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ABSTRACT

Symmetric functions arise in many areas of mathematics including combina-

torics, topology and algebraic geometry. Using ideals of symmetric functions, we tie

these three branches together. This thesis generalizes work of Garsia and Procesi

in 1992 that gave a quotient ring presentation for the cohomology ring of Springer

varieties.

Let R be the polynomial ring Z[x1, . . . , xn]. We present two different ideals

in R. Both are parametrized by a Hessenberg function h, namely a nondecreasing

function that satisfies h(i) ≥ i for all i. The first ideal, which we call Ih, is generated

by modified elementary symmetric functions. The ideal Ih generalizes the work of

Tanisaki who gave a combinatorial description of the ideal used in Garsia and Pro-

cesi’s quotient ring. Like the Tanisaki ideal, the generating set for Ih is redundant.

We give a minimal generating set for this ideal. The second ideal, which we call

Jh, is generated by modified complete symmetric functions. The generators of this

ideal form a Gröbner basis, which is a useful property. Using the Gröbner basis for

Jh, we identify a basis for the quotient R/Jh.

We introduce a partial ordering on the Hessenberg functions, and in turn we

discover nice nesting properties in both families of ideals. When h > h′, we have

Ih ⊂ Ih′ and Jh ⊂ Jh′ . We prove that Ih equals Jh when h is maximal. Since Ih is

the ideal generated by the elementary symmetric functions when h is maximal, the

generating set for Jh forms a Gröbner basis for the elementary symmetric functions.

Moreover, the quotient R/Jh gives another description of the cohomology ring of

the full flag variety.

The generators of the ring R/Jh are in bijective correspondence with the

Betti numbers of certain Hessenberg varieties. These varieties are a two-parameter
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generalization of Springer varieties, parametrized by a nilpotent operator X and a

Hessenberg function h. These varieties were introduced in 1992 by De Mari, Procesi

and Shayman. We provide evidence that as h varies, the quotient R/Jh may be a

presentation for the cohomology ring of a subclass of Hessenberg varieties called

regular nilpotent varieties.
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Symmetric functions arise in many areas of mathematics including combina-

torics, topology and algebraic geometry. Using ideals of symmetric functions, we tie

these three branches together. This thesis generalizes work of Garsia and Procesi

in 1992 that gave a quotient ring presentation for the cohomology ring of Springer

varieties.

Let R be the polynomial ring Z[x1, . . . , xn]. We present two different ideals

in R. Both are parametrized by a Hessenberg function h, namely a nondecreasing

function that satisfies h(i) ≥ i for all i. The first ideal, which we call Ih, is generated

by modified elementary symmetric functions. The ideal Ih generalizes the work of

Tanisaki who gave a combinatorial description of the ideal used in Garsia and Pro-

cesi’s quotient ring. Like the Tanisaki ideal, the generating set for Ih is redundant.

We give a minimal generating set for this ideal. The second ideal, which we call

Jh, is generated by modified complete symmetric functions. The generators of this

ideal form a Gröbner basis, which is a useful property. Using the Gröbner basis for

Jh, we identify a basis for the quotient R/Jh.

We introduce a partial ordering on the Hessenberg functions, and in turn we

discover nice nesting properties in both families of ideals. When h > h′, we have

Ih ⊂ Ih′ and Jh ⊂ Jh′ . We prove that Ih equals Jh when h is maximal. Since Ih is

the ideal generated by the elementary symmetric functions when h is maximal, the

generating set for Jh forms a Gröbner basis for the elementary symmetric functions.

Moreover, the quotient R/Jh gives another description of the cohomology ring of

the full flag variety.

The generators of the ring R/Jh are in bijective correspondence with the

Betti numbers of certain Hessenberg varieties. These varieties are a two-parameter
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generalization of Springer varieties, parametrized by a nilpotent operator X and a

Hessenberg function h. These varieties were introduced in 1992 by De Mari, Procesi

and Shayman. We provide evidence that as h varies, the quotient R/Jh may be a

presentation for the cohomology ring of a subclass of Hessenberg varieties called

regular nilpotent varieties.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Let R = Q[x1, . . . , xn] be the ring of polynomials in n variables. Any function

in R that remains invariant upon permuting the subscripts of its variables is called

a symmetric function. That is, the function f(x1, . . . , xn) in R is symmetric if

f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)) for all permutations σ in the symmetric group

Sn. Symmetric functions have a rich history and arise in a variety of areas in

mathematics such as combinatorics, Galois theory, representation theory, and linear

algebra. The first published work was in 1629 by Albert Girard [8], expressing

symmetric functions of the form xm
1 + · · ·+xm

n in terms of the elementary symmetric

functions in R – that is, the n functions of the form

ek :=
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · ·xik (1.1)

for k ∈ {1, . . . , n}. Later historical figures who explored symmetric functions include

Gabriel Cramer, Isaac Newton, Edward Waring, Alexander Vandermonde, Leonard

Euler, and Joseph Lagrange to name a few. More recently, the past century has

offered a wealth of contributions to the theory of symmetric functions from a list of

mathematicians too numerous to mention. Richard Stanley [15] writes, “the theory

of symmetric functions and its connections with combinatorics is in my opinion one

of the most beautiful topics in all of mathematics.”

The ring of symmetric functions has a number of different bases of which two,

in particular, will be a focus of this thesis: the set of elementary symmetric functions

ek (as given in (1.1)) and the set of complete symmetric functions hk given by

hk :=
∑

1≤i1≤i2≤···≤ik≤n

xi1xi2 · · ·xik
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for k ∈ {1, . . . , n}. The main difference between these two bases is that the ele-

mentary symmetric functions allow only square-free summands. We will analyze

elementary and complete symmetric functions having only a subset of the variables

x1, . . . , xn. These modified (or partial) symmetric functions arise in applications

such as the Tanisaki ideal [16] (see Section 1.3 for a brief history and related de-

tails). In fact, our work can be viewed as a generalization of work by Garsia and

Procesi [7] on the Springer variety.

Springer varieties SX are defined to be the set of flags stabilized by a nilpotent

operator X. In 1978, Springer [14] observed that the cohomology ring of SX carries

a symmetric group action, and gave a deep geometric construction of this action.

Over the next two decades, many mathematicians [11, 4, 7, 16] worked to make this

action more accessible. Using Tanisaki’s ideal of modified elementary symmetric

functions, Garsia and Procesi gave a quotient ring presentation for the cohomology

ring of SX and an explicit basis of monomials B(µ) for this quotient.

This thesis seeks to generalize the work of Garsia and Procesi. To this end,

we connect two different perspectives of cohomology. On the one hand, there is a

geometric view given by Tymockzo [17] in which the Betti numbers of a Springer

variety are counted by objects which we call (h, µ)-fillings. These fillings combina-

torially describe the dimensions of the cells of a paving of the Springer variety. On

the other hand, we have an algebraic view given by the Garsia-Procesi basis B(µ) of

monomials for the quotient of a polynomial ring by an ideal generated by symmetric

functions. In Chapter 2, we establish a direct bijective correspondence between the

set of (h, µ)-fillings and the monomials B(µ). To generalize this picture, we explore

Hessenberg varieties, which are a two-parameter generalization of Springer varieties.

They appear in various areas including numerical analysis, geometric representation

theory, quantum cohomology, and number theory.
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A natural question to ask is whether the geometric and algebraic correspon-

dence we established in the Springer variety setting extends to the more general

Hessenberg variety setting. For the class of regular nilpotent Hessenberg varieties,

the answer is yes (see Chapter 6). To achieve this goal, we define and analyze two

different families of ideals. One is generated by modified elementary symmetric

functions generalizing the Tanisaki ideal; the other is generated by modified com-

plete symmetric functions. In Chapters 3, 4, and 5, we explore a host of useful

properties exhibited by these two families of symmetric function ideals. In Chap-

ter 7, we provide a sufficient condition for these two families to coincide. Finally

in Chapter 8, we conjecture that a quotient of a polynomial ring by one of our ide-

als of modified complete symmetric functions gives a presentation for the integral

cohomology ring of a regular nilpotent Hessenberg variety.

1.2 Overview and main results

In the current chapter, we define a Hessenberg variety H(X, h) where X is

a nilpotent operator in Matn(C) and h = (h1, . . . , hn) is a Hessenberg function.

Tymoczko [17] gave a combinatorial description of the dimension of each of the

graded parts of the cohomology ring of H(X, h) by using certain fillings of the

Young diagram µ associated to X, which we call (h, µ)-fillings. In Section 1.6, we

describe a map Φ from (h, µ)-fillings onto a set of monomials Ah(µ) in Z[x1, . . . , xn].

This map extends to a graded vector space morphism from the formal linear span

of (h, µ)-fillings, which we denote Mh,µ, to the span of monomials Ah(µ).

In Chapter 2, we focus on the Springer setting and describe the three legs of

the following triangle:

H∗(SX)
99

yy y9
y9

y9
y9

y9
y9

y9 ee
∼=
%%K

K
K

K
K

(h, µ)-fillings
spanning Mµ

oo
∼=
Φ //

R/Iµ with
Ah(µ) = B(µ)

basis
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In this case, the (h, µ)-fillings are simply the row-strict tableaux. They tableaux

are the generating set for the vector space Mµ (see Section 2.1). The ideal Iµ is

the famed Tanisaki ideal [16]. It turns out that the image of Φ, namely, our set of

monomials Ah(µ), coincides with the Garsia-Procesi basis B(µ) of monomials for

a polynomial quotient ring presentation R/Iµ for the rational cohomology of the

Springer varieties. We take R to be the polynomial ring Q[x1, . . . , xn]. Garsia and

Procesi used a tree on Young diagrams to find B(µ). We refine their construction

and build a modified GP-tree for µ (see Definition 2.3.4). This refinement helps

us obtain more information from their tree; the actual paths on the modified GP-

tree describe how to reconstruct an (h, µ)-filling corresponding to a basis element

xα in R/Iµ. We conclude in Section 2.3 that the map Φ is a graded vector space

isomorphism.

In Chapter 3, motivated by work of Biagioli, Faridi, and Rosas [17], we gener-

alize the Tanisaki ideal to non-Springer settings. We fix X to be a regular nilpotent

operator and let the Hessenberg function h vary. For each h = (h1, . . . , hn), we

generate a corresponding ideal Ih from a set of at most n(n+1)
2

modified elementary

symmetric functions. Denote this collection of generators by Ch. We introduce a

partial ordering on Hessenberg functions and derive nice nesting properties such

as h > h′ implies Ih ⊂ Ih′ . Under certain circumstances a stronger result holds,

namely, one of containment of generators. That is, for certain h > h′ we have Ch

contained in Ch′ . As in Tanisaki’s original work, our generating set is not minimal.

In Section 3.5, we give a minimal generating set for Ih with exactly n generators.

In Chapter 4, we construct another family of ideals Jh. For each Hessenberg

function h = (h1, . . . , hn), we generate the corresponding ideal Jh from a set of

exactly n modified complete symmetric functions. Analogous to the setting of the

ideal Ih, we deduce a nesting property that if h > h′ then Jh ⊂ Jh′ .

In Chapter 5, we discuss two key properties of the ideals Jh. In Theorem 5.3.2,
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we prove that the generators form a Gröbner basis. Using properties of Gröbner

bases, we prove in Theorem 5.4.3 that we can easily identify a basis for R/Jh.

Furthermore in Corollary 5.4.5, we show that R/Jh has finite rank. In Sections 5.1

and 5.2, we provide the necessary definitions and background from commutative

algebra. (Results from this chapter hold over Z coefficients, not just Q, so we may

take R to be Z[x1, . . . , xn].)

In Chapter 6, we generalize the Springer-setting results from Chapter 2 to

the setting of regular nilpotent Hessenberg varieties H(X, h), where X is a regular

nilpotent operator and h is an arbitrary Hessenberg function. The quotient R/Jh

plays the role of Garsia and Procesi’s quotient R/Iµ. We prove in Section 6.3 that

the monomials Ah(µ) coincide with the basis Bh(µ) of R/Jh. Moreover, the map Φ is

a graded vector space isomorphism between Mh,µ (the formal linear span of (h, µ)-

fillings) and the span of monomials Ah(µ). In Theorem 6.3.3, we show that the

generators of R/Jh describe the Betti numbers of the regular nilpotent Hessenberg

varieties.

In Chapter 7, we prove that when h is maximal, namely when h = (n, . . . , n),

the ideal Ih equals the ideal Jh. Since Ih in this setting is generated by precisely

the n elementary symmetric functions, we obtain a Gröbner basis for the set of

elementary symmetric functions.

In Chapter 8, we discuss future directions and open questions. For instance,

for n = 4 we observed that each of the 14 ideals Ih coincided with their correspond-

ing ideals Jh. Does Ih = Jh for all Hessenberg functions h? We also conjecture

that R/Jh is a presentation for the integral cohomology ring of regular nilpotent

Hessenberg varieties. Recent results of Harada and Tymoczko [9] support our claim

that R/Jh may indeed be a presentation for the cohomology ring of a subclass of

regular nilpotent Hessenberg varieties called Peterson varieties.
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1.3 Brief history of the Springer setting

Let N(µ) be the set of nilpotent elements in Matn(C) with Jordan blocks of

sizes µ1 ≥ µ2 . . . ≥ µs > 0 so that
∑s

i=1 µi = n. The quest began 50 years ago to

find the equations of the closure N(µ) in Matn(C) – that is, the generators of the

ideal of polynomial functions on Matn(C) which vanish on N(µ). When µ = (n),

Kostant [10] showed in his fundamental 1963 paper that the ideal is given by the

invariants of the conjugation action of GLn(C) on Matn(C). In 1981, De Concini and

Procesi [4] proposed a set of generators for the ideals of the schematic intersections

N(µ) ∩ T where T is the set of diagonal matrices and µ is an arbitrary partition of

n. In 1982, Tanisaki [16] simplified their ideal; his simplification has since become

known as the Tanisaki ideal Iµ. In 1992, Garsia and Procesi [7] showed that the ring

Rµ = Q[x1, . . . , xn]/Iµ is isomorphic to the cohomology ring of a variety called the

Springer variety associated to a nilpotent element X ∈ N(µ). Much work has been

done to simplify the description of the Tanisaki ideal even further, including work

by Biagioli, Faridi, and Rosas [1] in 2008. Inspired by their work, we generalize

the Tanisaki ideal in Chapter 3 for a subclass of a family of varieties that naturally

extends Springer varieties, called Hessenberg varieties.

1.4 Definition of a Hessenberg variety

Hessenberg varieties were introduced by De Mari, Procesi, and Shayman [5]

in 1992. Let h : {1, 2, . . . , n} −→ {1, 2, . . . , n} be a map subject to the constraints

i ≤ h(i) for all i, and h(i) ≤ h(i + 1) for all i < n. We call the map h a Hessenberg

function. In this paper we will denote this function by an n-tuple h = (h1, . . . , hn)

where hi = h(i). A flag is a nested sequence of C-vector spaces

V1 ⊆ V2 ⊆ · · · ⊆ Vn = Cn,

where each Vi has dimension i. The collection of all such flags is called the full flag

variety F. Fix a nilpotent operator X ∈ Matn(C). We define a Hessenberg variety
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to be the following subvariety of the full flag variety:

H(X, h) = {Flags ∈ F | X · Vi ⊆ Vh(i) for all i}.

Since conjugating the nilpotent X will produce a variety homeomorphic to H(X, h)

[17, Proposition 2.7], we can assume that the nilpotent X is in Jordan canonical

form, with a weakly decreasing sequence of Jordan block sizes µ1 > · · · > µs > 0 so

that
∑s

i=1 µi = n. We may view µ as a partition of n or as a Young diagram with

row lengths µi. Thus there is a one-to-one correspondence between Young diagrams

and conjugacy classes of nilpotent operators.

For a fixed nilpotent operator X, there are two extreme cases. If the Hessen-

berg function is h = (1, 2, . . . , n), then H(X, h) is the Springer variety, which we

denote SX . At the other extreme if the Hessenberg function is h = (n, . . . , n), then

all flags satisfy the condition X ·Vi ⊆ Vh(i) for all i and hence H(X, h) = F. We will

always take h to be in this range, so (1, 2, . . . , n) ≤ h ≤ (n, . . . , n).

1.5 Using (h, µ)-fillings to compute the Betti numbers of Hessenberg
varieties

In 2005, Tymoczko [17] gave a combinatorial procedure for finding the dimen-

sions of the graded parts of H∗(H(X, h)). Let the Young diagram µ correspond to

the Jordan canonical form of X as given in Section 1.4. Any injective placing of the

numbers 1, . . . , n in a diagram µ with n boxes is called a filling of µ. It is called

an (h-µ)-filling if it adheres to the following rule: a horizontal adjacency k j is

allowed only if k ≤ h(j). If h and µ are clear from context, then we often call this

a permissible filling. When h = (3, 3, 3) all permissible fillings of µ = (2, 1) coincide

with all possible fillings as shown below.

1 2
3 ,

1 3
2 ,

2 3
1 ,

2 1
3 ,

3 1
2 , and

3 2
1

Figure 1.1: The six (h, µ)-fillings for h = (3, 3, 3) and µ = (2, 1).
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If h = (1, 3, 3) then the fourth and fifth tableaux in Figure 1.1 are not (h, µ)-fillings

since 2 1 and 3 1 are not allowable adjacencies for this given h.

Definition 1.5.1 (Dimension pair). Let h be a Hessenberg function and µ be a

partition of n. The pair (a, b) is a dimension pair of an (h, µ)-filling T if

1. b > a,

2. b is below a and in the same column, or b is in any column strictly to the left

of a, and

3. if some box with filling c happens to be adjacent and to the right of a, then

b ≤ h(c).

Theorem (Tymoczko). [17, Theorem 1.1] The dimension of H2k(H(X, h)) equals

the number of (h, µ)-fillings T such that T has k dimension pairs.

Remark 1.5.2. Tymoczko proves this theorem by providing an explicit geometric

construction which partitions H(X, h) into pieces homeomorphic to complex affine

space. Consequently, this paving by affines determines the Betti numbers of H(X, h).

Example 1.5.3. Fix h = (1, 3, 3) and let µ have shape (2, 1). The figure below

gives all possible (h, µ)-fillings and their corresponding dimension pairs.

1 2
3 ←→ (1, 3), (2, 3)

1 3
2 ←→ (1, 2)

2 3
1 ←→ no dimension pairs

3 2
1 ←→ (2, 3)

Figure 1.2: The four (h, µ)-fillings for h = (1, 3, 3) and µ = (2, 1).

We conclude H0 has dimension 1 since exactly one filling has 0 dimension pairs. H2

has dimension 2 since exactly two fillings have 1 dimension pair each. Lastly, H4

has dimension 1 since the remaining filling has 2 dimension pairs.
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1.6 The map Φ from (h, µ)-fillings to monomials Ah(µ)

Let R be the polynomial ring Q[x1, . . . , xn]. We introduce a map from the set

of (h, µ)-fillings onto a set of monomials in R. First, we provide some notation for

the set of dimension pairs.

Definition 1.6.1 (DPT – set of dimension pairs of T ). Fix a partition µ of n. Let

T be an (h, µ)-filling. Define DPT to be the set of dimension pairs of T according

to Section 1.5. For a fixed y ∈ {2, . . . , n}, define

DPT
y :=

{
(x, y) | (x, y) ∈ DPT

}
.

The number of dimension pairs of an (h, µ)-filling T is called the dimension of T.

Fix a Hessenberg function h and a partition µ of n. The map Φ is the following:

Φ : {(h, µ) -fillings} −→ R defined by T 7−→
∏

(i,j)∈DPT
j

2≤j≤n

xj.

Denote the image of Φ byAh(µ). By abuse of notation we also denote the linear span

of these monomials by Ah(µ). Denote the formal linear span of the (h, µ)-fillings by

Mh,µ. Extending Φ linearly, we get a map on vector spaces Φ : Mh,µ → Ah(µ).

Remark 1.6.2. Any monomial xα ∈ Ah(µ) will be of the form xα2
2 · · ·xαn

n . That

is, the variable x1 can never appear in xα since 1 will never be the larger number

in a dimension pair.

Theorem 1.6.3. If µ is a partition of n, then Φ is a well-defined degree-preserving

map from the set of (h, µ)-fillings onto the monomials Ah(µ). That is, r-dimensional

(h, µ)-fillings map to degree-r monomials in Ah(µ).

Proof. Let T be an (h, µ)-filling of dimension r. Then T has r dimension pairs by

definition. By construction Φ(T ) will have degree r. Hence the map is degree-

preserving.
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CHAPTER 2

SPRINGER VARIETY SETTING

In this chapter we will fill in the details of Figure 2.1. Recall that if we

fix the Hessenberg function to h = (1, 2, . . . , n) and let the nilpotent operator X

(equivalently, the shape µ) vary, the Hessenberg variety H(X, h) obtained is the

Springer variety SX . Since this chapter focuses on this setting, we omit the h in

our notation. For instance, the image of Φ is A(µ). Similarly, the Garsia-Procesi

basis will be denoted B(µ) (as it is denoted in the literature [7]).

H∗(SX)
99

yy y9
y9

y9
y9

y9
y9

y9 ee
∼=
%%J

J
J

J
J

(h, µ)-fillings
spanning Mµ

oo
∼=
Φ //

R/Iµ with
A(µ) = B(µ)

basis

Figure 2.1: Triangle – Springer setting.

In Section 2.1, we recast the statement of the graded vector space morphism Φ

to the setting of Springer varieties. In Section 2.2, we define an inverse map Ψ from

the span of monomialsA(µ) to the formal linear span of (h, µ)-fillings, thereby giving

not only a bijection of sets but also a graded vector space isomorphism as is shown

in Corollary 2.3.10. This completes the bottom leg of the triangle in Figure 2.1. In

Section 2.3, we modify the work of Garsia and Procesi [7] and develop a technique

to build the (h, µ)-filling corresponding to a monomial in their quotient basis B(µ).

We conclude A(µ) = B(µ). Lastly in Section 2.4, we expose a barrier to applying

the inverse map Ψ in arbitrary Hessenberg variety settings.
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2.1 Remarks on the map Φ when h = (1, 2, . . . , n)

Fix a partition µ of n. Upon consideration of the combinatorial rules governing

a permissible filling of a Young diagram, we see that if h = (1, 2, . . . , n), then the

(h, µ)-fillings are just the row-strict tableaux of shape µ. Suppressing the h, we

denote the formal linear span of these tableaux by Mµ. This is the standard symbol

for this space, commonly known as the permutation module corresponding to µ (see

expository work of Fulton [6]). In this specialized setting, the map Φ is simply

Φ : Mµ −� A(µ) defined by T 7−→
∏

(i,j)∈DPT
j

2≤j≤n

xj,

and hence Theorem 1.6.3 specializes to the following.

Theorem 2.1.1. If µ is a partition of n, then Φ is a well-defined degree-preserving

map from the set of row-strict tableaux in Mµ onto the monomials A(µ). That is,

r-dimensional tableaux in Mµ map to degree-r monomials in A(µ).

Example 2.1.2. Let µ = (2, 2, 2) have the filling T = 4 5
3 6
1 2

. Suppressing the

commas for ease of viewing, the contributing dimension pairs are (23), (24), (25),

(26) and (34). Observe (23) ∈ DPT
3 , (24), (34) ∈ DPT

4 , (25) ∈ DPT
5 , and (26) ∈ DPT

6 .

Hence Φ takes this tableau to the monomial x3x
2
4x5x6 ∈ A(µ).

In the next section we will give an explicit algorithm to recover the original

row-strict tableau from any monomial in A(µ). Example 2.2.10 in particular applies

the inverse algorithm to the example above.

2.2 The inverse map Ψ from monomials in A(µ) to (h, µ)-fillings

The map back from a monomial xα ∈ A(µ) to an (h, µ)-filling is not as trans-

parent. We will construct the tableau by filling it in reverse order starting with the

number n. The next definitions give us the language to speak about where we can

place n and the subsequent numbers.
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Definition 2.2.1 (Composition of n). Let ρ be a partition of n corresponding to a

diagram of shape (ρ1, ρ2, . . . , ρs) that need not be a proper Young diagram. That

is, the sequence neither has to weakly increase nor decrease and some ρi may even

be zero. An ordered partition of this kind is often called a composition of n and is

denoted ρ � n.

Definition 2.2.2 (Dimension-ordering of a composition). We define a dimension-

ordering on a composition ρ in the following manner. Order the boxes on the

far-right of each row starting from the right-most column to the first column going

from top to bottom each time.

Example 2.2.3. If ρ = (2, 1, 0, 3, 4) � 12, then the ordering is

3
5

4

1
2

.

Notice that imposing a dimension-ordering on a diagram places exactly one number

in the far-right box of each non-empty row.

Definition 2.2.4 (Subfillings and subdiagrams of a composition). Let T be a filling

of a composition ρ of n. If the values i+1, i+2, . . . , n and their corresponding boxes

are removed from T , then what remains is called a subfilling of T and is denoted T (i).

Ignoring the numbers in these remaining i boxes, the shape is called a subdiagram

of ρ and is denoted ρ(i).

Observe that ρ(i) need no longer be a composition. For example, let ρ =

have filling T = 1 3 2 . Then T (2) is 1 2 and so ρ(2) gives the subdiagram

which is not a composition. The next property gives a sufficient condition on T to

ensure ρ(i) is a composition.

Subfilling Property. A filling T of a composition ρ of n satisfies the subfilling

property if the number i is in the right-most box of some row of the subfilling T (i)

for each i ∈ {1, . . . , n}.
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Lemma 2.2.5. Let T be a filling of a composition ρ of n. Then the following are

equivalent:

(a) T satisfies the Subfilling Property.

(b) T is a row-strict filling of ρ.

In particular, every filling of a Young diagram ρ satisfying the Subfilling Property

lies in Mρ.

Proof. Let T be a filling of composition ρ of n. Suppose T is not row-strict. Then

there exists some row in ρ with an adjacent filling of two numbers k j such that

k > j. However the subfilling T (k) does not have k in the right-most box of this

row, so T does not satisfy the Subfilling Property. Hence (a) implies (b). For the

converse, suppose T does not satisfy the Subfilling Property. Then there exists a

number i such that i is not in the far-right box of some nonzero row in T (i). Thus

there is some k in this row that is smaller and to the right of i so T is not row-strict.

Hence (b) implies (a).

Lemma 2.2.6. Let ρ = (ρ1, ρ2, . . . , ρs) be a composition of n. Suppose that r of the

s entries ρi are nonzero. We claim:

(a) There exist exactly r positions where n can be placed in a row-strict composition.

(b) Let T be a row-strict filling of ρ. If n is placed in the box of T with dimension-

ordering i ∈ {1, . . . , r}, then n is in a dimension pair with exactly i − 1 other

numbers; that is, |DPT
n | = i− 1.

Proof. Suppose ρ = (ρ1, ρ2, . . . , ρs) is a composition of n where r of the s entries

are nonzero. Claim (a) follows by the definition of row-strict and the fact that n is

the largest number in any filling of ρ � n. To illustrate the proof of (b), consider

the following schematic for ρ:
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1
2

3

4
5

6
..
.
rρ :=

.

Enumerate the far-right boxes of each nonempty row (as in the figure above) using

dimension-ordering with the numbers 1, . . . , r. Let T be a row-strict filling of ρ.

Suppose n lies in the box with dimension-ordering i ∈ {1, . . . , r}. It suffices to count

the number of dimension pairs with n, or simply |DPT
n | since n is the largest value

in the filling. Thus we want to count the distinct values β such that (β, n) ∈ DPT
n .

We need not concern ourselves with boxes in the same column below or anywhere

left of the ith dimension-ordered box for then (β, n) ∈ DPT
n would imply β > n

which is impossible (see •-shaded boxes in figure below). We also need not concern

ourselves with any boxes that are in the same column above or anywhere to the

right of the ith dimension-ordered box if it has a neighbor j immediately right of it

(see ◦-shaded boxes in figure below).

1
2

3

4
5

6
··
i

ρ :=

••
•
•·
··
••
•

••
•
•·
··
••
•

••
•
•

◦◦
◦
◦◦
◦

◦◦◦◦

◦◦ .

If so, then (β, n) ∈ DPT
n would imply n ≤ h(j) which is impossible since h(j) = j and

j < n. That leaves exactly the i− 1 boxes which are dimension-ordered boxes that

are in the same column above n or anywhere to the right of n. Hence |DPT
n | = i−1

and (b) is shown.

Lemma 2.2.7. Suppose T is a row-strict filling of a composition ρ of n. If i lies

in {1, . . . , n}, then |DPT (i)

i | = |DPT
i |.

Proof. Consider the subfilling T (i). All the existing pairs (β, i) ∈ DPT (i)

i will still

be valid dimension pairs in T if we restore the numbers i + 1, . . . , n and their
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corresponding boxes. Hence |DPT (i)

i | ≤ |DPT
i |. However no further pairs (β, i) can

be created by restoring numbers larger than i, thus we get equality.

Lemma 2.2.8. Fix a partition µ of n. Let T be a tableau in Mµ. Suppose Φ(T )

is the monomial xα. For each i ∈ {2, . . . , n}, consider the subdiagram µ(i) of µ

corresponding to the subfilling T (i) of T . Then each µ(i) has at least αi + 1 nonzero

rows where αi is the exponent of xi in the monomial xα.

Proof. Fix a partition µ of n. Let T ∈ Mµ and xα ∈ A(µ) be Φ(T ). By Re-

mark 1.6.2, xα is of the form xα2
2 · · ·xαn

n . Suppose that the claim does not hold.

Then there is some i ∈ {2, . . . , n} for which µ(i) has r nonzero rows and r < αi + 1.

Lemma 2.2.6 implies the number of dimension pairs in DPT (i)

i is at most r−1. Thus

|DPT (i)

i | ≤ r − 1 < αi. Since |DPT (i)

i | = |DPT
i | by Lemma 2.2.7, it follows that

|DPT
i | < αi, contradicting the fact that variable xi has exponent αi.

Theorem 2.2.9 (A map from A(µ) to (h, µ)-fillings). Given a partition µ of n,

there exists a well-defined dimension-preserving map Ψ from the monomials A(µ)

to the set of row-strict tableaux in Mµ. That is, Ψ maps degree-r monomials in

A(µ) to r-dimensional (h, µ)-fillings in Mµ. Moreover the composition

A(µ)
Ψ−→Mµ Φ−→ A(µ)

is the identity.

Proof. Fix a partition µ = (µ1, µ2, . . . , µk) of n. Let xα be a degree-r monomial in

A(µ). Remark 1.6.2 reminds us that xα is of the form xα2
2 · · ·xαn

n . The goal is to

construct a map Ψ : A(µ) → Mµ such that Ψ(xα) is an r-dimensional tableau in

Mµ and Φ◦Ψ(xα) = xα. Recall A(µ) is the image of Mµ under Φ so we know there

exists some tableau T ′ ∈Mµ with |DPT ′

i | = αi for each i ∈ {2, . . . , n}.

We now construct a filling T (not a priori the same as T ′) by giving µ a

precise row-strict filling to be described next. Lemma 2.2.5 ensures T will lie in

Mµ. To construct T we iterate the algorithm below with a triple-datum of the form
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(µ(i), i, xαi
i ) of a composition µ(i) of i, an integer i, and the xαi

i -part of xα. Start

with i = n in which case µ(n) is µ itself; then decrease i by one each time and repeat

the steps below with the new triple-datum. The algorithm is as follows:

1. Input the triple-datum.

2. Impose the dimension-ordering on µ(i).

3. Place i in the box with dimension-order αi + 1.

4. If i ≥ 2, then remove the box with the entry i to get a new subdiagram µ(i−1).

Pass the new triple-datum (µ(i−1), i− 1, x
αi−1

i−1 ) to Step 1.

5. If i = 1, then the final number 1 is forced in the last remaining box. Replace

all n− 1 removed numbers and call this tableau T .

We confirm that this algorithm is well-defined and produces a tableau in Mµ.

Step 3 can be performed because Lemma 2.2.8 ensures the box exists. The Subfill-

ing Property ensures that the subdiagram at Step 4 is indeed a composition. By

Lemma 2.2.5, T is row-strict and hence lies in Mµ.

We are left to show Φ maps T to the original xα ∈ A(µ) from which we

started. It suffices to check that if the exponent of xi in xα is αi, then |DPT
i | = αi

for each i ∈ {2, . . . , n}. By Lemma 2.2.6, when i = n we know |DPT
n | = αn. At

each iteration after this initial step, we remove one more box from µ. At step i = m

for m < n, we placed m into µ(m) in the box with dimension-order αm + 1 and

hence |DPT (m)

m | = αm by Lemma 2.2.6. But |DPT (m)

m | = |DPT
m | by Lemma 2.2.7.

Thus |DPT
m | = αm as desired. Hence given the monomial xα ∈ A(µ), we see by

construction of T = Ψ(xα) that T has the desired dimension pairs to map back to

xα via the map Φ. That is, the composition Φ ◦Ψ is the identity on A(µ).

Example 2.2.10. Let µ = (2, 2, 2) and consider the monomial x3x
2
4x5x6 from Ex-

ample 2.1.2. We show that this monomial will map to the filling
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4 5
3 6
1 2

which we showed in Example 2.1.2 maps to the monomial x3x
2
4x5x6 under Φ. We

have the following flowchart:

c

b

a

6 7→2
=⇒

6
b

c

a

5 7→2
=⇒ 5

6b

c

a

4 7→3
=⇒ 4 5

6b

a

3 7→2
=⇒ 4 5

3 6
a

2 7→1
=⇒ 4 5

3 6
2

1 forced
=⇒ 4 5

3 6
1 2

.

For clarity we label the dimension-ordered boxes at each stage in small font with

letters a, b, c to mean 1st, 2nd, 3rd dimension-ordered boxes respectively. Place 6

in the second dimension-ordered box b since the exponent of x6 is 1. Place 5 in the

second dimension-ordered box b since the exponent of x5 is 1. Place 4 in the third

dimension-ordered box c since the exponent of x4 is 2. And so on.

Remark 2.2.11. Since Mµ Φ−→ A(µ)
Ψ−→ Mµ is the identity, it follows that A(µ)

and Mµ are isomorphic as graded vector spaces. This proof is a simple consequence

of the fact that the monomials A(µ) coincide with the Garsia-Procesi basis B(µ).

We show this in the next section in Corollary 2.3.10.

2.3 A(µ) coincides with the Garsia-Procesi basis B(µ)

Garsia and Procesi construct a tree [7, pg.87] that we call a GP-tree to define

their monomial basis B(µ). In this section we modify this tree’s construction to

deliver more information. For a given monomial xα ∈ B(µ), each path on the

modified tree tells us how to to construct a rwo-strict tableau T such that Φ(T )

equals xα. In other words the paths on the tree give Ψ. First we recall what

Garsia and Procesi did. Then we give an example that makes this algorithm more

transparent.

Definition 2.3.1 (GP-tree). Although Garsia and Procesi mention nothing of a

dimension-ordering (recall Definition 2.2.2), we find it clearer to explain the combi-

natorics of building a GP-tree using this concept. They also use French-style Ferrers

diagrams, but we will use the convention of having our tableaux flush top and left.
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If µ is a partition of n, then the GP-tree of µ is a tree with n levels constructed as

follows. Let µ sit alone at the top Level n. From a subdiagram µ(i) at Level i, we

branch down to exactly r new subdiagrams at Level i−1 where r equals the number

of nonzero rows of µ(i). Note that this branching is injective – that is, no two Level

i diagrams branch down to the same Level i−1 diagram. Label these r edges left to

right with the labels x0
i , x

1
i , . . . , x

r−1
i . Impose the dimension-ordering on µ(i). The

subdiagram at the end of the edge labelled xj
i for some j ∈ {0, 1, . . . , r − 1} will

be exactly µ(i) with the box with dimension-ordering j + 1 removed. If a gap in a

column is created by removing this box, then correct the gap by pushing up on this

column to make a proper Young diagram instead of a composition. At Level 1 there

is a set of single box diagrams. Instead of placing single boxes at this level, put the

product of the edge labels from Level n down to this vertex. These monomials are

the basis for B(µ) [7, Theorem 3.1, pg.100].

Example 2.3.2 (GP-tree for µ = (2, 2)). Let µ = (2, 2), which has shape . We

start at the top Level 4 with the shape (2,2). The first branching of the (2,2)-tree

is

x0
4

����
��

��
� x1

4

  B
BB

BB
BB

B

.

But we make the bottom-left non-standard diagram into a proper Young diagram

by pushing the bottom-right box up the column. In the Figure 2.2, we show the

completed GP-tree. Observe that the six monomials at Level 1 are the Garsia-

Procesi basis B(µ).

Remark 2.3.3. Each time a subdiagram is altered to make it look like a proper

Young diagram, we lose information that can be used to reconstruct a row-strict

tabeau in Mµ from a given monomial in B(µ). Our construction below will take

this into account, and give the precise prescription for constructing a filling from a

monomial in B(µ).
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Level 4
1

wwooooooooooooooo
x4

''OOOOOOOOOOOOOOO

Level 3
1

����
��

��
�� x3

  @
@@

@@
@@

@
1

~~||
||

||
||

|
x3

##G
GGGGGGGGG

Level 2
1

����
��

��
�� x2

��>
>>

>>
>>

>

1

��

1

����
��

��
�� x2

!!B
BB

BB
BB

BB

1

��
Level 1 1 x2 x3 x4 x2x4 x3x4.

Figure 2.2: The GP-tree for µ = (2, 2).

Definition 2.3.4 (Modified GP-tree). Let µ be a partition of n. The modified GP-

tree for µ is a tree with n+2 levels. The top is Level n with diagram µ at its vertex.

The branching and edge labelling rules are the same as in the GP-tree. The crucial

modification from the GP-tree is the diagram at the end of a branching edge.

• When branching down from Level i down to Level i − 1 for i ≥ 1, the new

diagram at Level i − 1 will be a composition µ(i−1) of i − 1 with a partial

filling of the values i, . . . , n in the remaining n − (i − 1) boxes of µ. In the

diagram at the end of the edge labelled xj
i , instead of removing the box with

dimension-ordering j + 1 place the value i in this box.

Rename Level 0 as Level A. Label the edge from Level A down to Level B with the

label 1. At each vertex at Level B, put the product of the edge labels from Level n

down to this vertex.

Remark 2.3.5. Observe that we never move a box as was done in the GP-tree to

create a Young diagram from a composition. There are now two sublevels below

Level 1: Level A has a fillings of µ constructed through this tree, and Level B has

the monomials in B(µ) coming from the product of the edge labels on the paths.

Theorem 2.3.7 highlights a profound relationship between these two levels.
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Example 2.3.6. Again consider the shape µ = (2, 2). Dimension order the Level

4 diagram to get b
a
. Branch downward left placing 4 in the dimension-ordered

box we labelled a. Branch downward right placing 4 in the dimension-ordered

box we labelled b. Ignoring the filled box, impose dimension-orderings on the left

composition of shape (1, 2) and the right composition of shape (2, 1). This gives:

1

����
��

��
�

x4

  A
AA

AA
AA

A

4
a

b
4
a

b .

In each of these subdiagrams branch down to the next Level by placing 3 in

the appropriate dimension-ordered boxes. The completed tree is given in Figure 2.3.

Level 4

1

wwoooooooooooooooo
x4

''PPPPPPPPPPPPPPPPP

Level 3 4

1

����
��

��
�

x3

��?
??

??
??

4

1

~~||
||

||
|| x3

""E
EEEEEEEE

Level 2 4
3

1

����
��

��
�

x2

��?
??

??
??

43

1
��

4
3

1

����
��

��
�

x2

  B
BB

BB
BB

B 43

1
��

Level 1 4
3

2

1
��

4
32

1
��

43
2

1
��

3
4

2

1
��

3
42

1
��

3 4
2

1
��

Level A 4
3

2
1

1

��

4
32

1

1

��

43
21

1

��

3
4

2
1

1

��

3
42

1

1

��

3 4
21

1

��
Level B 1 x2 x3 x4 x2x4 x3x4.

Figure 2.3: The modified GP-tree for µ = (2, 2).

Theorem 2.3.7. Let µ be a Young diagram and consider its corresponding modified

GP-tree. Each of the fillings at Level A are (h, µ)-fillings. Moreover given a filling
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T , the image Φ(T ) will be the monomial xα ∈ B(µ) at the neighbor of T in Level B.

Proof. Fix a partition µ of n. Consider a path in the modified GP-tree for µ.

From Level n to Level A, the numbers n through 1 are placed in reverse-order in

the dimension-ordered boxes. Finally at Level A, a filling T satisfying the Subfilling

Property is completed. By Lemma 2.2.5, T is row-strict and hence is an (h, µ)-filling.

Let T be a tableau at Level A, and let xα = xα2
2 · · ·xαn

n at Level B be the

monomial below T . We claim that Φ(T ) = xα. By Lemma 2.2.6, for each i the car-

dinality of DPT (i)

k equals αi where T (i) is a ith-subfilling of T (recall Definition 2.2.4).

By Lemma 2.2.7, the value |DPT (i)

k | will equal |DPT
i |. Hence DPT

i has exactly αi

dimension pairs so Φ(T ) = xα as desired.

A surprising application of the modified GP-tree is that it counts the elements

of Mµ. The corollary gives A(µ) = B(µ).

Theorem 2.3.8. Let µ = (µ1, . . . , µk) be a partition of n. The number of paths in

the modified GP-tree for µ is exactly |Mµ| = n!

µ1! · · ·µk!
. In particular, Level A is

composed of exactly all row-strict tableaux of shape µ.

Proof. Firstly, the number of paths in the modified GP-tree is the same as in the

standard GP-tree. Garsia and Procesi prove [7, Prop. 3.2] that the dimension

of their quotient ring presentation equals n!
µ1!···µk!

and hence |B(µ)| = |Mµ|. Each

of the paths in the modified GP-tree gives a unique (h, µ)-filling at Level A by

construction, and there are |B(µ)| such paths. Recall that the (h, µ)-fillings in this

case are the row-strict fillings. Thus the fillings at Level A are not just a subset of

row-strict tableaux. Level A is exactly Mµ.

Corollary 2.3.9. The sets of monomials A(µ) and B(µ) coincide.

Proof. This follows since the image of all (h, µ)-fillings under Φ is A(µ). The image

of the Level A fillings in the modified GP-tree is B(µ). Theorem 2.3.8 implies that
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both the set of (h, µ)-fillings and the Level A fillings coincide, and hence it follows

that A(µ) = B(µ).

Corollary 2.3.10. A(µ) and Mµ are isomorphic as graded vector spaces.

Proof. By Theorem 2.2.9, the composition Φ ◦ Ψ is the identity on A(µ). Since

A(µ) = B(µ), Theorem 2.3.8 implies the cardinality of A(µ) equals the cardinality

of the generating set of row-strict tableaux in Mµ. Also, Φ is a degree-preserving

map while Ψ is a dimension-preserving map so the composition Φ ◦ Ψ is a graded

map. Thus A(µ) and Mµ are isomorphic as graded vector spaces.

2.4 Barriers to applying this technique in non-Springer setting

What if we let h vary? Are these new monomials yielded in the image of Φ still

meaningful? For other Hessenberg functions, the map Ψ no longer maps reliably

back to the original filling. For example if h = (1, 3, 3) then Φ

(
3 2
1

)
= x3, but

Ψ(x3) = 1 2
3

. Attempts so far to define an inverse map that work for all Hessenberg

functions and all shapes µ have been unsuccessful.

However, when we fix the shape µ = (n) = · · · (equivalently, fix the

nilpotent X to have exactly one Jordan block) and let the functions h vary, we get

an important family of varieties called the regular nilpotent Hessenberg varieties.

In this setting the image of Φ is indeed a meaningful set of monomials Ah(µ). We

will explore this in detail in Chapter 6. In the interim chapters, we need to build

some machinery first. We start with generalizing the Tanisaki ideal in the following

chapter.
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CHAPTER 3

GENERALIZING THE TANISAKI IDEAL

In 1981, De Concini and Procesi [4] claimed the cohomology ring of a Springer

variety may be presented as the graded quotient of a polynomial ring. In 1982,

Tanisaki [16] vastly simplified the description of the kernel of the quotient map.

This kernel has come to be called the Tanisaki ideal. In 2008, Biagioli, Faridi, and

Rosas [1] further simplified the description of Tanisaki’s ideal. Guided by their

technique, we construct a generalized Tanisaki ideal for the fixed shape µ = (n) and

an arbitrary Hessenberg function h. We call this ideal Ih.

In Section 3.1, we construct the ideal Ih for each h. Analogous to Biagioli,

Faridi, and Rosas’s construction of the Tanisaki ideal, we build a set Ch of modified

elementary symmetric functions that generate Ih. In Section 3.2, we discuss a nat-

ural partial ordering on Hessenberg functions. This ordering gives rise to sequences

of Hessenberg functions. In Section 3.3, we observe that for certain sequences of

functions a strong nesting property of ideals exists. That is, for any h > h′ in a nice

sequence we have Ch ⊂ Ch′ . Generalizing this to arbitrary sequences, we prove in

Section 3.4 that if h > h′ then Ih ⊂ Ih′ , but Ch is not necessarily inside Ch′ . These

nesting properties in turn tell us a corresponding surjection on quotients, namely, if

h > h′ then R/Ih′ surjects onto R/Ih. Finally in Section 3.5, we exhibit a minimal

generating set for Ih.

3.1 Construction of the ideal Ih

Let µ = (n) and h = (h1, . . . , hn) be a Hessenberg function. Consider the

composition (1, 2, . . . , n) and draw its Ferrers diagram right-justified. We number

our columns 1 to n from left to right. Fill the bottom row with the numbers

h1, h2, . . . , hn from left to right as follows:
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. . .

. . .

...
...

h1 h2 hn−1 hn .

Finally, list the numbers above each bottom box in descending order as you go up

each column. We call this the h-Ferrers diagram for h. For example, for Hessenberg

function h = (2, 3, 3, 5, 5, 6) the corresponding h-Ferrers diagram is the following:

655332
5
4
3
2
1

4
3
2
1

4
3
2

2
1

2

.

Define the modified elementary symmetric function ei(j) := ei({x1, . . . , xj}) to

be the sum of all square-free monomials of degree i in the variable set {x1, . . . , xj}.

For example,

e2(3) = e2({x1, x2, x3}) = x1x2 + x1x3 + x2x3

regardless of n ≥ 3. If the polynomial ring is fixed to have n variables, then a mod-

ified elementary symmetric function of the form ei(n) is just the standard degree-i

elementary symmetric function in all n variables, so we denote such functions with

the usual notation ei.

The Reading Process

For a given Hessenberg function h = (h1, . . . , hn), we describe how to convert an

h-Ferrers diagram into a collection Ch of generators for an ideal Ih. Let Ch be the

collection {ehi−j(hi) | 0 ≤ j ≤ i − 1}ni=1. Then we say Ih = 〈Ch〉. Since hn = n,

the far-right column of the h-Ferrers diagram always contains the numbers 1 to n.

Thus every collection Ch contains the elementary symmetric functions e1, . . . , en.

Example 3.1.1. Let h = (3, 3, 3, 4). Then the h-Ferrers diagram will look like the

following:
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3 3 3 4
3
2
1

2
1

2

,

and hence

Ch = {e1(4), e2(4), e3(4), e4(4), e1(3), e2(3), e3(3)} .

The ideal Ih is generated by this collection Ch and we write:

Ih =



e1, e2, e3, e4,

x1x2x3,

x1x2 + x1x3 + x2x3,

x1 + x2 + x3


.

Observation 3.1.2. When h = (1, 2, . . . , n), the ideal Ih coincides with the Tanisaki

ideal. At the other extreme when h = (n, . . . , n), the ideal Ih is generated by the

elementary symmetric functions.

Proof. Recall that the Tanisaki ideal corresponds to the Springer setting when the

Hessenberg function is h = (1, 2, . . . , n). The diagonal of the associated h-Ferrers

diagram is all ones, and hence the corresponding functions e1(1), e1(2), . . . , e1(n)

lie in Ch. Thus x1, x2, . . . , xn are in the ideal, and we conclude that Ih equals the

polynomial ring. When h = (n, . . . , n), the corresponding h-Ferrers diagram gives

exactly n distinct generators of the form ei(n) for 1 ≤ i ≤ n. That is, Ih is generated

by the elementary symmetric functions.

3.2 Partial ordering on Hessenberg functions

The family of ideals Ih exhibit some nice nesting properties. To describe them,

we must introduce a partial ordering on Hessenberg functions.

Definition 3.2.1 (Poset on Hessenberg functions). Fix n. A Hasse diagram on

Hessenberg functions is a directed graph whose vertices are Hessenberg functions.
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The top vertex is the function (n, . . . , n), and the bottom vertex is (1, 2, . . . , n).

There is an edge from h = (h1, . . . , hn) down to h′ = (h′1, . . . , h
′
n) if exactly one

entry in h′ is one less than its corresponding entry in h. That is, h′i0 = hi0 − 1

for some i0 but h′i = hi for all i 6= i0. We define a partial ordering on Hessenberg

functions using this Hasse diagram. We say h > h′ if there is a path on the Hasse

diagram connecting h down to h′. Equivalently, h > h′ if hi ≥ h′i for all i, and

hi0 > h′i0 for some i0.

h = 4444

��
3444

t| rrrrrrrrrr

rrrrrrrrrr

&&LLLLLLLLLL

3344

�� &&LLLLLLLLLL 2444

��xxrrrrrrrrrr

3334

��

2344

�� &&LLLLLLLLLL

xxrrrrrrrrrr
1444

��
2334

�� &&LLLLLLLLLL 2244

xxrrrrrrrrrr

&&LLLLLLLLLL 1344

��xxrrrrrrrrrr

2234

"*LLLLLLLLLL

LLLLLLLLLL 1334

��

1244

xxrrrrrrrrrr

1234

Figure 3.1: Hasse diagram on Hessenberg functions for n = 4.

In Figure 3.1, we denote each Hessenberg function (h1, . . . , hn) as the n-tuple

h1 · · ·hn for brevity.

3.3 Containment of ideals Ih (for nice sequences)

In the first case we inspect, the containment of the ideals Ih is very transparent:

there exists a sequence of ideals whose actual generating sets are contained precisely

inside the next ideal in the sequence. For this reason, we call these sequences nice.

Definition 3.3.1 (Nice sequence of Hessenberg functions). Construct a sequence
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beginning with the maximal Hessenberg function (n, . . . , n) in the following manner.

For a given tuple h̃ = (h̃1, . . . , h̃n) in this sequence, the tuple h = (h1, . . . , hn) is the

neighbor to the right of h̃ if the following two conditions hold:

• h̃j − 1 = hj and h̃i = hi for all i 6= j,

• There exists no k > j such that h̃k > h̃j and (h̃1, . . . , h̃k−1, h̃k−1, h̃k+1, . . . , h̃n)

is a valid Hessenberg function.

We define a nice sequence of Hessenberg functions to be any subsequence of this

constructed sequence.

Example 3.3.2. For n = 4 we have the following nice sequence. Suppressing the

commas, we write:

(4444) > (3444) > (3344) > (3334) > (2334) > (2234) > (1234).

Theorem 3.3.3. If h > h′ are adjacent neighbors in a nice sequence, then Ch ⊂ Ch′

and hence Ih ⊂ Ih′. We conclude for any h > h′ in a nice sequence that Ih ⊂ Ih′.

Proof. Let h > h′ be neighbors in a nice sequence of Hessenberg functions. Sup-

pose they differ in the jth entry. Then h = (h1, . . . , hj−1, k, hj+1, . . . , hn) and

h′ = (h′1, . . . , h
′
j−1, k − 1, h′j+1, . . . , h

′
n) where hi = h′i for all i 6= j. The correspond-

ing h̃-Ferrers diagram and h-Ferrers diagram will differ in only the jth column from

the left. It suffices to show that all of the elements ek(k), ek−1(k), . . . , ek−(j−1)(k)

corresponding to column j in the h-Ferrers diagram are also in Ch′ .

The main observation is that there will always be a k to the right of the jth

slot in the function h′. We know h′ is a Hessenberg function so h′j ≥ j. Since

h′j = k − 1, we conclude k − 1 ≥ j. In particular, we must have h′k = k since h′k is

to the right of h′j, and all the values k + 1 that could be lowered in h have already

been lowered.

Observe that column k in the h′-Ferrers diagram is taller than column j in

the h-Ferrers diagram. In both diagrams the bottom number is k. Hence the list
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of elements ek(k), ek−1(k), . . . , ek−(j−1)(k) in Ch are clearly also in Ch′ . All the other

elements of Ch are also in Ch′ since the diagrams coincide in every other column,

thus Ih ⊂ Ih′ .

3.4 Containment of ideals Ih (for arbitrary sequences)

Consider the not-as-nice Hessenberg sequence h̃ = (1, 3, 4, 4) > h = (1, 2, 4, 4).

The collection of generators Ceh has e2(3) in it, which is not in the collection Ch.

However, we can write e2(3) = x1x2 +x1x3 +x2x3 as x1x2 +x3(x1 +x2) which equals

e2(2) + x3 · e1(2). And indeed, e2(2) and e1(2) are in Ch and hence e2(3) lies in 〈Ch〉

though it is not one of the generators. This leads us to formulate the following

lemma for neighboring terms in an arbitrary sequence. We will use this lemma in

the subsequent theorem.

Lemma 3.4.1. Let ei(l) be the modified elementary symmetric functions. Then

ek−r(k) =

{
xk · ek−1(k − 1) if r = 0,

ek−r(k − 1) + xk · ek−r−1(k − 1) if 0 < r ≤ k − 1.

In the case r = k − 1, we define ek−r−1 = ek−(k−1)−1 = e0 to be 1.

Proof. If r = 0, then ek(k) = x1 · · ·xk = xk · (x1 · · ·xk−1) = xk · ek−1(k − 1) as

desired. On the other hand, suppose 0 < r ≤ k − 1. Define Xj to be {x1, . . . , xj}

for j ≤ n. Then

ek−r(k) =
∑

{i1<···<ik−r}⊆Xk

xi1xi2 · · ·xik−r

=
∑

{i1<···<ik−r}⊆Xk−1

xi1xi2 · · ·xik−r

+ xk ·

 ∑
{i1<···<ik−r−1}⊆Xk−1

xi1xi2 · · ·xik−r−1


= ek−r(k − 1) + xk · ek−r−1(k − 1).

Remark 3.4.2. Unlike the nice sequence of Hessenberg functions, there may be

several sequences between two endpoints. For instance, between the Hessenberg
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functions h = (2, 3, 4, 4) and h′ = (1, 2, 3, 4) one such path is given by

(2, 3, 4, 4) > (1, 3, 4, 4) > (1, 3, 3, 4) > (1, 2, 3, 4).

In Figure 3.1, we observe five other distinct paths between these two endpoints.

Theorem 3.4.3. (Containment of ideals Ih) If h > h′ then Ih ⊂ Ih′.

Proof. Suppose h = (h1, . . . , hn) > h′ = (h′1, . . . , h
′
n). Let h > · · · > h′ be any

sequence of functions on the Hasse diagram on Hessenberg functions from h down

to h′. It suffices to show that for any neighboring Hessenberg functions h̃ > ˜̃h in

this sequence where h ≥ h̃ > ˜̃h ≥ h′ that Ih̃ ⊂ I˜̃
h

and hence Ih ⊂ Ih′ . Without loss

of generality, we assume h and h′ are neighboring Hessenberg functions.

Let h and h′ be the neighboring terms h = (h1, . . . , hj−1, k, hj+1, . . . , hn) and

h′ = (h1, . . . , hj−1, k − 1, hj+1, . . . , hn). To show Ih ⊂ Ih′ , it suffices to show that

all the generators Ch of Ih are in Ih′ . On the level of diagrams, we notice that the

h-Ferrers diagram and h′-Ferrers diagram are identical except in column j. Thus

it suffices to show that the j distinct generators ek−r(k) ∈ Ch for 0 ≤ r ≤ j − 1

coming from column j of the h-Ferrers diagram also lie in Ih′ . Lemma 3.4.1 shows

that each ek−r(k) is a Z[x1, . . . , xn]-linear combinations of the generators in the set

{ek−r(k − 1) | r = 0, . . . , j − 1} coming from column j in the h′-Ferrers diagram.

Hence all ek−r(k) are in Ih′ as desired, and the proof is done.

Corollary 3.4.4. If h > h′ and R = Z[x1, . . . , xn], then the quotient R/Ih′ surjects

onto the quotient R/Ih.

Proof. Since Ih is contained in Ih′ , the claim follows.

3.5 Minimal generating set for Ih

Fix a Hessenberg function h. The ideal Ih is generated by at most n(n+1)
2

distinct generators arising from the h-Ferrers diagram. The generating set Ch for Ih,

like the original Tanisaki ideal, may be highly nonminimal and may have redundant

generators. In this section we give a minimal generating set of only n generators!
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This minimal generating set arises from the boxes on the anti-diagonal of the h-

Ferrers diagram. As such, we call the ideal they generate the anti-diagonal ideal

and denote it by IAD
h . We will prove that IAD

h and Ih coincide.

Definition 3.5.1 (Anti-diagonal ideal). Let h = (h1, . . . , hn) be a Hessenberg func-

tion. The anti-diagonal ideal in Ih is denoted IAD
h and is generated by the functions

arising from the anti-diagonal fillings of the h-Ferrers diagram. That is,

IAD
h =

〈
eh1(h1), eh2−1(h2), . . . , ehi−(i−1)(hi), . . . , ehn−(n−1)(hn)

〉
⊆ Ih.

Lemma 3.5.2. Let h = (h1, . . . , hn) be a Hessenberg function. Each generator

ehi
(hi) in Ch is a multiple of eh1(h1). We conclude that all generators ehi

(hi) for

1 ≤ i ≤ n lie in IAD
h .

Proof. Let h = (h1, . . . , hn) be a Hessenberg function. Consider the generator

ehi
(hi) in Ch. If i = 1, then there is nothing to show. If i > 1, then

ehi
(hi) = x1 · · ·xhi

= (x1x2 · · ·xh1) · (xh1+1 · · ·xhi
)

= (xh1+1 · · ·xhi
) · eh1(h1).

Hence ehi
(hi) is a multiple of eh1(h1), and we conclude ehi

(hi) ∈ IAD
h .

The proof of Theorem 3.5.6 relies a great deal on two useful lemmas. We

encountered the first one, Lemma 3.4.1, in the previous section. That lemma allowed

us to take a modified elementary symmetric function in k variables and reduce it

to a linear combination of two modified elementary symmetric functions in k − 1

variables. The second useful lemma we present below.

Lemma 3.5.3. Suppose 0 < d < r. The modified elementary symmetric function

ed(r) is a linear combination of modified elementary symmetric functions in the

variables x1, . . . , xr−j:

ed(r) =

j∑
t=0

et(xr−j+1, xr−j+2, . . . , xr) · ed−t(x1, x2, . . . , xr−j). (3.1)

Proof. By definition, the function ed(r) is the sum of
(

r
d

)
distinct summands of the
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form xi1 · · ·xid where 1 ≤ i1 < · · · < id ≤ r. The product

et(xr−j+1, xr−j+2, . . . , xr) · ed−t(x1, x2, . . . , xr−j) (3.2)

has distinct summands each of the form xi1 · · ·xitxit+1 · · ·xid where the subscripts

adhere to the following conditions:

r − j + 1 ≤ i1 < · · · < it ≤ r and 1 ≤ it+1 < · · · < id ≤ r − j.

Thus for each t ∈ {0, . . . , j}, there are
(

j
t

)
·
(

r−j
d−t

)
possible summands in the expansion

of the product in Equation (3.2). Hence as t goes from 0 to j, the expansion of the

right hand side of Equation (3.1) yields exactly
∑j

t=0

(
j
t

)
·
(

r−j
d−t

)
pairwise distinct

summands. Moreover, the right hand side of Equation (3.1) recovers all possible(
r
d

)
distinct summands in the function ed(r).

Remark 3.5.4. As t varies, not every product as given in Equation (3.2) is nonzero.

The first multiplicand always appears since its degree is t ≤ j, and there are exactly

j variables. The second multiplicand, however, is zero unless d− t ≤ r − j. Hence

the sum in Equation (3.1) has all nonzero terms whenever t ≥ max{0, d − r + j}.

Also, we may take 0 ≤ j ≤ min{r, d}. For j > min{r, d}, all summands are zero.

Remark 3.5.5. Lemma 3.5.3 in effect gives another proof of the well-known com-

binatorial identity:
j∑

t=0

(
j

t

)
·
(

r − j

d− t

)
=

(
r

d

)
.

Theorem 3.5.6 (Minimal generating set for Ih). Let h be a Hessenberg function.

Then Ih ⊆ IAD
h . Hence Ih has a minimal generating set given by the generators of

IAD
h .

Proof. Let h = (h1, . . . , hn) be a Hessenberg function. Consider the corresponding

h-Ferrers diagram:
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. . .

. . .

...
...

h1 h2

h2 − 1
hn−1 hn

hn − 1

.

It suffices to show that each ehi−j(hi) for i ∈ {2, . . . , n} while j ∈ {0, . . . , i− 2} lies

in IAD
h . These are the generators of Ih corresponding to boxes off the anti-diagonal.

We induct on the columns of the h-Ferrers diagram moving left to right. The

base case holds since eh2(h2) lies in IAD
h by Lemma 3.5.2, and generator eh2−1(h2)

is by definition in IAD
h . Assume for some column i that each ehi−j(hi) lies in IAD

h

for all j ∈ {0, . . . , i− 2}. It suffices to show for column i + 1 that each ehi+1−j(hi+1)

lies in IAD
h for all j ∈ {0, . . . , i − 1}. If hi = hi+1, then the result holds trivially.

Assume hi < hi+1 so that the columns i and i + 1 look like the following schematic:

hi hi+1

hi − 1 hi+1 − 1

...

...

...
...

hi − (i− 1) hi+1 − (i− 1)

hi+1 − i

hi − s hi+1 − s

hi − (s− 1)

.

Consider hi+1− s. If s = 0, then ehi+1−s(hi+1) lies in IAD
h by Lemma 3.5.2. Assume

s ∈ {1, . . . , i− 1}. By Lemma 3.5.3, the function ehi+1−s(hi+1) equals
j∑

t=0

et(xhi+1−j+1, xhi+1−j+2, . . . , xhi+1
) · ehi+1−s−t(x1, x2, . . . , xhi+1−j).

Choose j so that hi+1 − j = hi. Then

ehi+1−s(hi+1) =

hi+1−hi∑
t=0

et(xhi+1, xhi+2, . . . , xhi+1
) · ehi+1−s−t(x1, x2, . . . , xhi

).

We are left to show that the degrees hi+1− s− t of the second multiplicand in each

summand of the equation above make sense. That is, we need to verify that these
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are degrees coming from the values in the boxes of column i if the summand is

nonzero. Since t ≤ hi+1 − hi, we have

hi+1 − s− (hi+1 − hi) ≤ hi+1 − s− t implies hi − s ≤ hi+1 − s− t,

establishing the lower bound. By Remark 3.5.4, the second multiplicand is zero

unless hi+1 − s− t ≤ hi. Hence we may assume hi+1 − s− hi ≤ t, and

hi+1 − s− t ≤ hi+1 − s− (hi+1 − s− hi) implies hi+1 − s− t ≤ hi,

establishing the upper bound. Hence the degrees hi+1 − s − t are valid degrees

coming from column i. By the induction hypothesis, each ehi+1−s−t(hi) lies in IAD
h

and hence ehi+1−s−t(hi+1) also lies in IAD
h . Thus Ih ⊆ IAD

h .

Remark 3.5.7 (Minimal generating set for Ih is not unique). Returning to Exam-

ple 3.1.1, we find the anti-diagonal generators e1, x1 + x2 + x3, x1x2 + x1x3 + x2x3,

and x1x2x3 are a minimal generating set for Ih when h = (3, 3, 3, 4). However the

last two generators in that list, namely e2(3) and e3(3), could have been replaced

with the generators e2 and e3. Thus the following three ideals all coincide:

I =



e1, e2, e3, e4,

x1x2x3,

x1x2 + x1x3 + x2x3,

x1 + x2 + x3


=



e1,

x1x2x3,

x1x2 + x1x3 + x2x3,

x1 + x2 + x3


=

 e1, e2, e3,

x1 + x2 + x3

 .

In the figures below, we circle the entries which give generators corresponding

to a minimal generating set for Ih. Of course, the set of generators in the left figure

are particularly nice. The generators from the right figure, however, arose as we

explored an alternate ideal Jh. We introduce this alternate ideal in the next chapter.

k3 3 3 4
3
2

k1
2

k1k2
(a) IAD

h .

3 3 3 4

k3k2
k1

2

k1
2

(b) Alternate.

Figure 3.2: Two reduced generating sets in the same h-Ferrers diagram for h = (3334).
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CHAPTER 4

AN ALTERNATE IDEAL AND ITS USEFULNESS

In the last chapter we generalized the Tanisaki ideal to a family of ideals

Ih. In this chapter, we construct another family of ideals Jh. Fix a Hessenberg

function h. Whereas the ideal Ih was built out of modified elementary symmetric

functions, we construct the ideal Jh using modified complete symmetric functions.

In Section 4.1, we give a one-to-one correspondence between Hessenberg functions

and related objects, which we call degree tuples. In Section 4.2, we use the degree

tuple corresponding to h to construct the ideal Jh. Using a natural partial ordering

on degree tuples, in Sections 4.3 and 4.4 we prove the nesting property that Jh ⊂ Jh′

if h > h′. Analogous to the setting of the previous chapter, a stronger result holds

for nice sequences. Lastly, the ideal Jh has several useful properties which we explore

in this and the next chapter:

1. For each Hessenberg function h = (h1, . . . , hn), the corresponding ideal Jh has

exactly n generators. (Definition 4.2.2)

2. The generators of Jh form a Gröbner basis. (Theorem 5.3.2)

3. Let R = Z[x1, . . . , xn]. Then R/Jh has finite rank, and its basis can be read

off easily from inspecting the degree tuple corresponding to h. (Theorem 5.4.3

and Corollary 5.4.5)

4.1 Hessenberg functions ←→ Degree tuples

From a Hessenberg function h, we construct an ideal Jh in the next section.

This ideal is built using both the Hessenberg function and an object called a degree

tuple. In this section we reveal the one-to-one correspondence between these two

objects. We end with a few corollaries revealing very interesting combinatorial
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relationships between these two objects involving Catalan numbers, Dyck paths, and

maximal chains on the Hasse diagram on Hessenberg functions. First we recall the

structure of Hessenberg functions defined in Section 1.4. We include it to contrast

it with the structure of degree tuples which we introduce subsequently.

Structure of Hessenberg functions

An n-tuple h = (h1, . . . , hn) is a Hessenberg function if it satisfies the conditions:

(a) i ≤ hi ≤ n, i ∈ {1, 2, . . . , n}

(b) hi ≤ hi+1, i ∈ {1, 2, . . . , n− 1}.

Structure of degree tuples

An n-tuple β = (βn, βn−1, . . . , β1) is a degree tuple if it satisfies the conditions:

(a′) 1 ≤ βi ≤ i, i ∈ {1, 2, . . . , n}

(b′) βi − βi−1 ≤ 1, i ∈ {2, . . . , n}.

Remark 4.1.1. We call it a degree tuple because its entries are the degrees of

the generating symmetric functions of our ideal Jh which we construct in the next

section. The convention of listing βi in descending subscript order in the degree

tuple highlights that the ith entry of the tuple corresponds to a symmetric function

in exactly i variables.

One-to-one correspondences

Fix a positive integer n. For the purposes of this section, by a partition (λ1, . . . , λn)

we mean one whose Ferrers diagram fits in an n-by-n square and the λi satisfy

λ1 ≥ . . . ≥ λn ≥ 0. We draw our Ferrers diagram flush right and top. For example

if n = 3, then

λ = (3, 1, 0)←→ ���
�.

Definition 4.1.2 (Reverse tuple). Let t = (t1, . . . , tn) be an n-tuple. The reverse

of t is the n-tuple (tn, tn−1, . . . , t1) and is denoted trev.

Definition 4.1.3 (Staircase and ample partitions). Let ρ = (n, n−1, . . . , 1) denote
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the staircase partition. We call λ = (λ1, . . . , λn) an ample partition when ρ ⊆ λ. In

other words, the partition λ is ample whenever λi ≥ n− i + 1 for each i.

Definition 4.1.4 (Dyck path). Consider an n-by-n square with the origin at the

lower left. A Dyck path is any path in the square from (0, n) to (n, 0) that lies

strictly below the antidiagonal y = −x + n and has only increments of (0,−1) and

(1, 0). A traditional Dyck path runs from (0, 0) to (n, n), but we rotate this standard

picture by 90◦ clockwise.

Definition 4.1.5 (Conjugate of a partition). Let λ = (λ1, . . . , λn) be a partition.

The conjugate λ′ of λ is given by λ′i = #{k : λk ≥ i}. Pictorially, the conjugate λ′

is a reflection of λ across the diagonal line since we are drawing our Ferrers diagram

flush top and right.

Lemma 4.1.6. The set of ample partitions is closed under conjugation.

Proof. This holds trivially since ρ ⊆ λ implies ρ ⊆ λ′.

Lemma 4.1.7. The following sets are in one-to-one correspondence:

(1) The set of ample partitions.

(2) The set of Hessenberg functions.

(3) The set of degree tuples.

(4) The set of Dyck paths.

Proof. We prove that each set (2), (3), and (4) is in bijection with ample par-

titions. Let h = (h1, . . . , hn) be an n-tuple. Its corresponding reverse tuple is

hrev = (hn, hn−1, . . . , h1). The tuple h satisfies Hessenberg function structure rule

(b) when hrev is a partition. Furthermore, structure rule (a) is satisfied precisely

when this partition hrev is ample.

Let λ = (λ1, . . . , λn) be an n-tuple. Define the n-tuple β = (βn, βn−1, . . . , β1)

by βi = λi− ρi + 1 = λi + i−n. Observe that β satisfies degree tuple structure rule

(b′) only when λ is a partition. Furthermore, structure rule (a′) is satisfied precisely

when this partition λ is ample.
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Finally, the boundary path of a partition is the path between the partition and

its complement in the n-by-n square. A partition is determined by its boundary

path. It is clear that a boundary path is a Dyck path precisely when its correspond-

ing partition is ample.

Using the Lemmas 4.1.6 and 4.1.7 we can define a bijective map from Hes-

senberg functions to degree tuples. Define a composition of bijective maps from

a Hessenberg function h to its corresponding ample partition λ = hrev, then to

conjugate λ′ of this ample partition, and finally to degree tuple λ′−ρ+1 as follows:

F : h 7−→ λ = hrev 7−→ λ′ 7−→ λ′ − ρ + 1 7−→ (λ′ − ρ + 1)rev

where ρ is the staircase partition (n, n−1, . . . , 1), and we define 1 to be the partition

(1, . . . , 1). The last composition λ′ − ρ + 1 7→ (λ′ − ρ + 1)rev ensures that the

degree tuple follows our convention of descending subscripts of the βi as noted in

Remark 4.1.1.

Theorem 4.1.8. The map F is a bijection between Hessenberg functions and degree

tuples.

Proof. This holds since all the maps involved in F are bijective.

Pictorially, the maps defined in F yield a Ferrers diagram used to quickly read

off entries of either a Hessenberg function or its corresponding degree tuple. This

diagram will come into play again in Chapter 6.

Definition 4.1.9 (Hessenberg diagram). Let h be a Hessenberg function. The

composition h 7→ (hrev)′ gives a partition in which the ith column from the left has

length hi for all i. Shade these boxes in the Ferrers diagram. Furthermore, the map

(hrev)′ 7→ (hrev)′ − ρ + 1 effectively removes the staircase above the antidiagonal –

namely, the partition (n− 1, n− 2, . . . , 1, 0). The diagram that remains is called a

Hessenberg diagram.

Example 4.1.10. Let h = (3, 3, 4, 4, 5, 6). Then we have the following Hessenberg
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diagram:

�
�
�

�
� �

� �
�

�

h1 h2 h3 h4 h5 h6

β6

β5

β5

β3

β2

β1

.

In this diagram, we highlighted the corresponding Dyck path in bold. Visually, we

see the value of hi is i−1 plus the number of shaded boxes in column i. Furthermore,

βi is the number of shaded boxes in row i. In fact, we see βi equals i minus the

number of columns left of column i whose shaded boxes do not reach the ith row –

namely, the value i minus the cardinality of the set {hk|hk < i}. This leads to the

following remark.

Remark 4.1.11 (Simple formula to compute β from h). The map F yields a very

simple formula which we use often to calculate the degree tuple for the ideal Jh.

Let h = (h1, . . . , hn) be a Hessenberg function. Define β = (βn, βn−1, . . . , β1) where

βi = i−#{hk|hk < i}. Then β is the corresponding degree tuple for h.

There are some other interesting combinatorial corollaries that arise from

Lemma 4.1.7. We mention these to show how our work fits into the existing litera-

ture.

Corollary 4.1.12. Since the number of possible Hessenberg functions equals the

number of possible Dyck paths from (0, n) to (n, 0) in an n-by-n box, it follows that

#{Hessenberg functions} = #{Degree tuples} = Catalan(n) =
1

n + 1

(
2n

n

)
.

Corollary 4.1.13. The number of maximal chains on the Hasse diagram on Hes-

senberg functions (respectively, degree tuples) equals the number of maximal Dyck

path chains which is the following number:(
n
2

)
!∏n−1

i=1 (2i− 1)n−1
.

Richard Stanley [15] has collected a wealth of combinatorial interpretations
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of Catalan numbers – one of which counts Dyck paths. Another could be added

to his list – namely, one that counts the number of Hessenberg functions or degree

tuples. Regarding Corollary 4.1.13, we can view the maximal Dyck chains as all

possible paths from the top down to the bottom vertices of the Hasse diagram (as

in Figure 3.1).

Lastly, to show the containment properties in the family of ideals Jh, we rely

heavily on degree tuples. It will be helpful to define the Hasse diagram on degree

tuples. Although this definition is very similar to its Hessenberg function analog,

for completeness we state it below.

Definition 4.1.14 (Poset on degree tuples). Fix n. A Hasse diagram on degree

tuples is a directed graph whose vertices are degree tuples. The top vertex is the

degree tuple (n, n− 1, . . . , n), and the bottom tuple is (1, . . . , 1). There is an edge

from β = (βn, . . . , β1) down to β′ = (β′n, . . . , β
′
1) if exactly one entry in β′ is one less

than its corresponding entry in β. That is, β′i0 = βi0 − 1 for some i0 but β′i = βi for

all i 6= i0. We define a partial ordering on degree tuples using this Hasse diagram.

We say β > β′ if there is a path on the Hasse diagram connecting β down to β′.

Equivalently, β > β′ if βi ≥ β′i for all i, and βi0 > β′i0 for some i0.

Remark 4.1.15. The right diagram in Figure 4.1 gives an example of a Hasse

diagram on degree tuples. The diagram shows there are exactly 14 nodes (which is

the 4th Catalan number as expected by Corollary 4.1.12). We compute the number

of maximal chains of degree tuples, namely chains from the top vertex down to the

bottom vertex, using Corollary 4.1.13:(
4
2

)
!∏4−1

i=1 (2i− 1)4−1
= 16.

Similarly, there are 16 maximal chains of Hessenberg functions.
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h = 4444

��
3444

t| rrrrrrrrrr

rrrrrrrrrr

&&LLLLLLLLLL

3344

�� &&LLLLLLLLLL 2444

��xxrrrrrrrrrr

3334

��

2344

�� &&LLLLLLLLLL

xxrrrrrrrrrr
1444

��
2334

�� &&LLLLLLLLLL 2244

xxrrrrrrrrrr

&&LLLLLLLLLL 1344

��xxrrrrrrrrrr

2234

"*LLLLLLLLLL

LLLLLLLLLL 1334

��

1244

xxrrrrrrrrrr

1234

(a) Hessenberg functions.

β = 4321

��
3321

t| rrrrrrrrrr

rrrrrrrrrr

&&LLLLLLLLLL

2321

�� &&LLLLLLLLLL 3221

��xxrrrrrrrrrr

1321

��

2221

�� &&LLLLLLLLLL

xxrrrrrrrrrr
3211

��
1221

�� &&LLLLLLLLLL 2121

xxrrrrrrrrrr

&&LLLLLLLLLL 2211

��xxrrrrrrrrrr

1121

"*LLLLLLLLLL

LLLLLLLLLL 1211

��

2111

xxrrrrrrrrrr

1111

(b) Degree tuples.

Figure 4.1: Hasse diagrams on Hessenberg functions and degree tuples for n = 4.

4.2 Construction of the ideal Jh

Recall that the generators of the ideals Ih are modified elementary symmetric

functions. The generators of the ideals Jh will also be symmetric functions, but

they are modified complete symmetric functions in this new setting.

Define the modified complete symmetric function ẽi(xj, xj+1, . . . , xn) to be the

sum of all monomials of degree i in the variable set {xj, xj+1, . . . , xn} for some j ≤ n.

We sometimes adopt the conventions of writing ẽi(xj, xj+1, . . . , xn) as ẽi(xj,j+1,...,n),

or even ẽi(j) for the most brevity. For example if n = 4, then

ẽ2(3) = ẽ2(x34) = ẽ2(x3, x4) = x2
3 + x3x4 + x2

4.

Remark 4.2.1 (Careful!). The shorthand notation ẽi(j) will be used sparingly since

it bears a close resemblance to the notation of the modified elementary symmetric

function ei(j) whose variable set is {x1, . . . , xj}. Furthermore, unless the number

of variables in the ring R is clearly stated, the symbol ẽi(j) can be ambiguous.
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Definition 4.2.2 (The ideal Jh). Let h = (h1, . . . , hn) be a Hessenberg function.

Let β = (βn, βn−1, . . . , β1) be its corresponding degree tuple, so it follows that

βi = i−#{hk|hk < i}. We define the ideal Jh as follows:

Jh := 〈ẽβn(xn), ẽβn−1(xn−1, xn), . . . , ẽβ1(x1, . . . , xn)〉.

Example 4.2.3. Consider the Hessenberg function h = (3, 3, 3, 4). We calculate

the degree tuple to be β = (1, 3, 2, 1), yielding the ideal

Jh = 〈ẽ1(x4), ẽ3(x3, x4), ẽ2(x2, x3, x4), ẽ1(x1, x2, x3, x4)〉.

Alternately, we write

Jh =



x4,

x3
3 + x2

3x4 + x3x
2
4 + x3

4,

x2
2 + x2x3 + x2x4 + x2

3 + x3x4 + x2
4,

x1 + x2 + x3 + x4


.

Remark 4.2.4 (A look ahead to Gröbner bases). By observation, we can quickly

simplify the set of generators above. For example since x4 is in Jh, we can write the

generators as x4, x3
3, x2

2 + x2x3 + x2
3, and x1 + x2 + x3. In fact, this is the unique

reduced Gröbner basis for Jh! Gröbner bases are useful for ideal equality questions.

For instance, we know that the ideal Ih from Example 3.1.1 equals Jh because they

both have the same unique reduced Gröbner bases.

The lemma below is very straight forward and will play a similar role as

Lemma 3.4.1 played in the setting of Ih. We use this lemma extensively in the next

two sections to prove a nesting properties of the ideals Jh.

Lemma 4.2.5. Fix {ai}mi=1 ⊆ {1, . . . , n} such that a1 < a2 < . . . < am. Then

ẽr(xa1,...,am) = xa1 · ẽr−1(xa1,...,am) + ẽr(xa2,...,am).

Proof. This proof follows simply by breaking up the left hand side into the set

of monomials that contain the variable xa1 and the complement of that set. We
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observe:∑
b1+···+bm=r

xb1
a1

xb2
a2
· · ·xbm

am
= xa1 ·

∑
b1+···+bm=r

b1 6=0

xb1−1
a1

xb2
a2
· · ·xbm

am
+

∑
b2+···+bm=r

xb2
a2

xb3
a3
· · ·xbm

am
.

The far left term is ẽr(xa1,...,am) by definition. Furthermore, the two summands

on the right give xa1 · ẽr−1(xa1,...,am) + ẽr(xa2,...,am) by definition, and the lemma is

proven.

4.3 Containment of ideals Jh (for nice sequences)

In this section we prove a nesting property in the family of ideals Jh. Specif-

ically we show that Jh ⊂ Jh′ whenever h > h′. In the setting of the ideals Ih, it

was useful to look at sequences of Hessenberg functions. We proved in Section 4.1

that there is a one-to-one correspondence between Hessenberg functions and de-

gree tuples, so we often refer to Jh as Jβ, and we use sequences of degree tuples

corresponding to sequence of Hessenberg functions.

We begin by giving a motivating example of the essence of the proof of the

main theorem of this section. The following example employs an iterative use of

Lemma 4.2.5.

Example 4.3.1. Fix n=5. Consider the neighbors β > β′ in a nice sequence of

degree tuples where β = (1, 1, 3, 2, 1) and β′ = (1, 1, 2, 2, 1). These yield the ideals

Jβ = 〈ẽ1(x5), ẽ1(x45), ẽ3(x345), ẽ2(x2345), ẽ1(x12345)〉 and

Jβ′ = 〈ẽ1(x5), ẽ1(x45), ẽ2(x345), ẽ2(x2345), ẽ1(x12345)〉 ,

respectively. To show Jβ ⊂ Jβ′ , it suffices to show the generator ẽ3(x345) lies in Jβ′ .

Using Lemma 4.2.5 repeatedly, wherein we denote its use with brackets [ ... ], we
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easily compute:

ẽ3(x345) = [x3ẽ2(x345) + ẽ3(x45)]

= x3ẽ2(x345) + [x4ẽ2(x45) + ẽ3(x5)]

= x3ẽ2(x345) + x4 · [x4ẽ1(x45) + ẽ2(x5)] + ẽ3(x5)

= x3ẽ2(x345) + x2
4ẽ1(x45) + x4ẽ2(x5) + ẽ3(x5)

= x3ẽ2(x345) + x2
4ẽ1(x45) + x4x5ẽ1(x5) + x2

5ẽ1(x5)

= x3ẽ2(x345) + x2
4ẽ1(x45) + (x4x5 + x2

5)ẽ1(x5).

Since ẽ2(x345), ẽ1(x45), ẽ1(x5) are generators in Jβ′ , we see ẽ3(x345) ∈ Jβ also sits in

Jβ′ . The essense of the proof of the main theorem is that if β > β′ are neighbors

in a nice sequence, then we can write the symmetric function corresponding to the

entry in β that was decreased as a linear combination of the generating functions

of Jβ′ .

The definition of a nice sequence of Hessenberg functions can be found in

Definition 3.3.1. We define a nice sequence of degree tuples to be any sequence

of degree tuples that correspond to a nice sequence of Hessenberg functions. For

example for n = 4, the maximal nice sequence of degree tuples is

(4321) > (3321) > (2321) > (1321) > (1221) > (1121) > (1111).

Theorem 4.3.2. If β > β′ are adjacent neighbors in a nice sequence of degree

tuples, then Jβ ⊂ Jβ′. We conclude if β > β′ is linked by a nice sequence, then

Jβ ⊂ Jβ′.

Proof. An arbitrary tuple in a nice sequence of degree tuples has the form

β := (1, . . . , 1, r, k, k − 1, . . . , 2, 1)

where 2 ≤ r ≤ k + 1. The neighboring lower tuple has the form

β′ := (1, . . . , 1, r − 1, k, k − 1, . . . , 2, 1).

Since all entries are the same except in the lowered slot, it suffices to show that the

corresponding generator ẽr(xk+1,k+2,...,n) ∈ Jβ can be written as a linear combination
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of the generators of the ideal Jβ′ . By Lemma 4.2.5, we have

ẽr(xk+1,k+2,...,n) = xk+1 · ẽr−1(xk+1,k+2,...,n) + ẽr(xk+2,k+3,...,n).

The first summand lies in Jβ′ since ẽr−1(xk+1,k+2,...,n) ∈ Jβ′ . So it suffices to show

the second summand is also in Jβ′ . We assert that repeated use of Lemma 4.2.5

on the second summand and its decomposed pieces can only yield modified com-

plete symmetric functions with degree strictly less than r and/or a smaller variable

set {xj, xj+1, . . . , xn} where j ≥ k + 2. Applying the lemma once to this second

summand, we get

ẽr(xk+2,k+3,...,n) = xk+2 · ẽr−1(xk+2,k+3,...,n) + ẽr(xk+3,k+4,...,n).

And applying the lemma to both of these decomposed pieces, we get

ẽr(xk+2,k+3,...,n) = xk+2 · [xk+2 · ẽr−2(xk+2,k+3,...,n) + ẽr−1(xk+3,k+4,...,n)]

+ [xk+3 · ẽr−1(xk+3,k+4,...,n) + ẽr(xk+4,k+5,...,n)]

= x2
k+2 · ẽr−2(xk+2,k+3,...,n) + (xk+2 + xk+3) · ẽr−1(xk+3,k+4,...,n)

+ ẽr(xk+4,k+5,...,n).

We then repeat this process on all three summands until one of the following con-

ditions hold:

• The degree of each modified complete symmetric function is 1.

• The modified symmetric function has only an xn variable in it.

For each newly created modified symmetric function, if neither condition is passed,

then we again apply the process to this new function. This process repeats on each

ẽi(xj···n) until either i = 1 or j = n. In the former case, we have ẽ1(xj···n) ∈ Jβ′ since

β′j = 1 for all j > k. And in the latter case ẽi(xn) ∈ Jβ′ since ẽi(xn) = xi−1
n ẽ1(xn)

and β′n = 1. Since this process clearly terminates at these two cases, we see that

ẽr(xk+2,k+3,...,n) lies in Jβ′ since

ẽr(xk+2,k+3,...,n) ∈
〈
ẽ1(xj···n)

〉n

j=k+2
.



45

Hence ẽr(xk+1,k+2,...,n) ∈ Jβ lies in the ideal Jβ′ since

ẽr(xk+1,k+2,...,n) ∈
〈
ẽr−1(xk+1,k+2,...,n), ẽ1(xj···n)

〉n

j=k+2
⊂ Jβ′ .

Thus Jβ ⊂ Jβ′ .

Corollary 4.3.3. The elementary symmetric functions lie in all ideals Jh that arise

from a nice sequence.

Remark 4.3.4. In Observation 3.1.2, we learned the ideal Ih corresponding to

the function h = (n, . . . , n) is generated by the elementary symmetric functions.

In Chapter 7, we prove the powerful assertion that the generators of the ideal Jh

corresponding to h = (n, . . . , n) form a Gröbner basis for Ih. A corollary to this is

that Ih = Jh when h = (n, . . . , n).

4.4 Containment of ideals Jh (for arbitrary sequences)

In this section, we generalize the nesting property that h > h′ implies Jh ⊂ Jh′

to the general setting of arbitrary sequences of degree tuples. This setting is far

less transparent than the previous nice sequence setting. The idea of the proof,

however, is similar and involves applying Lemma 4.2.5 iteratively.

Definitions of test-index and testable symmetric functions

We say a modified complete symmetric function ẽr(xj···n) has test-index r + n− j.

Applying Lemma 4.2.5 to ẽr(xj···n), we get two new symmetric functions ẽr−1(xj···n)

and ẽr(xj+1···n) of test index (r−1)+n− j and r +n− (j +1) respectively. That is,

if we apply Lemma 4.2.5, then the test-index decreases by 1 on each new summand.

We say ẽr(xj···n) is testable for β if βj ≤ r and 1 ≤ r ≤ j. The “test”

is essentially a procedure for testing the membership of ẽr(xj···n) in the ideal Jβ.

The outline of the test is as follows. If βj = r, then we are done. Otherwise

apply Lemma 4.2.5 and test the two new modified complete symmetric functions

(ignoring the coefficients) output by the lemma. Iterate this process as necessary

on the newly created symmetric functions. For ease in the main proof, we illustrate

this procedure in Figure 4.2.
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The Omega Algorithm

For shorthand denote ẽi(xj···n) as simply ẽi(j) from now on. The reader is reminded

of the warning in Remark 4.2.1 regarding this notation. We denote Ω(ẽi(j)) as the

procedure to test whether ẽi(j) ∈ Jβ.

BEGIN

��

Level 1

Is βj ≤ i ?

Y es

��

No // Test
Fails

Level 2

ẽi(j) Check

βj<i
��

βj=i // END Level 3

Decompose ẽi(j) as
xj ẽi−1(j) + ẽi(j + 1)

vvmmmmmmmmmmmmm

))RRRRRRRRRRRRR
Level 4

ẽi−1(j) Check

βj<i−1
��

βj=i−1

))SSSSSSSSSSSSSSSS
ẽi(j + 1) Check

βj+1=i

uukkkkkkkkkkkkkkkkk

βj+1<i
��

Level 5

Ω(ẽi−1(j)) END Ω(ẽi(j + 1)) Level 6

Figure 4.2: Omega algorithm.

To begin the Ω-process on any ẽi0(j0), we must first check that βj0 ≤ i0. If

END is reached at any point, then we say ẽi0(j0) ∈ Jβ. The bottom Ω boxes mean

we reiterate this process for the new given symmetric function. We prove that this

process should terminate since each time the test-index is lowered by one.

The following lemma will be useful in the main theorem below. It gives a

relationship between the testability of a symmetric function and its test-index.

Lemma 4.4.1. Let β be a degree tuple. If ẽr(j) is testable for β, then it follows

that 1 ≤ TI(ẽr(j)) ≤ n where TI(ẽr(j)) is the test-index of ẽr(j). In particular, TI
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is always positive.

Proof. Suppose ẽr(j) is testable for β. Then by definition βj ≤ r and 1 ≤ r ≤ j.

So TI is greatest when r is maximal (that is, r = j) whence we have

TI = r + n− j ≤ j + n− j = n.

On the other hand TI is least when j is maximal (that is, j = n) and r is smallest

(that is, r = 1) whence TI = 1 + n− n = 1. Hence 1 ≤ TI(ẽr(j)) ≤ n follows.

Theorem 4.4.2. If β > β′ then Jβ ⊂ Jβ′.

Proof. Since β > β′, there is a path on the Hasse diagram on degree tuples from β

to β′. Without loss of generality, assume β and β′ differ only in the jth component

where βj = i and β′j = i− 1. It suffices to show the generator ẽi(j) of the ideal Jβ

also lies in the ideal Jβ′ . Clearly ẽi(j) is testable for β′ since β′j = i − 1 ≤ i and

by definition of a degree tuple, we have 1 ≤ i ≤ j. Applying Lemma 4.2.5, we see

that the first summand of ẽi(j) = xj ẽi−1(j) + ẽi(j + 1) is in Jβ′ since β′j = i − 1.

So END is reached if βj+1 = i. Note β′j = i− 1 and the degree tuple condition (b′)

from Section 4.1 give

βj+1 − β′j ≤ 1 =⇒ βj+1 − (i− 1) ≤ 1 =⇒ βj+1 ≤ i.

Thus the second summand ẽi(j + 1) is testable too and has test-index one less than

ẽi(j). So we perform Ω(ẽi(j+1)) yielding xj+1ẽi−1(j+1)+ ẽi(j+2). END is reached

if βj+1 = i− 1 and βj+2 = i. Otherwise, one or both of the latter conditions failed.

The former failing means βj+1 < i− 1 thus βj+1 ≤ i− 1 and the Level 2 check for

Ω(ẽi−1(j + 1)) will pass. Similarly, the latter failing means βj+2 ≤ i and hence the

Level 2 check for Ω(ẽi(j + 2)) will pass.

We repeat this process on any ẽi0(j0) that fails the check at Level 5, noting

the test-index will lower by one each time Ω is performed. By induction we will

show that any Ω(ẽi0(j0)) that is reached at Level 6 will pass the Level 2 test when

this process is reiterated. Assume that such an Ω(ẽi0(j0)) has been reached. Then
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one of two cases has occurred:

Case 1: ẽi0(j0) came from the left summand in the decomposition at Level 4

Then ẽi0+1(j0) was decomposed and by induction passed the Level 2 check. Hence

βj0 ≤ i0 + 1. But since Ω(ẽi0(j0)) is being performed, the ẽi0+1(j0) check at Level 5

failed – that is, βj0 < i0.

Case 2: ẽi0(j0) came from the right summand in the decomposition at Level 4

Then ẽi0(j0−1) was decomposed and by induction passed the Level 2 check. Hence

βj0−1 ≤ i0. But since Ω(ẽi0(j0)) is being performed, the ẽi0+1(j0) check at Level 5

failed – that is, βj0 < i0.

We claim this process will terminate since the test-index starts out as positive

and lowers by one each time implying that eventually one of two cases is reached

for a given ẽi0(j0):

• βj0 = i0 (compare this to the “degree=1” case in the nice sequence).

• j0 = n (compare this to the second case in the nice sequence).

Observe that TI starts out positive by Lemma 4.4.1. Each time we reach Level 4 of

the omega algorithm, two new summands are produced each with TI-value lowered

by one. After a sufficient number of iterations on each summand, either one of the

final cases above must be reached and we are done.

Corollary 4.4.3. The elementary symmetric functions lie in each ideal Jh.

Proof. See Remark 4.3.4.
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CHAPTER 5

BASIS FOR POLYNOMIAL QUOTIENT RING

This chapter proves key properties of R/Jh starting with the necessary back-

ground of commutative algebra. For much of the chapter, we treat the more general

case of an ideal I in the polynomial ring R = k[x1, . . . , xn]. A main goal is to define

a basis for the quotient R/I. We take k to be the field of rationals Q. However in

the main application in Section 5.4, the integers Z will suffice.

This chapter gives the algebraic background needed to describe the quotient

R/I. The tool we use is a Gröbner basis for the ideal I. In Section 5.1, we define

Gröbner bases and give a brief background on how these bases are used to solve

some fundamental problems in commutative algebra. In Section 5.2, we list without

proof all the statements of theorems needed to construct a basis for the quotient

R/I. The interested reader can find the proofs of these results in the appendix.

In Section 5.3, we prove that the generators of the ideal Jh form a Gröbner basis.

Using this fact and results from Section 5.2, we present a basis Bh(µ) for R/Jh in

Section 5.4. Finally, we end with an elaborative example in Section 5.5.

5.1 Background and definitions

In this section we give the necessary definitions needed to define a Gröbner

basis. We also provide a brief sketch of the story behind two fundamental problems

in commutative algebra – namely, the problem with the division algorithm in mul-

tiple variables and the ideal membership problem. Solutions to both will be needed

to construct a basis for R/Jh.

Definition 5.1.1 (Monomial orderings). Let the monomials xα := xα1
1 xα2

2 · · ·xαn
n

and xβ := xβ1

1 xβ2

2 · · ·xβn
n be in R, where α = (α1, . . . , αn) and β = (β1, . . . , βn) are

the exponents of variables xi ∈ xα and xj ∈ xβ respectively. In the lexicographic

ordering, if the vector difference α − β ∈ Zn has a positive leftmost nonzero entry,
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then we say xα >lex xβ. For example, since α − β = (1,−17), we say x1 >lex x17
2 .

Similarly since α− β = (0, 1), we say x1x
2
2 >lex x1x2. Define the total degree of xα

to be |α| :=
∑

αi. In the graded lexicographic ordering

• if |α| > |β|, or

• if |α| = |β| and xα >lex xβ,

then xα >grlex xβ. For example, x17
2 >grlex x1 or x2

1x2 >grlex x1x
2
2. Monomials

of the same total degree in graded lexicographic ordering are settled by ordinary

lexicographic ordering.

Definition 5.1.2 (Multi-degree, Leading coefficient (LC), Leading monomial (LM),

and Leading term (LT)). Let f ∈
∑

α kαx
α be a nonzero polynomial in R and let

> be a monomial ordering. The multi-degree of f , denoted multideg(f), is the

maximum of the exponents α, where the maximum is taken with respect to the

ordering >. The leading coefficient of f is LC(f) = kmultideg(f) ∈ k. The leading

monomial of f is LM(f) = xmultideg(f). Note that the leading monomial always has

coefficient 1 for every nonzero f . The leading term of f is LT (f) = LC(f) ·LM(f).

For example, if f = 3xy2 + 4y4 then LT (f) = 3 · xy2 under the lex-ordering and

LT (f) = 4 · y4 under the grlex-ordering.

Remark 5.1.3. The main objects of our interest will be the generators of the ideal

Jh. These generators are homogeneous symmetric functions. Hence, the leading

monomial is the same whether we use lex or grlex orderings.

Division Algorithm in R

Generalizing the division algorithm to a multivariate setting is a classical result

whose proof we do not reproduce here but can be found in [3, pg.64]. Fix a monomial

ordering > on Zn
>0, and let F = (f1, . . . , ft) be an ordered t-tuple of polynomials in

R. Let f be a polynomial in R. Then f can be written as

q1f1 + q2f2 + · · ·+ qtft + r (5.1)
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where the quotients qi and remainder r all lie in R, and either r = 0 or r is

a k-linear combination of monomials none of which is divisible by any of the

LT (f1), . . . , LT (ft). Furthermore, if qifi 6= 0, then multideg(f) > multideg(qifi).

A Problem with the Division Algorithm and Ideal Membership

If the remainder in Equation 5.1 is zero, then we can see that f lies in the span

of the fi above. However, the division algorithm does not yield consistent results

in polynomial rings with several variables. With the current order of polynomials

f1, . . . , ft we may find that f = q1f1 + q2f2 + · · · + qtft + r and r = 0. However

upon reordering as {fσ(i)}ti=1 for some σ in the symmetric group St, we may get

f = p1fσ(1) + p2fσ(2) + · · · + ptfσ(t) + r′ and r′ 6= 0. This is the ideal membership

problem.

Introduction to Gröbner bases

Let I be an ideal in R. Let 〈LT (I)〉 denote the ideal generated by the leading terms

of each element in I. If I is generated by a finite number of generators, say f1, . . . , fs.

Then it follows that 〈LT (f1), . . . , LT (fs)〉 is always contained in 〈LT (I)〉. However,

unless the fi are a special collection of generators, 〈LT (I)〉 is strictly larger than

〈LT (f1), . . . , LT (fs)〉. Any special collection of this kind is called a Gröbner basis.

Definition 5.1.4 (A Criterion for a Gröbner basis). G = {g1, . . . , gt} is a Gröbner

basis for an ideal I in R if and only if 〈LT (I)〉 = 〈LT (g1), . . . , LT (gt)〉.

Fact 5.1.5 (Buchberger’s algorithm). Every ideal in R has a Gröbner basis.

A Solution to the Ideal Membership Problem

Let I be an ideal in R. The Hilbert Basis Theorem guarantees that I has a finite

generating set, so I = 〈f1, . . . , fs〉 for some f1, . . . , fs ∈ I. The division algorithm

for this set of generators may not determine conclusively whether a polynomial

f ∈ R lies in the ideal I. However, Buchberger’s algorithm produces a special

kind of generating set for this ideal. This set is a Gröbner basis G = {g1, . . . , gt},
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and I = 〈g1, . . . , gt〉. Gröbner bases solve some of the problems with the division

algorithm above: no matter how we order the elements in G, the division algorithm

now produces a unique remainder. Only some of the problems are solved because

reordering the elements of G produces different quotients qi in the expression

f = q1g1 + q2g2 + · · ·+ qtgt + r.

For the purposes of an ideal membership criterion, however, this remaining problem

does not matter.

Remark 5.1.6 (The notation f
G
). Let G = {g1, . . . , gt} be a set of polynomials in

R. If f is a polynomial in R, then we use the symbol f
G

to denote the remainder

upon division of f by G.

5.2 Commutative algebra machinery

Below, we list without proof some well-known results from commutative alge-

bra that we use to build a basis for the quotient R/Jh. The interested reader can

find their proofs in Appendix A.2.

Theorem 5.2.1 (Division by a Gröbner basis gives a unique remainder). Assume

G = {g1, . . . , gt} is a Gröbner basis for an ideal I in R and suppose f ∈ R. Then

there exists a unique r ∈ R such that:

(i) No term of r is divisible by any LT (g1), . . . , LT (gt).

(ii) There exists g ∈ I such that f = g + r.

In particular, r is the unique remainder upon division of f by G no matter how the

elements of G are listed.

Corollary 5.2.2 (Ideal Membership Criterion). A polynomial f ∈ R is in an ideal

I of R if and only if the remainder upon division by a Gröbner basis of I is zero.

Theorem 5.2.3. Given f ∈ R and an ideal I in R, f is congruent modulo I to a

unique polynomial r. This polynomial r is a k-linear combination of monomials in

the complement of 〈LT (I)〉.

Theorem 5.2.4. [3, Exer.1, pg.237]. Let I be an ideal in R. Then, the set
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{xα | xα /∈ 〈LT (I)〉} is linearly independent modulo I. That is, if
∑

α cαx
α ≡ 0

modulo I and each xα /∈ 〈LT (I)〉, then cα = 0 for all α.

Lemma 5.2.5 (Strengthened Version of Theorem 5.2.1). [3, Exer.1, pg.87]. Let

G = {g1, . . . , gt} be a Gröbner basis for an ideal I in R and suppose f ∈ R. Then

there exists a unique r ∈ R such that:

(i) No term of r is divisible by any element of LT (I).

(ii) There exists g ∈ I such that f = g + r.

So r is the unique remainder upon division of f by I. Furthermore, this remainder

coincides with the remainder given in Theorem 5.2.1.

Lemma 5.2.6. [3, Exer.12a, pg.88]. If f and g are polynomials in R, then f
G

= gG

if and only if f − g ∈ I.

Lemma 5.2.7. [3, Exer.12b, pg.88]. If f and g are polynomials in R, then f + g
G

=

f
G

+ gG.

Lemma 5.2.8. [3, Exer.12c, pg.88]. If f and g are polynomials in R, then fg
G

=

f
G

+ gG
G

.

Theorem 5.2.9 (A Basis for R/I). R/I is isomorphic to the k-span of the set

{xα|xα /∈ 〈LT (I)〉} as k-vector spaces.

Observation 5.2.10. The quotient R/I is almost – but not! – ring isomorphic to

the k-span of {xα|xα /∈ 〈LT (I)〉}.

5.3 Generators of Jh form a Gröbner basis

We briefly recall the construction of the ideals Jh from Section 4.2. Consider

the map h = (h1, h2, . . . , hn) 7−→ β = (βn, βn−1, . . . , β1) from Hessenberg functions

to degree tuples where βi = i−#{hk|hk < i}. The ideal Jh is defined as

Jh := 〈ẽβn(xn), ẽβn−1(xn−1, xn), . . . , ẽβ1(x1, . . . , xn)〉

where each ẽβi
(xi, xi+1, . . . , xn) is the modified complete symmetric function intro-

duced in Section 4.2.

There are many criteria to show that a set G = {g1, . . . , gt} of polynomials
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forms a Gröbner basis. One criterion was given in Definition 5.1.4. A sufficient

criterion is given in the following theorem in [3, pg 104]. Recall that two polynomials

f1 6= f2 are relatively prime if LCM(LM(f1), LM(f2)) = LM(f1) · LM(f2), where

LCM is the least common multiple.

Theorem 5.3.1. Let G = {g1, . . . , gt} be a set of polynomials. If the leading mono-

mials of the polynomials in G are pairwise relatively prime, then G is a Gröbner

basis.

Theorem 5.3.2. The generating set of an ideal Jh is a Gröbner basis with respect

to the lexicographic.

Proof. Let 〈ẽβn(xn), ẽβn−1(xn−1, xn), . . . , ẽβ1(x1, . . . , xn)〉 be the ideal Jh for a given

Hessenberg function h. For brevity, let us name the generators

fn := ẽβn(xn)

fn−1 := ẽβn−1(xn−1, xn)

...

f1 := ẽβ1(x1, . . . , xn).

To show the set G = {f1, f2, . . . , fn} is a Gröbner basis, it suffices to show that

the leading monomials of fi and fj are relatively prime for all i 6= j, and hence

the claim holds by Theorem 5.3.1. Since the leading monomial of each fi is xβi

i , it

follows that if i 6= j, then we have

LCM(LM(fi), LM(fj)) = LCM(xβi

i , x
βj

j ) = xβi

i x
βj

j = LM(fi) · LM(fj).

We conclude that G is a Gröbner basis for the ideal Jh. Observe that we could have

used the graded lexicographic monomial ordering instead. Remark 5.1.3 pointed out

that both orderings give the same leading monomials for homogenous polynomials

like the fi.
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5.4 Monomial basis Bh(µ) for R/Jh

By Theorem 5.2.9, if I is an ideal in R = k[x1, . . . , xn], then R/I has basis

{xα | xα /∈ 〈LT (I)〉}. To find a basis for R/Jh we must understand the ideal

generated by the leading terms of the elements in the ideal Jh, namely, the ideal of

leading terms 〈LT (Jh)〉.

Lemma 5.4.1. Given the ideal Jh with Hessenberg function h = (h1, . . . , hn), the

ideal 〈LT (Jh)〉 is the monomial ideal 〈xβ1

1 , xβ2

2 , . . . , xβn
n 〉.

Proof. The set {ẽβn(xn), ẽβn−1(xn−1, xn), . . . , ẽβ1(x1, . . . , xn)} is the generating set

of the ideal Jh. By Theorem 5.3.2, this set forms a Gröbner basis. For brevity,

denote fi := ẽβi
(xi, xi+1, . . . , xn). Thus {f1, . . . , fn} is our Gröbner basis, and by

the definition of a Gröbner basis it follows that 〈LT (Jh)〉 = 〈LT (f1), . . . , LT (fn)〉.

Since LT (fi) = xβi

i for each i, the ideal 〈LT (f1), . . . , LT (fn)〉 is just the monomial

ideal 〈xβ1

1 , xβ2

2 , . . . , xβn
n 〉.

Corollary 5.4.2. If xα /∈ 〈LT (Jh)〉, then none of the xβi

i divides xα.

Proof. Suppose some xβi

i divides xα. Then xα = pi · xβi

i for some pi ∈ R. So

xα ∈ 〈xβ1

1 , xβ2

2 , . . . , xβn
n 〉 = 〈LT (Jh)〉. This proves the claim.

Theorem 5.4.3 (A Basis for R/Jh). Let Jh be the ideal corresponding to the Hes-

senberg function h. Then R/Jh has the basis

{xα1
1 xα2

2 · · ·xαn
n 0 ≤ αi ≤ βi − 1, i = 1, . . . , n} .

Proof. By Theorem 5.2.9, the quotient R/Jh has basis {xα|xα /∈ 〈LT (Jh)〉}. By

Corollary 5.4.2, xα /∈ 〈LT (Jh)〉 implies none of the xβi

i divides xα. Thus if xi

appears in the monomial xα, then its exponent cannot exceed βi − 1. So xα must

be of the form xα1
1 xα2

2 · · ·xαn
n such that each exponent αi ∈ {0, 1, . . . , βi − 1}. The

claim follows.

Definition 5.4.4 (Monomial basis Bh(µ)). Let h be a Hessenberg function. The

monomials given in Theorem 5.4.3 form a monomial basis Bh(µ) for the ring R/Jh.
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Corollary 5.4.5. For every ideal Jh, the rank of R/Jh equals
n∏

i=1

βi. In particular,

the quotient R/Jh has finite rank.

Proof. By definition of a degree tuple (βn, . . . , β1), each βi is positive. We count all

basis elements of R/Jh, namely as all monomials xα with exponents αi in the range

{0, 1, . . . , βi − 1}. This gives a total of
∏n

i=1 βi distinct monomials. Therefore, the

rank of R/Jh equals
∏n

i=1 βi, which is finite.

Remark 5.4.6 (Interesting fact about
n∏

i=1

βi above). As a consequence of Theo-

rem 6.2.3, the number of all possible (h, µ)-fillings of a Young diagram of shape µ

equals the rank of R/Jh. This will be useful to us later in Chapter 6.

5.5 Elaborative example

Let h = (3, 3, 3, 4) be a Hessenberg function. Then β = (1, 3, 2, 1), yielding

the ideal Jh = 〈ẽ1(x4), ẽ3(x3, x4), ẽ2(x2, x3, x4), ẽ1(x1, x2, x3, x4)〉. We write

Jh =



x4

x3
3 + x2

3x4 + x3x
2
4 + x2

4

x2
2 + x2x3 + x2x4 + x2

3 + x3x4 + x2
4

x1 + x2 + x3 + x4


.

The leading term ideal 〈LT (Jh)〉 = 〈x4, x
3
3, x

2
2, x1〉 since the generators of Jh form a

Gröbner basis. Thus the quotient R/Jh has basisxα1
1 xα2

2 xα3
3 xα4

4

α1 = 0, α2 = 0, 1

α3 = 0, 1, 2, α4 = 0

 .

So Bh(µ) equals {1, x2, x3, x2x3, x2
3, x2x

2
3}. As per Corollary 5.4.5, it has∏4

i=1 βi = 1 · 2 · 3 · 1 = 6 elements. By Remark 5.4.6, there are exactly 6 pos-

sible (h, µ)-fillings. Below we give these fillings, their dimension pairs, and the

corresponding monomials given by the function Φ.
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1 2 3 4 2 1 3 4 1 3 2 4 2 3 1 4 3 1 2 4 3 2 1 4

l l l l l l

no pairs (12) (23) (12), (13) (13), (23) (12), (13), (23)

l l l l l l

1 x2 x3 x2x3 x2
3 x2x

2
3

To our delight, we get the same monomials from the (h, µ)-fillings as the basis of

R/Jh. The goal of Chapter 6 is to prove this always happens.
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CHAPTER 6

REGULAR NILPOTENT HESSENBERG VARIETY SETTING

As promised in Chapter 2, we now provide an analogy of what was done

in the setting of Springer varieties. To this end, we explain the basic set-up and

goal as given in Figure 6.1. We remind the reader that in the setting of regular

nilpotent Hessenberg varieties, we fix the nilpotent operator X (equivalently, fix

the shape µ = (n)). Recall that the dimensions of the graded parts of H∗(H(X, h))

are combinatorially described by the (h, µ)-fillings. This gives the geometric view

of the cohomology ring denoted by the left edge of the triangle. The formal linear

span of the (h, µ)-fillings is denoted Mh,µ. The map Φ is a graded vector space

morphism from Mh,µ to the span of monomials Ah(µ). In Section 6.3, we show that

Φ is actually a graded isomorphism, completing the bottom leg of the triangle. In

Theorem 6.3.3, we see that the generators of degree i in R/Jh correspond to (h, µ)-

fillings of dimension i and hence to the ith Betti number of the regular nilpotent

Hessenberg varieties. This gives the algebraic view of H∗(H(X, h)).

H∗(H(X, h))
88

xx x8
x8 x8 x8 x8 x8 x8 x8 ff

∼= ?
&&N

NNNNN

(h, µ)-fillings

spanning Mh,µ
oo

Φ−→
←−
Ψh

//
R/Jh with
Ah(µ) = Bh(µ)

basis

Figure 6.1: Triangle – Regular nilpotent Hessenberg setting.

In Section 6.1, for a given Hessenberg function h we build an h-tableau tree.

This tree assumes the role that the modified GP-tree filled in Chapter 2. In Sec-

tion 6.2, we construct the inverse map Ψh from the span of the monomials Ah(µ)

to the the vector space Mh,µ. Finally in Section 6.3, we show that the monomials
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Ah(µ) coincide with the basis Bh(µ) (recall Definition 5.4.4) of the quotient R/Jh.

6.1 Constructing an h-tableau-tree

Analogous to the Springer case, we first build a tree that we call an h-tree

whose leaves give the basis Bh(µ) for the quotient ring R/Jh. As with the modified

GP-tree, we then take these leaves and describe how to construct the corresponding

(h, µ)-filling. We label the vertices of the h-tree to produce a graph that we call an

h-tableau-tree. In this chapter, we repeatedly use the notion of degree tuples from

Section 4.1. For completeness, we restate its definition below.

Definition 6.1.1 (Degree tuple). Let h = (h1, h2, . . . , hn) be a Hessenberg function.

Let βi = i−#{hk | hk < i} for each 1 ≤ i ≤ n. The degree tuple corresponding to

h is β = (βn, βn−1, . . . , β1).

Definition 6.1.2 (h-tree). Given a Hessenberg function h = (h1, h2, . . . , hn), the

corresponding h-tree has n + 1 levels labeled from the top Level 1 to the bottom

Level n + 1. We start with one vertex at Level 1. For i ∈ {2, . . . , n}, we go from

Level i− 1 to Level i by traversing exactly βi distinct vertices from each vertex at

Level i − 1 injectively (that is, no two Level i − 1 vertices share an edge with the

same Level i vertex). Label the βi edges going down from each vertex on Level

i− 1 with the labels {xβi−1
i , xβi−2

i , . . . , x2
i , xi, 1} going left to right. Let each vertex

at Level n branch down to a unique vertex at Level n + 1. Label this connecting

edge with the number 1. Label the leaf at Level n + 1 with the product of the edge

labels connecting the top Level 1 vertex with this leaf.

Theorem 6.1.3. Let h = (h1, . . . , hn) be a Hessenberg function. Then

1. The number of leaves at Level n + 1 equals
∏n

i=1 βi.

2. The collection of the
∏n

i=1 βi leaf labels at Level n + 1 of the h-tree is exactly

the basis of monomials Bh(µ) of R/Jh from Section 5.4.

Proof. Obvious.
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Example 6.1.4. Let h = (2, 3, 3) be a Hessenberg function. It has corresponding

degree tuple β = (2, 2, 1). Figure 6.2 shows the corresponding h-tree.
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x2x3 x2 x3 1

Figure 6.2: The h-tree for h = (2, 3, 3).

Before we give the precise construction of an h-tableau-tree, we define a barless

tableau and give a lemma that instructs us how to fill this object to construct a

tableau.

Definition 6.1.5 (Barless tableau). Fix n. A barless tableau is the following dia-

gram filled with some proper subset of {1, . . . , n} without any bars.

Remark 6.1.6 (Using a barless tableau to build an (h, µ)-filling). We place the val-

ues 1, . . . , n in increasing order into the barless tableau satisfying an h-permissibility

condition. Suppose we have placed the numbers 1, . . . , i−1. We say the i−1 fillings

are in h-permissible positions if each horizontal adjacency adheres to the rule: k is

immediately left of j if and only if k ≤ hj. The lemma below allows us to predict

how many h-permissible positions are available for the placement of the next value,

i. When the nth number is placed, we replace the bars in the barless tableau.

Lemma 6.1.7. Let h = (h1, . . . , hn) be a Hessenberg function. If a barless tableau

is filled with 1, 2, . . . , i− 1, then the number of h-permissible positions for i in this

tableau is exactly βi, where (βn, βn−1, . . . , β1) is the degree tuple corresponding to h.

Proof. Let h = (h1, . . . , hn) be a Hessenberg function and β = (βn, βn−1, . . . , β1) be
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its corresponding degree tuple. Suppose a barless tableau is filled with 1, 2, . . . , i−1.

Consider βi. By definition βi = i − #{hk | hk < i} and so #{hk | hk < i} equals

i−βi. Since each hk is at least k, only the values h1, . . . , hi−1 can possibly lie in the

set {hk | hk < i}. The remaining (i−1)− (i−βi) = βi−1 of the h1, . . . , hi−1 satisfy

i ≤ hk which is the h-permissibility condition for the descent such as i k . Hence

i can be place to the immediate left of an of these βi − 1 values. This gives βi − 1

positions that are h-permissible positions. In addition, the value i can be placed

to the right of the far-right entry since i is larger than any number 1, . . . , i − 1 in

the barless tableau. This yields a total of (βi − 1) + 1 = βi possible h-permissible

positions for i.

Definition 6.1.8 (h-tableau-tree). Let h = (h1, . . . , hn) be a Hessenberg function

and β = (βn, βn−1, . . . , 1) be its corresponding degree tuple. The h-tableau-tree is

the h-tree together with an assignment of barless tableaux to label each vertex on

Levels 1 to n. The top is Level 1 and has a single barless tableau with the entry

1. Remark 6.1.6 explained how we build an (h, µ)-filling. Given a barless tableau

T at Level i− 1 with fillings 1, . . . , i− 1, we obtain the βi different Level i barless

tableaux by the following algorithm:

• Place a bullet at each of the h-permissible positions in the barless tableau T .

Lemma 6.1.7 asserts there will be exactly βi bullets going right to left. The

diagram at Level i joined by the edge xj
i is found by replacing the (j + 1)th

bullet (counting right to left) with the number i and erasing all other bullets.

When we reach Level n, each barless tableau will contain the numbers 1, . . . , n. We

may now place the bars into this tableau yielding a filling of µ.

Example 6.1.9. In Figure 6.3, we give an example of an h-tableau-tree when

h = (3, 3, 3, 4). The corresponding degree tuple is β = (1, 3, 2, 1). For ease of

viewing, we omit the barless tableaux’s rectangular boundaries and just give the
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Figure 6.3: The h-tableau-tree for h = (3, 3, 3, 4).

fillings. Observe that the six Level 4 tableaux are (h, µ)-fillings. There are only

six possible (h, µ)-fillings for this particular Hessenberg function and hence these

are all the (h, µ)-fillings. Further, the function Φ maps each one to the monomial

in Bh(µ) on Level 5. We conclude that the set of monomials A(3,3,3,4)(µ) coincides

with the monomial basis B(3,3,3,4)(µ) for R/Jh when using this regular nilpotent

shape µ = (n). We generalize these points in the next section, where we exhibit the

inverse map to Φ in the setting of regular nilpotent Hessenberg varieties. Compare

this with the elaborative example from Section 5.5.

6.2 The inverse map Ψh from monomials in Bh(µ) to (h, µ)-fillings

Recall from Section 1.6, the function Φ from (h, µ)-fillings onto the set Ah(µ)

of monomials is given by the map

T 7−→
∏

(i,j)∈DPT
j

2≤j≤n

xj.

In the Springer setting, we first constructed the inverse map Ψ from A(µ) to (h, µ)-

fillings, then proved A(µ) = B(µ). In the regular nilpotent Hessenberg setting we

will again prove that Φ is a graded vector space isomorphism by first constructing an

inverse map Ψh from Bh(µ) and then verifying Ah(µ) = Bh(µ). In this new setting
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this plan of attack makes more sense since we know more about the structure of

Bh(µ) (see Theorem 5.4.3), whereas in the Springer setting the basis B(µ) was given

via a recursion formula [7, Equation 1.2]. As the remarks in Example 6.1.9 disclosed,

we will show the following:

1. The Level n fillings in the h-tableau-tree are distinct (h, µ)-fillings.

2. The number of (h, µ)-fillings equals the number of leaves of the h-tableau-tree.

3. The Level n fillings are all possible (h, µ)-fillings.

4. The function Φ maps each of these fillings to the monomial xα ∈ Bh(µ) below

it at Level n + 1.

5. The set Ah(µ) coincides with the set Bh(µ).

Theorem 6.2.1. The Level n fillings of an h-tableau-tree for h = (h1, . . . , hn) are

distinct (h, µ)-fillings.

Proof. When going down from Level i−1 down to i, the value i is placed immediately

to the left of a number k ∈ {1, . . . , i− 1} only if i ≤ h(k). That is, all fillings in the

tree are h-permissible and hence the Level n fillings are (h, µ)-fillings. Branching

rules ensure all are distinct.

The proof of Theorem 6.2.3 relies on combinatorial facts about the two num-

bers in question, namely the cardinalities of the set of possible (h, µ)-fillings and

the set of leaves of an h-tableau-tree. The former number is given by the following

theorem.

Theorem 6.2.2 (Sommers-Tymoczko [13]). Let h = (h1, . . . , hn) be a Hessenberg

function. The number of (h, µ)-fillings of a one-row diagram of shape (n) equals∏n
i=1 νi where νi = hi − i + 1.

Fix a Hessenberg function h = (h1, . . . , hn). Let Ah denote the multiset

Ah := {νi}ni=1. Theorem 6.1.3 shows that the number of leaves of the h-tree (and



64

consequently of the h-tableau-tree) is
∏n

i=1 βi where βi = i − #{hk < i}. Let Bh

denote the multiset Bh := {βi}ni=1. The sets Ah and Bh are multisets. In these types

of sets order is ignored, but multiplicity matters. For example {1, 2, 3} = {2, 1, 3}

but {1, 1, 2} 6= {1, 2}.

Theorem 6.2.3. The number of (h, µ)-fillings equals the number of leaves in the

h-tableau-tree.

Proof. Let h = (h1, . . . , hn) be a Hessenberg function. It suffices to show the multi-

sets Ah and Bh are equal. Represent the function h pictorially by its corresponding

Hessenberg diagram (see Definition 4.1.9). We may view the elements of Ah as a

vector difference (νi)
n
i=1 = (h1, . . . , hn)−(0, 1, . . . , n−1). So νi equals the number of

shaded boxes on or below the diagonal in column i. Regarding set Bh, observe that

#{hk | hk < i} equals the number of empty boxes in row i – these are the hk that

never touch row i. So βi is the number of shaded boxes on or left of the diagonal

in row i. Thus it suffices to show each column length νi corresponds to exactly one

row length βj. We induct on the Hessenberg function.

Consider the minimal Hessenberg function h = (1, 2, . . . , n). This gives the

following Hessenberg diagram:

�
�

�
�

�
� .

Each shaded box contributes to both an νi and a βi of length 1. It follows that

Ah = Bh = {1, 1, . . . , 1}, proving the base case holds.

Assume for some fixed Hessenberg function h = (h1, . . . , hn) that Ah = Bh.

Add a shaded box to its Hessenberg diagram in a position (i0, j0) so that the new

function h̃ = (h1, . . . , hj0−1, i0, hj0+1, . . . , hn) is a Hessenberg function, namely so

i0 ≤ hj0+1. We claim that the multisets Ah̃ = {ν̃i}ni=1 and Bh̃ = {β̃i}ni=1 will
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coincide.

Every box above (i0, j0) in column j0 must be shaded, up to the shaded di-

agonal box (j0, j0). This shaded column length is ν̃j0 . And since h̃ is a Hessenberg

function, every box to the right of (i0, j0) is shaded up to the shaded diagonal box

(i0, i0). This shaded row length is β̃i0 . A reminder that no other box in row i0 or

column j0 below the diagonal is shaded because h is a Hessenberg function. Clearly

ν̃j0 = νj0 + 1 = (hj0 − j0 + 1) + 1 = hj0 − j0 + 2. The value β̃i0 is just the num-

ber of boxes in row i0 from the position (i0, j0) to the diagonal (i0, i0) which we

count as i0 − j0 + 1. Observe i0 = hj0 + 1 implies that hj0 + 2 = i0 + 1. Hence

hj0 − j0 + 2 = i0 − j0 + 1. We conclude ν̃j0 = β̃i0 , and the claim holds since

(1) νj0 = βi0 necessarily in the original Hessenberg diagram for h,

(2) νj0 and βi0 both increase by 1 in the new Hessenberg diagram for h̃, and

(3) no other νi or βj in the original diagram for h will change in the diagram for h̃.

This completes the induction step, and we conclude that the multisets Ah̃ and Bh̃

are equal.

Example 6.2.4 (Clarifying example for the induction step above). Let h be the

Hessenberg function (3, 3, 4, 4, 5, 6). The corresponding Hessenberg diagram is

�
�
�

�
��

��
�

� .

In this example A = {3, 2, 2, 1, 1, 1} and B = {1, 2, 3, 2, 1, 1} reading the column

lengths and row lengths, respectively. At the induction step in the proof above,

there are only three legal places to add a box: the positions (4, 2), (5, 4), or (6, 5).

Adding the (4, 2)-box changes ν2 from 2 to 3 and changes β4 from 2 to 3 also.

Moreover, adding the (4, 2)-box did not affect any other νi or βj values in Ah or Bh

respectively.
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Corollary 6.2.5. The Level n fillings are all possible (h, µ)-fillings

Proof. Level n fillings are distinct (h, µ)-fillings by Theorem 6.2.1. The claim follows

immediately from the previous theorem together with Theorem 6.2.2 of Sommers-

Tymoczko.

We now need a lemma similar to Lemma 2.2.8. This will be useful in building

the inverse map Ψh.

Lemma 6.2.6. Fix n and let h be an arbitrary Hessenberg function. Let xα ∈ Bh(µ),

and consider the h-tableau-tree corresponding to h. Then

(i) The monomial xα is of the form xα2
2 · · ·xαn

n .

(ii) Any barless tableau at Level i− 1 has at least αi + 1 bullet positions available.

Proof. Let h = (h1, . . . , hn) be a Hessenberg function with corresponding degree

tuple β = (βn, βn−1, . . . , β1). Let xα ∈ Bh(µ). By Theorem 5.4.3, xα is of the form

xα1
1 xα2

2 · · ·xαn
n where each αi satisfies 0 ≤ αi ≤ βi − 1. Since β1 = 1 by definition,

we have α1 = 0 for all h, proving part (i). Lemma 6.1.7 ensures that a Level i− 1

barless tableau will have βi bullets. Since αi + 1 ≤ βi, this proves (ii).

Theorem 6.2.7 (A map from Bh(µ) to (h, µ)-fillings). Given h = (h1, . . . , hn)

and µ = (n), there exists a well-defined dimension-preserving map Ψh from the

monomials Bh(µ) to the set of (h, µ)-fillings. That is, degree-r monomials in Bh(µ)

map to r-dimensional (h, µ)-fillings. Moreover the composition

Bh(µ)
Ψh−→ {(h, µ) -fillings} Φ−→ Bh(µ)

is the identity.

Proof. Let xα ∈ Bh(µ) have degree r. Consider the (h, µ)-filling T sitting at Level

n directly above xα. Define Ψh(x
α) := T .

Lemma 6.2.6 says xα has the form xα2
2 · · ·xαn

n and α2 +α3 + · · ·+αn = r since

xα has degree r. It suffices to show that the cardinality of DPT
k equals αk for each

k ∈ {2, . . . , n}. We check this by examining the path on the h-tableau-tree from
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Level 1 down to xα at Level n + 1. Fix k ∈ {2, . . . , n}. Let T1, T2, . . . , Tn−1 be the

barless tableaux on this path at Levels 1, 2, . . . , n− 1 respectively. At the (k − 1)th

step in this path, the number k is placed in the (αk + 1)th bullet from the right in

Tk−1. This bullet exists by Lemma 6.2.6. The barless tableau Tk−1 has the form

· · · •Bαk
• · · · •B2 •B1•

where each block Bi is a string of numbers. The numbers 1, . . . , k−1 are distributed

without repetition amongst all Bi. We claim there exists exactly one bi in each Bi-

block to the right of k in Tk such that (bi, k) ∈ DPT
k .

Since all fillings in an h-tableau-tree are h-permissible, each block Bi is an

ordered string of γi numbers bi,1bi,2 · · · bi,γi
in {1, . . . , k−1} such that bi,r ≤ h(bi,r+1)

for each r < γi. We claim k forms a dimension pair with only the far-right entry

bi,γi
of each block Bi to its right. Recall to be a dimension pair (b, k) ∈ DPT

k in the

one-row case, we must have

(i) b is to the right of k and k > b holds, and

(ii) if there exists a j immediately right of b, then k ≤ h(j) holds also.

Since k is larger than every entry in the Level k − 1 barless tableau, condition (i)

holds. If there exists no j to the right of bi,γi
, then (ii) holds vacuously. If some j is

eventually placed immediately right of bi,γi
then j ≥ k + 1. Thus k < k + 1 ≤ h(j)

and so (ii) holds. Lastly, if no j is placed right of bi,γi
and there exists a block Bi−1

immediately right of Bi in the final tableau T , then the element bi−1,1 is immediately

right of bi,γi
. But k ≤ h(bi−1,1) since Tk−1 had a bullet placed left of the block Bi−1.

Thus in every case, (ii) holds and |DPT
k | equals αk as desired.

Hence the map Ψh : Bh(µ) → {(h, µ) -fillings} takes degree-r monomials to

r-dimensional (h, µ)-fillings, and Φ ◦Ψh is the identity on Bh(µ).

6.3 Ah(µ) coincides with the basis of monomials Bh(µ) for R/Jh

Corollary 6.3.1. For a given h, the set of monomials Ah(µ) and Bh(µ) are equal.
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Proof. The Level n fillings are (h, µ)-fillings by Theorem 6.2.1. In fact they are all

the possible (h, µ)-filings by Corollary 6.2.5. Since the image of all (h, µ)-fillings

under Φ is Ah(µ), we have Ah(µ) = Bh(µ).

Corollary 6.3.2. Ah(µ) and Mh,µ are isomorphic as graded vector spaces.

Proof. By Theorem 6.2.7, the composition Φ ◦ Ψh is the identity on Bh(µ). Since

Ah(µ) coincides with Bh(µ) and the number of paths in the h-tableau-tree is exactly∏n
i=1 βi = |Mh,µ|, the cardinality of Ah(µ) equals the cardinality of the generating

set of (h, µ)-fillings in Mh,µ. Thus A(µ) and Mh,µ are isomorphic as graded vector

spaces.

We are now ready to state the theorem that ties the algebraic view of the

H∗(H(X, h)) with the geometric view of this same cohomology ring.

Theorem 6.3.3. Let h = (h1, . . . , hn) be a Hessenberg function with corresponding

ideal Jh. The generators of the quotient R/Jh are in bijective graded correspondence

with the (h, µ)-fillings. In particular, the generators of R/Jh give the Betti numbers

of the regular nilpotent Hessenberg varieties.

Proof. In Corollary 6.3.2, we proved that the map Φ is a graded vector space iso-

morphism from Mh,µ to Ah(µ). In particular it a bijective graded correspondence

between the set of (h, µ)-fillings and the set of monomials Ah(µ). By Corollary 6.3.1,

the sets Ah(µ) and Bh(µ) coincide. Hence the set of generators of degree i in R/Jh

correspond directly to the i-dimensional (h, µ)-fillings. By Tymoczko [17, Theorem

1.1], the cardinality of the set of i-dimensional (h, µ)-fillings equals the dimension

of the degree-2i part of H∗(H(X, h)). Therefore, these degree i generators of R/Jh

give the 2ith Betti number of H(X, h).

Example 6.3.4. Fix h = (2, 4, 4, 5, 5) and its corresponding β = (2, 3, 2, 2, 1). The

degree tuple β tells us that the monomial x2x
2
4x5 lies in Bh(µ). Without draw-

ing the whole filled tableau tree, we can construct the unique path that gives the
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corresponding (h, µ)-filling. Omitting the barless tableau frames, we get

•1•
x1
2−→ •21•

x0
3−→ •21 • 3•

x2
4−→ •4213•

x1
5−→ 54213.

Thus Ψh(x2x
2
4x5) = T where T is the (h, µ)-filling 5 4 2 1 3 . Conversely to recover

the corresponding monomial from this filling T , we calculate the dimension-pairs.

We write all pairs (ik) where k is left of i and i < k. We then eliminate pairs (ik)

that do not satisfy the additional dimension pair condition that if j is immediately

right of i, then k ≤ h(j). We get the following:

(12) ∈ DPT
2 , (14),���(24), (34) ∈ DPT

4 , and �
��(15),���(25), (35),���(45) ∈ DPT

5 .

Thus Φ takes the filling T to the monomial x2x
2
4x5 as desired.

If we considered the Hessenberg function h′ = (2, 3, 5, 5, 5), then the same

filling T = 5 4 2 1 3 would be a permissible filling of h′, but now the dimension

pair (15) ∈ DPT
5 is not canceled since 5 ≤ h′(3). Thus the map Φ takes T to the

monomial x2x
2
4x

2
5. Conversely, the inverse map Ψh′ now takes the new degree tuple

into account and from this different monomial we will get the same T as we had

gotten before. The only thing that changes is the extra bullet before the last arrow:

•1•
x1
2−→ •21•

x0
3−→ •21 • 3•

x2
4−→ •421 • 3•

x2
5−→ 54213.

In particular, the algorithm for Ψh is depends on the choice of the Hessenberg

function.
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CHAPTER 7

TOWARDS AN EQUALITY OF TWO FAMILIES OF IDEALS

In this chapter we prove that the ideals Ih and Jh coincide when h is maximal,

namely, for h = (n, . . . , n). When h is maximal, the ideal Ih is generated by the

elementary symmetric functions. Therefore, proving equality of Ih and Jh in this

case effectively gives a Gröbner basis for the set of elementary symmetric functions.

Not suprisingly, this has been a well-studied problem. Our claim in Theorem 7.1.2,

up to change of variables, rediscovers an identity proven in 2003 by Mora and

Sala [12]. In conversations with Teo Mora, we learned that his result with Sala is

itself a rediscovery of a result of Valibouze [18] from 1995 in her thesis. Valibouze

then told us that in 1840 Cauchy [2] gave a result similar to hers in an example for

n = 4. Theorem 7.1.2 concludes that Ih ⊆ Jh when h is maximal. We then prove

in Corollary 7.1.3 that Jh ⊆ Ih, and hence the two ideals coincide.

It is a future goal to show Ih = Jh for all h. This essentially provides a

Gröbner basis presentation for the family of ideals Ih, which is otherwise a difficult

and unsolved problem.

7.1 The maximal Hessenberg function setting

Let h = (n, . . . , n). The ideal Ih is 〈e1, e2, . . . , en〉 where the ei are elementary

symmetric functions. We compute the ideal Jh to be

Jh = 〈ẽβn(xn), ẽβn−1(xn−1, xn), . . . , ẽβ1(x1, . . . , xn)〉.

For this particular Hessenberg function, each βi = i − #{hk | hk < i} = i since

hk = n for all k. Hence the generators have the form ẽi(xi, . . . , xn). Recall a

shorthand notation given in Section 4.2. The modified complete symmetric function

ẽi(xi, . . . , xn) will be denoted ẽi(xi,i+1,...,n).

Example 7.1.1 (Ih ⊆ Jh for n = 4). Fix n = 4. Using the well-defined Gröbner

division by the four generators of Jh, the elementary functions e1, . . . , e4 can be
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written:

e1 = e0(x234) · ẽ1(x1234)

e2 = e1(x234) · ẽ1(x1234)− e0(x34) · ẽ2(x234)

e3 = e2(x234) · ẽ1(x1234)− e1(x34) · ẽ2(x234) + e0(x4) · ẽ3(x34)

e4 = e3(x234) · ẽ1(x1234)− e2(x34) · ẽ2(x234) + e1(x4) · ẽ3(x34)− e0(∅) · ẽ4(x4)

where e0 is defined to be 1. It is clear the expansions of the elementary symmetric

functions as linear combination of generators of Jh are following a pattern. This

pattern is proved in Theorem 7.1.2.

Theorem 7.1.2. For 1 ≤ r ≤ n, the elementary summetric function er has the

following presentation:

er =
r∑

i=1

(−1)i+1er−i(x(i+1)···n) · ẽi(xi···n).

We conclude that if h = (n, . . . , n), then the corresponding ideal Ih = 〈e1, . . . , en〉 is

contained in the ideal Jh = 〈ẽi(xi···n)〉ni=1.

Proof. Let Xi be the variable set {x1, . . . , xi}. Mora and Sala define the function

gd(Xn) := hd(Xn−d+1) where hd(Xr) is the standard complete symmetric function∑
d1+···+dr=d

xd1
1 · · ·xdr

r where the di ≥ 0.

In [12, Prop 2.1] under the lexicographic ordering x1 < · · · < xn, they give the

following identity:

ed +
d−1∑
i=1

(−1)igi(Xn)ed−i(Xn−i) + (−1)dgd(Xn) = 0.

Their main result [12, Prop 2.2] implies that the identity holds for any term ordering

xπ(1) < · · · < xπ(n) for π ∈ Sn. Hence we conclude that

er =
r∑

i=1

(−1)i+1er−i(x(i+1)···n) · ẽi(xi···n) for 1 ≤ r ≤ n

if we let x1 > x2 > · · · > xn. Hence the ideal Ih is contained in the ideal Jh in the

h = (n, . . . , n) case.
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Using this theorem, we prove that Ih = Jh when h = (n, . . . , n).

Corollary 7.1.3. For the Hessenberg function h = (n, . . . , n), the generators of

the ideal Jh are linear combinations of the elementary symmetric functions. In

particular for 1 ≤ r ≤ n, the generator ẽr(xr···n) has the following presentation:

ẽr(xr···n) =
r∑

j=1

(−1)j+1ẽr−j(xr···n) · ej

and hence Jh ⊆ Ih. We conclude Ih = Jh when h is maximal.

Proof. Construct the lower triangular matrix B = (fij) where

fij =

{
(−1)j+1ei−j(x(j+1)···n) if j ≤ i,

0 if j > i.

which gives the transformation from the set {ei}ni=1 to the set {ẽi(xi···n)}ni=1. Since

B by construction is always invertible, we can find its inverse B−1 = (gij) where

gij =

{
(−1)j+1ẽi−j(xi···n) if j ≤ i,

0 if j > i.

We can then write ẽr(xr···n) as a linear combination of elementary symmetric func-

tions by reading the rth row of B−1. Thus ẽr(xr···n) =
∑r

j=1(−1)j+1ẽr−j(xr···n) · ej

as desired.

Example 7.1.4 (The n=4 example revisited). In the n = 4 case from Example 7.1.1

the corresponding tranformation matrices are



1 0 0 0

e1(x234) −1 0 0

e2(x234) −e1(x34) 1 0

e3(x234) −e2(x34) e1(x4) −1


(a) The B matrix.



1 0 0 0

ẽ1(x234) −1 0 0

ẽ2(x34) −ẽ1(x34) 1 0

ẽ3(x4) −ẽ2(x4) ẽ1(x4) −1


(b) The B−1 matrix.
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Reading off the rows of the inverse matrix as coefficients of the ei-terms, we get

ẽ1(x1234) = ẽ0(x1234) · e1

ẽ2(x234) = ẽ1(x234) · e1 − ẽ0(x234) · e2

ẽ3(x34) = ẽ2(x34) · e1 − ẽ1(x34) · e2 + ẽ0(x34) · e3

ẽ4(x4) = ẽ3(x4) · e1 − ẽ2(x4) · e2 + ẽ1(x4) · e3 − ẽ0(x4) · e4

where ẽ0 is defined to be 1.
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CHAPTER 8

FUTURE DIRECTION AND SOME OPEN QUESTIONS

In their own right, the family of ideals Ih and Jh are interesting objects of

study. As an extra bonus, the quotient R/Jh has applications to calculations of

cohomology rings. For the fixed shape µ = (n) and an arbitrary Hessenberg func-

tion h, the set of (h, µ)-fillings combinatorially describe the Betti numbers of the

cohomology ring of the regular nilpotent Hessenberg vareties. On the other hand,

the set of monomials Bh(µ) that form a basis for the quotient R/Jh algebraically

determine these same Betti numbers. This was shown in Theorem 6.3.3.

In this chapter, we explore future directions and open questions about the

families of ideals Ih and Jh. A main conjecture is the following.

Conjecture 8.0.1. Fix µ = (n) and let h be a Hessenberg function. The quotient

R/Jh is a presentation for the cohomology ring of the regular nilpotent Hessenberg

variety H(X, h). Moreover, this gives the cohomology ring with integer coefficients.

8.1 Peterson varieties

The family of regular nilpotent Hessenberg varieties contains a subclass of

varieties called Peterson varieties. These are the H(X, h) for which X is a regular

nilpotent operator (equivalently, µ has shape (n)) and the Hessenberg function is

defined as h(i) = i + 1 for i < n and h(n) = n. Harada and Tymoczko [9] recently

gave the first general computation of this cohomology ring in terms of generators

and relations. Their presentation is given via a Monk-type formula. Although

computable, the presentation is computationally heavy. Computer software such as

Macaulay 2 is needed to produce small examples and exhibit a basis (via Gröbner

basis reduction). For small n, we explored the relationship between their presen-

tation and mine. Thus far, the two are isomorphic as rings. Besides its ease of
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computation, a further advantage of my conjectural presentation is that it general-

izes to all regular nilpotent Hessenberg varieties.

8.2 Open questions

Question 1:

We showed in Section 2.2 that we have an inverse map Ψ if we fix h = (1, 2, . . . , n)

and let µ vary. We showed in Section 6.2 that we have an inverse map Ψh if we fix

µ = (n) and let h vary. Is there an inverse map Ψh,µ which incorporates both the

h-function and the shape µ?

Question 2:

So far we have proven that the ideals Ih and Jh coincide for the maximal Hessenberg

functions h = (n, . . . , n). For n = 4, we computed the unique reduced Gröbner basis

for all other thirteen ideals Ih. Each ideal coincided with its corresponding ideal Jh

for each h. Do Ih = Jh for arbitrary h?

Question 3:

Is there a direct topological proof that our ring R/Jh is the cohomology ring of the

regular nilpotent Hessenberg varieties?



APPENDIX

SOME LOOSE ENDS

A.1 Lattices of ideals Ih and Jh

At the end of this appendix, we present a variety of lattices representing the

inclusion of ideals Ih and Jh as given in Chapters 3 and 4, where we proved that

h > h′ implies Ih ⊂ Ih′ and Jh ⊂ Jh′ . As with the Hasse diagrams on Hessenberg

functions (or degree tuples), each edge of these lattices represent an inclusion of the

object above the edge into the object below the edge. Figure A.1 gives all possible

14 ideals Ih corresponding to the 14 distinct Hessenberg functions when n = 4.

Figure A.2 gives the h-Ferrers diagrams used to construct the generating sets for

the ideals Ih. The circled numbers denote the anti-diagonal generators as given in

the lattice of anti-diagonal ideals IAD
h presented in the subsequent Figure A.3. Note

in the latter figure, we use the shorthand ed(r) to denote the modified elementary

symmetric function of degree d in variables x1, . . . , xr. Figure A.4 gives the lattice

of anti-diagonal ideals IAD
h without shorthand notation. Similarly, Figures A.5

and A.6 give abridged and unabridged versions of the lattice of the 14 ideals Jh.

In Figure A.5, we use the shorthand ẽd(r, . . . , n) to denote the modified complete

symmetric function of degree d in variables xr, . . . , xn, where r ≤ n.

A.2 Proofs of the claims from Section 5.2

Many of the statements made in Section 5.2 are well-known results from com-

mutative algebra. Although much of this can be found in classical texts in the

subject, we provide the proofs for all statements made in Section 5.2. To avoid

overlapping references, Theorem 5.2.x from Section 5.2 will be called Theorem A.2.x

here.

The proofs of Theorems A.2.1, A.2.2, and A.2.3 were sketched by Cox, Little,

and O’Shea [3], but we provide all missing details. Proofs for Theorem A.2.4 and

76
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Theorem A.2.9 were very weakly sketched and left much for the reader. For those

theorems, the proofs below are completely our own as are the proofs of the four

lemmas (which were exercises).

Theorem A.2.1 (Division by a Gröbner basis gives unique remainder). Assume

G = {g1, . . . , gt} is a Gröbner basis for an ideal I in R and suppose f ∈ R. Then

there exists a unique r ∈ R such that:

(i) No term of r is divisible by any LT (g1), . . . , LT (gt).

(ii) There exists g ∈ I such that f = g + r.

In particular, r is the unique remainder upon division of f by G no matter how the

elements of G are listed.

Proof. Let G = {g1, . . . , gt} be a Gröbner basis for an ideal I in R and suppose

f ∈ R. By the division algorithm f = q1g1 + q2g2 + · · ·+ qtgt + r such that no term

of r is divisible by any LT (gi). This proves (i). Letting g =
∑t

i=1 qigi we see that

g ∈ I and f = g + r. This proves (ii).

We now prove that r is unique. Suppose f = g + r = g′ + r′ where g, g′ ∈ I

and r, r′ satisfy (i) above. Then r − r′ = g − g′ ∈ I. Suppose by contradiction that

r− r′ 6= 0. Then LT (r− r′) ∈ 〈LT (I)〉 = 〈LT (g1), . . . , LT (gt)〉 since G is a Gröbner

basis for I. This implies that LT (r − r′) is divisible by at least one of the LT (gi).

This contradicts statement (i) that no term of r or r′ is divisible by any LT (gi).

Hence r = r′ and we conclude this remainder is unique.

We remark that listing the gi in a different order produces different quotients

qi in the f =
∑

qigi + r expansion. However by uniqueness, the remainder r must

remain the same.

Corollary A.2.2 (Ideal Membership Criterion). A polynomial f ∈ R is in an ideal

I of R if and only if the remainder upon division by a Gröbner basis of I is zero.

Proof. Let G = {g1, . . . , gt} be a Gröbner basis for an ideal I in R and suppose



78

f ∈ R. Then it suffices to show that f ∈ I if and only if f
G

= 0, where the symbol

f
G

is as defined in Remark 5.1.6.

First assume f ∈ I. Then f = f + 0 satisfies conditions (i) and (ii) in

Theorem A.2.1. Thus 0 is the unique remainder of f upon division by G, so f
G

= 0.

Now assume f
G

= 0. Then f = q1g1 + q2g2 + · · ·+ qtgt and so f ∈ I.

Theorem A.2.3. Given f ∈ R and an ideal I in R, f is congruent modulo I to a

unique polynomial r. This polynomial r is a k-linear combination of monomials in

the complement of 〈LT (I)〉.

Proof. Let f ∈ R and suppose I is an ideal in R. Let G = {g1, . . . , gt} be a Gröbner

basis for I. By Theorem A.2.1, we know that f = g + r where g ∈ I and r is

the unique remainder after division by G. So f − r = g implies f ≡ r modulo

I. Lastly, by (i) of Theorem A.2.1, no term of r is divisible by any LT (gi). Thus

the remainder r lies in the complement of 〈LT (g1), . . . , LT (gt)〉. But since G is a

Gröbner basis, we know 〈LT (I)〉 = 〈LT (g1), . . . , LT (gt)〉, and we are done.

Theorem A.2.4. [3, Exer.1, pg.237]. Let I be an ideal in R. Then, the set

{xα | xα /∈ 〈LT (I)〉} is linearly independent modulo I. That is, if
∑

α cαx
α ≡ 0

modulo I and each xα /∈ 〈LT (I)〉, then cα = 0 for all α.

Proof. Let I be an ideal in R, and suppose G = {g1, . . . , gt} is a Gröbner basis for

I. Assume f =
∑

α cαx
α where each xα /∈ 〈LT (I)〉 and f ≡ 0 modulo I. We claim

the cα are all zero.

Since G is a Gröbner basis for I, we know 〈LT (I)〉 = 〈LT (g1), . . . , LT (gt)〉

and xα /∈ 〈LT (g1), . . . , LT (gt)〉. None of the LT (gi) divide any term of f since

〈LT (I)〉 is a monomial ideal. By Theorem A.2.1, we can write f = 0 + f where

this remainder f is unique since it satisfies the conditions of the theorem. But by

assumption, f ≡ 0 modulo I and hence f ∈ I. So we can also write this expression

of f as f = f+0 which also satisfies the conditions of Theorem A.2.1. By uniqueness
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of remainder we must have f = 0, and we are done.

Lemma A.2.5 (Strengthened Version of Theorem A.2.1). [3, Exer.1, pg.87]. Let

G = {g1, . . . , gt} be a Gröbner basis for an ideal I in R and suppose f ∈ R. Then

there exists a unique r ∈ R such that:

(i) No term of r is divisible by any element of LT (I).

(ii) There exists g ∈ I such that f = g + r.

So r is the unique remainder upon division of f by I. Furthermore, this remainder

coincides with the remainder given in Theorem A.2.1.

Proof. By Theorem A.2.1, we can write f = g+r where g ∈ I and no term of r is di-

visible by any of the LT (gi). Assume instead that some term T of r is divisible by an

element of LT (I). That would force T ∈ LT (I) ⊆ 〈LT (I)〉 = 〈LT (g1), . . . , LT (gt)〉.

Hence, some LT (gi) would divide T contradicting the hypothesis that no term of r

is divisible by any of the LT (gi).

Lemma A.2.6. [3, Exer.12a, pg.88]. If f and g are polynomials in R, then f
G

= gG

if and only if f − g ∈ I.

Proof. First assume that f
G

= gG. By Theorem A.2.1, we can write f = i1 + f
G

and g = i2 + gG where i1, i2 ∈ I. Then

f − g = (i1 − i2) + (f
G − gG) = (i1 − i2) + (f

G − f
G
) = i1 − i2.

Thus f − g ∈ I.

Now assume f − g ∈ I. By the Lemma A.2.5, we can write f = i1 + r1 and

g = i2 + r2 where i1, i2 ∈ I and no term of r1 or r2 is divisible by any element of

LT (I). Thus, no term of r1 − r2 is divisible by any element of LT (I) either. Hence

f − g = (i1 − i2) + (r1 − r2)

where i1 − i2 ∈ I. By Lemma A.2.5, we know r1 − r2 is the unique remainder of

f − g upon division by I. We may also write f − g = (f − g)+0 which also satisfies

the conditions of Lemma A.2.5. By uniqueness of remainder r1− r2 = 0, and hence
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r1 = r2. Thus f
G

= gG.

Lemma A.2.7. [3, Exer.12b, pg.88]. If f and g are polynomials in R, then

f + g
G

= f
G

+ gG.

Proof. By Lemma A.2.5, we can write f = i1 + r1 and g = i2 + r2 where i1, i2 ∈ I

and no term of r1 or r2 is divisible by any element of LT (I). Consider f + g. We

have f + g = (i1 + i2) + (r1 + r2) where i1 + i2 and r1 + r2 satisfy the conditions of

Lemma A.2.5. Thus r1 + r2 is the unique remainder of f + g upon division by G.

Hence f + g
G

= r1 + r2. But r1 = f
G

and r2 = gG so we are done.

Lemma A.2.8. [3, Exer.12c, pg.88]. If f and g are polynomials in R, then fg
G

=

f
G

+ gG
G

.

Proof. Again use Lemma A.2.5 to write f = i1 + r1 and g = i2 + r2 where i1, i2 ∈ I

and no term of r1 or r2 is divisible by any element of LT (I). Consider f · g. We

have

f · g = (i1 + r1)(i2 + r2) = (i1i2 + r1i2 + i1r2) + r1r2.

Since i1, i2 ∈ I, the sum i′ := (i1i2 + r1i2 + i1r2) ∈ I. Also f
G · gG = r1r2. Thus

f · g = i′ + f
G · gG holds and hence f · g − f

G · gG = i′ ∈ I. By Lemma A.2.6, we

have fg
G

= f
G

+ gG
G

as desired.

Theorem A.2.9 (A Basis for R/I). R/I is isomorphic to the k-span of the set

{xα|xα /∈ 〈LT (I)〉} as k-vector spaces.

Proof. Define a map φ : R/I → k-span-{xα|xα /∈ 〈LT (I)〉} by the rule that φ([f ]) =

f
G

where f
G

is the unique remainder guaranteed by Theorem A.2.3. This map is

well-defined and injective since [f ] = [g] if and only if f−g ∈ I, and f−g ∈ I if and

only if f
G

= gG by Lemma A.2.6, and finally f
G

= gG if and only if φ([f ]) = φ([g]).

The map is surjective since any element xα in the codomain is the image of the

class [xα] in the domain. Thus φ is a bijective correspondence. It suffices then to
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show that φ preserves the vector space operations. The following string of equalities

shows φ preserves addition:

φ([f ] + [g]) = φ([f + g])

= f + g
G

= f
G

+ gG by Lemma A.2.7

= φ([f ]) + φ([g]).

We now prove φ preserves scalar multiplication. We have φ(c[f ]) = φ([cf ]) = cf
G

for each c ∈ k. We claim cf
G

= cf
G
. Indeed, by Theorem A.2.1, we can write

cf = i + cf
G

for some i ∈ I. Also by Theorem A.2.1, we know f = i′ + f
G

for some

i′ ∈ I. Hence cf = ci′+ cf
G
. By uniqueness of remainder we must have cf

G
= cf

G
.

We conclude that φ(c[f ]) = cf
G

= c · φ([f ]) as desired. Therefore φ is a linear

vector space isomorphism. Since the set {xα|xα /∈ 〈LT (I)〉} is linearly independent

by Theorem A.2.4, we conclude this set is a basis for R/I.

Observation A.2.10. The quotient R/I is almost – but not! – ring isomorphic to

the k-span of {xα|xα /∈ 〈LT (I)〉}.

In the proof of Theorem A.2.9, we showed that φ([f ] + [g]) = φ([f ]) + φ([g]).

However, the product φ([f ]) · φ([g]) = f
G · gG is not necessarily in the k-span of

{xα|xα /∈ 〈LT (I)〉}. It would be if we divided this product by G once again. But

then Lemma A.2.8 states fg
G

= f
G · gG

G

giving

φ([f ] · [g]) = φ([fg]) = fg
G

= f
G · gG

G

= φ([f ]) · φ([g])
G
.

This is almost – but not! – a ring isomorphism between R/I and the k-span of

{xα|xα /∈ 〈LT (I)〉}.
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(
e1, e2, e3, e4

)h=(4,4,4,4)

�� e1, e2, e3, e4

x1x2x3

h=(3,4,4,4)

xxrrrrrrrrrrrrrrrrrrrrrr

%%LLLLLLLLLLLLLLLLLLLLLLLLLL


e1, e2, e3, e4

x1x2x3

x1x2 + x1x3 + x2x3


h=(3,3,4,4)

�� %%JJJJJJJJJJJJJJJJJJJJJ

 e1, e2, e3, e4

x1x2

h=(2,4,4,4)

zzttttttttttttttttttttttttt

��


e1, e2, e3, e4

x1x2x3, x1 + x2 + x3

x1x2 + x1x3 + x2x3


h=(3,3,3,4)

��


e1, e2, e3, e4

x1x2x3, x1x2

x1x2 + x1x3 + x2x3


h=(2,3,4,4)

zzuuuuuuuuuuuuuuuuuuu

��
$$H

HHHHHHHHHHHHHHHHHHHHHH

 e1, e2, e3, e4

x1

h=(1,4,4,4)

��

e1, e2, e3, e4

x1x2x3, x1 + x2 + x3

x1x2 + x1x3 + x2x3

x1x2



h=(2,3,3,4)

�� ##G
GGGGGGGGGGGGGGGGG

 e1, e2, e3, e4

x1x2, x1 + x2

h=(2,2,4,4)

{{wwwwwwwwwwwwwwwwwwwwwwwwww

##F
FFFFFFFFFFFFFFFFFFFFFFFFFFFFF


e1, e2, e3, e4

x1, x1x2x3

x1x2 + x1x3 + x2x3


h=(1,3,4,4)

{{xxxxxxxxxxxxxxxxxxxxxx

��

e1, e2, e3, e4

x1x2x3, x1 + x2 + x3

x1x2 + x1x3 + x2x3

x1x2, x1 + x2



h=(2,2,3,4)

""E
EE

EE
EE

EE
EE

EE
EE

EE
E



e1, e2, e3, e4

x1, x1x2x3

x1x2 + x1x3 + x2x3

x1 + x2 + x3



h=(1,3,3,4)

��


e1, e2, e3, e4

x1x2, x1 + x2

x1


h=(1,2,4,4)

||zzzzzzzzzzzzzzzzzzzzz



e1, e2, e3, e4

x1x2x3, x1 + x2 + x3

x1x2 + x1x3 + x2x3

x1x2, x1 + x2

x1



h=(1,2,3,4)

Figure A.1: Lattice of ideals Ih for n = 4.
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k4 k3 k2 k1
4 4 4

3 3
2

��

k3 k3 k2 k1
4 4 4

3 3
2

xxrrrrrrrrrrrrrrrrrrrrrr

&&LLLLLLLLLLLLLLLLLLLLLL

k3 k2 k2 k1
3 4 4

3 3
2

�� &&LLLLLLLLLLLLLLLLLLLLLL
k2 k3 k2 k1

4 4 4
3 3

2

xxrrrrrrrrrrrrrrrrrrrrrr

��

k3 k2 k1 k1
3 3 4

2 3
2

��

k2 k2 k2 k1
3 4 4

3 3
2

xxrrrrrrrrrrrrrrrrrrrrrr

�� &&LLLLLLLLLLLLLLLLLLLLLL
k1 k3 k2 k1

4 4 4
3 3

2

��

k2 k2 k1 k1
3 3 4

2 3
2

�� &&LLLLLLLLLLLLLLLLLLLLLL
k2 k1 k2 k1

2 4 4
3 3

2

xxrrrrrrrrrrrrrrrrrrrrrr

&&LLLLLLLLLLLLLLLLLLLLLL
k1 k2 k2 k1

3 4 4
3 3

2

xxrrrrrrrrrrrrrrrrrrrrrr

��

k2 k1 k1 k1
2 3 4

2 3
2

&&LLLLLLLLLLLLLLLLLLLLLL
k1 k2 k1 k1

3 3 4
2 3

2

��

k1 k1 k2 k1
2 4 4

3 3
2

xxrrrrrrrrrrrrrrrrrrrrrr

k1 k1 k1 k1
2 3 4

2 3
2

Figure A.2: Lattice of h-Ferrers diagrams for n = 4.
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 h = (4, 4, 4, 4)

e4(4), e3(4), e2(4), e1(4)



�� h = (3, 4, 4, 4)

e3(3), e3(4), e2(4), e1(4)



xxqqqqqqqqqqqqqqqqqqqqqq

&&MMMMMMMMMMMMMMMMMMMMMM

 h = (3, 3, 4, 4)

e3(3), e2(3), e2(4), e1(4)



�� &&MMMMMMMMMMMMMMMMMMMMMM

 h = (2, 4, 4, 4)

e2(2), e3(4), e2(4), e1(4)



xxqqqqqqqqqqqqqqqqqqqqqq

�� h = (3, 3, 3, 4)

e3(3), e2(3), e1(3), e1(4)



��

 h = (2, 3, 4, 4)

e2(2), e2(3), e2(4), e1(4)



xxqqqqqqqqqqqqqqqqqqqqqq

�� &&MMMMMMMMMMMMMMMMMMMMMM

 h = (1, 4, 4, 4)

e1(1), e3(4), e2(4), e1(4)



�� h = (2, 3, 3, 4)

e2(2), e2(3), e1(3), e1(4)



�� &&MMMMMMMMMMMMMMMMMMMMMM

 h = (2, 2, 4, 4)

e2(2), e1(2), e2(4), e1(4)



xxqqqqqqqqqqqqqqqqqqqqqq

&&MMMMMMMMMMMMMMMMMMMMMM
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Figure A.3: Lattice of ideals IAD

h for n = 4 (abridged).
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Figure A.4: Lattice of ideals IAD

h for n = 4 (unabridged).
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ẽ2(2, 3, 4), ẽ1(1, 2, 3, 4)
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ẽ2(2, 3, 4), ẽ1(1, 2, 3, 4)



yyrrrrrrrrrrrrrrrrrrrrr

�� %%LLLLLLLLLLLLLLLLLLLLL


h = (1, 4, 4, 4) & β = (3, 2, 1, 1)
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ẽ2(2, 3, 4), ẽ1(1, 2, 3, 4)



yyrrrrrrrrrrrrrrrrrrrrr

%%LLLLLLLLLLLLLLLLLLLLL


h = (1, 3, 4, 4) & β = (2, 2, 1, 1)
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ẽ1(4), ẽ1(3, 4)
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Figure A.5: Lattice of ideals Jh for n = 4 (abridged).
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Figure A.6: Lattice of ideals Jh for n = 4 (unabridged).
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