 7.48e-04 1.61e-03 1.81e-03 1.90e-03

(0.1, 1.6) 3.65e-05 3.23e-03 1.18e-03 3.01e-03

(0.1, 4.6) 4.17e-05 3.29e-03 1.18e-03 3.02e-03

(1.6, 0.1) 3.60e-05 3.13e-03 1.53e-03 2.83e-03

(1.6, 1.6) 1.20e-04 3.62e-03 6.74e-04 6.50e-03

(1.6, 4.6) 2.09e-05 3.33e-03 8.12e-05 9.22e-03

(4.6, 0.1) 4.04e-05 3.16e-03 1.53e-03 2.84e-03

(4.6, 1.6) 4.93e-06 3.07e-03 3.06e-05 8.61e-03

(4.6, 4.6) 1.88e-04 2.45e-03 4.08e-03 8.23e-03

Average 6.07e-05 3.45e-03 6.52e-04 7.12e-03
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Table 5.7: Comparison of Bias2 and MSE of the proposed sieve maximum likelihood es-
timation and the maximum pseudo likelihood estimation of bivariate Gumbel Copula dis-
tributed event times when the underlying distribution is incorrectly specified as bivariate
Clayton Copula model with sample size n = 100, Kendall’s τ = 0.25 (the association
parameter α = 4/3)

(T1, T2) Sieve Pseudo

Bias2 MSE Bias2 MSE

(0.1, 0.1) 5.28e-07 3.30e-04 3.66e-05 4.99e-05

(0.1, 1.6) 4.68e-06 2.78e-03 9.98e-04 1.90e-03

(0.1, 4.6) 1.26e-05 3.62e-03 1.63e-03 2.86e-03

(1.6, 0.1) 2.12e-06 2.69e-03 9.36e-04 2.03e-03

(1.6, 1.6) 6.52e-05 6.80e-03 1.80e-05 9.39e-03

(1.6, 4.6) 5.66e-05 7.62e-03 6.68e-06 1.35e-02

(4.6, 0.1) 3.30e-05 3.75e-03 1.52e-03 3.14e-03

(4.6, 1.6) 3.48e-05 6.09e-03 8.19e-06 1.42e-02

(4.6, 4.6) 3.50e-05 4.65e-03 6.93e-03 1.40e-02

Average 6.19e-05 6.09e-03 7.65e-04 1.07e-02
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Table 5.8: Comparison of Bias2 and MSE of the proposed sieve maximum likelihood es-
timation and the maximum pseudo likelihood estimation of bivariate Gumbel Copula dis-
tributed event times when the underlying distribution is incorrectly specified as bivariate
Clayton Copula model with sample size n = 200, Kendall’s τ = 0.25 (the association
parameter α = 4/3)

(T1, T2) Sieve Pseudo

Bias2 MSE Bias2 MSE

(0.1, 0.1) 1.83e-08 2.64e-04 3.52e-05 4.56e-05

(0.1, 1.6) 2.03e-05 2.17e-03 8.62e-04 1.69e-03

(0.1, 4.6) 4.23e-05 2.92e-03 1.45e-03 2.53e-03

(1.6, 0.1) 5.75e-06 1.92e-03 7.32e-04 1.91e-03

(1.6, 1.6) 5.35e-05 4.75e-03 2.06e-06 5.34e-03

(1.6, 4.6) 7.54e-05 4.34e-03 1.76e-05 7.29e-03

(4.6, 0.1) 1.75e-05 2.53e-03 1.25e-03 2.81e-03

(4.6, 1.6) 4.21e-05 4.19e-03 1.17e-05 9.32e-03

(4.6, 4.6) 5.51e-05 2.60e-03 3.45e-03 9.07e-03

Average 3.14e-05 3.81e-03 4.42e-04 6.32e-03
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Table 5.9: Comparison of Bias2 and MSE of the proposed sieve maximum likelihood es-
timation and the maximum pseudo likelihood estimation of bivariate Gumbel Copula dis-
tributed event times when the underlying distribution is incorrectly specified as bivariate
Clayton Copula model with sample size n = 100, Kendall’s τ = 0.50 (the association
parameter α = 2)

(T1, T2) Sieve Pseudo

Bias2 MSE Bias2 MSE

(0.1, 0.1) 2.73e-06 9.39e-04 1.77e-04 2.48e-04

(0.1, 1.6) 1.11e-04 4.55e-03 1.59e-03 2.38e-03

(0.1, 4.6) 1.71e-04 4.95e-03 1.80e-03 2.63e-03

(1.6, 0.1) 3.01e-05 4.13e-03 1.30e-03 3.06e-03

(1.6, 1.6) 5.64e-05 5.87e-03 2.20e-05 9.26e-03

(1.6, 4.6) 8.57e-05 6.28e-03 1.47e-04 1.35e-02

(4.6, 0.1) 7.29e-05 4.52e-03 1.47e-03 3.42e-03

(4.6, 1.6) 1.19e-04 5.51e-03 2.08e-04 1.44e-02

(4.6, 4.6) 6.86e-06 3.45e-03 4.14e-03 1.06e-02

Average 8.04e-05 5.96e-03 1.03e-03 1.16e-02
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Table 5.10: Comparison of Bias2 and MSE of the proposed sieve maximum likelihood
estimation and the maximum pseudo likelihood estimation of bivariate Gumbel Copula
distributed event times when the underlying distribution is incorrectly specified as bivariate
Clayton Copula model and sample size n = 200, Kendall’s τ = 0.50 (the association
parameter α = 2)

(T1, T2) Sieve Pseudo

Bias2 MSE Bias2 MSE

(0.1, 0.1) 1.88e-05 4.52e-04 1.74e-04 2.33e-04

(0.1, 1.6) 2.41e-05 2.71e-03 1.22e-03 2.77e-03

(0.1, 4.6) 4.13e-05 3.00e-03 1.39e-03 3.02e-03

(1.6, 0.1) 6.11e-06 2.41e-03 1.25e-03 2.78e-03

(1.6, 1.6) 6.26e-06 4.46e-03 6.74e-05 5.35e-03

(1.6, 4.6) 8.68e-06 4.03e-03 3.53e-05 7.66e-03

(4.6, 0.1) 1.57e-05 2.50e-03 1.43e-03 3.02e-03

(4.6, 1.6) 1.84e-06 3.48e-03 7.15e-05 8.50e-03

(4.6, 4.6) 6.64e-06 1.78e-03 1.49e-03 6.11e-03

Average 3.77e-05 3.55e-03 3.96e-04 6.79e-03



120

Table 5.11: Comparison of Bias2 and MSE of the proposed sieve maximum likelihood
estimation and the maximum pseudo likelihood estimation of bivariate Gumbel Copula
distributed event times when the underlying distribution is incorrectly specified as bivariate
Clayton Copula model with sample size n = 100, Kendall’s τ = 0.75 (the association
parameter α = 4)

(T1, T2) Sieve Pseudo

Bias2 MSE Bias2 MSE

(0.1, 0.1) 9.19e-05 1.48e-03 7.38e-04 7.74e-04

(0.1, 1.6) 4.23e-04 7.07e-03 1.67e-03 2.96e-03

(0.1, 4.6) 4.83e-04 7.28e-03 1.67e-03 2.96e-03

(1.6, 0.1) 1.71e-04 5.69e-03 1.73e-03 2.94e-03

(1.6, 1.6) 1.99e-05 4.93e-03 1.36e-03 1.07e-02

(1.6, 4.6) 3.36e-04 5.59e-03 3.38e-04 1.34e-02

(4.6, 0.1) 2.08e-04 5.83e-03 1.73e-03 2.95e-03

(4.6, 1.6) 1.56e-04 5.65e-03 2.07e-04 1.44e-02

(4.6, 4.6) 4.16e-04 3.49e-03 2.32e-03 7.72e-03

Average 2.40e-04 6.08e-03 1.64e-03 1.25e-02
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Table 5.12: Comparison of Bias2 and MSE of the proposed sieve maximum likelihood esti-
mation and maximum pseudo likelihood estimation of bivariate Gumbel Copula distributed
event times when the underlying distribution is incorrectly specified as bivariate Clayton
Copula model with sample size n = 200, Kendall’s τ = 0.75 (the association parameter
α = 4)

(T1, T2) Sieve Pseudo

Bias2 MSE Bias2 MSE

(0.1, 0.1) 1.60e-04 7.86e-04 7.29e-04 7.78e-04

(0.1, 1.6) 1.89e-05 2.82e-03 1.49e-03 2.76e-03

(0.1, 4.6) 2.29e-05 2.84e-03 1.49e-03 2.76e-03

(1.6, 0.1) 8.80e-05 3.26e-03 1.55e-03 2.75e-03

(1.6, 1.6) 1.56e-05 4.01e-03 2.01e-04 5.52e-03

(1.6, 4.6) 1.07e-04 3.43e-03 4.83e-07 7.87e-03

(4.6, 0.1) 9.80e-05 3.33e-03 1.55e-03 2.75e-03

(4.6, 1.6) 1.02e-04 3.44e-03 1.36e-04 8.47e-03

(4.6, 4.6) 2.68e-04 1.78e-03 6.09e-04 4.69e-03

Average 8.89e-05 3.43e-03 6.11e-04 7.14e-03
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CHAPTER 6
DISCUSSION AND FUTURE WORK

The estimation of the joint distribution function with bivariate current status data is

a very challenging problem in survival analysis. There is no sophisticated method available

to solve this problem in the literature. In this thesis, we proposed a tensor spline-based sieve

nonparametric maximum likelihood method for estimating the joint distribution function

with bivariate current status data. This tensor spline-based sieve approach reduces the

dimensionality of the nonparametric maximum likelihood estimation problem substantially

which makes the nonparametric maximum likelihood estimation tractable numerically. We

also show that the proposed tensor spline-based estimator is consistent and converges to the

true joint distribution function at a rate of n1/4 if the objective joint distribution function is

smooth enough. The simulation studies indicate that the finite-sample performance of this

proposed sieve maximum likelihood estimation is better than a semiparametric maximum

pseudo likelihood approach whether or not the copula model is correctly specified in the

maximum pseudo likelihood approach.

Based on the proposed sieve maximum likelihood estimation of the joint distribu-

tion function and its two marginal distribution functions, a nonparametric test of the asso-

ciation of two event times can be constructed by summing over the difference between the

product of the two estimated marginal distribution functions and the estimated joint dis-

tribution function over all the monitoring time points. This test will be robust against the

underlying bivariate distribution which, otherwise is required in Wang and Ding’s method

(2000). However, the asymptotic property of the test statistic still remains a challenging
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task for future research.

The proposed sieve maximum likelihood estimation approach can be extended to

other bivariate censored data such as bivariate right censored data (Dabrowska (1988),

Kooperberg (1998)) and bivariate interval censored data case 2 (Betensky and Finkelstein

(1999) and Yu, et al. (2000)).

Parallel to bivariate current status data, the association test of the two event times

for bivariate right censored and bivariate interval censored data case 2 can also be similarly

studied.



124

REFERENCES

[1] Betensky, R. A. and Finkelstein, D. M. (1999). A non-parametric maximum likelihood
estimator for bivariate interval censored data. Statistics in Medicine, 18, 3089-3100.

[2] Curry, H. B. and Schoenberg, I. J. (1966). On Polya frequency functions. IV. The fun-
damental spline functions and their limits. Journal d′analyse mathéatique. 17, 71-107.
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APPENDIX

(i) The explicit form of the cubic I-spline is given as

I3
i (x) =





0, x < ti

(x−ti)
3

(ti+1−ti)(ti+2−ti)(ti+3−ti)
, ti ≤ x < ti+1

(ti+1−ti)
2

(ti+2−ti)(ti+3−ti)

+
−(x3−t3i+1)+

3
2
(ti+ti+2)(x

2−t2i+1)−3titi+2(x−ti+1)

(ti+2−ti+1)(ti+2−ti)(ti+3−ti)

+
−(x3−t3i+1)+

3
2
(ti+1+ti+3)(x

2−t2i+1)−3ti+1ti+3(x−ti+1)

(ti+2−ti+1)(ti+3−ti+1)(ti+3−ti)
, ti+1 ≤ x < ti+2

1− (ti+3−x)3

(ti+3−ti+2)(ti+3−ti+1)(ti+3−ti)
, ti+2 ≤ x < ti+3

1, x ≥ ti+3.

(ii) The following steps are used to construct cubic I-splines through B-splines in statistics

package R, higher order I-splines can be constructed similarly.

(1) Loading spline package in R.

(2) Inputting knot sequence knot = {ui}p+4
1 , and value x which is inside knot.

(3) Obtaining the value of I3
m(x) with m = 1, · · · , p by the follow function.

isp3 = function(m,x)

{
a = splineDesign(knot, x)

res = 0

for(i in m : p )

res = res + a[i]

res

},
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where splineDesign(knot, x) returns the value of the vector

(N4
1 (x), N4

2 (x), . . . , N4
p (x)).
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