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ABSTRACT

This thesis considers the coordinated control of autonomous agents. The agents

are modeled as double integrators, one for each Cartesian dimension. The goal is

to force the agents to converge to a formation specified by their desired relative

positions. To this end a pair of one-step-ahead optimization based control laws are

developed.

The control algorithms produce a communication topology that mirrors the

geometric formation topology due to the careful choice of the minimized cost func-

tions. Through this equivalence a natural understanding of the relationship between

the geometric formation topology and the communication infrastructure is gained.

It is shown that the control laws are stable and guarantee convergence for all viable

formation topologies. Additionally, velocity constraints can be added to allow the

formation to follow fixed or arbitrary time dependent velocities.

Both control algorithms only require local information exchange. As additional

agents attach to the formation, only those agents that share position constraints

with the joining agents need to adjust their control laws. When redundancy is

incorporated into the formation topology, it is possible for the system to survive loss

of agents or communication channels. In the event that an agent drops out of the

formation, only the agents with position interdependence on the lost agent need to

adjust their control laws. Finally, if a communication channel is lost, only the agents

that share that communication channel must adjust their control laws.

The first control law falls into the category of distributed control, since it

requires either the global information exchange to compute the formation size or an

a priori knowledge of the largest possible formation. The algorithm uses the network

size to penalize the control input for each formation. When using a priori knowledge,

it is shown that additional redundancy not only adds robustness to loss of agents
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or communication channels, but it also decreases the settling times to the desired

formation. Conversely, the overall control strategy suffers from sluggish response

when the network is small with respect to the largest possible network. If global

information exchange is used, scalability suffers.

The second control law was developed to address the negative aspects of the

first. It is a fully decentralized controller, as it does not require global information

exchange or any a priori knowledge.
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are modeled as double integrators, one for each Cartesian dimension. The goal is

to force the agents to converge to a formation specified by their desired relative

positions. To this end a pair of one-step-ahead optimization based control laws are

developed.

The control algorithms produce a communication topology that mirrors the

geometric formation topology due to the careful choice of the minimized cost func-

tions. Through this equivalence a natural understanding of the relationship between

the geometric formation topology and the communication infrastructure is gained.

It is shown that the control laws are stable and guarantee convergence for all viable

formation topologies. Additionally, velocity constraints can be added to allow the

formation to follow fixed or arbitrary time dependent velocities.

Both control algorithms only require local information exchange. As additional

agents attach to the formation, only those agents that share position constraints

with the joining agents need to adjust their control laws. When redundancy is

incorporated into the formation topology, it is possible for the system to survive loss

of agents or communication channels. In the event that an agent drops out of the

formation, only the agents with position interdependence on the lost agent need to

adjust their control laws. Finally, if a communication channel is lost, only the agents

that share that communication channel must adjust their control laws.

The first control law falls into the category of distributed control, since it

requires either the global information exchange to compute the formation size or an

a priori knowledge of the largest possible formation. The algorithm uses the network

size to penalize the control input for each formation. When using a priori knowledge,
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CHAPTER 1

INTRODUCTION

The coordinated control of autonomous agents has become an important area

of research over the past few years. The increased activity in this area is largely due

to significant advances in wireless communications, networking, and rapidly expand-

ing application domains. The agents can achieve and maintain formations, perform

collision and obstacle avoidance, harvest data, and perform collective tasks. Coop-

eration between the agents is achieved through sensed information and/or the active

communication of data between agents.

1.1 Motivation

People have long been fascinated with phenomena that occur in nature. An

area of interest has been the cooperative behavior of animals toward achieving a

common goal. Examples include the swarming, flocking and schooling behavior, and

animals scavenging for food. These types of behavior either protect the members

of the group from predators or allow them to better achieve tasks that would not

be easily achievable by individual members working alone. In an attempt to better

understand these animal coordination behaviors scientists have created simulations

and models which attempt to replicate and examine the behavior.

Whether by independent thought, or as a direct result of observations made in

nature, scientists began to research and explore the benefits of coordinated control.

Groups of agents working together to explore terrain can be more efficient then a

single agent. An array of antennas can provide the reception capabilities of a single

large antenna with the added reward of signal attenuation in all but the desired direc-

tion. Separate optical telescopes acting together, such as the Very Large Telescope

(VLT) project, can behave as a single large telescope with a reduced manufacturing

cost. Vehicles traveling in tight formation will experience reduced aerodynamic drag.
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In a military environment, a fleet of small stealth aircraft can transport the same

payload as a single large aircraft, but with a smaller radar footprint. Additionally,

if a craft is lost, it would not be as detrimental to the mission as the loss of a single

large craft. Further applications include air traffic control, sensor networks, station

keeping, satellite clusters, and automated highway systems.

Clearly the realization of these benefits requires some level of coordination

between the agents. The coordination can come in the form of preplanning, cen-

tralized control, or decentralized control. Each approach has its own benefits and

consequences. Preplanning can be the most cost effective approach since there is

no requirement for a communication infrastructure. However, preplanning is unable

to adapt to dynamically changing environments which can lead perturbation of the

desired behavior.

Centralized control typically involves a powerful master controller with com-

munication channels to each agent. The centralized controller monitors all agents

and dictates their control through the communication channels. Advantages of a cen-

tralized controller typically include faster convergence and enhanced stability. These

benefits come with a greater monetary cost due to the required processing and com-

munications resources needed by the master controller. Unfortunately the centralized

controller is a single point of failure in these architectures. Additionally, architec-

tures involving a master controller typically do not work well for large systems due

to limited communication range and limited processing power of the master agent.

Decentralized control can be further subdivided into two categories: distributed

control and fully decentralized control. With distributed control, each agent will

process some globally shared information along with a local set of data obtained either

through sensing or active communication. The agent will process the information

using its internal controller and act in a semi-autonomous fashion. This approach

typically has a smaller monetary cost and works better for larger systems than a
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centralized controller. The global information required can include information about

a formation leader or simply a global clock used for synchronization of actions. The

latter is not typically required to achieve the objective, but it does aid in the analysis

of the system. The global exchange of data does tend to limit the size of the system,

when compared to a fully decentralized controller, but can decrease the time required

to achieve the system objective. Fully decentralized control is distributed control

without the global information exchange. Of the control schemes described, it works

best for large systems; however, the approach can result in reduced stability and

slower convergence.

It is certainly advantageous if the coordination has a scalable nature. Scalability

imposes a strong requirement on the decentralization of the agents’ individual control

algorithms. As in the natural behavior of schools and flocks, no one agent can be

expected to coordinate the actions of a large system of agents.

Other desires include disturbance rejection, robustness to either agent loss or

the loss of a communication channel, and provably correct algorithms which provide a

theoretical understanding of the problem domain. Intuitively, one would expect a di-

rect correlation between system connectivity and rate of convergence. Some research

has shown through counter example that this is not necessarily true, and in some

cases convergence may never occur. Therefore, an understanding of how additional

connectivity can impact system performance is also important. Finally, intuitive

control laws with a natural relationship between the communication infrastructure,

robustness and rate of convergence are of practical interest.

1.2 History of the Problem - A Literature

Review

Spurred by the development of inexpensive dependable wireless communica-

tion systems and a rapidly expanding application domain, research in the area of

the coordinated control of autonomous agents has intensified greatly in recent years.
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When these systems are compared with agents acting in a singular fashion, coor-

dinated multi-agent systems provide significantly greater efficiency and operational

capability. The agents can achieve and maintain formations, perform collision and

obstacle avoidance, harvest data and perform collective tasks. Cooperation between

the agents is achieved through sensed information and/or the active communication

of data between agents.

This section presents a brief history of the problem domain. The ideas of

behavior-based formation control are first presented. While results in this area do

not typically focus on provably correct algorithms they have provided some intuition

of the coordinated behaviors observed in nature especially in the area of zoological

and behavioral sciences. Additionally, the results have motivated other researchers

to derive provably correct algorithms that provide a theoretical understanding of the

observed behavior, serving as a stepping stone into other areas of research.

The concept of string stability and the vehicle following problem is then in-

troduced. As cities expand, without proper planning, traffic congestion becomes a

pressing problem. Using this problem as motivation, control schemes which involve

a one-dimensional fleet of vehicles traveling as a platoon with minimal inter-vehicle

spacing have been investigated to increase highway capacity. Additional benefits

include reduced aerodynamic drag and improved fuel economy. In an attempt to

achieve a scalable architecture vehicles only use sensed relative position information

from the preceding vehicle and in some cases the relative position, velocity and accel-

eration of the lead vehicle. As a result, all communication architectures in this area

use acyclic one-directional information flow. This type of system is often referred

to as a “look-ahead” system. String stability can be intuitively understood as the

attenuation of disturbances as they propagate from one vehicle to the next.

Consensus algorithms are then presented. The objective is for the group of
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agents to reach consensus on a shared data set, either through sensed or commu-

nicated information. Consensus algorithms can be used to solve the rendezvous,

flocking, and formation control problems. If a set of n agents with limited sensing

range is considered, the goal of the rendezvous problem is to have all agents converge

to a common point with only information exchange between agents that are within

each other’s sensing region. Flocking simulations use similar update rules to the

rendezvous problem, but the end goal is to have the agents converge to a common

velocity. Formation control can be achieved by having the agents converge to an

agreement on the formation center while maintaining a predefined offset from that

center. Most of the consensus results investigate a communication exchange protocol

and then, based on that protocol, determine if convergence can be achieved. In the

case of formation control using consensus algorithms, the formation is achieved with

the convergence to a common center reference.

This work concerns itself with the ideas surrounding decentralized formation

control. Unlike the approach used in consensus algorithms, an optimal one step-

ahead control law is presented which ensures that the formation can be reached and

maintained. The approach does not depend upon a common center reference for the

agents. A natural relationship is shown to exist between the required communica-

tion infrastructure and the relative position dependencies of the formation shape.

Additionally, robustness to loss of craft and/or communication channels improves

with additional redundancy in the communication network. Also, it is shown that

the convergence rate improves with the added communication as one would expect.

It is important to note that this is not always the case in other formation control

schemes.
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1.2.1 Behavior Based Formation Control

Behavior Based Formation control was first investigated by Craig Reynolds

in the late 80’s to address a need for realistic flocking simulations in the computer

graphics area. [1]. The simulation of a flock of birds had been a difficult challenge

due the complex behavior of the flock. He expanded upon the notion of a particle

system to create a behavioral model of a bird through a set of rules. Each bird was

modeled to conserve momentum, limit speed and acceleration, maintain a minimum

separation distance, and match the velocity and direction of its neighbors. A birds

desire to be at the center of the flock was also modeled. The sensing distance of the

bird was limited to reduce the computational complexity of the model. A side-effect

of the limited sensing distance resulted in a more realistic simulation that allowed

flocks to naturally bifurcate about an object.

Later research, [2] investigated a simplified behavioral model of a fixed velocity

particle system. The particles’ headings were updated using the average of their

neighbors. Some interesting observations were made:

(i) With low particle density, the particles tended to form small coherently moving

groups.

(ii) With higher particle density the particles tended to move in the same direction

and the average velocity of the group approached that of the individual.

Work continued along this vein into formation control. Balch and Arkin con-

ducted formation simulations using four identical non-holonomic robots with unique

ID’s [3]. The robots used differential GPS for gathering position information. Mul-

tiple behaviors were integrated into a behavioral model that allowed the robots to

navigate to way-points, avoid obstacles and maintain a formation simultaneously.

Simulations were conducted using a leader reference architecture as well as a unit

center approach. The work did not provide any convergence, stability, or collision
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avoidance proofs.

The concept of Queues and Artificial Potential Function Theory were presented

in [4] and [5]. The queues in combination with the artificial potential functions allow

the agents to assume specified formation shapes independent of their agent number,

that is, agent order within the formation is not guaranteed. The formations are

“robust” to agent loss and provide a decentralized approach to achieving the forma-

tion. If ideal communication is assumed, for example communication is not subject

to multiple access problems, the approach scales well. However, the queue allocation

algorithm requires global communication of information from all agents. If multiple

access limitations on the communication channels are considered, scalability concerns

quickly become apparent. Unfortunately, no theorems or proofs were provided.

1.2.2 String Stability and the Vehicle Following
Problem

In the area of formation control, the notion of string stability often presents it-

self. One of the concentrations for this area of research was vehicle following systems,

or vehicle platoons. The California Partners for Advanced Transit and Highways

(PATH) and Automated Highway Systems were key focal points in the late 80’s and

early 90’s. In the area of vehicle platoons, vehicles travel in a string with a small

distance between each vehicle to reduce aerodynamic drag and increase highway ca-

pacity. In such a system, it is critical that tracking errors do not get amplified as

they progress from vehicle to vehicle.

1.2.2.1 String Stability With Global Information
Exchange

The “string stability of a countably infinite interconnection of a class nonlin-

ear systems” was first introduced in [6] by Swaroop and Hedrick. A basic leader

/ follower architecture was presented in which each vehicle can sense the relative
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distance between itself and the preceding vehicle. Additionally, each vehicle also

receives transmitted acceleration, velocity, and position information about the lead

vehicle. Their research showed that the interconnected system is globally exponen-

tially string stable if the system is Lipschitz in its arguments with sufficiently small

Lipschitz constants. Additional theorems were presented that proved exponentially

string stable systems are robust against small singular perturbations.

Later, in [7], Swaroop, Hedrick and Choi expanded upon an earlier conference

paper [8]. They presented an adaptive control algorithm to counteract the parametric

uncertainties that are associated with the vehicle following problem. The uncertain-

ties that were addressed included variable aerodynamic drag with vehicle spacing

and the change of overall vehicle mass with changes in fuel, passengers, and cargo.

In order to obtain these results the strict string stability constraint was relaxed to

require only that the velocity and spacing errors be uniformly bounded in time.

1.2.2.2 String Stability Without Global Information
Exchange

An overview of string stability without global information exchange was pre-

sented in [9]. The paper addressed various control schemes used to solve the vehicle

following problem. It was shown that without lead vehicle information, at best, the

systems have weak sense string stability since the stability polynomials have at least

one simple root at z = 1. As a result, the systems presented are not robust against

signal processing delays or actuator lags. Of particular interest, platoons lacking

lead vehicle information using identical controllers are not string stable. It was also

shown that systems with no lead vehicle information using non-identical controllers

have only weak sense string stablity.

In [10] , Khatir and Davison addressed the problem of string stability of a

platoon of identical vehicles where the only information available to the ith vehicle
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is the sensed information of its predecessor. The primary focus of the paper was to

solve the Robust Servomechanism Problem (RSP) using a constant spacing policy

without the global communication of the lead vehicle’s velocity. It was shown that

identical controllers cannot solve the vehicle following problem without lead vehicle

information. Additionally, they presented some simulations which show it may be

possible to use non-identical controllers to obtain string stability in the absence of

lead vehicle information.

The use of identical controllers to solve the vehicle following problem was con-

sidered in [11]. A sufficient condition for string stability was referenced from [12]. It

was assumed that the error information of the preceding vehicle is known. Simula-

tions were provided which show a ten vehicle system is robust against un-modeled

actuator dynamics and time delay. No proofs were provided to support the simula-

tions.

Finally, in [13], Khatir and Davison provided a solution which uses non-identical

controllers with linearly increasing gains. The decentralized controller was the same

controller used in the simulation results in [10]. Like in [11], it was assumed that

each vehicle has knowledge of spacing error between itself and the preceding vehicle.

Bounded stability and eventual string stability was proven when the lead vehicle

undergoes a step change in speed.

1.2.2.3 Mesh Stability

Historically, string stability addressed one dimensional “look-ahead” systems

in which the ith vehicle only has knowledge the preceding vehicles in the formation.

String stability results can be extended into multiple dimensions, a two-dimiensional

definition of a look-ahead system follows:

Definition 1.2.1 An interconnected system, is called look-ahead, if the (i, j)th sub-

system is connected only to the subsystems (k, l) such that k ≤ i and l ≤ j. For an
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Figure 1.1: Look-Ahead Interconnected System

example of a look-ahead topology see Figure 1.1.

Mesh stability can be intuitively understood as the attenuation of disturbances

as they propagate through an interconnected system. Aniruddha et al. defined a

notion of mesh stability for a class of interconnected nonlinear systems and derived a

set of sufficient conditions to guarantee mesh stability for look-ahead interconnected

systems in [14]. A theorem was provided which showed that if an interconnected sys-

tem is globally exponentially mesh stable, it will be robust to singular perturbations

provided that some conditions are met. Examples of formation flying in a plane were

presented.

In [15], Jin and Murray used mesh stability as a to way quantify disturbance

resistance of an acyclic formation. The studied formation is a look-ahead system as

defined in [14]; however they introduced the concept of a double-graph model, where

one graph represents transmitted leader information and the other graph represents

sensed vehicle information. A control scheme was presented which weighted the

contribution of leader information a scaler α and the contribution of the sensed

neighbor information by 1−α. It was shown that when α = 1 the best possible string

stability is achieved; however, any loss in communication will cause instability. As

α is decreased the fault tolerance improves but there is a negative impact on string

stability. Unfortunately, an algorithm which provides the best possible choice of α

was not provided.
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1.2.3 The Consensus Problem

The consensus problem is a general coordinated control problem in which agents

iteratively exchange information with their neighbors to reach a consensus on a shared

set of data. Examples of consensus problems include formation control, rendezvous

problems, and sensor networks.

1.2.3.1 The Rendezvous Problem

Consider a set of n agents with limited sensing range. Each agent is represented

as a node within a graph and an edge connects two nodes if the agents can sense one-

another. Starting with a random distribution of agents, the goal of the rendezvous

problem is to have all agents converge to a common point.

The rendezvous problem was introduced by Ando et al. in [16]. It was assumed

that each agent has a limited sensing range of radius r and that an agents “view”

may be obstructed by another agent (i.e., two agents within the sensing radius r of

one-another may not be able to sense each other if a third agent is between them).

The agents alternate between two phases (i) a static phase, in which the agents sense

their neighbors and calculate a new position to move to and (ii) a motion phase, in

which the agents move to their new locations (no new calculations or changes to the

agents destination are allowed during this phase). It was shown that the provided

algorithm caused all agents within an initially connected graph to converge to a

common point. A theorem was provided to prove the algorithm. However, collision

avoidance and view obstruction were not considered.

Later, in [17] and [18], Lin et al. extend the work of Ando et al. to a larger

family of algorithms which include the algorithm presented in [16]. The same basic

assumptions of the n agent system were made (i.e., each agent was modeled as

a point, such that each agent could not obstruct the view of another agent and

problems associated with collision avoidance were ignored). They showed that the
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theorem presented in [16] is sufficient but not necessary to obtain convergence. An

idea of trapping was considered in which agents not initially connected may also

converge to a point.

The results discussed above require synchronization. This is a serious drawback

that requires the agents to have a common clock. In [17] and [18] the multi-agent

rendezvous problem was addressed once again; however, they solved the problem

asynchronously. In the synchronous case it is fairly intuitive to show agents retain

their neighbors as the system evolves. This proof is much more involved in the

asynchronous case. Nevertheless, Lin, Morse, and Anderson did provide proofs to

show their rendezvous algorithm is correct.

Finally, Luc Moreau developed necessary and sufficient conditions to drive

agents to a common state in [19]. A simple model with time-dependent commu-

nication links was presented. State information was updated using strict convex

combination of its state information along with the state information of its neigh-

bors. The approach applies to a large family of problems including formation control,

synchronization, and swarming. The stability and convergence proofs were accom-

plished using set-valued Lyapunov theory which exploited the convex hull of the

agent’s states as the non-increasing Lyapunov function. An important result was

shown through counter example: when considering unidirectional communication,

the agents may not converge to a common state even if during each time interval an

agent sends its state information to all other agents. It was shown, however, that

if the propagation time for information exchange is bounded that convergence will

occur.

1.2.3.2 Flocking Behavior

An overview of flocking behavior was presented in Section 1.2.1. Previous work

in this area has presented interesting algorithms and behavioral models but did not
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offer any stability or convergence proofs. Here we focus on algorithms with provably

correct algorithms.

Motivated by the results presented in [1], Tanner et al. presented a system

of N mobile agents modeled as double integrators. A control scheme was pre-

sented using identical agent controllers which allow the agents to achieve desired

inter-agent distances, avoid collision and move as a cohesive group with a common

velocity. Collision avoidance, and desired inter-agent distances are achieved using

an artificial potential function. Convergence to a common velocity results from the

static inter-agent separation and from a velocity alignment component in the control

law. Neighboring relations were modeled as a graph and can reflect either sensed

or communicated information. A theorem was provided which proves convergence

and collision avoidance if the starting graph is connected. While it is not stated, we

conjecture the theorem is a sufficient but not necessary condition. The concept of

trapping presented in [18] should also apply to this result

In [20], Jadbabaie et al. presented a theoretical explanation for the behavior

observed in [2]. The heading update for the ith agent is an average of the heading

of the ith agent and the headings of its neighbors. The definition of neighbors does

differ in the two papers. In [2] the ith agent’s neighbors were defined as agents which

lied within a radius r of agent i. In [20] the neighbors of agent i are defined through

a connectivity graph. To model the idea that an agent’s neighbors may change

over time a switching signal was introduced which indexes through a complete set

of connectivity graphs. The switching signals do not take into account heading

vectors; therefore the presented is not truly identical to the model presented in [2].

Convergence results were presented for a large set of switching signals and initial

heading vectors.
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1.2.3.3 Formation Control

Consensus algorithms can be used to achieve and maintain formations. Typ-

ically agents reach consensus at the formation center and individually maintain a

predefined relative distance to the formation center. In [21], [22] and [23] Fax and

Murray developed a formation control scheme to drive N agents formation center

reference. The sensing network is modeled as a directional graph. A Nyquist-like

stability criterion that exploits the eigenvalues of the Laplacian matrix of the graph

was used to analyze the effect that different sensing topologies have on stability. Nec-

essary and sufficient conditions for stability were provided. The goal of the papers

was to provide a framework to analyze the effect the communication structure can

have on overall stability.

In [24], Glavaski et al. extended the results of [21] and [22] to allow for non-fixed

frame formations and intermittent sensor data and communication loss. Simulations

were presented; however, no stability proofs were provided. In [25], Williams et al.

extended [21]-[23] to address a hierarchy of formations.

1.3 Contributions and Areas of Interest

Early work in the area of formation control, such as [21] and [23], has first

chosen a communications architecture and a formation shape and then performed

an analysis to determine if the chosen communication architecture suffices to achieve

the desired formation. The work presented in this thesis reverses the approach. First

the desired formation shape is chosen and then it is determined what communication

architecture is required to achieve and maintain the formation.

The same geometric formation can be described in multiple ways. For instance,

if the desired geometry is of that depicted in Figure 1.2, it can be described by

specifying the relative positions between agents joined by arrows. In this figure

relative positions of the pairs (1, 2), (1, 4), (2, 3) and (4, 5) are specified. One may
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Figure 1.2: Agent Formation Topology with no Redundancy

also specify the same geometry by adding redundant information, as in Figure 1.3,

where the additional constraints are added between the pairs (1, 3) and (1, 5). Such

a redundant structure adds fault tolerance to the geometric description. Thus, while

the loss of agent 4 in Figure 1.2, implies that 5 is isolated, in Figure 1.3, 5 retains its

position relative to agent 1 and the new topology remains viable. Therfore additional

fault tolerance is achieved in Figure 1.3 by adding redundancies in the geometric

configuration such that the loss of an agent still results in an acceptable formation

topology.

This will be defined as the Formation Topology, as opposed to the Commu-

nication Topology which defines the state information flow required to implement a

cooperative control law.

A pair of one-step-ahead optimization based control laws for autonomous agents

are developed. Each agent is modeled as a double integrator. Only the formation

topology for the agents is defined, and by correctly choosing the cost function, it is

shown that the algorithm produces a communication topology mirroring the geomet-

ric topology. This provides the user with a natural understanding of the relationship

between the geometric formation dependencies and the communication infrastruc-

ture.

The intuitive nature of the relationship between the formation and communi-

cation topologies allows the user to easily add redundancy to the formation topology



16

1HH

ww

88

��

VV

''

ff

��

2HH

ww

90◦

4VV

''3 5

Figure 1.3: Agent Formation Topology with Redundancy

allowing the system to survive loss of agents and/or communication channels. Addi-

tionally, by adding redundancy to the formation topology, as in Figure 1.3, not only

is the formation more robust to loss of agents, but that the agents converge to the

desired formation at a faster rate. Other attractions of the scheme are scalability,

the requirement of only local knowledge of the desired formation topology, and ease

of reconfiguration in the face of loss of agents and/or communication channels.

The provided control laws not only allow the agents to come into formation, but

velocity constraints can be added to allow the formation to follow fixed or arbitrary

time dependent velocities.

1.4 Organization

Chapter 2 provides the reader with an introduction to the core mathematical

equations and concepts used throughout the thesis. In Section 2.1 a set of equa-

tions that will be used to represent our system of agents is intoduced. Section 2.2

introduces the mathematical formulas that will be used to represent the agent for-

mations. Finally, in Section 2.3 a set of conditions is supplied to address the viability

of a formation.

Chapter 3 presents a formation control law which has limited scalability. First,

in Section 3.1, a one step ahead optimal control law is provided and it is proven that

communication topology mirrors the formation topology. Section 3.2 proves that the

control law is stable and that all viable formation topologies are attained. Then,
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in Section 3.3, a series of simulations is provided which demonstrate some of the

characteristics of the control approach.

In Chapter 4, the work presented in Chapter 3 is extended to allow the agents

to track arbitrary time varying velocities. In Section 4.1 the control law is defined.

The control law is proven to be stable, attain all viable formation topologies and

follow the desired trajectory in Section 4.2. Finally, in Section 4.3, simulation results

are provided which demonstrate the behavior.

The impact that redundancy has upon the rate of convergence is analyzed

in Chapter 5. In Section 5.1 a state transformation is presented to provide a more

concise representation of the problem. Section 5.2 proves that the rate of convergence

improves with additional redundancy. Finally, the results are demonstrated through

simulation in Section 5.3.

Chapter 6 presents an enhanced approach to multi-agent formation control

that results in better scalability. In Section 6.1 the problem is presented and some

assumptions are defined. In Section 6.2 the one step ahead optimal control law

is provided and it is proven that communication topology mirrors the formation

topology. It is established that the control law guarantees that a fleet of autonomous

agents can attain any fixed velocity viable formation with the additional benefit

of enhanced scalability in Section 6.3. Finally, the properties are demonstrated in

Section 6.4 and its is shown that in many cases better performance is obtained using

this control law when compared to the limited scalability approach.

Finally, in Chapter 7, the influence that dynamic changes to the communication

topology can have upon system stability is investigated. A representation for periodic

time-varying systems is provided in Section 7.1. In Sections 7.2 and 7.3 periodic

sequences which result in instability are presented for the limited scalability approach

and the enhanced scalability approach respectively.

The work presented in Chapters 2-6 appears in the following papers: [26], [27],
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[28], [29], [30], [31] and [32].
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CHAPTER 2

THE COORDINATED CONTROL OF AUTONOMOUS AGENTS

In this chapter we will provide an introduction into the coordinated control

of autonomous agents. In Section 2.1 we will provide a mathematical definition for

the system of agents. In Sections 2.2 and 2.3 respectively, we will introduce the

mathematical representation that will be used to characterize our formations and we

will define the conditions required for a formation to be viable.

First let us define the direct sum of matrices as we will use this throughout the

paper.

Definition 2.0.1 Consider any two matrices A and B where A is of size m×n and

B is of size p×q. Then the direct sum of A and B is a matrix of size (m+p)×(n+q)

as defined below:

A⊕B =


 A 0

0 B


 =




a11 . . . a1n 0 . . . 0

... . . .
...

... . . .
...

am1 . . . amn 0 . . . 0

0 . . . 0 b11 . . . b1q
... . . .

...
... . . .

...

0 . . . 0 bp1 . . . bpq




(2.1)

The direct sum of n matrices {A1, A2, . . . An} can be written

n⊕

i=1

Ai = diag (A1, A2, . . . , An) =




A1

A2

0

0

. . .

An




(2.2)
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2.1 Problem Description

Consider the problem of a two dimensional N -agent formation topology. We

will partition the global, 4N state vector x of the formation as

x =
[
xT
p xT

v

]T
(2.3)

where xp and xv contain the positions and velocities respectively. Further partitioning

the state vector to show the x and y constraints, where xp,i will be used to denote

the i-th element of xp, we have:

xp,i is the x position of agent i,

xv,i is the x velocity of agent i,

xp,i+N is the y position of agent i, and

xv,i+N is the y velocity of agent i

For convenience we will denote

n = 2N. (2.4)

Each vehicle will be internally modeled as a double integrator with a sampling interval

of 1-second. The system of agents can be represented as:

x(k + 1) = Φx(k) + Γu(k) (2.5)

where

Φ =


 In In

0 In


 , (2.6)

and,

Γ =


 In

2In


 . (2.7)

Observe the following fact that follows directly from (2.5-2.7).

Fact 2.1.1 Consider agent i. The corresponding states associated with agent i are

j ∈ {i, i+N, i+ 2N, i+ 3N}. The computation of the j-th element of Φx(k) requires

only the states associated with agent i.
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2.2 The Formation Topology

There are two views of the formation topology. In graph theory terms, each

agent is modeled as a node. An undirected edge exists between agent i and agent j

if relative position constraints are specified between them. It is intuitive to think of

each arc as a single constraint between two agents.

Now, let us define an algebraic view of the formation topology. We will define

the constraints in a similar fashion to the graph theoretic approach. Therefore, if an

x-position constraint is specified between a pair of agents, then we assume that a y-

position constraint has also been specified and we will consider this pair to be a single

constraint. The formation topology will be characterized by a total of L = Lp + Lv

constraints.

Observe that the relative positions between two agents, i and j, can be com-

pletely specified by the following pair of equations:

xi − xj = cxij
xi+N − xj+N = cyij . (2.8)

Assumption 2.2.1

The Lp position constraints will be characterized by the direct sum of a pair of iden-

tical Lp ×N matrices Aps and a 2Lp × 1 vector bp. There are as many rows in Aps

as there are arcs in the formation topology, one row for each arc. If an arc exists

between agents i and j, then the corresponding row of Aps is a vector, all but the i

and j-th elements are zero, the i-th element is 1 and the j-th element is -1.

With

Ap = Aps ⊕Aps (2.9)

the position constraints can be represented by the
[
Ap, bp

]
pair, where ⊕ denotes

the direct sum as specified in Definition 2.0.1. Thus, using this pair, an arbitary

position constrained formation such as in Figure 1.2 or in Figure 1.3 can be specified.

Indeed in Figure 1.2, Lp is 4 and in Figure 1.3, Lp is 6.

The velocity constraints will be characterized by a pair of Lv ×N matrices Avs
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and a Lv × 1 vector bv. With

Av = Avs ⊕ Avs (2.10)

one can add velocity constraints through Av and bv. Thus should either of the

formations in Figures 1.2 and 1.3 be required to move with a constant velocity, then

one can select

Av =
[
1 0 · · · 0

]
⊕

[
1 0 · · · 0

]
. (2.11)

This would specify a velocity in the x and y directions on agent 1, which together

with the relative position constraints, completely defines a formation moving with a

constant velocity. One can add redundancy in (2.11) by also specifying the velocity

of agent 3, (to guard against the loss of either agent) by choosing

Av =


 1 0 0 0 0

0 0 1 0 0


⊕


 1 0 0 0 0

0 0 1 0 0


 . (2.12)

With

A =


 Ap 0

0 Av


 and b =


 bp

bv


 (2.13)

the topology can be represented by the following equation:

Ax = b, (2.14)

where x the state vector described in (2.3).

Consider the formation topologies shown in Figure 1.2 and Figure 1.3. The

arcs connecting the agents represent a position and/or velocity dependence between

the representative agents in the topology. Indeed the following fact connects the

existence of an arc in the formation topology with a property of A.

Fact 2.2.1 Define ajl as the j, l-th element of A. Then an arc exists between agents

p and q iff for at least one i ∈ {p, p+N, p+ 2N, p+ 3N} and one j ∈ {q, q +N, q +

2N, q + 3N}

alialj 6= 0 for some l ∈ {1, · · · , 2L}.

In other words there is at least one row of A that contains nonzero entries from

columns corresponding to velocities and/or positions of both p and q.
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Recall that while Figures 1.2 and 1.3 describe the same geometry the latter

represents a formation topology with redundancies. Observe if the formation topolo-

gies in Figure 1.2 and Figure 1.3 are respectively defined by the pairs [A(1), b(1)] and

[A(2), b(2)], then [A(1), b(1)] is a sub-matrix of [A(2), b(2)]. Moreover, should the loss of

an agent result in a topology that remains acceptable, for example, the loss of 4 in

Figure 1.3, then this new topology characterized by [A(3), b(3)] obtained by removing

the rows corresponding to the constraints featuring 4 and columns corresponding

to the states of 4, is itself a sub-matrix of [A(2), b(2)]. The loss of a communication

channel, e.g., that between 1 and 5, would involve the use of a new pair obtained

by removing rows characterizing the constraint defining this lost arc. This feature

forms a core property to be exploited in fault tolerant design. Scalability is likewise

incorporated rather easily. Thus if a new agent 6 appears in Figure 1.3 with an arc

between it and 5, then the new pair [A(4), b(4)] characterizing it has [A(2), b(2)] as a

sub-matrix, and involves just the addition of rows and columns, and augmenting

rows in [A(2), b(2)] that feature in [A(4), b(4)] by zero column entries. In other words

with × denoting arbitrary sub-matrices, one has

[A(4), b(4)] =


 A(2) 0 b(2)

× × ×


 . (2.15)

Thus the loss of an agent/communication channel requires working with a sub-matrix

of the original
[
A, b

]
, and the addition of an agent requires a super-matrix of

[
A, b

]
.

2.3 Viability

In this section we explore conditions on
[
A, b

]
under (2.13) that ensure the

viability of the formation topology (2.14). Before providing a formal definition and

analysis of viability we first discuss at an intuitive level what it takes for a topology

such as this to be both achieved and maintained.
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First we make the following assumptions on the pair
[
A, b

]
:

Assumption 2.3.1

(i) The matrix Aps has rank N − 1.

(ii) Further b is in the range space of A.

It is well known that (i) ensures that the formation topology viewed as a graph is

connected. Moreover, (ii) ensures that it is well defined.

Secondly since xv is the derivative of xp and with x defining a target formation,

Apxp is a constant,

Apxv = 0.

Finally it would be intuitively appealing if, once the formation is attained, it is

maintained without any external force. In view of (2.5) this would require that for

all nonnegative integers m

AΦmx = b. (2.16)

In a more formal sense we define a viable topology to be one that can be achieved and

maintained by control law that may be centralized and even nonlinear time varying.

More precisely:

Definition 2.3.1 Under (2.5) and (2.13), the formation topology (2.14) is viable if

for every x(0) there exists a bounded input sequence u(k) such that.

lim
k→∞

(Ax(k)− b) = 0. (2.17)

The following theorem demonstrates that the intuitive properties we discussed at the

outset of this subsection are necessary for viability.

Theorem 2.3.1 Under (2.13) suppose (2.14) is viable. Then there exists x as in

(2.3) such that (2.16) holds for all nonnegative integers m as does (2.18) below.

Apxv = 0 (2.18)

Proof: If the topology is viable then (2.17) should hold. This implies that there
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exists x as in (2.3) and an
[
A, b

]
as in (2.13) such that

Apxp = bp (2.19)

and

Avxv = bv. (2.20)

Also, using the same x as above, under (2.5) and (2.17) there exists an input u such

that

A [Φx+ Γu] = b. (2.21)

From (2.6) and (2.7) we have:
 Ap 0

0 Av




 xp + xv + u

xv + 2u


 =


 bp

bv


 (2.22)

It follows that:

Ap(xv + u) = 0 (2.23)

and

Avu = 0. (2.24)

Now if we define x̂ using the same x and u as above

x̂ =


 xp

xv + u


 (2.25)

we have

Ax̂ =


 Ap 0

0 Av




 xp

xv + u


 =


 bp

bv


 = b (2.26)

since Avu = 0 from (2.24). Also because (2.23) we have

AΦmx̂ = b ∀m ∈ N ∪ {0}. (2.27)

This can easily be verified since

Φm =


 In mIn

0 In


 . (2.28)

Therefore (2.27) can be rewritten as
 Ap 0

0 Av




 xp +m(xv + u)

xv + u


 = b ∀m ∈ N ∪ {0} (2.29)

Finally, since there exists an x̂ such that (2.27) holds the input force becomes 0, and
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Apxv = 0 in (2.23).

Thus the existence of a control law necessitates the intuitive conditions we

stated earlier. Indeed we go on to show that these conditions suffice for the attain-

ment and maintenance of the formation topology and enable these tasks through a

communication topology that mirrors the formation topology defining the formation.
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CHAPTER 3

FORMATION CONTROL WITH LIMITED SCALABILITY

In this chapter we present a distributed approach to the formation control

problem. This approach requires either an a priori knowledge of the largest possible

formation size or a global information exchange of the current formation size. As

such, this approach is not as scalable as some would desire; however, it does have some

interesting properties. A one-step-ahead optimal control law which guarantees a fleet

of autonomous agents can attain any fixed velocity, viable formation is provided. We

show that the formation topology is in fact equivalent to the communication topology

and, assuming the use of a priori knowledge, only local information exchange. In

other words, each agent only requires knowledge of its neighbors, as specified by the

formation topology. In the face of a lost agent, only neighbors of the lost agent must

adjust their control laws. If a communication channel is lost, only the agents that

share the communication channel must adjust their control laws. Finally, the arrival

of a new agent only impacts the agents against which the arriving agent’s relative

position constraints are defined.

3.1 Basic Control

We propose a one step ahead optimization law using the cost function

J(k) = [Ax(k + 1)− b]T [Ax(k + 1)− b] + uT (k)Qu(k) (3.1)

Where Q = QT > 0 penalizes the input. The key step in achieving the control

law with the desired characteristics described in the introduction is to appropriately

select Q.

Since x(k+1) is dependent on u(k) we begin by substituting (2.5) into the cost

function defined in (3.1). Taking the partial derivative of the resultant expression

with respect to u(k), we obtain:
[
ΓTATAΓ +Q

]
u(k) = ΓTAT [b−AΦx(k)]
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Setting:

Q = Λ− ΓTATAΓ, (3.2)

and choosing:

Λ = αI (3.3)

with α greater than the largest eigenvalue of ΓTATAΓ, Q is invertible and positive

definite. Further by making α arbitrarily large one can penalize the input to an

aribitrary degree. The resulting control law is shown below.

u(k) =
1

α
ΓTAT b−

1

α
ΓTATAΦx(k) (3.4)

Now we will show that the communication topology resulting from (3.4) is

identical to the geometric topology and further that only a local knowledge of the

formation is required by each agent. Observe that the control inputs to agent i are

ui and ui+N . We will show that if i and j do not have an arc between them in the

formation topology, then ui and ui+N do not depend on {Φx}j , {Φx}j+N , {Φx}j+2N

and {Φx}j+3N . Because of Fact 2.1.1 this in turn implies that ui and ui+N do not de-

pend on xj , xj+N , xj+2N and xj+3N , establishing the structure of the communication

topology. Observe that (3.4) becomes,

u(k) =
AT

p bp + 2AT
v bv − [AT

pAp, 2A
T
vAv]Φx(k)

α
(3.5)

We next present the following lemma.

Lemma 3.1.1 For any matrix C
(
CTC

)
ij
6= 0

only if for some l

cliclj 6= 0.

Further, the computation of the i-th row of CTC requires the knowledge of the l-th

row of C only if cli 6= 0. Finally, for any vector g the computation of the i-th element

of CTg requires the knowledge of the l-th row of C and/or l-th element of g, only if

cli 6= 0.
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Proof: Follows from the fact that
(
CTC

)
ij
=

∑

l

cliclj

and
(
CTg

)
i
=

∑

l

cligl. (3.6)

Then we have the following result that establishes the various properties of the

communication topology listed in the foregoing.

Theorem 3.1.1 Consider (3.4) under (2.3), (2.6), (2.7), and (2.13). Then the

finding ui(k) and ui+N(k) requires:

(i) The states of agent l only if there is an arc between agents l and i in the

formation topology.

(ii) The l-th row of A only if for some j ∈ {i, i+N, i+ 2N, i+ 3N} alj 6= 0.

(iii) The l-th element of b only if for some j ∈ {i, i+N, i+ 2N, i+ 3N} alj 6= 0.

Proof: Consider the determination of up, p ∈ {i, i+N}. Suppose this requires the

knowledge of Φxq, for some q ∈ {l, l + N}. Then from (3.5)
(
AT

pAp

)
pq

is nonzero.

Then because of Lemma 3.1.1 for at least onem them-th row of Ap must have nonzero

entries in both the p-th and the q-th locations. Similarly if the determination of up,

p ∈ {i, i+N} requires the knowledge of Φxq, for some q ∈ {l+2N, l+3N}, then for

at least one m the m-th row of Av has nonzero entries in both the p-th and the q-th

locations. Then Facts 2.1.1 and 2.2.1, together with (2.13) prove (i).

Now, from (3.5), the computation of up, p ∈ {i, i+N} requires the computation

of the p-th rows of AT
pAp and AT

vAv and the p-th elements of AT
p bp and AT

v bv. Then

from Lemma 3.1.1, for such a p, the computation of the p-th rows of AT
pAp and AT

vAv

require respectively, the knowledge of the l-th rows of Ap and Av only if the lp-th

elements of respectively Ap and Av are nonzero. Further the p-th elements of AT
p bp

and AT
v bv require the knowledge of l-th rows of Ap and Av and/or the l-th elements
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of bp and bv only if the lp-th elements of respectively Ap and Av are nonzero. Then

(ii) and (iii) follow from (2.13), Fact 2.1.1 and (2.3).

Property (i) establishes that the communication topology is the same as the

formation topology. Properties (ii) and (iii) establish that agent i need only know

those rows of A and elements of b which define the arcs emanating from it. Thus

i must only know its place in the formation topology and therefore, a distributed

knowledge of the formation topology suffices.

If, despite the loss of an agent, for example agent 4 in Figure 1.3, the formation

topology remains viable, then this modified formation topology is described by a
[
A, b

]
matrix that is a sub-matrix of its counterpart in the original formation

topology, and obtained by removing the rows characterizing the two arcs impacting

4 and the four columns of A corresponding to the states of 4. As the elements of

these columns in the rows of the original A matrix defining the arcs of 2 and 3 are

zero, the inputs to agents 2 and 3 are unchanged. These agents do not reconfigure

their control laws and need not know about the loss. Similarly if communication

between 1 and 5 be impaired or lost, then only 1 and 5 must know of this loss and

adjust their control law.

Scalability is similarly accommodated. The position of a new arrival can be

completely specified by introducing an arc to a single member of the formation. Then

because of the relation between the larger [A, b] matrix describing the augmented

formation topology, and the old one, see for example (2.15), none of the elements of

this new
[
A, b

]
matrix affect the control laws of the remaining agents.

3.2 Proof of Stability

In this section we prove that the control law in (3.4) asymptotically attains all

viable formation topologies, as long as

I −
ΓTATAΓ

α
> 0. (3.7)
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To this end observe that with

F = Φ−
Γ

α
ΓTATAΦ, (3.8)

and

G =
Γ

α
ΓTAT b, (3.9)

the control law (3.4) results in the closed loop

x(k + 1) = Fx(k) +G. (3.10)

Define

y(k) = Ax(k)− b. (3.11)

We need to find conditions under which y(k) asymptotically approaches zero.

To this end we first provide the following lemma.

Lemma 3.2.1 Under (3.7), with F defined in (3.8), (2.6), (2.7) and A in (2.13),

all poles of A(zI − F )−1 are inside the unit circle.

Proof: The detailed proof is in Appendix A.1 and comprises two parts. In the

first we show that (3.7) ensures that the poles of F are either at 1 or inside the unit

circle. The second part shows that the poles at 1 are unobservable through A.

This brings us to the main result of this section.

Theorem 3.2.1 Suppose the formation topology is viable and Ap 6= 0. Then

lim
k→∞

Ax(k) = b

Proof: We need to show that

R(z) =
z − 1

z

[
A(zI − F )−1x(0) + A(zI − F )−1 Gz

z − 1
−

bz

z − 1

]

is analytic on or inside the unit circle and

lim
z→1

R(1) = 0.

From Lemma 3.2.1, A(zI − F )−1 and hence R(z) is analytic on or outside the unit

circle. Thus it suffices to show that

lim
z→1

[
A(zI − F )−1G− b

]
= 0 (3.12)

Since the formation topology is viable there exists an x as in (2.3) that satisfies the

constraints imposed by Theorem 2.3.1. For such an x and all nonnegative integer l,
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from Theorem 2.3.1, we have

AΦl


 xv

0


 =


 Ap 0

0 Av




 I lI

0 I




 xv

0


 = Apxv = 0. (3.13)

Further, for such an x and all nonnegative integer m, we have from (3.8) and (3.13)

that

AFm


 xv

0


 = AFm−1

[
I −

ΓΓTATA

α

]
Φ


 xv

0


 = AFm−1Φ


 xv

0




Thus by induction and (3.13) for all nonnegative integer m

AFm


 xv

0


 = AΦm


 xv

0


 = 0. (3.14)

Since AΦmx = b for all nonnegative integer m,

limz→1A(zI − F )−1G− b

= limz→1A(zI − F )−1G− Ax

= limz→1 [A(zI − F )−1 {G− (zI − F )x}]

= limz→1 [A(zI − F )−1 ×

×
{

ΓΓTATA
α

x− x+ Φx− ΓΓTATAΦx
α

}]

= limz→1 [A(zI − F )−1 {−x+ Φx}]

= limz→1


A(zI − F )−1


 xv

0




 .

We will now show that in fact

A(zI − F )−1


 xv

0


 = 0

almost everywhere. Thus, as it is rational, it is zero every where including at z = 1.
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Indeed, in the region of convergence of (zI − F )−1.

A(zI − F )−1


 xv

0


 = Az−1(I − z−1F )−1


 xv

0




=

[
Az−1 + z−1

∞∑

i=1

z−iAF i

]
 xv

0




= z−1

∞∑

i=1

z−iAF i


 xv

0




= 0,

where the last equality follows from (3.14).

Thus this distributed control law helps attain and maintain all viable formation

topologies. Three implications of this result bear reiteration. First, the necessary

conditions for viablity given in Theorem 2.3.1 are all that are invoked in the proof

of Theorem 3.2.1. Thus these necessary conditions are also sufficient for viability.

Second, it is easily seen from the proof of Theorem 3.2.1 that in fact

lim
k→∞

u(k) = 0.

In other words once the formation is attained it can be maintained with no con-

trol input. Finally, and more compellingly, the class of formation topology under

consideration here has the attractive property that a distributed control law for its

achievement exists, as long as a centralized law exists. Thus whatever can be done

through global action can also be achieved through local action, and as importantly

through local knowledge of the overall objective.

3.3 Simulation Results

We assume that there are no velocity constraints, that is, Av = 0. Relative

positions are specified using equations of the form in (2.8).

In all the simulations, the initial conditions of the fleet are the same. The

starting positions are denoted by an ×, the positions at each time step are denoted
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2.5

Figure 3.1: Agent Formation with no Redundancy

by a ·, and the final positions are denoted by a ◦. All simulations are run until the

desired formation is reached.

Figure 3.1 corresponds to the formation shown in Figure 1.2. Figure 3.2 demon-

strates how a formation with additional redundancy is robust to loss of agents. It

shows the motion of the fleet with the additional redundancy defined in Figure 1.3,

which provides additional relative state information to agents 3 and 5. In this exam-

ple agent 4 is lost after 4 time steps. The position at which agent 4 is lost is denoted

by a red ◦ Once a loss has been detected, the rows corresponding to the constraints

of the lost agent, and the columns associated with its states are removed.
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Figure 3.2: Agent Formation with Redundancy and the Loss of Agent 4 at Time
k = 5

3.4 Conclusion

We have presented a distributed approach to the formation control problem.

This approach required either an a priori knowledge of the largest possible formation

size or the global information exchange of the current formation size. As such, this

approach was not as scalable as some would desire; however, it does have some

interesting properties which will be presented in Chapter 5. A one-step-ahead optimal

control law which guaranteed a fleet of autonomous agents could attain any fixed

velocity, viable formation was provided. We showed that the formation topology

was in fact equivalent to the communication topology and, assuming the use of a

priori knowledge, only local information exchange. In other words, each agent only
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required knowledge of its neighbors, as specified by the formation topology. In the

face of a lost agent, only neighbors of the lost agent were required adjust their

control laws. If a communication channel was lost, only the agents that shared the

communication channel were required adjust their control laws. Finally, the arrival

of a new agent only impacted the agents against which the arriving agent’s relative

position constraints were defined.
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CHAPTER 4

TRAJECTORY FOLLOWING

In in this chapter we extend the work presented in Chapter 3 to allow the

agents to track arbitrary velocities. The control law will retain all of the attractive

properties presented in Chapter 3, aside from the fact that the agents must apply

an input force to maintain their dynamic velocity changes. It is important to note;

however, that the input force is not used to maintain the relative positions amongst

the agents once the formation is attained.

The formation topology will be characterized by a constant matrixAp ∈ ℜ2Lp×n,

a constant vector bp ∈ ℜ2Lp×1, and a n× 1 time varying vector bv(k). In fact, with

A =


 Ap 0

0 In


 and b(k) =


 bp

bv(k)


 (4.1)

the topology can be represented by the following equation:

Ax(k) = b(k), (4.2)

where x is the target state vector, and the
[
Ap, bp

]
pair specify the Lp position

constraints and the
[
In, bv(k)

]
pair specify the n time varying velocity constraints.

Observe that we are using the same definition of A specified in (2.13) with Av = In.

As in the previous chapter, we make some assumptions. Assumptions 2.2.1 and

2.3.1 define how the relative positions are specified and also ensure that the relative

position constraints are compatible. Since our target topology is partly defined by

specified relative positions between the agents, the target velocities must be the same

for all agents. The first and second N elements of bv(k) are respectively related, in

a manner to be specified later, to the target velocities of each agent in the x and y

directions. Thus we have the following assumption.

Assumption 4.0.1 For some bounded functions bx(k) and by(k), the first N ele-

ments of bv(k) equal bx(k), and the second N elements equal by(k).



38

Observe we are requiring that each agent be provided the velocity trajectories

that the formation must follow. It is worth asking whether such information can be

provided to only one agent. It was shown in Chapter 3 that this is possible if the

target formation velocity is a constant. For more arbitrary time varying trajectories,

however, this can not be so. Indeed suppose that only agent one in Figure 1.2 knows

the trajectory to be followed. Then since in the communication architecture we seek,

only its neighbors can sense its states, agents 2 and 4 can react to the current sample

velocities of agent 1 only at the next sampling interval, and 3 and 5 at a further

interval removed. Thus the formation simply cannot be maintained.

4.1 Control Law and Communication Topology

We propose a one step ahead optimization law using the cost function:

J(k) = [Ax(k + 1)− b(k)]T [Ax(k + 1)− b(k)] + uT (k)Qu(k) (4.3)

Where Q = QT > 0 penalizes the input. The key step in achieving the control

law with the desired characteristics described in the introduction is to appropriately

select Q.

Since x(k+1) is dependent on u(k) we begin by substituting (2.5) into the cost

function defined in (4.3). Taking the partial derivative of the resultant expression

with respect to u(k), we obtain:
[
ΓTATAΓ +Q

]
u(k) = ΓTAT [b(k)−AΦx(k)]

Setting:

Q = αI − ΓTATAΓ, (4.4)

with α greater than the largest eigenvalue of ΓTATAΓ, Q is invertible and positive

definite. Further by making α arbitrarily large on can penalize the input to an

arbitrary degree. The resulting control law is shown below and requires that AΓ 6= 0,
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that is, at least one amoung Ai is nonzero.

u(k) =
1

α
ΓTAT b(k)−

1

α
ΓTATAΦx(k) (4.5)

The results of Theorem 3.1.1 in Chapter 3 apply here as well; however, we

substitute equations (4.1) and (4.5) for equations (2.3) and (3.4). Therefore the

communication topology is once again the same as the formation topology. Thus

agent i must only know its place in the formation topology and therefore, a dis-

tributed knowledge of the formation topology suffices.

4.2 Proof of Stability

In this section we prove that the control law in (4.5) asymptotically attains all

viable formation topologies, as long as (3.7) is true.

To this end observe that with

F = Φ−
Γ

α
ΓTATAΦ, (4.6)

and

Ḡ(k) =
Γ

α
ΓTAT b(k), (4.7)

the control law (4.5) results in the closed loop

x(k + 1) = Fx(k) + Ḡ(k). (4.8)

This brings us to the first main result of this section, demonstrating that the

formation exponentially settles down to its required relative positions.

Theorem 4.2.1 Suppose Assumptions 2.3.1 and 4.0.1 hold, as does (3.7). Then

lim
k→∞

Apxp(k) = bp

with convergence occurring at an exponential rate.

Proof: Observe

Apxp(k)− bp =
[
Ap 0

]
x(k)− bp (4.9)

From (4.8) the Z - transform of (4.9) is

[
Ap 0

]

(zI − F )−1x(0) + (zI − F )−1Γ

α
ΓTAT


 bp

z
z−1

Bv(z)




− bp

z

z − 1
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Thus we need to show that

R(z) = z−1
z




[
Ap 0

]

(zI − F )−1x(0) + (zI − F )−1 Γ

α
ΓTAT


 bp

z
z−1

Bv(z)






− bp
z

z−1





is analytic on or inside the unit circle and

lim
z→1

R(1) = 0.

From of Lemma 3.2.1, A(zI − F )−1 and hence R(z) is analytic on or outside the

unit circle. Thus it suffices to show that

lim
z→1




[
Ap 0

]
(zI − F )−1 Γ

α
ΓTAT


 bp

Bv(z)
z−1
z


− bp



 = 0 (4.10)

Because of (2.7), the fact that the vector of all 1’s is in the null space of Aps and

Assumption 4.0.1, Bv(z) is in the null space of Ap. For Bv(z) and all nonnegative

integers m we have:

AΦm


 Bv(z)

0


 =


 Ap 0

0 I




 I mI

0 I




 Bv(z)

0


 =


 ApBv(z)

0


 = 0 (4.11)

Further, for Bv(z) and all nonnegative integers m we have from (4.6) and (4.11) that

AFm


 Bv(z)

0


 = AFm−1

[
I − Γ

α
ΓTATA

]
Φ


 Bv(z)

0




= AFm−1Φ


 Bv(z)

0




(4.12)

Thus by induction and (4.11) for all nonnegative m

AFm


 Bv(z)

0


 = AΦm


 Bv(z)

0


 = 0 (4.13)

Let us rewrite (4.10) as

limz→1




[
Ap 0

]
(zI − F )−1 Γ

α
ΓTAT


 bp

0


− bp

+
[
Ap 0

]
(zI − F )−1 Γ

α
ΓTAT


 0

Bv(z)
z−1
z





 = 0

(4.14)

Since the formation topology is viable there exists an xp such that for all nonnegative
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integers m such that

[
Ap 0

]
Φm


 xp

0


 = bp (4.15)

Now lets look at the first part of (4.14)

limz→1

[
Ap 0

]
(zI − F )−1 Γ

α
ΓTAT


 bp

0


− bp

= limz→1

[
Ap 0

]
(zI − F )−1 Γ

α
ΓTAT


 bp

0


−

[
Ap 0

]

 xp

0




= limz→1

[
Ap 0

]
(zI − F )−1





Γ
α
ΓTAT


 bp

0


− (zI − F )


 xp

0







= limz→1

[
Ap 0

]
(zI − F )−1





Γ
α
ΓTAT


 bp

0


−


 xp

0




+ Φ


 xp

0


− Γ

α
ΓTATAΦ


 xp

0







= limz→1

[
Ap 0

]
(zI − F )−1





Γ
α
ΓTAT


 bp

0


− Γ

α
ΓTAT


 Apxp

0





 = 0

(4.16)

Note that, from (4.1), as Bv(z) is in the null space of Ap,

F


 0

Bv(z)


 =

[
I − 1

α
ΓΓTATA

]
Φ


 0

Bv(z)




=
[
I − 1

α
ΓΓTATA

]



 Bv(z)

0


+


 0

Bv(z)






=


 Bv(z)

0


+




 0

Bv(z)


− 2

α


 Bv(z)

2Bv(z)






=
(
1− 2

α

)

 Bv(z)

0


+

(
1− 4

α

)

 0

Bv(z)




(4.17)
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We next assert that in fact for all nonnegative m

Fm


 0

Bv(z)


 =

(
1−

4

α

)m


 0

Bv(z)


+

m−1∑

i=0

(
1−

4

α

)i(
1−

2

α

)
 Bv(z)

0




(4.18)

Indeed this holds for m = 0. Suppose it holds for some m−1. Then because of (4.17)

Fm


 0

Bv(z)


 = Fm−1

[
I − 1

α
ΓΓTATA

]
Φ


 0

Bv(z)




= Fm−1


(

1− 2
α

)

 Bv(z)

0


+

(
1− 4

α

)

 0

Bv(z)






=
(
1− 4

α

)0 (
1− 2

α

)

 Bv(z)

0


+

(
1− 4

α

)
Fm−1


 0

Bv(z)




=
(
1− 4

α

)m

 0

Bv(z)


+

∑m−1
i=0

(
1− 4

α

)i (
1− 2

α

)

 Bv(z)

0




(4.19)

Finally for all nonnegative m

[
Ap 0

]
Fm


 0

Bv(z)


 = 0 (4.20)

Looking at the second part of (4.14), due to (4.13) and (4.20) we have:

limz→1

[
Ap 0

]
(zI − F )−1 1

α
ΓΓTAT


 0

Bv(z)
z−1
z




= limz→1

[
Ap 0

]
z−1 (

∑∞
i=0 z

−iF i) 2
α


 I

2I


Bv(z)

z−1
z

= 0

(4.21)

Thus because of (4.16) the result holds.

The next theorem concerns the formation velocity.

Theorem 4.2.2 Suppose Assumptions 2.3.1 and 4.0.1 hold, as does (3.7). Then

|1− 2α| < 1. (4.22)

Further with bv(k) defined in Assumption 4.0.1, consider

zx(k + 1) =

(
1−

4

α

)
zx(k) +

4

α
bx(k). (4.23)



43

and

zy(k + 1) =

(
1−

4

α

)
zy(k) +

4

α
by(k). (4.24)

Then with xv,i, the ith element of xv,

lim
k→∞

xv,i(k) =





zx(k) ∀ i ≤ N

zy(k) N < ∀ i ≤ 2N
(4.25)

Proof: From Theorem 4.2.1 we know:

lim
k→∞

Apxp(k) = bp.

Recall the closed loop equation in (4.6) and the fact that Apxv(k) = 0 ∀k. Thus as

k tends to infinity, with Ḡ(k) defined in (4.7), one has:

Fx(k) + Ḡ(k) =
(
Φ− 1

α
ΓΓTATAΦ

)
x(k) + Ḡ(k)

= Φx(k)− 1
α
ΓΓTAT


 Ap 0

0 I




 xp(k) + xv(k)

xv(k)


+ Ḡ(k)

= Φx(k)− 1
α
ΓΓTAT


 bp

xv(k)


+ 1

α
ΓΓTAT


 bp

bv(k)




= Φx(k)− 1
α
ΓΓTAT


 0

xv(k)


+ 1

α
ΓΓTAT


 0

bv(k)




= Φx(k)− 2
α
Γxv(k) +

2
α
Γbv(k)

(4.26)

Thus, as k tends to infinity we have:
 xp(k + 1)

xv(k + 1)


 =


 I

(
1− 2

α

)
I

0
(
1− 4

α

)
I




 xp(k)

xv(k)


+




2
α
bv(k)

4
α
bv(k)


 (4.27)

The result follows from our definitions of xv(k) and bv(k) in Section 2.1 and Assump-

tion 4.0.1, respectively.

Thus, this distributed control law ensures that all viable formations are attained

and that the input force is only required to maintain the desired trajectory once

the position constraints are satisfied. Further (4.23), indicates how to select bx(k)

and by(k), given the target x and y-direction velocity trajectories zx(k) and zy(k),
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respectively: with q the forward shift operator, choose

bx(k) =
(α
4
(q − 1) + 1

)
zx(k) (4.28)

and

by(k) =
(α
4
(q − 1) + 1

)
zy(k). (4.29)

Though the system in (4.28) and (4.29) is non-causal, this poses no practical

difficulties because these trajectories are defined offline. If on-line corrections are

needed then they can be achieved with a delay of one sample.

4.3 Simulation Results

−4 −2 0 2 4 6 8 10
−5

0

5

10

15

20
Non−Redundant Vehicle Trajectories

vehicle 1
vehicle 2
vehicle 3
vehicle 4
vehicle 5

Figure 4.1: Non-Redundant Vehicle Trajectories
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We assume a five agent formation with velocities in the x and y directions being

1

8

(
1 + 6 sin(πk/8)

)
(4.30)

and

1

8

(
2.5− 6 sin(πk/8)

)
(4.31)

respectively.
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Figure 4.2: Non-Redundant x-Direction Velocity Error

In all the simulations, the initial conditions of the fleet are the same. All

simulations are run for 50 samples. Figure 4.1 depicts the trajectory of a formation

with the non-redundant formation shown in Figure 1.2.

Figures 4.2 and 4.3 depict the velocity errors in the x and y directions for each

agent.

Figure 4.4 depicts the trajectory of a formation with the redundant formation
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Figure 4.3: Non-Redundant y-Direction Velocity Error

shown in Figure 1.2. Agent 3 drops out of the formation at the 22nd sample. The

simulation demonstrates that the formation continues to track despite the loss of the

agent.

4.4 Conclusion

In this chapter, we extended the work presented in Chapter 3 to allow the agents

to track arbitrary velocities. Using the presented control law, all of the attractive

properties presented in Chapter 3 applied, aside from the fact that the agents were

required to apply an input force to maintain the dynamic velocity changes. It is

important to note; however, that the input force was not used to maintain the relative

positions amongst the agents once the formation was attained.
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Figure 4.4: Redundant Vehicle Trajectories with Agent 3 Dropped at Time 22
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CHAPTER 5

THE EFFECT OF REDUNDANCY UPON THE RATE OF

CONVERGANCE

In the previous chapters, a framework was provided that allows for the incorpo-

ration of redundancy to allow the network to survive faults caused by loss of agents

and/or communication links. In this chapter we will address the impact that redun-

dancy has on the control performance of the control law (3.4) as quantified by the

speed with which a desired formation is achieved. It will be shown that when using

the control law (3.4), increased redundancy results in better control performance. As

mentioned in Section 1.3, this is not always the case with other approaches to for-

mation control. In fact, in some cases increased redundancy can result in instability

with other approaches.

In this chapter we will not consider any velocity constraints. This simpli-

fies, slightly, the algebraic representation of the formation topology. Specifically the
[
A, b

]
pair are simplified as follows:

A =
[
Ap 0

]
and b = bp. (5.1)

5.1 A Kalman Decomposition

The same cost function (3.1) and resulting control law (3.4) in Section 3.1, with

the simplified
[
A, b

]
pair (5.1) is considered.

A state transformation will be used to allow a more concise presentation of the

main result of this chapter. First note that with α chosen to ensure that Q in (3.2)

is positive definite, on has that:

I −
1

α
ΓTATAΓ > 0. (5.2)

With

F = Φ−
1

α
ΓΓTATAΦ (5.3)
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and

G =
1

α
ΓΓTAT b (5.4)

the closed loop control law becomes

x(k + 1) = Fx(k) +G. (5.5)

Define

y(k) = Ax(k)− b. (5.6)

Now consider a singular value decomposition (SVD) of Ap:

Ap = UDV. (5.7)

In view of (2.9) and Assumptions 2.2.1 and 2.3.1, U is a 2Lp × 2Lp unitary matrix,

V is a 2N × 2N unitary matrix and D is as defined below:

D =


 ∆ 0

0 0


 . (5.8)

With n1 = 2N − 2, ∆ is diagonal, n1 × n1 and real positive definite.

Observe that the double integrator dynamics of the agents, coupled with the

lack of velocity constraints and the fact that the rank of A is 2N−2, ensures that four

eigenvalues of F are guaranteed to be 1. The point of the Kalman decomposition

developed in this section is to: (i) demonstrate that these eigenvalues are not poles

of A(zI − F )−1, and (ii) to isolate the poles that can be made stable. Define

S =


 V 0

0 V


 (5.9)

Then consider the state transformation described in the lemma below.

Lemma 5.1.1 With Φ, Γ, A, b, F , G, U , V , D and S defined in (2.6), (2.7),

(2.13), (5.3), (5.4), and (5.7 - 5.9) define:

Â =


 U


 ∆ 0

0 0


 0


 (5.10)

F̂ = Φ−
1

α
ΓΓT ÂT ÂΦ (5.11)

Ĝ =
1

α
ΓΓT ÂT b (5.12)

x̂(k) = Sx(k) (5.13)
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Then one has that

x̂(k + 1) = F̂ x̂(k) + Ĝ (5.14)

y(k) = Âx̂(k)− b (5.15)

and

Â = AS−1. (5.16)

Proof: First note that

AS−1 =
[
Ap 0

]

 V H 0

0 V H




=
[
ApV

H 0

]

=


 U


 ∆ 0

0 0


 0




= Â

(5.17)

Further in view of (5.9) and (5.17)

SFS−1 = S
(
I − 1

α
ΓΓTATA

)
ΦS−1

= F̂

(5.18)

and similarly,

SG = 1
α
SΓΓTAT b

= Ĝ
(5.19)

We next show that a condition comparable to (5.2) holds.

Lemma 5.1.2 With Â as defined in (A.21)

I −
1

α
ΓT ÂT ÂΓ > 0 (5.20)

Proof: Follows from (5.17), the fact that
(
V Λ

1

2

)
Λ− 1

2V H = I, (5.21)

and

V Λ
1

2ΓT = ΓTS and that ΓΛ− 1

2V H = S−1Γ (5.22)
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Denoting 0p to be the p×p, zero matrix, and Ip to be the p×p, identity matrix,

we observe from (5.8) and (A.21) that

F̂ = SFS−1

= S




I − 1
α
AT

pAp I − 1
α
AT

pAp

− 2
α
AT

pAp I − 2
α
AT

pAp



S−1

=




I − 1
α
V AT

pApV
H I − 1

α
V AT

pApV
H

− 2
α
V AT

pApV
H I − 2

α
V AT

pApV
H




=




I − 1
α
∆2 0 I − 1

α
∆2 0

0 I2 0 I2

− 2
α
∆2 0 I − 2

α
∆2 0

0 02 0 I2




(5.23)

Then the following lemma goes toward a Kalman like decomposition.

Lemma 5.1.3 Under (5.7-5.15)

Â
(
zI − F̂

)−1

=
[
H(z) 02L×2(n−n1)

]
(5.24)

where

H(z) = C (zI −Υ)−1 , (5.25)

Υ =


 I − 1

α
∆2 I − 1

α
∆2

− 2
α
∆2 I − 2

α
∆2


 (5.26)

C =


 U


 ∆

0


 02L×n1


 (5.27)
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and

Π =




In1
0 0 0

0 0 In1
0

0 In−n1
0 0

0 0 0 In−n1




(5.28)

Proof: Note

ΠTΠ = I. (5.29)

Hence

Â
(
zI − F̂

)−1

= ÂΠT
[
zI − ΠF̂ΠT

]−1

Π. (5.30)

Now,

ÂΠT =


 U


 ∆

0


 02L×n−n1

02L×n







In1
0 0 0

0 0 In−n1
0

0 In1
0 0

0 0 0 In−n1




=


 U


 ∆

0


 02L×n1

02L×2(n−n1)




=
[
C 02L×2(n−n1)

]

(5.31)

Further, from (5.23)

ΠF̂ΠT =




I − 1
α
∆2 I − 1

α
∆2 0 0

− 2
α
∆2 I − 2

α
∆2 0 0

0 0 In−n1
In−n1

0 0 0 In−n1




=




Υ 0

0


 In−n1

In−n1

0 In−n1






.

(5.32)

Then the result follows.
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Taken together, the results of this section show that the poles of A(zI − F )−1

are in fact the eigenvalues of Υ. The next section shows that (i) these can be made

stable, and (ii) that their magnitudes determine that rate of convergence.

5.2 Rates of Convergence

To ease notation call

B =
1

α
∆2 (5.33)

and Note that:

0 < λ(B) < 1 (5.34)

Then:

Υ =


 I − B I − B

−2B I − 2B


 (5.35)

Recall that the poles of A(zI − F )−1 are in fact the eigenvalues of Υ. Assume for

the moment that all of the eigenvalues of Υ are in the open unit disc. Further under

Assumption 2.3.1 there exists an x such that

Ax = b. (5.36)

Thus using (2.6), (2.7), (5.3) and (5.4) and using the fact that

Φ


 x

0


 =


 x

0


 , (5.37)

we obtain
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limk→∞(Ax(k)− b) = limz→1(z − 1)A(zI−F )−1G−b

z−1

= limz→1 (A(zI − F )−1G− b)

= limz→1


A(zI − F )−1 ΓΓTATA

α


 x

0




− A


 x

0




= limz→1A
(
(zI − F )−1 ΓΓTATA

α
− I

)

 x

0




= limz→1A(zI − F )−1
(

ΓΓTATA
α

− I + F
)

 x

0




= 0.

This analysis reveals two facts. First, should all eigenvalues of Υ be inside

the unit circle then the formation is attained. Second, the deeper inside the unit

circle these eigenvalues are, the faster the rate of convergence. In the sequel we tie

the magnitude of these eigenvalues to the redundancy in the network. In particular,

observe that the edges in the formation topology completely determine the matrix

A, and hence Υ. For a formation topology described by the undirected graph G =

(V,E), we will define the corresponding A matrix as A(G) and the B in (5.33) as

B(G). Then the following lemma is crucial.

Lemma 5.2.1 Consider the formation topologies with associated undirected graphs

G1 = (V,E1) and G2 = (V,E2). Suppose E1 ⊂ E2. Then

B(G1) ≤ B(G2). (5.38)

Proof: Associate with an undirected edge between i and j the vector eij the 2N -

vector all but the i and jth elements of which are zero. One of the remaining elements

is 1 and the other −1. Then,

A(G2)
TA(G2) = A(G1)

TA(G1) +
∑

{i,j}∈E2−E1

eije
T
ij (5.39)

Thus

A(G2)
TA(G2) ≥ A(G1)

TA(G1). (5.40)

Thus the result follows from the definition B(Gi).
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Now observe that with B = diag(bi), within a symmetric perturbation one can

express

Υ =
2N−2⊕

i=1

Υii (5.41)

where

Υii =


 1− bi 1− bi

−2bi 1− 2bi


 . (5.42)

The characteristic polynomial of each Υii is

λ2 − (2− 3bi)λ+ (1− bi). (5.43)

Observe that as long as

0 < bi < 8/9, (5.44)

both the eigenvalues of Υii are complex with magnitude 1−bi. Thus as long as (5.44)

holds increasing bi forces the eigenvalues further inside the unit circle. On the other

hand in the range bi ∈ [8/9, 1), recall from (5.34) 0 < bi < 1, as bi increases, one

eigenvalue of Υii approaches 0, while the other approaches 1. This leads us to the

main result of this chapter.

Theorem 5.2.1 Consider the two formation topologies with associated undirected

graphs G1 = (V,E1) and G2 = (V,E2). Suppose E1 ⊂ E2. Suppose also that for each

i ∈ {1, 2},

αI −
9AT (Gi)A(Gi)

8
≥ 0. (5.45)

Then (3.4) converges for both topologies but at a faster rate for G2.

Proof: Recall, through the construction of B, that B is a positive definite diagonal

matrix whose diagonal elements contain the non-zero eigenvalues of AT
pAp divided

by α. Equation (5.45) can be rewritten:

8

9
I ≥

1

α
AT (Gi)A(Gi)

Therefore 0 < λ(B(Gi)) ≤ 8
9
. Then result follows from Lemma 5.2.1 and (5.41) -

(5.43).

Therefore, depending on the value of α, a more redundant network will lead to
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a faster convergence. The way to interpret the cutoff point of 8/9 is as follows. Too

dense a network will cause the positive definiteness of Q to be violated. Thus given

an α, the performance improves monotonically up to a clearly demarcated level of

redundancy, but degrades thereafter.

5.3 Simulation Results

Here we show some simulations which verify the results of Theorem 5.2.1. The

trajectories of the agents in a non-redundant formation, as in Figure 1.2, are shown

in Figure 5.1. The agents initial positions are chosen randomly, but the same random

initial positions are used in all of the presented figures. In Figure 5.2 the formation

topology is completely connected.
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Figure 5.1: Non-Redundant Vehicle Trajectory
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Figure 5.2: Fully Connected Vehicle Trajectory

The relative position errors, measured by ‖Ax(k) − b‖2, are shown in Figure

5.3. In this figure, simulation 1 represents a non-redundant formation. Redundancy

is added as the simulations numbers increase until we reach the fully connected

formation topology in simulation 6. As demonstrated, a more redundant network

leads to a faster convergence.

5.4 Conclusion

We have examined the cooperative control of a fleet of autonomous agents

that achieve arbitrary relative positions from random starting positions. We have

revisited the control law (3.4) to show that not only does increased connectivity

among the agents result in better robustness to loss of agents, but that up to a clearly
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quantifiable point it also results in faster convergence to the desired formation.
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CHAPTER 6

FORMATION CONTROL WITH ENHANCED SCALABILITY

In this chapter an alternate control law is presented which results in enhanced

scalability and better overall performance. Recall, in Chapter 3, Λ was chosen as

Λ = αI. (6.1)

With this choice in Λ, it was shown that stability is guaranteed when Q is positive

definite. Thus, α was chosen to exceed the largest eigenvalue of ΓTATAΓ.

Definition 6.0.1 Define eij as a vector with length N , with all elements equal to 0

except the ith and jth elements which are 1 and -1 respectively.

Observe from Assumption 2.2.1 that

AT
psAps =

∑
eije

T
ij . (6.2)

Consequently as the size of the network grows, in terms of either the number of nodes

or the number of constraints, the largest eigenvalue of ΓTATAΓ grows correspond-

ingly. Therefore, if one were to select (6.1) as done in Chapter 3, one would have

to anticipate the largest network one is likely to confront. If, in the course of actual

operation, the network undergoes large variation in size, then such a worst case de-

sign leads to poor performance since α penalizes the control input. Alternatively, α

could be chosen dynamically by the agents in the formation, but this approach leads

to the global exchange and thus poor scalability results.

6.1 Basic Control

A basic fixed velocity formation is considered. Thus the Lp position constraints

will be specified by the
[
Ap, bp

]
pair as described in (2.9) and Assumption 2.2.1.

Suppose we wish to assign the the fixed velocity to Lv agents and that the velocity

in the x and y directions is vx and vy respectively. The Lv velocity constraints are

defined by the
[
Av, bv

]
pair as described in (2.10) and Assumption 6.1.1.

Assumption 6.1.1 Consider a set of agents V ∈ {1, . . . , N} with cardinality Lv.
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For each agent i ∈ V there will be a row in Avs containing all zeros except the ith

element which will contain a 1. Av will defined as in (2.10) and the first Lv elements

of bv will contain the velocity in the x direction, vx, while the last Lv elements of bv

will contain the velocity in the y direction, vy.

6.2 Control Law and Communication Topology

Using the same cost function (3.1) and resulting control law (3.4) as in Section

3.1, we will modify the definition of Λ in Q (3.2) to account for the agent’s individual

velocity constraints and connectivity instead of the global solution, αI.

Suppose pi is the number of connections for agent i. Then define:

λi = ǫ+ βpi (6.3)

with some ǫ > 0 and β ≥ 2. The individual contribution of the connectivity of agent

i in ΓTATAΓ will be counteracted by λi. With:

Λps = diag (λi) (6.4)

and Λp = Λps⊕Λps, Λp will represent the connectivity portion of Λ, while the velocity

contribution will be represented by Λv, as shown below:

Λ = Λp + Λv (6.5)

where, Λv = Λvs ⊕ Λvs. With Assumption 6.1.1, the velocity contribution to Λ can

be defined as follows:

Λvs = 4AT
vsAvs. (6.6)

Lemma 6.2.1 Under (6.3)-(6.6) and Assumptions 2.3.1 and 6.1.1, Λ− ΓTATAΓ > 0.

Proof: Note that:

Λ− ΓTATAΓ = I2 ⊗
(
Λps −AT

psAps

)
(6.7)

Therefore, it suffices to show that: Λps − AT
psAps > 0. The proof follows from the

fact that

(β + ǫ)I −


 1

−1



[
1, −1

]
> 0. (6.8)
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Now we will show that the communication topology resulting from (3.4) is

identical to the geometric topology and further that only a local knowledge of the

formation topology is required by each agent. Observe that the control inputs to

agent i are ui and ui+N . We will now show that if agents i and j do not have

an arc between them in the formation topology, then ui and ui+N do not depend

on {Φx}j , {Φx}j+N , {Φx}j+2N and {Φx}j+3N . Because of Fact 2.1.1, this in turn

implies that ui and ui+N do not depend on xj , xj+N , xj+2N and xj+3N , establishing

the structure of the communication topology. Furthermore observe that agent i can

select λi by knowing the number of constraints it is involved in. As Theorem 6.2.1

shows and is evident from (3.4) and the fact that Λ is a diagonal matrix, λi is only

needed by agent i to construct its input.

Fact 6.2.1 Due to the construction of Λ in (6.3)-(6.6) and Assumption 6.1.1, Λ is

a diagonal matrix.

Observe that (3.4) becomes,

u(k) = Λ−1
(
AT

p bp + 2AT
v bv − [AT

pAp, 2A
T
vAv]Φx(k)

)
(6.9)

Theorem 6.2.1 Consider (6.9) under (2.3), (2.6), (2.7), and (2.13). Then the

finding ui(k) and ui+N(k) requires:

(i) The states of agent l only if there is an arc between agents l and i in the

formation topology.

(ii) The l-th row of A only if for some j ∈ {i, i+N, i+ 2N, i+ 3N} alj 6= 0.

(iii) The l-th element of b only if for some j ∈ {i, i+N, i+ 2N, i+ 3N} alj 6= 0.

(iv) The gain λi if the agent has no velocity constraints, or the gain λi + 4 if the

agent has velocity constraints.

Proof: Consider the determination of up, p ∈ {i, i + N}. Suppose this requires

the knowledge of Φxq, for some q ∈ {l, l + N}. Then from (6.9) and Fact 6.2.1,
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(
AT

pAp

)
pq

is non zero. Then because of Lemma 3.1.1 for at least one m the m-th row

of Ap must have nonzero entries in both the p-th and the q-th locations. Similarly

if the determination of up, p ∈ {i, i + N} requires the knowledge of Φxq, for some

q ∈ {l+2N, l+3N}, then for at least one m the m-th row of Av has nonzero entries

in both the p-th and the q-th locations. Then Facts 2.1.1, 2.2.1 and 6.2.1, together

with (2.13) prove (i).

Now, from (6.9) and Fact 6.2.1, the computation of up, p ∈ {i, i+N} requires

the computation of the p-th rows of AT
pAp and AT

vAv and the p-th elements of AT
p bp

and AT
v bv. Then from Lemma 3.1.1, for such a p, the computation of the p-th rows

of AT
pAp and AT

vAv require respectively, the knowledge of the l-th rows of Ap and Av

only if the lp-th elements of respectively Ap and Av are nonzero. Further the p-th

elements of AT
p bp and AT

v bv require the knowledge of l-th rows of Ap and Av and/or

the l-th elements of bp and bv only if the lp-th elements of respectively Ap and Av

are nonzero. Then (ii) and (iii) follow from (2.3), (2.13) and Facts 2.1.1 and 6.2.1.

Finally, (iv) follows from Fact 6.2.1 and the construction of Λ in (6.3)-(6.6).

(i) shows that the communication topology is the same as the formation topol-

ogy. (ii) and (iii) show that agent i need only know those rows of A and elements of

b which define the arcs emanating from it. Thus agent i must only know its place in

the formation topology. Therfore a described knowledge of the formation topology

suffices.

If despite the loss of an agent, for example agent 4 in Figure 1.3, the formation

topology remains viable, then this modified formation topology is described by an
[
A, b

]
matrix that is a sub-matrix of its counterpart in the original formation

topology, and obtained by removing the rows characterizing the two arcs impacting

4 and the four columns of A corresponding to the states of 4. As the elements of these

columns in the rows of the original A matrix defining the arcs of 2 and 3 are zero,

the inputs to agents 2 and 3 are unchanged. These agents do not need to reconfigure
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their control laws and need not know about the loss. Similarly if communication

between 1 and 5 be impaired or lost, then only 1 and 5 must know of this loss and

adjust their control law.

Let us now turn to the significance of (iv) to scalability. Suppose a new agent

arrives and attaches itself to a subset of the agents in the network. Then to ensure

that Λ − ΓTATAΓ is positive definite, these agents simply need to adjust their cor-

responding λi to account for the new arcs created in the formation topology. The

remaining agents need not adjust the λi they are responsible for and consequently

need not adjust their control law. As importantly, the need to a priori choose α, as

in Chapter 3, to accommodate the largest possible network is removed.

6.3 Proof of Stability

In this section we prove that the control law in (3.4) asymptotically attains all

viable formation topologies as long as

I − Λ−1ΓTATAΓ > 0 (6.10)

To this end observe that with

F = Φ− ΓΛ−1ΓTATAΦ (6.11)

and

G = ΓΛ−1ΓTAT b (6.12)

the control law (3.4) results in the closed loop

x(k + 1) = Fx(k) +G. (6.13)

Define

y(k) = Ax(k)− b. (6.14)

We need to find conditions under which y(k) asymptotically approaches zero.

To this end we first provide the following lemma.

Lemma 6.3.1 Under (6.10), with F and G defined in (6.11), (6.12), (6.3)-(6.6),

(2.6), (2.7) and A in (2.13), all poles of A(zI − F )−1 are inside the unit circle.
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Proof: The detailed proof is in Appendix B.1 and is comprised of two parts. In

the first we show that (6.10) ensures that the poles of F are either at 1 or inside the

unit circle. The second part shows that the poles at 1 are unobservable through A.

This brings us to the main result of this section.

Theorem 6.3.1 Suppose the formation topology is viable and Ap 6= 0. Then

lim
k→∞

Ax(k) = b

Proof: We need to show that

R(z) =
z − 1

z

[
A(zI − F )−1x(0) + A(zI − F )−1G

z

z − 1
− b

z

z − 1

]
(6.15)

is analytic on or inside the unit circle and

lim
z→1

R(1) = 0 (6.16)

Because of Lemma 6.3.1, A(zI − F )−1 and hence R(z) is analytic on or outside the

unit circle. Thus it suffices to show that

lim
z→1

[
A(zI − F )−1G− b

]
= 0 (6.17)

Since the formation topology is viable there exists an x as in (2.3) that satisfies the

constraints imposed by Theorem 2.3.1. For such an x and all nonnegative integer l,

from Theorem 2.3.1, we have

AΦl


 xv

0


 =


 Ap 0

0 Av




 I lI

0 I




 xv

0


 = Apxv = 0 (6.18)

Further for such an x an all nonnegative integer m, we have from (5.3) and (6.18)

that

AFm


 xv

0


 = AFm−1

[
I − ΓΛ−1ΓTATA

]
Φ


 xv

0


 = AFm−1Φ


 xv

0


 (6.19)

Thus by induction and (6.18) for all nonnegative integer m

AFm


 xv

0


 = AΦm


 xv

0


 = 0. (6.20)
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Since AΦmx = b for all nonnegative integer m,

limz→1A(zI − F )−1G− b

= limz→1A(zI − F )−1G− Ax

= limz→1 [A(zI − F )−1{G− (zI − F )x}]

= limz→1

[
A(zI − F )−1{ΓΛ−1ΓTAT b− zx+ Φx− ΓΛ−1ΓTATAΦx}

]

= limz→1


A(zI − F )−1



ΓΛ−1ΓTATAx− x+ Φx

− ΓΛ−1ΓTATA


x+


 xv

0












= limz→1 [A(zI − F )−1{Φx− x}]

= limz→1


A(zI − F )−1


 xv

0






(6.21)

We will now show that in fact

A(zI − F )−1


 xv

0


 = 0 (6.22)

almost every where. Thus as it is rational it is zero everywhere including at z = 1.



66

Indeed in the region of convergence of (zI − F )−1.

A(zI − F )−1


 xv

0


 = Az−1(I − z−1F )−1


 xv

0




= [Az−1 + z−1
∑∞

i=1 z
−iAF i]


 xv

0




= z−1
∑∞

i=1 z
−iAF i


 xv

0




= 0

(6.23)

where the last equality follows from (6.19).

Thus this distributed control law helps attain and maintain all viable formation

topologies. Three implications of this result bear reiteration. First, the necessary

conditions for viablity given in Theorem 2.3.1 are all that are invoked in the proof

of Theorem 6.3.1. Thus these necessary conditions are also sufficient for viability.

Second, it is easily seen from the proof of Theorem 6.3.1 that in fact

lim
k→∞

u(k) = 0.

In other words once the formation is attained it can be maintained with no con-

trol input. Finally, and more compellingly, the class of formation topology under

consideration here has the attractive property that a distributed control law for its

achievement exists, as long as a centralized law exists. Thus whatever can be done

through global action can also be achieved through local action, and as importantly

through local knowledge of the overall objective.
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Figure 6.1: 10 Agent Formation Topology with no Redundancy

6.4 Simulation Results

The following simulations compare the convergence rates of the limited scala-

bility approach presented in Chapter 3 to enhanced scalability approach presented

in this chapter, when the size of the formation changes significantly during the sim-

ulation. All simulations assume a fully connected formation topology with velocity

constraints on agents 1, 2 and 4.

In Figure 6.2 a fully connected 10 agent formation topology is considered. The

basic shape of the formation is shown in Figure 6.1. This simulation was used to

choose α in equation (3.3) and ǫ in equation (6.3) such that the formations are stable

and the convergence rates for the limited scalability approach and the enhanced

scalability are comparable. Notice that α was chosen such that the limited scalability

approach slightly outperforms the enhanced scalability approach.

Figures 6.3-6.5 use the values for α and ǫ found in the simulation used create

Figure 6.2. Additionally, vehicles 1-5 start with the same initial positions and ve-

locities used in Figure 6.2. The simulations start using a 5-agent, fully connected

formation topology with the basic shape shown in Figure 1.2. At time k = 21, agents

6-10 join the formation following the same basic shape shown in Figure 6.1. The ini-

tial positions for these agents are the same as those used in Figure 6.2, except shifted

to compensate for the trajectories of the other agents during the first 20 time steps.
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Figure 6.2: Synchronization of α and ǫ

In both approaches the agents were shifted equally.

As mentioned earlier, the largest eigenvalue of ΓTATAΓ increases with the

number of agents and the number of connections. Because α was chosen to account

for a fully connected 10-agent formation topology, the performance of the fully con-

nected 5-agent formation topology suffers. Notice that the rates of convergence are

much faster for the initial 5-agent topology with the enhanced approach, but the

convergence rates virtually identical after agents 6-10 join. Figure 6.4 shows the tra-

jectory of the agents using the limited scalability approach, while Figure 6.5 shows

the trajectory of the agents using the enhanced scalability approach.
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Figure 6.3: Comparison of Convergence Rates

6.5 Conclusion

A new control law was presented that results in distributed control, requiring a

communication topology that mirrors exactly the formation topology. Additionally,

this control law has enhanced scalability over the approach presented in Chapter

3. Specifically, to accommodate new agents that may arrive in the network, the

approach presented in Chapter 3 requires an a priori knowledge of a hard bound on

the maximum size of a network. This can lead to sluggish responses in networks that

undergo large fluctuations in size, especially in epochs where the network is much

smaller than the largest network. The new law removes this requirement and can

accommodate new arrivals by requiring adjustment of control laws of only agents

that the new agent attaches itself to.
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Figure 6.4: Trajectory of the Limited Scalability Approach
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CHAPTER 7

THE IMPACT OF DYNAMIC CHANGES TO THE

COMMUNICATION TOPOLOGY

In the previous chapters, we have shown that our control law is robust against

loss of craft and/or communication channels. This analysis has been of a static nature

and it does not address dynamic changes to the communication topology, specifically

when a lost link may return. We now investigate the impact that dynamic changes

to the communication topology can have upon stability. In particular we show that

it is possible for such a dynamic network to be unstable.

7.1 A Periodic Sequence of Dynamic

Communication Changes

We will consider an M-periodic sequence of dynamic communication changes.

Recall from the previous chapters that the communication topologies mirror the

formation topologies. Thus, if formation topologies are switched with each time

step, we are in fact changing the communication topology. Therefore, we consider

a set of P ≤ M formation topologies that switch periodically with the time step k.

In particular, for i ∈ {1 . . . P}, the P formation topologies are specified by the the
[
Ai, bi

]
pair, where

Ai =


 Api 0

0 Avi


 and bi =


 bpi

bvi


 . (7.1)

As in Chapter 2, Api is 2Lpi × 2N , bpi is 2Lpi × 1, Avi is 2Lvi × 2N , bvi is 2Lvi × 1.

Consider a function f(·) that maps {0 . . .M − 1} to some {1 . . . P}. Then the

M-periodic closed loop system can be written as:

x̂(k + 1) = F̂f(k mod M)x̂(k) + Ĝf(k mod M)

y(k) = Âf(k mod M)x̂(k)− bf(k mod M)

f : X → Y (7.2)

A time-invariant representation of (7.2) can be obtained by “stacking” the inputs
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and outputs over periods of M samples as shown below. With

x̃ =




x̂(Mk)

x̂(Mk − 1)

...

x̂(Mk −M + 1)




(7.3)

the closed loop becomes,

x̃(k + 1) = F̃ x̃(k) + G̃ (7.4)

ỹ(k) = Ãx̃(k) + B̃ (7.5)

where

F̃ =




∏M

i=1 F̂f(M−i) 0 . . . 0
∏M

i=2 F̂f(M−i) 0 . . . 0

...
...

...

F̂f(0) 0 . . . 0




(7.6)

G̃ =




Ĝf(M−1) +
∑M−1

i=1

(∏i

j=1 F̂f(M−j)

)
Ĝf(M−1−i)

Ĝf(M−2) +
∑M−1

i=2

(∏i

j=2 F̂f(M−j)

)
Ĝf(M−1−i)

...

Ĝf(1) +
∑M−1

i=M−1

(∏i

j=M−1 F̂f(M−j)

)
Ĝf(M−1−i)

Ĝf(0)




(7.7)

Ã =




Âf(0) 0 . . . 0

0 Âf(1)
...

...
. . . 0

0 . . . 0 Âf(M−1)




(7.8)

b̃ =




bf(0)

bf(1)
...

bf(M−1)




(7.9)
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7.2 Observations for the Limited Scalability

Approach

We have provided a set of equations which maps system of M-periodic dynamic

communication topology changes to a non-time-varying system. A simulation envi-

ronment was developed which uses a recursive algorithm to find the worst possible

communication topology from a provided set of topologies at each time step. We

used the simulations to check that stability for a variety of N agent formations.

First consider the 4 agent formation topologies shown in Figures 7.1 and 7.3.

Using the simulation environment we were able to isolate a number of periodic se-

quences which switch between the two formation topologies and result in instability.

The worst of these sequences was the 11-periodic sequence shown below:

{3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1}. with eigenvalues at -43.9159 (7.10)

We also isolated much simpler sequences that resulted in instability:

{3, 1, 1} with eigenvalues at -2.6947

{3, 1}. with eigenvalues at -2.0057

In all of these simulations α was chosen to be 0.5 larger than the largest eigenvalue

of ΓTAT
3A3Γ. Where A3 corresponds to the formation topology shown in Figure 7.3.

Now consider the formation topologies shown in Figures 7.1 and 7.2. Again we

were able to isolate sequences which resulted in instability, the worst of which is the

4-periodic sequence shown below:

{2, 1, 1, 1} with eigenvalues at -1.5038

Additionally we were able to isolate the following unstable 5-periodic sequence:

{2, 1, 1, 1, 1} with eigenvalues at -1.3136



75

277

��

3
((vv

gg

��
1 422ll

Figure 7.2: Formation Topology 2 (Minimal System Plus One Link)

277

��

aa

++

3
((vv

gg

��
1 ss

==

422ll

Figure 7.3: Formation Topology 3 (Maximal System)

An important observation was made while running the simulations. The choice

of α does have an impact on the level of instability in the system, but not in a simple

fashion. Depending on the initial choice of α, a small increase may push the unstable

poles further outside the unit circle, but as α continues to increase the unstable poles

will eventually move back within the unit circle and stability will result.

7.3 Observations for the Enhanced Scalability

Approach

A simulation environment was developed which uses a recursive algorithm to

find the worst possible communication topology from a provided set of topologies at

each time step. We used the simulations to check that stability for a variety of N agent

formations. We found that while the enhanced approach does become unstable with

select dynamic communication topology changes, the number of periodic systems

that result in instability is less when compared to the limited approach.

First consider the 4 agent formation topologies shown in Figures 7.1 and 7.3.

Using the simulation environment we were able to isolate a couple of periodic se-

quences which switch between the two formation topologies and result in instability.
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The worst of these sequences was the 3-periodic sequence shown below:

{3, 1, 1}. with eigenvalues at -1.2627 (7.11)

The only other sequence we were able to isolate is shown below:

{3, 1, 1, 1} with eigenvalues at -1.0596

In all of these simulations ǫ was chosen to be 0.5 and β was chosen to be 2 as defined

in (6.3).

Now consider the formation topologies shown in Figures 7.1 and 7.2. Unlike

in the limited scalability approach we were unable to isolate any sequences which

switch between these topologies that result in instability.

An important observation was made while running the simulations. The choice

of ǫ and β does have an impact on the level of instability in the system. As either ǫ

or β increase the unstable poles move towards the unit circle. In fact, with β = 2,

both time varying sequences become stable when ǫ is increased to 2. If ǫ = 0.5 and

β is increased to 2.45, then again, both time varying sequences become stable.

7.4 Conclusion

Clearly not all periodic sequences are stable; however, many are indeed sta-

ble. In fact, we ran thousands of simulations which randomly switch between the

formation topologies and never encountered a system which did not reach the for-

mation goal. Through experimentation we have found the unstable systems to be

periodic. We hypothesize that sets of stable and unstable systems can be charac-

terized. Additionally we believe it may be possible to create adaptive algorithms

using these characterizations that can reject additional information that may result

in instability; however, we leave these problems for future work. Additionally, the

role that α plays in the limited scalability approach and the role β and ǫ play in the

enhanced scalability approach should be further investigated; perhaps a condition ex-

ists on these terms which will ensure stability in the face of dynamic communication
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topology changes.
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CHAPTER 8

CONCLUSION

This thesis considered the coordinated control of autonomous agents. The

agents were modeled as double integrators, one for each Cartesian dimension. With

the goal, to force the agents’ convergence to a formation specified by their desired

relative positions, a pair of one-step-ahead optimization based control laws were

developed.

The control algorithms produced a communication topology that mirrored the

geometric formation topology due to the careful choice of the minimized cost func-

tions. The equivalence provided an intuitive understanding of the relationship be-

tween the geometric formation topology and the communication infrastructure. It

was shown that the control laws are stable and guarantee convergence for all vi-

able formation topologies. Moreover, theorems were developed which allowed for the

addition of fixed or arbitrary time-varying velocity constraints.

Both control algorithms only required local information exchange. With the

arrival of additional agents, it was shown that only the agents with whom the new

agents were dependent upon needed to adjust their control laws. Moreover, when

redundancy was incorporated into the formation topology, it became possible for the

system to survive loss of agents or communication channels. In the event that an

agent dropped out of the formation, only the agents which had position interdepen-

dence on the lost agent needed to adjust their control laws. Finally, in the event of a

lost communication channel, only the agents that shared the communication channel

were required to adjust their control laws.

In Chapter 2 we provided an introduction to the core mathematical equations

and concepts used throughout the paper. In Section 2.1 we introduced a set of equa-

tions that were used to represent our system of agents. Section 2.2 introduced the

mathematical formulas that were used to represent the agent formations. Formations
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were specified by a matrix, vector pair
[
A, b

]
. We established an assumption on

the construction of the
[
A, b

]
pair that allowed the user to create formations spec-

ified by relative inter-agent distances. It was then shown how additional redundancy

and static velocity constraints could be incorporated into the formation specification.

We then formally showed the relation between relative position constraints and the

individual elements of A. Finally, we described how additional redundancy, loss of

an agent or the loss of a communication channel impacts the
[
A, b

]
pair. In Sec-

tion 2.3, a set of conditions were developed to address the feasibility of a formation.

We first assigned some basic assumptions to the communication topology, namely

that the sub-matrices of A, which specify the position constraints in each Cartesian

direction, had a rank of N − 1 for an N agent formation and that b was in the range

space of A. The first assumption ensured that the formation was connected while

the second ensured that the formation was well defined. We then provided a basic

definition for formation viability. It was then proven that for all viable formations,

a solution exists for the formation topology and that once the formation is achieved,

it could be maintained without any additional input into the system.

Chapter 3 presented a distributed approach to the formation control problem.

This approach required either an a priori knowledge of the largest possible forma-

tion size or the global information exchange of the current formation size. As such,

this approach was not as scalable as some would desire; however, it did have some

interesting properties. We provided a one-step-ahead optimal control law which guar-

anteed a fleet of autonomous agents could attain any fixed velocity, viable formation.

We showed that the formation topology was in fact equivalent to the communica-

tion topology and, assuming the use of a priori knowledge, only local information

exchange. In other words, each agent only required knowledge of its neighbors, as

specified by the formation topology. In the face of a lost agent, only neighbors of

the lost agent were required adjust their control laws. If a communication channel
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was lost, only the agents that shared the communication channel were required to

adjust their control laws. Finally, the arrival of a new agent only impacted the agents

against which the arriving agent’s relative position constraints were defined.

In Chapter 4, we extended the work presented in Chapter 3 to allow the agents

to track arbitrary velocities. Using the presented control law, all of the attractive

properties presented in Chapter 3 applied, aside from the fact that the agents were

required to apply an input force to maintain the dynamic velocity changes. It is

important to note; however, that the input force was not used to maintain the relative

positions amongst the agents once the formation was attained.

In Chapter 5, we analyzed the impact that redundancy had upon the rate of

convergence. It was shown that each time additional redundancy was added, the

rate of convergence to the desired formation improved.

Chapter 6 presented a fully decentralized approach to multi-agent formation

control that results in enhanced scalability. It did not require a priori knowledge

or global information exchange. An alternate one step ahead optimal control law

was presented that guaranteed that a fleet of autonomous agents could attain any

fixed velocity viable formation with the additional benefit of enhanced scalability

and in most cases better performance. We proceeded to show, like the distributed

approach presented in Chapter 3, the fully decentralized approach also only requires

local information exchange.

Finally, in Chapter 7 we investigated how dynamic changes to the communi-

cation topology can influence system stability. A number of unstable systems were

presented for both the limited scalability approach and the enhanced scalability ap-

proach. We found that while both approaches are susceptible to dynamically chang-

ing communication topologies, the enhanced approach appears to be robust against

a larger set.
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Research in the area of the coordinated control of autonomous agents has been

growing rapidly. Many of the basic problems have been solved. Of particular inter-

est are the provably correct algorithms and those which do not require the global

exchange of information.

We have shown our system is not robust against all dynamic changes to the

communication topology. We have however seen that our system is in fact robust

against certain dynamic changes to the communication topology. We aim to charac-

terize this set of stable dynamic communication systems.

An important aspect of this research includes the impact that information

flow can have upon stability and the rate of convergence. A problem exists with

respect to the amount and type of information flow and its influence on stability

and rate of convergence. It is obvious that additional information exchange will

enhance the robustness of the system; however the amount of information that can

be achieved is limited by the communication channels. As the number of agents in

the network increases the amount of bandwidth available to each agent decreases.

These problems are compounded with multi-hop communication. The optimization

of the communication network with respect to the formation geometry is an area

that still needs significant attention.
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APPENDIX A

SELECTED PROOFS - LIMITED SCALABILITY

A.1 Basic Control: Proof of Lemma 3.2.1

We first complete through the lemma below the first part of the proof of Lemma

3.2.1.

Lemma A.1.1 Under (2.13) (3.7)-(3.9), (2.6), and (2.7) the poles of A(zI − F )−1

are either inside the unit circle or at 1.

Proof: Choose:

T =


 I −I/2

0 I


 and hence T−1 =


 I I/2

0 I


 .

Call

Σi = AT
i Ai ≥ 0 with i ∈ {p, v}

Because of (2.6), (2.7) and (3.7)

0 ≤
Σp + 4Σv

α
< 1. (A.1)

Then

TFT−1 = Φ−
1

α


 0

2I



[
Σp 2Σv

]

 I 3

2
I

0 I




= Φ−
1

α


 0

2I



[
Σp

3
2
Σp + 2Σv

]

=


 I I

−2Σp

α
I − 3Σp+4Σv

α


 .

Then

det(zI − TFT−1)

= det
[
(z − 1)2I + (z − 1)3Σp+4Σv

α
+ 2Σp

α

]

= det
[
z2I +

(
3Σp+4Σv

α
− 2I

)
z −

(
Σp+4Σv

α
− I

)]

Then if z is an eigenvalue of F , there exists a unit η such that

z2 + (3σ2
1 + 4σ2

2 − 2)z − (σ2
1 + 4σ2

2 − 1) = 0 (A.2)
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where

σ2
i =

ηTΣiη

α
.

From (A.1)

0 ≤ σ2
1 + 4σ2

2 < 1, (A.3)

and therefore

0 ≤ 3σ2
1 + 4σ2

2 < 1 + 2σ2
1 , (A.4)

First observe that if (A.2) has a complex root ρ then from (A.3)

|ρ|2 = 1− σ2
1 − 4σ2

2 ≤ 1, (A.5)

with equality holding iff σ1 = σ2 = 0, which in turn leads to

ρ = 1. (A.6)

If on the other hand the roots are real then they are

ρ1 =
2− 3σ2

1 − 4σ2
2 +

√
(3σ2

1 + 4σ2
2)

2 − 8σ2
1

2
(A.7)

and

ρ2 =
2− 3σ2

1 − 4σ2
2 −

√
(3σ2

1 + 4σ2
2)

2 − 8σ2
1

2
(A.8)

Clearly ρ1 ≤ 1, and because of (A.4) ρ1 > −1
2
as shown below

ρ1 ≥
2− (3σ2

1 + 4σ2
2)

2
>

1

2
− σ2

1 ≥ −
1

2
.

Further ρ2 ≤ 1. Now assume

ρ2 ≤ −1

⇔ 4− (3σ2
1 + 4σ2

2) ≤
√
(3σ2

1 + 4σ2
2)

2 − 8σ2
1

⇔ 16− 8(3σ2
1 + 4σ2

2) ≤ −8σ2
1

⇔ 1 ≤ σ2
1 + 2σ2

2

But by (A.4), 1 > σ2
1 + 4σ2

2, leading to a contradiction.

We next need to show that the eigenvalues of F that are at 1, are in fact

unobservable from A. To this end we consider a singular value decomposition (SVD)

of Ap, that is, with Up, 2Lp × 2Lp, Vp, n× n unitary matrices

Ap = UpDpVp (A.9)
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where

Dp =


 ∆p 0

0 0


 (A.10)

and ∆p is diagonal, np × np, positive definite.

Partition the 2Lv × n matrix AvV
H
p as

AvV
H
p =

[
Av1 Av2

]
(A.11)

where Av2 is 2Lv × (n− np).

Consider next the SVD of Av2, that is, with Uv, 2Lv × 2Lv and Vv, (n− np)×

(n− np) and both unitary

Av2 = UvDvVv (A.12)

where

Dv =


 ∆v 0

0 0


 (A.13)

with ∆v, nv × nv, positive definite.

Define

W = V H
p


 In1

0

0 V H
v


 (A.14)

In the sequel ⊕ will denote the direct sum, for example A = Ap ⊕ Av. Consider next

a system equivalent to (3.10).

Lemma A.1.2 With Φ, Γ, A, b, F , G, Ui, Vi and Di with i ∈ {p, v} and Av2 defined

in (2.6), (2.7), (2.13), (3.8), (3.9) and (A.9-A.14) define

F̂ = Φ−
ΓΓT ÂT ÂΦ

α
(A.15)

Â = (UpDp)⊕
[
Av1, UvDv

]
(A.16)

Ĝ =
ΓΓT ÂT b

α
(A.17)

x̂(k) = (WH ⊕WH)x(k). (A.18)

Then one has that

x̂(k + 1) = F̂ x̂(k) + Ĝ (A.19)

y(k) = Âx̂(k)− b (A.20)
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Proof: First note that

A(W ⊕W ) =


 ApV

H
p 0

0 AvV
H
p







I 0 0 0

0 V H
v 0 0

0 0 I 0

0 0 0 V H
v




=


Up


 ∆p 0

0 0




⊕

[
Av1, UvDv

]

= Â. (A.21)

Further (
WH ⊕WH

)
F (W ⊕W ) =

=


 WH 0

0 WH


(

I − 1
α
ΓΓTATA

)

 I I

0 I




 W 0

0 W




=


 WH 0

0 WH





I − 1

α


 I 2I

2I 4I


ATA





 W 0

0 W


Φ

=


I − 1

α
ΓΓT


 WH 0

0 WH


ATA


 W 0

0 W




Φ

= F̂

because of (2.13). Similarly, because of (2.13), (2.7) and (3.9)

Ĝ =
(
WH ⊕WH

)
G. (A.22)

Thus the lemma holds.

We next show that a condition comparable to (3.7) holds.

Lemma A.1.3

I −
ΓT ÂT ÂΓ

α
> 0 (A.23)

Proof: Follows from (A.21), the fact that

WHW = I
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and that

ΓW = (W ⊕W )Γ

Denoting 0q to be the q × q, 0 matrix, we observe from (A.10), (A.13) and

(A.16):

ÂT Â =




DH
p U

H
p 0

0 A
T

v1

0 DH
v U

H
v





 UpDp 0 0

0 Av1 UvDv




=




∆2
p 0 0 0 0

0 0n−np
0 0 0

0 0 A
T

v1Av1 B 0

0 0 BH ∆2
v 0

0 0 0 0 0n−np−nv




,

(A.24)

where

B = A
T

v1Uv


 ∆v

0


 . (A.25)

Further,

ΓT ÂT Â = (A.26)


∆2
p 0 0 2A

T

v1Av1 2B 0

0 0nv
0 2BH 2∆2

v 0

0 0 0n−np−nv
0 0 0n−np−nv




and

ΓT ÂT ÂΦ = (A.27)


∆2
p 0 0 ∆2

p + 2A
T

v1Av1 2B 0

0 0 0 2BH 2∆2
v 0

0 0 0 0 0 0n−np−nv



.
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Then

F̂ =


 F̂11 F̂12

F̂21 F̂22


 (A.28)

Where:

F̂11 =




Inp
−

∆2
p

α
0 0

0 Inv
0

0 0 In−np−nv




F̂12 =




Inp
−

∆2
p+2ĀT

v1Āv1

α
−2B

α
0

−2BH

α
Inv

− 2∆2
v

α
0

0 In−np−nv




F̂21 =




−2∆2
v

α
0 0

0 0 0

0 0 0




F̂22 =




In1
−

∆2
p+4ĀT

v1Āv1

α
−4B

α
0

−4BH

α
Inv

− 4∆2
v

α
0

0 0 In−np−nv




(A.29)

Notice (A.23) and (A.1) imply

4∆2
v

α
< I. (A.30)

Then the following lemma goes toward a Kalman like decomposition.

Lemma A.1.4 Under (A.9-A.16). with L = Lp + Lv as defined in Section 2.2.

Â
(
zI − F̂

)−1

=
[
H(z) 02L×(2n−2np−nv)

]
Π (A.31)

where

H(z) = C(zI −Υ)−1,
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Υ =




I −
∆2

p

α
I −

∆2
p+2A

T

v1Av1

α
−2B

α

−
2∆2

p

α
I −

2∆2
p+4A

T

v1Av1

α
−4B

α

0 −4BH

α
I − 4∆2

v

α



,

C =


Up


 ∆p

0




⊕




 Av1 Uv


 ∆v

0







 (A.32)

and

Π =




Inp
0 0 0

0 0 Inp+nv
0

0 In−nv
0 0

0 0 0 In−(np+nv)




. (A.33)

Proof: Note

ΠTΠ = I. (A.34)

Hence

Â(zI − F̂ )−1 = ÂΠT
[
zI − ΠF̂ΠT

]−1

Π.

Now,

ÂΠT =




Up


 ∆p

0


 0 0 0 0

0 0n−np
Av1 Uv


 ∆v

0


 0




×

×




Inp
0 0 0

0 0 In−np
0

0 Inp+nv
0 0

0 0 0 In−(np+nv)




=
[
C 02L×(2n−2np−nv)

]

Further, from (A.28)

ΠF̂ΠT =


 I − Υ̂ 0

×1 ×2



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where
[
×1 ×2

]
has 2(n− np)− nv rows and

Υ̂ =




∆2
p

α
−Inp

+
∆2

p+2A
T

v1Av1

α
2B
α

2∆2
p

α

2∆2
p+4A

T

v1Av1

α
4B
α

0 4BH

α

4∆2
v

α




(A.35)

Then the result follows.

Lemma A.1.5 Under the conditions of Lemma A.1.1, A(zI −F )−1 has no poles at

1.

Proof: Because of Lemmas A.1.2 and A.1.4, It suffices to show that Υ defined in

Lemma A.1.4 has no eigenvalues at 1. Choose

T =




Inp
−Inp

/2 0

0 Inp
0

0 0 Inv




and note that

T−1 =




Inp
Inp

/2 0

0 Inp
0

0 0 Inv



.

Then

TΥT−1 =

=




Inp
Inp

/2 0

−
2∆2

p

α
In1

−
2∆2

p+4A
T

v1Av1

α
−4B

α

0 −4BH

α
I − 4∆2

v

α



T−1

=




Inp
Inp

0

−
2∆2

p

α
Inp

−
3∆2

p+4A
T

v1Av1

α
−4B

0 −4BH I − 4∆2
v

α



.

Now, TΥT−1 has an eigenvalue at 1 iff there exists

η =




η1

η2

η3



6= 0
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such that 


0 −In1
0

2Λ2

1

α

3Λ2

1
+4A

T

21A21

α
4B
α

0 4BH

α
I −

4Λ2

2

α







η1

η2

η3



= 0.

Now the first block equation implies η2 = 0. Further because of (A.30), the third

block equation gives η3 = 0. Thus as ∆p > 0, the second block equation assures that

η1 = 0, leading to a contradiction.

Thus Lemma 3.2.1 follows from Lemmas A.1.1 and A.1.5.
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APPENDIX B

SELECTED PROOFS - ENHANCED SCALABILITY

B.1 Proof of Lemma 6.3.1

We first complete through the lemma below the first part of the proof of Lemma

6.3.1.

Lemma B.1.1 Under (2.13) (6.10), (6.11), (2.6), and (2.7) the poles of A(zI − F )−1

are either inside the unit circle or at 1.

Proof: Choose:

T =


 Λ

1

2 −1
2
Λ

1

2

0 Λ
1

2


 and hence T−1 =


 Λ− 1

2
1
2
Λ− 1

2

0 Λ− 1

2


 .

Call

Σi = AT
i Ai ≥ 0 with i ∈ {p, v}

Because of (2.6), (2.7) and (6.10)

0 ≤ Λ−1 (Σp + 4Σv) < 1. (B.36)

Then

TFT−1 = Φ−


 0

2Λ− 1

2



[
Σp 2Σv

]

 Λ− 1

2
3
2
Λ− 1

2

0 Λ− 1

2




= Φ−


 0

2Λ− 1

2



[
ΣpΛ

− 1

2
3
2
(Σp + 2Σv) Λ

− 1

2

]

=


 I I

−2Λ− 1

2ΣpΛ
− 1

2 I − Λ− 1

2 (3Σp + 4Σv) Λ
− 1

2


 .

Then

det(zI − TFT−1)

= det
[
(z − 1)2I + (z − 1)Λ− 1

2 (3Σp + 4Σv) Λ
− 1

2 + 2Λ− 1

2ΣpΛ
− 1

2

]

= det
[
z2I +

(
Λ− 1

2 (3Σp + 4Σv) Λ
− 1

2 − 2I
)
z −

(
Λ− 1

2 (Σp + 4Σv) Λ
− 1

2 − I
)]

Then if z is an eigenvalue of F , there exists a unit η such that

z2 + (3σ2
1 + 4σ2

2 − 2)z − (σ2
1 + 4σ2

2 − 1) = 0 (B.37)
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where

σ2
i = ηTΛ− 1

2ΣiΛ
− 1

2 η.

From (B.36)

0 ≤ σ2
1 + 4σ2

2 < 1, (B.38)

and therefore

0 ≤ 3σ2
1 + 4σ2

2 < 1 + 2σ2
1 , (B.39)

First observe that if (B.37) has a complex root ρ then from (B.38)

|ρ|2 = 1− σ2
1 − 4σ2

2 ≤ 1, (B.40)

with equality holding iff σ1 = σ2 = 0, which in turn leads to

ρ = 1. (B.41)

If on the other hand the roots are real then they are

ρ1 =
2− 3σ2

1 − 4σ2
2 +

√
(3σ2

1 + 4σ2
2)

2 − 8σ2
1

2
(B.42)

and

ρ2 =
2− 3σ2

1 − 4σ2
2 −

√
(3σ2

1 + 4σ2
2)

2 − 8σ2
1

2
(B.43)

Clearly ρ1 ≤ 1, and because of (B.39) ρ1 > −1
2
as shown below

ρ1 ≥
2− (3σ2

1 + 4σ2
2)

2
>

1

2
− σ2

1 ≥ −
1

2
.

Further ρ2 ≤ 1. Now assume

ρ2 ≤ −1

⇔ 4− (3σ2
1 + 4σ2

2) ≤
√
(3σ2

1 + 4σ2
2)

2 − 8σ2
1

⇔ 16− 8(3σ2
1 + 4σ2

2) ≤ −8σ2
1

⇔ 1 ≤ σ2
1 + 2σ2

2

But by (B.39), 1 > σ2
1 + 4σ2

2, leading to a contradiction.

We must now show that the eigenvalues of F that are at 1, are in fact unob-

servable from A. Now consider a singular value decomposition (SVD) of ApΛ
− 1

2 .

ApΛ
− 1

2 = UpDpVp (B.44)
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Where Up is an 2Lp × 2Lp unitary matrix, Vp is an n × n unitary matrix and Dp is

as defined below:

Dp =


 ∆p 0

0 0


 (B.45)

and ∆p diagonal, np × np, positive definite.

Partition the 2Lv × n matrix AvΛ
− 1

2V H
p as

AvΛ
− 1

2V H
p =

[
Av1 Av2

]
(B.46)

where Av2 is 2Lv × (n− np).

Consider next the SVD of Av2, that is, with Uv, 2Lv × 2Lv and Vv, (n− np)×

(n− np) and both unitary

Av2 = UvDvVv (B.47)

where

Dv =


 ∆v 0

0 0


 (B.48)

with ∆v, nv × nv, positive definite.

Define

S = Λ− 1

2V H
p


 Inp

0

0 V H
v


 (B.49)

In the sequel ⊕ will denote the direct sum, for example A = Ap ⊕ Av. Consider

next a system equivalent to (6.13).

Lemma B.1.2 With Φ, Γ, A, b, F , G, Ui, Vi and Di with i ∈ {p, v} and S defined

in (2.6), (2.7), (2.13), (6.11), (6.12), and (B.44 - B.49) define:

F̂ = Φ− ΓΓT ÂT ÂΦ (B.50)

Â = (UpDp)⊕
[
Av1, UvDv

]
(B.51)

Ĝ = ΓΓT ÂT b (B.52)

x̂(k) = (S−1 ⊕ S−1)x(k). (B.53)

Then one has that

x̂(k + 1) = F̂ x̂(k) + Ĝ (B.54)

y(k) = Âx̂(k)− b (B.55)
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Proof: First note that

A(S ⊕ S) =


 ApΛ

− 1

2V H
p 0

0 AvΛ
− 1

2V H
p







Inp
0 0 0

0 V H
v 0 0

0 0 Inp
0

0 0 0 V H
v




=


Up


 ∆p 0

0 0




⊕

[
Av1, UvDv

]

= Â. (B.56)

Further

(S−1 ⊕ S−1)F (S ⊕ S) =

=


 S−1 0

0 S−1


(

I − ΓΛ−1ΓTATA
)

 I I

0 I




 S 0

0 S




=


 S−1 0

0 S−1





I −


 Λ−1 2Λ−1

2Λ−1 4Λ−1


ATA





 S 0

0 S


Φ

=


I − ΓΓT


 S−1 0

0 S−1





 Λ−1 0

0 Λ−1


ATA


 S 0

0 S




Φ

= F̂

because of (2.13). Similarly, because of (2.13), (2.7) and (6.12)

Ĝ =
(
SH ⊕ SH

)
G.

Thus the lemma holds.

Lemma B.1.3 We now show that a condition comparable to (3.7) holds.

I − ΓT ÂT ÂΓ > 0 (B.57)

Proof: Follows from (B.56), the fact that

S−1S = I
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and that

ΓS = (S ⊕ S)Γ

Denoting 0q to be the q × q, 0 matrix, we observe from (B.45), (B.48) and

(B.51):

ÂT Â =




DH
p U

H
p 0

0 A
T

v1

0 DH
v U

H
v





 UpDp 0 0

0 Av1 UvDv


 (B.58)

(B.59)

=




∆2
p 0 0 0 0

0 0n−np
0 0 0

0 0 A
T

v1Av1 B 0

0 0 BH ∆2
v 0

0 0 0 0 0n−np−nv




, (B.60)

where

B = A
T

v1Uv


 ∆v

0


 . (B.61)

Further,

ΓT ÂT Â = (B.62)


∆2
p 0 0 2A

T

v1Av1 2B 0

0 0nv
0 2BH 2∆2

v 0

0 0 0n−np−nv
0 0 0n−np−nv




and

ΓT ÂT ÂΦ = (B.63)


∆2
p 0 0 ∆2

p + 2A
T

v1Av1 2B 0

0 0 0 2BH 2∆2
v 0

0 0 0 0 0 0n−np−nv



.
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Then

F̂ =


 F̂11 F̂12

F̂21 F̂22


 (B.64)

Where:

F̂11 =




Inp
−∆2

p 0 0

0 Inv
0

0 0 In−np−nv




F̂12 =




Inp
−∆2

p + 2ĀT
v1Āv1 −2B 0

−2BH Inv
− 2∆2

v 0

0 In−np−nv




F̂21 =




−2∆2
v 0 0

0 0 0

0 0 0




F̂22 =




In1
−∆2

p + 4ĀT
v1Āv1 −4B 0

−4BH Inv
− 4∆2

v 0

0 0 In−np−nv




(B.65)

Notice (B.57) and (B.58) imply

4∆2
v < I. (B.66)

Then the following lemma goes toward a Kalman like decomposition.

Lemma B.1.4 Under (B.44-B.51). with L = Lp + Lv as defined in Section 2.2.

Â
(
zI − F̂

)−1

=
[
H(z) 02L×(2n−2np−nv)

]
Π (B.67)

where

H(z) = C(zI −Υ)−1,
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Υ =




I −
∆2

p

α
I −

∆2
p+2A

T

v1Av1

α
−2B

α

−
2∆2

p

α
I −

2∆2
p+4A

T

v1Av1

α
−4B

α

0 −4BH

α
I − 4∆2

v

α



,

C =


Up


 ∆p

0




⊕




 Av1 Uv


 ∆v

0







 (B.68)

and

Π =




Inp
0 0 0

0 0 Inp+nv
0

0 In−nv
0 0

0 0 0 In−(np+nv)




. (B.69)

Proof: Note

ΠTΠ = I. (B.70)

Hence

Â(zI − F̂ )−1 = ÂΠT
[
zI − ΠF̂ΠT

]−1

Π.

Now,

ÂΠT =




Up


 ∆p

0


 0 0 0 0

0 0n−np
Av1 Uv


 ∆v

0


 0




×

×




Inp
0 0 0

0 0 In−np
0

0 Inp+nv
0 0

0 0 0 In−(np+nv)




=
[
C 02L×(2n−2np−nv)

]

Further, from (B.64)

ΠF̂ΠT =


 I − Υ̂ 0

×1 ×2



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where
[
×1 ×2

]
has 2(n− np)− nv rows and

Υ̂ =




∆2
p −Inp

+∆2
p + 2A

T

v1Av1 2B

2∆2
p 2∆2

p + 4A
T

v1Av1 4B

0 4BH 4∆2
v




(B.71)

Then the result follows.

Lemma B.1.5 Under the conditions of Lemma B.1.1, A(zI − F )−1 has no poles at

1.

Proof: Because of Lemmas B.1.1 and B.1.4, It suffices to show that Υ defined in

Lemma B.1.4 has no eigenvalues at 1. Choose

T =




Inp
−Inp

/2 0

0 Inp
0

0 0 Inv




and note that

T−1 =




Inp
Inp

/2 0

0 Inp
0

0 0 Inv



.

Then

TΥT−1 =

=




Inp
Inp

/2 0

−2∆2
p In1

− 2∆2
p + 4A

T

v1Av1 −4B

0 −4BH I − 4∆2
v



T−1

=




Inp
Inp

0

−2∆2
p Inp

− 3∆2
p + 4A

T

v1Av1 −4B

0 −4BH I − 4∆2
v



.

Now, TΥT−1 has an eigenvalue at 1 iff there exists

η =




η1

η2

η3



6= 0
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such that 


0 −In1
0

2Λ2
1 3Λ2

1 + 4A
T

21A21 4B

0 4BH I − 4Λ2
2







η1

η2

η3



= 0.

Now the first block equation implies η2 = 0. Further because of (A.30), the third

block equation gives η3 = 0. Thus as ∆p > 0, the second block equation assures that

η1 = 0, leading to a contradiction.

Thus Lemma 6.3.1 follows from Lemmas B.1.1 and B.1.5.
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