
University of Iowa
Iowa Research Online

Theses and Dissertations

Summer 2010

Convex relaxations in nonconvex and applied
optimization
Jieqiu Chen
University of Iowa

Copyright 2010 Jieqiu Chen

This dissertation is available at Iowa Research Online: http://ir.uiowa.edu/etd/654

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Business Administration, Management, and Operations Commons

Recommended Citation
Chen, Jieqiu. "Convex relaxations in nonconvex and applied optimization." PhD (Doctor of Philosophy) thesis, University of Iowa,
2010.
http://ir.uiowa.edu/etd/654.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F654&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F654&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F654&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/623?utm_source=ir.uiowa.edu%2Fetd%2F654&utm_medium=PDF&utm_campaign=PDFCoverPages

CONVEX RELAXATIONS IN NONCONVEX AND APPLIED OPTIMIZATION

by

Jieqiu Chen

An Abstract

Of a thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Business Administration
in the Graduate College of

The University of Iowa

July 2010

Thesis Supervisor: Associate Professor Samuel Burer

1

ABSTRACT

Traditionally, linear programming (LP) has been used to construct convex re-

laxations in the context of branch and bound for determining global optimal solutions

to nonconvex optimization problems. As second-order cone programming (SOCP)

and semidefinite programming (SDP) become better understood by optimization re-

searchers, they become alternative choices for obtaining convex relaxations and pro-

ducing bounds on the optimal values. In this thesis, we study the use of these convex

optimization tools in constructing strong relaxations for several nonconvex problems,

including 0-1 integer programming, nonconvex box-constrained quadratic program-

ming (BoxQP), and general quadratic programming (QP).

We first study a SOCP relaxation for 0-1 integer programs and a sequential

relaxation technique based on this SOCP relaxation. We present desirable properties

of this SOCP relaxation, for example, this relaxation cuts off all fractional extreme

points of the regular LP relaxation. We further prove that the sequential relaxation

technique generates the convex hull of 0-1 solutions asymptotically.

We next explore nonconvex quadratic programming. We propose a SDP re-

laxation for BoxQP based on relaxing the first- and second-order KKT conditions,

where the difficulty and contribution lie in relaxing the second-order KKT condition.

We show that, although the relaxation we obtain this way is equivalent to an existing

SDP relaxation at the root node, it is significantly stronger on the children nodes in

a branch-and-bound setting.

2

New advance in optimization theory allows one to express QP as optimizing a

linear function over the convex cone of completely positive matrices subject to linear

constraints, referred to as completely positive programming (CPP). CPP naturally

admits strong semidefinite relaxations. We incorporate the first-order KKT conditions

of QP into the constraints of QP, and then pose it in the form of CPP to obtain a

strong relaxation. We employ the resulting SDP relaxation inside a finite branch-

and-bound algorithm to solve the QP. Comparison of our algorithm with commercial

global solvers shows potential as well as room for improvement.

The remainder is devoted to new techniques for solving a class of large-scale

linear programming problems. First order methods, although not as fast as second-

order methods, are extremely memory efficient. We develop a first-order method

based on Nesterov’s smoothing technique and demonstrate the effectiveness of our

method on two machine learning problems.

Abstract Approved:

Thesis Supervisor

Title and Department

Date

CONVEX RELAXATIONS IN NONCONVEX AND APPLIED OPTIMIZATION

by

Jieqiu Chen

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Business Administration
in the Graduate College of

The University of Iowa

July 2010

Thesis Supervisor: Associate Professor Samuel Burer

Copyright by
JIEQIU CHEN

2010
All Rights Reserved

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Jieqiu Chen

has been approved by the Examining Committee for the
thesis requirement for the Doctor of Philosophy degree
in Business Administration at the July 2010 graduation.

Thesis Committee:

Samuel Burer, Thesis Supervisor

Kurt Anstreicher

Nick Street

Jeffrey Ohlmann

Pavlo Krokhmal

To my parents: Chen, Dajun and Zhou, Ze

ii

ACKNOWLEDGEMENTS

I owe my deepest gratitude to my advisor Samuel Burer. It is his guidance

and support that enables me to finish this thesis. Sam is the most effective teacher

I have encountered in my academic life. During my first year at the University of

Iowa, I took Sam’s Linear Programming class, which I found was one of the easiest

graduate classes. It is not because the subject of linear program itself was easy, but

that Sam had explained complicated theories in a way easy for students to understand

that made the class easy. In addition to Linear Programming, Sam also taught me

numerous other things: from basic concepts of semidefinite programming to how to

use SeDuMi to solve an optimization problem, and from breaking down hard math

problems into easier ones to how to make a research presentation. I am especially

thankful for that he corrected the grammar errors in my thesis and has always been

helpful when I face difficulties with research. I could not have imagined having a

better advisor for my research.

I would like to thank my dissertation committee members, Kurt Anstreicher,

Nick Street, Jeff Ohlmann, and Pavlo Krokhmal for their critical questions and invalu-

able suggestions that improved the thesis. I am indebted to Pavlo for his short-term

mentorship that inspired my interests in second-order cone programming. My sincere

thanks go to Kurt, Jeff and Nick for their helpful advice and encouragement during

my course of study. I would also like to express my appreciation to various professors

at the University of Iowa, Ann Campbell, Barry Thomas, Richard Dykstra, Kasturi

iii

Varadarajan, as well as Dr. Miguel Anjos at the University of Waterloo for being

supportive on my career.

I would like to thank many past and present fellow PhD students, Justin

Goodson, Nick Leifker, Kaan Ataman, Xin Ying Qiu, Yi Zhang, and Chuanjie Liao.

Special thanks to Hui Chen, who has given me advice and support on many occasions.

I am also grateful to the PhD program coordinator, Renea Jay, and our department

secretary, Barb Carr, for their assistance that made my PhD life hassle free.

Many thanks to my friends at Iowa City, Beverly Robalino, Zhejia Ling, Tingt-

ing Xiao, Tingting Que, Ke Yang, Yi Jiang, Fei Su, and Shanshan Zhao, for their

companionship and the fun they brought to my life. I will always remember the

wonderful times we spent together.

Last but not the least, I would like to thank my father and mother for their

unconditional love and support that allow me to go this far. I would also like to

express my gratitude to my boyfriend, Bolin Ding, for his love, encouragement, and

faith in me.

iv

ABSTRACT

Traditionally, linear programming (LP) has been used to construct convex re-

laxations in the context of branch and bound for determining global optimal solutions

to nonconvex optimization problems. As second-order cone programming (SOCP)

and semidefinite programming (SDP) become better understood by optimization re-

searchers, they become alternative choices for obtaining convex relaxations and pro-

ducing bounds on the optimal values. In this thesis, we study the use of these convex

optimization tools in constructing strong relaxations for several nonconvex problems,

including 0-1 integer programming, nonconvex box-constrained quadratic program-

ming (BoxQP), and general quadratic programming (QP).

We first study a SOCP relaxation for 0-1 integer programs and a sequential

relaxation technique based on this SOCP relaxation. We present desirable properties

of this SOCP relaxation, for example, this relaxation cuts off all fractional extreme

points of the regular LP relaxation. We further prove that the sequential relaxation

technique generates the convex hull of 0-1 solutions asymptotically.

We next explore nonconvex quadratic programming. We propose a SDP re-

laxation for BoxQP based on relaxing the first- and second-order KKT conditions,

where the difficulty and contribution lie in relaxing the second-order KKT condition.

We show that, although the relaxation we obtain this way is equivalent to an existing

SDP relaxation at the root node, it is significantly stronger on the children nodes in

a branch-and-bound setting.

v

New advance in optimization theory allows one to express QP as optimizing a

linear function over the convex cone of completely positive matrices subject to linear

constraints, referred to as completely positive programming (CPP). CPP naturally

admits strong semidefinite relaxations. We incorporate the first-order KKT conditions

of QP into the constraints of QP, and then pose it in the form of CPP to obtain a

strong relaxation. We employ the resulting SDP relaxation inside a finite branch-

and-bound algorithm to solve the QP. Comparison of our algorithm with commercial

global solvers shows potential as well as room for improvement.

The remainder is devoted to new techniques for solving a class of large-scale

linear programming problems. First order methods, although not as fast as second-

order methods, are extremely memory efficient. We develop a first-order method

based on Nesterov’s smoothing technique and demonstrate the effectiveness of our

method on two machine learning problems.

vi

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xii

LIST OF ALGORITHMS . xiii

CHAPTER

1 INTRODUCTION . 1

1.1 A p-Cone Sequential Relaxation Procedure for 0-1 Integer
Programs . 4

1.2 Relaxing the Optimality Conditions of Box QP 6
1.3 Combining Finite Branch-and-Bound with Doubly Nonnegative

Relaxations for QP . 7
1.4 A 1st-Order Smoothing Technique for a Class of Large-Scale LPs 8

2 A P -CONE SEQUENTIAL RELAXATION PROCEDURE FOR 0-1
INTEGER PROGRAMS . 10

2.1 Introduction . 10
2.2 Relaxation Procedure and Comparisons 14

2.2.1 Notation and terminology 15
2.2.2 Relaxation procedure . 16
2.2.3 A different derivation . 21
2.2.4 Comparison with existing approaches 22

2.2.4.1 Lovász-Schrijver 23
2.2.4.2 Kojima-Tunçel 24
2.2.4.3 Balas-Ceria-Cornuéjols 26

2.3 Duality, Complexity, Monotonicity, and Fractional Extreme
Points . 27
2.3.1 Duality . 28
2.3.2 Iteration complexity . 32
2.3.3 Two types of monotonicity 33
2.3.4 Elimination of fractional extreme points 36

2.3.4.1 Polytopes . 36
2.3.4.2 Balls . 38
2.3.4.3 The general case 43

2.4 Iterated Procedure and Convergence 44
2.5 Computational Considerations 50

vii

2.6 Conclusions . 55

3 RELAXING THE OPTIMALITY CONDITIONS OF BOX QP 57

3.1 Introduction . 57
3.1.1 Notation and terminology 60

3.2 Optimality Conditions . 60
3.3 Semidefinite Relaxations . 63

3.3.1 Shor’s bounded relaxation (SDP0) 64
3.3.2 Relaxations (SDP12) and (SDP2) 65

3.4 Equivalence of the SDP Relaxations 67
3.4.1 Equivalence of (SDP0) and (SDP2) 67
3.4.2 Equivalence of (SDP0) and (SDP12) 69

3.4.2.1 Additional properties of (SDP0) 70
3.4.2.2 Proof of equivalence 73

3.5 Comparison of SDP Relaxations Within Branch-and-Bound . . . 76
3.5.1 Branch-and-bound for box QP 77
3.5.2 Implementation and results 83
3.5.3 Some additional tests . 89

3.6 Conclusion . 90

4 COMBINING FINITE BRANCH-AND-BOUND WITH DOUBLY NON-
NEGATIVE RELAXATIONS FOR QP 92

4.1 Introduction . 92
4.2 More Background . 94

4.2.1 The Finite Branch-and-Bound Method 94
4.2.2 Doubly Nonnegative Programs 96

4.3 Reformulation and Bounding . 97
4.3.1 Reformulation . 97
4.3.2 Finite Bounds on Dual Variables 101
4.3.3 Connection with Section 2 103

4.4 Preliminary Computational Experiments 103
4.5 Conclusion and Future Work . 107

5 A FIRST-ORDER SMOOTHING TECHNIQUE FOR A CLASS OF
LARGE-SCALE LPS . 109

5.1 Introduction . 109
5.2 Nesterov’s Smoothing Method 113

5.2.1 Notation and terminology 113
5.2.2 A primal-dual smoothing method 114

5.3 Applying the Smoothing Technique 117
5.3.1 Reformulation . 118

viii

5.3.2 Specifications . 121
5.3.3 Algorithm . 126

5.4 Speeding Up the Convergence . 128
5.5 Applications and Computational Experiments 134

5.5.1 Linear Programming Ranking Problem 134
5.5.2 1-Norm Support Vector Machines 138

5.6 Conclusion . 141

6 CONCLUSION . 143

REFERENCES . 146

ix

LIST OF TABLES

Table

2.1 Description of the stable set instances. 51

2.2 The bounds and times (in seconds) for solving the p = ∞ and p = 2
relaxations of the stable set instances from Table 2.1. Each LP is solved
using two methods: the dual simplex method (CPLEX) and the primal-
dual interior-point method (MOSEK). An asterisk (∗) indicates that the
corresponding solver ran out of memory. A time limit of 100,000 seconds
is enforced for each run. 52

2.3 Description of selected instances from MIPLIB 2003 53

2.4 The bounds and times (in seconds) for solving p =∞ and p = 2 relaxations
of selected instances from MIPLIB 2003. The relaxations of p = ∞ were
solved using both CPLEX and MOSEK. A time limit of 100,000 seconds
was enforced and “–” means the solver did not find the optimal value when
time limit was reached. 54

3.1 Comparison of the sizes of (SDP0), (SDP2), and (SDP12) 67

4.1 Computational Results of 77 Quadratic Instances in GLOBALLIB. Mea-
sures include CPU times (including pre-processing) and the number of
nodes in branch-and-bound (“Nodes” column). 105

4.2 BARON Results on Several “Hard” Problems 106

4.3 Comparison of BARON and QUADPROGBB on several BoxQP instances.
We break QUADPROGBB’s time into pre-processing time (tpre) and branch-
and-bound time (tB&B). All of the time are in seconds. 107

5.1 Dimensions of matrix A and its percentage of non-zeros (instances are
ordered increasingly by the number of non-zeros) 136

5.2 Comparison of Algorithm 5.4 (Smooth) and the subgradient method
(Subg.) when applied to 14 linear ranking problems. Times are in seconds
and rounded to the nearest integers. 138

x

5.3 Comparison of Algorithm 5.4 (Smooth) and the generalized Newton scheme
(NewtonLP) in terms of CPU times and the best objective values found.
The stopping criteria for Smooth is the relative primal-dual gap r, de-
fined in (5.20), is smaller than 0.1%; the stopping criteria for NewtonLP
is that the norm of the gradient is smaller than 1e−5. The time limit is
set to be 18000 seconds. 141

xi

LIST OF FIGURES

Figure

2.1 The four sets P ⊇ N(1,J)(P) ⊇ N(2,J)(P) ⊇ N(∞,J)(P) relative to the
example feasible set F in (2.3), where J = {1, 2}. Note that N(∞,J)(P) =
P 01 in this example. 20

3.1 Number of nodes required under test scenarios (i) and (ii). This demon-
strates that the advanced branching strategy reduces the number of nodes
significantly compared to the simple branching strategy. 85

3.2 Number of nodes and CPU times (seconds) required under test scenarios
(ii) and (iii). This demonstrates that (SDP2) results in fewer nodes com-
pared to (SDP0). However, the overall CPU time incurred by (SDP2) is
greater. 86

3.3 Number of nodes and CPU times (seconds) required under test scenarios
(ii) and (iv). Compared to scenario (iii) in Figure 3.2, less time is required
by scenario (iv), but still scenario (iv) requires more time than scenario (ii). 88

5.1 Comparison of running Smooth algorithm under cases (i) – (iii). The
left subplot shows the change of the error p(α) − θ∗ over time; the right
subplot shows how the primal-dual gap changes over time and compares
it with the corresponding upper bound 133

5.2 Primal errors versus time (log-log scale) for the smoothing technique and
the subgradient method. 139

xii

LIST OF ALGORITHMS

Algorithm

5.1 Initial . 126

5.2 Update1: primal update . 127

5.3 Update2: dual update . 127

5.4 Smooth . 128

xiii

1

CHAPTER 1
INTRODUCTION

In this thesis, we study the use of convex optimization for solving several non-

convex problems and one application of nonsmooth convex optimization. As stated

in Boyd and Vandenberghe (2004), a convex optimization problem is one of the form

min f0(x) (1.1)

s.t. fi(x) ≤ bi, i = 1, . . . ,m,

where the functions f0, . . . , fm : <n → < are convex, i.e., satisfy

fi(αx+ βy) ≤ αfi(x) + βfi(y)

for all x, y ∈ <n and all α, β with α + β = 1, α ≥ 0, β ≥ 0. If f0, . . . , fm are linear,

then (1.1) is a linear programming (LP) problem. LP is one of the most well-studied

fields within optimization and has mature theories, e.g., duality theory, and solu-

tions techniques, such as the simplex method and interior-point methods, as well as

countless applications (Dantzig, 1998; Wright, 1997; Vanderbei, 2007). Modern linear

programming technology is so powerful that solving a linear program of reasonable

size is easy. Although we cannot say that the task of solving a general convex opti-

mization problem is as easy as solving a linear program, at least theoretically a similar

story can be said about (1.1): it is solvable within a number of operations that is

a polynomial of the problem dimensions (provided the functions satisfy certain as-

sumptions). In fact, Nesterov and Nemirovskii (1994) have established interior-point

polynomial algorithms that solve a large class of convex optimization problems.

2

If at least one of f0, . . . , fm is not convex, then (1.1) becomes nonconvex opti-

mization problem, which in general is known to beNP-hard. However, such problems

arise naturally in diverse areas such as engineering product design, Nash equilibria

in economics, traffic equilibria in transportation, supply chain management, etc.; see

Pintér (1995) for a collection of real world nonconvex optimization problems. There

are various methodological approaches for nonconvex problems: local optimization

methods, exact methods, and meta heuristics.

Among a variety of exact methods, branch-and-bound is one of the most widely

used approaches. Branch-and-bound works by subdividing the entire search space or

feasible region into smaller spaces (the branching process) while maintaining upper

and lower bounds on the objective function being optimized (the bounding feature).

Recursive branching defines a tree structure, whose nodes are the subdivided spaces.

For a minimization problem, a relaxation of the problem is usually solved at each

node get a lower bound on the optimal value. A global upper bound (GUB) is used

to fathom nodes whose lower bounds exceed the GUB. For a node that cannot be

fathomed, it is subdivided and the resulting children nodes are added to the candidate

list.

Traditionally, LP relaxation is probably the primary choice for relaxation in

solving nonconvex optimization problems, which is evidenced by the extensive use of

linear programming relaxations in mixed integer programming and some of the most

popular nonconvex optimization solvers, such as BARON (Sahinidis, 1996; Tawar-

malani and Sahinidis, 2002). Using LP as the relaxation technique has many bene-

3

fits; LP is very well understood by optimization researchers and modern LP solvers

are very powerful. With the rapid development of convex optimization, several new

problem classes have become standard: second-order cone programming (SOCP),

semidefinite programming (SDP), etc. These new problem classes have similar du-

ality theory as LP. Moreover, LP, SOCP, and SDP can be viewed under a unified

conic programming framework and be treated by interior-point methods (Nesterov

and Nemirovskii (1994)). On the application side, SOCPs have been applied to many

science and engineering problems (Lobo et al. (1998)); SDPs have been used to get

bounds on combinatorial optimization problems (Goemans, 1998), and to solve engi-

neering problems (Vandenberghe and Boyd (1999)). On the computational side, fast

software packages have been developed for solving these problem classes, for example,

MOSEK (MOSEK, Inc. (2007)) for solving SOCP, and SeDuMi (Sturm (1999)) for

solving SDP. These advancs, both on the theoretical and computational sides, have

led to the use of SOCP and SDP as alternative relaxations for nonconvex optimization

problems.

In this thesis, we mainly explore the use of convex relaxations, such as SOCP

and SDP relaxations, for nonconvex problems. The idea is to get tight bounds from

these relaxations and use them inside a branch-and-bound framework. Instead of

studying general nonconvex optimization problems, we focus on several special cases:

(1) quadratic programming (QP) problems, i.e., f0 is quadratic and its Hessian is not

positive semidefinite, and all other function are linear; (2) 0-1 integer programming

problems: all functions are linear and some components of the variable x are binary.

4

The thesis is not limited to the construction of convex relaxations, but also studies

a modern technique for solving large-scale convex optimization problems and their

applications.

The remainder of the thesis is organized as follows. Chapter 2 investigates

an SOCP-based sequential relaxation technique for 0-1 integer programs; Chapter

5 develops a first-order method based on a smoothing technique to solve a class of

large-scale linear programs; Chapter 3 studies semidefinite relaxations of nonconvex,

box-constrained quadratic programming (BoxQP); related to Chapter 3, Chapter 4

studies how to combine a finite branch and bound method and a new SDP relaxation

to solve general nonconvex QP; In Chapter 5, we investigate a first-order method

that is suitable for a class of large-scale linear programming problems and apply it to

machine learning; finally, Chapter 6 summarizes the contribution of this thesis, and

outlines future research.

The following four paragraphs motivate and outline Chapters 2 to 5.

1.1 A p-Cone Sequential Relaxation Procedure

for 0-1 Integer Programs

Beyond the basic linear programming (LP) relaxation of the feasible set of

0-1 integer programs, many authors have considered general techniques for achieving

tighter relaxations (Gomory, 1963; Sherali and Adams, 1990; Lovász and Schrijver,

1991; Balas et al., 1993; Kojima and Tunçel, 2000a,b; Lasserre, 2001; Parrilo, 2003;

Bienstock and Zuckerberg, 2004). One recurring theme is to lift the feasible set

5

of 0-1 integer programs into a higher dimensional space, where a convex relaxation

is constructed, and then to project this relaxation back into the original space of

variables, thus obtaining a new relaxation, which is possibly tighter than the basic

LP relaxation. The choice of lifting and relaxation determines the strength of the

new relaxation. In all previous works, LP and SDP relaxations have been used in the

higher dimensional space.

With the development of second-order cone programming (SOCP) both in the-

ory and practical implementation, one may wonder if SOCP or more generally p-order

cone programming (1 ≤ p ≤ ∞) can be used in a sequential relaxation technique,

which has its own theoretical and practical advantages. In this chapter, we address

this question by introducing a sequential relaxation technique based on p-order cone

programming. We prove that our technique generates the convex hull of 0-1 solu-

tions asymptotically. Although our technique does not converge in finite iterations

for finite p, we prove that for p = 2 solving the relaxation obtained by applying the

technique one time enjoys a better theoretical iteration complexity than that of other

p, including p = ∞. In addition, we show that our method generalizes and sub-

sumes several existing methods. For example, when p =∞, our method corresponds

to the well-known procedure of Lovász and Schrijver (Lovász and Schrijver (1991))

based on linear programming. Computational considerations of our technique are

also discussed.

6

1.2 Relaxing the Optimality Conditions of Box QP

In finding a global solution to box-constrained nonconvex quadratic program,

Vandenbussche and Nemhauser (2005b,a) branch on first-order KKT conditions and

solve an LP relaxation at each node of the branch-and-bound tree. Extending the first-

order KKT-branching to general quadratic programming, Burer and Vandenbussche

(2006a, 2008) develop a finite branch-and-bound scheme where a SDP relaxation

is solved at each node. Chapter 3 of this thesis also investigates SDP relaxations

of nonconvex box-constrained quadratic programs and their use in a branch-and-

bound scheme. However, it differs from the previous works in two aspects: (i) the

SDP relaxations are constructed based on the second-order KKT conditions; (ii) the

branching method does not branch on the KKT conditions but subdivides the feasible

region instead.

First, we derive the first- and second-order necessary optimality conditions of

BoxQP and prove an equivalent form of the second-order condition that turns out

to be critical in constructing the semidefinite relaxation. Second, we linearize the

quadratic terms in the first- and second-order conditions to obtain two semidefinite

relaxations (SDP12) and (SDP2), where the former incorporates both the first- and

second-order optimality conditions while the latter only incorporates the second-order

condition. We then recall a basic semidefinite relaxation (SDP0) due to Shor and es-

tablish that (SDP0), (SDP12) and (SDP2) are all equivalent. However, in the context

of branch-and-bound to determine a global optimal solution, we empirically demon-

strate that (SDP2) is significantly stronger than (SDP0) in the sense that the number

7

of nodes required by (SDP2) in the branch-and-bound tree is less than that required by

(SDP0). An effective branching strategy is also developed for the branch-and-bound

scheme.

1.3 Combining Finite Branch-and-Bound with

Doubly Nonnegative Relaxations for QP

Burer (2006) has recently shown that a large class of quadratic programming

problems can be modeled by so-called completely positive programs (CPP), which

minimize a linear function over the convex cone of completely positive matrices sub-

ject to linear constraints. Relaxing the completely positive matrices naturally leads to

semidefinite relaxations, referred to as doubly nonnegative relaxations. As a follow-

ing work, Burer (2010) presents a computationally efficient algorithm for solving the

doubly nonnegative relaxations. This algorithm can be used as a sub-routine inside

a branch-and-bound scheme to globally solve QPs.

The goal of this work is to integrate the afore-mentioned sub-routine with a

finite branch-and-bound method (Burer and Vandenbussche (2008)) to solve a general

QP with linear constraints only. In order to combine the algorithm with the finite

branch-and-bound together, we first reformulate the general QP such that it explicitly

incorporates its first-order KKT system into its constraints. By doing this, the QP

we consider can be modeled by CPP, which explicitly models the complementarity

constraint. In addition, formulating the KKT system allows us to do finite branching

on the complementarity condition. One key technical issue in the reformulation is

8

to bound the dual variables because the sub-routine used to solve doubly nonneg-

ative relaxations requires a finite bound on the input variables. We test the finite

branch-and-bound method obtained this way on 77 GLOBALIB problems and several

BoxQP problems. The computational results indicate potential as well as room for

improvement for our method.

1.4 A First-Order Smoothing Technique for

a Class of Large-Scale LPs

Chapter 5 of this thesis deals with a class of LPs instead of nonconvex prob-

lems. Modern LP solvers are so sophisticated and robust that it is almost always the

case that a LP can be solved as long as there is sufficient computer memory. However,

a lot of LPs arising in machine learning and data mining are so large that they cannot

be solved by off-the-shelf LP solvers because of memory limitations of the computer.

Chapter 5 investigates a smoothing technique that is extremely memory efficient and

thus is suitable for large-scale problems.

The smoothing technique we use was first proposed in Nesterov (2005b,a) and

has been applied, for example, to solve LPs, SDPs and other convex nonsmooth

problems. The LP we consider has an unbounded feasible set and cannot be directly

cast as the structured convex problem required by the smoothing technique. Our

work features a transformation of the unbounded feasible set into a bounded one.

This transformation requires a parameter that bounds the optimal value from above.

As a result, the iteration complexity of solving the LP depends on the parameter. We

9

design a scheme that dynamically updates the parameter to speed up the convergence.

We apply the smoothing technique to two machine learning problems: one is a

linear programming based ranking problem (Ataman (2007)), and the other is 1-norm

SVMs (Zhu et al. (2003); Mangasarian (2006)). For the ranking problem, we compare

the smoothing technique with the subgradient method employed by Ataman (2007);

for 1-norm SVMs, we compare it with the generalized Newton method developed by

Mangasarian (2006) on large-scale 1-norm SVMs. The smoothing technique shows

faster convergence than the other methods and is more robust than the generalized

Newton method.

Portions of this thesis are joint work with Dr. Samuel Burer.

10

CHAPTER 2
A P -CONE SEQUENTIAL RELAXATION PROCEDURE FOR 0-1

INTEGER PROGRAMS

This chapter has been published in Burer and Chen (2009a).

2.1 Introduction

Consider solving the 0-1 integer program

min cTx (2.1)

s.t. aTi x ≤ bi ∀ i = 1, . . . ,m

x ∈ {0, 1}n.

Beyond the basic linear programming (LP) relaxation P of the feasible set of (2.1),

many authors have considered general techniques for achieving tighter relaxations

(Gomory, 1963; Sherali and Adams, 1990; Lovász and Schrijver, 1991; Balas et al.,

1993; Kojima and Tunçel, 2000a,b; Lasserre, 2001; Parrilo, 2003; Bienstock and

Zuckerberg, 2004). One recurring theme is to lift the feasible set of (2.1) into a higher

dimensional space, where a convex relaxation is constructed, and then to project this

relaxation back into the original space of variables, thus obtaining a relaxation P 1,

which is possibly tighter than P . The choice of lifting and relaxation determines

the strength of P 1. In all previous works, LP and semidefinite (SDP) relaxations

have been used in the higher dimensional space. Kim and Kojima Kim and Kojima

(2003) suggest a modification of the SDPs which only enforces positive semidefinte-

ness on 2 × 2 principal submatrices, which can be modeled with second-order cone

11

programming (SOCP) (see also Kim and Kojima (2001); Kim et al. (2003)).

In Lovász and Schrijver (1991), Balas et al. (1993), and Kojima and Tunçel

(2000a,b), the idea of sequential relaxation is also introduced. Stated simply, the

idea is to repeat the lift-and-project procedure on the tighter relaxation P 1, thus

obtaining an even tighter relaxation P 2. If P k denotes the k-th relaxation obtained

inductively, a fundamental question is whether {P k} converges to P 01, the convex

hull of the feasible set of (2.1). In each study referenced above, the answer is positive;

in fact, P k = P 01 for all k ≥ n. Computationally, one can typically optimize over P k

in polynomial time as long as k is constant with respect to n. Kojima and Tunçel

(2000a,b) apply their techniques to a much broader class of quadratically constrained

problems and show asymptotic convergence to the convex hull of solutions.

Sherali and Adams (1990), Lasserre (2001), and Parrilo (2003) do not explicitly

employ the idea of sequential relaxation. Rather, they lift to ever higher dimensions

before projecting, a technique which is analogous to sequential relaxation. Here, too,

the authors show that lifting to a finite dimension (dependent in some manner on n)

achieves P 01. Similar to the work of Kojima and Tunçel (2000a,b), these authors’

techniques can be applied to more general problem classes, but one may have to lift

“infinitely” to achieve the convex hull of solutions.

Although these lift-and-project procedures are very powerful theoretically,

they present significant computational challenges, even after a single iteration. One

must deal with more variables in the higher dimensional space as well as additional

constraints introduced by lifting. For example, after one iteration of the LP-based

12

procedure of Balas et al. (1993), the resulting LP contains 2n variables and 2m+1 con-

straints assuming that the constraints aTi x ≤ bi already imply the bounds 0 ≤ xj ≤ 1.

The procedure of Lovász and Schrijver (1991) requires even more variables and con-

straints. After one iteration, their LP-based procedure has O(n2) variables and

O(nm) linear constraints, and their SDP-based procedure contains an additional

semidefinite constraint on an order n × n matrix. In both of these particular cases,

computational progress has been achieved by exploiting the structure of constraints

generated by these procedures (Balas and Perregaard, 2003; Burer and Vandenbuss-

che, 2006b).

The purpose of this chapter is to explore p-order cone programming (POCP)

relaxations, which include second-order cone programming (SOCP) relaxations when

p = 2. Our interest in POCP arises from the fact that POCP is becoming a well-

understood tool in convex optimization (Xue and Ye, 2000; Andersen et al., 2002;

Glineur and Terlaky, 2004; Krokhmal and Soberanis, 2008). Moreover, there are cur-

rently several high quality implementations for SOCP (Tütüncü et al., 2001; Sturm,

1999; MOSEK, Inc., 2007), and in fact POCP can be formulated exactly via SOCP

(Ben-Tal and Nemirovski, 2001; Alizadeh and Goldfarb, 2003; Krokhmal and Sobera-

nis, 2008). Our hope is that, by introducing POCP relaxations, we might discover

new lift-and-project procedures that have their own theoretical and computational

advantages.

In this chapter, we introduce a family of lift-and-project procedures parame-

terized by p ∈ [1,∞] and prove that each asymptotically yields P 01, the convex hull

13

of 0-1 solutions (Theorem 2.4.1). A feature of this family of procedures is the ability

to lift and project with respect to different subsets of variables at different iterations.

Although we do not achieve finite convergence in general so that our procedure is

weaker than existing methods in this sense, we do observe theoretical advantages. In

particular, the theoretical iteration complexity of solving the POCP relaxations via

interior-point methods is minimized when p = 2 at which the iteration complexity is

an order of magnitude less than solving existing LP and SDP relaxations (Corollary

2.3.6). In addition, our family of procedures unifies existing approaches. For example,

when p =∞, we recover the LP-based procedure of Lovász and Schrijver (1991).

In Section 2.2, we describe the basic p-order cone lift-and-project procedure

and give an alternate derivation of it. This is just one iteration of the entire sequential

relaxation approach, which is described in Section 2.4. We then compare and contrast

our procedure with three existing approaches: Lovász and Schrijver (1991), Kojima

and Tunçel (2000a,b), and Balas et al. (1993). In particular, we point out that our

method includes the LP based lift-and-project procedure of Lovász and Schrijver

(1991) and the relaxation of Balas et al. (1993) as special cases.

In Section 2.3, we study fundamental properties of the p-order cone procedure.

In particular, we examine duality properties and two types of monotonicity. For

example, one monotonicity property establishes that the strength of the procedure

increases with p, so that the strength is maximized at p = ∞. We also study the

iteration complexity of solving the resultant p-order cone relaxation via interior-point

methods, where it is shown that the lowest iteration complexity is obtained for p = 2.

14

Following these results is the main technical result of the chapter (Theorem 2.3.15):

the p-order cone procedure, when applied to a generic compact, convex set P , cuts off

all fractional extreme points of P . Theorem 2.3.15 is motivated and proven in three

steps. We first show the result holds when P is a polytope, which is the easiest case.

Then we establish the result when P is a ball, which finally allows us to prove the

theorem for general P .

In Section 2.4, we describe the sequential relaxation approach based on rep-

etition of the p-order cone procedure and prove that it generates the convex hull of

0-1 solutions asymptotically (Theorem 2.4.1). An explicit example is provided to

show that, in general, the iterated procedure may indeed require an infinite number

of repetitions to converge.

In Section 2.5, we consider computational issues associated with the p-cone se-

quential relaxation procedure — particularly with optimizing over the first-iteration

relaxation. We compare the SOCP relaxation (p = 2, lowest theoretical complexity)

to the LP relaxation of Lovász-Schrijver (p = ∞, tightest relaxation). As it turns

out, even though the SOCP relaxation enjoys a much lower theoretical iteration com-

plexity, the LPs solve more quickly and produce better bounds.

Finally, in Section 2.6, we conclude with final remarks.

2.2 Relaxation Procedure and Comparisons

In this section, we first introduce notation and terminology and then formally

describe our p-cone lift-and-project procedure, comparing and contrasting it with the

15

methods of Lovász and Schrijver (1991), Kojima and Tunçel (2000a,b), and Balas

et al. (1993).

2.2.1 Notation and terminology

<n refers to n-dimensional Euclidean space, and <n×n is the set of real, n× n

matrices. We let ei ∈ <n represent the i-th unit coordinate vector and e ∈ <n

represent the vector of all ones. We denote by [n] the set {1, 2, . . . , n}. For J ⊆ [n]

an index set, xJ ∈ <|J | is defined as the vector composed of entries of x that are

indexed by J . Similarly, given a matrix A ∈ <n×n, AJ · represents the |J |×n matrix

composed of the rows of A indexed by J . Diag(x) denotes the diagonal matrix with

diagonal x, and A � 0 means that the matrix A is symmetric positive semidefinite;

its dimension will be clear from context. Finally, given a set S defined over variables

(x, y), projx(S) denotes the projection of S onto the coordinates in x.

For p ≥ 1, the usual p-norm on <n is defined as

‖x‖p :=

(
n∑
i=1

|xi|p
) 1

p

.

We also define when p =∞ ‖x‖∞ := maxni=1 |xi|. Associated with p ∈ [1,∞] is q such

that p−1 + q−1 = 1. Both the p-norm and q-norm give rise to closed, convex cones in

<1+n:

Kp := {(x0, x) ∈ <1+n : x0 ≥ ‖x‖p}

Kq := {(y0, y) ∈ <1+n : y0 ≥ ‖y‖q}.

It is well known that Kq is dual to Kp, i.e.,

Kq = {(y0, y) ∈ <1+n : y0x0 + yTx ≥ 0 ∀ (x0, x) ∈ Kp},

16

which is written as Kq = K∗p ; see for example page 51 of Boyd and Vandenberghe

(2004). Important special cases occur when p = 2 or p =∞. When p = 2, Kp = Kq,

i.e., Kp and Kq are self-dual. When p =∞, q = 1, and both Kp and Kq are polyhedral

cones.

2.2.2 Relaxation procedure

For the purposes of generality particularly with regards to Section 2.4, we

consider a slightly different form of the feasible set of the integer program (2.1), the

only difference being that the linear constraints are indexed by an arbitrary set I

(possibly infinite):

F :=
{
x ∈ {0, 1}n : aTi x ≤ bi ∀ i ∈ I

}
.

This semi-infinite representation for F , as opposed to a finite one, does not affect

the theoretical exposition of the p-cone procedure though it may pose computational

issues. Associated with F is its continuous convex relaxation

P := {x ∈ <n : aTi x ≤ bi ∀ i ∈ I},

obtained by relaxing the integrality requirements on x. We assume P is contained in

[0, 1]n, for example, by including bounds on x via explicit constraints aTi x ≤ bi. So P

is compact convex.

We wish to generate a compact convex relaxation of F , which is tighter than

P . Unless stated otherwise, we assume throughout this section the fixed choice of

p ∈ [1,∞] and ∅ 6= J ⊆ [n]. We will denote the proposed convex relaxation as

17

N(p,J)(P), or more often simply as N(P). Defining

P 01 := conv(F),

our goal is to produce N(P) such that P 01 ⊆ N(P) ⊆ P .

Our first step is to lift F into a higher dimensional space. We will make use

of the following simple key geometric proposition.

Proposition 2.2.1. Define r := p
√
|J |/2 and d := e/2 ∈ <|J |. Then xJ ∈ {0, 1}|J |

implies ‖xJ − d‖p ≤ r.

It is important to keep in mind that r depends on p and |J | and that d depends on

|J |. This proposition establishes the existence of a family of p-balls circumscribing

the integer points {0, 1}|J |. In fact, p′ ≥ p implies that the p′-ball is contained in the

p-ball (see Proposition 2.3.9), with p = ∞ corresponding to the convex hull [0, 1]|J |

of the integer points.

Using Proposition 2.2.1, F can be rewritten redundantly as

F = {x ∈ <n : x = x2, aTi x ≤ bi ∀ i ∈ I, ‖xJ − d‖p ≤ r}.

We note that

aTi x ≤ bi
‖xJ − d‖p ≤ r

}
=⇒

∥∥(bi − aTi x)(xJ − d)
∥∥
p
≤ r(bi − aTi x), (2.2)

which in turn implies

F =
{
x ∈ <n : x = x2,

∥∥bixJ − xJxTai − (bi − aTi x)d
∥∥
p
≤ r(bi − aTi x) ∀ i ∈ I

}

18

since bi − aTi x is kept nonnegative. Next, introducing an n × n matrix variable X

satisfying X = xxT and defining

F̂ :=

{
(x,X) ∈ <n ×<n×n :

X = xxT diag(X) = x∥∥bixJ −XJ ·ai − (bi − aTi x)d
∥∥
p
≤ r(bi − aTi x) ∀ i ∈ I

}

we see that F = projx(F̂), i.e., F̂ is the lifted version of F . In addition, dropping the

nonconvex constraint X = xxT from F̂ , we obtain a convex relaxation of F̂ :

P̂ :=

{
(x,X) ∈ <n ×<n×n :

diag(X) = x∥∥bixJ −XJ ·ai − (bi − aTi x)d
∥∥
p
≤ r(bi − aTi x) ∀ i ∈ I

}
.

Finally, we define N(P) as the projection of P̂ :

N(P) := projx(P̂)

The desired property of N(P) is immediate.

Proposition 2.2.2. P 01 ⊆ N(P) ⊆ P .

Proof. P 01 ⊆ N(P) by construction. Moreover, the definition of P̂ implies that every

x ∈ N(P) satisfies r(bi − aTi x) ≥ 0 for all i ∈ I. Since r > 0, this implies x ∈ P . So

N(P) ⊆ P .

Using the assumption that the constraints aTi x ≤ bi include the bounds 0 ≤ xj ≤ 1

explicitly and the fact that N(P) ⊆ P is bounded, one can see from the definition of

P̂ that proj(x,XJ ·)(P̂) is bounded and hence compact convex. Since the rows Xj· for

j 6∈ J are not constrained in P̂ except for the entries Xjj, it is also clear that

N(P) = projx

(
proj(x,XJ ·)(P̂)

)
.

19

Since the projection of compact convex sets are compact convex, we conclude that

N(P) is compact convex.

Just like P , N(P) has its own semi-infinite outer description, which can be

the basis of lift-and-project applied to N(P) itself. This will be the main idea behind

the iterated procedure of Section 2.4.

As an example, consider the feasible set

F =

x ∈ {0, 1}2 :

−x1 ≤ 0
−x2 ≤ 0

x1 + 2x2 ≤ 2.5
3x1 + x2 ≤ 2.5

 =

{
(0, 0), (0, 1)

}
(2.3)

so that

P 01 =

{
(0, x2) ∈ <2 : 0 ≤ x2 ≤ 1

}
.

Let J = {1, 2}. In Figure 2.1, we illustrate the p-cone procedure by depicting the

four sets

P ⊇ N(1,J)(P) ⊇ N(2,J)(P) ⊇ N(∞,J)(P)

containing P 01. Figure 2.1 was drawn by determining a collection of points on the

boundary of each set via a collection of linesearch procedures. For each of the four

sets, a single linesearch started at (0, 0) and moved into the first quadrant at an angle

θ ∈ [0, π/2]. The point on the boundary was precisely the point where the linesearch

left the set. The linesearch was repeated for a sufficiently fine grid on [0, π/2] for each

of the four sets.

Recall that P is the continuous LP relaxation of F ; in the figure, it is the

largest set. The next largest is N(1,J), a polyhedral set since p = 1. N(2,J) is the

projection of a second-order cone set and hence has a curved boundary. Finally, the

20

Figure 2.1: The four sets P ⊇ N(1,J)(P) ⊇ N(2,J)(P) ⊇ N(∞,J)(P) relative to the

example feasible set F in (2.3), where J = {1, 2}. Note that N(∞,J)(P) = P 01 in this

example.

21

depicted line segment between (0, 0) and (0, 1) is N(∞,J), which equals P 01 in this

example.

2.2.3 A different derivation

In the derivation of N(P), we have relied on the implication (2.2), which can

be thought of as replacing two constraints by their product respecting nonnegativity.

We now show that one can obtain an alternate representation of the right-hand side

of (2.2) via an alternate representation of ‖xJ −d‖p ≤ r. Multiplication of constraints

is still the key idea.

Consider Kp and Kq as described in Section 2.2.1. Because Kq = K∗p, it holds

that

‖xJ − d‖p ≤ r ⇐⇒ (r, xJ − d) ∈ Kp

⇐⇒ vr + uT (xJ − d) ≥ 0 ∀ (v, u) ∈ Kq. (2.4)

Proposition 2.2.3. For a given x ∈ <n, the right-hand side of (2.2) holds if and

only if

(bi − aTi x)
(
vr + uT (xJ − d)

)
≥ 0 ∀ (v, u) ∈ Kq. (2.5)

Proof. (⇒): The right-hand side of (2.2) implies bi − aTi x ≥ 0. If bi − aTi x = 0, then

clearly (2.5) holds. On the other hand, if bi − aTi x > 0, then dividing the right-hand

side of (2.2) by bi−aTi x shows ‖xJ−d‖q ≤ r, which in turn implies vr+uT (xJ−d) ≥ 0

for all (v, u) ∈ Kq by (2.4). Now multiplying with bi − aTi x implies (2.5).

(⇐): If bi − aTi x = 0, then the right-hand side of (2.2) holds trivially. On the

22

other hand, if bi − aTi x 6= 0, then for any nonzero u the two inequalities

(bi − aTi x)
(
‖u‖qr + uT (xJ − d)

)
≥ 0

(bi − aTi x)
(
‖u‖qr − uT (xJ − d)

)
≥ 0

together imply bi−aTi x > 0. As a consequence, vr+uT (xJ −d) ≥ 0 for all (v, u) ∈ Kq,

which means ‖xJ − d‖q ≤ r by (2.4), which in turn implies the right-hand side of

(2.2).

An immediate consequence of Proposition 2.2.3 is that P̂ defined in the deriva-

tion of N(P) can be equivalently expressed using the semi-infinite collection of in-

equalities

(bi − aTi x)(vr − uTd) + biu
TxJ − uTXJ ·ai ≥ 0 ∀ (i, (v, u)) ∈ I × Kq,

thus providing an equivalent definition of N(P).

2.2.4 Comparison with existing approaches

In the derivation of N(P), we did not use the full strength of the relationship

X = xxT in the relaxation P̂ . In particular, we could have also imposed in P̂ the

following two convex conditions, which are implied by X = xxT :

X = XT and

(
1 xT

x X

)
� 0. (2.6)

If we had imposed these, then N(P) would be even tighter. However, we have pur-

posely not imposed them because they are not necessary for the theoretical conver-

gence of the iterated procedure in Section 2.4. In practice, one would certainly want

23

to impose as many constraints that can be handled efficiently. In particular, imposing

symmetry X = XT can be useful to eliminate variables.

We mention the conditions (2.6) here because they facilitate comparison with

existing lift-and-project methods in the following subsections.

2.2.4.1 Lovász-Schrijver

The LP-based approach of Lovász and Schrijver (1991) is derived like ours

except that the following lifted and relaxed sets serve in the place of our F̂ and P̂ :

F̂ls =

(x,X) ∈ <n ×<n×n :
X = xxT diag(X) = x

(bi − aTi x)xk ≥ 0 ∀ (i, k) ∈ I × [n]
(bi − aTi x)(1− xk) ≥ 0 ∀ (i, k) ∈ I × [n]


P̂ls =

(x,X) ∈ <n ×<n×n :
X = XT diag(X) = x

bixk −Xk·ai ≥ 0 ∀ (i, k) ∈ I × [n]
(bi − aTi x)− (bixk −Xk·ai) ≥ 0 ∀ (i, k) ∈ I × [n]

 .

We next establish relations between F̂ls and F̂ , P̂ls and P̂ .

Proposition 2.2.4. Let p =∞ and J = [n]. If the p-cone lift-and-project procedure

also enforces the symmetry condition of (2.6), then F̂ = F̂ls and P̂ = P̂ls.

Proof. Note that r = 1/2 with p = ∞ and J = [n]. It suffices to show that the

conditions ∥∥bix− xxTai − (bi − aTi x)d
∥∥
p
≤ r(bi − aTi x) ∀ i ∈ I

of F̂ are equivalent to the conditions

(bi − aTi x)xk ≥ 0 ∀ (i, k) ∈ I × [n]
(bi − aTi x)(1− xk) ≥ 0 ∀ (i, k) ∈ I × [n]

(2.7)

of F̂ls. By Proposition 2.2.3, the conditions of F̂ can be replaced by

(bi − aTi x)
(
vr + uT (x− d)

)
≥ 0 ∀ (i, (v, u)) ∈ I × K1.

24

Since K1 is finitely generated by {(1,±e1), . . . , (1,±en)}, we obtain

(bi − aTi x)
(
r + eTk (x− d)

)
≥ 0 ∀ (i, k) ∈ I × [n]

(bi − aTi x)
(
r − eTk (x− d)

)
≥ 0 ∀ (i, k) ∈ I × [n],

which reduce to (2.7), as desired.

The next theorem follows directly.

Theorem 2.2.5. Let p = ∞ and J = [n], and suppose the p-cone lift-and-project

procedure enforces the symmetry condition of (2.6). Then the p-cone procedure reduces

to the LP-based Lovász-Schrijver lift-and-project procedure.

Lovász and Schrijver (1991) also proposed an SDP-based procedure, which en-

forces the semidefiniteness condition of (2.6) in P̂ls. Just as the p-cone procedure with

symmetry replicates the LP-based Lovász-Schrijver procedure, the p-cone procedure

with (2.6) replicates the SDP-based Lovász-Schrijver procedure.

Theorem 2.2.6. Let p = ∞ and J = [n], and suppose the p-cone lift-and-project

procedure enforces the symmetry and semidefiniteness conditions of (2.6). Then the

p-cone procedure reduces to the SDP-based Lovász-Schrijver lift-and-project procedure.

2.2.4.2 Kojima-Tunçel

Kojima and Tunçel (2000a,b) present their method as a direct extension of

the approach of Lovász and Schrijver (1991) to general quadratic optimization prob-

lems. Their approach essentially reduces to that of Lovász-Schrijver in the case of 0-1

integer programming — with one important difference, which we explain next. This

25

difference, in particular, will have relevance to our discussion and proofs in Section

2.4.

As discussed in the previous subsection, the Lovász-Schrijver approach is based

on lifting with respect to the collection of constraints

(bi − aTi x)xk ≥ 0 ∀ (i, k) ∈ I × [n]

(bi − aTi x)(1− xk) ≥ 0 ∀ (i, k) ∈ I × [n]

In contrast, Kojima and Tunçel (2000a) (see Section 6, page 767, third full paragraph)

lift with respect to the larger, extended collection

(bi − aTi x)xk ≥ 0 ∀ (i, k) ∈ I × [n]

(bi − aTi x)(1− xk) ≥ 0 ∀ (i, k) ∈ I × [n]

(bi − aTi x)(bh − aThx) ≥ 0 ∀ (i, h) ∈ I × I

xjxk ≥ 0 ∀ (j, k) ∈ [n]× [n]

xj(1− xk) ≥ 0 ∀ (j, k) ∈ [n]× [n]

(1− xj)(1− xk) ≥ 0 ∀ (j, k) ∈ [n]× [n],

which reduces to lifting with respect to

(bi − aTi x)(bh − aThx) ≥ 0 ∀ (i, h) ∈ I × I,

since P implies the constraints 0 ≤ xk ≤ 1 by assumption. For more insight on this

point, please refer to Section 2.3.3 for a discussion on the monotonicity properties of

lift-and-project procedures.

26

This broader lifting guarantees the Kojima-Tunçel approach is at least as

strong as the Lovász-Schrijver approach and at least as strong as our approach for

p =∞ and J = [n].

We remark that Lovász and Schrijver (1991) did consider the broader lifting

of Kojima and Tunçel (2000a,b) but chose not to focus on it for algorithmic reasons.

This point is explained in detail by Kojima and Tunçel (2000a,b).

2.2.4.3 Balas-Ceria-Cornuéjols

The approach of Balas et al. (1993) can also be viewed as a special case of our

approach. The authors choose a single index j and then apply the lift-and-project

procedure outlined above in Section 2.2.2, replacing F̂ and P̂ by the following:

F̂bcc =

(x,X) ∈ <n ×<n×n :
X = xxT diag(X) = x

(bi − aTi x)xj ≥ 0 ∀ i ∈ I
(bi − aTi x)(1− xj) ≥ 0 ∀ i ∈ I


P̂bcc =

(x,X) ∈ <n ×<n×n :
diag(X) = x
bixj −Xj·ai ≥ 0 ∀ i ∈ I

(bi − aTi x)− (bixj −Xj·ai) ≥ 0 ∀ i ∈ I

 .

We point out two important details. First, P̂bcc does not enforce the symmetry

condition X = XT of (2.6). Second, because all rows Xk· for k 6= j are unconstrained

except for the equation Xkk = xk, P̂bcc may be reduced to

P̂bcc =

(x, y) ∈ <n ×<n :
yj = xj
bixj − aTi y ≥ 0 ∀ i ∈ I

(bi − aTi x)− (bixj − aTi y) ≥ 0 ∀ i ∈ I


without affecting the projection onto x.

We claim that the Balas-Ceria-Cornuéjols approach is a special case of our

method with J = {j} and arbitrary p.

27

Proposition 2.2.7. Let p ∈ [1,∞] and J = {j} for some fixed index j. It holds that

F̂bcc = F̂ and P̂bcc = P̂ .

Proof. It suffices to show that the conditions

∥∥bixj − xjxTai − (bi − aTi x)d
∥∥
p
≤ r(bi − aTi x) ∀ i ∈ I (2.8)

of F̂ are equivalent to the conditions

(bi − aTi x)xj ≥ 0 ∀ i ∈ I
(bi − aTi x)(1− xj) ≥ 0 ∀ i ∈ I

of F̂bcc. Noting that r = 1/2 and d = 1/2 and that the p-norm is applied to a scalar

in this case, (2.8) can be rewritten as∣∣∣∣(bi − aTi x)

(
xj −

1

2

)∣∣∣∣ ≤ 1

2
(bi − aTi x) ∀ i ∈ I,

which is clearly equivalent to the conditions of F̂bcc.

We thus have the following theorem.

Theorem 2.2.8. Suppose p ∈ [1,∞] and J = {j} for some fixed index j. Then

the p-cone lift-and-project procedure reduces to the LP-based Balas-Ceria-Cornuéjols

lift-and-project procedure.

2.3 Duality, Complexity, Monotonicity, and

Fractional Extreme Points

In this section, we examine fundamental properties of the p-cone lift-and-

project procedure outlined in Section 2.2.2. The first main result, proved in Section

2.3.2, establishes the theoretical iteration complexity of optimizing over N(p,J)(P).

28

The second main result, proved below in Section 2.3.4.3, is that N(P) contains no

extreme points of P having fractional entries in J , a result which will prove critical

in Section 2.4.

Unless stated otherwise, we assume throughout this section that the pair (p,J)

is fixed, and we use the short notation N(P) in place of N(p,J)(P). We also assume

throughout that J = {1, . . . , |J |}, i.e., J specifies the first |J | variables in x; this is

for notational simplicity only.

2.3.1 Duality

Consider the relaxation min{cTx : x ∈ N(P)} of the 0-1 integer program

min{cTx : x ∈ F}. Its explicit p-cone representation is

min cTx (2.9)

s.t. diag(X) = x(
r(bi − aTi x), bixJ −XJ ·ai − (bi − aTi x)d

)
∈ Kp ∀ i ∈ I,

where (x,X) ∈ <n ×<n×n. It can be derived that the associated dual is

max
∑
i∈I

bi(d
Tui − rvi) (2.10)

s.t.
∑
i∈I

(
(dTui − rvi)ai + bi

(
ui

0

))
+ λ = c

∑
i∈I

(
ui

0

)
aTi + Diag(λ) = 0

(vi, u
i) ∈ Kq ∀ i ∈ I,

29

where the dual variables are λ ∈ <n and (vi, u
i) ∈ <1+|J | for all i ∈ I. To illustrate the

dual derivation without going deep into the details, we prove weak duality between

(2.9) and (2.10) in the following proposition.

Proposition 2.3.1. Suppose |I| < ∞, i.e., P is a polytope. The dual of the p-cone

relaxation (2.9) is the q-cone optimization (2.10). In particular, weak duality holds.

If, in addition, both (2.9) and (2.10) have interior feasible solutions, then strong

duality holds.

Proof. We prove weak duality to illustrate the dual nature of (2.9) and (2.10). The

strong duality result is standard (see Boyd and Vandenberghe (2004)). Let (x,X) be

feasible for (2.9) and let (λ, (vi, u
i)) be feasible for (2.10). Also, let si := bi − aTi x.

Then

cTx−
∑
i∈I

bi(d
Tui − rvi)

=

(∑
i∈I

(
(dTui − rvi)ai + bi

(
ui

0

))
+ λ

)T

x−
∑
i∈I

bi(d
Tui − rvi)

=
∑
i∈I

(rvi − dTui)si +
∑
i∈I

bi x
T

(
ui

0

)
+ λTx

=
∑
i∈I

(
rsivi + [bixJ − sid]T ui

)
+ λTx

=
∑
i∈I

(
rsivi + [bixJ − sid]T ui

)
−

(∑
i∈I

(
ui

0

)
aTi

)
•X

=
∑
i∈I

(
rsivi + [bixJ − sid−XJ ·ai]T ui

)
≥
∑
i∈I

0 = 0.

30

Related to the primal and dual problems (2.9) and (2.10), we consider the

following question and derive a duality result: given x̄ ∈ P ⊆ [0, 1]n, is x̄ ∈ N(P)?

To answer this question, we must determine whether or not the set{
X ∈ <n×n :

diag(X) = x̄
(rs̄i, bix̄J −XJ ·ai − s̄id) ∈ Kp ∀ i ∈ I

}
(2.11)

is empty, where s̄i := bi − aTi x̄. This question is in turn related to the following set

by Proposition 2.3.2 below:(λ, (vi, ui)) ∈ <n ×K|I|q :

∑
i∈I

(
ui

0

)
aTi + Diag(λ) = 0

x̄Tλ+
∑

i∈I
(
rs̄i vi + (bix̄J − s̄id)Tui

)
< 0

 . (2.12)

Proposition 2.3.2. Suppose |I| < ∞, i.e., P is a polytope. Let x̄ ∈ P , and define

s̄i := bi − aTi x̄ for all i ∈ I. Then (2.11) is empty, i.e., x̄ 6∈ N(P), if and only if

(2.12) is nonempty.

Proof. We first argue that, when feasible, the set{(
λ, (vi, u

i)
)

:
∑
i∈I

(
ui

0

)
aTi + Diag(λ) = 0

}

has nonempty interior with respect to the cones Kq 3 (vi, u
i). This follows because we

may arbitrarily increase each vi without affecting the matrix equation. The propo-

sition is now a straightforward application of the conic version of Farkas’ lemma

(Anderson and Nash, 1987).

Sets of the form (2.12) will be crucial for our analysis in the remainder of

Section 2.3 and in Section 2.4. For ease of reference and in order to facilitate the

derivation of various results, we now establish definitions, notations, and basic results

related to (2.12). We still assume fixed (p,J).

31

Let Â ∈ <m̂×n, b̂ ∈ <m̂, and x̂ ∈ <n be given, where m̂ <∞. Also define the

polyhedron

P (Â, b̂) :=
{
x ∈ <n : Âx ≤ b̂

}
.

Proposition 2.3.3. With the above definitions, it holds that x̂ 6∈ N(P (Â, b̂)) if and

only if

C(Â, b̂, x̂) :=

(λ, (vi, ui)) ∈ <n ×Knq :

(
U
0

)
Â+ Diag(λ) = 0

x̂Tλ+ x̂TJUb̂+ (b̂− Âx̂)T (r v − UTd) < 0


is nonempty, where U = (u1, . . . , un) ∈ <|J |×n and v = (v1, . . . , vn)T ∈ <n.

Proof. This is just a restatement of Proposition 2.3.2 for the generic polyhedron

P (Â, b̂).

In addition, we define a proposed canonical solution associated with C(Â, b̂, x̂) when

Â is square and invertible:

U(Â) :=
(
u1(Â), . . . , un(Â)

)
:= [Â−1]J ·, (2.13a)

v(Â) :=
(
‖u1(Â)‖q, . . . , ‖un(Â)‖q

)T
, (2.13b)

λ :=
(
−eT 0

)T
, (2.13c)

where e is the all-ones vector of length |J |.

Proposition 2.3.4. If Â is square and invertible, then the proposed canonical solution

(U, v, λ) := (U(Â), v(Â), λ) given by (2.13) is feasible for C(Â, b̂, x̂) if and only if

−eT x̂J + x̂TJUb̂+ (b̂− Âx̂)T (r v − UTd) < 0

Proof. By construction, (U, v, λ) satisfies all of the conditions for membership in

C(Â, b̂, x̂) except possibly the strict inequality.

32

2.3.2 Iteration complexity

For the discussion in this subsection, we assume that |I| < ∞, i.e., P is a

polytope.

The general interior-point methodology of Nesterov and Nemirovskii (1994)

can be used to derive iteration complexity results for solving the p-cone relaxation

(2.9) and/or its dual (2.10). Stated with respect to (2.9), the key result is as follows:

Theorem 2.3.5 (Nesterov and Nemirovskii (1994)). Suppose that (2.9) is interior

feasible with finite optimal value v∗. Let a polynomial-time self-concordant barrier for

Kp with barrier parameter θp, an interior feasible solution (x0, X0), and a tolerance

ε > 0 be given. Then there exists an algorithm (“short-step primal-only interior-

point algorithm”), which delivers a solution (x∗, X∗) satisfying cTx∗ − v∗ < ε within

O(
√
θp|I| log(ε−1(cTx0 − v∗))) iterations, each of which takes polynomial time.

As is evident from the theorem, the key ingredient determining the iteration

complexity of the interior-point algorithm is the barrier parameter θp. It is well known

that there exists a self-concordant barrier for K2 with θ2 = 2 = O(1), and when p 6= 2,

Andersen et al. (2002) show the existence of a self-concordant barrier for Kp such that

θp = 4|J | = O(|J |). This implies the following corollary.

Corollary 2.3.6. With respect to Theorem 2.3.5, (2.9) can be solved in O(
√
|I|)

iterations when p = 2 and O(
√
|J ||I|) iterations otherwise.

It is interesting that the iteration complexity does not depend on |J | when p = 2.

This corollary illustrates that, among all relaxations as p varies in [1,∞], the

33

second-order cone relaxation has the lowest overall theoretical iteration complexity.

In addition, when p = q = 2, one can also apply the stronger algorithmic framework of

Nesterov and Todd (1997) for homogeneous self-dual cones to obtain long-step primal-

dual path-following algorithms, which have high quality practical implementations.

From a theoretical point of view, then, one may be interested only in the

relaxations when p = 2 (lowest iteration complexity) and p =∞ (strongest relaxation

and same iteration complexity as all other p 6= 2). Of course, what happens in practice

may differ from theory, as we will see in Section 2.5. To close this subsection, we

remark that, for p = 1 and p =∞, the iteration complexity given by Corollary 2.3.6

matches the iteration complexity obtained if one first formulates (2.9) as its standard

LP representation and then applies a LP interior-point method to that representation.

2.3.3 Two types of monotonicity

Monotonicity is a relatively simple, yet important, property of the p-cone

procedure outlined in Section 2.2.2. In fact, there are two types of monotonicity

though both are derived from the same principle. The first involves the effect of the

p-cone procedure on P and its subsets for fixed (p,J), while the second involves the

effect on P under different values of p.

The monotonicity properties that we wish to prove for N(p,J)(P) stem directly

from the derivation of the p-cone procedure and particularly from the fact that F , F̂ ,

and P̂ are defined with respect to the inequalities

(bi − aTi x)
(
r − ‖xJ − d‖p

)
≥ 0 ∀ i ∈ I; (2.14)

34

see also (2.2). It is evident that any strengthening of these inequalities in the represen-

tations of F , F̂ , and P̂ can yield a corresponding strengthening of N(p,J)(P) around

P 01. This is the key observation for the following two monotonicity properties.

The first monotonicity property involves strengthening the portion bi−aTi x of

(2.14):

Proposition 2.3.7. Let p ∈ [1,∞] and ∅ 6= J ⊆ [n] be fixed. Suppose Q is a convex

set such that F ⊆ Q ⊆ P . Then P 01 ⊆ N(p,J)(Q) ⊆ N(p,J)(P) ⊆ P .

Proof. The inclusions P 01 ⊆ N(Q) and N(P) ⊆ P are derived directly from Proposi-

tion 2.2.2. To prove N(Q) ⊆ N(P), we simply note that, with respect to N(Q), the

sets F , F̂ , and P̂ are based on the inequalities

(g` − fT` x)
(
r − ‖xJ − d‖p

)
≥ 0 ∀ ` ∈ L,

where Q =
{
x ∈ <n : fT` x ≤ g` ∀ ` ∈ L

}
. Since Q ⊆ P , these inequalities are clearly

a strengthening of (2.14), and so N(Q) ⊆ N(P).

The second monotonicity property involves strengthening the portion r−‖xJ−

d‖p of (2.14) and requires the following lemma:

Lemma 2.3.8. Let p′ ≥ 1, and suppose v ∈ <s satisfies ‖v‖p
′

p′ ≤ s. Then ‖v‖pp ≤ s

for all p ∈ [1, p′].

Proof. Without loss of generality, we replace v by its component-wise absolute value,

i.e., we assume vj ≥ 0 for all j.

35

As a function of p (v fixed), f(p) := ‖v‖pp =
∑s

j=1 v
p
j is convex, and so its

maximum over [1, p′] occurs at 1 or p′. So to prove the lemma it suffices to show

f(1) ≤ s, i.e.,
s∑
j=1

vj ≤ s ⇐⇒

(
s∑
j=1

vj

)p′

≤ sp
′
.

Next, g(a) := ap
′

is convex for nonnegative a since p′ ≥ 1. In particular,(
s∑
j=1

vj

)p′

= g

(
s∑
j=1

vj

)
= g

(
s∑
j=1

1

s
· svj

)

≤
s∑
j=1

1

s
g(svj) =

s∑
j=1

sp
′−1 vp

′

j = sp
′−1

s∑
j=1

vp
′

j

= sp
′−1 ‖v‖p

′

p′ ≤ sp
′
,

as desired.

Proposition 2.3.9. Let ∅ 6= J ⊆ [n] and 1 ≤ p ≤ p′ ≤ ∞ be given. Define

r := p
√
|J |/2, r′ := p′

√
|J |/2, and d = e/2 ∈ <|J | in accordance with Proposition

2.2.1. If x ∈ <n satisfies ‖xJ − d‖p′ ≤ r′, then ‖xJ − d‖p ≤ r. As a consequence,

N(p′,J)(P) ⊆ N(p,J)(P).

Proof. Regarding the first statement of the proposition, we can rearrange the desired

implication as

‖2xJ − e‖p
′

p′ ≤ |J | =⇒ ‖2xJ − e‖pp ≤ |J |,

which holds because of Lemma 2.3.8. Next, the inclusion N(p′,J)(P) ⊆ N(p,J)(P)

follows because (2.14) is strengthened when p and r are replaced by p′ and r′.

36

2.3.4 Elimination of fractional extreme points

We introduce the following definition:

Definition 2.3.10. Let ∅ 6= J ⊆ [n] be given. For any x̄ ∈ <n, we say that x̄ is J -

fractional if the subvector x̄J is contained in [0, 1]|J | and has one or more fractional

entries.

In this subsection, we prove that N(P) contains no J -fractional points, which

are extreme in P . Said differently, we show that N(P) cuts off all J -fractional

extreme points of P .

We start with the case that |I| < ∞, i.e., P is a polytope. Then we extend

the ideas to balls. Finally, we use the analysis with balls to show our main result

that, no matter the geometric structure of P , all J -fractional points of P are cut off

by N(P).

2.3.4.1 Polytopes

When |I| < ∞, P is a polytope, and since P is bounded in [0, 1]n, we know

that |I| > n and that P has extreme points. We prove the following proposition:

Proposition 2.3.11. Suppose |I| <∞, i.e., P is a polytope, and x̄ is a J -fractional

extreme point of P . Then x̄ 6∈ N(P).

We give two proofs since we feel that both are instructive. The first is a direct

proof that the set (2.11) is empty, which implies x̄ 6∈ N(P); see the discussion in

Section 2.3.1. The second proof follows the approach of Propositions 2.3.3 and 2.3.4.

37

Proof. We must show (2.11) is empty, where s̄i := bi− aTi x̄. Because x̄ is an extreme

point of P , there exists T ⊆ I of size n such that s̄i = 0 for all i ∈ T and the set

{ai : i ∈ T } is linearly independent. Hence, any X in (2.11) must satisfy, for all

i ∈ T ,

(0, bix̄J −XJ ·ai) ∈ Kp ⇐⇒ XJ ·ai = bix̄J

⇐⇒ XJ ·ai = (aTi x̄)x̄J

⇐⇒ (XJ · − x̄J x̄T)ai = 0.

By the linear independence of {ai : i ∈ T }, it follows that X must satisfy XJ · = x̄J x̄
T

with diag(X) = x̄. However, since x̄ is J -fractional, these conditions are inconsistent.

So in fact (2.11) is empty.

Proof. This proof assumes without loss of generality that J = {1, . . . , |J |} in line

with (2.12). Let T be defined as in the previous proof; we assume for simplicity that

T = [n].

We first apply Propositions 2.3.3 and 2.3.4 with (Â, b̂, x̂) := (AT ·, bT , x̄). Con-

sider the proposed canonical solution (U, v, λ) := (U(Â), v(Â), λ) given by (2.13).

Note that b̂ − Âx̂ = 0 and Ub̂ = x̂J . By Proposition 2.3.4, (U, v, λ) is feasible for

C(Â, b̂, x̂) since

−eT x̂J + x̂TJUb̂+ (b̂− Âx̂)T (r v − UTd) = −eT x̂J + x̂TJUb̂+ 0T (r v − UTd)

= −eT x̂J + x̂TJ x̂J = −eT x̄J + x̄TJ x̄J

< 0,

38

where the inequality follows because x̄ is J -fractional. So, by Proposition 2.3.3,

x̄ 6∈ N(P (Â, b̂)).

Since P (Â, b̂) ⊇ P , it holds by the monotonicity property of Proposition 2.3.7

that N(P (Â, b̂)) ⊇ N(P). Hence, x̄ 6∈ N(P) as desired.

2.3.4.2 Balls

In the previous subsection, we showed that, if P is a polytope, then N(P)

cuts off all J -fractional extreme points from P . The proof used the fact that every

extreme point in a polytope corresponds to n linearly independent active constraints.

For general P , however, extreme points do not necessarily correspond to n active

constraints. For example, if P is a ball in the interior of [0, 1]n, then all extreme

points of P have exactly one active constraint in the semi-infinite LP representation

of P . In this subsection, we study balls to establish that N(P) does in fact cut off

all J -fractional extreme points in this case as well. To avoid notational confusion

with the P defined in Section 2.2.2, however, we will use B to denote the ball under

investigation.

Let B be a ball centered at h ∈ <n with radius R > 0, i.e.,

B := {x : ‖x− h‖2 ≤ R} (2.15)

= {x : wT (x− h) ≤ R ∀ w s.t. ‖w‖2 = 1}.

In keeping with the development of the p-cone procedure, we could just as well assume

that B is the intersection of a ball and [0, 1]n, but this is actually not necessary for the

result that we present. Moreover, the analysis is a bit simpler without the assumption.

39

The result is as follows:

Proposition 2.3.12. Suppose B is a ball given by (2.15) for some center h ∈ <n

and radius R > 0. Suppose x̄ is a J -fractional extreme point of B. Then x̄ 6∈ N(B).

The proof of Proposition 2.3.12, although related to the proof of Proposition

2.3.11 for polytopes, is technically different. The fundamental difference is that, for

balls, we have only one active constraint at x̄, whereas for polytopes, we have n

linearly independent ones. Nevertheless, the idea of the proof below is to carefully

select n linearly independent constraints, which are nearly active at x̄. By analyzing

those constraints, we see that they have the effect of cutting off x̄, yielding a proof

similar in spirit to that of Proposition 2.3.11.

Proof. Since x̄ is extreme, there exists some w̄ with ‖w̄‖2 = 1 such that w̄T (x̄−h) = R.

In fact, w̄ = R−1(x̄− h) since ‖x̄− h‖2 = R. Related to w̄, we define two additional

vectors η, β ∈ <n. First, let η be any vector having all nonzero entries such that

ηT w̄ 6= 0. For example, η could be taken as a small perturbation of w̄ itself. Second,

define β := η−1, whose components are the inverses of the components of η.

For small θ > 0, define the following collection of n vectors, each of which is a

unit-length perturbation of w̄:

âi := `−1
i ((1− θ)w̄ + θβi ei) ∀ i = 1, . . . , n,

where

`j := ‖(1− θ)w̄ + θβj ej‖2.

40

It is important to note that both âi and `i depend on θ even though our notation

does not reflect this. Note also that `j > 0 for θ ≈ 0 and so âi is well-defined. Using

the notation of Propostions 2.3.3 and 2.3.4, we define

Â := (â1, . . . , ân)T

b̂ := Re+ Âh

and consider the polyhedron

P (Â, b̂) = {x : Âx ≤ b̂} =
{
x : âTi (x− h) ≤ R ∀ i = 1, . . . , n

}
,

which contains B since its defining inequalities are a subset of those defining B. Our

proof strategy will be to verify x̄ 6∈ N(P (Â, b̂)) for θ ≈ 0 via Proposition 2.3.3 by

showing that C(Â, b̂, x̄) is nonempty. Since N(B) ⊆ N(P (Â, b̂)) due to monotonicity

(see Proposition 2.3.7), this will imply x̄ 6∈ N(B) as desired.

To show C(Â, b̂, x̄) 6= ∅, we now consider Proposition 2.3.4 and, in particular,

show that the proposed canonical solution (U, v, λ) := (U(Â), v(Â), λ) given by (2.13)

satisfies

−eT x̄J + x̄TJUb̂+ (b̂− Âx̄)T (r v − UTd) < 0. (2.16)

The proposed canonical solution (U, v, λ) is well-defined because

Â = Diag(`−1 ◦ β)
(
(1− θ)ηw̄T + θI

)
is invertible. In particular, its inverse via the Sherman-Morrison-Woodbury formula

is

Â−1 = θ−1

[
I −

(
1− θ

θ + (1− θ)w̄Tη

)
ηw̄T

]
Diag(` ◦ η) (2.17)

41

Note that the denominator θ + (1 − θ)w̄Tη is nonzero for sufficiently small θ since

w̄Tη 6= 0 by construction. So we now investigate the left-hand side of (2.16) and show

that its limit as θ → 0+ exists and is less than 0, which suffices to establish that

C(Â, b̂, x̄) 6= ∅ for θ ≈ 0. We remind the reader that Â and b̂ depend on θ, and hence

so do U and v.

We first show that Â−1e equals w̄ + O(θ). In other words, as θ → 0+, Â−1e

approaches w̄ such that the error Â−1 − w̄ goes to 0 at least as fast as θ itself. A

Taylor series expansion of ` about θ = 0 shows that

` = (1− θ)e+ θ β ◦ w̄ +O(θ2),

and so ` ◦ η = (1− θ)η + θw̄ +O(θ2) since β = η−1. In addition, using w̄T w̄ = 1, we

have

w̄T (` ◦ η) = (1− θ)w̄Tη + θ +O(θ2).

Therefore, from (2.17) and the preceding equations,

Â−1e = θ−1

[
I −

(
1− θ

θ + (1− θ)w̄Tη

)
ηw̄T

]
(` ◦ η)

= θ−1

[
` ◦ η −

(
1− θ

θ + (1− θ)w̄Tη

)
η · w̄T (` ◦ η)

]
= θ−1

[
` ◦ η −

(
1− θ

θ + (1− θ)w̄Tη

)(
θ + (1− θ)w̄Tη +O(θ2)

)
η

]
= θ−1

[
` ◦ η − (1− θ)

(
1 +O(θ2)

)
η
]

= θ−1
[
` ◦ η − (1− θ)η +O(θ2)

]
= θ−1

[
(1− θ)η + θw̄ − (1− θ)η +O(θ2)

]
= w̄ +O(θ),

42

where the fourth equality follows from

O(θ)2

θ + (1− θ)w̄Tη
= O(θ2),

which holds since w̄Tη 6= 0.

With Â−1e = w̄ +O(θ) now established, it follows that

Â−1b̂ = Â−1(Re+ Âh) = RÂ−1e+ h

= Rw̄ + h+O(θ),

Â−1(b̂− Âx̄) = Â−1(Re+ Â(h− x̄)) = Rw̄ + h− x̄+O(θ)

= R ·R−1(x̄− h) + h− x̄+O(θ)

= O(θ),

where we have used the fact that w̄ = R−1(x̄ − h). From (2.13), we have Ub̂ =

Rw̄J + hJ +O(θ), U(b̂− Âx̄) = O(θ), and vT (b̂− Âx̄) = O(θ). Thus, the left-hand

side of (2.16) is

−eT x̄J+x̄TJ (Rw̄J + hJ +O(θ)) +O(θ)

= −eT x̄J + x̄TJ
(
R ·R−1(x̄J − hJ) + hJ

)
+O(θ)

= −eT x̄J + x̄TJ x̄J +O(θ).

As desired, the limit as θ → 0+ of the left-hand side of (2.16) equals −eT x̄J + x̄TJ x̄J ,

which is negative since x̄ is J -fractional.

We will actually use a feature of the above proof again for the proof of Theorem

2.4.1 in Section 2.4. So we record this result for easy reference.

43

Corollary 2.3.13. Let B and x̄ be as in Proposition 2.3.12. Then there exists a

polyhedron P (Â, b̂) := {x ∈ <n : Âx ≤ b̂}, for some (Â, b̂), such that P (Â, b̂) ⊇ B

and x̄ 6∈ N(P (Â, b̂)) ⊇ N(B).

Proof. The desired polyhedron is P (Â, b̂), depending on small θ > 0, in the proof of

Proposition 2.3.12.

2.3.4.3 The general case

We now show that N(P) cuts off all J -fractional extreme points of P . The

basic idea is that, given a J -fractional extreme point x̄ ∈ P , there exists a ball B ⊇ P

such that x̄ is also a J -fractional extreme point of B. Thus, by Proposition 2.3.12

and the monotonicity property of Proposition 2.3.7, x̄ 6∈ N(B) ⊇ N(P).

We first establish the existence of the ball B just described. A similar result

has been used in Kojima and Tunçel (2000a,b).

Proposition 2.3.14. Let x̄ be a J -fractional extreme point of P . Then there exists

a ball B such that P ⊆ B and x̄ is a J -fractional extreme point of B.

Proof. This proposition is just a simple application of standard convex analysis. Re-

call that P is compact convex. Hence, there exists a hyperplane H := {x : αTx = β}

supporting P at x̄, i.e., x̄ ∈ H and P \ {x̄} ⊆ H++ := {x : αTx > β}. We also define

H+ := {x : αTx ≥ β}.

Next, given γ > 0, we define a ball B(γ) dependent on x̄ and α:

B(γ) := {x : ‖x− (x̄+ γα)‖2 ≤ γ‖α‖2} .

44

It is easy to check that B(γ) ⊆ H+ and that x̄ is an extreme point of B(γ). Fur-

thermore, for every x ∈ H++, there exists sufficiently large γ such that x ∈ B(γ).

Hence, because P \ {x̄} ⊆ H++ is bounded, there exists sufficiently large γ such that

P \ {x̄} ⊆ B(γ), and so P ⊆ B(γ). For any such large γ, we can take B := B(γ) to

achieve the proposition.

The proof of the ensuing theorem then follows from Proposition 2.3.14.

Theorem 2.3.15. Let x̄ be a J -fractional extreme point of P . Then x̄ 6∈ N(P).

Proof. Let B be the ball of Proposition 2.3.14. Then, by Proposition 2.3.12, x̄ 6∈

N(B). Since N(B) ⊇ N(P) by monotonicity of Proposition 2.3.7, x̄ 6∈ N(P).

2.4 Iterated Procedure and Convergence

So far we have discussed how the p-cone procedure produces N(p,J)(P) from P

for a given (p,J). Because N(P) is compact convex with its own semi-infinite outer

description which may or may not be known explicitly, we may conceptually apply

the p-cone procedure — perhaps for a different choice of (p,J) — to N(P) itself. In

fact, we may repeat the p-cone procedure ad infinitum. A key question is whether

the resultant sequence of compact convex sets converges to P 01.

More formally, let {(pk,J k)}k≥1 be a sequence of choices pk ∈ [1,∞] and

∅ 6= J k ⊆ [n], and define N1(P) := N(p1,J 1)(P) and Nk(P) := N(pk,J k)(N
k−1(P)) for

all k > 1. We then ask whether limk→∞N
k(P) equals P 01.

Lovász and Schrijver (1991), Kojima and Tunçel (2000a,b), and Balas et al.

(1993) have all considered the same question for their own procedures. In particular,

45

one may interpret Lovász and Schrijver (1991) as taking pk = ∞ and J k = [n] for

all k; they show finite convergence after n iterations, i.e., Nn(P) = P 01. Recall

that the method of Kojima and Tunçel (2000a,b), when applied to 0-1 programs,

essentially reduces to that of Lovász and Schrijver (1991); so they take the same pk

and J k. Finally, one may interpret Balas et al. (1993) as choosing pk arbitrarily and

J k a single element in [n]. The authors prove that, if J 1 ∪ · · · ∪ J n = [n], then

Nn(P) = P 01.

We show in Theorem 2.4.1 below that the iterated p-cone procedure converges

asymptotically for arbitrary {pk}∞k=1 as long as each index j ∈ [n] appears infinitely

often in the sequence {J k}∞k=1. Before stating and proving the theorem, we discuss a

few items.

First, we have mentioned that the approach of Kojima and Tunçel (2000a,b)

obtains asymptotic convergence in general. It is reasonable to ask if their approach

or proof techniques may somehow subsume ours and hence prove convergence of our

procedure. However, this is not the case since their asymptotic analysis uses all

valid “rank-2” quadratic inequalities, i.e., valid inequalities (bi − aTi x)(bh − aThx) ≥

0 obtained by multiplying any pair of valid linear inequalities bi − aTi x ≥ 0 and

bh − aThx ≥ 0 for P . In contrast, our approach and analysis require only a partial

subset of such inequalities, which are obtained by multiplying valid linear inequalities

of the p-cone constraint ‖xJ − d‖p ≤ r with the inequalities bi − aTi x ≥ 0 defining P ;

see Section 2.2.4.2 for more discussion. In this sense, one can think of our approach as

proving asymptotic convergence under weaker conditions than those used by Kojima

46

and Tunçel (2000a,b) although the sets we consider are less general than those studied

by Kojima and Tunçel.

Second, after the proof of Theorem 2.4.1, we provide an example where an

infinite number of iterations is required to converge. So our p-cone successive relax-

ation procedure does not have finite convergence in general. Of course, for specific

sequences {(pk,J k)}∞k=1, it may be possible to prove finiteness as with Lovász and

Schrijver (1991) and Balas et al. (1993).

Third, we suspect that obtaining a rate of asymptotic convergence is difficult.

This perceived difficulty stems from the methodology used to prove Theorem 2.3.15,

which establishes that J -fractional extreme points are cut off by the p-cone procedure.

To establish a rate of convergence, it seems necessary to establish how “deep” these

cuts are with respect to P 01, but the methodology of Theorem 2.3.15 uses the existence

of cuts with no quantitative knowledge of their strength.

We are now ready to state and prove the theorem.

Theorem 2.4.1. Let {(pk,J k)}k≥1 be a sequence of choices pk ∈ [1,∞] and ∅ 6= J k ⊆

[n], which give rise to compact, convex sets Nk(P) ⊇ P 01 via the definitions N1(P) :=

N(p1,J 1)(P) and Nk(P) := N(pk,J k)(N
k−1(P)) for all k > 1. Then Nk(P) ⊇ Nk+1(P)

so that limk→∞N
k(P) exists and equals ∩k≥1N

k(P). In addition, if ∪k≥k̄J k = [n] for

all k̄, then limk→∞N
k(P) = P 01.

Proof. Since eachNk(P) is compact and convex and contained inNk−1(P), limk→∞N
k(P)

exists and equals Z := ∩∞k=1N
k(P). This proves the first part of the theorem.

To prove the second part, we first claim that every extreme point of Z is

47

integer. Suppose for contradiction that z̄ is a fractional extreme point of Z, and let

j be any index where z̄j is fractional. Next, let S := {J ⊆ [n] : j ∈ J }. Theorem

2.3.15 implies z̄ 6∈ N(1,J)(Z) for all J ∈ S.

A continuity argument, which we prove two paragraphs below, implies that, for

each J ∈ S, there exists kJ large enough so that z̄ 6∈ N(1,J)(N
k−1(P)) for all k ≥ kJ .

Define k̂ := max{kJ : J ∈ S}. In particular, consider k ≥ k̂ such that j ∈ J k.

Since J k ∈ S, it holds that z̄ 6∈ N(1,J k)(N
k−1(P)). By the monotonicity property

of Proposition 2.3.9, it also holds that z̄ 6∈ N(1,J k)(N
k−1(P)) ⊇ N(pk,J k)(N

k−1(P)) =

Nk(P), which contradicts the statement z̄ ∈ Z. Hence, we conclude that every

extreme point of Z is integer.

Since P 01 ⊆ Z by construction, it thus follows that Z = P 01.

Now we prove the continuity argument from above, i.e., for each J ∈ S, we

prove the existence of kJ large enough so that z̄ 6∈ N(1,J)(N
k−1(P)) for all k ≥ kJ .

So let J ∈ S be fixed. Since z̄ is a J -fractional extreme point of Z, by Proposition

2.3.14 there exists a ball B ⊇ Z such that z̄ is a J -fractional extreme point of B.

Furthermore, by Corollary 2.3.13, there exists a polyhedron

P (Â, b̂) := {x ∈ <n : Âx ≤ b̂},

for some (Â, b̂), containing B such that z̄ 6∈ N(1,J)(P (Â, b̂)). By Proposition 2.3.3, this

is equivalent to C(Â, b̂, z̄) 6= ∅. For small ε > 0, this in turn implies C(Â, b̂+ εe, z̄) 6= ∅

or, equivalently, z̄ 6∈ N(1,J)(P (Â, b̂+ εe)).

Since Nk−1(P) converges to Z ⊆ P (Â, b̂), for any ε > 0, there exists kε large

enough so that Nk−1(P) ⊆ P (Â, b̂+ εe) for all k ≥ kε. Then for small ε and large k,

48

it follows that z̄ 6∈ N(1,J)(N
k−1(P)) by the previous paragraph and monotonicity.

We now give an example, which shows that the p-cone successive relaxation

procedure may require an infinite number of iterations to converge.

To construct the example, we first analyze the behavior of a particular class

of 2-dimensional polytopes under a single iteration of the procedure with p <∞ and

J = [2]. For any a > 1, consider the following two-dimensional polytope:

P (a) :=

{
(x1, x2) ≥ 0 :

ax1 + x2 ≤ a
x1 + ax2 ≤ a

}
.

Note that P (a) is symmetric about the line x1 = x2 and has the four vertices (0, 0),

(0, 1), (1, 0) and (a/(a+ 1), a/(a+ 1)), the last of which is greater than (1/2, 1/2) but

smaller than (1, 1). In particular, P (a) is contained in [0, 1]2, and its integer convex

hull is

P 01 = {(x1, x2) ≥ 0 : x1 + x2 ≤ 1}.

Proposition 2.4.2. Let a > 1 be given. For any p < ∞ and J = [2], there exists

a′ ∈ (1, a) such that

P (a′) ⊆ N(p,J) (P (a)) .

Proof. It suffices to show the existence of 1/2 < δ < 1 such that (δ, δ) ∈ N(P (a))

since then

conv {(0, 0), (0, 1), (1, 0), (δ, δ)} = P

(
δ

1− δ

)
is contained in N(P (a)). In this case, we may take a′ = δ/(1− δ), which necessarily

satisfies a′ ∈ (1, a).

49

So let 1/2 < δ < 1 be arbitrary. By the discussion prior to Proposition 2.3.2,

(δ, δ) ∈ N(P (a)) if and only if the set (2.11) with x1 = x2 = δ is nonempty. In our

case, after eliminating X11 = X22 = δ, the relevant set is

P̂δ :=

(0, 0) ≤ (X12, X21) ≤ (δ, δ) :

∥∥∥∥((a− 1)δ − aX21 − 1
2
β

X12 + 1
2
β

)∥∥∥∥
p

≤ rβ∥∥∥∥((a− 1)δ − aX12 − 1
2
β

X21 + 1
2
β

)∥∥∥∥
p

≤ rβ

 ,

where r = p
√

2/2 and β := a− δ(a+ 1). It then sufficies to show that the set

P̂ ′δ := P̂δ ∩ {(X12, X21) : X12 = X21}

=

{
0 ≤ y ≤ δ :

∥∥∥∥((a− 1)δ − ay − 1
2
β

y + 1
2
β

)∥∥∥∥
p

≤ rβ

}

is nonempty.

We next consider the closely related set

P̂ ′1/2 :=

{
0 ≤ y ≤ 1

2
:

∥∥∥∥((a− 1)/4− ay
(a− 1)/4 + y

)∥∥∥∥
p

≤ r

2
(a− 1)

}
,

which is gotten by substituting δ ← 1/2 in the definition of P̂ ′δ. Within this convex

set, note that y = 0 is feasible and makes the cone constraint active. Since a > 1,

it is then easy to see that increasing y to a small positive number satisfies the cone

constraint strictly. In other words, P̂ ′1/2 has nonempty interior.

By continuity, it then follows that for δ sufficiently close to 1/2, P̂ ′δ is nonempty,

as desired.

With Proposition 2.4.2 in hand, we can construct the example having infinite

convergence. For any a > 1, consider the sequence Nk(P (a)) from Theorem 2.4.1

based on any choice {(pk,J k)}k≥0 satisfying pk < ∞ and J k = [2] for all k. By

50

Proposition 2.4.2, the monotonicity property of Proposition 2.3.7, and induction there

exists ak > 1 such that P (ak) ⊆ Nk(P (a)) for all k. Hence, Nk(P (a)) 6= P 01 for all

k, which ensures convergence only in the limit.

Note that this example also shows infinite convergence even if symmetry X =

XT is enforced in the p-cone procedure since symmetry actually is enforced in the

proof of Proposition 2.4.2.

2.5 Computational Considerations

For fixed J , a single application of the p-cone lift-and-project procedure gives

rise to a family of relaxations of P 01 parameterized by p. From the monotonicity prop-

erty of Proposition 2.3.9, we know that the larger p is, the tighter the corresponding

relaxation. So p =∞ is the tightest. On the other hand, we have shown in Corollary

2.3.6 that optimizing over the p = 2 relaxation induces the lowest theoretical iteration

complexity — in fact, an order of magnitude less than all other p, which themselves

share the same iteration complexity. Thus, one may be particularly interested in the

cases p = 2 (second-order cone programming) and p =∞ (linear programming).

In this section, we computationally test these cases using state-of-the-art

SOCP and LP software. We had hypothesized that the lower iteration complex-

ity combined with the high quality of modern SOCP software would make solving

p = 2 quicker than solving p =∞— perhaps much quicker so as to justify the loss in

relaxation quality. However, as described next, we have observed that solving p =∞

is faster with better bounds.

51

We conduct experiments on two sets of problems. The first set includes 8

instances of the maximum stable set problem from the Center for Discrete Mathe-

matics and Theoretical Computer Science (Johnson and Trick, 1996). For a graph G

with vertex set [n] and edge set E ⊆ [n]× [n], the (unweighted) maximum stable set

problem is

α := max{eTx | xi + xj ≤ 1, (i, j) ∈ E, x ∈ {0, 1}n}.

Table 2.1 contains a basic description of the instances.

Name n |E|
johnson8-2-4 28 168
MANN-a9 45 72
hamming6-2 64 192
keller4 171 5100
brock200 1 200 5066
san200 07 1 200 5970
sanr200 07 200 6032
c-fat200-1 200 18366

Table 2.1: Description of the stable set instances.

We set J = [n] and solve both the p = 2 and p = ∞ relaxations. We also

enforce the symmetry condition X = XT of (2.6) so as to eliminate about half of the

variables in X. The SOCPs were solved using MOSEK 5.0, and the LPs were solved

using both CPLEX 9.0 and MOSEK 5.0. Pre-solving was turned off for all solvers,

and computations were performed under the Linux operating system with a single

2.8 GHz AMD Opteron processor and 4 GB of RAM.

52

Regarding the solution of the LPs, we used CPLEX to solve the dual form

(2.10) using the dual simplex method, which gave better results than, for example,

solving (2.9) with the dual simplex method. On the other hand, MOSEK’s LP solver

optimizes (2.9) and (2.10) simultaneously using a primal-dual interior-point method.

Table 2.2 compares α, the bounds, and the solution times (in seconds). The

values for those cells containing “∗” were unavailable due to the solvers running out

of memory.

Bounds Times
Name LP value α p =∞ p = 2 p =∞ p = 2

cplex mosek
johnson8-2-4 14 4 9.33 12.2 9.00e−02 1.30e−01 2.40e−01
MANN-a9 22.5 16 18 20.5 1.76e+00 2.40e−01 1.15e+00
hamming6-2 32 32 32 32 2.39e+01 1.91e+00 1.00e+01
keller4 85.5 11 57 80.9 2.14e+03 1.44e+03 4.67e+03
brock200 1 100 21 66.7 95.1 3.36e+04 8.09e+03 1.18e+04
san200 07 1 100 30 66.7 95.1 1.00e+05 9.00e+02 3.05e+04
sanr200 07 100 18 66.7 95 5.76e+04 6.93e+03 1.21e+04
c-fat200-1 100 12 * * * * *

Table 2.2: The bounds and times (in seconds) for solving the p = ∞ and p =

2 relaxations of the stable set instances from Table 2.1. Each LP is solved using

two methods: the dual simplex method (CPLEX) and the primal-dual interior-point

method (MOSEK). An asterisk (∗) indicates that the corresponding solver ran out of

memory. A time limit of 100,000 seconds is enforced for each run.

Table 2.2 clearly shows the overall superiority of the LP relaxation as solved

53

by MOSEK for the maximum stable set problems. The p = ∞ relaxation can be

solved faster and the bounds are better as well. Still, it is worth noting that the

SOCP relaxations solve more quickly than the LP relaxations via the dual simplex

method.

The second set of test problems includes 7 mixed-integer programming prob-

lems from MIPLIB 2003 Achterberg et al. (2006). A description of the problems is

shown in Table 2.3. Specifically, Rows and Columns give the number of constraints

and variables of those problems. There are two types of variables, binary and contin-

uous, whose numbers are listed under the last two columns of Table 2.3. The column

Non-zero indicates the number of non-zero entries in the constraints. We note that

the problems contain no general integer variables. These problems are among some

of the smallest problems of MIPLIB 2003, but not all of them are considered easy to

solve. For example, markshare1 is small in size but is classified as “hard” in MIPLIB

2003.

Name Rows Colums Non-zero Binary Continuous
markshare1 6 62 312 50 12
pk1 45 86 915 55 31
pp08a 136 240 480 64 176
pp08aCUTS 246 240 839 64 176
modglob 291 422 968 98 324
danoint 664 521 3232 56 465
qiu 1192 840 3432 48 792

Table 2.3: Description of selected instances from MIPLIB 2003

54

Just as with the stable set instances, we set J equal to the index set of binary

variables and solve the p =∞ and p = 2 relaxations using CPLEX 9.0 and MOSEK

5.0. The computing environment is similar, the only difference being that we turn on

pre-solve for both CPLEX and MOSEK to avoid out-of-memory failures. The bounds

of the relaxations and the times in seconds are reported in Table 2.4 along with the

optimal and LP-relaxation values. Note that these are minimization problems. The

Bounds Times
Name LP value IP value p =∞ p = 2 p =∞ p = 2

cplex mosek cplex mosek
markshare1 0 1 0 0 0 9.12e+00 1.45e+00 4.02e+00
pk1 1.47e−09 1.10e+01 0 0 3.43e−03 1.58e+02 9.10e+00 2.50e+01
pp08a 2.75e+03 7.35e+03 6.40e+03 6.40e+03 3.11e+03 2.38e+02 3.21e+01 3.91e+01
pp08aCUTS 5.48e+03 7.35e+03 6.77e+03 6.77e+03 5.61e+03 7.19e+02 8.13e+01 1.49e+02
modglob 2.04e+07 2.07e+07 – 2.06e+07 2.04e+07 1.00e+05 3.10e+03 4.28e+03
danoint 6.26e+01 6.57e+01 – 6.28e+01 6.27e+01 1.00e+05 4.74e+02 4.53e+04
qiu -9.32e+02 -1.33e+02 -3.08e+02 -3.08e+02 -8.37e+02 3.95e+04 1.06e+02 2.19e+02

Table 2.4: The bounds and times (in seconds) for solving p =∞ and p = 2 relaxations

of selected instances from MIPLIB 2003. The relaxations of p =∞ were solved using

both CPLEX and MOSEK. A time limit of 100,000 seconds was enforced and “–”

means the solver did not find the optimal value when time limit was reached.

conclusion we draw from Table 2.4 is similar to that of Table 2.2: overall, the p =∞

relaxation outperforms the p = 2 relaxation in terms of both bounds and CPU times.

Although these computational results do not align with the theoretical result

of Corollary 2.3.6 that solving the p = 2 relaxation has a lower iteration complexity,

we are hopeful that improvements in SOCP software may make the p-cone procedure

55

more competitive in the future. We also feel that these results are a testament to the

high quality of current LP software.

2.6 Conclusions

In this chapter, we have introduced lift-and-project procedures for 0-1 integer

programming based on p-order cone programming. From a theoretical point of view,

our approach generalizes and unifies several existing methods, which have been based

on linear and semidefinite programming. Asymptotic convergence of the repeated ap-

plication of our procedure has also been established, and for p = 2, when applying one

iteration of the p-cone procedure, our method enjoys a theoretical iteration complex-

ity, which is an order of magnitude faster than existing lift-and-project techniques.

From the computational point of view, solving the SOCP corresponding to p = 2 is

not competitive with solving the LP for p = ∞. Overall, we feel that the p-cone

procedure makes a solid theoretical contribution to the literature on lift-and-project

procedures, with possible computational improvements in the future as SOCP solvers

become more efficient.

We conclude with a final observation. We have mentioned in the Introduction

that Kim and Kojima Kim and Kojima (2003) have derived SOCP relaxations from

SDP lift-and-project relaxations by replacing semidefiniteness with just the semidefi-

niteness of 2× 2 principal submatrices, which can be modeled by SOCP. In addition,

Kim and Kojima (2001) and Kim et al. (2003) use SDP lift-and-project relaxations

to generate valid convex quadratic constraints, which are SOCP-representable and

56

then enforced in place of semidefiniteness. When p = 2, the approach in this chapter

is different. In particular, our method is not derived from semidefiniteness. In fact,

irrespective of p, semidefiniteness can be applied in our procedure to further enhance

its strength, and so the above SOCP ideas can also be applied to our procedure as

well for any p.

57

CHAPTER 3
RELAXING THE OPTIMALITY CONDITIONS OF BOX QP

This chapter has been published in Burer and Chen (2009b).

3.1 Introduction

In this chapter, we study semidefinite programming (SDP) relaxations for the

fundamental problem of minimizing a nonconvex quadratic function over a box:

min

{
1

2
xTQx+ cTx : 0 ≤ x ≤ e

}
, (3.1)

where x ∈ <n, Q ∈ <n×n, c ∈ <n, and e ∈ <n is the all-ones vector. Without loss of

generality, we assume Q is symmetric. If Q is not positive semidefinite (as we assume

in this chapter), then (3.1) is NP-hard (Pardalos and Vavasis, 1991).

There are numerous methods for solving (3.1) and more general nonconvex

quadratic programs, including local methods (Gould and Toint, 2002) and global

methods (Pardalos, 1991). For a survey of methods to solve (3.1) globally, see De An-

gelis et al. (1997) as well as Vandenbussche and Nemhauser (2005b,a) and Burer and

Vandenbussche (2006a).

Critical to any global optimization method for (3.1) is the ability to relax

it into a convex problem, one which hopefully provides a tight lower bound on the

optimal value with low computational cost. One standard approach is to linearize

the quadratic term xixj via a single variable Xij and then to enforce implied linear

constraints, which link Xij with xi and xj, e.g., 0 ≤ Xij ≤ min{xi, xj} (Sherali and

Adams, 1997). The resulting relaxation is a linear program. A second approach also

58

linearizes the terms xixj — by introducing a symmetric matrix variable X to replace

the aggregate xxT — but then includes the valid semidefinite inequality X � xxT to

obtain an SDP relaxation.

In this chapter, we focus on SDP relaxations of (3.1) rather than linear ones. In

principle, it is always possible to combine linear and semidefinite approaches (yielding

better bounds with added computational costs; see Anstreicher (2007)), but the goal

of this chapter is to improve SDP relaxations.

Our approach is to consider semidefinite relaxations of (3.1), which incorporate

the standard first- and second-order necessary optimality conditions for (3.1). Van-

denbussche and Nemhauser (2005b,a) and Burer and Vandenbussche (2006a) have

previously considered linear and semidefinite relaxations, respectively, involving only

the first-order conditions. The contributions of the current chapter are to demonstrate

how also to incorporate the second-order conditions and to illustrate the positive ef-

fects of doing so.

We point out that Nesterov (2000) has considered incorporating the second-

order conditions into SDP relaxations of quadratic optimization over p-norm boxes

for 2 ≤ p <∞, i.e., {x : ‖x‖pp ≤ 1}. However, Nesterov strongly uses the fact that the

function ‖x‖pp is smooth for p ∈ [2,∞). Our case (p equal to ∞) is wholly different

because of the lack of smoothness.

The chapter is organized as follows. In Section 3.2, we review the first- and

second-order optimality conditions of (3.1). In particular, we show how to express the

second-order conditions without explicit knowledge of the inactive constraints. This

59

will prove to be a critical ingredient in constructing semidefinite relaxations involving

the second-order conditions. In Section 3.3, we review the basic semidefinite relax-

ation of (3.1) due to Shor (1987) and then introduce a semidefinite relaxation, which

incorporates the first- and second-order optimality conditions. We also construct a

relaxation based only on the second-order conditions.

We will call the three relaxations just mentioned (SDP0), (SDP12), and (SDP2),

respectively. The subscript indicates the type of “order” information incorporated in

the relaxation. By construction, it will hold that (SDP12) is at least as strong as

(SDP2), which is at least as strong as (SDP0). On the other hand, (SDP12) requires

the largest solution time, while (SDP0) requires the smallest one.

Continuing in Sections 3.4 and 3.5, we study the relationship of these three

relaxations. In Section 3.4, we prove the surprising, somewhat negative result that

all three achieve the same optimal value. (On the positive side, the proof establishes

several interesting analytical properties of (SDP0), which are of independent interest.)

Despite this equivalence, Section 3.5 demonstrates positively that, in the context

of branch-and-bound to globally solve (3.1), (SDP12) and (SDP2) are significantly

stronger than (SDP0), when each is appropriately tailored for use at any node of the

tree. Our computational experiments are described in detail in Section 3.5, including

a new, effective branching strategy.

60

3.1.1 Notation and terminology

In this section, we introduce some of the notation that will be used throughout

the chapter. <n refers to n-dimensional Euclidean space; <n×n is the set of real, n×n

matrices. We let ei ∈ <n represent the i-th unit vector. For a set I in a particular

ground set, Ic is its complement in that ground set. The norm of a vector v ∈ <n

is denoted by ‖v‖ :=
√
vTv. For a vector v and an index set I, vI is defined as

the vector composed of entries of v that are indexed by I. Also, given a matrix

A ∈ <n×n, AII is defined as the matrix composed of entries of A whose rows and

columns are indexed by I. We denote by Aj and Ai the j-th column and i-th row of

A, respectively. The notation diag(A) is defined as the vector, which is the diagonal

of A, while Diag(v) denotes the diagonal matrix with diagonal v. The inner product

of two matrices A,B ∈ <n×n is defined as A • B := trace(ATB). Given two vectors

x, v ∈ <n, we denote their Hadamard product by x ◦ v ∈ <n, where [x ◦ v]j = xjvj;

an analogous definition applies to the Hadamard product of matrices. Finally, A � 0

means matrix A is positive semidefinite, and A � 0 means A is positive definite.

3.2 Optimality Conditions

In this section, we first state the standard first- and second-order necessary

optimality conditions for (3.1) involving the set of inactive constraints. Then we

derive an expression for the second-order conditions that does not explicitly require

knowledge of the inactive constraint set.

61

For any x satisfying 0 ≤ x ≤ e, define the following sets of inactive constraints:

I0(x) := {i : xi > 0}

I1(x) := {i : xi < 1}

I(x) := {i : 0 < xi < 1} = I0(x) ∩ I1(x).

Note that I(x)c = I0(x)c ∪ I1(x)c indexes the active constraints at x. Let y, z ∈ <n

denote the Lagrange multipliers for the constraints e−x ≥ 0 and x ≥ 0, respectively.

For fixed y, z, the Lagrangian of (3.1) is defined as

L(x; y, z) :=
1

2
xTQx+ cTx− zTx− yT (e− x).

With these definitions, the necessary optimality conditions for (3.1) are

0 ≤ x ≤ e (3.2a)

OxL(x; y, z) = Qx+ c− z + y = 0 (3.2b)

y ≥ 0, z ≥ 0 (3.2c)

zi = 0, yj = 0 ∀ i ∈ I0(x), ∀ j ∈ I1(x) (3.2d)

vTO2
xxL(x; y, z)v = vTQv ≥ 0 ∀ v ∈ V (x) (3.2e)

where

V (x) := { v : eTi v = 0 ∀ i ∈ I0(x)c, −eTj v = 0 ∀ j ∈ I1(x)c }

= { v : vi = 0 ∀ i ∈ I(x)c }

is the null space of the Jacobian of the active constraints. By eliminating z and

62

employing other straightforward simplifications, we can rewrite and label (3.2) as

0 ≤ x ≤ e (primal feasibility) (3.3a)

Qx+ c+ y ≥ 0, y ≥ 0 (dual feasibility) (3.3b)

x ◦ (Qx+ c+ y) = 0, y ◦ (e− x) = 0 (complementary slackness) (3.3c)

QI(x)I(x) � 0. (local convexity) (3.3d)

Now we give an equivalent form of the local convexity condition (3.3d), which

does not explicitly involve knowledge of I(x).

Proposition 3.2.1. Given x, define

w := x ◦ (e− x). (3.4)

Then the local convexity condition (3.3d) at x is equivalent to

Q ◦ wwT � 0. (3.5)

Proof. For notational convenience, we write I for I(x) and D for Diag(x). We first

show the equivalence of (3.3d) and the inequality

(I −D)DQD(I −D) � 0.

Assume (3.3d) holds. By definition, D(I −D) is a diagonal matrix such that, for all

i ∈ I(x)c, the i-th diagonal entry is 0. For any v, define ṽ := D(I−D)v. Then ṽi = 0

for all i ∈ Ic and

vT (I −D)DQD(I −D)v = ṽTQṽ = ṽTIQII ṽI ≥ 0.

63

So (I−D)DQD(I−D) is positive semidefinite. Conversely, assume (I−D)DQD(I−

D) � 0. Since DII > 0 and [I−D]II > 0, for any partial vector ṽI , there exists some

v such that the full vector ṽ := D(I −D)v extends ṽI and also satisfies ṽIc = 0. So

ṽTIQII ṽI = ṽTQṽ = vT (I −D)DQD(I −D)v ≥ 0,

which establishes (3.3d).

Now, the equivalence of (3.3d) and Q ◦ wwT � 0 follows from

(I −D)DQD(I −D) = Diag(w)QDiag(w) = Q ◦ wwT .

It follows from Proposition 3.2.1 that (3.1) can be reformulated as the following

quadratic semidefinite program, which does not depend explicitly on knowledge of the

inactive constraints:

min

{
1

2
xTQx+ cTx : (3.3a–3.3c) (3.4) (3.5)

}
. (3.6)

3.3 Semidefinite Relaxations

In this section, we first present the basic semidefinite relaxation of (3.1) due

to Shor (1987). Then we introduce semidefinite relaxations of the new formulation

(3.6).

64

3.3.1 Shor’s bounded relaxation (SDP0)

As is standard in the SDP literature (see for example Shor (1987)), we can use

the non-convex equality X = xxT to represent (3.1) in the equivalent form

min

{
1

2
Q •X + cTx : 0 ≤ x ≤ e,

(
1 xT

x X

)
� 0, X = xxT

}
.

By dropping the constraint X = xxT , we obtain the relaxation due to Shor:

min

{
1

2
Q •X + cTx : 0 ≤ x ≤ e,

(
1 xT

x X

)
� 0

}
. (3.7)

However, the following well known fact about (3.7) is easy to prove:

Proposition 3.3.1. If Q 6� 0, then the optimal value of (3.7) is −∞.

The reason why (3.7) is unbounded when Q 6� 0 is that there is too much

freedom for X. We can fix the problem of unboundedness by including some valid

linear constraints implied by X = xxT and 0 ≤ x ≤ e, e.g., diag(X) ≤ x (Sherali and

Adams, 1997). Adding diag(X) ≤ x to (3.7), we get a bounded relaxation for (3.1):

min

{
1

2
Q •X + cTx : 0 ≤ x ≤ e,

(
1 xT

x X

)
� 0, diag(X) ≤ x

}
. (SDP0)

In particular, the optimal solution set of (SDP0) is nonempty. We consider (SDP0)

to be the smallest, simplest semidefinite relaxation of (3.1).

We remark that Ye (1999) has derived an approximation algorithm for quadratic

programming over the box {x : −e ≤ x ≤ e}, which is simply a shifted and scaled

version of (3.1). The main tool used by Ye is the equivalent version of (SDP0) for the

case {x : −e ≤ x ≤ e}.

65

3.3.2 Relaxations (SDP12) and (SDP2) of the optimality conditions

To relax (3.6), we consider the matrix
1
x
y
w




1
x
y
w


T

=


1 xT yT wT

x xxT xyT xwT

y yxT yyT ywT

w wxT wyT wwT

 � 0

and its linearized version

M =


1 xT yT wT

x X MT
xy MT

xw

y Mxy Y MT
yw

w Mxw Myw W

 � 0.

We can relax the quadratic constraints (3.3c), (3.4) and (3.5) via M . For

example, consider the j-th entry of x ◦ (Qx+ c+ y) = 0 from (3.3c), which is

xj(Qjx+ cj + yj) = 0.

Relaxing it via M , we have

QjX
j + cjxj + [Mxy]jj = 0.

So, x ◦ (Qx+ c+ y) = 0 is relaxed in total as

diag(QX) + c ◦ x+ diag(Mxy) = 0.

Constraints (3.4) and (3.5) can be relaxed in a similar way. Hence, we obtain the

66

following SDP relaxation of (3.6), which we call (SDP12):

min
1

2
Q •X + cTx (3.8a)

s.t. 0 ≤ x ≤ e, diag(X) ≤ x (3.8b)

Qx+ c+ y ≥ 0, y ≥ 0 (3.8c)

diag(QX) + c ◦ x+ diag(Myx) = 0, y − diag(Myx) = 0 (3.8d)

w = x− diag(X) (3.8e)

Q ◦W � 0 (3.8f)

M � 0. (3.8g)

We point out that diag(X) ≤ x in (3.8b) is not a relaxation of a particular constraint

in (3.6). Rather, it is added to prevent (SDP12) from being unbounded as with

(SDP0).

We also study a relaxed version of (SDP12), which we call (SDP2):

min
1

2
Q •X + cTx (3.9a)

s.t. 0 ≤ x ≤ e, diag(X) ≤ x (3.9b)

w = x− diag(X) (3.9c)

Q ◦W � 0 (3.9d)(
1 xT

x X

)
� 0 (3.9e)(

1 wT

w W

)
� 0. (3.9f)

In essence, (SDP2) maintains the minimal set of constraints from (SDP12), which still

explicitly relax the second-order optimality conditions. We are particularly interested

67

in (SDP2) because it captures the second-order optimality information (a main focus

of this chapter) and because its dimension is significantly lower than that of (SDP12).

Table 3.1 compares the sizes of the three SDPs.

SDP0 SDP2 SDP12

variables (n2 + 3n)/2 n2 + 3n 9(n2 + n)/2
linear constraints 3n 4n 8n
semidefinite constraints 1 3 2
sizes of semidefinite constraints n+ 1 n, n+ 1, n+ 1 n, 3n+ 1

Table 3.1: Comparison of the sizes of (SDP0), (SDP2), and (SDP12)

3.4 Equivalence of the SDP Relaxations

3.4.1 Equivalence of (SDP0) and (SDP2)

In this section, we establish the equivalence of (SDP0) and (SDP2). We will

use the following generic result:

Lemma 3.4.1. Consider two related optimization problems:

(A) min{ f(x) : x ∈ P }

(B) min{ f(x) : x ∈ P, y ∈ R(x) },

where P represents the feasible set for (A) and R(x) defines the set of constraints

(related to x) that y must satisfy. Let x∗ be an optimal solution of (A) and suppose

R(x∗) 6= ∅. Then any (x∗, y) with y ∈ R(x∗) is optimal for (B). Therefore, the

optimal value of (B) equals that of (A).

68

Since the feasible set of (B) is more restrictive than that of (A), the optimal value of

(B) is greater than or equal to that of (A). The inclusion y ∈ R(x∗) and the fact that

the objective value does not depend on y together imply that (A) and (B) achieve

the same optimal value.

Our first step is to prove the following property of (SDP0) at optimality.

Lemma 3.4.2. Let (x∗, X∗) be an optimal solution of (SDP0), and define J := {i :

X∗ii < x∗i }. Then QJJ � 0.

Proof. The argument is based on examining an optimal solution for the dual of

(SDP0). It can be easily verified that the dual is

max λ− eTy

s.t. S =
1

2

(
−λ (c+ y − z − v)T

c+ y − z − v Q+ 2 Diag(v)

)
� 0

y, z, v ≥ 0,

where y, z, v, S, and λ are, respectively, the multipliers for e − x ≥ 0, x ≥ 0, x −

diag(X) ≥ 0, (1, xT ;x,X) � 0, and the constraint associated with fixing the top-left

entry of (1, xT ;x,X) to 1.

Note that both (SDP0) and its dual have nonempty interior. Specifically, the

point

(x,X) =

(
1

2
e,

1

4
eeT + εI

)
is interior feasible for (SDP0) for all ε ∈ (0, 1/4). In addition, taking v sufficiently

positive, λ sufficiently negative, and y, z positive such that y − z − v has sufficiently

small norm yields an interior solution of the dual with S � 0. Because both problems

69

have interiors, strong duality holds. For the remainder of the proof, we let (x,X) and

(λ, y, z, v, S) denote specific optimal solutions of the primal and dual.

Due to complementary slackness, (x − diag(X)) ◦ v = 0. So vJ = 0, and it

follows from S � 0 that

[Q+ 2 Diag(v)]JJ = QJJ � 0.

Theorem 3.4.3. Let (x∗, X∗) be an optimal solution of (SDP0), and define w∗ :=

x∗ − diag(X∗) and W ∗ := w∗(w∗)T . Then (x∗, X∗, w∗,W ∗) is an optimal solution of

(SDP2) with the same optimal value.

Proof. For notational convenience, we drop the ∗ superscripts. By Lemma 3.4.1,

we need only prove that (x,X,w,W) is feasible for (SDP2), and to do so requires

the verification of (3.9d) since all the other constraints of (SDP2) are satisfied by

construction.

Let J be defined as in Lemma 3.4.2. Then wJ > 0, wJ c = 0, and QJJ � 0.

Note that [Q ◦W]ij = 0 if i ∈ J c or j ∈ J c. So Q ◦W = Q ◦ wwT � 0 is equivalent

to QJJ ◦
(
wJw

T
J
)

= Diag(wJ)QJJ Diag(wJ) � 0, which is true because QJJ � 0

and wJ > 0. This proves (3.9d) and hence the theorem.

3.4.2 Equivalence of (SDP0) and (SDP12)

In the last subsection, we have proved that (SDP2) is equivalent to (SDP0).

In this subsection, we show that even (SDP12) is equivalent to (SDP0). We start by

70

proving some properties of (SDP0), which will facilitate the proof of equivalence later

in Section 3.4.2.2 but are also of independent interest.

3.4.2.1 Additional properties of (SDP0)

We will show that every optimal solution (x∗, X∗) of (SDP0) satisfies the fol-

lowing two inequalities:

diag(QX) + c ◦ x ≤ 0 (3.10a)

Qx+ c− (diag(QX) + c ◦ x) ≥ 0. (3.10b)

In other words, (3.10a) and (3.10b) are redundant for (SDP0) in the sense that enforc-

ing these inequalities does not change the optimal solution set. This knowledge will

help us establish the equivalence between (SDP12) and (SDP0) in the next subsection.

To prove (3.10), we start by examining paths of solutions in the feasible set of

(SDP0). Given any feasible (x,X), consider two paths of emanating from (x,X) and

depending on a specified index i. Each path is parameterized by α ≥ 0. We define

(x1(α), X1(α)) and (x2(α), X2(α)) by

x1(α) := x− αxiei

X1(α) := X − αei
(
X i
)T − αX ieTi + α2Xiieie

T
i

x2(α) := x+ αei

X2(α) := X + αeix
T + αxeTi + α2eie

T
i .

Furthermore, for any β ∈ [0, 1], we consider a third path (x(α), X(α)), which is a

71

convex combination of (x1(α), X1(α)) and (x2(α), X2(α)):

x(α) := βx1(α) + (1− β)x2(α)

X(α) := βX1(α) + (1− β)X2(α).

Our intent is to examine conditions on α and β such that (x(α), X(α)) is feasible for

(SDP0). We will also be interested in the objective value at (x(α), X(α)):

f(α) :=
1

2
Q •X(α) + cTx(α)

Proposition 3.4.4. Let an index i be specified. Given (x,X) feasible for (SDP0) and

β ∈ [0, 1], (x(α), X(α)) satisfies the following properties:

(i) x(α) differs from x only in the i-th entry, and x(α)i = xi + α(1− β − βxi);

(ii) diag(X(α))− x(α) differs from diag(X)− x only in the i-th entry, and

[diag(X(α))− x(α)]i =

(1− αβ)(Xii − xi) + α [α(βXii + 1− β) + 2(1− β)xi − (βXii + 1− β)] ;

(iii)

(
1 x(α)T

x(α) X(α)

)
is positive semidefinite.

Moreover,

f ′(0) = β(−
(
Qi
)T
X i − cixi) + (1− β)(

(
Qi
)T
x+ ci).

Proof. It is straightforward to verify the formulas for x(α)i, [diag(X(α))−x(α)]i, and

f ′(0). Now we show that (iii) holds. From the definition of (x1(α), X1(α)), we see

(
1 x1(α)T

x1(α) X1(α)

)
=

(
1 0T

0 I − αeieTi

)(
1 xT

x X

)(
1 0T

0 I − αeieTi

)
� 0.

72

Furthermore, by using the Schur complement theorem twice, we have

(
1 x2(α)T

x2(α) X2(α)

)
� 0 ⇐⇒

(
1 (x+ αei)

T

x+ αei X + αeix
T + αxeTi + α2eie

T
i

)
� 0

⇐⇒ (X + αeix
T + αxeTi + α2eie

T
i)− (x+ αei)(x+ αei)

T � 0

⇐⇒ X − xxT � 0

⇐⇒
(

1 xT

x X

)
� 0,

which is true due to the feasibility of (x,X). Therefore, (iii) follows because (1, x(α)T ;x(α), X)

is a convex combination of positive semidefinite matrices.

The following corollaries are easy to establish.

Corollary 3.4.5. Let (x,X) be feasible for (SDP0), and let β = 1. For a specified

index i, (x(α), X(α)) is feasible for all α ∈ [0, 1], and f ′(0) = − (Qi)
T
X i − cixi.

Corollary 3.4.6. Let (x,X) be feasible for (SDP0) with xi < 1, which guarantees

1 + Xii − 2xi > 0. Also let β = 1/2. For a specified index i, (x(α), X(α)) is feasible

for all α ∈
[
0, 1+Xii−2xi

1+Xii

]
, and f ′(0) = 1

2
[Qx+ c− (diag(QX) + c ◦ x)]i.

We are now ready to prove that every optimal solution (x∗, X∗) of (SDP0)

satisfies (3.10). We need just one additional lemma, whose proof is a straightforward

adaptation of the proof of proposition 3.2 in Burer and Vandenbussche (2006a):

Lemma 3.4.7. Let (x,X) be feasible for (SDP0). Then xi = 1 implies X i = x.

Theorem 3.4.8. Let (x∗, X∗) be optimal for (SDP0). Then (x∗, X∗) satisfies the

inequalities (3.10).

73

Proof. We prove the following equivalent statement: suppose feasible (x,X) does not

satisfy (3.10); then (x,X) is not optimal. We break the condition of not satisfying

(3.10) into three subcases: (i) [diag(QX) + c ◦ x]i > 0 for some i; (ii) [Qx + c −

(diag(QX)+c◦x)]i < 0 for some i and xi < 1; and (iii) [Qx+c−(diag(QX)+c◦x)]i < 0

for some i and xi = 1.

In case (i), Corollary 3.4.5 implies the existence of a feasible path emanating

from (x,X) with decreasing objective. Hence, (x,X) is not optimal. Case (ii) follows

similarly from Corollary 3.4.6.

Finally, we show that case (iii) actually cannot occur. Suppose xi = 1. Then

by Lemma 3.4.7,

[Qx+ c− diag(QX)− c ◦ x]i =
(
Qi
)T

(x−X i) + ci(1− xi) = 0,

which is incompatible with (iii).

3.4.2.2 Proof of equivalence

Note that (SDP12) is more constrained than (SDP0). By Lemma 3.4.1, it

suffices to construct a feasible solution to (SDP12) based on (x∗, X∗) to establish the

equivalence of (SDP0) and (SDP12).

74

We construct the solution for (SDP12) by defining

y := −(diag(QX∗) + c ◦ x∗) (3.11a)

Y := yyT + εI, (3.11b)

w := x∗ − diag(X∗), W := wwT (3.11c)

Mxw := wx∗T , Myw := wyT (3.11d)

M :=


1 x∗T yT wT

x∗ X∗ Mxy
T Mxw

T

y Mxy Y Myw
T

w Mxw Myw W

 , (3.11e)

where ε > 0 is a sufficiently large constant (more details below). Note that we have

not specified Mxy yet; we will do so below.

We must check that the solution specified is indeed feasible for (SDP12), which

requires checking (3.8b)–(3.8g). Obviously, (3.8b) is satisfied by (x∗, X∗). It follows

from (3.10a) and (3.10b) that (3.8c) is satisfied by (x∗, X∗, y). The constraint (3.8e) is

satisfied by definition, and Theorem 3.4.3 illustrates that (3.8f) is satisfied. It remains

to show that (3.8d) and (3.8g) hold. These will depend on the choice of ε and Mxy.

To prove (3.8d) and (3.8g), we exhibit an Mxy such that diag(Mxy) = y and

M � 0. We first require the following lemma and proposition:

Lemma 3.4.9. For an optimal solution (x∗, X∗) of (SDP0), if X i∗ = x∗ix
∗, then

yi(1− x∗i) = 0, where y is defined as in (3.11a).

Proof. We drop the superscripts ∗ to simplify notation. If xi = 1, then yi(1−xi) = 0,

and if xi = 0, then yi = −((Qi)
T
X i + cixi) = −xi((Qi)

T
x + ci) = 0. If 0 < xi < 1,

we show yi = 0. Let gi := (Qi)
T
x + ci. We know yi = −xigi ≥ 0, and so gi ≤ 0. On

75

the other hand, by (3.10b), gi + yi = (1 − xi)gi ≥ 0, and so gi ≥ 0. Hence, gi = 0,

which ensures yi = 0.

Proposition 3.4.10. Let (x∗, X∗) be an optimal solution of (SDP0), and define y as

in (3.11a). Then there exists A ∈ <n×n such that

diag(A(X∗ − x∗x∗T)) = y ◦ (e− x∗).

Proof. We drop the superscripts ∗ to simplify notation. We show equivalently that

there exists a solution A to the system of equations

Ai(X − xxT)i = yi(1− xi) ∀ i = 1, . . . , n.

Note that the n equations just listed are separable; so we consider each i separately.

If (X − xxT)i 6= 0, it is obvious that there exists a solution Ai; just take Ai equal to

yi(1− xi)
‖(X − xxT)i‖2

[
(X − xxT)i

]T
.

On the other hand, if (X − xxT)i = 0, i.e., X i = xix, then we know by Lemma 3.4.9

that yi(1− xi) = 0 and thus Ai can be any vector.

We define

Mxy := yx∗T + A(X∗ − x∗ (x∗)T),

where A is any matrix as in Proposition 3.4.10. Then diag(Mxy) = y◦x∗+y◦(e−x∗) =

y, which ensures that (3.8d) is satisfied. Finally, it remains to show that (3.8g) holds,

i.e., M � 0, for this choice of Mxy.

76

In the following, we drop the superscripts ∗ to simplify notation. Note that

M =


1
x
y
w




1
x
y
w


T

+


0 0 0 0
0 X − xxT (Mxy − yxT)T 0
0 Mxy − yxT εI 0
0 0 0 0

 ,

and so it suffices to show(
X − xxT (Mxy − yxT)T

Mxy − yxT εI

)
=

(
X − xxT

(
A(X − xxT)

)T
A(X − xxT) εI

)
� 0.

By the Schur complement theorem, this holds if and only if

(X − xxT)− ε−1(X − xxT)ATA(X − xxT) � 0. (3.12)

Consider the following straightforward lemma:

Lemma 3.4.11. Suppose R, S � 0. Then there exists δ > 0 small enough such that

R− δS � 0 if and only if Null(R) ⊆ Null(S).

Because the null space of X−xxT is contained in the null space of (X−xxT)ATA(X−

xxT), the lemma implies the existence of ε > 0 large enough so that (3.12) holds.

Taking such ε, we conclude that (3.8g) is satisfied.

Overall, we have shown that definition (3.11) — along with the definitions of

Mxy and ε — is feasible for (SDP12), which means (SDP0) and (SDP12) are equivalent

by Lemma 3.4.1.

3.5 Comparison of SDP Relaxations Within

Branch-and-Bound

In Section 3.4, we have shown that the three SDP relaxations (SDP0), (SDP2)

and (SDP12) are equivalent. In this section, we empirically compare these relaxations

77

in the context of branch-and-bound for solving (3.1) globally, where the relaxations

can have different effects on subdivided boxes. Our experiments on randomly gener-

ated problems illustrate the strength of the bounds produced by (SDP2) and (SDP12)

over those produced by (SDP0) in this context. Our approach will be to focus on the

comparison of (SDP0) and (SDP2), while briefly commenting on (SDP12) towards the

end.

We would like to point out that our intention here is not to develop a branch-

and-bound method for (3.1), which outperforms all other techniques. Rather, our

primary goal is comparing (SDP0), (SDP12), and (SDP2) in order to gauge the effect

of incorporating optimality conditions (particularly the second-order conditions) into

SDP relaxations for (3.1).

3.5.1 Branch-and-bound for box QP

The branch-and-bound algorithm we consider recursively subdivides the entire

box {x ∈ <n : 0 ≤ x ≤ e} into smaller and smaller boxes and solves an appropriately

tailored SDP relaxation — either (SDP0) or (SDP2) — on these smaller boxes. Lower

bounds obtained from these relaxations are compared with a global upper bound to

fathom as many small boxes as possible from consideration. When fathoming is not

possible for a specific small box, that box is further subdivided. Moreover, the global

upper bound is improved (whenever possible) throughout the course of the algorithm.

We measure the performance of the branch-and-bound algorithm in two ways:

the total number of nodes in the branch-and-bound tree and the total time to complete

78

the entire branch-and-bound process. The number of nodes is affected by the quality

of the lower bounds. Our main comparison will be the lower bound calculations based

on either (SDP0) or (SDP2). Since the branching strategy also affects the number of

nodes, we will investigate two different branching strategies as well.

Before discussing our algorithm design choices below, we first present the SDP

relaxations on the small boxes, which are modified appropriately from the correspond-

ing versions on the entire box. Suppose the current node of the branch-and-bound

tree corresponds to the box

{ x ∈ <n : l ≤ x ≤ u }.

Then the SDP relaxation that corresponds to (SDP0) is

min
1

2
Q •X + cTx (3.13a)

s.t. l ≤ x ≤ u (3.13b)

diag(X)− (l + u) ◦ x+ l ◦ u ≤ 0 (3.13c)(
1 xT

x X

)
� 0. (3.13d)

The constraint diag(X) − (l + u) ◦ x + l ◦ u ≤ 0 is obtained by relaxing the valid

inequality

x ◦ x− (l + u) ◦ x+ l ◦ u = (x− l) ◦ (x− u) ≤ 0.

Note that, when l = 0 and u = e, this constraint is just diag(X) ≤ x. So this

inequality plays the role of bounding the diagonal of X on the smaller boxes.

To derive the relaxation corresponding to (SDP2) on the smaller box, we first

79

introduce the following notation depending on the bounds (l, u):

B1 := {i : `i = 0 and ui = 1} ,

B2 := {i : `i = 0 and ui < 1} ,

B3 := {i : `i > 0 and ui = 1} ,

B4 := {i : `i > 0 and ui < 1} .

Note that B1 ∪B2 ∪B3 ∪B4 = {1, . . . , n}. Now consider the following specialization

of Proposition 3.2.1:

Proposition 3.5.1. Given x satisfying 0 ≤ l ≤ x ≤ u ≤ e, define w ∈ <n by

wB1 := xB1 ◦ (eB1 − xB1) (3.14)

wB2 := xB2

wB3 := eB3 − xB3

wB4 := eB4 .

Then the local convexity condition (3.3d) at x is equivalent to

Q ◦ wwT � 0.

Proof. Recall that the proof of Proposition 3.2.1 established that the second-order

condition for (3.1) at any 0 ≤ x ≤ e is equivalent to

(I −D)DQD(I −D) � 0, (3.15)

where I is the identity matrix and D = Diag(x). For fixed i, if li > 0, then we know

the i-th diagonal of D is strictly positive, and so we can replace Dii = xi with Dii = 1

80

in the inner two D’s of (3.15) without affecting semidefiniteness. Similarly, if ui < 1,

then we know that the i-th diagonal entry of I − D is positive and hence can be

replaced by 1 without affecting semidefiniteness in (3.15). If li > 0 and ui < 1, then

both replacements can be made. Using arguments similar to the proof of Proposition

3.2.1, the resulting matrix (I−D)DQD(I−D) after replacements is equal to Q◦wwT ,

where w is given by (3.14).

With Proposition 3.5.1 in hand, the relaxation corresponding to (SDP2) on the smaller

box is

min
1

2
Q •X + cTx (3.16a)

s.t. l ≤ x ≤ u (3.16b)

diag(X)− (l + u) ◦ x+ l ◦ u ≤ 0 (3.16c)

wB1 = xB1 − diag(XB1B1) (3.16d)

wB2 = xB2 (3.16e)

wB3 = eB3 − xB3 (3.16f)

wB4 = eB4 (3.16g)

WB2B2 = XB2B2 (3.16h)

WB2B3 = xB2e
T
B3
−XB2B3 (3.16i)

WB3B3 = eB3e
T
B3
− xB3e

T
B3
− eB3x

T
B3

+XB3B3 (3.16j)

WB4 = weTB4
(3.16k)

Q ◦W � 0,

(
1 xT

x X

)
� 0,

(
1 wT

w W

)
� 0. (3.16l)

81

Note that the constraints (3.16d–3.16g) give rise to new constraints (3.16h–3.16k)

between W and x,w, and X.

We now address the major design choices for the branch-and-bound algorithm:

• Bounding. We will compare strategies involving two types of lower bounds:

those given by (3.13) and those given by (3.16). A single run of the branch-

and-bound algorithm on a single instance will employ one or the other — or a

combination of both, i.e., first (3.13) and then a switch to (3.16) (more details

are given in the next subsection).

For the global upper bound, we experimented with two ways to improve it

at each node of the tree: (a) locally solve the small box QP at each node via

MATLAB’s quadprog function; (b) simply take the objective value 1
2
(x∗)TQx∗+

cTx∗ corresponding to the optimal x∗ obtained from the lower bound calculation.

Option (b) was a bit quicker, but at each node, the time for either (a) or (b)

was dominated by the lower bound calculation. On the other hand, compared

to (b), (a) generally resulted in fewer nodes in the tree and thus saved time

overall. So we use (a) throughout the computations.

• Branching. We consider two branching strategies.

The first branching strategy — which we will call simple — is the standard

“bisection via longest edge” (see, for example, Horst and Tuy (1993)). Consider

the small box {x ∈ <n : l ≤ x ≤ u}, which has been selected for branching. We

select the longest edge of this box to branch on. More specifically, we choose

the index i such that ui − li is the largest among all dimensions. If there is a

82

tie, the smallest such index is chosen. By applying this strategy, we subdivide

the box into two smaller boxes:

{
x ∈ <n : l ≤ x ≤ u− 1

2
(ui − li)ei

}
,{

x ∈ <n : l +
1

2
(ui − li)ei ≤ x ≤ u

}
.

The second branching strategy — which we will call advanced — is more so-

phisticated and involves two ingredients:

– It is well known that SDP relaxations such as (3.13) and (3.16) enforce a

fairly weak approximation of X = xxT in the interior of [l, u] and a fairly

strong one near the boundary. Hence, if x̄ is an optimal solution returned

by (3.13) or (3.16) and if x̄i ∈ (li, ui) for some index i, then branching on

i via the intervals [li, x̄i] and [x̄i, ui] results in two relaxations with x̄ on

the boundary, thus strengthening the approximation of X = xxT precisely

where needed and increasing the chances that x̄ will be cut off in the

relaxations. A similar logic guides the “most fractional” branching rule of

integer programming.

– For theoretical validity of the branch-and-bound algorithm, the branching

strategy must subdivide all boxes in such a way that the longest edge of

all unfathomed boxes tends to 0 in the limit. This is indeed the most basic

property of “bisection via longest edge.”

So we design the second branching strategy as a combination of “most frac-

tional” and “bisection via longest edge.” For a given feasible solution l ≤ x̄ ≤ u,

83

our strategy calculates, for each i = 1, . . . , n, the values

αi =
ui − x̄i
ui − li

· x̄i − li
ui − li

∈ [0, 1/4],

βi = ui − li ∈ [0, 1]

and then selects for branching the i such that αiβi is maximum. A large αi favors

“most fractional,” while a large βi favors “longest edge.” In particular, if all ui−

li are equal, then the strategry reduces to selecting the most fractional variable,

whereas if one edge is significantly longer than the others, it will necessarily be

selected for branching.

By applying this strategy, the resulting two small boxes are as follows:

{ x ∈ <n : l ≤ x ≤ u− (ui − x̄i)ei } ,

{ x ∈ <n : l + (x̄i − li)ei ≤ x ≤ u } .

• Node Selection. We use a best-bound (breadth-first) strategy for selecting

the next node to solve in the branch-and-bound tree.

• Fathoming Tolerance. A relative optimality tolerance is used for fathoming.

For a given tolerance tol, a node with lower bound L is fathomed if (U −

L)/max{1, 1
2
(|U |+ |L|)} < tol, where U is the current global upper bound. In

our experiments, we set tol = 10−3.

3.5.2 Implementation and results

For n = 20, we generated 100 instances of random data (Q, c) (entries uniform

in [−1, 1], which ensured Q 6� 0 in all cases) and solved these instances using the

84

branch-and-bound scheme outlined above. In particular, all instances were solved

three times, each time with a different choice of lower bound calculation and branching

strategy. The three choices were:

(i) lower bounds by (SDP0) and simple branching strategy;

(ii) lower bounds by (SDP0) and advanced branching strategy;

(iii) lower bounds by (SDP2) and advanced branching strategy.

(Please refer to the previous subsection for an explanation of the simple and advanced

branching strategies). We will refer to these three choices as test scenarios . The goals

of analyzing these three particular test scenarios are:

• to compare the two branching strategies via scenarios (i) and (ii) (see Figure

3.1);

• to compare (SDP0) and (SDP2) via scenarios (ii) and (iii) (see Figure 3.2).

The algorithm was coded in MATLAB (version 7.3, release 2006b) and all

SDP relaxations were setup and solved using YALMIP (Lfberg, 2004) and SeDuMi

(version 1.1) (Sturm, 1999). All computations were performed on an Intel Pentium D

Processor running at 3.2 GHz with 2,048 KB cache and 4 GB RAM under the Linux

operating system.

Figure 3.1 contains a log-log plot depicting the number of nodes required by all

instances in test scenarios (i) and (ii). For each of the 100 problem instances, a single

point is plotted with its x-coordinate equal to the number of nodes under scenario (i)

and its y-coordinate equal to the number of nodes under scenario (ii). Also depicted

is the “y = x” dotted line, which divides the plot into two regions. In particular, a

85

point plotted in the lower-right region indicates an instance that required fewer nodes

under the advanced branching strategy of scenario (ii). Similar to Figure 3.1, Figure

3.2 compares the number of nodes required under test scenarios (ii) and (iii). Also

depicted in a separate plot are the CPU times (in seconds). Both plots contain the

y = x dotted line for reference.

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

simple

ad
va

nc
ed

10
0

10
5

10
0

10
1

10
2

10
3

10
4

10
5

Figure 3.1: Number of nodes required under test scenarios (i) and (ii). This demon-

strates that the advanced branching strategy reduces the number of nodes significantly

compared to the simple branching strategy.

Our key interpretations of the figures are as follows:

• Figure 3.1: Since nearly all points are plotted in the lower-right region, the ad-

vanced branching strategy is clearly better than the simple branching strategy

86

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

(SDP
0
)

(S
D

P
2)

nodes

10
0

10
2

10
4

10
0

10
1

10
2

10
3

10
4

(SDP
0
)

(S
D

P
2)

times

Figure 3.2: Number of nodes and CPU times (seconds) required under test scenarios

(ii) and (iii). This demonstrates that (SDP2) results in fewer nodes compared to

(SDP0). However, the overall CPU time incurred by (SDP2) is greater.

in terms of number of nodes. In particular, the number of nodes was reduced

by more than 44% on average by using the advanced branching strategy. Fur-

thermore, since (SDP0) was used as the relaxation for lower bounds in both

scenarios, the time per node for each instance was essentially the same, so that

the reduction in nodes resulted in a real time reduction of about 44% as well.

• Figure 3.2: In all runs, the number of nodes required by (SDP2) is no more

than the number required by (SDP0), which indicates that (SDP2) provides

stronger lower bounds than (SDP0). In particular, on average the number of

nodes required by (SDP2) is 21% less than that of (SDP0). However, the overall

CPU times required for the entire branch-and-bound process are higher using

87

(SDP2). So (SDP0) is the overall winner.

In light of Figure 3.2, we wondered if some intelligent combination of (SDP0)

and (SDP2) during the branch-and-bound procedure might perform better in terms of

overall CPU time than using (SDP0) only. Hopefully, we could reduce the number of

nodes significantly — a benefit of (SDP2) — while keeping the time small— a benefit

of (SDP0). We devised a strategy, which employs (SDP0) early in the branch-and-

bound tree, and then switches to (SDP2) later in the tree when its stronger bounds

may be useful for fathoming. Specifically, our strategy is the following:

At the beginning of branch-and-bound, all lower bounds are calculated

with (SDP0) by default. At each node after the solution of (SDP0), the

optimal solution (x∗, X∗) is extracted and used to construct W ∗
B2B2

and

W ∗
B3B3

according to (3.16h) and (3.16j), respectively. If either QB2B2 ◦

W ∗
B2B2

or QB3B3 ◦W ∗
B3B3

are not positive semidefinite, then it follows that

(x∗, X∗) cannot be part of a feasible solution for (SDP2) at that node. In

other words, solving (SDP2) will cut off (x∗, X∗). In these cases, we flag

all future descendants of the current node and calculate the lower bound

via (SDP2) for those descendants.

This combination of (SDP0) was implemented as a new test scenario:

(iv) lower bounds by the above combination of (SDP0) and (SDP2) and advanced

branching strategy (see Figure 3.3).

Compared to test scenario (ii), test scenario (iv) required 15% fewer nodes on average,

which is again a testament to the strength of (SDP2). In addition, the points in the

88

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

(SDP
0
)

(S
D

P
0)

&
 (

S
D

P
2)

nodes

10
0

10
2

10
4

10
0

10
1

10
2

10
3

10
4

(SDP
0
)

(S
D

P
0)

&
 (

S
D

P
2)

times

Figure 3.3: Number of nodes and CPU times (seconds) required under test scenarios

(ii) and (iv). Compared to scenario (iii) in Figure 3.2, less time is required by scenario

(iv), but still scenario (iv) requires more time than scenario (ii).

time plot of Figure 3.3 are shifted closer to the “y = x” line compared to the time

plot of Figure 3.2, which is an indication of less time used than in scenario (iii).

(Keep in mind that both Figures 3.2 and 3.3 share test scenario (ii) as the basis of

comparison.) So our strategy of combining (SDP0) and (SDP2) was successful in

reducing the number of nodes compared to (ii) and reducing the times compared to

(iii). In fact, in the time plot, there were actually 6 instances below the “y = x” line,

indicating that (iv) used less time than (ii) in these cases. However, on average the

CPU times for scenario (iv) were still more than (ii), indicating that our strategy was

not fully successful as hoped.

89

3.5.3 Some additional tests

For completeness, we compared (SDP12) with (SDP0) and (SDP2) in the con-

text of branch-and-bound. (SDP12) on a smaller box {x ∈ <n : l ≤ x ≤ u} has all

the constraints of (3.16) as well as the first order constraints (3.8c) and (3.8d). In

addition, for a particular index i, if xi < 1, then we fix yi = 1; if xi > 0, then we fix

[Qx+ c+ y]i = 0. Both of these rules are based on the complementary slackness con-

dition (3.3c). We conducted the tests for the same 100 problems of size n = 20 above

with the advanced branching strategy. The results were as follows: (SDP12) required

the fewest nodes among all three relaxations but required the longest times. In fact,

by using (SDP12) on average the number of nodes is reduced by 65% compared with

(SDP0) and 56% compared with (SDP2).

We also considered the sensitivity of (SDP2) with respect to the spectral struc-

ture of Q. From each of the randomly generated Q’s in the above experiments, which

tended to be invertible and well conditioned, we created a new ill-conditioned, indefi-

nite Q̃ by forcing some of Q’s eigenvalues to zero. Specifically, let λ1 ≤ λ2 ≤ . . . ≤ λ20

be the eigenvalues of Q and V be the corresponding matrix of eigenvectors. We define

λ̃i =

{
0 if 6 ≤ i ≤ 15
λi otherwise

and D := Diag([λ̃1, λ̃2, . . . , λ̃20]T). Then

Q̃ := V DV T .

We found that the new Q̃’s were relatively easier to solve than the original Q’s.

On average, the number of nodes required to solve the new problems with (SDP2)

90

were 25% less than needed to solve the original problems and the times were 86%

less. (SDP0) enjoyed similar node and time improvements on these problems. We

unfortunately do not have a hypothesis as to why the Q̃’s were easier to solve, but the

fact that they were easier for both (SDP0) and (SDP2) would seem to suggest that,

in some sense, the problems themselves became easier irrespective of the algorithm.

3.6 Conclusion

In this chapter, we have introduced new semidefinite relaxations of box-constrained

quadratic programming: (SDP12) and (SDP2). (SDP12) is based on relaxing both the

first- and second-order necessary optimality conditions; (SDP2) is similar except that

it only incorporates second-order information. (SDP2) has been our main focus since

the first-order conditions have been studied in previous papers. We have compared

these two relaxations with a basic semidefinite relaxation (SDP0) and established the

theoretical result that all three relaxations achieve the same optimal value.

Relaxing the standard second-order necessary optimality conditions is one of

the main theoretical ideas of this chapter. This task is non-trivial since it implicitly

involves knowledge of the active/inactive constraint set at a general point. In the

future, it may be possible to extend this technique to other problems, e.g., quadratic

programming over the simplex, leading to stronger SDP relaxations in other contexts.

We have also empirically compared (SDP0) and (SDP2) in the context of

branch-and-bound and demonstrated that (SDP2) on subdivided boxes is significantly

stronger, which indicates that the incorporation of second-order information in SDP

91

relaxations can help globally solve Box QP. In particular, fewer branch-and-bound

nodes are required by (SDP2) compared to (SDP0), although overall (SDP2) uses

more time. Future advances in SDP software may allow (SDP2) to be solved faster,

so that the benefits of its node reduction may also be reflected in overall CPU times.

92

CHAPTER 4
COMBINING FINITE BRANCH-AND-BOUND WITH DOUBLY

NONNEGATIVE RELAXATIONS FOR QP

4.1 Introduction

We consider the problem of finding global solutions to a general quadratic program-

ming (QP) problem with linear and bound constraints:

min
1

2
xTHx+ fTx (QP)

s.t. Ax ≤ b

Aeq x = beq

l ≤ x ≤ u,

where H ∈ <n×n, f ∈ <n, A ∈ <m×n, b ∈ <m and Aeq ∈ <m0×n, beq ∈ <m0 . l ∈ <n

and u ∈ <n are lower and upper bounds on x, and are allowed to be infinite. However,

we assume that all the constraints together imply finite lower and upper bounds on

x. We also assume that (QP) has an interior point and Aeq has full rank, which will

be needed in Section 4.3.2. The particular form of this quadratic program conforms

with the input form required by the MATLAB function quadprog, which finds local

optimal solutions to (QP). We adopt the same input form as quadprog because our

goal is to create a global solver for (QP) using MATLAB as the interface.

We solve (QP) via a finite branch-and-bound method proposed in Burer and

Vandenbussche (2008), and the relaxations used in the branch-and-bound scheme are

a special semidefinite relaxation (Burer (2010)). We combine these existing technolo-

93

gies together and utilize them to solve the general quadratic program (QP). Specif-

ically, we would like to reformulate (QP) as the following quadratic program with

equality constraints, nonnegative constraints and complementarity conditions:

min
1

2
xT3H3x3 + fT3 x3 (NQP)

s.t. A3x3 = b3

x3 ≥ 0[
x3x

T
3

]
E

= 0

where the subscript 3 distinguishes these data and variable from those in (QP). The

complementarity condition [x3x
T
3]E = 0 encodes the product of the i-th and j-th

entry of x3 is zero for all (i, j) ∈ E. It has been shown recently by Burer (2009)

that (NQP) is equivalent to so-called completely positive programs, which optimizes

a linear function over the convex cone of completely positive matrices subject to

linear constraints. These completely positive programs have natural semidefinite

relaxations. Burer (2010) develops a sub-routine that effectively solve such type of

semidefinite relaxations, and embed the sub-routine inside branch-and-bound to hence

solve (NQP). Also Burer (2010) has implemented such an approach to effectively

solve the BoxQP and the quadratic assignment problem. This chapter serves as an

extension to this work. In earlier work, the implementation has been tailored to the

structure of the particular problem, either the BoxQP or the quadratic assignment

problem. Here our goal is to develop a general implementation for (QP) with wider

applicability.

94

The focus of this chapter is on how to model (QP) as (NQP). This includes (i)

reformulating (QP) by incorporating the KKT conditions of (QP) into its constraint

set (Section 4.3.1), which allows finite branching; (ii) bounding the dual variables

associated with the reformulation because the algorithm we will utilize requires finite

bounds on the dual variables (Section 4.3.2). The rest of this chapter is organized as

follows. In Section 4.2, we briefly review related work in Burer and Vandenbussche

(2008) and Burer (2010). In Section 4.4, we detail our preliminary computational

experiments on 77 benchmark instances of (QP).

4.2 More Background

In this section, we briefly review the finite branch-and-bound method (Burer

and Vandenbussche (2008)) and the SDP relaxation (Burer (2010)) mentioned earlier.

4.2.1 The Finite Branch-and-Bound Method

The finite branch-and-bound method proposed in Burer and Vandenbussche

(2008) works by enforcing the first-order KKT conditions through branching. Specifi-

cally, the authors start with a general QP (4.1)–(4.2), incorporate its first-order KKT

95

system (4.3)–(4.5) into the QP’s feasible set as follows:

max
1

2
xTQx+ cTx (4.1)

s.t. Ax ≤ b, x ≥ 0 (4.2)

ATy − z = Qx+ c, (y, z) ≥ 0 (4.3)

(b− Ax)j = 0, ∀j ∈ F (b−Ax)

yj = 0, ∀j ∈ F y

xi = 0, ∀i ∈ F x

zi = 0, ∀i ∈ F z

 (4.4)

F (b−Ax) ∪ F y = {1, . . . ,m}, F x ∪ F z = {1, . . . , n}, (4.5)

where F (b−Ax), F y, F x, F x are four index sets, and m and n are the row and column

dimensions of A. Note that (4.3) is the gradient condition and (4.4)–(4.5) are in fact

the complementarity condition. The idea is to relax (4.5) and only enforce partial

complementarity condition via (4.4):

(b− Ax)j yj = 0 ∀j ∈ F (b−Ax) ∪ F y ⊆ {1, . . . ,m}

xi zi = 0 ∀i ∈ F x ∪ F z ⊆ {1, . . . , n}.

Then branching on a node involves selecting an index j ∈ {1, . . . ,m}\F (b−Ax) ∪ F y

or i ∈ {1, . . . , n}\F x ∪F z, and creating two children nodes by adding j (suppose j is

selected) to F (b−Ax) at one node and adding j to F y at the other node. By branching

this way F (b−Ax) ∩ F y = ∅ and F x ∩ F z = ∅ is maintained at all nodes. For example,

the root node is F (b−Ax), F y, F x, F x all being empty sets. At any leaf node, both (4.4)

and (4.5) hold and thus the complementarity condition is satisfied.

At any nodes, (4.1)–(4.4) is still a nonconvex problem and thus a convex relax-

ation is constructed and then solved to compute upper bounds on the optimal value.

96

There are many choices for the convex relaxations, and a particular SDP relaxation

is constructed in Burer and Vandenbussche (2008). With that SDP relaxation, the

authors show that any leaf nodes can be pruned and thus their branch-and-bound

scheme is correct and finite.

4.2.2 Doubly Nonnegative Programs

Burer (2009) has shown that (NQP) is equivalent to the so-called completely

positive programs, which naturally has the following SDP relaxation (Doubly Non-

negative Programs):

min
1

2
C • Y (DNP)

s.t. A3x3 = b3, diag(A3XA
T
3) = b2

3

XE = 0

Y =

(
1 xT3
x3 X

)
� 0, Y ≥ 0,

where C :=

(
0 fT3
f3 H3

)
. It is obvious that the derivation of (DNP) is quite different

from the SDP relaxations in Burer and Vandenbussche (2008), which is based on

(4.1)–(4.4). The major contribution of Burer (2010) is an algorithm that solve (DNP)

efficiently. That algorithm requires finite upper bounds on the variable x3 as input.

Therefore, in Section 4.3.2 we will discuss how to bound some dual variables, which

are sub-components of x3 (see Section 4.3.1). We do not review the detail of the

algorithm since we can treat it as an available sub-routine that computes valid lower

bounds for (DNP) and embed it inside the finite branch-and-bound method.

97

4.3 Reformulation and Bounding

In this section, we first discuss the several steps required to turn (QP) into

(NQP). They involve remodeling all the constraints as equality constraints, shifting

and scaling the bounds on the primal variables, and formulating the KKT system of

(QP). Then we show how to bound the dual variable that arise when formulating the

KKT system.

4.3.1 Reformulation

Without loss of generality, we assume l and u are finite. Otherwise, we can

find the assumed finite bounds through LP pre-processing. Specifically, if a lower

bound (upper bound) is needed for xi, we solve the following LP to find li (or ui).

min {xi (or− xi) : Ax ≤ b, Aeqx = beq, l ≤ x ≤ u} .

First, we reformulate (QP) as a problem with equality and bound constraints only.

Define a slack variable s := b − Ax such that Ax + s = b becomes an equality

constraint. Obviously, s has computable finite bounds; let us assume that 0 ≤ s ≤ us.

We reformulate (QP) as an equivalent problem (QP1) without inequality constraints:

min
1

2
xT1H1x1 + fT1 x1 (QP1)

s.t. A1x1 = b1

l1 ≤ x1 ≤ u1,

98

where

H1 :=

(
H 0
0 0

)
, f1 :=

(
f
0

)
A1 :=

(
A I
Aeq 0

)
, b1 :=

(
b
beq

)
x1 :=

(
x
s

)
, l1 :=

(
l
0

)
, u1 :=

(
u
us

)
.

Assume u1 − l1 > 0, otherwise it is straightforward to remove the fixed vari-

ables. Define

x2 := (x1 − l1) ◦ (u1 − l1)−1

H2 := Diag(u1 − l1)H1 Diag(u1 − l1)

f2 := Diag(u1 − l1) (H1l1 + f1)

c2 :=
1

2
lT1 H1l1 + fT1 l1

A2 := A1 Diag(u1 − l1)

b2 := b1 − A1l1,

where “◦” represents Hadamard product in the first definition. Now we can shift and

scale the variable x1 such that its lower and upper bounds are 0 and e, respectively,

where e is a vector of all ones. With this transformation, (QP1) is equivalent to

(QP2):

min
1

2
xT2H2x2 + fT2 x2 + c2 (QP2)

s.t. A2x2 = b2 (4.6)

0 ≤ x2 ≤ e. (4.7)

99

Note that there is now a constant term c2 in the objective.

Next, we add the first order KKT conditions of (QP2) to its constraints set.

This incorporates more information into the problem and does not change the optimal

solution set. However, the number of variables increases. We introduce dual variables

y, z and λ for the constraints A2x2 = b2, x2 ≥ 0 and x2 ≤ e, respectively. Then the

KKT system is:

H2x2 + f2 + λ = AT2 y + z (4.8)

x2 ◦ z = 0, (e− x2) ◦ λ = 0 (4.9)

z ≥ 0, λ ≥ 0. (4.10)

We would like to pre-calculate finite bounds for the dual variables y, z and λ.

Multiplying xT2 on both sides of (4.8) yields

xT2H2x2 + fT2 x2 + xT2 λ = xT2A
T
2 y + xT2 z.

Using (4.6) and (4.9), we simplify the above equality to

xT2H2x2 + fT2 x2 + eTλ = bT2 y. (4.11)

We claim that (4.6), (4.7), (4.8), (4.10) and (4.11) imply finite bounds on the dual

variables, i.e., there exist finite ly, uy, uz and uλ such that

ly ≤ y ≤ uy

0 ≤ z ≤ uz

0 ≤ λ ≤ uλ.

100

We defer the proof of the claim to Section 4.3.2.

Without loss of generality, we assume that uy − ly > 0, uz > 0 and uλ > 01.

Then we shift the dual variables to its lower bounds and scale their upper bounds to

be ones:

y2 := (y − ly) ◦ (uy − ly)−1

z2 := z ◦ u−1
z

λ2 := λ ◦ u−1
λ .

Finally, define a new variable x3 that packs the original primal and dual vari-

ables together and the data that allows us to state (QP2) in terms of x3:

x3 :=


x2

s2

z2

λ2

y2

 , H3 :=


H2 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , f3 :=


f2

0
0
0
0


A3 :=

 A2 0 0 0 0
−H2 0 Diag(uz) −Diag(uλ) AT2 Diag(uy − ly)
I I 0 0 0

 , b3 :=

 b2

f2 − AT2 ly
e

 .

With the above definitions, we arrive at the following QP in the form of (NQP):

min
1

2
xT3H3x3 + fT3 x3 + c2 (QP3)

s.t. A3x3 = b3 (4.12)

x3 ≥ 0[
x3x

T
3

]
E

= 0

1If the assumption does not hold, then we keep the fixed variables in the KKT system
without shifting and scaling them. We do not remove these fixed variables because we need
to keep the complementarity condition (4.9).

101

where E encodes that x2◦z2 = 0 and s2◦λ2 = 0. (4.12) now encapsulates the equality

and bound constraint of (QP2) as well as the KKT condition (4.11), and implicitly

implies that x3 is bounded above by e.

4.3.2 Finite Bounds on Dual Variables

Now we prove the claim regarding the boundedness of the dual variables, that

is:

Proposition 4.3.1. (4.6), (4.7), (4.8), (4.10) and (4.11) implies finite bounds on y,

z and λ.

We will use the same proof technique used as in Proposition 2.2 and Proposi-

tion 3.1 of Burer and Vandenbussche (2008). Define

P :=
{
x2 ∈ <n+m : A2x2 = b2, 0 ≤ x2 ≤ e

}
.

R :=
{

(4λ,4z) ≥ 0,4y free : AT24y +4z = 4λ, eT4λ = bT24y
}
.

Similar to the proof in Burer and Vandenbussche (2008), it can be shown that R

is the recession cone of (4.6), (4.7), (4.8), (4.10) and (4.11). For interested reader,

please refer to Burer and Vandenbussche (2008) for proof technique. We omit the

proof here.

Recall that we assume: (i)(QP) has an interior point, i.e., there exists x0

such that Ax0 < b, Aeqx
0 = beq and l < x0 < u; (ii) Aeq has full rank. Given the

reformation performed in Section 1.1, (i) implies that P contains an interior point

while (ii) implies that A2 has full rank. In order to prove Proposition 4.3.1, it suffices

to show that R only contains trivial point under these two assumptions:

102

Proof. Consider primal LP max{0 : x2 ∈ P} and its dual

min{eTλ− bTy : AT2 y + z = λ, (z, λ) ≥ 0}.

Duality tells us that eTλ− bTy = 0. By assumption, P contains an interior point x0
2

such that 0 < x0
2 < e. Obviously, x0

2 is an optimal solution to the primal problem.

Complementarity conditions imply that (z, λ) = (0, 0) since 0 < x0
2 < e. Now the

constraint AT2 y + z = λ in the dual problem simplifies to AT2 y = 0. By assumption

A2 has full rank, and thus y = 0, which completes the proof.

To compute ly, uy, uλ, and uz, we again solve linear programs. Note that

among all the constraints that bound the dual variables, (4.11) is nonlinear, and so

we use reformulation and convexification technique (Sherali and Tuncbilek (1995)) to

relax it. To compute the bounds for the k-th component of y, we solve the following

LP:

min / max yk (4.13)

s.t. (4.6), (4.7), (4.8), (4.10)

H2 •X + fT2 x2 + eTλ = bT2 y

0 ≤ Xi,j ≤ min{xi, xj}, ∀(i, j)

1− xi − xj +Xi,j ≥ 0, ∀(i, j).

We compute the upper bounds for z and λ via solving the same linear programs but

modifying the objective functions.

103

4.3.3 Connection with Section 2

The key idea of Section 2.1 is to branch on complementarity condition. In our

case, this is to branch on the complementarity condition encoded in [x3x
T
3]E = 0:

x2 ◦ z2 = 0, s2 ◦ λ2 = 0.

At each node of the tree, we enforce partial complementarity similar in fashion to (4.4).

Interestingly, (DNP) also has the effect of enforcing the complementarity condition

via XE = 0, which is some additional pressure on the complementarity condition that

is not present in the SDP relaxation for (4.1)–(4.5).

The fact that x3 is bounded above by e is crucial when we solving (DNP) at

each node of the branch-and-bound tree. Recall that the algorithm to solve (DNP)

requires finite upper bounds on x3.

4.4 Preliminary Computational Experiments

In this section, we document a preliminary test on our branch-and-bound

method. In particular, we tested the branch-and-bound scheme on 77 quadratic

problems from GLOBALLIB2 and on several BoxQP problems. The pre-processing

and the finite branch-and-bound scheme are implemented in MATLAB. CPLEX is

used to solve all the linear programs that arise when bounding the variables. We use

the code supplied with Burer (2010) to solve the semidefinite relaxations of (QP3),

where the code was implemented in C.

We compare our method with BARON (Sahinidis and Tawarmalani (2010)),

2Available online at http://www.gamsworld.org/global/globallib.htm.

104

one of the state-of-the-art global solvers, both theoretically and computationally.

First, BARON is designed for finding global solutions to general nonlinear and mixed-

integer nonlinear programs and while here we only concern general quadratic program-

ming problem. Although both BARON and our technique in essence use the method-

ology of branch-and-bound, BARON utilizes a rectangular subdivision scheme, which

theoretically could produce a tree with infinite number of nodes. In contrast, our

method branches on the complementarity conditions, as described in Section 4.2.1.

The relaxations used by BARON are based on using factorable programming tech-

niques (see references in Sahinidis (2000)) while we use semidefinite relaxations.

Here we do not intend to perform a comprehensive comparison with BARON

because our implementation is still preliminary while BARON is a sophisticated soft-

ware. We only compare with BARON on several instances from GLOBALLIB and

on several BoxQP instances, in order to gauge the performance of our method. The

computational results of our method are shown in Table 4.1 and 4.3.

The times listed in Table 4.1 are in seconds and were rounded to the nearest

integers. For some of the instances, pre-processing fixed all the variables, i.e., the

lower bounds obtained via solving linear programs are identical to the upper bounds.

Thus the global solutions were returned immediately without any nodes being solved.

All the instances in Table 4.1 were solved to within 0.00001 of the global optimal value

except st cqpjk2, where the problem has a poor formulation and caused numerical

difficulties (the difference between the returned GUB and the optimal value is 0.189).

We observe that the branch-and-bound scheme has some difficulties on several

105

Instance Time Nodes Instance Time Nodes Instance Time Nodes
ex2 1 1 7 17 st e26 1 1 st pan1 3 3
ex2 1 2 2 0 st fp1 6 17 st pan2 6 17
ex2 1 3 12 3 st fp2 2 0 st ph1 3 1
ex2 1 4 2 0 st fp3 11 1 st ph2 4 3
ex2 1 5 20 7 st fp4 5 3 st ph3 4 3
ex2 1 6 12 7 st fp5 20 7 st ph10 1 0
ex2 1 7 6658 1581 st fp6 12 7 st ph11 7 17
ex2 1 8 38 13 st fp7a 2530 487 st ph12 9 21
ex2 1 9 3 1 st fp7b 679 157 st ph13 13 9
ex2 1 10 87 25 st fp7c 2023 493 st ph14 16 13
immun 1631 1787 st fp7d 963 195 st ph15 2 1
meanvar 3 3 st fp7e 6644 1581 st ph20 4 1
st bpaf1a 11 1 st glmp fp1 3 1 st phex 2 1
st bpaf1b 17 7 st glmp fp2 10 9 st qpc m0 1 1
st bpk1 3 1 st glmp fp3 3 1 st qpc m1 3 1
st bpk2 3 1 st glmp kk90 3 1 st qpc m3a 11 3
st bpv2 2 1 st glmp kk92 3 1 st qpc m3b 15 3
st bsj2 3 1 st glmp kky 6 1 st qpc m3c 5 0
st bsj3 2 3 st glmp ss1 5 1 st qpc m4 5 0
st bsj4 15 27 st glmp ss2 6 7 st qpk1 1 1
st cqpf 2 1 st ht 4 11 st qpk2 178 83
st cqpjk2 2 1 st iqpbk1 8 5 st qpk3 12536 1761
st e22 5 1 st iqpbk2 8 3 st rv1 9 5
st e23 1 1 st jcbpaf2 26 7 st rv2 107 19
st e24 2 1 st jcbpafex 1 1 st z 3 1
st e25 4 1 st kr 2 1

Table 4.1: Computational Results of 77 Quadratic Instances in GLOBALLIB. Mea-

sures include CPU times (including pre-processing) and the number of nodes in

branch-and-bound (“Nodes” column).

of the instances, where it spent more than 1 hour to prove global optimality. We tested

these “hard” instances on global optimization solver BARON provided by NEOS sever

for optimization3. We extracted similar measures from the output of BARON and

summarize them in Table 4.2. We acknowledge that BARON was significantly faster

on these instances where it only need several seconds to prove global optimality.

We also tested several BoxQP instances (found in Burer and Vandenbuss-

che (2005)) using both BARON and our branch-and-bound algorithm, referred to as

3Available at http://www-neos.mcs.anl.gov/.

106

Instance Time Nodes
ex2 1 7 0 1
immun 0.07 17
st fp7a 0.02 1
st fp7b 0.06 1
st fp7c 0.05 1
st fp7d 0.12 1
st fp7e 0.42 15
st qpk3 1.65 235

Table 4.2: BARON Results on Several “Hard” Problems

QUADPROGBB. We report the results in Table 4.3. Among these instances, QUAD-

PROGBB significantly outperforms BARON on two of the instances, ‘spar050-030-3’

and ‘spar050-040-3’. If we compare the number of nodes needed by BARON and

that of QUADPROGBB, we see that in general the latter requires many fewer nodes.

Note that we break down the total CPU time of QUADPROG into pre-processing

time (tpre) and the time spent by branch-and-bound (tB&B). The total pre-processing

time takes about 79% of the total CPU time on these instances, which indicates that

we need a better technique to compute the bounds of the dual variables and cut down

the associated time.

We point out several limitations of the above comparisons: (i) BARON has

very sophisticated pre-processing techniques that tightens the constraints (see Sahini-

dis and Tawarmalani (2010) for more details) while the pre-processing we presented

did not tighten the constraints set; (ii) the computing environment of running BARON

is unknown because we called it through NEOS sever, which makes the comparison

even more difficult; (iii) BARON is in C and Fortran while a large component of the

107

BARON QUADPROGBB
Instance Nodes Time Nodes tpre tB&B Time
spar020-100-1 31 1.7 3 4 3 7
spar030-080-2 51 4.09 1 14 2 16
spar040-030-1 1 1.18 3 44 12 56
spar050-030-1 153 37.13 1 136 14 150
spar050-030-2 901 82.03 3 138 32 170
spar050-030-3 1547 334.93 5 134 51 185
spar050-040-3 1169 1000.03 3 143 22 165
spar060-020-1 1121 392.78 3 358 40 398
spar060-020-3 1917 454.27 13 383 188 571

Table 4.3: Comparison of BARON and QUADPROGBB on several BoxQP instances.

We break QUADPROGBB’s time into pre-processing time (tpre) and branch-and-

bound time (tB&B). All of the time are in seconds.

branch-and-bound algorithm is implemented in MATLAB.

4.5 Conclusion and Future Work

This chapter investigates how to integrate a finite branch-and-bound method

(Section 4.2.1) and the so-called doubly nonnegative programs (Section 4.2.2) to solve

(QP). The idea is to re-formulate (QP) as (NQP), which naturally admits (DNP) as

relaxations. The reformulation involves explicitly incorporating the first-order KKT

system into the constraints set, which allows us to branch on the complementarity

condition. We addressed the issue of bounding the dual variables associated with

the KKT system. We have performed preliminary test on our implementation of this

technique on 77 QP problems from GLOBALLIB and 9 BoxQP instances. The re-

sults show the correctness of this method. Comparing our results with global solver

108

BARON indicates our method has room for improvement. We discuss future direc-

tions in the subsequent paragraphs.

On the theoretical side, we need to understand the SDP relaxation (DNP)

better. How does (DNP) compare with those SDP relaxations obtained by directly

relaxing (QP) in terms of strength? The reformulation performed in Section 4.3

that leads to (DNP) increases the size of the problem significantly, which should be

justified by a stronger SDP relaxation.

On the computational side, it would be interesting to investigate methods that

improve the performance of our technique. First, we could include techniques that

tighten the feasible set of (QP), reducing the number of constraints and the number

of variables. Reduced constraints and variables will result in a smaller KKT system

and also fewer complementarity conditions to check. Second, as indicated by the

results of Table 4.3, it is important to have a more time efficient way to estimate

the bounds for the variables x, y, z and λ as the pre-processing time are primarily

spent on solving linear programs like (4.13). Third, we could investigate other node

selection rules in branch-and-bound. Currently, the node selection rule is to select

the most violated complementarity and branch on the associated index. We could

consider node selection rules that take into account the structure of the KKT system

formulated, in the hope of reducing the total number of nodes.

109

CHAPTER 5
A FIRST-ORDER SMOOTHING TECHNIQUE FOR A CLASS OF

LARGE-SCALE LPS

5.1 Introduction

In this chapter, we investigate a first-order smoothing technique to solve large-

scale instances of the following linear programming (LP) problem:

min cTα + wT ξ (P)

s.t. Aα− b ≤ ξ

α, ξ ≥ 0

αB ≤ d,

where α ∈ <n and ξ ∈ <m are the decision vectors and A ∈ <m×n, b ∈ <m, c ∈ <n+

and w ∈ <m+ are the data. B is an index subset of [n]. We assume that cB = 0 and

the corresponding part of α has to be bounded above by a vector d > 0. The set B

may be empty, in which case c is a positive vector. This problem’s optimal value is

bounded below by zero and thus has an optimal solution. ξ could be interpreted as

an error, allowing some of the constraints Aα− b ≤ 0 to be violated. The term wT ξ

in the objective serves to minimize such violations. If ξ is fixed to 0, then the above

formulation would be similar to the standard form linear programming (LP).

The motivation for studying (P) is the observation that several machine learn-

ing problems are LPs with the structure of (P). One such example is the linear

program based ranking formulation introduced by Ataman (2007) to rank instances

110

with binary outputs. The 1-norm support vector machine (1-norm SVM, Zhu et al.

(2003); Mangasarian (2006)) can also be modeled as (P). We are interested in solv-

ing large instances of (P) because of two reasons: (i) small instances can be solved

efficiently by current LP solvers and memory is not an issue; for problems where A

is large and dense, using simplex or interior-point methods might not be feasible due

to memory limits; (ii) the machine learning problems above are often applied to large

data sets making A large. In applications that involve kernel matrices, such as the

popular RBF kernels (Hsu et al. (2003)), A is large and often completely dense.

Currently there are several approaches to solve (P). As mentioned above, stan-

dard approaches are the simplex method or interior-point methods. For applications

in machine learning and data mining, however, (P) is often too large. For example,

Ataman (2007) reported that a moderately-sized ranking problem formulated as (P)

would cause CPLEX to run out of memory on standard PC. Mangasarian (2006)

formulated a class of LPs, which includes (P) as a special case. The author posed

the problem as the unconstrained minimization of a convex differentiable piecewise-

quadratic objective function and solved it using a generalized Newton method. Each

iteration of his method requires computing the inverse of an m×m matrix, which is

prohibitive for large scale problems.

Another approach is to treat (P) as the equivalent nonsmooth problem

min cTα + wT (Aα− b)+ (NS)

s.t. α ≥ 0, αB ≤ d

where (Aα − b)+ denotes the nonnegative part of the vector Aα − b, and then to

111

solve (NS) using nonsmooth techniques such as the standard subgradient method.

Compared with the simplex method and interior point methods, the subgradient

method requires much less memory (basically the memory to store A). It also has

very cheap computational costs at each iteration (basically A times a vector). The

main drawback of the subgradient method is slow convergence: its worst case iteration

complexity is O(1/ε2) (Nesterov (2004)), where ε is the absolute error tolerance.

Another drawback of the subgradient method is that it does not admit a systematic

way of estimating the dual objective value of a general non-smooth problem1, i.e.,

we only know the primal objective during each iteration. Therefore, it is difficult to

measure the progress of the subgradient method.

In this chapter, we propose to use Nesterov’s first-order smoothing method

(Nesterov, 2005b,a) to solve (P). The smoothing method has a worst case iteration

complexity of O(1/ε), a magnitude faster than the subgradient method. At the same

time, its computational cost per iteration and memory requirements are comparable

to the subgradient method’s. Researchers have successfully applied the smoothing

method to several large-scale problems. Hoda et al. (2007) apply the smoothing tech-

nique to approximate Nash equilibria of large sequential two-player, zero-sum games.

In a related paper, Gilpin et al. (2007) demonstrate that a tailored implementation of

the smoothing technique allows them to approximate the Nash equilibria of sequential

1Although there exist several schemes to recover the primal feasible solution of a quite
general LP when solving the Lagrangian dual of such LP via the subgradient optimization
methods (see Sherali and Choi (1996); Anstreicher and Wolsey (2009)), what the subgradient
method solves here is the “primal” problem and not quite the same.

112

games four orders of magnitude larger than previous algorithms. Smoothing technique

also have applications in semidefinite programming and general convex optimization

(d’Aspremont, 2008; Nesterov, 2007; Lan et al., 2009).

Nesterov’s first-order smoothing method applies to the following generic prob-

lem:

min{f(x) : x ∈ Q}, (5.1)

where f is a continuous convex function with a certain structure and Q is a (simple)

compact convex set (see Section 2). In order to apply the smoothing method, we will

need some transformation of (P) or (NS) to get a compact convex feasible region since

one pre-requisite of the smoothing technique is the assumption of bounded feasible

sets. We show that the unbounded feasible region of (P) can be bounded from the

knowledge of an upper bound θ on the optimal value θ∗ of (P). We prove that the

iteration complexity of the smoothing method is proportional to θ/ε. We then show

that it is possible to adjust the smoothing algorithm such that it dynamically updates

θ as it obtains better bounds on θ∗. To the best of our knowledge, this is the first

application of the smoothing technique to solve problems with unbounded feasible

sets.

This chapter is organized as follows. We summarize the major ingredients

of the smoothing technique in Section 2 to facilitate later discussion. In Section 3,

we show how to convert (P) into a problem of the form (5.1) and specify the major

components of the smoothing technique, such as the choice of the so-called prox-

functions and derivations of various parameters. In Section 4, we demonstrate how

113

to update the upper bound θ and discuss how it speeds up the smoothing method.

Finally, in Section 5, we present two machine learning applications of smoothing

technique and compare it with two existing methods.

5.2 Nesterov’s Smoothing Method

In this section, we review some of the major ingredients of Nesterov’s smooth-

ing technique: the excessive gap condition and convergence rate. We focus on the

concepts and results that will be used in our study and leave out technical details.

First, we introduce some notations and definitions that will be used throughout this

chapter.

5.2.1 Notation and terminology

Let E denote a finite-dimensional real vector space, possibly with an index.

This space is equipped with a norm ‖·‖, which has the same index as the corresponding

space. Let A be a linear operator: E1 → E2. Define the operator norm of A, induced

by the norms ‖ · ‖1 and ‖ · ‖2, as

‖A‖1,2 = max
‖x‖1=1

max
‖u‖2=1

〈Ax, u〉,

where 〈·, ·〉 refers to inner product. Note ‖ · ‖1 and ‖ · ‖2 do not necessarily represent

the standard l1-norm and l2-norm; the subscripts are indices only. This operator

norm has the following property,

‖A‖1,2 = max
‖x‖1=1

‖Ax‖∗2 = max
‖u‖2=1

‖ATu‖∗1,

114

where ‖ · ‖∗ denotes the dual norm associated with ‖ · ‖ and is defined as

‖z‖∗ := max{zTx : ‖x‖ ≤ 1}.

We use Ai to denote the i-th row of A and Aj the j-th column of A. For a vector

v ∈ <n, v−1 ∈ <n denotes the vector whose components are the inverse of the

components of v. We let Diag(v) represent the diagonal matrix with diagonal v.

Finally, we use e to represent a vector of all ones. The dimension of e may differ but

should be clear from the context.

5.2.2 A primal-dual smoothing method

Consider the following functions f(x) and φ(u):

f(x) = f̂(x) + max
u∈Q2

{〈Āx, u〉 − φ̂(u)} (5.2)

φ(u) = −φ̂(u) + min
x∈Q1

{〈Āx, u〉+ f̂(x)}, (5.3)

where Q1 and Q2 are simple compact convex sets in finite dimensional Euclidean

spaces E1 and E2, respectively, Ā is a linear operator mapping E1 to E2, and f̂(x)

and φ̂(u) are continuous convex functions on Q1 and Q2, respectively. Thus, f(x)

is convex and φ(u) is concave, but they are not necessarily differentiable. For any

x̄ ∈ Q1 and ū ∈ Q2 we have

φ(ū) ≤ f(x̄) (5.4)

115

because

φ(ū) = −φ̂(ū) + min
x∈Q1

{〈Āx, ū〉+ f̂(x)}

≤ −φ̂(ū) + 〈Āx̄, ū〉+ f̂(x̄)

≤ f̂(x̄) + max
u∈Q2

{〈Āx̄, u〉 − φ̂(u)}

= f(x̄).

The smoothing technique uses a primal-dual approach to simultaneously solve (5.1)

and

max{φ(u) : u ∈ Q2}, (5.5)

where by Fenchel duality (see Borwein and Lewis (2006)) (5.5) is the dual problem

of (5.1) and there is no duality gap.

The primal-dual approach does not directly deal with (5.2) and (5.3). Instead

it works with the following “smoothed” versions of (5.2) and (5.3):

fµ2(x) = f̂(x) + max
u∈Q2

{〈Āx, u〉 − φ̂(u)− µ2d2(u)} (5.6)

φµ1(u) = −φ̂(u) + min
x∈Q1

{〈Āx, u〉+ f̂(x) + µ1d1(x)}, (5.7)

where µi is a positive smoothness parameter, and di(·) is a prox-function on the set

Qi, which means di(·) is continuous and strongly convex on Qi, i = 1, 2. A strongly

convex function d(·) on a closed convex set Q has the following property for some

σ > 0:

d(x) ≥ d(x∗) +
1

2
σ‖x− x∗‖2, x ∈ Q, (5.8)

116

where x∗ = arg minx∈Q d(x). The purpose of introducing these prox-functions is to

smooth f(x) and φ(u). The resultant fµ2(x) and φµ1(u) are differentiable and their

gradients are Lipschitz-continuous. When µ1 and µ2 are small, fµ2 ≈ f and φµ1 ≈ φ.

By definition we have fµ2(x) ≤ f(x) and φ(u) ≤ φµ1(u). For sufficiently large

µ1 and µ2, it can be shown that there exists some x̄ ∈ Q1 and ū ∈ Q2 satisfying the

following excessive gap condition (EGC):

fµ2(x̄) ≤ φµ1(ū). (EGC)

(EGC) is like a switched version of (5.4), which ensures that the primal-dual gap is

bounded above, as stated in the following lemma.

Lemma 5.2.1. (Nesterov (2005a)) Let x̄ ∈ Q1 and ū ∈ Q2 satisfy (EGC). Then

0 ≤ f(x̄)− φ(ū) ≤ µ1D1 + µ2D2 (5.9)

where D1 := maxx∈Q1 d1(x) and D2 := maxu∈Q2 d2(u).

In addition to Lemma 5.2.1, the smoothing technique features three other important

ingredients:

(i) a procedure that calculates an initial (x0, u0, µ0
1, µ

0
2) satisfying (EGC), i.e.,

fµ0
2
(x0) ≤ φµ0

1
(u0).

(ii) given (xk, uk, µk1, µ
k
2) satisfying (EGC), a procedure that generates (xk+1, uk+1, µk+1

1 , µk+1
2)

satisfying (EGC) as well.

(iii) the procedure in (ii) ensures that µk+1
i ≤ µki , i = 1, 2, where one of the two

inequalities is strict, and also µki −→ 0, i = 1, 2.

117

(i) and (ii) generate a sequence {
(
xk, uk, µk1, µ

k
2

)
} that satisfies (EGC) for each k, and

at the same time shrinks µk1 or µk2 in each iteration. Because of Lemma 5.2.1 and (iii),

the primal-dual gap is going to zero as µk1 and µk2 go to zero, that is,

0 ≤ f(xk)− φ(uk) ≤ µk1D1 + µk2D2 −→ 0. (5.10)

As long as (EGC) is maintained, (5.10) will hold for all k.

Theorem 5.2.2. (Nesterov (2005a)) Given ε > 0, there is an algorithm based on the

smoothing technique that produces a pair (xN , uN) ∈ Q1 ×Q2 such that

0 ≤ f(xN)− φ(uN) ≤ ε

in

N =
4‖Ā‖1,2

ε

√
D1D2

σ1σ2

iterations.

In each iteration of the algorithm, we need to update
(
xk, uk, µk1, µ

k
2

)
, which

requires solving several sub-problems in the form of the inner max problem in (5.6)

or the inner min problem in (5.7). Therefore, the solutions of the these max and min

problems should be easily computable. We omit the generic scheme here; we will

describe the specific algorithm with respect to our problem in Section 5.3.3.

5.3 Applying the Smoothing Technique

In this section, we show how to convert (NS) into the standard form required by

the smoothing technique. After the conversion, we specify each ingredient including

our choices of the prox-functions, the calculation of parameters for the smoothing

118

technique, and the iteration complexity for solving (NS). In the end, we detail the

algorithm.

5.3.1 Reformulation

The primal feasible set is unbounded. However, employing the smoothing

technique requires the primal/dual feasible set of (NS) to be bounded and simple.

We first show that the primal feasible set can be bounded, and then through a simple

change of variables, we transform the feasible set of (NS) into the combination of a

simplex, denoted as 4 := {x ≥ 0 : eTx = 1}, and a box, denoted as 2 := {x :

0 ≤ x ≤ e}. In Section 5.3.2, we show how to find closed-form solutions to some

sub-problems of the smoothing technique, which rely on the fact that the feasible sets

are simple ones built upon the simplex and the box.

Suppose θ is a valid upper bound on the optimal value of (P), i.e.,

cTα∗ + wT (Aα∗ − b)+ ≤ θ,

where α∗ denotes an optimal solution of (P). Recall parameter w is nonnegative.

Thus, wT (Aα∗ − b)+ is nonnegative, and the following inequality, which bounds the

primal feasible set, is satisfied by the optimal solution α∗:

cTα ≤ θ. (5.11)

Recall that αB ≤ d, cB = 0 and the remaining elements of c are positive, i.e. cB̄ > 0,

where B̄ := {1, . . . , n}\B. Define a new variable x ∈ <n+1
+ that has one larger

119

dimension than α:

xB := Diag
(
d−1
)
αB ∈ 2

xS :=
1

θ

(
Diag (cB̄)αB̄
θ − cTα

)
∈ 4,

where the first part of x is inside a box with dimension |B|, the second part is inside a

simplex with dimension n+1−|B|, and the index set S := {1 . . . n+1}\B = B̄∪{n+1}.

To match the structure of the primal objective (5.2), we re-state wT (Aα− b)+

as a maximization problem as follows

wT (Aα− b)+ = eT
(
w ◦ (Aα− b)

)+

= max
u∈2

{
〈w ◦ (Aα− b), u〉

}
= max

u∈2

{
〈w ◦ (Aα) , u〉 − (w ◦ b)Tu

}
,

where ◦ refers to Hadamard product. In addition, we define Â, ê and b̂ by properly

scaling the original data:

Â•S :=
(
Diag(w)A•B̄ Diag(c−1

B̄) 0
)

Â•B :=
1

θ
Diag(w)A•B Diag(d)

b̂ := w ◦ b

êB := 0, êB̄ := e, ên+1 := 0.

With the above definition, the objective function of (NS) can be stated in terms of x:

cTα + wT (Aα− b)+ = θ

[
êTx+ max

u∈2

{
〈Âx, u〉 − 1

θ
b̂Tu

}]
, (5.12)

120

and thus (NS) is equivalent to the following problem

min

{
f(x; θ) := êTx+ max

u∈2

{
〈Âx, u〉 − 1

θ
b̂Tu

}
: xS ∈ ∆, xB ∈ 2

}
. (SP)

Based on the “primal-dual” structure of (5.2) and (5.3), we immediately have the

“dual” problem

max

{
φ(u; θ) := −1

θ
b̂Tu+ min

xS∈∆,xB∈2

{
〈Âx, u〉+ êTx

}
: u ∈ 2

}
. (SD)

The smoothing technique we described in Section 5.2.2 can be used to solve

(SP) and (SD). For any primal feasible solution x̄ obtained from the smoothing

technique, we can recover a feasible solution ᾱ to (NS). Note that by (5.12), the

objective f(x̄; θ) needs to be scaled by θ in order to recover the objective value

of (NS). This property will have an influence on the iteration complexity of the

smoothing technique. In particular, the primal error (the difference between the

primal objective value and the optimal value) of (NS) is the primal error of (SP)

scaled by θ.

Lemma 5.3.1. Let p(α) denote the primal objective function of (NS), and x∗ be an

optimal solution of (SP). Recall that θ∗ denotes the optimal value of (NS). Suppose

x̄ is feasible to (SP) and ᾱ is the corresponding feasible solution to (NS). Then we

have:

p(ᾱ)− θ∗ = θ
(
f(x̄; θ)− f(x∗; θ)

)
. (5.13)

Proof. By (5.12), p(ᾱ) = θf(x̄; θ) and θ∗ = θf(x∗; θ).

121

5.3.2 Specifications

In this subsection, we discuss in detail each ingredient of the smoothing tech-

nique. The choices of norm and the prox-function are critical decisions. We select

the L1-norm and the entropy distance function as the prox-function (see Nesterov

(2005b)) for the primal space, and the L2-norm and a “distance squared” quadratic

function for the dual space:

‖x‖1 :=
n∑
i=1

|x(i)|, d1(x) := ln(|S|) + |B| · exp(−1) +
n+1∑
i=1

x(i) lnx(i) (5.14)

‖u‖2 :=

√√√√ m∑
j=1

(u(j))
2
, d2(u) :=

1

2

m∑
j=1

(
u(j) − 1

2

)2

. (5.15)

Under the above choices, we calculate the parameters that determine the iteration

complexity of the smoothing technique:

D1 = max
x
{d1(x) : xS ∈ ∆, xB ∈ 2} = ln(|S|) + |B| · exp(−1), σ1 = 1,

the derivation of which can be found in Lemma 3 of Nesterov (2005b). Prox-function

d1(·) achieves its minimum at x0 = e/(n + 1), where d1(x0) = 0. It is easy to verify

that

D2 = max
u
{d2(u) : u ∈ 2m} =

m

8
, σ2 = 1,

122

and d2(·) achieves its minimum at u0 = 1
2
e. The operator norm of Â is thus

‖Â‖1,2 = max
u

{
‖ÂTu‖∗1 : ‖u‖2 = 1

}
= max

u

{
max

i∈{1,...,n+1}

{
〈Âi, u〉

}
: ‖u‖2 = 1

}
= max

i∈{1,...,n}

{
max
u

{
〈Âi, u〉 : ‖u‖2 = 1

}}

= max
i∈{1,...,n}

‖Âi‖2,

where Âi denotes the i-th column of Â. The second equality follows because the dual

norm of the l1-norm is the l∞-norm, and the third equality follows from the fact that

Â’s last column is zero.

Now with all the parameters computed, we are ready to state the iteration

complexity of solving (SP) and (SD).

Proposition 5.3.2. Using Nesterov’s smoothing technique, for any ε > 0, we obtain

a pair of solutions (xN , uN) to (SP) and (SD) such that

0 ≤ f(xN ; θ)− φ(uN ; θ) ≤ ε

in

N(θ) =
1

ε

(
max

i∈{1,...,n}
‖Âi‖2

)√
2 [ln(|S|) + |B| · exp(−1)] ·m (5.16)

iterations.

Proof. The result is obtained by applying Theorem 5.2.2.

Since A•B depends on θ, it is possible that maxi∈{1,...,n} ‖Âi‖2, the maximum

column norm of Â, depends on θ. If indeed, then the number of iterations N is

123

proportional to 1/
√
θ, and so we write the total number of iterations as a function of

θ.

We comment that different combinations of norm and prox-function other than

(5.14) and (5.15) may lead to different parameter values and thus different iteration

complexities. We considered several alternate choices of norms and prox-functions

for the dual space, and the choice (5.15) gives us the lowest iteration complexity

among those considered. For example, we could choose the L1-norm and the same

prox-function as d1(x) for the dual space; the resultant iteration complexity is O(
√
m)

times larger than (5.16), which is much worse than the current one if m is large.

In Proposition 5.3.2, the iteration complexity is stated with respect to (SP).

Now we state the iteration complexity with respect to (NS).

Proposition 5.3.3. Using Nesterov’s smoothing technique, for any ε > 0, we obtain

a solution ᾱ to (NS) such that 0 ≤ p(ᾱ)− θ∗ ≤ ε in

N ′ := θN(θ)

iterations, where N(θ) is given by (5.16) and θ∗ is the optimal value.

Proof. By Proposition 5.3.2, in N ′ iterations, we obtain a solution (x̄, ū) such that

the primal-dual gap is small enough:

0 ≤ f(x̄; θ)− φ(ū; θ) ≤ ε

θ
.

We then can construct ᾱ feasible to (NS). Thus, by (5.13), we have

0 ≤ p(ᾱ)− θ∗ = θ
(
f(x̄; θ)− f(x∗; θ)

)
≤ θ
(
f(x̄; θ)− φ(ū; θ)

)
≤ ε.

124

For notational convenience, we drop the θ from N(θ). If N does not depend

on θ, then N ′ is proportional to θ; otherwise, N ′ is proportional to
√
θ since N(θ)

is proportional to 1/
√
θ. In both cases, the smaller θ is, the better the iteration

complexity. Thus, obtaining a good bound on θ is important for solving (NS). We will

discuss in Section 5.4 a strategy that dynamically updates θ within the framework

of the smoothing technique and subsequently reduces the iteration complexity for

solving (NS).

Next we discuss the sub-problems associated with our choice of prox-functions.

These sub-problems will be solved repeatedly in the algorithm presented in Section

5.3.3, and thus it is important to have closed-form solutions to them. The sub-

problems are the min and max problems presented within the following smoothed

versions of primal and dual objective functions; recall (5.6) and (5.7):

fµ2(x; θ) = êTx+ max
u∈2m

{
〈Âx, u〉 − 1

θ
b̂Tu− µ2d2(u)

}
φµ1(u; θ) = −1

θ
b̂Tu+ min

xS∈∆, xB∈2

{
〈Âx, u〉+ êTx+ µ1d1(x)

}
,

where d1(x) and d2(u) are given in (5.14) and (5.15). Both the sub-problems have

closed-form solutions as described in the following two lemmas.

Lemma 5.3.4. Assume µ > 0. The solution of the problem

min
xS∈∆, xB∈2

{
−

n∑
i=1

s(i)x(i) + µ
n∑
i=1

x(i) lnx(i)

}

125

is given by

x(i) =


exp(s(i)/µ)∑|J |

j=1 exp(s(j)/µ)
, i ∈ S

proj[0,1] exp
(
s(i)/µ

)
, i ∈ B

,

where proj[0,1](y) projects y to the nearest point between 0 and 1.

Proof. The objective function is separable in S and B. For optimizing this function

over the simplex, see Lemma 4 in Nesterov (2005b). For optimizing this function over

the box, we compute the point at which the first-order derivative vanishes and then

project that point back to the feasible region.

Lemma 5.3.5. Assuming µ > 0, the solution to the problem

min
u∈2m

{
−

m∑
j=1

s(j)u(j) + µ
m∑
j=1

(
u(j) − 1

2

)2
}

is given by

u(j) = proj[0,1]

(
1 + s(j)/µ

2

)
, j = 1, . . . ,m,

where proj[0,1](y) projects y to the nearest point between 0 and 1.

Proof. Observe that

−
m∑
j=1

s(j)u(j) + µ
m∑
j=1

(
u(j) − 1

2

)2

= µ
m∑
j=1

((
u(j)
)2 −

(
s(j)/µ+ 1

)
u(j) +

1

4

)
.

Now the problem reduces to solving m one-dimensional quadratic problems:

min
0≤u(j)≤1

(
u(j)
)2 −

(
s(j)/µ+ 1

)
u(j) +

1

4
, j = 1, . . . ,m,

whose solutions are given as above.

126

5.3.3 Algorithm

The algorithmic scheme presented by Nesterov (2005a,b) is generic and thus

problem-specific parameters for our problem have been calculated in Section 5.3.1

and 5.3.2. In this subsection, we explicitly state the scheme with respect to (SP) and

(SD). Define sargmin(di, ·) : <n → Qi as

sargmin(di, s) := arg min
x∈Qi

{
−sTx+ di(x)

}
for i = 1, 2. In this algorithm, there are three functions: (i) Initial initializes all the

parameters and the primal-dual solution (x0, u0); (ii) Update1 is the primal update;

(iii) Update2 is the dual update. Update1 and Update2 are symmetric but entail

different sub-problems.

Algorithm 5.1 Initial

Input: Data (ε,m, n, Â, b̂, ê, θ)

Output: Initialized parameters (µ0
1, µ

0
2) and solutions (x0, u0) that satisfy (EGC)

1: D1 = ln(n+ 1), D2 = m/8, σ1 = σ2 = 1, ‖Â‖1,2 = maxi∈{1,...,n} ‖Âi‖2

2: µ0
1 = 2 ‖Â‖1,2

√
D2

σ1σ2D1
, µ0

2 = ‖Â‖1,2

√
D1

σ1σ2D2

3: x̄ = sargmin(d1, 0)

4: u0 = sargmin
(
d2,

1
µ0

2
(Âx̄− b̂/θ)

)
5: x0 = sargmin

(
d1, ln(x̄) + e− µ0

2

‖Â‖21,2

(ÂTu0 + ê)

)

Primal update when k is even:

127

Algorithm 5.2 Update1: primal update

Input: Current solution (x, u) and parameters (µ1, µ2, τ, θ)

Output: (x+, u+, µ+
1 , µ

+
2) that satisfy (EGC)

1: x̄ = sargmin
(
d1,− 1

µ1
(ÂTu+ ê)

)
2: x̂ = (1− τ)x+ τ x̄

3: ū = sargmin(d2,
1
µ2

(Â x̂− b̂/θ))

4: x̂ = sargmin
(
d1, ln(x̄) + e− τ

(1−τ)µ1
(ÂT ū+ ê)

)
5: x+ = (1− τ)x+ τ x̂

6: u+ = (1− τ)u+ τ ū

7: µ+
1 = (1− τ)µ1, µ+

2 = µ2

Dual update when k is odd:

Algorithm 5.3 Update2: dual update

Input: Current solution (x, u) and parameters (µ1, µ2, τ, θ)

Output: (x+, u+, µ+
1 , µ

+
2) that satisfy (EGC)

1: ū = sargmin(d2,
1
µ2

(Â x− b̂/θ))
2: û = (1− τ)u+ τ ū

3: x̄ = sargmin(d1,− 1
µ1

(ÂT û+ ê))

4: û = sargmin(d2,
τ

(1−τ)µ2
(Â x̄− b̂/θ) + ū− 1

2
e)

5: x+ = (1− τ)x+ τ x̄

6: u+ = (1− τ)u+ τ û

7: µ+
2 = (1− τ)µ2, µ+

1 = µ1

The Smooth algorithm is then as follows:

128

Algorithm 5.4 Smooth

Input: (i) Data (m,n, Â, b̂, ê, θ); (ii) Subroutines sargmin(d1, ·) and sargmin(d2, ·)
Output: (xN

′
, uN

′
)

1: (x0, u0, µ0
1, µ

0
2) = Initial (m,n, Â, b̂, ê, θ)

2: for k = 0, 1, . . . , N ′ − 1 do

3: τ = 2
k+3

4: if k is even then

5: (xk+1, uk+1, µk+1
1 , µk+1

2) = Update1(xk, uk, µk1, µ
k
2, τ, θ)

6: else

7: (xk+1, uk+1, µk+1
1 , µk+1

2) = Update2(xk, uk, µk1, µ
k
2, τ, θ)

We have the following comments regarding the Smooth algorithm:

• According to Lemma 5.3.4 and Lemma 5.3.5, the sub-problems have closed-form

solutions and can be solved very quickly. The most time-consuming operations

are thus the matrix-vector multiplications Âx̄ and ÂT ū.

• In the above algorithm, θ is treated as an input parameter for Update1 and

Update2. We will discuss a simple procedure that dynamically updates θ in

the next section and the above algorithm will be valid even with changing values

of θ.

5.4 Speeding Up the Convergence

As shown in Proposition 5.3.3, the iteration complexity of obtaining an ε-

solution of (NS) is proportional to θ/ε, where θ is an upper bound on the optimal value

of (NS). As an input parameter, the smaller θ is, the better the iteration complexity,

129

and the best possible θ is the optimal value θ∗. We obtain new information about

θ∗ as the smooth algorithm progresses; in particular, the improved primal objective

value gives a better upper bound on θ∗. To take advantage of this information, we

consider updating θ dynamically within Algorithm 5.4.

Suppose we have a better bound θ+ ∈ [θ∗, θ) available after running Algorithm

5.4 for K iterations, where K < N ′ = θN and N , defined in (5.16), depends on the

accuracy ε. With θ+ on hand, it may be worthwhile to restart the algorithm and

input θ+ for the new run, if the number of iterations required by the new run plus

the number of iterations have been run is smaller than the iteration estimate under

θ, i.e., K + θ+N < θN holds. Even better than this, it turns out we can improve

the iteration complexity to max{K, θ+N} without restarting the algorithm, provided

that the condition (EGC) is carefully maintained when updating the parameter θ to

θ+. To achieve the result, we need Lemma 5.4.1 below.

Let θ > θ∗ be the initial upper bound on the optimal value. Let k be the

iteration count. Then intuitively if the error tolerance ε is small enough, there exists

some k such that f(xk; θ) < 1 since f(x∗; θ) = θ∗/θ < 1. Define θk = θf(xk; θ). Based

on the relationship (5.13), we know θk ≥ θ∗, and so θk is a valid upper bound on θ∗.

The following lemma shows the existence of θ+ ∈ (θ∗, θ) such that (xk, uk, µk1, µ
k
2)

satisfies (EGC) with respect to θ+.

Lemma 5.4.1. Suppose feasible solutions (xk, uk, µk1, µk2) satisfy (EGC) strictly with

respect to θ, i.e., fµk
2
(xk; θ) < φµk

1
(uk; θ). If in addition f(xk; θ) < 1, then there exists

130

θ+ ∈ (θ∗, θ) such that (xk, uk, µk1, µk2) also satisfy (EGC) for θ+, i.e.,

fµk
2
(xk; θ+) ≤ φµk

1
(uk; θ+). (5.17)

Proof. f(xk; θ) < 1 and (5.13) together imply θk ∈ [θ∗, θ). If

fµk
2
(xk; θk) < φµk

1
(uk; θk),

simply let θ+ = θk. Otherwise, if the above inequality does not hold, by the fact that

fµk
2
(xk; θ) and φµk

1
(uk; θ) are continuous functions of θ, there exists θ+ ∈ (θk, θ) such

that (xk, uk) satisfies (EGC) for µk1, µk2, i.e., (5.17) holds.

For the solution xk to (SP), we can recover a solution αk to (NS). From now

on, we use pk to represent p(αk) for notational convenience. By (5.10), we have

f(xk; θ)− φ(uk; θ) ≤ µk1D1 + µk2D2, k = 1, 2, . . . ,

where
{
µk1D1 + µk2D2

}∞
k=1

is independent of θ. Define Uk := µk1D1 + µk2D2. Thus by

(5.13), the primal error at iteration k is bounded above by θUk because

pk−θ∗ = θ
(
f(xk; θ)−f(x∗; θ)

)
≤ θ
(
f(xk; θ)−φ(uk; θ)

)
≤ θUk, k = 1, 2, . . . (5.18)

On the other hand, Lemma 5.4.1 and Lemma 5.2.1 imply

f(xk1; θ+)− φ(uk1; θ+) ≤ Uk

since the excessive gap condition (EGC) holds for θ+. It follows from (5.12) that

pk = θ+f(xk; θ+). Then we have

pk − θ∗ ≤ θ+
(
f(xk1; θ+)− φ(uk1; θ+)

]
≤ θ+Uk, (5.19)

131

where the first inequality follows because θ+φ(uk1; θ+) is a valid dual value and thus

is a lower bound on θ∗. Comparing (5.18) and (5.19), we see that the upper bound

on the primal error at iteration k has been improved from θ Uk to θ+ Uk. Since the

smoothing technique guarantees that (EGC) is maintained in the next iteration as

long as it holds at the current iteration, switching θ to θ+ means we can bound the

primal error as follows:

pl − θ∗ ≤ θ+U l, ∀l = k, k + 1, . . .

In other words, updating θ with θ+ helps speed up the convergence as the subsequent

primal error is bounded above by the new sequence
{
θ+U l

}∞
l=k

. Note that the solu-

tions generated in subsequent iterations
{

(xl, ul)
}∞
l=k+1

would be different than those

generated with parameter θ because the parameter θ+ affects the subsequent solution

generated by Update1 and Update2, which has θ+ as input parameter. Based on

the above analysis, we have the following proposition:

Proposition 5.4.2. If a new upper bound θ+ ∈ [θ∗, θ) is available for Algorithm

5.4 and satisfies (5.17) for k = K, the number of iterations required to obtain an

ε-solution to (NS) reduces from θN to max{K, θ+N}.

We have the following comments:

• We demonstrated the existence of a θ+ in Lemma 5.4.1 but do not have a

closed-form formula for it. One simple procedure of obtaining θ+ is as follows:

periodically check the conditions of Lemma 5.4.1; then do the following:

(i) θ+ := θf(xk; θ)

132

(ii) While fµ2(x̄; θ+) > φµ1(ū; θ+)

θ+ := 1/2 (θ+ + θ).

(i) and (ii) will not affect other parts of the Smooth algorithm and can be put

into the algorithm conveniently.

• In order to maintain the excessive gap condition, it is easy to see that θ+ should

be chosen in a neighborhood of θ and so the reduction of the number of iterations

by updating θ may not be big. However, the procedure of updating θ can

be performed repeatedly. As the algorithm converges, the updated parameter

value becomes better and better approximation of θ∗ and thus the cumulative

improvements might be significant.

We close this section with an example that illustrates the effects of dynamically

updating θ. This example’s data is created using the linear programming based rank-

ing formulation from Ataman (2007) and the dataset “Dermatology” from Asuncion

and Newman (2007). The resulting data matrix A in (P) has dimension 6760× 358.

We did three runs of the Smooth algorithm with the following variants:

(i) initial input of trivial θ = wT (−b)+; run the Smooth algorithm without up-

dating θ.

(ii) initial input of trivial θ = wT (−b)+; run the Smooth algorithm while dynami-

cally updating θ.

(iii) initial input of θ = θ∗, where the optimal value θ∗ has been calculated using

a standard LP solver; there is no update on θ because the bound is already

optimal.

133

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

10
4

time in sec.

er
ro

r

Error

case(i)
case(ii)
case(iii)

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Primal−dual gaps and their bounds

time in sec.

pr
im

al
−

du
al

 g
ap

case(i) bound
case(i) gap
case(ii) bound
case(ii) gap
case(iii) bound
case(iii) gap

Figure 5.1: Comparison of running Smooth algorithm under cases (i) – (iii). The

left subplot shows the change of the error p(α)−θ∗ over time; the right subplot shows

how the primal-dual gap changes over time and compares it with the corresponding

upper bound

Figure 5.1 shows the results in log-log scale. The first subplot shows how the primal

error pk − θ∗ change over time. It can be seen from the figure that dynamically

updating θ reduces the error significantly and its performance is almost as good as

case (iii). We also comment that in this particular example θ∗ � wT (−b)+ and

thus the starting value of the error for case (iii) is far smaller than that of cases

(i) and (ii). Note that (i) and (ii) are identical until the point where θ is updated.

The second subplot demonstrates how the primal-dual gap θ
(
f(xk; θ) − φ(uk; θ)

)
changes over time for the three cases. It also plots the upper bound θUk to give

us a visual illustration of how the upper bound affects the primal-dual gap. The

134

solid lines depict the primal-dual gap under these cases and the dotted lines are the

corresponding upper bounds. Note that for this example, the upper bound associated

with case (ii) changes over time because θ is being updated and as time goes on this

bound is very close to the bound of case (iii).

5.5 Applications and Computational Experiments

In this section, we study the computational performance of Algorithm 5.4

by comparing it with the subgradient optimization method and a generalized New-

ton method proposed by Mangasarian (2006) on two machine learning applications,

respectively. The first application is a linear programming based ranking problem

(LPR); the second application is 1-norm support vector machines (see Mangasarian

(2006)).

5.5.1 Linear Programming Ranking Problem

The linear programming based ranking method (Ataman (2007)) is a new

ranking method for problems with binary outputs and is reported to perform better

than SVM-based ranking algorithms. At its core, it is the following optimization

problem:

min
∑
l∈X

αl + C
∑

i∈X+, j∈X−
wi,jξi,j (LPR)

s.t.
∑
l∈X

yl [k(xi, xl)− k(xj, xl)]αl ≥ 1− ξi,j ∀ i ∈ X+, j ∈ X−

α ≥ 0, ξ ≥ 0,

135

where α ∈ <|X| and ξ ∈ <|X+|×|X−| are the decision vectors and all others are data.

It is assumed that C > 0. The entries of A are calculated as follows:

Ai×j,l = −yl [k(xi, xl)− k(xj, xl)] , ∀ i× j ∈ X+ ×X−, l ∈ X

where (xl, yl),∀ l ∈ X is an instance in the training set X, yl ∈ {1,−1} is the class

label for that instance, X+, X− represent the set of points with positive,and negative

labels, respectively, and k(·, ·) is a chosen kernel function, for example, RBF kernel

function. Define

m := |X+| × |X−|

n := |X| = |X+|+ |X−|,

and so A ∈ <m×n. Now LPR can be modeled by (P) with data

c = e ∈ <n, w = Ce ∈ <m, b = −e ∈ <m.

Since every entry of A is the difference of two kernel functions, A is usually extremely

dense.

In this computational study, we will use 14 datasets from Asuncion and New-

man (2007) and prepare them in the same way as in Ataman (2007). Table 5.1

describes the dimensions and percentage of non-zeros in A. The last column of Table

5.1 shows the storage size of A in megabytes for each instance. We point out that

among the problems in Table 5.1, ‘cancer’ and ‘diabetes’ cannot be solved by CPLEX

(via either primal or dual LP formulation) on a machine of 4GB RAM without some

other special treatment of the memory.

136

Name m n Non-zeros(%) Size(MB)
wine 6240 178 11% 0.2
iris 5000 150 100% 5.4
glass 5365 214 100% 8.3
ntyroid 5550 215 98% 7.3
sonar 10767 208 100% 16.4
derma 6760 358 93% 6.6
heart 18000 270 100% 32.9
ecoli 14768 336 100% 36.3
spectf 24638 351 93% 20.0
ion 28350 351 100% 72.7
liver 29000 345 100% 60.6
boston 21984 506 100% 50.2
cancer 75684 569 100% 314.6
diabetes 134000 768 96% 409.1

Table 5.1: Dimensions of matrix A and its percentage of non-zeros (instances are

ordered increasingly by the number of non-zeros)

As mentioned in introduction, it is not easy to obtain a primal-dual gap for the

subgradient method. Thus, we compare the two method under two circumstances:

• For smaller problems where the optimal value can be easily obtained, e.g., via

solving (P) directly, we first compute the optimal value θ∗ and then supply

this information to both methods. In particular, we use θ∗ as the initial upper

bound for the smoothing technique; for the subgradient method, we employ the

Polyak’s step size rule (Boyd and Mutapcic, 2008), which requires θ∗. There

are two purposes of doing this: first, both methods achieve the best possible

convergence rate when supplied with the optimal values as described and it

is interesting to understand how they perform under the idealized situation;

second, the primal error, i.e., the difference between the current primal objective

137

value and the optimal value, being reduced to within an error tolerance serves

as a convenient stopping criteria since the subgradient method does not have

a convenient stopping criteria. The stopping criteria for both methods is that

the best found objective value is within ε = 1. Also we impose a time limit of

18000 seconds.

• For large data sets where θ∗ is unavailable, we compare the best objective val-

ues found by these two methods for running them for a fixed amount of time

(18000 seconds). In this case, the method that obtains better objective values

has a faster convergence rate. Now we allow the smoothing technique to dy-

namically update θ, and we use θ = p(0) = wT (−b)+ as the initial value. For

the subgradient method, we adopt the code from Ataman (2007), which is an

implementation of the incremental subgradient methods in Nedic and Bertsekas

(2001).

Table 5.2 present the experiment results. The smoothing technique performs better

than the subgradient method on 10 out of the 14 instances. For the smaller data

sets, the smoothing technique was significantly faster on four smaller instances: iris,

glass, ntyroid, and heart. For larger instances where both ran approximately 18000

seconds, the smoothing technqiue was able to find better objective values, with the

only exception of spectf.

We also plot the primal errors of both methods versus the CPU time for the

data set glass, to illustrate that the convergence results here are consistent with what

the theory says. Figure 5.2 shows that the smoothing technique started with a worser

138

Time (in sec.) Best Obj.

Dataset Smooth Subg. θ∗ Smooth Subg.
wine 111 39 77.82 78.82 78.76
iris 1104 7001 3317.72 3318.72 3318.72
glass 1296 18001 2850.45 2851.45 2852.00
ntyroid 1232 4153 1694.65 1695.65 1695.65
sonar 2136 1055 191.85 192.85 192.85
derma 119 7 28.71 29.67 29.36
heart 5687 18004 1240.92 1241.92 1249.52
ecoli 18000 18004 8421.05 8422.60 8453.03
spectf 18003 18004 1580.99 1586.30 1582.94
ion 18000 18001 2578.49 2583.15 2634.61
liver 18001 18006 11339.9 11370.30 11641.30
boston 18001 18001 889.88 890.94 899.03
cancer 18000 18000 — 17989.09 27520.79
diabetes 18000 18000 — 14327.73 28070.29

Table 5.2: Comparison of Algorithm 5.4 (Smooth) and the subgradient method

(Subg.) when applied to 14 linear ranking problems. Times are in seconds and

rounded to the nearest integers.

primal objective value than the subgradient method, but has a faster convergence rate.

This figure together with the results in Table 5.2 also suggest that the subgradient

method could be a better choice for applications where finding a good solution quickly

is important.

5.5.2 1-Norm Support Vector Machines

Support Vector Machines (SVMs) are popular machine learning techniques for

classification and regression. There are 1-norm SVMs and 2-norm SVMs. Both types

of SVMs have the same constraints with objectives having the form of loss+penalty,

but the norms used in the penalty part are different. There are many algorithms

139

10
−1

10
0

10
1

10
2

10
3

10
4

10
510

0

10
1

10
2

10
3

10
4

10
5

Time in Seconds

fk −
 θ

*

Comparison of Primal Error (log−log scale)

Subgradient method
Smoothing technique

Figure 5.2: Primal errors versus time (log-log scale) for the smoothing technique and

the subgradient method.

available for solving large-scale 2-norm SVMs and (see Woodsend and Gondzio (2009)

for references and literature review). Existing solution approaches for 1-norm SVMs

include linear programming techniques and a series of similar generalized Newton

methods (Fung and Mangasarian (2004) and Mangasarian (2006)), which solve small

size problems very fast and reliably (Mangasarian (2006)). Thus here we mainly

concern large-scale instances that cannot be readily solved by off-the-shelf LP due to

the sizes of these problems.

In this computational study, we compare the performances of Algorithm 5.4

and the generalized Newton method proposed in Mangasarian (2006) on several very

large data sets. The latter method has similar memory requirement as the smoothing

technique, and so we are mainly concerned with the speed and the reliability of the

140

two schemes. Both these methods are implemented as MATLAB programs, where

the latter is adopted from the author’s web site2.

We selected six standard data sets (adult, covtype, usps, ijcnn1, w5a3 and

magic4) and randomly sampled 8000 or the maximum number of available data points,

whichever is smaller, from these data sets. We then created six large RBF kernel

matrixes using the sampled data points5. We present the computational results in

Table 5.3. The stopping criteria for the smoothing technique is the relative primal-

dual gap r as defined below being smaller than 0.1%:

r :=
p− d

max{1, 1/2(|p|+ |d|)}
, (5.20)

where p and d represent the primal and dual objective value, respectively.

We observe that Smooth finished satisfying the stopping criteria for all in-

stances except ‘usps’, where the relative primal-dual gap is 21%. For NewtonLP,

only ‘usps’ and ‘magic’ are finished satisfying the stopping criteria, i.e. the norm of

the gradient is smaller than 1e−5. Also we observe that NewtonLP behaves un-

predictably as there is no trend of diminishing in terms of the norm of the gradient

2http://www.cs.wisc.edu/dmi/svm/lpsvm/. The code on this web site is for Fung and
Mangasarian (2004). Since the methods in Fung and Mangasarian (2004) and Mangasarian
(2006) are similar, a few minor changes can turn the code of the former to an implementation
of the latter.

3Available at http://www.csie.ntu.edu.tw/∼ cjlin/libsvmtools/datasets/

4Available at http://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope

5The best parameter combination (C, γ) is determined beforehand through a 10-fold
cross-validation on smaller data sets, where γ is the parameter of the RBF kernel (see Hsu
et al. (2003)). Then γ was used to create the large RBF kernel matrices and C was used as
the penalty parameter in the objective.

141

Time (in sec.) Best Objectives

Dataset Smooth NewtonLP Smooth NewtonLP
adult 18000 18000 1.24e+02 1.47e+06
covtype 9676 18000 1.78e+02 2.01e+07
usps 18000 17560 3.01e+03 2.39e+03
ijcnn1 181 18000 1.19e+04 4.56e+06
w5a 181 18000 1.64e+03 2.77e+07
magic 898 7227 7.00e−02 7.27e−02

Table 5.3: Comparison of Algorithm 5.4 (Smooth) and the generalized Newton

scheme (NewtonLP) in terms of CPU times and the best objective values found.

The stopping criteria for Smooth is the relative primal-dual gap r, defined in (5.20),

is smaller than 0.1%; the stopping criteria for NewtonLP is that the norm of the

gradient is smaller than 1e−5. The time limit is set to be 18000 seconds.

in the generalized Newton method, which results in that the best objective values

found by NewtonLP are much worse than those found by Smooth in four of the

instances. Overall, Smooth is a more reliable method compared with NewtonLP

for large problems.

5.6 Conclusion

In this chapter, we have developed a first-order smoothing technique for solving

(P) and the equivalent (NS). To the best of our knowledge, this is the first application

of Nesterov’s smoothing technique to LPs with unbounded feasible set. We show that

the iteration complexity of this smoothing technique depends on the parameter θ,

which arises when bounding the feasible set. We estimate θ to be an upper bound

on θ∗, the optimal value of (NS). Since smaller θ means better iteration complexity,

142

we have designed a scheme that dynamically updates the value of θ as the algorithm

obtains more information about θ∗, resulting in faster convergence. This idea may be

extended to other convex nonsmooth problems with unbounded feasible set.

This smoothing technique is designed for large-scale instances of (P). We have

applied the smoothing technique to two large-scale problems in machine learning:

the linear programming ranking problem and 1-norm support vector machines. We

demonstrate the effectiveness of our technique by comparing it with two existing

methods, the subgradient method and the generalized Newton method, respectively.

Our computational experience also indicates the smoothing technique is more robust

than the generalized Newton Method.

143

CHAPTER 6
CONCLUSION

In this thesis, we present new convex relaxations for several classes of prob-

lems in the field of nonconvex optimization, and a smoothing technique for large-scale

linear programming problems. Linear programming relaxations have been primary

considerations for obtaining bounds on nonconvex optimization problems under a

branch-and-bound framework because they are well-understood tools. With the de-

velopment of convex programming and the emergence of SOCP and SDP as standard

problem classes in convex optimization, we try to develop new relaxations based on

new advances in convex programming and hope to obtain tighter bounds. In this

conclusion, we highlight the major contributions of our exploration in this line of

research and list them by chapters.

In Chapter 2, we study a sequential relaxation technique for 0-1 integer pro-

grams. We use p-balls to relax 0-1 integer points, and then perform a lift-and-project

procedure to obtain relaxations based on p-order cone programming, including SOCP

as a special case. Previously, only LP and SDP have been used to construct the relax-

ations in the higher dimensional space. Thus, this work contributes to the literature

by using SOCP as the relaxation tool. We establish that this new relaxation has

many nice properties, e.g., it eliminates any fractional extreme points of a general

convex set. We show that repeated applications of the lift-and-project procedure, re-

sulting in a sequential relaxation technique, generates the convex hull of the feasible

set asymptotically. In addition, our method generalizes and subsumes several existing

144

methods, including Lovász-Schrijver relaxation based on LP. Geometrically, p-balls

can be used to relax many nonconvex sets, and thus the approach of constructing p-

order cone relaxations based on p-balls could be potentially useful to other nonconvex

optimization problems.

In Chapter 3, we study SDP relaxations for box-constrained quadratic pro-

grams. Unlike previous SDP relaxations based on first-order KTT conditions, our

SDP relaxations incorporate the second-order KTT conditions, which is not trivial

and is one of the major contributions of this work. We experimentally demonstrate

that our relaxation is significantly stronger than a basic SDP relaxation due to Shor,

in the sense that the branch-and-bound tree based on our relaxation is smaller.

In Chapter 4, we aim to solve general QP via a finite branch-and-bound scheme

in conjunction with advanced relaxations based on SDP. For this purpose, we explic-

itly incorporate the first-order KKT condition into the constraints of QP and models

it as NQP, a quadratic program with complementarity constraints. We utilize an

existing SDP relaxations for NQP and its solution technique, which requires finite

bounds on all the variables. We show how to obtain the finite bounds via solving

related linear programs. We perform a preliminary comparison of our branch-and-

bound scheme with BARON, an state-of-the-art global solver, where we find BARON

is faster than our method on many problem instances. However, our method is very

competitive on BoxQP problems. As a future work, we would like to explore methods

to improve the following aspects of our scheme: pre-processing, branching rules, tight-

ening the feasible set, etc. Ultimately, our goal is to have a comprehensive comparison

145

with BARON on benchmark problems.

In Chapter 5, we investigate a first-order smoothing technique to solve large-

scale instances of a class of LPs, which has many applications in the field of machine

learning. Although modern linear programming technology is very advanced, solving

large-scale LPs are still a challenging task because of the limitation of memory on

computers. Here our goal is to develop a first-order method that requires much less

memory and is thus suitable for large-scale problems. We apply Nesterov’s smoothing

technique to the problem on hand. Our main contribution includes (i) one critical

step to transform the unbounded feasible set of our problem into a bounded one

using a parameter that bounds the optimal value; and (ii) the design of a scheme

that dynamically updates the parameter to speed up the convergence. We apply the

smoothing technique to two machine learning problems and obtain favorable compu-

tational results compared to two other existing techniques. This work contributes to

the field of convex optimization by showing the potential of nonsmooth techniques in

solving large-scale convex problems.

146

REFERENCES

Achterberg, T., T. Koch, and A. Martin (2006). MIPLIB 2003. Operations Research
Letters 34 (4), 1–12. See http://miplib.zib.de.

Alizadeh, F. and D. Goldfarb (2003). Second-order cone programming. Math. Pro-
gram. 95 (1, Ser. B), 3–51. ISMP 2000, Part 3 (Atlanta, GA).

Andersen, E. D., C. Roos, and T. Terlaky (2002). Notes on duality in second order
and p-order cone optimization. Optimization 51 (4), 627–643.

Anderson, E. J. and P. Nash (1987). Linear programming in infinite-dimensional
spaces. Wiley-Interscience Series in Discrete Mathematics and Optimization. Chich-
ester: John Wiley & Sons Ltd. Theory and applications, A Wiley-Interscience
Publication.

Anstreicher, K. M. (2007, May). Semidefinite programming versus the reformulation-
linearization technique for nonconvex quadratically constrained quadratic program-
ming. Manuscript, University of Iowa.

Anstreicher, K. M. and L. A. Wolsey (2009). Two “well-known” properties of sub-
gradient optimization. Math. Program. 120 (1), 213–220.

Asuncion, A. and D. Newman (2007). UCI machine learning repository.

Ataman, K. (2007). Learning to rank by maximizing the AUC with linear programming
for problems with binary output. Ph. D. thesis, University of Iowa.

Balas, E., S. Ceria, and G. Cornuéjols (1993). A lift-and-project cutting plan algo-
rithm for mixed 0-1 programs. Mathematical Programming 58, 295–324.

Balas, E. and M. Perregaard (2003). A precise correspondence between lift-and-
project cuts, simple disjunctive cuts, and mixed integer Gomory cuts for 0-1 pro-
gramming. Math. Program. 94 (2-3, Ser. B), 221–245. The Aussois 2000 Workshop
in Combinatorial Optimization.

Ben-Tal, A. and A. Nemirovski (2001). Lectures on modern convex optimization.
MPS/SIAM Series on Optimization. Philadelphia, PA: Society for Industrial and
Applied Mathematics (SIAM). Analysis, algorithms, and engineering applications.

Bienstock, D. and M. Zuckerberg (2004). Subset algebra lift operators for 0-1 integer
programming. SIAM J. Optim. 15 (1), 63–95 (electronic).

Borwein, J. M. and A. S. Lewis (2006). Convex analysis and nonlinear optimization
(Second ed.). CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC,
3. New York: Springer. Theory and examples.

147

Boyd, S. and A. Mutapcic (2008, April). Subgradient methods. in lecture notes for
EE364b, Stanford University, Winter 2006–07.

Boyd, S. and L. Vandenberghe (2004). Convex optimization. Cambridge: Cambridge
University Press.

Burer, S. (2006, October). On the copositive representation of binary and continuous
nonconvex quadratic programs. Manuscript, Department of Management Sciences,
University of Iowa, Iowa City, IA, USA. Revised January 2007 and July 2007.
Forthcoming.

Burer, S. (2009). On the copositive representation of binary and continuous nonconvex
quadratic programs. Mathematical Programming 120 (2), 479–495.

Burer, S. (2010). Optimizing a polyhedral-semidefinite relaxation of completely pos-
itive programs. Mathematical Programming Computation 2 (1), 1–19.

Burer, S. and J. Chen (2009a). A p-cone sequential relaxation procedure for 0-1
integer programs. Optimization Methods Software 24 (4-5), 523–548.

Burer, S. and J. Chen (2009b). Relaxing the optimality conditions of box qp. Technical
report. Computational Optimization and Applications, DOI 10.1007/s10589-009-
9273-2.

Burer, S. and D. Vandenbussche (2005, June). A finite branch-and-bound algorithm
for nonconvex quadratic programming via semidefinite relaxations. Manuscript,
Department of Management Sciences, University of Iowa, Iowa City, IA, USA.
Revised April 2006 and June 2006. To appear in Mathematical Programming .

Burer, S. and D. Vandenbussche (2006a, November). Globally solving box-constrained
nonconvex quadratic programs with semidefinite-based finite branch-and-bound.
Manuscript, Department of Management Sciences, University of Iowa, Iowa City,
IA, USA. Revised June 2006 and July 2006. To appear in Computational Opti-
mization and Applications .

Burer, S. and D. Vandenbussche (2006b). Solving lift-and-project relaxations of binary
integer programs. SIAM J. Optim. 16 (3), 726–750 (electronic).

Burer, S. and D. Vandenbussche (2008). A finite branch-and-bound algorithm for non-
convex quadratic programming via semidefinite relaxations. Math. Program. 113 (2,
Ser. A), 259–282.

Dantzig, G. B. (1998). Linear Programming and Extensions. Princeton University
Press.

d’Aspremont, A. (2008). Smooth optimization with approximate gradient. SIAM J.
on Optimization 19 (3), 1171–1183.

148

De Angelis, P., P. Pardalos, and G. Toraldo (1997). Quadratic programming with
box constraints. In I. M. Bomze, T. Csendes, R. Horst, and P. Pardalos (Eds.),
Developments in Global Optimization, pp. 73–94. Kluwer Academic Publishers.

Fung, G. and O. L. Mangasarian (2004, July). A feature selection newton method
for support vector machine classification. Computational Optimization and Appli-
cations 28 (2), 185–202.

Gilpin, A., S. Hoda, J. Peña, and T. Sandholm (2007). Gradient-based algorithms
for finding nash equilibria in extensive form games. In WINE, pp. 57–69.

Glineur, F. and T. Terlaky (2004). Conic formulation for lp-norm optimization. J.
Optim. Theory Appl. 122 (2), 285–307.

Goemans, M. (1998). Semidefinite programming and combinatorial optimization.
Documenta Mathematica Extra Volume ICM 1998 (III), 657–666.

Gomory, R. E. (1963). An algorithm for integer solutions to linear programs. In
R. Graves and P. Wolfe (Eds.), Recent Advances in Mathematical Programming,
pp. 269–302. McGraw-Hill.

Gould, N. I. M. and P. L. Toint (2002). Numerical methods for large-scale non-
convex quadratic programming. In Trends in industrial and applied mathematics
(Amritsar, 2001), Volume 72 of Appl. Optim., pp. 149–179. Dordrecht: Kluwer
Acad. Publ.

Hoda, S., A. Gilpin, and J. Peña (2007). Smoothing techniques for computing nash
equilibria of sequential game. Working Paper, Tepper School of Business, Carnegie
Mellon Universit.

Horst, R. and H. Tuy (1993). Global optimization (Second ed.). Berlin: Springer-
Verlag. Deterministic approaches.

Hsu, C. W., C. C. Chang, and C. J. Lin (2003). A practical guide to
support vector classification. Technical report, Department of Computer
Science and Information Engineering, National Taiwan University, Taipei.
http://www.csie.ntu.edu.tw/∼cjlin/libsvm/.

Johnson, D. and M. Trick (1996). Cliques, Coloring, and Satisfiability: Second DI-
MACS Implementation Challenge. American Mathematical Society.

Kim, S. and M. Kojima (2001). Second order cone programming relaxation of non-
convex quadratic optimization problems. Optim. Methods Softw. 15 (3-4), 201–224.

Kim, S. and M. Kojima (2003). Exact solutions of some nonconvex quadratic opti-
mization problems via SDP and SOCP relaxations. Comput. Optim. Appl. 26 (2),
143–154.

149

Kim, S., M. Kojima, and M. Yamashita (2003). Second order cone programming
relaxation of a positive semidefinite constraint. Optim. Methods Softw. 18 (5), 535–
541.

Kojima, M. and L. Tunçel (2000a). Cones of matrices and successive convex relax-
ations of nonconvex sets. SIAM J. Optim. 10 (3), 750–778.

Kojima, M. and L. Tunçel (2000b). Discretization and localization in successive
convex relaxation methods for nonconvex quadratic optimization. Math. Pro-
gram. 89 (1, Ser. A), 79–111.

Krokhmal, P. and P. Soberanis (2008). Risk optimization with p-order conic con-
straints: A linear programming approach. Working paper, University of Iowa, Iowa
City, IA, USA.

Lan, G., Z. Lu, and R. D. C. Monteiro (2009). Primal-dual first-order methods with
o(1/ε) iteration-complexity for cone programming. Mathematical Programming ,
1436–4646. (Online).

Lasserre, J. B. (2001). Global optimization with polynomials and the problem of
moments. SIAM J. Optim. 11 (3), 796–817.

Lfberg, J. (2004). Yalmip : A toolbox for modeling and optimization in MATLAB.
In Proceedings of the CACSD Conference, Taipei, Taiwan.

Lobo, M., L. Vandenberghe, S. Boyd, and H. Lebret (1998). Applications of second-
order cone programming. Linear Algebra and its Applications 284, 193–228.

Lovász, L. and A. Schrijver (1991). Cones of matrices and set-functions and 0-1
optimization. SIAM Journal on Optimization 1, 166–190.

Mangasarian, O. L. (2006). Exact 1-norm support vector machines via unconstrained
convex differentiable minimization. Journal of Machine Learning Research 7, 1517–
1530.

MOSEK, Inc. (2007). The MOSEK optimization tools manual 5.0.

Nedic, A. and D. P. Bertsekas (2001). Incremental subgradient methods for nondif-
ferentiable optimization. SIAM Journal on Optimization 12 (1), 109–138.

Nesterov, Y. (2000). Global quadratic optimization via conic relaxation. In R. Saigal,
L. Vandenberghe, and H. Wolkowicz (Eds.), Handbook of Semidefinite Program-
ming. Kluwer Academic Publishers.

Nesterov, Y. (2004). Introductory Lectures on Convex Optimization: A Basic Course.
Boston, MA: Kluwer Academic.

Nesterov, Y. (2005a). Excessive gap technique in nonsmooth convex minimization.
SIAM J. on Optimization 16 (1), 235–249.

150

Nesterov, Y. (2005b). Smooth minimization of non-smooth functions. Math. Pro-
gram. 103 (1), 127–152.

Nesterov, Y. (2007, July). Smoothing technique and its applications in semidefinite
optimization. Mathematical Programming 110 (2), 245–259.

Nesterov, Y. E. and A. S. Nemirovskii (1994). Interior-Point Polynomial Algorithms
in Convex Programming. Philadelphia: Society for Industrial and Applied Mathe-
matics.

Nesterov, Y. E. and M. J. Todd (1997). Self-scaled barriers and interior-point methods
for convex programming. Math. Oper. Res. 22 (1), 1–42.

Pardalos, P. (1991). Global optimization algorithms for linearly constrained indefinite
quadratic problems. Computers and Mathematics with Applications 21, 87–97.

Pardalos, P. M. and S. A. Vavasis (1991). Quadratic programming with one negative
eigenvalue is NP-hard. J. Global Optim. 1 (1), 15–22.

Parrilo, P. A. (2003). Semidefinite programming relaxations for semialgebraic prob-
lems. Math. Program. 96 (2, Ser. B), 293–320. Algebraic and geometric methods in
discrete optimization.

Pintér, J. D. (1995). Global Optimization in Action. Dordrecht: Kluwer.

Sahinidis, N. V. (1996). BARON: a general purpose global optimization software
package. J. Glob. Optim. 8, 201–205.

Sahinidis, N. V. (2000). Branch And Reduce Optimization Navigator, Users Manual,
Version 4.0.

Sahinidis, N. V. and M. Tawarmalani (2010). BARON 9.0.4: Global Optimization of
Mixed-Integer Nonlinear Programs, User’s Manual.

Sherali, H. D. and W. P. Adams (1990). A hierarchy of relaxations between the
continuous and convex hull representations for zero-one programming problems.
SIAM J. Discrete Math. 3 (3), 411–430.

Sherali, H. D. and W. P. Adams (1997). A Reformulation-Linearization Technique
(RLT) for Solving Discrete and Continuous Nonconvex Problems. Kluwer.

Sherali, H. D. and G. Choi (1996). Recovery of primal solutions when using subgradi-
ent optimization methods to solve lagrangian duals of linear programs. Operations
Research Letters 19 (3), 105 – 113.

Sherali, H. D. and C. H. Tuncbilek (1995). A reformulation-convexification approach
for solving nonconvex quadratic programming problems. J. Global Optim. 7, 1–31.

151

Shor, N. (1987). Quadratic optimization problems. Soviet Journal of Computer and
Systems Science 25, 1–11. Originally published in Tekhnicheskaya Kibernetika,
1:128–139, 1987.

Sturm, J. F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over
symmetric cones. Optim. Methods Softw. 11/12 (1-4), 625–653.

Tawarmalani, M. and N. Sahinidis (2002). Convexification and Global Optimization
in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms,
Software, and Applications (First ed.). Springer.

Tütüncü, R. H., K. C. Toh, and M. J. Todd (2001, August). SDPT3: A Matlab soft-
ware package for semidefinite-quadratic-linear programming, version 3.0. Available
from http://www.math.nus.edu.sg/~mattohkc/sdpt3.html.

Vandenberghe, L. and S. Boyd (1999). Applications of semidefinite programming.
Applied Numerical Mathematics 29, 283–299.

Vandenbussche, D. and G. Nemhauser (2005a). A branch-and-cut algorithm for
nonconvex quadratic programs with box constraints. Mathematical Program-
ming 102 (3), 559–575.

Vandenbussche, D. and G. Nemhauser (2005b). A polyhedral study of nonconvex
quadratic programs with box constraints. Mathematical Programming 102 (3), 531–
557.

Vanderbei, R. J. (2007). Linear Programming: Foundations and Extensions (third
ed.). New York: Springer.

Woodsend, K. and J. Gondzio (2009). Exploiting separability in large-scale linear
support vector machine training. Computational Optimization and Applications .
http://www.springerlink.com/content/N04W25255753056M.

Wright, S. J. (1997). Primal-dual interior-point methods. Philadelphia, PA: Society
for Industrial and Applied Mathematics (SIAM).

Xue, G. and Y. Ye (2000). An efficient algorithm for minimizing a sum of p-norms.
SIAM J. Optim. 10 (2), 551–579 (electronic).

Ye, Y. (1999). Approximating quadratic programming with bound and quadratic
constraints. Math. Program. 84 (2, Ser. A), 219–226.

Zhu, J., S. Rosset, T. Hastie, and R. Tibshirani (2003). 1-norm support vector
machines. In Neural Information Processing Systems, pp. 16. MIT Press.

	University of Iowa
	Iowa Research Online
	Summer 2010

	Convex relaxations in nonconvex and applied optimization
	Jieqiu Chen
	Recommended Citation

	tmp.1286482323.pdf.gq5vr

