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ABSTRACT

Recently, Dan Anderson and Andrea Frazier introduced a generalized theory

of factorization. Given a relation τ on the nonzero, nonunit elements of an integral

domain D, they defined a τ -factorization of a to be any proper factorization a =

λa1 · · · an where λ ∈ U(D) and ai is τ -related to aj, denoted ai τ aj, for i 6= j. From

here they developed an abstract theory of factorization that generalized factorization

in the usual sense. They were able to develop a number of results analogous to results

already known for usual factorization.

Our work focuses on the notion of τ -factorization when the relation τ has

characteristics similar to those of coprimeness. We seek to characterize such τ -

factorizations. For example, let D be an integral domain with nonzero, nonunit

elements a, b ∈ D. We say that a and b are comaximal (resp. v-coprime, coprime) if

(a, b) = D (resp., (a, b)v = D, [a, b] = 1). More generally, if ∗ is a star-operation on

D, a and b are ∗-coprime if (a, b)∗ = D. We then write a τmax b (resp. a τv b, a τ[ ] b,

or a τ∗ b) if a and b are comaximal (resp. v-coprime, coprime, or ∗-coprime).
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CHAPTER 1
INTRODUCTION

An effective way to understand an object is to break it down to its smallest

components. Understanding the way in which these foundational components inter-

act strengthens our understanding of the object itself. In algebra, for example, the

prime numbers are the building blocks of the integers. Every nonzero, nonunit inte-

ger can be uniquely factored into a product of prime elements. We can investigate

the factorization of elements in an integral domain into irreducible and prime ele-

ments, respectively. The distinction made between prime and irreducible elements

already illustrates the greater difficulty when studying factorization in general inte-

gral domains. We generalize the notion of factorization even further by incorporating

relations on the elements. In this thesis, we narrow our focus to a specific category of

these relations, which we call general coprimeness relations. We connect these ideas

to previously known results, develop some concrete examples, and seek to axiomatize

the concept of a comprime relation.

In 2004, Stephen McAdam and Richard Swan [17] first introduced the notion

of comaximal factorization. For a a nonzero, nonunit element of an integral domain

D, then a = a1 · · · an, each ai a nonunit of D, is a comaximal factorization of a if

(ai, aj) = D for all i 6= j. With respect to comaximal factorization they developed

definitions analogous to irreducible, atomic, and unique factorization domains which

they called pseudo-irreducible, comaximal factorization domain (CFD), and unique

comaximal factorization domain (UCFD), respectively. They were able to develop a
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characterization of UCFD’s in terms of CFD’s. They also gave necessary and sufficient

conditions in terms of D for D[X] to be a UCFD.

A few years later Dan Anderson and Andrea Frazier [2] introduced a general-

ized theory of factorization. Given a relation τ on the nonzero, nonunit elements of an

integral domain D, they defined a τ -factorization to be any factorization of a nonzero,

nonunit element of D such that each proper factor is τ -related. From this they devel-

oped a theory of factorization that generalized factorization in the usual sense as well

as the comaximal factorization of McAdam and Swan. They were able to develop a

number of results analogous to results already known for usual factorization.

1.1 Definitions and Backgrounds

Throughout this thesis D will denote an integral domain, K the quotient field

of D, D∗ the nonzero elements of D, U(D) the units of D, and D# the nonzero,

nonunit elements of D. The following section states the definitions and results about

τ -factorization that we will need. For an introduction to τ -factorization, see [2].

1.1.1 τ -factorization

In this thesis, we will only discuss relations that are symmetric. Let τ be a

relation on D#. For a ∈ D#, we define a = λa1 · · · an, λ ∈ U(D) and ai ∈ D#, to be

a τ -factorization of a if ai is τ -related to aj (denoted ai τ aj) for each i 6= j. We say

that a is a τ -product of the ai’s and that each ai is a τ -factor of a. For a, b ∈ D#, we

say that a τ -divides b, written a |τ b, if a is a τ -factor of b.

We call τ multiplicative if for a, b, c ∈ D#, a τ b and a τ c implies a τ bc. We



3

call τ divisive if for a, a′, b, b′ ∈ D#, a τ b, a′ | a, and b′ | b imply a′ τ b′. We say that

τ is associate-preserving if for a, b, b′ ∈ D#, b ∼ b′ and a τ b implies a τ b′.

At this point we make a few observations which help us see the motivation

behind some of these definitions. If τ is associate-preserving and a = λa1 · · · an is a

τ -factorization, then so is a = (λa1)a2 · · · an. Thus, when τ is associate-preserving, we

can dispense with the unit λ. If τ is divisive, then τ is associate-preserving. Suppose

that τ is divisive and that a = a1 · · · an is a τ -factorization of a (since τ is divisive, we

are omitting the unit λ). Given any τ -factorization of an ai, say ai = b1 · · · bm, then

a = a1 · · · ai−1b1 · · · bmai+1 · · · an is also a τ -factorization. This second τ -factorization

is called a τ -refinement of a.

If τ is multiplicative, then we can group the τ -factors in a τ -factorization in any

way, and still have a τ -factorization. Formally, if a = λa1 · · · an is a τ -factorization,

{1, . . . , n} = A1t· · ·tAs is a disjoint union with each Ai nonempty, and bi =
∏
{aj |

j ∈ Ai}, then a = λb1 · · · bs is a τ -factorization of a.

Given a ∈ D#, we say that a is τ -irreducible or a τ -atom if it has no proper

τ -factors. If every element of D# has a τ -factorization into τ -atoms, then we say

that D is τ -atomic. We say that a ∈ D# is τ -prime (|τ -prime) if whenever a divides

(τ -divides) a τ -factorization, λa1 · · · an, then a divides (τ -divides) some τ -factor ai

of the τ -factorization. If τ is multiplicative, we can take n = 2 in the definition of

τ -prime and |τ -prime [2]. D is said to be a τ -unique factorization domain (τ -UFD) if

D is τ -atomic and each τ -atomic factorization of a nonzero, nonunit of D is unique

up to order and associates.
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1.1.2 ∗-operations

We briefly go over a few facts and definitions regarding ∗-operations as they

pertain to this paper. We include well known results about the v-operation. For a

more detailed account, see [12], [18], and [13] in that order. A fractional ideal is a

D-module, I, contained in K such that aI ⊆ D for some a ∈ D. So a fractional ideal

is of the form 1
a
J for some a ∈ D and J an ideal of D. The set of nonzero fractional

ideals of D is denoted by F (D), and the set of nonzero finitely generated fractional

ideals is denoted by f(D).

A ∗-operation is a mapping of F (D) into F (D), denoted by A −→ A∗, such

that for a ∈ K∗ = K − {0} and A, B ∈ F (D) we have the following properties:

(1) (a) = (a)∗ and (aA)∗ = aA∗,

(2) A ⊆ A∗ and if A ⊆ B, then A∗ ⊆ B∗, and

(3) (A∗)∗ = A∗.

A fractional ideal A ∈ F (D) is called a ∗-ideal if A = A∗. Any non-zero

intersection of ∗-ideals is a ∗-ideal. Also, given any A, B ∈ F (D), we have (AB)∗ =

(AB∗)∗ = (A∗B∗)∗ [12, Proposition 32.2]. The intersection property allows us to

show that A−1 = {x ∈ K | xA ⊆ D} is a ∗-ideal since A−1 = ∩
a∈A−{0}

(
1

a
) [18].

A is called ∗-invertible if there exists a B ∈ F (D) such that (AB)∗ = D. The ∗-

invertible, ∗-ideals of D form a group under the operation A ∗ B = (AB)∗. If such

an ideal B exists, then B∗ = A−1 is the unique ∗-ideal satisfying (AB)∗ = D. First,

(AA−1)∗ ⊆ D = (AB)∗. Second, (AB)∗ = D =⇒ AB ⊆ D =⇒ B ⊆ A−1. So
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(AB)∗ = (AA−1)∗ = D =⇒ B∗ = A−1.

A ∗-operation is said to be of finite character if for each A ∈ F (D), A∗ =

∪{F ∗ | F ∈ f(D) and F ⊆ A}. Every ∗-operation induces a finite character ∗-

operation, denoted by ∗s, defined by A∗s = ∪{F ∗ | F ∈ f(D) and F ⊆ A}. For a

finite character ∗-operation, each proper integral ∗-ideal is contained in a maximal

proper integral ∗-ideal and such a maximal ∗-ideal is prime. To see that maximal

∗-ideals exist we use Zorn’s Lemma. Let {Pα} be a totally ordered (by containment)

set of proper integral ∗-ideals. It is clear that ∪Pα is a proper integral ideal. We need

to show ∪Pα is a ∗-ideal. We have (∪Pα)∗ = {F ∗ | F ∈ f(D) and F ⊆ ∪Pα}. Since

each F is finitely generated, F ⊆ Pα0 for some Pα0 ∈ {Pα}. Hence, F ∗ ⊆ Pα0 , and so

∪Pα is a ∗-ideal.

We now show that maximal ∗-ideals are prime. Let M be a maximal ∗-

ideal. By way of contradiction assume that M is not prime. Then there exists

ab ∈ M with neither a nor b in M . So (M, a)∗ = (M, b)∗ = D. But then we have

D = ((M, a)∗(M, b)∗)∗ = ((M, a)(M, b))∗ ⊆ M∗ = M , a contradiction.

The simplest example of a ∗-operation is the d-operation, Ad = A. Another

example of interest to us is the v-operation, Av = (A−1)−1. Another characterization

of the v-operation is that for A ∈ F (D), Av is the intersection of the set of principal

fractional ideals of D containing A. Also, for all A ∈ F (D) and any ∗-operation on

D, A∗ ⊆ Av [12, Theorem 34.1]. The finite character ∗-operation induced by the

v-operation is called the t-operation, denoted At.

The following lemma is from [18, Observation A]. It is frequently used so we
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state and prove it here.

Lemma 1.1. Let D be an integral domain. Given that A is a nonzero integral ideal

of D, then Av 6= D if and only if there exists a, b ∈ D − {0} such that A ⊆ a
b
D, and

a - b.

Proof. (⇐=) If Av = D, then every principal fractional ideal containing A also

contains D. So A ⊆ a
b
D implies D ⊆ a

b
D and hence a

b
· d = 1 for some d ∈ D. Hence,

a | b.

(=⇒) If, for every A ⊆ a
b
D, we have a | b, then a

b
D = 1

d
D for some d ∈ D.

But then D ⊆ a
b
D. Hence, Av = D.

1.2 Overview

Chapter 2 focuses on relations with “relatively prime” properties. First, we

look at relations defined in terms of a collection of ideals. Specifically, two elements

are related if they are not contained in any ideal in the set. Many relations we study

are defined in terms of a set S of ideals. We look at some examples of interest where

S is the set of maximal ideals, principal primes ideals, or minimal prime ideals, to

name a few.

Our second approach is axiomatic. Our motivation arises from studying the

actual relatively prime relation, comaximal factorization, and the v-operation. From

here we develop what we feel are the common properties of these relations. We can

then develop general results about relations that satisfy these properties. We are of

course interested in the factorization properties with respect to these relations. One
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common theme is that such relations can be defined in terms of a collection of ideals.

This of course is our tie to the first part of the chapter.

Chapter 3 is where we really begin to connect the relatively prime relation

to previously known results. We are particularly interested in τ -UFD’s where τ is

the relatively prime relation (we denote this by τ[ ]). So nonzero, nonunit elements

a, b ∈ D are τ[ ]-related if a and b are relatively prime. When D is a weakly factorial

domain, that is, every nonzero, nonunit of D is a product of primary elements, we

found that D is a τ[ ]-UFD if and only if DP is a τ[ ]-UFD at each of the height-one

prime ideals P of D (Theorem 3.8).

As one might expect, GCD domains also provide a nice background from which

to study τ[ ]-UFD’s. If D is a GCD domain, then D is a τ[ ]-UFD if and only if D[X]

is a τ[ ]-UFD (Theorem 3.18). We also look to connect the notion of a τ[ ]-UFD to the

unique comaximal factorization domains (UCFD’s) of McAdam and Swan [17]. We

make this connection by localizing the polynomial ring at a specific multiplicatively

closed set.

In Chapter 4, we study several subrings of the ring of formal power series over

a field. Specifically, we focus on k[[X2, X3]] and k+XnK[[X]] where k is a subfield of

a field K. We determine the τ[ ]-atomic structure of k[[X2, X3]], and give necessary

and sufficient conditions for k + XnK[[X]] to be a τ[ ]-UFD.
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CHAPTER 2
GENERAL COPRIMENESS

2.1 Introduction

This chapter investigates various forms of coprimeness, and we introduce a

very general form of coprimeness, called S-coprimeness.

For a, b ∈ D, [a, b] (resp. ]a, b[ ) denotes the GCD (resp. LCM) of a and b.

We write [a, b] 6= 1 if it is not the case that [a, b] = 1. In other words, some nonzero,

nonunit divides both a and b. So [a, b] 6= 1 does not require that [a, b] exists. For

example let R be the ring of polynomials over Z with even coefficients of X. Then

[4X, 2X3] 6= 1, but there is no GCD of 4X and 2X3 [10, pg. 253].

We next define three well known forms of coprimeness. For a, b ∈ D∗, we

say that a and b are comaximal (resp. v-coprime, coprime) if (a, b) = D (resp.,

(a, b)v = D, [a, b] = 1). More generally, given a ∗-operation on D, a and b are ∗-

coprime if (a, b)∗ = D. The following proposition lists some well known properties

and connections between these forms of coprimeness.

Proposition 2.1. Let D be an integral domain and let a, b ∈ D − {0}.

(1) a and b are comaximal ⇐⇒ [a, b] = 1 and [a, b] is a linear combination of a and

b ⇐⇒ a and b are d-coprime.

(2) For a, b ∈ D the following are equivalent:

(i) (a, b)v = D,
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(ii) ]a, b[= ab,

(iii) (a) ∩ (b) = (ab),

(iv) (a) : (b) = (a), and

(v) (b) : (a) = (b).

(3) [a, b] = 1 if and only if (a, b) ⊆ (t) ⊆ D =⇒ (t) = D.

(4) For any ∗-operation on D we have a and b comaximal =⇒ a and b are ∗-coprime

=⇒ a and b are v-coprime =⇒ a and b are relatively prime.

Proof. (1) and (3) are straightforward.

(2) (i) =⇒ (ii) Suppose (m) ⊆ (a)∩(b). Since m
a

and m
b

are in D, (a, b) ⊆ ab
m

D.

So by Lemma 1.1 ab | m as desired.

(ii) =⇒ (iii) Let ra = sb ∈ (a) ∩ (b). Then a and b divide ra which implies

]a, b[= ab divides ra. So r ∈ (b) as desired.

(iii) =⇒ (iv) (a) = (ab) : (b) = ((a)∩ (b)) : (b) = ((a) : (b))∩ ((b) : (b)) = (a) :

(b).

(v) =⇒ (iii) (b) ∩ (a) = (((b) ∩ (a)) : (a))(a) = ((b) : (a))(a) = (b)(a) = (ba).

(iii) =⇒ (v) and (iv) =⇒ (iii) Interchange a and b in the previous two argu-

ments.

(iv) =⇒ (i) Suppose that (a, b) ⊆ c
d
D. Then ad = cd1 and bd = cd2 for some

di ∈ D. So add2 = cd1d2 = bdd1 which implies ad2 = bd1. Now d1 ∈ (a) : (b) = (a),

say d1 = ra. Then ad = cd1 = cra implies d = cr. By Lemma 1.1 (a, b)v = D.



10

(4) It is well known that for any ∗-operation, I∗ ⊆ Iv. Also, Iv is the inter-

section of all principal fractional ideals containing I. The result follows from these

facts.

We next develop a general notion of coprimeness. We are motivated by the

study of comaximal, ∗-coprime, v-coprime, and coprime. We would like to study

relations that lie between comaximal and coprime, that is, any relation τ such that

(a, b) = D =⇒ a τ b =⇒ [a, b] = 1. From Proposition 2.1, (4) we see that ∗-

coprime for any ∗-operation is such a relation. We are particularly interested in what

properties all such relations possess.

Definition 2.2. Let S be a set of ideals of D. We say that a and b in D# are

S-coprime if (a, b) * I for each I ∈ S. We write this as [a, b]S = 1 and then have a

relation τS on D# given by a τS b ⇐⇒ [a, b]S = 1.

2.2 Examples

Example 2.1. We give a few examples of S-coprimeness with some obvious choices

for S.

(1) S = {D}. In this case, no two elements in D# are S-coprime. If (D, M) is

quasilocal, we can take S = {M}. Every nonzero, nonunit is a τS-atom, and D

is a τS-UFD.

(2) S = {0}. Here any two a, b ∈ D# are S-coprime, so τS = D# ×D# and we get

the usual factorization, i.e., every factorization is a τS-factorization.
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(3) S = max(D) := {the maximal ideals of D}. Here [a, b]S = 1 ⇐⇒ (a, b) = D.

So [a, b]S = 1 if and only if a and b are comaximal. We can replace max(D) by

any subset S not containing D with max(D) ⊆ S. This gives us the comaximal

factorization from [17]. Since this is a common relation, we denote it by τmax.

(4) Let S = t-max(D) = { the maximal t-ideals of D}. So [a, b]S = 1 ⇐⇒ (a, b) * M

where M is a maximal t-ideal ⇐⇒ (a, b)t = D ⇐⇒ a and b are v-coprime.

(5) We can generalize Example (4) to any finite character ∗-operation. Let S∗ = ∗-

max(D) = { the maximal ∗-ideals of D}. So [a, b]S∗ = 1 ⇐⇒ (a, b) * M for

any maximal ∗-ideal M ⇐⇒ (a, b)∗ = D. We will denote this relation by τ∗. For

∗ = d we get Example (3) and for ∗ = t we get Example (4). We can replace

S = ∗-max(D) by S = {P ∈ Spec(D) | P ∗ = P}. We will mostly be concerned

with τt from Example (4).

(6) Let D be a domain and S = {(pα)} a set of nonzero principal primes. Then

[a, b]S = 1 ⇐⇒ (a, b) * (pα) for each pα ⇐⇒ no pα divides both a and b.

Suppose D is a UFD. Then we can determine the τS-atoms. Suppose that p is a

τS-atom. If p is not prime, then p = ab for some a, b ∈ D#. Since p is a τS-atom,

[a, b]S 6= 1, that is, a and b are both divisible by some pα ∈ S. So p = upn
α for

some n and some unit u of D. Hence, a τS-atom is either prime or is associate to

pn
α for some (pα) ∈ S. If we take D = Z and S = {(p) | p a prime greater than

2} = {(3), (5), (7), (11), . . .}, then x ∈ D# is τS-atom ⇐⇒ x = ±2 or x = ±pn

for p > 2, n ≥ 1.
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(7) Let S = {P | ht(P ) = 1}. Then [a, b]S = 1 ⇐⇒ (a, b) is not contained in any

height-one prime ideal. If D is Noetherian, then by the Principal Ideal Theorem

[a, a]S 6= 1 for all a ∈ D#. In other words, each a ∈ D# is contained in a

height-one prime ideal.

(8) Let S = {(t) | t ∈ D#}. So [a, b]S = 1 ⇐⇒ (a, b) * (t) for any (t) ( D ⇐⇒

[a, b] = 1. We will show in Corollary 3.21 if D is a GCD domain, then τS is the

same relation as in Example (4).

Now τS is symmetric, but is not reflexive if S contains a nonzero ideal. Also,

τS is always divisive. For if a′ | a and b′ | b, where a, a′, b, b′ ∈ D#, then (a, b) ⊆ (a′, b′).

So (a, b) * I implies (a′, b′) * I.

2.2.1 Height-One Prime Ideals

In [3], Anderson and Mahaney studied domains in which every nonzero, nonunit

element can be written as a product of primary elements. They called such domains

weakly factorial domains. They showed that in a commutative ring if Q1 and Q2 are

P -primary with Q1 invertible, then Q1Q2 is P -primary. A product of primary ideals

Q1 · · ·Qn, where each Qi is Pi-primary, is a reduced primary product representation

if Pi 6= Pj for i 6= j. So in a weakly factorial domain each nonzero, nonunit element

has a reduced primary product representation into primary elements. They further

showed that two primary elements with distinct radicals have incomparable radicals.

It follows that each primary element is contained in a unique height-one prime ideal.

From this it is straightforward to show that each reduced primary product of primary
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elements is unique up to units and order. For further results about weakly factorial

domains see [3].

For S = {P | ht(P ) = 1} (Example 2.1, (7)) we can develop a few basic results

regarding weakly factorial domains. In this section, S is the set of height-one prime

ideals.

Lemma 2.3. Let D be a weakly factorial domain. Then a nonunit, nonzero element

a of D is a τS-atom if and only if a is a primary element.

Proof. If a is primary, then it is contained in a unique height-one prime ideal.

Hence, a is a τS-atom. Conversely, assume that a is a τS-atom. Since D is weakly

factorial, a can be written as a reduced product of primary elements. This product

is also a τS-factorization. So a must be primary.

Corollary 2.4. A weakly factorial domain is a τS-UFD.

Proof. From Lemma 2.3 we see that reduced products of primary elements

and τS-atomic factorizations are the same thing.

This gives us that a CK domain is a τS-UFD (see Section 4.4). When D is a

one-dimensional domain, τS is the same as the comaximal factorization found in [17].

Hence, we get the following expansion of [17, Corollary 1.10].

Theorem 2.5. Let D be a one-dimensional Noetherian domain. Then the following

are equivalent:

(1) Pic(D) = 0,
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(2) D is a UCFD,

(3) D is a τS-UFD,

(4) D is a weakly factorial domain.

Proof. (1), (2), and (3) are equivalent from the remarks preceding the theorem

and [17, Corollary 1.10].

If D is a weakly factorial domain, then it follows from Corollary 2.4 that D is

a UCFD. It also follows from the fact that every invertible ideal in a weakly factorial

domain is principal [3, Corollary 11].

Suppose D is a UCFD. Since D is a one-dimensional Noetherian domain, each

nonzero, nonunit of D can be written as a reduced product of primary ideals [3].

By [17, Corollary 1.10] each such primary ideal is principal. Hence, D is a weakly

factorial domain.

2.2.2 Grade and v-coprimeness

We quickly introduce the notion of grade. Our goal is to connect S = t-

max(D) to grade for Noetherian domains. For a complete introduction see [16, Chap-

ter 3]. Given R a commutative ring, and A any R-module, then the ordered sequence

of elements x1, . . . , xn of R is said to be an R-sequence on A if

(a) (x1, . . . , xn)A 6= A,

(b) For i = 1, . . . , n, xi /∈ Z(A/(x1, . . . , xi−1)A).



15

For our purposes we are interested in the case when A = R. We define a maximal

R-sequence in an ideal I to be an R-sequence x1, . . . , xn in I in which there does not

exist an xn+1 ∈ I such that x1, . . . , xn, xn+1 is an R-sequence. When R is Noetherian

it is well know that maximal R-sequences exist and any two maximal R-sequences

contained in an ideal I have the same length. This common length is denoted by

G(I). If we do not specify that R is Noetherian, then G(I) > 1 will mean I contains

no maximal R-sequence of length 1.

Lemma 2.6. Let D be an integral domain and let a, b ∈ D∗ such that (a, b) 6= D.

Then (a, b)t = D if and only if a, b is an R-sequence.

Proof. By way of contradiction suppose that (a, b)t 6= D and a, b is an R-

sequence. Since (a, b)t 6= D, by Lemma 1.1 there exists c and d in D with (a, b) ⊆ c
d
D

and c - d. So da = cd1 and db = cd2 for some di ∈ D. Then cd1d2 = d2da = d1db. So

d2a = d1b. Since b /∈ Z(R/(a)), d1 ∈ (a), say d1 = ax. So da = cd1 =⇒ da = cax =⇒

d = cx, contradicting that c - d. So a, b is not an R-sequence.

Suppose a, b is not an R-sequence. By hypothesis (a, b) 6= D so b must be in

Z(D/(a)), say rb = sa for some r /∈ (a) and s ∈ D. Then (a, b) ⊆ a
r
D and a - r. So

by Lemma 1.1 (a, b)t 6= D.

The hypothesis (a, b) 6= D insures that part (a) of the definition of R-sequences

is satisfied. We will be concerned with R-sequences contained in proper ideals, so

requiring this hypothesis will not pose a problem.

Proposition 2.7. Let D be a Noetherian domain. For a nonzero prime ideal P

Pt 6= D if and only if G(P ) = 1.
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Proof. Suppose that P is a nonzero prime ideal with Pt 6= D. Let 0 6= a ∈ P .

For any 0 6= b ∈ P , (a, b)t 6= D. By Lemma 2.6 a, b is not an R-sequence. So a is a

maximal R-sequence in P and hence G(P ) = 1.

Suppose that G(P ) = 1. Let (x1, . . . , xn) = P where xi 6= 0. Then (x1, . . . , xn) =

P ⊆ Z(D/(x1)) since x1 is a maximal R-sequence in P . By [16, Theorem 80] there

exists t /∈ (x1) such that t(x1, . . . , xn) ⊆ (x1) =⇒ (x1, . . . , xn) ⊆ (x1

t
) =⇒ ( t

x1
) ⊆

(x1, . . . , xn)−1. Hence, (x1, . . . , xn)−1 6= D. So Pt = (P−1)−1 6= D.

Proposition 2.7 leads us to another proposition.

Proposition 2.8. Let D be a Noetherian domain. For nonzero, nonunits a, b ∈ D

(a, b)t = D if and only if G(P ) > 1 for every prime P containing (a, b).

Proof. If (a, b)t = D, then it follows from Proposition 2.7 that G(P ) > 1 for

any prime P containing (a, b). Conversely, let P be a prime ideal containing (a, b).

Again from Proposition 2.7 G(P ) > 1 implies Pt = D. Hence, (a, b)t = D or (a, b)t

is a maximal t-ideal. But if (a, b)t is a maximal t-ideal, then G((a, b)t) > 1 which

contradicts that (a, b)t 6= D. So (a, b)t = D.

Using Lemma 2.6 and Proposition 2.7 we now characterize τS, S = t-max(D)

in terms of grade.

Example 2.2. In the case for v-coprimeness, [a, b]t = 1 ⇐⇒ (a, b)t = D for a and

b nonzero, nonunits of D. From Lemma 2.6 this is equivalent to G((a, b)) > 1.

For if a1, a2 is an R-sequence in (a, b), then D = (a1, a2)t ⊆ (a, b)t. There is a

corresponding height version. Let S = X(1)(D), the set of height-one primes of D.

Then [a, b]S = 1 ⇐⇒ (a, b) * P for any height-one prime P ⇐⇒ ht(a, b) > 1.
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Using Propositions 2.7 and 2.8 we can develop a precise grade version when

D is Noetherian. Let S = {P | P is prime and G(P ) = 1}. Then by Lemma 2.6

and Proposition 2.8 (a, b)t = D ⇐⇒ G((a, b)) > 1 ⇐⇒ G(P ) > 1 for every prime P

containing (a, b) ⇐⇒ [a, b]S = 1. Hence, a τt b is equivalent to a τS b.

It is well known that for an integral domain D we may have [a, b] = 1, [a, c] = 1,

but [a, bc] 6= 1. We use an example from the beginning of the chapter. Let R be the

ring of polynomials in X with integer coefficients and even coefficient of X. Then

[2, 2X] = 1 but [2, 4X2] = 2 [10, pg. 253]. In fact, an atomic integral domain with the

property that [a, b] = [a, c] = 1 implies [a, bc] = 1 is a UFD [5]. In terms of symmetric

relations, the property a τ b, a τ c =⇒ a τ bc has been called multiplicative. Hence,

for S = {(a) | a ∈ D#} and D atomic we have that τS is multiplicative if and only if

D is a UFD. In Example 2.1, (1)−(7), τS is multiplicative. For Example 2.1, (6) and

(7), τS is multiplicative by the following proposition, which gives a general condition

under which τS is multiplicative.

Proposition 2.9. Let D be an integral domain and S a collection of ideals. If each

ideal in S is prime, then τS is multiplicative.

Proof. We wish to show that if [a, b]S = 1 and [a, c]S = 1, then [a, bc]S = 1.

But if [a, bc]S 6= 1, then (a, bc) ⊆ I for some I ∈ S. But then a is in I, and b or c is

in I, a contradiction. So [a, bc]S = 1 as desired.

The converse is most certainly not true. Let D be a GCD-domain. Then τS

with S = {(t) | t ∈ D#} is multiplicative. A better question might be to ask if τS

is multiplicative, does there exist a collection of prime ideals S′ such that τS = τS′?
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And if this is not true for a general integral domain, under what conditions would

the statement hold? We currently do not have a suitable answer.

2.3 Axioms of Coprimeness

It is interesting to contemplate on what properties a general coprimeness re-

lation τ on D# should satisfy. In looking at the previously discussed examples, six

properties come to mind:

CP1. a 6 τ a,

CP2. a τ b =⇒ b τ a,

CP3. a τ b, a′ | a, and b′ | b =⇒ a′ τ b′,

CP4. Da + Db = D =⇒ a τ b,

CP5. a τ b =⇒ [a, b] = 1,

CP6. a τ b and (a, b) ⊆ (c, d) =⇒ c τ d.

The following theorem shows that property CP6 is equivalent to τ having the

form τS for some set of ideals S.

Theorem 2.10. Let D be an integral domain. Let τ be a relation on D#. Then there

exists a set S of ideals of D with a τ b ⇐⇒ a τS b if and only if τ satisfies property

CP6.

Proof. Suppose that τ satisfies property CP6. Define S = {(c, d) | c, d ∈ D#

and c 6 τ d}. If a τS b, then a τ b. Otherwise, a 6 τ b implies that (a, b) ∈ S, a



19

contradiction. Now suppose that a τ b and a 6 τS b. Then (a, b) ⊆ (c, d) where c 6 τ d.

By property CP6 a 6 τ b, a contradiction.

Conversely, suppose a τ b ⇐⇒ a τS b. Suppose that a τ b and (a, b) ⊆ (c, d)

for some c, d ∈ D#. Then a τS b, so (c, d) /∈ S. Hence, c τ d. So property CP6 is

satisfied.

If we look at the six CP properties, we see that property CP6 implies CP2,

CP3, and CP4. The first implication is immediate since (b, a) ⊆ (a, b) for all a, b ∈ D.

To prove CP3, we notice that given a′, a, b′, b ∈ D# with a′ | a and b′ | b, then

(a, b) ⊆ (a′, b′). Hence, if a τ b, then a′ τ b′. Finally, CP4 follows from Theorem

2.10. Given a, b ∈ D# with (a, b) = D, if a 6 τ b, then by CP6 no elements would be

τ -related. Assuming τ is not the trivial relationship then a τ b. So from Theorem

2.10 τS satisfies properties CP2, CP3, CP4, and CP6.

Property CP6 does not imply CP1 or CP5. For example, look at the ring Z

with S = {(x) | x ∈ D#, x 6= 2}. Then 2 τS 2. So neither CP1 nor CP5 are satisfied.

It is easy to see that CP5 implies CP1. Also, CP1 and CP6 hold if and only if CP5

and CP6 hold.

Motivated by Theorem 2.10 one might think that for a Noetherian domain

a multiplicative relation τ satisfying CP1 and CP6 could be defined in terms of a

∗-operation. In other words, given a relation τ satisfying CP1 and CP6 such that

a τ b and a τ c implies a τ bc for all a, b, c ∈ D#, then a τ b ⇐⇒ (a, b)∗ = D for some

∗-operation. This does hold when S is the set of proper principal ideals and when S

is the set of maximal ideals. When S is the set of proper principal ideals this follows
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from Corollary 3.21 and [5, Corollary 3.6]. In this case, a τS b ⇐⇒ (a, b)t = D.

Clearly, when S is the set of maximal ideals the d-operation works. It would seem

that it might hold for all such relations “between” them. However, the following

example shows that it does not hold in general. This example is from [15, Example

81].

Example 2.3. Let R = K[X2, Y 2, XY, X3, Y 3, XY 2, X2Y ] the subring of K[X, Y ].

Then R is a 2-dimensional, Noetherian domain. Let N = (X, Y ) in K[X, Y ]. Then

M = (X, Y ) ∩ R is a maximal ideal in R. We show that G(MM) = 1. Now X4
M /∈

(X3)M , but MM · X4
M ⊆ (X3)M . So X3 is a maximal R-sequence in MM on RM

which implies G(MM) = 1 by Proposition 2.7.

For simplicity of notation we assume that R is a local, 2-dimensional domain

with maximal ideal M such that G(M) = 1. By Proposition 2.7 Mt = M . Thus,

M∗ = M for all ∗-operations. Let S be the set of height-one prime ideals of R. There

exists a, b ∈ R# such that (a, b) is not contained in any height-one prime ideal.

Otherwise, M would be in the union of the height-one prime ideals of R and by [16,

Theorem 88] there would only be finitely many height-one prime ideals. Thus, by

[16, Theorem 81] M would be contained in a height-one prime ideal, a contradiction.

Now a τS b but (a, b)∗ 6= R for any ∗-operation.

We next state a theorem relating τS for a set of ideals S with τ√S where
√

S

is defined as
√

S = {
√

I | I ∈ S}. As usual, for an ideal I,
√

I = {a ∈ D | an ∈ I for

some n ∈ N}.

Theorem 2.11. Let S be a collection of ideals in D. Then the following are equiva-
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lent:

(1) For all nonzero, nonunits a, b ∈ D, a τS b =⇒ a τS b2,

(2) For all nonzero, nonunits a, b ∈ D, a τS b =⇒ an τS bm for any n, m ≥ 1,

(3) τS ≡ τ√S.

Proof. Since τS is a symmetric relation, the equivalence of (1) and (2) is true

by induction. It suffices to show the equivalence of (2) and (3). Suppose that (2)

holds. For any nonzero, nonunit elements a, b ∈ D, if a τ√S b, then (a, b) is not

contained in any ideal of
√

S. But then necessarily (a, b) is not contained in any

ideal of S. So a τS b. Conversely, suppose a 6 τ√S b. Hence, there exists some I ∈ S

such that (a, b) ⊆
√

I. So (an, bm) ⊆ I for some n, m ≥ 1. So an 6 τS bm as desired.

Suppose (3) holds. For any nonzero, nonunits a, b ∈ D, if a τS b, then an τS bm

for any n, m ≥ 1. Otherwise, by hypothesis there exists n, m ≥ 1 and I ∈ S such

that (an, bm) ⊆
√

I. But then we have (a, b) ⊆ I, a contradiction.

Definition 2.12. Given a set of ideals S, we say that D is S-minimal if every

nonzero, nonunit element of D is contained in a prime ideal of S.

The following proposition and proof is just a generalization of the proposition

and proof for [17, Lemma 1.1].

Proposition 2.13. Let D be an integral domain and S a collection of ideals of D.

If D is S-minimal and every nonzero, nonunit element has only finitely many prime

ideals in S minimal over it, then D is a τS-atomic domain.
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Proof. Given a ∈ D#, define min(a) to be the finite collection of primes in

S minimal over a. By way of contradiction assume the hypothesis holds, but D is

not a τS-atomic domain. Then there is an a ∈ D that does not have a τS-atomic

factorization. Within this set, let a be such that | min(a) | is minimal. Since a

has no τS-atomic factorization, it cannot be τS-atomic. Let a = a1 · · · an be a τS-

factorization of a.

We claim that min(a) = ∪min(ai) where the union is disjoint. If P ∈ min(a),

then P contains some ai and P ∈ min(ai). Now assume that P ∈ min(ai) for some

ai. Then P contains a. If there exists P0 ∈ S with a ⊆ P0 ( P , then P0 cannot

contain ai. So P0 must contain aj for some j 6= i. But then ai and aj are both

in P , a contradiction. So P ∈ min(a) as desired. The union must be disjoint by

definition of a τS-factorization. This gives us |min(ai)| < |min(a)|. Hence, each ai

has a τS-atomic factorization. But then this yields a τS-atomic factorization of a, a

contradiction.

Since τS is divisive, the following theorem is true by [2, Theorem 2.11]. We

give our own proof here. The proof is similar.

Theorem 2.14. Let D be a UFD and S a collection of ideals of D. Then D is a

τS-UFD.

Proof. Let a be a nonzero, nonunit of D. Since D is a UFD, a = p1 · · · pn has a

unique factorization into prime pi’s. If a is a τS-atom, then we are done. Otherwise,

we can reorder and group the primes

a = (p1 · · · ps1) · (p(s1+1) · · · ps2) · · · (p(sk+1) · · · pn)
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into a τS-factorization. If this is not a τS-atomic factorization, then each group of

primes, qi = (p(si+1) · · · p(si+1)), that is not a τS-atom has a proper τS-factorization.

Since D is a UFD, each τ -factor of a proper τS-factorization of qi would simply be

a product of some subset of {p(si+1), . . . , p(si+1)}. Since the prime factorization of a

has length n, this process of τS-refining τS-factorizations of a can only be repeated

finitely many times. Hence, a has a τS-atomic factorization.

We need to show uniqueness of τS-atomic factorizations. Suppose a1 · · · an =

b1 · · · bm are two τS-atomic factorizations. We proceed by induction on n. The case

when n = 1 is clear. Suppose n > 1, and by induction, if any element c ∈ D# has

a τS-atomic factorization of length less than n, then that is the unique τS-atomic

factorization of c, up to order and units. If a1 is prime, then a1 | bi for some i, say

i = 1. If a1 is not prime, we will show that a1 still divides some bi. If a1 is not prime,

then a1 = p1 · · · pl where each pi is prime and l > 1. By way of contradiction, suppose

that p1 and p2 divide b1 and b2, respectively. Since τS is divisive, p1 τS p2. We can

now group the remaining pi’s appropriately to form a proper τS-factorization of a1.

For example, if p3 | b1, then p1p3 τS p2. If p3 | bi for i > 2, then p1, p2, and p3 are all

τS-related. In this way, we can construct a proper τS-factorization of a1 (we exclude

the complete construction since the notation is quite tedious). So each pi must divide

the same bj, and each pi divides exactly one bj. Hence, a1 divides some bj, say b1.

In either case, a1 divides b1, and we get that a2 · · · an = cb2 · · · bm where a1c =

b1 for some c ∈ D. As already shown, c has a τS-atomic factorization, c = c1 · · · ck.

Since τS is divisive, c1 · · · ckb2 · · · bm is a τS-atomic factorization. By the induction
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hypothesis, and after reordering the ai’s, we have n = k + m, ai+1 ∼ ci for 1 ≤ i ≤ k,

and ak+1+i ∼ bi+1 for 1 ≤ i < m. Repeating the induction for m gives us n = m, and

after reordering, ai ∼ bi for each i.
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CHAPTER 3
τ[ ]-UFD

In this chapter, we explore further the example of S-coprime where S is the

set of proper principal ideals. We noted in Example 2.1, (8) of Chapter 2 that a · b is

a proper τS-factorization if and only if [a, b] = 1. We denote this τS by τ[ ].

We start off with a basic result regarding quasilocal domains.

Theorem 3.1. Let D be an integral domain.

(1) Every nonzero nonunit is a τmax-atom if and only if D is quasilocal.

(2) Every nonzero nonunit is a τv-atom if and only if D is quasilocal and for x, y ∈

M − {0}, (x, y)v ⊆ M where M is the maximal ideal of D.

(3) Every nonzero nonunit is a τ[ ]-atom if and only if D is quasilocal and for x, y ∈

M there exists m ∈ M with (x, y) ⊆ (m) (or equivalently, for I ⊆ M finitely

generated, there exists m ∈ M such that I ⊆ (m)) where M is the maximal ideal

of D.

Proof.

(1) (⇐=) If D is quasilocal, then (a, b) ∈ M for all a and b nonunits. So there are no

proper τmax-factorizations.

(=⇒) Assume there are two maximal ideals M1 and M2. Then there is mi ∈ Mi

and ri ∈ D such that r1m1 + r2m2 = 1. But then d = m1 ·m2 is not a τmax-atom

of D.
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(2) (⇐=) Similarly to (1) (a, b)v ∈ M for a and b nonunits. So there are no proper

τv-factorizations.

(=⇒) If every nonzero, nonunit is a τv-atom, then every nonzero, nonunit is a

τmax-atom. So from (1) we have D is quasilocal. Since (x, y)v 6= D for all nonzero,

nonunit elements, (x, y)v must be contained in M .

(3) (⇐=) Again this direction is clear. There are no proper τ[ ]-factorizations. Given

x, y ∈ D#, there is an m ∈ M such that m|x and m|y.

(=⇒) D is quasilocal for the same reason as in (2). The second part is clear.

Note that for the parenthetical statement in Theorem 3.1, if I ⊆ M with I =

(x1, . . . , xn), then by induction (x1, . . . , xn−1) ⊆ (m) for some m ∈ M . But then

by hypothesis (m, xn) ⊆ (m1) for some m1 ∈ M .

3.1 Weakly Factorial Domains

We discussed the notion of a weakly factorial domain in Subsection 2.2.1. We

showed the connection between weakly factorial domains and τS-UFD’s where S is

the set of height-one prime ideals. In this section, we study τ[ ]-factorization in weakly

factorial domains.

Proposition 3.2. Let D be a weakly factorial domain with q1 and q2 nonzero, primary

elements. Then
√

q1 6=
√

q2 =⇒ (q1, q2)v = D.

Proof. Let qi be Pi-primary. We use Lemma 1.1. Suppose (q1, q2) ⊆ a
b
D. We

want to show that a | b. We have qib = adi for some di ∈ D (i = 1, 2). This gives
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us q1q2b = q1ad2 = q2ad1 which implies q1d2 = q2d1. So q2d1 ∈ (q1) and q2 /∈ P1 [3,

Theorem 4] implies d1 ∈ (q1), say d1 = dq1. Then q1b = ad1 = adq1 implies b = ad.

So a | b as desired.

Lemma 3.3. Let q be P -primary. If (q) ⊆ (b) for some proper principal ideal, then

b is P -primary.

Proof. Now (q) ⊆ (b) gives us rb = q for some r ∈ D. If (b) * P , then r ∈ (q),

say r = sq. Then we have q = rb = sqb =⇒ 1 = sb, a contradiction. Hence, b ∈ P

and we get
√

(b) = P .

Now let xy ∈ (b) and y /∈ P . Let xy = db for some d ∈ D. Since rb = q,

rxy = rdb = dq ∈ (q) which implies rx ∈ (q), say rx = aq. Then qx = rxb = aqb

which implies x ∈ (b) as desired. Hence, b is P -primary.

Proposition 3.4. Let D be a weakly factorial domain. If x is a τ[ ]-atom, then x is

primary.

Proof. Since D is weakly factorial, x can be written as a reduced product of

primaries, say x = q1 · · · qn with qi Pi-primary. Since x is a τ[ ]-atom, either n = 1 or

there exist distinct qi and qj that have a common nonunit divisor. If the latter case

were so, then qi and qj would both be contained in some proper principal ideal. So

by Lemma 3.3 Pi = Pj, a contradiction. Hence, x is primary.

Theorem 3.5. Let D be a weakly factorial domain. Then q a P -primary element is

a τ[ ]-atom in D if and only if q is a τ[ ]-atom in DP .
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Proof. Assume that q is P -primary and is a τ[ ]-atom in D. Assume by

way of contradiction that q = r1

s1
· · · rn

sn
is a proper τ[ ]-factorization in DP . Then

(q)P = ( r1

s1
· · · rn

sn
)P = (r1 · · · rn)P . Since D is weakly factorial, each ri has a reduced

primary decomposition ri = xi,1 · · ·xi,ki
where xi,j is P -primary for some j. Since xi,l

is not P -primary for l 6= j, xi,l /∈ P . Hence, (ri)P = (xi,j)P . For simplicity of notation

let us denote xi,j as xi for each ri. Then (q)P = (r1)P · · · (rn)P = (x1)P · · · (xn)P .

Since each (xi) is P -primary, (q) = (x1) · · · (xn) in D. Since q is a τ[ ]-atom, there

must exist xi and xj with a common nonunit divisor in D. But by Lemma 3.3 such

a divisor must be P -primary. Hence, it is also a nonunit divisor of xi and xj in DP ,

a contradiction.

Assume that q is P -primary and is a τ[ ]-atom in DP . Let q = x1 · · ·xn be

a proper τ[ ]-factorization in D. By Lemma 3.3 each xi is P -primary. So (q)P =

(x1)P · · · (xn)P is a product of PP -primary ideals. Since q is a τ[ ]-atom in DP and

none of the xi’s are units in DP , there must exist xi and xj that have a common

nonunit divisor, say r (we can assume the divisor is an element of D). Since D is

weakly factorial, r can be written as a product of primary elements with one such

element being P -primary. Let r0 be this element. Then r0 divides both xi and xj in

DP which is equivalent to (xi)P and (xj)P being contained in (r0)P . Since (xi), (xj),

and (r0) are all P -primary, this implies that (xi) and (xj) are contained in (r0). So

[xi, xj] 6= 1 in D, a contradiction. So q is a τ[ ]-atom in D.

The following corollary was proven in the proof of Theorem 3.5.

Corollary 3.6. Let D be a weakly factorial domain. Given q1 and q2 P -primary for
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some prime, we have [q1, q2] = 1 in D if and only if [q1, q2] = 1 in DP .

Theorem 3.7. Let D be a weakly factorial domain. D is τ[ ]-atomic if and only if

DP is τ[ ]-atomic at each height-one prime ideal.

Proof. Suppose D is τ[ ]-atomic. We look at DP for a height-one prime ideal

P . Let p
s
∈ PP . We have (p

s
)P = (p)P = (q)P for some q that is P -primary. If q is

a τ[ ]-atom in DP , then we are done. Otherwise, by hypothesis and Theorem 3.5 q

has a τ[ ]-atomic factorization in D, say q = x1 · · ·xn. As mentioned above each xi is

P -primary. From Theorem 3.5 each xi is a τ[ ]-atom in DP . From Corollary 3.6 we

also have [xi, xj] = 1 for each i 6= j in DP . Hence p
s

= uq = ux1 · · ·xn is a τ[ ]-atomic

factorization of p
s

in DP .

Suppose that DP is τ[ ]-atomic at each height-one prime ideal P . Let x be a

nonzero, nonunit element of D. Since D is weakly factorial, x can be written as a

product of primary elements with radicals having height one, say x = x1 · · ·xm with

xi being Pi-primary. By Lemma 3.3 this is a τ[ ]-factorization. Then xi has a τ[ ]-

atomic factorization in DPi
, say xi = r

s
pi,1 · · · pi,ni

with r
s
∈ U(DPi

). We can assume

that each pi,j is Pi-primary. From Theorem 3.5 each pi,j is a τ[ ]-atom in D. From

Corollary 3.6 we have [pi,s, pi,t] = 1 in D for s 6= t. Finally, (xi)Pi
= (pi,1)Pi

· · · (pi,ni
)Pi

with (xi) and each (pi,j) being Pi-primary implies that (xi) = (pi,1) · · · (pi,ni
) in D.

Hence x = up1,1 · · · p1,n1p2,1 · · · p2,n2 · · · pm,1 · · · pm,nm is a τ[ ]-atomic factorization of x

in D.

Theorem 3.8. Let D be a weakly factorial domain. D is a τ[ ]-UFD if and only if

DP is a τ[ ]-UFD for each height-one prime ideal P of D.



30

Proof. From Theorem 3.7 we only need to consider the uniqueness of τ[ ]-atomic

factorizations.

Suppose D is a τ[ ]-UFD. Let r1

s1
· · · rn

sn
= x1

t1
· · · xm

tm
be two τ[ ]-atomic factor-

izations in DP . Since D is weakly factorial, we can assume that each ri and xj

is P -primary. So we have (r1)P · · · (rn)P = (x1)P · · · (xm)P with each ri and xj a

τ[ ]-atom in DP and P -primary in D. Hence, (r1 · · · rn) = (x1 · · ·xm) in D, and by

Theorem 3.5 and Corollary 3.6, ur1 · · · rn = x1 · · ·xm, where u is a unit in D, are two

τ[ ]-atomic factorizations in D. By hypothesis, after reordering we have ri ∼ xi and

m = n. Hence, DP is a τ[ ]-UFD.

Suppose DP is a τ[ ]-UFD at each height-one prime ideal P . Let a1 · · · an =

b1 · · · bm be two τ[ ]-atomic factorizations in D. By Proposition 3.4 each ai and bj

is primary. We pass to DP for some height-one prime ideal P containing the fac-

torization. After reordering we have (a1)P · · · (ak)P = (b1)P · · · (bl)P for some k ≤ n

and l ≤ m. From Theorem 3.5 and Corollary 3.6 we get r
s
a1 · · · ak = b1 · · · bl with

r
s
∈ U(DP ) are two τ[ ]-atomic factorizations in DP . So after reordering we get ai ∼ bi

in DP and l = k. But this implies that (ai)P = (bi)P . Since each ai and bi are P -

primary, we have (ai) = (bi) in D. Repeating this process at each height-one prime

ideal containing the factorization gives us, after reordering, ai ∼ bi in D and n = m

as desired.

Corollary 3.9. A weakly factorial GCD domain D is a τ[ ]-UFD.

Proof. From [3, Theorem 18] DP is a valuation domain at each height-one

prime ideal P of D. Hence, every nonzero, nonunit element of DP is a τ[ ]-atom. So
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DP is a τ[ ]-UFD at each height-one prime ideal P .

3.2 GCD Domains

Lemma 3.10. In a GCD domain, τ[ ] is a multiplicative relation.

Proof. Since a τ[ ] b is equivalent to [a, b] = 1, this is just a restatement of [16,

Theorem 49].

The following lemma is Exercise 7 from Section 1-6 of [16].

Lemma 3.11. Let D be a GCD domain. If [u, a] = 1 and u divides ab, then u divides

b.

Proof. Since D is a GCD domain, [ub, ab] = b. Since u divides both ab and

ub, u divides b.

Proposition 3.12. Let D be a GCD domain, and p a nonzero, nonunit element of

D. Then the following our equivalent:

(1) p is a τ[ ]-atom,

(2) p is τ[ ]-prime,

(3) If p | ab, where [a, b] = 1, then [p, a] = 1 or [p, b] = 1.

Proof. (2) ⇒ (1) is always true.

(1) ⇒ (2) Suppose that p | ab, say pq = ab, with [a, b] = 1. If [p, a] = 1 or

[p, b] = 1, then by Lemma 3.11 p | b or p | a, respectively. Let [p, a] = x and [p, b] = y.

Then p = xp1 and a = xa1 for some p1, a1 ∈ D. So p1q = a1b. Since [p1, a1] = 1,
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p1 | b. So p1 | b and p1 | p implies p1 | y. Also, y | p = xp1 and [x, y] = 1 implies

y | p1. Hence, y ∼ p1. So, uxy = p for some unit u. But [x, y] = 1 and p is τ[ ]-atomic.

Thus, either x or y is a unit as desired.

(2) ⇒ (3) Suppose p is τ[ ]-prime and p | ab where [a, b] = 1. Then p divides

a or b. Suppose p | a. Then [p, b] | [a, b] = 1. Hence, [p, b] = 1. The same argument

holds if p | b.

(3) ⇒ (2) Suppose (3) holds, and we have p | ab where [a, b] = 1. Then the

result follows readily from Lemma 3.11.

Corollary 3.13. In a GCD domain, τ[ ]-atomic implies τ[ ]-UFD.

Proof. We need to show uniqueness of τ[ ]-atomic factorizations. Suppose

p1 · · · pn = q1 · · · qm are two τ[ ]-atomic factorizations. By Proposition 3.12 each pi

and qj are τ[ ]-prime. So p1 divides some qj, say q1. But then q1 divides some pi.

Since [p1, pi] = 1 for i 6= 1, q1 must divide p1. So (p1) = (q1) and the result follows by

induction.

The following lemma is taken from [2, Lemma 2.10], and we state it here since

it proves useful for us.

Lemma 3.14. Let D be an integral domain and let τ be a divisive relation on D#.

Let a1 · · · an be a τ -atomic factorization. Then for i 6= j, either [ai, aj] = 1 or ai ∼ aj

are atoms.

Lemma 3.15. Let D be a τ -atomic GCD domain where τ is a divisive relation on

D. Then the τ[ ]-atoms of D are τ -atoms or elements of the form upn where u is a
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unit, n ≥ 1, and p is prime.

Proof. Let x be a τ[ ]-atom in D. Since D is τ -atomic, x has a τ -atomic

factorization x = a1 · · · an. If [ai, aj] = 1 for some i 6= j, then by Lemma 3.14 we

get a proper τ[ ]-factorization of x by grouping the elements that are not relatively

prime together. Hence, if n > 1, then by Lemma 3.14 each ai must be associative

atoms. Moreover, since D is a GCD domain, each ai is actually prime. So, x = upn

as desired.

Theorem 3.16. Suppose D is a GCD, τ[ ]-atomic domain; and τ is a divisive, mul-

tiplicative relation on D. If D is τ -atomic, then D is a τ -UFD.

Proof. By Corollary 3.13 D is a τ[ ]-UFD. We will use this fact along with

Lemmas 3.14 and 3.15 throughout this proof without further comment.

We have only to show the uniqueness of τ -atomic factorizations. Suppose that

b1 · · · bm = c1 · · · cn are two τ -atomic factorizations. If m = 1 or n = 1, then we are

done. If [bi, bj] 6= 1 for some i 6= j, then we can group all such τ -atoms, and after

grouping and reordering we can write b1 · · · bm = b1 · · · bm′p1
m1 · · · pm′′mm′′ where each

pi is prime, pi τ pi, and any two factors on the right are relatively prime. We can

group the ci’s in a similar manner to get b1 · · · bm′p1
m1 · · · ps

ms = c1 · · · cn′q1
n1 · · · qt

nt .

Note that bi � qj
nj for any j and 1 ≤ i ≤ m′ since qj τ qj. Similarly, ci � pj

mj for

any j and 1 ≤ i ≤ n′.

Now this element has a τ[ ]-atomic factorization, say

b1 · · · bm′p1
m1 · · · ps

ms = a1 · · · ak = c1 · · · cn′q1
n1 · · · qt

nt (3.1)
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Also, any pair of elements in the factorization on the left are relatively prime. Like-

wise, for the factorization on the right. Hence, since D is a τ[ ]-UFD, any bi or ci in

Equation (3.1) is a product of a subset of the ai’s, and each pi
mi or qi

ni is equal to

some ai. So both b1 · · · bm′p1
m1 · · · ps

ms and c1 · · · cn′q1
n1 · · · qt

nt have τ[ ]-factorizations

of the form

(a1,1 · · · a1,s1)(a2,1 · · · a2,s2) · · · (av,1 · · · av,sv) (3.2)

where, for example, b1 = (a1,1 · · · a1,s1), b2 = (a2,1 · · · a2,s2),...,ps
ms = (av,1 · · · av,sv)

(in this instance sv = 1). Let us assume that Equation (3.2) is a factorization of

b1 · · · bm′p1
m1 · · · ps

ms . If c1 · · · cn′q1
n1 · · · qt

nt has the same such factorization, then

m = n and after reordering bi ∼ ci. We claim that they both must have the same

such factorization of the ai’s. If the grouping of factors differs for c1 · · · cn′q1
n1 · · · qt

nt ,

then there exists ai,j that is no longer in the same grouping of factors. If ai,j is with

a new grouping of factors, then using multiplicativity and the fact that ai,j τ as,t for

i 6= s we would have a proper τ -factorization of one of the ci’s, a contradiction. If ai,j

is not with a new grouping of factors, then ai,j is in a grouping that is a subset of the

grouping ai,j was in for b1 · · · bm′p1
m1 · · · ps

ms . But then bi has a proper τ -factorization,

a contradiction.

We state here some facts that will be useful. Given a GCD domain D, each

nonconstant f ∈ D[X] is uniquely expressible, to within unit factors in D, as f = a ·g

where g is a primitive polynomial and a ∈ D. Also, each nonconstant primitive

polynomial in D[X] is a finite product of prime polynomials in D[X] [12, Theorem

34.10].
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Lemma 3.17. Let D be a GCD domain. Suppose that f ∈ D[X] is a nonconstant

τ[ ]-atomic element. Given f = ag, where g is primitive and a ∈ D, then f ∼ g.

Hence, every nonconstant τ[ ]-atom is primitive.

Proof. Since g is primitive, [a, g] = 1. So a must be a unit in D.

Theorem 3.18. If D is a GCD domain, then D is a τ[ ]-UFD if and only if D[X] is

a τ[ ]-UFD.

Proof. If D[X] is a τ[ ]-UFD, then it is straightforward to show that D is a

τ[ ]-UFD. Suppose that D is a τ[ ]-UFD. We first show that D[X] is τ[ ]-atomic. We

do this by induction on the degree of an element. The base case is covered by the

hypothesis. Let f ∈ D[X] be a nonzero, nonunit element with deg(f) = n where

n ≥ 1. We can write f = a · g where g is primitive, a ∈ D, and [a, g] = 1. If

a is a nonunit, then since D is a τ[ ]-UFD, there exists a = a1 · · · an, a τ[ ]-atomic

factorization of a. If g is a τ[ ]-atom, then a1 · · · an · g is a τ[ ]-atomic factorization

of f . Otherwise, we have g = g1 · g2 a τ[ ]-factorization of g. Since g is primitive,

deg(gi) < deg(g) for each i. So each gi has a τ[ ]-atomic factorization by the induction

hypothesis. This gives a τ[ ]-atomic factorization of f .

By Corollary 3.13 we have that D[X] is a τ[ ]-UFD.

Proposition 3.19. A pre-Schreier τ[ ]-atomic domain D is a τ[ ]-UFD.

Proof. We show that in a pre-Schreier domain τ[ ]-atoms are τ[ ]-primes. Let

p be a τ[ ]-atom, and suppose p | a1 · · · an where [ai, aj] = 1 for each i 6= j. Then
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p = p1 · · · pn where pi | ai for each i. But then [pi, pj] = 1 for each i 6= j. Since p is

a τ[ ]-atom, only one pi is a nonunit. Thus, p | ai and so each τ[ ]-atom is τ[ ]-prime.

The proof is now exactly like Corollary 3.13.

Let R be a commutative ring. Recall that for any f ∈ R[X], c(f) is defined

to be the ideal in R generated by the coefficients of f . Also, given a GCD domain D

and a finite character ∗-operation, we define N∗ = {f ∈ D[X] | c(f)∗ = D}. By [12,

Lemma 32.6] N∗ is multiplicatively closed if ∗ is endlich arithmetisch brauchbar. By

[12, Proposition 34.8] Nt is multiplicatively closed if D is integrally closed. So by [16,

Theorem 50] Nt is multiplicatively closed when D is a GCD domain.

Lemma 3.20. Let D be a GCD domain. For a1, . . . , an ∈ D then (a1, . . . , an)t = (a)

where [a1, . . . , an] = a.

Proof. Since a divides each ai and (a) is a t-ideal, (a1, . . . , an)t ⊆ (a). We must

show the reverse inclusion. We have (a1, . . . , an)t = ∩( c
d
), the intersection being taken

over all principal fractional ideals containing (a1, . . . , an). Suppose (a1, . . . , an) ⊆ ( c
d
).

Since D is a GCD domain, we can assume [c, d] = 1. This implies c | ai for each i

and so c | a. Hence, (a) ⊆ (c) ⊆ ( c
d
). So, (a) = (a1, . . . , an)t as desired.

For our purposes we are interested in the implications of Lemma 3.20 where

(a1, . . . , an) = c(f) for some f ∈ D[X]. Thinking of (c(f))t as the ideal generated

by the greatest common divisor of the coefficients of f gives us a nice relationship

between τ[ ]-factorization in D and comaximal factorization in D[X]Nt . In fact, they

turn out to be the same. We state here a special case of Lemma 3.20. Notice that

this corollary says that the τ[ ] relation and the τt relation are the same in a GCD
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domain.

Corollary 3.21. Let D be a GCD domain. Then for a, b ∈ D# we have (a, b)t =

D ⇐⇒ [a, b] = 1.

Recall in Lemma 2.6 we showed that for two elements a and b in D that are

not comaximal then (a, b)t = D if and only if a, b is an R-sequence. We state here

the obvious corollary of Lemma 2.6 and Corollary 3.21.

Corollary 3.22. Let D be a GCD domain. For nonzero elements a, b ∈ D with

(a, b) 6= D the following are equivalent:

1. [a, b] = 1,

2. (a, b)t = D,

3. a, b is an R-sequence.

Lemma 3.23. Let D be a GCD domain. Then [a, b] = 1 if and only if (a, b)D[X]Nt =

D[X]Nt.

Proof. Suppose [a, b] = 1 in D. Then by Lemma 3.20 f := aX + b ∈ Nt.

Hence, (aX + b) 1
f

= 1 ⇐⇒ a · X
f

+ b · 1
f

= 1 in D[X]Nt . So (a, b)D[X]Nt = D[X]Nt as

desired.

Suppose [a, b] 6= 1. Then (a, b)D ⊆ rD ( D for some r ∈ D. So (a, b)D[X]Nt ⊆

(r)D[X]Nt ( D[X]Nt . Otherwise, r · f
g

= 1 for some f
g
∈ D[X]Nt , and so D = c(g)t =

c(rf)t = r(c(f)t) ⊆ rD, a contradiction. So (a, b)D[X]Nt 6= D[X]Nt .
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Lemma 3.24. Let D be a GCD domain. Then f
g
∈ D[X]Nt is a τmax-atom if and

only if c(f)t = (a) is a τ[ ]-atom in D.

Proof. Suppose f
g
∈ D[X]Nt is a τmax-atom with c(f)t = (a). If a = a1 · · · an is

a proper τ[ ]-factorization of a in D, then by Lemma 3.23 f
g

= a1 · · · an
f ′

g
is a proper

τmax-factorization of f
g

in D[X]Nt with f ′

g
∈ Nt, a contradiction.

Conversely, suppose a is a τ[ ]-atom of D. If f
g

= f1

g1
· · · fn

gn
is a proper τmax-

factorization in D[X]Nt with c(fi)t = (ai), then we have af ′

g
= a1

f1
′

g1
· · · an

fn
′

gn
=

a1 · · · an
f1

′

g1
· · · fn

′

gn
for some f ′ and fi

′’s in Nt. So from Lemmas 3.20 and 3.23 we

get (a) = c(af ′g1 · · · gn)t = c(a1 · · · angf1
′ · · · fn

′)t = (a1) · · · (an) forms a proper τ[ ]-

factorization of a, a contradiction.

Theorem 3.25. Let D be a GCD domain. Then D is a τ[ ]-UFD if and only if

D[X]Nt is a UCFD.

Proof. Suppose that D is a τ[ ]-UFD. Let f
g

be a nonzero, nonunit element in

D[X]Nt . Let c(f)t = (a). Let a = a1 · · · an be a τ[ ]-atomic factorization of a in D.

So by Lemma 3.20 f
g

= a1 · · · an
f ′

g
where f ′

g
is a unit in D[X]Nt . From Lemma 3.23

ai and aj are comaximal for i 6= j. We must show each ai is a τmax-atom. Suppose

ai = f1

g1

f2

g2
is a proper τmax-factorization of ai with c(fi)t = (bi) in D[X]Nt . Then by

Lemma 3.20 (b1b2) = c(f1)tc(f2)t = c(f1f2)t = c(aig1g2)t = aic(g1g2)t = (ai). But

by Lemma 3.23 b1b2 is a proper τ[ ]-factorization in D, a contradiction. So ai is a

τmax-atom.
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We must show uniqueness. Suppose f1

g1
· · · fn

gn
= h1

k1
· · · hm

km
are two τmax-atomic

factorizations in D[X]Nt with c(fi)t = (ai) and c(hj)t = (bj). From the argument in

the previous paragraph and Lemma 3.24, we see this implies ua1 · · · an = vb1 · · · bm,

where u, v ∈ U(D), are two τ[ ]-atomic factorizations in D. By hypothesis we get,

after reordering, (ai) = (bi) and n = m in D. But then aiD[X]Nt = biD[X]Nt . Hence,

(fi

gi
) = (hi

ki
) as desired.

Suppose that D[X]Nt is a UCFD. By Corollary 3.13 it suffices to show that D

is τ[ ]-atomic. Let a be a nonzero, nonunit element of D. Then a = f1

g1
· · · fn

gn
has a

τmax-atomic factorization in D[X]Nt with c(fi)t = (ai). Then a = a1 · · · an
f
g

for some

unit f
g

in D[X]Nt . By Lemmas 3.23 and 3.24 a1 · · · an is a τ[ ]-atomic factorization in

D. Also, (a1 · · · an) = c(f1)t · · · c(fn)t = c(f1 · · · fn)t = c(ag)t = ac(g)t = (a). Hence,

a has a τ[ ]-atomic factorization in D.

From [17, Corollary 1.10] we get this immediate corollary.

Corollary 3.26. Suppose D is a GCD domain such that every ideal of D[X]Nt is

contained in only finitely many maximal ideals of D[X]Nt. Then D is a τ[ ]-UFD if

and only if every invertible ideal of D[X]Nt is principal.

For a GCD domain D, the hypothesis of Corollary 3.26 is satisfied when every

ideal of D[X] disjoint from Nt is contained in only finitely many prime ideals maximal

with respect to being disjoint from Nt. An ideal I of D[X] is disjoint from Nt precisely

when each f ∈ I has c(f)t ( D. From Lemma 3.20 this is equivalent to the coefficients

of f having a common divisor for each f ∈ I.
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CHAPTER 4
SOME CHARACTERIZATIONS OF τ[ ]-UFD’S

We further motivate our study of τ[ ]-UFD’s with some examples. We first

look at Z2[[X
2, X3]] to give us an idea of the τ[ ]-atomic structure of k[[X2, X3]] for a

general field k. Let D denote the integral closure of D.

4.1 τ[ ]-atomic structure of Z2[[X
2, X3]]

Let D = Z2[[X
2, X3]], so D = Z2[[X]], and U(D) = {1+a2X

2+· · · | an ∈ Z2}.

An element of U(D) is of the form v = 1 + a1X + a2X
2 + · · · with ai ∈ Z2. If a1 = 0,

then v ∈ U(D). If a1 = 1, then we can factor 1 + X out to get v ∈ (1 + X)U(D).

Hence, U(D)/U(D) = {1U(D), (1 + X)U(D)}. Elements of D# have the form ωXn

with ω ∈ U(D) and n ≥ 2. Put u = 1 + X, from our observation about U(D)/U(D)

we see elements of D# have the form λXn or λuXn where λ ∈ U(D), n ≥ 2.

The following theorem gives us some of the τ[ ]-factorization characteristics of

D.

Theorem 4.1. Let D = Z2[[X
2, X3]] and u = 1 + X. Then the following properties

regarding τ[ ]-factorization hold.

(1) The atoms of D are λXn and λuXn where n = 2, 3 and λ ∈ U(D). So each atom

is associate to one of X2, uX2, X3, uX3,

(2) Let α, β ∈ {1, u}. Then [αXn, βXm] = 1 is equivalent to α 6= β and 2 ≤ n, m ≤ 3;

or {m, n} = {3, 4} or {2, 3},
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(3) τ[ ] is divisive, but not multiplicative,

(4) D is τ[ ]-atomic with the following nonassociate τ[ ]-atoms:

X2, uX2, X3, uX3, X4, X6, X9, uX9, Xn, uXn

for n ≥ 11,

(5) D is not a τ[ ]-UFD,

(6) We can not define a ∈ D to be a τ[ ]-atom if a 6= bc for any b, c ∈ D# where

[b, c] = 1. In other words, since τ[ ] is not multiplicative, it is not necessarily true

that the τ[ ]-atom definition can be given with just a τ[ ]-factorization of length 2.

And, in fact, it is not true in this case,

Proof. (1) Given nonunit y = Xn +an+1X
n+1 + · · · in D with n ≥ 4, it is clear

that X2 is a proper factor of y. If n = 2 and an+1 = 0, then y is associate to X2. If

n = 2 and an+1 = 1, then y is associate to uX2. A similar argument holds for when

n = 3.

(2) Suppose that [αXn, βXm] = 1. Without loss of generality, let m ≤ n. If

m + 1 < n, then we get Xm | Xn, a contradiction. Also, if n, m > 3, then they are

both divisible by X2, a contradiction. So m = n or n = m + 1, and either n or m is

less than or equal to 3. Clearly, if α 6= β, then we can have n = m, and if α = β,

then we must have {m, n} = {3, 4} or {2, 3}.

From what we just discussed the converse is clear.

(3) We already know that τ[ ] is divisive. Since [X2, X3] = [X2, X3] = 1, but

[X2, X6] 6= 1, then τ[ ] is not multiplicative.
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(4) Let v = (1 + X)−2. So v ≡ 1 mod U(D). The following τ[ ]-factorizations

prove (4) for elements of order less than or equal to 10:

uX4 = X2 · uX2

X5 = X2 ·X3 = uX2 · uvX3

uX5 = X2 · uX3 = uX2 ·X3

uX6 = X3 · uX3

X7 = vX2 · uX2 · uX3 = X3 ·X4 = uX3 · uvX4

uX7 = X2 · uX2 ·X3 = uX3 ·X4 = X3 · uX4

X8 = uX2 · vX3 · uX3

uX8 = X2 ·X3 · uX3

X10 = vX3 · uX3 · uX4

uX10 = X3 · uX3 ·X4

That these are proper τ[ ]-factorizations follows from (2). For Xn, uXn, where n ≥ 11,

we must consider a few things. Any element of order 4 or greater is divisible by X2.

Also, given elements f(X) and g(X) of D with order of f(X) greater than order of

g(X) by 2 or more, g(X) divides f(X). This will be proven in more generality in

Lemma 4.3. Hence the above list is an exhaustive list of proper τ[ ]-factorizations.

(5) We have uX5 = X2 ·uX3 = uX2 ·X3 from the proof of (4). From (2) these

are both τ[ ]-atomic factorizations.

(6) X8, uX8 are not τ[ ]-atoms, but do not have a τ[ ]-factorization of length 2.
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4.2 τ[ ]-atomic structure of k[[X2, X3]]

4.2.1 Atoms

Let D = k[[X2, X3]] for a field k. Any element of the form a0 + a2X
2 + · · ·

with a0 6= 0 is a unit [14, Proposition III.5.9].

So let us look at elements of the forms

f(X) = a2X
2 + a3X

3 + · · · (4.1)

Now any element with a proper factorization must have order at least four, and since

a4X
4 + a5X

5 + · · · = X2(a4X
2 + a5X

3 + · · · ) is a proper factorization, the atoms of

D are precisely the elements in Equation (4.1) with a2 6= 0 or a3 6= 0.

4.2.2 Associates

Let us determine the associate classes of D. The following lemma allows us to

find a nice finite sum to represent each associate class.

Lemma 4.2. For n ≥ 2

Xn + an+1X
n+1 + · · · = (Xn + an+1X

n+1)(b0 + b2X
2 + b3X

3 + · · · ) (4.2)

for some (b0 + b2X
2 + b3X

3 + · · · ) with b0 6= 0. Further, we get Xn + aXn+1 ∼

Xn + bXn+1 if and only if b = a.
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Proof. Equation (4.2) is true if and only if the following system of equations

hold:

b0 = 1

b0an+1 = an+1

b2 = an+2

b2an+1 + b3 = an+3

...

bkan+1 + bk+1 = an+k+1

...

A simple induction shows

bk+1 = an+k+1 − an+1an+k + a2
n+1an+k+1 − · · · (−an+1)

k−1an+2

Suppose Xn + aXn+1 = (Xn + bXn+1)(c0 + c2X
2 + c3X

3 + · · · ). Then the

following system of equations must hold:

c0 = 1

c0b = a

c2 = 0

c2b + c3 = 0

...

ckb + ck+1 = 0

...

Hence, b = a. The converse is obvious.



45

We can conclude the associate classes of D are precisely {Xn + aXn+1 | n >

1, a ∈ k}. So the atoms of D are, up to associates,

{X2 + aX3, X3 + bX4 | a, b ∈ k}. (4.3)

4.2.3 τ[ ]-atoms

We know atoms are τ[ ]-atoms. So we only need to look at elements of D with

order greater than or equal to 4. The following lemma sheds some light onto which

elements are τ[ ]-related.

Lemma 4.3. For a, b ∈ k and n, k ≥ 2 there always exists ci’s in k that satisfy the

following equation:

Xn+k + aXn+k+1 = (Xn + bXn+1)(c0 + c2X
2 + · · · ) (4.4)

Proof. We look at two case: first when k = 2 and second when k > 2. As in

Lemma 4.2, Equation (4.4) holds if and only if the following system of equations has

a solution:

Case when k = 2 Case when k > 2

c0 = 0 c0 = 0

c0b = 0 c0b = 0

c2 = 1 c2 = 0

c2b + c3 = a
...

c3b + c4 = 0 ck−1b + ck = 1

c4b + c5 = 0 ckb + ck+1 = a

...
...

cmb + cm+1 = 0 ck+mb + ck+m+1 = 0

...
...
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Both cases follow by induction.

Lemma 4.3 shows the factors in any τ[ ]-factorization must have orders within

1 of each other. Note, X4 is the only element, up to units, of order 4 that can

possibly be a τ[ ]-atom; this only occurs when the characteristic of k is 2. Consider

any X4 + aX5 where a 6= 0. Then X2(X2 + aX2) is a proper τ[ ]-factorization by

Lemma 4.2. For X4 we look at (X2+aX3)(X2+bX3) = X4+(a+b)X5+abX6. From

the conclusion of Lemma 4.2 this is a proper τ[ ]-factorization of X4, up to units, if

and only if a = −b and a 6= b. So such a proper τ[ ]-factorization occurs if and only

if k does not have characteristic 2.

This all leads us to the following corollary.

Corollary 4.4. Suppose k has characteristic 2. Up to units, proper τ[ ]-atomic fac-

torizations in D have one of the following two forms:

f(X) := (X2 + a1X
3) · · · (X2 + asX

3)(X3 + b1X
4) · · · (X3 + btX

4) (4.5)

or

f(X) := (X3 + b1X
4) · · · (X3 + bsX

4) ·X4 (4.6)

where bi 6= bj and ai 6= aj for i 6= j.

If k has characteristic other than 2, then proper τ[ ]-atomic factorizations have

only the form in Equation (4.5).

Proof. We restate the facts that make this corollary true. By Lemma 4.3

elements in a τ[ ]-factorization can differ in order by at most 1. By Lemma 4.2

Xn + aXn+1 ∼ Xn + bXn+1 if and only if a = b, and elements of this form make
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up the associate classes. Finally, X4 is a τ[ ]-atom of order 4 if and only if k has

characterstic 2.

It is important to note the word “proper” in Corollary 4.4. Factors in Equa-

tions (4.5) and (4.6) are not necessarily the only τ[ ]-atoms. However, from our pre-

vious considerations any possible τ -atoms of higher degree are not τ[ ]-related to any

nonzero, nonunit elements. This leads us to ponder when we can completely charac-

terize the τ[ ]-atoms. Theorem 4.5 gives us an answer for when k is an infinite field

with characteristic not equal to 2.

Let k have characteristic other than 2. Assume we have a τ[ ]-atomic factor-

ization of an element, Xn + aXn+1, of order n ≥ 4; and allow some carelessness with

units. Then we have:

Xn + aXn+1 = (Xm1 + a1X
m1+1) · · · (Xmk + akX

mk+1)u (4.7)

= (Xm1+···+mk + (a1 + · · ·+ ak)X
m1+···+mk+1)u1

= (Xm1+···+mk + (a1 + · · ·+ ak)X
m1+···+mk+1)(c0 + c2X

2 + · · · )

where u1 = (c0+c2X
2+ · · · ) is a unit. For this to be a proper τ[ ]-atomic factorization

we need m1 + · · · + mk = n with mi ∈ {2, 3} for each i, and a1 + · · · + ak = a with

ai 6= aj for any mi = mj.

Theorem 4.5. Given D = k[[X2, X3]] with k an infinite field not of characteristic

2, then the τ[ ]-atoms of D coincide with the atoms of D.

Proof. From Equation (4.7) it suffices to show given a ∈ k and n ≥ 4, then

there exists {mi}, {ai}, and t > 1 such that m1 + · · ·+ mt = n with mi ∈ {2, 3}, and
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a1 + · · ·+ at = a with ai 6= aj for any mi = mj.

We already know that a collection of {mi} such that m1 + · · ·+ mt = n with

mi ∈ {2, 3} and t > 1 exists. So it suffices to show that a corresponding collection

{ai} exists with a1 + · · · + at = a and ai 6= aj for i 6= j. We can break this up into

two case:

(1) If t is odd we let a1 = a, and choose t−1
2

distinct elements {bi} of k that are not

equal to a or −a and such that bi 6= −bi. Then we have a + b1 + · · ·+ b t−1
2
− b1−

· · · − b t−1
2

= a as desired.

(2) If t is even and a 6= 0, then we let {a1, a2} = {0, a} and then it follows similarly

to case (1). If a = 0, then we simply have b1 + · · ·+ b t
2
− b1 − · · · − b t

2
= 0 for a

collection {bi} similar to those in case (1).

In both cases, we have constructed the necessary sums. Therefore, given an ele-

ment with order greater than or equal to 4, we can construct a proper τ[ ]-atomic

factorization of the element.

With the algorithm in place from the proof of Theorem 4.5 we can characterize

the τ[ ]-atoms of D when k is a finite field not of characteristic 2. By Corollary 4.4 we

can find a positive integer n such that elements of order greater than n are τ[ ]-atoms.

Thus, that leaves us finitely many cases left to mull over.

Corollary 4.6. Let k be the finite field of order pm for some prime greater than 2 (so

k = Fpm). Let f(X) ∈ D with order n. Then, up to units, we can say the following

with regards to τ[ ]-atomic factorizations of f(X):
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(1) If n = 2, 3, or n > 5pm, then f(X) is a τ[ ]-atom,

(2) If 3 < n ≤ 5pm − 2, then f(X) is not a τ[ ]-atom,

(3) f(X) = X5pm
is the only element of order 5pm with a proper τ[ ]-factorization,

(4) If n = 5pm − 1, then f(X) is a τ[ ]-atom.

Proof. All proper τ[ ]-atomic factorization have the form of Equation (4.5).

We will simply be evaluating the various possibilities for such a factorization. We

will continue with the notation in Equation (4.5). In other words, ai represents a

coefficient of a factor with order 2 and bj represents a coefficient of a factor with

order 3. Also, all results are up to associates. For the rest of the proof we will not

continue to mention this fact.

(1) This is clear. If n > 5pm, then there is not enough elements of k to form

a proper τ[ ]-factorization. There would have to exist an i 6= j such that ai = aj or

bi = bj.

(2) We will first look at the case when n < 5pm − 6. In this case, we can

construct a factorization of order n of the form of Equation (4.5) where the number

of factors of order 2 and of order 3 are each less than pm. We will then construct τ[ ]-

atomic factorizations for f(X) in the cases when n = 5pm−2, 5pm−3, 5pm−4, 5pm−5,

and 5pm − 6. The cases when n < 5pm − 6 will follow from these higher order cases.

Suppose n < 5pm − 6. Let y2 be the number of factors of order 2 and y3 be

the number of factors of order 3 in a factorization of the form of Equation (4.5). It

is important to note that for any order n we can choose y2 and y3 so they differ by
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no more than 2 (i.e., | y2 − y3 |≤ 2). Of course, at this point we are not concerned

with what the product equals. We are just interested in evaluating the order of the

element. Obviously, rearranging the values for y2 and y3 could change the value of

the product. This does not matter to us at this point since we have not determined

values for the ai’s and bj’s.

Suppose y3 ≤ y2. Without loss of generality, we can assume y2 ≤ y3 + 2. We

then have the following:

5y2 − 6 = 2y2 + 3(y2 − 2) ≤ 2y2 + 3y2 = n =⇒ y2 ≤
n + 6

5
< pm

If we reverse the roles of y2 and y3 a similar argument yields y3 < pm− 2
5
⇐⇒ y3 < pm.

We have shown we can create a factorization of order n with the desired values for y2

and y3. More specifically, we have shown for n < 5pm−6 we can create a factorization

with y2 ≤ pm−1 and y3 ≤ pm−1 whose product has order n. We now proceed with the

actual construction of τ[ ]-atomic factorizations for the aforementioned higher order

cases.

Suppose f(X) = Xn + aXn+1 and n = 5pm − 2. We may choose y2 = pm − 1

and y3 = pm for a factorization of the form of Equation (4.5) of order n. We now need

to properly select the ai and bj coefficients to make this a τ[ ]-atomic factorization

of f(X). We need a1 + · · · + as + b1 + · · · + bt = a where ai 6= aj and bi 6= bj for

i 6= j. Choose {a1, . . . , as} to be the set of all elements in k other than −a, and

choose {b1, . . . , bt} to be the set of all elements of k. Since
∑
c∈k

c = 0 then we have

s∑
i=1

ai +
t∑

j=1

bj =
s∑

i=1

ai =
∑
c∈k

c 6=−a

= a
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Thus, we have constructed a τ[ ]-atomic factorization of f(X). The same proof holds

for n = 5pm − 3 with y3 = pm − 1 and y2 = pm.

Now suppose n = 5pm − 5. We may choose y2 = pm − 1 and y3 = pm − 1 for

a factorization of the form of Equation (4.5) of order n. If a = 0 we simply choose

{a1, . . . , as} = {b1, . . . , bt} to be the set of nonzero elements of k (note that s = t). If

a 6= 0 we let a1 = b1 = a
2
. Then we choose {a2, . . . , as} to be a collection of pm − 2

distinct elements of k not equal to a
2

or −a
2
, and {b2, . . . , bt} = {−a2, . . . ,−as}. This

yields a τ[ ]-atomic factorization of f(X) as desired.

If n = 5pm − 4, then we choose y2 = pm − 2 and y3 = pm. Clearly, {b1, . . . , bt}

must be the collection of all elements of k if we want Equation 4.5 to be a τ[ ]-atomic

factorization. For the set {a1, . . . , as} we can choose any distinct pm − 2 collection

from k and still have a τ[ ]-atomic factorization. Maybe a better way to think about it

is we can exclude two distinct elements of k and still have a τ[ ]-atomic factorization.

Let b be an element of k with b 6= a− b (we know such an element exists; otherwise

2b = a for each b ∈ k). Then −b and b − a are distinct elements of k. So choose

{a1, . . . , as} to be the elements of k distinct from −b and b− a. We get

s∑
i=1

ai +
t∑

j=1

bj =
s∑

i=1

ai =
∑
c∈k

c 6=−b,(b−a)

= a

Hence, we can construct a τ[ ]-atomic factorization of f(X). The proof for n = 5pm−6

is the same by letting y2 = pm and y3 = pm − 2.

When 3 < n < 5pm − 6 we can choose y2 and y3 so that they either differ by

1, are equal, or differ by 2. Then we can construct a τ[ ]-atomic factorization as in
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the three cases above. Since the order is lower we will clearly have the existence of

the necessary ai’s and bj’s to construct the τ[ ]-atomic factorizations.

(3) Any proper τ[ ]-atomic factorization of f(X) with n = 5pm must have

y2 = y3 = pm. For an equation of the form of Equation (4.5) of order n to be a

τ[ ]-atomic factorization we must have {a1, . . . , as} = {b1, . . . , bt} be the set of all

elements of k. In this case, the sum of the ai’s and bj’s is 0. Hence, f(X) = X5pm
is

the only element of order n = 5pm that is not a τ[ ]-atom.

(4) To have a factorization of the form of Equation (4.5) for an element of

order pm− 1 either y2 or y3 must be greater than pm. So such a factorization will not

be a τ[ ]-atomic factorization.

4.3 Bezout Domains

Recall that a ring is indecomposable if it can not be written as the direct sum

of proper ideals.

Lemma 4.7. Given a Bezout domain D, then for a nonzero, nonunit element a ∈ D

D/(a) is indecomposable if and only if a is a τ[ ]-atom.

Proof. Suppose a is a τ[ ]-atom and D/(a) = B/(a) ⊕ C/(a). There exists

some b′ ∈ B and c′ ∈ C such that b′ + c′ + (a) = 1 + (a). Since D is a Bezout

domain, (b′) + (a) = (b) and (c′) + (a) = (c) for some b ∈ B and c ∈ C. So we

have D/(a) = (b)/(a)⊕ (c)/(a) with bc ∈ (a) and [b, c] = 1. By Proposition 3.12 a is

τ[ ]-prime. So a | b or a | c, a contradiction.

Conversely, if a = bc with b and c nonzero, nonunits and [b, c] = 1, then
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D/(a) = D/(b)⊕D/(c) [14, Proposition 2.1].

Proposition 4.8. Let D be a Bezout domain. Then the following are equivalent:

(1) D is a CFD,

(2) D is a UCFD,

(3) D is a τ[ ]-UFD,

(4) For each nonzero, nonunit a ∈ D, D/(a) is a finite direct product of indecompos-

able ideals.

Proof. The equivalence of (1) and (2) follows from [17, Theorem 1.7]. (2) is

equivalent to (3) since in a Bezout domain [a, b] = 1 if and only if (a, b) = D.

Assume (1) and let a be a nonzero, nonunit with a = p1 · · · pn a τ[ ]-atomic

factorization of a. Then we have D/(a) = D/(p1) ⊕ · · · ⊕ D/(pn) and from Lemma

4.7 each sum is indecomposable.

Assuming (4) we have D/(a) = R1 ⊕ · · · ⊕ Rn with each Ri indecomposable.

Under this isomorphism, denote it by φ = (φi)
n
i=1, we look at the image of a, say

φ(a) = (p1, . . . , pn). So we have each Ri is of the form D/(pi), and (a) = (p1) ∩ · · · ∩

(pn). Suppose [pi, pj] = x for some i 6= j. Under the isomorphism let y be an element

of D/(a) that is mapped to (0, . . . , 0, 1, 0, . . . , 0) where 1 is in the jth position. Then

φj(y) − 1 = y − 1 ∈ (pj) ⊆ (x) and φi(y) = y ∈ (pi) ⊆ (x). Hence, x is a unit,

and so [pi, pj] = 1 for i 6= j. From Lemma 4.7 (a) = (p1 · · · pn) gives a τ[ ]-atomic

factorization of g. From Corollary 3.13 D is a τ[ ]-UFD.
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4.4 CK Domains

A Cohen-Kaplansky domain (CK domain) is an atomic domain with only

finitely many irreducible elements. A CK domain is one-dimensional, semilocal, and

each irreducible element is contained in a unique maximal ideal. For our study it

will also be important to note that a local CK domain cannot contain exactly 2

nonassociate atoms. For further study of CK domains see [9] and [4].

We begin our study of CK domains with a corollary that follows readily from

Theorem 3.8.

Corollary 4.9. Let D be a CK domain. Then D is a τ[ ]-UFD if and only if DP is

a τ[ ]-UFD for each prime ideal P in D.

Proof. From [7, pg. 7] a CK domain is a one-dimensional, weakly factorial

domain. The result then follows from Theorem 3.8.

Given a ring R, a set S is universal if every atom of R divides every element

of S. The following lemma follows from considerations in [9].

Lemma 4.10. Let (D, M) be a quasilocal domain with M2 universal. Then for nonas-

sociate atoms ai, i = {1, 2, 3}, a1a2 = pa3 for some atom p, nonassociate to a1 and

a2.

Proof. We have a1a2 ∈ M2. So a1a2 ∈ (a3), say a1a2 = pa3. Clearly, p is not

a unit, and (p) * (ai) for i = {1, 2}. Also, p is not in M2. Otherwise, a1 divides p, a

contradiction. Hence, p is an atom nonassociate to a1 and a2 as desired.

By [9, Theorem 8] a local domain (D, M) with three atoms has M2 universal.
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Lemma 4.11. Let (D, M) be a local CK domain with exactly one or three nonasso-

ciate atoms. Then D is a τ[ ]-UFD.

Proof. First off, if there is only one, nonassociate atom, then D is a DVR.

So D is a τ[ ]-UFD. Suppose a1, a2, and a3 are the nonassociate atoms of D. From

Lemma 4.10 we have aiaj = uak
2 for i 6= j and k 6= i, j. Then [x, y] = 1 for some

x, y ∈ D# is equivalent to x = uai and y = vaj for i 6= j and units u, v of D. So any

τ[ ]-atomic factorization is of the form x1 · · ·xn where n ≤ 3 and each xi is associate

to either a1, a2, or a3. Then the only proper τ[ ]-atomic factorizations, up to units,

are a1 · a2, a1 · a3, a2 · a3, and a1 · a2 · a3. From here it is easy to see that τ[ ]-atomic

factorizations are unique.

Notice that [x, y] = 1 is equivalent to x = uai and y = vaj for i 6= j and units

u, v of D is immediate from the universality of M2.

Proposition 4.12. Let (D, M) be a quasilocal domain with M2 universal. Then D

is a CK domain with exactly one or three nonassociate atoms if and only if D is a

τ[ ]-UFD.

Proof. The forward direction is just Lemma 4.11.

Suppose D is a τ[ ]-UFD. Let {pi | i ∈ I} be the set of nonassociate atoms of

D. By Lemma 4.10 pipj = rkpk for distinct i, j, and k and some atom rk nonassociate

to pi and pj. If rk 6∼ pk, then pipj = rkpk are two distinct τ[ ]-atomic factorizations, a

contradiction.

So we must have pipj = upk
2 for any distinct i, j, and k. If D contains more

than three nonassociate atoms, then p1p2 = up4
2 = vp2p3 where u and v are units
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in D. So we arrive at the contradiction p1 ∼ p3. Hence, D has exactly one or three

nonassociate atoms.

From [4, Theorem 5.1] we have that in a quasilocal atomic domain D, the

following are equivalent.

(1) M2 is universal.

(2) M 6= M2 and for a ∈ M −M2, M2 ⊆ (a).

(3) For atoms a1, . . . , an ∈ D, a1 · · · anM = Mn+1.

(4) M is strongly prime, that is, for xy ∈ M (x, y ∈ K) either x ∈ M or y ∈ M .

Hence, we can replace the hypothesis that M2 is universal in Proposition 4.12 by any

one of these statements.

Corollary 4.13. Given a local CK domain (D, M) with n nonassociate atoms, where

n is a prime number greater than 3, then D is not a τ[ ]-UFD.

Proof. By [9, Theorem 11] we have M2 is universal. By Proposition 4.12 D is

not a τ[ ]-UFD.

We next look at a local domain whose integral closure is a DVR. We develop

equivalences for τ[ ]-UFD’s. Recall that the group of divisibility is defined as G(D) :=

K∗/D∗ where K is the quotient field of D. As previously stated, D is the integral

closure of D.

If G(D) is finitely generated, then the exact sequence
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0 −→ U(D)/U(D) −→ G(D) −→ G(D) −→ 0

splits. So we have G(D) ∼= G(D)⊕ U(D)/U(D). It was shown by B. Glastad and J.

Mott that if G(D) is finitely generated, then U(D)/U(D) is finite, and D is a finitely

generated D-module [4, Theorem 3.1].

Definition 4.14. A square-free UFD (SQFUFD) is an atomic domain such that given

two atomic factorizations a1 · · · an = b1 · · · bm with ai � aj and bi � bj for all i 6= j,

then n = m and after reordering ai ∼ bi.

Lemma 4.15. Given quasilocal domains (R,N) ⊆ (D, M) with U(R) = U(D), then

R = D.

Proof. Given m ∈ M , m− 1 ∈ U(D) = U(R). Hence, m = (m− 1) + 1 ∈ R.

Lemma 4.16. Let (D, M) be a local domain with integral closure (D, (π)) a DVR. If

G(D) ∼= Z⊕Zp for some prime p, then there are no rings properly between D and D.

Proof. Suppose that D ⊆ R ⊆ D. By [16, Theorem 44] R ⊆ D satisfies LO

(lying over) and so (R,N) is a quasilocal domain. We have

0 = U(D)/U(D) ⊆ U(R)/U(D) ⊆ U(D)/U(D) ∼= Zp

So U(R)/U(D) = 0 or U(R)/U(D) = U(D)/U(D) which implies U(R) = U(D) or

U(R) = U(D), respectively. Now since D, R, and D are all quasilocal then by Lemma

4.15 R = D or R = D, respectively.
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Lemma 4.17. Let D be an integral domain with integral closure D. Then [D : D] is

the largest set that is an ideal of both D and D.

Proof. Since 1 ∈ D, clearly [D : D] ⊆ D ⊆ D. We first show it is an ideal

of D. Let r ∈ [D : D]. For any d ∈ D we have rdD = drD ⊆ dD ⊆ D. Hence,

rd ∈ [D : D]. The other properties of an ideal follow similarly. Also, the proof that

[D : D] is an ideal of D is also similar.

Now suppose I is an ideal in both D and D. Then ID ⊆ I ⊆ D. Hence,

I ⊆ [D : D] as desired.

Lemma 4.18. Let (D, M) be a local domain with integral closure (D, (π)) a DVR. If

G(D) ∼= Z⊕ Zp for some prime p, then M = [D : D] = πnD and n ≤ 2.

Proof. We look at the ring D + DM . By Lemma 4.16 D + DM = D or

D + DM = D. Since D is a finitely generated D-module, in the first case we get the

contradiction that D = D by Nakayama’s Lemma.

So D + DM = D which implies DM ⊆ D. Hence M ⊆ [D : D]. Since [D : D]

is an ideal of D, we have M = [D : D]. Since M is an ideal of D, M = [D : D] = πnD

for some n.

To show n ≤ 2 we look at the ring D + Dπk for k ∈ Z+. By Lemma 4.16 we

have D = D + Dπk or D = D + Dπk. If k < n, then D = D + Dπk. Otherwise,

D = D+Dπk which implies Dπk ⊆ D. But then πk ∈ [D : D] = πnD, a contradiction.

Hence, if n > 2, then D + Dπ2 = D + Dπ = D. Let π = d + bπ2 for some d ∈ D

and b ∈ D. If d ∈ U(D) ⊆ U(D), then π ∈ U(D), a contradiction. If d ∈ M , then
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d = cπn for some c ∈ D. But then π = d + bπ2 = cπn + bπ2 = π2(cπn−2 + b). Again

we come to the contradiction that π ∈ U(D). So n ≤ 2.

Theorem 4.19. Let (D, M) be a local domain with integral closure (D, (π)) a DVR.

Suppose that MD = πkD and [D : D] = πnD. Then the following are equivalent:

(1) D has exactly 1 or 3 atoms.

(2) D is a τ[ ]-UFD with G(D) ∼= Z⊕ Zp.

(3) D is a SQFUFD with G(D) ∼= Z⊕ Zp.

Proof. (1) =⇒ (2) By Lemma 4.11 D is a τ[ ]-UFD. That G(D) ∼= Z ⊕ Zp

follows from [9].

(2) =⇒ (3) is straightforward.

(3) =⇒ (1) First, from Lemma 4.18 we have M = [D : D] = πnD. By [4,

Corollary 5.6] the number of nonassociate atoms of D is n· | U(D)/U(D) |. Since

G(D) ∼= Z ⊕ U(D)/U(D), U(D)/U(D) ∼= Zp. Hence, the number of nonassociate

atoms is n · p.

If n ≥ 2, then πn, πn + πn+1, πn+1, and πn+1 + πn+2 are nonassociate atoms.

We have πn · (πn+1 + πn+2) = πn+1 · (πn + πn+1) are two atomic factorizations. This

contradicts the hypothesis that D is a SQFUFD. So n = 1.

If | U(D)/U(D) |= p > 3, then there exists distinct elements u, v, and

1 ∈ U(D)/U(D) with uv 6= u, v, or 1. We get uπn · vπn = uvπn · πn are two distinct

atomic square-free factorizations, a contradiction. So p ≤ 3. Hence, D has 1 or 3

atoms.



60

The following corollary follows immediately from Theorem 4.19.

Corollary 4.20. Let (D, M) be a local domain with integral closure (D, (π)) a DVR.

Suppose that MD = [D : D] = πnD. Then the following are equivalent:

(1) D has exactly 1 or 3 atoms,

(2) D is a τ[ ]-UFD,

(3) D is a SQFUFD.

4.5 Conditions for k + XnK[[X]] to be a τ[ ]-UFD

We state here Brandis’ Theorem as found in [11, pg. 234]. It will be used in

the theorem to follow.

Theorem 4.21 (Brandis’ Theorem). Let K be an infinite field and L an extension

field. Moreover, let K∗ and L∗ denote their respective groups of units. If L∗/K∗ is

finitely generated, then K = L.

The following theorem looks at when the domain D = k + XnK[[X]], where

k ⊆ K are fields, is a τ[ ]-UFD. D is always a BFD and hence is τ[ ]-atomic [1].

Theorem 4.22. Let k ⊆ K be fields, n ≥ 1 and D = k+XnK[[X]]. D is a τ[ ]-UFD

is equivalent to the following:

(1) k = K and n = 1(so D = K[[X]] is a DV R) or

(2) k = Z2, K = GF (22) and n = 1(so D = Z2 + XGF (22)[[X]]).
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Proof. Assume D is a τ[ ]-UFD. Suppose n > 1. Then Xn, Xn + Xn+1, Xn+1,

and Xn+1+Xn+2 are nonassociate atoms and Xn·(Xn+1+Xn+2) = (Xn+Xn+1)·Xn+1

are distinct τ[ ]-atomic factorizations of X2n+1 + X2n+2. So n must be 1. Suppose

|K∗/k∗| > 3. So there exists u, v ∈ K∗ with uv 6= u, v, 1 in K∗/k∗. Consider

X, uX, vX, uvX in D. They are nonassociate atoms in D. so uvX2 = uX · vX =

X · uvX are two distinct τ[ ]-atomic factorizations in D. Suppose |K∗/k∗| ≤ 3 and

k 6= K. Then by Theorem 4.21 K is finite, so |K∗| = pnm − 1 and |k∗| = pm − 1.

Hence |K∗/k∗| = pnm−1
pm−1

= (pm−1)((pm)(n−1)+···+pm+1)
pm−1

= ((pm)(n−1) + · · · + pm + 1). So

p = 2, m = 1, and n = 2.

In (1), D is a UFD and hence a τ[ ]-UFD. Consider D = Z2 +X ·GF (22)[[X]].

Let GF (22)∗ = 〈δ〉 = {1, δ, δ2}. For b = b0 + b1X + b2X
2 + · · · ∈ U(GF (22)[[X]]),

b = b0(1 + b0
−1b1X + b0

−1b2X
2 + · · · ) ∈ b0U(D). So the atoms of D up to associates

are X, δX, and δ2X where λ ∈ U(D).

Now [aXn, bXm] = 1 ⇐⇒ n = m = 1 and aU(D) 6= bU(D) in U(D)/U(D) ∼=

GF (22)∗/Z2
∗ ∼= GF (22)∗ ∼= (Z3, +). So the other τ[ ]-atomic factorizations up to units

of D are δX2 = X · δX, X · δ2X = δ2X2, δX · δ2X = X2, and X · δX · δ2X = X3. So

it is clearly checked that D is a τ[ ]-UFD.

In [4, Theorem 7.1], Anderson and Mott showed that for a finite field K with

subfield k then R = k + K[[X]]X is a complete local CK domain. By Theorem 4.22

we see that for |K∗| > 3 R is a CK domain that is not a τ[ ]-UFD.

We now give an example of a local τ[ ]-UFD that is not a CK domain. This

example is taken from [15, Example 94]. Let R = K(U)[[X, Y, Z]] where K is a field.
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Let f = X2 + Y 3 + UZ6. Let T = R/(f). Then T is a 2-dimensional, complete,

local UFD. By Theorem 2.14 T is a τ[ ]-UFD. Since T is 2-dimensional, it is not a

CK-domain.
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CHAPTER 5
CONCLUSION

We conclude our paper with a summary of the major results, as well as ideas

for future work.

5.1 Results

In Chapter 2, we initiated our study with several examples. We looked closely

at the set S of height-one prime ideals, and we also developed the connection between

grade and v-coprimeness. In Corollary 2.4, we showed a weakly factorial domain is

a τS-UFD, where S is the set of height-one prime ideals; and in Theorem 2.5, we

expanded [17, Corollary 1.10]. In Example 2.2, we showed for a Noetherian domain

D, given a, b ∈ D#, [a, b]t = 1 is equivalent to G(P ) > 1 for every prime ideal P

containing (a, b). Hence, [a, b]t = 1 is equivalent to [a, b]S = 1 where S = {P | P is

prime and G(P ) = 1}.

Also, in Chapter 2, we studied the properties of a general comprimeness re-

lation. In Theorem 2.10, we showed if a relation τ satisfied a 6 τ a (CP1) and a τ b

with (a, b) ⊆ (c, d) =⇒ c τ d (CP6) for elements a, b, c, and d ∈ D#, then τ was

equivalent to τS where S = {(c, d) | c, d ∈ D# and c 6 τd}. In Theorem 2.11, we

showed for a set of ideals S in D, τS ≡ τ√S is equivalent to a τS b =⇒ a τS b2 for

all elements a, b ∈ D#.

Chapter 3 focused on τ[ ]-UFD’s. We developed the connection between weakly

factorial domains and τ[ ]-UFD’s, and GCD domains and τ[ ]-UFD’s. In Theorem 3.8,
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we showed for a weakly factorial domain D, D is a τ[ ]-UFD if and only if DP is a

τ[ ]-UFD for each height-one prime ideal P of D.

We proved several results regarding GCD domains. In Corollary 3.13, we

showed if D is a GCD domain, then τ[ ]-atomic implies τ[ ]-UFD. In Theorem 3.18, we

showed if D is a GCD domain, then D is a τ[ ]-UFD if and only if D[X] is a τ[ ]-UFD.

Also, Therem 3.25 stated that given D a GCD domain, D is a τ[ ]-UFD if and only if

D[X]Nt is a UCFD.

In Chapter 4, we looked at several examples with respect to the τ[ ] relation.

In Theorem 4.5 and Corollary 4.6, we classified the τ[ ]-atoms of k[[X2, X3]] where k

is either an infinite field not of characteristic 2 or any finite field. In Theorem 4.22,

we showed k + XnK[[X]], where k ⊆ K are fields, is a τ[ ]-UFD if and only if k = K

and n = 1 or k = Z2, K = GF (22) and n = 1.

We also studied Bezout domains and CK domains with respect to τ[ ]-UFD’s.

In Proposition 4.8, we showed a Bezout domain D is τ[ ]-UFD if and only if D/(a)

is a finite direct product of indecomposable ideals for each a ∈ D#. Of course, in a

Bezout domain, τmax ≡ τ[ ]. The relations between the atoms in a quasilocal domain

(D, M) when M2 is universal led us to an equivalence between CK domains and τ[ ]-

UFD’s. Specifically, in Proposition 4.12, we showed a quasilocal domain (D, M) with

M2 universal is a CK domain with exactly one or three nonassociate atoms if and

only if D is a τ[ ]-UFD.
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5.2 Future Work

Further development of the axioms of coprimeness is of interest. We are par-

ticularly interested in the following question: Under what conditions is a general τ

relation equivalent to a τ∗ relation for some ∗-operation? This question arose in our

study of τv and τmax. Intuitively, it seemed if τ satisfied Properties CP1 and CP6, and

τ was multiplicative, then we could define a ∗-operation such that τ∗ ≡ τ . However,

Example 2.3 showed otherwise.

Another area of interest is the domains that lie between atomic domains and

UFD’s. In [1] D.D. Anderson, D.F. Anderson, and Zafrullah studied HFD’s, FFD’s,

idf-domains, BFD’s, and ACCP. In [2] Anderson and Frazier generalized these do-

mains using the notion of τ -factorization, and produced analogous results to those in

[1]. It would be of interest to study τ[ ]-HFD’s, τ[ ]-FFD’s, τ[ ]-idf domains, τ[ ]-BFD’s,

and τ[ ]-ACCP.
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