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ABSTRACT 

This study investigated the extent to which rules proposed by Tong and Brennan 

(2007) for estimating standard errors of estimated variance components held up across a 

variety of G theory designs, variance component structures, sample size patterns, and 

data types.  Simulated data was generated for all combinations of conditions, and point 

estimates, standard error estimates, and coverage for three types of confidence intervals 

were calculated for each estimated variance component and relative and absolute error 

variance across a variety of bootstrap procedures for each combination of conditions.  It 

was found that, with some exceptions, Tong and Brennan’s (2007) rules produced 

adequate standard error estimates for normal and polytomous data, while some of the 

results differed for dichotomous data.  Additionally, some refinements to the rules were 

suggested with respect to nested designs.  This study provides support for the use of 

bootstrap procedures for estimating standard errors of estimated variance components 

when data are not normally distributed. 
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ABSTRACT 

This study investigated the extent to which rules proposed by Tong and Brennan 

(2007) for estimating standard errors of estimated variance components held up across a 

variety of G theory designs, variance component structures, sample size patterns, and 

data types.  Simulated data was generated for all combinations of conditions, and point 

estimates, standard error estimates, and coverage for three types of confidence intervals 

were calculated for each estimated variance component and relative and absolute error 

variance across a variety of bootstrap procedures for each combination of conditions.  It 

was found that, with some exceptions, Tong and Brennan’s (2007) rules produced 

adequate standard error estimates for normal and polytomous data, while some of the 

results differed for dichotomous data.  Additionally, some refinements to the rules were 

suggested with respect to nested designs.  This study provides support for the use of 

bootstrap procedures for estimating standard errors of estimated variance components 

when data are not normally distributed. 
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CHAPTER 1:  INTRODUCTION 

Generalizability theory (G theory) provides a framework for differentiating 

among various sources of observed score variance, including variance due to the objects 

of measurement and variance due to the conditions of measurement.  For example, in a 

testing context there can be variance in observed scores attributable to the population of 

examinees, and there can also be multiple sources of error variance (e.g., test forms, 

items, raters, occasions, etc.).  The decomposition of total observed score variance into 

these differentiated sources of variance, or variance components, is the backbone of G 

theory. 

Generalizability theory is an extension of classical test theory (CTT).  Both G 

theory and CTT can be used to make inferences, for example, about the optimal number 

of items to be included in a test to achieve a given level of score reliability.  However, a 

unique contribution of G theory is that it allows for multiple sources of error variance to 

be investigated simultaneously, as well as interactions between the variance components, 

whereas CTT only allows for a single, undifferentiated error term. 

A full explanation of G theory requires a consideration of both:  (a) a universe of 

admissible observations (UAO) and generalizability studies (G studies); and (b) a 

universe of generalization (UG) and decision studies (D studies).  A UAO consists of 

those facets (e.g., items, raters, occasions, etc.) that an investigator considers relevant for 

a given measurement procedure.  The purpose of a G study is to estimate the variance 

components associated with the facets in the UAO as well as the objects of measurement 

“facet,” typically persons.  It is important to understand that the estimated variance 

components are for single conditions of facets.  These estimated variance components, 

which are the focus of most of this dissertation, are the statistics that are considered in 

statistical books such as Variance Components by Searle, Casella, and McCulloch 
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(1992).  More specifically, this dissertation focuses on the so-called ANOVA estimates of 

variance components, as discussed in Chapter 2. 

By contrast, a UG and a D study are associated with mean scores over 

investigator-specified numbers of conditions of facets.  Conceptually, a UG consists of 

randomly parallel instances of a measurement procedure.  For example, suppose that:  (a) 

examinees (the objects of measurement) were each administered the same two essay 

prompts; (b) each prompt was scored by the same two raters; and (c) each examinee’s 

score was his or her mean score over the four ratings.  Each randomly parallel (usually 

hypothetical) instance of such a measurement procedure would consist of a different set 

of two prompts and a different set of two raters, provided both prompts and raters are 

defined as random by the investigator (so-called fixed facets are possible, but outside the 

scope of this dissertation).  Furthermore, for this example, the D study would be 

HIp ×× , where “p” stands for examinees or persons, “I” stands for mean scores over 

essay prompts, and “H” stands for mean scores over raters.  The variance components for 

the D study are almost always estimated using the G study estimated variance 

components.  Certain combinations of the resulting D study estimated variance 

components give estimates of one or more types of error variances (i.e., relative and 

absolute error variance) that are associated with the mean scores for examinees.  These 

error variances are a secondary focus of this dissertation. 

It is particularly important to note that in this dissertation, the word “error” has 

multiple meanings.  The primary focus of this dissertation is on estimated standard errors 

of estimated variance components in the G study sense.  Additionally, this dissertation is 

concerned with the estimated standard errors of certain types of estimated error 

variances in a D study.  It should be clear from the context how the word “error” is to be 

interpreted. 
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Statement of the Problem 

Several approaches have been used to estimate standard errors of estimated 

variance components.  A common approach makes use of a theoretical model based on 

assumptions that the score effects (components of the observed scores that can be 

attributed to the various objects and conditions of measurement, analogous to treatment 

effects in an analysis of variance (ANOVA) context) are normally distributed, random 

and independent (Searle, 1971; Searle et al., 1992).  However, it is often unrealistic to 

assume normality of score effects, particularly in a multiple choice testing environment, 

where the data are scored dichotomously (i.e., correct or incorrect), or in writing or 

performance assessments, where the data are often scored polytomously (i.e., finite 

integers such as a 6-point scale from 0 to 5) (Brennan, 2001).  Therefore, other 

approaches have been proposed for estimating standard errors of estimated variance 

components, such as bootstrap and jackknife resampling methods, which do not require 

assumptions about the distributions of the score effects. 

Bootstrap resampling involves taking repeated independent random samples with 

replacement from a dataset and estimating the variance components for each bootstrap 

sample.  The standard deviations of the estimated variance components across bootstrap 

samples are estimates of the standard errors of the estimated variance components. 

Jackknife resampling involves sampling without replacement.  Briefly, the usual 

jackknife steps for estimating the standard error of some estimate of a parameter θ  based 

on s data points are:  (a) obtain the statistic of interest θ̂  for all s data points; (b) obtain 

the s estimates of θ  that result from deleting each one of the data points, designating 

these estimates as j−θ̂ ; (c) using θ̂  and j−θ̂ , obtain statistics called pseudovalues; and (d) 

the jackknife estimate of the standard error of θ̂  is the standard error of the mean of the 

pseudovalues.  As discussed by Brennan (2001, pp. 182-185), the jackknife steps are 

considerably more complicated when estimating standard errors of estimated variance 

components for the types of designs used in G theory.  In particular, the pseudovalues are 
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much more complicated.  Furthermore, even with today’s computers, the jackknife can be 

extraordinarily computationally intensive for estimating standard errors of estimated 

variance components in G theory.  For these reasons, among others, the focus of this 

dissertation is on bootstrap methods. 

Use of the bootstrap for estimating standard errors of estimated variance 

components is complicated by the fact that G theory designs usually involve multiple 

facets.  For a given G theory design, several bootstrap procedures could be used to 

estimate each variance component and its standard error, thus decisions need to be made 

regarding which procedure or procedures to use.  These procedures differ with respect to 

which facet or facets are resampled.  Different bootstrap procedures yield better estimates 

of different variance components and their standard errors, depending on which facets are 

resampled, and no single bootstrap procedure yields accurate estimates of standard errors 

for all estimated variance components in a given design (Brennan, Harris, & Hanson, 

1987; Tong & Brennan, 2007).  For example, in the simplest G theory design, a group of 

students take a test consisting of several items.  The resulting data are arranged in a 

matrix of scores, one score for each student’s response to each item.  Various bootstrap 

procedures could be used to estimate the standard errors of the estimated variance 

components.  In this case, three of the possible procedures involve resampling the 

students but not the items, resampling the items but not the students, or resampling both 

students and items.  Each of these bootstrap procedures will produce slightly different 

estimates, and the bootstrap procedure that produces the optimal estimates for one 

variance component and its standard error may not be the same bootstrap procedure that 

produces the optimal estimates for another variance component and its standard error.  

Because of this, rules for deciding which bootstrap procedure to use to estimate each of 

the variance components and its standard error have been proposed (Tong & Brennan, 

2007).  However, the rules are somewhat ad hoc at this point and have only been tested in 

a limited number of studies.  Further research is needed to investigate the robustness of 
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these rules across a variety of G theory designs, with varied sample sizes and varied 

parameter values for the variance components.   

In summary, there are multiple ways of obtaining estimates of standard errors of 

estimated variance components, and there is no single best approach or correct answer to 

the question of which approach to use.  There are reasons for preferring one method over 

another; for example, if there is reason to suspect that the data violate the assumptions of 

a particular theoretical approach, then the bootstrap may be preferred.  However, even if 

one decides to use the bootstrap to estimate the standard errors, further decisions are 

required about which bootstrap procedures to use.  Previous studies have provided some 

guidance, but more research is needed to ensure that the proposed rules apply in a broader 

context than what has been studied thus far.  This dissertation contributes to the existing 

research by evaluating Tong and Brennan’s (2007) proposed rules in a wider range of G 

theory designs, with several combinations of variance component structures, sample 

sizes, and data types. 

Significance of the Study 

The error associated with estimates of variance components is an important topic 

because the results of G studies and D studies are used to make inferences, for example, 

about examinees or test instruments.  The accuracy of these estimates is particularly 

important in high-stakes situations such as selection, placement, certification, diagnosis, 

or monitoring for accountability purposes.  The accuracy of estimated variance 

components must be considered whenever results of studies based on G theory are 

interpreted and decisions are made based on those interpretations.  Examinees could be 

negatively impacted if high-stakes decisions are made about them based on inaccurate 

estimates of variance components.  Additionally, testing programs could be impacted by 

inaccurate estimates of variance components, for example, by wasting resources if the 
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number of raters chosen to score essay responses is more than necessary, or by having 

less reliable test scores than anticipated if the number of raters chosen is too few. 

As early as Cronbach, Gleser, Nanda, and Rajaratnam’s (1972) seminal book on 

G theory, concerns were raised that the accuracy of estimates of variance components is 

important for drawing sound conclusions from research in educational and social settings.  

Additionally, the Standards for Educational and Psychological Testing (American 

Psychological Association, 1985; American Educational Research Association, American 

Psychological Association, & National Council on Measurement in Education, 1999) 

state that reporting standard errors of estimates is important.  The previous revision of the 

Standards (American Psychological Association, 1985) explicitly addressed issues of 

precision of variance components, saying “Not all sources of error are expected to be 

relevant for a given test. Thus the estimation of clearly labeled components of observed 

and error score variance is a particularly useful outcome of a reliability study, both for the 

test developer who wishes to improve the reliability of an instrument and for the user 

who wants to interpret test scores in particular circumstances with maximum 

understanding.  Reporting standard errors, confidence intervals, or other measures of 

imprecision of estimates is also helpful” (p. 19).  In the current revision of the Standards 

(American Educational Research Association, American Psychological Association, & 

National Council on Measurement in Education, 1999), Standard 2.1 states that “For each 

total score, subscore, or combination of scores that is interpreted, estimates of relevant 

reliabilities and standard errors of measurement or test information functions should be 

reported” (p. 31).  This particular reference is to test scores rather than variance 

components, but it is clear from the tone of both revisions that all estimated statistics 

should be presented in conjunction with information regarding their precision if we are to 

make sound judgments based on those estimates. 

Standard 7.9 addresses the consequences of using estimates to inform policy such 

as the No Child Left Behind legislation (NCLB, 2002), stating:  “When tests or 
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assessments are proposed for use as instruments of social, educational, or public policy, 

the test developers or users proposing the test should fully and accurately inform 

policymakers of the characteristics of the tests as well as any relevant and credible 

information that may be available concerning the likely consequences of test use” (p. 83).  

This underscores the importance of taking into account the errors associated with 

estimates of variance components, because how the results of G theory studies are used 

can have important consequences.  Unfortunately, it appears that some researchers 

utilizing G theory methods overlook the fact that the estimated variance components are 

estimates and thus contain error.  This could result in erroneous conclusions if the 

researchers have too much confidence in the estimated variance components and 

reliability estimates resulting from their studies. 

A July 2009 search of the Educational Resources Information Center (ERIC) 

database for recent articles containing the keywords “generalizability theory” yielded 

several articles that used a G theory framework for disentangling various sources of error 

variance.  The articles examined various types of assessments, such as high-stakes 

medical certification exams (Burch, Norman, Schmidt, & van der Vleuten, 2008; Clauser, 

Harik, Margolis, McManus, Mollon, Chis, & Williams, 2009; Harik, Clauser, Grabovsky, 

Nungester, Swanson, & Nandakumar, 2009; Murphy, Bruce, Mercer, & Eva, 2009), 

psychological testing (Follesdal & Hagtvet, 2009), which could have important 

consequences for subjects diagnosed based on test results, and test development and 

validation (Chafouleas, Christ, & Riley-Tillman, 2009; Solano-Flores & Li, 2009), which 

could have important consequences for test developers as well as test users.  Most of the 

articles lacked any acknowledgement that the estimated variance components might 

contain error, and that this error should be taken into account when interpreting the 

results.  Only one of the reviewed articles contained an explicit caution regarding the lack 

of available information on the standard errors of variance components estimates in their 

study (Solano-Flores & Li, 2009).  It appears that further work needs to be done in terms 
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of bringing this issue to the forefront so that researchers using a G theory framework are 

aware of it and take the accuracy of estimated variance components into account in the 

conclusions drawn from their research. 

A further complication of the issue of the accuracy of estimated variance 

components involves the assumptions upon which the most common method of 

calculating standard errors of estimated variance components rests.  Of the surveyed 

studies that did report standard errors of variance component estimates, the standard 

errors they presented tended to be based on Searle’s (1971) equations that assume 

multivariate normality, while the data analyzed in the studies tended to be polytomously 

scored, making the normality assumption questionable (Chafouleas, Christ, & Riley-

Tillman, 2009; Gagnon, Charlin, Lambert, Carrière, & Van der Vleuten, 2009; Huang, 

2008; Lee & Kantor, 2007).  It has been shown that the estimated standard errors 

obtained using these equations are inaccurate when the data are not normally distributed 

(Brennan et al., 1987).  Additionally, although the authors of these studies presented 

estimates of standard errors of estimated variance components in their tables of results, 

they did not make any mention of them in the text of their papers.  The failure of the 

authors of these studies to discuss the impact of the error associated with the estimated 

variance components is troublesome, because it is unclear whether they took the error 

into account when interpreting their results, regardless of the adequacy of those standard 

error estimates.  Researchers should have a sense of the variability of estimated variance 

components when drawing conclusions about the relative contributions of various facets 

to the total error variance; for example, concluding that a larger proportion of variance 

was due to the raters facet than the items facet.  When the error associated with the 

estimated variance components is not taken into account, one can have little confidence 

that the differences between variance components estimates are due to actual differences 

in the amount of variance contributed by the various facets or merely due to sampling 

error. 
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In summary, the precision of estimated variance components is an important 

topic.  It is important for researchers to be aware that estimated variance components 

contain error, and be able to accurately quantify the amount of error associated with the 

estimated variance components.  Evaluating the precision of estimated variance 

components is important in terms of validity and score interpretation.  Messick (1989) 

defined validity as “an integrated evaluative judgment of the degree to which empirical 

evidence and theoretical rationales support the adequacy and appropriateness of 

inferences and actions based on test scores or other modes of assessment” (p. 13).  If 

researchers are overly confident in the accuracy of their estimates of variance 

components (i.e., the “evidence”), they may draw inaccurate conclusions regarding the 

reliability of scores obtained from their instrument, thus putting the validity of the 

inferences made from the resulting test scores at risk. 

Research Questions 

The main research question of this study was whether the rules proposed by Tong 

and Brennan (2007) for choosing which bootstrap procedures to use to estimate each of 

the variance components and its standard error hold up across various G theory designs, 

variance component structures, sample size patterns, and data types.  The main research 

question can be further broken down into the following questions: 

1. How well do the rules work across various G theory designs, including the ip× , 

hip ×× , pi : , phi :: , and ( )hip :×  designs? 

2. How well do the rules work when the variance components for the various effects 

are relatively similar to one another (i.e., each variance component contributes a 

similar amount of variance to the total variance)?  When they are relatively 

dissimilar (i.e., most of the total variance is contained within a smaller subset of 

variance components)? 
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3. How well do the rules work when the sample sizes for the various effects are 

similar to one another (i.e., the number of persons is similar to the number of 

items and/or raters)?  When the sample sizes are dissimilar to one another? 

4. How well does the workaround for the bootstrap estimate of the standard error of 

the absolute error variance [SE(Δ)] proposed by Tong and Brennan (2007) hold 

up across various G theory designs, variance component structures, sample size 

patterns, and data types? 

5. To what extent do standard normal, percentile, and bias corrected percentile 

confidence intervals adequately capture the variability of estimated variance 

components and relative and absolute error variances?  Is one type of confidence 

interval preferred to the others? 

The research questions were answered by simulating data using various G theory 

designs, variance component structures, sample size patterns, and data types, and 

comparing the obtained estimates of variance components and their associated standard 

errors to the parameter values used to simulate the data.  If the rules hold up, then the 

estimates should be close to the parameter values.  Additionally, measures of confidence 

interval coverage were obtained to further assess the variability of the estimates of the 

variance components in relation to the parameter values. 

Hypotheses 

It was expected that different bootstrap procedures would produce optimal 

estimates of different variance components and their standard errors, as found in Tong 

and Brennan (2007).  Specifically, it was expected that bootstrap procedures that 

resample along a given facet would produce better estimates for the main effect of that 

facet (e.g., resampling persons would produce better estimates for persons and 

resampling items will produce better estimates for items), and resampling along the facet 

with a larger sample size would produce better estimates for the interactions (e.g., 
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resampling persons would produce better estimates for the person by item interaction if 

there are more persons than items).  For nested designs, it was expected that bootstrap 

procedures that resample along the primary, or nested facet would produce better 

estimates for nested main effects (e.g., resampling items will produce better estimates for 

item nested within persons), and bootstrap procedures that resample along the nested 

facet with a larger sample size would produce better estimates for nested interactions 

(e.g., resampling persons would produce better estimates for the persons and items nested 

within raters interaction if there were more persons than items).  Additionally, estimates 

were expected to improve as sample size increased (Othman, 1995; Tong & Brennan, 

2007). 

It was expected that bias corrected percentile confidence intervals would produce 

confidence interval coverage that was closer to the expected coverage (i.e., 90% of a 90% 

confidence interval) than percentile confidence intervals, and percentile confidence 

intervals were expected to outperform standard normal confidence intervals.  It was also 

expected that confidence interval coverage would be closer to the expected coverage for 

those bootstrap procedures that produced better estimates of standard errors of variance 

components than those bootstrap procedures that produced poor estimates of standard 

errors of variance components. 
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CHAPTER 2:  LITERATURE REVIEW 

Overview of Generalizability Theory 

The historical roots of measurement theory lie in classical test theory (CTT), 

which is a “body of assumptions and derived results” that aid in quantifying properties of 

test scores such as reliability and measurement error (Feldt & Brennan, 1989, p. 108).  

Classical test theory defines an observed test score X as the sum of an unobservable true 

score T and error E: 

X = T + E  (2.1) 

Classical test theory acknowledges the existence of various sources of error, but 

does not quantify the relative contributions of various sources of error, and therefore only 

makes use of a single undifferentiated error term.  Generalizability theory (G theory) can 

be viewed as an extension of CTT in that G theory involves separating out various 

sources of error.  Therefore, the G theory definition of an observed test score is the sum 

of an unobservable true score T and multiple error components, each denoted Ei: 

X = T + E1 + E2 + … + Ek 

In G theory, objects of measurement are the entities that we are interested in 

measuring.  In most testing contexts, the objects of measurement are students, but they 

could also be other entities such as classrooms or schools.  Universes of admissible 

observations are collections of facets associated with measurement conditions (e.g., 

items, test forms, raters, etc.).  Objects of measurement, universes of admissible 

observations, and facets must be defined at the beginning of any G study.   

 (2.2) 

In general, the objects of measurement are not technically considered to be facets, 

but they are not different mathematically from the other facets in terms of analysis, and 

are sometimes referred to as facets.  It should also be noted that we generally have 

samples of students and raters from larger populations of students and raters, and samples 

of items from larger universes of items, and we wish to generalize beyond our specific 
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samples to the populations and universes of interest.  Therefore, the objects of 

measurement and facets are considered random, because upon replication, we would 

likely use different samples of students, items, and raters.  If we were not interested in 

generalizing beyond our sample for a given facet, we would consider that facet to be 

fixed.  For example, if we have a test made up of content areas such as math, English, and 

science, and those content areas will always remain the same across test forms, occasions, 

students, etc., then the content area facet is fixed.  This study dealt with random facets 

only. 

The most conceptually simple G theory design is a single-facet crossed design, 

which can be written symbolically as ip× , in which the objects of measurement (e.g., 

persons, or p) are crossed with a single facet (e.g., items, or i).  This means that each 

person in a sample of persons is administered each item in a test, with both persons and 

items being randomly drawn from theoretically infinite populations of persons and items.  

With this design, there are three separate variance components due to persons, items, and 

the interaction between persons and items (which includes all residual error). 

Another common design is the hip ××  design, which is a two-facet crossed 

design; for example, every person (p) is administered every item (i), and every item 

response is scored by every rater (h).  This design is similar to the ip× , except that the 

addition of another facet introduces four additional variance components due to raters, 

the interaction between persons and raters, the interaction between items and raters, and a 

three-way interaction among persons, items, and raters.  In this case, the three-way 

interaction contains the residual error. 

Designs can also be nested, such that not every object of measurement is exposed 

to every measurement condition.  A simple single-facet nested design is the pi : design; 

for example, items (i) are nested within persons (p).  This means that each person is 

administered a different set of items.  In this design, there are two variance components 
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due to persons and items nested within persons.  The items nested within persons 

variance component is confounded with the residual error. 

Nested designs can have more than one level of nesting.  One example of a two-

facet nested design is the phi :: design, where items (i) are nested within raters (h) which 

are nested within persons (p).  This means that each person takes a different subset of 

items, each person’s responses are rated by a different subset of raters, and each rater 

rates a different subset of item responses within the subset of items taken by a given 

person.  This might be the case in a medical licensure test in which each examinee is 

presented with a different series of patient scenarios, and responses to each scenario are 

evaluated by a different examiner.  This design can be decomposed into three variance 

components due to persons, raters nested within persons, and items nested within raters 

nested within persons, which also contains the residual error. 

Another common design is the ( )hip :×  design, such as when persons (p) are 

crossed with items (i) nested within raters (h).  A common example of this design is when 

items are nested within raters such that all students respond to each item but each rater 

only rates a subset of the item responses, meaning that across a given student’s responses, 

some ratings from every rater are represented.  This design illustrates some of the 

complexities that can arise in G theory, as this design involves crossed as well as nested 

effects.  For the ( )hip :×  design, there are five separate variance components due to 

persons, raters, the interaction between persons and raters, items nested within raters, and 

the interaction between persons and items nested within raters, which also contains the 

residual error. 

Generalizability Theory Notation and Equations 

Using the notation of Brennan (2001), an observed score in G theory can be 

defined in terms of a linear model, 

Xpih ∑ αν = μ +   (2.3) 
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where μ is the grand mean and να

hip ××

 corresponds to the various score effects (α is used 

generically throughout this manuscript to denote any score effect).  For example, for the 

 design, the linear model is 

Xpih = μ + νp + νi + νh + νpi + νph + νih + νpih

The linear models for each of the designs of interest in this study are presented in 

Appendix A, Table A1. 

  (2.4) 

The hip ××  design has seven score effects.  There are three main effects:  νp, the 

person effect; νi, the item effect; and νh, the rater effect.  There are also four interaction 

effects:  νpi, the interaction between persons and items; νph, the interaction between 

persons and raters; νih, the interaction between items and raters; and νpih, the three-way 

interaction among persons, items, and raters, which also contains the residual error.  

Score effects are linear combinations of mean scores.  For example, the seven score 

effects for the hip ××  design are displayed in Table 1, where μα is the expected value 

(over the universe of admissible observations) of a person’s observed score across the 

facets not in α.  The score effects for each of the designs of interest in this study are 

presented in Appendix A, Tables A2 – A6. 

Table 1. Score Effects for a hip ××  Design 

Effect (α) Score effect ν  α 

p μp (2.5)  – μ 
i μi (2.6)  – μ 
h μh (2.7)  – μ 
pi μpi – μp – μi (2.8)  + μ 
ph μph – μp – μh (2.9)  + μ 
ih μih – μi – μh (2.10)  + μ 
pih Xpih – μpi – μph – μih + μp + μi + μh (2.11)  – μ 



 16 

Because score effects are assumed to be uncorrelated, the variance of observed scores can 

be decomposed into separate variances attributable to the various effects.  The 

decomposition of observed score variance into variance components for each of the 

designs of interest is presented in Appendix A, Table A7.  For example, for the hip ××  

design: 

σ2(Xpih) = σ2(p) + σ2(i) + σ2(h) + σ2(pi) + σ2(ph) + σ2(ih) + σ2

These variances corresponding to the various effects are called variance 

components.  Each variance component can be defined in terms of expected values of 

squared deviations or score effects.  For example, the definitions of the seven variance 

components in the 

(pih) (2.12) 

hip ××  design are given in Table 2.  The definitions of the variance 

components for the other designs of interest are presented in Appendix A, Tables A8 – 

A12.  Additionally, the overall observed score variance is defined as  

σ2(Xpih ( )2µ−ΕΕΕ pihhip
X) =   (2.13) 

In practice, the parameter values and expected values are unknown; therefore, G 

theory typically uses analysis of variance (ANOVA) procedures to compute terms that 

can be used to obtain estimates of variance components.  Unlike ANOVA, however, G 

theory is typically not concerned with tests of statistical significance, but employs 

ANOVA sums of squares and mean squares to obtain estimates of variance components.  

The variance components can be estimated from data by calculating the ANOVA mean 

squares [MS(α)] and sample sizes (nα), and then attaining certain linear combinations of 

mean squares.  For example, for a hip ××  design, the equations in Table 3 can be used to 

estimate each of the variance components.  Tables A13 – A17 in Appendix A contain 

equations for calculating each of the variance components estimates for all of the designs 

of interest in this study. 
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Table 2. Definitions of Variance Components for a hip ××  Design 

Effect 
(α) 

Variance component definitions ( )ασ 2   

p ( ) ( )22
pppp

νµµ Ε=−Ε  (2.14) 

i ( ) ( )22
iiii

νµµ Ε=−Ε  (2.15) 

h ( ) ( )22
hhhh

νµµ Ε=−Ε  (2.16) 

pi ( ) ( )22
piipippiip

νµµµµ ΕΕ=+−−ΕΕ  (2.17) 

ph ( ) ( )22
phhphpphhp

νµµµµ ΕΕ=+−−ΕΕ  (2.18) 

ih ( ) ( )22
ihhihiihhi

νµµµµ ΕΕ=+−−ΕΕ  (2.19) 

pih ( ) ( )22
pihhiphipihphpipihhip

X νµµµµµµµ ΕΕΕ=−+++−−−ΕΕΕ  (2.20) 

 

Table 3. Estimators of Variance Components for a hip ××  Design 

Effect (α) Estimator of ( )ασ 2   

p [MS(p) - MS(pi) - MS(ph) + MS(pih)] / nin (2.21) h 

i [MS(i) - MS(pi) - MS(ih) + MS(pih)] / npn (2.22) h 
h [MS(h) - MS(ph) - MS(ih) + MS(pih)] / npn (2.23) i 
pi [MS(pi) - MS(pih)] / n (2.24) h 
ph [MS(ph) - MS(pih)] / n (2.25) i 
ih [MS(ih) - MS(pih)] / n (2.26) p 
pih MS(pih) (2.27) 
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The mean squares can be estimated by calculating the sums of squares (SS) for 

each score effect, and then dividing by its corresponding degrees of freedom (df).  The 

sums of squares can be calculated from T terms, which are sums of squared mean scores 

(not to be confused with sums of squares, which are sums of squared deviation scores).  

For example for single-facet designs, the T term for the observed score mean is  

( ) 2XnnT ip=µ   (2.28) 

and for two-facet designs, the T term for the observed score mean is 

( ) 2XnnnT hip=µ   (2.29) 

The T terms, sums of squares, and degrees of freedom for all of the score effects in the 

hip ××  design are presented in Table 4.  The T terms, sums of squares, and degrees of 

freedom for all of the score effects for each of the designs of interest are presented in 

Appendix A, Tables A18 – A22. 

Table 4. T Terms, Sums of Squares, and Degrees of Freedom for a hip ××  
Design 

Effect α T terms T(α) Sums of squares SS(α) Degrees of freedom 
df (α) 

 

p ∑ 2
phi Xnn  T(p) - T(μ) np (2.30-32)  - 1 

i ∑ 2
ihp Xnn  T(i) - T(μ) ni (2.33-35)  - 1 

h ∑ 2
hip Xnn  T(h) - T(μ) nh (2.36-38)  - 1 

pi ∑∑ 2
pih Xn  T(pi) - T(p) - T(i) + T(μ) (np - 1)(ni (2.39-41)  - 1) 

ph ∑∑ 2
phi Xn  T(ph) - T(p) - T(h) + T(μ) (np - 1)(nh (2.42-44)  - 1) 

ih ∑∑ 2
ihp Xn  T(ih) - T(i) - T(h) + T(μ) (ni - 1)(nh (2.45-47)  - 1) 

pih ∑∑∑ 2
pihX  T(pih) - T(pi) - T(ph) - T(ih) 

+ T(p) + T(i) + T(h) - T(μ) 
(np - 1)(ni - 1)(nh (2.48-50)  - 1) 
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Methods for Estimating Standard Errors 

Standard errors of estimated variance components can be estimated via three 

general methods:  empirically, theoretically, and by resampling.  A brief overview of 

these three methods follows. 

Empirical Estimation 

The most conceptually straightforward method of estimating standard errors of 

estimated variance components is to replicate a study several times and calculate the 

standard deviation of the estimated variance components across replications, which is 

referred to as the empirical method (see Brennan, 2001, pp. 180-181 for an example).  

However, this method requires replication of a study several times, which may not be 

feasible in a practical setting. 

Theoretical Estimation 

Another method, the theoretical or traditional method, is to assume multivariate 

normality and random and independent score effects; then, closed-form equations are 

used to estimate the theoretical standard errors of the estimated variance components 

(Searle, 1971).  These equations are discussed more fully in Ch. 3 of this dissertation, 

with respect to calculating the standard errors of normally distributed simulated data, and 

can be found in Appendix A, Tables A23 – A27.  A limitation of this method is that the 

assumptions are not always realistic, particularly in a multiple choice testing environment 

where the data are scored dichotomously, or in writing or performance assessments 

where the data are often scored polytomously (Brennan, 2001). 

Normal data consist of scores for which the score effects are distributed as 

normal.  This may be a reasonable assumption for some data, but often is not a realistic 

assumption for data consisting of test scores.  Test scores are more often dichotomous or 

polytomous.  Dichotomous data, also known as binary data, occur when the item 

responses are scored dichotomously (1 for correct or success; 0 for incorrect or failure), 
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as multiple choice questions are often scored.  Polytomous data occur when item 

responses are scored as finite ordered integers, such as constructed response items rated 

on a 6-point scale from 0 to 5. 

The nature of the data is important.  When the data are normally distributed, we 

have a pretty good idea of how the data will behave; for example, there are equations that 

work well for estimating standard errors of estimated variance components.  Therefore, 

the normally distributed data in this dissertation were included as more of a validation 

check that the programs were working as they should, because we know what to expect 

for the results.  The main focus is on the dichotomous and polytomous data, about which 

less is known.  These non-normal distributions are the ones for which bootstrap or other 

procedures that do not assume normality are needed to get accurate estimates of the 

standard errors. 

Bootstrap Estimation 

Resampling methods can be used to estimate the variability of statistics when 

theoretical models or distributions of the statistics are not available, either because they 

do not exist, or because they are extremely complicated (Shao & Tu, 1995).  As noted 

earlier, there are two main resampling methods that have been used to estimate standard 

errors of estimated variance components:  the bootstrap, and the jackknife.  These two 

methods are called resampling methods because they involve taking multiple samples 

from a dataset to create additional sample datasets, which can then be used to estimate the 

standard errors of the variance component estimates obtained across the sample datasets.  

For reasons cited in Chapter 1, the bootstrap was the focus of this dissertation.  A brief 

overview of the bootstrap methodology follows. 

The bootstrap is a resampling method that involves drawing a number of 

independent random samples (with replacement) from a dataset of interest.  Each sample 

from the dataset is called a bootstrap sample, not to be confused with the dataset from 
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which the bootstrap sample is taken.  A Monte Carlo algorithm is used to draw bootstrap 

samples.  Monte Carlo algorithms are computationally intensive procedures that use 

random number generators to draw independent samples from a dataset of interest.  An 

estimate of the statistic of interest is calculated for each bootstrap sample.  The standard 

deviation of these estimates across bootstrap samples is taken as an estimate of the 

standard error of the statistic.  In the case of G theory, variance components would be 

estimated for each of a given number of bootstrap samples, and the standard deviation of 

each variance component estimate would be calculated across the bootstrap samples as an 

estimate of the standard error of the variance component.  An advantage of the bootstrap 

is that it does not require assumptions about the distribution of the statistic (i.e., the data 

are not required to be normally distributed). 

Using the bootstrap to estimate standard errors of estimated variance components 

is more complicated than it may appear at first glance.  This is because G theory designs 

can involve multiple facets, and decisions must be made about which facet or facets to 

resample when constructing the bootstrap samples (e.g., persons, items, raters, etc.).  

There are several sampling schemes that could be utilized to construct bootstrap samples 

for a given G theory design.  By convention, the sampling schemes are named for the 

facet(s) that are sampled for that particular bootstrapping procedure.  For example, 

the ip× design consists of the objects of measurement (p) and a single facet (i), thus three 

sampling schemes that could be utilized are boot-p, boot-i, and boot-p,i.  The boot-p 

sampling scheme involves sampling np persons with replacement, but not sampling items 

(i.e., each sample contains the same ni items).  The boot-i sampling scheme involves 

sampling ni items with replacement, but not sampling persons.  The boot-p,i sampling 

scheme involves sampling both persons and items with replacement (Brennan Harris, & 

Hanson, 1987; Brennan, 2001).  There are several other sampling schemes that are further 

elaborated upon in Chapter 3 of this dissertation. 
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Another issue regarding the bootstrap is that of bias.  One consequence of the 

bootstrap methodology when applied with designs of the type in G theory is that the 

resulting estimates of variance components can be biased (see Brennan, 2001, p. 186 for 

an explanation of how bias arises).  Therefore, bias correction factors were proposed by 

Wiley (2001), and extended by Brennan (2007). 

A further consequence of some of the bootstrap sampling schemes is that when a 

facet is not resampled, that facet is in effect treated as fixed.  For example, as stated 

previously, in the boot-p sampling scheme, persons are resampled but items are not.  

Items then are fixed which violates an assumption of the random effects model (Wiley, 

2001).  Therefore, the resulting estimates may be inaccurate. 

Additionally, previous research has shown that some bootstrap procedures yield 

more accurate estimates of particular variance components and their standard errors, and 

other bootstrap procedures yield more accurate estimates of other variance components 

and their standard errors (Brennan, Harris, & Hanson, 1987; Luecht & Smith, 1989; 

Othman, 1995; Wiley, 2001; Tong & Brennan, 2007).  Therefore, when a decision is 

made to use the bootstrap to estimate standard errors of estimated variance components, 

further decisions must be made regarding which specific bootstrap procedures to use.  A 

few ad hoc rules for which bootstrap procedures to use for estimating each of the 

variance components and their standard errors were suggested by Brennan et al. (1987), 

and further elaborated upon by Wiley (2001).  Tong and Brennan (2007) provided a more 

extensive set of rules based on more extensive analyses, but their rules are still ad hoc.  

Therefore, further research is needed employing various G theory designs, with various 

variance component structures and sample size patterns, to see how well the rules lead to 

accurate estimates of variance components and their corresponding standard errors. 

Another concern regarding the bootstrap approach of estimating standard errors of 

estimated variance components is that complications arise with respect to estimating 

relative error variances and especially absolute error variances and their standard errors, 
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as explained in the following paragraphs.  Relative and absolute error variances are used 

to calculate reliability estimates; therefore, their accuracy is very important.  These 

estimates are used to make inferences, for example, regarding the optimal numbers of 

items and raters to include in a testing situation.  Thus, if there is not information 

available about the accuracy of these estimates, poor decisions leading to less than ideal 

measurement conditions may result. 

Relative error (δ) is the difference between a person’s observed deviation score 

(the observed score minus the mean score across all facets but not across the objects of 

measurement) and their universe deviation score (the person mean minus the grand 

mean).  Relative error variance ( )δσ 2  is the sum of all of the variance components that 

involve the objects of measurement except for the objects of measurement variance 

component (typically persons).  Absolute error (Δ) is the difference between a person’s 

observed score and their universe score (the universe score is the expected value of a 

person’s mean score across every combination of measurement procedures).  Absolute 

error variance ( )∆2σ  is the sum of all of the variance components except for the objects 

of measurement variance component.  For example, in a simple ip× design, relative error 

is 

( )δσ 2  = ( )
in
pi2σ   (2.50) 

and absolute error is 

( )∆2σ  = ( ) ( )
in
i2

2 σδσ +   (2.51) 

The relative and absolute error variances for all of the designs of interest are presented in 

Appendix A, Tables A28 and A29. 

If the bootstrap procedures used to estimate the standard errors of ( )i2σ̂  and 

( )pi2σ̂  in the ip× design are different from one another, then it is unclear which 



 24 

bootstrap procedure(s) should be used to estimate ( )∆2σ .  Additionally, the use of a 

single bootstrap procedure to calculate the standard error of ( )∆2σ̂  will likely not 

produce an accurate estimate.  This problem applies to both relative and absolute error 

variances and their standard errors in more complicated G theory designs, where several 

variance components may play a role in defining the relative and absolute error variances.  

The use of different optimal bootstrap procedures to estimate the variance components 

that make up the relative or absolute error variances could affect the resulting estimates.  

Tong and Brennan (2007) found a bootstrap procedure that produced reasonable results 

for estimating the standard error of the relative error variance, but not for estimating the 

standard error of the absolute error variance.  They proposed a work-around for 

estimating the standard error of the absolute error variance involving the use of multiple 

bootstrap procedures, which is described in more detail in a later section of Chapter 2 of 

this dissertation. 

Previous Studies of Standard Errors of Estimated Variance 

Components 

Several studies have investigated the use of the bootstrap to estimate standard 

errors of estimated variance components.  Early studies focused on one-facet, crossed 

designs, resulting in recommendations for the particular bootstrap procedures to use to 

estimate standard errors of estimated variance components for the ip× design (Brennan, 

Harris, & Hanson, 1987; Luecht & Smith, 1989; Othman, 1995).  However, it was noted 

that the resulting estimates tended to be biased (Brennan, Harris, & Hanson, 1987; 

Othman, 1995).  Brennan et al. (1987) suggested correction factors that were 

subsequently derived mathematically by Wiley (2001) for the ip× design.  Later, 

Brennan (2007) provided correction factors and their mathematical proofs for any design.  

Finally, a recent study examined bias-corrected bootstrap estimates of variance 

components in more complex two-facet designs, resulting in a set of rules suggesting 
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which bootstrap procedures to use to estimate standard errors in any G theory design 

(Tong & Brennan, 2007).  Details regarding the conditions of these studies are in 

Appendix B, Table B1.  A summary of these studies follows. 

Single-Facet Designs 

Brennan, Harris, and Hanson (1987) looked at traditional, bootstrap, and jackknife 

procedures for estimating the standard errors of estimated variance components for 

normal and dichotomous data for ip× designs.  They found that for simulated data with 

normally distributed score effects, the traditional procedures worked well for estimating 

variance components and their standard errors, which makes sense because the traditional 

procedures assume that the score effects are normally distributed.  Boot-p,i and boot-p,i,r 

bootstrap approaches (where the r refers to random sampling of the residuals in addition 

to sampling persons and items) did not work very well for estimating any of the variance 

components.  Boot-p worked well for estimating σ2(p) and σ2(pi) and their standard 

errors, but not very well for estimating σ2(i) or its standard error.  Boot-i worked well for 

estimating σ2(i) and its standard error, but not for estimating σ2(p) or σ2(pi) or their 

standard errors.  The jackknife worked well for estimating all three variance components 

and their standard errors. 

Brennan et al. (1987) also looked at confidence intervals of estimated variance 

components for normally distributed data.  They found that 80% Satterthwaite intervals, 

which require an assumption of multivariate normality, were nearly the same as the 

results obtained from simulating 2,000 random samples of size n = 200 persons and k = 

20 items and taking the 10th and 90th percentiles.  They found that bootstrap intervals 

based on the 10th and 90th percentiles of the estimated variance components across the 

bootstrap samples, and jackknife intervals based on the use of Student’s t distribution, 

were “reasonably close.” 
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Brennan et al. (1987) also looked at dichotomous data which came from a large-

scale licensure testing program.  Their “population” consisted of N = 2,000 persons and K 

= 200 items, from which they took 2,000 samples of size n = 200 persons and k = 20 

items to calculate “parameter values” and approximate standard errors to compare to the 

bootstrap estimates.  They found that boot-p worked well for estimating σ2(p), boot-i 

worked well for estimating σ2(i), and boot-i and boot-p,i both worked well for the 

estimating σ2(pi), which is slightly different from the results for normal data, suggesting 

that the nature of the data may play a role in which procedures work best for estimating 

variance components and their standard errors.  However, they found that the traditional 

and bootstrap estimates were too low for SE(p) and SE(pi), and the jackknife estimates 

for SE(p) and SE(pi) were more variable than the traditional or bootstrap estimates. 

Brennan et al. (1987) also looked at confidence intervals of estimated variance 

components for the dichotomous data using the traditional, bootstrap, and jackknife 

approaches.  Satterthwaite intervals were much too narrow for σ2(pi), and jackknife 

intervals were somewhat narrow, but considered adequate for practical use.  Bootstrap 

intervals were comparable to the jackknife intervals. 

Brennan et al. (1987) came up with some preliminary rules for deciding which 

bootstrap procedure to use to estimate each of the variance components and their standard 

errors in a ip× design, depending on the data type.  For normal data, they suggested using 

boot-p to estimate variance components and standard errors for persons, boot-i for items, 

and boot-p for the person by item interaction if n ≥ k or boot-i for the person by item 

interaction if n ≤ k.  For dichotomous data, they suggested using boot-p to estimate 

variance components and standard errors for persons, boot-i for items, and boot-p,i for 

the person by item interaction  They also noted that the estimates improved after applying 

ad hoc bias correction factors.  It is important to note that these ad hoc dichotomous-data 

recommendations were basically based on a single set of data, which makes 

generalization tenuous at best. 
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Luecht and Smith (1989) simulated normally distributed data and compared two 

different bootstrap procedures:  resampling across a single facet and resampling both 

facets in a ip× design using several sample size patterns.  They also generated 476 

datasets containing 100 persons and 50 items, and using 200 boot-p replications for each 

simulated dataset, calculated empirical percentile bootstrap confidence intervals of 

estimated variance components to determine whether the boot-p procedure resulted in 

accurate estimates.  They found that resampling both facets resulted in overestimation of 

the variance components and standard errors for the main effects and underestimation of 

the variance component and standard error for the interaction effect.  Overestimation was 

particularly evident in the facet for which there were more levels (i.e., greater 

overestimation of the persons facet when there were disproportionately more persons (np 

= 150) than items (ni = 20) in the design).  Their suggestions were that single-factor 

resampling (i.e., boot-p and boot-i rather than boot-p,i) is preferable, particularly when 

the sample size of one facet is disproportionately larger than the sample size of the other 

facet. 

Othman (1995) examined the issue of disproportionality between sample sizes of 

persons and items such that in most testing applications there are many more persons than 

there are items.  Using a ip× design and several sample size patterns with simulated 

normal and dichotomous data, he compared traditional and bootstrap methods for 

obtaining point estimates, standard errors, and confidence intervals for estimated variance 

components.  Like Brennan et al. (1987), he found that traditional methods worked well 

for normal data.  Additionally, he compared ANOVA and bootstrap procedures for 

estimating variance components and found that the ANOVA procedures worked 

adequately for estimating variance components from dichotomous data, but neither 

traditional nor bootstrap procedures worked well for producing confidence intervals with 

dichotomous data.  Disproportionality of sample size patterns was found to result in 

inaccurate estimates when the number of items was very small (five), but improved as the 
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number of items increased (to 20).  Othman (1995) concluded that for dichotomous data, 

boot-p should be used for estimating σ2(p) and σ2(pi), and boot-i should be used for 

estimating σ2(i), but that the number of items should be large in order to get adequate 

estimates for items. 

Bias Corrections 

Wiley (2001) focused on the theory behind bootstrap sampling and investigated 

the bias associated with bootstrap estimates of variance components and standard errors.  

Using several ip× simulation studies of various sample size patterns, he concluded that 

bias correction does indeed bring bootstrap estimates of variance components closer to 

their theoretical values for normal data.  However, different bootstrap procedures should 

be used for estimating different variance components and their standard errors.  

Specifically, Wiley recommended resampling across the facet(s) of interest for that 

variance component, mirroring the recommendations of Brennan et al. (1987) for 

dichotomous data.  Therefore, one should use boot-p for estimating σ2(p) and SE(p), boot-

i for estimating σ2(i) and SE(i), and boot-p,i for estimating σ2(pi) and SE(pi).  He also 

presented ad hoc suggestions for extending these recommendations to multifaceted 

designs such as the hip ×× . 

Brennan (2007) extended Wiley’s (2001) corrections for bias in bootstrap 

estimates of variance components.  Wiley’s bias corrections were only applied to the 

ip×  design, with suggestions for a hip ××  design, whereas Brennan (2007) provided 

procedures for extending the bias corrections to any random balanced design.  Brennan’s 

(2007) corrections utilized modified expected T terms, which are sums of squared mean 

scores (Brennan, 2001); thus, the unbiased estimates could be calculated directly during 

the bootstrapping, whereas Wiley’s (2001) corrections were applied to the estimates 

resulting from the bootstrapping procedures.  Brennan’s (2007) bias corrections were 
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used in this study, and are presented in Appendix C.  Additional details regarding 

Brennan’s (2007) bias corrections can be found in Brennan (2006). 

Two-Facet Designs 

Tong and Brennan (2007) looked at bootstrap procedures for estimating standard 

errors of estimated variance components for normal, dichotomous, and polytomous data 

in the hip ××  and ):( hip× designs.  Seven different bootstrap procedures were utilized 

for each design:  boot-p, boot-i, boot-h, boot-pi, boot-ph, boot-ih, and boot-pih.  For each 

design, 1,000 datasets of size 100 × 20 × 2 were generated, and within each dataset 1,000 

samples were drawn for each bootstrap procedure.  The variance components were 

estimated within each bootstrap sample, and the mean and variance of each estimated 

variance component was calculated across the 1,000 bootstrap samples within each 

dataset, yielding a mean and variance for each variance component estimate.  Across the 

1,000 datasets, the averages across the means were calculated as estimates of the variance 

components, and the square root of the averages across the variances were calculated as 

estimates of the standard errors of the estimated variance components.  Relative and 

absolute error variances and their standard errors were estimated in the same fashion as 

the variance components.  Tong and Brennan (2007) looked at point estimates and 

standard errors, but did not include confidence intervals.  Additional details regarding 

Tong and Brennan’s (2007) study can be found in Tong and Brennan (2006). 

For the hip ××  design, they found that the raw unadjusted bootstrap estimates of 

variance components tended to be biased, but were very close to the parameter values 

after using Brennan’s (2007) bias corrections.  The raw standard error estimates also 

appeared to be biased, but results were mixed in terms of how well the bias corrections 

worked in bringing the values closer to the parameter values.  In general, boot-p worked 

the best for SE(p), SE(pi), SE(ph), and SE(pih), boot-i worked best for SE(i) and SE(ih), 

and boot-h worked best for SE(h).  None of the bootstrap procedures worked well in 
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estimating SE(Δ) when nh = 2; however, Tong and Brennan (2007) mentioned that boot-p 

performed well in estimating σ2(Δ) when nh = 4, 6, or 8, with estimates of SE(Δ) near 

zero. 

For the ):( hip×  design, the bias corrections did not work as well for estimating 

variance components with boot-h and boot-ph, but worked better for boot-p, boot-i, and 

boot-p,i,h.  In terms of the standard errors, results were similar to those for the p × i × h 

design.  Boot-p worked best for estimating SE(p), SE(ph), SE(pi:h) and SE(δ).  Boot-h 

worked best for SE(h) and boot-i,h worked best for SE(i:h), but no procedure worked well 

for estimating SE(Δ) with nh = 2. 

Tong and Brennan’s (2007) recommendations echoed those of Brennan et al. 

(1987) for normal data; that is, sampling along the facet of interest for each main effect, 

and sampling along the facet that has the largest sample size for each interaction.  Tong 

and Brennan (2007) also expanded the recommendations to include rules for nested 

designs and relative and absolute error variances.  Their rules in full can be found in 

Appendix D, but a summary of their rules follows.  For nested main effects they 

recommended resampling along the primary index; for example, using boot-i to estimate 

SE(i:h).  For nested interactions they recommended resampling along the primary index 

with the larger sample size; for example, using boot-p to estimate SE(pi:h) if np ≥ ni or 

using boot-i if np < ni.  For estimating the standard error of the estimated relative error 

variance ( )δES ˆ , they recommended resampling along the objects of measurement 

dimension, which is usually persons, thus boot-p would be used.  For estimating the 

standard error of the estimated absolute error variance ( )∆ES ˆ , they recommended using a 

combination of bootstrap procedures such that the optimal standard error estimate of each 

of the relevant variance components is substituted into the appropriate equation.  For the 

p × i × h design, the standard error of the estimated absolute error variance would be 

estimated as follows, assuming that ni ≥ nh: 
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where ( )λα |ˆ 2ES  refers to the squared estimated standard error of α given boot-λ.  For 

the p × (i:h) design, the standard error of the absolute error variance would be estimated 

as follows: 
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Summary of Previous Research 

Although several studies have investigated bootstrap estimated standard errors of 

estimated variance components, and rules have been proposed and tested to some extent, 

there is still not a comprehensive body of evidence supporting these rules.  Most of the 

studies involved single-facet ip× designs; only one of the studies investigated more 

complicated two-facet and nested designs (Tong & Brennan, 2007). 

There has also been some inconsistency in the rules suggested by various studies.  

For example, Tong and Brennan (2007) suggested that SE(pi) should be estimated with 

boot-p if np ≥ ni or boot-i if np ≤ ni, mirroring the suggestions of Brennan et al. (1987) for 

normal data; whereas Wiley (2001) suggested that SE(pi) should be estimated with boot-

p,i, mirroring the suggestions of Brennan et al. (1987) for dichotomous data.  However, 

Wiley’s (2001) results do provide some support for Tong and Brennan’s (2007) rules, 

such that the estimates of σ2(pi) and SE(pi) were at least as accurate under boot-p 

resampling as they were under boot-p,i resampling. 

Additionally, more than one study made use of the same parameter values for the 

variance component structures and the same sample size patterns.  Various variance 

component structures and sample size patterns should be investigated to ensure that these 

rules apply beyond the situations studied. 
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Therefore, this study investigated bootstrap procedures for estimating standard 

errors of estimated variance components and relative and absolute error variances in 

several designs.  The same simulated datasets were used across the various bootstrap 

procedures so that they could be directly compared.  This study contributes to the 

literature by extending Tong and Brennan’s (2007) study of bootstrap procedures in two-

facet and nested designs to include various G theory designs, variance component 

structures, sample size patterns, and data types, as well as by providing confidence 

interval coverage of the variance components and relative and absolute error variances. 
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CHAPTER 3:  METHODOLOGY 

The purpose of this study was to assess how well the rules suggested by Tong and 

Brennan (2007) for estimating standard errors of estimated variance components using 

bootstrap procedures, apply in situations beyond those considered in previous studies 

(Brennan et al., 1987; Luecht & Smith, 1989; Othman, 1995; Wiley, 2001; Tong & 

Brennan, 2007).  Therefore, this study examined various bootstrap procedures with 

respect to four factors.  The factors (and number of levels of each) that were studied are: 

G theory design (5), variance component structure within G theory design (2), sample 

size pattern within G theory design (2), and data type (3).  Within each G theory design 

the variance component structures and sample size patterns were fully crossed, yielding 

20 unique combinations of G theory design, variance component structure, and sample 

size pattern.  Crossing these 20 combinations with three data types yielded 60 unique 

combinations of conditions altogether.  Simulated data was generated for each of the 60 

combinations of conditions, and several bootstrap procedures were applied to each to 

obtain unbiased point estimates, standard errors, and confidence interval coverage of 

variance components, relative error variance, and absolute error variance. 

Simulated data was used rather than actual test data, for several reasons.  

Simulation allows for greater control over the studied conditions.  With simulated data, 

the parameter values are specified a priori, thus establishing the “truth;” whereas with 

empirical data, the true parameter values are never actually known.  Knowing the true 

parameter values is important in terms of being able to evaluate the estimates of the 

variance components and standard errors with respect to how close they are to the 

parameter values.  Additionally, having greater control over the data allows for the 

construction of complete datasets with no missing values, thus removing the complexity 

of having to deal with missing data.  Simulation also allows for the manipulation of 

conditions such that a large number of conditions can be studied without the cost in time 
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and money required to collect real empirical data.  By making slight changes to the 

conditions of the study, insight can be gained regarding the extent to which the rules hold 

up under varying conditions, and if they do not hold up, perhaps provide support for 

adjustments to the rules or new rules.  Additionally, simulation is useful when an 

analytical solution does not exist.  As discussed previously, test data are often scored 

dichotomously or polytomously, rendering commonly used standard error equations 

inappropriate due to violations of the normality assumption.  For all of these reasons, 

simulation was determined to be a preferable approach for this study. 

Factors, Levels, and Conditions of the Study 

G Theory Designs 

Five G theory designs were employed in this study: ip× , hip ×× , pi : , 

phi :: , and ( )hip :× .  Several studies have investigated bootstrap standard errors in 

the ip× design (Brennan, Harris, & Hanson, 1987; Luecht & Smith, 1989; Othman, 1995, 

Wiley, 2001), and Tong and Brennan (2007) examined two two-facet designs, 

the hip ××  and the ( )hip :× .  This study also included the pi : and phi :: designs to 

determine whether the proposed rules hold for these single-facet and nested designs as 

well.  Including more designs allows for the rules to be tested to a greater extent, thus 

determining the extent of their applicability more broadly. 

Variance Component Structures and Sample Size Patterns 

Two variance component structures were studied for each of the five G theory 

designs.  These variance component structures varied from one G theory design to 

another.  Two sample size patterns were studied for each of the five G theory designs, 

and these patterns varied across designs.  The variance component structures and sample 

size patterns associated with each G theory design are shown in Table 5.  For each G 

theory design, the variance component structures were fully crossed with the sample size 
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patterns.  Therefore, there were 20 unique combinations of G theory design, variance 

component structure, and sample size pattern. 

Table 5.  Variance Component Structures and Sample Size 
Patterns Considered in this Study 

  σ2 Sample size patterns (α) Structures 

Design α A B 1 2 

ip×  p 0.35 0.30 200 100 
 i 0.05 0.20 10 50 
 pi 0.60 0.50   

hip ××  p 0.19 0.20 200 100 
 i 0.01 0.15 5 10 
 h 0.04 0.05 2 3 
 pi 0.01 0.10   
 ph 0.24 0.10   
 ih 0.01 0.05   
 pih 0.50 0.35   

pi :  p 0.10 0.30 50 50 
 i:p 0.90 0.70 5 50 

phi ::  p 0.28 0.15 100 50 
 h:p 0.02 0.15 5 2 
 i:h:p 0.70 0.70 20 5 

( )hip :×  p 0.20 0.10 200 100 
 h 0.01 0.05 5 10 
 ph 0.05 0.15   
 i:h 0.04 0.15 15 3 
 pi:h 0.70 0.55   

 

 

The variance component structures used in Tong and Brennan (2007) for normal 

data were similar to those used in other studies (Brennan et al., 1987) except extended to 
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include a second facet.  For dichotomous data, the same variance component parameter 

values that were used to create the normal data were used as a starting point, but the 

resulting score effects were dichotomized based on the resulting simulated scores.  For 

polytomous data, the variance component parameter values used by Tong and Brennan 

(2007) were the same as those used in Feng (2002), which were based on the results of 

empirical studies which used test data (Gao & Brennan, 2001; Lane, Liu Ankenmann, & 

Stone, 1996).  Brennan et al. (1987) described the rationale behind how they chose 

variance component structures as follows.  Large magnitudes of variance components 

were chosen to highlight small differences between statistics.  Large person by task 

interactions, and large differences between person variance and item variance were 

chosen because these patterns reflect what is often seen in practice.   

The rationale for choosing the parameter values for the particular variance 

component structures and sample size patterns for this study was based on three main 

principles.  First, one of the goals of this study was to expand upon current research on 

the topic of bootstrap standard errors of estimated variance components, so values were 

chosen to be different from those already studied in this context (Brennan, Harris, & 

Hanson, 1987; Luecht & Smith, 1989; Othman, 1995; Wiley, 2001; Tong & Brennan, 

2007).   

Second, like Brennan et al. (1987), values were chosen that were considered to be 

reasonable based on previous G studies in various contexts.  It is important that the values 

chosen are realistic, so that the results are applicable to practical use.  One factor that was 

taken into consideration was the differences in variance component structures that are 

reasonable given different facets; for example, for a persons crossed with items crossed 

with raters study versus a persons crossed with items crossed with occasions study.  

Additionally, based on the literature, it is known that the highest order interaction term 

tends to have the largest variance, and the persons by items interaction also tends to be 

large, followed by the variance component for the objects of measurement, which is 
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typically persons.  Sample size patterns were similarly chosen to be reasonable given the 

context.  For example, it is expected that the number of raters or occasions will typically 

be small relative to the numbers of persons and items, but the number of items could also 

be small if the context is a performance assessment. 

Lastly, within the bounds of these reasonable variance component structures and 

sample size patterns based on previous research, values were chosen to reflect a wide 

range of possible structures, from more homogeneous structures in which the variance 

components of a given G theory design contribute similar amounts to the total variance, 

to more extreme structures in which the majority of the variance is contained within a 

smaller subset of variance components.  To study the robustness of Tong and Brennan’s 

(2007) bootstrap rules, it is important to test them under conditions that stretch the 

boundaries of what is possible while still being realistic. 

Several empirical G studies were reviewed with respect to their G theory designs, 

sample sizes, and resulting variance components estimates in order to determine what 

types of variance component structures were reasonable and realistic.  The values chosen 

for this study were guided by using typical values in the empirical literature as a starting 

point, with adjustments made where it seemed necessary.  A summary of these studies 

follows, and the proportions of variance explained by each estimated variance component 

for these and several other studies reviewed can be found in Appendix E. 

For each G theory design, several published studies were examined to the extent 

that they could be found employing that design.  For the ip× design, the two variance 

component structures that guided the selection of the parameter values were based on a 

persons crossed with items study in a math performance assessment context (Lane, Liu, 

Ankenmann, & Stone, 1996).  For the hip ×× design, the two variance component 

structures were based on a persons by occasions by tasks study in a science concept maps 

assessment context (Yin & Shavelson, 2008) and a persons by raters by occasions study 

in a behavioral rating scale context (Chafouleas, Christ, & Riley-Tillman, 2009).  For the 
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pi : design, the two variance components structures were based on an items within 

persons study in a medical certification context (Burch, Norman, Schmidt, & van der 

Vleuten, 2008).  For the phi :: design, the two variance components structures were 

based on a persons within groups within forms study in a standard setting context (Lee & 

Lewis, 2008).  Lastly, for the ( )hip :× design, the two variance component structures 

were based on a persons crossed with items within passages study in a standardized 

testing context (Lee & Frisbie, 2009) and a persons crossed with items within content 

areas in a psychological inventory context (Christophersen, Helseth, & Lund, 2008).   

In terms of sample size patterns, Tong and Brennan (2007) used np = 100 persons, 

ni = 20 items, and nh = 2 or 4 raters.  The ratio of persons to items was 5, the ratio of 

persons to raters was 5 and 10, and the ratio of items to raters was 25 and 50.  Other 

studies examining single-facet designs used person to item ratios ranging from 0.13 (np = 

20, ni = 150, Leucht & Smith, 1989) to 120 (np = 600, ni = 5, Wiley, 2001).  Smaller 

sample sizes are of interest because if the procedures yield accurate results at smaller 

sample sizes, they likely will yield results at least that good or better for larger sample 

sizes (Brennan et al., 1987).  Brennan et al. (1987) and Tong and Brennan (2007) chose 

large numbers of persons and smaller numbers of items because this is often what is seen 

in practice, as is a small number of raters relative to persons and items. 

The variance component structures and sample size patterns that were considered 

in this study are presented in Table 5.  Within each of the five G theory designs, two 

variance component structures and two sample size patterns were crossed, yielding four 

conditions for each of the five designs.  These 20 combinations of conditions were 

crossed with three data types, yielding a total of 60 conditions.  For the normally 

distributed data, the total variance was set equal to one.  Normally distributed score 

effects were dichotomized to create the dichotomous data, thus the parameter values for 

the variance component structures and standard errors were not known a priori.  

However, by the properties of the Bernoulli distribution, it is known that the total 
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observed score variance across variance components for the dichotomous data will sum 

to no larger than 0.25.  The total variance of the polytomous data was set approximately 

equal to one.  The decision to set the total variance for the normal and polytomous data 

equal to one was based on wanting to make interpretation of the relative magnitudes of 

variance from different sources more straightforward.  Additionally, the values seem 

reasonable, given the empirical literature.  The decision to dichotomize the normal data to 

create the dichotomous data was based on convenience and familiarity, as this was the 

method used by Tong and Brennan (2007). 

Data Types 

Three data types were studied: normal, dichotomous, and polytomous.  Normal 

data was simulated because they provide a good baseline with which to compare the non-

normal data.  This is because some of the properties of data that are normally distributed 

are known, unlike the properties of dichotomous and polytomous data.  Equations for 

calculating standard errors of estimated variance components have been derived and 

shown to be useful for normal data; therefore, the bootstrap estimates obtained from 

normal data could be compared to theoretical estimates as a validation check that the 

simulation and bootstrap procedures were working correctly.  Additionally, if the 

procedures do not work well for normal data, it is doubtful that they will work for 

dichotomous or polytomous data (Brennan, Harris, & Hanson, 1987).  Dichotomous and 

polytomous data were simulated because of their practical value.  These are the types of 

data more commonly found in a testing context, and therefore many of the applications of 

G theory involve these types of data.  Crossing these three data types with the 20 unique 

combinations of G theory design, variance component structure, and sample size pattern 

yielded 60 unique combinations of conditions altogether. 

In summary, five G theory designs were utilized in this study.  Within each G 

theory design, two variance component structures were crossed with two sample size 
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patterns, to yield 20 combinations of conditions.  Each of these 20 combinations was 

crossed with three data types, to yield a total of 60 conditions.  Tong and Brennan (2007) 

examined point estimates and standard errors of variance components, relative error 

variance, and absolute error variance.  This study investigated these estimates, as well as 

confidence interval coverage.  To obtain the estimated variance components and their 

standard errors, Tong and Brennan (2007) used several bootstrap procedures to see if 

their rules produced accurate estimates.  This study did the same.   

Bootstrap Procedures 

The specific bootstrap procedures applied to each condition were dependent on 

the G theory design of that condition.  For each G theory design, the bootstrap procedures 

that were used correspond to the facets of that G theory design, and can be expressed as 

boot-λ, where the λ in boot-λ refers to the facet(s) that were resampled in that bootstrap 

procedure.  The facets that make up λ can be seen in Table 5.  For example, for the ip×  

and pi : designs, there are three bootstrap procedures that were employed: boot-p, boot-i, 

and boot-p,i.  For the hip ×× , phi :: , and ( )hip :× designs, seven bootstrap 

procedures were employed: boot-p, boot-i, boot-h, boot-p,i, boot-p,h, boot-i,h, and boot-

p,i,h. 

When two or more facets were resampled for a given bootstrap procedure, those 

facets were sampled independently.  For example, boot-p,i involved resampling p and 

independently resampling i.  For nested designs, the order of bootstrapping is important.  

Specifically, the nested facet should be resampled first for each level of the non-nested 

facet, then the non-nested facet should be resampled.  For example, for boot-i,h in the 

( )hip :×  design, first i should be resampled for each level of h, then h should be 

independently resampled.  This results in the same set of items being resampled when h is 

the same, which should be the case when i is nested within h. 
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Bootstrap estimates were corrected for bias using the equations found in Brennan 

(2007), and the equations for these bias corrections can be found in Appendix C.  

Programs written in ANSI C were used to simulate data and conduct all of the bootstrap 

resampling and analyses. 

Simulated Data Generation 

This section describes how data was generated for the various conditions of this 

study.  For each combination of conditions (i.e., G theory design, variance component 

structure, sample size pattern, and data type), 1,000 simulated datasets were generated.  

Each dataset constitutes a replication.  For the ip×  and pi :  designs, each dataset 

consisted of npni observations.  For the hip ×× , phi :: , and ( )hip :×  designs, each 

dataset consisted of npninh observations. 

Normal Data 

The formulas that were used to simulate a single dataset of normal data for each G 

theory design are presented in Table 6, where σ(α) corresponds to the square root of a 

pre-specified variance component parameter value and zα denotes a random and 

independent draw from a unit normal distribution (Brennan et al, 1987).  The specific 

variance component parameter values that were employed for each G theory design are 

given in Table 5.  The μ parameter values were also set a priori, but they are not of any 

consequence because the focus is on the variance components.  For the normal data, μ 

was set equal to 0 for convenience.  Table 6 also contains the matrix dimensions of the 

generated datasets.  The specific values (i.e., sample size patterns) of the matrix 

dimensions that were employed for each G theory design are given in Table 5. 

For normally distributed score effects, the general form of the equation used to 

calculate the parameter values for the standard errors of the estimated variance 

components is 
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whereα  refers to the indices not in α, ( )απ   is the product of the sample sizes for all 

indices not in α, and β refers to the indices that make up the expected mean squares 

associated with ( )ασ 2ˆ  (Brennan, 2001; Tong & Brennan, 2007).  For example, consider 

the ip×  design in Table 5 with normal data, Variance Component Structure A (σ2(p) = 

0.35 and σ2(pi) = 0.60), and Sample Size Pattern 1 (np = 200 and ni
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 = 10).  In this case, 

 

( ) ( ) 60.02 ==Ε pipiMS σ  
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Table 6. Formulas for Generating Normal Data 

Design Formula for generating normal data Matrix of observed 
scores 

 

ip×  Xpi = μ + σ(p)zp + σ(i)zi + σ(pi)z npi p × n (3.1) i 

hip ××  Xpih = μ + σ(p)zp + σ(i)zi + σ(h)zh + 
σ(pi)zpi + σ(ph)zph + σ(ih)zih + σ(pih)z

n
pih 

p × ni × n (3.2) h 

pi :  Xpi = μ + σ(p)zp + σ(i:p)z ni:p p × n (3.3) i 

phi ::  Xpih = μ + σ(p)zp + σ(h:p)zh:p + 
σ(i:h:p)z

n
i:h:p 

p × ni × n (3.4) h 

( )hip :×  Xpih = μ + σ(p)zp + σ(h)zh + σ(ph)zph + 
σ(i:h)zi:h + σ(pi:h)z

n
pi:h 

p × ni × n (3.5) h 
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The estimation version of Equation 3.6 is 
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where ( )[ ]2ˆ αES  is an unbiased estimate of  ( )]ˆ[ 22 ασσ  (see Searle, 1971; Searle et al., 

1992).  The specific estimation equations associated with each G theory design are given 

in Appendix A, Tables A23 – A27. 

Dichotomous Data 

The formulas that were used to generate simulated normal data for the five G 

theory designs were also used to generate simulated dichotomous data by assigning a 

value of one if the simulated observed score was greater than one; otherwise assigning a 

value of zero (the cut point of one is arbitrary).  With this approach, parameter values for 

the variance components and standard errors were not known a priori.  Therefore, they 

were obtained based on 5,000 independent replications of simulated data of size ip nn ×  

or hip nnn ×× , depending on the G theory design.  Variance components were estimated 

for each replication, and the means and standard deviations of the estimated variance 

components across the 5,000 replications were taken as the variance component and 

standard error parameter values, respectively (Tong & Brennan, 2007).  Five thousand 

replications were used because it was the number of replications used by Tong and 

Brennan (2007) to produce the unknown parameter values for the dichotomous and 

polytomous data in their study.  This number seemed to be a reasonable balance between 

the increased computation time that is required as the number of replications increase, 

and the diminishing returns in terms of increased precision of estimates that result from 

increasing the number of replications. 



 44 

Polytomous Data 

To simulate polytomous data for each design, the equations in Table 7 were used, 

where BIN denotes a random and independent binomial value with n trials and 

probability of success π (Feng, 2002; Tong & Brennan (2007).  Trial and error was used 

to obtain the binomial values for the number of trials and probability of success yielding 

mean values within 0.0001 of the parameter value.  For example, for the p × i design, 

random draws from a binomial distribution with n = 4 trials and probability of success 

0969.0=π  yields parameter values centered at approximately 0.35, which is the 

parameter value for σ2(p) in variance component structure A in Table 5.  The binomial 

values that were used to simulate the polytomous data are presented in Table 8. 

Table 7. Formulas for Generating Polytomous Data 

Design Formula for generating polytomous data  

ip×  Xpi = BINp + BINi + BIN (3.8) pi 

hip ××  Xpih = BINp + BINi + BINh + BINpi + BINph + BINih + BIN (3.9) pih 

pi :  Xpi = BINp + BIN (3.10) i:p 

phi ::  Xpih = BINp + BINh:p + BIN (3.11) i:h:p 

( )hip :×  Xpih = BINp + BINh + BINph + BINi:h + BIN (3.12) pi:h 

 

 

Because the score effects of polytomous data are not assumed to be normally 

distributed, the parameter values of the standard errors for the polytomous data could not 

be calculated using normality-based equations derived from Equation 3.6, and thus were 

not known a priori.  The parameter values of the standard errors of the variance 
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components were obtained in the same fashion as those for the dichotomous data, based 

on the standard deviations of estimated variance components across 5,000 replications. 

Table 8.  Binomial Values for Generating Polytomous 
Data 

  Structure A Structure B 

Design α n π n π 

ip×  p 4 0.0969 3 0.1127 
 i 5 0.0101 2 0.1127 
 pi 3 0.2764 2 0.5000 

hip ××  p 4 0.0500 2 0.1127 
 i 1 0.0101 1 0.1838 
 h 4 0.0101 5 0.0101 
 pi 1 0.0101 1 0.1127 
 ph 1 0.4000 1 0.1127 
 ih 1 0.0101 5 0.0101 
 pih 2 0.5000 4 0.0969 

pi :  p 1 0.1127 3 0.1127 
 i:p 4 0.3419 3 0.3709 

phi ::  p 3 0.1042 1 0.1838 
 h:p 2 0.0101 1 0.1838 

 i:h:p 3 0.3709 3 0.3709 

( )hip :×  p 2 0.1127 1 0.1127 
 h 1 0.0101 5 0.0101 
 ph 5 0.0101 1 0.1838 
 i:h 4 0.0101 1 0.1838 
 pi:h 3 0.3709 3 0.2418 

Relative and Absolute Error Variance Parameter Values 

The parameter values for the relative and absolute error variances and their 

standard errors were obtained as follows.  For each of the 60 combinations of conditions 
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(i.e., G theory design, variance component structure, sample size pattern, and data type), 

parameter values for the relative and absolute error variances – σ2(δ) and σ2(Δ), 

respectively – were obtained by applying the parameter values of the variance 

components and sample sizes associated with a given combination of conditions to the 

equations relevant to that G theory design.  The equations for calculating the parameter 

values of the relative and absolute error variances are presented in Appendix A, Tables 

A28 and A29. 

The parameter values for the standard errors of the relative and absolute error 

variances – SE(δ) and SE(Δ), respectively – were obtained as follows.  For the normally 

distributed data, the parameter values were obtained by applying the expected mean 

squares associated with the parameter values of the variance components and sample 

sizes for a given combination of conditions to the equations relevant to that G theory 

design.  The equations for calculating the parameter values for the standard errors of the 

relative and absolute error variances for normal data are presented in Appendix A, Tables 

A30 and A31.  These equations were derived using Equation 3.6.  For dichotomous and 

polytomous data, the parameter values were obtained in the same fashion as the standard 

errors of the variance components for the dichotomous and polytomous data, based on the 

standard deviations of the estimated relative and absolute error variances across 5,000 

replications 

Analyses 

Estimating all of the statistics of interest in this study (i.e., point estimates, 

standard errors, and confidence interval coverage of the variance components, relative 

error variance, and absolute error variance for each combination of conditions) involved a 

complicated series of steps, including estimation within bootstrap samples, aggregation of 

estimates across bootstrap samples within each dataset, and aggregation of estimates 

across datasets.  To present these procedures as clearly as possible, this section is broken 



 47 

down into four sub-sections.  The first three sub-sections deal with estimation of variance 

components and their standard errors, estimation of relative and absolute error variances 

and their standard errors, and calculation of confidence interval coverage.  The final sub-

section provides an example to help clarify and integrate the steps of the analyses. 

Estimation of Variance Components and Standard Errors 

As described in Chapter 2, the bootstrap involves taking repeated independent 

random samples with replacement from a dataset and calculating the statistics of interest 

within each bootstrap sample.  The standard deviations of the statistics across bootstrap 

samples are taken as estimates of the standard errors of the statistics (in this case, 

estimated variance components). 

In this study, there were 1,000 datasets for each combination of conditions (i.e., G 

theory design, variance component structure, sample size pattern, and data type) instead 

of a single dataset.  Each G theory design has associated with it a set of bootstrap 

procedures as previously specified.  The number of bootstrap procedures varies by G 

theory design.  For each dataset within a particular combination of conditions, 999 

bootstrap samples were drawn for each applicable bootstrap procedure.  The sample size 

of each bootstrap sample was the same as the sample size of the dataset being sampled.  

For each bootstrap sample, the relevant variance components were estimated using the 

equations in Appendix A, Tables A13 – A17. 

Nine hundred ninety-nine bootstrap samples were used to obtain variance 

component, relative and absolute error variance, and standard error estimates primarily 

because larger numbers are needed to get adequate confidence intervals.  Additionally, 

larger numbers of bootstrap samples should yield better estimates because the bootstrap is 

based on asymptotic theory.  This number also allows for simple calculation of percentile 

confidence interval bounds.  The equations for calculating the lower and upper bounds of 

a percentile confidence interval are  
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respectively, where α is the type two error rate and R is the number of bootstrap samples.  

When R = 999, the lower and upper bounds of a 90% percentile confidence interval are 

the 50th and 950th ordered observations, respectively. 

The bootstrap estimates of variance components within each bootstrap sample 

were corrected for bias using the equations and procedures found in Brennan (2006; 

2007).  The bias corrections applicable to the estimated variance components within each 

combination of conditions are dependent on the G theory design and the bootstrap 

procedure under consideration.  The bias corrections that were used are presented in 

Appendix C.  The results of this study focus on the bias-corrected estimates. 

The bootstrap estimates of variance components were aggregated across bootstrap 

samples as follows.  Across the 999 bootstrap samples within a given dataset, the mean 

and variance of each of the estimated variance components was calculated.   

The means and variances of the estimated variance components were aggregated 

across datasets as follows.  Across the 1,000 datasets, the means of the mean estimates 

were taken as the final estimates of the variance components, and the square roots of the 

means of the variance of the estimates were taken as the final estimates of the standard 

errors of the estimated variance components.  Therefore, aggregated across 999 bootstrap 

samples and 1,000 datasets, ultimately each estimated variance component and its 

standard error were based on 999,000 estimates. 

Estimation of Relative and Absolute Error Variances and 

Standard Errors 

Relative and absolute error variances and their standard errors were also of 

interest in this study.  Relative error variance and its standard error were estimated in 

much the same fashion as the variance components.  The relative error variance was 

estimated within each bootstrap sample by substituting the relevant variance component 
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estimates ( )ασ 2ˆ  for the parameters ( )ασ 2  in the equation appropriate to that G theory 

design.  The equations for calculating the relative error variance parameters for each G 

theory design are presented in Appendix A, Table A28.  The mean and variance of the 

999 bootstrap estimates of the relative error variance were calculated within each dataset.  

The mean of the mean relative error variances across the 1,000 datasets was taken as the 

final estimate of the relative error variance, and the square root of the mean of the 

variance of the relative error variances across the 1,000 datasets was taken as the final 

estimate of the standard error of the relative error variance. 

Absolute error variance was estimated in the same fashion as the relative error 

variance, but the standard error of the absolute error variance was estimated using two 

different methods because Tong and Brennan’s (2007) workaround for the standard error 

of the absolute error variance involves a combination of bootstrap procedures.  In 

addition to estimating the standard error of the absolute error variance in the same fashion 

as the other standard error estimates, it was also estimated within each dataset by 

substituting the optimal standard error estimate of each of the relevant estimated variance 

components into the equation appropriate to that G theory design.  This workaround 

involves estimating the standard error of the absolute error variance within each dataset 

but not within each bootstrap sample.  The equations for calculating the absolute error 

variance for each G theory design are presented in Appendix A, Table A29; estimates 

were obtained by substituting the relevant variance component estimates ( )ασ 2ˆ  for the 

parameters ( )ασ 2  in the equation appropriate to that G theory design.  The equations for 

estimating the standard error of the absolute error variance for each G theory design using 

the workaround proposed by Tong and Brennan (2007) are presented in Table A32. 

Confidence Interval Coverage 

For each bootstrap procedure within each combination of conditions, three 

different types of ninety percent confidence intervals were calculated within each dataset 
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for the variance components, relative error variance, and absolute error variance:  

standard normal confidence intervals, percentile confidence intervals, and bias-corrected 

percentile confidence intervals.  Because the parameter values were known, it could be 

determined whether a given parameter value lied within the bounds of the confidence 

interval, and the number of times the parameter value was within the confidence interval 

could be counted across the 1,000 datasets.  Confidence interval coverage, or the number 

of times that the interval contained the parameter, was calculated for each bootstrap 

procedure within each combination of conditions, and the coverage of the three types of 

confidence intervals was compared.  Using a ninety percent confidence interval, it was 

expected that approximately 900 of the 1,000 intervals would contain the parameter 

value. 

A commonly employed confidence interval is the standard normal confidence 

interval.  To calculate a 90% standard normal confidence interval, the following equation 

was used. 

( )SEzX ± ,  (3.15) 

where X is the mean estimate of the variance component, relative error variance, or 

absolute error variance across the 999 bootstrap replications; z = 1.645 for a 90% 

confidence interval; and SE is the square root of the variance of the estimated variance 

component, relative error variance, or absolute error variance across the 999 bootstrap 

replications.  Standard normal confidence intervals are based on the assumption of 

normality, whereas variance components are asymmetric; therefore, the standard normal 

confidence intervals may not be accurate.  However, they are commonly used and are 

simple to calculate; therefore, they were of interest in this study. 

Percentile confidence intervals are commonly used to calculate confidence 

intervals for bootstrap procedures, and do not require a normality assumption.  Percentile 

confidence intervals were calculated as follows.  Each dataset contained 999 bootstrap 
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estimates of the variance components and relative and absolute error variances for each 

bootstrap procedure; therefore, the 5th and 95th quantiles were taken as the bounds of the 

confidence intervals within each dataset for a given bootstrap procedure.  Specifically, 

the 999 bootstrap estimates of each variance component, relative error variance, and 

absolute error variance were sorted in ascending order, and the 50th and 950th 

observations were taken as the bounds of the confidence interval for that estimate.  

Percentile confidence intervals were expected to be more accurate than standard normal 

confidence intervals for non-normal data; however, if the distribution of the statistic of 

interest is not symmetric, percentile confidence intervals may be inaccurate (Efron & 

Tibshirani, 1993). 

Because the distributions of estimated variance components tend to be 

asymmetric, bias-corrected percentile confidence intervals were also calculated for each 

bootstrap procedure within each of the combinations of conditions.  Bias corrected 

percentile confidence intervals take into account the asymmetry of the distribution of the 

statistic of interest.  It was expected that these confidence intervals would be more 

accurate than the percentile confidence intervals. 

To obtain bias-corrected confidence intervals, first the statistic of interest θ̂  is 

calculated from the original dataset.  In this study, θ̂  is an estimate of a variance 

component, relative error variance, or absolute error variance calculated from each of the 

1,000 datasets.  Next, θ̂ * is calculated for each of the 999 bootstrap samples for a given 

bootstrap procedure, where θ̂ * is a bootstrap estimate of a variance component, relative 

error variance, or absolute error variance.  Then the number of bootstrap estimates of θ̂ * 

are counted that are less than or equal toθ̂ , and this number is designated a.  Next, b is 

calculated using the following equation 

b = 1−Φ (a/R),  (3.16) 
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where 1−Φ  is the inverse cumulative distribution function of the normal 

distribution, a is the number of bootstrap estimates less than or equal to the estimate from 

the dataset as previously defined, and R is the number of bootstrap samples (999). 

Then, the percentiles of the lower and upper lower bounds are calculated from the 

following equations,  

( ) ( )05.21 zbRQL +Φ+=  and ( ) ( )05.21 zbRQU −Φ+=  (3.17-18) 

where z .05 = -1.645.  QL is the percentile of the bootstrap distribution required for the 

lower endpoint of the bias corrected confidence interval and QU

LQ*θ̂

 is the percentile of the 

bootstrap distribution required for the upper endpoint of the bias corrected confidence 

interval.  The bias corrected confidence interval, then is ( ,
UQ*θ̂ ).  A more detailed 

discussion of bias corrected percentile confidence intervals can be found in Carpenter and 

Bithell (2000). 

Illustrative Example 

To illustrate the process of simulating data and calculating bootstrap standard 

errors, the ip× design was used because of its simplicity, but the procedures are virtually 

the same for the other designs.  For the ip× design, this procedure was the same across 

the 12 combinations of two variance component structures, two sample size patterns, and 

three data types. 

For example, for the ip× design in Table 5 with Variance Component Structure 

A, Sample Size Pattern 1, and normal data, 1,000 datasets were simulated.  Equation 3.1 

in Table 6 was used to generate the datasets, and the specific parameter values for 

Variance Component Structure A and Sample Size Pattern 1 can be found in Table 5.  

Within each of the 1,000 datasets, three bootstrap procedures were applied, boot-p, boot-

i, and boot-p,i; the three bootstrap procedures are virtually the same except for the 

facet(s) that are resampled.  Therefore, 999 bootstrap samples were taken from each 
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dataset using boot-p; 999 bootstrap samples were taken from each dataset using boot-i; 

and 999 bootstrap samples were taken from each dataset using boot-p,i. 

For the 999 bootstrap samples obtained using boot-p, estimates of the variance 

components ( )p2σ̂  (Equation A.51), ( )i2σ̂  (Equation A.52), and ( )pi2σ̂  (Equation 

A.53) were calculated, as well as estimates of the relative error variance ( )δσ 2ˆ  (Equation 

A.151) and the absolute error variance ( )∆2σ̂  (Equation A.156).  The estimates of the 

variance components were corrected for bias using Equations C.3-C.5; therefore, any 

subsequent reference to estimated variance components in the analyses are technically 

referring to bias-corrected variance component estimates.  Across the 999 bootstrap 

samples from a given dataset, the means of the 999 estimates of the variance components 

and relative and absolute error variances were calculated, and the variances of the 999 

estimates of the variance components and relative and absolute error variances were 

calculated.  The same procedure was repeated for boot-i and boot-p,i. 

Within each dataset, an estimate of the squared standard error of the absolute error 

variance SE(Δ) (Equation A.171) was also calculated, based on the variances of the 

relevant statistics calculated across the 999 bootstrap samples from the appropriate 

bootstrap procedures as suggested by Tong and Brennan (2007).  For the ip× design, 

these statistics were the variance of ( )pi2σ̂  obtained from the boot-p procedure and the 

variance of ( )i2σ̂  obtained using the boot-i procedure. 

Additionally, for the estimates of the variance components and relative and 

absolute error variances within each bootstrap procedure, the lower and upper bounds for 

three types of 90% confidence intervals were calculated within each dataset. A value of 

one was assigned if the parameter value fell within the resulting confidence interval, or a 

value of zero was assigned if the parameter value fell outside the interval. 

Across the 1,000 datasets and for each bootstrap procedure, the square roots of the 

means of the variances of the three estimated variance components and relative error 

variance were taken as the final bootstrap estimates of the standard errors of the variance 
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components and relative and absolute error variances.  The square root of the mean of the 

1,000 estimates of the squared standard error of the absolute error variance was taken as 

the final workaround estimate of the standard error of the absolute error variance.  The 

number of confidence intervals containing the parameter value was calculated across the 

1,000 datasets for the variance components and relative and absolute error variances for 

the three types of confidence intervals.  These counts were taken as the confidence 

interval coverage for the standard normal, percentile, and bias-corrected percentile 

confidence intervals. 

Although bias-corrected means for the estimated variance components for each 

dataset were calculated, these bias-corrected estimates were only of interest in terms of 

ensuring that they were reasonably close to the parameter values.  Brennan (2006; 2007) 

has proven that the bias-corrected means for the estimated variance components must 

equal the parameters; provided, of course, that the random number generator works well, 

there are no programming errors, and the number of bootstrap samples approaches 

infinity. 

This same basic procedure was followed for each condition of the study.  The 

procedure was repeated for the other three combinations of conditions in Table 5, and for 

each of the four combinations of conditions for dichotomous data and polytomous data, 

yielding a total of 12 conditions for the ip× design.  The procedure was slightly different 

for the other four G theory designs because different bootstrap procedures were used 

depending on the design, but otherwise the procedure was largely the same for the 

remaining 48 conditions. 

Criteria for Evaluating the Bootstrap Estimates 

Each of the bootstrap estimation procedures in each of the 60 conditions yielded 

estimates of all possible variance components for a given design, as well as the standard 

errors and confidence interval coverage corresponding to each estimated variance 
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component.  Relative and absolute error variances and their standard errors and 

confidence interval coverage were produced for each bootstrap procedure.  A single 

estimate of the standard error of the absolute error variance using Tong and Brennan’s 

(2007) proposed workaround was also produced for each of the 60 conditions.  The 

criteria for determining the adequacy of the standard error estimates were as follows.   

For the normally distributed data, the estimated standard errors were compared to 

the exact standard errors calculated using Equation 3.6.  For the dichotomous data, the 

estimated standard errors were compared to the “parameter values” calculated based on 

averages across 5,000 replications.  For the polytomous data, the estimated standard 

errors were compared to the “parameter values” calculated based on averages across 

5,000 replications.  For all three data types, the estimated standard errors for the 

estimated relative and absolute error variances were compared to the parameter values. 

Tong and Brennan (2007) used the following criteria for judging whether the 

estimates were close to the parameter values: “If an estimate deviated more than 5% in 

absolute magnitude from its corresponding parameter, the difference is considered large” 

(p. 809).  This study started with the 5% criterion, but found it to be very stringent, such 

that nearly 40% of the selected standard error estimates were considered to be large.  

Furthermore, many of the estimates that were flagged as deviant based on the 5% 

criterion (i.e., in relative terms) were very close to the parameter values in absolute terms 

(i.e., differing by no more than 0.001).  Therefore, the criterion was modified such that if 

an estimate deviated 10% or more from its respective parameter, the difference was 

considered to be large.  This modified criterion resulted in 25% of the selected standard 

error estimates being designated as large differences from the parameter values, but the 

estimates that were not considered large were reasonably close to their respective 

parameter values.  It should be noted, however, that common sense should be used when 

drawing conclusions regarding differences between parameter values and estimates.  In 
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particular, when the standard errors are very small, the magnitude of difference might be 

large, while the estimates themselves may still be good enough for practical use. 

The confidence interval coverage for the three types of confidence intervals 

calculated for each statistic of interest across G theory designs, variance component 

structures, sample size patterns, data types, and bootstrap procedures provided additional 

evidence of the adequacy of the estimates (i.e., whether approximately 90% of the 90% 

confidence intervals contain the parameter value).  If too few of the intervals contained 

the parameter value, then that provided evidence that the bootstrap procedures may have 

produced inaccurate variance component estimates or underestimated the standard error 

estimates. 
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CHAPTER 4:  RESULTS AND DISCUSSION 

The main purpose of this study was to test the rules suggested by Tong and 

Brennan (2007) for choosing optimal bootstrap procedures to estimate standard errors of 

estimated variance components under a broader set of conditions than those studied by 

Tong and Brennan (2007).  The current study utilized five G theory designs, crossed with 

two variance component structures and two sample size patterns within each design, 

crossed with three data types, yielding 60 combinations of conditions.  Point estimates, 

standard error estimates, and three types of confidence interval coverage were calculated 

for each of the variance components and relative and absolute error variances across 

several different bootstrap procedures for each of the combinations of conditions.  

Estimates were evaluated with respect to how close they were to the corresponding 

parameter values in terms of the magnitude of difference between the estimate and 

parameter value.  Equation 4.1 was used to calculate the magnitude of difference between 

an estimate and its corresponding parameter value, expressed as a percentage, where θ 

refers to the parameter value of interest and θ̂  refers to the estimate of interest. 










 −
×

θ
θθ̂100   (4.1) 

Estimated variance components and relative and absolute error variances, as well 

as estimated standard errors of estimated variance components and relative and absolute 

error variances were based on 999 bootstrap samples taken from 1,000 generated 

datasets.  Therefore, each estimate was based on 999,000 replications. 

Estimated Variance Components and Relative and Absolute 

Error Variances 

The estimated variance components and relative and absolute error variances were 

not the main focus of this dissertation, but it is important to determine the adequacy of 
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the estimated variance components and relative and absolute error variances before 

examination of the estimated standard errors of the estimated variance components and 

relative and absolute error variances.  If the estimates of the variance components and 

relative and absolute error variances themselves are not accurate, there can be little 

confidence in the adequacy of the estimated standard errors. 

The estimated variance components and relative and absolute error variances for 

all of the combinations of conditions in this study can be found in Appendix F, Tables F1 

– F15.  Empirical estimates of the variance components and relative and absolute error 

variances are also presented; that is, the estimates of variance components and relative 

and absolute error variances obtained without bootstrapping from each of the 1,000 sets 

of generated data for each combination of conditions, averaged across the 1,000 datasets.  

These estimates were calculated to verify that the generated datasets produced estimates 

that were close to the parameter values. 

Overall, across the 60 combinations of conditions of this study, the estimated 

variance components and relative and absolute error variances were reasonably close to 

the parameter values.  The estimated variance components and relative and absolute error 

variances were typically not identical to the parameter values, but the estimates typically 

deviated by less than 1% from their corresponding parameter values.   

The largest discrepancies between variance components estimates and parameter 

values were typically estimates of variance components involving the h facet, which 

tended to have the smallest sample size, ranging from nh = 2 to nh = 10.  Discrepancies 

between estimates and parameter values are likely to be due in part to the instability 

resulting from small sample sizes.  Additionally, because the bootstrap methodology is 

based on asymptotic theory, and because a finite number of bootstrap samples were 

drawn, sampling error could have played a role in the discrepancies between estimates 

and parameter values.  It should also be noted that the bootstrap estimates tended to be 
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close to the empirical parameter estimates, which were averaged across estimates 

calculated directly from each dataset without bootstrapping. 

The discrepancies between the parameter values and estimates of the variance 

components and relative and absolute error variances were similar to those found in Tong 

and Brennan (2007).  Their results also showed the greatest discrepancies in the facets 

with the smallest sample sizes (in their case, nh = 2).  For example, for the hip ××  

design using polytomous data, their estimates of σ2(h) deviated as much as 30% from the 

parameter value, which is comparable to the findings of the current study. 

The relative and absolute error variance estimates tended to be closer to the 

parameter values.  Only a few of the estimates deviated by more than 1% from their 

corresponding parameter values, and all were within 5% of the parameter values.  The 

maximum discrepancies for the relative and absolute error variances were found for the 

hip ××  design, Sample Size pattern 1, with polytomous data, for which the estimated 

absolute error variance deviated by about 3% across all seven bootstrap procedures. 

Recall from Chapter 1 of this dissertation the distinction between generalizability 

studies (G studies), in which variance components are estimated, and decision studies (D 

studies), in which decisions are made based on the D study results.  The relative and 

absolute error variances are the estimates that are used to make decisions; therefore, it is 

particularly important that these estimates are accurate, and it is reassuring to note that 

these estimates tended to be close to the parameter values. 

Estimated Standard Errors of Estimated Variance 

Components and Relative and Absolute Error Variances 

Estimated standard errors of estimated variance components and relative and 

absolute error variances are presented in Appendix G, Tables G1 – G15.  The differences 

between the standard error estimates and their respective parameter values are presented 

in Appendix H, Tables H1 – H15.  These differences are expressed as a percentage of the 
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parameter value, and were calculated using Equation 4.1.  Positive values indicate over-

estimation of the parameter value, and negative values indicate under-estimation of the 

parameter value. 

Within each of the tables in Appendices G and H, the estimates that would have 

been selected based on Tong and Brennan’s (2007) rules (Appendix D) are bolded, and 

the estimates that would have been selected based on the results of this study are boxed.  

Of the estimates that would have been selected based on the results of this study, those 

which differed from the parameter values by 10% or more are shaded, indicating that 

while these estimates were determined to be the optimal estimates, they still differed 

substantially from the parameter values. 

Due to the large scope of this study, the results needed to be synthesized in such a 

way as to allow for comparisons between conditions that would enable the researcher to 

identify patterns and determine the extent to which Tong and Brennan’s (2007) rules held 

up across the various combinations of conditions.  This was accomplished in the 

following manner.  First, the magnitudes of the differences between estimates and 

parameter values that are presented in Appendix H were calculated using Equation 4.1.  

Then, for each standard error within each combination of G theory design and data type, 

the differences were aggregated across variance component structures and sample size 

patterns for each bootstrap procedure to determine which bootstrap procedure produced 

estimates that were, on average, closest to the corresponding parameter values.  For 

example, for the ip× design with normal data, the differences between estimates and 

parameter values for SE(p) obtained using boot-p were aggregated across the four 

combinations of variance component structure and sample size pattern.  These aggregated 

differences were compared to the aggregated differences obtained using boot-i and boot-

p,i to determine which of the three bootstrap procedures, on average, produced the most 

accurate estimates of SE(p).  This same procedure was followed for the rest of the 

standard errors for all of the combinations of conditions of this study. 
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The results of these analyses are presented below.  As noted previously, the 

estimates and percent differences in Appendices G and H that are in boxes are the 

estimates and percent differences corresponding to the bootstrap procedures determined 

to be optimal based the results of this study, not to be confused with the most accurate 

estimates that were actually obtained within each combination of conditions.  These are 

the estimates based on the bootstrap procedures that, on average, produced the most 

accurate estimates of each standard error.   

It should be noted that the tables in Appendices G and H also contain standard 

error estimates calculated using normality-based equations (Appendix A, Tables A23 – 

A27, A30, and A31). These estimates are discussed in a later section of this chapter. 

The ip× Design 

Estimated standard errors of estimated variance components and relative and 

absolute error variances for the ip× design are presented in Appendix G, Tables G1 – G3.  

The signed differences between the standard error estimates and corresponding parameter 

values, expressed as a percentage of the parameter value, are presented in Appendix H, 

Tables H1 – H3.  Within each of these tables, the estimates that would have been selected 

based on Tong and Brennan’s (2007) rules are bolded, and the estimates that would have 

been selected based on the results of the current study are boxed.  Of the estimates that 

would have been selected based on the results of this study, those which differed from the 

parameter values by 10% or more are shaded. 

Normal Data 

For normal data (Tables G1 and H1), boot-p provided the best estimates of SE(p), 

SE(pi), and SE(δ) across the four combinations of variance component structure and 

sample size pattern.  All of these estimates differed by less than 1% from their respective 

parameter values.  Boot-i provided the best estimates of SE(i) across the four conditions, 

differing by less than 2% from the parameter values.  Boot-i also provided the best 
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estimates of SE(Δ) across the four combinations of variance component structure and 

sample size pattern.  The boot-i estimates of SE(Δ) were within 5% of the parameter 

values for three of the four combinations; for Variance Component Structure A, Sample 

Size Pattern 1, the boot-i estimate of SE(Δ) deviated 40% from the parameter value, but 

the boot-p and boot-p,i estimates were also inaccurate, deviating 32% and 68% from the 

parameter value, respectively. 

Dichotomous Data 

For dichotomous data (Tables G2 and H2), boot-p generally produced the best 

estimates of SE(p) across the four combinations of variance component structure and 

sample size pattern.  However, the estimates deviated from their parameter values by 

between 6% (Variance Component Structure A, Sample Size Pattern 2) and 40% 

(Variance Component Structure B, Sample Size Pattern 1).  Boot-i tended to produce the 

best estimates of SE(i), with estimates deviating by 4% to 10% from the parameter 

values.  Unlike the results for the normal data, boot-p,i tended to produce the best 

estimates of SE(pi), SE(δ), and SE(Δ) across the four combinations of variance 

component structure and sample size pattern, with deviations from the parameter values 

ranging 1% to 17% for SE(pi) and SE(δ), and 2% to 16% for SE(Δ). 

Polytomous Data 

For polytomous data (Tables G3 and H3), boot-p produced the best estimates of 

SE(p), SE(pi), and SE(δ) across the four combinations of variance component structure 

and sample size pattern, deviating no more than 2% from the parameter value for each of 

these estimates.  Boot-p,i produced slightly better estimates of SE(i) than did boot-i, but 

the difference was small, and the estimates deviated from the parameter values by less 

than 10% for both boot-i and boot-p,i for three of the four combinations of variance 

component structure and sample size pattern.  For Variance Component Structure A, 

Sample Size Pattern 1, the estimate of SE(i) deviated 14% from the parameter value using 
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boot-p,i and 16% from the parameter value using boot-i.  Boot-i produced the best 

estimates of SE(Δ) for Sample Size Pattern 1 (where ni = 10), and boot-p,i produced the 

best estimates of SE(Δ) for Sample Size Pattern 2 (where ni = 50).  Both boot-i and boot-

p,i produced estimates that deviated from the parameter value less than 10%.   

Overall, for the ip× design, the results of this study are consistent with the 

findings of Tong and Brennan (2007), with the exceptions of the estimates of SE(pi) and 

SE(δ) for dichotomous data.  It should be noted that the variance component 

corresponding to the interaction between persons and items is confounded with all 

undefined sources of residual error, which may be why the optimal estimates of SE(pi) 

and SE(δ) found in this study for dichotomous data were not the same as those expected 

to be optimal. 

The hip ××  Design 

Estimated standard errors of estimated variance components and relative and 

absolute error variances for the hip ××  design are presented in Appendix G, Tables G4 

– G6.  The signed differences between the standard error estimates and corresponding 

parameter values, expressed as a percentage of the parameter value, are presented in 

Appendix H, Tables H4 – H6.  Within each of these tables, the estimates that would have 

been selected based on Tong and Brennan’s (2007) rules are bolded, and the estimates 

that would have been selected based on the results of the current study are boxed.  Of the 

estimates that would have been selected based on the results of this study, those which 

differed from the parameter values by 10% or more are shaded. 

Normal Data 

For normal data (Tables G4 and H4), boot-p produced the best estimates of SE(p), 

SE(pi), SE(ph), SE(pih), and SE(δ) across the four combinations of variance component 

structure and sample size pattern.  All of these estimates were within 1% of the parameter 

values.  Boot-i produced reasonable estimates of SE(i) across the four combinations of 
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variance component structure and sample size pattern, with all four estimates deviating 

by less than 10% from the parameter values.  Boot-p,i also produced reasonable estimates 

of SE(i) for Variance Component Structure B.  Boot-h tended to produce the best 

estimates of SE(h), although the estimates were not particularly close to the parameter 

values for Sample Size Pattern 1, where nh = 2.  These estimates deviated from the 

parameter values by 26%, which was better than any of the other bootstrap procedures.  

Boot-p,h produced estimates of SE(h) which were close to the estimates produced by 

boot-h, but tended to be slightly further from the parameter values.  Boot-i produced the 

best estimates of SE(ih) across the four combinations of variance component structure 

and sample size pattern, all of which deviated by less than 10% from the parameter value.  

None of the bootstrap procedures or the workaround consistently produced estimates of 

SE(Δ) that were close to the parameter values, although boot-p,i did produce the best 

estimate for two of the conditions, and the second best estimate for another of the 

conditions.  The boot-p,i estimates of SE(Δ) deviated between 8% and 31% from the 

parameter values. 

Dichotomous Data 

For the hip ××  design with dichotomous data (Tables G5 and H5), none of the 

bootstrap procedures produced standard error estimates that were uniformly the best 

across all four combinations of variance component structure and sample size pattern.  

For example, boot-p produced the best estimate of SE(p) for Variance Component 

Structure A, Sample Size Pattern 1, boot-p,i produced the best estimate of SE(p) for 

Variance Component Structure A, Sample Size Pattern 2, boot-i produced the best 

estimate of SE(p) for Variance Component Structure B, Sample Size Pattern 1, and boot-

h produced the best estimate of SE(p) for Variance Component Structure B, Sample Size 

Pattern 2.  However, boot-p,i produced the second best estimates for three of the four 

combinations of variance component structure and sample size pattern.  The extent to 
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which the boot-p,i estimates of SE(p) deviated from the parameter values ranged from 3% 

to 26%, and two of the estimates were within 10% of the parameter values. 

Similar interpretive patterns persisted across the standard error estimates of the 

other variance components.  Boot-i tended to produce more reasonable estimates of SE(i) 

than the other bootstrap procedures, with estimates deviating from the parameter values 

by between 9% and 18%.  Boot-h tended to produce the most reasonable estimates of 

SE(h), with estimates deviating from the parameter values by 14% on average.  Boot-p,h 

also produced reasonable estimates of SE(h) compared to the rest of the bootstrap 

procedures, but on average did not perform as well as boot-h, deviating on average by 

15% from the parameter values.  Boot-p and boot-i both produced reasonable estimates of 

SE(pi) compared to the other bootstrap procedures.  However, boot-i performed slightly 

better than boot-p, with estimates deviating by less than 20% from the parameter values 

across all four combinations of variance component structures and sample size patterns.  

Boot-p produced the most reasonable estimates of SE(ph) compared to the rest of the 

bootstrap procedures.  All of the boot-p estimates of SE(ph) deviated from the parameter 

values by 25% to 34%, whereas the other bootstrap procedures produced estimates that 

deviated by more than 200% from the parameter values.  Boot-i tended to produce the 

most reasonable estimates of SE(ih), with estimates that differed by 13% on average from 

the parameter values, and all of the estimates deviated by less than 20% from the 

parameter values.  Boot-p,i tended to produce the most reasonable estimates of SE(pih).  

All of the estimates deviated less than 30% from the parameter values across the four 

combinations of variance component structures and sample size patterns, whereas all of 

the other bootstrap procedures produced estimates that deviated more than 50% from the 

parameter values for at least one of the combinations of variance component structures 

and sample size patterns. 

Boot-h tended to produce better estimates of SE(δ) compared to estimates 

produced by the other bootstrap procedures.  All of the estimates deviated by less than 
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30% from the parameter values across the four combinations of variance component 

structures and sample size patterns.  Boot-p,h also produced estimates of SE(δ) that were 

reasonable, and were closer to the parameter values than the estimates produced by boot-

h for Variance Component Structure A.  Boot-p,h tended to produce the best estimates of 

SE(Δ) compared to the other bootstrap procedures.  All of the boot-p,h estimates deviated 

no more than 14% from the parameter values, and deviated by 10% on average from the 

parameter values. 

Polytomous Data 

For polytomous data (Tables G6 and H6), boot-p produced the best estimates of 

SE(p), SE(ph), SE(pih), and SE(δ) across the four combinations of variance component 

structures and sample size patterns, and produced the best estimates of SE(pi) for three of 

the four combinations of variance component structures and sample size patterns. 

Boot-i and boot-p,i both produced the most reasonable estimates of SE(i) across 

the four combinations of variance component structures and sample size patterns, with 

boot-p,i slightly outperforming boot-i.  All of the estimates for both bootstrap procedures 

varied from the parameter values by less than 25%, with the boot-i estimates differing by 

14% on average from the parameter values, and the boot-p,i estimates differing by 12% 

on average. 

Boot-p,i,h produced the best estimates of SE(h) across the four combinations of 

variance component structures and sample size patterns, with estimates deviating by no 

more than 25% from the parameter values.  Boot-h, boot-p,h, and boot-i,h also performed 

reasonably well relative to the rest of the bootstrap procedures, with estimates deviating 

by no more than 30% from the parameter values.  The other bootstrap procedures 

produced estimates that differed from the parameter values by 60% to 90%. 

None of the bootstrap procedures consistently produced the best estimates of 

SE(ih) across the four combinations of variance component structure and sample size 
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pattern.  However, when taking into account the relative performance of each bootstrap 

procedure across the four combinations of conditions, boot-p,h produced the best 

estimates of SE(ih), closely followed by boot-p,i, boot-h, and boot-i.  On average, 

estimates of SE(ih) deviated from the parameter values by 14%, 15%, 16%, and 18% for 

the boot-p,h, boot-p,i, boot-h, and boot-i procedures, respectively.  The maximum 

deviation for these bootstrap procedures was less than 30% across the four combinations 

of variance component structures and sample size patterns. 

  Like the estimates of SE(ih), there was not a clear cut best procedure for 

estimating SE(Δ).  Boot-h and boot-p,h, produced estimates that were on average closer 

to the parameter value than the other bootstrap procedures, with differences of 19% and 

18%, for boot-h and boot-p,h, respectively, and all of the estimates for these two 

bootstrap procedures deviated from the parameter values by less than 40%. 

Overall, for the hip ××  design, the results of this study are consistent with the 

findings of Tong and Brennan (2007), with the exceptions of the estimates of SE(pih) and 

SE(δ) for dichotomous data.  As noted for the ip× design, the variance component 

corresponding to the highest order interaction is confounded with residual error, which 

may explain why the optimal estimates of SE(pih) and SE(δ) found in this study for 

dichotomous data were not the same as those expected to be optimal. 

The pi :  Design 

Estimated standard errors of estimated variance components and relative and 

absolute error variances for the pi : design are presented in Appendix G, Tables G7 – 

G9.  The signed differences between the standard error estimates and corresponding 

parameter values, expressed as a percentage of the parameter value, are presented in 

Appendix H, Tables H7 – H9.  Within each of these tables, the estimates that would have 

been selected based on Tong and Brennan’s (2007) rules are bolded, and the estimates 

that would have been selected based on the results of the current study are boxed.  Of the 
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estimates that would have been selected based on the results of this study, those which 

differed from the parameter values by 10% or more are shaded.  It should be noted that 

for the pi : design, σ2(δ) = σ2(Δ), and therefore SE(δ) = SE(Δ). 

Normal Data 

For normal data (Tables G7 and H7), boot-p produced the best estimates of SE(p) 

across the four combinations of variance component structure and sample size pattern, 

with estimates deviating from the parameter value by less than 2%.  Boot-p produced the 

best estimates of ( )piSE : , SE(δ), and SE(Δ) for Sample Size Pattern 1, where np = 50 and 

ni = 5; all of the estimates were within 2% of the parameter values.  Boot-p and boot-i 

both produced estimates of ( )piSE : , SE(δ), and SE(Δ) that were within 2% of the 

parameter values for Sample Size Pattern 2, where np = ni = 50. 

Dichotomous Data 

For dichotomous data (Tables G8 and H8), boot-p produced the best estimates of 

SE(p), ( )piSE : , SE(δ), and SE(Δ) across the four combinations of variance component 

structure and sample size pattern.  The estimates for Sample Size Pattern 1 were 

somewhat closer to the parameter values than the estimates for Sample Size Pattern 2.  

Estimates for Sample Size Pattern 1 were all within 2% of the parameter values, whereas 

estimates for Sample Size Pattern 1 differed by 1.5% to 7%. 

Polytomous Data 

For polytomous data (Tables G9 and H9), boot-p produced the best estimates of 

SE(p) across the four combinations of variance component structure and sample size 

pattern, with estimates deviating from the parameter value by no more than 6%.  Boot-p 

produced the best estimates of ( )piSE : , SE(δ), and SE(Δ); the estimates deviated no 

more than 2%.  Boot-i also produced reasonable estimates of ( )piSE : , SE(δ), and SE(Δ) 
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for Sample Size Pattern 2, where np = ni = 50; the estimates were within 2% of the 

parameter values. 

Overall, for the pi : design, the results of this study are consistent with the 

findings of Tong and Brennan (2007) for estimating SE(p) and SE(δ); however, the 

current study found a different optimal bootstrap procedure for estimating ( )piSE : . 

The phi ::  Design 

Estimated standard errors of estimated variance components and relative and 

absolute error variances for the phi :: design are presented in Appendix G, Tables G10 

– G12.  The signed differences between the standard error estimates and corresponding 

parameter values, expressed as a percentage of the parameter value, are presented in 

Appendix H, Tables H10 – H12.  Within each of these tables, the estimates that would 

have been selected based on Tong and Brennan’s (2007) rules are bolded, and the 

estimates that would have been selected based on the results of the current study are 

boxed.  Of the estimates that would have been selected based on the results of this study, 

those which differed from the parameter values by 10% or more are shaded.  It should be 

noted that as with the pi : design, σ2(δ) = σ2(Δ), and therefore SE(δ) = SE(Δ), in the 

phi :: design. 

Normal Data 

For normal data (Tables G10 and H10), boot-p produced the best estimates of 

SE(p), ( )phSE : , ( )phiSE :: , SE(δ), and SE(Δ) for three of the four combinations of 

variance component structure and sample size pattern, with estimates deviating by no 

more than 2% from the parameter values.  For Variance Component Structure B, Sample 

Size Pattern 2, boot-p,i produced the best estimates of SE(p), ( )phSE : , SE(δ), and 

SE(Δ), and boot-p,h produced the best estimate of ( )phiSE :: .  However, for all but 

SE(p), these estimates deviated from the parameter values by about 25%.  The boot-p 

estimates of SE(p), ( )phSE : , ( )phiSE :: , SE(δ), and SE(Δ) for Variance Component 
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Structure B, Sample Size Pattern 2 all deviated from the parameter values by about 30%; 

therefore, the boot-p estimates were not unreasonable relative to the rest of the bootstrap 

procedures. 

Dichotomous Data 

For dichotomous data (Tables G11 and H11), boot-p produced the best estimates 

of SE(p), ( )phSE : , ( )phiSE :: , SE(δ), and SE(Δ) across the four combinations of 

variance component structure and sample size pattern.  The boot-p estimates deviated 

from the parameter values by no more than 3%. 

Polytomous Data 

For polytomous data (Tables G12 and H12), boot-p tended to produce the best 

estimates of SE(p), ( )phSE : , ( )phiSE :: , SE(δ), and SE(Δ) across the four 

combinations of variance component structure and sample size pattern.  The boot-p 

estimates deviated from the parameter values by no more than 5%. 

Overall, for the phi :: design, the results of this study are consistent with the 

findings of Tong and Brennan (2007) for estimating SE(p) and SE(δ); however, the 

current study found different optimal bootstrap procedures for estimating ( )phSE :  

and ( )phiSE :: . 

The ( )hip :×  Design 

Estimated standard errors of estimated variance components and relative and 

absolute error variances for the phi :: design are presented in Appendix G, Tables G13 

– G15.  The signed differences between the standard error estimates and corresponding 

parameter values, expressed as a percentage of the parameter value, are presented in 

Appendix H, Tables H13 – H15.  Within each of these tables, the estimates that would 

have been selected based on Tong and Brennan’s (2007) rules are bolded, and the 

estimates that would have been selected based on the results of the current study are 
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boxed.  Of the estimates that would have been selected based on the results of this study, 

those which differed from the parameter values by 10% or more are shaded. 

Normal Data 

For normal data (Tables G13 and H13), boot-p produced the best estimates of 

SE(p), SE(ph), ( )hpiSE : , and SE(δ) across the four combinations of variance component 

structure and sample size pattern.  All of these estimates deviated by less than 1% from 

the parameter values.  Boot-h produced the best estimates of SE(h) for Sample Size 

Pattern 2, where nh = 10, and boot-p,h produced the best estimates of SE(h) for Sample 

Size Pattern 1, where nh = 5.  However, the boot-h estimates of SE(h) for Sample Size 

Pattern 1 were also reasonable, and all of the boot-h estimates of SE(h) deviated less than 

7% from the parameter values.  Boot-i produced the best estimates of ( )hiSE :  for 

Sample Size Pattern 1, where ni > nh; and boot-h produced the best estimates of ( )hiSE :  

for Sample Size Pattern 2, where ni < nh.  However, boot-h produced reasonable estimates 

of ( )hiSE :  across the four combinations of variance component structure and sample 

size pattern, with estimates deviating from the parameter values by less than 10%. 

None of the bootstrap procedures produced reasonable estimates of SE(Δ) across 

the four combinations of variance component structure and sample size pattern.  Boot-p 

produced the best estimates of SE(Δ) for Variance Component Structure A, and Boot-h 

produced estimates of SE(Δ) for Variance Component Structure B that were reasonable 

relative to estimates produced by the other bootstrap procedures.  Boot-h estimates 

deviated the least from the parameter values on average across the four combinations of 

variance component structure and sample size pattern; estimates deviated from the 

parameter values by less than 30% for three of the four combinations of conditions.  

However, for Variance Component Structure A, Sample Size Pattern 1, the boot-h 

estimate of SE(Δ) deviated from the parameter value by 90%.  Boot-p estimates tended to 
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deviate further from the parameter values on average, with estimates deviating from the 

parameter values by 21% to 73%. 

Dichotomous Data 

For dichotomous data (Tables G14 and H14), boot-p,i tended to produce the best 

estimates of SE(p); all of the estimates deviated from the parameter values by less than 

20%.  Boot-h tended to produce the best estimates of SE(h); all of the estimates deviated 

from the parameter values by less than 10%.  Boot-p tended to produce reasonable 

estimates of SE(ph), with estimates deviating by less than 20% from the parameter values 

for three of the four combinations of variance component structure and sample size 

pattern.  Boot-h produced better estimates of SE(ph) than those produced by boot-p for 

Variance Component Structure B; however, the boot-h estimates of SE(ph) were not 

substantially more accurate than the boot-p estimates, differing by less than six 

percentage points.  Boot-h produced the best estimates of ( )hiSE :  for Variance 

Component Structure A, deviating by about 11% from the parameter values; and boot-p,h 

produced the best estimates of ( )hiSE :  for Variance Component Structure B, deviating 

by about 5% from the parameter values.  However, the boot-h estimates for Variance 

Component Structure B were not unreasonable, deviating by about 11% from the 

parameter values.  Boot-p,h produced the best estimates of ( )hpiSE :  for three of the four 

combinations of variance component structure and sample size pattern.  Three of the four 

estimates deviated from the parameter values by less than 5%, and the maximum 

deviation was 16%. 

None of the bootstrap procedures consistently produced reasonable estimates of 

SE(δ) across the four combinations of variance component structure and sample size 

pattern.  Boot-h produced estimates that deviated by 30% on average from the parameter 

values, and the deviations ranged from 9% to 80% from the parameter values.  Boot-p 
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produced estimates that differed from the parameter values by 39% on average, and the 

deviations ranged from 20% to 59%. 

Boot-h produced the best estimates of SE(Δ) across three of the four combinations 

of variance component structure and sample size pattern, with estimates deviating from 

the parameter values by less than 10%.  For Variance Component Structure A, Sample 

Size Pattern 1, the boot-h estimate of SE(Δ) deviated from the parameter value by 61%. 

Polytomous Data 

For polytomous data (Tables G15 and H15), boot-p produced reasonable 

estimates of SE(p), SE(ph), ( )hpiSE : , and SE(δ), with all estimates deviating from the 

parameter values by no more than 2%.  Boot-h and boot-p,h both produced reasonable 

estimates of SE(h), with boot-p,h producing estimates that were slightly closer to the 

parameter values.  The boot-h and boot-p,h estimates of SE(h) for Sample Size Pattern 2, 

where nh = 10, differed from the parameter values by 4% and 7% on average, 

respectively.  The estimates for Sample Size Pattern 1, where nh = 5, were larger, 

averaging 22% from the parameter values.  Boot-p,i produced the best estimates 

of ( )hiSE :  for Sample Size Pattern 1, where ni > nh; and boot-p,h produced the best 

estimates of ( )hiSE :  for Sample Size Pattern 2, where ni < nh.  These estimates all 

differed from the parameter values by less than 10%. 

None of the bootstrap procedures produced estimates of SE(Δ) that were 

uniformly the best across the four combinations of variance component structure and 

sample size pattern.  Boot-h and boot-p,h both produced reasonable estimates; boot-h 

produced estimates that deviated by 8% on average from the parameter values, and by no 

more than 15%; and boot-p,h produced estimates that deviated by 10% on average from 

the parameter values, and by no more than 16%. 

Overall, for the ( )hip :× design, the results of this study are consistent with the 

findings of Tong and Brennan (2007) for all but ( )hiSE :  for normal and polytomous 
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data.  For dichotomous data, the results of the current study are consistent with Tong and 

Brennan’s (2007) findings for the estimates of SE(p), SE(h), and SE(ph), but found 

different optimal estimates of ( )hiSE : , ( )hpiSE : , and SE(δ).  As was the case for the 

pi : and phi :: designs, the current study found different optimal bootstrap procedures 

for estimating standard errors of estimated variance components that involved nesting.  

Additionally, as was the case for the ip×  and hip ××  designs, the current study found 

different optimal bootstrap procedures for estimating standard errors of estimated 

variance components for the highest order interactions, which contain residual error and 

may explain why the optimal estimates of ( )hpiSE :  and SE(δ) found in this study for 

dichotomous data were not the same as those expected to be optimal. 

Overall, across the five G theory designs, the rules proposed by Tong and 

Brennan (2007) were largely supported for normal and polytomous data, with some 

exceptions, and the rules were supported to a lesser extent for dichotomous data.  Across 

all three data types, the rules held up for estimating standard errors of variance 

components for non-nested main effects and simple interactions, but this study found 

different optimal bootstrap procedures for estimating effects involving nesting.  For 

dichotomous data, this study also found different optimal bootstrap procedures for 

estimating the standard errors of variance components corresponding to the highest order 

interactions and relative error variance.  It should be noted that the variance components 

corresponding to the highest order interactions are residual terms, containing all sources 

of variance that are unaccounted for in a particular G theory design.  Additionally, these 

residual terms are components of the relative error variance estimates.  It is possible that 

these residual effects may explain the differences found for dichotomous data versus 

normal and polytomous data. 
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Workaround for Estimating the Standard Error of the 

Estimated Absolute Error Variance 

The estimated standard errors of the estimated absolute error variances using the 

workaround proposed by Tong and Brennan (2007) are presented in Appendix I, Tables 

I1 – I5, along with the percent difference between the estimates and their respective 

parameter values.  These differences are expressed as a percentage of the parameter 

value, and were calculated using Equation 4.1.  Positive values indicate over-estimation 

of the parameter value, and negative values indicate under-estimation of the parameter 

value. 

In general, the workaround for estimating the standard error of the estimated 

absolute error variance tended to produce reasonable estimates of SE(Δ), particularly for 

normal and polytomous data.  Estimates of SE(Δ) were particularly close to the parameter 

values for the pi : and phi :: designs; only one of the estimates of SE(Δ) for these 

designs deviated from the parameter values by more than 3%.  However, the estimated 

standard errors of the estimated absolute error variances for these nested designs are 

based only on the estimated standard errors of the estimated relative error variance, as 

can be seen in Appendix A, Table A32; thus the workaround estimates for these two G 

theory designs are redundant to the optimal bootstrap estimates of SE(δ), which were 

generally found to be reasonable. 

Estimates of SE(Δ) tended to be larger for dichotomous data for the ip× , 

hip ×× , and ( )hip :×  designs, deviating near 40%, on average, from the parameter 

values.  However, some differences were found between the optimal bootstrap 

procedures for estimating standard errors suggested by Tong and Brennan (2007) and 

those determined to be optimal in the current study, particularly for dichotomous data.  

Therefore, this section presents the results of investigating changes to the workaround 

proposed by Tong and Brennan (2007) for estimating the standard error of the estimated 
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absolute error variance, based on the optimal bootstrap procedures found in the results 

this study. 

The ip×  Design 

For the ip× design with normal and polytomous data, the workaround estimates 

of SE(Δ) were close to the parameter values; all of the workaround estimates deviated by 

no more than 15% from the parameter values.   

For the ip× design with dichotomous data, the workaround estimates of SE(Δ) 

were generally not as close to the parameter values as were the boot-p,i estimates (Tables 

G2 and H2); the only workaround estimate that was close was for Variance Component 

Structure A, Sample Size Pattern 2, for which the workaround estimate was 15% from the 

parameter value, and the boot-p,i estimate was 8% from the parameter value.  The rest of 

the workaround estimates deviated from the parameters by 38% (Variance Component 

Structure B, Sample Size Pattern 2) to 55% (Variance Component Structure B, Sample 

Size Pattern 1). 

When the data were dichotomous, boot-p,i tended to produce better estimates of 

SE(δ) than boot-p.  Therefore, an alternate workaround for calculating the estimate of the 

standard error of the estimated absolute error variance was also applied to the conditions 

involving dichotomous data using the following equation. 

( ) ( )
2

2
2 |ˆ

,|ˆ
in

iiESipES +δ   (4.2) 

Table 9 contains the parameter values and two estimates of SE(Δ).  The first 

column describes the combination of conditions for each row; for example, A1 refers to 

Variance Component Structure A and Sample Size Pattern 1.  The second column 

contains the parameter values.  The third column of the table contains the original 

workaround estimates of SE(Δ), which are also presented in Appendix I, Table I1, and 

the last column of the table contains the alternate estimates of SE(Δ) which were 
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calculated using Equation 4.2.  The modified workaround typically produced estimates of 

SE(Δ) that were closer to the parameter values than those produced by the workaround 

suggested by Tong and Brennan (2007). 

Table 9. Alternate Estimates of SE(Δ) for the ip×  Design Using Optimal Bootstrap 
Procedures 

 Parameter ( )∆SE  Tong & Brennan ( )∆ES ˆ  Moore ( )∆ES ˆ  

Dichotomous 
A1 0.0011 0.0007 0.0013 
A2 0.0002 0.0002 0.0002 
B1 0.0021 0.0010 0.0018 
B2 0.0002 0.0001 0.0002 

 

The hip ××  Design 

For the hip ××  design with normal data, the workaround estimates of SE(Δ) 

typically produced reasonable estimates of SE(Δ); the estimates deviated from the 

parameter values by no more than 20%.  For dichotomous data, the workaround for 

estimating SE(Δ) produced estimates of SE(Δ) that were, on average, not as close to the 

parameter values as those produced by the boot-i, boot-h, boot-p,i, and boot-p,h 

procedures (Tables G5 and H5), differing by 40% on average from the parameter values.  

For polytomous data, the workaround estimates of SE(Δ) deviated by 20% on average 

from the parameter values, but all of the estimates deviated by less than 30%. 

In terms of the standard error estimates that enter into the workaround proposed 

by Tong and Brennan (2007), there were differences between the optimal bootstrap 

procedures proposed by Tong and Brennan (2007) and the optimal bootstrap estimates 

that were found to be optimal in the current study.  Specifically, when the data were 

dichotomous, boot-p,h tended to produce better estimates of SE(δ) than boot-p.  
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Therefore, for the hip ××  design using dichotomous data, the following equation was 

also used to estimate the standard error of the absolute error variance estimates. 

( ) ( ) ( ) ( )
22
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2
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Table 10 contains the parameter values and two estimates of SE(Δ).  The first 

column describes the combination of conditions for each row; for example, A1 refers to 

Variance Component Structure A and Sample Size Pattern 1.  The second column 

contains the parameter values.  The third column of the table contains the original 

workaround estimates of SE(Δ), which are also presented in Appendix I, Table I2, and 

the last column of the table contains the alternate estimates of SE(Δ) which were 

calculated using Equation 4.3.  The modified workaround produced better estimates of 

SE(Δ) across all four combinations of variance component structures and sample size 

patterns; these estimates deviated no more than 15% from the parameter values. 

The pi : and phi :: Designs 

The workaround for estimating SE(Δ) worked well for the pi : and 

phi :: designs.  However, for these designs, ( )δES ˆ  = ( )∆ES ˆ , meaning that the estimated 

standard error of the estimated relative error variance is the only component that enters 

into the equation for calculating ( )∆ES ˆ ; therefore, the workaround is redundant for these 

designs.  Additionally, the estimates of SE(δ) tended to be close to the parameter values 

for these designs, thus the estimates of SE(Δ) by definition were also close to the 

parameter values. 

The ( )hip :×  Design 

For the ( )hip :× design with normal data, the workaround for estimating SE(Δ) 

generally produced the optimal estimates as compared to the bootstrap procedures; 

estimates produced by the workaround deviated from the parameter values by no more 
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than 10%.   When the data were dichotomous or polytomous, the workaround for 

estimating SE(Δ) did not perform as well, on average, as boot-h and boot-p,h, but the 

workaround estimates of SE(Δ) were generally reasonable, deviating, on average, 33% 

and 12% for dichotomous and polytomous data, respectively. 

Table 10. Alternate Estimates of SE(Δ) for the hip ××  Design Using Optimal Bootstrap 
Procedures 

 Parameter ( )∆SE  Tong & Brennan ( )∆ES ˆ  Moore ( )∆ES ˆ  

Dichotomous 
A1 0.0055 0.0036 0.0059 
A2 0.0027 0.0017 0.0026 
B1 0.0073 0.0042 0.0072 
B2 0.0029 0.0016 0.0025 

 

 

In terms of the standard error estimates that enter into the workaround proposed 

by Tong and Brennan (2007), there were differences between the optimal bootstrap 

procedures proposed by Tong and Brennan (2007) and the optimal bootstrap estimates 

that were found to be optimal in the current study.  Specifically, boot-h was found to 

produce more accurate estimates of ( )hiSE :  than boot-i across all three data types; for 

dichotomous data, boot-p,h was found to produce more accurate estimates of SE(δ) than 

boot-p.  Therefore, the following equation was used to estimate the standard error of the 

absolute error variance estimates when the data were normal or polytomous, 

( ) ( ) ( )
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hhESpES ++δ ,  (4.4) 

and the following equation was used to estimate the standard error of the absolute error 

variance estimates when the data were dichotomous 
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Table 11 contains the parameter values and two estimates of SE(Δ).  The first 

column describes the combination of conditions for each row; for example, A1 refers to 

Variance Component Structure A and Sample Size Pattern 1.  The second column 

contains the parameter values.  The third column of the table contains the original 

workaround estimates of SE(Δ), which are also presented in Appendix I, Table I5; and 

the last column of the table contains the alternate estimates of SE(Δ) which were 

calculated using Equations 4.4 and 4.5.  In general, the modified workaround tended to 

produce slightly better estimates of SE(Δ) for some of the combinations of variance 

component structures and sample size patterns to which they were applied, but did not 

bring the estimates substantially closer to the parameter values. 

Overall, the workaround for estimating the standard error of the estimated 

absolute error variance produced reasonable estimates.  Modification of the workaround 

to reflect the different optimal bootstrap procedures associated with some of the 

estimated standard errors of estimated variance components generally resulted in 

estimates that were closer to the parameter values than the original workaround estimates 

using the estimates associated with the bootstrap procedures suggested by Tong and 

Brennan (2007).  Additionally, while some of the estimates of SE(Δ) deviated from the 

parameter values by more than 10%, particularly for dichotomous data, the actual 

differences between the estimates and parameter values were very small (in many cases 

less than 0.001), and would be good enough for practical use. 

Confidence Interval Coverage 

Confidence interval coverage for three different types of confidence intervals 

were calculated for each variance component and relative and absolute error variance, for 

each bootstrap procedure within each of the 60 combinations of conditions:  standard 
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normal, percentile, and bias corrected percentile confidence intervals.  Confidence 

interval coverage was based on ninety percent confidence intervals; therefore, it was 

expected that 900 of the 1,000 replications would contain the parameter value if the 

assumptions of the confidence interval were met. 

Table 11. Alternate Estimates of SE(Δ) for the ( )hip :×  Design Using Optimal Bootstrap 
Procedures 

 Parameter ( )∆SE  Tong & Brennan ( )∆ES ˆ  Moore ( )∆ES ˆ  

Normal 

A1 0.0021 0.0021 0.0021 
A2 0.0018 0.0020 0.0019 
B1 0.0088 0.0086 0.0086 
B2 0.0051 0.0056 0.0051 

Dichotomous 

A1 0.0003 0.0002 0.0005 
A2 0.0004 0.0003 0.0005 
B1 0.0010 0.0006 0.0010 
B2 0.0009 0.0005 0.0008 

Polytomous 

A1 0.0084 0.0067 0.0067 
A2 0.0037 0.0035 0.0036 
B1 0.0217 0.0168 0.0168 
B2 0.0085 0.0085 0.0082 

 

The differences in coverage among the three types of confidence intervals were 

minimal for the most part.  However, some of the bias corrected confidence interval 

coverage values were markedly smaller than those for the standard normal and percentile 

confidence intervals.  For example, for the ip× design with normal data, Variance 

Component Structure B, and Sample Size Pattern 2, the standard normal confidence 
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interval coverage for σ2(pi) using the boot-p,i procedure was 99.5%, the percentile 

confidence interval coverage was 89.8%, and the bias corrected confidence interval 

coverage was 20.1%.  The parameter value of σ2(pi) was 0.5, the boot-p,i estimate of 

σ2(pi) was 0.5001, the parameter value of SE(pi) was 0.0102, and the estimated standard 

error of ( )pi2σ̂  was 0.0175.  Because the boot-p,i procedure over-estimated the standard 

error of σ2(pi), it would be expected that the confidence interval coverage would be wider 

than 90%, which was the case for the standard normal confidence interval coverage.  

However, the bias corrected confidence interval coverage was much lower, casting doubt 

on the adequacy of the bias corrected confidence interval coverage in capturing the 

variability of σ2(pi), at least for this combination of conditions.   

Carpenter and Bithell (2000) suggested that the bias corrected confidence interval, 

while an improvement over the percentile confidence interval for asymmetric 

distributions, may still be inaccurate if the skewness of the distribution varies with θ.  

Because of this, and because of the underestimation of the variability of some of the 

estimated variance components using bias corrected confidence intervals, this section 

focuses on the percentile confidence interval coverage.  Tables containing the percentile 

confidence interval coverage can be found in Appendix J, Tables J1 – J15.  Within each 

of these tables, the coverage for the estimates that would have been selected based on 

Tong and Brennan’s (2007) rules are bolded, and the estimates that would have been 

selected based on the results of the current study are boxed. 

In general, the percentile confidence interval coverage provides support for the 

optimal bootstrap procedures for estimating standard errors of estimated variance 

components and relative and absolute error variances.  For example, percentile 

confidence interval coverage for each estimated variance component and relative and 

absolute error variance for the ip×  design can be found in Tables J1 – J3.  The 

confidence interval coverage provides support for boot-p as the optimal bootstrap 

procedure for estimating SE(p), SE(pi), and SE(δ), and boot-i as the optimal procedure for 
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estimating SE(i) for normal data; the coverage was near 90% across the four 

combinations of variance component structure and sample size pattern.  The non-optimal 

estimates tended to have lower coverage where the estimated standard errors were too 

small, for example for the boot-p estimates of σ2(i), or higher coverage where the 

estimated standard errors were too large, for example for the boot-p,i estimates of σ2(pi). 

For dichotomous and polytomous data, and particularly for estimates for which 

the sample size is small (such as the h facet, and in some cases the i facet), the confidence 

interval coverage values were not close to 90%.  For example, most of the estimates of 

σ2(h) in the hip ××  and ( )hip :×  designs were found to have confidence interval 

coverage below 90%.  Because of the small sample sizes for the h facet, the estimates are 

expected to be less accurate, and it is not surprising that fewer of the intervals contained 

the parameter value. 

Overall, though, it appears that the confidence interval coverage reflected the 

optimal bootstrap procedure for estimating the standard error of each variance component 

and relative and absolute error variance, such that the optimal estimates for a given 

variance component or relative or absolute error variance were closer to 90% relative to 

the estimates calculated by other bootstrap procedures. 

Normality-Based Equations for Estimating Standard Errors 

of Estimated Variance Components and Relative and 

Absolute Error Variances 

One question that may arise from reading this dissertation is the extent to which 

bootstrap procedures produce estimates of standard errors of variance components and 

relative and absolute error variances that are superior to those that would be obtained 

using the equations that assume normality of score effects (Table A23 – A27, A30, and 

A31).  Tables G2 – G15 in Appendix G contain the estimated standard errors of the 

estimated variance components and relative and absolute error variances resulting from 
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applying those equations to dichotomous and polytomous data.  These are estimates that 

are calculated within each dataset and averaged across the 1,000 datasets for each 

combination of conditions. 

It can be seen that for the ip× design using dichotomous data, the estimates 

calculated using the normality-based equations tended to be too low; and for 

the ip× design using polytomous data, the estimates of SE(p), SE(i), and SE(Δ) tended to 

be too low, while the estimates of SE(pi) and SE(δ) tended to be too high.  For the 

hip ××  design, all of the standard error estimates calculated using the normality-based 

equations tended to be too low using dichotomous data, except for the estimates of SE(h) 

for Variance Component Structure A, which slightly overestimated the parameter values; 

and all of the estimates using polytomous data tended to be too low, except for the 

estimates of SE(ph), SE(pih), and SE(δ) for Variance Component Structure A.  For the 

pi : design using dichotomous data, the estimates of SE(p), ( )piSE : , SE(δ), and SE(Δ) 

tended to be too low; and for the pi : design using polytomous data, the estimates of 

SE(p) tended to be too low, while the estimates of ( )piSE : , SE(δ), and SE(Δ) tended to 

be too high.  For the phi :: design using dichotomous data, all of the standard error 

estimates tended to be too low, and for the phi :: design using polytomous data, all of 

the standard error estimates tended to be too low, except for the estimates of ( )phiSE :: , 

which tended to be too high.  For the ( )hip :× design using dichotomous data, all of the 

standard error estimates tended to be too low; and for the ( )hip :× design using 

polytomous data, all of the standard error estimates tended to be too low, except for the 

estimates of ( )hpiSE : , which tended to be too high. 

In summary, when the data were dichotomous, the equations for estimating 

standard errors that are based on normality tended to produce estimates that were too low 

across all five G theory designs.  When the data were polytomous, the normality-based 

equations for estimating standard errors produced estimates that tended to be too low for 

estimated standard errors of main effects; the estimates of some interaction effects and 
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nested effects tended to be too high, but it is unclear whether there is a pattern to these 

effects.  However, these results show that in many cases, when the score effects are not 

normally distributed, bootstrap estimates of standard errors of estimated variance 

components and relative and absolute error variances are indeed superior to the estimates 

based on equations that assume normality. 

Summary of Results 

This section summarizes the results of this study with respect to the research 

questions posed in Chapter 1.  The first research question asked “How well do the rules 

work across various G theory designs, including the ip× , hip ×× , pi : , phi :: , and 

( )hip :×  designs?”  This study examined five G theory designs, and found common 

patterns across the designs with respect to the facets entering into the variance component 

estimates for which the standard errors were being estimated.  For example, rules were 

proposed for non-nested and nested main effects, non-nested and nested interactions, etc. 

The second research question asked “How well do the rules work when the 

variance components for the various effects are relatively similar to one another (i.e., 

each variance component contributes a similar amount of variance to the total variance)?  

When they are relatively dissimilar (i.e., most of the total variance is contained within a 

smaller subset of variance components)?”  This study included two variance component 

structures for each G theory design; one containing relatively similar magnitudes of 

variance across the various effects, and one containing relatively dissimilar magnitudes of 

variance across the various effects.  It was found that, for the most part, the rules 

followed similar patterns across variance component structures, and that sample size 

patterns tended to have a larger impact on the extent to which the rules produced 

adequate estimates. 

The third research question asked “How well do the rules work when the sample 

sizes for the various effects are similar to one another (i.e., the number of persons is 
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similar to the number of items and/or raters)?  When the sample sizes are dissimilar to 

one another?”  This study found that sample size did indeed influence the extent to which 

the rules held up across the various combinations of conditions.  In particular, for the 

pi : design with normal or polytomous data, when the number of persons was larger than 

the number of items, the boot-p bootstrapping procedure outperformed the boot-i 

procedure for estimating ( )piSE : , SE(δ), and SE(Δ).  However, when the np = ni, both 

boot-p and boot-i produced reasonable estimates of ( )piSE : , SE(δ), and SE(Δ). 

The fourth research question asked “How well does the workaround for the 

bootstrap estimate of the standard error of the absolute error variance [SE(Δ)] proposed 

by Tong and Brennan (2007) hold up across various G theory designs, variance 

component structures, sample size patterns, and data types?”  This study found that the 

workaround, on average, outperformed the bootstrap estimates of SE(Δ) across the 

various combinations of conditions studied. 

The fifth research question asked “To what extent do standard normal, percentile, 

and bias corrected percentile confidence intervals adequately capture the variability of 

estimated variance components and relative and absolute error variances?  Is one type of 

confidence interval preferred to the others?”  It was found that the three confidence 

intervals performed similarly overall; however, some problems with the bias-corrected 

intervals emerged, particularly when calculating coverage of estimated variance 

components for which the sample size was small.  Additionally, the known asymmetry of 

variance components calls into question the adequacy of the standard normal confidence 

intervals.  For these reasons, percentile confidence intervals were determined to be 

preferable to standard normal and bias corrected percentile confidence intervals in this 

study. 
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CHAPTER 5:  SUMMARY AND CONCLUSIONS 

The purpose of this study was to test the extent to which rules proposed by Tong 

and Brennan (2007) for estimating standard errors of estimated variance components held 

up across a variety of G theory designs, variance component structures, sample size 

patterns, and data types.  Several different bootstrap procedures were applied to each of 

the 60 combinations of conditions to calculate point estimates, standard errors, and three 

types of confidence intervals for each variance component and relative and absolute error 

variance. 

The bootstrap procedures generally produced reasonably accurate estimates of 

variance components and relative and absolute error variances.  Estimates of standard 

errors were reasonable, depending on the associated variance component estimate, and 

depending on the bootstrap procedure that was being implemented.  

Evaluation of Tong and Brennan’s (2007) Rules 

This study provides support for some of the rules proposed by Tong and Brennan 

(2007) (Appendix D), but suggests refinements of others.  Furthermore, some of the 

optimal bootstrap procedures were dependent on the data type, which complicates the 

rules somewhat. 

Tong and Brennan’s (2007) first rule was that for non-nested main effects, the 

bootstrap procedure corresponding to that facet should be used.  For example, boot-p 

should be used to estimate SE(p).  This rule was largely supported in this study across the 

three types of data. 

The second rule was that for nested main effects, the bootstrap procedure 

corresponding to the nested facet should be used.  For example, boot-i should be used to 

estimate ( )piSE : .  The results of this study generally did not support this rule, and 

appeared to be dependent on the sample sizes of the facets involved.  This study found 

that, in general, the bootstrap procedure corresponding to the non-nested facet tended to 
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produce better estimates of standard errors of nested main effects than did the nested 

facet.  For example, boot-p tended to produce better estimates of ( )piSE : .  However, 

when np = ni, both boot-p and boot-i tended to produce reasonable estimates of ( )piSE :  

for normal and polytomous data. 

The third rule was that for non-nested interaction effects, the bootstrap procedure 

corresponding to the facet with the larger sample size should be used.  For example, boot-

p should be used to estimate SE(pi) when np > ni.  The results of this study found that this 

rule was supported for normal and polytomous data, but the results were different for 

dichotomous data.  Like Brennan, Harris, and Hanson (1987), this study found that for 

the ip× design with dichotomous data, boot-p,i produced better estimates of SE(pi) than 

did boot-p.  Additionally, for two-facet designs with dichotomous data, Tong and 

Brennan’s (2007) third rule was supported for the two-way interactions (i.e., SE(pi), 

SE(ph), and SE(ih)), but was not supported for the highest order interactions.  For 

example, boot-p,i tended to produce reasonable estimates of SE(pi) for the ip× design 

and SE(pih) for the hip ××  design. 

The fourth rule was that for nested interactions, the bootstrap procedure 

corresponding to the nested facet with the larger sample size should be used.  The results 

of this study provided some support for this rule, dependent on the data type.  For the 

( )hip :×  design, boot-p tended to produce the best estimates of ( )hpiSE :  for normal 

and polytomous data.  However, for dichotomous data, boot-h tended to produce better 

estimates of ( )hpiSE :  than did boot-p. 

The fifth rule was that for estimating the standard error of the estimated relative 

error variance, the bootstrap procedure corresponding to the objects of measurement facet 

should be used, which is usually the persons facet.  This study provided support for this 

rule for normal and polytomous data; however, results were different for dichotomous 

data.  For dichotomous data, boot-p,i tended to produce better estimates of SE(δ) for the 

ip× design, and boot-p,h tended to produce better estimates of SE(δ) for the hip ××  and 
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( )hip :×  designs.  For the pi : and phi :: designs, boot-p produced the best estimates 

of SE(δ) across all three data types. 

Tong and Brennan (2007) also proposed a workaround for estimating the standard 

error of the estimated absolute error variance.  In general, the workaround performed 

reasonably well across the five G theory designs.  The workaround was based on taking 

the optimal bootstrap estimates for each component that enters into SE(Δ), where the 

optimal estimates were based on their proposed rules.  In this study it was found that the 

bootstrap procedures suggested by their rules did not always provide the optimal 

estimates.  When the rules did not provide the best estimates, the workarounds for the 

standard error estimates of the absolute error variance estimates were modified to include 

the best estimates for each component entering into the estimate.  These modified 

workarounds tended to produce better estimates for the ip× , hip ×× , and ( )hip :×  

designs.  The workaround for estimating SE(Δ) worked well for the pi : and 

phi :: designs; however, because SE(δ) = SE(Δ) for these designs, the workaround is 

redundant to the estimates of SE(δ). 

Because the current study also included a G theory design containing two levels 

of nesting (i.e., the phi :: design), this dissertation proposes an additional rule to deal 

with estimating standard errors of estimated variance components involving more than 

one level of nesting.  Based on the results of this study, it is proposed that for these 

estimates, the bootstrap procedure corresponding to the non-nested facet be used.  For 

example, in the phi :: design, boot-p should be used to estimate ( )phiSE :: . 

Suggested Modifications to Tong and Brennan’s (2007) 

Rules 

Based on the results of the current study, the following is a list of suggested rules 

for choosing which bootstrap procedures to use to estimate standard errors of estimated 

variance components and relative and absolute error variances.  It should be noted that, 
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although they are based on a more extensive set of conditions than those of Tong and 

Brennan (2007), they are still somewhat ad hoc in nature, and further research is needed 

to make definitive statements about the extent to which they produce reasonable 

estimates. 

Rule 1:  For nonnested main effects, use the corresponding bootstrap procedure.  

For example, to estimate ( )[ ]pSE 2σ̂ , use boot–p. 

Rule 2:  For nested main effects (e.g., i:h in the p × (i:h) design), use the bootstrap 

procedure for the nonnested index. For example, to estimate ( )[ ]hiSE :ˆ 2σ  for the p ×(i:h) 

design, use boot–h. 

Rule 3a:  For nonnested interaction effects when the data are normal or 

polytomous, use the one-dimensional bootstrap procedure for the facet in the interaction 

that has the largest sample size. For example, to estimate ( )[ ]phSE 2σ̂ , use boot–p if np > 

nh or use boot–h if np < nh. 

Rule 3b:  For nonnested interaction effects when the data are dichotomous, use 

the one-dimensional bootstrap procedure for the facet in the interaction that has the 

largest sample size for all but the highest order interaction. For example, to estimate 

( )[ ]phSE 2σ̂ , use boot–p if np > nh or use boot–h if np < nh.  For the highest order 

nonnested interaction effect, use boot-p,i. 

Rule 4a:  For nested interaction effects when the data are normal or polytomous, 

use the one-dimensional bootstrap procedure for the primary facet in the interaction that 

has the largest sample size. For example, to estimate ( )[ ]hpiSE :ˆ 2σ , use boot–p if np > ni 

or use boot–i if np < ni. 

Rule 4b:  For nested interaction effects when the data are dichotomous, use the 

bootstrap procedure for the nonnested index. For example, to estimate ( )[ ]hpiSE :ˆ 2σ  for 

the p ×(i:h) design, use boot–h. 
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Rule 5:  For effects involving more than one level of nesting, use the bootstrap 

procedure corresponding to the non-nested facet.  For example, in the phi :: design, use 

boot-p to estimate ( )phiSE ::  

Rule 6a:  For SE(δ) when the data are normal or polytomous, use the one-

dimensional bootstrap procedure for the objects-of-measurement facet, typically boot-p. 

Rule 6b:  For SE(δ) when the data are dichotomous, use boot-p,i for the ip×  

design, and use boot-p,h for the hip ××  and ( )hip :×  designs. 

Rule 7:  For SE(Δ), use a combination of bootstrap procedures, such that the 

optimal bootstrap procedure suggested by the rules above is selected for each standard 

error component entering into the equation for estimating SE(Δ). 

Confidence Interval Coverage 

This study also investigated three types of confidence interval coverage:  standard 

normal, percentile, and bias corrected percentile.  The results of this study provided 

support for the use of confidence intervals as additional evidence of the variability of 

estimated variance components and relative and absolute error variances.  However, for 

those variance components involving facets with small sample sizes, the confidence 

interval coverage tended to be inaccurate.  Researchers who use confidence intervals in 

this context would want to keep in mind that as sample size decreases, the error 

associated with estimated variance components increases. 

One of the goals of this dissertation was to investigate whether one of the three 

different types of confidence intervals would be preferable to the other two in terms of its 

utility in describing the variability of estimated variance components and relative and 

absolute error variances.  It was found that for the most part, the three confidence 

intervals were comparable.  However, the bias corrected percentile confidence interval 

coverage for some of the conditions were substantially lower than the other two types of 

confidence intervals, casting some doubt on the adequacy of the bias corrected percentile 
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confidence intervals for use in this context.  Additionally, because in many cases the data 

were not normally distributed, the standard normal confidence intervals were also 

suspect; therefore, the percentile confidence intervals were chosen as the preferable 

confidence intervals for use in this context. 

Hypothetical Example of Use of Standard Error Estimates 

It is important to have information regarding the accuracy of estimates of variance 

components.  Therefore, this section presents a hypothetical example illustrating the use 

of standard error estimates, as well as showing some of the possible consequences 

resulting from not taking the standard errors into account. 

This example is based on the results found for the hip ××  design, Variance 

Component Structure B, Sample Size Pattern 2, with polytomous data.  For this example, 

consider the following scenario:  researchers are developing an exam consisting of 

constructed-response questions, and are interested in determining the optimal numbers of 

items and raters that should be used to obtain a generalizability coefficient of at least 

0.80.  A generalizability coefficient ( 2ρΕ ) is similar to a reliability coefficient in 

Classical Test Theory, and can be calculated from the following equation: 

( )
( ) ( )δσσ
σρ 22

2
2

+
=Ε

p
p   (5.1) 

To accomplish their goal, the researchers created an exam consisting of 10 constructed-

response questions, and it was administered to 100 students.  Each question was rated by 

three raters. 

The results presented in Appendix F, Table F6 can be used to create a D study to 

answer the researchers’ question.  This D study would be for the HIp ×× design, where 

items and raters are averaged across numbers of conditions specified by the researchers.  

By varying the number of items and raters that enter into the equation to estimate the 

relative error variance (Equation A.152 in Appendix A, Table A28), hypothetical 
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2ρΕ estimates can be calculated to determine the optimal number of items and raters to 

use to obtain the desired reliability.  Table 12 contains the results of this hypothetical D 

study. 

Table 12. Generalizability Coefficients for Hypothetical D Study 

 Number of Raters 

Number of Items 2 3 4 5 

10 0.72 0.79 0.82 0.84 
15 0.75 0.81 0.84 0.87 
20 0.76 0.82 0.85 0.88 
25 0.77 0.83 0.86 0.88 
30 0.77 0.83 0.87 0.89 

 

 

As can be seen in Table 12, the researchers could decide to use 15 items and 3 

raters for their test to obtain a reliability estimate of at least 0.80.  However, these results 

are estimates, and do not take into account the error associated with the estimates.  Table 

G6 in Appendix G contains the estimated standard errors for this hypothetical example.  

If the standard errors are taken into account by creating intervals, in this case by taking 

the estimate plus or minus 1.645 standard errors, the upper and lower bounds can be used 

to estimate reasonable ranges (analogous to 90% confidence bands) for the 

generalizability coefficients produced by the D study.  Table 13 contains the resulting 

ranges of generalizability coefficients produced when the standard error is taken into 

account. 

As can be seen in Table 13, if the standard errors are taken into account, the 

researchers might conclude that if they chose 15 items and three raters for their test 

instrument, there is a possibility that the resulting reliability may only be 0.78.  They 
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might decide that it would be preferable to use 25 items and three raters, or 15 items and 

four raters, depending on the cost of increasing items and raters, respectively, to increase 

their confidence that the resulting reliability is at least as high as 0.80.  The results 

presented in Table 13 provide more information regarding the variability of the estimated 

generalizability coefficients, and therefore should lead the researchers to make more 

informed decisions about their test instrument. 

Table 13. Generalizability Coefficient Ranges for Hypothetical D Study 

 Number of Raters 

Number of Items 2 3 4 5 

10 0.68 - 0.74 0.75 - 0.80 0.79 - 0.84 0.81 - 0.86 
15 0.71 - 0.76 0.78 - 0.82 0.82 - 0.86 0.84 - 0.88 
20 0.73 - 0.78 0.79 - 0.83 0.83 - 0.87 0.85 - 0.89 
25 0.74 - 0.78 0.80 - 0.84 0.84 - 0.87 0.86 - 0.89 
30 0.74 - 0.79 0.81 - 0.84 0.85 - 0.88 0.87 - 0.90 

 

Limitations and Future Research 

One limitation of this study is that only certain G theory designs, variance 

component structures, and sample size patterns were considered.  It does, however, 

provide a more comprehensive set of results when partnered with the previous research 

that has been done on this topic, because it is an extension of Tong and Brennan (2007), 

using different variance component structures and sample size patterns than those used in 

their study.  Additionally, the methods used to estimate standard errors in this study are 

not exhaustive.  Obviously, other procedures may yield different results. 

The reliance on simulated data is another limitation of this study.  Simulated data 

are by definition contrived, and the extent to which the results will apply in a situation 

where data are collected from actual examinees administered actual test items is 
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unknown.  Real data can have unpredictable properties sometimes.  Further research 

should be done using empirical data.  Further research should also investigate bias 

corrected and accelerated confidence intervals, which were beyond the scope of this 

study due to the complexity of calculating them and the large number of replications and 

bootstrap samples within replications. 

The methods that were used to generate the simulated data are also potential 

limitations of this study.  Dichotomous data were generated by dichotomizing data with 

normally distributed score effects.  It is probably not realistic to assume that the 

underlying distributions of the score effects of dichotomous data are normal.  

Additionally, the method used to generate polytomous data produced data that are not 

strictly polytomous; meaning that the simulated data do not consist of finite integers, but 

are non-normal data with a finite range.  Therefore, the nature of the simulated data is a 

potential shortcoming of this study. 

Other ways of obtaining simulated dichotomous and polytomous data would be 

worthwhile to investigate as well to make sure that the results are not dependent on how 

the data were derived.  Because of how the dichotomous data were derived (i.e., 

dichotomizing normal data), it is unclear the extent to which they represent empirical 

dichotomous data.  It may or may not be a reasonable assumption that dichotomous data 

has an underlying normal distribution.  However, it should be noted that the dichotomous 

data in this study were generated in a different fashion than the dichotomous data 

generated in Brennan, Harris, and Hanson’s (1987) study, and both studies found similar 

results with respect to which bootstrap procedures produced the optimal standard error 

estimates. 

Another limitation is that this study was confined to univariate G theory.  It is not 

certain whether these results would also apply to multivariate G theory.  Multivariate G 

theory is more complex than univariate G theory because each object of measurement has 

more than one universe score (the universe score is the expected value of a person’s 
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mean score for every combination of measurement procedures).  For example, consider a 

student who takes a battery of tests.  Instead of having a single universe score, the student 

has a profile of universe scores (e.g., scores for math, English, and science), and there are 

covariances between the various pairs of universe scores, which makes the issue much 

more complicated (Brennan, 2001).  However, it is important to establish procedures that 

work well for univariate G theory, because if they do not work well for univariate G 

theory, it is unlikely that they will be adequate for more complicated multivariate G 

theory designs. 

Further research should be done with respect to nesting within G theory designs.  

In this study, although a variety of sample sizes were utilized, there were no cases in 

which np < ni in the pi : design or np < ni or np < nh in the phi :: design.  It may be that 

when the sample size of the nested facet is larger than the sample size of the non-nested 

facet(s), the bootstrap procedure corresponding to the nested facet may be preferable to 

the bootstrap procedure in which the non-nested facet is resampled.   

A further limitation of this study is that it focused solely on bootstrap resampling 

rather than also exploring jackknife resampling.  The jackknife involves systematically 

deleting one observation from a dataset and estimating the variance components for each 

resulting subset of the data, or jackknife sample.  The standard deviations of the 

estimated variance components across jackknife samples are the estimated standard errors 

of the estimated variance components.  Brennan (2001) and Feng (2002) have suggested 

reasons to prefer the jackknife over the bootstrap, including unbiased estimates of 

variance components.  However, the amount of computation required for jackknife 

resampling makes it an impractical approach in this context, whereas the bootstrap 

approach is not ideal but is more practical.  It would be a worthwhile endeavor for future 

research to investigate the utility of delete-d jackknife procedures for estimating standard 

errors of estimated variance components.  Delete-d jackknife procedures involve 

systematically deleting n observations rather than a single observation at a time, resulting 
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in fewer calculations required.  However, there are not equations worked out yet for using 

this approach in a generalizability theory context, so further research needs to be done on 

this topic. 

It might also be worthwhile to investigate whether parametric bootstrap 

procedures would provide adequate estimates of variance components and their estimated 

standard errors.  However, parametric bootstrap procedures require assumptions about the 

distributions of the score effects, which is why the bootstrap procedures have been 

proposed in the first place, because these distributions are often unknown.  For 

parametric bootstrap procedures, the researcher must assign an assumed distribution for 

each of the score effects, then sample from those distributions.  If the data are changed to 

make them dichotomous or polytomous, the sampling is destroyed, so it is unclear as to 

what the best way to do this would be.   

This study included coverage for three types of confidence intervals, standard 

normal, percentile, and bias corrected percentile.  However, because of the nature of the 

distributions of variance components, none of these three types of confidence intervals 

may be very accurate.  A possible better alternative may be bias corrected and accelerated 

confidence intervals, which are very complicated; and due to the large amount of 

computation required, were beyond the scope of this study.  Further research, however, 

might investigate the performance of these confidence intervals, perhaps in empirical 

rather than simulated data. 

Implications 

As stated in Chapter 1 of this dissertation, oftentimes the data that are analyzed 

via G studies and D studies may violate the assumption of normality of score effects, 

meaning that the estimated standard errors may be inaccurate.  This dissertation 

attempted to further explore the utility of using bootstrap procedures to more accurately 

estimate standard errors of estimated variance components and relative and absolute error 
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variances.  It is important that researchers are aware of the variability associated with 

results of their studies, so that the conclusions they draw from their research are 

appropriate. 

Several articles that were cited in Chapter 2 of this dissertation presented 

estimated standard errors which were based on GENOVA output or Searle’s (1971) or 

Brennan’s (2001) equations, which assume multivariate normality.  When data are not 

normally distributed, as was the case for at least some of these articles, the reported 

standard errors are likely to be inaccurate.  Therefore, the authors should not have 

confidence in them, and decisions based on them are suspect.  The authors of these 

studies need to be cautious when making statements about, for example, the number of 

items needed to obtain a certain level of reliability, because the reliability coefficients 

obtained from a D study are estimates. 

The results of this study, when partnered with previous studies using bootstrap 

procedures to estimate standard errors, suggest that the bootstrap approach may hold 

promise in providing more accurate standard error estimates.  However, more research is 

needed before definitive statements can be made regarding the optimal procedures for 

estimating the standard errors.  A long term goal of this line of research is to establish 

these rules more firmly, and ultimately create software so that researchers have better 

tools with which to conduct G studies and D studies. 
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APPENDIX A:  EQUATIONS 

Table A1. Linear Models of Observed Scores for the G 
Theory Designs in This Study 

Design Linear model of observed scores X  

ip×  Xpi = μ + νp + νi + ν (A.1) pi 

hip ××  Xpih = μ + νp + νi + νh + νpi + νph + νih + ν (A.2) pih 
pi :  Xi:p = μ + νp + ν (A.3) i:p 

phi ::  Xi:h:p = μ + νp + νh:p + ν (A.4) i:h:p 
( )hip :×  Xpi:h = μ + νp + νh + νph + νi:h + ν (A.5) pi:h 

Table A2. Score Effects for the ip×  Design 

Effect (α) Score effect ν  α 

p μp (A.6)  – μ 
i μi (A.7)  – μ 
pi Xpi – μp – μi (A.8)  + μ 

Table A3. Score Effects for the hip ××  Design 

Effect (α) Score effect ν  α 

p μp (A.9)  – μ 
i μi (A.10)  – μ 
h μh (A.11)  – μ 
pi μpi – μp – μi (A.12)  + μ 
ph μph – μp – μh (A.13)  + μ 
ih μih – μi – μh (A.14)  + μ 
pih Xpih – μpi – μph – μih + μp + μi + μh (A.15)  – μ 
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Table A4. Score Effects for the pi : Design 

Effect (α) Score effect ν  α 

p μp (A.16)  – μ 
pi :  Xpi – μ (A.17) p 

Table A5. Score Effects for the phi :: Design 

Effect (α) Score effect ν  α 

p μp (A.18)  – μ 
ph :  μph – μ (A.19) p 

phi ::  Xpih – μ (A.20) ph 

Table A6. Score Effects for the ( )hip :×  Design 

Effect (α) Score effect ν  α 

p μp (A.21)  – μ 
h μh (A.22)  – μ 
ph μph – μp – μh (A.23)  + μ 
i:h μih – μ (A.24) h 
pi:h Xpih – μph – μih + μ (A.25) h 

Table A7. Variance of Observed Scores Decomposed into Variance 
Components 

Design Decomposition of observed score into variance components  

ip×  σ2(Xpi) = σ2(p) + σ2(i) + σ2 (A.26) (pi) 

hip ××  σ2(Xpih) = σ2(p) + σ2(i) + σ2(h) + σ2(pi) + σ2(ph) + σ2(ih) + σ2 (A.27) (pih) 
pi :  σ2(Xi:p) = σ2(p) + σ2 (A.28) (i:p) 

phi ::  σ2(Xi:h:p) = σ2(p) + σ2(h:p) + σ2 (A.29) (i:h:p) 
( )hip :×  σ2(Xpi:h) = σ2(p) + σ2(h) + σ2(ph) + σ2(i:h) + σ2 (A.30) (pi:h) 
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Table A8. Definitions of Variance Components for the ip×  Design 

Effect 
(α) 

Variance component definitions ( )ασ 2   

p ( ) ( )22
pppp

νµµ Ε=−Ε  (A.31) 

i ( ) ( )22
iiii

νµµ Ε=−Ε  (A.32) 

pi ( ) ( )22
piipippiip

νµµµµ ΕΕ=+−−ΕΕ  (A.33) 

Table A9. Definitions of Variance Components for the hip ××  Design 

Effect 
(α) 

Variance component definitions ( )ασ 2   

p ( ) ( )22
pppp

νµµ Ε=−Ε  (A.34) 

i ( ) ( )22
iiii

νµµ Ε=−Ε  (A.35) 

h ( ) ( )22
hhhh

νµµ Ε=−Ε  (A.36) 

pi ( ) ( )22
piipippiip

νµµµµ ΕΕ=+−−ΕΕ  (A.37) 

ph ( ) ( )22
phhphpphhp

νµµµµ ΕΕ=+−−ΕΕ  (A.38) 

ih ( ) ( )22
ihhihiihhi

νµµµµ ΕΕ=+−−ΕΕ  (A.39) 

pih ( ) ( )22
pihhiphipihphpipihhip

X νµµµµµµµ ΕΕΕ=−+++−−−ΕΕΕ  (A.40) 
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Table A10. Definitions of Variance Components for the pi : Design 

Effect 
(α) 

Variance component definitions ( )ασ 2   

p ( ) ( )22
pppp

νµµ Ε=−Ε  (A.41) 

pi :  ( ) ( )2
:

2
piippii

X νµ Ε=−Ε  (A.42) 

Table A11. Definitions of Variance Components for the phi :: Design 

Effect 
(α) 

Variance component definitions ( )ασ 2   

p ( ) ( )22
pppp

νµµ Ε=−Ε  (A.43) 

ph :  ( ) ( )2
:

2
phipphi

νµµ Ε=−Ε  (A.44) 

phi ::  ( ) ( )2
::

2
phiiphpihi

X νµ Ε=−Ε  (A.45) 

Table A12. Definitions of Variance Components for the ( )hip :×  Design 

Effect 
(α) 

Variance component definitions ( )ασ 2   

p ( ) ( )22
pppp

νµµ Ε=−Ε  (A.46) 

h ( ) ( )22
hhhh

νµµ Ε=−Ε  (A.47) 

ph ( ) ( )22
phhphpphhp

νµµµµ ΕΕ=+−−ΕΕ  (A.48) 

i:h ( ) ( )2
:

2
hihihihhi

νµµ ΕΕ=−ΕΕ  (A.49) 

pi:h ( ) ( )2
:

2
hpihiphihphpihhip

X νµµµ ΕΕΕ=+−−ΕΕΕ  (A.50) 
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Table A13. Estimators of Variance Components for 
the ip×  Design 

Effect (α) Estimator of variance component σ2  (α) 

p [MS(p) - MS(pi)] / n (A.51) i 
i [MS(i) - MS(pi)] / n (A.52) p 
pi MS(pi) (A.53) 

Table A14. Estimators of Variance Components for 
the hip ××  Design 

Effect (α) Estimator of variance component σ2  (α) 

p [MS(p) - MS(pi) - MS(ph) + MS(pih)] / nin (A.54) h 

i [MS(i) - MS(pi) - MS(ih) + MS(pih)] / npn (A.55) h 
h [MS(h) - MS(ph) - MS(ih) + MS(pih)] / npn (A.56) i 
pi [MS(pi) - MS(pih)] / n (A.57) h 
ph [MS(ph) - MS(pih)] / n (A.58) i 
ih [MS(ih) - MS(pih)] / n (A.59) p 
pih MS(pih) (A.60) 

Table A15. Estimators of Variance Components for 
the pi : Design 

Effect (α) Estimator of variance component σ2  (α) 

p [MS(p) - MS(i:p)] / n (A.61) i 
i:p MS(i:p) (A.62) 

Table A16. Estimators of Variance Components for 
the phi :: Design 

Effect (α) Estimator of variance component σ2  (α) 

p [MS(p) - MS(h:p)] / nin (A.63) h 
h:p [MS(h:p) - MS(i:h:p)] / n (A.64) i 
i:h:p MS(i:h:p) (A.65) 
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Table A17. Estimators of Variance Components for 
the ( )hip :×  Design 

Effect 
(α) 

Estimator of variance component σ2  (α) 

p [MS(p) - MS(ph)] / nin (A.66) h 

h [MS(h) - MS(i:h) - MS(ph) + MS(pi:h)] / npn (A.67) i 

ph [MS(ph) - MS(pi:h)] / n (A.68) i 

i:h [MS(i:h) - MS(pi:h)] / n (A.69) p 

pi:h MS(pi:h) (A.70) 

Table A18. T Terms, Sums of Squares, and Degrees of Freedom for the ip×  
Design 

Effect α T terms T(α) Sums of squares SS(α) Degrees of freedom 
df (α) 

 

p ∑ 2
pi Xn  T(p) - T(μ) np (A.71-73)  - 1 

i ∑ 2
ip Xn  T(i) - T(μ) ni (A.74-76)  - 1 

pi ∑∑ 2
piX  T(pi) - T(p) - T(i) + T(μ) (np - 1)(ni (A.77-79)  - 1) 

Table A19. T Terms, Sums of Squares, and Degrees of Freedom for 
the hip ××  Design 

Effect α T terms T(α) Sums of squares SS(α) Degrees of freedom 
df (α) 

 

p ∑ 2
phi Xnn  T(p) - T(μ) np (A.80-82)  - 1 

i ∑ 2
ihp Xnn  T(i) - T(μ) ni (A.83-85)  - 1 

h ∑ 2
hip Xnn  T(h) - T(μ) nh (A.86-88)  - 1 

pi ∑∑ 2
pih Xn  T(pi) - T(p) - T(i) + T(μ) (np - 1)(ni (A.89-91)  - 1) 

ph ∑∑ 2
phi Xn  T(ph) - T(p) - T(h) + T(μ) (np - 1)(nh (A.92-94)  - 1) 

ih ∑∑ 2
ihp Xn  T(ih) - T(i) - T(h) + T(μ) (ni - 1)(nh (A.95-97)  - 1) 

pih ∑∑∑ 2
pihX  T(pih) - T(pi) - T(ph) - T(ih) 

+ T(p) + T(i) + T(h) - T(μ) 
(np - 1)(ni - 1)(nh (A.98-100)  - 1) 
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Table A20. T Terms, Sums of Squares, and Degrees of Freedom for the 
pi : Design 

Effect α T terms T(α) Sums of squares SS(α) Degrees of freedom 
df (α) 

 

p ∑ 2
pi Xn  T(p) - T(μ) np (A.101-103)  – 1 

i:p ∑∑ 2
piX  T(i:p) - T(p) np (ni (A.104-106)  - 1) 

Table A21. T Terms, Sums of Squares, and Degrees of Freedom for the 
phi :: Design 

Effect α T terms T(α) Sums of squares SS(α) Degrees of freedom 
df (α) 

 

p ∑ 2
phi Xnn  T(p) - T(μ) np (A.107-109)  - 1 

h:p ∑∑ 2
:phi Xn  T(h:p) - T(p) np(nh (A.110-112)  - 1) 

i:h:p ∑∑∑ 2
pihX  T(i:h:p) - T(h:p) npnh(ni (A.113-115)  - 1) 

Table A22. T Terms, Sums of Squares, and Degrees of Freedom for 
the ( )hip :×  Design 

Effect α T terms T(α) Sums of squares SS(α) Degrees of freedom 
df (α) 

 

p ∑ 2
phi Xnn  T(p) - T(μ) np (A.116-118)  - 1 

h ∑ 2
hip Xnn  T(h) - T(μ) nh (A.119-121)  - 1 

ph ∑∑ 2
phi Xn  T(ph) - T(p) - T(h) + T(μ) (np - 1)(nh (A.122-124)  - 1) 

i:h ∑∑ 2
:hip Xn  T(i:h) - T(h) nh(ni (A.125-127)  - 1) 

pi:h ∑∑∑ 2
pihX  T(pi:h) - T(ph) - T(i:h) + 

T(h) 
nh(np - 1)(ni (A.128-130)  - 1) 
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Table A23. Estimated Standard Errors of Estimated Variance Components 
for the ip×  Design under Normality 

Effect (α) Estimated standard error of ( )ασ 2ˆ , ( )αES ˆ   

p ( )[ ]
( )

( )[ ]
( )( ) 211

2
21

21 22

+−−
+

+− ippi nn
piMS

n
pMS

n
 

(A.131) 

i ( )[ ]
( )

( )[ ]
( )( ) 211

2
21

21 22

+−−
+

+− ipip nn
piMS

n
iMS

n
 

(A.132) 

pi ( )[ ]
( )( ) 211

2 2

+−− ip nn
piMS  = ( ) ( )( ) 211

2
+−− ip nn

piMS  
(A.133) 



  107 

Table A24. Standard Errors of Estimated Variance Components for the hip ××  
Design under Normality 

Effect (α) Estimated standard error of ( )ασ 2ˆ , ( )αES ˆ   

p 

( )[ ]
( )

( )[ ]
( )( )

( )[ ]
( )( )

( )[ ]
( )( )( ) 2111

2

211
2

211
2

21
2

1
2

222

+−−−
+

+−−
+

+−−
+

+−

hip

hpipp

hi

nnn
pihMS

nn
phMS

nn
piMS

n
pMS

nn
 

(A.134) 

i 

( )[ ]
( )

( )[ ]
( )( )

( )[ ]
( )( )

( )[ ]
( )( )( ) 2111

2

211
2

211
2

21
2

1
2

222

+−−−
+

+−−
+

+−−
+

+−

hip

hiipi

hp

nnn
pihMS

nn
ihMS

nn
piMS

n
iMS

nn
 

(A.135) 

h 

( )[ ]
( )

( )[ ]
( )( )

( )[ ]
( )( )

( )[ ]
( )( )( ) 2111

2

211
2

211
2

21
2

1
2

222

+−−−
+

+−−
+

+−−
+

+−

hip

hihph

ip

nnn
pihMS

nn
ihMS

nn
phMS

n
hMS

nn
 

(A.136) 

pi ( )[ ]
( )( )

( )[ ]
( )( )( ) 2111

2
211

21 22

+−−−
+

+−− hipiph nnn
pihMS

nn
piMS

n
 

(A.137) 

ph ( )[ ]
( )( )

( )[ ]
( )( )( ) 2111

2
211

21 22

+−−−
+

+−− hiphpi nnn
pihMS

nn
phMS

n
 

(A.138) 

ih ( )[ ]
( )( )

( )[ ]
( )( )( ) 2111

2
211

21 22

+−−−
+

+−− hiphip nnn
pihMS

nn
ihMS

n
 

(A.139) 

pih ( )[ ]
( )( )( ) 2111

2 2

+−−− hip nnn
pihMS  = ( ) ( )( )( ) 2111

2
+−−− hip nnn

pihMS  
(A.140) 
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Table A25. Estimated Standard Errors of Estimated Variance 
Components for the pi :  Design under Normality 

Effect (α) Estimated standard error of ( )ασ 2ˆ , ( )αES ˆ   

p ( )[ ]
( )

( )[ ]
( ) 21

:2
21

21 22

+−
+

+− ippi nn
piMS

n
pMS

n
 

(A.141) 

i:p ( )[ ]
( ) 21

:2 2

+−ip nn
piMS  = ( ) ( ) 21

2:
+−ip nn

piMS  
(A.142) 

Table A26. Estimated Standard Errors of Estimated Variance Components 
for the phi :: Design under Normality 

Effect (α) Estimated standard error of ( )ασ 2ˆ , ( )αES ˆ   

p ( )[ ]
( )

( )[ ]
( ) 21

:2
21

21 22

+−
+

+− hpphi nn
phMS

n
pMS

nn
 

(A.143) 

h:p ( )[ ]
( )

( )[ ]
( ) 21

::2
21

:21 22

+−
+

+− ihphpi nnn
phiMS

nn
phMS

n
 

(A.144) 

i:h:p ( )[ ]
( ) 21

::2 2

+−ihp nnn
phiMS  = ( ) ( ) 21

2::
+−ihp nnn

phiMS  
(A.145) 
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Table A27. Estimated Standard Errors of Estimated Variance Components 
for the ( )hip :×  Design under Normality 

Effect (α) Estimated standard error of ( )ασ 2ˆ , ( )αES ˆ   

p ( )[ ]
( )

( )[ ]
( )( ) 211

2
21

21 22

+−−
+

+− hpphi nn
phMS

n
pMS

nn
 

(A.146) 

h 

( )[ ]
( )

( )[ ]
( )( )

( )[ ]
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( )[ ]
( )( ) 211

:2

21
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211
2

21
2

1
2

222

+−−

+
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+
+−−

+
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ihhph

ip

nnn
hpiMS

nn
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nn
phMS

n
hMS
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(A.147) 

ph ( )[ ]
( )( )

( )[ ]
( )( ) 211

:2
211

21 22

+−−
+

+−− iphhpi nnn
hpiMS

nn
phMS

n
 

(A.148) 

i:h ( )[ ]
( )

( )[ ]
( )( ) 211

:2
21

:21 22

+−−
+

+− iphihp nnn
hpiMS

nn
hiMS

n
 

(A.149) 

pi:h ( )[ ]
( )( ) 211

:2 2

+−− iph nnn
hpiMS  = ( ) ( )( ) 211

2:
+−− iph nnn

hpiMS  
(A.150) 
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Table A28. Relative Error Variances 

Design Relative error variance σ2  (δ) 

ip×  ( )
in
pi2σ  

(A.151) 

hip ××  ( ) ( ) ( )
hihi nn

pih
n

ph
n

pi 222 σσσ
++  

(A.152) 

pi :  ( )
in

pi :2σ  
(A.153) 

phi ::  ( ) ( )
hih nn

phi
n

ph ::: 22 σσ
+  

(A.154) 

( )hip :×  ( ) ( )
hih nn

hpi
n

ph :22 σσ
+  

(A.155) 

Table A29. Absolute Error Variances 

Design Absolute error variance σ2  (Δ) 

ip×  ( ) ( )
in
i2

2 σδσ +  
(A.156) 

hip ××  ( ) ( ) ( ) ( )
hihi nn
ih

n
h

n
i 222

2 σσσδσ +++  
(A.157) 

pi :  ( )δσ 2  (A.158) 

phi ::  ( )δσ 2  (A.159) 

( )hip :×  ( ) ( ) ( )
hih nn
hi

n
h :22

2 σσδσ ++  
(A.160) 
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Table A30. Standard Errors of Relative Error Variances 

Design Standard error of relative error variance ( )δSE   

ip×  ( )[ ]
( )( )11
21 2

−−
Ε

ipi nn
piMS

n
 

(A.161) 

hip ××  ( )[ ]
( )( )

( )[ ]
( )( )

( )[ ]
( )( )( )111

2
11

2
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21 222

−−−
Ε

+
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Ε
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Ε

hiphpiphi nnn
pihMS

nn
phMS

nn
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nn
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pi :  ( )[ ]
( )1

:21 2

−
Ε

ipi nn
piMS

n
 

(A.163) 

phi ::  ( )[ ]
( )1

:21 2

−
Ε

hphi nn
phMS

nn
 

(A.164) 

( )hip :×  ( )[ ]
( )( )11
21 2

−−
Ε

hphi nn
phMS

nn
 

(A.165) 
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Table A31. Standard Errors of Absolute Error Variances 

Design Standard error of absolute error variance ( )∆SE   

ip×  ( )[ ]
( )

( ) ( )[ ]
( )( )11

12
1

21
22

−−

Ε−
+

−
Ε

ip

p

iip nn
piMSn

n
iMS

nn
 

(A.166) 
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+
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(A.167) 
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( )1
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ipi nn
piMS
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(A.168) 
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−
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phMS

nn
 

(A.169) 

( )hip :×  ( )[ ]
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1

21
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Ε−
+

−
Ε

hp

p

hhip nn
phMSn
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(A.170) 
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Table A32. Estimated Bootstrap Standard Errors of Estimated Absolute Error 
Variances Based on Tong and Brennan’s (2007) Proposed 
Workaround 

Design Estimated bootstrap standard error of estimated absolute error variance 
( )∆ES ˆ  

 

ip×  ( ) ( )
2

2
2 |ˆ

|ˆ
in

iiESpES +δ  
(A.171) 

hip ××  ( ) ( ) ( ) ( )
22

2

2

2

2

2
2 *|ˆ|ˆ|ˆ

|ˆ
hihi nn

iihES
n

hhES
n

iiESpES +++δ  
(A.172) 

pi :  ( )pES |ˆ 2 δ  (A.173) 

phi ::  ( )pES |ˆ 2 δ  (A.174) 

( )hip :×  ( ) ( ) ( )
22

2

2

2
2 |:ˆ|ˆ

|ˆ
hih nn

ihiES
n

hhESpES ++δ  
(A.175) 

*Use boot-i to estimate SE2(ih) assuming ni ≥ nh.  If ni < nh, then boot-h would be used. 
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APPENDIX B:  PREVIOUS STUDIES OF BOOTSTRAP ESTIMATED 
STANDARD ERRORS OF ESTIMATED VARIANCE COMPONENTS 

Table B1. Details of Previous Studies of Bootstrap Estimated Standard Errors of 
Estimated Variance Components 

Study Brennan, 
Harris, & 
Hanson 
(1987) 
(normal) 

Brennan, 
Harris, & 
Hanson (1987) 
(dichotomous) 

Luecht & 
Smith 
(1989) 

Othman 
(1995) 

Othman 
(1995) 

G theory 
designs 

ip×  ip×  ip×  ip×  ip×  

Sample size 
patterns 

200 × 20 200 × 20  
(from pop. of  
2000 × 200) 

20 × 20, 
150 × 20, 
20 × 150, 
150 × 150 

30 × 5,  
30 × 20,  
600 × 5,  
600 × 20 

30 × 5,  
30 × 20,  
600 × 5,  
600 × 20 

Variance 
component 
structures 

σ2

σ
(p) = 4, 

2

σ
(i) = 16, 

2

σ

(pi) = 64 

2

σ
(p) = .0068, 

2

σ
(i) = .0346, 

2

σ

(pi) = .1902 

2

σ
(p) = .25, 

2

σ
(i) = .25, 

2

σ

(pi) = .5 

2

σ
(p) = 0.2, 

2

σ
(i) = 0.1, 

2

(see Table 
B2) 

(pi) = 0.7 

Standard error 
estimation 
methods 

jackknife, 
bootstrap  
(boot-p,  
boot-i,  
boot-p,i,  
boot-p,i,r), 
traditional 
 

jackknife, 
bootstrap  
(boot-p,  
boot-i,  
boot-p,i,  
boot-p,i,r), 
traditional 
 

boot-p, 
boot-p,i 

boot-p,  
boot-i,  
boot-p,i, 
traditional 

boot-p,  
boot-i,  
boot-p,i, 
traditional 

Data types normal dichotomous normal normal, 
skewed 

dichotomous 

Estimates point 
estimates, 
SE’s, & CI’s 

point 
estimates, 
SE’s, & CI’s 

point 
estimates, 
SE’s, & 
CI’s 

point 
estimates, 
SE’s, & CI’s 

point 
estimates, 
SE’s, & CI’s 

Number of 
datasets 
(replications) 

1 100; 2000 to 
get 
“parameters” 

476 1000 1000 

Number of 
bootstrap 
samples 

1000 100 200 500 500 
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Table B1. Continued 

Study Wiley 
(2001) 

Tong & 
Brennan 
(2007) 

G theory 
designs 

ip×  hip ×× , 
( )hip :×  

Sample size 
patterns 

30 × 5,  
30 × 20,  
600 × 5,  
600 × 20 

100 × 20 ×2 
100 × 20 ×4 

Variance 
component 
structures 

σ2

σ
(p) = 0.2, 

2

σ
(i) = 0.1, 

2

(see Tables 
B3 and B4) 

(pi) = 0.7 

Standard error 
estimation 
methods 

basic 
bootstrap, 
percentile 
bootstrap, 
BC 
bootstrap, 
traditional 

bootstrap (see 
note below*) 

Data types normal, 
polytomous 

normal, 
dichotomous, 
polytomous 

Estimates point 
estimates, 
SE’s, & 
CI’s 

point 
estimates & 
SE’s 

Number of 
datasets 
(replications) 

1000 1000; 5000 to 
get 
“parameters” 

Number of 
bootstrap 
samples 

1000 1000 

* For the hip ××  design: boot-p, boot-i 
boot-h, boot-p,i, boot-p,h, boot-i,h, boot-
p,i,h. For the ( )hip :×  design:  boot-p, 
boot-h, boot-p,h, boot-i,h, boot-p,i,h.
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Table B2. Othman (1995) Variance 
Component Structures for 
Dichotomous Data 

 Variance components 

Sample sizes p i pi 

30 × 5 0.05 0.0083 0.25 
30 × 20 0.0125 0.0083 0.25 
600 × 5 0.02 0.0004 0.25 
600 × 20 0.0125 0.0004 0.25 

Table B3. Tong and Brennan’s (2007) Variance Component Structures for the 
hip ××  Design 

 Variance components 

Data types p i h pi ph ih pih 

Normal 16 4 1 64 2 3 144 
Dichotomous 0.0109 0.0028 0.0007 0.0449 0.0014 0.0021 0.1837 
Polytomous 0.3241 0.127 0.012 0.393 0.014 0.0025 0.317 

Table B4. Tong and Brennan’s (2007) Variance Component 
Structures for the ( )hip :×  Design 

 Variance components 

Data types p h i:h ph pi:h 

Normal 16 1 7 2 208 
Dichotomous 0.0108 0.0006 0.0048 0.0014 0.2323 
Polytomous 0.2046 0.1324 0.4093 0.0651 1.1655 
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APPENDIX C:  BRENNAN’S (2007) BIAS CORRECTIONS FOR 
BOOTSTRAP ESTIMATED VARIANCE COMPONENTS 

In the following tables, where λ refers to the facet(s) being bootstrapped, and λj is 

any of the facets in λ, 

 
j

j

j n

n
s

λ

λ
λ

12 −
=  and 

j

j

j n

n
t

λ

λ
λ

1−
=   (C.1-2) 

Table C1. Bias-Corrected Variance Component Estimates for the ip×  Design, 
Boot-p 

α ( )ασ 2ˆ   

p ( )
pt

pp |ˆ 2σ  

(C.3) 

i ( ) ( )
1
|ˆ

|ˆ
2

2

−
−

pn
ppipi σσ  

(C.4) 

pi ( )
pt

ppi |ˆ 2σ  

(C.5) 

Table C2. Bias-Corrected Variance Component Estimates for the ip×  Design, 
Boot-i 

α ( )ασ 2ˆ   

p ( ) ( )
1
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2
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−
−

in
ipiip σσ  
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i ( )
it

ii |ˆ 2σ  

(C.7) 

pi ( )
it

ipi |ˆ 2σ  
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Table C3. Bias-Corrected Variance Component Estimates for the ip×  Design, 
Boot-p,i 

α ( )ασ 2ˆ   

p ( ) ( )





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
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−
1

,|ˆ
,|ˆ1 2
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,|ˆ1 2
2

pi n
ippiipi

t
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ippi ,|ˆ 2σ  

(C.11) 
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Table C4. Bias-Corrected Variance Component Estimates for the hip ××  
Design, Boot-p 

α ( )ασ 2ˆ   

p ( )
pt
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Table C5. Bias-Corrected Variance Component Estimates for the hip ××  
Design, Boot-i 

α ( )ασ 2ˆ   

p ( ) ( )
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Table C6. Bias-Corrected Variance Component Estimates for the hip ××  
Design, Boot-h 

α ( )ασ 2ˆ   

p ( ) ( )
1
|ˆ

|ˆ
2

2

−
−

hn
hphhp σσ  

(C.26) 

i ( ) ( )
1
|ˆ

|ˆ
2

2

−
−

hn
hihhi σσ  

(C.27) 

h ( )
ht

hh |ˆ 2σ  

(C.28) 

pi ( ) ( )
1
|ˆ

|ˆ
2

2

−
−

hn
hpihhpi σσ  

(C.29) 

ph ( )
ht

hph |ˆ 2σ  

(C.30) 

ih ( )
ht

hih |ˆ 2σ  

(C.31) 

pih ( )
ht

hpih |ˆ 2σ  

(C.32) 
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Table C7. Bias-Corrected Variance Component Estimates for the hip ××  
Design, Boot-p,i 

α ( )ασ 2ˆ   

p ( ) ( )








−

−
1

,|ˆ
,|ˆ1 2

2

ip n
ippiipp

t
σσ  

(C.33) 

i ( ) ( )












−
−

1
,|ˆ

,|ˆ1 2
2

pi n
ippiipi

t
σσ  

(C.34) 

h ( ) ( ) ( ) ( )
( )( )11

,|ˆ
1

,|ˆ
1

,|ˆ
,|ˆ

222
2

−−
+

−
−

−
−

ipip nn
ippih

n
ipih

n
ipphiph σσσσ  

(C.35) 

pi ( )
iptt

ippi ,|ˆ 2σ  

(C.36) 

ph ( ) ( )








−

−
1

,|ˆ
,|ˆ1 2

2

ip n
ippihipph

t
σσ  

(C.37) 

ih ( ) ( )












−
−

1
,|ˆ

,|ˆ1 2
2

pi n
ippihipih

t
σσ  

(C.38) 

pih ( )
iptt

ippih ,|ˆ 2σ  

(C.39) 
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Table C8. Bias-Corrected Variance Component Estimates for the hip ××  
Design, Boot-p,h 

α ( )ασ 2ˆ   

p ( ) ( )








−

−
1

,|ˆ
,|ˆ1 2

2

hp n
hpphhpp

t
σσ  

(C.40) 

i ( ) ( ) ( ) ( )
( )( )11

,|ˆ
1
,|ˆ

1
,|ˆ

,|ˆ
222

2

−−
+

−
−

−
−

hphp nn
hppih

n
hpih

n
hppihpi σσσσ  

(C.41) 

h ( ) ( )












−
−

1
,|ˆ

,|ˆ1 2
2

ph n
hpphhph

t
σσ  

(C.42) 

pi ( ) ( )








−

−
1

,|ˆ
,|ˆ1 2

2

hp n
hppihhppi

t
σσ  

(C.43) 

ph ( )
hptt

hpph ,|ˆ 2σ  

(C.44) 

ih ( ) ( )












−
−

1
,|ˆ

,|ˆ1 2
2

ph n
hppihhpih

t
σσ  

(C.45) 

pih ( )
hptt

hppih ,|ˆ 2σ  

(C.46) 
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Table C9. Bias-Corrected Variance Component Estimates for the hip ××  
Design, Boot-i,h 

α ( )ασ 2ˆ   

p ( ) ( ) ( ) ( )
( )( )11

,|ˆ
1
,|ˆ

1
,|ˆ

,|ˆ
222

2

−−
+

−
−

−
−

hihi nn
hipih

n
hiph

n
hipihip σσσσ  

(C.47) 

i ( ) ( )








−

−
1
,|ˆ

,|ˆ1 2
2

hi n
hiihhii

t
σσ  

(C.48) 

h ( ) ( )








−

−
1
,|ˆ

,|ˆ1 2
2

ih n
hiihhih

t
σσ  

(C.49) 

pi ( ) ( )








−

−
1

,|ˆ
,|ˆ1 2

2

hi n
hipihhipi

t
σσ  

(C.50) 

ph ( ) ( )








−

−
1

,|ˆ
,|ˆ1 2

2

ih n
hipihhiph

t
σσ  

(C.51) 

ih ( )
hitt

hiih ,|ˆ 2σ  

(C.52) 

pih ( )
hitt

hipih ,|ˆ 2σ  

(C.53) 
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Table C10. Bias-Corrected Variance Component Estimates for the hip ××  
Design, Boot-p,i,h 

α ( )ασ 2ˆ   

p ( ) ( ) ( ) ( )
( )( ) 






−−

+
−

−
−

−
11
,,|ˆ

1
,,|ˆ

1
,,|ˆ

,,|ˆ1 222
2

hihip nn
hippih

n
hipph

n
hippihipp

t
σσσσ  

(C.54) 

i ( ) ( ) ( ) ( )
( )( ) 












−−
+

−
−

−
−

11
,,|ˆ

1
,,|ˆ

1
,,|ˆ

,,|ˆ1 222
2

hphpi nn
hippih

n
hipih

n
hippihipi

t
σσσσ  

(C.55) 

h ( ) ( ) ( ) ( )
( )( ) 












−−
+

−
−

−
−

11
,,|ˆ

1
,,|ˆ

1
,,|ˆ

,,|ˆ1 222
2

ipiph nn
hippih

n
hipih

n
hipphhiph

t
σσσσ  

(C.56) 

pi ( ) ( )








−

−
1

,,|ˆ
,,|ˆ1 2

2

hip n
hippihhippi

tt
σσ  

(C.57) 

ph ( ) ( )








−

−
1

,,|ˆ
,,|ˆ1 2

2

ihp n
hippihhipph

tt
σσ  

(C.58) 

ih ( ) ( )












−
−

1
,,|ˆ

,,|ˆ1 2
2

phi n
hippihhipih

tt
σσ  

(C.59) 

pih ( )
hip ttt

hippih ,,|ˆ 2σ  

(C.60) 

Table C11. Bias-Corrected Variance Component Estimates for the pi : Design, 
Boot-p 

α ( )ασ 2ˆ   

p ( ) ( ) ( )










 −
−

i

p

p n
ppit

pp
t

|:ˆ1
|ˆ1 2

2 σ
σ  

(C.61) 

i:p ( )ppi |:ˆ 2σ  
(C.62) 
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Table C12. Bias-Corrected Variance Component Estimates for the pi : Design, 
Boot-i 

α ( )ασ 2ˆ   

p ( ) ( )
1

|:ˆ
|ˆ

2
2

−
−

in
ipiip σσ  

(C.63) 

i:p ( )
it

ipi |:ˆ 2σ  

(C.64) 

Table C13. Bias-Corrected Variance Component Estimates for the pi : Design, 
Boot-p,i 

α ( )ασ 2ˆ   

p ( ) ( )



















−

−
− ippi

n
tts

ipp
t i

ipi

p

,|:ˆ
1

,|ˆ1 22 σσ  

(C.65) 

i:p ( )
it

ippi ,|:ˆ 2σ  

(C.66) 

Table C14. Bias-Corrected Variance Component Estimates for the phi ::  
Design, Boot-p 

α ( )ασ 2ˆ   

p ( ) ( ) ( )


















 −
−







 −
− pphi

nn
t

pph
n

t
pp

t hi

p

h

p

p

|::ˆ
1

|:ˆ
1

|ˆ1 222 σσσ  

(C.67) 

h:p ( )pph |:ˆ 2σ  
(C.68) 

i:h:p ( )pphi |::ˆ 2σ  
(C.69) 
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Table C15. Bias-Corrected Variance Component Estimates for the phi ::  
Design, Boot-i 

α ( )ασ 2ˆ   

p ( )ip |ˆ 2σ  
(C.70) 

h:p ( ) ( )
1

|::ˆ
|:ˆ

2
2

−
−

in
iphiiph σσ  

(C.71) 

i:h:p ( )
it

iphi |::ˆ 2σ  

(C.72) 

Table C16. Bias-Corrected Variance Component Estimates for the phi ::  
Design, Boot-h 

α ( )ασ 2ˆ   

p ( ) ( ) ( )
( )1

|::ˆ
1
|:ˆ

|ˆ
22

2

−
−

−
−

hih nn
hphi

n
hphhp σσσ  

(C.73) 

h:p ( ) ( )














 −
− hphi

n
t

hph
t i

h

h

|::ˆ1
|:ˆ1 22 σσ  

(C.74) 

i:h:p ( )hphi |::ˆ 2σ  
(C.75) 
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Table C17. Bias-Corrected Variance Component Estimates for the phi ::  
Design, Boot-p,i 

α ( )ασ 2ˆ   

p 
( ) ( )

( )( )
( ) ( ) 
































−

−−
−








 −
−

ipphi
nn

ts

ipph
n

t
ipp

t

hi

pi

h

p

p ,|::ˆ
1

11

,|:ˆ
1

,|ˆ
1

2

22

σ

σσ

 

(C.76) 

h:p ( ) ( )
1

,|::ˆ
,|:ˆ

2
2

−
−

in
ipphiipph σσ  

(C.77) 

i:h:p ( )
it

ipphi ,|::ˆ 2σ  

(C.78) 

Table C18. Bias-Corrected Variance Component Estimates for the phi ::  
Design, Boot-p,h 

α ( )ασ 2ˆ   

p ( ) ( ) ( ) ( )
( ) 
















−

+
−

−−
1

,|::ˆ
1

,|:ˆ
,|ˆ1 22

2

hih
hph

p nn
hpphi

n
hpphttshpp

t
σσσ  

(C.79) 

h:p ( ) ( )














 −
− hpphi

n
t

hpph
t i

h

h

,|::ˆ1
,|:ˆ1 22 σσ  

(C.80) 

i:h:p ( )hpphi ,|::ˆ 2σ  
(C.81) 
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Table C19. Bias-Corrected Variance Component Estimates for the phi ::  
Design, Boot-i,h 

α ( )ασ 2ˆ   

p ( ) ( )
( )

( )
( )1

,|::ˆ
1

,|:ˆ
,|ˆ

22
2

−
−

−
−

hih nn
hiphi

n
hiphhip σσσ  

(C.82) 

h:p ( ) ( )















−
−

− hiphi
n

tts
hiph

t i

ihi

h

,|::ˆ
1

,|:ˆ1 22 σσ  

(C.83) 

i:h:p ( )
it

hiphi ,|::ˆ 2σ  

(C.84) 

Table C20. Bias-Corrected Variance Component Estimates for the phi ::  
Design, Boot-p,i,h 

α ( )ασ 2ˆ   

p 
( ) ( )

( ) ( ) 































−

−
−









−

−
−

hipphi
nn

tts

hipph
n

tts
hipp

t

hi

hph

h

hph

p ,,|::ˆ
1

,,|:ˆ
1

,,|ˆ
1

2

22

σ

σσ

 

(C.85) 

h:p ( ) ( )















−
−

− hipphi
n

tts
hipph

t i

ihi

h

,,|::ˆ
1

,,|:ˆ1 22 σσ  

(C.86) 

i:h:p ( )
it

hipphi ,,|::ˆ 2σ  

(C.87) 
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Table C21. Bias-Corrected Variance Component Estimates for the ( )hip :×  
Design, Boot-p 

α ( )ασ 2ˆ   

p ( )
pt

pp |ˆ 2σ  

(C.88) 

h ( ) ( )
1
|ˆ

|ˆ
2

2

−
−

pn
pphph σσ  

(C.89) 

ph ( )
pt

pph |ˆ 2σ  

(C.90) 

i:h ( ) ( )
1
|:ˆ

|:ˆ
2

2

−
−

pn
phpiphi σσ  

(C.91) 

pi:h ( )
pt

phpi |:ˆ 2σ  

(C.92) 

Table C22. Bias-Corrected Variance Component Estimates for the ( )hip :×  
Design, Boot-i 

α ( )ασ 2ˆ   

p ( )ip |ˆ 2σ  
(C.93) 

h ( ) ( )
1
|:ˆ

|ˆ
2

2

−
−

in
ihiih σσ  

(C.94) 

ph ( ) ( )
1

|:ˆ
|ˆ

2
2

−
−

in
ihpiiph σσ  

(C.95) 

i:h ( )
it

ihi |:ˆ 2σ  

(C.96) 

pi:h ( )
it

ihpi |:ˆ 2σ  

(C.97) 
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Table C23. Bias-Corrected Variance Component Estimates for the ( )hip :×  
Design, Boot-h 

α ( )ασ 2ˆ   

p ( ) ( ) ( )
( )1

|:ˆ
1
|ˆ

|ˆ
22

2

−
−

−
−

hih nn
hhpi

n
hphhp σσσ  

(C.98) 

h ( ) ( )








−

hih nn
hhihh

t
|:ˆ

|ˆ1 2
2 σσ  

(C.99) 

ph ( ) ( )








+

hih nn
hhpihph

t
|:ˆ

|ˆ1 2
2 σσ  

(C.100) 

i:h ( )hhi |:ˆ 2σ  
(C.101) 

pi:h ( )hhpi |:ˆ 2σ  
(C.102) 

Table C24. Bias-Corrected Variance Component Estimates for the ( )hip :×  
Design, Boot-p,i 

α ( )ασ 2ˆ   

p ( )ipp ,|ˆ 2σ  
(C.103) 

h ( ) ( ) ( ) ( )
( )( )11

,|:ˆ
1

,|:ˆ
1

,|ˆ
,|ˆ

222
2

−−
+

−
−

−
−

ipip nn
iphpi

n
iphi

n
ipphiph σσσσ  

(C.104) 

ph ( ) ( )
( ) 








−

−
1

,|:ˆ
,|ˆ1 2

2

ip n
iphpiipph

t
σσ  

(C.105) 

i:h ( ) ( )
( ) 












−
−

1
,|:ˆ

,|:ˆ1 2
2

pi n
iphpiiphi

t
σσ  

(C.106) 

pi:h ( )
iptt

iphpi ,|:ˆ 2σ  

(C.107) 
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Table C25. Bias-Corrected Variance Component Estimates for the ( )hip :×  
Design, Boot-p,h 

α ( )ασ 2ˆ   

p ( ) ( ) ( )
( ) 








−

−
−

−
1

,|:ˆ
1

,|ˆ
,|ˆ1 22

2

hihp nn
hphpi

n
hpphhpp

t
σσσ  

(C.108) 

h ( ) ( ) ( ) ( )
( ) 












−
−+

−
−

1
,|:ˆ,|:ˆ

1
,|ˆ

,|ˆ1 222
2

phihiph nnn
hphpi

nn
hphi

n
hpphhph

t
σσσσ  

(C.109) 

ph ( ) ( )








+

hihp nn
hphpihpph

tt
,|:ˆ

,|ˆ1 2
2 σσ  

(C.110) 

i:h ( ) ( )
1

,|:ˆ
,|:ˆ

2
2

−
−

pn
hphpihphi σσ  

(C.111) 

pi:h ( )
pt

hphpi ,|:ˆ 2σ  

(C112) 



  133 

Table C26. Bias-Corrected Variance Component Estimates for the ( )hip :×  
Design, Boot-i,h 

α ( )ασ 2ˆ   

p ( ) ( ) ( )
( )1

,|:ˆ
1
,|ˆ

,|ˆ
22

2

−
−

−
−

hih nn
hihpi

n
hiphhip σσσ  

(C.113) 

h ( ) ( )















−
−

− hihi
n

tts
hih

t i

ihi

h

,|:ˆ
1

,|ˆ1 22 σσ  

(C.114) 

ph ( ) ( )















−
−

+ hihpi
n

tts
hiph

t i

ihi

h

,|:ˆ
1

,|ˆ1 22 σσ  

(C.115) 

i:h ( )
it

hihi ,|:ˆ 2σ  

(C.116) 

pi:h ( )
it

hihpi ,|:ˆ 2σ  

(C.117) 
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Table C27. Bias-Corrected Variance Component Estimates for the ( )hip :×  
Design, Boot-p,i,h 

α ( )ασ 2ˆ   

p ( ) ( ) ( )
( ) 








−

−
−

−
1

,,|:ˆ
1

,,|ˆ
,,|ˆ1 22

2

hihp nn
hiphpi

n
hipphhipp

t
σσσ  

(C.118) 

h 
( ) ( )

( ) ( )




































−
−








−
−

−
−

−

1
,,|:ˆ

,,|:ˆ
1

1
,,|ˆ

,,|ˆ
1

2
2

2
2

pi

ihi

p

h

n
hiphpihiphi

n
tts

n
hipphhiph

t σσ

σσ

 

(C.119) 

ph ( ) ( )















−
−

− hiphpi
n

tts
hipph

tt i

ihi

hp

,,|:ˆ
1

,,|ˆ1 22 σσ  

(C.120) 

i:h ( ) ( )












−
−

1
,,|:ˆ

,,|:ˆ1 2
2

pi n
hiphpihiphi

t
σσ  

(C.121) 

pi:h ( )
iptt

hiphpi ,,|:ˆ 2σ  

(C.122) 
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APPENDIX D:  TONG AND BRENNAN’S (2007) RULES FOR 
PICKING A BOOTSTRAP PROCEDURE TO ESTIMATE STANDARD 

ERRORS FOR ESTIMATED VARIANCE COMPONENTS 

Rule 1:  For nonnested main effects, use the corresponding bootstrap procedure.  

For example, to estimate ( )[ ]pSE 2σ̂ , use boot–p. 

Rule 2:  For nested main effects (e.g., i:h in the p × (i:h) design), use the bootstrap 

procedure for the primary index (i.e., the index before the colon, following the notational 

conventions in Brennan, 2001). For example, to estimate ( )[ ]hiSE :ˆ 2σ  for the p ×(i:h) 

design, use boot–i. 

Rule 3:  For nonnested interaction effects, use the one-dimensional bootstrap 

procedure for the facet in the interaction that has the largest sample size. For example, to 

estimate ( )[ ]phSE 2σ̂ , use boot–p if np > nh or use boot–h if np < nh. 

Rule 4:  For nested interaction effects, use the one-dimensional bootstrap 

procedure for the primary facet in the interaction that has the largest sample size. For 

example, to estimate ( )[ ]hpiSE :ˆ 2σ , use boot–p if np > ni or use boot–i if np < ni. 

Rule 5:  For SE(δ),use the one-dimensional bootstrap procedure for the objects-of-

measurement facet. In this article, it is assumed that p is the objects-of-measurement 

facet. 

 

Proposed rule for SE(Δ):  Approximate SE(Δ) using a combination of bootstrap 

procedures, where the bootstrap procedure used to estimate the each of the component 

standard errors are determined by the rules above. 
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APPENDIX E:  SUMMARY OF EMPIRICAL STUDIES USING 
GENERALIZABILITY THEORY 

Table E1. Variance Component Estimates From Empirical Studies Using the ip×  
Design 

    

Proportions of 
Variance 
Explained 

Study score scale n np p i i pi 

Lane, Liu, Ankenmann, & Stone (1996) 0-4 73 9 32 10 58 
Lane, Liu, Ankenmann, & Stone (1996) 0-4 103 9 29 17 54 
Lane, Liu, Ankenmann, & Stone (1996) 0-4 106 9 21 9 70 
Lane, Liu, Ankenmann, & Stone (1996) 0-4 105 9 24 11 65 
Lane, Liu, Ankenmann, & Stone (1996) 0-4 170 9 27 12 62 
Lane, Liu, Ankenmann, & Stone (1996) 0-4 209 9 31 10 58 
Lane, Liu, Ankenmann, & Stone (1996) 0-4 234 9 20 11 69 
Lane, Liu, Ankenmann, & Stone (1996) 0-4 209 9 27 11 62 
Lane, Liu, Ankenmann, & Stone (1996) 0-4 106 9 22 13 65 
Lane, Liu, Ankenmann, & Stone (1996) 0-4 110 9 31 16 53 
Lane, Liu, Ankenmann, & Stone (1996) 0-4 117 9 20 7 73 
Lane, Liu, Ankenmann, & Stone (1996) 0-4 101 9 30 10 59 
Lane, Liu, Ankenmann, & Stone (1996) 0-4 190 9 25 14 61 
Lane, Liu, Ankenmann, & Stone (1996) 0-4 238 9 34 9 57 
Lane, Liu, Ankenmann, & Stone (1996) 0-4 214 9 27 7 67 
Lane, Liu, Ankenmann, & Stone (1996) 0-4 229 9 33 8 59 
Lane, Stone, Ankenmann, & Liu (1994) 0-4 306 9 26 10 64 
Lane, Stone, Ankenmann, & Liu (1994) 0-4 331 9 31 14 55 
Lane, Stone, Ankenmann, & Liu (1994) 0-4 329 9 21 11 68 
Lane, Stone, Ankenmann, & Liu (1994) 0-4 331 9 22 18 60 
Turner, Lozano-Nieto, & Bouffard (2003) kHz 50 20 99.6 0.1 0.4 
Turner, Lozano-Nieto, & Bouffard (2003) kHz 50 20 99.8 0.0 0.2 
Turner, Lozano-Nieto, & Bouffard (2003) kHz 50 20 99.9 0.1 0.0 
Turner, Lozano-Nieto, & Bouffard (2003) kHz 50 20 99.8 0.1 0.1 
Clauser, Harik, Margolis, McManus, 
Mollon, Chis, & Williams (2009) 

Angoff 
prob 6 200 3 40 57 
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Table E1. Continued 

    

Proportions of 
Variance 
Explained 

Study score scale n np p i i pi 

Clauser, Harik, Margolis, McManus, 
Mollon, Chis, & Williams (2009) 

Angoff 
prob 6 200 1 77 23 

Clauser, Harik, Margolis, McManus, 
Mollon, Chis, & Williams (2009) 

Angoff 
prob 6 34 1 37 61 

Clauser, Harik, Margolis, McManus, 
Mollon, Chis, & Williams (2009) 

Angoff 
prob 6 34 0 70 30 

Clauser, Harik, Margolis, McManus, 
Mollon, Chis, & Williams (2009) 

Angoff 
prob 6 34 0 80 19 

Clauser, Harik, Margolis, McManus, 
Mollon, Chis, & Williams (2009) 

Angoff 
prob 6 195 3 40 57 

Clauser, Harik, Margolis, McManus, 
Mollon, Chis, & Williams (2009) 

Angoff 
prob 6 195 2 75 24 

Clauser, Harik, Margolis, McManus, 
Mollon, Chis, & Williams (2009) 

Angoff 
prob 6 43 0 41 59 

Clauser, Harik, Margolis, McManus, 
Mollon, Chis, & Williams (2009) 

Angoff 
prob 6 43 1 68 31 

Clauser, Harik, Margolis, McManus, 
Mollon, Chis, & Williams (2009) 

Angoff 
prob 6 43 1 84 15 

Harik, Clauser, Grabovsky, Nungester, 
Swanson, & Nandakumar (2009) 6 pt. 1200 11 25 28 47 
Harik, Clauser, Grabovsky, Nungester, 
Swanson, & Nandakumar (2009) 6 pt. 3700 11 25 26 49 
Harik, Clauser, Grabovsky, Nungester, 
Swanson, & Nandakumar (2009) 6 pt. 1200 11 13 28 59 
Harik, Clauser, Grabovsky, Nungester, 
Swanson, & Nandakumar (2009) 6 pt. 3700 11 14 30 57 
Harik, Clauser, Grabovsky, Nungester, 
Swanson, & Nandakumar (2009) 6 pt. 1200 11 15 23 62 
Harik, Clauser, Grabovsky, Nungester, 
Swanson, & Nandakumar (2009) 6 pt. 3700 11 16 24 60 
Harik, Clauser, Grabovsky, Nungester, 
Swanson, & Nandakumar (2009) 6 pt. 1200 11 76 4 20 
Harik, Clauser, Grabovsky, Nungester, 
Swanson, & Nandakumar (2009) 6 pt. 3700 11 76 5 19 
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Table E3. Variance Component Estimates From Empirical Studies 
Using the pi : Design 

    

Proportions 
of 
Variance 
Explained 

Study 
score 
scale n np p i i:p 

Burch, Norman, Schmidt, & van 
der Vleuten (2008) percent 69 8 15 85 
Burch, Norman, Schmidt, & van 
der Vleuten (2008) percent 69 3 32 68 
Burch, Norman, Schmidt, & van 
der Vleuten (2008) percent 69 20 8 92 
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Table E4. Variance Component Estimates From Empirical Studies Using the 
phi :: Design 

     

Proportions of 
Variance 
Explained 

Study 
score 
scale n np ni p h h:p i:h:p 

Lee & Lewis (2008) bookmark 6 4-6 2 15 15 71 
Lee & Lewis (2008) bookmark 6 4-6 2 95 0 5 
Lee & Lewis (2008) bookmark 6 4-6 2 77 0 23 
Lee & Lewis (2008) bookmark 6 4-6 2 52 0 48 
Lee & Lewis (2008) bookmark 6 4-6 2 29 2 68 
Lee & Lewis (2008) bookmark 6 4-6 2 75 0 25 
Lee & Lewis (2008) bookmark 6 4-6 2 51 0 49 
Lee & Lewis (2008) bookmark 6 4-6 2 48 40 12 
Lee & Lewis (2008) bookmark 6 4-6 2 0 50 50 
Yin & Sconing (2008) percent 2 5-6 2 0 9 91 
Yin & Sconing (2008) percent 2 5-6 2 11 0 89 
Yin & Sconing (2008) percent 2 5-6 2 0 23 77 
Yin & Sconing (2008) percent 2 5-6 2 0 0 100 
Yin & Sconing (2008) percent 2 5-6 2 0 4 96 
Yin & Sconing (2008) percent 2 5-6 2 0 0 100 
Yin & Sconing (2008) bookmark 2 5-6 2 0 55 45 
Yin & Sconing (2008) bookmark 2 5-6 2 23 0 77 
Yin & Sconing (2008) bookmark 2 5-6 2 0 25 75 
Yin & Sconing (2008) bookmark 2 5-6 2 2 0 98 
Yin & Sconing (2008) bookmark 2 5-6 2 0 55 45 
Yin & Sconing (2008) bookmark 2 5-6 2 0 49 51 
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Table E5. Variance Component Estimates From Empirical Studies Using the ( )hip :×  
Design 

     
Proportions of Variance 
Explained 

Study 
score 
scale n np ni p h h i:h ph pi:h 

Christophersen, Helseth, & Lund 
(2008) 1-5 239 4 6 11 6 15 13 55 
Lee & Frisbie (1999) 0,1 3032 2-6 9 13 5 6 7 69 
Lee & Frisbie (1999) 0,1 3074 3-12 9 16 2 6 4 70 
Lee & Frisbie (1999) 0,1 3003 6-7 4 15 0 3 8 74 
Lee & Frisbie (1999) 0,1 3007 6-7 5 12 1 4 5 78 
Lee & Frisbie (1999) 0,1 2919 9 5 20 0 4 4 71 
Gagnon, Charlin, Lambert, 
Carriere, & Van der Vleuten 
(2009) 

partial 
credits 30 3 16 6 0 6 2 86 

Gagnon, Charlin, Lambert, 
Carriere, & Van der Vleuten 
(2009) 

partial 
credits 49 2 22 3 1 10 0 85 

Gagnon, Charlin, Lambert, 
Carriere, & Van der Vleuten 
(2009) 

partial 
credits 106 3 30 8 0 0 0 92 
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APPENDIX F: ESTIMATED VARIANCE COMPONENTS 

Table F1. Estimated Variance Components for the ip×  Design, Normal 
Data 

 σ2 σ(p) 2 σ(i) 2 σ(pi) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni

Parameter 

 = 10) 

0.3500 0.0500 0.6000 0.0600 0.0650 
Empirical 0.3495 0.0511 0.6002 0.0600 0.0651 

p 0.3495 0.0511 0.6002 0.0600 0.0651 
i 0.3496 0.0511 0.6001 0.0600 0.0651 

p,i 0.3495 0.0512 0.6001 0.0600 0.0651 
      

VC Structure A, Sample Size Pattern 2 (np = 100, ni

Parameter 

 = 50) 

0.3500 0.0500 0.6000 0.0120 0.0130 
Empirical 0.3517 0.0496 0.6002 0.0120 0.0130 

p 0.3516 0.0496 0.6002 0.0120 0.0130 
i 0.3517 0.0496 0.6002 0.0120 0.0130 

p,i 0.3516 0.0496 0.6002 0.0120 0.0130 
      

VC Structure B, Sample Size Pattern 1 (np = 200, ni

Parameter 

 = 10) 

0.3000 0.2000 0.5000 0.0500 0.0700 
Empirical 0.2996 0.2056 0.5001 0.0500 0.0706 

p 0.2996 0.2056 0.5001 0.0500 0.0706 
i 0.2996 0.2056 0.5001 0.0500 0.0706 

p,i 0.2996 0.2057 0.5001 0.0500 0.0706 
      

VC Structure B, Sample Size Pattern 2 (np = 100, ni

Parameter 

 = 50) 

0.3000 0.2000 0.5000 0.0100 0.0140 
Empirical 0.3014 0.1982 0.5002 0.0100 0.0140 

p 0.3014 0.1982 0.5001 0.0100 0.0140 
i 0.3015 0.1981 0.5002 0.0100 0.0140 

p,i 0.3014 0.1982 0.5001 0.0100 0.0140 
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Table F2. Estimated Variance Components for the ip×  Design, 
Dichotomous Data 

 σ2 σ(p) 2 σ(i) 2 σ(pi) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni

Parameter 

 = 10) 

0.0242 0.0030 0.1065 0.0107 0.0110 
Empirical 0.0242 0.0030 0.1063 0.0106 0.0109 

p 0.0242 0.0030 0.1063 0.0106 0.0109 
i 0.0242 0.0030 0.1062 0.0106 0.0109 

p,i 0.0242 0.0030 0.1062 0.0106 0.0109 

VC Structure A, Sample Size Pattern 2 (np = 100, ni

Parameter 

 = 50) 

0.0243 0.0030 0.1063 0.0021 0.0022 
Empirical 0.0244 0.0030 0.1060 0.0021 0.0022 

p 0.0243 0.0030 0.1060 0.0021 0.0022 
i 0.0244 0.0030 0.1060 0.0021 0.0022 

p,i 0.0204 0.0129 0.1004 0.0020 0.0023 

VC Structure B, Sample Size Pattern 1 (np = 200, ni

Parameter 

 = 10) 

0.0203 0.0128 0.1006 0.0101 0.0113 
Empirical 0.0203 0.0131 0.1006 0.0101 0.0114 

p 0.0203 0.0131 0.1006 0.0101 0.0114 
i 0.0203 0.0131 0.1005 0.0101 0.0114 

p,i 0.0203 0.0131 0.1006 0.0101 0.0114 

VC Structure B, Sample Size Pattern 2 (np = 100, ni

Parameter 

 = 50) 

0.0204 0.0129 0.1004 0.0020 0.0023 
Empirical 0.0204 0.0127 0.1001 0.0020 0.0023 

p 0.0204 0.0127 0.1001 0.0020 0.0023 
i 0.0204 0.0127 0.1001 0.0020 0.0023 

p,i 0.0204 0.0127 0.1001 0.0020 0.0023 
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Table F3. Estimated Variance Components for the ip×  Design, 
Polytomous Data 

 σ2 σ(p) 2 σ(i) 2 σ(pi) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni

Parameter 

 = 10) 

0.3500 0.0500 0.6000 0.0600 0.0650 
Empirical 0.3516 0.0504 0.5988 0.0599 0.0649 

p 0.3516 0.0504 0.5988 0.0599 0.0649 
i 0.3516 0.0504 0.5988 0.0599 0.0649 

p,i 0.3517 0.0504 0.5988 0.0599 0.0649 

VC Structure A, Sample Size Pattern 2 (np = 100, ni

Parameter 

 = 50) 

0.3500 0.0500 0.6000 0.0120 0.0130 
Empirical 0.3485 0.0491 0.6007 0.0120 0.0130 

p 0.3485 0.0491 0.6007 0.0120 0.0130 
i 0.3485 0.0492 0.6007 0.0120 0.0130 

p,i 0.3485 0.0491 0.6007 0.0120 0.0130 

VC Structure B, Sample Size Pattern 1 (np = 200, ni

Parameter 

 = 10) 

0.3000 0.2000 0.5000 0.0500 0.0700 
Empirical 0.2985 0.2008 0.4999 0.0500 0.0701 

p 0.2985 0.2009 0.4999 0.0500 0.0701 
i 0.2985 0.2008 0.4999 0.0500 0.0701 

p,i 0.2986 0.2009 0.4999 0.0500 0.0701 

VC Structure B, Sample Size Pattern 2 (np = 100, ni

Parameter 

 = 50) 

0.3000 0.2000 0.5000 0.0100 0.0140 
Empirical 0.3010 0.2016 0.4999 0.0100 0.0140 

p 0.3010 0.2016 0.4999 0.0100 0.0140 
i 0.3010 0.2017 0.4999 0.0100 0.0140 

p,i 0.3010 0.2016 0.4999 0.0100 0.0140 
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Table F4. Estimated Variance Components for the hip ××  Design, Normal Data 

 σ2 σ(p) 2 σ(i) 2 σ(h) 2 σ(pi) 2 σ(ph) 2 σ(ih) 2 σ(pih) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni = 5, nh

Parameter 

 = 2) 

0.1900 0.0100 0.0400 0.0100 0.2400 0.0100 0.5000 0.1720 0.1950 
Empirical 0.1916 0.0102 0.0409 0.0102 0.2400 0.0098 0.4999 0.1720 0.1955 

p 0.1917 0.0102 0.0409 0.0102 0.2400 0.0098 0.4999 0.1720 0.1955 
i 0.1916 0.0102 0.0409 0.0102 0.2400 0.0098 0.4999 0.1720 0.1955 
h 0.1918 0.0103 0.0410 0.0105 0.2399 0.0098 0.4996 0.1720 0.1955 

p,i 0.1917 0.0102 0.0410 0.0101 0.2401 0.0098 0.4999 0.1721 0.1956 
p,h 0.1918 0.0103 0.0410 0.0103 0.2399 0.0098 0.4998 0.1720 0.1955 
i,h 0.1914 0.0102 0.0408 0.0097 0.2402 0.0098 0.5003 0.1721 0.1955 

p,i,h 0.1919 0.0103 0.0409 0.0103 0.2398 0.0097 0.4999 0.1719 0.1954 
          

VC Structure A, Sample Size Pattern 2 (np = 100, ni = 10, nh

Parameter 

 = 3) 

0.1900 0.0100 0.0400 0.0100 0.2400 0.0100 0.5000 0.0977 0.1123 
Empirical 0.1893 0.0097 0.0387 0.0101 0.2403 0.0101 0.4999 0.0978 0.1120 

p 0.1894 0.0097 0.0387 0.0101 0.2403 0.0101 0.5000 0.0978 0.1120 
i 0.1893 0.0097 0.0387 0.0101 0.2403 0.0101 0.5000 0.0978 0.1120 
h 0.1894 0.0097 0.0388 0.0104 0.2402 0.0101 0.4996 0.0977 0.1120 

p,i 0.1893 0.0097 0.0387 0.0101 0.2403 0.0101 0.4999 0.0978 0.1120 
p,h 0.1894 0.0097 0.0387 0.0102 0.2403 0.0101 0.4998 0.0978 0.1120 
i,h 0.1895 0.0097 0.0387 0.0104 0.2401 0.0101 0.4996 0.0977 0.1119 

p,i,h 0.1893 0.0098 0.0387 0.0099 0.2404 0.0101 0.5001 0.0978 0.1120 
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Table F4. Continued 

 σ2 σ(p) 2 σ(i) 2 σ(h) 2 σ(pi) 2 σ(ph) 2 σ(ih) 2 σ(pih) 2 σ(δ) 2

VC Structure B, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni = 5, nh

Parameter 

 = 2) 

0.2000 0.1500 0.0500 0.1000 0.1000 0.0500 0.3500 0.1050 0.1650 
Empirical 0.2010 0.1494 0.0519 0.1001 0.1000 0.0502 0.3499 0.1050 0.1659 

p 0.2010 0.1494 0.0519 0.1001 0.1000 0.0502 0.3500 0.1050 0.1659 
i 0.2010 0.1494 0.0519 0.1001 0.1000 0.0502 0.3499 0.1050 0.1659 
h 0.2010 0.1494 0.0520 0.1003 0.1000 0.0501 0.3497 0.1050 0.1659 

p,i 0.2011 0.1494 0.0520 0.1000 0.1001 0.0502 0.3499 0.1050 0.1659 
p,h 0.2011 0.1494 0.0520 0.1002 0.1000 0.0502 0.3499 0.1050 0.1659 
i,h 0.2009 0.1493 0.0517 0.0998 0.1001 0.0503 0.3502 0.1050 0.1658 

p,i,h 0.2011 0.1494 0.0518 0.1002 0.0999 0.0502 0.3499 0.1050 0.1658 
          

VC Structure B, Sample Size Pattern 2 (np = 100, ni = 10, nh

Parameter 

 = 3) 

0.2000 0.1500 0.0500 0.1000 0.1000 0.0500 0.3500 0.0550 0.0883 
Empirical 0.1994 0.1480 0.0479 0.1003 0.1003 0.0504 0.3500 0.0551 0.0876 

p 0.1995 0.1480 0.0479 0.1003 0.1002 0.0504 0.3500 0.0551 0.0876 
i 0.1994 0.1481 0.0479 0.1003 0.1002 0.0504 0.3500 0.0551 0.0876 
h 0.1995 0.1481 0.0480 0.1005 0.1002 0.0503 0.3497 0.0551 0.0876 

p,i 0.1994 0.1480 0.0480 0.1003 0.1003 0.0504 0.3499 0.0551 0.0876 
p,h 0.1995 0.1481 0.0479 0.1004 0.1003 0.0504 0.3499 0.0551 0.0876 
i,h 0.1995 0.1480 0.0479 0.1005 0.1002 0.0504 0.3497 0.0551 0.0875 

p,i,h 0.1994 0.1481 0.0479 0.1002 0.1003 0.0504 0.3501 0.0551 0.0876 
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Table F5. Estimated Variance Components for the hip ××  Design, Dichotomous Data 

 σ2 σ(p) 2 σ(i) 2 σ(h) 2 σ(pi) 2 σ(ph) 2 σ(ih) 2 σ(pih) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni = 5, nh

Parameter 

 = 2) 

0.0123 0.0006 0.0023 0.0008 0.0199 0.0007 0.0971 0.0198 0.0211 
Empirical 0.0125 0.0005 0.0025 0.0008 0.0201 0.0006 0.0978 0.0200 0.0214 

p 0.0125 0.0005 0.0025 0.0008 0.0201 0.0006 0.0978 0.0200 0.0214 
i 0.0126 0.0005 0.0025 0.0008 0.0202 0.0006 0.0978 0.0200 0.0214 
h 0.0126 0.0005 0.0025 0.0008 0.0201 0.0006 0.0977 0.0200 0.0214 

p,i 0.0125 0.0005 0.0025 0.0008 0.0201 0.0006 0.0978 0.0200 0.0214 
p,h 0.0125 0.0005 0.0025 0.0007 0.0202 0.0006 0.0978 0.0200 0.0214 
i,h 0.0126 0.0005 0.0025 0.0007 0.0201 0.0006 0.0978 0.0200 0.0214 

p,i,h 0.0126 0.0005 0.0025 0.0008 0.0201 0.0006 0.0978 0.0200 0.0214 
          

VC Structure A, Sample Size Pattern 2 (np = 100, ni = 10, nh

Parameter 

 = 3) 

0.0121 0.0006 0.0024 0.0008 0.0198 0.0006 0.0966 0.0099 0.0108 
Empirical 0.0124 0.0006 0.0023 0.0007 0.0200 0.0006 0.0973 0.0100 0.0108 

p 0.0124 0.0006 0.0023 0.0007 0.0200 0.0006 0.0973 0.0100 0.0108 
i 0.0124 0.0006 0.0023 0.0007 0.0200 0.0006 0.0973 0.0100 0.0108 
h 0.0124 0.0006 0.0023 0.0006 0.0200 0.0006 0.0973 0.0100 0.0108 

p,i 0.0124 0.0006 0.0023 0.0007 0.0200 0.0006 0.0973 0.0100 0.0108 
p,h 0.0124 0.0006 0.0023 0.0008 0.0200 0.0006 0.0972 0.0100 0.0108 
i,h 0.0124 0.0006 0.0023 0.0008 0.0200 0.0006 0.0972 0.0100 0.0108 

p,i,h 0.0124 0.0006 0.0023 0.0007 0.0200 0.0006 0.0973 0.0100 0.0108 
          



 153 

Table F5. Continued 

 σ2 σ(p) 2 σ(i) 2 σ(h) 2 σ(pi) 2 σ(ph) 2 σ(ih) 2 σ(pih) 2 σ(δ) 2

VC Structure B, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni = 5, nh

Parameter 

 = 2) 

0.0130 0.0096 0.0029 0.0105 0.0083 0.0042 0.0855 0.0148 0.0186 
Empirical 0.0133 0.0091 0.0032 0.0104 0.0086 0.0040 0.0865 0.0150 0.0188 

p 0.0133 0.0091 0.0032 0.0104 0.0086 0.0040 0.0865 0.0150 0.0188 
i 0.0133 0.0091 0.0032 0.0104 0.0086 0.0040 0.0865 0.0150 0.0188 
h 0.0133 0.0091 0.0032 0.0104 0.0086 0.0040 0.0865 0.0150 0.0188 

p,i 0.0133 0.0091 0.0032 0.0104 0.0086 0.0040 0.0865 0.0150 0.0188 
p,h 0.0133 0.0091 0.0032 0.0103 0.0086 0.0040 0.0865 0.0150 0.0188 
i,h 0.0133 0.0091 0.0032 0.0103 0.0085 0.0040 0.0865 0.0150 0.0188 

p,i,h 0.0133 0.0091 0.0032 0.0104 0.0086 0.0040 0.0865 0.0150 0.0188 
          

VC Structure B, Sample Size Pattern 2 (np = 100, ni = 10, nh

Parameter 

 = 3) 

0.0127 0.0092 0.0030 0.0103 0.0083 0.0040 0.0849 0.0066 0.0087 
Empirical 0.0132 0.0093 0.0030 0.0106 0.0084 0.0041 0.0857 0.0067 0.0088 

p 0.0132 0.0093 0.0030 0.0106 0.0084 0.0041 0.0857 0.0067 0.0088 
i 0.0132 0.0093 0.0030 0.0106 0.0083 0.0041 0.0857 0.0067 0.0088 
h 0.0132 0.0093 0.0030 0.0105 0.0084 0.0041 0.0858 0.0067 0.0088 

p,i 0.0132 0.0093 0.0030 0.0106 0.0083 0.0041 0.0857 0.0067 0.0088 
p,h 0.0132 0.0093 0.0030 0.0106 0.0083 0.0041 0.0857 0.0067 0.0088 
i,h 0.0132 0.0093 0.0030 0.0106 0.0083 0.0041 0.0857 0.0067 0.0088 

p,i,h 0.0132 0.0093 0.0030 0.0105 0.0083 0.0041 0.0857 0.0067 0.0088 
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Table F6. Estimated Variance Components for the hip ××  Design, Polytomous Data 

 σ2 σ(p) 2 σ(i) 2 σ(h) 2 σ(pi) 2 σ(ph) 2 σ(ih) 2 σ(pih) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni = 5, nh

Parameter 

 = 2) 

0.1900 0.0100 0.0400 0.0100 0.2400 0.0100 0.5000 0.1720 0.1950 
Empirical 0.1898 0.0106 0.0300 0.0093 0.2399 0.0094 0.5001 0.1718 0.1898 

p 0.1898 0.0106 0.0300 0.0093 0.2399 0.0094 0.5001 0.1718 0.1899 
i 0.1898 0.0106 0.0300 0.0093 0.2396 0.0094 0.5004 0.1717 0.1897 
h 0.1899 0.0106 0.0299 0.0096 0.2397 0.0093 0.4999 0.1718 0.1898 

p,i 0.1898 0.0106 0.0299 0.0094 0.2399 0.0094 0.5000 0.1718 0.1898 
p,h 0.1898 0.0106 0.0300 0.0094 0.2397 0.0094 0.5001 0.1718 0.1898 
i,h 0.1898 0.0105 0.0298 0.0095 0.2399 0.0094 0.5000 0.1718 0.1898 

p,i,h 0.1902 0.0105 0.0300 0.0097 0.2395 0.0094 0.4997 0.1717 0.1897 
          

VC Structure A, Sample Size Pattern 2 (np = 100, ni = 10, nh

Parameter 

 = 3) 

0.1900 0.0100 0.0400 0.0100 0.2400 0.0100 0.5000 0.0977 0.1123 
Empirical 0.1914 0.0083 0.0367 0.0102 0.2403 0.0103 0.5000 0.0978 0.1112 

p 0.1914 0.0083 0.0367 0.0101 0.2404 0.0103 0.5000 0.0978 0.1112 
i 0.1914 0.0083 0.0367 0.0102 0.2403 0.0104 0.5000 0.0978 0.1112 
h 0.1914 0.0083 0.0368 0.0100 0.2403 0.0104 0.5001 0.0978 0.1112 

p,i 0.1915 0.0083 0.0367 0.0101 0.2403 0.0104 0.5001 0.0978 0.1112 
p,h 0.1913 0.0083 0.0368 0.0101 0.2403 0.0104 0.5001 0.0978 0.1112 
i,h 0.1914 0.0084 0.0364 0.0103 0.2403 0.0104 0.4998 0.0978 0.1111 

p,i,h 0.1913 0.0084 0.0368 0.0101 0.2404 0.0103 0.5001 0.0978 0.1113 
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Table F6. Continued 

 σ2 σ(p) 2 σ(i) 2 σ(h) 2 σ(pi) 2 σ(ph) 2 σ(ih) 2 σ(pih) 2 σ(δ) 2

VC Structure B, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni = 5, nh

Parameter 

 = 2) 

0.2000 0.1500 0.0500 0.1000 0.1000 0.0500 0.3500 0.1050 0.1650 
Empirical 0.2026 0.1480 0.0409 0.0999 0.0996 0.0512 0.3510 0.1049 0.1600 

p 0.2026 0.1480 0.0409 0.0999 0.0996 0.0512 0.3510 0.1049 0.1600 
i 0.2026 0.1480 0.0409 0.0999 0.0997 0.0511 0.3509 0.1049 0.1600 
h 0.2026 0.1479 0.0409 0.0999 0.0995 0.0513 0.3510 0.1048 0.1600 

p,i 0.2026 0.1478 0.0409 0.0999 0.0995 0.0511 0.3511 0.1049 0.1600 
p,h 0.2026 0.1477 0.0408 0.0996 0.0996 0.0513 0.3512 0.1048 0.1599 
i,h 0.2023 0.1481 0.0409 0.0992 0.0999 0.0513 0.3516 0.1050 0.1602 

p,i,h 0.2027 0.1482 0.0404 0.1001 0.0994 0.0512 0.3508 0.1048 0.1598 
          

VC Structure B, Sample Size Pattern 2 (np = 100, ni = 10, nh

Parameter 

 = 3) 

0.2000 0.1500 0.0500 0.1000 0.1000 0.0500 0.3500 0.0550 0.0883 
Empirical 0.2009 0.1513 0.0464 0.0999 0.0997 0.0493 0.3498 0.0549 0.0871 

p 0.2010 0.1513 0.0464 0.0999 0.0997 0.0493 0.3498 0.0549 0.0871 
i 0.2009 0.1511 0.0464 0.0999 0.0996 0.0493 0.3498 0.0549 0.0871 
h 0.2009 0.1513 0.0464 0.0999 0.0996 0.0493 0.3498 0.0549 0.0871 

p,i 0.2009 0.1515 0.0464 0.1000 0.0996 0.0492 0.3498 0.0549 0.0871 
p,h 0.2009 0.1514 0.0464 0.1001 0.0996 0.0492 0.3496 0.0549 0.0871 
i,h 0.2010 0.1512 0.0462 0.1001 0.0996 0.0493 0.3496 0.0549 0.0870 

p,i,h 0.2010 0.1513 0.0463 0.1000 0.0996 0.0493 0.3497 0.0549 0.0871 
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Table F7. Estimated Variance Components for the pi : Design, 
Normal Data 

 σ2 σ(p) 2 σ(i:p) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 50, ni

Parameter 

 = 5) 

0.1000 0.9000 0.1800 0.1800 
Empirical 0.0987 0.9005 0.1801 0.1801 

p 0.0988 0.9004 0.1801 0.1801 
i 0.0986 0.9006 0.1801 0.1801 

p,i 0.0986 0.9005 0.1801 0.1801 
     
VC Structure A, Sample Size Pattern 2 (np = 50, ni

Parameter 

 = 50) 

0.1000 0.9000 0.0180 0.0180 
Empirical 0.0988 0.9013 0.0180 0.0180 

p 0.0988 0.9014 0.0180 0.0180 
i 0.0988 0.9013 0.0180 0.0180 

p,i 0.0988 0.9013 0.0180 0.0180 
     
VC Structure B, Sample Size Pattern 1 (np = 50, ni

Parameter 

 = 5) 

0.3000 0.7000 0.1400 0.1400 
Empirical 0.2981 0.7004 0.1401 0.1401 

p 0.2982 0.7003 0.1401 0.1401 
i 0.2979 0.7005 0.1401 0.1401 

p,i 0.2979 0.7004 0.1401 0.1401 
     
VC Structure B, Sample Size Pattern 2 (np = 50, ni

Parameter 

 = 50) 

0.3000 0.7000 0.0140 0.0140 
Empirical 0.2969 0.7010 0.0140 0.0140 

p 0.2969 0.7011 0.0140 0.0140 
i 0.2969 0.7010 0.0140 0.0140 

p,i 0.2969 0.7010 0.0140 0.0140 
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Table F8. Estimated Variance Components for the pi : Design, 
Dichotomous Data 

 σ2 σ(p) 2 σ(i:p) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 50, ni

Parameter 

 = 5) 

0.0060 0.1273 0.0255 0.0255 
Empirical 0.0060 0.1278 0.0256 0.0256 

p 0.0060 0.1278 0.0256 0.0256 
i 0.0059 0.1278 0.0256 0.0256 

p,i 0.0060 0.1278 0.0256 0.0256 
     
VC Structure A, Sample Size Pattern 2 (np = 50, ni

Parameter 

 = 50) 

0.0062 0.1274 0.0025 0.0025 
Empirical 0.0059 0.1273 0.0025 0.0025 

p 0.0059 0.1273 0.0025 0.0025 
i 0.0059 0.1273 0.0025 0.0025 

p,i 0.0059 0.1273 0.0025 0.0025 
     
VC Structure B, Sample Size Pattern 1 (np = 50, ni

Parameter 

 = 5) 

0.0203 0.1132 0.0226 0.0226 
Empirical 0.0201 0.1141 0.0228 0.0228 

p 0.0201 0.1141 0.0228 0.0228 
i 0.0201 0.1141 0.0228 0.0228 

p,i 0.0200 0.1141 0.0228 0.0228 
     
VC Structure B, Sample Size Pattern 2 (np = 50, ni

Parameter 

 = 50) 

0.0202 0.1132 0.0023 0.0023 
Empirical 0.0198 0.1127 0.0023 0.0023 

p 0.0198 0.1127 0.0023 0.0023 
i 0.0198 0.1127 0.0023 0.0023 

p,i 0.0198 0.1127 0.0023 0.0023 
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Table F9. Estimated Variance Components for the pi : Design, 
Polytomous Data 

 σ2 σ(p) 2 σ(i:p) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 50, ni

Parameter 

 = 5) 

0.1000 0.9000 0.1800 0.1800 
Empirical 0.1003 0.9027 0.1806 0.1806 

p 0.1002 0.9028 0.1806 0.1806 
i 0.1001 0.9031 0.1806 0.1806 

p,i 0.1003 0.9026 0.1805 0.1805 
     
VC Structure A, Sample Size Pattern 2 (np = 50, ni

Parameter 

 = 50) 

0.1000 0.9000 0.0180 0.0180 
Empirical 0.0975 0.8991 0.0180 0.0180 

p 0.0975 0.8991 0.0180 0.0180 
i 0.0975 0.8991 0.0180 0.0180 

p,i 0.0976 0.8991 0.0180 0.0180 
     
VC Structure B, Sample Size Pattern 1 (np = 50, ni

Parameter 

 = 5) 

0.3000 0.7000 0.1400 0.1400 
Empirical 0.2972 0.6965 0.1393 0.1393 

p 0.2973 0.6965 0.1393 0.1393 
i 0.2972 0.6966 0.1393 0.1393 

p,i 0.2972 0.6965 0.1393 0.1393 
     
VC Structure B, Sample Size Pattern 2 (np = 50, ni

Parameter 

 = 50) 

0.3000 0.7000 0.0140 0.0140 
Empirical 0.2964 0.7000 0.0140 0.0140 

p 0.2965 0.7000 0.0140 0.0140 
i 0.2964 0.7000 0.0140 0.0140 

p,i 0.2965 0.7000 0.0140 0.0140 
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Table F10. Estimated Variance Components for the phi :: Design, 
Normal Data 

 σ2 σ(p) 2 σ(h:p) 2 σ(i:h:p) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 100, ni = 20, nh

Parameter 

 = 5) 

0.2800 0.0200 0.7000 0.0110 0.0110 
Empirical 0.2787 0.0200 0.6998 0.0110 0.0110 

p 0.2787 0.0200 0.6998 0.0110 0.0110 
i 0.2787 0.0200 0.6998 0.0110 0.0110 
h 0.2787 0.0200 0.6998 0.0110 0.0110 

p,i 0.2805 0.0199 0.7001 0.0110 0.0110 
p,h 0.2788 0.0200 0.6998 0.0110 0.0110 
i,h 0.2787 0.0200 0.6998 0.0110 0.0110 

p,i,h 0.2786 0.0200 0.6998 0.0110 0.0110 
      

VC Structure A, Sample Size Pattern 2 (np = 50, ni = 5, nh

Parameter 

 = 2) 

0.2800 0.0200 0.7000 0.0800 0.0800 
Empirical 0.2804 0.0194 0.6967 0.0794 0.0794 

p 0.2804 0.0195 0.6966 0.0794 0.0794 
i 0.2803 0.0197 0.6965 0.0795 0.0795 
h 0.2806 0.0192 0.6967 0.0793 0.0793 

p,i 0.2816 0.0208 0.6990 0.0803 0.0803 
p,h 0.2804 0.0195 0.6968 0.0794 0.0794 
i,h 0.2806 0.0194 0.6967 0.0794 0.0794 

p,i,h 0.2805 0.0195 0.6966 0.0794 0.0794 
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Table F10. Continued 

 σ2 σ(p) 2 σ(h:p) 2 σ(i:h:p) 2 σ(δ) 2

VC Structure B, Sample Size Pattern 1 (n

(Δ) 

p = 100, ni = 20, nh

Parameter 

 = 5) 

0.1500 0.1500 0.7000 0.0370 0.0370 
Empirical 0.1491 0.1499 0.6998 0.0370 0.0370 

p 0.1491 0.1499 0.6998 0.0370 0.0370 
i 0.1491 0.1499 0.6998 0.0370 0.0370 
h 0.1490 0.1500 0.6998 0.0370 0.0370 

p,i 0.1504 0.1495 0.7001 0.0369 0.0369 
p,h 0.1491 0.1499 0.6998 0.0370 0.0370 
i,h 0.1490 0.1499 0.6998 0.0370 0.0370 

p,i,h 0.1490 0.1499 0.6998 0.0370 0.0370 
      

VC Structure B, Sample Size Pattern 2 (np = 50, ni = 5, nh

Parameter 

 = 2) 

0.1500 0.1500 0.7000 0.1450 0.1450 
Empirical 0.1506 0.1499 0.7010 0.1451 0.1451 

p 0.1536 0.1499 0.7010 0.1451 0.1451 
i 0.1505 0.1501 0.7010 0.1452 0.1452 
h 0.1508 0.1497 0.7010 0.1449 0.1449 

p,i 0.1549 0.1488 0.7000 0.1444 0.1444 
p,h 0.1543 0.1500 0.7009 0.1451 0.1451 
i,h 0.1504 0.1503 0.7008 0.1452 0.1452 

p,i,h 0.1551 0.1500 0.7009 0.1451 0.1451 
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Table F11. Estimated Variance Components for the phi :: Design, 
Dichotomous Data 

 σ2 σ(p) 2 σ(h:p) 2 σ(i:h:p) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 100, ni = 20, nh

Parameter 

 = 5) 

0.0187 0.0015 0.1131 0.0014 0.0014 
Empirical 0.0186 0.0015 0.1130 0.0014 0.0014 

p 0.0186 0.0015 0.1130 0.0014 0.0014 
i 0.0186 0.0015 0.1130 0.0014 0.0014 
h 0.0186 0.0015 0.1130 0.0014 0.0014 

p,i 0.0187 0.0016 0.1129 0.0014 0.0014 
p,h 0.0186 0.0015 0.1130 0.0014 0.0014 
i,h 0.0186 0.0015 0.1130 0.0014 0.0014 

p,i,h 0.0187 0.0015 0.1130 0.0014 0.0014 
      

VC Structure A, Sample Size Pattern 2 (np = 50, ni = 5, nh

Parameter 

 = 2) 

0.0187 0.0016 0.1133 0.0121 0.0121 
Empirical 0.0186 0.0016 0.1129 0.0121 0.0121 

p 0.0186 0.0016 0.1130 0.0121 0.0121 
i 0.0186 0.0016 0.1129 0.0121 0.0121 
h 0.0186 0.0015 0.1129 0.0121 0.0121 

p,i 0.0188 0.0019 0.1115 0.0121 0.0121 
p,h 0.0186 0.0016 0.1129 0.0121 0.0121 
i,h 0.0186 0.0016 0.1129 0.0121 0.0121 

p,i,h 0.0186 0.0016 0.1129 0.0121 0.0121 
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Table F11. Continued 

 σ2 σ(p) 2 σ(h:p) 2 σ(i:h:p) 2 σ(δ) 2

VC Structure B, Sample Size Pattern 1 (n

(Δ) 

p = 100, ni = 20, nh

Parameter 

 = 5) 

0.0094 0.0108 0.1131 0.0033 0.0033 
Empirical 0.0094 0.0108 0.1131 0.0033 0.0033 

p 0.0094 0.0108 0.1131 0.0033 0.0033 
i 0.0094 0.0108 0.1131 0.0033 0.0033 
h 0.0094 0.0108 0.1131 0.0033 0.0033 

p,i 0.0095 0.0108 0.1129 0.0033 0.0033 
p,h 0.0094 0.0108 0.1131 0.0033 0.0033 
i,h 0.0094 0.0108 0.1131 0.0033 0.0033 

p,i,h 0.0094 0.0108 0.1132 0.0033 0.0033 
      

VC Structure B, Sample Size Pattern 2 (np = 50, ni = 5, nh

Parameter 

 = 2) 

0.0094 0.0107 0.1134 0.0167 0.0167 
Empirical 0.0095 0.0106 0.1133 0.0166 0.0166 

p 0.0095 0.0106 0.1133 0.0166 0.0166 
i 0.0095 0.0106 0.1133 0.0166 0.0166 
h 0.0096 0.0105 0.1133 0.0166 0.0166 

p,i 0.0098 0.0109 0.1120 0.0166 0.0166 
p,h 0.0095 0.0106 0.1133 0.0166 0.0166 
i,h 0.0096 0.0106 0.1133 0.0166 0.0166 

p,i,h 0.0095 0.0106 0.1133 0.0166 0.0166 
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Table F12. Estimated Variance Components for the phi :: Design, 
Polytomous Data 

 σ2 σ(p) 2 σ(h:p) 2 σ(i:h:p) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 100, ni = 20, nh

Parameter 

 = 5) 

0.2800 0.0200 0.7000 0.0110 0.0110 
Empirical 0.2770 0.0200 0.6999 0.0110 0.0110 

p 0.2770 0.0200 0.6999 0.0110 0.0110 
i 0.2770 0.0201 0.6999 0.0110 0.0110 
h 0.2770 0.0200 0.7000 0.0110 0.0110 

p,i 0.2801 0.0200 0.6997 0.0110 0.0110 
p,h 0.2770 0.0201 0.6999 0.0110 0.0110 
i,h 0.2769 0.0201 0.6999 0.0110 0.0110 

p,i,h 0.2770 0.0200 0.6999 0.0110 0.0110 
      

VC Structure A, Sample Size Pattern 2 (np = 50, ni = 5, nh

Parameter 

 = 2) 

0.2800 0.0200 0.7000 0.0800 0.0800 
Empirical 0.2771 0.0210 0.6996 0.0804 0.0804 

p 0.2771 0.0210 0.6997 0.0804 0.0804 
i 0.2768 0.0212 0.6997 0.0806 0.0806 
h 0.2771 0.0210 0.6996 0.0805 0.0805 

p,i 0.2749 0.0223 0.7006 0.0812 0.0812 
p,h 0.2771 0.0210 0.6997 0.0805 0.0805 
i,h 0.2772 0.0210 0.6996 0.0805 0.0805 

p,i,h 0.2770 0.0210 0.6995 0.0805 0.0805 
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Table F12. Continued 

 σ2 σ(p) 2 σ(h:p) 2 σ(i:h:p) 2 σ(δ) 2

VC Structure B, Sample Size Pattern 1 (n

(Δ) 

p = 100, ni = 20, nh

Parameter 

 = 5) 

0.1500 0.1500 0.7000 0.0370 0.0370 
Empirical 0.1502 0.1499 0.6999 0.0370 0.0370 

p 0.1503 0.1499 0.6999 0.0370 0.0370 
i 0.1503 0.1499 0.6999 0.0370 0.0370 
h 0.1502 0.1500 0.6999 0.0370 0.0370 

p,i 0.1484 0.1507 0.7004 0.0372 0.0372 
p,h 0.1503 0.1499 0.6999 0.0370 0.0370 
i,h 0.1503 0.1499 0.6999 0.0370 0.0370 

p,i,h 0.1502 0.1499 0.6999 0.0370 0.0370 
      

VC Structure B, Sample Size Pattern 2 (np = 50, ni = 5, nh

Parameter 

 = 2) 

0.1500 0.1500 0.7000 0.1450 0.1450 
Empirical 0.1544 0.1489 0.7001 0.1445 0.1445 

p 0.1544 0.1489 0.7002 0.1445 0.1445 
i 0.1547 0.1485 0.7002 0.1443 0.1443 
h 0.1544 0.1489 0.7001 0.1445 0.1445 

p,i 0.1483 0.1496 0.7002 0.1448 0.1448 
p,h 0.1543 0.1490 0.7000 0.1445 0.1445 
i,h 0.1546 0.1488 0.7001 0.1444 0.1444 

p,i,h 0.1546 0.1489 0.7001 0.1444 0.1444 
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Table F13. Estimated Variance Components for the ( )hip :×  Design, Normal 
Data 

 σ2 σ(p) 2 σ(h) 2 σ(ph) 2 σ(i:h) 2 σ(pi:h) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni = 15, nh

Parameter 

 = 5) 

0.2000 0.0100 0.0500 0.0400 0.7000 0.0193 0.0219 
Empirical 0.2000 0.0099 0.0500 0.0401 0.7003 0.0193 0.0218 

p 0.2000 0.0099 0.0500 0.0401 0.7003 0.0193 0.0218 
i 0.2000 0.0099 0.0500 0.0401 0.7003 0.0193 0.0218 
h 0.2000 0.0098 0.0500 0.0401 0.7003 0.0193 0.0218 

p,i 0.1990 0.0099 0.0500 0.0401 0.7003 0.0193 0.0218 
p,h 0.2000 0.0099 0.0500 0.0401 0.7003 0.0193 0.0218 
i,h 0.2000 0.0099 0.0500 0.0401 0.7003 0.0193 0.0218 

p,i,h 0.1999 0.0099 0.0500 0.0401 0.7003 0.0193 0.0218 
        

VC Structure A, Sample Size Pattern 2 (np =100, ni = 3, nh

Parameter 

 = 10) 

0.2000 0.0100 0.0500 0.0400 0.7000 0.0283 0.0307 
Empirical 0.1996 0.0093 0.0501 0.0402 0.7007 0.0284 0.0306 

p 0.1996 0.0093 0.0501 0.0402 0.7007 0.0284 0.0306 
i 0.1996 0.0093 0.0500 0.0403 0.7008 0.0284 0.0306 
h 0.1996 0.0093 0.0500 0.0403 0.7007 0.0284 0.0306 

p,i 0.1977 0.0093 0.0498 0.0403 0.7009 0.0283 0.0306 
p,h 0.1997 0.0093 0.0501 0.0402 0.7007 0.0284 0.0306 
i,h 0.1996 0.0093 0.0498 0.0402 0.7010 0.0283 0.0306 

p,i,h 0.1996 0.0093 0.0500 0.0402 0.7008 0.0284 0.0306 
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Table F13. Continued 

 σ2 σ(p) 2 σ(h) 2 σ(ph) 2 σ(i:h) 2 σ(pi:h) 2 σ(δ) 2

VC Structure B, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni = 15, nh

Parameter 

 = 5) 

0.1000 0.0500 0.1500 0.1500 0.5500 0.0373 0.0493 
Empirical 0.0999 0.0492 0.1501 0.1503 0.5502 0.0374 0.0492 

p 0.0999 0.0492 0.1501 0.1503 0.5502 0.0374 0.0492 
i 0.0999 0.0492 0.1501 0.1503 0.5502 0.0374 0.0492 
h 0.0999 0.0492 0.1501 0.1503 0.5502 0.0374 0.0492 

p,i 0.0994 0.0492 0.1501 0.1503 0.5503 0.0374 0.0492 
p,h 0.0999 0.0492 0.1501 0.1503 0.5502 0.0374 0.0492 
i,h 0.0999 0.0492 0.1501 0.1503 0.5502 0.0374 0.0492 

p,i,h 0.0998 0.0492 0.1501 0.1503 0.5503 0.0374 0.0492 
        

VC Structure B, Sample Size Pattern 2 (np =100, ni = 3, nh

Parameter 

 = 10) 

0.1000 0.0500 0.1500 0.1500 0.5500 0.0333 0.0433 
Empirical 0.0997 0.0478 0.1501 0.1507 0.5506 0.0334 0.0432 

p 0.0996 0.0478 0.1501 0.1507 0.5506 0.0334 0.0432 
i 0.0997 0.0478 0.1500 0.1507 0.5506 0.0334 0.0432 
h 0.0997 0.0478 0.1500 0.1507 0.5506 0.0334 0.0432 

p,i 0.0987 0.0478 0.1499 0.1508 0.5507 0.0333 0.0432 
p,h 0.0997 0.0478 0.1501 0.1507 0.5506 0.0334 0.0432 
i,h 0.0997 0.0478 0.1499 0.1507 0.5508 0.0333 0.0431 

p,i,h 0.0997 0.0478 0.1500 0.1507 0.5506 0.0334 0.0432 
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Table F14. Estimated Variance Components for the ( )hip :×  Design, 
Dichotomous Data 

 σ2 σ(p) 2 σ(h) 2 σ(ph) 2 σ(i:h) 2 σ(pi:h) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni = 15, nh

Parameter 

 = 5) 

0.0128 0.0006 0.0038 0.0024 0.1136 0.0023 0.0024 
Empirical 0.0128 0.0006 0.0038 0.0024 0.1137 0.0023 0.0024 

p 0.0128 0.0006 0.0038 0.0024 0.1137 0.0023 0.0024 
i 0.0128 0.0006 0.0038 0.0024 0.1137 0.0023 0.0024 
h 0.0128 0.0006 0.0038 0.0024 0.1137 0.0023 0.0024 

p,i 0.0127 0.0006 0.0038 0.0024 0.1137 0.0023 0.0024 
p,h 0.0128 0.0006 0.0038 0.0024 0.1137 0.0023 0.0024 
i,h 0.0128 0.0006 0.0038 0.0024 0.1137 0.0023 0.0024 

p,i,h 0.0128 0.0006 0.0038 0.0024 0.1137 0.0023 0.0024 
        

VC Structure A, Sample Size Pattern 2 (np =100, ni = 3, nh

Parameter 

 = 10) 

0.0130 0.0006 0.0037 0.0024 0.1140 0.0042 0.0043 
Empirical 0.0128 0.0006 0.0039 0.0024 0.1134 0.0042 0.0043 

p 0.0128 0.0006 0.0039 0.0024 0.1134 0.0042 0.0043 
i 0.0128 0.0006 0.0039 0.0024 0.1135 0.0042 0.0043 
h 0.0128 0.0006 0.0039 0.0024 0.1134 0.0042 0.0043 

p,i 0.0127 0.0005 0.0039 0.0024 0.1135 0.0042 0.0043 
p,h 0.0128 0.0006 0.0039 0.0024 0.1134 0.0042 0.0043 
i,h 0.0128 0.0006 0.0039 0.0024 0.1135 0.0042 0.0043 

p,i,h 0.0128 0.0005 0.0039 0.0024 0.1135 0.0042 0.0043 
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Table F14. Continued 

 σ2 σ(p) 2 σ(h) 2 σ(ph) 2 σ(i:h) 2 σ(pi:h) 2 σ(δ) 2

VC Structure B, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni = 15, nh

Parameter 

 = 5) 

0.0061 0.0030 0.0111 0.0098 0.1030 0.0036 0.0043 
Empirical 0.0060 0.0029 0.0111 0.0098 0.1028 0.0036 0.0043 

p 0.0060 0.0029 0.0111 0.0098 0.1028 0.0036 0.0043 
i 0.0060 0.0029 0.0111 0.0098 0.1028 0.0036 0.0043 
h 0.0060 0.0029 0.0111 0.0098 0.1028 0.0036 0.0043 

p,i 0.0060 0.0029 0.0111 0.0098 0.1028 0.0036 0.0043 
p,h 0.0060 0.0029 0.0111 0.0098 0.1028 0.0036 0.0043 
i,h 0.0060 0.0029 0.0111 0.0098 0.1028 0.0036 0.0043 

p,i,h 0.0060 0.0029 0.0111 0.0098 0.1028 0.0036 0.0043 
        

VC Structure B, Sample Size Pattern 2 (np =100, ni = 3, nh

Parameter 

 = 10) 

0.0062 0.0030 0.0111 0.0099 0.1034 0.0046 0.0052 
Empirical 0.0061 0.0029 0.0113 0.0096 0.1026 0.0045 0.0052 

p 0.0061 0.0029 0.0113 0.0096 0.1026 0.0045 0.0052 
i 0.0061 0.0029 0.0113 0.0096 0.1026 0.0045 0.0052 
h 0.0061 0.0029 0.0113 0.0096 0.1026 0.0045 0.0052 

p,i 0.0060 0.0029 0.0112 0.0096 0.1026 0.0045 0.0052 
p,h 0.0061 0.0029 0.0113 0.0096 0.1026 0.0045 0.0052 
i,h 0.0061 0.0029 0.0112 0.0096 0.1027 0.0045 0.0052 

p,i,h 0.0061 0.0029 0.0113 0.0096 0.1026 0.0045 0.0052 
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Table F15. Estimated Variance Components for the ( )hip :×  Design, 
Polytomous Data 

 σ2 σ(p) 2 σ(h) 2 σ(ph) 2 σ(i:h) 2 σ(pi:h) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni = 15, nh

Parameter 

 = 5) 

0.2000 0.0100 0.0500 0.0400 0.7000 0.0193 0.0219 
Empirical 0.1999 0.0093 0.0502 0.0390 0.6996 0.0194 0.0217 

p 0.1999 0.0093 0.0502 0.0390 0.6996 0.0194 0.0217 
i 0.1999 0.0093 0.0502 0.0390 0.6996 0.0194 0.0217 
h 0.1999 0.0093 0.0502 0.0390 0.6996 0.0194 0.0217 

p,i 0.1989 0.0093 0.0502 0.0390 0.6996 0.0194 0.0217 
p,h 0.1999 0.0092 0.0502 0.0390 0.6996 0.0194 0.0217 
i,h 0.1999 0.0092 0.0502 0.0391 0.6996 0.0194 0.0217 

p,i,h 0.1998 0.0093 0.0502 0.0390 0.6996 0.0194 0.0218 
        

VC Structure A, Sample Size Pattern 2 (np =100, ni = 3, nh

Parameter 

 = 10) 

0.2000 0.0100 0.0500 0.0400 0.7000 0.0283 0.0307 
Empirical 0.1988 0.0090 0.0505 0.0421 0.6996 0.0284 0.0307 

p 0.1988 0.0090 0.0505 0.0421 0.6996 0.0284 0.0307 
i 0.1987 0.0091 0.0512 0.0421 0.6989 0.0284 0.0307 
h 0.1988 0.0091 0.0504 0.0421 0.6996 0.0284 0.0307 

p,i 0.1967 0.0091 0.0508 0.0421 0.6993 0.0284 0.0307 
p,h 0.1988 0.0090 0.0504 0.0420 0.6996 0.0284 0.0307 
i,h 0.1988 0.0090 0.0505 0.0420 0.6995 0.0284 0.0307 

p,i,h 0.1988 0.0090 0.0504 0.0421 0.6996 0.0284 0.0307 
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Table F15. Continued 

 σ2 σ(p) 2 σ(h) 2 σ(ph) 2 σ(i:h) 2 σ(pi:h) 2 σ(δ) 2

VC Structure B, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni = 15, nh

Parameter 

 = 5) 

0.1000 0.0500 0.1500 0.1500 0.5500 0.0373 0.0493 
Empirical 0.1001 0.0520 0.1502 0.1518 0.5501 0.0374 0.0498 

p 0.1001 0.0520 0.1502 0.1518 0.5501 0.0374 0.0498 
i 0.1001 0.0520 0.1502 0.1518 0.5501 0.0374 0.0498 
h 0.1001 0.0520 0.1502 0.1519 0.5501 0.0374 0.0498 

p,i 0.0996 0.0520 0.1502 0.1519 0.5501 0.0374 0.0498 
p,h 0.1001 0.0520 0.1502 0.1518 0.5501 0.0374 0.0498 
i,h 0.1001 0.0520 0.1503 0.1519 0.5501 0.0374 0.0498 

p,i,h 0.1001 0.0519 0.1503 0.1518 0.5501 0.0374 0.0498 
        

VC Structure B, Sample Size Pattern 2 (np =100, ni = 3, nh

Parameter 

 = 10) 

0.1000 0.0500 0.1500 0.1500 0.5500 0.0333 0.0433 
Empirical 0.0993 0.0531 0.1509 0.1498 0.5492 0.0334 0.0437 

p 0.0993 0.0531 0.1510 0.1498 0.5492 0.0334 0.0437 
i 0.0993 0.0532 0.1512 0.1497 0.5490 0.0334 0.0437 
h 0.0993 0.0532 0.1510 0.1498 0.5492 0.0334 0.0437 

p,i 0.0982 0.0531 0.1510 0.1499 0.5491 0.0334 0.0437 
p,h 0.0992 0.0530 0.1509 0.1499 0.5492 0.0334 0.0437 
i,h 0.0993 0.0530 0.1511 0.1498 0.5490 0.0334 0.0437 

p,i,h 0.0992 0.0531 0.1508 0.1499 0.5493 0.0334 0.0437 
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APPENDIX G:  ESTIMATED STANDARD ERRORS OF ESTIMATED 
VARIANCE COMPONENTS 

Table G1. Estimated Standard Errors of Estimated Variance 
Components for the ip×  design, Normal Data 

 SE(p) SE(i) SE(pi) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 200, ni

Parameter 

 = 10) 

0.0412 0.0250 0.0201 0.0020 0.0032 

p 0.0412 0.0086 0.0200 0.0020 0.0022 

i 0.0373 0.0245 0.0354 0.0035 0.0045 

p,i 0.0598 0.0273 0.0449 0.0045 0.0054 
      

VC Structure A, Sample Size Pattern 2 (np = 100, ni

Parameter 

 = 50) 

0.0515 0.0113 0.0122 0.0002 0.0003 

p 0.0514 0.0054 0.0121 0.0002 0.0003 

i 0.0135 0.0112 0.0123 0.0002 0.0003 

p,i 0.0547 0.0135 0.0211 0.0004 0.0005 
      

VC Structure B, Sample Size Pattern 1 (np = 200, ni

Parameter 

 = 10) 

0.0351 0.0955 0.0167 0.0017 0.0097 

p 0.0351 0.0152 0.0167 0.0017 0.0022 

i 0.0312 0.0943 0.0295 0.0029 0.0101 

p,i 0.0505 0.0968 0.0374 0.0037 0.0106 
      

VC Structure B, Sample Size Pattern 2 (np = 100, ni

Parameter 

 = 50) 

0.0441 0.0414 0.0102 0.0002 0.0009 

p 0.0440 0.0091 0.0101 0.0002 0.0003 

i 0.0114 0.0411 0.0102 0.0002 0.0008 

p,i 0.0467 0.0430 0.0175 0.0004 0.0009 
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Table G2. Estimated Standard Errors of Estimated Variance 
Components for the ip×  design, Dichotomous Data 

 SE(p) SE(i) SE(pi) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 200, ni

Parameter 

 = 10) 

0.0055 0.0018 0.0108 0.0011 0.0011 

p 0.0047 0.0010 0.0068 0.0007 0.0007 

i 0.0074 0.0017 0.0099 0.0010 0.0010 

p,i 0.0094 0.0022 0.0127 0.0013 0.0013 

Normal Eqs. 0.0035 0.0017 0.0036 0.0004 0.0004 
      

VC Structure A, Sample Size Pattern 2 (np = 100, ni

Parameter 

 = 50) 

0.0056 0.0010 0.0087 0.0002 0.0002 

p 0.0053 0.0008 0.0078 0.0002 0.0002 

i 0.0024 0.0009 0.0045 0.0001 0.0001 

p,i 0.0061 0.0014 0.0093 0.0002 0.0002 

 Normal Eqs. 0.0038 0.0008 0.0022 0.0000 0.0000 
      

VC Structure B, Sample Size Pattern 1 (np = 200, ni

Parameter 

 = 10) 

0.0065 0.0082 0.0165 0.0016 0.0021 

p 0.0039 0.0022 0.0058 0.0006 0.0007 

i 0.0091 0.0076 0.0148 0.0015 0.0019 

p,i 0.0104 0.0082 0.0163 0.0016 0.0021 

Normal Eqs. 0.0031 0.0068 0.0034 0.0003 0.0008 
      

VC Structure B, Sample Size Pattern 2 (np = 100, ni

Parameter 

 = 50) 

0.0051 0.0039 0.0095 0.0002 0.0002 

p 0.0044 0.0019 0.0065 0.0001 0.0002 

i 0.0029 0.0036 0.0071 0.0001 0.0002 

p,i 0.0055 0.0042 0.0098 0.0002 0.0002 

Normal Eqs. 0.0032 0.0028 0.0020 0.0000 0.0001 
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Table G3. Estimated Standard Errors of Estimated Variance 
Components for the ip×  design, Polytomous Data 

 SE(p) SE(i) SE(pi) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 200, ni

Parameter 

 = 10) 

0.0511 0.0734 0.0184 0.0018 0.0076 

p 0.0502 0.0085 0.0184 0.0018 0.0020 

i 0.0371 0.0618 0.0347 0.0035 0.0072 

p,i 0.0663 0.0630 0.0432 0.0043 0.0077 
Normal Eqs. 0.0414 0.0380 0.0200 0.0020 0.0043 

      
VC Structure A, Sample Size Pattern 2 (np = 100, ni

Parameter 

 = 50) 

0.0657 0.0321 0.0109 0.0002 0.0007 

p 0.0643 0.0054 0.0112 0.0002 0.0002 

i 0.0135 0.0307 0.0113 0.0002 0.0007 

p,i 0.0672 0.0316 0.0194 0.0004 0.0007 
 Normal Eqs. 0.0516 0.0125 0.0122 0.0002 0.0003 

      
VC Structure B, Sample Size Pattern 1 (np = 200, ni

Parameter 

 = 10) 

0.0431 0.1271 0.0125 0.0012 0.0128 

p 0.0424 0.0150 0.0125 0.0012 0.0019 

i 0.0311 0.1171 0.0279 0.0028 0.0122 

p,i 0.0557 0.1190 0.0331 0.0033 0.0125 
Normal Eqs. 0.0351 0.1028 0.0167 0.0017 0.0104 

      
VC Structure B, Sample Size Pattern 2 (np = 100, ni

Parameter 

 = 50) 

0.0560 0.0566 0.0073 0.0001 0.0011 

p 0.0560 0.0092 0.0074 0.0001 0.0002 

i 0.0114 0.0570 0.0076 0.0002 0.0011 

p,i 0.0582 0.0585 0.0129 0.0003 0.0012 
Normal Eqs. 0.0445 0.0425 0.0101 0.0002 0.0009 
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Table G4. Estimated Standard Errors of Estimated Variance Components for the hip ××  
Design, Normal Data 

 SE(p) SE(i) SE(h) SE(pi) SE(ph) SE(ih) SE(pih) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 200, ni = 5, nh

Parameter 

 = 2) 

0.0403 0.0123 0.0618 0.0181 0.0345 0.0088 0.0251 0.0174 0.0355 

p 0.0404 0.0055 0.0176 0.0181 0.0344 0.0058 0.0251 0.0174 0.0194 

i 0.0230 0.0116 0.0189 0.0167 0.0834 0.0081 0.0824 0.0341 0.0356 

h 0.2436 0.0148 0.0778 0.5007 0.2423 0.0131 0.5006 0.0722 0.0970 

p,i 0.0519 0.0138 0.0277 0.0297 0.0942 0.0113 0.0893 0.0406 0.0431 

p,h 0.2506 0.0173 0.0816 0.5019 0.2472 0.0155 0.5019 0.0764 0.1009 

i,h 0.2590 0.0214 0.0822 0.5078 0.2695 0.0174 0.5139 0.0940 0.1154 

p,i,h 0.2684 0.0246 0.0870 0.5100 0.2764 0.0207 0.5164 0.0992 0.1205 

          
VC Structure A, Sample Size Pattern 2 (np = 100, ni = 10, nh

Parameter 

 = 3) 

0.0420 0.0073 0.0439 0.0101 0.0292 0.0050 0.0168 0.0098 0.0176 

p 0.0418 0.0038 0.0159 0.0100 0.0290 0.0045 0.0167 0.0097 0.0109 

i 0.0150 0.0068 0.0108 0.0096 0.0302 0.0049 0.0297 0.0094 0.0101 

h 0.1041 0.0072 0.0416 0.2051 0.1018 0.0061 0.2050 0.0211 0.0287 

p,i 0.0469 0.0085 0.0206 0.0169 0.0454 0.0078 0.0376 0.0147 0.0161 

p,h 0.1172 0.0094 0.0469 0.2055 0.1090 0.0086 0.2060 0.0249 0.0323 

i,h 0.1072 0.0114 0.0442 0.2059 0.1078 0.0090 0.2079 0.0241 0.0314 

p,i,h 0.1222 0.0141 0.0500 0.2073 0.1170 0.0122 0.2100 0.0286 0.0357 
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Table G4. Continued 

 SE(p) SE(i) SE(h) SE(pi) SE(ph) SE(ih) SE(pih) SE(δ) SE(Δ) 

VC Structure B, Sample Size Pattern 1 (np = 200, ni = 5, nh

Parameter 

 = 2) 

0.0319 0.1261 0.0864 0.0163 0.0174 0.0366 0.0175 0.0091 0.0507 

p 0.0320 0.0163 0.0148 0.0163 0.0174 0.0096 0.0176 0.0091 0.0121 

i 0.0252 0.1183 0.0488 0.0218 0.0578 0.0348 0.0577 0.0209 0.0384 

h 0.1027 0.0776 0.1088 0.3506 0.1014 0.0625 0.3504 0.0177 0.0617 

p,i 0.0453 0.1205 0.0525 0.0311 0.0626 0.0372 0.0625 0.0244 0.0417 

p,h 0.1102 0.0805 0.1108 0.3516 0.1044 0.0640 0.3513 0.0220 0.0641 

i,h 0.1212 0.1520 0.1288 0.3561 0.1302 0.0795 0.3597 0.0440 0.0868 

p,i,h 0.1308 0.1549 0.1315 0.3579 0.1345 0.0817 0.3615 0.0477 0.0897 

          
VC Structure B, Sample Size Pattern 2 (np = 100, ni = 10, nh

Parameter 

 = 3) 

0.0365 0.0798 0.0564 0.0110 0.0136 0.0178 0.0117 0.0047 0.0209 

p 0.0363 0.0128 0.0121 0.0109 0.0136 0.0065 0.0117 0.0046 0.0062 

i 0.0158 0.0737 0.0237 0.0115 0.0201 0.0176 0.0208 0.0059 0.0122 

h 0.0456 0.0381 0.0533 0.1437 0.0428 0.0263 0.1435 0.0060 0.0197 

p,i 0.0424 0.0758 0.0276 0.0190 0.0263 0.0198 0.0264 0.0083 0.0144 

p,h 0.0616 0.0414 0.0558 0.1443 0.0466 0.0277 0.1442 0.0087 0.0214 

i,h 0.0504 0.0887 0.0623 0.1447 0.0487 0.0353 0.1455 0.0094 0.0249 

p,i,h 0.0681 0.0912 0.0651 0.1463 0.0538 0.0373 0.1470 0.0123 0.0269 
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Table G5. Estimated Standard Errors of Estimated Variance Components for the hip ××  
Design, Dichotomous Data 

 SE(p) SE(i) SE(h) SE(pi) SE(ph) SE(ih) SE(pih) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 200, ni = 5, nh

Parameter 

 = 2) 

0.0058 0.0009 0.0040 0.0038 0.0067 0.0009 0.0177 0.0047 0.0055 

p 0.0046 0.0007 0.0016 0.0039 0.0050 0.0008 0.0074 0.0026 0.0028 

i 0.0041 0.0008 0.0016 0.0036 0.0168 0.0008 0.0170 0.0070 0.0071 

h 0.0221 0.0012 0.0049 0.1000 0.0212 0.0011 0.0993 0.0037 0.0047 

p,i 0.0072 0.0013 0.0025 0.0064 0.0183 0.0014 0.0194 0.0079 0.0081 

p,h 0.0234 0.0017 0.0054 0.1004 0.0224 0.0016 0.0998 0.0053 0.0063 

i,h 0.0284 0.0018 0.0054 0.1015 0.0318 0.0015 0.1022 0.0127 0.0132 

p,i,h 0.0302 0.0024 0.0061 0.1022 0.0335 0.0022 0.1030 0.0139 0.0144 

Normal Eqs. 0.0040 0.0009 0.0042 0.0035 0.0042 0.0008 0.0050 0.0022 0.0030 

          
VC Structure A, Sample Size Pattern 2 (np = 100, ni = 10, nh

Parameter 

 = 3) 

0.0049 0.0006 0.0031 0.0021 0.0054 0.0006 0.0146 0.0022 0.0027 

p 0.0041 0.0005 0.0014 0.0021 0.0040 0.0007 0.0070 0.0014 0.0015 

i 0.0023 0.0005 0.0009 0.0020 0.0060 0.0005 0.0070 0.0019 0.0019 

h 0.0100 0.0007 0.0027 0.0409 0.0092 0.0006 0.0409 0.0017 0.0020 

p,i 0.0052 0.0009 0.0019 0.0036 0.0078 0.0011 0.0106 0.0026 0.0027 

p,h 0.0116 0.0011 0.0033 0.0413 0.0106 0.0011 0.0418 0.0025 0.0029 

i,h 0.0110 0.0010 0.0030 0.0413 0.0115 0.0009 0.0418 0.0028 0.0031 

p,i,h 0.0129 0.0015 0.0037 0.0417 0.0133 0.0016 0.0428 0.0037 0.0040 

Normal Eqs. 0.0034 0.0006 0.0028 0.0019 0.0031 0.0005 0.0033 0.0010 0.0014 
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Table G5. Continued 

 SE(p) SE(i) SE(h) SE(pi) SE(ph) SE(ih) SE(pih) SE(δ) SE(Δ) 

VC Structure B, Sample Size Pattern 1 (np = 200, ni = 5, nh

Parameter 

 = 2) 

0.0071 0.0108 0.0061 0.0055 0.0045 0.0042 0.0228 0.0046 0.0073 

p 0.0038 0.0022 0.0016 0.0042 0.0032 0.0016 0.0063 0.0018 0.0021 

i 0.0062 0.0088 0.0045 0.0048 0.0164 0.0034 0.0191 0.0073 0.0084 

h 0.0111 0.0076 0.0068 0.0904 0.0098 0.0057 0.0895 0.0055 0.0059 

p,i 0.0082 0.0093 0.0050 0.0074 0.0173 0.0040 0.0207 0.0078 0.0090 

p,h 0.0124 0.0082 0.0072 0.0908 0.0108 0.0061 0.0899 0.0061 0.0067 

i,h 0.0213 0.0127 0.0093 0.0927 0.0252 0.0074 0.0935 0.0132 0.0146 

p,i,h 0.0229 0.0134 0.0098 0.0933 0.0263 0.0080 0.0942 0.0138 0.0153 

Normal Eqs. 0.0034 0.0091 0.0062 0.0036 0.0029 0.0035 0.0045 0.0015 0.0039 

          
VC Structure B, Sample Size Pattern 2 (np = 100, ni = 10, nh

Parameter 

 = 3) 

0.0057 0.0069 0.0041 0.0037 0.0032 0.0023 0.0173 0.0017 0.0029 

p 0.0037 0.0018 0.0012 0.0027 0.0022 0.0012 0.0057 0.0008 0.0010 

i 0.0039 0.0060 0.0022 0.0030 0.0058 0.0020 0.0113 0.0021 0.0025 

h 0.0056 0.0043 0.0036 0.0366 0.0042 0.0026 0.0364 0.0017 0.0022 

p,i 0.0058 0.0065 0.0027 0.0047 0.0066 0.0026 0.0131 0.0023 0.0029 

p,h 0.0072 0.0049 0.0040 0.0371 0.0051 0.0031 0.0372 0.0020 0.0026 

i,h 0.0077 0.0080 0.0047 0.0374 0.0078 0.0037 0.0387 0.0029 0.0036 

p,i,h 0.0095 0.0086 0.0051 0.0378 0.0089 0.0043 0.0394 0.0033 0.0041 

Normal Eqs. 0.0030 0.0057 0.0038 0.0021 0.0018 0.0018 0.0029 0.0006 0.0015 
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Table G6. Estimated Standard Errors of Estimated Variance Components for the hip ××  
Design, Polytomous Data 

 SE(p) SE(i) SE(h) SE(pi) SE(ph) SE(ih) SE(pih) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 200, ni = 5, nh

Parameter 

 = 2) 

0.0476 0.0441 0.1567 0.0186 0.0303 0.0329 0.0226 0.0153 0.0801 

p 0.0481 0.0056 0.0155 0.0182 0.0304 0.0057 0.0223 0.0154 0.0171 

i 0.0232 0.0357 0.0240 0.0168 0.0830 0.0231 0.0817 0.0339 0.0371 

h 0.2427 0.0403 0.1282 0.5008 0.2417 0.0319 0.5006 0.0716 0.1060 

p,i 0.0581 0.0365 0.0300 0.0300 0.0924 0.0245 0.0876 0.0396 0.0432 

p,h 0.2501 0.0413 0.1301 0.5017 0.2454 0.0329 0.5017 0.0749 0.1088 

i,h 0.2581 0.0614 0.1326 0.5079 0.2689 0.0458 0.5139 0.0935 0.1237 

p,i,h 0.2681 0.0624 0.1350 0.5095 0.2744 0.0471 0.5159 0.0979 0.1276 

Normal Eqs. 0.0403 0.0318 0.1060 0.0181 0.0344 0.0189 0.0251 0.0174 0.0561 

          
VC Structure A, Sample Size Pattern 2 (np = 100, ni = 10, nh

Parameter 

 = 3) 

0.0549 0.0321 0.1169 0.0105 0.0224 0.0184 0.0141 0.0075 0.0398 

p 0.0563 0.0037 0.0155 0.0104 0.0225 0.0045 0.0140 0.0075 0.0089 

i 0.0152 0.0245 0.0101 0.0100 0.0303 0.0159 0.0285 0.0094 0.0103 

h 0.1031 0.0141 0.0882 0.2043 0.1008 0.0139 0.2043 0.0207 0.0382 

p,i 0.0602 0.0250 0.0198 0.0175 0.0413 0.0171 0.0347 0.0133 0.0149 

p,h 0.1217 0.0154 0.0907 0.2054 0.1059 0.0152 0.2055 0.0234 0.0403 

i,h 0.1065 0.0307 0.0899 0.2058 0.1071 0.0242 0.2074 0.0238 0.0405 

p,i,h 0.1267 0.0318 0.0923 0.2070 0.1140 0.0254 0.2091 0.0272 0.0431 

Normal Eqs. 0.0425 0.0139 0.0887 0.0101 0.0292 0.0075 0.0167 0.0098 0.0311 
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Table G6. Continued 

 SE(p) SE(i) SE(h) SE(pi) SE(ph) SE(ih) SE(pih) SE(δ) SE(Δ) 

VC Structure B, Sample Size Pattern 1 (np = 200, ni = 5, nh

Parameter 

 = 2) 

0.0377 0.1367 0.1715 0.0175 0.0197 0.0763 0.0199 0.0103 0.0903 

p 0.0380 0.0163 0.0135 0.0176 0.0199 0.0096 0.0199 0.0105 0.0128 

i 0.0255 0.1261 0.0552 0.0224 0.0580 0.0638 0.0582 0.0211 0.0420 

h 0.1030 0.1192 0.1508 0.3518 0.1016 0.0965 0.3515 0.0183 0.0812 

p,i 0.0499 0.1279 0.0577 0.0326 0.0637 0.0650 0.0640 0.0252 0.0451 

p,h 0.1130 0.1209 0.1520 0.3530 0.1054 0.0974 0.3527 0.0237 0.0831 

i,h 0.1216 0.1936 0.1694 0.3574 0.1308 0.1320 0.3610 0.0446 0.1040 

p,i,h 0.1334 0.1956 0.1706 0.3596 0.1357 0.1333 0.3631 0.0488 0.1064 

Normal Eqs. 0.0322 0.1338 0.1267 0.0164 0.0174 0.0563 0.0176 0.0091 0.0691 

          
VC Structure B, Sample Size Pattern 2 (np = 100, ni = 10, nh

Parameter 

 = 3) 

0.0460 0.0887 0.1375 0.0128 0.0181 0.0437 0.0138 0.0062 0.0470 

p 0.0455 0.0130 0.0118 0.0125 0.0176 0.0065 0.0138 0.0060 0.0072 

i 0.0156 0.0845 0.0239 0.0128 0.0201 0.0379 0.0216 0.0059 0.0132 

h 0.0461 0.0481 0.0957 0.1435 0.0433 0.0384 0.1434 0.0065 0.0331 

p,i 0.0504 0.0863 0.0276 0.0214 0.0286 0.0390 0.0286 0.0092 0.0157 

p,h 0.0683 0.0505 0.0970 0.1446 0.0490 0.0394 0.1445 0.0102 0.0345 

i,h 0.0508 0.1049 0.1011 0.1447 0.0492 0.0611 0.1456 0.0098 0.0369 

p,i,h 0.0742 0.1071 0.1028 0.1469 0.0560 0.0622 0.1477 0.0135 0.0386 

Normal Eqs. 0.0369 0.0826 0.0965 0.0110 0.0136 0.0218 0.0117 0.0047 0.0335 
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Table G7. Estimated Standard Errors of Estimated Variance 
Components for the pi : Design, Normal Data 

 SE(p) SE(i:p) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 50, ni

Parameter 

 = 5) 

0.0594 0.0900 0.0180 0.0180 

p 0.0587 0.0896 0.0179 0.0179 

i 0.1604 0.1646 0.0329 0.0329 
p,i 0.1233 0.1503 0.0301 0.0301 

     
VC Structure A, Sample Size Pattern 2 (np = 50, ni

Parameter 

 = 50) 

0.0238 0.0257 0.0005 0.0005 

p 0.0234 0.0254 0.0005 0.0005 

i 0.0140 0.0258 0.0005 0.0005 
p,i 0.0301 0.0439 0.0009 0.0009 

     
VC Structure B, Sample Size Pattern 1 (np = 50, ni

Parameter 

 = 5) 

0.0900 0.0700 0.0140 0.0140 

p 0.0887 0.0697 0.0139 0.0139 

i 0.1327 0.1280 0.0256 0.0256 
p,i 0.1376 0.1169 0.0234 0.0234 

     
VC Structure B, Sample Size Pattern 2 (np = 50, ni

Parameter 

 = 50) 

0.0634 0.0200 0.0004 0.0004 

p 0.0624 0.0197 0.0004 0.0004 

i 0.0191 0.0200 0.0004 0.0004 
p,i 0.0677 0.0341 0.0007 0.0007 
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Table G8. Estimated Standard Errors of Estimated Variance 
Components for the pi : Design, Dichotomous Data 

 SE(p) SE(i:p) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 50, ni

Parameter 

 = 5) 

0.0074 0.0171 0.0034 0.0034 

p 0.0074 0.0170 0.0034 0.0034 

i 0.0231 0.0246 0.0049 0.0049 
p,i 0.0178 0.0263 0.0053 0.0053 

Normal Eqs. 0.0069 0.0128 0.0026 0.0026 
     
VC Structure A, Sample Size Pattern 2 (np = 50, ni

Parameter 

 = 50) 

0.0021 0.0083 0.0002 0.0002 

p 0.0019 0.0082 0.0002 0.0002 

i 0.0017 0.0046 0.0001 0.0001 
p,i 0.0029 0.0104 0.0002 0.0002 

Normal Eqs. 0.0017 0.0036 0.0001 0.0001 
     
VC Structure B, Sample Size Pattern 1 (np = 50, ni

Parameter 

 = 5) 

0.0112 0.0176 0.0035 0.0035 

p 0.0110 0.0173 0.0035 0.0035 

i 0.0217 0.0222 0.0044 0.0044 
p,i 0.0206 0.0254 0.0051 0.0051 

Normal Eqs. 0.0091 0.0115 0.0023 0.0023 
     
VC Structure B, Sample Size Pattern 2 (np = 50, ni

Parameter 

 = 50) 

0.0064 0.0113 0.0002 0.0002 

p 0.0061 0.0110 0.0002 0.0002 

i 0.0026 0.0040 0.0001 0.0001 
p,i 0.0070 0.0124 0.0002 0.0002 

Normal Eqs. 0.0046 0.0032 0.0001 0.0001 
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Table G9. Estimated Standard Errors of Estimated Variance 
Components for the pi : Design, Polytomous Data 

 SE(p) SE(i:p) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 50, ni

Parameter 

 = 5) 

0.0660 0.0840 0.0168 0.0168 

p 0.0646 0.0823 0.0165 0.0165 

i 0.1604 0.1624 0.0325 0.0325 
p,i 0.1247 0.1412 0.0282 0.0282 

Normal Eqs. 0.0598 0.0902 0.0180 0.0180 
     
VC Structure A, Sample Size Pattern 2 (np = 50, ni

Parameter 

 = 50) 

0.0370 0.0230 0.0005 0.0005 

p 0.0357 0.0228 0.0005 0.0005 

i 0.0139 0.0233 0.0005 0.0005 
p,i 0.0405 0.0396 0.0008 0.0008 

Normal Eqs. 0.0240 0.0257 0.0005 0.0005 
     
VC Structure B, Sample Size Pattern 1 (np = 50, ni

Parameter 

 = 5) 

0.1037 0.0614 0.0123 0.0123 

p 0.1001 0.0605 0.0121 0.0121 

i 0.1315 0.1249 0.0250 0.0250 
p,i 0.1440 0.1055 0.0211 0.0211 

Normal Eqs. 0.0896 0.0696 0.0139 0.0139 
     
VC Structure B, Sample Size Pattern 2 (np = 50, ni

Parameter 

 = 50) 

0.0823 0.0169 0.0003 0.0003 

p 0.0777 0.0167 0.0003 0.0003 

i 0.0190 0.0172 0.0003 0.0003 
p,i 0.0821 0.0291 0.0006 0.0006 

Normal Eqs. 0.0635 0.0200 0.0004 0.0004 
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Table G10. Estimated Standard Errors of Estimated Variance 
Components for the phi :: Design, Normal Data 

 SE(p) SE(h:p) SE(i:h:p) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 100, ni = 20, nh

Parameter 

 = 5) 

0.0414 0.0039 0.0102 0.0008 0.0110 

p 0.0411 0.0039 0.0101 0.0008 0.0008 

i 0.0090 0.0127 0.0153 0.0024 0.0024 
h 0.0135 0.0094 0.0090 0.0019 0.0019 

p,i 0.0430 0.0082 0.0174 0.0016 0.0016 
p,h 0.0437 0.0065 0.0163 0.0013 0.0013 
i,h 0.0214 0.0172 0.0175 0.0034 0.0034 

p,i,h 0.0471 0.0118 0.0249 0.0023 0.0023 
      

VC Structure A, Sample Size Pattern 2 (np = 50, ni = 5, nh

Parameter 

 = 2) 

0.0745 0.0335 0.0495 0.0160 0.0160 

p 0.0735 0.0329 0.0486 0.0157 0.0157 

i 0.0483 0.1204 0.1194 0.0496 0.0496 
h 0.1660 0.1621 0.0345 0.0810 0.0810 

p,i 0.1004 0.0800 0.0837 0.0373 0.0373 
p,h 0.1036 0.0647 0.0689 0.0316 0.0316 
i,h 0.2909 0.2962 0.1160 0.1455 0.1455 

p,i,h 0.1534 0.1245 0.1060 0.0598 0.0598 
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Table G10. Continued 

 SE(p) SE(h:p) SE(i:h:p) SE(δ) SE(Δ) 

VC Structure B, Sample Size Pattern 1 (np = 100, ni = 20, nh

Parameter 

 = 5) 

0.0267 0.0131 0.0102 0.0026 0.0026 

p 0.0265 0.0130 0.0101 0.0026 0.0026 

i 0.0073 0.0143 0.0153 0.0028 0.0028 
h 0.0335 0.0316 0.0090 0.0063 0.0063 

p,i 0.0285 0.0175 0.0174 0.0035 0.0035 
p,h 0.0354 0.0218 0.0163 0.0044 0.0044 
i,h 0.0397 0.0387 0.0175 0.0077 0.0077 

p,i,h 0.0388 0.0271 0.0249 0.0054 0.0054 
      

VC Structure B, Sample Size Pattern 2 (np = 50, ni = 5, nh

Parameter 

 = 2) 

0.0663 0.0588 0.0495 0.0290 0.0290 

p 0.0471 0.0414 0.0348 0.0204 0.0204 

i 0.0338 0.1188 0.1156 0.0488 0.0488 
h 0.2944 0.2930 0.0249 0.1465 0.1465 

p,i 0.0671 0.0740 0.0595 0.0356 0.0356 
p,h 0.0951 0.0825 0.0493 0.0410 0.0410 
i,h 0.4141 0.4196 0.1070 0.2082 0.2082 

p,i,h 0.1316 0.1243 0.0757 0.0609 0.0609 
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Table G11. Estimated Standard Errors of Estimated Variance 
Components for the phi :: Design, Dichotomous Data 

 SE(p) SE(h:p) SE(i:h:p) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 100, ni = 20, nh

Parameter 

 = 5) 

0.0039 0.0006 0.0074 0.0002 0.0002 

p 0.0040 0.0006 0.0074 0.0002 0.0002 

i 0.0012 0.0021 0.0027 0.0004 0.0004 
h 0.0017 0.0013 0.0020 0.0003 0.0003 

p,i 0.0042 0.0015 0.0080 0.0003 0.0003 
p,h 0.0043 0.0011 0.0079 0.0002 0.0002 
i,h 0.0029 0.0026 0.0035 0.0005 0.0005 

p,i,h 0.0049 0.0021 0.0088 0.0004 0.0004 
Normal Eqs. 0.0029 0.0005 0.0016 0.0001 0.0001 

      
VC Structure A, Sample Size Pattern 2 (np = 50, ni = 5, nh

Parameter 

 = 2) 

0.0086 0.0063 0.0140 0.0032 0.0032 

p 0.0083 0.0061 0.0141 0.0031 0.0031 

i 0.0075 0.0202 0.0201 0.0084 0.0084 
h 0.0255 0.0251 0.0069 0.0125 0.0125 

p,i 0.0136 0.0150 0.0194 0.0071 0.0071 
p,h 0.0146 0.0118 0.0174 0.0059 0.0059 
i,h 0.0461 0.0474 0.0203 0.0232 0.0232 

p,i,h 0.0245 0.0235 0.0236 0.0113 0.0113 
Normal Eqs. 0.0068 0.0052 0.0080 0.0025 0.0025 
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Table G11. Continued 

 SE(p) SE(h:p) SE(i:h:p) SE(δ) SE(Δ) 

VC Structure B, Sample Size Pattern 1 (np = 100, ni = 20, nh

Parameter 

 = 5) 

0.0022 0.0016 0.0060 0.0003 0.0003 

p 0.0023 0.0016 0.0060 0.0003 0.0003 

i 0.0009 0.0022 0.0027 0.0004 0.0004 
h 0.0031 0.0029 0.0028 0.0006 0.0006 

p,i 0.0026 0.0024 0.0066 0.0005 0.0005 
p,h 0.0032 0.0025 0.0072 0.0005 0.0005 
i,h 0.0041 0.0042 0.0041 0.0008 0.0008 

p,i,h 0.0038 0.0034 0.0081 0.0007 0.0007 
Normal Eqs. 0.0018 0.0012 0.0016 0.0002 0.0002 

      
VC Structure B, Sample Size Pattern 2 (np = 50, ni = 5, nh

Parameter 

 = 2) 

0.0072 0.0081 0.0133 0.0041 0.0041 

p 0.0071 0.0080 0.0133 0.0041 0.0041 

i 0.0070 0.0205 0.0201 0.0086 0.0086 
h 0.0347 0.0343 0.0076 0.0171 0.0171 

p,i 0.0122 0.0167 0.0188 0.0080 0.0080 
p,h 0.0169 0.0158 0.0174 0.0079 0.0079 
i,h 0.0549 0.0562 0.0206 0.0277 0.0277 

p,i,h 0.0264 0.0270 0.0236 0.0131 0.0131 
Normal Eqs. 0.0063 0.0069 0.0081 0.0034 0.0034 
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Table G12. Estimated Standard Errors of Estimated Variance 
Components for the phi :: Design, Polytomous Data 

 SE(p) SE(h:p) SE(i:h:p) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 100, ni = 20, nh

Parameter 

 = 5) 

0.0542 0.0073 0.0086 0.0015 0.0015 

p 0.0531 0.0073 0.0086 0.0014 0.0014 

i 0.0089 0.0127 0.0144 0.0024 0.0024 
h 0.0138 0.0105 0.0078 0.0021 0.0021 

p,i 0.0550 0.0102 0.0150 0.0020 0.0020 
p,h 0.0552 0.0111 0.0139 0.0022 0.0022 
i,h 0.0215 0.0178 0.0156 0.0035 0.0035 

p,i,h 0.0579 0.0147 0.0214 0.0029 0.0029 
Normal Eqs. 0.0413 0.0039 0.0102 0.0008 0.0008 

      
VC Structure A, Sample Size Pattern 2 (np = 50, ni = 5, nh

Parameter 

 = 2) 

0.0902 0.0363 0.0432 0.0173 0.0173 

p 0.0855 0.0358 0.0428 0.0171 0.0171 

i 0.0475 0.1205 0.1179 0.0495 0.0495 
h 0.1686 0.1645 0.0311 0.0822 0.0822 

p,i 0.1115 0.0806 0.0765 0.0374 0.0374 
p,h 0.1150 0.0689 0.0610 0.0337 0.0337 
i,h 0.2932 0.2984 0.1131 0.1467 0.1467 

p,i,h 0.1599 0.1248 0.0966 0.0600 0.0600 
Normal Eqs. 0.0745 0.0337 0.0494 0.0161 0.0161 

      

 

 



 188 

Table G12. Continued 

 SE(p) SE(h:p) SE(i:h:p) SE(δ) SE(Δ) 

VC Structure B, Sample Size Pattern 1 (np = 100, ni = 20, nh

Parameter 

 = 5) 

0.0295 0.0142 0.0086 0.0028 0.0028 

p 0.0292 0.0141 0.0086 0.0028 0.0028 

i 0.0073 0.0143 0.0145 0.0028 0.0028 
h 0.0335 0.0318 0.0077 0.0064 0.0064 

p,i 0.0309 0.0184 0.0150 0.0037 0.0037 
p,h 0.0377 0.0232 0.0139 0.0046 0.0046 
i,h 0.0399 0.0390 0.0156 0.0078 0.0078 

p,i,h 0.0409 0.0283 0.0215 0.0056 0.0056 
Normal Eqs. 0.0268 0.0131 0.0102 0.0026 0.0026 

      
VC Structure B, Sample Size Pattern 2 (np = 50, ni = 5, nh

Parameter 

 = 2) 

0.0690 0.0599 0.0432 0.0294 0.0294 

p 0.0681 0.0592 0.0432 0.0291 0.0291 

i 0.0479 0.1253 0.1184 0.0525 0.0525 
h 0.2979 0.2948 0.0304 0.1474 0.1474 

p,i 0.0954 0.1045 0.0763 0.0501 0.0501 
p,h 0.1354 0.1172 0.0611 0.0582 0.0582 
i,h 0.4197 0.4243 0.1131 0.2104 0.2104 

p,i,h 0.1849 0.1737 0.0969 0.0851 0.0851 
Normal Eqs. 0.0671 0.0586 0.0495 0.0289 0.0289 
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Table G13. Estimated Standard Errors of Estimated Variance Components for 
the ( )hip :×  Design, Normal Data 

 SE(p) SE(h) SE(ph) SE(i:h) SE(pi:h) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 200, ni = 15, nh

Parameter 

 = 5) 

0.0220 0.0093 0.0049 0.0074 0.0084 0.0010 0.0021 

p 0.0219 0.0025 0.0049 0.0030 0.0084 0.0010 0.0011 

i 0.0063 0.0064 0.0190 0.0072 0.0200 0.0036 0.0039 

h 0.0175 0.0090 0.0159 0.0067 0.0075 0.0032 0.0040 

p,i 0.0235 0.0073 0.0203 0.0083 0.0231 0.0038 0.0042 
p,h 0.0293 0.0097 0.0173 0.0078 0.0135 0.0034 0.0042 
i,h 0.0256 0.0126 0.0258 0.0117 0.0172 0.0051 0.0061 

p,i,h 0.0359 0.0134 0.0275 0.0130 0.0233 0.0054 0.0064 
        

VC Structure A, Sample Size Pattern 2 (np =100, ni = 3, nh

Parameter 

 = 10) 

0.0325 0.0133 0.0153 0.0149 0.0222 0.0013 0.0018 

p 0.0324 0.0065 0.0153 0.0085 0.0221 0.0013 0.0014 

i 0.0126 0.0225 0.2870 0.0212 0.2869 0.0192 0.0203 

h 0.0213 0.0124 0.0203 0.0139 0.0211 0.0019 0.0023 

p,i 0.0366 0.0249 0.2881 0.0241 0.2884 0.0193 0.0204 
p,h 0.0420 0.0153 0.0292 0.0182 0.0371 0.0026 0.0030 
i,h 0.4468 0.0963 0.2232 0.2006 0.8372 0.0088 0.0095 

p,i,h 0.0526 0.0296 0.1333 0.0290 0.1357 0.0093 0.0100 
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Table G13. Continued 

 SE(p) SE(h) SE(ph) SE(i:h) SE(pi:h) SE(δ) SE(Δ) 

VC Structure B, Sample Size Pattern 1 (np = 200, ni = 15, nh

Parameter 

 = 5) 

0.0139 0.0431 0.0094 0.0258 0.0066 0.0019 0.0088 

p 0.0138 0.0075 0.0093 0.0049 0.0066 0.0019 0.0024 

i 0.0045 0.0254 0.0155 0.0254 0.0157 0.0029 0.0061 

h 0.0312 0.0418 0.0308 0.0235 0.0059 0.0062 0.0114 

p,i 0.0151 0.0269 0.0191 0.0263 0.0182 0.0037 0.0068 
p,h 0.0356 0.0430 0.0333 0.0244 0.0106 0.0067 0.0119 
i,h 0.0371 0.0543 0.0377 0.0412 0.0135 0.0075 0.0143 

p,i,h 0.0415 0.0555 0.0406 0.0422 0.0183 0.0081 0.0148 
        

VC Structure B, Sample Size Pattern 2 (np =100, ni = 3, nh

Parameter 

 = 10) 

0.0190 0.0514 0.0168 0.0492 0.0175 0.0016 0.0051 

p 0.0190 0.0131 0.0167 0.0132 0.0174 0.0016 0.0020 

i 0.0087 0.0815 0.2257 0.0757 0.2255 0.0151 0.0197 

h 0.0216 0.0478 0.0231 0.0462 0.0166 0.0022 0.0052 

p,i 0.0216 0.0478 0.0231 0.0462 0.0166 0.0152 0.0199 
p,h 0.0319 0.0512 0.0327 0.0497 0.0291 0.0031 0.0059 
i,h 0.0303 0.0922 0.1031 0.0816 0.1018 0.0072 0.0119 

p,i,h 0.0405 0.0961 0.1086 0.0853 0.1067 0.0079 0.0125 
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Table G14. Estimated Standard Errors of Estimated Variance Components for 
the ( )hip :×  Design, Dichotomous Data 

 SE(p) SE(h) SE(ph) SE(i:h) SE(pi:h) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 200, ni = 15, nh

Parameter 

 = 5) 

0.0023 0.0006 0.0008 0.0006 0.0080 0.0002 0.0003 

p 0.0020 0.0002 0.0007 0.0004 0.0046 0.0002 0.0002 

i 0.0010 0.0004 0.0031 0.0005 0.0043 0.0006 0.0006 

h 0.0024 0.0006 0.0019 0.0005 0.0060 0.0004 0.0004 

p,i 0.0023 0.0005 0.0033 0.0007 0.0065 0.0006 0.0007 

p,h 0.0032 0.0006 0.0021 0.0007 0.0078 0.0004 0.0005 

i,h 0.0037 0.0008 0.0037 0.0009 0.0076 0.0007 0.0008 
p,i,h 0.0044 0.0009 0.0040 0.0011 0.0093 0.0008 0.0009 

Normal Eqs. 0.0015 0.0006 0.0006 0.0005 0.0014 0.0001 0.0002 
        

VC Structure A, Sample Size Pattern 2 (np =100, ni = 3, nh

Parameter 

 = 10) 

0.0034 0.0010 0.0027 0.0012 0.0096 0.0004 0.0004 

p 0.0031 0.0007 0.0027 0.0010 0.0073 0.0003 0.0003 

i 0.0018 0.0015 0.0467 0.0014 0.0467 0.0031 0.0032 

h 0.0032 0.0009 0.0033 0.0011 0.0072 0.0004 0.0004 

p,i 0.0039 0.0019 0.0470 0.0020 0.0475 0.0032 0.0032 

p,h 0.0049 0.0013 0.0050 0.0018 0.0111 0.0005 0.0006 

i,h 0.0052 0.0019 0.0216 0.0019 0.0227 0.0015 0.0016 
p,i,h 0.0069 0.0025 0.0226 0.0026 0.0248 0.0016 0.0017 

Normal Eqs. 0.0024 0.0009 0.0023 0.0011 0.0036 0.0002 0.0002 
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Table G14. Continued 

 SE(p) SE(h) SE(ph) SE(i:h) SE(pi:h) SE(δ) SE(Δ) 

VC Structure B, Sample Size Pattern 1 (np = 200, ni = 15, nh

Parameter 

 = 5) 

0.0017 0.0029 0.0023 0.0029 0.0126 0.0006 0.0010 

p 0.0011 0.0006 0.0012 0.0008 0.0033 0.0002 0.0003 

i 0.0008 0.0018 0.0031 0.0022 0.0056 0.0006 0.0008 

h 0.0036 0.0027 0.0034 0.0026 0.0112 0.0007 0.0011 

p,i 0.0015 0.0020 0.0035 0.0024 0.0066 0.0007 0.0009 

p,h 0.0039 0.0028 0.0037 0.0028 0.0118 0.0008 0.0011 

i,h 0.0048 0.0036 0.0050 0.0039 0.0130 0.0010 0.0015 
p,i,h 0.0052 0.0038 0.0054 0.0041 0.0137 0.0011 0.0015 

Normal Eqs. 0.0010 0.0027 0.0009 0.0018 0.0012 0.0002 0.0006 
        

VC Structure B, Sample Size Pattern 2 (np =100, ni = 3, nh

Parameter 

 = 10) 

0.0022 0.0038 0.0035 0.0044 0.0126 0.0006 0.0009 

p 0.0017 0.0014 0.0029 0.0018 0.0054 0.0003 0.0004 

i 0.0013 0.0057 0.0428 0.0053 0.0426 0.0029 0.0032 

h 0.0034 0.0035 0.0038 0.0040 0.0114 0.0006 0.0008 

p,i 0.0025 0.0062 0.0430 0.0058 0.0431 0.0029 0.0032 

p,h 0.0042 0.0040 0.0055 0.0047 0.0132 0.0007 0.0009 

i,h 0.0053 0.0069 0.0215 0.0065 0.0239 0.0017 0.0019 
p,i,h 0.0061 0.0076 0.0224 0.0073 0.0253 0.0018 0.0021 

Normal Eqs. 0.0015 0.0034 0.0024 0.0035 0.0033 0.0002 0.0004 
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Table G15. Estimated Standard Errors of Estimated Variance Components for 
the ( )hip :×  Design, Polytomous Data 

 SE(p) SE(h) SE(ph) SE(i:h) SE(pi:h) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 200, ni = 15, nh

Parameter 

 = 5) 

0.0294 0.0414 0.0083 0.0231 0.0071 0.0017 0.0084 

p 0.0296 0.0025 0.0084 0.0030 0.0072 0.0017 0.0017 

i 0.0064 0.0069 0.0190 0.0209 0.0196 0.0036 0.0040 

h 0.0177 0.0325 0.0168 0.0204 0.0064 0.0033 0.0074 

p,i 0.0308 0.0076 0.0214 0.0213 0.0220 0.0041 0.0045 
p,h 0.0356 0.0325 0.0199 0.0208 0.0116 0.0040 0.0078 
i,h 0.0257 0.0337 0.0263 0.0348 0.0159 0.0052 0.0088 

p,i,h 0.0412 0.0340 0.0293 0.0353 0.0209 0.0058 0.0092 
Normal Eqs. 0.0221 0.0261 0.0049 0.0080 0.0084 0.0010 0.0053 

        
VC Structure A, Sample Size Pattern 2 (np =100, ni = 3, nh

Parameter 

 = 10) 

0.0438 0.0323 0.0168 0.0379 0.0199 0.0015 0.0037 

p 0.0420 0.0065 0.0167 0.0086 0.0200 0.0015 0.0015 

i 0.0123 0.0348 0.2866 0.0334 0.2864 0.0015 0.0205 

h 0.0214 0.0302 0.0211 0.0369 0.0190 0.0191 0.0038 

p,i 0.0450 0.0365 0.2880 0.0354 0.2879 0.0020 0.0206 
p,h 0.0497 0.0315 0.0311 0.0388 0.0335 0.0193 0.0043 
i,h 0.0334 0.0510 0.1278 0.0549 0.1286 0.0028 0.0104 

p,i,h 0.0589 0.0532 0.1331 0.0571 0.1343 0.0087 0.0109 
Normal Eqs. 0.0326 0.0199 0.0153 0.0188 0.0222 0.0013 0.0023 
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Table G15. Continued 

 SE(p) SE(h) SE(ph) SE(i:h) SE(pi:h) SE(δ) SE(Δ) 

VC Structure B, Sample Size Pattern 1 (np = 200, ni = 15, nh

Parameter 

 = 5) 

0.0201 0.1079 0.0102 0.0294 0.0063 0.0020 0.0217 

p 0.0198 0.0077 0.0101 0.0049 0.0063 0.0020 0.0025 

i 0.0045 0.0261 0.0156 0.0284 0.0156 0.0029 0.0063 

h 0.0314 0.0836 0.0310 0.0267 0.0057 0.0062 0.0185 

p,i 0.0207 0.0276 0.0195 0.0291 0.0179 0.0038 0.0069 
p,h 0.0385 0.0840 0.0338 0.0275 0.0102 0.0068 0.0187 
i,h 0.0372 0.0910 0.0379 0.0461 0.0132 0.0076 0.0205 

p,i,h 0.0440 0.0917 0.0411 0.0470 0.0177 0.0082 0.0209 
Normal Eqs. 0.0140 0.0710 0.0094 0.0262 0.0066 0.0019 0.0143 

        
VC Structure B, Sample Size Pattern 2 (np =100, ni = 3, nh

Parameter 

 = 10) 

0.0280 0.0851 0.0172 0.0541 0.0172 0.0016 0.0085 

p 0.0273 0.0134 0.0172 0.0132 0.0169 0.0016 0.0020 

i 0.0084 0.0836 0.2249 0.0770 0.2247 0.0150 0.0197 

h 0.0216 0.0789 0.0234 0.0514 0.0160 0.0023 0.0082 

p,i 0.0295 0.0861 0.2265 0.0791 0.2261 0.0152 0.0200 
p,h 0.0375 0.0811 0.0333 0.0545 0.0281 0.0032 0.0087 
i,h 0.0302 0.1140 0.1028 0.0873 0.1013 0.0072 0.0136 

p,i,h 0.0449 0.1172 0.1084 0.0908 0.1060 0.0078 0.0142 
Normal Eqs. 0.0192 0.0611 0.0169 0.0494 0.0175 0.0016 0.0061 
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APPENDIX H:  MAGNITUDES OF DIFFERENCE BETWEEN 
PARAMETERS AND ESTIMATED STANDARD ERRORS OF 

ESTIMATED VARIANCE COMPONENTS 

Table H1. Magnitudes of Difference Between Parameters and Estimated 
Standard Errors of Estimated Variance Components for 
the ip×  Design, Normal Data 

 SE(p) SE(i) SE(pi) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 200, ni

p 

 = 10) 

0 -66 0 0 -32 

i -9 -2 77 77 40 

p,i 45 9 124 124 68 
      

VC Structure A, Sample Size Pattern 2 (np = 100, ni

p 

 = 50) 

0 -52 0 0 -21 

i -74 -1 1 1 0 

p,i 6 19 73 73 49 
      

VC Structure B, Sample Size Pattern 1 (np = 200, ni

p 

 = 10) 

0 -84 0 0 -77 

i -11 -1 77 77 4 

p,i 44 1 124 124 9 
      

VC Structure B, Sample Size Pattern 2 (np = 100, ni

p 

 = 50) 

0 -78 0 0 -69 

i -74 -1 1 1 -1 

p,i 6 4 73 73 9 
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Table H2. Magnitudes of Difference Between Parameters and Estimated 
Standard Errors of Estimated Variance Components for 
the ip×  Design, Dichotomous Data 

 SE(p) SE(i) SE(pi) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 200, ni

p 

 = 10) 

-15 -43 -38 -38 -38 

i 35 -4 -9 -9 -9 

p,i 72 23 17 17 16 

Normal Eqs. -35 -6 -67 -67 -66 
      

VC Structure A, Sample Size Pattern 2 (np = 100, ni

p 

 = 50) 

-6 -16 -11 -11 -10 

i -58 -10 -48 -48 -48 

p,i 8 40 7 7 8 

 Normal Eqs. -32 -15 -75 -75 -75 
      

VC Structure B, Sample Size Pattern 1 (np = 200, ni

p 

 = 10) 

-40 -73 -65 -65 -68 

i 40 -7 -10 -10 -10 

p,i 60 0 -1 -1 -2 

Normal Eqs. -52 -16 -79 -79 -64 
      

VC Structure B, Sample Size Pattern 2 (np = 100, ni

p 

 = 50) 

-13 -53 -32 -32 -34 

i -42 -8 -25 -25 -24 

p,i 9 -8 4 4 3 

Normal Eqs. -36 -29 -78 -78 -71 
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Table H3. Magnitudes of Difference Between Parameters and Estimated 
Standard Errors of Estimated Variance Components for 
the ip×  Design, Polytomous Data 

 SE(p) SE(i) SE(pi) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 200, ni

p 

 = 10) 

-2 -88 0 0 -74 

i -27 -16 88 88 -5 

p,i 30 -14 134 134 2 
Normal Eqs. -19 -48 8 8 -44 

      
VC Structure A, Sample Size Pattern 2 (np = 100, ni

p 

 = 50) 

-2 -83 2 2 -64 

i -80 -5 4 4 -4 

p,i 2 -2 77 77 9 
 Normal Eqs. -21 -61 12 12 -49 

      
VC Structure B, Sample Size Pattern 1 (np = 200, ni

p 

 = 10) 

-2 -88 0 0 -85 

i -28 -8 123 123 -4 

p,i 29 -6 165 165 -2 
Normal Eqs. -19 -19 34 34 -19 

      
VC Structure B, Sample Size Pattern 2 (np = 100, ni

p 

 = 50) 

0 -84 1 1 -80 

i -80 1 5 5 1 

p,i 4 3 77 77 5 
Normal Eqs. -21 -25 39 39 -24 
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Table H4. Magnitudes of Difference Between Parameters and Estimated Standard Errors 
of Estimated Variance Components for the hip ××  Design, Normal Data 

 SE(p) SE(i) SE(h) SE(pi) SE(ph) SE(ih) SE(pih) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 200, ni = 5, nh

p 

 = 2) 

0 -55 -72 0 0 -34 0 0 -45 

i -43 -6 -69 -7 142 -8 229 96 0 

h 505 20 26 2670 603 48 1897 314 173 

p,i 29 12 -55 64 173 28 256 133 21 

p,h 523 40 32 2676 617 75 1902 338 184 

i,h 543 74 33 2709 682 97 1950 440 225 

p,i,h 567 100 41 2721 702 134 1960 470 239 

          
VC Structure A, Sample Size Pattern 2 (np = 100, ni = 10, nh

p 

 = 3) 

-1 -48 -64 0 -1 -11 0 -1 -38 

i -64 -8 -75 -5 3 -2 77 -4 -42 

h 148 -2 -5 1938 249 23 1124 116 64 

p,i 12 17 -53 67 55 57 125 51 -8 

p,h 179 28 7 1943 273 72 1130 155 84 

i,h 155 56 1 1947 269 80 1141 147 79 

p,i,h 191 93 14 1961 301 144 1154 193 103 
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Table H4. Continued 

 SE(p) SE(i) SE(h) SE(pi) SE(ph) SE(ih) SE(pih) SE(δ) SE(Δ) 

VC Structure B, Sample Size Pattern 1 (np = 200, ni = 5, nh

p 

 = 2) 

0 -87 -83 0 0 -74 0 0 -76 

i -21 -6 -44 34 232 -5 229 128 -24 

h 222 -38 26 2046 483 71 1897 94 22 

p,i 42 -4 -39 90 260 2 256 167 -18 

p,h 245 -36 28 2052 500 75 1902 141 26 

i,h 280 21 49 2079 649 117 1950 382 71 

p,i,h 310 23 52 2091 673 123 1960 422 77 

          
VC Structure B, Sample Size Pattern 2 (np = 100, ni = 10, nh

p 

 = 3) 

-1 -84 -78 0 -1 -63 0 -1 -70 

i -57 -8 -58 5 48 -1 77 26 -42 

h 25 -52 -6 1208 215 47 1124 28 -6 

p,i 16 -5 -51 73 93 11 125 78 -31 

p,h 69 -48 -1 1214 242 55 1130 87 2 

i,h 38 11 11 1217 258 98 1141 103 19 

p,i,h 86 14 15 1232 295 109 1154 165 29 

          

 



 200 

Table H5. Magnitudes of Difference Between Parameters and Estimated Standard Errors 
of Estimated Variance Components for the hip ××  Design, Dichotomous 
Data 

 SE(p) SE(i) SE(h) SE(pi) SE(ph) SE(ih) SE(pih) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 200, ni = 5, nh

p 

 = 2) 

-20 -26 -60 2 -25 -1 -58 -43 -49 

i -30 -13 -60 -6 151 -10 -4 50 29 

h 285 32 22 2523 218 26 462 -21 -15 

p,i 26 33 -37 67 174 62 10 70 47 

p,h 307 84 34 2533 235 89 465 14 14 

i,h 393 87 35 2564 377 80 479 173 139 

p,i,h 425 155 51 2582 401 161 483 197 161 

Normal Eqs. -31 -4 4 -7 -37 -3 -72 -54 -46 

          
VC Structure A, Sample Size Pattern 2 (np = 100, ni = 10, nh

p 

 = 3) 

-15 -16 -55 -1 -27 23 -52 -36 -43 

i -53 -9 -69 -5 10 -10 -52 -41 -27 

h 104 15 -12 1819 69 -3 180 -23 -23 

p,i 7 47 -39 67 43 89 -27 17 1 

p,h 137 85 7 1841 94 90 187 14 7 

i,h 124 76 -3 1840 112 55 187 30 17 

p,i,h 164 164 20 1857 144 172 194 68 49 

Normal Eqs. -30 -3 -10 -9 -44 -8 -77 -53 -48 
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Table H5. Continued 

 SE(p) SE(i) SE(h) SE(pi) SE(ph) SE(ih) SE(pih) SE(δ) SE(Δ) 

VC Structure B, Sample Size Pattern 1 (np = 200, ni = 5, nh

p 

 = 2) 

-46 -80 -74 -24 -29 -62 -73 -62 -71 

i -12 -18 -26 -13 261 -19 -16 58 15 

h 56 -30 12 1541 115 35 293 18 -18 

p,i 15 -14 -18 34 280 -4 -9 69 23 

p,h 75 -24 18 1547 137 46 295 31 -9 

i,h 201 18 53 1582 454 78 311 184 100 

p,i,h 223 24 61 1593 479 91 314 197 110 

Normal Eqs. -52 -16 1 -35 -37 -17 -80 -67 -47 

          
VC Structure B, Sample Size Pattern 2 (np = 100, ni = 10, nh

p 

 = 3) 

-35 -73 -70 -28 -34 47 -67 -54 -64 

i -31 -12 -45 -18 80 -13 -35 18 -12 

h -1 -37 -10 893 29 15 111 0 -23 

p,i 3 -5 -33 27 105 12 -24 35 0 

p,h 27 -28 -2 906 56 35 115 18 -11 

i,h 37 16 15 914 124 62 124 69 27 

p,i,h 68 25 26 924 173 88 128 89 41 

Normal Eqs. -46 -17 -7 -42 -45 -23 -83 -64 -47 
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Table H6. Magnitudes of Difference Between Parameters and Estimated Standard Errors 
of Estimated Variance Components for the hip ××  Design, Polytomous Data 

 SE(p) SE(i) SE(h) SE(pi) SE(ph) SE(ih) SE(pih) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 200, ni = 5, nh

p 

 = 2) 

1 -87 -90 -2 0 -83 -1 1 -79 

i -51 -19 -85 -9 174 -30 262 122 -54 

h 410 -9 -18 2593 698 -3 2115 368 32 

p,i 22 -17 -81 61 205 -26 287 159 -46 

p,h 425 -6 -17 2598 710 0 2120 390 36 

i,h 442 39 -15 2632 788 39 2174 511 54 

p,i,h 463 42 -14 2640 806 43 2183 540 59 

Normal Eqs. -15 -28 -32 -3 14 -43 11 14 -30 

          
VC Structure A, Sample Size Pattern 2 (np = 100, ni = 10, nh

p 

 = 3) 

3 -89 -87 0 0 -76 0 0 -78 

i -72 -24 -91 -5 35 -13 103 25 -74 

h 88 -56 -25 1851 350 -24 1352 175 -4 

p,i 10 -22 -83 67 85 -7 146 78 -62 

p,h 122 -52 -22 1861 373 -17 1361 211 1 

i,h 91 -4 -23 1865 378 31 1375 216 2 

p,i,h 131 -1 -21 1877 409 38 1387 263 8 

Normal Eqs. -22 -57 -24 -4 30 -59 19 30 -22 
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Table H6. Continued 

 SE(p) SE(i) SE(h) SE(pi) SE(ph) SE(ih) SE(pih) SE(δ) SE(Δ) 

VC Structure B, Sample Size Pattern 1 (np = 200, ni = 5, nh

p 

 = 2) 

1 -88 -92 1 1 -87 0 2 -86 

i -32 -8 -68 28 195 -16 193 105 -53 

h 173 -13 -12 1912 417 26 1669 79 -10 

p,i 32 -6 -66 86 224 -15 222 145 -50 

p,h 200 -12 -11 1919 436 28 1674 131 -8 

i,h 222 42 -1 1944 565 73 1716 334 15 

p,i,h 254 43 -1 1957 590 75 1727 375 18 

Normal Eqs. -15 -2 -26 -6 -11 -26 -11 -11 -23 

          
VC Structure B, Sample Size Pattern 2 (np = 100, ni = 10, nh

p 

 = 3) 

-1 -85 -91 -2 -2 -85 -1 -3 -85 

i -66 -5 -83 1 11 -13 56 -4 -72 

h 0 -46 -30 1025 140 -12 937 5 -29 

p,i 10 -3 -80 68 59 -11 107 49 -67 

p,h 48 -43 -29 1034 172 -10 945 65 -27 

i,h 10 18 -26 1035 172 40 952 59 -21 

p,i,h 61 21 -25 1052 210 42 968 119 -18 

Normal Eqs. -20 -7 -30 -14 -24 -50 -15 -25 -29 
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Table H7. Magnitudes of Difference Between Parameters and 
Estimated Standard Errors of Estimated Variance 
Components for the pi : Design, Normal Data 

 SE(p) SE(i:p) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 50, ni

p 

 = 5) 

-1 0 0 0 

i 170 83 83 83 
p,i 108 67 67 67 

     
VC Structure A, Sample Size Pattern 2 (np = 50, ni

p 

 = 50) 

-2 -1 -1 -1 

i -41 0 0 0 
p,i 26 71 71 71 

     
VC Structure B, Sample Size Pattern 1 (np = 50, ni

p 

 = 5) 

-1 0 0 0 

i 47 83 83 83 
p,i 53 67 67 67 

     
VC Structure B, Sample Size Pattern 2 (np = 50, ni

p 

 = 50) 

-2 -1 -1 -1 

i -70 0 0 0 
p,i 7 71 71 71 

     



 205 

Table H8. Magnitudes of Difference Between Parameters and 
Estimated Standard Errors of Estimated Variance 
Components for the pi : Design, Dichotomous Data 

 SE(p) SE(i:p) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 50, ni

p 

 = 5) 

0 -1 -1 -1 

i 213 43 43 43 
p,i 141 53 53 53 

Normal Eqs. -6 -25 -25 -25 
     
VC Structure A, Sample Size Pattern 2 (np = 50, ni

p 

 = 50) 

-7 -2 -2 -2 

i -21 -45 -45 -45 
p,i 39 25 25 25 

Normal Eqs. -18 -56 -56 -56 
     
VC Structure B, Sample Size Pattern 1 (np = 50, ni

p 

 = 5) 

-2 -2 -2 -2 

i 94 26 26 26 
p,i 84 44 44 44 

Normal Eqs. -19 -35 -35 -35 
     
VC Structure B, Sample Size Pattern 2 (np = 50, ni

p 

 = 50) 

-4 -2 -2 -2 

i -60 -65 -65 -65 
p,i 10 9 9 9 

Normal Eqs. -29 -71 -71 -71 
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Table H9. Magnitudes of Difference Between Parameters and 
Estimated Standard Errors of Estimated Variance 
Components for the pi : Design, Polytomous Data 

 SE(p) SE(i:p) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 50, ni

p 

 = 5) 

-2 -2 -2 -2 

i 143 93 93 93 
p,i 89 68 68 68 

Normal Eqs. -10 7 7 7 
     
VC Structure A, Sample Size Pattern 2 (np = 50, ni

p 

 = 50) 

-3 -1 -1 -1 

i -63 1 1 1 
p,i 9 72 72 72 

Normal Eqs. -35 12 12 12 
     
VC Structure B, Sample Size Pattern 1 (np = 50, ni

p 

 = 5) 

-3 -1 -1 -1 

i 27 103 103 103 
p,i 39 72 72 72 

Normal Eqs. -14 13 13 13 
     
VC Structure B, Sample Size Pattern 2 (np = 50, ni

p 

 = 50) 

-6 -1 -1 -1 

i -77 1 1 1 
p,i 0 72 72 72 

Normal Eqs. -23 18 18 18 
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Table H10. Magnitudes of Difference Between Parameters and 
Estimated Standard Errors of Estimated Variance 
Components for the phi :: Design, Normal Data 

 SE(p) SE(h:p) SE(i:h:p) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 100, ni = 20, nh

p 

 = 5) 

-1 -1 0 -1 -1 

i -78 223 51 221 221 
h -67 141 -11 142 142 

p,i 4 110 71 108 108 
p,h 6 66 61 66 66 
i,h -48 339 73 338 338 

p,i,h 14 200 145 198 198 
      

VC Structure A, Sample Size Pattern 2 (np = 50, ni = 5, nh

p 

 = 2) 

-1 -2 -2 -2 -2 

i -35 260 141 210 210 
h 123 384 -30 406 406 

p,i 35 139 69 133 133 
p,h 39 93 39 98 98 
i,h 291 784 134 810 810 

p,i,h 106 272 114 274 274 
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Table H10. Continued 

 SE(p) SE(h:p) SE(i:h:p) SE(δ) SE(Δ) 

VC Structure B, Sample Size Pattern 1 (np = 100, ni = 20, nh

p 

 = 5) 

-1 -1 0 -1 -1 

i -73 9 51 5 5 
h 26 142 -11 142 142 

p,i 7 34 71 33 33 
p,h 33 66 61 66 66 
i,h 49 196 73 195 195 

p,i,h 45 107 145 107 107 
      

VC Structure B, Sample Size Pattern 2 (np = 50, ni = 5, nh

p 

 = 2) 

-29 -30 -30 -30 -30 

i -49 102 134 68 68 
h 344 398 -50 405 405 

p,i 1 26 20 23 23 
p,h 43 40 0 41 41 
i,h 525 613 116 618 618 

p,i,h 99 111 53 110 110 
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Table H11. Magnitudes of Difference Between Parameters and 
Estimated Standard Errors of Estimated Variance 
Components for the phi :: Design, Dichotomous Data 

 SE(p) SE(h:p) SE(i:h:p) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 100, ni = 20, nh

p 

 = 5) 

3 0 1 0 0 

i -70 226 -63 154 154 
h -56 99 -73 62 62 

p,i 10 128 8 92 92 
p,h 12 64 8 45 45 
i,h -25 310 -52 229 229 

p,i,h 28 220 19 163 163 
Normal Eqs. -25 -19 -78 -35 -35 

      
VC Structure A, Sample Size Pattern 2 (np = 50, ni = 5, nh

p 

 = 2) 

-3 -3 1 -3 -3 

i -13 233 43 165 165 
h 197 301 -51 295 295 

p,i 58 140 38 124 124 
p,h 70 89 24 85 85 
i,h 436 658 45 635 635 

p,i,h 185 276 68 257 257 
Normal Eqs. -21 -17 -43 -22 -22 
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Table H11. Continued 

 SE(p) SE(h:p) SE(i:h:p) SE(δ) SE(Δ) 

VC Structure B, Sample Size Pattern 1 (np = 100, ni = 20, nh

p 

 = 5) 

3 1 0 1 1 

i -60 41 -54 25 25 
h 38 82 -52 68 68 

p,i 17 49 11 43 43 
p,h 46 56 20 49 49 
i,h 83 162 -32 140 140 

p,i,h 71 115 36 102 102 
Normal Eqs. -17 -27 -72 -33 -33 

      
VC Structure B, Sample Size Pattern 2 (np = 50, ni = 5, nh

p 

 = 2) 

-1 -1 -1 -1 -1 

i -3 152 51 107 107 
h 383 322 -43 315 315 

p,i 70 105 41 94 94 
p,h 135 94 30 90 90 
i,h 665 591 54 571 571 

p,i,h 268 232 77 217 217 
Normal Eqs. -12 -15 -40 -19 -19 
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Table H12. Magnitudes of Difference Between Parameters and 
Estimated Standard Errors of Estimated Variance 
Components for the phi :: Design, Polytomous Data 

 SE(p) SE(h:p) SE(i:h:p) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 100, ni = 20, nh

p 

 = 5) 

-2 -1 0 -1 -1 

i -84 73 68 66 66 
h -75 44 -9 44 44 

p,i 1 40 74 38 38 
p,h 2 52 62 51 51 
i,h -60 144 80 142 142 

p,i,h 7 102 149 100 100 
Normal Eqs. -24 -46 18 -46 -46 

      
VC Structure A, Sample Size Pattern 2 (np = 50, ni = 5, nh

p 

 = 2) 

-5 -2 -1 -1 -1 

i -47 231 173 187 187 
h 87 353 -28 376 376 

p,i 24 122 77 117 117 
p,h 28 90 41 95 95 
i,h 225 721 162 748 748 

p,i,h 77 243 124 247 247 
Normal Eqs. -17 -7 15 -7 -7 
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Table H12. Continued 

 SE(p) SE(h:p) SE(i:h:p) SE(δ) SE(Δ) 

VC Structure B, Sample Size Pattern 1 (np = 100, ni = 20, nh

p 

 = 5) 

-1 -1 1 -1 -1 

i -75 1 69 -3 -3 
h 14 124 -11 124 124 

p,i 5 29 75 29 29 
p,h 28 63 63 63 63 
i,h 35 174 81 174 174 

p,i,h 39 99 150 98 98 
Normal Eqs. -9 -8 18 -8 -8 

      
VC Structure B, Sample Size Pattern 2 (np = 50, ni = 5, nh

p 

 = 2) 

-1 -1 0 -1 -1 

i -31 109 174 79 79 
h 332 392 -30 402 402 

p,i 38 74 76 71 71 
p,h 96 96 41 98 98 
i,h 508 608 162 617 617 

p,i,h 168 190 124 190 190 
Normal Eqs. -3 -2 14 -2 -2 
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Table H13. Magnitudes of Difference Between Parameters and Estimated 
Standard Errors of Estimated Variance Components for the 

( )hip :×  Design, Normal Data 

 SE(p) SE(h) SE(ph) SE(i:h) SE(pi:h) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 200, ni = 15, nh

p 

 = 5) 

-1 -73 0 -59 0 0 48 

i -71 -31 289 -2 139 267 89 

h -20 -3 227 -9 -11 229 90 

p,i 7 -22 315 13 176 295 102 
p,h 33 4 254 6 61 256 103 
i,h 16 35 429 59 105 426 190 

p,i,h 63 43 465 77 177 462 207 
        

VC Structure A, Sample Size Pattern 2 (np =100, ni = 3, nh

p 

 = 10) 

0 -51 -1 -43 -1 -1 -21 

i -61 69 1772 43 1190 1327 1019 

h -34 -7 32 -6 -5 42 26 

p,i 13 87 1779 62 1196 1336 1026 
p,h 29 15 91 22 67 97 66 
i,h 1275 624 1355 1250 3663 555 423 

p,i,h 62 122 769 95 510 593 452 
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Table H13. Continued 

 SE(p) SE(h) SE(ph) SE(i:h) SE(pi:h) SE(δ) SE(Δ) 

VC Structure B, Sample Size Pattern 1 (np = 200, ni = 15, nh

p 

 = 5) 

-1 -83 0 -81 0 0 -73 

i -67 -41 66 -2 139 56 -30 

h 125 -3 229 -9 -11 229 29 

p,i 9 -38 104 2 176 96 -23 
p,h 156 0 255 -6 61 255 34 
i,h 167 26 303 60 105 302 62 

p,i,h 198 29 334 64 177 333 68 
        

VC Structure B, Sample Size Pattern 2 (np =100, ni = 3, nh

p 

 = 10) 

0 -75 -1 -73 -1 0 -62 

i -54 59 1241 54 1190 855 285 

h 13 -7 37 -6 -5 42 2 

p,i 13 -7 37 -6 -5 865 289 
p,h 68 0 94 1 67 97 15 
i,h 59 79 512 66 482 358 132 

p,i,h 113 87 545 73 510 398 144 
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Table H14. Magnitudes of Difference Between Parameters and Estimated 
Standard Errors of Estimated Variance Components for the 

( )hip :×  Design, Dichotomous Data 

 SE(p) SE(h) SE(ph) SE(i:h) SE(pi:h) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 200, ni = 15, nh

p 

 = 5) 

-15 -62 -9 -36 -43 -25 -35 

i -59 -28 304 -12 -46 168 124 

h 3 -5 148 -12 -25 80 61 

p,i 0 -10 329 21 -19 189 142 

p,h 40 8 177 20 -3 103 81 

i,h 59 36 375 46 -5 233 187 
p,i,h 92 54 414 83 16 261 211 

Normal Eqs. -34 -3 -25 -17 -83 -48 -41 
        

VC Structure A, Sample Size Pattern 2 (np =100, ni = 3, nh

p 

 = 10) 

-8 -27 -2 -14 -24 -20 -22 

i -47 61 1603 17 388 678 640 

h -5 -6 22 -10 -24 -9 -10 

p,i 16 105 1614 63 396 687 649 

p,h 45 38 82 46 16 33 31 

i,h 56 99 688 52 137 279 263 
p,i,h 105 164 724 116 159 307 290 

Normal Eqs. -27 -3 -15 -8 -62 -51 -50 
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Table H14. Continued 

 SE(p) SE(h) SE(ph) SE(i:h) SE(pi:h) SE(δ) SE(Δ) 

VC Structure B, Sample Size Pattern 1 (np = 200, ni = 15, nh

p 

 = 5) 

-34 -78 -49 -72 -74 -59 -60 

i -55 -38 36 -25 -56 2 -20 

h 108 -8 45 -11 -12 20 7 

p,i -14 -33 51 -17 -48 14 -12 

p,h 126 -3 60 -4 -7 31 14 

i,h 179 24 116 33 3 72 46 
p,i,h 198 29 133 41 8 85 54 

Normal Eqs. -42 -6 -60 -38 -90 -70 -42 
        

VC Structure B, Sample Size Pattern 2 (np =100, ni = 3, nh

p 

 = 10) 

-20 -63 -17 -59 -57 -51 -58 

i -38 52 1134 19 238 351 273 

h 56 -7 11 -10 -10 -9 -10 

p,i 14 63 1142 30 242 357 277 

p,h 91 5 58 5 5 10 5 

i,h 144 84 520 47 89 159 128 
p,i,h 182 101 548 64 101 174 140 

Normal Eqs. -29 -9 -30 -22 -74 -66 -55 
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Table H15. Magnitudes of Difference Between Parameters and Estimated 
Standard Errors of Estimated Variance Components for the 

( )hip :×  Design, Polytomous Data 

 SE(p) SE(h) SE(ph) SE(i:h) SE(pi:h) SE(δ) SE(Δ) 

VC Structure A, Sample Size Pattern 1 (np = 200, ni = 15, nh

p 

 = 5) 

1 -94 1 -87 2 1 -79 

i -78 -83 129 -10 176 115 -53 

h -40 -22 102 -12 -10 102 -12 

p,i 5 -82 158 -8 211 146 -47 
p,h 21 -22 140 -10 63 140 -8 
i,h -13 -19 217 50 124 214 4 

p,i,h 40 -18 253 52 195 250 9 
Normal Eqs. -25 -37 -41 -65 18 -41 -37 

        
VC Structure A, Sample Size Pattern 2 (np =100, ni = 3, nh

p 

 = 10) 

-4 -80 -1 -77 1 -1 -58 

i -72 8 1605 -12 1341 1199 450 

h -51 -7 26 -3 -4 34 1 

p,i 3 13 1613 -7 1348 1208 454 
p,h 14 -2 85 2 69 91 16 
i,h -24 58 660 45 547 493 180 

p,i,h 34 65 692 51 576 529 193 
Normal Eqs. -26 -38 -9 -50 12 -9 -38 
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Table H15. Continued 

 SE(p) SE(h) SE(ph) SE(i:h) SE(pi:h) SE(δ) SE(Δ) 

VC Structure B, Sample Size Pattern 1 (np = 200, ni = 15, nh

p 

 = 5) 

-1 -93 -1 -83 0 -1 -88 

i -77 -76 53 -4 147 44 -71 

h 56 -23 204 -9 -10 204 -15 

p,i 3 -74 91 -1 184 84 -68 
p,h 91 -22 232 -7 61 232 -14 
i,h 85 -16 272 56 109 271 -5 

p,i,h 119 -15 303 60 181 302 -4 
Normal Eqs. -31 -34 -8 -11 4 -8 -34 

        
VC Structure B, Sample Size Pattern 2 (np =100, ni = 3, nh

p 

 = 10) 

-2 -84 0 -76 -2 1 -76 

i -70 -2 1211 42 1205 835 131 

h -23 -7 36 -5 -7 41 -4 

p,i 5 1 1220 46 1213 846 133 
p,h 34 -5 94 1 63 98 2 
i,h 8 34 499 61 488 349 60 

p,i,h 60 38 532 68 516 388 66 
Normal Eqs. -32 -28 -2 -9 1 -2 -29 
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APPENDIX I:  ESTIMATED STANDARD ERRORS OF ESTIMATED 
ABSOLUTE ERROR VARIANCES USING TONG AND BRENAN’S 

(2007) WORKAROUND 

Table I1. Estimated Standard Error of Estimated Absolute Error 
Variance Using Tong and Brennan’s (2007) Workaround 
for the ip×  Design 

 Parameter ( )∆SE  Estimate ( )∆ES ˆ  Pct. Difference 

Normal Data 

A1 0.0032 0.0032 -1 
A2 0.0003 0.0003 0 
B1 0.0097 0.0096 -1 
B2 0.0009 0.0008 -1 

Dichotomous Data 

A1 0.0011 0.0007 -39 
A2 0.0002 0.0002 -15 
B1 0.0021 0.0010 -55 
B2 0.0002 0.0001 -38 

Polytomous Data 

A1 0.0076 0.0065 -15 
A2 0.0007 0.0007 -4 
B1 0.0128 0.0118 -8 
B2 0.0011 0.0011 1 
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Table I2. Estimated Standard Error of Estimated Absolute Error 
Variance Using Tong and Brennan’s (2007) Workaround 
for the hip ××  Design 

 Parameter ( )∆SE  Estimate ( )∆ES ˆ  Pct. Difference 

Normal Data 

A1 0.0355 0.0427 20 
A2 0.0176 0.0169 -4 
B1 0.0507 0.0601 19 
B2 0.0209 0.0198 -5 

Dichotomous Data 

A1 0.0055 0.0036 -35 
A2 0.0027 0.0017 -38 
B1 0.0073 0.0042 -42 
B2 0.0029 0.0016 -45 

Polytomous Data 

A1 0.0801 0.0663 -17 
A2 0.0398 0.0304 -23 
B1 0.0903 0.0804 -11 
B2 0.0470 0.0336 -29 
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Table I3. Estimated Standard Error of Estimated Absolute Error 
Variance Using Tong and Brennan’s (2007) Workaround 
for the pi : Design 

 Parameter ( )∆SE  Estimate ( )∆ES ˆ  Pct. Difference 

Normal Data 

A1 0.0180 0.0179 0 
A2 0.0005 0.0005 -1 
B1 0.0140 0.0139 0 
B2 0.0004 0.0004 -1 

Dichotomous Data 

A1 0.0034 0.0034 -1 
A2 0.0002 0.0002 -2 
B1 0.0035 0.0035 -2 
B2 0.0002 0.0002 -2 

Polytomous Data 

A1 0.0168 0.0165 -2 
A2 0.0005 0.0005 -1 
B1 0.0123 0.0121 -1 
B2 0.0003 0.0003 -1 
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Table I4. Estimated Standard Error of Estimated Absolute Error 
Variance Using Tong and Brennan’s (2007) Workaround 
for the phi :: Design 

 Parameter ( )∆SE  Estimate ( )∆ES ˆ  Pct. Difference 

Normal Data 

A1 0.0008 0.0008 -1 
A2 0.0160 0.0157 -2 
B1 0.0026 0.0026 -1 
B2 0.0290 0.0204 -30 

Dichotomous Data 

A1 0.0002 0.0002 0 
A2 0.0032 0.0031 -3 
B1 0.0003 0.0003 1 
B2 0.0041 0.0041 -1 

Polytomous Data 

A1 0.0015 0.0014 -1 
A2 0.0173 0.0171 -1 
B1 0.0028 0.0028 -1 
B2 0.0294 0.0291 -1 
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Table I5. Estimated Standard Error of Estimated Absolute Error 
Variance Using Tong and Brennan’s (2007) Workaround 
for the ( )hip :×  Design 

 Parameter ( )∆SE  Estimate ( )∆ES ˆ  Pct. Difference 

Normal Data 

A1 0.0021 0.0021 -2 
A2 0.0018 0.0020 8 
B1 0.0088 0.0086 -3 
B2 0.0051 0.0056 10 

Dichotomous Data 

A1 0.0003 0.0002 -27 
A2 0.0004 0.0003 -22 
B1 0.0010 0.0006 -40 
B2 0.0009 0.0005 -42 

Polytomous Data 

A1 0.0084 0.0067 -21 
A2 0.0037 0.0035 -5 
B1 0.0217 0.0168 -22 
B2 0.0085 0.0085 -1 
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APPENDIX J:  PERCENTILE CONFIDENCE INTERVAL COVERAGE 

Table J1. 90% Percentile Confidence Interval Coverage for the ip×  
Design, Normal Data 

 σ2 σ(p) 2 σ(i) 2 σ(pi) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni

p 

 = 10) 

88.4 43.7 87.8 87.8 72.0 

i 84.3 81.2 98.6 98.6 95.4 

p,i 97.9 87.3 87.8 87.8 72.0 
      

VC Structure A, Sample Size Pattern 2 (np = 100, ni

p 

 = 50) 

88.5 58.2 89.8 89.8 79.8 

i 33.5 88.2 89.1 89.1 88.5 

p,i 91.3 94.5 89.8 89.8 79.8 
      

VC Structure B, Sample Size Pattern 1 (np = 200, ni

p 

 = 10) 

88.3 20.4 87.8 87.8 30.5 

i 83.1 80.8 98.6 98.6 82.5 

p,i 97.8 82.1 87.8 87.8 30.5 
      

VC Structure B, Sample Size Pattern 2 (np = 100, ni

p 

 = 50) 

88.5 27.5 89.8 89.8 39.8 

i 33.2 88.3 89.1 89.1 88.0 

p,i 91.3 89.7 89.8 89.8 39.8 
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Table J2. 90% Percentile Confidence Interval Coverage for the ip×  
Design, Dichotomous Data 

 σ2 σ(p) 2 σ(i) 2 σ(pi) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni

p 

 = 10) 

80.0 62.7 70.2 70.2 68.8 

i 95.1 76.4 84.4 84.4 83.6 

p,i 99.5 90.2 70.2 70.2 68.8 

      
VC Structure A, Sample Size Pattern 2 (np = 100, ni

p 

 = 50) 

84.2 84.4 84.6 84.6 84.7 

i 49.7 82.2 56.4 56.4 56.7 

p,i 88.9 97.2 84.6 84.6 84.7 
      

VC Structure B, Sample Size Pattern 1 (np = 200, ni

p 

 = 10) 

63.7 33.4 42.8 42.8 41.4 

i 95.2 69.0 83.8 83.8 81.1 

p,i 98.3 74.7 42.8 42.8 41.4 

      
VC Structure B, Sample Size Pattern 2 (np = 100, ni

p 

 = 50) 

80.4 56.0 72.6 72.6 71.0 

i 66.6 79.2 76.1 76.1 76.5 

p,i 90.6 89.2 72.6 72.6 71.0 
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Table J3. 90% Percentile Confidence Interval Coverage for the ip×  
Design, Polytomous Data 

 σ2 σ(p) 2 σ(i) 2 σ(pi) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni

p 

 = 10) 

88.8 0 89.6 89.6 18.0 

i 74.3 39.4 98.7 98.7 62.4 

p,i 97.0 39.4 89.6 89.6 18.0 
      

VC Structure A, Sample Size Pattern 2 (np = 100, ni

p 

 = 50) 

85.3 22.5 89.1 89.1 48.2 

i 25.4 86.8 88.4 88.4 84.8 

p,i 86.9 87.4 89.1 89.1 48.2 
      

VC Structure B, Sample Size Pattern 1 (np = 200, ni

p 

 = 10) 

88.4 18.8 90.5 90.5 25.1 

i 76.2 87.9 99.8 99.8 88.3 

p,i 96.8 88.7 90.5 90.5 25.1 
      

VC Structure B, Sample Size Pattern 2 (np = 100, ni

p 

 = 50) 

84.9 20.5 89.0 89.0 25.3 

i 27.0 83.6 89.9 89.9 83.1 

p,i 87.0 85.1 89.0 89.0 25.3 
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Table J4. 90% Percentile Confidence Interval Coverage for the hip ××  Design, Normal 
Data 

 σ2 σ(p) 2 σ(i) 2 σ(h) 2 σ(pi) 2 σ(ph) 2 σ(ih) 2 σ(pih) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni = 5, nh

p 

 = 2) 

89.2 53.1 31.4 89.8 89.9 70.1 90.4 89.4 71.3 

i 60.4 75.7 32.6 84.4 99.1 70.9 99.9 98.1 90.3 

h 100 66.3 46.3 100 100 67.0 100 98.7 97.0 

p,i 96.3 86.1 46.8 98.9 100 89.5 99.9 99.9 94.9 
p,h 100 89.8 61.3 100 100 89.1 100 100 99.7 
i,h 100 96.6 63.8 100 100 82.2 100 100 100 

p,i,h 100 99.6 69.4 100 100 93.6 100 100 100 
          

VC Structure A, Sample Size Pattern 2 (np = 100, ni = 10, nh

p 

 = 3) 

89.5 58.2 42.7 89.0 89.4 86.9 90.0 88.9 73.0 

i 43.9 77.5 29.0 87.0 88.9 83.5 98.7 86.1 70.1 

h 99.5 75.8 56.3 100 99.9 79.4 100 95.6 91.8 

p,i 93.6 90.6 53.3 98.7 98.8 98.8 99.8 98.7 90.4 
p,h 100 95.4 74.7 100 100 99.0 100 99.6 99.1 
i,h 99.7 98.0 68.4 100 100 95.4 100 99.9 98.8 

p,i,h 100 100 79.9 100 100 99.8 100 100 99.8 
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Table J4. Continued 

 σ2 σ(p) 2 σ(i) 2 σ(h) 2 σ(pi) 2 σ(ph) 2 σ(ih) 2 σ(pih) 2 σ(δ) 2

VC Structure B, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni = 5, nh

p 

 = 2) 

88.8 15.6 20.1 90.8 89.7 33.9 90.4 89.2 31.2 

i 73.8 70.8 53.9 92.8 99.9 71.7 99.9 99.1 81.1 

h 99.0 44.9 45.0 100 100 73.9 100 80.9 56.3 

p,i 97.6 72.6 58.2 99.4 100 75.9 99.9 99.9 86.3 
p,h 100 55.3 53.7 100 100 83.7 100 98.3 76.9 
i,h 100 88.0 73.9 100 100 86.3 100 100 99.7 

p,i,h 100 88.6 77.4 100 100 89.3 100 100 99.9 
          

VC Structure B, Sample Size Pattern 2 (np = 100, ni = 10, nh

p 

 = 3) 

89.4 20.7 26.4 89.9 89.5 45.4 90.0 88.8 40.0 

i 52.7 77.3 47.8 89.2 96.8 84.0 98.7 94.1 67.1 

h 90.9 45.9 58.0 100 99.7 86.3 100 85.2 65.1 

p,i 94.6 79.2 54.8 99.6 99.7 90.5 99.8 99.4 76.4 
p,h 99.6 54.2 65.9 100 100 92.7 100 98.8 80.0 
i,h 95.8 87.6 76.5 100 100 96.2 100 99.8 91.4 

p,i,h 99.9 89.0 79.4 100 100 98.4 100 100 95.9 
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Table J5. 90% Percentile Confidence Interval Coverage for the hip ××  Design, 
Dichotmous Data 

 σ2 σ(p) 2 σ(i) 2 σ(h) 2 σ(pi) 2 σ(ph) 2 σ(ih) 2 σ(pih) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni = 5, nh

p 

 = 2) 

79.2 77.4 41.2 89.1 74.8 88.6 51.6 63.4 59.0 

i 69.3 75.1 36.0 84.5 99.6 68.3 83.3 94.9 91.4 

h 99.1 68.5 45.6 100 95.5 55.7 99.9 58.8 57.4 

p,i 95.5 95.0 41.2 89.1 74.8 88.6 51.6 63.4 59.0 

p,h 99.9 99.1 65.0 100 99.2 94.3 99.9 87.4 86.7 

i,h 100 96.9 63.5 100 100 75.6 100 99.8 99.5 
p,i,h 100 100 75.3 100 100 97.6 100 99.9 99.9 

          
VC Structure A, Sample Size Pattern 2 (np = 100, ni = 10, nh

p 

 = 3) 

78.2 82.5 49.2 89.0 74.9 96.5 55.9 68.7 65.8 

i 53.8 76.2 35.8 87.8 90.5 78.8 56.4 81.9 74.8 

h 95.8 79.0 54.8 100 90.5 70.9 99.3 69.0 67.4 

p,i 89.6 98.1 49.2 89.0 74.9 96.5 55.9 68.7 65.8 

p,h 99.8 99.5 74.7 100 97.4 99.5 99.7 92.6 91.3 

i,h 98.8 98.3 67.3 100 99.4 91.4 99.7 96.0 93.9 
p,i,h 100 100 82.9 100 99.8 100 99.7 98.8 98.4 
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Table J5. Continued 

 σ2 σ(p) 2 σ(i) 2 σ(h) 2 σ(pi) 2 σ(ph) 2 σ(ih) 2 σ(pih) 2 σ(δ) 2

VC Structure B, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni = 5, nh

p 

 = 2) 

58.6 22.0 28.9 75.4 70.6 44.9 34.9 43.5 34.9 

i 76.1 59.3 57.2 79.2 100 59.9 77.6 94.9 87.4 

h 78.6 44.9 43.4 100 82.1 59.4 97.3 72.2 60.9 

p,i 90.1 64.2 28.9 75.4 70.6 44.9 34.9 43.5 34.9 

p,h 93.7 60.2 55.2 100 95.3 78.2 99.0 89.7 79.7 

i,h 99.6 78.8 71.8 100 100 76.1 99.6 98.9 95.6 
p,i,h 99.9 81.9 76.9 100 100 84.8 99.7 99.4 97.3 

          
VC Structure B, Sample Size Pattern 2 (np = 100, ni = 10, nh

p 

 = 3) 

64.8 30.3 35.4 74.9 70.7 60.1 39.9 52.7 45.1 

i 70.1 65.6 51.5 78.8 98.4 71.4 69.1 90.3 81.7 

h 71.2 48.5 55.3 100 82.1 72.2 95.8 79.2 71.4 

p,i 87.3 71.9 35.4 74.9 70.7 60.1 39.9 52.7 45.1 

p,h 90.8 65.4 65.9 100 93.2 89.2 97.3 92.0 85.0 

i,h 91.4 82.4 73.7 100 99.9 88.2 98.6 98.7 95.0 
p,i,h 97.5 85.8 80.4 100 100 95.2 98.9 99.6 97.4 
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Table J6. 90% Percentile Confidence Interval Coverage for the hip ××  Design, 
Polytomous Data 

 σ2 σ(p) 2 σ(i) 2 σ(h) 2 σ(pi) 2 σ(ph) 2 σ(ih) 2 σ(pih) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni = 5, nh

p 

 = 2) 

88.3 6.4 0.8 89.3 90.6 8.2 90.4 89.9 53.3 

i 54.0 10.4 7.5 84.6 99.8 11.9 99.8 99.3 93.7 

h 100 8.7 6.2 100 100 10.8 100 99.2 94.5 

p,i 95.2 14.4 7.6 99.3 100 34.7 100 100 94.4 
p,h 100 13.8 9.0 100 100 34.9 100 100 99.7 
i,h 100 16.4 9.6 100 100 21.0 100 100 100 

p,i,h 100 36.5 13.9 100 100 52.7 100 100 100 
          

VC Structure A, Sample Size Pattern 2 (np = 100, ni = 10, nh

p 

 = 3) 

88.2 5.9 0.4 90.9 90.4 2.5 89.4 90.4 38.3 

i 31.9 13.8 1.5 87.7 96.5 28.3 99.3 94.7 61.2 

h 96.6 24.6 10.7 100 100 28.2 100 98.6 82.3 

p,i 92.1 21.7 2.8 99.1 99.8 43.4 100 99.7 79.9 
p,h 99.7 25.8 12.9 100 100 43.2 100 99.9 96.6 
i,h 98.2 33.9 13.2 100 100 33.9 100 100 98.3 

p,i,h 99.9 42.2 17.2 100 100 71.7 100 100 100 
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Table J6. Continued 

 σ2 σ(p) 2 σ(i) 2 σ(h) 2 σ(pi) 2 σ(ph) 2 σ(ih) 2 σ(pih) 2 σ(δ) 2

VC Structure B, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni = 5, nh

p 

 = 2) 

89.0 10.1 2.2 89.2 89.1 0 90.0 90.7 32.8 

i 68.2 63.3 33.0 91.6 99.5 37.2 99.9 98.1 70.7 

h 98.1 30.6 10.7 100 99.7 38.1 100 74.9 41.7 

p,i 96.4 63.3 33.6 99.3 100 37.2 100 100 72.6 
p,h 100 35.1 14.8 100 100 38.1 100 97.3 64.7 
i,h 100 76.3 26.2 100 100 38.1 100 100 96.9 

p,i,h 100 76.3 33.8 100 100 38.1 100 100 98.7 
          

VC Structure B, Sample Size Pattern 2 (np = 100, ni = 10, nh

p 

 = 3) 

86.3 19.0 0.5 90.3 88.4 11.6 89.6 88.3 24.8 

i 39.8 83.0 6.0 88.6 91.2 73.9 96.3 86.9 47.6 

h 82.8 32.4 14.1 100 97.3 65.8 100 80.1 36.0 

p,i 90.5 83.0 8.0 99.3 99.0 74.1 99.9 98.6 58.9 
p,h 98.5 41.4 15.8 100 99.4 75.0 100 98.2 60.8 
i,h 89.8 85.0 23.3 100 100 76.6 100 99.0 72.6 

p,i,h 98.9 85.3 25.0 100 100 76.6 100 100 84.7 
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Table J7. 90% Percentile Confidence Interval Coverage for the 
pi : Design, Normal Data 

 σ2 σ(p) 2 σ(i:p) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 50, ni

p 

 = 5) 

87.1 89.0 89.0 89.0 

i 99.4 98.4 98.4 98.4 
p,i 99.9 89.0 89.0 89.0 

     
VC Structure A, Sample Size Pattern 2 (np = 50, ni

p 

 = 50) 

86.2 88.9 88.9 88.9 

i 65.6 89.6 89.6 89.6 
p,i 95.4 88.9 88.9 88.9 

     
VC Structure B, Sample Size Pattern 1 (np = 50, ni

p 

 = 5) 

86.8 89.0 89.0 89.0 

i 95.7 98.4 98.4 98.4 
p,i 98.2 89.0 89.0 89.0 

     
VC Structure B, Sample Size Pattern 2 (np = 50, ni

p 

 = 50) 

85.3 88.9 88.9 88.9 

i 38.1 89.6 89.6 89.6 
p,i 88.4 88.9 88.9 88.9 
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Table J8. 90% Percentile Confidence Interval Coverage for the 
pi : Design, Dichotomous Data 

 σ2 σ(p) 2 σ(i:p) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 50, ni

p 

 = 5) 

83.3 90.2 90.2 90.2 

i 99.6 95.0 95.0 95.0 
p,i 100 90.2 90.2 90.2 

     
VC Structure A, Sample Size Pattern 2 (np = 50, ni

p 

 = 50) 

81.7 89.4 89.4 89.4 

i 80.8 63.7 63.7 63.7 
p,i 96.8 89.4 89.4 89.4 

     
VC Structure B, Sample Size Pattern 1 (np = 50, ni

p 

 = 5) 

81.6 89.4 89.4 89.4 

i 97.6 92.7 92.7 92.7 
p,i 99.6 89.4 89.4 89.4 

     
VC Structure B, Sample Size Pattern 2 (np = 50, ni

p 

 = 50) 

80.0 89.1 89.1 89.1 

i 47.3 44.2 44.2 44.2 
p,i 87.8 89.1 89.1 89.1 
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Table J9. 90% Percentile Confidence Interval Coverage for the 
pi : Design, Polytomous Data 

 σ2 σ(p) 2 σ(i:p) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 50, ni

p 

 = 5) 

86.2 89.2 89.2 89.2 

i 99.2 97.8 98.0 98.0 
p,i 99.7 89.2 89.2 89.2 

     
VC Structure A, Sample Size Pattern 2 (np = 50, ni

p 

 = 50) 

87.0 88.2 88.2 88.2 

i 44.5 88.8 88.8 88.8 
p,i 90.1 88.2 88.2 88.2 

     
VC Structure B, Sample Size Pattern 1 (np = 50, ni

p 

 = 5) 

85.5 89.9 89.4 89.4 

i 93.6 97.8 97.8 97.8 
p,i 97.5 89.9 89.4 89.4 

     
VC Structure B, Sample Size Pattern 2 (np = 50, ni

p 

 = 50) 

79.6 88.8 88.8 88.8 

i 27.6 88.7 88.7 88.7 
p,i 82.1 88.8 88.8 88.8 
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Table J10. 90% Percentile Confidence Interval Coverage for the 
phi :: Design, Normal Data 

 σ2 σ(p) 2 σ(h:p) 2 σ(i:h:p) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 100, ni = 20, nh

p 

 = 5) 

88.2 87.9 89.9 88.6 88.6 

i 25.6 100 98.5 100 100 
h 38.3 99.3 78.3 99.6 99.6 

p,i 87.1 100 99.9 100 100 
p,h 90.9 99.5 99.4 99.6 99.6 
i,h 58.7 100 99.5 100 100 

p,i,h 93.1 100 100 100 100 
      

VC Structure A, Sample Size Pattern 2 (np = 50, ni = 5, nh

p 

 = 2) 

86.9 86.8 87.3 86.5 86.5 

i 65.9 99.9 99.1 99.9 99.9 
h 95.7 99.7 48.8 99.9 99.9 

p,i 96.7 100 98.8 100 100 
p,h 97.4 99.1 97.5 98.9 98.9 
i,h 100 100 99.7 100 100 

p,i,h 99.8 100 99.9 100 100 
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Table J10. Continued 

 σ2 σ(p) 2 σ(h:p) 2 σ(i:h:p) 2 σ(δ) 2

VC Structure B, Sample Size Pattern 1 (n

(Δ) 

p = 100, ni = 20, nh

p 

 = 5) 

87.6 88.0 89.9 88.2 88.2 

i 34.4 91.8 98.5 90.0 90.0 
h 92.8 99.7 78.3 99.7 99.7 

p,i 89.5 95.8 99.9 95.9 95.9 
p,h 96.0 99.3 99.4 99.3 99.3 
i,h 96.3 100 99.5 100 100 

p,i,h 97.9 100 100 100 100 
      

VC Structure B, Sample Size Pattern 2 (np = 50, ni = 5, nh

p 

 = 2) 

88.7 89.1 88.3 88.8 88.8 

i 70.4 99.6 100 99.3 99.3 
h 100 100 50.1 100 100 

p,i 98.3 99.6 99.2 99.6 99.6 
p,h 99.9 99.3 97.7 99.3 99.3 
i,h 100 100 100 100 100 

p,i,h 100 100 100 100 100 
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Table J11. 90% Percentile Confidence Interval Coverage for the 
phi :: Design, Dichotomous Data 

 σ2 σ(p) 2 σ(h:p) 2 σ(i:h:p) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 100, ni = 20, nh

p 

 = 5) 

86.2 89.4 90.4 89.3 89.3 

i 35.6 100 46.1 100 100 
h 47.5 98.9 31.9 96.0 96.0 

p,i 87.8 99.9 92.2 99.9 99.9 
p,h 89.7 99.1 92.1 97.7 97.7 
i,h 74.7 100 56.1 100 100 

p,i,h 94.3 100 95.1 100 100 
      

VC Structure A, Sample Size Pattern 2 (np = 50, ni = 5, nh

p 

 = 2) 

83.9 84.4 89.3 84.0 84.0 

i 79.4 99.7 93.1 99.5 99.5 
h 98.0 99.1 36.4 98.5 98.5 

p,i 98.5 100 97.3 100 100 
p,h 99.1 98.0 95.1 96.9 96.9 
i,h 100 100 95.3 100 100 

p,i,h 100 100 99.6 100 100 
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Table J11. Continued 

 σ2 σ(p) 2 σ(h:p) 2 σ(i:h:p) 2 σ(δ) 2

VC Structure B, Sample Size Pattern 1 (n

(Δ) 

p = 100, ni = 20, nh

p 

 = 5) 

84.7 89.1 90.7 89.1 89.1 

i 47.6 97.2 55.5 95.2 95.2 
h 92.8 97.3 52.3 96.3 96.3 

p,i 90.6 97.6 93.5 97.0 97.0 
p,h 97.0 98.3 95.3 98.1 98.1 
i,h 98.0 100 72.4 100 100 

p,i,h 98.8 100 97.6 100 100 
      

VC Structure B, Sample Size Pattern 2 (np = 50, ni = 5, nh

p 

 = 2) 

86.3 85.2 89.1 86.7 86.7 

i 83.5 99.5 93.2 99.4 99.4 
h 99.7 99.0 42.5 98.9 98.9 

p,i 98.5 99.9 97.9 99.7 99.7 
p,h 99.9 98.0 96.2 97.9 97.9 
i,h 100 100 96.4 100 100 

p,i,h 100 100 99.7 100 100 
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Table J12. 90% Percentile Confidence Interval Coverage for the 
phi :: Design, Polytomous Data 

 σ2 σ(p) 2 σ(h:p) 2 σ(i:h:p) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 100, ni = 20, nh

p 

 = 5) 

85.5 87.7 89.0 87.3 87.3 

i 21.1 99.0 98.9 98.8 98.8 
h 29.7 93.5 78.6 93.3 93.3 

p,i 86.7 98.1 99.3 98.2 98.2 
p,h 86.7 97.4 99.0 97.1 97.1 
i,h 44.9 100 99.5 100 100 

p,i,h 88.8 99.8 100 99.8 99.8 
      

VC Structure A, Sample Size Pattern 2 (np = 50, ni = 5, nh

p 

 = 2) 

83.5 86.6 89.9 85.7 85.7 

i 60.7 100 99.8 100 100 
h 94.5 100 51.0 100 100 

p,i 93.2 100 99.7 99.9 99.9 
p,h 94.1 99.0 97.6 99.0 99.0 
i,h 100 100 99.8 100 100 

p,i,h 99.7 100 99.9 100 100 
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Table J12. Continued 

 σ2 σ(p) 2 σ(h:p) 2 σ(i:h:p) 2 σ(δ) 2

VC Structure B, Sample Size Pattern 1 (n

(Δ) 

p = 100, ni = 20, nh

p 

 = 5) 

90.0 89.1 87.9 89.1 89.1 

i 32.2 88.2 98.8 86.5 86.5 
h 88.9 98.8 76.2 98.8 98.8 

p,i 90.5 97.0 99.7 97.1 97.1 
p,h 96.6 99.1 99.5 99.2 99.2 
i,h 95.8 99.8 99.6 99.8 99.8 

p,i,h 98.2 99.8 100 99.8 99.8 
      

VC Structure B, Sample Size Pattern 2 (np = 50, ni = 5, nh

p 

 = 2) 

86.9 88.2 89.9 87.7 87.7 

i 69.6 99.0 99.8 98.0 98.0 
h 99.7 99.7 53.0 99.7 99.7 

p,i 96.7 99.7 99.8 99.5 99.5 
p,h 99.6 99.2 97.5 99.2 99.2 
i,h 100 100 100 100 100 

p,i,h 99.9 100 100 100 100 
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Table J13. 90% Percentile Confidence Interval Coverage for the ( )hip :×  
Design, Normal Data 

 σ2 σ(p) 2 σ(h) 2 σ(ph) 2 σ(i:h) 2 σ(pi:h) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni = 15, nh

p 

 = 5) 

88.8 31.0 88.5 50.5 90.4 88.7 59.6 

i 34.3 67.1 100 84.8 100 100 98.7 

h 76.2 68.0 99.9 78.4 77.3 99.9 97.7 

p,i 91.1 74.8 100 91.5 100 100 99.4 
p,h 95.8 73.6 100 86.8 98.4 100 99.6 
i,h 90.4 89.1 100 97.2 99.9 100 100 

p,i,h 98.6 92.2 100 98.8 100 100 100 
        

VC Structure A, Sample Size Pattern 2 (np =100, ni = 3, nh

p 

 = 10) 

84.5 54.8 84.3 58.3 85.9 85.0 75.7 

i 35.0 92.2 100 82.4 99.4 100 100 

h 66.6 76.5 92.1 75.9 80.2 94.1 91.1 

p,i 90.7 95.3 100 94.5 100 100 100 
p,h 93.7 88.4 98.7 89.0 98.9 99.3 98.5 
i,h 86.0 99.0 100 94.4 100 100 100 

p,i,h 98.1 99.6 100 98.6 100 100 100 
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Table J13. Continued 

 σ2 σ(p) 2 σ(h) 2 σ(ph) 2 σ(i:h) 2 σ(pi:h) 2 σ(δ) 2

VC Structure B, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni = 15, nh

p 

 = 5) 

83.6 18.7 84.2 23.0 85.4 84.5 29.1 

i 36.3 57.2 97.1 83.0 99.9 96.2 69.6 

h 97.8 65.9 100 75.0 72.2 100 83.6 

p,i 88.3 60.6 99.1 84.3 100 98.9 74.6 
p,h 99.7 70.0 100 76.6 96.7 100 89.3 
i,h 99.2 85.2 100 96.2 99.6 100 97.6 

p,i,h 100 86.8 100 96.8 100 100 98.9 
        

VC Structure B, Sample Size Pattern 2 (np =100, ni = 3, nh

p 

 = 10) 

85.0 30.8 83.7 29.5 85.9 83.8 44.6 

i 38.7 91.3 100 85.0 99.4 100 100 

h 89.4 76.2 91.9 74.5 80.2 93.4 80.0 

p,i 92.1 92.6 100 90.9 100 100 100 
p,h 98.1 80.6 98.6 80.4 98.9 99.1 88.6 
i,h 96.3 99.1 100 94.8 100 100 99.9 

p,i,h 99.7 99.2 100 96.4 100 100 100 
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Table J14. 90% Percentile Confidence Interval Coverage for the ( )hip :×  
Design, Dichotomous Data 

 σ2 σ(p) 2 σ(h) 2 σ(ph) 2 σ(i:h) 2 σ(pi:h) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni = 15, nh

p 

 = 5) 

80.5 43.5 85.6 70.3 67.0 75.7 72.7 

i 48.1 69.5 100 80.7 64.3 100 99.6 

h 84.9 66.3 99.0 76.6 72.9 96.2 93.9 

p,i 87.8 83.0 100 94.4 83.3 100 99.9 

p,h 96.9 76.4 99.9 93.1 86.7 99.1 98.0 

i,h 97.5 91.0 100 95.6 85.1 100 100 
p,i,h 99.6 96.0 100 98.1 92.8 100 100 

        
VC Structure A, Sample Size Pattern 2 (np =100, ni = 3, nh

p 

 = 10) 

83.9 76.1 88.1 84.0 77.4 79.0 78.3 

i 48.5 90.0 100 76.5 100 100 100 

h 86.5 78.2 91.9 77.2 74.7 84.1 82.6 

p,i 91.9 99.0 100 98.4 100 100 100 

p,h 97.8 94.8 98.9 97.9 93.5 97.0 96.2 

i,h 98.1 99.8 100 94.4 99.9 100 100 
p,i,h 99.9 100 100 99.9 99.9 100 100 
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Table J14. Continued 

 σ2 σ(p) 2 σ(h) 2 σ(ph) 2 σ(i:h) 2 σ(pi:h) 2 σ(δ) 2

VC Structure B, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni = 15, nh

p 

 = 5) 

69.6 24.6 58.6 33.9 34.2 48.4 38.8 

i 52.3 61.6 96.7 73.4 52.3 86.8 79.9 

h 98.9 65.3 91.9 76.6 77.8 89.2 81.5 

p,i 83.0 65.8 98.6 79.2 60.4 92.8 84.3 

p,h 99.7 68.5 95.5 80.7 82.1 92.8 86.4 

i,h 99.9 84.5 99.4 92.1 86.7 97.9 95.0 
p,i,h 100 87.2 99.6 93.5 89.1 98.8 96.8 

        
VC Structure B, Sample Size Pattern 2 (np =100, ni = 3, nh

p 

 = 10) 

79.2 45.4 80.4 50.3 52.5 57.0 53.1 

i 53.8 90.8 100 76.4 99.4 100 100 

h 97.4 73.9 89.4 75.8 82.2 84.5 80.5 

p,i 91.2 95.5 100 88.0 100 100 100 

p,h 99.6 83.8 98.2 84.4 89.8 91.2 88.7 

i,h 100 99.6 100 90.6 99.0 100 99.9 
p,i,h 100 99.9 100 94.3 99.2 100 100 
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Table J15. 90% Percentile Confidence Interval Coverage for the ( )hip :×  
Design, Polytomous Data 

 σ2 σ(p) 2 σ(h) 2 σ(ph) 2 σ(i:h) 2 σ(pi:h) 2 σ(δ) 2

VC Structure A, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni = 15, nh

p 

 = 5) 

87.2 1.9 87.8 19.5 90.5 88.3 60.7 

i 26.8 21.7 99.8 80.4 100 99.4 95.3 

h 61.8 8.8 97.9 81.4 80.5 97.8 84.7 

p,i 89.0 26.5 99.9 80.3 100 99.9 95.4 
p,h 93.5 11.6 100 78.8 98.7 100 95.7 
i,h 81.3 38.4 100 94.5 99.9 100 100 

p,i,h 96.8 44.6 100 94.4 100 100 100 
        

VC Structure A, Sample Size Pattern 2 (np =100, ni = 3, nh

p 

 = 10) 

84.1 21.4 90.4 31.1 89.3 90.5 66.6 

i 25.9 62.6 100 68.9 100 100 99.8 

h 55.1 25.7 94.6 70.3 83.5 95.8 83.9 

p,i 88.1 70.7 100 72.1 100 100 99.9 
p,h 92.9 56.2 99.6 70.3 99.1 99.6 96.6 
i,h 78.4 74.7 100 72.2 100 100 100 

p,i,h 97.8 94.2 100 72.2 100 100 100 
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Table J15. Continued 

 σ2 σ(p) 2 σ(h) 2 σ(ph) 2 σ(i:h) 2 σ(pi:h) 2 σ(δ) 2

VC Structure B, Sample Size Pattern 1 (n

(Δ) 

p = 200, ni = 15, nh

p 

 = 5) 

89.8 0.1 88.8 21.6 89.2 88.9 1.6 

i 28.1 5.0 98.1 87.9 100 97.2 21.0 

h 95.4 25.4 100 78.2 79.6 100 41.7 

p,i 91.7 5.7 99.9 89.5 100 99.9 29.4 
p,h 99.5 25.9 100 80.7 98.5 100 60.2 
i,h 98.9 38.3 100 98.3 99.9 100 82.4 

p,i,h 99.8 41.1 100 99.0 100 100 91.0 
        

VC Structure B, Sample Size Pattern 2 (np =100, ni = 3, nh

p 

 = 10) 

87.1 16.5 89.8 31.1 91.0 89.3 25.6 

i 30.0 80.6 100 82.8 100 100 97.6 

h 77.4 59.4 95.4 86.6 85.1 95.2 64.1 

p,i 89.7 85.9 100 88.3 100 100 98.2 
p,h 96.1 62.3 99.5 89.5 99.3 99.4 74.3 
i,h 90.9 97.6 100 98.1 100 100 99.9 

p,i,h 99.0 98.8 100 98.4 100 100 99.9 
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