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ABSTRACT

A strongly-coupled plasma is a collection of free charged particles that interact

with a Coulomb repulsion that is so strong that nearby particles do not easily move

past one another. Unlike weakly-coupled plasmas, strongly-coupled plasmas exhibit

a self-organization of particles into an arrangement like a solid crystalline lattice or

a liquid.

Dusty plasmas consist of micron-size particles of solid matter that are im-

mersed in a plasma of electrons and ions. The dust particles gain a large electric

charge and become strongly coupled. The motion of discrete particles can be tracked

using a video microscopy diagnostic. Dusty plasma experiments allow a study of

strongly-coupled plasma physics and an experimental simulation of condensed mat-

ter physics. Experiments are reported using a single layer of particles in the plasma

to study two-dimensional (2D) physics.

It is demonstrated experimentally that in addition to the solid and liquid

states, a strongly-coupled dusty plasma can exist in an exotic state called a super-

heated solid. A 2D dusty plasma, initially self-organized in a crystalline lattice, is

heated rapidly by rastered laser beams. The suspension remains in a solid lattice

at a temperature well above the melting point.

Shear-induced melting is studied in a 2D dusty plasma by applying shear to

a crystalline lattice using a pair of oppositely-directed laser beams. Unexpectedly,

coherent longitudinal waves are also excited in the resulting shear flow. In the first

experiment of its kind, a suddenly-applied shear is found to produce a melting front

that spreads at the transverse sound speed.

The viscoelasticity of strongly-coupled plasmas in a liquid state is quantified.

In the first experiment for any kind of physical system, the wavenumber-dependent
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viscosity, η(k), is computed from measurements of the random motion of particles.

It is found that η(k) diminishes with increasing k, indicating that viscous behavior

is gradually replaced by elastic behavior as the scale length is reduced.

As a tool for studying transport at a microscopic level, the self-intermediate

scattering function (self-ISF) is used in numerical simulations of 2D dusty plasmas.

Two physical processes are studied using the self-ISF: relaxation of random motion,

and melting. The wavenumber-dependence of the relaxation time in a liquid-phase

strongly-coupled plasma is shown to be useful for distinguishing normal and anoma-

lous diffusion. The self-ISF is also demonstrated to be a sensitive indicator of the

melting transition.

An improved image-analysis method is developed for calculating particle posi-

tions with minimal measurement errors. This development also provides an under-

standing of sources of error and the dependence on parameters that the experimenter

can control.

Abstract Approved:
Thesis Supervisor

Title and Department

Date



MICROSCOPIC DYNAMICS IN TWO-DIMENSIONAL
STRONGLY-COUPLED DUSTY PLASMAS

by

Yan Feng

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Physics in the
Graduate College of The

University of Iowa

July 2010

Thesis Supervisor: Professor John Goree



Copyright by

YAN FENG

2010
All Rights Reserved



Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Yan Feng

has been approved by the Examining Committee
for the thesis requirement for the Doctor of
Philosophy degree in Physics at the July 2010
graduation.

Thesis Committee:
John A. Goree, Thesis Supervisor

Christoph Beckermann

Robert L. Merlino

Frederick N. Skiff

Gregory G. Howes



To my parents and my wife

ii



ACKNOWLEDGMENTS

In the first place, I would like to give my special thanks to my advisor Prof.

J. Goree for his supervision, advice, guidance and long-lasting financial support. He

was patient in teaching me everything in our lab: designing apparatus, performing

experiments, writing codes, writing proposals, giving seminar talks, and writing

papers. All of these enriched my growth from a student to a researcher. I am very

grateful for the freedom he gave me in choosing research topics.

I also gratefully acknowledge Dr. B. Liu for his plentiful advice and sugges-

tions, and allowing me to adapt his particle simulation code. I would like to thank

him for discussions about not only my thesis projects but also many other technical

concepts.

I would like to thank Prof. R. Merlino, Prof. F. Skiff, Prof. S. Spangler, Prof.

G. Howes for their comments and helpful discussions during my seminar talks.

I thank Dr. V. Nosenko for teaching me data analysis methods during my

first few months in the lab. I also thank my lab mate Mr. T. Flanagan for not only

sharing codes but also his cooperation in the maintenance, repair, and operation of

our equipment.

I also thank Dr. U. Konopka and Dr. O. Arp for allowing me to test their

data analysis codes.

I thank my committee members for their comments and the time they devoted

to this thesis and my comprehensive exam.

iii



ABSTRACT

A strongly-coupled plasma is a collection of free charged particles that interact

with a Coulomb repulsion that is so strong that nearby particles do not easily move

past one another. Unlike weakly-coupled plasmas, strongly-coupled plasmas exhibit

a self-organization of particles into an arrangement like a solid crystalline lattice or

a liquid.

Dusty plasmas consist of micron-size particles of solid matter that are im-

mersed in a plasma of electrons and ions. The dust particles gain a large electric

charge and become strongly coupled. The motion of discrete particles can be tracked

using a video microscopy diagnostic. Dusty plasma experiments allow a study of

strongly-coupled plasma physics and an experimental simulation of condensed mat-

ter physics. Experiments are reported using a single layer of particles in the plasma

to study two-dimensional (2D) physics.

It is demonstrated experimentally that in addition to the solid and liquid

states, a strongly-coupled dusty plasma can exist in an exotic state called a super-
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a crystalline lattice using a pair of oppositely-directed laser beams. Unexpectedly,
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experiment of its kind, a suddenly-applied shear is found to produce a melting front

that spreads at the transverse sound speed.

The viscoelasticity of strongly-coupled plasmas in a liquid state is quantified.

In the first experiment for any kind of physical system, the wavenumber-dependent
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viscosity, η(k), is computed from measurements of the random motion of particles.

It is found that η(k) diminishes with increasing k, indicating that viscous behavior

is gradually replaced by elastic behavior as the scale length is reduced.

As a tool for studying transport at a microscopic level, the self-intermediate

scattering function (self-ISF) is used in numerical simulations of 2D dusty plasmas.

Two physical processes are studied using the self-ISF: relaxation of random motion,

and melting. The wavenumber-dependence of the relaxation time in a liquid-phase

strongly-coupled plasma is shown to be useful for distinguishing normal and anoma-

lous diffusion. The self-ISF is also demonstrated to be a sensitive indicator of the

melting transition.

An improved image-analysis method is developed for calculating particle posi-

tions with minimal measurement errors. This development also provides an under-

standing of sources of error and the dependence on parameters that the experimenter

can control.
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CHAPTER 1

INTRODUCTION

1.1 Review of dusty plasma concepts

1.1.1 Dusty plasma

Plasma is generally defined as a quasineutral gas of charged and neutral parti-

cles which exhibits collective behavior [1]. Most plasmas consist of electrons, positive

ions and neutral gas. Plasmas can also contain micron-size particles of solid matter,

which are often called dust particles following the terminology of astrophysics. Dust

particles could be made of any material, although dielectric materials are most com-

mon. My experiments reported in Chapters 3-5 made use of polymer microspheres,

Fig. 1.1.

10 mm

Figure 1.1: Scanning electron microscopy image of melamine-formaldehyde micro-
spheres. These microspheres, which are referred to as “dust particles” or “particles”
in this thesis, are introduced into a plasma, where they are dispersed and do not
touch one another as shown here. The particles I used were 4.83 µm and 8.09 µm,
slightly smaller than those shown here. This image is reproduced courtesy of Dr.
Karl-Heinz Lerche, microParticles GmbH, Berlin, Germany.

Experiments with dusty plasmas began in the late of 1980’s. An IBM scien-

tist, Gary Selwyn, first observed a dust cloud that was confined in a glow-discharge
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Figure 1.2: View of my single-layer suspension of dust particles, confined in a glow
discharge plasma. Viewed from a side port window of the vacuum chamber (as
discussed in Sec. 2.1.1), the suspension is illuminated by a horizontal 577-nm yellow-
green laser sheet (as discussed in Sec. 2.1.5) that enters the chamber from a port
window on the right. Another circular side port window is seen on the far side.
The interior of the stainless-steel vacuum chamber appears to be a violet color
due to glow emission from the argon glow-discharge plasma. The lower electrode
is seen in the bottom half of the image. A negative dc self-bias voltage on the
lower electrode provides a dc electric field that levitates the negatively-charged dust
particles against the downward force of gravity (as discussed in Sec. 2.1.1 and 2.1.3).
The lower electrode also has a cylindrical depression of 3 mm depth (as discussed in
Sec. 2.1.3), to promote horizontal confinement. The dust particles, shown magnified
in the inset, are dispersed with approximately 0.5 mm spacing between particles.

plasma. Dust particles were seen suspended in a cloud above a horizontal electrode

inside a chamber that was used for plasma etching of semiconductor wafers [2].

Selwyn found that, inside the plasma, dust particles nucleated and grew by ag-

gregating materials from gases. While the plasma was on, the dust particles were

levitated, i.e., suspended in the plasma, despite the downward force of gravity. This

levitation indicated that electric charging occurred on particles. Selwyn observed

the dust particles in situ by laser light scattering and imaging with a photographic
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camera. When the plasma was switched off, Selwyn’s dust particles fell to the

bottom of the chamber. Although particle growth and levitation is undesirable for

semiconductor manufacturing, Selwyn’s discovery inspired other experimenters who

wished to purposefully charge and confine dust particles within a plasma. In 1994,

experimenters [3, 4, 5] discovered that these methods of producing dusty plasma

allow the study of strongly-coupled plasma as predicted by Ikezi [6]. A photograph

of a suspension of dust particles is shown in Fig. 1.2.

1.1.2 Strongly-coupled plasma

Strongly-coupled plasma is a collection of free charged particles where the

Coulomb interaction with nearest neighbors is so strong that particles do not easily

move past one another [7]. The most widely used parameter for strongly-coupled

plasma is Γ, which is defined as the ratio of the potential energy between neighboring

particles and the kinetic energy. It is expressed as

Γ = Q2(4πε0r)
−1/(kBT ), (1.1)

where T is the kinetic temperature of the particles and the characteristic interparti-

cle distance r is typically defined as either the lattice constant b, or the Wigner-Seitz

radius a. Based on Ichimaru’s definition [7], if Γ > 1, then the plasma is strongly-

coupled.

Plasma can become strongly coupled due to either high density as in neutron

star crusts [8] and white dwarf stars [9], low temperature as in pure ion plasma [10], or

high particle charge as in dusty plasma [11]. Until twenty years ago, strongly-coupled

plasmas were mainly studied theoretically, because of a lack of suitable laboratory

methods. Laboratory strongly-coupled plasma experiments became more common

with the discoveries of ways to form dusty plasma [11], laser cooled ion plasmas in

a Penning trap [10], and ultracold neutral plasmas [12].
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While particle motion in weakly-coupled plasmas is like molecular motion in

gases, with particles moving past one another easily, motion in strongly-coupled

plasmas resembles that in liquids or solids. Due to Coulomb interactions, charged

particles in a strongly-coupled plasmas cannot move freely, but instead remain in

relative fixed positions with respect to nearest neighbors. For high values of Γ �

100, random motion is so weak that particles tend to remain trapped or caged near

equilibrium positions centered among nearest neighbors and particles self-organize

in a crystalline-like lattice. For moderate values of Γ � 1, the particles do not

remain caged for a long time, and they do not line up in long straight lines as

in a crystalline lattice. This latter condition is like a liquid, or for Γ ≈ 1 like a

non-ideal gas. Strongly-coupled plasmas are often described in term of structure,

which is the spatial pattern at a microscopic scale for the arrangement of particles.

A weakly-coupled plasma, like a gas, has no structure, and particles have nearly

random positions with respect to nearby particles. Strongly-coupled plasma can

have the structure of a crystalline lattice or solid for Γ � 100, and the structure

of a liquid for Γ � 1. Images from one of my experiments, illustrating solid and

liquid-like structure, are shown in Fig. 1.3.

While strongly-coupled and weakly-coupled plasmas have much in common,

the theoretical and experimental methods used to study them are usually different.

Weakly-coupled plasmas are usually studied theoretically using continuum methods,

treating each component as a continuum in the case of Vlasov or two-fluid models,

or treating the entire plasma as a single continuum in the case of MHD model.

When a particle model is used to model weakly-coupled plasmas, Coulomb collision

are weak and often ignored. Strongly-coupled plasmas can also be treated as a

continuum, but they are more often treated as a collection of discrete particles.

This is because of the strong effects of particle-particle Coulomb interactions. Unlike
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(a) (b)

Figure 1.3: Video microscopy images of 2D particle suspension with typical solid
(a) and liquid (b) structures, from the experiment reported in Chapter 5.

experiments with weakly-coupled plasmas, where parameters that are measured are

usually continuum parameters, such as number density or current, experiments

with strongly-coupled plasmas usually allow the particles themselves to be imaged

individually. This allows studies at the level of discrete particles. Strongly-coupled

plasmas exhibit some of the same phenomena as weakly-coupled plasmas, such as

waves, transport, and instabilities, but with significant differences. For example,

waves have different dispersion relations in strongly-coupled and weakly-coupled

plasmas. Another difference is that physical problems in strongly-coupled plasmas

can be classified as studies of either structure or dynamics, whereas in weakly-

coupled plasmas there is no structure arising from Coulomb interactions.

1.1.3 Yukawa interaction

In dusty plasma experiments, I usually use polymer microspheres with a di-

ameter of several microns, Fig. 1.1. When these dust particles are immersed in

the plasma environment, they will disperse and absorb both electrons and positive

ions continuously. Since electrons have a much higher thermal velocity than positive
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ions, the dust particles will be become negatively charged. For micron-size particles,

this negative charge is typically several thousand elementary charges.

After they become charged, dust particles in the plasma environment disturb

nearby electrons and positive ions, yielding a non-neutral region called a “sheath”

that surrounds each dust particle. The thickness of this sheath around a dust

particle is characterized by the Debye length, λD. This sheath shields the electro-

static interaction between two dust particles if they are separated by large distances

r � λD. As was demonstrated experimentally [13], in a plane perpendicular to ion

flow, the interaction between particles is accurately modeled by a repulsive Yukawa

potential,

φ(r) = Q(4πε0r)
−1exp(−r/λD), (1.2)

which is the electric potential at a distance r for an isolated dust particle of charge

Q.

1.1.4 Forces acting on dust particles

One hallmark of dusty plasma experiments is that the dust particles experience

many kinds of forces. In addition to the electric and Lorentz forces, they also expe-

rience: gravity, the radiation-pressure force, gas drag, ion drag, and thermophoretic

forces.

In my experiments, only four of these forces are considerable: gravity, electric,

radiation pressure, and gas drag forces. The relative strengths of the forces can be

understood by considering their scaling with particle radius, rdust. The gravita-

tional force, which is proportional to r3
dust, is substantial in my experiments because

rdust is several microns, while it would be negligible for nanometer-size particles.

The electric force and Lorentz force are both proportional to rdust because of the

capacitance of dust particles. The electric force is important in my experiment;

it provides not only the (upward) levitation force against (downward) gravity, but
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also the interparticle interaction in the horizontal plane that yields all the collective

effects that I will study. However, since an additional magnetic field is not used,

the Lorentz force is negligible. The other forces are all proportional to r2
dust. These

include the radiation pressure force, which occurs when powerful laser beams are

applied so that photon momentum is deflected or absorbed by particles, thereby

imparting a force. The laser radiation force provides an external energy input that

is easily controlled to manipulate particles, as I explain in Sec. 1.1.6. The gas drag

force provides energy dissipation; this is the resistance experienced by a particle

moving relative to gas at velocities vdust. For the low gas pressure in my experi-

ments, the gas drag force Fgas can be modeled using the Epstein’s expression [14],

where Fgas ∝ vdust. Following the traditional nomenclature [14], I use the damping

rate, νf = Fgas/(mdustvdust), to express the gas drag force. The ion drag force is

aligned with the vertical confinement of my experimental setup (which will be ex-

plained in Sec. 1.1.5), but it is small due to low ion density. The thermophoretic

force is negligible due to small temperature gradient in my experiments.

1.1.5 Two dimensionality

To study two-dimensional (2D) physics in my experiments, I used a single-

layer suspension of dusty plasma. Above the horizontal lower electrode, there is a

non-neutral sheath region that provides vertical confinement. When dust particles

fall into the sheath, the strong electric field there will provide an upward levita-

tion force that balances the downward force of gravity. Horizontal confinement is

provided by natural horizontal electric fields in the glow-discharge plasma, due to

the ambipolar diffusion arising from the different masses of electrons and positive

ions. The combination of vertical and horizontal confinement results in an infi-

nite confinement time for the dust particles. Electrons and positive ions, however,

are not confined in a glow-discharge plasma. Details of the vertical and horizontal
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confinement will be presented in Sec. 2.1.3.

The motion of my dust particles is constrained to be mostly two-dimensional.

Random motion in the vertical direction, i.e., out-of-plane displacement, is small

due to strong vertical confinement forces. In my experiments, the single layer of

particles was never observed to buckle. While the dust particles are essentially

constrained to a 2D plane, the electrons and positive ions are not. They fill the

entire three-dimensional (3D) volume of the plasma chamber.

Studying 2D physics has considerable value. First, all 2D physical systems

are intrinsically interesting for theoretical reasons. Second, there are several famous

examples of 2D physical systems, and much of what I learn about mine will apply

to those. Examples of 2D physical systems include Wigner lattices of electrons on

the surface of liquid helium [15], vortices in superconductors [16], colloids [17] and

granular materials [18]. Third, 2D systems allow experimental observation at a

microscopic level of phenomena such as melting and transport that also occur in 3D

systems including 3D strongly-coupled plasmas. Thus, insight gained in studies of

2D systems is helpful for understanding 3D physics as well.

1.1.6 Manipulation

Dusty plasma can be manipulated easily using many methods. The various

forces acting on dust particles listed above can be exploited to push particles in a

dusty plasma. Some of the earliest manipulation schemes involved simply adjust-

ing plasma parameters, such as gas pressure or ion density, which regulate some

instabilities [19, 20]. Later, magnetic and electrostatic forces were employed to ma-

nipulate dusty plasma [21], and electric pulses were used to apply a sudden energy

input [22, 23]. Thermal gradients were used to help levitate dust particles, allowing

the formation of 3D dusty plasmas, which are called “Coulomb balls” or “Yukawa

balls” [24].
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A more recently developed manipulation method that I used in my exper-

iments exploits the radiation pressure force applied by laser beams [25]. Laser

manipulation offers several advantages, compared to other methods. First, laser

manipulation only affects the motion of dust particles; other components in the

plasma environment, such as electrons, ions, neutral gas atoms, will not be dis-

turbed by laser manipulation. Plasma parameters, such as particle charge, Debye

length, electron density, ion flow, and sheath thickness are also not affected by laser

manipulation at all. Second, laser beams can be rastered in well-defined patterns

using scanning mirrors driven by servos. This allows one to manipulate particles in

a small region, or everywhere. Power can be applied suddenly, constantly, or with

any desired temporal modulation. One of the earliest uses of laser manipulation

was the excitation of longitudinal [25] and shear waves [26], which can be difficult

to excite using other methods.

1.2 Dusty plasma as a model system

1.2.1 Studying liquids and solids at an atomistic scale

Since the experimental discovery that dusty plasmas provide a convenient

way to experiment with strongly-coupled plasmas [3, 4, 5], they have attracted

considerable attention. One striking aspect of the experiments is the use of video

microscopy (e.g. Fig. 1.3), which allows individual particles to be identified and

tracked. Micron-size particles are readily imaged because they scatter sufficient

laser light and because in a plasma they are separated by a distance of typically

0.5 mm, which is easily resolved in the images. The particles also move slowly; the

typical dynamical time scale is about 10−2 s, which is suitable for high-speed video

recording.
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The ability to track the motion of individual particles provides opportuni-

ties to perform experiments where the dust particles are analogous to atoms or

molecules in conventional liquids and solids. Of course, in most liquids and solids it

is not practical to track the motion of atoms or molecules, so there is considerable

value in performing experiments with “model systems” that have larger particles

that interact amongst themselves in the same way that atoms or molecules do in

conventional liquids and solids. Some of the physics that has been studied using

dusty plasmas as a model system include waves [27], transport [28, 29, 30, 31], and

phase transitions [19, 20, 32].

1.2.2 Comparison to other model systems

Compared with other model systems, such as colloidal suspensions and gran-

ular materials, dusty plasmas have unique features that enable new kinds of ex-

periments. Unlike the overdamped colloidal systems, in a plasma dust particles

only experience the damping from the rarefied gas, so that a dusty plasma is a un-

derdamped system. Many interesting dynamics, such as microscopic motion during

thermal transport and wave propagation, are easily observed in underdamped dusty

plasmas without being affected by the medium. These same dynamics cannot be

observed in overdamped colloidal systems. Additionally, it is possible to control

the kinetic temperature of dust particles independently of the temperature of the

background medium of the plasma, unlike the case of colloids where particles are in

thermal equilibrium with a solvent whose temperature cannot be varied over a wide

range. Unlike the strong hard-sphere interaction in granular fluids, the interparticle

interaction in dusty plasmas is a soft Yukawa interaction [13].

These properties of dusty plasma make it possible for us to study many dy-

namical processes microscopically, at a scale analogous to the atomistic scale in

conventional liquids and solids [11]. In my thesis, I will exploit these properties
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of dusty plasma to study several condensed matter physics topics that cannot be

studied easily any other way.

1.3 Topics in strongly-coupled plasmas and con-
densed matter physics

1.3.1 Solid-liquid transition and solid superheating

Melting and solidification, which are solid-liquid phase transitions, are im-

portant physics problems for both strongly-coupled plasmas and condensed matter.

Two exotic examples of this phase transition are solid superheating and liquid su-

percooling. A superheated solid has the microscopic structure of a solid, but a

temperature above the melting point [33]. A supercooled liquid is the opposite;

it has the microscopic structure of a liquid, but a temperature below the freezing

point [33].

Observing solid superheating in condensed matter was once thought to be im-

possible [34], but it is now practical due to new instrumentation for heating [35, 36]

or fabricating special samples [37, 38]. Despite these new kinds of instrumenta-

tion, however, I found that the literature for solid superheating lacks experiments

performed with atomistic-scale observation of the kind that is possible with dusty

plasmas. The literature for solid superheating also lacks experiments in any kind

of strongly-coupled plasma. While experiments with strongly-coupled plasma have

demonstrated solid and liquid [19, 20, 23, 32] behavior, and recently supercooled

liquid as well [39], they have until now not demonstrated superheated solid behav-

ior. Since dusty plasmas allow both imaging at an atomistic scale and controlled

heating using laser manipulation, I used dusty plasma to perform an experimental

study of solid superheating.



12

1.3.2 Shear-induced melting

Melting, which has always been an important problem in strongly-coupled

plasmas and condensed matter physics, can be induced several ways, including

the application of shear [40, 41, 42, 43, 44, 45]. Shear-induced melting has been

studied in simulations [42, 43, 44, 45] and theories [41]. Experimental studies of

shear-induced melting have been performed in a variety of physical systems, in-

cluding colloidal suspensions [40, 46], 2D electron crystals with magnetic field [47],

foams [48], polymer glasses [49], and dusty plasmas [50].

Most previous experimental and theoretical studies of shear-induced melting

have concentrated on steady-state conditions only. If shear were instead applied

suddenly, one could investigate the spatiotemporal development of shear-induced

melting. However, until now, there have been no such experiments reported in any

physical system. Since dusty plasma allows atomistic observation and the local

application of shear force using laser manipulation, I used dusty plasma to study

the spatiotemporal development of shear-induced melting.

1.3.3 Viscoelasticity

Viscoelasticity is a property of materials that exhibit both viscous and elas-

tic characteristics [51]. Usually, one thinks of viscous properties for liquids and

elastic properties for solids, but most materials are viscoelastic and exhibit both

properties. Viscoelastic materials include, for example, polymer, human tissue, and

hot metal [51]. In general, liquids exhibit elastic effects at short length or time

scales [52], but viscous effects in the opposite case of long length or time scales.

Below, I will review the strongly-coupled plasma literature for viscoelasticity, and

then I will review how viscoelasticity is quantified in conventional liquids.

In the literature for strongly-coupled plasmas, viscoelasticity has been studied
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both theoretically [53, 54] and experimentally [55, 56]. Kaw and Sen introduced vis-

coelastic coefficients in a generalized hydrodynamics model to describe the dynamics

of strongly-coupled plasmas [53]. In a similar theoretical approach, Murillo general-

ized the viscosity coefficient by adding a viscoelastic relaxation time in a hydrody-

namic model of strongly-coupled plasmas [54]. This approach yielded a viscoelastic

Navier-Stokes equation [54]. There have been only a few strongly-coupled plasma

experiments that involved viscoelasticity [55, 56]. Until now these experiments have

yielded only descriptive presentations of the viscoelastic properties [55] and the cor-

responding microscopic motion of particles [56]. In other experiments, the static

viscosity η was measured [50] and estimated from diffusion observations [21].

To quantify viscoelasticity, theorists in the field of liquid physics often use

the frequency-dependent viscosity η(ω) [57]. This function tends toward the more

common static viscosity, η, as ω → 0. In 3D liquids, η(ω) is easily measured using

rheometers and viscometers [57].

Besides η(ω), the wavenumber-dependent viscosity, η(k), has also been used by

theorists to quantify the viscoelastic character of liquids [58, 59, 60, 61, 62]. They

have recently developed ways of computing η(k) from the trajectories of random

motion of molecules [61, 62]. However, until now, there have been no experimental

measurements (in plasmas or any other kind of physical system) known to me of

η(k). Dusty plasma is a good candidate system to exploit this new method. Because

the particle trajectories during random motion can be precisely measured in dusty

plasma, I used dusty plasma to exploit the method of calculating η(k) to quantify

the viscoelasticity of dusty plasma.
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1.3.4 Intermediate scattering function in 2D dusty plas-
mas

The intermediate scattering function (ISF) [63], which has been used widely

in other fields, is defined in terms of the particle trajectories:

F (k, t) =
1

N

∑

i

∑

j

〈exp(−ik · [ri(t) − rj(0)])〉. (1.3)

Here, ri(t) is the trajectory of the ith particle in a system consisting of N particles.

The Fourier transform variable k is usually called a wavenumber, although no waves

are studied using this method. Equation (1.3) makes use of an ensemble average

〈· · ·〉, which in practice is done by averaging for various initial starting times in

place of t = 0. If the particle trajectories are known as they are in this thesis,

then the ISF can be calculated directly using Eq. (1.3). This method has been used

previously in some experiments [64, 65] and MD simulations [66, 67, 68] for systems

other than strongly-coupled plasmas.

The ISF is a measure of particle dynamics. It has been widely used for study-

ing dynamics in many fields, such as caging [65] and relaxation [64] in granular

materials, diffusive dynamics in liquids [66], the aging effect in glass formation [67],

and dynamic heterogeneities of gels [68]. I will borrow this tool from other fields

to study two physical processes in dusty plasmas: relaxation in the liquid phase of

strongly-coupled plasmas and the melting phase transition.

1.4 Organization of this thesis

There are eight chapters in my thesis. I will introduce my experiment setup

and data analysis method in Chapter 2. In Chapters 3-6, I will present the four

physics topics I studied in 2D dusty plasmas: solid superheating, evolution of shear-

induced melting, viscoelasticity, and the intermediate scattering function. In Chap-

ter 7, I will present improved methods of measuring particle positions that minimize
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measurement errors. Finally, Chapter 8 is a brief summary of my thesis.
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CHAPTER 2

EXPERIMENTAL SYSTEM

2.1 Experimental setup

2.1.1 Plasma chamber

My dusty plasma experiments are performed using a glow discharge, formed

inside a vacuum chamber, Fig. 2.1, which is a modified version of the GEC Reference

Cell [69, 70]. The typical base pressure of the vacuum chamber is about 10−7 Torr. I

use argon at a typical gas pressure of 10 mTorr to generate a glow discharge plasma.

To achieve a high-purity argon gas environment at a stable pressure, 0.1 standard

cubic centimeters per minute (sccm) argon gas flow is introduced in the chamber by

an Alicat controller, while simultaneously an MKS butterfly valve with a feedback

circuit is used to regulate the pressure by controlling the pumping speed.

In my experiments, the plasma is produced using a capacitively coupled elec-

trodes. The lower electrode is an aluminum plate with a diameter of 22.2 cm. The

upper electrode is a stainless steel ring of 2 cm width, which has a diameter similar

to that of the lower electrode. The upper electrode is mounted to the upper flange,

so that like the chamber walls it is grounded. A broad-band radio-frequency (rf)

amplifier, Amplifier Research 200A15, is used to amplify 13.56 MHz rf waveforms

from a function generator. The output of the amplifier, typically with 150 V peak-

to-peak, is connected to a matching circuit, Nye Viking MB-V-A. In experiments,

I adjust the matching circuit to minimize the reflected rf power to the amplifier.

Finally, the rf current flows to the lower electrode through a capacitor, thereby

blocking dc current. An oscilloscope is used to monitor the voltage and current at

the lower electrode.

The plasma is ignited and sustained by rf electric fields. There are also dc
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lower electrode (powered)

upper electrode (grounded)

argon plasma

side view window

dispenser, for introducing particles

top flange

Figure 2.1: Plasma chamber used for the experiments. The vacuum chamber is
a modified version of the GEC Reference Cell, with a large window on the top
flange replacing the original GEC upper electrode, and a 22.2 cm diameter lower
electrode. The lower electrode in Chapter 3 was flat, while in Chapters 4 and 5
it had a shallow cylindrical depression of diameter 9.6 cm and a depth of 0.3 cm.
Photograph courtesy of John A. Goree.

electric fields that develop naturally in the plasma due to ambipolar transport of

electrons and ions. Electrons are accelerated primarily by the rf electric field because

of their tiny mass. However, positive ions and charged dust particles are not able to

respond to the rf electric field because of their bigger mass; they can only respond to

the dc electric field inside the plasma and its sheath region. Because of the different

masses of electrons and positive ions, and the use of the blocking capacitor, a dc

bias on the lower electrode develops. In my experiments, electrons impact argon gas

atoms to sustain the ionization of the plasma. Figure 2.1 shows the glow discharge

inside the vacuum chamber when the argon plasma is ignited. For the type of argon

glow discharge plasma used in my experiments, typical plasma parameters are an
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electron temperature of 1 eV and an electron number density of 109 cm−3. The

plasma is weakly ionized, with about 0.1% argon atoms ionized in the main plasma

in the inter-electrode region.

2.1.2 Dust particles

I use polymer (melamine-formaldehyde) microspheres as dust particles, Fig. 1.1.

This material is chosen because the particles do not tend to coagulate, but instead

disperse when they are dropped into a plasma.

These polymer microspheres are monodisperse, with a diameter of either 4.83±

0.08 µm or 8.09±0.18 µm [14]. They are placed inside a dispenser, which is a small

stainless steel container with a single tiny hole at its bottom. The dispenser is

attached to a small stainless steel rod installed in a vacuum feedthrough on the

top flange so that it can be manipulated from outside of the chamber. At the

beginning of an experiment, I introduce polymer microspheres by agitating the rod.

After introducing particles into the plasma, I lift the dispenser well above the ring

electrode and rotate it near the grounded wall of the chamber to minimize its effect

on the electric field in the plasma.

2.1.3 Suspension

Because of gravity, dust particles fall inside the plasma when they are first

introduced by the dispenser. At the same time, they become negatively charged

almost immediately (with a time scale of a 10−5 s). As they fall into the sheath above

the lower electrode, the strong dc electric field in the sheath provides an upward

force that levitates them against downward gravity, Fig. 2.2. In my experimental

setup, the plasma density in the center is slightly higher than at the edges, so the

sheath there is slightly thinner in the center. The slightly curved sheath, which is

like a shallow bowl, provides a natural radial confinement for these dust particles,
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Figure 2.2: Sketch of particle levitation and confinement. A dc electric field in
the lower sheath levitates particles against the downward force of gravity. A slight
curvature of the sheath, not shown here, provides radial confinement. The dc electric
fields are much stronger in the sheath than in the main plasma (glow region), as
indicated by the electric potential sketched on the right.

as was discussed in Chapter 1. The depth of this curved sheath can be enhanced

to provide more radial confinement by using a cylindrical depression in the lower

electrode, as I do in Chapters 4 and 5, but not Chapter 3. This depression can be

seen in Fig. 1.2. Because of the radial confinement, dust particles do not escape in

the radial direction but instead concentrate above the center of the lower electrode.

They repel each other because they are all negatively charged, so that they do not

all occupy the same equilibrium positions. Thus, the particles distribute themselves

spatially, as in Fig. 1.3, with a typical interparticle distance of about 0.5 mm, which

is approximately equal to the Debye length in the sheath.

The polymer particles I introduce in the plasma can form a single-layer suspen-

sion. Due to the large diameter of the electrode, 22.2 cm, and the weak horizontal

(radial) confinement compared to the much stronger vertical confinement, particles

tend to form a single layer which can be as large as 5 to 10 cm in diameter, before a
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second layer forms. In my single-layer dusty plasma suspension, the typical particle

number is about 10,000. However, if I add more particles, eventually they would

fill a second layer. Additionally, my particles are monodisperse in size. If instead

I were to use polydisperse particles, the heavier particles would be levitated at a

lower height, and multiple layers would form.

Without any other perturbations, the dust particles self-organize in a trian-

gular lattice with six-fold symmetry, as I will describe later. Because of the strong

vertical confinement due to the dc electric field in the sheath, particle motion is

essentially 2D, with negligible out-of-plane displacements and no buckling of the

particle layer.

In my experiments, I mainly focus on observing the particles, particularly

those in the central portion, ≈ 3 cm, of the suspension. There are at least two

advantages in studying dynamics in this central region only. First, the radial con-

finement is nearly flat for the lower electrode with a larger diameter, 22.2 cm.

Second, the interparticle distance is relatively uniform in the central region.

2.1.4 Laser manipulation

Because of the advantages of laser manipulation, as mentioned in Sec. 1.1.6,

I use a powerful laser to manipulate 2D dusty plasma suspensions. The apparatus

is sketched in Fig. 2.3. The manipulation laser is a 532-nm Verdi solid state laser

operated steady state, and its power can be adjusted up to 18 W. The 532-nm

laser beam is split into two beams, which are directed by mirrors so that they enter

windows on opposite sides of the plasma chamber. Thus, these two beams are used

to manipulate the dusty plasma symmetrically from two opposite directions. For

each beam, a pair of galvanometer scanning mirrors allow pointing or scanning the

beam in the x and y directions. This is done by controlling the angle of the scanning

mirror using a servo that responds to an applied voltage. By applying a desired
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Figure 2.3: Particle imaging and manipulation. A vacuum chamber, shown in
Fig. 2.1, encloses the lower electrode. The primary diagnostic is video microscopy
using a top-view camera with an illumination laser. Another laser, used to manip-
ulate particles, is directed from two sides using scanning mirrors.

waveform to the scanning mirrors, the laser beams are directed in a desired pattern

in the chamber. When a dust particle is struck by a laser beam, it will be pushed

by the momentum of the photons, resulting in the radiation pressure force. The

beams intercept the single layer of particles obliquely, at an angle of 6− 9◦, so that

the force is primarily in the horizontal direction.

2.1.5 Data recording and laser illumination

I use three cameras during my experiments. Two cameras view from the top:

one is a narrow field of view (FOV) camera that provides my main data, and the

other is a wide FOV that allows me to monitor the entire suspension. Examples

of images from the narrow FOV camera are shown in Figs. 1.3 and 2.4. The other

camera views from the side with a wide FOV. The narrow FOV camera yields a video

(a sequence of video frames) that is recorded directly on a computer. Each video

frame is recorded as a bit-map image. In these experiments, I use two cameras for the

narrow FOV: a 14-bit cooled CCD camera, model PCO model 1600, which can be

operated at 55 frames per second; and a 12-bit high-speed CMOS camera, Phantom
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(a)

2 mm

(b)

0.2 mm

Figure 2.4: Experimental bitmap images of a single-layer suspension of microspheres
in a dusty plasma. Each bright spot corresponds to one particle. Here, (a) is ≈ 1/12
of the original image from a narrow FOV camera (Phantom v5.2), and (b) is a
magnified view, showing that a bright spot fills several pixels, Spot size depends on
such factors as camera type and focusing. A particles position is calculated as the
bright spots center.

model v5.2. The narrow FOV camera typically views a region of (30 mm×20 mm),

containing about 1500 particles. The wide FOV top and side view cameras are both

NTSC analog video cameras.

For these three cameras, I use three laser sheets, each with a different wave-

length, to illuminate the particles in the suspension. The illumination lasers are

a 488-nm argon laser or a 577-nm solid state laser for use with the narrow FOV

camera, a 632-nm He-Ne laser for the wide FOV top view camera, and a red diode

laser for the side view camera. The cameras are equipped with optical bandpass

filters that pass the desired wavelength corresponding to a illumination laser, while

blocking glow emission and other undesired light at other wavelengths.

I use two methods to form a laser sheet for illumination. When videos are

recorded at 55 frames per second, as in Chapters 3 and 4, the laser sheet is gen-

erated by rastering the laser beam. The laser is rastered with a scanning mirror
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synchronized to the narrow FOV camera, providing a single sweep of laser across

the suspension. If I use a high speed camera, as in Chapter 5, the mechanical re-

sponse of the scanning mirror is not fast enough. Instead, I use a cylindrical lens

to disperse the laser beam into a sheet. A cylindrical lens is also used to disperse a

He-Ne laser for the wide FOV camera. Both of these illumination lasers (for the two

top view cameras) are focused using a telescope with a pair of plano-convex lenses

to provide a narrow waist inside the chamber. For the side view, the diode laser

is sufficiently wide to illuminate the single-layer suspension without any cylindrical

lens.

2.2 Data analysis method

2.2.1 Particle tracking velocimetry

During my experiments, I record a sequence of bit-map images using the

narrow FOV top-view camera. Each image corresponds to a video frame. This

sequence of frames is a movie of typically > 5000 frames. An example image from

my experiment is shown in Fig. 2.4(a). An image of one particle fills ≈ 10 pixels, as

shown in Fig. 2.4(b). The x− y coordinates, or the position, of each particle can be

calculated based on the intensity of those bright pixels using the moment method,

which will be described in detail in Chapter 7, where I present my advances in the

state of the art in this method. After calculating the particle positions in each

frame, I can track particles from one frame to the next, and then calculate their

velocities as vi,x(t+δt/2) = [xi(t+δt)−xi(t)]/δt. With the calculated positions and

velocities of all particles, I can perform structural and dynamical analysis, which I

will discuss next.
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2.2.2 Kinetic temperature

As an important parameter of my 2D dusty plasma suspension, the kinetic

temperature can be calculated using

kBT =
1

N

N
∑

i=1

1

2
m[(vi,x − v̄x)

2 + (vi,y − v̄y)
2], (2.1)

where N is the number of particles analyzed, v̄x and v̄y are the center-of-mass veloc-

ities. The kinetic temperature T of the dust particle motion is not a thermodynamic

temperature. The plasma is a non-equilibrium system, so that T is different from

the temperatures of other constituents in the plasma including the neutral gas, elec-

trons, ions. It is also different from the temperature of the polymer material of the

particles themselves.

2.2.3 Structural analysis

As compared to 3D systems, 2D systems are convenient for experimenters

because of the inherently 2D-nature of video microscopy images. Thus, a particle’s

coordinates can be determined completely from the images.

The structural measures that I use include the pair correlation function g(r),

which is the same function as in the BBGKY hierarchy for weakly-coupled plas-

mas [71]. Additionally, I also use Voronoi diagrams and the bond-angular-order

parameter Gθ [72, 73]. I will introduce only Voronoi diagrams here; the other two

will be discussed in later chapters when I use them.

A Voronoi diagram is computed mathematically from positions of particles.

Nearby pairs of particles are identified; these pairs are said to be connected by

“bonds”. The most common mathematical method for computing these pairs is

Delaunay triangulation [74]. Next, a corresponding Voronoi diagram [32] is com-

puted by drawing perpendicular lines to bisect all bonds. If a particle has six nearest

neighbors, it will be surrounded by a six-sided polygon. Figure 2.5 illustrates how
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Figure 2.5: Video microscopy image (a), and the corresponding particle positions
(b) and Voronoi diagram (c). The suspension has the structure of an ordered solid
lattice in the top half of each panel, but a disordered liquid in the bottom half.
Defects in a lattice are identified in a Voronoi diagram as non-six-sided polygons,
which are shown in color. The original video microscopy image was much larger
than the portion shown in panel (a). These data are from an experiment reported
in Chapter 4.

a Voronoi diagram is calculated from an image from my experiment.

Voronoi diagrams are widely used to identify disorder in the relative positions

of particles [32, 74]. The type of disorder that it indicates is a lattice defect. For

a defect-free 2D crystal, the Voronoi diagram would include only six-sided poly-

gons. When defects are present, they are identified by the presence of non-six-sided

polygons, as in Fig. 2.5(c), where I use different colors to indicate the non-six-sided

polygons. To reduce the information in a Voronoi diagram to a single parameter, I

calculate the defect fraction as the ratio of the areas of all non-six-sided polygons

to the area of the entire Voronoi diagram. The defect fraction can vary from zero

for a defect-free crystal to ≈ 0.3 for a liquid.



26

2.2.4 Dynamical analysis

Using the time series of particle positions and velocities that results from my

image analysis, I can perform many kinds of dynamical analysis, in addition to

calculating the kinetic temperature.

For a 2D dusty plasma suspension, the collective oscillation of particles can be

characterized by the nominal 2D dust plasma frequency ωpd, which can be expressed

as ωpd = (Q2/2πε0ma3)1/2 [75]. The concept of ωpd is comparable to the plasma

frequency, except that there is no resonance in the motion of particles at ωpd if the

particles are constrained to a single layer as they are in my experiments.

Another important time scale for collective particle motion is the period of

oscillation corresponding to the Einstein frequency, ωE . Here ωE has the usual

meaning: it is the hypothetical oscillation frequency that a particle’s motion would

have in a cage formed by nearby particles, if all the other particles were station-

ary [75].

Collective dynamics of 2D dusty plasmas also include sound waves, due to

Coulomb interparticle interaction. The wave spectra can be calculated from the

motion of particles [27], using a Fourier transformation of particle currents computed

from particle positions and velocities [76]. My 2D strongly-coupled dusty plasmas

sustain both longitudinal and transverse sound waves. In general, transverse sound

waves occur in solids and to a lesser extent in liquids as well [77], but not in gases

such as weakly-coupled plasmas.

The dispersion relations for longitudinal and transverse waves can be measured

explicitly from the wave spectra. This is done by identifying the peaks of the energy

vs. frequency curve for each wavenumber. This experimental dispersion relation is

computed separately for the longitudinal and transverse waves.

I use the experimentally measured dispersion relation to determine several
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parameters of the dusty plasma. I generally do this using images recorded for a

suspension in a highly-ordered crystalline lattice, before applying any laser manip-

ulation. Comparing the measured and theoretical dispersion relations, and varying

values of κ and ωpd in the theoretical expression, I can find the values of κ and ωpd

that best fit the experimental data. This fitting is done using a plot of chi-square as

a function of the fit parameters κ and ωpd. Other parameters for the dusty plasma

suspension, such as λD and Q, are then calculated from κ and ωpd. Additionally,

the longitudinal and transverse sound speeds can also be measured from the slope

the dispersion relation, ∂ω/∂k as k → 0.

As a note regarding terminology, it is useful to know that in the field of

condensed matter physics, the longitudinal and transverse waves described above

are called phonons. In later chapters, I will refer to my “wave spectra” as “phonon

spectra.”
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CHAPTER 3

SOLID SUPERHEATING IN DUSTY PLASMA

Unlike weakly-coupled plasmas, strongly-coupled plasmas can exhibit solid-

like or liquid-like behavior, and they have a phase transition between the solid

and liquid phases. To distinguish solids and liquids, strongly-coupled dusty plasma

experimenters rely on measurements of particle positions, which are then used to

compute structural measures. These methods are well-suited for strongly-coupled

plasmas because of the importance of the Coulomb interactions of discrete particles.

As a solid is heated, its temperature increases and it becomes more disordered,

but these do not necessarily happen simultaneously. Instead, if heating is applied

rapidly enough, the strongly-coupled plasma can retain a solid-like structure at a

temperature well above the melting point, as I demonstrate for the first time. This

phenomenon, termed solid superheating, is very rare in all fields of physics, having

been observed previously only with a few specially-prepared samples of metal or

with exotic heating methods employing ultra-fast lasers.

It is demonstrated experimentally that strongly-coupled plasma exhibits solid

superheating. A 2D suspension of microspheres in dusty plasma, initially self-

organized in a solid lattice, was heated and then cooled rapidly by turning laser heat-

ing on and off. Particles were tracked using video microscopy, allowing atomistic-

scale observation during melting and solidification. During rapid heating, the sus-

pension remained in a solid structure at temperatures above the melting point,

demonstrating solid superheating. Hysteresis diagrams did not indicate liquid su-

percooling in this 2D system.

The results in this chapter correspond to Y. Feng, J. Goree, and B. Liu, “Solid

superheating observed in two-dimensional strongly coupled dusty plasma,” Physical

Review Letters, Vol. 100, article number 205007 (2008), and Y. Feng, B. Liu, and
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J. Goree, “Rapid heating and cooling in two-dimensional Yukawa systems,” Physical

Review E, Vol. 78, article number 026415 (2008).

3.1 Introduction

Strongly-coupled plasma is a collection of free charged particles where the

Coulomb interaction with nearest neighbors is so strong that particles do not easily

move past one another [7]. Plasma can become strongly coupled due to high density

as in neutron stars [8], low temperature as in pure ion plasma [10], or high particle

charge as in dusty plasma [31]. Dusty plasma is partially ionized gas containing

micron-size particles of solid matter. Dusty plasmas have been used in the study

of phase transitions [19, 20, 23, 32, 39], waves [27], transport [28, 29, 30, 31], and

liquid microstructure [56].

Materials like water can exist as superheated solid [36] or supercooled liq-

uid [78]. These are, respectively, a solid at temperatures above the melting point [33],

and a liquid below the melting point [79]. Observing solid superheating was once

thought to be impossible [34], but it is now practical due to new instrumentation

for heating [36, 35] or fabricating special samples [37, 38].

I find that the literature for solid superheating lacks experiments with atomistic-

scale observation. Here, the term “atomistic-scale” indicates that molecules or their

equivalent are imaged or tracked individually. Most solid superheating experiments

use external measurements like diffraction in metals [35, 37, 38] or optical absorp-

tion in ice [36], or electrical measurements for Abrikosov vortices [80]. In contrast

to the experimental literature, theory for solid superheating includes simulations

that track individual molecules [33]. Experiments with colloidal suspensions in-

clude direct imaging of particles in supercooled liquids [17, 81], but apparently not

superheated solids.
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The literature for solid superheating also lacks experiments with strongly-

coupled plasma. Experiments with strongly-coupled plasma have demonstrated

solid and liquid [19, 20, 23, 32, 56] behavior, and recently supercooled liquid as

well [39], but not superheated solid.

Liquid supercooling, unlike solid superheating, is easily achieved in many

three-dimensional (3D) systems, but it is an open question whether supercooling

ever occurs in one-component 2D systems [17]. Experiments are needed to answer

this question. Candidate systems for 2D experiments include electrons on a liquid

helium surface [15], granular fluids [18], colloids [17], and dusty plasmas [31].

Here, I seek answers to three questions. First, can strongly-coupled plas-

mas exhibit solid superheating? Second, can solid superheating experiments be

performed using direct imaging of particles? Third, does my one-component 2D

system exhibit liquid supercooling?

3.2 Dusty plasma experiment

I report experiments with a 2D suspension of particles in a dusty plasma,

which is a kind of strongly-coupled plasma. Highly-charged particles, which are

polymer microspheres, are immersed in partially ionized argon gas. Electrons and

positive ions are collected by a particle, giving it a large negative electric charge.

In a plane perpendicular to ion flow, particles interact through a repulsive Yukawa

potential U(r) = Q2(4πε0r)
−1exp(−r/λD) [13].

My particles experience multiple forces, the largest arising from gravity, elec-

tric fields, gas friction, and laser radiation pressure. The apparatus [31] provides a

plasma with a sheath above a lower horizontal electrode. This sheath has electric

fields that levitate and confine charged particles, so that they are suspended as a sin-

gle layer. Particles have a diameter 4.83±0.08 µm [14] and mass m = 8.93×10−14 kg.

To partially ionize 7 mTorr argon gas, I used radio-frequency power at 13.56 MHz,
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with an amplitude of 97 V peak-to-peak. Particles experience gas drag with a

coefficient of 2.1 s−1 [14] when they move.

As in colloidal suspensions, my particles can self-organize in a crystal. Unlike

colloids, however, my particles are underdamped, and they can be heated without

heating the gas or ions. In my experiment, particle motion was essentially 2D, with

negligible out-of-plane displacements and no buckling of the particle layer.

Video microscopy allows imaging this 2D suspension at an atomistic scale, so

that I can track particles and measure their individual positions and velocities in

each video frame. Viewing from above, I recorded a movie of 5575 frames at 55

frames per second with a total field-of-view (FOV) of 34.2 × 25.6 mm2. I analyzed

data in a 30.7 × 22.2 mm2 sample region in the center of FOV, which included

about 1000 of the > 5000 particles in the suspension. The particle spacing was

characterized by a Wigner-Seitz radius [31] of 0.45 mm. In each frame, I measured

positions of particles and tracked their motion. The particle positions were used

for three structural indicators, described below. For each video frame, the 2D

particle velocities vi were used to calculate the temperature T = (
∑N

i=1 m(vi −

v̄)2/2)/NkB, where N is the number of particles analyzed, and v̄ is the center-

of-mass velocity. This kinetic temperature is different from the temperatures of

the other constituents including the neutral gas, electrons, ions and the polymer

material of the particles themselves. My velocity distribution function contained

some non-Maxwellian features, as in [82], including a peak at v2
y = 5 (mm/s)2 as

in Fig. 4(c) of [82]. Particle velocities were also used in the wave-spectra analysis

method [27] to determine the particle charge Q = −(4360±440) e and the screening

length λD = (0.65 ± 0.15) mm.

At first, without additional heating, the suspension has the solid structure of

a triangular lattice with six-fold symmetry. Due to its extreme softness and the
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stresses applied by confining electric fields, this solid is never defect-free. Even at

the lowest temperatures, it has some defects, arranged in strings defining domain

walls [23].

My laser heating method [31, 82] allows adjusting the kinetic temperature of

particles by varying the laser power. This does not affect the plasma environment or

particle charge, unlike previous methods [19, 20, 23, 32]. Random kicks are applied

through radiation pressure from a pair of 532-nm laser beams that are rastered

across the suspension in a Lissajous pattern with frequencies fx = 48.541 Hz and

fy = 30 Hz in a rectangular region slightly larger than the FOV. During laser

heating, the suspension is a driven-dissipative system [31]. In steady state, the

particle kinetic temperature is determined by a balance of external laser heating

and frictional drag cooling from neutral gas. Due to the orientation of the laser

beams, the temperature is higher in the x direction [82] by a ratio of 2 during

steady heating, and increasing monotonically from 1 to 2 during rapid heating.

To provide conditions favorable for solid superheating or liquid supercooling, I

switch the laser on and off abruptly, so that the temperature will change suddenly. In

my rapid heating and cooling experiment, the pair of 532-nm laser beams is ramped

between 0 and 7 W in 1 or 2 sec, for rapid cooling and heating, respectively. This

results in a temperature that changes at a rate > 20 000 K/s during rapid heating.

I measure three indicators of microscopic structure in addition to the tem-

perature time series. First, I identify defects and calculate defect area fraction by

calculating Voronoi diagrams [32]. Second, I measure short-range translational or-

der using the height of the first peak of the pair correlation function g(r) [82], which

is larger for solids than for liquids. Third, I measure the short-range orientational

order using the bond-angular-order parameter, Gθ [72], which varies from zero for

a gas to unity for a perfect crystal. For a solid, Gθ is less than unity if there are
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defects.

3.3 Results

In addition to my measurements with rapid heating and cooling, I also per-

formed slower heating and cooling to measure the melting point, in the range

4600− 5600 K. This is consistent with the prediction 4600± 1000 K of 2D Yukawa

simulations [73] using my measured values of inter-particle spacing, Q and λD; the

error bar arises from uncertainties in Q and λD.
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Figure 3.1: Temporal development of temperature and structure. (a) Time series of
particle kinetic temperature T (t), when laser heating was switched on and then off.
Times marked b-g correspond to panels below. (b)-(g) Voronoi diagrams, showing
defects in color. Polygons indicate the number of nearest neighbors of a particle:
red (5), white (6), blue (7), and green (others).
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My main results are time series of temperature and the microscopic structure

indicators. I applied rapid heating, followed by 55 s of steady conditions and then

rapid cooling. The temperature time series, shown in Fig. 3.1(a), is marked at six

times corresponding to the Voronoi diagrams in Fig. 3.1(b)-(g). Time series are

presented in Fig. 3.2 for the structure indicators: defect fraction, g(r) peak value,

and Gθ. I combine time series data to yield a hysteresis diagram, Fig. 3.3. Details

are presented next.

The sequence of Voronoi diagrams, Fig. 3.1(b)-(g), reveals solid superheating.

Before heating Fig. 3.1(b), the suspension has a solid polycrystalline structure, with

domains as large as the sample region shown here. In the most significant panel in

this sequence, Fig. 3.1(c), at T > 9000K near the end of rapid heating, the structure

remains a polycrystalline solid, with only a modest increase in defects mostly near

the previous defect locations. Since this is a solid structure, while at the same time

the temperature is above the melting point, I conclude that it is a superheated

solid. Later, in steady heating, Fig. 3.1(d), the structure is liquid, as indicated

by the numerous defects and lack of large crystalline domains. Immediately after

rapid cooling, Fig. 3.1(e), defects have diminished greatly. Five and ten seconds

after rapid cooling, Fig. 3.1(f) and 3.1(g), respectively, the suspension is again a

polycrystalline solid, with crystalline domains separated by string-shaped defect

clusters. These crystallites grow bigger by merging neighbors together gradually in

a slow recrystallization process [23].

Time series for microscopic structure indicators, Fig. 3.2, reveal different

time scales. In order to compare these time scales, I rescaled all four variables

in Fig. 3.2(d) to vary from 0 (before rapid heating) to 1 (during steady heating)

using a linear function with a slope and interecept for each variable. During cooling,

structure indictors change at different rates: translational order changes fastest, and
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Figure 3.2: Time series of structure indicators and temperature. (a) Defect fraction
(the area of defective polygons, as a fraction of total area, in Voronoi diagrams as in
Fig. 3.1). (b) Height of the first peak of the pair correlation function g(r). This is an
indicator of short-range translational order. (c) Gθ [72], an indicator of short-range
orientational order. This can vary from zero for a gas to unity for a perfect crystal.
(d) Time series for the three structure indicators and temperature, rescaled to vary
from zero (for a solid before heating) to unity (for a liquid during heating). Data
are smoothed over 3 frames.

orientational order slowest, consistent with the data of [23]. I also measured the

defect fraction, which changed at a rate between the other two. My experimental

method also allows measurements during rapid heating, where I observe a delay in

the response of the structure as the temperature increases. This delay is shortest

(≤ 0.04 s) for translational order, and longer (≈ 0.2 s) for defect fraction and

orientational order.
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Figure 3.3: Hysteresis diagram made by combining data from Figs. 3.1 and 3.2. The
time interval between data points is 0.018 s. Initially, I had a solid, lower left corner.
Then rapid heating was applied, causing a temperature increase across the melting
point without much change in structure, the lower horizontal line of data points.
This is a signature of solid superheating. Next, the superheated solid melted, as
shown by the nearly vertical line of data points on the right. The resulting liquid in
the upper right corner had a high defect fraction. Later, during rapid cooling, defect
fraction dropped dramatically as the temperature declined. Finally, the suspension
slowly recrystallized.

Hysteresis diagrams, like Fig. 3.3, are traditional tools for studying phase tran-

sitions [37, 83]. Hysteresis arises because structure does not respond immediately

to a change of temperature. This can occur either due to a delayed response as

in the case of my rapid heating, or a gradual response as for my rapid cooling. In

previous solid superheating experiments, the vertical axis was typically from X-ray

diffraction [37]. Here I use direct imaging of particles to yield an indicator of micro-

scopic structure for the vertical axis of a hysteresis diagram, Fig. 3.3. My hysteresis

diagram allows a useful interpretation: a signature of solid superheating or liquid
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supercooling would be a horizontal row of data points across the melting point.

Such a horizontal row would indicate a temperature that has changed without a

corresponding change in structure.

My chief conclusion, an observation of solid superheating, is based on two

results. First, Voronoi diagrams compared before and after rapid heating indicate

solid superheating, as described above. Second, the hysteresis diagram, Fig. 3.3, has

the signature of solid superheating: a nearly horizontal row of data points, which

can be seen near the bottom of the graph.

After the superheated solid is formed, it then melts, as indicated by a pro-

liferation of defects. Because the substance being melted is a superheated solid,

the melting occurs without much further temperature increase, yielding a nearly

vertical line of data points in Fig. 3.3. The lifetime of the superheated solid and

the duration of the subsequent melting are both about 0.25 s.

I also conclude that my rapid cooling did not produce a supercooled liquid.

The rapid-cooling portion of Fig. 3.3, lacks the signature of a supercooled liquid.

Instead, the defect fraction drops dramatically during the temperature decrease.

Additionally, the Voronoi diagrams for rapid cooling, Fig. 3.1(e)-(g), lack a liquid

structure.

My observation that I did not form a supercooled liquid might be attributable

to the low dimensionality of the experiment. For 3D systems, many examples of

materials, including dusty plasma [39], can be quenched to form supercooled liquids

or glasses. For 2D systems, however, forming a supercooled liquid or glass seems to

be difficult [17]. The role of dimensionality in transitions to a glassy or supercooled

state remains an important question [39, 84]. A previous 2D experiment addressing

this question was performed using colloidal suspensions [17], which have much higher

friction than in my suspension.
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The solid superheating had a limited duration, which I interpret as an indica-

tion that it is a kind of transient solid superheating. In general, one could identify

solid superheating as being either transient or metastable, depending on the dura-

tion of the solid structure after increasing the temperature above the melting point.

The distinction between transient and metastable superheating has been previously

mentioned in a review of the literature [85]. For my experiment, I judge the dura-

tion of the superheated solid by comparing its lifetime of about 0.25 s to another

important time scale for particle motion: the period of oscillation corresponding to

the Einstein frequency, ωE . Here ωE has the usual meaning: it is the oscillation

frequency that a charged particle’s motion would have in a cage formed by all the

other particles, if all the other particles were stationary. The Einstein frequency

for my experiment can be estimated from a combination of my experimental mea-

surement of the plasma frequency, ωpd = 33.3 s−1, and a previous simulation that

provided a relationship between ωpd and ωE [75]. This yields an estimate for in my

experiment of ωE = 0.612 ωpd = 20.4 s−1. The corresponding period of oscillation

for the charged particle in the experiment is τE = 2π/ωE = 0.31 s. Comparing now

to the experimentally observed lifetime of about 0.25 s for the superheated solid,

I find that the lifetime was only about one oscillation period, before melting oc-

curred. Therefore, I interpret my experimental results as an indication of transient,

not metastable superheating.

The underlying reason for the solid superheating in the experiment is simple

to understand, now that the time scales have been determined. Initially, in the

solid below the melting point, particles are caged by their nearest neighbors. Caged

particle motion in a solid consists mainly of oscillations, with a turning point located

well within the cage. In a full period of oscillation, characterized by a τE , a particle’s

trajectory has two turning points. As rapid heating is suddenly applied, particles
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in the cage are accelerated, the cage distorts as other particles are also accelerated,

and the enclosed particle can eventually decage and thereby generate a defect. In

the experiment, the time indicated by the hysteresis diagram for this decaging to

occur is about 0.25 s, about the same as τE = 0.31 s. Comparing these two values

indicates that after sudden heating is applied, a particle typically decages after

bouncing about twice in the cage. This short-lived stage of bouncing about twice

before decaging corresponds to the transient superheated solid.

During the experiment, the single-layer particle suspension was not constrained

in its size. In principle, its areal number density could vary in time. I calculated

a time series for the areal number density, and I found that there was no signifi-

cant expansion as the temperature increased. The areal number density remained

constant within 1.5% during the experiment [86], despite very large temperature

changes of an order of magnitude. It is interesting that despite the extreme softness

of this suspension, its volume varies so little with temperature.

One feature of the hysteresis diagram that requires explanation is the gap in

data points at the lower left of Fig. 3.3. This gap is due to the finite data-recording

time in the experiment. After the initial rapid cooling, a very slow recrystalliza-

tion takes place. During the recrystallization, crystalline domains gradually grow

in size by merging with neighboring domains. The merging process is slow because

a domain must rotate until its orientation aligned with a neighboring domain. This

process becomes increasingly slow as the remaining domains become larger, as can

be seen in the Voronoi movie from the experiment [86]. The camera in the ex-

periment had a finite memory, allowing the recording of a movie limited to 100 s

duration for the entire experiment.

Previous to my experiment [86], Knapek et al. reported another experi-

ment [23] to study the recrystallization during cooling. They used a similar dusty
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plasma with a single-layer suspension of microspheres. They heated their suspension

suddenly by applying an electrical pulse to wires. Using video microscopy, particle

motion was recorded well after the pulse was completed, so that the experimenters

observed the cooling process, but not the heating process. As in my experiment [86],

this cooling process included a rapid cooling followed by a slow recrystallization.

Like us, they reported time series for temperature and defect fraction; they also

reported correlation lengths as measures of orientational and translational order,

serving roles similar to Gθ and height of the first peak of g(r). They found that

temperature decreases more rapidly than defect fraction [23], a result that I veri-

fied in [86]. They also found that orientational order drops much more slowly than

translational order, and attributed this to the presence of domains in various ori-

entations during the slow recrystallization process [23]. My experiment differed by

using laser heating, which did not disturb the particle layer severely. Because of

this, I was able to record particle motion during both heating and cooling, allowing

us to prepare hysteresis diagrams.

In addition to my experiment, I also performed a numerical simulation. I

found conditions that result in the same signature of transient solid superheating

as in the experiment, as I report in [87].

3.4 Conclusion

In conclusion, firstly I have shown that strongly coupled plasmas can exhibit

solid superheating. This suggests investigating superheating in other solid strongly-

coupled plasmas that can melt, like laser-cooled ions [10] and the crust of neutron

stars [8]. Secondly, I have demonstrated an experimental method of studying solid

superheating using direct imaging of particles. These two results are apparently the

first of their kind. Thirdly, I found a lack of liquid supercooling in my 2D system.
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CHAPTER 4

EVOLUTION OF SHEAR-INDUCED MELTING IN DUSTY
PLASMA

Unlike weakly-coupled plasmas, strongly-coupled plasmas can exhibit melting,

i.e., a solid-liquid phase transition, as was mentioned in Chapter 4. In general,

melting of any kind of solid can be induced by many ways, including applying shear.

All previous studies of shear-induced melting, for all physical systems, were carried

out only under steady-state conditions. Here, I report the first experiment, both

for strongly-coupled plasmas and for all other physical systems as well, of sudden

shear-induced melting. Strong shear will be applied suddenly to a strongly-coupled

plasma in a solid phase, to induce and observe sudden shear-induced melting. This

experiment requires applying shear on a time scale as fast as internal time scales

for the sample, such as ω−1
pd , and an ability to observe order or disorder on the same

time scale. Strongly-coupled dusty plasmas allow this, with laser manipulation to

provide sudden shear, and video microscopy to observe order and disorder, both

with the required fast time scales compared to particle motion. A dusty plasma

also allows underdamped wave propagation as a mechanism for energy propagation,

so that I will investigate whether waves might account for the speed of melting. This

experiment requires analyzing both structure at an atomistic scale and dynamics of

discrete particles, which are made possible by video microscopy.

The spatiotemporal development of melting is studied experimentally in a

2D dusty plasma suspension. Starting with an ordered lattice, and then suddenly

applying localized shear, a shear flow develops. A transition between two melting

stages is observed before a steady state is reached. Melting spreads with a front

that propagates at the transverse sound speed. Unexpectedly, coherent longitudinal

waves are excited in the flow region.
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The results in this chapter correspond to Y. Feng, J. Goree, and B. Liu,

“Evolution of shear-induced melting in a dusty plasma,” Physical Review Letters,

Vol. 104, article number 165003 (2010).

4.1 Introduction

Applying shear can induce melting [41, 42, 43, 44, 45]. Experiments have

been reported in soft materials: colloidal suspensions [40, 46], two-dimensional (2D)

electron crystals with magnetic field [47], foams [48], polymer glasses [49] and dusty

(complex) plasmas [50]. Most of these studies were done with a steady application

of shear.

If shear were instead applied suddenly, one could investigate the spatiotem-

poral development of shear-induced melting. However, there have been no such

experiments reported in any physical system to my knowledge.

In addition to melting, another result of sudden application of shear is wave

excitation. When strong shear is applied to a 2D crystal lattice, plastic deformation

occurs, and this can cause melting [50]. When the applied shear is weaker and de-

formation is elastic, transverse waves (phonons) propagate through the lattice [26].

Another type of wave is longitudinal. To my knowledge, at least within the liter-

ature for dusty plasmas, there have been no reports of the excitation of coherent

longitudinal waves due to the application of shear in either the elastic or plastic

regimes.

Here I seek answers to three questions. First, can coherent longitudinal waves

be generated by applying shear? Second, when shear is applied suddenly, and

melting occurs, what is the spatiotemporal development? Third, is there a melting

front, and how does it spread?

Physical systems that allow motion essentially on a 2D plane include a Wigner

lattice of electrons on a liquid-He surface [47], ions confined in a Penning trap [88],
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colloidal suspensions [89], granular fluids [18], vortex arrays in the mixed state of

type-II superconductors [16], and dusty plasmas levitated in a single layer [55, 86].

Melting of 2D systems has a different mechanism than for 3D systems [89]; it is

sometimes termed an order-disorder transition [90]. Order and disorder are charac-

terized by measures of structure. For example, the local six-fold bond-orientational

order |φ6| [42, 44, 91] measures local order, while global order can be characterized

by the abundance of defects [86, 90], which are non-hexagonal Wigner-Seitz cells in

Voronoi diagrams [44, 86].

4.2 Dusty plasma

Dusty plasma is partially ionized gas containing micron-size particles of solid

matter [86]. Dusty plasmas allow atomistic scale observation of dynamics by track-

ing particles with video microscopy, and they also allow laser manipulation of parti-

cles [86]. I will exploit these capabilities to observe at an atomistic scale, with both

spatial and temporal resolution, the sudden onset of shear-induced melting. In most

previous dusty plasma experiments, melting was studied under steady-state condi-

tions (by changing plasma parameters [19, 20, 92], varying particle number [93],

and laser manipulation [50, 82]). The temporal development of melting has received

less study, and experiments that have been reported [22, 86] relied on mechanisms

other than shear-induced melting.

Particles have an electrical charge Q and are electrically confined in a single

horizontal layer where they self-organize with a structure analogous to a crystalline

solid or a liquid [86]. Coulomb repulsion is shielded with a screening length λD [13].

Dusty plasmas are driven-dissipative systems [31, 86], with frictional drag on the

rarefied gas at a damping rate νf [14]. The collective oscillation of particles can be

characterized by the nominal 2D dust plasma frequency ωpd [75].

For a dusty plasma suspension, shear must be applied differently than for
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most substances (e.g., colloidal suspensions [46]) because the suspension does not

contact a container. I apply shear internally within my sample, using laser radiation

pressure [50, 91].

4.3 Experiment

Using the apparatus of [31], an Argon plasma was generated in the vacuum

chamber at 15.5 mTorr, powered by 13.56 MHz radio-frequency voltages at 184 V

peak to peak. The particles were polymer microspheres with a diameter 8.1 µm and

a gas damping rate νf = 2.7 s−1 [14].

The particles were suspended in a single layer. Before applying shear they

self-organized in a triangular lattice with six-fold symmetry [86]. Particle motion

was essentially 2D, with negligible out-of-plane displacements and no buckling of

the particle layer. The suspension had a diameter ≈ 52 mm and contained > 11 000

particles. About 2800 particles were in the analyzed region, (24.7×20.4) mm2. The

particle spacing was characterized by a Wigner-Seitz radius [75] a = 0.25 mm.

To apply shear stress with a sudden onset, I used laser radiation pressure,

which applies forces internally within the sample [50]. The power of a pair of 532-

nm laser beams was increased within 40 ms to a constant level. A different constant

level was chosen for each of my four runs, varying from 0.57 to 1.90 W per beam, as

measured inside the chamber. The beams pointed oppositely in the ±x directions

and struck the suspension at a 6◦ downward angle. Their width and separation

were ∆Yl ≈ 0.2 mm and L = 4.7 mm, respectively. To apply shear across the

entire suspension width, the beams were rastered across the full suspension (at a

frequency high enough, 200 Hz, to avoid exciting coherent waves at the rastering

frequency [82]).

Using a top-view camera, I recorded videos for a duration of 14 s (including 5 s

before applying shear). While applying shear, particles flowed out of the camera’s
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field of view (FOV); they circulated around the suspension’s perimenter and then

reentered the FOV [50]. Between runs I turned laser manipulation off for ≈ 20 min,

so that the suspension had enough time to cool, solidify and anneal [86]. Then I

calculated particle positions and velocities in each video frame [86].

Using the wave-spectra analysis method for particle random motion in an

ordered lattice [27], I found these parameters for my dusty plasma: ωpd = 72.6 s−1,

Q/e = −(8700 ± 900), λD = (0.33 ± 0.07) mm. The same method also yielded

the transverse and longitudinal sound speeds, Ct = (4.0 ± 0.4) mm/s and Cl =

(15.0±1.5) mm/s, respectively. When coherent waves are observed experimentally,

they can be identified as transverse or longitudinal waves by their speed and by the

direction vx or vy of particle motion.

4.4 Data analysis

The experiment was designed to have symmetry with an ignorable coordinate

x. I average some quantities over x, as denoted by 〈〉x (averaging with cloud-in-

cell weighting with a bin width of the lattice constant, 1.9 a). The kinetic energy

(KE) is averaged over both x and y for the full analyzed region, as denoted by 〈〉xy.

I calculate KE = KEx + KEy, where KEx = m〈v2
x〉xy/2, and similarly for KEy.

Although this definition includes the energy of directed flow as well as random

motion, I will report the values in temperature units (K), to allow comparison to

other experiments.

4.5 Results

Results in Fig. 4.1(a),(b) show the development of KE and the flow velocity

after I suddenly applied shear stress. The KE increases dramatically, by about two

orders of magnitude, Fig. 4.1(a). Melting occurs for laser powers above a threshold

≈ 0.4 W. The flow pattern, Fig. 4.1(b), broadens until reaching a steady state
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Figure 4.1: Temporal development of kinetic energy (KE), flow, and transverse ve-
locity. (a) Time series of the average KE. Shear was applied suddenly by applying
0.95W of laser power starting at t = 0. The KE rose about two orders of magni-
tude until a steady state was reached at ≈ 1 s. (b) Spatiotemporal evolution of the
flow velocity 〈vx〉x. Two counter-propagating flow regions broaden to a width ∆Yf

(defined as FWHM of the velocity profile). Length scales, including the thickness
∆Yl and spacing L of the laser sheets, are ordered as ∆Yl ≈ a < ∆Yf < L. (c)
Coherent longitudinal waves, generated near the flow region and propagating out-
ward. This is revealed by the repeated pattern of wavefronts in this plot of 〈vy〉x.
For comparison, the longitudinal sound speed Cl is indicated by the straight lines.
The observed wave period is ≈ 4πω−1

pd .

at ≈ 1 s, when the full width at half maximum (FWHM) of the velocity profile

is ∆Yf = 1.2 mm, which I will refer to as the flow regions. This width ∆Yf
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is determined by a combination of shear stress applied by the laser, gas friction,

and shear viscosity of the suspension [50]. The KE is greater for velocities in the

x direction than in the y direction because shear was applied in the x direction

(≈ 53% of KEx is due to directed flow in the steady state). Scale lengths in the flow

are ordered as ∆Yl ≈ a < ∆Yf < L. The flow is laminar, with a Reynolds number

� 102 [50]. In the flow region, the kinetic temperature (estimated from vy) is high,

with Γ ≈ 20; this is well beyond the predicted melting point Γ = 160 [73].

To answer my first question, I observe coherent longitudinal waves propagating

away from the flow region. This result might be surprising because the energy input

was purely shear. These longitudinal waves are revealed in Fig. 4.1(c) by wavefronts

with a slope corresponding to the longitudinal sound speed, Cl. The wavefronts

emerge from the flow region, suggesting that the longitudinal waves were generated

there. These wavefronts repeat, indicating the waves are coherent, not random.

The coherent longitudinal waves in Fig. 4.1(c) have a period ≈ 4πω−1
pd . This is

the almost the same as the period where the dispersion relations of longitudinal and

transverse waves cross [94]. This observation suggests that the coherent longitudinal

waves I observe could be explained by scattering from transverse waves.

Energy is carried into the surrounding lattice by these coherent longitudinal

waves. I will consider the speed of these waves below, when explaining sudden

shear-induced melting.

To answer my second question, I find that after sudden application of shear,

melting occurs in two steps. Examining Fig. 4.2(a), I can see that defects initially

proliferate at a higher rate, then soon after at a slower rate, with a distinctive

transition between. I term these “melting stages” 1 and 2. Afterwards, at a long

time, there is of course a steady state. I confirmed that the transition is ubiquitous:

it occurs for all four laser powers I tested, and also in other suspensions with various
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Figure 4.2: Two melting stages, due to the spatial development. (a) Phase diagram,
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plotted is the defect area fraction; this measure of structure is the area of a Voronoi
diagram that is occupied by defects [86], divided by the total area. (b) Time series
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∆Yf . The timing indicates that defects proliferate outside only after they saturate
inside the flow regions. (The inset shows about 1/4 of the Voronoi diagram, for the
run at 0.95 W at t = 0.16 s.)
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values of the particle spacing.

My experiment provides both spatial and temporal resolution, which I can

exploit to investigate the cause of the transition between the two melting stages. I

am motivated by Fig. 4.1(b) to analyze time series separately in two spatial portions:

inside and outside the flow regions. This yields the time series in Fig. 4.2(b), where

the quantity plotted is the defect number fraction, calculated by dividing the number

of defects by the number of particles.

Figure 4.2(b) reveals that defects proliferate in different places at different

times. In melting stage 1, they proliferate mainly inside the flow regions until

saturating at t = 0.16 s. Importantly, this is the same time as the transition in

Fig. 4.2(a). Only afterwards do defects spread widely outside the flow region, as

seen in the bottom curve in Fig. 4.2(b). Thus, the transition in the phase diagram

arises from the different timing of when defects appear in the two different regions:

first inside the flow region until defects saturate there, and then outside.

I can quantify the physical time scales for the two melting stages. Candidate

time scales include ω−1
pd , which characterizes mutual particle motion due to inter-

particle electric fields, and ν−1
f due to gas friction. Initially, when velocities are

low, I expect friction to be small, leading us to consider ω−1
pd as the time scale for

melting stage 1. I find that melting stage 1 has a duration on the order of 10 ω−1
pd ,

no matter how much shear is applied, as shown in Fig. 4.2(a). Later, as the KE

increases, Fig. 4.2(b), dissipation by gas friction grows until it balances the energy

input from the laser, yielding a steady state. The role of friction in limiting the

spread of melting is suggested by noting that the duration of melting stage 2 is

≈ 1.5 ν−1
f .

To answer the third question, I find that there is a distinctive melting front,

and it propagates at about the transverse sound speed, Ct. This is seen in Fig. 4.3,
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Figure 4.3: Spatiotemporal evolution of orientational order, |φ6|, which is defined
to have a maximum of unity for a perfectly crystalline region [42, 44, 91]. Lines are
drawn with the slopes Ct and Cl, starting at t = 0. The transverse sound speed,
Ct, coincides with the melting front propagation. The resolution of my data along
the Y axis is 1.9 a.

where the colored contours show how disorder spreads with time. I also draw lines

with a slope corresponding to Ct; comparing these to the melting front, I see that

they coincide. Thus, the melting front propagates at about Ct, not the much faster

Cl. I verified this result using three different measures of structure. These include

the local six-fold bond-orientational order |φ6| [42, 44, 91] (as shown in Fig. 4.3),

defect number fraction, and height of the first peak of the local pair correlation

function.

Before this experiment, it was not obvious whether the melting front should

spread at a rate corresponding to Ct, Cl, or thermal conduction. Thermal motion

can be decomposed into incoherent waves that include both transverse and longitu-

dinal modes. Coherent waves are also present, including the surprising longitudinal

modes I found propagating away from the flow region. Thermal conduction due to

temperature gradients [29, 30, 95] would also lead to a spreading of energy as time
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passes.

To determine whether the flow of energy is in the form of waves or thermal

conduction [29, 30, 95], I varied the laser power, which will vary the gradients.

Linear waves propagate at the same speed, regardless of their amplitude; but energy

spreads by thermal conduction more rapidly if the gradients are larger. I found that

the melting front propagated at nearly Ct for all four laser powers I tested. Thus,

I dismiss thermal conduction as the main mechanism for the propagation of energy

that results in the melting front.

My result that the melting front propagates at about Ct suggests that the

propagation of transverse waves is the mechanism for transferring the energy re-

quired for melting in my experiment. Transverse waves, which were excited when

shear was first applied, propagate outward carrying energy that can create defects.

As this wavefront travels, it loses energy by creating disorder and by gas friction.

Eventually, after traveling about 3 mm, the outward traveling wave loses so much

energy that it can no longer generate more defects, and the steady state is reached.

It is possible that in other systems, with greater applied shear, the generated coher-

ent longitudinal waves might be strong enough to melt a solid lattice, so that the

melting front would propagate at Cl.

4.6 Conclusion

In summary, I found that coherent longitudinal waves are excited in this shear-

induced melting system. Applying shear suddenly led to melting in two stages

separated by a distinctive transition. After defects saturated within narrow flow

regions, they spread wider with a melting front that propagates at about Ct.
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CHAPTER 5

VISCOELASTICITY OF 2D LIQUIDS QUANTIFIED IN A DUSTY
PLASMA EXPERIMENT

Strongly-coupled plasmas can exhibit solid-like or liquid-like behavior, which

are often characterized by the properties of elasticity or viscosity, respectively. How-

ever, most liquids and soft materials actually exhibit both elasticity and viscosity at

the same time, and this is called viscoelasticity. While viscoelasticity is well known

for other materials, it has been little studied for strongly-coupled plasmas, perhaps

because weakly-coupled plasmas cannot exhibit viscoelasticity. Previous work has

been limited to a few quantitative theories for liquid-phase strongly-plasmas and

a few dusty-plasma experiments that provided qualitative descriptions of collective

particle motion ascribed to viscoelasticity. In the theory of liquids, it is common

to quantify viscoelasticity using the frequency-dependent viscosity η(ω) or, more

recently, the wavenumber-dependent viscosity η(k). However, for strongly-coupled

plasmas there have been no previous experiments, and only one recent simula-

tion [96], that make use of these measures of viscoelasticity. Here, I exploit the

ability to track discrete particles in a dusty plasma experiment in order to com-

pute the functions needed to calculate η(k). To confirm my interpretation of the

experiment, I also perform a Langevin simulation under conditions that mimics

the experiment, and this provides the same kind of data for the discrete particles:

time series for their positions and velocities. This experiment is the first laboratory

quantification of viscoelasticity in a strongly-coupled plasma.

In order to calculate η(k) for a dusty plasma, I must account for the effect of

gas friction acting on the particles. To do this, I generalize the expression for cal-

culating η(k) from the transverse current autocorrelation function (TCAF), which

is found by tracking random particle motion. I find that the TCAF exhibits an
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oscillation that is a signature of elastic contributions to viscoelasticity. I also find

that η(k) diminishes with increasing k, indicating that viscous behavior is gradually

replaced by elastic behavior as the scale length is reduced. This diminishment can

be modeled as ∝ (1+αk2)−1. To validate my method of analyzing the experimental

results, I also perform a simulation of a 2D Yukawa liquid.

The results in this chapter correspond to Y. Feng, J. Goree, and B. Liu,

“Viscoelasticity of 2D liquids quantified in a dusty plasma experiment,” Physical

Review Letters, Vol. 105, article number 025002 (2010).

5.1 Introduction to viscoelasticity

Two-dimensional (2D) physical systems include electrons on a liquid helium

surface [15], colloids [89], granular fluids [18], and dusty plasmas [11]. In experiments

and simulations, elastic properties, such as transverse waves [26, 97], and transport

properties, such as viscosity η [50, 98, 99], have been studied.

Viscoelasticity is a property of materials that exhibit both viscous and elastic

characteristics [51]. One usually thinks of viscous properties for liquids and elastic

properties for solids, but most materials are viscoelastic and exhibit both. These

include, for example polymers, human tissue, and hot metal [51]. In general, liquids

exhibit elastic effects especially at short length or time scales [52], but viscous effects

at long length or time scales.

To quantify viscoelasticity, one often uses the frequency-dependent viscosity

η(ω) [57, 100], which tends toward the static viscosity, η, as ω → 0. The η(ω) is

easily measured in three-dimensional (3D) liquids using rheometers and viscome-

ters [57, 100], but not in most 2D liquids.
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5.2 Wavenumber-dependent viscosity

Besides η(ω), the wavenumber-dependent viscosity, η(k), has been used by

theorists to quantify the viscoelastic character [58, 59, 60, 61, 62]. They have re-

cently developed ways of computing η(k) from the trajectories of random motion of

molecules [61, 62]. However, until now, there have been no experimental measure-

ments in any physical systems known to us of η(k) that exploit this new analysis

method. One difficulty in using this method in an experiment is that it requires, as

its inputs, the positions xi and velocities vi of N individual molecules or particles

as they move about randomly. In this chapter, I will use an experimental system,

dusty plasma, that allows observing these inputs directly.

Here I further develop a method for computing η(k), generalizing it for mul-

tiphase systems like dusty plasma. As was originally developed for 3D molecular

dynamics (MD) simulations, the method begins with computing the normalized

transverse current autocorrelation function [61, 62] (TCAF), which is defined as

CT (k, t) = 〈j∗y(k, 0) jy(k, t)〉/〈j∗y(k, 0) jy(k, 0)〉, (5.1)

where jy(k, t) =
∑N

i=1 vy
i (t) exp[ikxi(t)] is the transverse current, with the vector

k parallel to the x axis. Then, η(k) can be calculated [61, 62] through η(k)/ρ =

1/(k2 Φ), where Φ is the area under the normalized TCAF. This equation can be

derived, assuming that the viscosity is a valid transport coefficient, either from the

hydrodynamic Navier-Stokes equation or from linear response theory [62]. Here, I

generalize this equation using ∂j(r, t)/∂t − (η/ρ)∇2j(r, t) + νf j(r, t) = 0, a Navier-

Stokes equation that includes an additional frictional drag force νf j(r, t) due to a

second phase [50]. This equation is valid in both 2D and 3D systems. Following the

method of [62], I find

η(k)/ρ = ((1/Φ) − νf )/k
2. (5.2)

The detailed derivation is in the Appendix A.
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Here I will characterize viscoelasticity in an experiment two ways. First, as a

signature of elastic effects, I will detect oscillations in the TCAF [59, 61] for large

k, which is different from the monotonic decay of the TCAF [59] at small k due to

viscous behavior. Second, I will measure the diminishment of η(k) as k increases.

This diminishment occurs along with a relative increase of elastic contributions to

viscoelasticity, for large k.

5.3 Dusty plasma

Dusty (complex) plasma, is partially ionized gas containing micron-size par-

ticles of solid matter [11, 20, 86]. Particles have a charge Q and can be electri-

cally confined in a single horizontal layer where they self-organize with a structure

like a crystalline solid [86]. Coulomb repulsion is shielded with a screening length

λD [13, 101]. The elastic properties of the crystalline solid arise from interparticle

repulsion and can be characterized by the phonon spectrum for longitudinal and

transverse waves [94], which have a frequency close to the nominal 2D dust plasma

frequency ωpd [75]. The solid can be melted, to form a liquid, by applying laser

manipulation [82, 102].

Dusty plasmas are attractive for experimental quantification of viscoelastic

effects at a microscopic scale. As in colloids [89] and granular fluids [18], they allow

video microscopy to track the xi and vi of individual particles. They also provide

both elastic and viscous effects. The particles are immersed in a medium that is a

rarefied gas that does not overdamp particle motion, unlike colloids [89] with their

solvents.

In the literature of strongly-coupled plasmas, viscoelasticity has been studied

both theoretically [53, 54] and experimentally [55, 56]. Kaw and Sen introduced

viscoelastic coefficients in a generalized hydrodynamics model to describe the dy-

namics of strongly-coupled plasmas [53]. In a similar theoretical approach, Murillo
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generalized the viscosity coefficient by adding a viscoelastic relaxation time in a

hydrodynamic model of strongly-coupled plasmas [54]. This approach yielded a

viscoelastic Navier-Stokes equation [54]. A recent simulation [96] yielded results for

η(ω) or η(k), as measures of viscoelasticity, for 3D strongly-coupled plasmas.

Dusty plasma experiments, until now, have yielded descriptive presentations

of viscoelasticity [55] and demonstrations of the microscopic motion of particles

associated with viscoelastic response [56]. In experiments, the static viscosity has

been measured [50] and estimated from diffusion observations [21]. However, quan-

titative characterization of viscoelasticity, using η(ω) or η(k), is lacking from the

literature.

A challenge in dusty plasma experiments is that they do not allow direct

contact of the suspension with a container. Thus, the viscoelastic response cannot

be measured with a rheometer. I overcome this challenge by observing the random

particle motion and using Eq. (5.2) to compute η(k). I will do this with experimental

data, and confirm my interpretation using a simulation.

5.4 Experiment

Using the apparatus of [31], a plasma was powered by 13.56 MHz, 170 V peak

to peak voltages. After the 8.1 µm diameter microspheres were introduced into the

plasma (which had an Argon pressure of 14 mTorr), they experienced a damping

rate of νf = 2.4 s−1 [14].

The particles were suspended in a single layer. They self-organized in a trian-

gular lattice [86]. Particle motion was essentially 2D, with negligible out-of-plane

displacements. The suspension had a diameter ≈ 52 mm and contained > 5400 par-

ticles. The lattice constant b = 0.67 mm corresponds to a Wigner-Seitz radius [75]

a = 0.35 mm.

Particle tracking was done by imaging from the top. For each of four runs,
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Figure 5.1: Particle trajectories in a 2D liquid, with color representing time. To
illustrate the random particle motion, (a) shows ≈ 10% of the spatial region I
analyzed, for a duration 60 ω−1

pd which is about ≈ 10% of one movie, i.e., one run in
the experiment, while (b) is a part of a Langevin MD simulation, shown over the
same time interval.

20 s videos were recorded at 250 frames/s, providing adequate time resolution for

the TCAF. The (36.2 × 22.6) mm2 field of view (FOV) included ≈ 2100 particles.

I recorded the maximum 5061 frames per run allowed by the 12-bit Phantom v5.2

camera, with a lens that provided a resolution of 0.03 mm/pixel. For each video

frame j, I computed [103] the position of the ith particle, x̃i,j . To compute jy(k, t),

I used xi,j = (x̃i,j−1 + x̃i,j + x̃i,j+1)/3 and vy
i,j = (ỹi,j+1 − ỹi,j−1)/2δt. This finite-

difference method reduced errors arising from the high frame rate. Examples of

particle trajectories from the experiment are shown in Fig. 5.1(a). Next, I computed

jy(k, t) and smoothed its time series over five frames before calculating the TCAF,

Eq. (5.1), and finally η(k), Eq. (5.2).

Before melting the suspension, I used the phonon-spectrum method for a

lattice [94] to measure Q/e = −6000, κ0 = a/λD = 0.5, and ωpd = 30 s−1. After

melting, I determined T from the mean-square velocity fluctuation [86] yielding

Γ = (Q2/4πε0a)/(kBT ) = 68.

I melted the lattice and maintained a steady kinetic temperature T using laser

manipulation [31, 82]. Random kicks were applied by radiation pressure from a
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pair of 532-nm laser beams that were rastered across the suspension in a Lissajous

pattern with frequencies fx = 48.541 Hz and fy = 30 Hz. This pattern filled a

rectangle larger than the camera’s FOV. Along with the desired random motion,

the Lissajous heating method also produces coherent modes [82], which had about

8% of the total kinetic energy for motion in the y direction, similar to [31]. I

analyzed half of the FOV, where the temperature was uniform within extremes of

±20%.

5.5 Simulation

Since this is apparently the first experiment to make use of the TCAF to

measure η(k), I performed a Langevin MD simulation [87, 104, 105, 106] of a 2D

Yukawa liquid to mimic my experiment. Using periodic boundary conditions and

4096 particles, the equation of motion Eq. (3) of [87] was integrated, yielding particle

trajectories, Fig. 5.1(b). The simulation parameters Γ = 68, κ0 = 0.5, and νf/ωpd =

0.08 match the experimental values. To improve statistics, the simulation was run

much longer, ωpdt = 22 300, than the experiment ωpdt = 607. To validate my

Langevin MD simulation, I also performed a frictionless MD simulation [98] and

calculated η(k) as in Eq. 5.2 but with νf = 0; I found that the results for η(k) for

the two types of simulations agree. In addition to computing η(k), I also computed

the static viscosity η using the Green-Kubo relation, Eq. (3) of [98]. The latter

assumes that the shear-stress autocorrelation function decays significantly faster

than 1/t, which I verified.

5.6 Results

Experimental results for the TCAF, Fig. 5.2(a), reveal elastic properties in

the viscoelastic regime for this liquid. The TCAF computed from Eq. (5.1) ex-

hibits an initial decay followed by oscillations around zero [59, 61], for kb = 3.26
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Figure 5.2: Transverse current autocorrelation function (TCAF) in the 2D liquid
computed using Eq. (5.1) for (a) the experiment at kb = 3.26, and (b) the Langevin
MD simulation at kb = 3.28. At short times, the TCAF decays due to viscous effects,
while at longer times (after its first positive zero crossing, tI) it oscillates due to
elastic effects. The frequency spectrum for each TCAF, shown in the insets, reveals
a peak that is a signature of the elastic contribution to viscoelasticity. These results
are different from the pure monotonic decay of TCAF and its spectrum that would
be observed in a purely viscous regime. (Here, b is the lattice constant measured
before melting.)
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in Fig. 5.2(a). Such oscillations typically indicate that the selected wavenumber

corresponds to the viscoelastic regime. The TCAF is a time series; I also calculate

its frequency spectrum, shown in the inset of Fig. 5.2(a). (This frequency spectrum

can also be used in generating a phonon spectrum [52]). The spectrum features a

prominent peak at non-zero frequency. This peak is a signature of shear elasticity;

it would be absent in a viscous regime. To my knowledge, the TCAF time series

has not previously been reported for dusty plasma experiments as an indicator of

viscoelasticity.

Simulation results, Fig. 5.2(b), exhibit features in the TCAF and its spec-

trum [59] similar to those in the experiment. This agreement between experiment

and simulation lends confidence to my use of the TCAF as a quantitative indicator

of viscoelasticity in an experimental system.

For wavenumbers much smaller than those shown in Fig. 5.2, i.e., for very

long wavelengths, I would expect viscous behavior characterized by a simple decay

of the TCAF with no oscillations. This hydrodynamic regime has been well studied

in simulations and theory [77]. Observing it requires a sufficiently large system.

One of the attractions of my physical system is that it allows direct observation of

motion at an atomistic scale. Thus, I use it here to observe the viscoelastic regime

(at small wavelengths), not the purely viscous hydrodynamic regime.

As my chief result, my experimentally measured wavenumber-dependent vis-

cosity, η(k), is presented quantitatively in Fig. 5.3(a). I observe that η(k) diminishes

as k increases. Physically, this trend indicates that dissipative or viscous effects di-

minish at shorter length scales. At these shorter length scales, elasticity has a

greater effect.

Since previous experiments are not available for quantitative comparison, I

compare my experimental results to the Langevin simulation, Fig. 5.3(b). I note
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Figure 5.3: The wavenumber-dependent viscosity η(k) of the 2D liquid, computed
using Eq. (5.2) for (a) the experiment and (b) simulations of two sizes. I find that
η(k) diminishes with k, which is a signature of viscoelastic effects. The size of
the smaller simulation mimics the size of the experiment; comparing them reveals
that the scatter of the experimental data (a) arises from the data size. In (b), the
Green-Kubo (static) viscosity η is indicated by a star symbol. Here, the kinematic
viscosity η(k)/ρ and wavenumber k are normalized to be dimensionless.
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that η(k) exhibits the same downward trend and similar quantitative values in the

experiment and the simulations. For both the experiment and simulation, I present

results for η(k), computed using Eq. (5.2), for the viscoelastic regime, i.e., k > 1/b.

For each k, the infinite time limit for the integration of Φ was replaced with tI ,

the time of the first upward zero-crossing of TCAF time series (Fig. 5.2). This

integration limit retains both the viscous effects at short time and the elastic effects

within the first negative peak.

Noise in the experimental results arose from the finite amount of current data

used to compute the TCAF. To verify that this accounts for the scatter in the

experimental η(k) in Fig. 5.3(a), I repeated the simulation with a shorter time,

matching the experiment not only in duration but also in particle number. This

test shows, in Fig. 5.3(b), that scatter arises from the finiteness of the jy(k, t) data

to the same extent as in the experiment. In both the experiment and in the shorter

simulation, a few TCAF curves were too noisy to analyze, with a lack of a well-

defined upward zero-crossing; the corresponding few data points are omitted from

Fig. 5.3.

I fit η(k) in Fig. 5.3 to the same empirical Padé approximant used originally for

MD simulations of 3D liquids of hard spheres [58] and water [61]. This approximant,

η(k) ∝ (1 + αk2)−1, apparently has never been applied for 2D liquids. I found that

this form fits both my experimental and simulation data in Fig. 5.3 as well as the

scatter allows. However, a simple power law does not fit the η(k) data as well.

In addition to finding that my η(k) fits the Padé approximant, I also find in

Fig. 5.3(b), that it extrapolates as k → 0 to the static viscosity η [61]. In this test, I

found η using the Green-Kubo relation [98] with my Langevin simulation; and this

result, shown as a star in Fig. 5.3(b), agrees with previous simulations that used

different methods [98, 99].
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5.7 Conclusion

In conclusion, I performed an experiment to quantify viscoelasticity of 2D

liquids using the TCAF and η(k). I did this using measurements of random particle

motion in a dusty plasma, which is a frictional system. I generalized a method

of calculating η(k) by including the friction in the Navier-Stokes equation; and I

presented an experimental demonstration of this method. My experimental results

for η(k) show that it diminishes with increasing k that can be modeled as ∝ (1 +

αk2)−1, which compares well with simulation results.
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CHAPTER 6

DUSTY PLASMA RELAXATION AND MELTING STUDIED USING
THE INTERMEDIATE SCATTERING FUNCTION

In this chapter, I report numerical simulations of random particle motion in

strongly-coupled plasmas. Because of the importance of discrete particle effects, in-

cluding motions with respect to nearby particles, strongly-coupled plasmas are best

modeled using particle simulations. Unlike weakly-coupled plasmas, however, which

can be modeled by particle simulations such as PIC (particle-in-cell) codes, strongly

coupled plasmas have a much smaller number of particles in a Debye sphere and

are dominated by Coulomb collisions. Therefore, instead of using a PIC simulation,

I use a simulation that does not aggregate physical particles into synthetic super-

particles, or employ grid-like smoothing techniques to eliminate the electric fields

associated with Coulomb collisions. I use the molecular-dynamics (MD) method,

which is simply an integration of the equation of motion for each discrete particle

along with a precise calculation of the interparticle electric forces. My MD simula-

tions are performed two ways: without external friction, and with friction to mimic

gas drag in a dusty plasma.

At the microscopic scale of discrete particles, a weakly-coupled plasma is al-

most random like an ideal gas, and it can relax almost immediately from its previous

state. However, a strongly-coupled plasma has a memory of the previous positions

of individual particles with respect to their neighbors, due to the dominant role

of Coulomb interparticle interactions. Here, I use a quantitative measure of the

relaxation that is common in other fields such as condensed matter physics. This

measure is the self-intermediate scattering function (self-ISF), which is a dynamical

measure of random motion that requires for its calculation a time series of particle

positions that is provided by the MD particle simulation.
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Two problems are studied: relaxation in liquids and the solid-liquid phase

transition. Relaxation is characterized by the temporal decay of the self-ISF, which

I find can be fitted to a stretched exponential. A scaling of the relaxation time

with wavenumber is found, and this scaling is shown to be useful for distinguishing

normal and anomalous diffusion. (This kind of anomalous diffusion is different

from the anomalous transport mechanisms that often take place in magnetized

weakly-coupled plasmas, due to turbulence for example.) Friction has little effect

on relaxation except for high levels of frictional dissipation, where the effect is a

retardation of relaxation. The solid-liquid phase transition is usually identified

by measures of structure, but here the self-ISF, which is a dynamical measure, is

demonstrated to be a sensitive indicator of the phase transition.

The results in this chapter correspond to Y. Feng, J. Goree, and B. Liu, “Dusty

plasma relaxation and melting studied using the intermediate scattering function,”

Physical Review E (submitted, 2010).

6.1 Introduction

Dusty plasma is partially ionized gas containing micro-sized particles of solid

matter [86]. In a plasma [86], the sheath above a lower electrode has electric fields

that can levitate and confine highly charged particles, so that they are suspended.

When only a single layer is suspended, the interaction between dust particles is

a repulsive Yukawa potential [13]. Video microscopy allows imaging this two-

dimensional (2D) suspension at an atomistic scale, so that I can track particles

and measure their individual positions and velocities in each video frame, yielding

the same kind of data as the molecular dynamics (MD) simulations, reported here.

Particles self-organize in a crystal-like triangular lattice with hexagonal sym-

metry due to strong interparticle interaction. In this strongly-coupled plasma, the

Coulomb interaction with nearest neighbors is so strong that particles do not easily
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move past one another [7]. In many experiments, the particles occupy only a sin-

gle horizontal layer, and are described as 2D experiments [55, 82, 86, 93, 94, 107].

Dusty plasma is a driven-dissipative system [86], and its kinetic energy is deter-

mined by the balance of the energy input and dissipation. As the driven en-

ergy input increases, the lattice becomes disordered in a solid-liquid phase tran-

sition [19, 20, 23, 32, 82, 86, 92].

Random particle motion in dusty plasmas can be divided into several stages.

Ballistic motion [31] occurs on a short time scale < ω−1
pd , while caging oscilla-

tions [108] happen on a typical time scale of 10 ω−1
pd . Here ωpd is the nominal

plasma frequency [75]. At later times, particles can escape their cages and diffuse.

A current research topic that has not been resolved is whether this long-time random

motion is normal diffusion or anomalous diffusion. Experiments [31, 109] and sim-

ulations [104, 110, 111] with these 2D systems have indicated superdiffusion, where

the mean-square-displacement (MSD) increases with the time more rapidly than

linear scaling, but other simulations suggest that motion may be normal diffusion

at sufficiently long times [106].

Data analysis methods used to study phase transitions and random motion

are generally grouped in two categories: static and dynamic. In dusty plasma ex-

periments and Yukawa MD simulations, attempts to identify phase transitions have

mostly employed only structural measures, such as Voronoi diagrams and correlation

functions for particle distance and angular orientation [19, 20, 23, 32, 73, 82, 86, 92].

Identifications of normal diffusion and superdiffusion have typically made use of dy-

namical measures: MSD time series, the PDF (probability distribution function) for

particle displacements, and the velocity autocorrelation function [104, 106, 110, 111].

Here I will use a different dynamical analysis tool: the intermediate scattering func-

tion. I will use it to study both phase transitions and random motion.
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The intermediate scattering function (ISF) [63], which has been used widely

in other fields, is defined in terms of the particle trajectories:

F (k, t) =
1

N

∑

i

∑

j

〈exp(−ik · [ri(t) − rj(0)])〉. (6.1)

Here, ri(t) is the trajectory of the ith particle in the system consisting of N particles.

The Fourier transform variable k is usually called a wavenumber, although no waves

are studied using this method. Equation (6.1) makes use of an ensemble average

〈· · ·〉, which in practice is done by averaging for various initial starting times in

place of t = 0. If the particle trajectories are known, then the ISF can be calculated

directly using Eq. (6.1). This is the method I will use, as has been done previously

in some experiments [64, 65] and MD simulations [66, 67, 68] for systems other

than dusty plasmas. Besides starting from measurements of particle trajectories,

other experimental methods of finding the ISF have been devised for colloids [112],

supercooled liquids [113], and polymer nanocomposites [114]. In these experiments,

the ISF was determined from data produced by dynamic light scattering [112], x-ray

photon correlation spectroscopy [114, 115], or neutron spin echo spectroscopy [113,

77].

In Sec. 6.2, I will review the ISF method briefly. In Sec. 6.3, I will introduce my

two MD Yukawa simulation methods: Langevin and frictionless. They will model

a 2D dusty plasma. In Sec. 6.4, I will present results for the two physical processes

studied here: relaxation in liquids and the melting phase transition.

6.2 Self-intermediate scattering function

Here I review the ISF, defined in Eq. (6.1), which is also called the density-

density correlation function [116]. As mentioned in Sec. 6.1, the particle trajectories

are the only required input data for calculating the ISF.

The ISF is composed of two parts [77, 117], F (k, t) = Fs(k, t) + Fc(k, t). The
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most commonly used part is Fs(k, t), which is often called the incoherent part, or

the self-ISF:

Fs(k, t) =
1

N

∑

i

〈exp(−ik · [ri(t) − ri(0)])〉. (6.2)

The less commonly used part is Fc(k, t), which is called the coherent part:

Fc(k, t) =
1

N

∑

i6=j

∑

j

〈exp(−ik · [ri(t) − rj(0)])〉. (6.3)

The self-ISF, Fs(k, t), is a measure of single-particle dynamics as a function

of time. This makes it comparable to the MSD and PDF, which are also computed

from the trajectories of individual particles. Thus, the self-ISF can be used to study

some of the same physical phenomena as MSD and PDF, such as random motion and

the related idea of relaxation [65]. If random motion consists of normal diffusion, as

for example with Brownian motion with a diffusion coefficient D, then [64, 65, 117]

Fs(k, t) ' exp(−Dk2t). (6.4)

In Sec. 6.4.1.2, I will generalize Eq. (6.4) for the case of anomalous diffusion, such

as superdiffusion.

The self-ISF, Eq. (6.2), is often used by itself, without reporting the coherent

part, Eq. (6.3). This is a common practice with particle trajectory data from

experiments [64, 65] and MD simulations [66, 67, 68] for various physical systems.

Here, I will also use only the self-ISF for my Yukawa simulations of dusty plasmas.

A graph of the self-ISF typically reveals two stages of random motion. I

illustrate this in Fig. 6.1 with a sketch of Fs(k, t) for a liquid that is not supercooled.

Caging motion is indicated at short times. This early part of the curve is sometimes

termed the fast β relaxation. Diffusive motion is indicated at long times, as particles

gradually escape their cages [65]. In this later part of the curve, sometimes termed

α relaxation, Fs(k, t) gradually decays toward zero. This decay is sometimes fitted
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Figure 6.1: A typical example of the self-intermediate scattering function (self-ISF)
for a normal liquid. Relaxation happens in two steps: early-time caging motion,
and long-time diffusive motion. The self-ISF curve is often modeled by Eq. (6.5).

to a stretched exponential [79]:

Fs(k, t) = exp[−(t/τ(k))β(k)], (6.5)

where τ(k) is a relaxation time. (Note that this use of the symbol β has no relation

to the β relaxation.)

In this chapter I will calculate the self-ISF from trajectory data for random

motion in 2D Yukawa simulations. To characterize random motion, I will fit the self-

ISF to Eq. (6.5), yielding τ and β. Both of these fitting parameters are generally

functions of k. I will then search for a scaling law for τ(k). Additionally, I will

discuss the physical processes indicated when β differs from unity.
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6.3 Simulation

6.3.1 Parameters

Equilibrium Yukawa systems can be classified by the values of the coupling

parameter Γ and the screening parameter κ [118, 119]. Here, Γ = Q2/(4πε0akBT )

and κ ≡ a/λD, where Q is the particle charge, T is the particle kinetic temperature,

λD is the screening length, a ≡ (nπ)−1 is the Wigner-Seitz radius [75], and n is the

areal number density. Another length scale is the lattice constant b for a defect-free

crystal, which is b = 1.9046 a for a 2D triangular lattice.

My two simulation methods are the same in many aspects. Both simulation

methods use a binary interparticle interaction with a Yukawa pair potential,

φi,j = Q2(4πε0ri,j)
−1exp(−ri,j/λD), (6.6)

where ri,j is the distance between the ith and jth particles. In both simulations,

particles are only allowed to move in a single 2D plane. Conditions remained steady

during each simulation run. For both simulations, the parameters I used were

N = 16 384 particles in a rectangular box with periodic boundary conditions.

The box had sides 137.5 b × 119.1 b. I truncated the Yukawa potential at radii

beyond 12 b [87]. The integration time step was 0.037 ω−1
pd , and simulation data were

recorded for a time duration of 1777 ω−1
pd in after the system reached its steady state.

Other simulation details are presented in [87, 110]. I report results with distances

normalized by b, while time (and frictional damping rate ν) are normalized using

the nominal plasma frequency ωpd = (Q2/2πε0ma3)1/2 [75], where m is the particle

mass.

I will next review the two simulation methods. They differ mainly in the

equations of motion that are solved.
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6.3.2 Langevin MD simulations

My Langevin MD simulations take into account the dissipation due to fric-

tional gas damping. The Langevin equation [87, 104, 105, 106, 110, 111] of motion

for each particle is

mr̈i = −∇
∑

φij − νmṙi + ζi(t). (6.7)

Trajectories ri(t) are found by integrating Eq. (6.7) for all particles. Terms on the

right-hand side include a frictional drag νmṙi and a random force ζi(t). Note that

I retain the inertial term on the left-hand-side in Eq. (6.7), unlike some Brownian-

dynamics simulations of overdamped colloidal suspensions [120], where it is set to

zero.

My Langevin simulations mimic 2D dusty plasma experiments [86], but the

driven-dissipation mechanism is only an approximation of the processes in experi-

ments [87]. In my Langevin simulation, the heating and friction are explicitly cou-

pled by the fluctuation-dissipation theorem [121, 122]; this models collisions with

gas atoms that provide both frictional drag and random kicks. However, besides

random kicks from gas atoms, in dusty plasma there are some additional heating

mechanisms arising from ion flow and sometimes external laser manipulation [86, 87]

that are not explicitly modeled in my Langevin simulations.

6.3.3 Frictionless equilibrium MD simulations

In addition to my Langevin MD simulations which include friction, to ob-

tain results in the frictionless limit, I also performed frictionless equilibrium MD

simulations [110]. The equation of motion is

mr̈i = −∇
∑

φij , (6.8)

which I integrate for all particles. A Nosé-Hoover thermostat is applied to maintain

a desired temperature [110].
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This MD simulation method describes a frictionless atomic system. The par-

ticles collide among themselves, without any interaction with gas or other external

influences. It mimics thermal equilibrium conditions.

There are two parameters I can change in the frictionless MD simulations: Γ

and κ. In the Langevin simulations, I can also vary ν. Varying Γ and κ is equivalent

to varying temperature and density, and I will vary them over a range that allows

us to simulate liquids or solids.

My method is to generate trajectories ri(t) for all particles by integrating

Eq. (6.7) or (6.8), and then to compute the self-ISF using Eq. (6.2). The self-ISF

is a time series. I repeat its calculation for various wavenumbers, k.

6.4 Results and discussions

I present results for two physical processes. First, I report the relaxation of

the self-ISF for random motion in a liquid. I repeat this for different length scales

by varying the wavenumber k. Second, I test whether the self-ISF can serve as a

sensitive indicator of the phase transition between solid and liquid. All of these

results are for steady conditions.

6.4.1 Relaxation and scaling

For random motion, the term “relaxation” refers to a gradual movement of

particles from their previous positions, e.g., diffusion. This is indicated by the self-

ISF, Fs(k, t), which begins at unity at t = 0, and then relaxes gradually to zero

as t → ∞. The relaxation rate in general depends on the scale length, which is

parameterized here by k. Using the terminology of other users of the self-ISF [65,

123], the early stage of decay is termed β relaxation; during this early time particles

are mainly trapped within their cages formed by nearest neighbors. The later stage

is termed α relaxation, and this corresponds to diffusive motion as particles decage.
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The term “decaging” refers to a particle’s movement so that it is no longer trapped

by the previous nearest neighbors. In a liquid, particles decage much more rapidly

than in a solid, so that this β relaxation is much faster in liquids than solids.

6.4.1.1 Results for self-ISF
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Figure 6.2: Time dependence of the self-ISF for various wavenumbers (k) for the
Langevin molecular dynamics (MD) simulation in the liquid regime: Γ = 200, κ = 2
and ν/ωpd = 0.027. The solid lines are the corresponding fits to Eq. (6.5).

Relaxation results from my Langevin simulations are presented in Fig. 6.2

for typical liquid conditions far from the phase transition. Curves are shown as

functions of time for various values of k. Note the smooth and gradual decay from

unity to zero as time increases, without any plateau. The lack of a plateau in the

time-variation of the self-ISF is similar to what is seen in granular flows [64, 65],

but different from what is expected for supercooled liquids and glasses (cf. Fig. 3

of [123]).
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To help quantify the relaxation that is observed in Fig. 6.2, I fit the time time-

dependence of the self-ISF to the empirical form Eq. (6.5). Since the relaxation

process spans many decades of time, to perform this fit without biasing results

toward long times, data points were sampled from the simulation results at time

intervals equally spaced on a logarithmic scale. For a liquid far from the phase

transition, Eq. (6.5) (shown as solid lines in Fig. 6.2) fits my simulation data points

well. The two free parameters for the fit, τ(k) and β(k), help quantify the relaxation

process. I discuss their physical significance below.

6.4.1.2 Searching for anomalous diffusion

I develop two tools for identifying anomalous diffusion. Previous investigators

have usually used the MSD, looking for a scaling with time that differs from the

MSD ∝ t scaling expected for normal diffusion [31, 104, 106, 109, 110]. Data are

typically fit to the form

〈r2(t)〉 = 4D tα, (6.9)

where α = 1 is the case of normal diffusion, α > 1 is superdiffusion, and α < 1

is subdiffusion. (This use of the symbol α has no relation to the α relaxation

mentioned above.) Here I introduce two other tools that are also based on how

random motion develops with time: the scaling with τ vs. k, and the value of β,

where τ and β are the fitting parameters for Eq. (6.5).

My first new tool is the power-law scaling of the fitting parameter τ as com-

pared to k. To do this, I must first generalize Eq. (6.4) to allow for anomalous

diffusion. Starting from Eq. (6.2), previous authors [117, 124] have demonstrated

that

Fs(k, t) ' exp(−
k2〈r2(t)〉

4
), (6.10)

where I have substituted 4 in place of 6 in the denominator for two dimensions
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instead of three. Next, I substitute Eq. (6.9) in Eq. (6.10), yielding

Fs(k, t) ' exp(−k2Dtα) = exp(−D(k2/αt)α). (6.11)

Examining the argument on the right-hand-side reveals the scaling

τ ∝ k−2/α. (6.12)

In the case of normal diffusion, α = 1, the scaling is τ ∝ k−2, as previous authors

have noted [64, 65, 117]. Here, I note that the superdiffusion case α > 1 has τ

varying with a lesser power. Thus, the signature of superdiffusion will be a slope

weaker than −2 when τ is plotted vs. k using log-log axes.

My second new tool is the fitting parameter β for the self-ISF. Comparing

Eq. (6.5) and Eq. (6.11), I see that the value of β is essentially the same as α. The

only difference is that when using actual data, the value of β is generated by a fit,

while α is generated by examining a log-log plot. The community of scientists who

use the self-ISF traditionally use β, although until now it has not been used as an

indicator of superdiffusion. Scientists who use MSD to characterize superdiffusion,

on the other hand, traditionally use α.

6.4.1.3 Results for fitting self-ISF

For the conditions of a liquid far from the phase transition, I use my two tools

(scaling of τ vs. k and value of β) to test for anomalous diffusion. I use my two

MD simulations, Langevin and frictionless. Ott and Bonitz [106] previously varied

the values of friction ν and observation time over wide ranges, and using the MSD

method prepared a diagram showing the conditions that favor normal diffusion or

superdiffusion. This diagram, Fig. 3 of [106], predicts that the value of ν which I

use in my Langevin simulation will yield normal diffusion, while the ν = 0 case of

my frictionless simulation will yield superdiffusion over any reasonable observation

time. Here I test whether my two cases, analyzed using my two new tools, yield the
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same conclusion as in [106].
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Figure 6.3: The fitting parameters, relaxation time τ in (a) and exponent β in (b),
as a function of k. These cross symbols are from fitting the data in Fig. 6.2 for
the Langevin MD simulation, and the circle symbols are for the frictionless MD
simulation for the same Γ = 200, κ = 2.

For the τ vs. k scaling, in Fig. 6.3(a) I find the scaling τ ∝ k−2 for the
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Langevin MD simulations, and the scaling of τ ∝ k−γ (γ < 2) for the frictionless MD

simulations. In other words, random motion is diffusive for my frictional (Langevin)

case, but superdiffusive for my frictionless case. This is in quantitative agreement

with Fig. 3 of [106], prepared using MSD curves, which demonstrated that friciton

can inhibit superdiffusion [104, 106].

For β, in Fig. 6.3(b) I find values near unity for my Langevin simulation,

but a value definitely > 1 for the frictionless simulation, for moderate values of k.

This is again consistent with the conclusion of diffusive motion for my frictional

(Langevin) case, but superdiffusive motion for the frictionless case. At extremely

small or large values of k, however, β can be different. Figure 6.3(b) reveals an

overall trend for β to increase with k, especially at extremely small or large values

of k. Previous authors [64, 65] have identified dynamic heterogeneities as the cause

for β < 1 for very small k, i.e., very large length scales. For large k, previous

authors have not reported enhanced values of β like those I see in Fig. 6.3(b). One

possible interpretation of my large k observation is that it affected significantly

by caging motion rather than random walks associated with decaging in the short

length scales.

To summarize, I find that the relaxation of the self-ISF is a sensitive indicator

to distinguish normal diffusion from anomalous diffusion. The indication can be

made using either of the two fitting parameters, τ and β.

6.4.2 Phase transition

Simulation studies of the solid-liquid phase transition, which is sometimes

called an order-disorder transition, are generally done using measures of structural

order, such as defects or correlation functions of particle position or bond orienta-

tion. A limitation of structural measures is that they do not clearly distinguish a

supercooled liquid from a liquid above the melting point, because they have nearly
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the same microscopic structure. This difficulty suggests a need for an indicator of

the phase transition that is based on particle dynamics rather than structure.

My first goal, for phase transitions, is to test the use of the self-ISF as an

indicator of the phase transition. I perform tests that indicate that it is sensitive

in distinguishing solids and liquids near the phase transition. This development is

useful because the self-ISF is based on dynamics rather than structure. My second

goal is to determine what role friction plays in the phase transition. I will vary

temperature and density, using the normalized quantities Γ and κ, and I will also

vary the friction ν, to determine whether the self-ISF is sensitive to phase, and what

role friction plays.

6.4.2.1 Dependence on Γ
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Figure 6.4: The self-ISF for the length scale corresponding to the lattice constant,
k = 2π/b. Results shown are for the Langevin MD simulations with constant values
of κ = 1.2 and ν/ωpd = 0.027, and varying Γ. A transition near Γ = 200 is
indicated by a change in the curve’s shape, and by larger gaps between curves for
solids, Γ > 200.
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I find that the self-ISF time series undergoes a sudden change at the melting

point. This is seen for the self-ISF in Fig. 6.4 for my Langevin simulation. Here,

I have chosen to present results for a small wavenumber ka = 2π/b, which is the

wavenumber corresponding to a lattice constant so that the self-ISF indicates dy-

namics at the length scale of nearest neighbors. As I varied Γ in Fig. 6.4, I held

κ = 1.2 and ν/ωpd = 0.027 as constants.

I note two features of the self-ISF curves in Fig. 6.4 that are different on either

side of this sudden change. First, the gap between curves is much wider for low

temperature (high Γ) conditions in the upper right of the figure as compared to

the high temperature conditions in the lower left. I varied Γ in small steps near

Γ = 200, where I find the sudden change in the gaps between the self-ISF curves.

Second I identify a different shape for the decay of the self-ISF for low and high

temperatures. For the high temperature (low Γ) conditions expected for liquids I

found, in Sec. 6.4.1, that the self-ISF decays according to the empirical law Eq. (6.5),

but for low temperatures I found that Eq. (6.5) does not come even close to the

shape of the curves in the upper right of Fig. 6.4.

Comparing to previous simulations that used structural measures, I can con-

firm that the sudden change in the self-ISF curve corresponds to the phase transi-

tion. Using a measure of local orientation order that exhibited a large jump at the

phase transition, a phase transition curve for Γ vs. κ was reported, Fig. 6 in [73].

Interpolating their results, I find that the phase transition occurs at about Γ = 200,

for κ = 1.2, for a 2D Yukawa system modeled with a frictionless MD simulation.

This result is consistent with the sudden change that I observed in my self-ISF

curves for κ = 1.2 in Fig. 6.4: first, the curve’s shape is changed; second, the curves

are narrowly spaced for liquids (Γ < 200) and widely spaced for solids (Γ > 200).

(One difference in the simulations of [73] and mine is my use of friction comparable
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to values in 2D dusty plasma experiments. I will explore the role of friction in

Sec. 6.4.2.4.)

Thus, I conclude that the self-ISF curve is very sensitive to phase. It shows

promise to become a reliable indicator of the phase transition, although further tests,

for different physical parameters, would be needed to confirm its reliability. An

attraction of this method is that the self-ISF is a dynamical rather than structural

measure.

6.4.2.2 Dependence on κ

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

time /t 0.743 wpd
-1( )

k=0.5
k=1
k=1.2
k=1.5
k=2
k=2.5
k=3
k=3.5
k=4

increasing k

F
( 

  
,t
)

s
2

p b

Figure 6.5: The self-ISF at k = 2π/b, as in Fig. 6.4 but with varying κ. The
simulations here are all Langevin MD simulations with constant values of Γ = 200
and ν/ωpd = 0.027. A transition near κ = 1.2 is indicated by a change in the curve’s
shape, and the gaps between curves.

Varying only the density or κ, I again find the same two results as for varying

Γ. There is a sudden change in the gaps between curves, and the curves take

a different shape at a point that I can identify as the phase transition. This is
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seen in Fig. 6.5, where I changed κ in my Lengevin simulations with Γ = 200 and

ν/ωpd = 0.027. The transition occurs at κ = 1.2, which is consistent with Fig. 6

in [73].

6.4.2.3 Structure relaxation time

I investigate how rapidly disorder develops on the length scale of a cage, i.e.,

the interparticle spacing b. I will test whether it occurs with an Arrhenius or Vogel-

Fulcher law as in other complex fluids such as colloids [125], granular materials [65],

supercooled liquids and glasses [126]. I carry out this investigation by characterizing

a decay time for the self-ISF. I could use the fit parameter τ(k) from Eq. (6.5), but

for simplicity, rather than fitting the self-ISF, here I will adopt the practice of other

authors of measuring the time required for the self-ISF to decay by a factor of

1/e [125, 126]. This is done only for k = 2π/b, corresponding to the length scale of

a cage. This 1/e decay time, denoted here as τ2π/b, is called the “structure relaxation

time,” and is in principle the same as τ if β = 1.

Results for the structure relaxation time τ2π/b for the curves of Figs. 6.4,

and 6.5 are shown in Fig. 6.6, revealing how τ2π/b varies with temperature and

number density. As the normalized temperature 1/Γ increases, the system melts

and τ2π/b decreases about one order of magnitude. Melting also occurs as κ is

increased. Plotting τ2π/b vs. number density, in the inset of Fig. 6.6(b), I note a

nearly linear scaling in the liquid regime.

The scaling I observe for τ2π/b vs. number density is different from the Arrhe-

nius and Vogel-Fulcher laws. The Vogel-Fulcher law, which has been found empir-

ically for other complex fluids [65, 125, 126], has τ2π/b diverging to infinity as the

number density increases toward the phase transition point. Here, τ2π/b increases

about an order of magnitude near the phase transition, but it does not diverge.
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Figure 6.6: Structure relaxation time measured from Figs. 6.4 and 6.5 as a function
of (a) temperature and (b) screening parameter κ. The structure relaxation time
in my 2D underdamped Yukawa system does not obey the Arrhenius law or Vogel-
Fulcher law. The same data are plotted in the inset as a function of number density
1/κ2, for the liquid regime.

6.4.2.4 Dependence on ν

I find that friction also plays an important role in the random motion of 2D

Yukawa liquids, but only at large damping rate. This result is shown in Fig. 6.7
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Figure 6.7: The self-ISF at k = 2π/b for the simulations at different damping rate
ν. The simulations here include both Langevin MD simulations and frictionless MD
simulations in a liquid regime, with constant values of Γ = 200 and κ = 3. Unlike
temperature and number density, changing the friction does not significant change
the shape of the curves. The effect of friction in the self-ISF curves is a retardation
of the decay at higher damping rate.

where I varied ν while holding Γ and κ constant in a liquid regime. I observe

that the self-ISF curves all lie on top of one another for ν/ωpd . 0.03, but not at

higher damping rates where they decay more slowly as ν is increased. The curves

at higher damping rates have the same general shape, but are retarded in time. For

the limiting case of no friction, I also include in Fig. 6.7 results for my frictionless

equilibrium MD simulation, and these agree with the Langevin simulation for low

friction ν/ωpd . 0.03.

I interpret the difference in the Fs(ka, t) curves at various damping rates as

indicating retardation of diffusive motion at high friction levels. At higher damping

rate, the random motion of particles is resisted, then more energy is dissipated

locally. As a result, the collective relaxation, which refers to the diffusive motion,
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will be retarded.
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CHAPTER 7

ACCURATE PARTICLE POSITION MEASUREMENT FROM
IMAGES

Dusty plasma experiments are distinguished by a unique diagnostic: direct

imaging of all discrete particles in the plasma. This capability is important for the

study of strongly-coupled plasmas because they must be understood at the level of

discrete particles due to the dominant pairwise Coulomb interaction of particles.

After an image is recorded, showing hundreds or thousands of particles, the x − y

coordinates of a particle position can be calculated using the moment method, which

is an image analysis technique for sub-pixel estimation of particle positions. The

total error in the calculated particle position includes effects of pixel locking and

random noise in each pixel. Pixel locking, also known as peak locking, is an artifact

where calculated particle positions are concentrated at certain locations relative to

pixel edges.

After calculating a particle’s position, I calculate its velocity as the displace-

ment of the particle in two consecutive frames divided by the time interval between

frames. Additionally, I can compute a time series of a particle’s velocity v(t) by

tracking its motion over many consecutive pairs of frames. This method is called

particle tracking velocimetry (PTV). As compared to methods used for measuring

weakly-coupled plasmas, this method quantifies plasma dynamics at the level of

discrete particles. In the fields of fluid mechanics and condensed matter physics,

these methods of imaging are sometimes termed “video microscopy,” which pro-

vides a capability to perform experimental simulation of condensed matter at an

“atomistic scale.”

In this chapter, I report calculations to gain an understanding of the sources

of error and their dependence on parameters that the experimenter can control. I
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recommend an algorithm for experimenters to choose optimal parameters to min-

imize total error and pixel locking. These results should be useful in other fields,

such as colloids, biology, and fluid mechanics, where particle positions are measured

using video microscopy.

The results in this chapter correspond to Y. Feng, J. Goree, and B. Liu, “Accu-

rate particle position measurement from images,” Review of Scientific Instruments,

Vol. 78, article number 053704 (2007).

7.1 Introduction

Measurement of particle positions from images is important in many fields,

including dusty plasmas [127, 128], colloids [129, 130], fluid mechanics [131], biol-

ogy [132], and computer vision [133]. Particle positions are generally estimated as

the center of a bright spot of an image. Velocities can also be calculated from im-

ages; two common methods for this are Particle-Tracking-Velocimetry (PTV) and

Particle-Image-Velocimetry (PIV).

To measure particle positions, an experimenter begins with a bit-map image.

As an example, in Fig. 7.1 I present portions of single video frame from a dusty

plasma experiment. Each bright spot represents an 8 µm diameter polymer micro-

sphere illuminated by a 0.633 µm helium-neon laser sheet and imaged by a video

camera with a Nikon 105 mm micro lens and a bandpass optical filter to eliminate

unwanted light. The lens was focused to generate a sharp image. The experimental

setup is similar to Fig. 2 of [127]. Figure 7.1(a) and a magnified view Fig. 7.1(b)

show portions of a video frame recorded by a cooled 14-bit digital camera (pco1600)

with a 7.4 µm pixel width and a linear response. It was operated at 30 frames per

second with an exposure time of 30 msec. I should mention that experimental im-

ages of particles will differ, depending on many factors including the type of camera.

To illustrate this point, I present in Fig. 7.1(c) an enlarged view of a bright spot in
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a frame recorded by an analog camera with a nonlinear response corresponding to

gamma = 0.6. (Some cameras are nonlinear with an output intensity proportional

to the input luminance to the power gamma).

(a) (b)

(c)

0.2 mm

0.2 mm2 mm

Figure 7.1: Experimental bit-map images of a monolayer suspension of microspheres
in a dusty plasma. Each bright spot corresponds to one particle. Here, (a) is 1/12
of the original image from a digital camera and (b) is a magnified view, showing
that a bright spot fills several pixels, while in (c) from an analog camera a bright
spot fills about 5 × 5 pixels. Spot size depends on such factors as camera type and
focusing. A particle’s position is calculated as the bright spot’s center; errors in this
calculation are the topic of this chapter.

In the images in Fig. 7.1, particles fill several pixels. This spot size may be

due, in part, to diffraction by the particle as well as camera properties such as

diffraction by the camera aperture [134] and imperfect lens focusing. The spot size

cannot be explained merely by geometrical optics, because the small particle size

and magnification would result in an image smaller than one pixel on the camera

detector.

Images have random noise in each pixel. This can arise because of fluctuations

in the camera’s sensor and its electronics. Noise in the experimental image of

Fig. 7.1(a) is shown in Fig. 7.2 as a histogram of the pixel intensity. The most

prominent feature is the noise peak, corresponding to a large number of pixels
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Figure 7.2: Histogram of intensity values of pixels in the original experimental
image of Fig. 7.1(a). The inset shows the same data with a logarithmic scale. The
prominent peak, centered at Ibg, is due to noise in the camera.

that are relatively dark. This noise peak has an average value that I term the

“background intensity,” Ibg. The noise peak generally depends only on the camera

and the sensor temperature.

After recording a bit-map image, the experimenter will then use a computer

algorithm to measure the particle position. There are several methods to do this,

including the moment method [14, 127, 128, 135, 136], which I will study in this

chapter. Other methods include fitting a bright spot in the image to a Gaussian [137]

or polynomial [128, 130], and simpler methods such as choosing the centroid as the

particle center [128, 136]. In the moment method, the calculated particle position

is

Xcalc =

∑

k

XkIk

∑

k

Ik
, (7.1)

where Xk is the position and Ik is the intensity of a pixel k. The result of Eq. (7.1)

is sometimes called the “center of mass” [136]. When the particle fills more than

one pixel, this calculation yields an estimate of the particle position with sub-pixel

accuracy. Because of the efficiency and accuracy of the moment method, it is widely
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used when analyzing large quantities of data, as might be produced for example

when using a video camera. Fitting methods, which are more computationally

expensive, are often used as well [137]. The centroid method is similar to the moment

method except that the intensity Ik of each pixel is replaced with a constant [128,

136].

One application of particle position measurements is the calculation of particle

velocities using PTV. A velocity can be calculated by subtracting the positions of

the same particle in two different frames and dividing by the time interval between

frames. This method differs from PIV [138], where velocities are calculated at

regular gridpoints, not for specific particles.

Errors in the calculated particle position arise from multiple sources, including

random noise in each pixel and also from the finite spatial resolution of the pixels

on a camera sensor. When an image is recorded by sampling it with a finite number

of pixels, some information about the intensity profile is lost, and this can cause

a type of systematic error known as pixel locking or peak locking. The total error

in the calculated position will be due to a combination of these effects, not just

random noise or pixel locking by itself.

In this chapter, I seek to minimize the total error, and doing this will require

that I understand the contribution of pixel locking. My goal is to aid the experi-

menter in making optimal choices, in both hardware and software, to minimize the

total error.

7.2 Pixel locking

Pixel locking, also known as peak locking, is an artifact where calculated

particle positions tend to be concentrated at certain favored locations relative to

pixel edges, such as the center or edges of a pixel. It is different from random errors,

which do not result in favored positions for particles. To understand pixel locking,
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consider a particle whose image fills only a single pixel. In this case, the sum in

Eq. (7.1) would have only a single term, and the position would be assigned to the

exact center of that pixel. If the particle’s image instead fills two pixels with equal

intensity, the position will be assigned to the midpoint of a pixel edge. The pixel

center and midpoints of pixel edges are examples of favored positions that are found

to occur even when the particle’s image fills several pixels [82].

The scientific literature for pixel locking includes many papers where PIV

is used to measure velocities. In the early 1990s, the PIV method was tested to

demonstrate their sub-pixel accuracy for particles flowing along with a fluid [139,

140]. For specific applications of PIV, pixel locking has been studied by other

authors as well [141, 142, 143, 144]. In comparison to PIV, the literature for PTV

includes fewer studies of pixel locking, e.g. [82, 145]. Because of this, some users of

PTV, including until recently us, were unaware of pixel locking and the problems

it can cause. In addition to PTV, computer vision is another important area where

pixel locking is recognized as a problem in measuring positions [133, 146, 147].

To detect pixel locking, I use sub-pixel maps as a diagnostic tool. A sub-pixel

map shows all the calculated particle positions relative to pixel edges, and it is drawn

in a small box having the size of one pixel. To prepare a sub-pixel map, I begin with

a graph of calculated positions of N particles, as illustrated in Fig. 7.3(a), then plot

the fraction parts of these positions in the small box, yielding the sub-pixel map

in Fig. 7.3(b). In Fig. 7.3(c) I present an actual sub-pixel map calculated from a

bit-map image by an analog camera in a dusty plasma experiment. The signature

of pixel locking can be identified in general by concentrations of calculated particle

positions at favored positions. These favored positions can vary, depending on both

hardware and software, but they commonly include the center or edges of a pixel, as

in Fig. 7.3(c). Sub-pixel maps are therefore very useful for detecting pixel locking.
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Figure 7.3: Illustration of the method for calculating a sub-pixel map. First, a
10 × 10 pixel bit-map image (not shown here) is analyzed to yield a map (a) of
particle positions. Second, the same positions are plotted relative to pixel edges in
(b); these values are the fraction parts of the calculated positions. (c) An example
sub-pixel map of N = 617 particles, calculated from an experimental image (full
view of Fig. 7.1(c)), reveals pixel locking as a tendency of calculated positions to be
concentrated at favored positions including the center and edges of pixels.

Other authors have used similar graphs, where the calculated positions have been

binned and plotted as a histogram [133, 146, 147].
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7.3 Moment method

The algorithm I optimize in this chapter, the moment method, has two main

steps. The first step is the selection of pixels that belong to each particle in the im-

age. The second step is the calculation of position as an intensity-weighted moment

of pixel positions.

(c)(b)(a)

Figure 7.4: Illustration of boundaries. In algorithms for calculating particle posi-
tions from a bit-map image, the first step is selecting the contiguous pixels to be
used, as defined by a boundary (solid white line) that encloses them. The codes
tested here differ only in the way they select boundaries. (a) In ImageJ, only con-
tiguous pixels above a threshold are included in the boundary. Code A (b) and
Code K (c) use boundaries that are the smallest rectangles that enclose: all the
contiguous pixels above the threshold in Code A, or the dashed contour produced
by a 2D contour-plotting routine in Code K.

In the first step, the selection of pixels, the user begins by choosing a thresh-

old Ith. The gray-scale image is replaced by a black-and-white image, where pixels

brighter than Ith become black, and all others become white. The choice of the

threshold is important for several reasons [135], as I will discuss later. Next, the

boundaries for individual particle images are determined. There are several algo-

rithms for selecting boundaries. I have examined several codes that use the moment

method, and I found that the only difference is the algorithm for selecting bound-

aries. I will consider three algorithms, which I distinguish by the corresponding

codes I will test. All three of these codes are well tested, and they generate reliable

results from experimental images. In one algorithm, the boundary is selected to be a

polygon that encloses only contiguous pixels brighter than the threshold, Fig. 7.4(a).
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This algorithm is used in the freely available ImageJ [136] code. The other two al-

gorithms select a boundary that is a rectangle. In Code A, the boundary is the

smallest rectangle that encloses all the contiguous pixels above the threshold [148],

Fig. 7.4(b). In Code K, the boundary is the smallest rectangle that encloses a spe-

cial curved contour [149]. This curved contour is produced by a 2D contour-plotting

routine, and it is drawn not as line segments around pixel edges but rather as a curve

passing through various pixels. Within a pixel, the pixel center is assigned the value

of the original pixel intensity, but other points within a pixel are assumed to have

other intensities, which are calculated by 2D interpolation using four surrounding

pixel centers. Then, the contour-plotting routine draws a curve by joining all points,

with sub-pixel spacing, where the assumed intensity is equal to the threshold, as

shown in Fig. 7.4(c) with a dash line. In both Codes A and K, but not ImageJ, the

boundary can enclose some pixels that are less intense than the threshold.

In the second step, which is the same in all three codes I test, the particle

positions are calculated as the moment, i.e., as the intensity-weighted position of

pixels. The moment can be calculated [14, 127, 135] using Eq. (7.1). However, I

will find it better to use a generalized form of the calculated particle position,

Xcalc =

∑

k

Xk(Ik − Ibase)

∑

k

(Ik − Ibase)
, (7.2)

where the baseline value Ibase will be explained later. Note that the calculated par-

ticle position depends on the selection of pixels that are included in the summation

in Eq. (7.1) or Eq. (7.2).

7.4 Method

7.4.1 Synthetic images

To test methods of measuring particle positions, I calculate position errors as

compared to true positions in synthetic images. For this purpose I cannot use actual
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experimental images because the true position is generally not known. Synthetic

images allow us to vary the intensity and the size of a bright spot to find how errors

depend on these parameters.

Units used in this chapter are pixel units for all distances including Xk, Xcalc,

spot size and errors. Intensities, including signal and noise, are specified in intensity

value units, i.e., a dimensionless integer ranging, for example, from 0 to 214 − 1 for

a 14-bit camera.

(a) (b) (c)

Figure 7.5: Magnified images of bright spots. (a) Experimental image from a digital
video camera. (b),(c) Synthetic images, with a Gaussian profile centered on a known
true position, here with two different spot radii. In generating synthetic images, I
first choose the true position randomly, and then calculate the intensity of each
pixel using Eq. (7.5) so that it includes both signal and noise.

I prepare synthetic images that resemble an experimental image like Fig. 7.5(a).

The synthetic images have a size of 64× 64 pixels, with one bright spot per image.

These images have three major attributes that I compute: the spot’s true position,

the spatial profile of the signal, and the noise.

First, the bright spot’s true position is located near the image center, but

displaced in the x and y directions by a fraction of a pixel. This is done using

random numbers with a uniform distribution (between 0 and 1) so that the true

positions are random and uniformly-distributed relative to pixel edges. Using these

random positions avoids any sampling bias.

Second, like other authors [129, 150], I model the signal’s spatial profile as a
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Gaussian

Isig(x, y) = Ipeak exp

[

−
(x − xtrue)

2 + (y − ytrue)
2

r2
spot

]

, (7.3)

characterized by the spot radius rspot and the peak intensity Ipeak. (This Gaussian

is intended to approximate the actual spatial profile, which depends on factors such

as the particle size, the camera’s gamma, and lens defocusing.) To imitate the

collection of light onto a square pixel, I integrate this smooth profile over each

pixel’s area. This yields the value Isig k of the signal in pixel k,

Isig k =

kx+0.5
∫

x=kx−0.5

ky+0.5
∫

y=ky−0.5

Isig(x, y)dx dy, (7.4)

where kx and ky are the coordinates of pixel k. Equation (7.4) combined with

Eq. (7.3) can be evaluated efficiently using the error function erf. (After this step,

each bright spot has the same total signal intensity
∑

Isig k, which was typically

37 707 corresponding to the brightest spot in the experimental image Fig. 7.1(a).

In the experiment, not every bright spot has the same total signal intensity be-

cause some particles are levitated slightly above or below the brightest part of the

horizontal laser sheet.)

Third, I calculate a noise value Inoise k which is different for each pixel k. To

simulate the experiment, Inoise k is chosen as a random intensity from the noise

distribution of my digital camera, Fig. 7.2, which is centered at an average intensity

Ibg = 384. Finally, the intensity Ik in each pixel is calculated as the sum of the

intensities of the signal and noise or a saturation value Isat, whichever is smaller,

Ik = Min[(Isig k + Inoise k), Isat]. (7.5)

I use Isat = 214 − 1 to simulate the saturation intensity of a real camera with 14-bit

resolution. Finally, I round Ik to an integer because cameras produce integer values

for the intensity of each pixel. The result of this calculation is a TIFF image like

Fig. 7.5(b) or 7.5(c).
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Here I only consider bright spots that are circular, as in Eq. (7.3). Although

I do not simulate them here, I note that non-circular bright spots can be analyzed

using the moment method, and they do occur in some experiments. Elliptical

particles arise when using analog video cameras with a limited horizontal resolution,

or when particles move rapidly during the exposure time. The latter effect can be

diminished by rastering a laser beam rather than dispersing it into a constant sheet.

Defocusing a lens can result in non-circular spots, as in Sec. 7.7.

7.4.2 Errors in calculated particle positions

In this chapter, I am mainly interested in errors in calculated particle positions.

In addition to errors in particle position, the experimenter may also be concerned

with errors in velocities and other quantities computed from particle positions, as

discussed in the Appendix B.

To characterize the error in calculated particle positions, I use two diagnostics.

First, I calculate sub-pixel maps, as described in Sec. 7.2. Examining these sub-pixel

maps qualitatively will reveal pixel locking, which is one source of error. Second,

I characterize the total error, including both random errors and pixel locking, as

the root-mean-square (rms) difference of true and calculated positions, i.e., the rms

error
[

1

N

N
∑

m=1

(xm,calc − xm,true)
2 + (ym,calc − ym,true)

2

]

1

2

, (7.6)

where m and N are the index and total number, respectively, of bright spots. While

I can calculate the total error using Eq. (7.6), I cannot separately calculate the

contributions from random errors and pixel locking.

To achieve good statistics, I prepared over 370 000 synthetic images, each

with one bright spot. I used N = 5000 when calculating the rms error, and N =

100 000 when calculating sub-pixel maps. All of these images have different random
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true positions for their bright spots, and the noise in each pixel is different in all

images.

7.4.3 Parameters

To find a procedure for calculating position with minimal total error, I will

test three different codes, and I will vary parameters corresponding to software

and hardware adjustments that an experimenter can make. I will now list these

adjustments. The experimenter can choose to focus the camera lens sharply, or

defocus it to make the bright spots in the image appear larger and fill more pixels.

As a second parameter, the experimenter can adjust the image intensity by varying

the camera aperture, exposure time or illumination brightness. After recording

images with the camera, the experimenter will then use software. Here, I test

three moment method codes, as explained in Sec. 7.3. After choosing a code, the

experimenter can usually adjust two parameters in that code: the threshold used

in the first step, and the baseline (if any) that is subtracted in the second step, as

in Eq. (7.2).

Thus, I am motivated to analyze the impact of the following four parameters

that the experimenter must choose: focus, intensity, threshold, and baseline. I do

this by varying the values of rspot (keeping the total signal intensity
∑

Isig k as

constant, as explained later), Ipeak, Ith, and Ibase, respectively. I will vary each of

these four parameters in Sec. 7.5. I will also compare results from the three different

codes. The outcome of this analysis will be a practical procedure, presented in

Sec. 7.6, that the experimenter can use to minimize errors in calculated positions.
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7.5 Results

7.5.1 Threshold

The first parameter I vary is the threshold. The experimenter will first choose

a coarse range of threshold so that it is not so low that noise is wrongly identified

as particles and not so high that fainter particles are overlooked. Then, within this

coarse range, a fine adjustment can be made to reduce error. Here, I consider the

fine adjustment.
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Figure 7.6: The rms error of calculated positions as a function of the threshold Ith.
In general, errors increase with threshold, and superimposed on this increase is an
oscillation. The rms errors are always calculated as in Eq. (7.6) using N = 5000.
(Here, rspot = 1.5 pixel units, Ipeak = 5334 intensity value units, corresponding to a
total signal intensity

∑

Isig k = 37 707. Also, Ibase = 0.)

My results in Fig. 7.6 show that the total error generally increases with thresh-

old, and it also depends on the choice of a code. I calculate the total error as the

rms error, using N = 5000 images and Eq. (7.6). Recall that the total error includes
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both random and pixel-locking errors. The total error generally increases with the

threshold because raising the threshold can eliminate pixels that have useful signal.

800
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1400

threshold boundaries (for three true positions)

(32.41, 32.16) (32.40, 32.47) (32.00, 32.01)
TP2TP1 TP3

Figure 7.7: Cause of oscillations. Boundaries, selected in the first step of ImageJ,
enclose fewer pixels as the threshold is increased. Removing one pixel from the
boundary causes a discrete jump in the calculated particle position in Eq. (7.2).
As the threshold increases, there is a sequence of jumps, as the boundary becomes
smaller, one pixel at a time. These jumps, in aggregate for many particles, lead to
oscillations in the rms error as the threshold is varied, a phenomenon I term the
boundary effect. The three columns correspond to three different true positions.

The total error exhibits not only a general increase with threshold, but also

an oscillation. This is seen in Fig. 7.6, where there are several oscillations superim-

posed on the general trend. I cannot dismiss these oscillations as mere statistical

fluctuations because I achieved good statistics by using 5000 particle positions. To

identify the cause of these oscillations, I tested how the boundaries that are selected

in the first step depend on the threshold. The result of this test is shown in Fig. 7.7

as a table of the boundaries selected by ImageJ. When the threshold is increased

slightly so that the boundary shrinks by one pixel, there is a discrete jump in the

calculated particle position. As the threshold increases, there is a sequence of jumps,
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as the boundary becomes smaller, one pixel at a time. These jumps, in aggregate

for many particles, lead to oscillations in the rms error as the threshold is varied,

which is the phenomenon I term the “boundary effect”.
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Figure 7.8: Sub-pixel maps for N = 100 000 randomly distributed true positions.
The signature of pixel locking is generally more severe for higher thresholds. (Here,
rspot = 1.5, Ipeak = 5334, and Ibase = 0.)

To identify the role of pixel locking in the total error, I examine sub-pixel maps

in Fig. 7.8, which reveal the importance of the threshold. For ImageJ, I provide sub-

pixel maps, Fig. 7.8(a) and 7.8(b), that correspond to the two thresholds that yielded

the minimum and maximum rms errors, respectively, in Fig. 7.6. I note that the

signature of pixel locking is weaker, i.e., the sub-pixel map is more uniform, for the

case of the low threshold, Fig. 7.8(a), that yields the lowest total error. Conversely,
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the signature of pixel locking is stronger, i.e., the sub-pixel map has strongly non-

uniform features, for the higher threshold, Fig. 7.8(b). In general, reducing the

threshold will reduce pixel locking. Other codes exhibit the same trend, but with a

different appearance for the sub-pixel maps, as in Fig. 7.8(c) and 7.8(d).

7.5.2 Spot radius
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Figure 7.9: Simulation of slight lens defocusing. The optimal range of spot size lies
between two other ranges: for very small rspot, errors worsen due to pixel saturation;
for very large rspot, they worsen due to random errors. For my parameters, these
two ranges are for rspot < 0.8 and rspot > 2.0, respectively. Oscillations in the
optimal range arise from a boundary effect. (Here, Ith = 1000, Ibase = 0, and
∑

Isig k = 37 707.)

To simulate an experimenter’s slight defocusing of a camera lens, I varied the

spot radius rspot in Fig. 7.9. I used the Gaussian profile of Eq. (7.3), keeping the

spot’s total signal intensity (
∑

Isig k summed over all pixels) constant. In this way

I mimic an experiment where a particle scatters the same finite number of photons
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into a camera lens regardless of how the lens is focused. (I did not simulate the ring-

shaped bright spot that can occur for extreme defocusing.) Defocusing can happen

when an experimenter purposefully chooses to defocus the lens for example to avoid

saturating pixels; in other cases, defocusing is not intentional but instead simply

unavoidable because particles are at different depths, as for example in colloidal

suspensions [130] and 3D dusty plasma suspensions [145].

Defocusing a lens during the experiment can actually be desirable. By dis-

tributing the signal over a larger number of pixels, the impact of a single pixel

in the calculation of the particle’s position is less, so that pixel locking becomes

weaker. On the other hand, defocusing can reduce the signal in each pixel, so that

the signal-to-noise ratio (SNR) in each pixel becomes worse. In other words, there

can be a trade-off: defocusing can improve pixel locking at the expense of making

random errors worse. In my results below I investigate this effect.

I should mention that when discussing defocusing, I always refer to the exper-

imenter’s adjustment to the hardware when recording an image. Unlike some other

methods [129], here I do not blur an image in software after it has been recorded

by the hardware.

The result in Fig. 7.9 reveals three ranges of the spot radius, where the second

range is the most desirable. In the first range, with small spot radii (rspot < 0.8), the

total error diminishes with radius because the spot includes a saturated pixel. Satu-

rated pixels are undesirable because they introduce wrong information for intensity

into Eq. (7.2). In the second range, with slightly larger spot radii (0.8 ≤ rspot ≤ 2.0),

the total error is smallest. In the third range, with large spot radii (rspot > 2.0), the

total error generally increases with rspot because the trade-off results in the undesir-

able outcome of the worsened SNR in each pixel having a stronger effect than the

improved pixel locking due to defocusing. The optimal spot radius is somewhere
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in the second range, which for my parameters is approximately 0.8 - 2.0. I should

emphasize, however, that this range will vary depending on the experiment due

to different cameras (with different noise levels, sensitivities and saturation levels),

particle size, illumination, and working distance between particles and lens. If the

camera had a higher noise level, the errors in this third range would be larger and

the experimenter would be unable to use much defocusing. On the other hand, if

the illumination were brighter, then the entire curve in Fig. 7.9 would shift toward

larger spot radii and the experimenter would be able to use more defocusing.

In Fig. 7.9 I also note an oscillation, superimposed on the general trend, for

0.8 ≤ rspot ≤ 2.0. I attribute this oscillation, which was observed previously in

experiments by Käding and Melzer [145], to a boundary effect similar to the one

described above.

7.5.3 Intensity

To simulate adjusting the illumination brightness, the exposure time, or the

camera aperture, I varied Ipeak in Fig. 7.10. As a result, the total signal intensity

∑

Isig k is varied, while rspot is kept constant. I note that ImageJ yields the smallest

total error.

The trend that would be expected for random errors only is a downward slope

as the intensity is increased, due to an improving SNR in each pixel. This trend is

indeed observed Fig. 7.10, but only for some of the data, as indicated by solid curves.

The opposite trend is also observed in Fig. 7.10, as indicated by dashed curves; since

this trend is opposite to what is expected for random errors only, I attribute it to

pixel locking. I term this particular effect of pixel locking the “pedestal effect.”
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Figure 7.10: The rms error as the intensity is varied, to simulate adjusting the
illumination brightness, the exposure time or the camera aperture. The main trend
is that the error decreases with increasing intensity due to an improved signal-to-
noise ratio (SNR), as indicated by solid curves; the opposite trend, indicated by
dashed curves, is attributed to a pixel-locking effect that I term the pedestal effect.
(Here, rspot = 1.5, Ith = 740, and Ibase = 0.)

7.5.4 Baseline

The pedestal effect is the result of a non-optimal choice of the baseline. To

illustrate this effect, in Fig. 7.11 I have sketched the cross section of a bright spot.

The portion of this cross section that lies within the boundary, defined by the

threshold, is shown shaded. This portion is divided in Fig. 7.11 into two parts,

above and below the threshold. I term the part below the threshold the “pedestal,”

Fig. 7.11. The contribution of the pedestal to the moment in Eq. (7.2) can be large,

or small, depending on whether Ibase is small or large, respectively. In the extreme

case of a very large pedestal that dominates the calculation of the particle position,

the calculated particle position will often fall near a pixel edge or midpoint, as

it does in the case of a centroid, thereby contributing to severe pixel locking. I
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Figure 7.11: Cross section of a bright spot, illustrating the “pedestal.” Pixels
brighter than the threshold identify the boundary for ImageJ in the first step. In
the second step, both shaded portions contribute to the calculated particle posi-
tion if Ibase = 0, i.e., if no baseline is subtracted in Eq. (7.2). The lower shaded
portion, marked “pedestal,” can heavily influence the calculated particle position.
The pedestal can be reduced by choosing Ibase = Ibg, or eliminated altogether by
choosing Ibase = Ith.

term this tendency toward severe pixel locking the “pedestal effect.” Below, I will

determine the best choice of Ibase in order to reduce the pedestal effect and the

pixel-locking errors that it introduces to the calculated particle positions.

To test the effect of the baseline that is chosen, in Fig. 7.12 I present the total

error, calculated as the rms error, for three different baseline values. From Fig. 7.12,

I see that the total error is reduced by using a larger baseline value. The best choice

is Ibase = Ith, because this results in the smallest total error. It also minimizes pixel

locking; the downward slope in Fig. 7.12 indicates that random errors dominate.

Thus, I conclude that in the second step, when using Eq. (7.2), the baseline

should be chosen to be the same as the threshold that was used in the first step.

This can be done most simply by subtracting the same threshold for every pixel
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Figure 7.12: Test of different baselines. The best choice to minimize rms error is
subtracting a baseline equal to the threshold Ith in Eq. (7.2). (I used ImageJ, and
rspot = 1.5, Ith = 740, and Ibg = 384.)

in the image. Alternatively, a different baseline level Ibase k for each pixel could be

subtracted in Eq. (7.2), to account for a different background level for each pixel.

The latter method is useful because it allows the experimenter to eliminate optical

reflections due to room lights, for example. The experimenter can calculate all the

Ibase k baseline values for the pixels as follows. First, the experimenter will use

the camera to record a “dark-field” image, with the illumination turned off so that

particles are not visible. To improve the statistics, the experimenter can record a

series of dark-field images and average them, pixel-by-pixel, to reduce the effect of

random noise. This will yield an intensity Idark k for each pixel. Second, the baseline

for each pixel will be calculated as

Ibase k = Idark k + (Ith − Ibg). (7.7)

Here, Ibg can be calculated as the average of Idark k for pixels in the image.
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Figure 7.13: Sub-pixel maps, using a baseline Ibase = Ith for two different thresholds
(a) Ith = 1150 and (b) Ith = 2950. Comparing these panels shows that the signature
of pixel locking can be virtually eliminated, as in (a), by making the best choice of
threshold as well as choosing Ibase = Ith. (Here, I used the same 100 000 images as
in Fig. 7.8.)

With an optimal choice of both threshold and baseline, one can achieve a

sub-pixel map that shows no evidence of pixel locking, as seen in Fig. 7.13(a).

This map was prepared using ImageJ, with a baseline equal to the threshold. This

choice of a baseline minimizes the total error, as I learned above. The reason that

choosing Ibase = Ith minimizes the total error is now clear: it greatly reduces pixel

locking, so that mainly errors from random noise remain. To further demonstrate

the usefulness of choosing a baseline equal to the threshold, compare Fig. 7.8(a)

to Fig. 7.13(a). The former figure, which was prepared similarly except with no

baseline subtraction, reveals some pixel locking, while the latter does not.

An experimenter, when attempting to choose optimal parameters, will be

unable to calculate the rms error, as I have done in Fig. 7.12, for example. This

is because the true positions of particles are generally unknown. The experimenter

can, however, calculate sub-pixel maps, such as Fig. 7.13, because these require

only calculated positions. Comparing Fig. 7.13(a) and 7.13(b), which were both

calculated with Ibase = Ith, but with a different Ith, I see that the signature of pixel

locking depends on the threshold.
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Figure 7.14: Total error, using a baseline Ibase = Ith. Comparing to Fig. 7.6 where
Ibase = 0, errors have been reduced. The lowest rms error that can be achieved with
these images is 0.017, using the same optimal choice of parameters as in Fig. 7.13(a).
(I used the same 5000 images as in Fig. 7.6. Here and in Fig. 7.13, I used ImageJ.)

I now find my best result by varying the threshold, in Fig. 7.14, to minimize

the rms error. The threshold is the last parameter to choose, assuming that the

experimenter has already: (1) established the illumination level, (2) chosen a camera

with a given noise level, (3) defocused the camera lens to avoid saturating pixels, and

(4) planned to use a baseline Ibase = Ith. Noting that the rms error in Fig. 7.14 has

several minima, I identify an optimal threshold by choosing the lowest minimum.

This yields my best result, an rms error of 0.017. These same parameters also

virtually eliminate the signature of pixel locking in Fig. 7.13(a). An experimenter

can identify an optimal Ith similarly, but without calculating the rms error, by

examining sub-pixel maps for various values of Ith, and among the maps with weak

pixel-locking signatures, choosing the one with the lowest value of Ith.
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7.6 Practical procedure

I present here a practical procedure for using the moment method that mini-

mizes the total error, including both random errors and pixel locking. This practical

procedure includes first the use of hardware to record images and then the use of

software to analyze them. My software uses the moment method with baseline sub-

traction as I tested above; there are also other well-tested analysis methods that

experimenters may wish to consider [129, 130].

For the hardware that produces the image, one will choose a camera and make

adjustments to the intensity and lens focusing. Choosing a camera with low noise

will not only reduce random errors; it will also allow the use of a lower threshold

which can improve pixel locking. In using the camera, the optimal choices of inten-

sity and lens defocusing must be considered together. The intensity can be varied,

for example, by adjusting the camera aperture, exposure time, or illumination level.

To achieve a high SNR in each pixel, I adjust the intensity upward as high as possi-

ble without saturating pixels. Another way to improve SNR is pixel binning, which

also increase frame rate, but at the expense of spatial resolution [151]. If addi-

tional intensity is available but pixels are saturated, the experimenter can defocus

the lens to avoid saturating the brightest pixels. Defocusing the lens helps reduce

pixel locking, but it can increase random errors by reducing the SNR in each pixel;

therefore, defocusing beyond a certain point actually worsens the total error. The

optimal lens defocusing will depend on parameters such as intensity, camera noise

level, and number of camera bits, which vary from one experiment to another. For

the parameters I simulated (see Fig. 7.9) I found that the optimal spot radius was

in the range 0.8 - 2.0, measured as the Gaussian half-width. For other parameters,

I can offer this general guidance: the optimal lens defocusing will be determined

by the need to achieve an adequate SNR in each pixel. Noisier cameras or weaker
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illumination will require less defocusing, while low-noise cameras and brighter il-

lumination will allow more defocusing. The lens should generally be defocused at

least enough to avoid saturating pixels.

For the image analysis software, there are usually three important choices.

First, I prefer a code that has as its first step the selection of a boundary that

includes only contiguous pixels above a threshold. The freely available ImageJ code

selects such a boundary. Second, if the boundary is selected as described above in

the first step, then in the second step, using Eq. (7.2), the baseline should be chosen

equal to the threshold, in order to reduce pixel locking. This can be done either by

subtracting the same baseline value from every pixel in a single step, or by using

Eq. (7.7) with dark-field images if the experimenter wishes to remove the effect of

optical reflections for example. Third, the threshold should be chosen in a two-part

process. To start, the experimenter should count the number of particles that are

identified, and then choose a coarse range as explained in Sec. 7.5.1. Next, within

this coarse range, sub-pixel maps should be calculated for various thresholds. In

order to reduce both random and pixel-locking errors, the user should choose the

lowest threshold that has a weak signature of pixel locking.

The moment method can achieve very low errors in particle position measure-

ment when it is used optimally. For the case I simulated, an rms error as small as

0.017 is achievable by making optimal choices in the software. Even smaller errors

could be attained if the intensity were brighter or the camera had less noise.

7.7 Experimental demonstration

To demonstrate the practical procedure above, I used it in an experiment.

The results presented above, based on synthetic images, indicate that both total

errors and pixel locking will be reduced if I follow the practical procedure. Using

experimental images, one can detect the signature of pixel locking using sub-pixel
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maps. I describe next the hardware and software components of my experimental

test.

2 mm

(a)

0.2 mm

(b)

Figure 7.15: Experimental bit-map images of a monolayer suspension of micro-
spheres in a dusty plasma. Here, (a) is 1/12 of the original image and (b) is a
magnified view. A bright spot fills about 5× 5 pixels. Compared to Fig. 7.1(a), the
hardware was improved by slight lens defocusing.

For the hardware, the experiment was similar to the one for Fig. 7.1(a), includ-

ing using the same 14-bit camera, except that I improved the experimental method

by slightly defocusing the lens. A cropped portion of the 800 × 600 pixels image

Fig. 7.15(a) and a magnified view Fig. 7.15(b) show that a bright spot fills more

pixels than in Fig. 7.1(b) where the lens was sharply focused. Due to defocusing,

the spots are slightly noncircular. Additionally, I binned 2×2 pixels. As a result of

these changes, the total intensity of a bright spot is typically 39 240, as compared to

21 000 (with a maximum of 37 707) for Fig. 7.1(a), and the noise peak is shifted to

a lower intensity. A further possible improvement in the hardware is using a more

powerful laser, and I plan to do that in future experiments.

For the software, I used ImageJ to identify particles from 100 experimental

images. I excluded any identified particles that filled only one single pixel. First, I

chose a coarse range for the threshold by counting the number of identified particles
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Figure 7.16: Choosing the coarse range of threshold using experimental images.
Counting the particles identified in 100 images, I choose the nearly flat portion
325 ≤ Ith ≤ 925 as the coarse range. Outside this coarse range, many false particles
appear at lower Ith due to noise, while many true particles are missed at higher Ith.
Labels a-h identify thresholds used in Fig. 7.17.

as a function of the threshold, Fig. 7.16. I looked for a nearly flat portion, which

is from 325 to 925 here, and I chose that as the coarse range. Next, I calculated

particle positions using Eq. (7.2), along with Eq. (7.7) to calculate Ibase k using an

average of 2000 dark-field images. I repeated these calculations of particle positions

for various thresholds, each time preparing a sub-pixel map. Finally, I will examine

these sub-pixel maps to choose the lowest threshold that has a weak signature of

pixel locking.

In Fig. 7.17, I present the sub-pixel map that results from following my prac-

tical procedure in panel (a). Examining this sub-pixel map, I see that it has no

obvious signature of pixel locking when viewed in its entirety. To search for signa-

tures, I zoom into the lower left corner, Fig. 7.17(b)-(h). There, I can identify an

artifact of pixel locking: a concentration of calculated positions on pixel edges. My
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Figure 7.17: Experimental sub-pixel maps for different thresholds within the coarse
range. Here, (a) is an entire map, and (b)-(h) show the lower left corner. I choose
the lowest Ith with a weak signature of pixel locking, 325. The signature is stronger
for Ith ≥ 525, with a concentration of calculated positions on pixel edges. Vastly
better than Fig. 7.3(c), there is no obvious signature of pixel locking for Ith < 525.
(Here, I used ImageJ with Ibase k calculated from Eq. (7.7) and a dark-field image.)

practical procedure requires choosing the lowest threshold with a weak signature of

pixel locking. For my results in Fig. 7.17, thresholds in the range 325 - 425 have no

identifiable signature, leading us to choose 325.

I conclude that the signature of pixel locking is vastly improved by using my

practical procedure. This conclusion is based on a comparison of the sub-pixel maps

in Fig. 7.17(a) and Fig. 7.3(c). The latter was prepared for a similar experiment
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but a different camera, illumination, and analysis method. The signature of pixel

locking is profound in Fig. 7.3(c), but it is virtually undetectable in Fig. 7.17(a)-(c).
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CHAPTER 8

CONCLUSION

In this thesis I presented three experiments with dusty plasmas (Chapters 3-5)

and one simulation (Chapter 6) to study microscopic dynamics of strongly-coupled

plasmas. In the experiments, I used direct imaging by video microscopy, and laser

manipulation, to study dynamics at the level of discrete particles. Additionally, I

reported an improved image analysis method (Chapter 7) for the accurate measure-

ment of particle positions in experiments.

The experiment with suddenly-applied heating (Chapter 3) demonstrated the

phenomenon of solid superheating in a strongly-coupled plasma for the first time.

This result suggests that future investigations could be carried out to search for

solid superheating in other strongly-coupled plasmas, like laser-cooled ions [10] and

the crust of neutron stars [8]. This also serves as the first experimental demonstra-

tion that solid superheating can be studied experimentally at the level of discrete

particles. Additionally, I found a lack of liquid supercooling behavior in my 2D

strongly-coupled dusty plasma.

The experiment with suddenly-applied shear (Chapter 4) is the first study

of the spatial and temporal development of shear-induced melting. I discovered

that coherent longitudinal waves were excited in the shear flow. Applying shear

suddenly led to melting in two stages separated by a distinctive transition. After

defects saturated within narrow flow regions, they spread wider with a melting front

that propagated at about the transverse sound speed.

The experiment with steady-state heating (Chapter 5) yielded the first labo-

ratory quantification of viscoelasticity of a strongly-coupled plasma. I found that

η(k) diminished with increasing k, indicating that viscous behavior is gradually re-

placed by elastic behavior as the scale length is reduced. This diminishment can



116

be modeled as ∝ (1 + αk2)−1. These results required that I generalized a method

of calculating η(k) by including the friction in the Navier-Stokes equation. To con-

firm the interpretation of the experimental results, I also performed a simulation of

particle motion and used the same analysis method.

The simulations (Chapter 6) demonstrated that the self-intermediate scatter-

ing function (self-ISF), which is widely used in other physical fields, is also used for

strongly-coupled plasmas. The self-ISF is a dynamical measure of random motion.

It allows a characterization of relaxation of random motion. For my particle simu-

lation, I found that the relaxation of a 2D liquid-state dusty plasma is a stretched

exponential. A scaling of the relaxation time with the length scale was found, and

this scaling was shown to be useful for distinguishing normal and anomalous dif-

fusion. Friction was found to have little effect on relaxation except for high levels

of frictional dissipation, where the effect was a retardation of relaxation. While

previous investigators identified the solid-liquid melting transition using measures

of structure, I demonstrate that the self-ISF, which is a dynamical measure, is also

a sensitive indicator.

An improved image analysis method (Chapter 7) was developed. I made a

systematic study of the moment method of measuring particle positions by using

synthetic images to gain an understanding of error sources: pixel-locking error and

random error. This study led me to recommend a practical procedure that I verified

to reduce errors as much as possible.
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APPENDIX A

DERIVATION OF WAVENUMBER-DEPENDENT VISOCOSITY
η(K)

Here I present a derivation of Eq. 5.2 in Chapter 5. This derivation is a gen-

eralization Hu’s derivation, Eq. (7) in [62]. My generalization takes into account a

second phase. In general, a two-phase liquid has two substances which have separate

equations of motion, and these two equations of motion are coupled together. Here

I focus primarily on one phase (which in my experiment consists of charged micro-

spheres) and I include in its equation of motion a frictional term that represents

coupling to the other phase (which is a rarefied gas in my experiment).

The equation of motion for a single phase is the Navier-Stokes equation, Eq.

(2.5.18) of [152],

∂

∂t
j(r, t) +

1

ρ
∇p(r, t) −

η

ρ
∇2j(r, t) −

1

ρ
(ηB +

1

3
η)∇∇ • j(r, t) = 0. (A.1)

I only consider the transverse current, which satisfies

∇ • j(r, t) = 0. (A.2)

As shown in Eq. (2.5.22) of [152], Eq. A.1 above will be reduced to

∂

∂t
j(r, t) −

η

ρ
∇2j(r, t) = 0. (A.3)

The coupling to the second phase (which is gas friction, in my experiment), is

modeled by adding a friction term to Eq. A.3 above, so that it becomes

∂

∂t
j(r, t) −

η

ρ
∇2j(r, t) + νf j(r, t) = 0. (A.4)

Fourier transformation yields a corresponding equation in k space:

∂

∂t
j̃(k, t) +

η

ρ
k2j̃(k, t) + νf j̃(k, t) = 0. (A.5)
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The general solution for Eq. A.5 is

j̃(k, t) = j̃(k, 0)exp[−(
η

ρ
k2 + νf)t]. (A.6)

Using this to find the transverse current autocorrelation function (TCAF) yields

CT (k, t) = CT (k, 0)exp[−(
η

ρ
k2 + νf )t]. (A.7)

Following the procedure of [62], the Fourier transformation of TCAF is

CT (k, ω) =

∫ +∞

0

CT (k, t)exp(−iωt)dt. (A.8)

Then, the area under the normalized TCAF is

Φ =
CT (k, ω = 0)

CT (k, t = 0)
=

∫ +∞

0

exp[−(
η

ρ
k2 + νf )t] dt = (

η

ρ
k2 + νf )

−1. (A.9)

Finally, the wavenumber-dependent viscosity η(k) can be calculated from

η(k)

ρ
= (

1

Φ
− νf )/k

2. (A.10)

This result is Eq. 5.2 in Chapter 5.
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APPENDIX B

ERRORS IN OTHER QUANTITIES

Errors in the calculated particle positions can introduce errors in other quan-

tities that are calculated from the positions. In PTV, velocities are calculated as

v = (x2 − x1)/∆t, as discussed in Sec. 7.1. Pixel locking can affect the velocity

calculation greatly in experiments. For example, if pixel locking is so severe that

most calculated positions are located only at pixel centers, then almost all particle

velocities calculated in PTV will be quantized as an integer number of pixel widths

per frame. These errors in calculating velocities can propagate to other calcula-

tions. Velocity distribution functions f(v) can be badly affected, with noticeable

peaks [82] that are signatures of pixel locking. However, I have found that wave

spectra and velocity correlation functions are not affected so badly.

While it is beyond the scope of this thesis to completely characterize the

errors in v or f(v), I can discuss the contributions to the total error in v. For

PTV, the rms error, δv = ((δx1
2 + δx2

2 − 2δx1δx2)/∆t2)
1

2

, has two contributions,

(δx1
2 + δx2

2)/∆t2 arising from the errors in position, and (−2δx1δx2)/∆t2 arising

from correlations in the two errors. If the calculated position had random errors only,

the correlation δx1δx2 would be zero and the rms error in v would be minimized

when the rms error in x is minimized. However, pixel-locking errors can have

correlations, which will vary depending on the velocities, and these will affect δv in

a way that is difficult to predict.

Aside from these quantities, which are calculated from velocities, experi-

menters often calculate other quantities from the position itself. The mean-square

displacement (MSD), which is used to measure diffusion, is calculated from position.

Particle position errors can cause the MSD to be exaggerated significantly at small

times when the displacement is small, but not at large times when the displacement
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is large [132]. Another use of particle positions is the study of structure [74, 153].

While I have not analyzed the sensitivity of structural analysis methods to parti-

cle position errors, I expect that calculations that are sensitive to small changes

in interparticle distances, such as Voronoi maps for detecting defects, will be more

affected than correlation functions that use data over a wide range of distances.
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